Purdue University Graduate School
Browse
- No file added yet -

Weighted Aspects for Sentiment Analysis

Download (1.36 MB)
thesis
posted on 2022-12-05, 22:10 authored by Byungkyu YooByungkyu Yoo

When people write a review about a business, they write and rate it based on their personal experience of the business. Sentiment analysis is a natural language processing technique that determines the sentiment of text, including reviews. However, unlike computers, the personal experience of humans emphasizes their preferences and observations that they deem important while ignoring other components that may not be as important to them personally. Traditional sentiment analysis does not consider such preferences. To utilize these human preferences in sentiment analysis, this paper explores various methods of weighting aspects in an attempt to improve sentiment analysis accuracy. Two types of methods are considered. The first method applies human preference by assigning weights to aspects in calculating overall sentiment analysis. The second method uses the results of the first method to improve the accuracy of traditional supervised sentiment analysis. The results show that the methods have high accuracy when people have strong opinions, but the weights of the aspects do not significantly improve the accuracy.

History

Degree Type

  • Master of Science

Department

  • Computer and Information Technology

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Julia Taylor Rayz

Additional Committee Member 2

John A. Springer

Additional Committee Member 3

Baijian Yang

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC