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ABSTRACT

Cox, Andrew D. PhD, Purdue University, May 2020. A Dynamical Systems Perspec-
tive for Preliminary Low-Thrust Trajectory Design in Multi-Body Regimes. Major
Professor: Kathleen C. Howell.

A key challenge in low-thrust trajectory design is generating preliminary solutions

that simultaneously detail the evolution of the spacecraft position and velocity vec-

tors, as well as the thrust history. To address this difficulty, a dynamical model that

incorporates a low-thrust force into the circular restricted 3-body problem (CR3BP),

i.e., the CR3BP+LT, is constructed and analyzed. Control strategies that deliver

specific energy changes (including zero energy change to deliver a conservative sys-

tem) are derived and investigated, and dynamical structures within the CR3BP+LT

are explored as candidate solutions to seed initial low-thrust trajectory designs. Fur-

thermore, insights from dynamical systems theory are leveraged to inform the design

process. In the combined model, the addition of a low-thrust force modifies the

locations and stability of the equilibrium solutions, resulting in flow configurations

that differ from the natural behavior in the CR3BP. The application of simplifying

assumptions yields a conservative, autonomous system with properties that supply

useful insights. For instance, ”forbidden regions” at fixed energy levels bound low-

thrust motion, and analytical equations are available to guide the navigation through

energy space. Linearized dynamics about the equilibria supply hyperbolic and cen-

ter manifold structures, similar to the ballistic CR3BP. Low-thrust periodic orbits in

the vicinity of the equilibrium solutions also admit hyperbolic and center manifolds,

providing an even greater number of dynamical structures to be employed in prelim-

inary trajectory designs. Several applications of the structures and insights derived

from the CR3BP+LT are presented, including several strategies for transit and cap-

ture near the smaller CR3BP primary body. Finally, an interactive trajectory design
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framework is presented to explore and utilize the structures and insights delivered by

this investigation.
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1. INTRODUCTION

The efficiency of low-thrust propulsion has enabled a variety of ambitious space mis-

sions in recent decades. For example, the Deep Space 1 mission to the McAuliffe

asteroid and the West-Kohoutek-Ikemura comet [1], the Dawn mission to the dwarf

planets Vesta and Ceres [2], and the Hayabusa 1 and 2 missions to the Itokawa and

Ryugu asteroids [3, 4] have all employed low-thrust propulsion to reach their destina-

tions. Additionally, numerous current and future missions such as Psyche [5], Lunar

IceCube [6], and Gateway [7] plan to leverage a low-thrust force to reach deep-space

destinations as well as locations closer to home, e.g., the Moon. As new and improved

low-thrust technologies are designed and validated, the number of low-thrust-enabled

missions will only increase. Accordingly, resources and strategies that facilitate low-

thrust trajectory design are increasingly in demand.

1.1 Motivation and Previous Contributions

The process of designing an end-to-end trajectory for a spacecraft is a nontrivial

endeavor. Nevertheless, this task may be distilled into three general steps, illustrated

in Figure 1.1. First, an “initial guess” is constructed. This preliminary design may

Initial Guess
Corrections /
Optimization

Trajectory

Figure 1.1.: Trajectory design process

include arcs from a variety of dynamical models such as the 2-body problem (i.e.,

conic arcs), the 3-body problem, or an ephemeris model. The initial design need not

be continuous, nor must it satisfy all mission constraints; it’s main purpose is to guide

the second step, corrections and/or optimization. In this step, the preliminary design
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is modified (via some iterative process) until it satisfies a set of mission constraints

and/or minimizes a cost function. The output of this process is a single converged or

optimized trajectory.

One common strategy for ballistic (i.e., without low-thrust) trajectory design is to

assemble dynamical structures (e.g., periodic orbits, quasi-periodic orbits, or invari-

ant manifolds) from multi-body models. As early as the 1970’s, researchers proposed

leveraging periodic halo orbits in the restricted three body problem for translunar

communications satellites [8, 9]. Only a few years later, the ISEE-3 spacecraft flew

along a Sun-Earth halo orbit [10], validating the theory and paving the way for

future Sun-Earth libration point missions such as SOHO [11] and GENESIS [12],

and Earth-Moon libration point missions such as ARTEMIS [13]. Multi-body dy-

namical structures are now a fundamental part of mission design efforts, from small

“CubeSat” missions like Lunar IceCube [6] to large, human spaceflight missions like

NASA’s Artemis-1 (previously EM-1) mission [7]. One frequently useful model is the

circular restricted 3-body problem (CR3BP) which, when formulated in terms of a

rotating frame, yields a conservative, autonomous, Hamiltonian system with useful

symmetries and an abundance of available structures [14]. Periodic and quasi-periodic

motion from the CR3BP such as the halo, quasi-halo, and Lissajous orbits have been

employed as initial designs for a number of missions, and manifolds that asymptoti-

cally approach these orbits supply useful paths capable of delivering a spacecraft to

a corresponding destination orbit without any deterministic maneuvers [15].

Although strategies that assemble dynamical structures into a preliminary trajec-

tory design are very successful for ballistic paths, additional obstacles exist when a

low-thrust force is added to the dynamics. For example, when the multi-body dy-

namics described by the CR3BP are augmented with a low-thrust force, the resulting

system (CR3BP+LT) is not generally autonomous or Hamiltonian; thus, many of the

useful simplifications and structures from the CR3BP are not immediately available

for use in a preliminary design. Additionally, the problem dimension, i.e., the number

of design variables, increases with the inclusion of the low-thrust force. To solve this
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large, complex problem (and others like it), many authors employ numerical tech-

niques to identify low-thrust control parameters along trajectories that are initialized

from ballistic 2-body and 3-body structures. For example, predictor-corrector shoot-

ing algorithms are applied to generate control histories along low-thrust transfers

between periodic orbits in the CR3BP [16, 17, 18]. Similarly, collocation algorithms,

combined with optimization, add low-thrust to ballistic initial guesses, yielding non-

intuitive trajectories [19, 20, 21]. Optimization methods without a collocation scheme

have also been employed to augment ballistic structures with a low-thrust accelera-

tion [22, 23]. Other authors apply machine learning and pathfinding techniques to

construct itineraries from segments of natural arcs, incorporating the capabilities of

a low-thrust propulsion system via attainable sets [24, 25]. In any of these strate-

gies, the preliminary designs rarely include an initial guess for the low-thrust control

parameters; designers rely on the corrections or optimization algorithms to identify

suitable control values. Although this approach may succeed in many cases, the

chaotic dependency between the initial guess and the converged solution makes it dif-

ficult to understand the impact of changes to the control parameters (or other aspects

of the preliminary design) on the final result. This lack of intuition only exacerbates

the difficulties in designing an initial guess. In short, the effects of the magnitude,

orientation, and duration of a low-thrust force on a trajectory in a multi-body regime

are poorly understood. This investigation seeks to address this difficulty; a systematic

and intuitive strategy to generate preliminary low-thrust designs is desired to improve

the predictability of these algorithms and to supply an improved understanding of

the available trajectory options.

Rather than relying solely on numerical methods and optimization algorithms to

select low-thrust control parameters, an increasing number of authors are examining

models that incorporate multiple gravitational forces and a low-thrust force to de-

velop preliminary low-thrust control histories for spacecraft trajectories. Exploration

of the 3-body dynamics with a radiation pressure force added to both primaries

demonstrates the existence of new equilibrium points [26]. Similar analyses of the
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effects of solar radiation pressure on solar sail motion in the Sun-Earth CR3BP ex-

amine a set of artificial equilibrium points (AEPs) and propose strategies to maintain

stable orbits about the AEPs [27, 28]. Subsequent investigations of the AEPs ex-

plore the linear stability properties of the points and construct periodic orbits in the

vicinity of the AEPs [29] for various mission applications, including communications

platforms [30], polar observation missions [31], and asteroid hovering operations [32].

The stable and unstable manifolds corresponding to the AEPs may be leveraged in

trajectory designs between the CR3BP libration points in the Sun-Earth solar sail

model [33, 34] and in the Earth-Moon low-thrust model [35]. Similarly, the stable

and unstable manifolds associated with periodic orbits near the AEPs are employed

as segments of low-thrust trajectories [36]. Finally, insights from the CR3BP+LT are

applied to select control parameters for capture and escape from gravity wells in the

Earth-Moon system [37, 38, 39].

1.2 Research Objectives and Document Overview

Building upon the existing literature, the focus of this investigation is the explo-

ration of a model that incorporates both multi-body dynamics and a low-thrust force.

By exploring such a model, flow patterns that incorporate low-thrust control can be

quantified and categorized for use in multi-body trajectory designs. Accordingly, the

goal of this work is a general set of heuristics and properties to aid in the construction

of preliminary solutions that include low-thrust arcs in multi-body regimes. This goal

is subdivided into the following objectives:

1. Apply dynamical systems techniques to explore the properties and structures

within the context of a model that includes both multi-body gravitational dy-

namics and a low-thrust force.

2. Create a catalog of dynamical structures from the low-thrust, multi-body model

that may be incorporated into preliminary trajectory designs.
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3. Demonstrate the use of the insights and structures from the low-thrust, multi-

body model to design low-thrust trajectories in the Earth-Moon and Sun-Earth

systems.

The analyses in support of these objectives supply intuition where little currently

exists in the combined multi-body, low-thrust problem. This intuition enables explo-

ration of the design space before optimization or corrections algorithms are applied,

and facilitates a greater understanding of converged and/or optimized results.

To address the challenge of determining the relationship between low-thrust con-

trol inputs and the evolution of a trajectory, two specific trajectory characteristics

are studied:

Energy The energy along a trajectory, i.e., the Hamiltonian or Jacobi constant in the

CR3BP, is a scalar quantity that remains constant in the ballistic CR3BP. With

the addition of the low-thrust force, this energy value varies along a trajectory.

Links between the low-thrust vector and the energy evolution are identified to

enable control of the energy in preliminary designs.

Geometry The effects of low-thrust control on the geometry of a trajectory, i.e.,

the 6D position and velocity of the arc, are more difficult to identify than the

relationship with the scalar energy quantity. To supply a global view of the

trajectory geometries enabled by the addition of low-thrust to the CR3BP, a

variety of dynamical structures such as equilibrium points, equilibrium point

manifolds, periodic orbits, and periodic orbit manifolds are constructed across

the full range of plausible control parameters. By comparing these structures

with ballistic paths, the impact of the low-thrust force on a spacecraft path may

be inferred.

The discussion of the these contributions is split into three chapters:

Chapter 2 - Dynamical Models The equations of motion governing the CR3BP

are derived via a Newtonian and a Hamiltonian approach, and the Hamiltonian

(an integral of the motion) is identified. These multi-body dynamics are then
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augmented with a low-thrust force in the CR3BP+LT formulation. A brief sur-

vey of other perturbing accelerations puts the magnitude of the low-thrust term

into perspective. Next, an analysis of the CR3BP Hamiltonian reveals several

low-thrust control strategies that govern the evolution of the Hamiltonian. A

low-thrust Hamiltonian is also constructed and examined. The conditions un-

der which this Hamiltonian may be assumed constant are then explored and

validated via Monte Carlo analyses. Finally, the properties of an autonomous,

conservative, and Hamiltonian CR3BP+LT are discussed, revealing a direct

relationship between the low-thrust control parameters, the initial and final po-

sitions on a trajectory, and the resulting change in the ballistic Hamiltonian

value. These properties supply intuition to guide preliminary trajectory design

efforts and lay the groundwork for the following two chapters.

Chapter 3 - Dynamical Structures Building upon the models developed in the

first chapter, the forbidden regions associated with the CR3BP+LT are con-

structed and analyzed. These structures supply bounds on the evolution of

a low-thrust trajectory with a specific low-thrust acceleration vector. Next,

the locations and stability properties of the equilibrium solutions are assessed.

As these solutions differ significantly from the ballistic equilibria, many novel

structures and characteristics are identified. The hyperbolic manifolds (i.e., the

stable and unstable manifolds) associated with the low-thrust equilibria also

deliver new paths throughout the 3-body environment. Next, the periodic or-

bits within the center manifolds of the equilibrium points are computed; by

applying continuation methods, entire families of low-thrust periodic orbits are

available, supplying a large number of novel solutions. Finally, the stable and

unstable manifolds associated with the periodic orbits are constructed. Any

of these dynamical structures may be included in an itinerary for a low-thrust

spacecraft.

Chapter 4 - Applications In this chapter, the insights and structures from the

previous two chapters are applied to trajectory design problems. First, insights
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from the energy plane enable modifications to a ballistic path to prohibit passage

through gateways in the low-thrust forbidden regions. Next, a more nuanced

strategy to control these gateways is developed by relating the control parame-

ters at a point on a ballistic path to the equilibrium point energies. Using this

method, a ballistic path is straightforwardly adjusted to capture near the Moon.

A more general criteria for transit and capture near the Moon is then developed

by leveraging the hyperbolic manifolds associated with low-thrust periodic or-

bits located in the low-thrust forbidden region gateways. An application linking

low-thrust spiral trajectories departing from a geostationary transit orbit to a

manifold that approaches the Moon demonstrates this concept. Intersections

of the low-thrust manifolds are also employed to identify paths that transit

through the lunar region or that fail to transit, i.e., that capture. Finally, apsis

maps of anti-velocity-pointing low-thrust arcs are utilized to locate high-energy

trajectories capable of capturing into the Moon’s gravity well.

Chapter 5 - Interactive Trajectory Design The final chapter briefly discusses

the architecture of an interactive trajectory design software suite that has been

developed to communicate the results of this investigation to other researchers.

Two Java libraries contain object-oriented classes for rapid and flexible analysis

while a MATLAB graphical user interface supplies a visual, interactive front-

end to the Java libraries. Two plug-ins to the MATLAB interface enable the

exploration of the low-thrust insights and dynamical structures.

Finally, a webpage displaying animated versions of some of the figures in this docu-

ment is hosted at

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/

Dissertations/2020 Cox

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox
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2. DYNAMICAL MODELS

The first step toward understanding the impact of the magnitude, orientation, and

duration of a low-thrust force on a trajectory in a multi-body regime is the definition

of a model that incorporates both the multi-body dynamics and the low-thrust force.

In this investigation, the multi-body dynamics are modeled via the circular restricted

3-body problem. This ballistic model is then augmented with a low-thrust acceler-

ation to form a combined multi-body, low-thrust dynamical system. Following the

derivation of a general model, specific low-thrust control parameterizations are dis-

cussed from a dynamical systems perspective, yielding insights that enable the control

of the energy along the trajectory. One particular parameterization that results in

a conservative, autonomous, and Hamiltonian system is explored in more detail and

validated with Monte Carlo analyses. A discussion of several useful properties of this

simplified model concludes the chapter, including a direct link between the low-thrust

control, the initial and final points on a trajectory, and the energy change along the

path. These results enable manipulations of the ballistic energy via low-thrust and

lay the groundwork for the calculation of dynamical structures in the next chapter.

2.1 Circular Restricted 3-Body Problem

The circular restricted 3-body problem (CR3BP) describes the motion of three

barycentric bodies P1, P2, and P3 with masses M1, M2 and M3, respectively. It is

assumed that P3 possesses negligible mass compared to the other two bodies (i.e.,

M3 << M1,M2) and, thus, does not affect their motion. The paths of the two

larger bodies, termed primaries, are therefore governed by two-body gravitational

dynamics and are represented by conic sections. For simplicity, it is assumed that the

two primaries move in circular orbits (rather than more general elliptical orbits) about
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their mutual barycenter, B, as depicted in Figure 2.1. A right-handed, orthonormal

X̂

Ŷ

x̂

θ

P2

P1

ŷ

~R1

~R2

P3

~R3

~R23

~R13

B

Figure 2.1.: CR3BP reference frame definition

inertial frame, I = {X̂, Ŷ, Ẑ}, is defined such that the X̂ and Ŷ unit vectors span the

primaries’ orbital plane and Ẑ coincides with their mutual angular momentum vector.

The circular motion of the primaries relative to the barycenter is described by simple

trigonometric relationships,

~R1 = R1

[
− cos(Nt)X̂− sin(Nt)Ŷ

]
, (2.1)

~R2 = R2

[
cos(Nt)X̂ + sin(Nt)Ŷ

]
, (2.2)

where ~R1 and ~R2 are vectors locating each primary relative to the barycenter and

N = dθ/ dt is the mean motion of the primaries in their orbits about B. The position

of P3 is denoted ~R3 and is measured relative to the inertially-fixed base point B. The

equations that govern the motion of P3, i.e., the equations for d~R3/ dt and d2 ~R3/ dt2,

may be derived via several methods. A Newtonian approach equates the sum of

external forces to the time-varying momentum of the spacecraft. This formulation

represents the dynamics in terms of intuitive quantities such as Cartesian position and

velocity coordinates and force vectors. Alternatively, a Hamiltonian or Lagrangian

derivation may be applied. These energy-balance approaches employ less intuitive

generalized coordinates and generalized momenta but offer clear insights into dynam-
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ical properties of the system, such as the existence of integrals and the properties of

manifolds. Thus, both Newtonian and Hamiltonian derivations are included.

2.1.1 Newtonian Derivation

Newton’s second law describes the motion of P3 as viewed by an inertial observer

due to the external forces exerted on P3 by P1 and P2. Expressed mathematically,

∑
~Fext =

id ~P3

dt
, (2.3)

where ~P3 is the linear momentum of P3,

~P3 = M3

id~R3

dt
, (2.4)

and the i in the left-superscript denotes an inertial observer, i.e., and observer fixed

in I. If M3 is constant Newton’s law simplifies to the familiar form,

∑
~Fext = M3

id2 ~R

dt2
. (2.5)

The external gravitational forces applied to P3 by P1 and P2 are derived from the

spatial gradient of the gravitational potential function,

U = −G
(
M1

R13

+
M2

R23

)
, (2.6)

where G is the universal gravitational constant, yielding

∑
~Fext = GM3

~∇rU = −GM3

(
M1

R3
13

~R13 +
M2

R3
23

~R23

)
= M3

id2 ~R3

dt2
. (2.7)
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In this notation, ~∇r = {∂/∂x ∂/∂y ∂/∂z}T denotes the gradient with respect to

the three Cartesian position coordinates. Removing the mass of P3 from both sides

of this expression yields the acceleration of P3 as seen by an inertial observer,

id2 ~R3

dt2
= −GM1

R3
13

~R13 −G
M2

R3
23

~R23. (2.8)

This vector equation is nonautonomous because both ~R13 and ~R23 explicitly depend

on the time-varying positions of P1 and P2 as represented in Equations (2.1) and (2.2).

To form an autonomous system, reformulate the equations in a rotating frame basis,

R = {x̂, ŷ, ẑ} (pictured in Figure 2.1), defined with x̂ directed from P1 to P2 and ẑ

along the angular velocity of the primary orbit; ŷ completes the right-handed set. In

this rotating frame, both primaries are stationary, removing the explicit functions of

time from the equations of motion.

To further simplify notation and reduce round-off error during numerical inte-

gration, all variables are nondimensionalized by characteristic quantities. It is con-

venient to select a characteristic length equal to the constant distance between the

two primaries, L∗ = R1 + R2, and a characteristic mass as the total system mass

M∗ = M1 +M2. A characteristic time is subsequently deduced from the reciprocal of

the mean motion of the primaries T∗ = 1/N =
√
L3
∗/(GM∗). Let the position vectors,

masses, and time be nondimensionalized as follows,

~Ri = L∗~ri, M2 = M∗µ, t = T∗τ,

where uppercase letters generally (time t is an exception) denote dimensional quanti-

ties and lowercase letters represent nondimensional quantities. An expression for M1

is obtained in terms of the system mass ratio µ:

M1 = (1− µ)M∗. (2.9)
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As a result of applying these characteristic quantities, the nondimensional mean mo-

tion of the primaries, n = NT∗, and the semi-major axis, r12 = (R1 + R2)/L∗, are

equal to unity, therefore, the period of primary motion is 2π/n = 2π nondimensional

time units. Substituting nondimensional quantities into equation (2.8) results in the

following relationship:

id2~r3

dτ 2

(
L∗
T 2
∗

)
= r̈3

L∗
T 2
∗

= −G
[
M∗(1− µ)L∗~r13

r3
13L

3
∗

+
M∗µL∗~r23

r3
23L

3
∗

]

~̈r3 = −GM∗
L3
∗

√ L3
∗

GM∗

2 [
(1− µ)

r3
13

~r13 +
µ

r3
23

~r23

]

~̈r3 = −(1− µ)

r3
13

~r13 −
µ

r3
23

~r23, (2.10)

where ~r3 is expressed in nondimensional rotating coordinates as ~r3 = xx̂+yŷ+zẑ and

the dots over a vector represent derivatives with respect to nondimensional time, τ .

The vectors ~r13 and ~r23 locate P3 relative to P1 and P2, respectively, and are evaluated

as ~r13 = ~r3 − ~r1 and ~r23 = ~r3 − ~r2. The distance from P1 to the center of mass along

the x̂-axis, r1, is derived from the definition of the center of mass:

R1 =
0M1 + L∗M2

M1 +M2

→ r1L∗ =
L∗M∗µ

M∗
∴ r1 = µ. (2.11)

As the nondimensional distance between the primaries is unity, the nondimensional

distance r2 is evaluated as r2 = 1− µ. Substituting these relationships for r1 and r2

into the expressions for ~r13 and ~r23 yields

~r13 = xx̂+ yŷ + zẑ − (−µ)x̂ = (x+ µ)x̂+ yŷ + zẑ, (2.12)

~r23 = xx̂+ yŷ + zẑ − (1− µ)x̂ = (x− 1 + µ)x̂+ yŷ + zẑ. (2.13)

Accordingly, the location of P3 relative to the primary bodies is a function only of

the nondimensional coordinates and the system parameter, µ.
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Recall that Newton’s second law (2.10) applies only for derivatives of ~r3 as seen by

an inertial observer and with respect to an inertial base point. The system barycenter,

B, serves as a suitable inertial base point and the inertial reference frame, I, may be

employed as the inertial observer. However, it is more convenient to employ the

rotating frame, R, as the working coordinate system as this results in an autonomous

system. Thus, to apply Newton’s equations, the basic kinematic equation (BKE) is

leveraged to compute the derivatives of the spacecraft position as seen by an inertial

observer in rotating frame coordinates.

Theorem 2.1.1 (Basic Kinematic Equation (BKE)) Let I represent an inertial

frame and let R represent a frame that rotates relative to I with the constant angular

velocity vector, i~ωr. Then the derivative of a vector as observed in the I frame is

related to the derivative as observed in the R frame by the relationship,

id~r

dτ
=

rd~r

dτ
+ i~ωr × ~r. (2.14)

The vectors may be represented in either working frame, i.e., R or I, as long as all

of the vectors are expressed in terms of the same working frame.

Proof Define a position vector1,

~r = xx̂+ yŷ + zẑ, (2.15)

represented in the R = {x̂, ŷ, ẑ} working frame. The derivative of this vector as

observed in the R frame is
rd~r

dτ
= ẋx̂+ ẏŷ + żẑ. (2.16)

1Paraphrased from course notes [40]



14

Similarly, the derivative as observed from the I frame is

id~r

dτ
=

id

dτ
(xx̂+ yŷ + zẑ) , (2.17)

= ẋx̂+ ẏŷ + żẑ + x
idx̂

dτ
+ y

idŷ

dτ
+ z

idẑ

dτ
, (2.18)

=
rd~r

dτ
+ x

idx̂

dτ
+ y

idŷ

dτ
+ z

idẑ

dτ
. (2.19)

The derivatives of the R basis vectors as observed in the I frame are

idRj

dτ
= i~ωr × Rj, (2.20)

where i~ωr is the constant angular velocity of the R frame relative to the I frame [41].

Accordingly, Equation (2.19) simplifies to

id~r

dτ
=

rd~r

dτ
+
(
i~ωr × xx̂

)
+
(
i~ωr × yŷ

)
+
(
i~ωr × zẑ

)
,

=
rd~r

dτ
+ i~ωr × ~r. (2.21)

The CR3BP rotating frame spins about the ẑ = Ẑ axis at a constant nondimensional

rate, n; thus, the angular velocity of the CR3BP rotating frame relative to an inertial

frame is

i~ωr =

{
0 0 n

}T
. (2.22)

Applying the BKE, the kinematic inertial derivative of ~r3 expressed in rotating coor-

dinates is

~̇r3 =
id~r3

dτ
= ẋx̂+ ẏŷ + żẑ + [nẑ]× [xx̂+ yŷ + zẑ]

~̇r3 = (ẋ− ny)x̂+ (ẏ + nx)ŷ + żẑ. (2.23)
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Similarly, the second derivative yields

~̈r3 =
id2~r3

dτ 2
(ẍ− 2nẏ − n2x)x̂+ (ÿ + 2nẋ− n2y)ŷ + z̈ẑ. (2.24)

Substituting this expansion, the nondimensional values for r1 and r2, and the nondi-

mensional value n = 1 into Equation (2.10) yields three scalar equations describing

the motion of P3 as expressed in terms of the rotating Cartesian coordinates:

ẍ− 2ẏ = x− (1− µ)
x+ µ

r3
13

− µx− 1 + µ

r3
23

, (2.25)

ÿ + 2ẋ = y − (1− µ)
y

r3
13

− µ y

r3
23

, (2.26)

z̈ = −(1− µ)
z

r3
13

− µ z

r3
23

. (2.27)

where

r13 =
√

(x+ µ)2 + y2 + z2, (2.28)

r23 =
√

(x− 1 + µ)2 + y2 + z2. (2.29)

These equations may be written more compactly as the gradient of a pseudopotential

function, Ω. Recall the inertial potential function, Ũ = 1−µ
r13

+ µ
r23

, now expressed in

terms of nondimensional quantities. This inertial potential is augmented with the

“potential” of the rotating frame to form the pseudopotential,

Ω = Ũ +
1

2
(x2 + y2) =

1− µ
r13

+
µ

r23

+
1

2
(x2 + y2). (2.30)

The equations of motion, (2.25) – (2.27), are related to the spatial gradient of Ω:

ẍ− 2ẏ = Ωx, (2.31)

ÿ + 2ẋ = Ωy, (2.32)

z̈ = Ωz, (2.33)
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were the partial derivatives are Ωx = ∂Ω/∂x, Ωy = ∂Ω/∂y, and Ωz = ∂Ω/∂z. In

these expressions, the x and y accelerations are decoupled from the z acceleration

such that motion that originates entirely in the xy-plane (i.e., z = ż = 0) does not

develop any motion in the out-of-plane direction.

2.1.2 Hamiltonian Derivation

Additional insights into the dynamics of the CR3BP are available by applying a

Hamiltonian approach.2 In contrast to the Newtonian derivation, which relates forces

and accelerations, the Hamiltonian method follows an energy balance approach. To

begin, define a set of generalized coordinates, ~q = {q1 q2 q3}T , where

q1 = x, (2.34)

q2 = y, (2.35)

q3 = z, (2.36)

i.e., ~q = ~r3, the location of P3 relative to the system barycenter in the rotating frame

coordinates. Additionally, define a set of generalized momenta, ~p = {p1 p2 p3}T ,

such that

p1 = q̇1 − q2, (2.37)

p2 = q̇2 + q1, (2.38)

p3 = q̇3. (2.39)

These generalized momenta are equivalent to the specific (specific here means mass-

independent) linear momentum of the spacecraft as seen by an inertial observer, i.e.,

the inertial velocity,

~p =
id~r3

dτ
= ~̇r3 + i~ωr × ~r3 = ~̇q + ω̃~q, (2.40)

2Special thanks to Kenza Boudad for inspiring this Hamiltonian approach!
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where ω̃ is the cross-product matrix,

ω̃ =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 =


0 −1 0

1 0 0

0 0 0

 , (2.41)

and the ω1, ω2, and ω3 terms are the x̂, ŷ, and ẑ components of i~ωr, respectively, i.e.,

ω1 = ω2 = 0 and ω3 = n = 1 as defined in Equation (2.22). Accordingly, the specific

kinetic energy associated with P3 is defined

T =
1

2

(
p2

1 + p2
2 + p2

3

)
, (2.42)

and the specific potential energy is

V = −1− µ
r13

− µ

r23

. (2.43)

Note that these expressions represent the P3 energies as viewed by an inertial observer;

p2
1 +p2

2 +p2
3 is equivalent to the squared magnitude of the velocity of P3 as seen in the

inertial frame and the potential energy is a function only of the distances between

primaries, values that are equal in both frames. Next, define the Lagrangian as the

difference between the two energies,

L = T − V . (2.44)

The total energy in the system is the Hamiltonian,

H = ~p • ~̇q − L. (2.45)

Accordingly, the Hamiltonian in the CR3BP, Hnat, is

Hnat(~q, ~p) =
1

2

(
p2

1 + p2
2 + p2

3

)
+ p1q2 − p2q1 −

1− µ
r13

− µ

r23

. (2.46)
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(Throughout this document, the “nat” subscript denotes a quantity associated

with the natural CR3BP in contrast to a quantity associated with the augmented

CR3BP+LT model.) In the Hnat expression, the first term represents the kinetic

energy of P3 in the inertial frame, the second and third terms capture the “energy”

of the rotating system, and the final two terms represent the potential energy from

the gravitational fields. By applying Hamilton’s canonical equations of motion,

~̇q =

(
∂H

∂~p

)T
, ~̇p =

(
− ∂H
∂~q

)T
,

the governing equations are derived,

q̇1 = p1 + q2, (2.47)

q̇2 = p2 − q1, (2.48)

q̇3 = p3, (2.49)

ṗ1 = p2 −
1− µ
r3

13

(q1 + µ)− µ

r3
23

(q1 − 1 + µ), (2.50)

ṗ2 = −p1 −
1− µ
r3

13

q2 −
µ

r3
23

q2, (2.51)

ṗ3 = −1− µ
r3

13

q3 −
µ

r3
23

q3. (2.52)

For a more compact form of the equations, define a state vector in the “Hamiltonian

basis,”

~XH =

~q~p
 . (2.53)

The equations of motion are then

~̇XH = J

(
∂Hnat

∂ ~XH

)T

, (2.54)
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where

J =

 03×3 I3×3

−I3×3 03×3

 (2.55)

is an orthogonal and skew-symmetric matrix, i.e., J−1 = JT = −J. Although these

equations leverage a different basis (i.e., the generalized coordinates and generalized

momenta) than the Newtonian derivation to describe the dynamics, they are identical

to Equations (2.25) – (2.27). Additionally, by employing the Hamiltonian basis and

constructing the Hamiltonian, it is immediately clear that Hnat is an integral for

Equation (2.54) as Hnat does not depend on time. In other words, Hnat is constant

along solutions of Equation (2.54). When scaled by negative two, Hnat is equal to the

Jacobi constant,

C = −2Hnat. (2.56)

In this investigation, the Hamiltonian is preferred as an integral because it is slightly

more intuitive than the Jacobi constant. For example, a Hamiltonian change ∆Hnat >

0 corresponds to an increase in energy but a similar change in the Jacobi con-

stant, ∆C > 0, corresponds to a decrease in energy. Regardless of the scaling,

the Hamiltonian or Jacobi values are commonly employed to parameterize dynamical

structures in the CR3BP.

While the Hamiltonian basis is employed to deliver many dynamical systems re-

sults, it is frequently useful to represent the dynamics in a more intuitive basis, i.e.,

the “Lagrangian basis” employed in the Newtonian approach. In this case, the state

vector is denoted

~X = ~XL =

~q~̇q
 =

{
x y z ẋ ẏ ż

}T
, (2.57)

where the L subscript denotes the Lagrangian basis; in most other sections of this

document the L is omitted for brevity as the Lagrangian basis is the default state

representation. The generalized momenta can be written in terms of the generalized
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coordinates and their derivatives, as in Equation (2.40). When ~q and ~̇q are substituted

into Equation (2.46), the natural Hamiltonian is evaluated as

Hnat(~q, ~̇q) =
1

2

(
q̇2

1 + q̇2
2 + q̇2

3

)
− 1

2

(
q2

1 + q2
2

)
− 1− µ

r13

− µ

r23

=
1

2
~̇q • ~̇q − Ω(~q). (2.58)

Consistent with the Hamiltonian written in terms of the generalized momenta, the

first term in Equation (2.58) represents the kinetic energy of P3 viewed in the R

rotating frame, the second term incorporates the motion of the frame, and the third

and fourth terms capture the potential energy from the gravity fields. However, in

contrast to Equation (2.46), the kinetic energy term is expressed in terms of the

rotating velocity coordinates and the “energy” associated with the rotating frame is

written as a function of only the rotating position coordinates. Because the analyses

in this investigation are performed in the rotating frame, this representation of the

Hamiltonian is employed.

By leveraging the relationship between the generalized momenta and the gen-

eralized coordinates in Equation (2.40), dynamical quantities are straightforwardly

transformed between the Hamiltonian and Lagrangian bases [42]. First, write the

relationship between the generalized momenta and the generalized coordinates more

compactly,

~p = ~̇q + ω̃~q. (2.59)

Next, this relationship between ~p and ~q is incorporated into the Tω transformation

matrix to relate vectors in the two bases,

~XH = Tω
~XL, (2.60)

where

Tω =

I3×3 03×3

ω̃ I3×3

 . (2.61)
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This matrix is invertible,

Tω
−1 = T−ω, (2.62)

where T−ω replaces the ω̃ submatrix with −ω̃. Thus, the Lagrangian form of the

state vector is also straightforwardly available from the Hamiltonian form,

~XL = T−ω ~XH . (2.63)

The partial derivatives of the Hamiltonian with respect to the state vectors are simi-

larly related,

∂Hnat

∂ ~XH

= T−ω
T

(
∂Hnat

∂ ~XL

)T

. (2.64)

Accordingly, the equations of motion in the Hamiltonian basis are available from the

Lagrangian basis,

~̇XH = JT−ω
T

(
∂Hnat

∂ ~XL

)T

. (2.65)

Transforming the right side of this relationship also yields a matrix form for the

governing equations expressed in the Lagrangian basis,

~̇XL = T−ωJT−ω
T

(
∂Hnat

∂ ~XL

)T

. (2.66)
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When expanded, these equations of motion are identical to those derived via the

Newtonian approach,

~̇XL =

 03×3 I3×3

−I3×3 −2ω̃


−

∂Ω

∂~q

~̇q

 =


~̇q

∂Ω

∂~q
− 2ω̃~̇q

 (2.67)

=



ẋ

ẏ

ż

2ẏ + x− (1− µ)(x+ µ)/r3
13 − µ(x− 1 + µ)/r3

23

−2ẋ+ y − (1− µ)y/r3
13 − µy/r3

23

−(1− µ)z/r3
13 − µz/r3

23


. (2.68)

Because these equations cannot be analytically integrated, a numerical integration

scheme is employed (see Appendix A for details). Given an initial condition, ~XL(τ0),

and some time-of-flight, the ~XL vector is propagated according to these governing

equations. Subsequently, motion throughout the CR3BP may be quantified and an-

alyzed for trajectory design applications.

2.2 CR3BP Incorporating Low Thrust

To gain insights and produce dynamical structures for low-thrust trajectory design

in multi-body regimes, the CR3BP dynamics are augmented with the force delivered

by a low-thrust propulsion system. Additionally, the spacecraft mass is modeled as a

time-varying function to incorporate the effects of propellant expulsion during thrust

events. Similar to the CR3BP derivation, both a Newtonian and a Hamiltonian ap-

proach are employed to write the governing equations and explore the dynamics of

the system. A time-varying low-thrust Hamiltonian is constructed to supply addi-

tional insight, and several control strategies are explored. One strategy incorporates

assumptions that yield an autonomous system; the dynamics associated with this sim-
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plified model are investigated to provide further guidance for preliminary low-thrust

trajectory design.

2.2.1 Newtonian Derivation

Consistent with the ballistic CR3BP, the motion of the spacecraft is described by

Newton’s second law. It is reprinted here for convenience,

∑
~Fext =

id ~P3

dt
. (2.3)

The ballistic gravitational forces acting on the spacecraft are augmented with a low-

thrust force, yielding a CR3BP model with low-thrust (CR3BP+LT). To derive an

expression for this propulsive force, consider a spacecraft at two times: t and t + dt

where dt is some infinitesimal time differential.3 At the initial time, depicted in Figure

2.2(a), the spacecraft mass is M3 and the velocity as observed in the inertial frame is

~V3 = i d~R3/ dt. Accordingly, the momentum of the spacecraft at time t is

(a) Spacecraft at time t (b) Spacecraft and expelled mass at time t+dt

Figure 2.2.: Low-thrust force free body diagrams

~P3(t) = M3
~V3. (2.69)

3Thanks to Rolfe Power for motivating and assisting with this derivation!
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After some infinitesimal time, dt, a small portion of the spacecraft mass, dM , has been

expelled by the propulsion system, affecting the spacecraft velocity by d~V3; similarly,

the expelled mass possesses the velocity, ~VdM . Thus, the momentum of the spacecraft

and the expelled propellant at time t+ dt is

~P3(t+ dt) = (M3 − dM)(~V3 + d~V3) + dM~VdM . (2.70)

The momentum change between the two times is

d ~P3 = ~P3(t+ dt)− ~P3(t) (2.71)

= − dM~V3 +M3 dV3 − dM d~V3 + dM~VdM . (2.72)

Because dM and d~V3 are both infinitesimal, their product is assumed to be zero.

Substituting the resulting momentum differential into Equation (2.3) yields the ex-

pression,

∑
~Fext =

M3 d~V3

dt
+

(~VdM − ~V3) dM

dt
. (2.73)

The first momentum term on the right side of the equation is the familiar mass times

acceleration expression, i.e., M3 d~V3/ dt = M3
~A3, where ~A3 is the acceleration of

the spacecraft. The second term in the equation is the thrust force; the velocity of

the expelled mass relative to the spacecraft is the exhaust velocity, ~Ve = ~VdM − ~V3,

resulting in the equation for the thrust force,

~Fthrust = −~Ve
dM

dt
. (2.74)

Rearranging Equation (2.73) results in the vector differential equation,

M3

id~V3

dt
= M3

id2 ~R3

dt2
=
∑

~Fext = ~Fgrav + ~Fthrust. (2.75)
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Substitute the gravitational forces, ~Fgrav, and solve for the spacecraft acceleration

vector, i.e.,
id2 ~R3

dt2
= −G

(
M1

R3
13

~R13 +
M2

R3
23

~R23

)
+

1

M3

~Fthrust. (2.76)

When this expression is nondimensionalized using the same procedure as discussed

in Section 2.1.1, the thrust force is multiplied by the ratio T 2
∗ /L∗. For consistency

with the other terms in the equations of motion, nondimensional equivalents are

introduced:

f =
Fthrust

M3,0

(
T 2
∗
L∗

)
, (2.77)

m = M3/M3,0, (2.78)

where M3,0 is the initial spacecraft mass (i.e., the wet mass), f is the nondimensional

thrust magnitude, and m is the nondimensional spacecraft mass. The Fthrust value is

measured in kilonewtons while M3 and M3,0 are measured in kilograms. The thrust

term in Equation (2.76) is rewritten as a nondimensional acceleration,

1

M3

~Fthrust → ~alt = altâlt =
f

m
âlt, (2.79)

where ~alt is the low-thrust acceleration vector, which can be decomposed into an accel-

eration magnitude, alt, and the acceleration orientation unit vector, âlt. A nondimen-

sional thrust magnitude of f ≈ 1e-2 in the Earth-Moon and Sun-EMB (Earth-Moon

barycenter) CR3BP+LT systems is consistent with current spacecraft capabilities,

as listed in Table 2.1 (see Table B.2 for additional spacecraft parameters). Accord-

ingly, a nondimensional f value on the order of 1e-2 is frequently employed in this

investigation to represent a reasonable low-thrust capability in the Earth-Moon and

Sun-EMB systems.

In addition to equations governing the spacecraft acceleration, an equation that

models the spacecraft mass over time is required. Several strategies exist to model

the mass history and are discussed in later sections. Let the mass rate equation
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Table 2.1.: Low-thrust system comparison

Spacecraft
M3,0 Fthrust alt f [nondim]
[kg] [mN] [mm/s2] Earth-Moon Sun-EMB

Deep Space 1 [43] 486 92.0 1.9e-1 7.0e-2 3.2e-2
Hayabusa [44] 510 22.8 4.7e-2 1.6e-2 7.5e-3
Hayabusa 2 [44] 609 27.0 4.4e-2 1.6e-2 7.5e-3
Dawn [45] 1218 91.0 7.6e-2 2.7e-2 1.3e-2
Lunar IceCube [6] 14 1.15 7.1e-2 3.0e-2 1.4e-2

temporarily be written as an arbitrary function, ṁ(·). The full set of differential

equations governing the motion of P3 in the CR3BP+LT is then

ẍ− 2ẏ = Υx = x− (1− µ)
x+ µ

r3
13

− µx− 1 + µ

r3
23

+ ~alt • x̂, (2.80)

ÿ + 2ẋ = Υy = y − (1− µ)
y

r3
13

− µ y

r3
23

+ ~alt • ŷ, (2.81)

z̈ = Υz = −(1− µ)
z

r3
13

− µ z

r3
23

+ ~alt • ẑ, (2.82)

ṁ = ṁ(·), (2.83)

where Υ is the low-thrust pseudopotential function,

Υ =
1

2
(x2 + y2) +

1− µ
r13

+
µ

r23

+ ~alt • ~r = Ω + ~alt • ~r, (2.84)

and Υx, Υy and Υz are the partial derivatives of Υ with respect to the position

states. The low-thrust pseudopotential may also be expressed by augmenting the

ballistic pseudopotential, Ω, defined in Equation (2.30), with the dot product of the

low-thrust acceleration and the spacecraft position vector. The substitution ~r = ~r3 is

introduced to simplify the notation as this investigation is focused on the motion of

P3.

Consistent with the CR3BP, the equations that govern the motion of a spacecraft

in the CR3BP+LT are not analytically integrable and are evaluated via numerical

integration. For a complete representation of the spacecraft state in the low-thrust
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model, the state vector is constructed to include the position vector, velocity vector,

and mass, as well as a set of control states that define the low-thrust acceleration

vector, ~alt. If all of these quantities are independent, the problem dimension is 10,

dramatically increasing the complexity in comparison to the ballistic CR3BP. Accord-

ingly, one of the primary goals of this investigation is to employ control strategies or

other simplifying assumptions that decrease the number of independent variables and

enable more intuitive trajectory design. An understanding of the natural Hamiltonian

in the CR3BP+LT leads to several relevant control strategies and simplifications to

achieve this goal.

2.2.2 Perturbing Accelerations Survey

Before examining the properties of the CR3BP+LT, a survey of the most signifi-

cant perturbing accelerations is conducted. In the CR3BP+LT derivation, all forces

acting on the spacecraft other than the gravitational acceleration of the two primaries

and the low-thrust acceleration delivered by the propulsion system are ignored. To

understand and validate this assumption, it is useful to inspect the low-thrust accel-

eration magnitudes within the context of other perturbing accelerations. The accel-

eration applied to a spacecraft, measured relative to some central body, is available

from the equation,

id2 ~Rcs

dt2
= −GMc +Ms

R3
cs

~Rcs +GMp

(
~Rpc

R3
pc

−
~Rps

R3
ps

)
+G

k∑
j=1

Mj

(
~Rjc

R3
jc

−
~Rjs

R3
js

)
(2.85)

= ~Ac + ~Ap +
k∑
j=1

~Aj (2.86)

where ~Rcs locates the spacecraft, s, relative to the central body, c. As the focus of

this investigation is the CR3BP+LT, the central body is selected to be one of the two

primaries. The acceleration imparted to the spacecraft by the other primary body

is captured by the second set of terms in Equation (2.85); the p subscript represents
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this “non-central” primary body. Finally, the accelerations delivered by an arbitrarily

large set of k extra perturbing bodies is included in the summation. The masses of

the bodies are written as Mc, Ms, Mp, and Mj; the spacecraft mass, Ms, is assumed

to be negligible in comparison to Mc. Written more compactly, the acceleration on

the spacecraft (as seen by an inertial observer) is the sum of the central body term,

~Ac, the non-central body term, ~Ap, and the perturbing terms, ~Aj, for j = 1, . . . , k.

The central body and non-central body terms are combined into a single acceleration

vector, ~Ac+p = ~Ac+ ~Ap, to represent the CR3BP acceleration (note that the centripetal

acceleration terms from the rotating reference frame are not included).

To construct a general representation of the accelerations delivered throughout the

CR3BP+LT regime, a grid of spacecraft states in the xy-plane of the rotating frame

are employed. Additionally, the accelerations at each grid point are computed over

a range of equally-spaced times between January 1, 2020 and January 1, 2030. The

magnitude of the acceleration vector at each point and date is computed and then

averaged over time to deliver an average acceleration magnitude for each grid point.

These acceleration magnitudes are then plotted as a surface in the rotating frame

that is defined by the central and non-central body. For example, the magnitude of

the acceleration acting on a spacecraft due to the gravity of the Earth and Moon

(i.e.,
∥∥∥ ~Ac+p∥∥∥), plotted in Figure 2.3, has peaks at the locations of the Earth and the

Moon and a local minimum at a point between the two bodies where the gravitational

accelerations sum to zero. Because these accelerations do not include the rotation of

the frame, this zero acceleration point (also called a gravitational saddle point [46]) is

not collocated with the libration points (marked by vertical blue lines). The average

magnitude of the solar gravity perturbation in the Earth-Moon rotating frame, de-

picted by the orange surface, is approximately one order of magnitude smaller than

the Earth and Moon gravitational accelerations at the limits of the grid (x = ±2 and

y = ±2), but the solar gravity is several orders of magnitude less significant than the

Earth and Moon gravity when the spacecraft is near either of the primaries. Finally,

the acceleration magnitudes delivered by Deep Space 1 (DS1), Hayabusa, and Lunar
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Figure 2.3.: Comparison of acceleration magnitudes near the Earth, viewed in the
Earth-Moon rotating frame

IceCube (LIC), plotted as black lines, are generally smaller than the Earth and Moon

gravitational accelerations but similar to the solar perturbation, particularly when

the spacecraft is far from the Earth and Moon. This result suggests that the design

techniques and dynamical structures developed in this investigation for low-thrust

applications may also be employed in a model that combines the Sun, Earth, and

Moon gravity. This result also reveals that a high-fidelity analysis for low-thrust tra-

jectory design should include the solar gravity perturbation. Regardless, the inclusion

of solar gravity in the Earth-Moon system is beyond the scope of this work; only the

low-thrust perturbation to the CR3BP is incorporated.

A similar analysis is conducted in the Sun-EMB system. These results, plotted in

Figure 2.4, compare the accelerations imparted to a spacecraft located near the Earth

due to the combined gravitational pull of the Sun, Earth, and Moon (Sun+EMB) as

well as the gravitational accelerations delivered by Jupiter, Saturn, and Venus. Con-

sistent with the Earth-Moon results, these accelerations are averaged over the decade

between 2010 and 2020. The Sun+EMB acceleration magnitude peaks at the location

of the Earth-Moon Barycenter (EMB) and includes a minimum at a nearby saddle

point that is located within the Moon’s orbit (a radius of about 0.005 nondimensional

units in the Sun-EMB system). The perturbing accelerations of Jupiter, Saturn, and
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Figure 2.4.: Comparison of acceleration magnitudes near the Earth-Moon Barycenter,
viewed in the Sun-EMB rotating frame

Venus are considerably smaller than the Sun, EMB, and low-thrust accelerations.

Accordingly, in contrast to the Earth-Moon CR3BP+LT, the Sun-EMB CR3BP+LT

is accurately modeled without incorporating extra perturbing accelerations.

A final perturbing acceleration to consider is solar radiation pressure (SRP). The

acceleration of a spacecraft due to SRP varies with the Sun-facing area of the space-

craft, its reflectivity properties, as well as with the distance from the Sun. For the

sake of a simple comparison, consider an SRP acceleration of 8.7e-5 mm/s2, computed

for a 1100 kg GPS IIR satellite at 1 AU [47]. Four orders of magnitude smaller than

the low-thrust acceleration, the SRP may be neglected.

2.2.3 The Perturbed Natural Hamiltonian

Returning to a dynamical systems analysis in the CR3BP+LT, recall that the

natural Hamiltonian, Hnat, is constant in the ballistic problem, supplying an integral

of the motion. However, when a low-thrust force is added to the model, Hnat is not

generally constant. In other words, Hnat is not a dynamically significant quantity in

the CR3BP+LT. Nevertheless, as thrust is frequently applied to change the energy

along a trajectory, the variations in Hnat may be beneficial. To facilitate informed
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preliminary design decisions, it is important to understand the relationships between

the natural Hamiltonian and the low-thrust force. This information is available from

the time derivative of the natural Hamiltonian, expressed here in terms of the Carte-

sian coordinates and the pseudopotential spatial gradient rather than the generalized

coordinates and momenta,

Ḣnat =
dHnat

dτ
= ẋ (ẍ− Ωx) + ẏ

(
ÿ − Ωy

)
+ ż (z̈ − Ωz) . (2.87)

Substitute the CR3BP+LT equations of motion (2.80) – (2.83) for the terms within

the parentheses and simplify:

Ḣnat = ẋ (2ẏ + ~alt • x̂) + ẏ (−2ẋ+ ~alt • ŷ) + ż~alt • ẑ = ~v • ~alt, (2.88)

where ~v = {ẋ ẏ ż}T is the spacecraft velocity vector in the rotating frame. This

simple result supplies significant insight that may be applied when designing a control

strategy, i.e., when constructing a preliminary time history for ~alt. The dot product

in Equation (2.88) expands to

~v • ~alt =‖~v‖‖~alt‖ cosψ = valt cosψ, (2.89)

where ψ is the angle between the ~v and ~alt vectors. This relationship delivers several

insights:

1. The magnitude of Ḣnat is greatest when the velocity magnitude, v, is greatest.

That is, thrust applied when the velocity magnitude is large will yield a larger

energy change than the same thrust applied when the velocity magnitude is

smaller. This result is analogous to the Oberth effect [48].

2. The magnitude of Ḣnat is greatest when the low-thrust acceleration magnitude

is greatest. This result is intuitive; applying a larger acceleration delivers a

larger energy change.
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3. The magnitude of Ḣnat is greatest when the velocity vector (as seen in the

rotating frame, R) and the low-thrust acceleration vector are parallel or anti-

parallel, i.e., when cosψ = ±1. This result is also consistent with intuition;

accelerating along the velocity vector will increase the magnitude of the velocity

most rapidly and therefore increase the kinetic energy, one of the components

of the Hamiltonian, most rapidly. Similarly, thrusting along the anti-velocity

vector (−~v) will decrease the magnitude of the velocity most rapidly.

The first insight provides some guidance when planning the timing or location of ma-

neuvers. If changing the energy, i.e., the Hnat value, of a trajectory is the design goal,

implementing a low-thrust burn when the spacecraft velocity magnitude is large (e.g.,

during a flyby of one of the primaries) may be beneficial. Alternatively, if the energy

is to be conserved, implementing a low-thrust maneuver when the velocity magni-

tude is small may enable changes to the trajectory geometry without significantly

affecting the energy. The third insight is useful when designing the orientation of the

low-thrust acceleration vector. If a large energy increase or decrease is required, the

~alt vector may be aligned with the ~v or −~v directions. Alternatively, a low-thrust

acceleration vector orientation that results in cosψ = 0 yields a constant Hnat value.

Such a control strategy may be leveraged to manipulate the geometry of a trajectory

while maintaining the energy. In the next section, several control parameterizations

are explored, including strategies that leverage these insights.

2.2.4 Pseudo-Separable Control Parameterization

The orientation and magnitude of the low-thrust acceleration vector are common

design variables in low-thrust mission design problems. In fact, the selection of these

variables is frequently one of the largest challenges in low-thrust trajectory design as

the effects of those variables on the evolution of the trajectory are not well defined.

Although it is difficult to predict changes in the geometry of a trajectory (a 6D

quantity) due to low-thrust, the impact of the additional force on the energy, i.e., the
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Hamiltonian (a 1D quantity), associated with the trajectory is more straightforward.

Accordingly, several control strategies are developed to accomplish specific energy

goals.

To facilitate the analysis of many different low-thrust control strategies in the

CR3BP multi-body environment, a “pseudo-separable” control parameterization is

adopted. Recall the definition for the low-thrust acceleration vector,

~alt =
f

m
âlt. (2.79)

The thrust magnitude, f , spacecraft mass, m, and acceleration orientation, âlt, are

pseudo-separable, i.e., the values of these values are partially or completely indepen-

dent. Three control policy types are defined:

Thrust Magnitude Policy – Supplies the thrust magnitude, f , and an expression

that governs the evolution of f , i.e., ḟ .

Mass Policy – Supplies the spacecraft mass, m, and a representation of its evolution,

i.e., ṁ.

Orientation Policy – Supplies the orientation vector, âlt, and a vector definition of

its evolution, i.e., ˙̂alt.

The control state vector, ~u, may be similarly separated into three vector components

associated with the policies,

~u =

{
~uTf ~uTm ~uTo

}T
, (2.90)

where ~uf , ~um, and ~uo are the control states associated with the thrust magnitude,

mass, and orientation policies. Because all of the control policies employed in this

investigation rely on constant control states, i.e., ~̇u = ~0, or on the spacecraft position

or velocity states, the ~u vector is excluded from the state vector and the control

“states” are treated as parameters instead. This separation effectively reduces the

problem dimension by three, leaving the spacecraft position, velocity, and mass as
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the only independent states. When differential corrections algorithms are applied,

the control parameters may be included in the design variable vector. Thus, the

definitions of the ~u components are omitted from this section, which focuses on the

dynamics, and are included in later chapters when relevant to differential corrections

processes.

To fully define the low-thrust control strategy, a thrust magnitude policy, a mass

policy, and an orientation policy are selected from the available options. In general,

the thrust magnitude and orientation are completely independent (i.e., separable) of

the spacecraft mass and of each other. On the other hand, the spacecraft mass evo-

lution frequently depends on the thrust magnitude. Some specific policies employed

in this investigation are detailed below.

Thrust Magnitude Policy

Throughout this investigation, the thrust magnitude is held constant. Thus, only

one thrust magnitude policy is employed:

ḟ = 0. (2.91)

As a result, the acceleration magnitude, alt = f/m, is a function of only one variable,

the spacecraft mass, m.

Mass Policies

Two policies are leveraged to model the spacecraft mass:

• Variable Mass Policy The first policy sets the mass rate, ṁ, to a constant

value via the relationship,

ṁ =
−f
Ispg0

(
L∗
T∗

)
, (2.92)
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where the specific impulse, Isp, is a constant measured in seconds, and g0 =

9.80665e-03 km/s2 is the mean Earth gravitational acceleration. Specific im-

pulse values for low-thrust propulsion systems are generally high, ranging from

1900 to over 3000 seconds (see Table B.2). The Isp is assumed to be constant

in this investigation; accordingly, this strategy is termed a constant specific

impulse (CSI) formulation.

• Constant Mass Policy A second mass policy holds the spacecraft mass con-

stant, i.e.,

ṁ = 0. (2.93)

Although a constant mass is not consistent with existing propulsion technolo-

gies, the mass rate in Equation (2.92) is generally very small and m may be

reasonably approximated as a constant, at least for relatively short times-of-

flight. The definitions of “very small” and “relatively short” vary depending

on the specific impulse and on the multi-body dynamics; the validity of this

constant-mass assumption is later explored for a number of systems.

In either mass policy, the mass rate, ṁ, is a constant. As such, the mass equation of

motion, Equation (2.83), is easily integrated analytically,

m(τ) = m(τ0) + ṁτ. (2.94)

This equation is then incorporated directly into the equations of motion (EOMs), i.e.,

~alt( ~X, τ) =
f

m(τ0) + ṁτ
âlt( ~X, τ), (2.95)

where ~X is the spacecraft state in the Lagrangian basis, as defined in Equation (2.57).

This substitution removes mass from the states that must be numerically integrated
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but also adds an explicit time dependency to the EOMs. Alternatively, mass may be

retained in a seven-element “low-thrust state vector”, ~Xlt = { ~XT m}T , yielding

~alt( ~Xlt, τ) =
f

m
âlt( ~Xlt, τ). (2.96)

In practical terms, the results (e.g., from numerical integration of the governing equa-

tions) of the two approaches are identical. However, the former method is preferred

from a dynamical systems perspective as it reduces the number of state variables

from seven to six and explicitly communicates the time-dependence of the dynamics.

Furthermore, the system with seven states cannot be fully represented by Hamilton’s

canonical equations and, subsequently, is more difficult to analyze via dynamical

systems techniques.

Orientation Policies

In addition to the thrust magnitude and mass policies, an orientation policy is

required to specify the pointing direction for the low-thrust acceleration vector. Let

the orientation of the acceleration vector in the rotating frame, âlt, be defined by two

angles, α and β, via the expression,

âlt =

{
cos(α) cos(β) sin(α) cos(β) sin(β)

}T
(2.97)

where α measures the orientation of the planar projection of âlt relative to x̂, and

β measures the angle between the planar projection and âlt, as illustrated in Figure

2.5. In this investigation, the two angles are described within the ranges α ∈ [−π, π]

and β ∈ [−π/2, π/2]. A variety of strategies, discussed below, are available to control

these orientation angles.

• Velocity-Aligned Orientation As discussed in Section 2.2.3, the natural

Hamiltonian rate is related to the dot product between the velocity vector
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x̂

ŷ

ẑ

~alt

α

β

Figure 2.5.: The orientation of the low-thrust acceleration vector relative to the
rotating frame

observed in the rotating frame, ~v, and the low-thrust acceleration vector. Ac-

cordingly, a strategy to extremize Ḣnat is summarized by the expressions,

âlt = ~v/‖~v‖ , (2.98)

âlt = −~v/‖~v‖ . (2.99)

As these equations are functions only of the velocity states, no control states

are required to model the thrust orientation.

• Velocity-Perpendicular Orientation In addition to revealing a control strat-

egy to extremize Ḣnat, the natural Hamiltonian rate in Equation (2.88) supplies

a method to constrain the Hnat value along a low-thrust trajectory. Thrusting

in a plane orthogonal to the velocity vector, i.e., ~alt ⊥ ~v, yields Ḣnat = 0, pre-

serving the Hnat value along the trajectory despite the time-varying spacecraft

mass and âlt orientation. This control strategy may be employed to manipulate

the geometry of a solution while maintaining the energy required to flow onto a

ballistic structure. Similar to the velocity-aligned orientation policy, this policy

does not require any control states.

Although the velocity-aligned and velocity-perpendicular orientation policies supply

useful trends in the Hnat value along a low-thrust trajectory, the orientation of ~alt
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must be continuously adjusted to maintain a consistent relationship to the velocity

vector. Depending on the evolution of the velocity vector, these strategies may or may

not be feasible. Additionally, a forcing term that is a function of the velocity states, as

in the two velocity-relative control strategies, generally results in a dynamical system

without many useful simplifications. In many applications, such a continuous control

strategy may be discretized as a “turn-and-hold” approach where the orientation of ~alt

is updated at discrete time intervals and held constant in between [49]. Accordingly,

it is worthwhile to explore the dynamics of the CR3BP+LT when the ~alt vector

orientation is fixed relative to either the rotating frame, R, or the inertial frame, I.

• Fixed Rotating Orientation When the orientation of ~alt is fixed in the ro-

tating frame,

α̇ = 0, (2.100)

β̇ = 0. (2.101)

Thus, only the magnitude of the ~alt vector varies as the spacecraft mass evolves

with time (recall that f is treated as a constant). However, these magnitude

variations are small due to the low mass flow rates typically associated with low-

thrust propulsion systems. If the magnitude of ~alt is assumed constant while the

orientation is held fixed, the CR3BP+LT may be modeled as an autonomous,

conservative, Hamiltonian system.

While an orientation fixed in the rotating frame is, in fact, a constantly rotating

orientation when viewed from an inertial frame, the rotation rate is constant (or

nearly constant, in reality) and can be much smaller than the rate at which the

spacecraft velocity vector orientation evolves. For instance, many communica-

tions and scientific satellites rotate continuously. Thus, a continuously evolving

spacecraft orientation is not infeasible.

• Fixed Inertial Orientation Finally, an orientation policy that is commonly

applied to inter-planetary low-thrust trajectories fixes the acceleration vector
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relative to an inertial frame. Recall that the spacecraft velocity as viewed in

the inertial frame is identical to the generalized momenta vector, ~p, expanded

in Equations (2.37) – (2.39). Although this direction is constant, the resulting

dynamical system is nonautonomous (even if the spacecraft mass is assumed

constant) due to the movement of the primaries in the inertial frame. Equiva-

lently, an inertially-fixed thrust direction is a time-varying quantity when viewed

in the rotating frame that fixes the locations of the primaries. Because this ori-

entation policy introduces nonautonomous terms in addition to the spacecraft

mass, complicating rather than simplifying the dynamics, an inertially-fixed

thrust is not explored in this investigation.

By selecting a thrust magnitude policy, a mass policy, and an orientation policy, a

fully-parameterized control strategy is constructed for a low-thrust trajectory. The

orientation policies that orient ~alt relative to the rotating velocity vector may be

applied to manipulate the Hnat value along a trajectory. Similarly, when the fixed

orientation policy and the constant mass policy are combined, the Hlt value may be

held constant. The remainder of the chapter discusses the validity and results of this

control strategy.

2.2.5 A Low-Thrust Hamiltonian System

In general, the added complexity of the low-thrust acceleration term in the

CR3BP+LT prohibits useful insights from Hamiltonian dynamics. However, the selec-

tion of a convenient control parameterization and simplifications to the model reduce

the number of states and facilitate a Hamiltonian analysis. As discussed in Section

2.2.4, the magnitude of the low-thrust acceleration vector is assumed a constant. Sim-

ilarly, the mass flow rate, ṁ, is modeled as a constant, yielding a mass equation that

is linear in time and removing mass from the state vector. Finally, the orientation

policies employed in this work are functions of the spacecraft position and velocity

states. As a result, the only states required to model the motion of a spacecraft in
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the CR3BP+LT are those states employed to describe the spacecraft position and

velocity, i.e., ~X. These simplifications reduce the number of independent variables

to six but also introduce an explicit function of time into the equations of motion

via the mass equation. Before incorporating further simplifications, the Hamiltonian

associated with this low-thrust system is derived and analyzed.

To begin a Hamiltonian analysis of the CR3BP+LT, define the specific kinetic and

potential energies associated with the motion of the spacecraft. The kinetic energy

expression in Equation (2.42) remains unchanged from the CR3BP, repeated here for

reference,

Tlt(~p) = T =
1

2

(
p2

1 + p2
2 + p2

3

)
, (2.42)

with generalized momenta defined identically as in the CR3BP. The potential energy

expression incorporates the low-thrust acceleration term, i.e.,

Vlt(~q, ~p, τ) =
−(1− µ)

r13

− µ

r23

− ~q • ~alt(~q, ~p, τ), (2.102)

where the low-thrust acceleration vector is written as an explicit function of time

as in Equation (2.95); the generalized coordinate definitions are consistent with the

CR3BP. The low-thrust term propagates through the derivation to yield a low-thrust

Hamiltonian,

Hlt(~q, ~p, τ) =
1

2

(
p2

1 + p2
2 + p2

3

)
+ p1q2 − p2q1 −

1− µ
r13

− µ

r23

− ~q • ~alt(~q, ~p, τ) (2.103)

Hlt(~q, ~̇q, τ) =
1

2

(
q̇2

1 + q̇2
2 + q̇2

3

)
− 1

2

(
q2

1 + q2
2

)
− 1− µ

r13

− µ

r23

− ~q • ~alt(~q, ~̇q, τ), (2.104)

=
1

2
~̇q • ~̇q − Ω(~q)− ~q • ~alt(~q, ~̇q, τ), (2.105)

=
1

2
~̇q • ~̇q −Υ(~q, ~̇q, τ), (2.106)

that may be written in terms of the Hamiltonian basis (i.e., the generalized coordi-

nates and momenta) or in the Lagrangian basis (i.e., the generalized coordinates and
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their derivatives). The low-thrust Hamiltonian may also be expressed as a function

of the natural Hamiltonian, i.e.,

Hlt(~q, ~p, τ) = Hnat(~q, ~p)− ~q • ~alt(~q, ~p, τ). (2.107)

In contrast to the ballistic model, the low-thrust Hamiltonian is not generally con-

stant in the CR3BP+LT due to the time-dependency in the ~alt vector (i.e., in the

mass equation). However, Hamilton’s canonical equations may still be applied to

yield the equations of motion,

q̇1 =
∂Hlt

∂p1

= p1 + q2 − ~q •
∂~alt

∂p1

, (2.108)

q̇2 =
∂Hlt

∂p2

= p2 − q1 − ~q •
∂~alt

∂p2

, (2.109)

q̇3 =
∂Hlt

∂p3

= p3 − ~q •
∂~alt

∂p3

, (2.110)

ṗ1 =− ∂Hlt

∂q1

= p2 −
1− µ
r3

13

(q1 + µ)− µ

r3
23

(q1 − 1 + µ) + (~alt • x̂) + ~q •
∂~alt

∂q1

, (2.111)

ṗ2 =− ∂Hlt

∂q2

= −p1 −
1− µ
r3

13

q2 −
µ

r3
23

q2 + (~alt • ŷ) + ~q •
∂~alt

∂q2

, (2.112)

ṗ3 =− ∂Hlt

∂q3

= −1− µ
r3

13

q3 −
µ

r3
23

q3 + (~alt • ẑ) + ~q •
∂~alt

∂q3

. (2.113)

The partial derivatives of the low-thrust acceleration vector with respect to the gen-

eralized coordinates and momenta are determined by the control policies employed

to model the low-thrust system. As the thrust magnitude and mass are modeled

independently of the other states, the only nontrivial dependencies are between the

orientation vector, âlt, and the generalized coordinates and momenta. The values of

these dependencies vary by the orientation policy, as noted below.
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• Velocity-Aligned – The orientation vector is a function of the velocity states,

i.e., ~̇q. These velocities may be expressed as a function of the generalized coor-

dinates and momenta by rearranging Equation (2.59),

~̇q = ~p− ω̃~q.

Thus, the orientation of the low-thrust acceleration vector is a unit vector along

~̇q, a function of both the generalized momenta and the generalized coordinates,

yielding

∂~alt

∂~p
=

(
I
∥∥∥~̇q∥∥∥2

− ~̇q~̇q T

)
/
∥∥∥~̇q∥∥∥3

,
∂~alt

∂~q
=
(
−~̇q T ~̇q ω̃ + ~̇q~̇q T ω̃

)
/
∥∥∥~̇q∥∥∥3

• Velocity-Perpendicular – Similar to the velocity-aligned case; the partial

derivatives are nonzero.

• Fixed Rotating – The orientation vector is a function of two constant param-

eters, α and β; the partial derivatives all evaluate to zero,

∂~alt

∂~p
=
∂~alt

∂~q
= ~0

• Fixed Inertial – The orientation vector is aligned with the general momenta

vector. Thus,

∂~alt

∂~p
=
(
I‖~p‖2 − ~p~p T

)
/‖~p‖3 ,

∂~alt

∂~q
= 0

Accordingly, when the orientation of the low-thrust acceleration vector is fixed in

the rotating frame, the dependencies between ~alt and the generalized coordinates and

momenta are trivial (i.e., zeros), removing the partial derivative terms from Equations

(2.108) – (2.113). Mathematically, the low-thrust acceleration vector is only a function

of time, ~alt = fâlt/m(τ); as a result, the pseudopotential simplifies to a function only
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of the generalized coordinates and time, Υ = Υ(~q, τ). The equations of motion are

concisely represented in matrix form,

~̇XH = J
∂Hlt

∂ ~XH

, (2.114)

consistent with the CR3BP definitions of J and ~XH . The vector EOM in (2.114) is

transformed into the Lagrangian basis via the same process as in the CR3BP (see

Section 2.1.2),

~̇X = ~̇XL = T−ωJT−ω
T ∂Hlt

∂ ~XL

(2.115)

=

 0 I

−I −2ω̃


−

∂Υ

∂~q

~̇q

 =


~̇q

∂Υ

∂~q
− 2ω̃~̇q

 (2.116)

These equations are identical to the Newtonian derivation results, (2.80) – (2.82),

with the mass equation explicitly integrated and included in the ~alt vector.

As in the analysis of the natural Hamiltonian in Section 2.2.3, an investigation

of Hlt supplies insights that may be applied in the preliminary design process. More

specifically, an investigation of the time derivative of Hlt reveals control strategies that

reduce the complexity of the CR3BP+LT. Recall that the low-thrust Hamiltonian

may be represented as an augmented natural Hamiltonian, as in Equation (2.107).

The time derivative of the first term, Hnat, is available from Equation (2.88) and the

derivative of the second term is straightforwardly evaluated,

d

dτ
[~q • ~alt] = ~̇q • ~alt + ~q • ~̇alt. (2.117)

Combine Equations (2.88) and (2.117) to yield the time derivative of Hlt,

Ḣlt =
dHlt

dτ
= −~q • ~̇alt = −~q •

( ḟm(τ)− fṁ
m(τ)2

)
âlt +

f

m(τ)
˙̂alt

 , (2.118)
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where m(τ) is evaluated from Equation (2.94). Clearly the evolution of the low-thrust

Hamiltonian depends on the evolution of the control parameters, f and âlt, as well

as the spacecraft mass, m(τ). A control strategy that delivers a Ḣlt value of zero is

of particular interest as the resulting system is conservative and admits an integral

of the motion, Hlt. Within the context of the control policies defined in this chapter,

one combination that delivers Ḣlt = 0 is apparent. First, the thrust magnitude, f ,

is constant via the constant thrust magnitude policy, reducing the ḟ term to zero.

Second, if the fixed rotating orientation policy is selected, the âlt derivative also

reduces to zero, simplifying the low-thrust Hamiltonian rate to

Ḣlt = ~q •
fṁ

m(τ)2
âlt (2.119)

Accordingly, the constant mass policy delivers Ḣlt = 0 as it assumes ṁ = 0. This

combination of control policies is mathematically equivalent to fixing the magnitude

(alt) and orientation (âlt) of the low-thrust acceleration vector. Although a constant

mass policy is not as representative of real flight systems as the constant thrust or

constant thrust orientation strategies, the high efficiency and small thrust magnitudes

associated with low-thrust propulsion systems generally correspond to a very small ṁ

value. Additionally, the simplifications that result from this combination of control

policies enable a plethora of useful results from dynamical systems theory that can

be incorporated into preliminary trajectory designs; the majority of the dynamical

structures that may be available are a consequence of these simplifications. A detailed

exploration of the validity of the constant mass assumption is the next important step.

Following the validation, the properties of this simplified model are detailed.

2.2.6 Conservative Model Validation

When the low-thrust acceleration vector, ~alt, is fixed (both in magnitude and di-

rection) in the rotating frame, the CR3BP+LT becomes a conservative, Hamiltonian

system in which the low-thrust Hamiltonian, Hlt, is an integral of the motion, as
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discussed in Section 2.2.5. While maintaining a fixed thrust orientation is a feasible

control strategy, maintaining a constant low-thrust acceleration magnitude may prove

more difficult or simply undesirable in practice. In many applications, the thrust mag-

nitude, f , is fixed but the spacecraft mass varies with time. Accordingly, neither the

acceleration magnitude, alt = f/m, nor the acceleration vector, ~alt = altâlt, are con-

stant. Although the thrust magnitude may be decreased at the same rate as the mass

to maintain a constant value of alt, this strategy further limits the control authority

of an already small force, an undesirable outcome from an engineering perspective.

Thus, it is prudent to explore the dynamical properties of the CR3BP+LT when the

acceleration magnitude is not fixed, i.e., when the spacecraft mass varies.

Hamiltonian Evolution with Variable Mass

One approach to evaluate the validity of a constant mass assumption is to investi-

gate the evolution of the low-thrust Hamiltonian when the mass is not held constant.

For this analysis, the low-thrust acceleration vector orientation is fixed in the rotat-

ing frame ( ˙̂alt = ~0) and the thrust magnitude, f , is held constant (ḟ = 0) while the

mass varies according to the CSI policy described in Section 2.2.4. Accordingly, the

low-thrust Hamiltonian rate, expressed in Equation (2.118), simplifies to

Ḣlt(~q, τ) = ~q •
fṁ

m(τ)2
âlt. (2.120)

Substitute the CSI mass rate from Equation (2.92) for ṁ and the definition of the

nondimensional thrust magnitude, f , from Equation (2.77) into the Hamiltonian rate

to isolate the physical spacecraft parameters,

Ḣlt(~q, τ) =
−F 2

Ispg0m(τ)2M2
3,0

~q • âlt

(
T 3
∗
L∗

)
. (2.121)

In this expression the dimensional thrust magnitude, F , is expressed in kilonewtons,

Isp is given in seconds, g0 is measured in km/s2, and M3,0 is expressed in kilograms.
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Several sets of variables impact the magnitude of the Hamiltonian rate. First, the

propulsion system parameters (F , Isp) and the spacecraft properties (M3,0) scale the

magnitude of the rate. Similarly, the distance of the spacecraft from the barycen-

ter (i.e., the magnitude of ~q) is proportional to Ḣlt. The less intuitive relationship

between the spacecraft position and the orientation of the low-thrust acceleration

vector also affects the Hamiltonian rate, as do the characteristic quantities associated

with the system (L∗ and T∗). To enable a practical comparison across systems, let

the spacecraft and propulsion system properties be consistent with the Deep Space 1

spacecraft [43]: F = 92e-4 kN, Isp = 1900 sec, and M3,0 = 486 kg. Furthermore, to

increase the magnitude of the rate, let the spacecraft mass be m = 0.9, representing

a scenario when 10% of the spacecraft wet mass has been depleted. This mass is

consistent with the spacecraft capabilities, as Deep Space 1 was equipped with 82

kg of Xenon propellant for maneuvers, i.e., about 17% of the spacecraft wet mass.4

Finally, let‖~q‖ = 1, a radius that includes the dynamically interesting P2 vicinity, and

let the angle between ~q and âlt be zero to maximize the dot product. Together, these

selected parameters supply a large but reasonable static Ḣlt value that is employed

to compare various CR3BP+LT systems.

To supply context within a specific system, the Ḣlt values are compared to the

difference in natural Hamiltonian values between the L1 and L5 Lagrange points.

This differential,

∆Hnat = Hnat(L5)−Hnat(L1), (2.122)

represents the significant energy change required to transition between a forbidden

region geometry that separates the P1, P2, and exterior regions to a forbidden region

geometry that allows unrestricted motion throughout the xy-plane [50]. The value

of this differential varies considerably between systems. For example, in the Earth-

Moon system, ∆Hnat ≈ 1e-1 while in the Sun-EMB system, ∆Hnat ≈ 4.5e-4. Because

the scaling of Hlt is consistent with the scaling of Hnat, the ratio of the two quantities

4See the Deep Space 1 Asteroid Flyby press kit, https://www.jpl.nasa.gov/news/press kits/
ds1asteroid.pdf

https://www.jpl.nasa.gov/news/press_kits/ds1asteroid.pdf
https://www.jpl.nasa.gov/news/press_kits/ds1asteroid.pdf
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Ḣlt/∆Hnat communicates the significance of a particular change in the Hlt value. A

small ratio, e.g., Ḣlt/∆Hnat = 3.3e-3 for the Deep Space 1 spacecraft in the Earth-

Moon system, as plotted in Figure 2.6, indicates that the change in the low-thrust

Hamiltonian per unit of nondimensional time is approximately 1000 times smaller

than the energy change between L1 and L5. Similarly, a large ratio, e.g., Ḣlt/∆Hnat =

Figure 2.6.: Scaled Ḣlt values for the Deep Space 1 spacecraft across CR3BP+LT
systems

4.46 in the Sun-EMB system, indicates that the low-thrust Hamiltonian varies by

much more than the ∆Hnat value in a single unit of nondimensional time. All of the

Sun-planet systems in the solar system are characterized by similarly large ratios, as

seen in Figure 2.6. (All of the “barycenter” labels indicate the inclusion of the specified

body and its satellites, e.g., “Earth Barycenter” is equivalent to the Earth and Moon.)

In contrast, many planet-moon systems possess small Ḣlt/∆Hnat ratios. Although

not a guarantee due to the assumptions employed in computing this static ratio (i.e.,

m = 0.9, and ~q • âlt = 1), these values predict that low-thrust arcs propagated with

a fixed thrust orientation, fixed thrust magnitude, and variable spacecraft mass are

reasonably approximated as conservative in planet-moon systems.
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To validate the energy changes predicted by the static Ḣlt value, a Monte Carlo

analysis is performed. The goal of this analysis is to measure the variations in the Hlt

value along a low-thrust arc in the CR3BP+LT. To obtain a measure of this variation

across an entire system, 100,000 arcs are propagated. The initial conditions (position,

velocity, and thrust orientation) are selected at random from uniform distributions

and the thrust magnitude and specific impulse are consistent with the Deep Space 1

capabilities, as in the static computation. Each arc is propagated for a half-period of

the system or until the spacecraft mass decreases by 17%, consistent with the Deep

Space 1 spacecraft capabilities. The propagation is also stopped if the trajectory

escapes the the system or passes too close to one of the primaries (Appendix C.1

includes more details about the Monte Carlo analysis). The low-thrust Hamiltonian

time profile is computed for each propagated arc and the maximum deviation from

the initial Hlt value is stored. This maximum deviation,

max|∆Hlt| = max
τ

∣∣Hlt(τ)−Hlt(0)
∣∣ , (2.123)

is then scaled by the time-of-flight along the arc, ∆τ , and by ∆Hnat to supply a metric

for each individual arc that is unbiased by the time-of-flight or the system properties.

The mean and standard deviation of the max|∆Hlt| /∆Hnat/∆τ values for the set

of arcs propagated in each Monte Carlo trial is then compared to the energy change

predicted by the static Ḣlt value, as summarized in Table 2.2. The static Hamiltonian

Table 2.2.: Predicted and computed Hlt changes

System Ḣlt/∆Hnat
max|∆Hlt| /∆τ/∆Hnat

Mean Std

Sun-Mars Barycenter 6.45× 101 4.58× 101 3.30× 101

Sun-EMB 4.43× 100 2.26× 100 1.60× 100

Earth-Moon 2.82× 10−3 1.50× 10−3 1.09× 10−3

Pluto-Charon 1.99× 10−4 1.05× 10−4 7.64× 10−5

rate values, listed in the second column, are within one or two standard deviations of
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the experimentally-obtained mean in each of the systems. Accordingly, the Ḣlt value,

as computed above, is a suitable proxy for the integrated max|∆Hlt| /∆τ value, at

least within the context of the average behavior across the system. Thus, the results

displayed in Figure 2.6 suggest that the low-thrust Hamiltonian may be reasonably

assumed to be constant in the planet-moon systems when the low-thrust acceleration

magnitude is similar to that delivered by Deep Space 1. In contrast, the Hamiltonian

changes rapidly in many of the Sun-planet systems; assuming that the Hamiltonian

is a constant in these systems is not justified.

The non-conservative nature of the low-thrust motion through the Sun-planet sys-

tems poses a challenge as many low-thrust missions transit through these regimes.

For example, Deep Space 1, the spacecraft frequently used as a baseline in this inves-

tigation, visited an asteroid, a comet, and Mars [1], all located in dynamical regimes

where the low-thrust Hamiltonian cannot be assumed to be constant. Thus, it is

not prudent to simply ignore Sun-planet systems. One strategy to maintain a sim-

plified model in these systems is to decrease the low-thrust acceleration magnitude.

Given a specified Ḣlt/∆Hnat ratio, a maximum value for the acceleration, F/M3,0,

may be computed for each system by rearranging Equation (2.121). In this example,

Ḣlt/∆Hnat = 0.01 is deemed a ratio that can be reasonably approximated as zero,

yielding the maximum accelerations plotted in Figure 2.7. In the figure, the maximum

low-thrust acceleration magnitude for each system is compared to the Deep Space 1

(DS1) capability of approximately 0.019 mm/s2 for reference. An acceleration mag-

nitude larger than the DS1 magnitude may be employed in the planet-moon systems

while maintaining Ḣlt/∆Hnat ≤ 0.01. In contrast, the acceleration magnitude must

be decreased in the Sun-planet systems to deliver the same Ḣlt/∆Hnat value. For

instance, an acceleration magnitude of F/M3,0 = 0.01 mm/s2 in the Sun-EMB sys-

tem will deliver a maximum Ḣlt/∆Hnat value near 0.01 (confirmed via Monte Carlo

analysis in Appendix C.2). Although the DS1 low-thrust acceleration magnitude is

nearly 20 times this value, the Hayabusa and Hayabusa 2 spacecraft accelerate at

the much smaller rates of 0.047 and 0.044 mm/s2, respectively. Thus, it may be rea-
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Figure 2.7.: Maximum acceleration magnitudes to achieve Ḣlt/∆Hnat ≤ 0.01 com-
pared to the Deep Space 1 (DS1) capability

sonable to approximate low-thrust paths for particularly small acceleration values as

conservative in the Sun-EMB regime.

Trajectory Geometry Comparisons

While the change in the low-thrust Hamiltonian due to a time-varying spacecraft

mass in Sun-planet systems is generally non-negligible, the scalar Hamiltonian quan-

tity is not the only parameter of interest. Recall from the introduction that the effects

of a low-thrust force on both the energy (i.e., Hnat and/or Hlt) and the geometry of a

trajectory are notable. Thus, it is prudent to determine if the effects of a low-thrust

control policy with constant mass on the trajectory geometry are similar to the effects

of a low-thrust control policy with variable mass on the trajectory geometry. If the

results of the two control policies are “sufficiently similar”, the simplified model with

a constant mass serves as a valuable proxy for the more complex model with variable

mass. The most common metrics of interest when comparing trajectory geometries

are the position and velocity histories. For low-thrust paths, the control parameter

time histories (i.e., the “geometry” of the low-thrust acceleration vector) are also
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an important consideration. Accordingly, the constant-mass model may be deemed

suitable for preliminary low-thrust trajectory design if the trajectories are similar to

a model that incorporates variable spacecraft mass.

To enable a straightforward comparison, a periodic orbit in the Sun-EMB model

is employed. The orbit is first constructed in a CR3BP+LT that incorporates the

constant mass assumption, plotted in blue in Figure 2.8. The orbit is composed of

(a) Position Space (b) Velocity Space

(c) Mass and Hlt (d) Control Parameters

Figure 2.8.: Comparison of two planar Sun-EMB low-thrust periodic orbits in a
constant mass model (blue) and in a model with a CSI mass policy (Isp = 3000
sec). The thrust magnitude is fixed at f = 3.2e-2, consistent with the Deep Space 1
capability.

four segments, separated by circular node markers, with equal times-of-flight. The
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preliminary solution in the constant-mass model is parameterized by f = 3.2e-2,

(consistent with the Deep Space 1 capability in the Sun-EMB system) α = 0 and

β = 0. Due to the constant mass assumption, m = 1 along the entire orbit and the

low-thrust Hamiltonian is conserved, as represented by the blue line in Figure 2.8(c).

The orbit from the constant-mass model is transitioned into a variable mass model

that employs a CSI mass policy with a specific impulse of Isp = 3000 sec. Without

any modifications, the segments are discontinuous in this higher-fidelity model. A

differential corrections process is leveraged to adjust the low-thrust orientation angles

(α and β) and enforce continuity in the position and velocity states between the arcs,

yielding a similar periodic orbit that is plotted in red. As depicted in Figure 2.8,

the geometry of the converged orbit in the variable mass model is very similar to the

geometry of orbit in the constant mass model. The position and velocity histories

along the trajectory remain very close to one another, and the α angle varies by

less than one degree from the baseline while the β angle remains fixed at zero for

both orbits as the trajectory is completely planar. Finally, observe that the Hlt value

along the variable-mass path decreases by about 2.5e-3, a full order of magnitude

larger than the ∆Hnat value of 4.5e-4 in the Sun-EMB system. This large shift in the

Hlt value is consistent with the discussion earlier in this section. However, it is clear

that the changes in the geometry – the position states, velocity states, and control

parameters – are small. Similar results are available for other trajectories, including

the 3D periodic orbit plotted in Figure 2.9. Like the planar periodic orbits in Figure

2.8, the two 3D orbits have very similar geometries in position and velocity space.

Additionally, the low-thrust orientation angles, α and β, change by less than one

degree relative to the constant-mass baseline to accommodate the nonautonomous

dynamics in the variable mass model.

Although only two examples are included in this section, they are representative of

other trajectory comparisons in the system. The selected periodic orbits are located

near the smaller primary (the Earth-Moon barycenter (EMB) in this case), a sensitive

and dynamically important region of the CR3BP. While the nonlinearities in the
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(a) Position Space (b) Velocity Space

(c) Mass and Hlt (d) Control Parameters

Figure 2.9.: Comparison of two 3D Sun-EMB low-thrust periodic orbits in a constant
mass model (blue) and in a model with a CSI mass policy (Isp = 3000 sec). The
thrust magnitude is fixed at f = 3.2e-2, consistent with the Deep Space 1 capability.

system dynamics may make corrections more difficult in some regimes than others,

a suitably discretized solution can generally be adjusted to preserve the geometry of

the initial guess. Accordingly, it is reasonable to generalize these results and assert

that the constant mass control policy is a suitable approximation for the variable

mass policy in the Sun-EMB system within the context of the trajectory geometries.

As a result, dynamical structures from a constant mass Sun-EMB CR3BP+LT may

be employed to construct low-thrust trajectories despite the variable Hlt value.
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2.2.7 Symmetry

As derived and validated in the previous sections, a CR3BP+LT system that

employs a control policy with a fixed thrust magnitude, a fixed thrust orientation,

and a constant spacecraft mass simplifies to an autonomous, conservative system.

One of the many useful insights that is available due to this simplification is a set

of symmetry conditions. When the aforementioned control policies are utilized, the

equations of motion (EOMs) in (2.80) – (2.82) may be written as

d2x

dτ 2
− 2

dy

dτ
= x− (1− µ)

x+ µ

r3
13

− µx− 1 + µ

r3
23

+ alt cos(α) cos(β), (2.124)

d2y

dτ 2
+ 2

dx

dτ
= y − (1− µ)

y

r3
13

− µ y

r3
23

+ alt sin(α) cos(β), (2.125)

d2z

dτ 2
= −(1− µ)

z

r3
13

− µ z

r3
23

+ alt sin(β), (2.126)

where the low-thrust acceleration magnitude, alt, and the orientation angles, α and

β, are constant parameters. Define a “standard” state vector,

~X0 =

{
x y z ẋ ẏ ż

}T
with time, τ , and control parameters α and β. Substituting the transformed coordi-

nates

~X1 =

{
x −y z −ẋ ẏ −ż

}T
with transformed time, τ1 = −τ , and transformed control parameters, α1 = −α,

β1 = β, into the EOMs will, after some rearrangement of the negative signs, yield an

identical set of equations. This transformation is equivalent to mirroring a state over

the xz-plane, reversing the time direction, and mirroring the low-thrust acceleration

vector over the xz-plane. Similarly, substituting

~X2 =

{
x y −z ẋ ẏ −ż

}T
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with τ2 = τ and α2 = α and β2 = −β also results in the same equations. This latter

transformation mirrors a trajectory and the low-thrust acceleration vector over the

xy-plane. The two transformations may be combined to mirror a state and ~alt over

the x-axis while simultaneously reversing the direction of time.

The symmetry properties of the CR3BP+LT supply insights and also simplify

computations. For example, a trajectory that passes through either the xy-plane, the

xz-plane, or the x-axis twice with velocity vectors orthogonal to the plane or axis

will be mirrored (given the appropriate mirroring of the α and β angles), supplying

a periodic solution. In the special case when α = β = 0, two “perpendicular cross-

ings” of the planes or axis is sufficient to guarantee a periodic solution without any

change in the control orientation. By leveraging these properties, the evolution of a

trajectory can be forecast into the future or the past (i.e., negative time). Addition-

ally, a solution or set of solutions can be rapidly transformed via these symmetries

to yield new trajectories. Similar to the symmetries available in the ballistic CR3BP,

these CR3BP+LT properties improve the predictability of motion within the system,

facilitating rapid preliminary trajectory design.

2.2.8 Energy Evolution on a Plane

Another useful property of CR3BP+LT with an ~alt vector fixed in the rotating

frame relates the changes in the Hnat value along a low-thrust arc to ~alt and the end

points of the arc. As discussed previously, the natural Hamiltonian is an integral

of the motion in the ballistic CR3BP but is no longer constant when low-thrust

is added to the dynamics in the CR3BP+LT. However, when ~alt is fixed (in both

magnitude and orientation) in the rotating frame, the change in Hnat due to the low-

thrust acceleration is available from a simple relationship. To derive this result, the

natural Hamiltonian rate is once again inspected. Recall that Ḣnat is identical to
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the dot product between the velocity vector as viewed in the rotating frame and the

low-thrust acceleration vector,

Ḣnat = ~v • ~alt. (2.88)

Accordingly, if ~̇alt = ~0 the natural Hamiltonian rate in Equation (2.88) may be inte-

grated to obtain a relationship between the Hnat evolution and the control parameters,

τf∫
τ0

Ḣnat dτ =

τf∫
τ0

~v dτ • ~alt =
[
~r(τf )− ~r(τ0)

]
• ~alt = Hnat(τf )−Hnat(τ0). (2.127)

This integral demonsrates that the change in the natural Hamiltonian over a low-

thrust arc is a function only of the low-thrust acceleration vector and the change in

position between the initial and final times. In other words, the change in the Hnat

value is independent of the path between the initial and final locations. This property

is not surprising and is consistent with other idealized physical systems; the change

in energy (Hnat) due to a conservative perturbing force (~alt) is path-independent.

Several trajectory design applications benefit from this insight.

The path-independent property of the natural Hamiltonian in the CR3BP+LT

with ȧlt = ~0 can be interpreted geometrically:

Lemma 2.2.1 When ~alt is constant in the rotating frame, Hnat evolves along a hy-

perplane oriented by the α and β angles as well as by the low-thrust acceleration

magnitude, alt.

Proof Let {x̂, ŷ, ẑ, Ĥ} be a right-handed orthonormal basis of the four-dimensional

vector space that includes position and natural Hamiltonian and let the spacecraft

position and energy in this space be described by the vector,

~ρ = xx̂+ yŷ + zẑ +HnatĤ. (2.128)

The change relative to the initial condition on the trajectory is denoted ∆~ρ = ~ρ(τ)−

~ρ(τ0). To construct a basis for the hyperplane that contains ∆ρ, three simple rotations
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are implemented successively. First, rotate in the xy-plane by the α angle to an

intermediate basis, {x̂′, ŷ′, ẑ′, Ĥ ′}. This rotation is concisely expressed by the matrix,

Rα =


Cα Sα 0 0

−Sα Cα 0 0

0 0 1 0

0 0 0 1


→



x′

y′

z′

H ′


= Rα



x

y

z

H


,

where Sα represents sin(α) and Cα represents cos(α). Next rotate in the x′z′-plane

by the −β angle, described by the matrix,

Rβ =


Cβ 0 Sβ 0

0 1 0 0

−Sβ 0 Cβ 0

0 0 0 1


.

(Note that this right-handed rotation by −β is a result of the definition in Equation

(2.97) that measures β from the xy-plane rather than from the ẑ-axis.) As a result

of the second rotation, another intermediate basis, {x̂′′, ŷ′′, ẑ′′, Ĥ ′′}, is reached. The

final rotation takes place in the x′′H ′′-plane and is measured by an arbitrary angle γ,

Rγ =


Cγ 0 0 −Sγ
0 1 0 0

0 0 1 0

Sγ 0 0 Cγ


,
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and yields the {x̂′′′, ŷ′′′, ẑ′′′, Ĥ ′′′} basis. Accordingly, the final basis is expressed in

terms of the original basis by combining the rotations,

x′′′

y′′′

z′′′

H ′′′


= RγRβRα



x

y

z

H


=


CγCβCα CγCβSα CγSβ −Sγ
−Sα Cα 0 0

−SβCα −SβSα Cβ 0

SγCβCα SγCβSα SγSβ Cγ





x

y

z

H


. (2.129)

Express the ∆~ρ vector in the rotated basis; the Ĥ ′′′ component is equal to

∆~ρ • Ĥ ′′′ = Sγ
[
CαCβ∆x+ SαCβ∆y + Sβ∆z

]
+ Cγ∆Hnat.

If this component is set equal to zero, the terms may be rearranged to form

∆Hnat = −Tγ
[
CαCβ∆x+ SαCβ∆y + Sβ∆z

]
, (2.130)

where Tγ = tan(γ). If Tγ = −alt, then this expression is identical to Equation

(2.127). Thus, the Ĥ ′′′ component of ∆~ρ is zero and the trajectory evolves in a three-

dimensional hyperplane spanned by x̂′′′, ŷ′′′, and ẑ′′′, constant directions that depend

only on α, β, and alt.

Because the three-dimensional hyperplane is difficult (arguably impossible) to

visualize, consider the planar case when β = 0. As a result, the third column and

row in the RγRβRα rotation matrix in Equation (2.129) contain only zeros and the

the number of rotations to construct a basis fixed in the energy hyperplane is reduced

from three to two: a rotation in the xy-plane by α and a rotation in the x′′H ′′-plane

(identical to the x′H ′-plane in this case) by γ = arctan(−alt), as depicted in Figure

2.10(b). In this two-dimensional form, the relationship between the energy plane and

the low-thrust acceleration parameters is more straightforward: the energy plane is

oriented by the α angle and inclined by the γ angle. Note that because alt > 0 and

γ = arctan(−alt), the γ angle is negative (in all practical cases, alt < π/2). Thus,
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(a) The ∆~ρ vector lies within the energy
plane

(b) The orientation of the energy plane is
related to the low-thrust vector parame-
ters

Figure 2.10.: Energy plane definition for β = 0. Though not shown, ẑ = ẑ′ = ẑ′′ = ẑ′′′.

the energy plane slopes “uphill”, i.e., toward increasing Hnat values in the direction

specified by α. For example, if α = β = 0, the Hnat value on a trajectory increases

as x increases and decreases as x decreases; the Hnat evolution is independent of

∆y and ∆z. Similar relationships are available in other special cases. If α = 0 but

β 6= 0, the Hnat evolution along a trajectory depends only on ∆x and ∆z, yielding

a similar two-dimensional energy plane as in the β = 0 case. Even in the general,

three-dimensional case, the energy plane slopes toward increasing Hnat values in the

direction of the âlt vector. As such, when ~v ‖ âlt, the spacecraft moves “up” the

slope and Hnat increases. Similarly, when ~v ⊥ âlt, the spacecraft contours “across”

the slope and Hnat remains constant. While many of the insights discussed in this

chapter consider only the effects of the low-thrust force on the trajectory energy (i.e.,

the Hnat evolution), this result defines a clear relationship between geometry and

energy. Given an initial and final location, common constraints in a mission design

problem, low-thrust control parameters may be selected to orient the energy plane

such that the energy change between the two points is as desired. Alternatively, given

an initial location and a desired energy change, a set of possible final locations and

associated low-thrust control parameters are available. These direct links between the
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change in Hnat, the change in position, and the control parameters along a low-thrust

arc enable a designer to simultaneously specify an initial guess for a control history

and the trajectory geometry, demonstrated in later sections.
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3. DYNAMICAL STRUCTURES

To supplement the energy-related insights obtained from the analysis of the dynam-

ical models, tools from dynamical systems theory (DST, an area of mathematics

used to explore and analyze the behavior of complex dynamical systems such as the

CR3BP and CR3BP+LT) are applied to construct dynamical structures that facili-

tate preliminary low-thrust trajectory design. A dynamical structure is defined here

as a solution or set of solutions to the equations of motion. Structures constructed

in the CR3BP+LT include position, velocity, mass, and control histories, supplying

links between control inputs and the geometry of the solutions. Therefore, a survey

of dynamical structures offers an overview of the flow patterns available throughout

the system and reveals paths that might not otherwise be considered.

In this chapter, a variety of dynamical structures are investigated. Bounds on the

spacecraft motion, i.e., forbidden regions, are constructed and parameterized by the

natural and/or low-thrust Hamiltonian values along a trajectory. Gateways through

these forbidden regions are located at the equilibrium solutions to the governing

equations. Flow throughout the system is influenced by the invariant manifolds

associated with the equilibria, including hyperbolic manifolds that asymptotically

approach and depart from the equilibrium points, forming a topological saddle, and

center manifolds that contain oscillatory solutions such as periodic and quasi-periodic

orbits. An expanded portrait of the global dynamics is revealed by constructing

the invariant manifolds associated with the periodic orbits. Each of these entities

– a forbidden region, equilibrium point, periodic orbit, and invariant manifold –

is a dynamical structure that may be included in or serve as a guide for a low-

thrust trajectory design. These structures are identified within the autonomous,

conservative system with a constant the low-thrust acceleration vector. However,

they also approximate the time-varying dynamics when the orientation of ~alt is fixed
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in the rotating frame but the mass is allowed to vary, as demonstrated in Section

2.2.6.

3.1 Forbidden Regions

In a Hamiltonian system with an integral of the motion, a solution to the equations

of motion, i.e., a trajectory, exists within a level set with dimension m − 1, where

m is the number of state variables or degrees of freedom [51]. In the CR3BP, the

integral of the motion is Hnat and m = 6; thus, every ballistic trajectory is part of a

5D level set. Physical bounds on trajectories within the level set are parameterized

by the Hnat value,

Fnat(Hnat) =

{
{x y z}T

∣∣∣∣ − 1

2
(x2 + y2)− 1− µ

r13

− µ

r23

= Hnat

}
, (3.1)

i.e., the collection of all points that possess the specified natural Hamiltonian value.

This set is identical to the group of state vectors that possess the specified natural

Hamiltonian value when the velocity components are zero. Accordingly, this surface

is frequently called the zero velocity surface (ZVS) [50]. The surface, illustrated

in Figure 3.1(a), is the boundary between the forbidden region and the permissible

region, i.e., the region of space in which all trajectories with the associated Hnat value

may exist. The permissible region always includes the locations of the two primaries

as the Hnat value associated with the primary positions is −∞. When the motion of

the spacecraft is constrained to the xy-plane, a lower-dimensional representation of

the ZVS is employed. This zero velocity contour (ZVC), depicted in black in Figure

3.1(b), is the intersection of the xy-plane with the ZVS, as shown in Figure 3.1(a).

Additional ZVCs may be constructed on other intersecting planes, but the z = 0 ZVC

is frequently employed because it bounds planar motion. For low Hnat values (i.e.,

for Hnat → −∞), the ZVS and ZVC enclose each primary in a distinct “bubble.”

Thus, transit between the two bodies is not permitted. As the Hnat value increases,
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(a) The zero velocity surface (ZVS) bounds
the spacecraft motion in 3D space

(b) The zero velocity contour (ZVC) at
z = 0 bounds planar motion

Figure 3.1.: The zero velocity surface (ZVS) separates the forbidden and permissible
regions in the Earth-Moon system for Hnat = −1.585

the ZVS recedes from the primaries and a gateway between P1 and P2 opens at the

location of the L1 Lagrange point (one of five equilibrium solutions to the ballistic

CR3BP [50]) and at the energy associated with that point, i.e., Hnat(L1). At the

Hnat(L2) value, a gateway between P2 and the exterior region opens at the location of

the L2 point. With further increases in Hnat to Hnat(L3), a similar gateway opens at

L3. The L4 and L5 points are the final points in the xy-plane that remain within the

forbidden region; for Hnat values higher than Hnat(L4/5), the ZVS does not intersect

the xy-plane. Because the natural Hamiltonian is constant along ballistic arcs in

the CR3BP, the ZVS and ZVC are static, bounding the evolution of a trajectory

for all time. This insight facilitates trajectory design by supplying minimum energy

requirements to transit between regions in the system. For example, a spacecraft on a

path departing P1 must achieve an Hnat value greater than the L1 “gateway energy,”

Hnat(L1), to reach P2. Although this energy requirement is not sufficient to guarantee

transit (a trajectory may remain near P1 even with an energy greater than Hnat(L1)),

it is a necessary condition.
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Trajectories that leverage a low-thrust force in the CR3BP+LT are also bounded

by the ballistic ZVS, Fnat. However, because Hnat varies along low-thrust trajectories,

as established in Section 2.2.3, Fnat changes size and shape as Hnat evolves. While

these pulsating boundaries do represent the instantaneous bounds on the spacecraft

path, they are more difficult to employ in the design process than a static boundary

set. To construct such a fixed surface, the low-thrust Hamiltonian, Hlt, is employed.

Recall from Section 2.2.6 that Hlt is approximately constant (in planet-moon systems)

when the orientation of the low-thrust acceleration vector, ~alt, is fixed in the rotating

frame. Furthermore, Hlt is exactly constant if the magnitude of the vector is also

constant. Accordingly, a low-thrust zero velocity surface, Flt, remains static when a

control strategy that fixes the magnitude and orientation of ~alt in the rotating frame

is employed. Similar to the ballistic ZVS, the low-thrust surface is the set of points

that possess a specified Hlt value, i.e.,

Flt(Hlt,~alt) =

{
{x y z}T

∣∣∣∣−1

2

(
x2 + y2

)
− 1− µ

r13

− µ

r23

− ~r • ~alt = Hlt

}
, (3.2)

where ~r = {x y z}T . The evolution of Flt with increasing values of Hlt is quali-

tatively identical to the evolution of Fnat. At very low Hlt values, Flt separates P1

and P2. As Hlt grows, gateways in Flt appear at the locations and Hlt values of the

low-thrust equilibrium points. However, as the locations of the low-thrust equilibria

vary significantly from the ballistic equilibria (as discussed in the next section), many

novel gateway geometries are possible.

The static Flt is related to the variable Hnat value along a low-thrust trajectory

by the energy hyperplane defined in Section 2.2.8. This relationship is most easily

explained when the problem is reduced to four-dimensional motion, i.e., z = ż = 0

and β = 0. In this scenario, a low-thrust arc with a constant ~alt vector exists in a 3D

level set parameterized by the Hlt value associated with the trajectory. Additionally,

the 3D energy hyperplane simplifies to a 2D plane in x-y-Hnat space, as illustrated by

the maroon plane in Figure 3.2(a). A 2D “ballistic energy surface,” plotted in blue,
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(a) The intersection of an energy plane
(maroon) and the ballistic energy sur-
face (blue) defines the low-thrust forbid-
den regions (white)

(b) A projection of the low-thrust for-
bidden regions (black contours) into the
xy-plane; the Lagrange points (black as-
terisks) are included for reference

Figure 3.2.: Earth-Moon CR3BP+LT forbidden regions for alt = 7e-2, α = 80◦, and
Hlt = −1.5561. An Animation of this figure is available online1.

represents the planar ZVCs in the same space; each horizontal slice of the energy

surface is a ZVC at the corresponding Hnat value. As a low-thrust trajectory moves

on the energy plane, the Hnat value (i.e., the out-of-plane coordinate in this space)

and the ballistic ZVC geometry evolve. The intersection of the maroon energy plane

with the blue energy surface is the set of points where the spacecraft encounters the

instantaneous Fnat contour, i.e., where the spacecraft reaches a velocity magnitude of

zero. Accordingly, this intersection is the low-thrust ZVC.

The geometry of the low-thrust forbidden regions may be manipulated by adjust-

ing the low-thrust acceleration magnitude and orientation. Recall that the inclination

of the energy plane is a function of the low-thrust acceleration magnitude. When

alt = 0, the energy plane has an inclination of zero and slices the ballistic energy sur-

face horizontally, yielding the planar Fnat contour. For larger values of alt, the plane

is inclined by a larger angle. Additionally, the orientation of the plane is determined

1https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#ltzvc

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#ltzvc
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#ltzvc
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#ltzvc
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by the α angle; thus, changes to α rotate the energy plane relative to the ballistic en-

ergy surface, yielding different intersection geometries. The Animation of Figure 3.2

(see the link in the figure caption) illustrates the changes in the low-thrust forbidden

region as both alt and α vary in the Earth-Moon system. The higher-dimensional

low-thrust ZVS, Flt, is similarly related to the energy plane and ballistic energy sur-

face. In the spatial problem (z 6= 0, ż 6= 0, β 6= 0), the energy plane and ballistic

energy surface are both 3D structures; their intersection is the 2D low-thrust zero

velocity surface.

3.2 Equilibrium Solutions

While the low-thrust forbidden regions bound trajectories within a level set, the

CR3BP+LT equilibrium solutions supply an initial characterization of the local and

global dynamics within the level set that may be utilized for low-thrust path planning.

Manipulations of the low-thrust acceleration vector directly influence the number and

location of equilibrium solutions in the CR3BP+LT, which subsequently affects the

existence and characteristics of nearby dynamical structures. Accordingly, the equi-

librium solutions in the CR3BP+LT are important to low-thrust mission applications,

particularly as the equilibria locations evolve relative to the familiar CR3BP equilib-

rium points, i.e., the Lagrange points.

In general, the full set of low-thrust equations of motion (EOMs), given by Equa-

tions (2.108) – (2.113), does not admit invariant equilibria due to the time-varying

low-thrust acceleration vector, ~alt. However, when the constant mass policy and fixed

rotating orientation policies are employed, as described in Section 2.2.4, the ~alt vec-

tor is constant and a set of invariant equilibrium points is available to characterize

the system dynamics. If other policies are used to model the spacecraft mass, these

equilibria remain a useful approximation to the time-varying dynamics due to the

small mass flow-rate associated with a low-thrust propulsion system. On the other

hand, if the orientation of ~alt varies rapidly, as in the orientation policies that align
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~alt relative to ~v, the locations and properties of the equilibrium solutions vary with

~alt and a static snapshot of the dynamical environment is unavailable. Accordingly,

a constant ~alt vector is utilized to compute the equilibrium solutions.

Every equilibrium point is located where the gradient of the Hamiltonian is zero.

Mathematically, an equilibrium point satisfies the equation

∂Hlt

∂ ~XH

= ~0. (3.3)

Alternatively, the equilibria also satisfy ~̇XH = ~0 by Equation (2.114) or ~̇XL = ~0

by (2.115). As the majority of this investigation leverages the Lagrangian basis to

represent the states, ~X = ~XL, the latter condition for an equilibrium solution is used.

The ~̇XL = ~0 relationship yields six scalar equations: the first three simplify to ~̇r = ~v =

~0, i.e., the velocity states (as seen in the rotating frame) are all zero at the equilibrium

points. As a result, the low-thrust Hamiltonian simplifies to Hlt(~q, τ) = Υ(~q, τ) and

the equilibrium points solve ~∇rΥ = ~∇qΥ = ~0. These final three equations are less

straightforward to solve than the first three; this section is dedicated to identifying

and characterizing the solutions.

In an effort to maintain generality, the ~alt vector is parameterized by the α and β

angles, as described in Equation (2.97), and by the acceleration magnitude, alt. For a

mission design perspective, let alt be a constant value consistent with the propulsion

system capability and let the α and β angles be “design variables” that may be

selected to achieve some configuration of the equilibria. Because the velocity states are

all zero and the low-thrust acceleration magnitude is fixed, five independent variables

are required to isolate an equilibrium point: the 3D location, ~r = {x y z}T and the

corresponding low-thrust acceleration vector orientation, α, and β. These variables

are collected together into a free variable vector, ~X = {x y z α β}T , that solves

the equation

~∇rΥ(alt, ~X ) = ~0, (3.4)

at the locations of the equilibrium points.
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Without solving Equation (3.4), insights about the locations of the low-thrust

equilibria are available from the natural acceleration field. This field is described by

the vector,

~anat =

{
2ẏ + Ωx −2ẋ+ Ωy Ωz

}T
, (3.5)

the acceleration imparted on the spacecraft due to the gravitational interactions be-

tween the spacecraft and the two primaries as well as the motion of the rotating

frame. As established above, the velocity states (ẋ, ẏ, and ż) are zero; thus, the

natural acceleration at an equilibrium point is equivalent to the spatial gradient of

the natural pseudopotential,

~anat

∣∣
eq

= ~∇rΩ. (3.6)

When Υ is expressed as a function of the natural pseudopotential, Ω, as in Equation

(2.84), the gradient in Equation (3.4) that locates the low-thrust equilibria may be

written,

~∇rΥ = ~∇rΩ + ~∇r(~r • ~alt) = ~∇rΩ + ~alt = ~0, (3.7)

because ~alt is independent of ~r when parameterized by α, β, and alt. Combining

Equations (3.6) and (3.7), the low-thrust acceleration and natural acceleration vectors

are related at the locations of the low-thrust equilibria,

~alt = −~∇rΩ = − anat

∣∣
eq
. (3.8)

The ~alt vector at an equilibrium point is simply the ~anat

∣∣
eq

vector scaled by -1, i.e.,

rotated by 180◦. Accordingly, every spatial location is an equilibrium solution corre-

sponding to an ~alt vector with a magnitude equal to the natural acceleration vector

at that location and the opposite orientation. Put another way, a set of low-thrust

equilibria parameterized by a consistent low-thrust acceleration magnitude, alt, rep-

resents an isosurface in the‖~anat‖ field at the alt value. As a result of this relationship,

a set of low-thrust equilibria is termed a zero acceleration surface (ZAS) since the
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surface represents the locations where ~alt balances ~anat when the velocity is zero in

the rotating frame.

While numerical methods to construct the low-thrust equilibrium point isosurfaces

are available in packages such as MATLAB, an analysis of the equations themselves

supplies information that is unavailable from numerical methods and facilitates the

construction of the ZAS’s with greater accuracy. Given an arbitrary position in space,

~r, the low-thrust acceleration parameters associated with a low-thrust equilibrium

point at that location are available directly from the gradient of Ω,

alt =
∥∥∥~∇rΩ

∥∥∥ , (3.9)

α = arctan
(
−Ωy/− Ωx

)
, (3.10)

β = arcsin

(
−Ωz/

∥∥∥~∇rΩ
∥∥∥) , (3.11)

where

Ωx = x− (1− µ)
x+ µ

r3
13

− µx− 1 + µ

r3
23

, (3.12)

Ωy = y

[
1− 1− µ

r3
13

− µ

r3
23

]
, (3.13)

Ωz = z

[
−1− µ

r3
13

− µ

r3
23

]
. (3.14)

Several insights result from these expressions:

Lemma 3.2.1
[
−1−µ

r313
− µ

r323

]
< 0 for all µ and all finite values of x, y, and z.

Proof The mass ratio, µ, is bounded by 0 < µ ≤ 0.5; thus, the numerators of the

two fractions are positive. Additionally, r13 and r23 are both L2 norms of the ~r13 and

~r23 vectors and are positive numbers. Subsequently, both fractions represent positive

numbers, equaling zero only as r13 → ∞ and r23 → ∞; multiplying the sum of the

two positive numbers by -1 yields a negative number.

Lemma 3.2.2 All low-thrust equilibria in the xz-plane correspond to ~alt vectors that

are also located in the xz-plane.
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Proof The Ωy expression in Equation (3.13) is the product of y and another set of

terms. When y = 0 (i.e., a point located in the xz-plane), Ωy = 0; thus, Equation

(3.10) dictates that α = 0 when Ωx < 0 or α = π when Ωx > 0. (Recall that α is

bounded by [−π, π].)

Lemma 3.2.3 All low-thrust equilibria in the xy-plane correspond to ~alt vectors that

are also planar and all equilibria not in the xy-plane correspond to ~alt vectors with

nonzero out-of-plane components.

Proof Because Ωz, given in Equation (3.14), is the product of z and a negative

number (the terms in the square brackets, by Lemma 3.2.1), Ωz = 0 if and only if

z = 0. Subsequently, β, defined in Equation (3.11), is zero if and only if z = 0,

ignoring the infeasible limit alt →∞.

Lemma 3.2.4 All low-thrust equilibrium points located with z > 0 are associated

with an ~alt vector with β > 0, and vice versa.

Proof Equation (3.11) guarantees that sgn(β) = − sgn(Ωz). Additionally, sgn(Ωz)

is the product of sgn(z) and the sign of the terms in the square brackets in Equation

(3.14). By Lemma 3.2.1, these terms are negative; thus, the sign of Ωz is opposite

the sign of z, indicating that β and z have the same sign. (Recall that β is bounded

by [−π/2, π/2].)

Additional insights are available from the equations that directly describe the low-

thrust equilibria, i.e., the gradient of Υ,

Υx = x

[
1− 1− µ

r3
13

− µ

r3
23

]
+ µ

[
−1− µ

r3
13

− µ

r3
23

]
+

µ

r3
23

+ altCαCβ = 0, (3.15)

Υy = y

[
1− 1− µ

r3
13

− µ

r3
23

]
+ altSαCβ = 0, (3.16)

Υz = z

[
−1− µ

r3
13

− µ

r3
23

]
+ altSβ = 0, (3.17)

where Cα = cosα, Sα = sinα, Cβ = cos β, and Sβ = sin β. Only the nontrivial

low-thrust equilibria (alt > 0) are considered; the ballistic Lagrange points solve
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these equations for alt = 0. Useful symmetry conditions are available from these

expressions,

Lemma 3.2.5 If ~X0 = {x y z α β}T is a solution to Equations (3.15) – (3.17),

then ~X1 = {x −y z −α β}T and ~X2 = {x y −z α −β}T are also solu-

tions.

Proof Substitute ~X1 or ~X2 into Equations (3.15) – (3.17). Apply trigonometric

identities and multiply entire equations by -1 to arrive at identical expressions; thus,

both vectors yield the same solution as ~X0, consistent with the symmetry properties

discussed in Section 2.2.7.

This symmetry reduces the number of computations required to construct a full ZAS;

a subset of the solutions may be mirrored across the xy- and xz-planes (with the

corresponding angle changes) to yield a full set of equilibria.

In contrast to the ballistic equilibrium solutions that are located analytically or

via a one-dimensional root-finding search [50], the low-thrust equilibrium points can-

not generally be located via analytical or simple root-finding processes. However,

by fixing specific angle values and constraining the locations of the equilibrium solu-

tions, several analytical and one-dimensional functions are available to yield distinct

solutions. Continuation methods may then be employed to construct the full sets of

equilibria. In the following sections, specific values of α and β are leveraged to supply

a one-dimensional equation for solutions located on the x-axis, i.e., collinear points,

and a strategy to locate equilibria far above and below the xy-plane is described.

Additionally, two analytical expressions for solutions located off of the x-axis are de-

rived. For completeness, the lack of solutions at other combinations of α and β values

are described in Appendix D.

3.2.1 Collinear Solutions

As the solutions to Equations (3.15) – (3.17) are under-constrained (i.e., there

are more variables than equations), several variables may be fixed to yield distinct
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solutions. Reducing any of the equations to a product of terms (rather than a sum)

offers insight and permits further simplification. Accordingly, let α = 0 or π, setting

the sin(α) term in Equation (3.16) equal to zero. The resulting equation is solved if

y = 0, as noted in Lemma 3.2.2, reducing the number of equations to two and the

number of variables to three (x, z, and β remain). To further reduce the degrees of

freedom, let β = 0. As outlined in Lemma 3.2.3, z must also equal zero. Thus, the

system is reduced to a single equation, Equation (3.15), that is a function of a single

variable, x,

x− (1− µ)
x+ µ

A(x+ µ)3
− µ x− 1 + µ

B(x− 1 + µ)3
+ alt cos(α) = 0, (3.18)

where A = sgn(x + µ) and B = sgn(x − 1 + µ) result from the cancellation of the

square roots in r13 and r23. This cubic function includes asymptotes at x = −µ and

x = 1 − µ, the locations of P1 and P2, respectively. Between these asymptotes, the

function increases monotonically with an increasing value of x, including limits at

±∞ at the asymptotes and at x → ±∞. Accordingly, exactly three solutions exist,

with one in each of the three regions: (i) −µ < x < 1 − µ; (ii) x > 1 − µ; and (iii)

x < −µ. These solutions exist regardless of the values for µ or alt with no additional

roots. Thus, exactly three equilibria exist at (α = β = 0, y = z = 0), and another

three exist at (α = π, β = 0, y = z = 0). Because these solutions are located on the

x-axis and at α angles of 0 and π, the symmetry conditions expressed in the previous

section guarantee that nearby solutions off of the x-axis are symmetric across the xz-

and xy-planes.

The precise locations of the collinear points are computed by applying a root-

finding algorithm to Equation (3.18). Define a transformed x-coordinate, x̃, for each

of the three regions, x1 = 1−µ− x̃1, x2 = 1−µ+ x̃2, and x3 = −µ− x̃3. Substituting
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these relationships into Equation (3.18) yields three expressions that may be solved

iteratively for x̃i:

h(x̃1) = 1− µ− x̃1 −
1− µ

(1− x̃1)2
+
µ

x̃2
1

+ alt cos(α) = 0, (3.19)

h(x̃2) = 1− µ+ x̃2 −
1− µ

(1 + x̃2)2
− µ

x̃2
2

+ alt cos(α) = 0, (3.20)

h(x̃3) = −µ− x̃3 +
1− µ
x̃2

3

+
µ

(−x̃3 − 1)2
+ alt cos(α) = 0. (3.21)

The iterative Newton-Raphson root-finding algorithm,

x̃i[k + 1] = x̃i[k]− h(x̃i[k])

h′(x̃i[k])
, (3.22)

also employs the partial derivatives of the h function with respect to the independent

variable, x̃i,

h′(x̃1) =
−2(1− µ)

(1− x̃1)3
− 2µ

x̃3
1

− 1, (3.23)

h′(x̃2) =
2(1− µ)

(1 + x̃2)3
+

2µ

x̃3
2

+ 1, (3.24)

h′(x̃3) =
−2(1− µ)

x̃3
3

− 2µ

(1 + x̃3)3
− 1. (3.25)

The locations of the ballistic CR3BP collinear points serve as suitable initial guesses

for these one-dimensional searches. Following the convergence of the Newton-Raphson

method, the location of one of the collinear points is available,

~X =

{
xi 0 0 α = (0 or π) 0

}T
. (3.26)

Once a set of collinear, low-thrust equilibrium points have been located, a continu-

ation process may be employed to compute the locations of nearby equilibria that

correspond to other α or β angles.
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3.2.2 Highly Out-of-Plane Solutions

An analysis of the isosurfaces in the ballistic pseudopotential gradient magnitude,∥∥∥~∇rΩ
∥∥∥, reveals solutions far above and below the xy-plane, e.g., for |z| > 1. To

identify a point on one of these surfaces, consider the ~∇rΩ equations for large z

values as compared to the x and y values. When the z magnitude is much larger than

the x or y magnitudes (i.e., |z| � { |x| , |y| }), the centripetal acceleration dominates

the Ωx and Ωy terms and the gravitational acceleration only appears in the Ωz term,

as listed in Lemma 3.2.6.

Lemma 3.2.6 For |z| � { |x| , |y| }: Ωx ≈ x, Ωy ≈ y, Ωz ≈ z
|z|3 = 1

z2

Proof When the magnitude of z is very large compared to the magnitudes of x and

y, the r13 and r23 distances each approximate to the z-displacement,

r13 =
√

(x+ µ)2 + y2 + z2 ≈|z| ,

r23 =
√

(x− 1 + µ)2 + y2 + z2 ≈|z| .

Substituting these approximations into Equations (3.12) – (3.14) and noting that

the fractions in Equations (3.12) and (3.13) may be approximated as zero yields the

expressions in the lemma.

This result is consistent with intuition from the basic physics of the gravitational and

centripetal accelerations. Because the system rotates about the ẑ axis, the centripetal

acceleration scales with the planar position components, x and y, but is independent

of z. Additionally, the centripetal acceleration is always oriented normal to the ẑ

axis. On the other hand, when |z| is large and |x| and |y| are small the gravitational

acceleration is inversely proportional to the squared distance to the system barycenter

and aligned with the vector to the barycenter. Subsequently, when |z| is significantly

larger than |x| or |y|, the gravitational acceleration is approximately aligned with the

±ẑ-axis while the centripetal acceleration remains planar.
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In the mission design context employed in this investigation, a set of low-thrust

equilibrium points is parameterized by a β angle and an alt magnitude. Substituting

the approximate Ω gradient from Lemma 3.2.6 into Equations (3.15) – (3.17) yields

Υx ≈ x+ alt cosα cos β = 0, (3.27)

Υy ≈ y + alt sinα cos β = 0, (3.28)

Υz ≈
1

z2
+ alt sin β = 0. (3.29)

Solve Equation (3.29) for z,

z =
sgn β√
alt|sin β|

, (3.30)

leveraging Lemma 3.2.4 to resolve the sign of z. Accordingly, the solution to this

system for a pair of β and alt values is a circle centered on the ẑ-axis at the z value

described by Equation (3.30) with a radius of alt cos β, as defined by the relation-

ship between x, y, and α in Equations (3.27) – (3.28). This circle is the intersection

between two surfaces parameterized by the planar and out-of-plane low-thrust accel-

eration components. The first surface is a cylinder of constant centripetal acceleration

magnitude equal to the planar low-thrust acceleration magnitude, alt cos β; the axis of

the cylinder is the ẑ-axis. The second surface is approximated by a plane centered on

the ẑ axis and located at a z-coordinate where the gravitational acceleration balances

the out-of-plane component of the low-thrust acceleration vector, alt sin β; the plane

normal vector is equal to ẑ.

Because the relationships in Equations (3.27) – (3.29) rely on approximate values

of the Ω gradient, the solutions to these equations are not exact solutions to the full

nonlinear relationships expressed in Equations (3.15) – (3.17). Thus, a point on the

circle of approximate solutions,

~X (α) =

{
−alt cosα cos β −alt sinα cos β sgnβ√

alt|sinβ|
α β

}
, (3.31)
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is employed as an initial guess for a differential corrections and/or continuation process

that constructs the set of equilibria at the specified β and alt values. For consistency

with the collinear solutions, a point for α = 0 or α = π may be employed.

Additional topological information about the set of the solutions located far above

and below the xy-plane is available from Equation (3.31). First, the z−coordinate

tends to ±∞ as β tends to zero. More specifically, z → −∞ as β → 0− (β < 0)

and z → ∞ as β → 0+ (β > 0). This result is consistent with Lemma 3.2.3, i.e.,

all solutions for β = 0 are located in the xy-plane, insofar as there is no solution on

this out-of-plane structure for β = 0. Second, the z-coordinate reaches a minimum

magnitude at z = ±a−1/2
lt when β = ±π/2. Thus, the surface of equilibrium points

does not reach the xy-plane (besides the infeasible limit alt →∞) and, for practical

magnitudes on the order of 10−2 to 10−1, remain higher than |z| = 3. Finally, observe

that the radius of the circle increases as |β| decreases from π/2 to zero. That is, when

β = π/2, the radius is zero and the circle collapses to a single point. On the other

hand, as |β| approaches zero, the radius of the circle approaches alt. Combining these

topological observations, the surface of equilibrium points for a fixed alt value and

the full range of β values is qualitatively similar to two parabolic dishes, symmetric

over the xy-plane and centered on the ẑ-axis. Plots of these surfaces are included in

Section 3.2.4 (e.g., see Figure 3.6).

3.2.3 Analytical Solutions

In contrast to the collinear points and highly out-of-plane solutions, some low-

thrust equilibrium points can be located entirely via analytical methods. To simplify

Equations (3.15) – (3.17), let α = 0 or π, reducing the sin(α) term in Equation (3.16)

to zero. While setting y = 0 solves the resulting equation and yields the collinear

points described in Section 3.2.1 as well as two highly out-of-plane points described

in Section 3.2.2, the equation is also solvable when y 6= 0. In this latter case, an

analytical expression for the locations of two symmetric sets of equilibria is derived
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as a function of β. Additionally, four point-solutions are derived for β = ±π/2 and

y 6= 0 independently of the α angle (when β = ±π/2, the ~alt vector orientation is

independent of α).

Solutions for α = 0 and α = π

Consistent with the assumptions above, set α = 0 or α = π and constrain y 6= 0.

Under these constraints, the terms within the square brackets in Equation (3.16) must

sum to zero. As these terms also appear in Equations (3.15) and (3.17), the EOMs

simplify to

−µ+
µ

r3
23

+ alt cos(α) cos(β) = 0, (3.32)

1− 1− µ
r3

13

− µ

r3
23

= 0, (3.33)

z − alt sin(β) = 0. (3.34)

Equation (3.32) is solved for r23, yielding

r23 =

[
µ

µ− alt cos(α) cos(β)

]1/3

. (3.35)

Substitute this expression into Equation (3.33) and solve for r13,

r13 =

[
1− µ

1− µ+ alt cos(α) cos(β)

]1/3

. (3.36)

Finally, Equation (3.34) is straightforwardly solved for z. Given the two radial dis-

tances from the primaries and the z-coordinate, up to two equilibrium solutions are

located via the intersection between the r13 and r23 spheres centered on P1 and P2,

respectively, and the plane z = alt sin(β), as depicted in Figure 3.3. To identify the

x- and y-coordinates of the equilibrium point, project the r13-r23-r12 triangle into the
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x̂

ŷ

ẑ

P1

P2

P3

r12

r13

r23 z
r′13

r′23

θ

θ′

Figure 3.3.: An equilibrium point is located by the intersection r13 and r23 spheres at
the specified z coordinate

xy-plane, resulting in a new triangle with projected side lengths r′13 and r′23, as in

Figure 3.3. These projected lengths are available from the Pythagorean theorem,

r′13 =
√
r2

13 − z2, (3.37)

r′23 =
√
r2

23 − z2. (3.38)

Apply the law of cosines to compute two angles within the triangles,

θ = arccos

[
1 + r2

13 − r2
23

2r13

]
, (3.39)

θ′ = arccos

[
1 + r2

13 − r2
23

2r′13

]
, (3.40)

where θ is the angle between the positive x̂-axis and the ~r13 vector and θ′ is the

corresponding angle in the projected triangle. (In these expressions, the unit values

represent the r12 distance, a convenient value that results from the nondimensional-
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ization of the problem.) Using trigonometry, the locations of two solutions are given

by

~r =

{
−µ+ r′13 cos(θ′) ±r′13 sin(θ′) alt sin(β)

}T
. (3.41)

The symmetry of these solutions is apparent from the geometry; the intersection

between two spheres centered on P1 and P2 is a circle orthogonal to and centered

on the x-axis, and the intersection between that circle and the plane at z yields two

solutions symmetric about the xz-plane. This mirroring is also available from the

symmetry conditions discussed at the beginning of the section. Because α = 0 or α =

π at these solutions, the change of coordinates to −α does not affect the orientation of

âlt and the remaining symmetry is the y → −y change. To express these coordinates

in terms of the non-projected quantities, apply the identities cos(arccos(b)) = b and

sin(arccos(b)) =
√

1− b2. Accordingly, the locations of the equilibria are

~X =



−µ+ 1
2
(1 + r2

13 − r2
23)

±
√
r2

13 − a2
lt sin2(β)− 1

4
(1 + r2

13 − r2
23)2

alt sin(β)

0 or π

β


. (3.42)

where r13 and r23 are functions of µ, alt, α, and β, as expressed in Equations (3.35) and

(3.36). Note that Equation (3.42) is a continuous function of β, yielding a continuum

of equilibrium points for β ∈ [−π/2, π/2]. Additionally, the solutions are mirrored

over the xy-plane, i.e., over β = 0.

Because the low-thrust acceleration level, alt, and the out-of-plane orientation

angle, β, may vary over a wide range of values, it is prudent to determine the limits

of validity of the equations that deliver these equilibrium locations. As r13 and r23
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must be positive, the cubed distances, i.e., the arguments within the square brackets

in Equations (3.35) and (3.36), must also be positive; the conditions

F1 = alt cos(α) cos(β) + 1− µ > 0, (3.43)

F2 = alt cos(α) cos(β)− µ < 0 (3.44)

satisfy these constraints. Additionally, the argument of the arccosine function in

Equation (3.39) is constrained,

1 + r2
13 − r2

23

2r13

≤ 1, (3.45)

1 + r2
13 − r2

23

2r13

≥ −1. (3.46)

Rearrange the terms in these inequalities and simplify expanded quadratic terms to

yield

(r13 − 1)2 ≤ r2
23, (3.47)

(r13 + 1)2 ≥ r2
23. (3.48)

Equation (3.48) may be simplified as the terms on both sides of the inequality are

always positive. However, Equation (3.47) cannot be simplified further because r13−1

is not always positive. Accordingly, two constraints are written,

F3 = (r13 − 1)2 − r2
23 ≤ 0, (3.49)

F4 = r13 − r23 + 1 ≥ 0. (3.50)

Finally, a constraint that enforces the triangle inequality2 is written,

F5 = r13 + r23 − 1 ≥ 0. (3.51)

2 The sum of two sides of a triangle must exceed the third side
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A visual inspection of these inequalities over a range of alt and µ values, as depicted

in Figure 3.4, reveals the active and inactive constraints. Each small plot at the

Figure 3.4.: For some µ values, there is no analytical solution for the equilibria at
α = 0 and y 6= 0 (Animation3)

top of the figure represents one of the inequalities, with green regions representing a

satisfied inequality and red regions representing an unsatisfied inequality; the axes of

the small plots are identical to the larger plot below them. The superposition of the

individual inequalities, depicted in the large plot, shows all combinations of µ and alt

for which an analytical solution is available in green and all other combinations (i.e.,

with no analytical solution) in red. As seen in the smaller inequality plots, the F2, F3,

and F4 inequalities are active constraints on the availability of the analytical solution

over large sections of the the solution space. The F4 constraint is active in a thin

diagonal strip near alt = µ, overlapping with the other inequalities and slightly further

3https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#analyticalEqPts

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#analyticalEqPts
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#analyticalEqPts
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#analyticalEqPts
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restricting the set of µ and alt combinations that admit a solution. For α = β = 0,

as in the plot, the equilibria with y 6= 0 generally exist when alt < µ. For example,

in the Earth-Moon system (µ ≈ 10−2), these equilibria only exist for alt < 10−2, i.e.,

these equilibrium solutions do not exist when the low-thrust magnitude is as high as

delivered by the spacecraft listed in Table 2.1.

The solutions for α = π and β = 0 are less restrictive than the solutions for α = 0.

The visualization of the constraints in Figure 3.5 demonstrates this contrast, with a

much larger green region representing the existence of the equilibrium points with

y 6= 0. In this latter case, only the F1 and F3 constraints are active. Solutions

Figure 3.5.: For some µ values, there is no analytical solution for the triangular
equilibria at α = ±π (Animation4)

are available in the Earth-Moon system for low-thrust acceleration values as high

as alt = 0.537, a very large magnitude. Due to the significantly increased region of

4https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#analyticalEqPts

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#analyticalEqPts
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#analyticalEqPts
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#analyticalEqPts
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validity compared to α = 0, the analytical solutions for the equilibria with α = π

serve as excellent seed solutions for continuation processes that construct the full set

of equilibrium points in the CR3BP+LT. For both α = 0 and α = 180◦, the F1 – F5

constraints are most restrictive when β = 0. As |β| increases, the red, constrained

regions of the µ vs. alt space shrink (see the linked animations to visualize these

changes); for β = ±π/2, solutions exist for every practical combination of µ and alt,

as discussed in the next section

Solutions for β = ±π/2

The analytical solutions derived in the previous section may be simplified further

in the special case when β = ±π/2. When this β angle is substituted into Equations

(3.35) and (3.36), the two distances reduce to unity, r23 = 1 and r13 = 1 and Equation

(3.34) is straightforwardly solved for z. Accordingly, two equilibria are located at the

vertices of two inclined equilateral triangles with the other two vertices located at P1

and P2. Projecting these triangles into the xy-plane yields isosceles triangles with

side lengths

r′13 = r′23 =
√

1− a2
lt, (3.52)

and r12 = 1, similar to the more general depiction in Figure 3.3. Consistent with the

process employed previously, the x- and y-coordinates are located by computing an

angle in the projected triangle, θ′,

θ′ = arccos

[
1 + r′213 − r′223

2r′13

]
= arccos

[
1

2

√
1− a2

lt

]
. (3.53)

The locations of the equilibrium points are given by the vector,

~r =

{
−µ+ r′13 cos(θ′) ±r′13 sin(θ′) alt sin(β)

}T
. (3.54)
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By again applying trigonometric identities, this expression is simplified to

~X =

{
−µ+ 1

2
±
√

3
4
− a2

lt alt sin(β) α β = ±π/2
}T

. (3.55)

Unlike the solutions for α = 0 and α = π, the validity of these solutions is consistent

across all systems (i.e., across all µ values). The only constraint on the existence

of these solutions is alt ≤
√

3/2. As the alt value increases, the solutions move

further from the xy-plane and closer to the xz-plane. Additionally, these solutions

are independent of α. This property follows intuitively from the geometry of ~alt; when

β = ±π/2, the ~alt vector is oriented along the ±ẑ vector. Accordingly, the in-plane

orientation of the vector, i.e., α, is undefined.

3.2.4 General Locations

In general, Equations (3.15) – (3.17) possess no “simple” solutions, i.e., no analyti-

cal expression or one-dimensional function locates the equilibrium points for arbitrary

α and β angles. Thus, continuation methods are employed to compute the locations

of all of the equilibrium points. Given a low-thrust acceleration magnitude, alt, the

three collinear solutions for α = 0 or α = π and β = 0 are quickly located via the

one-dimensional root finding algorithms described in Section 3.2.1. Additionally, the

approximate locations of four points on the highly out-of-plane ZAS’s are computed

for α = 0 and α = π for any β 6= 0 angle as outlined in Section 3.2.2. If alt satisfies

the F1, . . . ,F5 constraints in Section 3.2.3, additional solutions are available for α = 0

and α = π and an arbitrary β value. All of these solutions may be used to initialize

continuation processes that evolve the initial equilibrium point solutions along single-

parameter families. In this investigation, the β angle is fixed and the families, or sets,

of equilibrium points are parameterized by α. The opposite configuration – fixing α

and evolving the families along β – may also be employed but is not explored in this

investigation. Due to the symmetry described at the beginning of Section 3.2, a full

set of equilibrium points (i.e., solutions for all values of α ∈ [−π, π]) is available by
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computing a subset of the equilibrium points for α ∈ [0, π]. Thus, given the solutions

that have been derived thus far, it is possible to construct a set of equilibria across the

full range of α at a specified alt magnitude and β angle. Performing this computation

over the half range of β values, i.e., β ∈ [0, π/2], yields all of the equilibrium points

associated with the specified low-thrust acceleration magnitude (symmetry over β = 0

yields the other half of the points without further calculations). Additional details

about the equilibrium point computation algorithm are supplied in Section E.1.

To identify these structures independently of the natural equilibrium points, the

low-thrust equilibria are described via set notation,

Ei(alt) =
{
~X
∣∣∣ ~∇rΥ(alt, ~X ) = ~0

}
, (3.56)

where i is an index that identifies a set of solutions (i.e., a ZAS), similar to the

indices of the Lagrange points. Each set is a two-dimensional surface of equilibrium

solutions that is parameterized by α and β and is spatially distinct from other sets,

as illustrated by the zero acceleration surfaces (ZAS’s) in the Earth-Moon system

for alt = 2.5e-1 in Figure 3.6. This large (larger than is technologically feasible

at the time of writing) low-thrust acceleration magnitude is selected to aid in the

visualization; smaller alt values correlate to smaller surfaces that are more difficult

to see but qualitatively similar to the surfaces in Figure 3.6. At this acceleration

magnitude, four distinct surfaces exist: two ellipsoidal surfaces, E1 and E2 centered

on the L1 and L2 points, a large C-shaped surface denoted E3 that encompasses L3,

L4, and L5, and the two-sided parabolic dish E4 surface. Although the E4 set is

discontinuous, each “hemisphere” represents only half of the β angle range. Thus,

the two halves together represent the set of highly out-of-plane equilibria over the full

range of β values and are collectively denoted E4 without any ambiguity.

The symmetries described in Lemma 3.2.5 are illustrated by the surfaces in Figure

3.6. The simplest symmetry to observe is the mirroring over the xy-plane and over

β = 0, as seen in Figure 3.6(b); all solutions for β = 0 are located on the xy-plane
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(a) Colored by α (b) Colored by β

(c) Lunar vicinity, colored by α (d) Lunar vicinity, olored by β

Figure 3.6.: Four sets of low-thrust equilibria, E1 − E4, are isosurfaces matching an
acceleration magnitude of alt =2.5e-1 in the Earth-Moon CR3BP+LT

and solutions for β 6= 0 are mirrored over that plane, consistent with Lemmas 3.2.3

and 3.2.4. Additionally, note that the points on E4, i.e., the highly out-of-plane

solutions, trend toward a β angle of zero as |z| trends toward ±∞, as predicted by

the approximate solutions derived in Section 3.2.2. The symmetry over the xz-plane is
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also apparent in the geometry of the surfaces. The relationship between this symmetry

and the α angle is more difficult to discern from the plot, but available nonetheless.

Solutions for α = 0 (colored cyan in Figure 3.6(a)) and for α = 180◦ (red) are located

on the xz-plane, as predicted by Lemma 3.2.2. Solutions for y 6= 0 are mirrored across

this plane with α angles mirrored over α = 0. For a more straightforward visualization

of this symmetry, see the planar slice of these surfaces depicted in Figure 3.7.

The number of equilibria sets (i.e., the maximum value of i) varies with alt and

the system mass ratio, µ. In general, when the alt is “small” six sets exist (i.e.,

i = 1, 2, . . . , 6). As alt increases, these sets evolve and merge, yielding fewer distinct

surfaces. To illustrate this evolution, consider the one-dimensional zero acceleration

contours (ZACs), subsets of the zero acceleration surfaces at specific β values,

Ei(alt, β) ⊂ Ei(alt). (3.57)

For β = 0 and a small acceleration magnitude of alt = 8.00e-3, five distinct contours

exist in the Earth-Moon system, as illustrated in Figure 3.7(a). Note that the highly

out-of-plane equilibrium points do not exist when β = 0 and, thus, are not included in

the figure. The ZAC contours (equivalently, the surfaces that the contours are a subset

of) remain near the natural CR3BP equilibrium points, marked by black asterisks;

the low-thrust equilibria librate about the Lagrange points as α varies. Though not

pictured, similar librations occur out of the plane as β varies. For consistency with

the ballistic equilibria, the five sets of low-thrust equilibrium solutions are numbered

by their proximity to the ballistic points, i.e., E1 surrounds L1, E2 surrounds L2,

etc. For nonzero β values at this small alt value, the highly out-of-plane solutions are

denoted E6.

As alt increases, the location differences between the CR3BP+LT equilibria and

the CR3BP equilibria increase. Additionally, the surfaces begin to merge (see the

linked animation in the figure caption). For example, when the low-thrust acceleration

5https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#zacs2D

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#zacs2D
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#zacs2D
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(a) alt = 8.0e-3 (b) alt = 7.0e-2

(c) alt = 2.5e-1
(d) alt = 5.0e-1

Figure 3.7.: Earth-Moon CR3BP+LT equilibrium points over a range of alt values,
plotted as colored points for α ∈ [−π, π] and β = 0; black asterisks mark the CR3BP
Lagrange points, and the primaries are located by gray circles (Animation5)

magnitude increases to alt = 7e-2, as in Figure 3.7(b), the E3, E4 and E5 surfaces

merge into one large C-shaped surface that surrounds L3, L4 and L5 and is labeled

E3. At the larger alt value of 2.5e-1, depicted in Figures 3.6 and3.7(c), the ZACs (and

ZAS’s) continue to expand. With further increases in thrust magnitude, the E3 and

E2 surfaces merge. At even higher alt values, another merge occurs, resulting in the

structures plotted in Figure 3.7(d). At this large alt value, the three distinct ZACs

actually correspond to two distinct ZAS’s, as seen in Figure 3.8. The two E1 ZACs,

labeled “inner” and “outer”, are the inner and outer “walls” of the E1 surface that

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#zacs2D
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(a) System view; E1 and E3 are visible (b) The E2 structure is surrounded by
the E1 structure

Figure 3.8.: Earth-Moon low-thrust equilibria for alt = 5e-1, colored by α angle; three
distinct surfaces exist for this thrust magnitude

encompasses all five ballistic equilibrium points, the Moon, and the E2 structure. A

close up view of the lunar vicinity, depicted in Figure 3.8(b), reveals the ellipsoidal E2

ZAS surrounding the Moon. To maintain consistent labeling of the zero acceleration

surfaces (ZAS’s), a few simple rules are proposed:

1. The indices begin at 1 and increase with no gaps (e.g., E4 cannot exist without

E3).

2. A ZAS that surrounds a single Lagrange point is identified by the matching

index (e.g., E1 and E2 surround L1 and L2 in Figure 3.7(b)).

3. A ZAS that surrounds a single primary is identified by the matching index (e.g.,

E1 and E2 surround P1 and P2 in Figures 3.7(d) and 3.8).

4. When rules 2 and 3 do not apply or are ambiguous, the index increases with size

as measured by the distance from the barycenter and the highly out-of-plane

equilibria always receive the largest index.
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Although these rules are arbitrary, they link the novel configurations of the ZAS’s to

the more intuitively known locations of the Lagrange points and primary bodies.

Similar structures are observed in different systems, although not necessarily at

the same nondimensional thrust magnitudes. For example, the ZACs for a low-thrust

acceleration of 0.19 mm/s2 in the Earth-Moon and Sun-EMB systems (EMB here

represents the Earth-Moon barycenter) systems possess very different geometries, as

seen in Figure 3.9. The nondimensional value of this acceleration, consistent with

(a) Earth-Moon system view (b) Sun-EMB system view

(c) Earth-Moon, view near Moon (d) Sun-EMB, view near EMB

Figure 3.9.: Comparison of Earth-Moon and Sun-EMB ZACs for alt = 0.19 mm/s2

and β = 0 (Animation6)

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#zacs2DSE
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the Deep Space 1 capability, varies between the two systems: 7e-2 in the Earth-Moon

system and 3.2e-2 in the Sun-EMB system. Despite the fact that the nondimensional

acceleration magnitude is larger in the Earth-Moon system than in the Sun-EMB

system, the Earth-Moon ZACs are more similar to the ballistic equilibrium points

than the Sun-Earth ZACs. In fact, the structures in the Sun-EMB system resemble

the ZACs in the Earth-Moon system for alt magnitudes an order of magnitude larger,

such as those depicted in Figure 3.7(d) for alt = 5e-1. In other words, the low-

thrust acceleration delivered by the Deep Space 1 propulsion system influences the

dynamics of the Sun-EMB system more dramatically than the dynamics of the Earth-

Moon system. This observation is consistent with the analysis conducted in Section

2.2.6 where the low-thrust Hamiltonian rate is compared between systems.

While the ZACs plotted in Figures 3.7 and 3.9 appear similar in geometry to the

CR3BP forbidden regions (often called zero velocity contours or ZVCs), the ZACs

do not bound the spacecraft motion. For every ~alt vector, there exist a set of three

to six distinct equilibria across the ZACs; the full contours represent the equilibria

for every orientation of ~alt. Accordingly, the locations of the equilibria are shifted

as rapidly as the thrust vector is reoriented, e.g., via engine gimbaling or spacecraft

reorientation. Similarly, throttling the low-thrust propulsion system to modify the

delivered acceleration affects the size and geometry of the ZAS’s and ZACs. Thus, the

low-thrust acceleration vector may be leveraged to adjust the equilibrium solutions

and the associated dynamical structures to achieve a specific mission design goal.

3.2.5 ZAS Merge Locations

For further insight into the ZAS geometries, a representation of the natural ac-

celeration magnitude field is constructed. Specifically, the acceleration magnitude

field,

anat(x, y, z) =
∥∥∥~anat

∣∣
eq

∥∥∥ =
∥∥∥~∇rΩ

∥∥∥ ,
6https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#zacs2DSE

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#zacs2DSE
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#zacs2DSE
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is employed, where ~anat

∣∣
eq

is defined in Equation (3.6). As the ZAS’s represent iso-

surfaces in this field, a range of ZAS geometries may be represented by a contour plot

of anat, as depicted in Figure 3.10. Three slices are utilized: the xy-plane (z = 0), the

(a) xy-plane (z = 0) (b) xz-plane (y = 0)

(c) yz-plane (x = 0)

Figure 3.10.: Contours of constant acceleration magnitude, A, in the Earth-Moon
CR3BP in the three principal planes; arrows locate topological saddles in the field
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xz-plane (y = 0), and the yz-plane (x = 0). The planar ZACs shown in Figure 3.7 are

depicted in the xy-plane contours in Figure 3.10(a), with blue contours corresponding

to small alt values and warmer (yellow, orange, red) colors corresponding to higher

alt magnitudes. The other two slices in Figures 3.10(b) and 3.10(c) supply additional

information about the 3D ZAS’s. For example, the ellipsoidal shape of the E1 and

E2 ZAS’s in Figure 3.6 is apparent from the contours in the xy- and xz-slices of the

anat field. Similarly, the ellipsoidal cross-section of the C-shaped E3 ZAS is captured

in the contours near x = −1 in the xz-plane representation and the contours near

y = ±1 in the yz-plane.

Besides depicting the geometry of the ZAS’s across a wide range of acceleration

magnitudes, the anat field contours clearly show the locations and acceleration mag-

nitudes where the ZAS’s merge. These merges, introduced in the previous section

and illustrated in Figure 3.7, occur at topological saddles in the natural acceleration

magnitude field, marked by arrows in Figure 3.10. For a more intuitive understand-

ing of the relationship between ZAS merges and the acceleration magnitude field,

consider the planar dynamics (β = 0) represented by the xy-slice of the anat field

in Figure 3.10(a). A 3D representation of the planar acceleration magnitude field

for the Pluto-Charon system, plotted in Figure 3.11, displays qualitatively identical

contours as the Earth-Moon field in Figure 3.10(a), but with more pronounced cur-

vature due to the higher mass ratio in the Pluto-Charon System (µ = 0.1085). The

curvature of the surface is further accentuated for visualization by applying a base-b

logarithmic scale to the acceleration magnitude, where b > 1 is an arbitrary scalar.

In the planar projection of the 3D acceleration magnitude surface, displayed in Fig-

ure 3.11(a), small acceleration magnitudes, colored blue, surround the five CR3BP

equilibrium points. Large acceleration magnitudes, colored red, occur near the two

primaries due to the gravitational force as well as far from the primaries due to cen-

tripetal forces. Between the two extremes, a smooth acceleration magnitude surface

is depicted via colors in the visible light spectrum between blue and red. In the 3D

representation, depicted in Figure 3.11(b), an identical color scheme is employed with
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(a) Contour Map (b) 3D Surface

Figure 3.11.: A global portrait of the scaled natural acceleration magnitudes,
logb(anat), in the xy-plane for the Pluto-Charon CR3BP with b = 1000

low acceleration magnitudes represented by peaks in the surface and large acceleration

magnitudes represented by the valleys. The ZACs for β = 0, plotted in Figure 3.7 for

the Earth-Moon system, are identified as the intersection of a horizontal plane of con-

stant low-thrust acceleration magnitude with this 3D natural acceleration magnitude

surface. The ZAS’s are identified in an analogous manner as the intersection of an

acceleration magnitude plane with the 3D hypersurface that maps spatial coordinates

to the anat value.

The distinct ZAC structures merge at the six saddles in the natural acceleration

magnitude surface. Each saddle, marked with an asterisk in Figure 3.11, is denoted

Si/j where i and j identify the Lagrange points that border the saddle. These merges

are observed by moving a horizontal plane of constant low-thrust acceleration mag-

nitude through the 2D ‖~anat‖ surface in Figure 3.11(b). When the low-thrust accel-

eration magnitude, alt, is very small the slicing plane is located near the peaks of the

surface; the intersection of the plane and the surface forms small ZACs in the vicinity

of the CR3BP Lagrange points, as plotted in Figure 3.7(a). As the thrust magnitude

increases from a negligible perturbation to a significant one, the alt plane descends

through the natural acceleration magnitude surface. At the precise acceleration value
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and location of a saddle in the anat field, ZACs merge. For example, when this plane is

just above the S2/4 and S2/5 saddles, the E1, E2, and E3 structures form the contours

depicted in Figure 3.7(c). As the slicing plane descends through the surface to higher

alt values, additional merges occur. This link between these merge locations, both in

configuration space and in acceleration magnitude, and the natural dynamics supplies

a more intuitive understanding of the CR3BP+LT equilibrium solution landscape.

3.2.6 Stability Properties

As noted previously, many dynamical structures exist in the vicinity of the equi-

librium solutions. The number and types of structures available near an equilibrium

point are determined by the stability properties of the point. This stability informa-

tion originates from a linear analysis of the dynamics; the CR3BP+LT is governed

by a set of nonlinear differential equations that posses no analytical solution but are

approximated by variational equations. If higher-order terms are neglected, these

equations are reduced to a linear form that is analytically solvable and offers insight

into the stability of the reference solution (e.g., and equilibrium point) and predicts

nearby behavior. For example, the existence of a 4-dimensional center mode in the

vicinity of the CR3BP collinear equilibrium points predicts the existence of nearby

planar and spatial periodic orbits [50].

To explore the stability properties of the CR3BP+LT equilibria and identify new

dynamical structures, the variational equations are constructed. Only variations in

the position and velocity states are considered; the low-thrust acceleration magni-

tude, alt, orientation angles, α and β, are all constrained to the values associated

with the equilibrium point. If these quantities do not match the reference solution,

the solutions to the variational equations will not necessarily reflect the dynamics

associated with the reference, failing to supply the desired insight about nearby so-

lutions. Accordingly, the variations in the CR3BP state vector, ~X, are considered.
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In general, the nonlinear system of equations is expressed by the vector differential

equation,

~̇X(τ) = ~glt( ~X, τ, alt, α, β), (3.58)

where ~glt represents the low-thrust equations of motion, τ is the time along the

solution, and alt, α, and β are constant parameters; for brevity, the parameters are

omitted from the rest of this discussion. Let the reference solution be denoted ~X∗(τ)

and let a nearby solution be ~X(τ) = ~X∗(τ)+δ ~X(τ) where δ ~X(τ) is a small isochronous

variation from the reference solution. Substituting this perturbed solution into (3.58)

yields

~̇X(τ) = ~̇X∗(τ) + δ ~̇X(τ) = ~glt( ~X∗ + δ ~X, τ). (3.59)

A linear relationship between the reference and nearby solution is constructed by

forming a Taylor Series expansion of ~glt about the reference solution,

~̇X∗(τ) + δ ~̇X(τ) ≈ ~glt( ~X∗, τ) +
∂~glt( ~X∗, τ)

∂ ~X
δ ~X(τ) + HOTs. (3.60)

By ignoring all higher-order terms (HOTs), the Taylor Series expansion is reduced to

the linear, first order differential equation

δ ~̇X(τ) ≈ ∂~glt( ~X∗, τ)

∂ ~X
δ ~X(τ) = A

∣∣∣∣∣
~X∗,τ

δ ~X(τ), (3.61)

where the A matrix is related to the Hessian of the low-thrust Hamiltonian,

A =
∂~glt

∂ ~X
=

∂

∂ ~X

(
T−ωJT−ω

T ∂Hlt

∂ ~X

)
= T−ωJT−ω

T ∂
2Hlt

∂ ~X2
(3.62)

=

 0 I

−I −2ω̃


−~∇2

rΥ 0

0 I

 (3.63)

=

 0 I

~∇2
rΥ −2ω̃

 . (3.64)
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Equivalently, the A matrix is the Jacobian of the nonlinear differential equations.

Because the low-thrust acceleration vector is constant in the rotating frame, the

Hessian of the low-thrust pseudopotential, Υ, is equal to the Hessian of the ballistic

pseudopotential, Ω, i.e., ~∇2
rΥ = ~∇2

rΩ. Subsequently, the A matrix is a function only

of equilibrium point location and does not directly incorporate the low-thrust control

parameters. While this may seem unintuitive, the equilibrium point location is an

explicit function of the control parameters, so the A matrix is implicitly related to

the control parameters.

To obtain an expression for the relative solution, δ ~X(τ), rather than the derivative

of the relative solution, δ ~̇X(τ), the first order differential equation (3.61) is integrated.

Since the reference solution is selected to be one of the equilibrium points in the

autonomous system that results from the constant ~alt control policy, the A matrix is

constant and the integration yields

δ ~X(τ) = exp(Aτ)δ ~X(0), (3.65)

where δ ~X(0) is the perturbation from the reference solution at the initial time, τ = 0.

The A matrix is decomposed into the form A = QΛQ−1, where Q is a square

matrix with columns equal to the eigenvectors, ~νj of A and Λ is a diagonal matrix

containing the corresponding eigenvalues, λj. Substituting this eigendecomposition

into the integrated solution yields

δ ~X(τ) = Q exp (Λτ) Q−1δ ~X(τ0). (3.66)

When the matrix form is expanded, the solution is revealed to be the superposition

of the linear modes,

δ ~X(τ) =
6∑
j=1

cj exp
(
λjτ
)
~νj, (3.67)

where cj are constant scalars selected to satisfy the boundary condition at τ = 0.
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A qualitative analysis of the low-thrust equilibria stability is initiated by identi-

fying the types of linear modes associated with each equilibrium point. Due to the

structure of the A matrix,

Lemma 3.2.7 The eigenvalues of A occur in real (±λ) or complex conjugate (λ, λ̄)

pairs.

Proof The eigenvalues are calculated by evaluating solving the equation

det (λI−A) = 0

λ6 + bλ4 + cλ2 + d = 0 (3.68)

for λ where

b = 4− Ωxx − Ωyy − Ωzz,

c = ΩxxΩyy + ΩxxΩzz + ΩyyΩzz − 4Ωzz − Ω2
xy − Ω2

xz − Ω2
yz,

d = −ΩxxΩyyΩzz + ΩxxΩ
2
yz + ΩzzΩ

2
xy + ΩyyΩ

2
xz − 2ΩxyΩxzΩyz.

Equation (3.68) can be rewritten as

Λ3 + bΛ2 + cΛ + d = 0, (3.69)

where Λ = λ2. The six roots of (3.68) are then ±
√

Λ1, ±
√

Λ2 and ±
√

Λ3, where Λ1,

Λ2, and Λ3 are the roots of (3.69).

Thus, the linear modes occur in pairs. In this investigation, the modes are character-

ized as follows:

• Im(λ) = 0 – An eigenvalue pair, ±λ, on the real axis corresponds to a saddle

mode; the stable subspace grows exponentially relative to the equilibrium point

in negative time while the unstable subspace grows exponentially in positive

time.
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• Re(λ) = 0 – An eigenvalue pair, ±λi, on the imaginary axis corresponds to a

center mode, i.e., oscillatory motion about the equilibrium point.

• Im(λ) 6= 0 and Re(λ) 6= 0 – A complex conjugate eigenvalue pair, λ and λ̄,

represent a mixed mode, i.e., oscillatory motion with a stable and unstable

component. Like the saddle mode, this mode contains a stable and unstable

subspace that each grow exponentially relative to the equilibrium point in neg-

ative and forward time, respectively.

To describe a single equilibrium point, the types of modes and their dimensions are

collected into a string of the form Sns × Cnc ×Mnm where S represents a topolog-

ical saddle, C represents a topological center, and M represents a mixture of the

saddle and center topology (i.e., a spiral). The superscripts ns, nc, and nm denote

the dimension of each subspace and sum to six. By coloring equilibrium points by

their associated stability types, as seen in Figure 3.12 for the Earth-Moon low-thrust

equilibria parameterized by alt = 7e-2, a qualitative description of the equilibria is

available. At this low-thrust acceleration magnitude, the E1, E2, and E4 equilibria are

described by the S2 × C4 stability type, i.e., these points possess a 2D saddle mode

and a 4D center mode, consistent with the stability characteristics of the ballistic L1

and L2 points. In contrast, the E3 structure is characterized by several stability types.

A large portion of the interior (relative to the Earth) of this C-shaped structure is

characterized by S2 × C4, while the majority of the exterior of the ring is C6; the

“tips” of the ring are characterized by C2 ×M4 motion. These stability character-

istics on E3 are similar to the stability properties of L3, L4, and L5: the L3 point is

characterized by an S2×C4 linearization while the dynamics near L4/5 are described

by a C6 linearization.

The low-thrust equilibrium points in the Sun-EMB system for an equivalent low-

thrust acceleration magnitude are characterized by similar stability properties. For a

direct comparison with the equilibria in the Earth-Moon system, the dimensional low-

thrust acceleration value is set to 0.19 mm/s2 (a nondimensional value of 7e-2 in the

Earth-Moon system and 3.2e-2 in the Sun-EMB system; see Table 2.1). The resulting
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(a) E1, E2, and E3

(b) E4; x and y are scaled differently than z to enable visualization. The minimum
|z| coordinate is approximately 3.8

Figure 3.12.: Stability of low-thrust equilibria in the Earth-Moon system for alt = 7e-2

zero acceleration surfaces (ZAS’s), displayed in Figure 3.13 and 3.14, differ somewhat

from the structures in the Earth-Moon system. Whereas the Earth-Moon equilibria

are located on four distinct surfaces, the Sun-EMB equilibria are located on only

three (E3 is far from the xy-plane and is not depicted), similar to the configuration

of the Earth-Moon ZAS’s for alt = 5e-1. The Sun-EMB E1 surface encompasses all

five Lagrange points as well as the Earth-Moon barycenter (EMB). Additionally, E1

surrounds the E2 structure (as seen in Figure 3.14(a)), which itself surrounds the
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(a) Full system view of E1

(b) Exterior view of E1 near the EMB (c) Interior view of E1 near the EMB

Figure 3.13.: Stability of the E1 low-thrust equilibria in the Sun-EMB system for
alt = 3.2e-2

EMB but not the L1 or L2 points; the planar cross-section of these surfaces presented

in Figure 3.9 clarifies the extents of these structures. The stability properties on the

(a) View of E2 within E1 (b) The E2 surface

Figure 3.14.: Stability of the E2 low-thrust equilibria in the Sun-EMB system for
alt = 3.2e-2
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Sun-EMB E1 structure are similar to the stability properties on the Earth-Moon E3

set. The interior of the ring is predominantly characterized by S2 ×C4 motion while

the exterior of the ring is characterized by C6 motion. Near P2, i.e., the EMB, more

nuanced behaviors are apparent, as depicted in Figures 3.13(b) and 3.13(c). The

blue C6 behavior wraps from the exterior of the ring to the interior, and two small

islands of C2 ×M4 motion exist on either side of the yz-plane on both the interior

and exterior sides. The Sun-EMB E2 surface, shown in Figure 3.14, also possesses

similar stability characteristics as the Earth-Moon low-thrust E1 and E2, i.e., S2×C4

dynamics. However, two large regions of the Sun-EMB surface are characterized by

S4 × C2 behavior, a mode that is not observed in the Earth-Moon equilibria at the

equivalent low-thrust acceleration magnitude.

Correlations between the α and β angles and these stability types supply another

criteria that may be employed when constructing preliminary low-thrust trajectories.

For example, a spacecraft traveling to the L4 or L5 point may leverage the saddle

manifold of a low-thrust equilibrium located nearby. However, for the selected low-

thrust acceleration magnitude, only a subset of the equilibria near L4 or L5 possess

such saddle motion. Thus, the set of control parameters for the transfer are limitted

to those associated with these equilibrium points.

3.2.7 Distinct Solutions

While the zero acceleration surfaces and contours supply a global overview of the

equilibria locations, distinct sets of equilibria for specific, static ~alt configurations are

also of interest. Let a set of equilibrium points on a ZAS associated with a specific

low-thrust orientation (i.e., α and β angles) and magnitude be notated by the set

Ei(alt, α β) ⊂ Ei(alt, β) ⊂ Ei(alt) (3.70)
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where Ei(alt, β) is the ZAC and Ei(alt) is the ZAS on which the points exist. To

distinguish between distinct solutions in this set, the equilibria,

E1
i (alt, α β), E2

i (alt, α β), . . . , Ej
i (alt, α β), (3.71)

are indexed by their relative low-thrust Hamiltonian values such that

Hlt

(
Ej
i (alt, α β)

)
≤ Hlt

(
Ej+1
i (alt, α β)

)
. (3.72)

Accordingly, Ej
i (alt, α β) is the jth equilibrium point with the specified α and β angles

on the ith ZAS that exists at the specified alt magnitude. (A simple algorithm to

compute the locations of these solutions is provided in Section E.1.) To illustrate

these distinctions, consider the set of low-thrust equilibrium points for alt = 7e-2,

β = 0, and α = 90◦, as in Figure 3.15. Five distinct solutions exist: one on the E1

(a) Configuration space representation (b) Parameter space representation

Figure 3.15.: Distinct equilibria (black diamonds) in the Earth-Moon system for
alt = 7e-2, α = 90◦, β = 0; the ZACs for all α values are shown as colored contours
(Animation7)

ZAC (colored blue), one on the E2 ZAC (red), and three on the E3 ZAC (yellow). The

locations of these solutions in configuration space, depicted in Figure 3.15(a), vary

7https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#eqPts2D

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#eqPts2D
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#eqPts2D
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#eqPts2D
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from the ballistic Lagrange points, particularly on the E3 set. The novel locations of

these equilibrium points offer new flow patterns that may be leveraged for trajectory

designs, a topic that is explored in detail in later sections.

In addition to the spatial visualization of the equilibrium points, a parameter space

view supplies useful insights. Each set of equilibria for a specified alt magnitude and β

angle, i.e., each ZAC, is a 1D curve that is a continuous function of a single parameter.

In some cases the α angle parameterizes a ZAC, such as the E1 and E2 ZACs visualized

in Figure 3.15(b). However, the α angle is not generally sufficient to fully parameterize

a ZAC, i.e., multiple equilibria exist for a single α value, as in the E3 ZAC in Figure

3.15(b). Nevertheless, a visualization that employs α as one coordinate remains

useful. The number of distinct points at any α angle is straightforwardly available by

counting the number of times a vertical line at that α value intersects the Ei contours.

For example, in Figure 3.15(b), the α = 90◦ line intersects E1 once, E2 once, and E3

three times, consistent with the equilibria viewed in configuration space. The energy

order of these equilibria is straightforwardly determined by their location along the

vertical axis; the equilibria with the smallest Hlt values are located near the bottom

of the plot while the equilibria associated with larger Hlt values appear higher on the

plot.

Recall from Section 3.1 that the equilibria locate gateways through the forbidden

regions. Subsequently, the Hlt values associated with the equilibria are equivalent to

the Hlt values at which the gateways open and close and the equilibria energy order

identifies the sequence of gateway openings with increasing Hlt values. In the ballistic

CR3BP, the equilibrium point energy order is consistently L1 → L2 → L3 → L4/5.

However, the low-thrust equilibrium point energy order is not generally consistent

with the ballistic energy order and can vary with α, β, and alt. For example, the

energy order of the equilibria for alt = 7e-2, α = 180◦, and β = 0◦, seen in Figure

3.15(b), is E1
3 → E1 → E2 → E2

3 → E3
3 . A similarly inconsistent gateway order

occurs near α = 0, when the low-thrust gateway order is E2 → E1 → E3. These

energy orders are straightforwardly available from the parameter space view across
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the entire range of α values. These differences between the low-thrust and ballistic

problems can be exploited for low-thrust trajectory design and are discussed in more

detail later in the document.

The locations and energies of distinct equilibrium points also vary with the β

angle. Additionally, because the ZACs are constructed as families parameterized by

α, the number and geometry of the ZACs also varies with β. As noted earlier in

this section, a ZAC located far from the xy-plane exists for β 6= 0. For example,

for alt = 7e-2 and β = −75◦ in the Earth-Moon system, as in Figure 3.16, a fourth

ZAC exists at z ≈ −4. In this configuration, up to six distinct solutions may exist:

(a) Configuration space representation (b) Parameter space representation; the
vertical axis is discontinuous

Figure 3.16.: Distinct equilibria (black asterisks) in the Earth-Moon system for alt =
7e-2, α = 60◦, β = −75◦; the ZACs for all α values are shown as colored contours
(Animation8)

one on each of the E1, E2, and E4 contours, and up to three on the E3 contour.

However, this arrangement is not consistent across the range of β values. As β varies,

8https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#eqPts3D

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#eqPts3D
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#eqPts3D
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#eqPts3D
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the Hlt values associated with the points vary, as do the number of solutions for a

fixed α value; the Animation of this figure illustrates this evolution of the distinct

equilibria at α = 60◦ while β varies. Additionally, note that the energy order of the

equilibria also depends on β (and on alt). For example, for β = −75◦, the energy

order is consistently E1 → E2 → Ej
3 → E4 regardless of the α angle, as illustrated in

Figure 3.16(b). While the highly-out-of-plane equilibria (E4 in this case) are likely too

distant from the system to prove useful in trajectory design applications, variations

in β may be employed to adjust the gateway order, the number of equilibrium points,

or simply to shift the locations of the low-thrust equilibria out of the xy-plane.

Solution Count as a Function of α

In many scenarios, the number of distinct equilibrium solutions changes across a

ZAC. In other words, the number of equilibrium points parameterized by a specified

alt value and β angle is a function of the α angle. For example, as α varies from -180◦

to 180◦ in Figure 3.15 (see the animation), five distinct equilibria exist for |α| > 54◦

and three distinct solutions exist for |α| < 54◦. The transition between three and

five solutions at α ≈ ±54◦ is located at a cusp in the parameter space representation

plotted in Figure 3.15(b); at the exact point of this cusp, four distinct solutions

exist. Note that the apparent cusps at α = ±180◦ are an artifact of the plotting; the

branches of the E3 ZAC intersect at α = ±180◦ but continue smoothly. Accordingly,

five solutions exist at α = ±180◦, with Hlt(E
3
2) = Hlt(E

3
3).

One way to identify the α values where the number of equilibria change is to over-

lay the stability properties of the equilibria onto the parameter space representation.

A cusp that corresponds to a stability change is always such a transition point.9 For

example, the cusps at α ≈ ±54◦, marked by arrows in Figure 3.17, coincide with

a change between S2 × C4 stability and C6. At the precise point of the cusp, i.e.,

the location where the equilibria appear or disappear (depending on the direction α

9Dr. Dan Grebow deserves credit for sparking this realization
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(a) In the parameter space projection, the
ZAC appears to have cusps at α ≈ ±54◦

(b) A close up view of the apparent
cusp at α ≈ 54◦ corresponds to a
change between S2 × C4 and C6 sta-
bility modes

(c) When additional states are included in the ZAC visualization, the stability change
no longer appears at a cusp; the ZAC evolution is smooth

Figure 3.17.: The number of distinct equilibria changes at a stability bifurcation on
the E3 ZAC in the Earth-Moon CR3BP+LT for alt = 7e-2 and β = 0

is evolving in), the A matrix is degenerate and the stability properties are poorly

defined as at least one pair of eigenvalues are equal to zero. The conjunction of a

stability change with this appearance or disappearance of equilibrium solutions is the

subject of catastrophe theory [52, 53].

While the finer details of catastrophe theory and their implications for the low-

thrust equilibria are beyond the scope of this investigation, a few interesting obser-
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vations are available. First, catastrophe theory predicts that these bifurcations in

the stability properties of the equilibria occur as part of a well-defined geometric

structure that is related to a potential function. By unfolding the degeneracy of the

critical point, additional insights may be available. Second, the behavior evident in

Figure 3.17 appears to be a cusp catastrophe. By adding an extra dimension to the

parameter space projection, e.g., the x-, y-, or z-coordinate of the equilibria, the cusp

geometry is viewed as part of a continuous, well-defined geometric structure. For ex-

ample, when the α vs. Hlt projection is augmented with the equilibria y-coordinate,

as in Figure 3.17(c), the cusps in the projection are revealed to be local extrema on

the E3 ZAC. In fact, there are no cusps in this higher-dimensional representation of

E3. Additionally, this representation of the ZACs demonstrates that the E3 structure

evolves smoothly without a local extrema or a stability change through α = ±180◦.

Finally, while the existence of a stability change is necessary to identify the location

where equilibria appear or disappear, it is not sufficient. A second stability change

between C6 and C2×M4 occurs near Hlt = −1.562 and α = ±57◦ on the E3 contour,

as seen in Figure 3.17(b), but does not coincide with a degenerate A matrix.

In contrast to the stability bifurcation criteria, a defective A matrix is necessary

and sufficient to identify the location where equilibria appear or disappear. Subse-

quently, the cusp catastrophe locations are straightforwardly identified for all β angles

(i.e., for all ZACs) by coloring the ZAS’s by the determinant of A, as in Figure 3.18

for the Earth-Moon system and alt = 7e-2. In this representation, dark colors rep-

resent a large matrix determinant (order zero or higher) while light colors represent

increasingly small determinants. Thus, the white contour apparent on the E3 ZAS

marks the locations where equilibria appear or disappear. The stability bifurcations

identified for β = 0 are located where the white contour intersects the xy-plane, at

the maximum x-value along the contour in this scenario. As all of the equilibria on

E1 and E2 are characterized by S2 × C4 motion (for alt = 7e-2 in the Earth-Moon

system), no stability bifurcations exist. The lack of white contours on these surfaces
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Figure 3.18.: The locations where equilibria appear and disappear in the Earth-Moon
CR3BP+LT for alt = 7e-2 are identified by small values of det A (marked in white)

further confirms that the number of equilibrium points on E1 and E2 is consistent

across all values of α and β in this scenario.

Although the locations where equilibria appear and disappear in the Earth-Moon

system for alt = 7e-2 correspond to the interface between C6 (blue) and S2 × C4

(purple) modes for all α and β values, other stability bifurcations yield similar cusp

catastrophes for different alt values or in different systems. For example, several

bifurcations between the S4×C2 (magenta) and S2×C4 (purple) stability types are

apparent in the Sun-EMB ZACs for alt = 3.2e-2 and β = 53◦, as seen in Figure 3.19.

Consistent with the cusps observed along the Earth-Moon ZACs, the cusps along the

Sun-EMB ZACs appear as local extrema when an additional coordinate (in this case,

z) is included in the ZAC visualization, as depicted in Figure 3.19(e). All ten of these

stability bifurcations occur near the EMB on the ZAS surfaces visualized in Figure

3.14.

The stability changes in the Sun-EMB system for β = 0◦ also vary from the

stability changes observed in the Earth-Moon system. The position space view of the

ZACs near the EMB, visualized in Figure 3.20(b), depicts stability changes between

S2 × C4 (purple), C6 (blue), and C2 ×M4 (green) modes; in particular, the C2 ×

M4 mode is not observed on the Earth-Moon ZAS’s at the equivalent low-thrust

acceleration magnitude. The transitions between C2 × M4 (green) and C6 (blue)

modes do not correspond to a cusp in the parameter space view of the ZAC, as seen
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(a) Ten stability bifurcations in the ZAC projections are apparent; the five
for α < 0 are labeled, the remaining five are mirrored over α = 0

(b) C6 ↔ S2 × C4, one
bifurcation

(c) C6 ↔ S2 × C4, two
bifurcations

(d) S4 × C2 ↔ S2 × C4,
one bifurcation

(e) The inclusion of z in the ZAC visualization reveals that the cusps are local extrema

Figure 3.19.: Stability bifurcations, marked by arrows, in the parameter space pro-
jections of E1 and E2 correspond to the locations where number of equilibrium points
change; the E3 contour lies far from the xy-plane and is not shown; Sun-EMB system
for alt = 3.2e-2 and β = 53◦
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(a) Parameter space view
(b) Position space view

(c) One S6 × C4 ↔ C2 ×M4 (left) and
one C6 ↔ S2 × C4 (right) bifurcation

(d) C2×M4 ↔ S2×C4, one bifurcation

Figure 3.20.: Stability changes, marked by black arrows, in the Sun-EMB for alt =
3.2e-2 and β = 0

in Figure 3.20(c), thus, these stability bifurcations do not represent locations where

the number of equilibria change. Consistent with the ZACs for β = 53◦ in Figure

3.19, only a few small ranges of α values yield more than three distinct equilibria for

β = 0◦. Five distinct solutions exist in the approximate ranges 169◦ < |α| < 180◦ and

5◦ < |α| < 13◦, with four solutions existing at the bifurcations, and three solutions

existing for all other α values. Unlike the ZACs for β = 53◦, the planar (β = 0◦) E2

ZAC does not include any stability changes and is entirely characterized by S2 × C4

motion. In this respect, the planar E2 ZAC is similar to the Earth-Moon E1 and

E2 ZACs. Finally, although all of the stability bifurcations are located on the E1
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ZAC, which spans the entire Sun-EMB system, all of the bifurcations are located

close to the EMB. Accordingly, the low-thrust dynamical environment in the region

of interest (i.e., near the Earth) contains novel characteristics to be employed for

trajectory design.

Solution Count as a Function of alt

While the stability bifurcation analysis supplies information about the number of

distinct equilibria across values of α and β, it does not capture variations in alt; to ex-

plore these variations, a global portrait is constructed. The Earth-Moon CR3BP+LT

ZACs are computed over a range of alt and β angles. For each α angle, the number of

distinct equilibrium points is assessed. The results, plotted in Figure 3.21 for β = 0,

illustrate the boundaries between the numbers of distinct solutions as a function of α

and alt. Yellow points represent magnitude-angle combinations for which five distinct

Figure 3.21.: The number of equilibrium solutions in the Earth-Moon CR3BP+LT
vary with low-thrust acceleration magnitude, alt, and angle, α (Animation10)

solutions exist while blue points reflect the combinations with only three distinct so-

lutions. A boundary line of orange points, representing four distinct solutions, exists

10https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#eqPtCounts

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#eqPtCounts
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#eqPtCounts
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#eqPtCounts
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between the two at the exact alt and α coordinates of equilibria merges, though this

boundary is generally not visible in the figure due to the discrete nature of the com-

putation. Several insights are available from this graphic. First, when the magnitude

of alt (displayed on a logarithmic scale) is small, all α angles (for β = 0) are associ-

ated with five distinct equilibria. Recall that, at these small acceleration levels, five

distinct ZACs exist near each of the five Lagrange points. As the acceleration level

increases, the earliest merges between equilibria correspond to the thrust magnitudes

associated with the saddles in the natural acceleration field, as discussed in Section

3.2.5. For example, at the alt value corresponding to the S3/4 and S3/5 saddles,

marked by a black, dashed line, the set of equilibria at roughly α = ±18◦ transitions

from five distinct solutions to four distinct solutions. Because the saddle acceleration

magnitude corresponds to the smallest alt magnitude at which two equilibria merge

(i.e., appear or disappear), the saddle location corresponds to a defective A matrix

(in fact, all of the saddles in the acceleration magnitude field coincide with defective

A matrices). At a higher acceleration magnitude, the number of distinct equilibria

at this α angle decreases to three. In this scenario, all alt magnitudes larger than the

S3/5 saddle value yield a set of three distinct solutions for α = ±18◦. However, it is

not always true that the number of distinct solutions decreases as alt increases. For

instance, when α = 45◦, five distinct equilibrium solutions exist for small and large

acceleration magnitudes.

The points at which F3 and F4, two constraints on the analytical solutions at

α = 0 or α = 180◦, transition between being satisfied and unsatisfied also locate local

maxima in the number of equilibrium points as alt increases. For example, F4 ≥ 0 is

required for an analytical solution; this constraint is equal to zero when α = 0 and

alt ≈ 0.011 (in the Earth-Moon system for β = 0). For larger alt values, F4 < 0; thus,

the analytical solution for α = 0 and y 6= 0 is not available at larger alt values. This

point corresponds to the transition from five to three distinct solutions at α = 0. A

similar transition is marked where F3 = 0 for α = 180◦. However, observe that the

other constraints (F1, F2, and F5) are not associated with changes in the number
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of equilibria. For α = 0, the F3 and F4 constraints are violated at lower alt values

than the other constraints across all values of µ, as seen in Figure 3.4. Similarly,

when α = 180◦, only the F3 constraint is violated for alt < 1 (see Figure 3.5); thus,

the F3 constraint is the limiting condition for analytical solutions for α = 180◦ and

y 6= 0. These results suggest that the constraints on the analytical solutions are

directly related to the annihilation or merge of equilibria at α = 0 and α = 180◦.

Although the maximum number of distinct equilibrium solutions is five for β = 0,

a total of six distinct solutions exist for β 6= 0, with the additional solution located

far above or below the xy-plane. For small β magnitudes near but not equal to zero

the geometry of the regions is very similar to the geometry depicted in Figure 3.21

for β = 0 (see the linked animation for Figure 3.21). However, the regions with three

distinct points have four distinct solutions for β 6= 0 and the regions with five distinct

points for β = 0 have six distinct solutions for β 6= 0. As the magnitude of β increases

toward 90◦, the number of distinct solutions for all alt values and α angles tends to

six. Additionally, the results are mirrored over β = 0, i.e., the number of equilibria

for a given alt and α combination is identical for ±β.

The detailed understanding of the low-thrust equilibria developed in this section

facilitates the prediction of the global dynamics. For instance, because the equilib-

rium points locate gateways in the low-thrust forbidden regions, the annihilation of

a particular point indicates that a gateway no longer exists. Furthermore, dynami-

cal structures associated with the annihilated point(s), such as the invariant saddle

manifolds and structures within the center subspace (discussed in the next section),

disappear with the equilibrium solution. In short, by studying the properties of

the CR3BP+LT equilibria, tools to control and leverage dynamical structures in the

vicinity of the equilibrium points may be developed.
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3.3 Equilibrium Point Manifolds

Once the location and stability properties of the CR3BP+LT equilibrium points

have been determined, additional dynamical structures in the vicinity of the equi-

libria are constructed. One method to initialize these nearby structures leverages

the linearized dynamics about an equilibrium point. Different types of structures

are available from different stability types, e.g., a hyperbolic mode yields stable and

unstable solutions while a center mode yields oscillatory solutions. In general, these

solutions are termed manifolds and are associated with a particular equilibrium point

(i.e., a fixed point) Thus, the stable and unstable solutions are collectively called

the hyperbolic manifold and the oscillatory solutions are said to be within the center

manifold [54].

3.3.1 Hyperbolic Manifold

The hyperbolic manifold, represented by a topological saddle, includes flow pat-

terns that asymptotically approach and depart from the equilibrium point. Flow that

asymptotically approaches an equilibria is termed stable while motion that asymp-

totically departs is termed unstable. When these manifolds are viewed in reverse

time, the opposite trends are apparent, i.e., the stable manifold asymptotically de-

parts the equilibrium point and the unstable manifold asymptotically approaches the

point. Each manifold is straightforwardly initialized from the linear dynamics near an

equilibrium point and then transitioned to the full, nonlinear dynamics by employing

numerical integration.

Initialization from Linear Modes

The nonlinear dynamics, i.e., solutions to the equations of motion (2.115), are

approximated by a linearization of the dynamics about a reference solution. As each

equilibrium point is a solution to the nonlinear dynamics, a linearization about an
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equilibrium solution supplies insights about nearby motion. Recall from Section 3.2.6

that the linearized dynamics are the superposition of the linear modes, and that the

full set of non-trivial linear modes are available from the A matrix defined in Equation

(3.64). Accordingly, the linear dynamics near an equilibrium point, ~Xe, are given by

the superposition of the modes,

δ ~X(τ) =
6∑
j=1

cj exp(λjτ)~νj, (3.67)

where λj and ~νj are eigenvalues and eigenvectors of A when A is evaluated at ~Xe, cj is

an arbitrary constant, and δ ~X(τ) is a linear solution relative to ~Xe. The eigenvalues,

which always occur in pairs (see Lemma 3.2.7), determine the types of modes that are

available while the eigenvectors give direction (in 6D space) to each mode. Individual

modes may be isolated by setting the cj values of the other modes to zero. To

illustrate this strategy, consider the E1 equilibrium point in the Earth-Moon system

for alt = 7e-2, α = 180◦ and β = 0◦, i.e., E1(0.07, 180◦, 0◦). The eigenvalues of the A

matrix (evaluated at the location of this E1 point), listed in Table 3.1, reveal that the

linear dynamics include a 2D hyperbolic mode and a 4D center mode, i.e., the S2×C4

stability type as identified in Section 3.2.6. The hyperbolic mode includes the stable

Table 3.1.: Earth-Moon E1(0.07, 180◦, 0◦) Eigenvalues

Eigenvalue Eigenvector

λs = −3.0731 ~νs
λu = 3.0731 ~νu
λc1 = ±2.4236i ~νc1, ~νc1
λc2 = ±2.3600i ~νc2, ~νc2

manifold, described by λs and ~νs, and the unstable manifold, described by λu and ~νu.

Similarly, the 4D center manifold is characterized by the two center eigenvalue pairs,

λc1 and λc2, and their eigenvectors, ~νc1 and ~νc2 (these occur in complex conjugate

pairs). To isolate the unstable mode, all of the cj values in Equation (3.67) are set to
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zero except for the coefficient that corresponds to λu; the resulting linear solution is

given by

~Xe + δ ~X(τ) = ~Xe + c exp(λuτ)~νu, (3.73)

where c is a scalar “step size.” As λu and ~νu are constant, this solution describes a

line that originates at ~Xe for τ = −∞ and grows exponentially along the ~νu vector as

τ →∞. A mirrored solution, seen in Figure 3.22, is also available as the eigenvector

may be multiplied by a negative scalar. Substituting λs and ~νs into (3.73) yields

Figure 3.22.: The stable (blue) and unstable (red) eigenvectors associated with the
Earth-Moon E1(0.07, 180◦, 0◦) equilibrium point

a similar solution for the stable manifold. However, because λs < 0, the linear

solution asymptotically approaches ~Xe along the ~νs vector as τ →∞; conversely, the

stable solution grows exponentially from the equilibrium point state as τ → −∞.

While these linearized dynamics supply a useful approximation of the motion near

the equilibrium point, they do not necessarily reflect the behavior of the nonlinear

flow, particularly as the distance from the equilibrium point increases. In other words,

there is some neighborhood around an equilibrium point for which the linear dynamics

match the nonlinear dynamics, but the size of the neighborhood can be quite small.

To explore the behavior of the stable and unstable manifolds at greater distances from
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the equilibrium point, the linear solutions must be transitioned, or “globalized,” to

the nonlinear dynamics.

Globalization to Nonlinear Dynamics

The linear dynamics in the vicinity of the low-thrust equilibrium points are straight-

forwardly transitioned to the full nonlinear model to supply insight into global flow

patterns in the CR3BP+LT. The stable and unstable manifolds are initialized by

selecting a point on the corresponding linearized solution near the equilibrium point

as the initial state for a nonlinear propagation. For example, an initial state on

the unstable manifold is computed by adding the scaled unstable eigenvector to the

equilibrium point state,

~Xu+(0) = ~Xe + c~νu; (3.74)

an initial state on the stable manifold, ~Xs+(0), is similarly computed. Additionally,

two more initial states on the manifolds are available by choosing the opposite sign

for c, yielding ~Xu−(0) and ~Xs−(0). The scalar constant, c, should be “small enough”

such that an arc propagated in reverse time from ~Xu±(0) (or in forward time from

~Xs±(0)) asymptotically approaches ~Xe. However, this asymptotic behavior must be

balanced with practical considerations such as numerical integrator error buildup; if

c is too small, the manifold will only depart the vicinity of the equilibrium point as

|τ | grows large, incurring significant numerical errors along the way. An appropriate

magnitude for the step size also depends on the system, as different mass ratios and

characteristic lengths affect the sensitivity and scaling.

Once the initial state for the low-thrust equilibrium point manifold has been se-

lected from the linearized dynamics, a nonlinear propagation is performed. The low-

thrust control parameters are set to be identical to the equilibrium point parameters,

e.g., alt = 7e-2, α = 180◦ and β = 0◦. Two stable manifolds, W s−
1 and W s+

1 , are

propagated in reverse time from ~Xs− and ~Xs+ while two unstable manifolds, W u−
1

and W u+
1 , are propagated in forward time from ~Xu− and ~Xu+, yielding the arcs
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plotted in Figure 3.23. The manifold notation communicates three characteristics to

Figure 3.23.: The stable (blue) and unstable (red) manifolds associated with the
Earth-Moon E1(0.07, 180◦, 0◦) equilibrium point are tangent to the linear modes (the
eigenvectors) at the equilibrium point

distinguish between manifolds. First, the subscript denotes the fixed point, E1 in this

case. Second, the superscript describes the type of manifold, e.g., s for stable and u

for unstable, as well as the direction along the x-axis the manifold flows relative to

the fixed point: the u− manifold departs toward −x̂ while u+ departs toward +x̂.

When these manifolds are close to the equilibrium point, marked by a black diamond,

the manifolds are tangent to the linear dynamics, i.e., the eigenvectors (plotted as

arrows). However, as the manifolds evolve away from the equilibrium point, they are

no longer tangent to the linear predictions.

By leveraging the globalization method, all of the hyperbolic manifolds associated

with the CR3BP+LT equilibria for alt = 0.07, α = 180◦, and β = 0◦ are computed.

The low-thrust hyperbolic manifolds for E1, E2, and E1
3 , plotted in Figure 3.24,

appear very similar to the ballistic L1, L2, and L3 hyperbolic manifolds in the Earth-

Moon system, as seen in Figure 3.25, at least for the times of flight represented in

these plots. The E1 and E2 manifolds appear particularly similar to the L1 and L2

manifolds, while the E3 and L3 manifolds demonstrate slightly different geometries.
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(a) Global manifolds in the xy-plane (b) The energy along each manifold varies
with distance from the originating equilib-
rium point

Figure 3.24.: Hyperbolic manifolds of the Earth-Moon CR3BP+LT equilibria for
alt = 7e-2, α = 180◦ and β = 0◦

(a) Global manifolds in the xy-plane (b) The energy along each manifold is con-
stant, equal to the energy of the originat-
ing equilibrium point

Figure 3.25.: Ballistic hyperbolic manifolds of the Earth-Moon equilibria

In both models, the “triangular points”, i.e., E
2/3
3 and L4/5, are characterized by C6

motion and do not possess a hyperbolic manifold. Despite the similar geometries in

the xy-plane, the velocities along these manifolds vary significantly, as revealed by

the differences in energy, i.e., in Hnat values, in Figures 3.24(b) and 3.25(b). Whereas
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the ballistic manifolds maintain a constant energy, the Hnat value along the low-

thrust manifolds evolves on the energy plane defined in Section 2.2.8. Recall that, for

β = 0, the energy plane is oriented by the α angle and inclined by the alt magnitude.

Thus, the energy plane tilts “upward” (i.e., toward increasing Hnat values) in the −x̂

direction for α = 180◦, as seen in the plot of Hnat vs x in Figure 3.24(b). All four

manifolds for each equilibrium point exist in the same energy plane because each

manifold includes the equilibrium point. Accordingly, the low-thrust equilibrium

point manifolds can deliver similar geometric paths as the ballistic manifolds while

simultaneously delivering a change in Hnat.

Although the geometry of the low-thrust and ballistic hyperbolic manifolds appear

similar for alt = 0.07, α = 180◦, and β = 0◦, these similarities do not persist for all

values of the control parameters. For example, when the α angle is changed, as in

Figure 3.26, the location of the E1
3 point changes and its manifolds vary significantly.

For some α angles, such as α = 0◦ and α = −40◦, the single E3 point does not

posses hyperbolic manifolds at all. (The parameter-space view of the equilibria for

alt = 7e-2 and β = 0 in Figure 3.17 shows the precise range of α values for which

an E3 point possesses hyperbolic manifolds.) As the E1
3 point moves relative to the

Lagrange points (marked by black asterisks), the geometry of the hyperbolic manifolds

associated with that point adjusts to match.

The manifold geometry also changes when the β angle is adjusted. While the pla-

nar projections of these spatial manifolds appear similar to the manifolds for β = 0◦

(at least for α = 180◦), the out-of-plane components of the manifolds are strongly

affected by the β angle, as depicted in Figure 3.27. Because sin(α) = 0 in this

scenario, a 2D energy plane in x-z-Hnat space may be constructed to visualize the

energy change along the manifolds. In other words, the Hnat value along these mani-

folds evolves with x and z, but is independent of y, as described by Equation (2.130).

Animations of the planar and spatial Earth-Moon low-thrust manifolds, available

online, show how the manifolds vary for the full range of α and β angles. Due to

11https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#2dEqPtManifolds

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#2dEqPtManifolds
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#2dEqPtManifolds
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(a) α = 0◦ (b) α = −40◦

(c) α = −100◦ (d) α = 56◦

Figure 3.26.: Earth-Moon CR3BP+LT equilibrium point hyperbolic manifolds for
alt = 7e-2 and β = 0◦ with different α angles (Animation)11

the significant differences in geometry and energy evolution between the low-thrust

equilibrium point manifolds and the ballistic equilibrium point manifolds, novel tra-

jectory options are available when low-thrust is applied. The Earth-Moon E3 points

supply particularly interesting manifold geometries, especially when the E3 points are

located near L4/5. In the ballistic model, L4/5 do not posses hyperbolic manifolds;

thus, no natural flow exists to guide a spacecraft toward or away from those points.

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#2dEqPtManifolds
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(a) β = −60◦ (b) β = 60◦

Figure 3.27.: Earth-Moon CR3BP+LT equilibrium point hyperbolic manifolds for
alt = 7e-2 and α = 180◦ with different β angles (Animation)12

In contrast, some of the low-thrust equilibria located near L4/5 do posses hyperbolic

manifolds that may be employed to design a trajectory to the vicinity of L4 or L5.

Similar to the low-thrust equilibria manifolds in the Earth-Moon system, mani-

folds associated with the low-thrust equilibrium points in the Sun-EMB system posses

different geometries compared to the ballistic Sun-EMB manifolds. Like the Earth-

Moon system, the Sun-EMB L1, L2, and L3 points posses hyperbolic manifolds while

L4 and L5 do not, as depicted in Figure 3.28. When the low-thrust acceleration is

incorporated into the model, the equilibrium solutions shift significantly compared

to the ballistic points, as discussed in Section 3.2.4 (see Figure 3.9). The manifolds

associated with these points, pictured in Figure 3.29 for alt = 3.2e-2 and β = 0◦, also

shift significantly relative to the ballistic manifolds. For instance, when α = 0◦, only

three low-thrust equilibria exist, two near L1 and L2, and one near L3, as depicted

in Figures 3.29(a) and 3.29(b). Only the points near L1 and L2 posses hyperbolic

manifolds in this configuration; the low-thrust equilibrium solution near L3 is char-

acterized entirely by a 6D center manifold. The two hyperbolic manifolds that exist

12https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#3dEqPtManifolds

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#3dEqPtManifolds
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#3dEqPtManifolds
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#3dEqPtManifolds
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(a) System view (b) EMB vicinity

Figure 3.28.: Hyperbolic manifolds associated with the ballistic Sun-EMB equilibria

near L1 and L2 have very different geometries than the ballistic L1 and L2 mani-

folds. The E1
1 manifolds do not approach the EMB, in contrast to the L1 manifolds,

while the E2 manifolds wrap more “tightly” around the EMB than the corresponding

ballistic L2 manifolds. The structure of the E2 manifolds is similar across the full

range of α values, including α = −169◦ in Figure 3.29(d) and α = 11◦ in Figure

3.29(f). One branch of the E2 manifolds approaches the EMB while the other branch

departs the vicinity, reflecting similar geometries as the L1 and L2 manifolds depend-

ing on the α angle. On the other hand, the geometry of the manifolds associated

with the E1 points varies considerably with α. For example, the two of the manifolds

associated with the E2
1 point for α = −169◦ converge upon the other two manifolds

after wrapping around the E3
1 point. A this same α angle, the E1 point located near

L3 possesses a hyperbolic mode, in contrast to the E1 point in the same region for

α = 0◦. In an additional scenario, the hyperbolic manifold geometries for α = 11◦,

seen in Figures 3.29(e) and 3.29(f), appear similar to the manifold geometries for

α = 0◦, but an extra equilibrium point located near x = 1 and y = 0.2 admits a

hyperbolic subspace, supplying additional manifolds to guide flow throughout the

region. An animation of Figure 3.29, available online, shows the evolution of the Sun-

EMB hyperbolic manifolds for the full range of α values. Although the geometries
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(a) α = 0◦, system view (b) α = 0◦, EMB vicinity

(c) α = −169◦, system view (d) α = −169◦, EMB vicinity

(e) α = 11◦, system view (f) α = 11◦, EMB vicinity

Figure 3.29.: Saddle manifolds in the Sun-EMB system for alt = 3.2e-2 and β = 0
(Animation13)

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#2dSEMBEqPtManifolds
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and energy profiles of the low-thrust equilibrium point hyperbolic manifolds vary sig-

nificantly with the low-thrust control parameters, this diversity of solutions supplies

novel options for preliminary trajectory designs. The variety of manifold geometries

and energy profiles also facilitates an increased understanding of the effects of the

low-thrust acceleration on the dynamics in the CR3BP, the primary objective of this

investigation.

3.3.2 Center Manifold: Periodic Orbits

The center manifold describes flow patterns that oscillate relative to a fixed point

(e.g., an equilibrium solution) and, similar to the hyperbolic manifolds, supplies useful

structures to be employed in the trajectory design process. An oscillatory solution

that repeats exactly is termed a periodic orbit while a solution that nearly repeats

but never quite returns to the initial state is called a quasi-periodic orbit. Periodic

orbits may be computed directly from the equilibrium point center manifold while

the quasi-periodic solutions are more straightforwardly initialized from the center

manifold of one of the periodic solutions. In this investigation, only the periodic orbits

are explored in detail. However, the initialization of the center manifold from linear

modes is derived in a general way to facilitate the construction of the other oscillatory

solutions, such as the mixed mode solutions, i.e., stable and unstable spirals. Finally,

in contrast to the equilibrium point hyperbolic manifolds, structures within the center

manifold of an equilibrium solution exist in families. Continuation algorithms are

employed to explore several families of periodic orbits.

13https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#2dSEMBEqPtManifolds

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#2dSEMBEqPtManifolds
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#2dSEMBEqPtManifolds
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Initialization from Linear Modes

As discussed in the previous section, the nonlinear dynamics are approximated by

a linearization about a reference solution. Mathematically, the linearized dynamics

are represented by the superposition of the linear modes,

δ ~X(τ) =
6∑
j=1

cj exp(λjτ)~νj, (3.67)

where λj and ~νj are the eigenvalues and eigenvectors of the A matrix evaluated

at the equilibrium solution, and δ ~X represents the linear solution relative to the

equilibrium state, ~Xe. To isolate the center mode(s), the cj coefficients corresponding

to the non-center eigenvalues and eigenvectors are set to zero. For example, recall

the eigenstructure of the Earth-Moon E1 point for alt = 0.07, α = 180◦ and β = 0◦,

presented in Table 3.1. Two sets of complex conjugate eigenvalues, λc1 and λc2,

represent a 4D center mode. For simplicity, consider each mode individually and set

the coefficients that correspond to the λc2 eigenvalues to zero. To enable a general

derivation of the center and mixed mode linearization, let

λ = κ+ iw, (3.75)

with the corresponding eigenvector, ~ν. The linearized dynamics are then described

by

δ ~X(τ) = c1 exp(λτ)~ν + c2 exp(λτ)~ν. (3.76)

This complex equation may be expanded using Euler’s formula,

δ ~X(τ) = c1e
κτ
[
~ϕ cos(wτ)− ~ψ sin(wτ)

]
+ c2e

κτ
[
~ψ cos(wτ) + ~ϕ sin(wτ)

]
, (3.77)

where ~ϕ = Re(~ν) and ~ψ = Im(~ν). Given an initial variation, δ ~X(0), the c1 and c2

coefficients may be defined by solving this equation and its first time derivative at
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τ = 0. Alternatively, the two coefficients may be set to small, real values to initialize

a center (κ = 0) or mixed (κ 6= 0) linear mode near the fixed point.

To illustrate the construction of the linear center solutions, the center modes asso-

ciated with the Earth-Moon E1(0.07, 180◦, 0◦) and E1(0.07, 180◦, 60◦) are employed.

Each of these equilibria possesses a 4D center subspace, i.e., two pairs of imaginary

eigenvalues (κ = 0, w 6= 0). Thus, two distinct center solutions are available for

each of the equilibrium points. For example, the center solutions associated with the

planar point, E1(0.07, 180◦, 0◦), pictured in Figure 3.30(a), include a planar center

mode (black) and an out-of-plane center mode (red). The planar solution is associ-

(a) β = 0◦ (b) β = 60◦

Figure 3.30.: Distinct center modes (black and red) from the linearized dynamics
about the Earth-Moon E1 point for alt = 7e-2 and α = 180◦

ated with λc1 = ±2.4236i (from Table 3.1) while the out-of-plane mode corresponds

to λc2 = ±2.3600i. Accordingly, the frequencies of the two linear solutions, equal

to the imaginary component of the related eigenvalue, w, are slightly different. The

geometry of each center solution, i.e., each ellipse, is represented by the eigenvector;

the real and imaginary components, ~ϕ and ~ψ, are the principal axes of the ellipse. In

contrast to the planar/spatial dichotomy observed in the center modes for β = 0◦, the

linearized center modes for E1(0.07, 180◦, 60◦), displayed in Figure 3.30(b), are both

spatial structures with nontrivial z components relative to the equilibrium point. In
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either case, the two distinct center mode solutions form a “basis” of center solutions;

any linear combination of the two distinct solutions is also a solution to the linearized

dynamics expressed in Equation (3.67). Subsequently, a diverse set of center solutions

are available.

Globalization to Nonlinear Dynamics

Similar to the hyperbolic manifolds, the linearized center motion is transitioned

into the nonlinear dynamics by propagating a state (or multiple states) from the linear

solution in the full, nonlinear model. However, in contrast to the hyperbolic manifold

globalization, the center manifold is not directly available from this propagation.

In other words, a periodic solution to the nonlinear dynamics does not intersect the

periodic solution to the linear dynamics. However, the two solutions are similar; thus,

by employing differential corrections, a periodic solution to the nonlinear dynamics

is constructed.

While many strategies for differential corrections are available, a multi-dimensional

Newton-Raphson algorithm is employed in this investigation because of its simplicity

and adaptability to many different scenarios [55]. The simplicity and adaptability of

the method stems from the formulation of the problem. Consider two vectors: a free

variable vector, ~X , and a constraint vector, ~F . The elements within ~X may represent

states, times-of-flight, control parameters, or similar variables that are adjusted to

obtain a desired solution. The elements of ~F are constraints on the free variables

and is equal to zero when satisfied. The goal of the Newton scheme is a set of design

variables, ~X ∗, that satisfies all constraints, i.e., ~F( ~X ∗) = ~0 [56]. A linear approxima-

tion of the relationship between ~F and ~X is employed to iteratively update an initial

guess, ~X 0, until the constraints are satisfied,

~X n+1 = ~X n −GT (GGT)−1 ~F( ~X n), (3.78)
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where G is the Jacobian of the constraint vector,

G =
∂ ~F( ~X )

∂ ~X
, (3.79)

evaluated at ~X n (many sources supply this derivation; [57] is most consistent with

this investigation). This update equation leverages a minimum norm solution to

minimize the differences between the subsequent iterations of the free variable vector,

ideally converging upon a set of variables that are similar to the initial guess, ~X 0.

To construct a nonlinear periodic orbit, the solution to the linearized dynamics is

employed as an initial guess. A free variable vector is constructed,

~X =

{
~XT

1 ,
~XT

2 , . . . ,
~XT
n ,∆τ

}T
, (3.80)

where ~Xi, i = 1, . . . , n are patch points along the linear solution and ∆τ is the con-

stant time-of-flight between the patch points. A set of constraints enforces continuity

between propagated arcs, the periodicity of the solution, and fixes the orbit phasing,

~F =



~φ(∆τ, ~X1)− ~X2

...

~φ(∆τ, ~Xn−1)− ~Xn

M
(
~Xn − ~X1

)
h( ~X1)


. (3.81)

In this notation, ~φ(∆τ, ~Xi) represents the flow map that results from numerically

integrating ~Xi for the time-of-flight equal to ∆τ . The periodicity of the nonlinear

solution is enforced by equating the first and final patch points, as in the second to last

row of ~F , where M is a masking matrix. Finally, the orbit phasing is constrained by

fixing one of the initial state values, as in the final row of ~F . Many other strategies for

correcting periodic orbits exist, some more flexible and elegant than this method [58].
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However, as differential corrections techniques are not the focus of this investigation,

this simple set of constraints is deemed sufficient.

As an example of the differential corrections strategy to construct a nonlinear pe-

riodic orbit, consider the planar center solution for the Earth-Moon E1(0.07, 180◦, 0◦)

equilibrium point. The linear solution, displayed in black in Figures 3.30(a) and 3.31,

is discretized by placing five patch points, equally spaced in time, along the linear

solution with the final patch point collocated with the initial patch point. When the

(a) Position Space (b) Velocity Space

Figure 3.31.: A nonlinear periodic orbit is initialized from the linear solution and
converged via differential corrections in the Earth-Moon system for alt = 7e-2, α =
180◦, and β = 0

five points selected from the linear solution are propagated in the nonlinear dynamics,

the resulting arcs, colored blue in Figure 3.31, are not continuous. The differential

corrections process is then employed to adjust the patch points such that each arc

connects smoothly (i.e., continuously) with the next and the nonlinear solution is

periodic. Because the ~alt vector is constant, the CR3BP+LT is a conservative system

and an integral of the motion (i.e., Hlt) exists. Accordingly, only five of the six state

variables need to be included in the periodicity constraint. To determine which of

the state variables to leave unconstrained, it is prudent to consider the phase con-

straint. In general, non-symmetric periodic orbits always cross through ẋ = 0, ẏ = 0,
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and ż = 0 at least twice, but are not guaranteed to pass through any specific hy-

perplane in position space (particularly when a continuation algorithm is utilized to

compute multiple periodic orbits). Accordingly, a phase constraint on ẋ is employed,

i.e., h( ~X1) = ẋ1 = 0. A suitable periodicity constraint accounts for this phase con-

straint by identifying the largest of the other velocity coordinates at the point where

the phase constraint is satisfied. For this planar periodic orbit, the ẏ component is

large (i.e., far from zero) when ẋ = 0. Thus, the M matrix is constructed such that

the ẏ component of the periodicity constraint is not included in ~F . Because of this

coordinated decision, the differential corrections algorithm is less likely to converge

upon a solution that satisfies the constraints but is not periodic with ẏ1 = −ẏn.

When the continuity and periodicity constraints are applied in the differential

corrections process, the patch points are adjusted to achieve continuity and period-

icity, resulting in the nonlinear periodic solution plotted in green in Figure 3.31. Let

Γ = Γ(alt, α, β,Hlt) represent a low-thrust periodic orbit (LTPO) with constant low-

thrust control along the orbit specified by the magnitude, alt, and orientation angles,

α and β; the constant Hlt value associated with the orbit also distinguishes the orbit

from others with the same control parameterization. Accordingly, the low-thrust pe-

riodic orbit in Figure 3.31 is denoted Γ(0.07, 180◦, 0◦,−1.5352). While the low-thrust

Hamiltonian is constant along the orbit, the natural Hamiltonian varies along an en-

ergy plane oriented by the low-thrust control parameters associated with the orbit.

Because the control parameters are constant, the entire periodic orbit exists on the

same energy plane and the Hnat value is periodic.

The same process may be applied to any of the solutions described by the linearized

dynamics in (3.77) to generate a variety of low-thrust periodic orbits (LTPOs). Like

the hyperbolic manifolds, these center manifold structures vary in geometry, location,

and energy with the low-thrust equilibrium points. Periodic solutions with non-

constant ~alt vectors may also be computed. For example, when ~alt ⊥ ~v, Lyapunov-like

low-thrust periodic solutions have been shown to exist [29] in families that evolve in

Hnat (recall from Secion 2.2.4 that Hnat is constant when ~alt ⊥ ~v) or in f . Accordingly,
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a diverse set of periodic orbits are available for inclusion in itineraries that include

low-thrust arcs.

Periodic Orbit Stability

Similar to an equilibrium solution, the linearized dynamics relative to a periodic

orbit deliver the stability properties. Recall that the A matrix, defined in Equation

(3.64), that relates the derivative of a variational state, δ ~̇X, to the variational state,

δ ~X, is a constant matrix when evaluated at an equilibrium solution due to the time-

invariance of the equilibria. However, the A matrix is not constant when evaluated

along a periodic orbit that evolves with time. Accordingly, integrating the variational

Equation (3.61) (e.g., along an orbit) in the time-varying dynamics from τ0 to τ yields

δ ~X(τ) = Φ(τ, τ0)δ ~X(τ0), (3.82)

where Φ is the state transition matrix (STM) and is defined as

Φ(τ, τ0) = exp
(
A(τ − τ0)

)
. (3.83)

In this case A(τ − τ0) is the A matrix evaluated at time τ − τ0, not the product

of the two terms. The state transition matrix, Φ, represents a linear map between

perturbations in an initial state, ~X(τ0), and a later state, ~X(τ). In the ballistic

CR3BP, Φ is symplectic with the properties,

Φ(τ2, τ0) = Φ(τ2, τ1)Φ(τ1, τ0),

Φ(τ0, τ) = Φ(τ1, τ0),

det(Φ) = 1.

Because the CR3BP+LT system with ~alt held constant in the rotating frame is

structurally equivalent to the ballistic CR3BP (the CR3BP+LT remains conserva-
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tive, autonomous, and Hamiltonian), these properties also apply to the STM in the

CR3BP+LT. A matrix differential equation is obtained by substituting Equation

(3.82) into Equation (3.61),

Φ̇(τ, τ0) = A(τ)Φ(τ, τ0). (3.84)

This relationship is numerically integrated from the initial condition, Φ(τ0, τ0) = I,

in parallel with the state vector equations of motion to yield a time history for the

STM. In general, the STM associated with an arc predicts how variations in the

initial state propagate to variations downstream. When evaluated along a periodic

orbit, the STM is termed the monodromy matrix ; it maps perturbations in the initial

state to perturbations after one period of the orbit, T . By definition, a periodic orbit

repeats after time T , i.e., ~X(τ) = ~X(τ + T ). Thus, the periodic solution is a fixed

point on the stroboscopic map represented by the monodromy matrix and the linear

approximation may be represented in discrete form,

δ ~X(τ + kT ) = Φ(τ + kT, τ)∆ ~X(τ) = Φ(τ + T, τ)kδ ~X(τ). (3.85)

The solution to this discrete-time differential equation is the superposition of the

linear modes,

δ ~X(τ + kT ) =
6∑
j=1

cjλ
k
j~νj, (3.86)

where λj and ~νj are an eigenvalue-eigenvector pair of Φ(τ + kT, τ) and cj is a scalar

constant. Due to the symplectic properties of the STM, the eigenvalues occur in

reciprocal pairs [59], i.e., λ and 1/λ. Additionally, the eigenvalues of the monodromy

matrix always include two unit eigenvalues [60].

Similar to the linearized dynamics relative to the equilibrium points, this discrete-

time linearization supplies stability information about the reference solution, i.e.,

the periodic orbit. The hyperbolic, center, and mixed modes are identified by the

relationship between the eigenvalues and the unit circle in the complex plane [61, 62]:
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• Im(λ) = 0 and |λ| 6= 1 - the eigenvalue corresponds to a hyperbolic mode; the

stable subspace is linked to the eigenvalue with a magnitude less than one and

the unstable subspace is linked to the eigenvalue with a magnitude greater than

one.

• |λ| = 1 - the eigenvalue is on the unit circle and corresponds to a center mode

• Im(λ) 6= 0 and |λ| 6= 1 - the complex eigenvalue is not on the unit circle and

corresponds to a mixed mode

Note that if a mixed mode exists, it is four-dimensional; if λ and 1/λ are eigenvalues,

then λ and 1/λ are also eigenvalues because Φ is a real matrix. Since the periodic

orbit is completely described by the fixed point on the stroboscopic map, the stability

of the fixed point, as determined by the eigenvalues of the monodromy matrix, is

synonymous to the stability of the periodic orbit [63]. The stability properties of an

orbit are reduced to a two-parameter description by defining two stability indices,

sj =
1

2

(
λ2j−1 + λ2j

)
, j = 1, 2, (3.87)

where λj and λj+1 are a reciprocal pair (i.e., λj = 1/λj+1). Since the unit eigenvalues,

here denoted λ5 and λ6, are consistent across the family, they are excluded from the

stability analysis. The values of the s1 and s2 indices describe the type of linear mode

associated with the eigenvalue pair:

• Im(sj) = 0,
∣∣sj∣∣ > 1 - the eigenvalues are a real, reciprocal pair associated with

a hyperbolic mode

• Im(sj) = 0, −1 ≤ sj ≤ 1 - the eigenvalues are a pair of complex conjugates on

the unit circle associated with a center mode

• Im(sj) 6= 0,
∣∣sj∣∣ 6= 1 - the eigenvalues are a complex reciprocal pair associated

with a mixed mode

Again note that a mixed mode always occurs as a four-dimensional subspace relative

to a periodic orbit.
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A useful alternative to the stability indices are the parameters employed by

Broucke [64]. These parameters, ã and b̃, leverage the relationship between the eigen-

values of Φ and the trace of Φ to describe the stability properties without evaluating

the eigenvalues (a process that can be computationally expensive and prone to error),

ã = −
4∑
j=1

λj = 2− tr
[
Φ(τ + T, τ)

]
, (3.88)

b̃ =
1

2

ã2 −
4∑
j=1

λ2
j

 =
1

2

(
ã2 + 2− tr

[
Φ(τ + T, τ)2

])
. (3.89)

When plotted against each other, as in Figure 3.32, these parameters describe the sta-

bility properties of a periodic orbit. The space is separated into seven regions, labeled

(a) Colored by region (b) Colored by stability type

Figure 3.32.: Broucke stability diagram

in the figure with circled numbers, each corresponding to a specific eigenvalue config-

uration (see [64], Fig. 2). A periodic orbit is represented in this space by computing

the ã and b̃ values from the monodromy matrix and plotting them on the stability

diagram. The region the point is located within supplies stability information as in

Figure 3.32(b), as well as detailed information about the structure of the eigenvalues.

For example, regions 6 and 7 both correspond to the S2 × C4 stability type but the

locations of the hyperbolic manifold eigenvalues are different in the two regions; see
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[64] for details. Observe that the center subspace always possesses a dimension of at

least two as the two unit eigenvalues constitute a 2D center mode. The significance

of the eigenvalues and their use in constructing additional dynamical structures are

explored in the next section.

3.4 Periodic Orbit Manifolds

Similar to the analysis of the equilibrium points in Section 3.3, the linearized

dynamics about a periodic orbit may be employed to initialize additional dynamical

structures. While the methods to construct these structures are analogous to the

equilibrium point analyses, the dimension of the resulting structures is increased by

one. For instance, the equilibrium point is fixed in space and time, i.e., it is a zero-

dimensional structure. The hyperbolic manifolds and center manifolds (i.e., periodic

orbits) initialized from the linear dynamics near the equilibrium point are then 1D

structures. Although the periodic orbit appears as a 0D point on the stroboscopic

map, the orbit itself is a 1D structure. Thus, the hyperbolic and center manifolds

associated with the orbit appear as 1D structures on the map but are 2D structures

within the full 6D space. This pattern continues through the center manifold, e.g., a

quasi-periodic orbit located within the center manifold of a periodic orbit may posses

a hyperbolic and/or center subspace of its own, delivering even higher dimensional

manifolds. For the purposes of this investigation, only the periodic orbit hyperbolic

manifolds and the “trivial” center manifold (i.e., the center mode associated with the

eigenvalues at λ = +1) are considered. The exploration of quasi-periodic low-thrust

structures and their manifolds are reserved for a future investigation.

3.4.1 Hyperbolic Manifold

Similar to the hyperbolic manifolds associated with the equilibrium points, the

hyperbolic manifolds associated with a periodic orbit describe paths that asymptot-

ically approach and depart the orbit. Accordingly, these manifolds are frequently
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employed as segments of spacecraft trajectories to supply a low-cost (in terms of ∆v)

path into or out of a periodic orbit [14]. Recall that the linearized dynamics relative

to a periodic orbit fixed point are described by

δ ~X(τ + kT ) =
6∑
j=1

cjλ
k
j~νj, (3.86)

reprinted here for convenience. Consistent with the approach leveraged for the equi-

librium point hyperbolic manifolds, the cj coefficients may be selected such that the

hyperbolic manifold directions are isolated. Accordingly, the linear representation of

the stable or unstable LTPO manifold is given by,

δ ~X = cλk~ν, (3.90)

where δ ~X is a state change relative to the periodic orbit fixed point, c is a “step

size” scaling constant, λ is a hyperbolic eigenvalue, ~ν is the corresponding hyperbolic

manifold eigenvector, and k is the map iteration. This discrete-time linearization

locates the stable and unstable manifolds on the stroboscopic map relative to the

periodic orbit, as plotted in Figure 3.33. In this representation, the fixed point at y =

0 and ẏ < 0 on the Earth-Moon E1 orbit, Γ(0.07, 180◦, 0◦,−1.5342), is selected and

plotted as a black “x”. The stable and unstable eigenvectors, ~νs and ~νu, indicate the

direction of flow along the linearized manifolds, represented here on the stroboscopic

map in the x vs ẋ projection. As the map iteration increases from k = 1, the

linearized manifolds appear as points along the eigenvectors on the map; the first

return (for k = 1) is plotted as a set of asterisks along the manifolds. Consistent

with the hyperbolic manifolds for the equilibrium points, the LTPO stable manifold

asymptotically approaches the LTPO fixed point and the LTPO unstable manifold

asymptotically departs the fixed point.

The process to globalize the linearized manifold is similar to the method employed

for the equilibrium point manifolds. First, an initial state on a manifold is obtained
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Figure 3.33.: The first return of the linearized manifolds, represented by asterisks,
lie on the hyperbolic eigenvectors in the stroboscopic map for the the fixed point at
y = 0 and ẏ < 0 along the Earth-Moon E1 Γ(0.07, 180◦, 0◦,−1.5342) orbit

by setting k = 0 and selecting a small step size, c. The magnitude of c is selected

to ensure that the manifolds asymptotically approach the periodic orbit while also

avoiding unnecessary numerical error, as in the equilibrium point manifold compu-

tation. However, in contrast to the equilibrium point manifolds, a step along one of

the hyperbolic subspace eigenvectors as described above only delivers a subset of the

periodic orbit hyperbolic manifold. The fixed point representing the periodic orbit is

not unique; any point along the orbit may be employed. Thus, the complete manifold

is a surface that asymptotically approaches every point along the periodic orbit. A

useful representation of this surface is formed by the following steps:

1. Discretize the periodic orbit into a set of points

2. Compute the monodromy matrix for each discretized point and identify the

hyperbolic eigenvectors

3. Compute an initial state relative to each discretized point by perturbing the

point by the scaled eigenvector, δ ~X, as defined in Equation (3.90). Ensure that∣∣∣δ ~X∣∣∣ is consistent for every point.
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4. Numerically integrate all of the perturbed points (forward in time for an unsta-

ble manifold, backward in time for a stable manifold) to construct a mesh that

represents the manifold surface.

To illustrate this process, the stable and unstable manifolds for the Earth-Moon E1

orbit described above, Γ(0.07, 180◦, 0◦,−1.5342), are constructed. The initial condi-

tions for the nonlinear manifolds are selected to be the first return of the linearized

manifolds depicted as asterisks in Figure 3.33. When these states are propagated in

the nonlinear dynamics back to the stroboscopic map, they do not return precisely

to the linearized manifolds, as seen in Figure 3.34. This behavior is expected; the

Figure 3.34.: The nonlinear hyperbolic manifold map returns, plotted as asterisks,
stray from the linearized manifolds represented by the stable and unstable eigen-
vectors for the the fixed point at y = 0 and ẏ < 0 along the Earth-Moon E1

Γ(0.07, 180◦, 0◦,−1.5342) orbit

nonlinear dynamics are only approximated by the linearization. When this process

is repeated for 25 points distributed along the periodic orbit, a representation of the

manifold surfaces is constructed and visualized in Figure 3.35. Similar to the equi-

librium point manifold notation, the periodic orbit unstable manifolds are denoted

Wu+ and Wu− and the stable manifolds are denoted Ws+ and Ws−.
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(a) Projection onto the xy-plane (b) Projection onto the ẋẏ-plane

Figure 3.35.: The 2D manifold surfaces associated with the Earth-Moon E1

Γ(0.07, 180◦, 0◦,−1.5342) orbit, propagated for one period of Γ. The first returns
of the arcs associated with the fixed point at y = 0 and ẏ < 0 are marked by asterisks

In the ballistic model, i.e., the CR3BP, the stable and unstable manifolds associ-

ated with a planar periodic orbit are separatrices [65]. Because the dynamics in the

simplified CR3BP+LT are structurally identical to the ballistic problem (a constant

vector acceleration is included in the CR3BP+LT), the stable and unstable manifolds

associated with planar LTPOs are also separatrices. When these planar orbits are

within the center subspace of one of the equilibrium points, the associated manifolds

separate “transit” motion from “non-transit” behavior. Recall that the forbidden

regions bound all flow throughout the system for a specific Hlt value. A planar E1 (or

E2) orbit is located within the gateway between the interior and P2 (P2 and exterior)

regions but does not “fill” the gateway, as seen in Figure 3.36(a). In other words, the

E1 orbit does not reach a velocity of zero and does not intersect with the zero velocity

contours that bound the forbidden region, shaded gray in the plot. In contrast, the

manifolds do fill the gateway; thus, these separatrices may be employed to distinguish

between trajectories that transit through the gateway and arcs that do not transit.

To clarify this description, the periodic orbit and the manifolds are projected into

a tube topology [66]. This topology eliminates ambiguity inherent in the Cartesian
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(a) xy-plane projection
(b) Tube topology projection to d
and θv

Figure 3.36.: Stable (blue) and unstable (orange/red) manifolds associated with the
Earth-Moon E1 Γ(0.07, 70◦, 0◦,−1.6) orbit bound transit through the E1(0.07, 70◦, 0◦)
gateway for all motion with Hlt = −1.6

projections of the trajectories by describing an arc within the 3D level set (i.e., the

planar CR3BP+LT dynamics) via three variables rather than the usual four (x, y, ẋ,

and ẏ). These variables are defined as,

x̃ = x, (3.91)

d = (ỹu − y)/(ỹu − ỹ`), (3.92)

θv = arctan(ẏ/ẋ), (3.93)

where ỹu is minimum y value with y > 0 on the ZVC at the specified x value and ỹ is

the maximum y value with y < 0 on the ZVC at the same x value. These coordinates

are employed in a cylindrical space where d is the radius, θv is the angle around the

cylinder, and x̃ locates a point along the axis of the cylinder. When the periodic orbit,

the hyperbolic manifolds, and the ZVCs are projected into this space, as in Figure

3.36(b), the relationships between these structures are clarified. The lower (y < 0)

ZVC is a point at d = 0, the upper (y > 0) ZVC is a circle with radius d = 1; the

space between the ZVCs is filled by the LTPO manifolds but not by the LTPO itself.
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(Note that ỹu and ỹ` may be set arbitrarily but are most useful for a transit analysis

when they are selected to locate the ZVCs.) Because these manifolds are separatrices,

they serve as useful guides to distinguish between transit and non-transit motion [14].

In contrast to ballistic periodic orbit manifolds, the Hnat value along a LTPO

manifold varies on the energy plane defined in Section 2.2.8. The manifolds and pe-

riodic orbit exist on the same energy plane (assuming the manifold step-off size is

suitably small). The energy plane is straightforwardly visualized for the

Γ(0.07, 180◦, 0◦,−1.5342) orbit by plotting the x- and y-coordinates against the Hnat

value, as in Figure 3.37, due to the symmetry of the α and β angles. Accordingly,

(a) View of entire manifold propagation (b) View near the LTPO

Figure 3.37.: The Hnat value along the 2D manifold surfaces associated with the
Earth-Moon E1 Γ(0.07, 180◦, 0◦,−1.5342) orbit evolves on a plane

the LTPO hyperbolic manifold may be employed in ways similar to the low-thrust

equilibrium point hyperbolic manifold. The unique locations of some LTPOs and the

corresponding forbidden region gateways offer novel transit options and the hyper-

bolic manifolds extend the bounds on such transit motion throughout the system.

These structures may then be utilized to link a desirable transfer geometry or energy

evolution to a set of control parameters in the preliminary design process. Addi-

tionally, because the LTPO manifolds are higher-dimensional structures than the

equilibrium point manifolds, the LTPO manifolds characterize a larger portion of the
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flow throughout the system. Applications of these manifolds for transit and capture

are presented later in the document.

3.4.2 Center Manifold: Families

Every periodic orbit possesses a center manifold with a dimension of at least two

because the monodromy matrix always includes two “trivial” unit eigenvalues [51].

As discussed at the beginning of this section, an exploration of the center manifold

motion not associated with these unit eigenvalues (e.g., quasi-periodic orbits) is not

included in this investigation. While the unit eigenvalues are located on the unit circle,

they are also located on the real axis. Thus, the eigenvectors associated with these

eigenvalues are real and the resulting motion is not oscillatory relative to the periodic

orbit but does retain the oscillatory properties of the originating orbit. Two structures

result from perturbing the periodic orbit along these center manifold directions: the

phase-shifted periodic orbit, and a family of periodic orbits.

The eigenvectors associated with the unit eigenvalues are related to the Hamiltonian

gradient, ∂Hlt/∂ ~X. Recall that variations relative to the periodic orbit are described

by the relationship,

δ ~X(τ) = Φ(τ, τ0)δ ~X(τ0), , (3.82)

reprinted here for convenience. Consider a small perturbation along the periodic

orbit, i.e., along the derivative of the state vector, δ ~X(τ0) = ε ~̇X(τ0), where ε is a

small scalar. When this perturbation is mapped for one full period, T , the initial

perturbation is recovered,

~̇X(τ0 + T ) = Φ(τ0 + T, τ0) ~̇X(τ0) = ~̇X(τ0). (3.94)

Because the periodic orbit is not an equilibrium point, ~̇X(τ0) 6= ~0 and the expression

may be rearranged, [
I−Φ(τ0 + T, τ0)

]
~̇X(τ0) = ~0, (3.95)
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revealing that ~̇X(τ0) is a right eigenvector associated with the unit eigenvalue, i.e.,

~νr = ~̇X = T−ω̃JT−ω̃
T

(
∂Hlt

∂ ~XL

)T

, (3.96)

where ~νr represents the right eigenvector. This result is unsurprising in the context

of the periodic orbit. A perturbation along the orbit leads to a phase-shifted fixed

point, i.e., a fixed point at another location along the periodic solution. As every

state along the orbit is a fixed point under the stroboscopic mapping, the states are

analogous to an oscillatory solution on the map.

Although the right eigenvector associated with the unit eigenvalue supplies some

simple insight about the properties of additional, albeit trivial, periodic solutions,

the unit eigenvalue is defective, i.e., the two eigenvectors corresponding to the unit

eigenvalues are identical [51]. However, the left eigenvector, ~ν`, associated with the

unit eigenvalues provides additional insights that may be employed to construct ad-

ditional periodic orbits. Due to the symplectic properties of the state transition

matrix, the left eigenvector is straightforwardly available from the right eigenvector.

The Hamiltonian STM, ΦH , i.e., the STM that relates variations in the Hamiltonian

state vector, ~XH , is symplectic and satisfies the condition

ΦT
HJΦ = J, (3.97)

where J is defined in Equation (2.55) [51]. A similar relationship is available for

the Lagrangian STM, ΦL = Φ. (Consistent with the coordinate definitions derived in

Chapter 2, the Lagrangian basis is employed by default throughout this investigation.)

First, relate the two STMs by substituting the relationship between the two bases in

Equation (2.60) into the definition of the STM in Equation (3.82) to obtain

δ ~XL(τ) = T−ω̃ΦH(τ, τ0)Tω̃δ ~XL(τ0) = ΦLδ ~XL(τ0) (3.98)
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Accordingly, the STM in the Lagrangian basis is related to the STM in the Hamiltonian

basis via the Tω̃ transformation matrix,

Φ = ΦL = T−ω̃ΦHTω̃. (3.99)

Solve this expression for the Hamiltonian STM and substitute it into Equation (3.97),

yielding

(
Tω̃ΦLT−ω̃

)T
J
(
Tω̃ΦLT−ω̃

)
= J (3.100)

T−ω̃
TΦT
LTω̃

TJTω̃ΦLT−ω̃ = J. (3.101)

Pre- and post-multiply by Tω̃
T and Tω̃, respectively, to arrive at

ΦT
L

(
Tω̃

TJTω̃

)
ΦL = Tω̃

TJTω̃. (3.102)

Thus, define

S = Tω̃
TJTω̃ (3.103)

to simplify the equation to a form identical to the symplectic relationship in Equation

(3.97). Accordingly, the right and left eigenvectors of the STM in the Lagrangian

basis, Φ, are related by the S matrix:

~ν` = (S~νr)
T . (3.104)
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(When expressed in the Hamiltonian basis, an equivalent expression, ~ν` = (J~µr)
T , is

available.) The left eigenvector corresponding to the unit eigenvalues is then

~νT` = S ~̇X = ST−ω̃JT−ω̃
T

(
∂Hlt

∂ ~XL

)T

(3.105)

= Tω̃
TJTω̃T−ω̃JT−ω̃

T

(
∂Hlt

∂ ~XL

)T

(3.106)

= −I

(
∂Hlt

∂ ~XL

)T

. (3.107)

This result reveals that the left eigenvector associated with the unit eigenvalue points

along the gradient of the Hamiltonian. Identical results are available in the Hamiltonian

basis, i.e., the right eigenvector associated with the unit eigenvalue is ~̇XH and the left

eigenvector is ∂Hlt/∂ ~XH . These results also apply to the ballistic CR3BP when the

low-thrust Hamiltonian is replaced with the natural Hamiltonian.

Similar to the right eigenvector, the left eigenvector associated with the unit eigen-

value pair is physically significant. While ~νr is tangent to the periodic orbit, ~ν` lies

along the energy gradient direction, i.e., the direction in which the energy changes due

to a change in the periodic orbit. Because periodic orbits in the simplified CR3BP+LT

maintain a constant Hlt value, this direction cannot be parallel to the periodic or-

bit (additionally, S 6= I) and this direction leads to a new, distinct periodic orbit.

Accordingly, the left eigenvector is said to be parallel to a family of periodic solu-

tions. Because this direction is available for every periodic solution in the simplified

CR3BP+LT, no periodic orbit is isolated, i.e., every periodic orbit exists in a family.

In contrast to the center manifold corresponding to ~νr that supplies “trivial” solutions

(i.e., phase-shifted duplicates of the periodic orbit), the manifold corresponding to ~ν`

leads to new, distinct periodic orbits with similar characteristics as the originating

solution.

A family is defined as a set of solutions that evolves along a one-dimensional

curve, i.e., a family member is located in the family by a single parameter [67, 68].
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To distinguish between families of low-thrust periodic orbits, a family is denoted via

set notation as Y with a superscript identifying the family evolution parameter. The

common periodic orbit families in the ballistic CR3BP (e.g., the Lyapunov, halo,

vertical, axial, and resonant orbit families) all evolve with the natural Hamiltonian.

Similar families of LTPOs that evolve in the low-thrust Hamiltonian may be con-

structed and are denoted

YH(alt, α, β) =
{

Γ(a′lt, α
′, β′, Hlt)

∣∣ a′lt = alt, α
′ = α, β′ = β

}
. (3.108)

Here, YH(alt, α, β) is a set of periodic orbits that are all parameterized by the specified

alt, α, and β control parameters while Hlt varies through the family. In contrast to

the ballistic problem, LTPO families may also be continued in the control parameters.

A family of periodic orbits that evolves in the α angle but fixes the Hamiltonian value

(as well as the other parameters) is described by

Yα(alt, β,Hlt) =
{

Γ(a′lt, α
′, β′, H ′lt)

∣∣ a′lt = alt, β
′ = β,H ′lt = Hlt

}
. (3.109)

Observe that this notation does not entirely avoid ambiguity when comparing families.

For instance, two families of LTPOs initialized from the distinct planar and spatial

center modes associated with the E1(0.07, 180◦, 0◦) point (introduced in Section 3.3.2

and discussed in more detail below) may both be denoted YH(0.07, 180◦, 0◦). However,

rather than further complicate the notation, specific indices or context clues will be

appended, e.g., YH
2D and YH

3D may distinguish between the two families within the

context of this discussion. Finally, the low-thrust acceleration magnitude will be

omitted from the notation for brevity unless it is different than alt = 7e-2.

Given a single periodic orbit, such as a solution converged from the linear dynamics

as in Section 3.3.2, a family of similar solutions may be constructed by applying a

continuation algorithm. The left eigenvector associated with the monodromy matrix

supplies a step direction between members of the family and may be leveraged in

the continuation process; alternate methods are also available. Due to the diverse
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geometries apparent among the LTPOs in this investigation, the pseudo-arclength

continuation (PAC) algorithm is employed. This scheme offers a robust evolution of

the family without requiring a priori knowledge of the family [69, 70]. Similar to

a step along the left eigenvector, the PAC algorithm leverages information from the

differential corrections Jacobian matrix to identify a change in the free variable vector

that will yield a distinct periodic orbit that belongs to the same family as previously

converged orbits. A more detailed explanation of the pseudo-arclength algorithm is

included in [57] with notation very similar to that employed in this investigation.

As described in Section 3.3.2, one method to compute a periodic orbit is to apply

differential corrections to an oscillatory solution from the center subspace associated

with an equilibrium point. The dimension of the center subspace predicts the number

of families of LTPOs that exist with properties (i.e., control parameters) matching

the equilibrium point. For example, recall that the Earth-Moon E1(0.07, 180◦, 0◦)

point possesses a 4D center mode; accordingly, two independent oscillatory solutions,

pictured in Figure 3.30(a), may be employed to construct a periodic orbit within the

linear dynamics. A family of planar LTPOs, YH
2D(180◦, 0◦), is initialized by globalizing

the the planar linear solution, as pictured in Figure 3.31, and then applying the PAC

algorithm. This family, plotted in Figure 3.38, evolves from the small periodic orbit

converged from the linear solution to large orbits that approach the Earth and the

Moon. Each orbit in this family is parameterized by the same low-thrust parameters

as the originating equilibrium point and linear solution: alt = 7e-2, α = 180◦, and β =

0◦. The low-thrust control is applied continuously with that magnitude and direction

along each family member. Because the low-thrust acceleration vector is oriented

in a “mirror configuration,” (i.e., sin(α) = 0), each family member is symmetric

over the xz- and ẏż-planes. Additionally, because the control orientation is constant

throughout the family, the entire family is symmetric about the same planes.

Similar to periodic orbit families in the ballistic CR3BP, the YH
2D(180◦, 0◦) family

evolves in Hamiltonian. The linear solution that is located very close to the E1

14https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#emE1Fam plan varHlt

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE1Fam_plan_varHlt
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE1Fam_plan_varHlt
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(a) Position space (b) Velocity space

(c) Hodograph

Figure 3.38.: Earth-Moon YH
2D(180◦, 0◦) family (Animation)14

point, possesses a low-thrust Hamiltonian value approximately equal to the Hlt value

associated with E1. As the orbits grow in size, the Hlt value (which is constant

along each solution) also increases. This monotonic behavior is not characteristic of

all families of LTPOs, but applies for this particular family. While the Hamiltonian

along this family increases from the Hlt value of the E1 point without an apparent

limit, the family approaches an asymptote as the minimum distances between the

LTPOs and the two primaries decrease. This evolution pattern is termed an open

family with one reflection, one of four possible family evolution patterns [68]:

1. Closed family with no reflections; the hodograph is a closed curve

2. Closed family with two reflections; the hodograph is a finite curve segment

3. Open family with no reflections; hodograph extends to ±∞ in both directions

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE1Fam_plan_varHlt
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4. Open family with one reflection; hodograph extends to ±∞ in one direction

and has a reflection point at the other end

In this case, the reflection point exists at E1(0.07, 180◦, 0◦); as Hlt decreases, the peri-

odic orbits shrink to the equilibrium point and are analytically continued through the

point with an arbitrary phase shift. As the Hlt value evolves in the opposite direc-

tion, i.e., grows, the hodograph approaches an asymptote, as depicted in Figure 3.39.

Because the hodograph, i.e., the visualization of the characteristic curve associated

Figure 3.39.: Alternate hodograph for the YH
2D(180◦, 0◦) family

with the family, may be plotted in a variety of coordinates, each projection reveals

slightly different properties. For example, the period vs. Hlt hodograph in Figure

3.38(c) does not represent the asymptotic evolution of the family as clearly as the y0

vs. Hlt hodograph in Figure 3.39.

While the YH
2D(180◦, 0◦) family appears very similar to the ballistic L1 Lyapunov

family in position and velocity space, the low-thrust family differs in period and

stability characteristics. These differences are minimal for very small acceleration

magnitudes, as seen in the comparison between the YH
2D(0.001, 180◦, 0◦) family and

the L1 Lyapunov family depicted in Figure 3.40. The two families are compared in

four metrics: the mean Hnat value along an orbit, the period of an orbit, and the ã and

b̃ parameters from Broucke’s stability diagram. The average Hnat value is employed

to enable a straightforward comparison between the low-thrust and ballistic orbits.

WhileHnat is constant along the ballistic arcs, Hnat oscillates along an LTPO; thus, the

mean Hnat value supplies a rough comparison of the ballistic energies associated with
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the orbits. As seen by the practically identical hodograph and stability curve trends in

Figure 3.40, the two families are very similar when the low-thrust magnitude is small.

However, low-thrust periodic orbit families for larger alt values demonstrate more

significant deviations from the Lyapunov family. A noticeable change in the period

of the orbits as well as their stability properties is apparent in the Y(0.01, 180◦, 0◦)

family in Figure 3.41. The differences between the low-thrust orbits and the ballistic

orbits increase as the alt value increases, as seen in Figures 3.42 and 3.43. The final

Figure 3.40.: YH
2D(0.001, 180◦, 0◦) vs. ballistic L1 Lyapunov family

Figure 3.41.: YH
2D(0.01, 180◦, 0◦) vs. ballistic L1 Lyapunov family

family parameterized by the familiar alt = 7e-2 value, i.e., the family plotted in Figure

3.38, displays the most significant deviations from the ballistic family. In addition to
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Figure 3.42.: YH
2D(0.03, 180◦, 0◦) vs. ballistic L1 Lyapunov family

Figure 3.43.: YH
2D(0.07, 180◦, 0◦) vs. ballistic L1 Lyapunov family

a large increase in orbital period, the stability characteristics of the low-thrust family

deviate from the Lyapunov orbits more significantly than the low-thrust families

parameterized by smaller alt values. Whereas the Lyapunov family curve maintains a

negative ã value, the low-thrust family crosses to the positive ã values, passing through

multiple bifurcations (i.e., the boundaries between colored regions). Although these

bifurcations are not explored here, they suggest novel structures not apparent in the

ballistic model and warrant future investigation.

In addition to planar families of low-thrust periodic orbits (LPTOs), spatial (i.e.,

3D) families may also be constructed. The second center mode associated with the

Earth-Moon E1(0.07, 180◦, 0◦) point describes out-of-plane oscillations relative to the
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equilibrium point. By applying the same globalization process that was used for

the planar center mode, a spatial LTPO is converged near the equilibrium point. A

family of “vertical” orbits, YH
3D(180◦, 0◦), pictured in Figure 3.44, is then constructed

by leveraging the PAC method. Consistent with the planar YH
2D(180◦, 0◦) orbits, these

(a) Position space (b) Velocity space

(c) Hodograph

Figure 3.44.: Earth-Moon YH
3D(180◦, 0◦) family (Animation)15

spatial LTPOs evolve from small solutions located near the E1 point to large orbits

that, in this case, encompass all five Lagrange points. These LTPOs are symmetric

about the xz-plane because sin(α) = 0 and are also symmetric about the xy-plane

because sin(β) = 0; similar symmetries are apparent in velocity space. In contrast

to the planar YH
2D(180◦, 0◦) family, the YH

3D(180◦, 0◦) is a closed family with two

15https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#emE1Fam vert varHlt

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE1Fam_vert_varHlt
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE1Fam_vert_varHlt
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE1Fam_vert_varHlt
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reflections: one at the E1 point and another reflection at the large, planar LTPO that

encircles the majority of the CR3BP.

As noted previously, while families of LTPOs may be constructed by evolving a

converged periodic orbit in Hlt value, holding alt, α, and β constant, families may also

be constructed by fixing the Hamiltonian and allowing one of the control parameters to

evolve. To illustrate the various methods for family evolution, two E1 LTPO families

are constructed. The first family of planar E1 LTPOs holds α = 0◦ constant, displayed

in Figure 3.45, and is denoted YH(0◦, 0◦). Although this family appears practically

(a) Position space (b) Velocity space

(c) Hodograph

Figure 3.45.: Earth-Moon planar YH(0◦, 0◦) family near E1 (Animation)16

identical to the YH
2D(180◦, 0◦) family (i.e., the planar LTPOs with α = 180◦), the

two families are distinct. One key difference is the low-thrust Hamiltonian value

associated with the orbits; the YH
2D(180◦, 0◦) orbits posses larger Hlt values than

16https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#emE1Fam alpha0 varHlt

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE1Fam_alpha0_varHlt
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE1Fam_alpha0_varHlt
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE1Fam_alpha0_varHlt
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the YH
2D(0◦, 0◦) LTPOs; this difference is also apparent in the magnitudes of the

velocities. To construct a family of LTPOs that evolves along a different parameter,

the Γ(0◦, 0◦,−1.544) orbit within the YH
2D(0◦, 0◦) family is selected as the initializing

solution. When the Hlt = −1.544 value is fixed and the α angle is varied, a new

family of low-thrust periodic orbits (LTPOs), Yα(0◦,−1.544), displayed in Figure

3.46, is constructed. Although the geometry of the entire family resembles the

(a) Position space (b) Velocity space

(c) Hodograph

Figure 3.46.: Earth-Moon planar Yα(0◦,−1.544) family near E1 (Animation)17

YH(0◦, 0◦) family, the geometries of the individual family members differ. The most

obvious difference is the lack of symmetry in the Yα family; as the α angle changes,

the orientation, size, and location of the orbits shift (the animation clarifies these

variations). These shifts correspond to the evolving E1(α, 0◦) point. At the limits of

17https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#emE1Fam varAlpha

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE1Fam_varAlpha
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE1Fam_varAlpha
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE1Fam_varAlpha
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the family, α ≈ ±150◦, the orbits are small and remain close to the E1 point, which

is located off of the x̂-axis. As the magnitude of the α angle decreases (see the linked

animation), the size of the orbits increases to a maximum at α = 0◦. This evolution

correlates to the geometry of the low-thrust forbidden regions and is straightforwardly

visualized by comparing the family hodograph with the E1 ZAC, as in Figure 3.47.

The limits of the Yα family are identified as the intersections of the ZAC with the

Figure 3.47.: The Earth-Moon LTPO families initialized from the linearized dynamics
about E1 points are bounded by the E1 ZAC; alt = 7e-2 and β = 0◦

Hlt = −1.544 line. The YH(0◦, 0◦) and YH(180◦, 0◦) families are similarly bounded by

the ZAC; the low-thrust Hamiltonian cannot decrease below the Hlt value associated

with the E1(0◦, 0◦) or E1(180◦, 0◦) points, respectively. Finally, the intersection of the

YH(0◦, 0◦) and Yα(−1.544, 0◦) families is the LTPO with characteristics that match

both families, i.e., Γ(0◦, 0◦,−1.544). Note that this intersection is not a bifurcation, at

least not in usual dynamical systems context. There is no indication of a bifurcation

– a change in stability, the formation of a new family of orbits, or the termination

of the current family [71] – at the intersection orbit, Γ(0◦, 0◦,−1.544). The stability

index plots in Figure 3.48 demonstrate that no stability change occurs at α = 0◦ in

the Yα family or at Hlt = −1.544 in the YH family. A bifurcation due to a stability

change is located where one of the stability index curves intersects s = ±1; these

intersections are marked with red arrows and s = ±1 are plotted as black dashed lines.

Vertical black lines denote the intersection of the two families and do not correspond

to a bifurcation. The lack of a period-multiplying bifurcation is confirmed by noting
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(a) YH(0◦, 0◦) (b) YH(0◦,−1.544)

Figure 3.48.: Bifurcations at stability changes in the Earth-Moon YH(0◦, 0◦) family
marked with red arrows; alt = 7e-2

that the period of Γ(0◦, 0◦,−1.544), displayed in the hodographs of both families,

is identical between the families. Although the intersection of the YH(0◦, 0◦) and

Yα(0◦,−1.544) families at α = 0◦ and Hlt = −1.544 does not represent a bifurcation,

bifurcations to other families of low-thrust periodic orbits do occur, as observed in

the Broucke stability diagrams in Figures 3.40 – 3.43. As noted previously, these

bifurcations are not explored in this investigation but may lead to novel structures

for preliminary low-thrust trajectory design.

While low-thrust periodic orbits in the vicinity of the E1 points have been discussed

and displayed, periodic solutions also exist in the near the E2 and E3 points in the

Earth-Moon system for alt = 7e-2. Recall from the stability discussion in Section

3.2.6, i.e., Figure 3.17, that the E1 and E2 points are characterized by S2×C4 motion

for all α values when β = 0◦ and alt = 7e-2. The E1
3 points posses the same stability

properties as E1 and E2. The E2
3 and E3

3 points also posses a center mode due to

their stability types of C6 or C2 × M4. Accordingly, periodic orbit families may

be initialized from the linearized dynamics near any of the low-thrust equilibria for

β = 0◦ and alt = 7e-2 in the Earth-Moon system. Many of the families initialized

from the E3 points resemble the ballistic L4/5 short- and long-period orbits. One such
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family, Yα(0◦,−1.500), plotted in Figure 3.49, evolves with α at a constant Hlt value

of -1.500. For α = 180◦, the E1
3 point is located on the x̂-axis near L3. As α changes,

(a) Position space (b) Velocity space

(c) Hodograph

Figure 3.49.: Earth-Moon planar E3 Yα(0◦,−1.500) family (Animation)18

the E1
3 point rotates about the system, approximately tracing a circle centered on

the barycenter with a nondimensional radius of 1 (the linked animation depicts this

rotation). The family evolution is limited by the range of α angles for which E1
3 exists.

Recall from Figure 3.17 (among others) that the E1
3 and E2

3 points merge at |α| ≈ 54◦;

the period of the family members asymptotically increases as this limit is reached, as

apparent in the hodograph in Figure 3.49(c). Accordingly, the Yα(0◦,−1.500) family

is open with no reflections. Many similar E1
3 families may be constructed at different

Hlt values; smaller Hamiltonian values yield smaller individual orbits (and vice versa),

but the family remains bounded by the same α range.

18https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#emE3Fam varAlpha

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE3Fam_varAlpha
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE3Fam_varAlpha
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#emE3Fam_varAlpha
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There exist many low-thrust periodic orbit families in addition to those discussed

in this section. For example, families analogous to the ballistic distant retrograde

orbits (DROs), distant prograde orbits (DPOs) and resonant orbits may be con-

structed in the CR3BP+LT by initializing differential corrections and continuation

algorithms with the ballistic solutions or by directly identifying similar structures

in the CR3BP+LT. In the next chapter, the stable and unstable manifolds associ-

ated with low-thrust periodic orbits are constructed and compared to similar ballistic

structures. Trajectory design applications that leverage LTPOs and their manifolds

are also detailed later in this document.
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4. APPLICATIONS

A thorough understanding of the CR3BP+LT dynamics simplifies the preliminary

design process by supplying links between the control parameters employed along a

low-thrust arc and the resulting energy and geometry responses. This understanding

mitigates the current difficulty in constructing an initial control strategy for low-

thrust missions. This chapter presents several applications that illustrate the use

of the structures and insights developed in this investigation. First, strategies to

manipulate the forbidden region gateway locations and energies are developed. Next,

a transfer between the Moon and Earth-Moon L5 point is straightforwardly initialized

from low-thrust equilibrium point hyperbolic manifolds, navigating the significant

spatial and energy difference between the two locales. Finally, more general transit

and capture scenarios are analyzed by leveraging the manifolds associated with planar

LTPOs located in the forbidden region gateways.

4.1 Gateway Manipulation Using Energy Planes

One straightforward application of the theory developed in this investigation is

a strategy to identify thrust durations and locations to open (or close) a gateway

in the forbbiden regions. Recall that the geometry of the ballistic forbidden regions

is a function of the instantaneous (and time-varying) Hnat value along a low-thrust

trajectory. Accordingly, the information provided by the energy plane associated with

the low-thrust arc is useful to plan for desirable configurations of the forbidden regions.

The Hnat values associated with the natural equilibrium solutions are significant as

they represent critical Hnat values at which the forbidden regions shrink (or grow) to

permit (or restrict) access to specific locations in the rotating frame. For example,

for Hnat values slightly higher than the Hnat(L1) value, the forbidden regions include
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a narrow neck near the L1 point, i.e., the L1 gateway through which trajectories

may pass to transit between the P1 and P2 regions. Similar gateways form as Hnat

increases past the L2 and L3 energy levels, as described in Section 3.1. Thus, to

enable transit between regions of the rotating frame, the Hnat value along an arc is

specified to achieve a desirable forbidden region configuration. As the energy along a

low-thrust arc is described by an energy plane, the coupled geometry-energy challenge

in navigating a gateway is mitigated by leveraging the energy plane.

To illustrate the manipulation of the forbidden regions via insights from an energy

plane, consider a ballistic path that passes from the system interior (i.e., near P1)

through the L1 and L2 gateways to the exterior region, as plotted in black in Figure

4.1. Assume that the path must be modified to prohibit one or both gateway transits

Figure 4.1.: Ballistic arc transiting the Earth-Moon L1 and L2 gateways at Hnat =
−1.55

by applying a low-thrust acceleration with a magnitude of alt = 7e-2. Additionally,

let the initial state, marked by a black square, be fixed. To avoid escape to the system

exterior, it is sufficient to reduce the Hnat value along the low-thrust arc such that,

at the location of the L2 gateway transit, the spacecraft Hnat value is lower than

Hnat(L2). Further energy reductions may restrict the spacecraft to the vicinity of P2,

or prohibit transit into the P2 region entirely by closing the L1 gateway.
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A strategy that leverages a low-thrust acceleration to reduce the Hnat value along

an arc originating at the specified state is available from the insights derived from the

energy plane. Recall that the energy plane is sloped toward increasing Hnat values in

the direction of the low-thrust acceleration vector. Accordingly, to decrease the Hnat

value as the spacecraft moves from the initial state (the black square in Figure 4.1)

toward the Moon, the low-thrust acceleration vector should be oriented opposite the

direction of travel to ensure that the Hnat value decreases. In this planar example,

an α angle between 180◦ and 235◦ will deliver a suitably oriented acceleration vector.

Once the orientation of the ~alt vector has been selected, the equation for the energy

plane may be leveraged to identify limits on the low-thrust maneuver timing, i.e., the

latest time (or, equivalently, the location) the maneuver may be initiated to prohibit

transit through the L2 and/or L1 gateways. The energy plane equation,

∆Hnat = −alt

[
CαCβ∆x+ SαCβ∆y + Sβ∆z

]
, (2.130)

reprinted here for convenience, relates the energy chanage to the low-thrust accel-

eration magnitude, alt, the orientation angles, α and β, and the change in location

between the initial and final points on a low-thrust arc. For simplicity, let α = 180◦

to deliver a decreasing Hnat value as the spacecraft moves toward the Moon and let

β = 0◦. The energy change is then a simple relationship with the change in the

x-coordinate,

Hnat,f −Hnat,0 = alt(xf − x0). (4.1)

If the objective of the low-thrust maneuver is to prohibit transit through the L2

gateway, the minimum Hnat change is Hnat(L2) − −1.55 ≈ −0.0361 and the final x-

coordinate is the location of L2, i.e., xf = xL2 ≈ 1.1557. The final x-coordinate where

a maneuver may be initiated to close the L2 gateway before the spacecraft transits

through it is then available by solving Equation (4.1) for x0,

x0 = maxxthrust = xL2 −
1

alt

[
Hnat,0 −Hnat(L2)

]
. (4.2)
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A similar limit on the low-thrust maneuver is available by setting xf = xL1 and

Hnat,f = Hnat(L1) and solving for x0; the resulting position coordinate is the minimum

x-value where a low-thrust maneuver may be initiated to close the L1 gateway. These

bounds, identified as black triangles in Figure 4.2(b), are employed to categorize a set

of low-thrust arcs, all originating from the ballistic path at different x locations. Red

(a) Arcs plotted in configuration space (b) Energy evolution of the low-thrust
arcs

Figure 4.2.: The transit behaviors of low-thrust arcs (colored) in the Earth-Moon
CR3BP-LT for alt = 7e-2, α = 180◦, and β = 0◦ originating from different locations
on a ballistic arc (black) are predicted by a simple trigonometric property of the
energy plane geometry

arcs, plotted in the xy-plane in Figure 4.2(a), initiate thrusting at x < minxthrust.

Similarly, green arcs depart the ballistic arc at locations such that x > maxxthrust.

Arcs that commence thrusting between these two bounds are plotted in blue. The

energy plane analysis predicts that red arcs will fail to transit the L1 gateway as the

energy along these trajectories decreases below the L1 gateway energy, i.e., the L1

gateway is closed when the low-thrust arc arrives at the gateway. This prediction is

supported by the results in Figure 4.2(a); all of the red arcs remain in the interior

region. The energy planes associated with these arcs, plotted as dashed lines in Figure

4.2(b), visually demonstrate that the energy along each red arc decreases to Hnat(L1)

before or at xL1 . In contrast, as the blue arcs activate thrust forces sufficiently late
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to avoid closing the L1 gateway before passing through, they may transit into the P2

region but will not pass through the L2 gateway. This result is also supported by the

plot, as many blue arcs enter the P2 region and none transit the L2 gateway. However,

a subset of these trajectories do not pass through the L1 gateway; while the energy

on these paths at the L1 gateway is sufficiently high to permit transit, transit is not

guaranteed. Finally, the green arcs add thrust at locations where x > maxxthrust,

thus, the Hnat values on these arcs are sufficiently high to allow transit through the

L2 gateway; again this is a sufficient condition and does not guarantee transit, as

evident from the configuration space representation in Figure 4.2(a).

This analysis demonstrates that the energy plane is a useful tool to design a low-

thrust maneuver that modifies a ballistic path and the bounding forbidden regions.

The geometry of the ballistic transit arc employed in this example (seen in black in

Figure 4.2(a)) is only slightly modified by a low-thrust force during the approach

to the P2 vicinity, thus, the energy along the low-thrust arcs is straightforwardly

controlled as the path moves predictably along the prescribed energy plane. However,

as the arcs traverse the dynamic regions near L1, P2, and L2, the trajectory geometry

is significantly affected by the addition of low-thrust and, thus, is more difficult to

predict. Regardless of these sensitivities, the energy along each low-thrust arc is

confined to the energy plane and transit (or capture) may be achieved by adjusting

the control parameters via differential corrections. This strategy is also applicable to

scenarios other than gateway transit behavior; any problem that requires a specific

energy value at a specific location is facilitated by the CR3BP+LT energy planes.

4.2 Gateway Manipulation Using Control Curves

Building upon the simple method developed in the previous section, a more so-

phisticated strategy to manipulate the forbidden region gateways leverages the novel

low-thrust forbidden region geometries and gateway energy orders. In the example

from Section 4.1, low-thrust arcs are constructed with a single control parameteriza-
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tion. However, maintaining a single set of low-thrust parameters may overly restrict

the solution space; mid-course variations in α, β, and alt might also be leveraged

to modify the dynamical landscape. To illustrate these energy design techniques,

a simple example is employed throughout this section. Consider a spacecraft on a

planar, ballistic path with Hnat = −1.55 that transits the P2 region, passing from

the exterior of the CR3BP+LT system to the interior as seen in Figure 4.3. Similar

Figure 4.3.: Ballistic path (black curve) bounded by the natural Earth-Moon forbid-
den regions (gray) at Hnat = −1.55

to the scenario in the previous section, the spacecraft path must be adjusted via a

low-thrust acceleration with magnitude alt = 7e-2 to achieve ballistic capture about

P2, i.e., the final spacecraft state should yield a ballistic arc that is guaranteed to

remain in the vicinity of P2. Let the spacecraft position and natural energy, given

by ~r and Hnat, respectively, be fixed at the initial time, τ = τ0. Additionally, let

β = 0 and z = ż = 0 to limit the analysis to the planar CR3BP+LT. The remain-

ing variables (α, velocity orientation, and time-of-flight) are free to vary. Significant

modifications to the ballistic path may be accomplished by leveraging insights from

the CR3BP+LT to select values for these design variables.



167

4.2.1 Control Points and Control Curves

Similar to the example developed in Section 4.1, the goal of this gateway manip-

ulation strategy is to adjust the energy along a low-thrust arc relative to the energy

associated with the equilibrium points located in the gateways. While the natural

energies (i.e., Hnat values) associated with the ballistic Lagrange points supply one

metric for a transit analysis, the low-thrust Hamiltonian and low-thrust equilibria

may also be employed. In contrast to the ballistic energy, the Hlt value along an

arc is constant when the low-thrust acceleration vector is fixed in the rotating frame.

Accordingly, the geometry of the low-thrust forbidden regions is also static, supplying

a simpler bound on the spacecraft motion than the pulsating ballistic forbidden re-

gions. Two entities – a control point and a control curve – are defined in this section

to facilitate the selection of a suitable control parameterization that yields a suitable

low-thrust forbidden region configuration.

Given a fixed low-thrust acceleration value, alt, the locations and number of the

planar equilibria are a function only of α; thus, while a spacecraft may use any

thrust orientation to modify the equilibrium solution configuration (i.e., the geometry

of the gateways), the Hlt value associated with the resulting low-thrust arc is not

independent of α. Accordingly, the selection of an α value that yields an advantageous

gateway geometry may simultaneously yield an energy level that undesirably closes (or

opens) the gateway(s) of interest. In the context of the capture example, the locations

of the E1 and E2 gateways corresponding to alt = 7e-2 remain near the natural CR3BP

L1 and L2 solutions for all values of α. Subsequently, α may be selected to yield a

desirable Hlt value somewhat independently of the E1 and E2 gateway geometry.

However, this independence is not generally available, particularly if one of the E3

equilibria, which evolve with α along the large C-shaped ZAC in Figure 3.7(b), is the

gateway of interest.
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The range ofHlt energy values attainable from a specific position, ~ri = {xi yi zi}T ,

and natural Hamiltonian, Hnat,i, is available from an analysis of the low-thrust

Hamiltonian equation,

Hlt = Hnat,i − alt~ri • âlt, (2.107)

reprinted and expanded here for reference. Substitute the general definition of the

low-thrust acceleration orientation vector from Equation (2.97) and expand the dot

product to obtain

Hlt −Hnat,i = −alt

[
xi cos(α) cos(β) + yi sin(α) cos(β) + zi sin(β)

]
(4.3)

= −alt‖~ri‖ cos θ, (4.4)

where θ is the angle between ~ri and âlt, and Hnat,i is a function only of the spacecraft

position vector and velocity magnitude, vi. Define a control point as the position and

ballistic energy along a trajectory,

~ρi =

{
xi yi zi Hnat,i

}T
. (4.5)

The Hlt values that may be achieved by implementing a low-thrust maneuver with the

specified alt magnitude on an arc originating from ~ρi are described by the sinusoidal

control curve,

Ui(~ρi) : Hlt = Hnat,i − alt‖~ri‖ cos θ, (4.6)

with mean value Hnat,i and amplitude alt‖~ri‖. Simplifying to the planar problem (zi =

0, β = 0), additional insight is available by rewriting Equation (4.6) in amplitude-

phase form,

Hlt = Hnat,i + alt‖~ri‖ sin(α + φ), (4.7)

where φ = arctan(−xi/ − yi) = π + arctan(xi/yi). This link between phase and

the spacecraft position supplies information about the control curve geometry, in-

cluding the locations of the Hlt = Hnat points and the locations of the maximum
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and minimum Hlt points. To illustrate these relationships, consider the control point

at ~ρ1 = {1.53 0.73 0 −1.55}T , as depicted by the purple square in Figure 4.3.

Given the low-thrust acceleration magnitude alt = 7e-2, the resulting control curve,

U1(~ρ1), also plotted in purple in Figure 4.4, is bounded by −1.67 ≤ Hlt ≤ −1.43

with a mean value at Hnat = −1.55. The phase shift of the curve, identical to the

Figure 4.4.: Earth-Moon ZAC energy curves (blue, red, yellow) for alt = 7e-2 and
β = 0 and the control curve, U1 (purple), associated with the ~ρ1 control point

angular separation between the +ŷ-axis and (−xi, −yi), is approximately 244.5◦, or

−115.5◦. Together, these amplitude, mean value, and phase shift values define the

control curve geometry. Thus, the range of Hlt values that may be achieved by im-

plementing low-thrust with the specified alt magnitude on an arc originating from ~ρ1

are limited and follow the prescribed function of α, i.e., the control curve U1(~ρ1).

4.2.2 Low-Thrust Control for Partial Capture

When plotted with the ZAC energy curves, the control curve becomes a means

to identify α values that deliver energies corresponding to desirable gateway con-

figurations. For instance, to establish a captured orbit about P2, the ballistic path

represented by the black curve in Figure 4.3 must be modified such that the spacecraft
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does not transit the E1 gateway to the interior of the Earth-Moon CR3BP+LT sys-

tem. Thus, a forbidden region configuration with the E1 gateway closed and with the

E2 gateway open (to allow transit into the P2 region) is desired. Such a configuration

is represented in energy curve space by a point that lies below (lower energy) the E1

energy curve and above (higher energy) the E2 energy curve. A set of suitable points

are located in the range −70◦ < α < 70◦, as seen in the detailed view in Figure 4.5(a).

While all of the points between the E1 and E2 energy curves for −70◦ < α < 70◦ yield

(a) Select α = 4◦ (orange circle) with
alt = 7e-2 to yield Hlt = −1.6601, suffi-
cient to close the E1 gateway while the
E2 gateway remains open

(b) A low-thrust arc (orange) prop-
agated with the selected α value is
bounded by the corresponding low-
thrust forbidden regions (gray), and de-
parts through the open E2 gateway

Figure 4.5.: The selection of a suitable α value bounds the resulting CR3BP+LT
Earth-Moon arc such that passage through the E1 gateway is impossible, but the E2

gateway remains open and the spacecraft escapes from the P2 vicinity

a suitable forbidden region configuration to prohibit transit through the E1 gateway,

only the (α, Hlt) pairs that lie on the U1 control curve are attainable via a single

low-thrust propagation from the initial state, i.e., from the control point ~ρ1. The

control curve, U1, passes through the set of suitable points for values angles in the

range α1 ∈ [−4.5◦, 11.5◦]. For instance, the value α1 = 4◦, represented by an orange

circle in Figure 4.5(a), is leveraged during a low-thrust propagation from ~ρ1 to yield

the low-thrust forbidden regions depicted in gray in Figure 4.5(b). The spacecraft
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path that employs this α1 value, plotted in orange, is bounded by the forbidden re-

gions and diverges from the ballistic path (plotted in black) to remain near P2 for

a short time. Other α1 values on U1 that are located between the E1 and E2 en-

ergy curves are also sufficient to admit the desired forbidden region geometry and

will yield low-thrust paths with slightly different geometries. Thus, insights from the

simple analytical relationships between energy and low-thrust parameters inform the

generation of preliminary low-thrust trajectory designs.

4.2.3 Control Curves Linking Two Control Points

While a single low-thrust propagation may be sufficient to achieve some mission

design goals, as in the example in Section 4.1, multiple arcs are required in general.

For instance, the addition of a mid-course thrust reorientation along the low-thrust

arc (orange) in Figure 4.5(b) may further adjust the forbidden region to satisfy the

mission goal, i.e., permanent capture about P2. In this scenario, the spacecraft is

located on a low-thrust arc originating from an initial control point, ~ρ1, and the thrust

vector is oriented by α1 to yield the energy level Hlt,1 that admits the forbidden region

geometry and low-thrust path depicted in Figure 4.5(b). By switching α to a different

value after passing through the E2 gateway, the energy of the subsequent low-thrust

arc may be manipulated to close both gateways and bound the spacecraft motion to

remain near P2. Mathematically, the problem is posed as such: the initial control

point, i.e., ~ρ1 = {x1 y1 0 Hnat,1}T , as well as the initial low-thrust parameters,

(α1, Hlt,1), and the desired final parameters, (α2, Hlt,2), are known. The goal is

to identify a second control point, ~ρ2 = {x2 y2 0 Hnat,2}T , along or near the

current low-thrust propagated path where α1 may be instantaneously changed to α2

while simultaneously yielding the desired energy, Hlt,2, and maintaining a consistent

acceleration magnitude, alt = 7e-2. Such a control point yields the control curve,

U2(~ρ2) : Hlt = Hnat,2 − alt

[
x2 cos(α) + y2 sin(α)

]
, (4.8)
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which must pass through both (α1, Hlt,1) and (α2, Hlt,2). Because U2 describes the

range of Hlt values attainable from ~ρ2, both the prior and posterior (α, Hlt) pairs

must lie on U2 to enable such an instantaneous change. Substituting the low-thrust

Hamiltonian and thrust orientation values into Equation (4.8) yields two equations

parameterized by the same control point,

Hlt,1 = Hnat,2 − alt

[
x2 cos(α1) + y2 sin(α1)

]
, (4.9)

Hlt,2 = Hnat,2 − alt

[
x2 cos(α2) + y2 sin(α2)

]
. (4.10)

As this system includes two equations and three unknowns (x2, y2, and Hnat,2), in-

finitely many solutions exist. However, by applying additional insights from the

CR3BP+LT, the number of solutions is reduced.

As defined in Section 2.2.8 and demonstrated in Section 4.1, the Hnat value along

a low-thrust arcs evolves on the energy plane. Subsequently, the variation in Hnat

over a propagated arc is a function only of the constant thrust vector and the initial

and final positions on the arc, i.e., ∆Hnat is path-independent. In the low-thrust

capture scenario, the initial Hnat(τ0) = Hnat,1 value is specified by ~ρ1, as are the

initial position coordinates of the spacecraft, ~r(τ0) = ~r1. Additionally, the low-thrust

acceleration vector is defined by the selected alt magnitude and α1 angle and the final

(unknown) position and natural Hamiltonian associated with the low-thrust arc are

denoted ~r(τf ) = ~r2 and Hnat(τf ) = Hnat,2, respectively. By substituting these values

from the design problem into Equation (2.127), an additional relationship is available,

Hnat,2 = Hnat,1 + alt

[
(x2 − x1) cos(α1) + (y2 − y1) sin(α1)

]
, (4.11)
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that may be substituted into Equations (4.9) and (4.10) to remove theHnat,2 unknown.

The resulting system of one equation and two unknowns (x2 and y2) describes a line,

P1,2, written in slope-intercept form,

P1,2 : y2 =
(Hlt,2 −Hnat,1)a−1

lt + x1Cα1 + y1Sα1

Sα1 − Sα2

+ x2 tan(ᾱ), (4.12)

where ᾱ = 0.5(α1+α2). Each point along this line represents a location where a change

from α1 to α2 yields the desired change from Hlt,1 to Hlt,2. Therefore, intersections

between the low-thrust arc propagated with α = α1 and the P1,2 line serve as suitable

control points at which to transition to α2 and Hlt,2. If P1,2 and the low-thrust

arc do not intersect, the initial velocity direction (an unconstrained variable) may

be modified to target an intersection without changing Hlt,1. Alternatively, if some

impulsive capability is available on the spacecraft, the y-intercept (the first term in

Equation (4.12)) may be shifted by implementing a maneuver at the initial or final

points on the arc. Because the velocity is only included in the Hlt,2 and Hnat,1 terms,

the slope of P1,2 remains unchanged.

4.2.4 Feasible Regions

The set of suitable control points, i.e., P1,2, depends on the selection of a target (α,

Hlt) pair, thus, scenarios with many suitable target pairs do not admit well-defined

sets of control points. To reduce the number of (α, Hlt) options, the design problem is

reversed by identifying bounds on the control point locations and leveraging Equation

(4.12) to map the control point bounds to a set of (α, Hlt) pairs that may be achieved

from the specified set of control points. A suitable (α, Hlt) target is then selected

from the achievable set and a P1,2 line is defined to identify the control points that

enable the specified energy change. Bounds on the location of a control point are

informed by the geometry of the spacecraft path and by the unconstrained variables

(e.g., in time-of-flight or velocity angle). In the capture scenario, the initial low-thrust

parameter selection (α1, Hlt,1) is sufficient to deliver the spacecraft to the P2 region
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without escaping through the E1 gateway, as seen in Figure 4.5(b), but an additional

control point is desired in the P2 vicinity where a thrust reorientation may be located

to reconfigure the forbidden regions to bound the spacecraft near P2. This goal –

a forbidden region geometry that closes the E1 and E2 gateways – is satisfied by

any (α2, Hlt,2) pair located below both the E1 and E2 energy curves in Figure 4.4.

Thus, the definition of a set of suitable control point locations and the corresponding

set of attainable (α, Hlt) pairs, collectively termed feasible regions, are required to

reduce the number of design options. In the capture scenario, the second control point

must be located between the E1 and E2 gateways. A set of bounds on the x and y

control point locations, i.e., x ∈ [xmin, xmax] and y ∈ [ymin, ymax], are implemented to

approximate the P2 vicinity within the forbidden regions, as depicted by the orange

rectangle in Figure 4.6(a). As a simple estimate, a line of control points, i.e., P1,2 from

(a) Feasible (x, y) region (b) Corresponding feasible (α, Hlt) pairs

Figure 4.6.: By defining a region of feasible positions, x ∈ [xmin, xmax] and y ∈
[ymin, ymax], a corresponding set of feasible (α, Hlt) pairs are identified in parameter
space for the Earth-Moon CR3BP+LT with alt = 7e-2

Equation (4.12), intersects this feasible region if y2 = ymax within the [xmin, xmax]

bounds or if y2 = ymin within the same bounds. Accordingly, the intercepts of P1,2

are constrained and Equation (4.12) may be rearranged to identify bounds on α2 and

Hlt,2 associated with lines that intersect the feasible region. Write Equation (4.12) in
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slope-intercept form, y2 = b + σx2, with y2 = ymin or ymax, and solve for x, which is

bounded,

xmin ≤
1

σ
(ymax − b) ≤ xmax. (4.13)

As σ and b are functions of α2 and Hlt,2, this set of inequalities represents the (α,

Hlt) pairs that produce P1,2 lines intersecting ymax within the bounds on x. A similar

equation is also written to identify pairs that produce P1,2 solutions intersecting ymin.

Together, the inequalities then yield all (α, Hlt) values that correspond to lines of

control points passing through the rectangular feasible region. The inequality (4.13)

delivers Hlt,2 as a function of α2, such that

h (α2, xmax, yi) s ≥ 0

h (α2, xmin, yi) s < 0

 ≤ Hlt,2 ≤

 h (α2, xmin, yi) s ≥ 0

h (α2, xmax, yi) s < 0
, (4.14)

where

h(α2, xj, yi) = Hlt,1 − alt [Sα1 − Sα2 ]
(
tan(ᾱ)xj − yi

)
, (4.15)

s = sgn
[
(Sα1 − Sα2) cot(ᾱ)

]
, (4.16)

and yi = ymax or ymin. Accordingly, the feasible energy region bounded by these

inequalities, depicted in Figure 4.6(b), includes only (α2, Hlt,2) pairs attainable from

control points within the rectangular (x2, y2) feasible region given the initial control

point, ~ρ1 and natural Hamiltonian, Hnat,1. Finally, other constraints on P1,2 may be

employed to construct feasible regions, such as the set of bounding x-intercepts, or

a desired slope for the P1,2 line. Regardless of the specific definition of “feasibility,”

the set of acceptable (x2, y2) locations maps to a set of corresponding feasible (α2,

Hlt,2) energy pairs.

The feasible energy pairs follow patterns that are qualitatively predicted by the

analytical equations. First, as observed by the lack of feasible region above and below

the (α1, Hlt,1) point in Figure 4.6(b), no energy change is possible if α2 = α1. This
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result follows directly from Equation (4.14) (substituting α2 = α1 yields Hlt,2 = Hlt,1)

but also follows intuitively from the dynamics; without a change in α, it is impossible

to change Hlt with a fixed alt value. Second, the phase and amplitudes of the sinusoids

bounding the feasible energy region are related to the bounds of the (x, y) feasible

region; the points furthest from and closest to the system barycenter (i.e., the origin)

define the amplitude range, while the angular separation of the corners in the rectangle

from the +ŷ-axis bound the phase of the sinusoids. In this example, the region is

roughly centered on (x = 1, y = 0); thus, the amplitudes of the available control

curves are approximately alt

√
12 + 02 = 7e-2. Similarly, the phases of the curves are

φ ≈ arctan(−1/0) = −π/2. Subsequently, an approximation of the feasible energy

region is available from the properties of the control point bounds, supplying some

insight before further computational effort is expended.

4.2.5 Low-Thrust Control for Full Capture

By leveraging the insights from the control curve equations and feasible regions,

an (α2, Hlt,2) pair is straightforwardly identified and targeted. Recall that the goal

of the mid-course thrust reorientation is to close both the E1 and E2 gateways; thus,

an (α2, Hlt,2) pair located below the E1 and E2 ZAC energy curves is desired. The

rectangular bounds on the control point location, depicted in Figure 4.6(a), yield a

corresponding set of bounds in energy curve space, as in Figure 4.6(b). Accordingly,

the selection of an (α2, Hlt,2) pair within the feasible energy region that satisfies the

mission objective (to close the gateways) yields a P1,2 line that intersects the set of

feasible control points, likely intersecting the initial low-thrust path as well. Only two

small sections of the feasible energy region satisfy the mission objective: one near the

“feasible region” arrow in Figure 4.6(b), and another approximately mirrored across

α = 0◦. One candidate pair in this region, (71◦, −1.616), marked by a cyan circle

in Figure 4.7(a), yields a set of control points, P1,2, which intersect the initial low-

thrust propagation in two locations, as depicted by the dotted cyan line in Figure
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4.7(b). These intersections define two control point options, labeled ~ρ2 and Alt. ~ρ2

(a) An (α2 = 71◦, Hlt,2 = −1.616) pair
(cyan circle) is attainable via the control
curves U2 (solid) or Alt. U2 (dashed)
from the initial (α1, Hlt,1) pair (orange
circle)

(b) The P1,2 set (dotted cyan) identifies
(x,y) locations where a change from α1

to α2 yields the desired Hlt,2 value. Two
control points are located at the inter-
section of P1,2 and the low-thrust arc

Figure 4.7.: An (α2, Hlt,2) pair is attainable by changing low-thrust parameters at
intersections of P1,2 and the low-thrust arc

and marked by a green square and triangle, respectively, that subsequently define two

control curves, U2 and Alt. U2, plotted in green in Figure 4.7(a), that link the (α2,

Hlt,2) target to the (α1, Hlt,1) pair implemented on the orange low-thrust arc. Thus,

a control change from α1 to α2 at either ~ρ2 or Alt. ~ρ2 yields the desired Hlt,2 value

and the resulting propagation with alt = 7e-2 and α = 71◦ is constrained to remain

near P2 by the low-thrust forbidden regions, as depicted in Figure 4.8(a). If this low-

thrust vector is maintained, the spacecraft will never depart the P2 vicinity. However,

continuous thrusting is not required to ensure the spacecraft remains captured. When

the natural energy of the trajectory sufficiently low such that the L1 and L2 gateways

of the natural CR3BP forbidden regions are closed, the low-thrust force may be

switched off. Following engine shutdown, the spacecraft follows a ballistic path, the

natural energy remains constant, and the spacecraft remains bounded by the natural

forbidden regions. Such a strategy is possible with the captured arc in this example.

The trajectory Hnat value, plotted in Figure 4.8(b), dips below the minimum capture
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(a) Propagating from ~ρ2 with α2 = 71◦

yields a captured arc (cyan), bounded
by the low-thrust forbidden region
(gray) at the corresponding energy,
Hlt,2 = −1.616

(b) The Hnat energy of the low-thrust
trajectory decreases below the CR3BP
L2 and L1 energies, at which point a
coast arc will maintain the captured ge-
ometry

Figure 4.8.: The low-thrust capture in the Earth-Moon CR3BP+LT for alt = 7e-2

Figure 4.9.: Low-thrust capture trajectory ending in a ballistic coast (yellow) con-
strained to remain near the Moon

energy, Hnat(L1) shortly after control point ~ρ2 (green square). Thus, at any point on

the cyan Hnat history below the Hnat(L1) boundary, the low-thrust propulsion may

be switched off while maintaining captured behavior. For example, a third control

point, ~ρ3, is placed near the first Hnat minimum on the cyan arc, as depicted in Figure

4.9. The resulting ballistic arc, plotted in yellow, is constrained to remain near P2 by

the ballistic forbidden regions, concluding the low-thrust capture mission.
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4.3 P2 to L5 Transfer Leveraging Equilibria Manifolds

In addition to the insights available from the energy plane, the hyperbolic equi-

librium point manifolds may be employed to guide a spacecraft from the vicinity of

P2 to other locations in the system. To illustrate such a methodology, a transfer

from the lunar vicinity to a stable L5 short-period orbit (SPO) is constructed in the

Earth-Moon system. While the L1 and L2 manifolds offer flow patterns that depart

the lunar region, these trajectories, plotted in Figure 3.25, do not approach L5, even

when propagated for longer time intervals than depicted in the plot. Furthermore,

these natural manifold paths maintain a fixed Hnat value consistent with the originat-

ing equilibrium point and, thus, do not approach the much higher Hnat(L5) value. An

additional complication arises from the fact that L5 is characterized by C6 motion;

thus, L5 possesses no manifolds to further attract the flow. Farrés [72] mitigates this

problem when designing similar transfers in the Sun-Earth system that employ an

additional force generated by a solar sail by using a “brute force search” to identify

sail orientations and states near the triangular point that, when propagated in re-

verse time, may be linked to the E1(0) or E2(0) unstable manifolds in both position

and energy to construct an end-to-end transfer design. By leveraging insights from

energy planes and employing equilibrium solutions in the CR3BP+LT located near

L5 with nontrivial saddle modes, a transfer is straightforwardly designed without a

grid search.

4.3.1 Preliminary Design Generation

A transfer design that incorporates both the energetic and geometric differences

between the L5 and lunar regions is facilitated by leveraging manifolds associated

with the low-thrust planar equilibria. A similar strategy may be employed for spatial

equilibria and their manifolds. Motion near the Moon is available from the manifolds

associated with points on the E1 and E2 sets. Because the E1 and E2 structures for

alt = 7e-2 and β = 0 are characterized by S2×C4 motion regardless of α (see Section
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3.2.6), many manifolds that depart the region are available. A survey of these mani-

folds over the full range of α values indicates that, while small differences are apparent

as α varies, as in Figure 3.25, the general flow geometry remains consistent. Thus,

the energy on these manifold trajectories may be designed relatively independently

of the geometry by selecting an α value to supply an appropriate energy plane, i.e.,

an energy plane sloped in the desirable orientation.

To develop an initial guess for a transfer between the Moon and L5, the manifolds

corresponding to a planar (β = 0) Earth-Moon CR3BP+LT E2 solution are explored

(alternatively, manifolds corresponding to an E1 point may be leveraged). As illus-

trated in Figure 4.10(b), the Hnat value associated with L5 is significantly larger than

the Hnat values at the E2 (or E1) sets. To maximize the Hnat value available at L5

along a single low-thrust arc originating from one of these low-thrust equilibria, the

energy plane is aligned with the Moon-L5 line, e.g., α = −120◦, as plotted in Figure

4.10. However, even with the plane oriented to maximize the energy at the L5 loca-

(a) Planar projection of the energy plane
with α = −120◦

(b) Edge-on view of the energy plane;
the natural L5 point possesses an Hnat

value higher than those attainable on
the energy plane at the location of the
L5 point

Figure 4.10.: The energy plane associated with the Earth-Moon CR3BP+LT
E2(−120◦) point for alt = 7e-2 (γ ≈ 4◦) is too shallow to reach Hnat(L5) at the
L5 location
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tion, the slope of the energy plane is too shallow to reach Hnat(L5) at the L5 position,

visualized as an “energy gap” between the energy plane and the L5 point in Figure

4.10(b). The slope of the plane is a function of the low-thrust acceleration magnitude,

alt, and is limited by the capabilities of the propulsion system. Accordingly, given

the limitation of alt = 7e-2, a single manifold arc originating from an E2 point cannot

reach the natural L5 point with the desired energy. Additional energy manipulations

are required to construct a set of multiple “energy switchbacks” that reach both the

L5 position and energy level.

To facilitate an energy increase from Hnat(L2) to Hnat(L5), low-thrust flow orig-

inating near the natural L5 point is linked to low-thrust flow near the Moon. In

contrast to the natural CR3BP, the CR3BP+LT possesses equilibrium points near

L5 on the E3 structure with a hyperbolic manifold. In the Earth-Moon CR3BP+LT

with alt = 7e-2 and β = 0, these equilibria, plotted as purple points in Figure 4.11,

are located near L5 when α ≈ −60◦. While the locations and energies of the equi-

Figure 4.11.: Earth-Moon ZACs colored by stability for alt = 7e-2 and β = 0;
Lagrange points marked by asterisks

libria on E1 and E2 vary only a small amount with α, the E3 equilibrium points

shift over large distances throughout the xy-plane as α varies. Accordingly, only the

E1
3(−60◦) solution near L5 supplies manifolds that evolve sufficiently to attract flow.
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The energy along these manifold trajectories evolves on the energy plane oriented by

α = −60◦, as depicted in Figure 4.12. A transfer from E2(−120◦) to E1
3(−60◦) may

(a) Planar projection
(b) 3D view in x-y-Hnat space

Figure 4.12.: The energy planes corresponding to the low-thrust equilibrium points
E1

3(−60◦) near L5 and E2(−120◦) contain all trajectories originating from the two
equilibria; control adjustments at the intersection of the two planes facilitates trans-
fers between the two points

leverage flow along both energy planes. Such a transfer originates at the E2(−120◦)

point and subsequently flows along the corresponding energy plane. Then, at an in-

tersection between the E2(−120◦) energy plane and the E1
3(−60◦) energy plane, the

low-thrust parameters may be switched to match those associated with the E1
3(−60◦)

point, i.e., α is switched from −120◦ to −60◦. The resulting propagation then flows

along the E1
3(−60◦) energy plane, which includes the E1

3(−60◦) equilibrium solution

very near the location and energy of the natural L5 point, facilitating the required

energy change.

4.3.2 Poincaré Mapping at Energy Plane Intersections

The locations where the equilibrium point manifolds reach the energy plane in-

tersection are available by employing a Poincaré mapping. A Poincaré map includes

three key components: a set of initial conditions,

{ ~Xi,0, i = 1, 2, . . . n}, a hyperplane, Σ, and a visualization strategy. The initial condi-
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tions are numerically integrated to the hyperplane for p returns, yielding the mapping,

Mp
Σ( ~Xi,0). In many applications the hyperplane is a geometric plane, e.g., a plane at

some x, y, or z value, but Σ may also be a non-geometric plane. For this energy-plane

traversal example, a physical plane located at the intersection of the energy planes is

employed. In the planar problem (z = ż = 0, β = 0), the intersection of two energy

planes defines a line, H1,2, in x-y-Hnat space. The orientation of this line is described

by the cross product of the two plane normal vectors,

n̂1 × n̂2 =


Sα1Sγ1Cγ2 − Sα2Sγ2Cγ1

Cα2Sγ2Cγ1 − Cα1Sγ1Cγ2

Cα1Sγ1Sα2Sγ2 − Cα2Sγ2Sα1Sγ1

 , (4.17)

where

n̂i = Ĥ ′′′i = Cαi
Sγix̂+ Sαi

Sγi ŷ + CγiĤ. (4.18)

A point on the intersection line is located by evaluating Equation (2.130) on each

energy plane,

Cα1Sγ1(x̃− x1) + Sα1Sγ1 + Cγ1(H̃nat −Hnat,1) = 0, (4.19)

Cα2Sγ2(x̃− x1) + Sα2Sγ2 + Cγ2(H̃nat −Hnat,2) = 0, (4.20)

where ~ρ1 = {x1 y1 0 Hnat,1}T is a control point anywhere on the first energy

plane, ~ρ2 = {x2 y2 0 Hnat,2}T is a control point anywhere on the second energy

plane, and ~ρref = {x̃ ỹ 0 H̃nat}T is a control point on the intersection of the

two planes. As this system includes three unknowns (x̃, ỹ, and H̃nat) but only two

equations, one of the ~ρref components may be selected arbitrarily; the choice of a

convenient geometric location or Hamiltonian value can offer useful insight later in

the analysis.

Once the ~ρref point has been located, the energy plane intersection line is projected

into the xy-plane to be used as a hyperplane for the low-thrust trajectories. Assuming
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the magnitude of the low-thrust acceleration is identical for both planes, γ1 = γ2 and

the orientation of the intersection line simplifies to

n̂1× n̂2 =

{
SγCγ (Sα1 − Sα2) SγCγ (Cα1 − Cα2) S2

γ (Cα1Sα2 − Cα2Sα1)

}T
. (4.21)

The planar projection of this vector, ΣH1,2 , is spanned by the x̂ and ŷ components of

n̂1 × n̂2. The projection may be simplified by applying a trigonometric identity,

ΣH1,2
:


2SγCγ cos

(
[α1 + α2]/2

)
sin
(
[α1 − α2]/2

)
2SγCγ sin

(
[α1 + α2]/2

)
sin
(
[α1 − α2]/2

)
0

 (4.22)

For all technologically feasible propulsion systems, 0 < γ < π/2, thus SγCγ 6= 0

and can be divided out of the vector without affecting the orientation. Similarly,

sin([α1−α2]/2) = 0 if and only if α1 and α2 yield identical orientations; if the angles

are identical and the thrust magnitude for both planes is also the same, the two planes

do not intersect. Accordingly, the sine function is nonzero may also be divided out

of the projection to obtain

ΣH1,2
:

{
cos([α1 + α2]/2) sin([α1 + α2]/2) 0

}T
(4.23)

The out-of-plane component of H1,2 is available from the definition of the tangent

function. Let ψ measure the angle between the intersection line and the planar

projection in x-y-Hnat space, as depicted in Figure 4.13. The out-of-plane and in-

plane components of H1,2 are then related via the expression,

tan(ψ) =
S2
γ (Cα1Sα2 − Cα2Sα1)

2SγCγ sin
(
α1−α2

2

)√
cos2

(
α1+α2

2

)
+ sin2

(
α1+α2

2

) . (4.24)
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Figure 4.13.: The intersection of two energy planes, H1,2 is decomposed into the ~Hint

vector and the ` coordinate, measured along the projection of the intersection line,
ΣH1,2 ; the base point, ~ρref , locates the line in x-y-Hnat space

By applying an additional trigonometric identities and reducing common terms, this

expression simplifies to

tan(ψ) = − tan(γ) cos

(
α2 − α1

2

)
= alt cos

(
α2 − α1

2

)
. (4.25)

Finally, combine the in-plane and out-of-plane components to locate any point on the

intersection line,

H1,2 : ~ρint = ~ρref + ` ~Hint, (4.26)

where

~Hint =

{
cos([α1 + α2]/2) sin([α1 + α2]/2) alt cos([α2 − α1]/2)

}T
(4.27)

where ` is a distance from ~ρref measured along the planar projection of H1,2, not along

the intersection line itself, as depicted in Figure 4.13. This distance is defined such

that ` > 0 maps to points on H1,2 with Hnat values greater than the Hamiltonian at

~ρref .
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To identify links between trajectories on these energy planes, the ΣH1,2 hyperplane

is employed as a stopping condition for planar trajectories. BecauseH1,2 defines points

that lie on both energy planes, proximity between two points (i.e., similar ` values)

on the projection, ΣH1,2 , indicates not only similar positions in the xy-plane, but also

similar Hnat values. Furthermore, a switch from α1 to α2 at a point on ΣH1,2 ensures

that the trajectory transitions from the first energy plane to the second.

While the displacement along ΣH1,2 relative to ~ρref , represented by `, supplies po-

sition and energy information, an additional coordinate is required to represent the

full spacecraft state. Given `, the spacecraft position and Hnat value are computed

via Equation (4.26). Additionally, the velocity magnitude at this point is available by

solving the Hnat expression in Equation (2.58) for the spacecraft speed in the rotating

frame, v. Only the velocity direction is undefined; thus, a Poincaré map leveraging

the coordinates ` and θv = arctan(ẏ/ẋ) supplies the complete spacecraft state; inter-

sections on this map guarantee full state continuity between planar trajectories. In

contrast to traditional Poincaré maps in the CR3BP that include only trajectories

at one energy level, this representation incorporates arcs with various Hnat values.

Additionally, as the full state of each map crossing is available from the 2D represen-

tation, multiple low-thrust paths may be linked together, or low-thrust and natural

arcs may be connected. Such a map is leveraged to identify a transfer between the

unstable manifold of E2(−120◦), plotted in magenta in Figure 4.14(a), and the stable

manifold of E1
3(−60◦), plotted in blue. Each manifold trajectory crosses the the ΣH1,2

hyperplane (or, equivalently, H1,2 in x-y-Hnat space), plotted as a dashed red line in

Figure 4.14(a), at least once. The hyperplane crossing points are transformed to `

and θv coordinates and plotted in polar form on the Poincaré map in Figure 4.14(b).

Each ΣH1,2 crossing on the E1
3(−60◦) stable manifold is marked by a blue square

and labeled with a lowercase roman numeral to link the points between configuration

space and the map. The E2(−120◦) unstable manifold crossings are left unlabeled

as several occur far from the primaries and are not depicted in Figure 4.14(a). In

this example, ~ρref is selected such that the reference Hnat value is identical to the
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(a) xy-projection of the manifolds crossing the energy
plane intersection line (dashed red) multiple times

(b) Poincaré map of the
manifolds at the energy
plane intersection

Figure 4.14.: The stable manifolds (blue) of the E1
3(−60◦) point and the unsta-

ble manifolds (magenta) of the E2(−120◦) point are propagated in the Earth-Moon
CR3BP+LT for alt = 7e-2; crossings of the energy plane intersection line are marked
and included in a Poincaré map to identify a transfer with minimal discontinuities

natural L2 energy, Hnat(L2). Accordingly, ` > 0 corresponds to energies greater than

Hnat(L2) and ` < 0 indicates lower energy values; the boundary at ` = 0 is plotted as

a black circle in Figure 4.14(b) for reference.

4.3.3 Transfer Construction and Corrections

By leveraging the information available from the Poincaré map, a transfer from

the lunar vicinity to L5 is constructed. Two points near ` = 0 and θv = 160◦, one

from a stable manifold and another from an unstable manifold, are selected due to

their close proximity to one another on the map. The corresponding trajectories,

plotted in blue and magenta in Figure 4.15, are discontinuous in position, velocity,

and natural Hamiltonian value. Thus, some corrections are required. To preserve

the lunar flybys, the initial state on the E2(−120◦) unstable manifold trajectory

is constrained in position and energy (Hnat). Additionally, near the destination, a
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(a) The arcs are discontinuous in posi-
tion

(b) An additional energy discontinuity
is apparent

Figure 4.15.: The unstable E2(−120◦) manifold (magenta), stable E1
3(−60◦) manifold

(blue), and natural L5 short period orbit (green) are linked together as an initial
design for a Moon to L5 transfer

single revolution of a small, natural L5 short period orbit is included to ensure the

spacecraft remains near L5 after arrival; this orbit is fully constrained to preserve

its geometry and energy. Each manifold arc is subdivided into smaller segments,

each of which maintains a fixed α value, independent of the other segments, and a

thrust magnitude of alt = 7e-2 as in a turn-and-hold strategy. A multiple shooting

differential corrections algorithm, consistent with the algorithm described in Section

3.3.2, is then applied to eliminate the position and velocity discontinuities between

the arcs. The position and velocity vectors and the spacecraft mass at the beginning

of each segment are allowed to vary, as is the epoch associated with the beginning of

each segment. The only control variable included in the corrections is the α angle;

both β = 0 and alt = 7e-2 are held constant. As a result of the corrections, a

continuous transfer is constructed and plotted as a solid arc in Figure 4.16, with

low-thrust segments in orange and ballistic segments in blue. To achieve this result,

the initial design is first corrected in the simplified CR3BP+LT with constant alt

on all low-thrust arcs. Following convergence in the simplified model, the transfer

is transitioned to the unrestrained CR3BP+LT with variable mass (i.e., variable
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(a) Red arrows indicate the thrust ori-
entation on each segment

(b) Energy (Hnat) varies continuously
along the transfer

(c) Detailed view of arrival at L5 SPO
(d) Time histories of Hnat and α remain
similar to the initial guess

Figure 4.16.: Following corrections, the transfer is continuous in position and velocity
and energy; the majority of the transfer leverages low-thrust (orange segments) to
reach the natural L5 SPO (blue)

alt = f/m) where the thrust magnitude is fixed at f = 7e-2 and the engine efficiency

is parameterized by Isp = 3000 seconds. Although the initial design is constructed by

leveraging insights from the simplified model with a constant alt value, convergence

in the unrestrained model is achieved rapidly, i.e., in fewer than 20 iterations. The

final spacecraft mass along the converged trajectory in Figure 4.16 is 0.9668; thus,

the spacecraft requires propellant equivalent to approximately 3.32% of the spacecraft

wet mass to complete the transfer. This mass fraction may be reduced further by
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applying optimization techniques, but represents a feasible scenario even without

optimization. For comparison, Deep Space 1, with low-thrust capabilities consistent

with this example, was equipped with 82 kg of Xenon propellant for maneuvers, i.e.,

about 17% of the spacecraft wet mass.1

As the initial design, represented by dashed arcs, includes minimal discontinuities

due to the Poincaré map analysis, the converged solution consequently maintains

the geometry of the initial guess in x-y-Hnat space. Additionally, the control history,

plotted in Figure 4.16(d), remains similar to the preliminary solution with α ≈ −120◦

for the first 5.5 time units and reaches α ≈ −60◦ over the duration of the final

thrusting segments. The variations in α between the preliminary design and the

converged solution (most notably the final segment with α ≈ −10◦) are the control

response adjusting the preliminary solution to meet the constraints imposed as part

of the corrections process. These similarities between the initial and final solutions

are not surprising as the differential corrections algorithm employs an update that

minimizes the variations from the initial design (i.e., the “minimum-norm” update

defined in Section 3.3.2). While the convergence properties of the algorithm depend

on many variables, including the numerical implementation strategy, convergence in

any corrections scheme is generally more rapid and more consistent with the initial

design when the discontinuities (i.e., constraint violations) are initially small; a very

discontinuous initial guess forces the differential corrections algorithm to make more

significant changes to the design to meet the specified constraints. Thus, by leveraging

insights from the CR3BP+LT, an initial design is straightforwardly constructed with

minimal discontinuities in both configuration space and in energy that may be rapidly

corrected. In contrast to a transfer construction procedure that employs only arcs

from the natural CR3BP, these low-thrust dynamical insights supply a preliminary

control profile (i.e., α, β, and alt for the low-thrust segments) that subsequently

delivers a suitable transfer geometry and a suitable energy profile.

1See the Deep Space 1 Asteroid Flyby press kit, https://www.jpl.nasa.gov/news/press kits/
ds1asteroid.pdf

https://www.jpl.nasa.gov/news/press_kits/ds1asteroid.pdf
https://www.jpl.nasa.gov/news/press_kits/ds1asteroid.pdf
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4.4 Low-Thrust Transfer from GTO to P2

The gateway transit analyses in Sections 4.1 and 4.2 are generalized by leveraging

the hyperbolic manifold that is tangent to the center manifold of a gateway equilib-

rium point. Recall from Section 3.4 that the hyperbolic manifolds associated with

planar low-thrust periodic orbits (LTPOs) act as separatrices. Accordingly, the hy-

perbolic manifolds associated with a planar LTPO located within the center manifold

of a planar equilibrium point bound all low-thrust-enabled trajectories that transit

through the gateway, consistent with the behavior of the ballistic Lyapunov orbit

manifolds [73, 74]. Because the low-thrust manifolds exist within a 3D level set, the

bounds span a larger set of states than the results obtained by leveraging only the

energy plane, as in Section 4.1. The control curve strategy explored in Section 4.2

and energy plane intersection mappings discussed in Section 4.3 are useful tools that

may be combined with the geometric and energetic bounds supplied by the LTPO

manifolds to construct preliminary designs for transit trajectories.

4.4.1 E1 and E2 Planar LTPO Stability Properties

As LTPOs exist for a range of α and Hlt values, a first step in identifying transit

options is an exploration of the stability properties of the LTPOs. Additionally, since

the focus of this section is transit through the P2 region, only LTPOs within the center

manifold of the E1 and E2 equilibrium points are considered. The set of available

orbits is further restricted to planar paths with planar low-thrust acceleration vectors

to simplify the visualization of the results. These planar orbits, plotted in the familiar

α vs. Hlt parameter space in Figure 4.17, are bounded by the ZAC energy curves,

plotted in gray. Each point, i.e., each (α, Hlt) pair, represents a single LTPO with

the specified α angle and Hlt value. Accordingly, each horizontal and vertical line

of colored points represents a family of LTPOs that evolve in α or Hlt, respectively,

as discussed in Section 3.4.2. This parameter space representation straightforwardly

displays the bounds on the LTPOs as the ZACs; each ZAC identifies the Hlt value at
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(a) E1 LTPOs (b) E2 LTPOs

Figure 4.17.: LTPO families within the E1 and E2 center manifolds in the Earth-Moon
CR3BP+LT for alt = 7e-2 and β = 0 over a variety of α and Hlt values; each orbit is
colored by its in-plane (IP) and out-of-plane (OOP) stability properties

which the gateway closes for each α angle; at Hlt values below a ZAC contour, the

gateway is closed and motion is forbidden at or nearby that equilibrium point. Thus,

the E1 and E2 LTPOs only exist above the E1 and E2 energy curves. The color of

each point in Figure 4.17 denotes the linear stability properties of the corresponding

periodic orbit. Similar to the E1 and E2 structures (in the Earth-Moon system for

β = 0 and alt = 7e-2), the in-plane stability properties (abbreviated as “IP” in

the figure legends) of each LTPO are described by the superposition of a 2D saddle

(S2, i.e., a 2D hyperbolic mode) and a 2D center (C2). This in-plane C2 subspace

describes the LTPO and the LTPO family (i.e., the center motion associated with

the two unit eigenvalues), while the in-plane S2 subspace contains the planar stable

and unstable manifolds. Because this S2 subspace is common to all of the LTPOs,

planar manifolds to guide flow through the E1(α) and E2(α) gateways are available

for every combination of α and Hlt values depicted in Figure 4.17. Finally, note that

a significant number of the LTPOs include an out-of-plane S2 subspace, depicted by

the red points, but the associated 3D motion is not leveraged in this application.
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4.4.2 Transit Through E1

To illustrate the use of the LTPO hyperbolic manifolds for a low-thrust transit

trajectory design, consider a lunar mission with a spacecraft path that originates

near the Earth (P1 in the Earth-Moon CR3BP+LT) with a very low Hlt value along

a geostationary transit orbit (GTO). The first challenge is increasing the Hlt value

such that transit through the E1 gateway is possible. This challenge has been well

studied by others [19, 75, 76, 77] and is not explored in detail here. To construct a

reasonable set of initial conditions for the transit analysis, a set of trajectories are

initialized at apogee on a GTO orbit with a variety of arguments of perigee. For

simplicity, the GTO is assumed to be coplanar with the Earth-Moon orbital plane,

i.e., the GTO is planar in the CR3BP+LT. Each initial state is propagated in the

CR3BP+LT with a thrust magnitude of f = 7e-2, an initial mass of m = 1, and a

specific impulse of Isp = 3000 seconds. The low-thrust acceleration vector is aligned

with the velocity vector to maximize dHnat/ dτ , resulting in an energy-optimal spiral

departing the GTO state. Many other departure options are available (and, perhaps,

even more mass-optimal), but this formulation proves sufficient to demonstrate a

process that leverages low-thrust to achieve transit through the E1 gateway to P2.

To initiate the transit analysis, states along the spiral with ẋ > 0 are captured

on a hyperplane, Σ1, parallel to the yz-plane at x = −µ. Although the spiral arcs

are propagated with velocity-pointing thrust vectors, the control strategy may be

adjusted at any time to achieve a goal other than escaping Earth’s gravity well. A

useful alternative is the control strategy that fixes ~alt in the rotating frame, yielding

the autonomous, Hamiltonian system in which Hlt is an integral of the motion.

The first requirement for transit through E1(α) is that the low-thrust arc pos-

sesses a low-thrust Hamiltonian value greater than the gateway energy, i.e., Hlt >

Hlt

(
E1(α)

)
. Since Hlt remains constant along low-thrust arcs using this fixed-~alt

strategy, manipulating Hlt to an appropriately large value at the Σ1 map guarantees

that the E1 gateway remains open as long as ~alt is not modified en route to E1. Re-
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call that Hlt, described in Equation (2.107), is a function of Hnat, ~r, and ~alt. The

Hnat value cannot be instantaneously changed without an impulsive ∆~v, and ~r cannot

be manipulated. However, the α angle that orients ~alt may be adjusted to achieve

a different Hlt value. Accordingly, a control curve (first defined in Section 4.2) is

formulated to describe the range of attainable Hlt values as a function of α,

Ui(α) : Hlt = Hnat,i − alt(xi cosα + yi sinα), (4.28)

where Hnat,i is the natural Hamiltonian value at the map crossing,

~Xi =

{
xi yi 0 ẋi ẏi 0

}T
. (4.29)

The ~Xi points are filtered by Hnat to include only crossings with −1.6 ≤ Hnat,i ≤

−1.45, as plotted in Figure 4.18(a). This range generally yields curves that pass

(a) Spiral states on Σ1, colored by Hnat (b) Control curves for each spiral state,
colored by Hnat

Figure 4.18.: States on energy-optimal spirals from GTO apogee states with various
arguments of perigee are captured on the Σ1 Poincaré map; each point on the map is
also represented as a control curve to identify LTPOs that facilitate transit through
the E1 gateway

above the E1 energy curve depicted in Figure 4.18(b). Some of these control curves,

colored cyan to indicate low Hnat values, only pass above the E1 energy curve for

a small range of α values. Higher-energy curves, such as those with Hnat ≈ −1.5,
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colored magenta, lie entirely above the E1 energy curve, indicating that any α value

is available to orient ~alt while maintaining an open E1 gateway.

While the control curves in Figure 4.18(b) provide energy information to guide the

transit design, additional geometric information is required; an Hlt value above the

E1 gateway energy is a necessary condition for transit, but is not sufficient. Recall

that the manifolds associated with an LTPO, one located in a gateway, bound transit

motion through the gateway. Thus, to transit the E1 gateway, a ~Xi point must lie

inside a stable manifold associated with an E1 LTPO, Γ1(α,Hlt). (The β parameter is

ommited from the notation here as this analysis is restricted to planar motion.) Such

a stable manifold, Ws−
1 , plotted in Figure 4.19, asymptotically approaches the E1

LTPO, Γ1(76.36◦,−1.604), from the negative x̂-direction. All arcs that pass through

Figure 4.19.: Stable manifold approaching the Earth-Moon Γ1(76.36◦,−1.604) orbit

the E1 gateway with alt = 7e-2, α = 76.36◦ and Hlt = −1.604 are bounded by Ws−
1 .

Thus, the next step is to determine the spiral trajectory map states that lie within

Ws−
1 .

To identify an intersection between a spiral trajectory map crossing, ~Xi, and

Ws−
1 , the points on the Ui control curve are employed. For α values that yield

Ui(α) ≥ Hlt

(
E1(α)

)
, the Γ1

(
α,Ui(α)

)
orbit is constructed and the associated Ws−

1

manifold is propagated to the Σ1 hyperplane for comparison with ~Xi. The hyperplane
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fixes the x-coordinate, with three variables (yi, ẋi, and ẏi) remaining for representation

on the map. Because the Hlt value associated with the spiral trajectory state, ~Xi,

may be manipulated by changing α at the Σ hyperplane (as represented by Ui),

the Hamiltonain is leveraged to further reduce the number of free variables to two.

The velocity magnitude is extracted from Hlt by solving Equation (2.104). Thus,

the remaining free variables, yi and θv,i = arctan(ẏi/ẋi), are visualized via the tube

topology transformation defined in Section 3.4.1. Polar coordinates are employed to

avoid discrete jumps of 360◦ in θv, and the y-coordinate is scaled by the geometry of

the low-thrust forbidden region to yield a radius,

d̃ =
y − ỹ`
ỹu − ỹ`

, (4.30)

where ỹu and ỹ` are the y-values of the forbidden region boundaries closest to the

x̂-axis at Σ1, as illustrated in Figure 4.23(a). Note that this radial coordinate is

modified slightly from d defined in Equation (3.92); this d̃ is measured relative to ỹ`

while d is measured from ỹu. The topological transformation is qualitatively similar,

but the upper and lower ZVC bounds are represented differently; in this d̃ definition,

the upper ZVC bound is located at d̃ = 1 and the lower ZVC bound corresponds to

d̃ = 0. Combine the tube topology representation with the Poincaré mapping via the

operator,

Mp
Σ1

(W) :=W
~r,~v
7→Mp

Σ1
(W)

d̃,θv

, (4.31)

where W is a manifold (this mapping also applies to single states like ~Xi), and p

represents the pth map iteration. (If the p superscript is omitted, p = 1 is implied.)

Equivalently, Mp
Σ(W) captures the pth return of W to Σ and incorporates a two-

dimensional representation of W in the tube topology.

Once the spiral trajectory map crossing, ~Xi, and the manifold, Ws−
1 , are rep-

resented in the tube topology on Σ1, identifying a transit arc is straightforward.

If MΣ1( ~Xi) is encircled by MΣ1(Ws−
1 ), the low-thrust trajectory propagated from ~Xi

with the selected α angle remains bounded byWs−
1 and the trajectory passes through
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the E1 gateway. An example of this behavior is illustrated in Figure 4.20, with the

spiral trajectory plotted in black, Ws−
1 plotted in blue, and the transit arc plotted in

yellow. Note that this example represents one possible α and Hlt combination on Ui;

(a) The spiral trajectory (black) and
manifold (blue) interface at the Σ1 hy-
perplane

(b) Tube topology representation of the
manifold (blue) and transit arc (yellow
asterisk)

Figure 4.20.: A transit arc (yellow) is identified within Ws−
1 at the Σ1 map in the

Earth-Moon CR3BP+LT for alt = 7e-2, α = −76.36◦, and Hlt = −1.604

additional points along Ui must be compared to LTPOs characterized by consistent

α and Hlt values. Accordingly, to evaluate the transit possibilities for the entire set

of spiral trajectories represented in Figure 4.18(a), a control curve is constructed for

each ~Xi, and points along that curve are compared to a matchingWs−
1 manifold. The

result of this search, visualized in Figure 4.21, identifies α values for each ~Xi that will

deliver the spacecraft through the E1(α) gateway. In this energy-space representation,

each sinusoidal curve is a control curve, Ui, linked to a distinct four-dimensional map

state, ~Xi. Many of these curves are colored black for all α values, indicating that the

associated ~Xi point cannot be adjusted to be within a stable manifold that delivers

the spacecraft to the P2 region. However, a subset of the control curves do include

feasible transit options, plotted in green. Each of these points represents an arc that

origatinates from the associated ~Xi state and, when propagated with the specified α

value, transits the E1 gateway. A comparison of the feasible transfer options between
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Figure 4.21.: Sinusoidal control curves colored by their ability to transit the E1

gateway; only a subset of the curves, and a subset of the α values on those curves,
successfully deliver a transit arc.

Figures 4.18(b) and 4.21 demonstrates that the number of transit options is greatly

reduced when geometry is considered in addition to energy. However, recall that this

analysis leverages only one set of initial conditions: energy-optimal spirals that orig-

inate at apogee on a GTO. Many other options exist to deliver a spacecraft from a

low-energy state near the Earth to higher-energy states capable of reaching the Moon;

this analysis can be applied to any such scheme. Additionally, these strategies may

be reversed to identify regions to be used as targets for Earth-departing trajectories

that enable transit.

4.4.3 Capture: Avoiding Transit Through E2

For many space missions, capture near P2, e.g., the Moon in the Earth-Moon sys-

tem, is desirable. Originating from the system interior, one strategy to capture near

P2 and avoid transit through the E2 gateway is to select an α and Hlt configuration

that lies below the E2 energy curve. As a result, the E2 gateway remains closed as

the spacecraft moves along the low-thrust arc into the P2 region. Consider the con-

figurations plotted in green in Figure 4.21 (reproduced in Figure 4.22(a)) that adjust
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the CR3BP+LT dynamics to allow a spacecraft to transition from the energy-optimal

spiral to an arc that transits the E1 gateway: the majority of these configurations

are located above the E2 energy curve, but a small number near α = −90◦ and

Hlt = −1.6 are located below the E2 energy curve. Selecting one of these configura-

tions yields a transfer that cannot continue through the E2 gateway. For example,

selecting α = −80.86◦ at Σ1 results in a trajectory with Hlt = −1.602, plotted in

yellow in Figure 4.22(b), that cannot escape through E2 as the gateway is closed.

Alternatively, the control curve strategy detailed in Section 4.2 may be employed to

(a) A detailed view of transit options be-
low the E2 energy curve

(b) Selecting α = −80.86◦ at Σ1 yields
an arc with Hlt = −1.602 that transits
E1 but not E2

Figure 4.22.: A trajectory that captures near the Moon in the Earth-Moon
CR3BP+LT for alt = 7e-2

identify a suitable location near P2 where the α angle can be adjusted to close one or

both of the gateways. Another strategy, discussed in the next section, leverages the

hyperbolic manifolds associated with an E2 LTPO to further differentiate between

trajectories that transit through or remain within the P2 region.

4.5 P2 Region Transit Through Intersecting LTPO Manifolds

Similar to the exploration of low-thrust trajectories that transit through the E1

gateway in the previous section, this section investigates flow throughout the P2
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region by leveraging the E1 and E2 low-thrust periodic orbit (LTPO) hyperbolic

manifold separatrices. Once a spacecraft has passed through the E1 gateway, a new

challenge emerges: navigating the nonlinear dynamics of the P2 region. An additional

passage through the E2 gateway constitutes a transit of the P2 region, while arcs that

remain near P2 are denoted as “captured,” at least for some finite time. As captured

trajectories are merely those that do not transit, both possibilities are explored via the

same analyses. The strategies employed to navigate the P2 region are similar to those

previously discussed, but include additional algorithmic complexity to compensate

for the nonlinearities near P2.

4.5.1 A Strategy for Transit Detection

Just as all arcs that originate in the system interior and pass through the E1

gateway are bounded by Ws−
1 , arcs that continue through the gateway into the P2

region are bounded by unstbale manifold, Wu+
1 . Similarly, trajectories that reach

the system exterior via the E2 gateway are bounded by Ws−
2 . Recall that Γ1 and

Γ2 orbits possess these manifolds for all α and Hlt values of interest, as illustrated

by the existence of a saddle mode for every orbit in Figure 4.17. Accordingly, every

combination of α and Hlt that lies above the E1 and E2 energy curves may permit

transit through the P2 region as the necessary manifolds exist and the Hlt value

guarantees that both gateways are open. However, similar to the E1 transit scenario

described in the previous section, geometry must also be considered. A trajectory

that passes through both gateways must be bounded by Wu+
1 and by Ws−

2 . To

illustrate the process of locating transit arcs, consider a scenario in the Earth-Moon

CR3BP+LT with alt = 7e-2, an α value of −76.5◦, and Hlt = −1.604. Consistent with

the previous section, the planar dynamics (z = ż = 0, β = 0) are considered; thus, β

is omitted from the notation for brevity. The E1 LTPO, Γ1(−76.5◦,−1.604) (plotted

in purple in Figure 4.23(a)), and the associated stable manifold,Wu+
1 (plotted in red)

bound motion that flows through E1 toward the Moon. Similarly, Γ2(−76.5◦,−1.604)
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(a) Position Space: The xy-plane (b) Poincaré Map in Tube Topology

Figure 4.23.: Unstable (red) and stable (blue) manifolds are propagated from
Γ1(−76.5◦,−1.604) and Γ2(−76.5◦,−1.604) LTPOs in the Earth-Moon CR3BP+LT
with alt = 7e-2 to the Σ2 hyperplane at x = 1− µ.

(plotted in cyan in Figure 4.23(a)) and the associated Ws−
2 manifold (plotted in

blue), bound arcs that flow through the E2 gateway to the system exterior. A new

hyperplane, Σ2, located at x = 1−µ and plotted as a black, dashed line, is employed to

compare the manifolds. Because both manifolds are characterized by the same α and

Hlt values, the manifolds are reduced to two dimensions and represented in the tube

topology via the same process outlined in the previous section. The usefulness of this

mapping, represented by the MΣ2 operator, is clear when comparing the two manifold

representations. While theWu+
1 andWs−

2 manifolds may seem to intersect in position

space at Σ2 in Figure 4.23(a), this xy-projection of the manifolds does not include

velocity information. The separation between the two structures is obvious when

the mapping is applied, as plotted in Figure 4.23(b): the MΣ2(Wu+
1 ) and MΣ2(Ws−

2 )

curves do not intersect.

While there is no intersection at the first map iteration of the two manifolds,

propagating for additional returns may yield intersections. For example, when the

map is iterated twice more, as plotted in Figure 4.24, an intersection occurs between

M3
Σ2

(Wu+
1 ) and M3

Σ2
(Ws−

2 ). This change underscores an important caveat to the

intersection analyses: a lack of intersections between manifolds does not support a
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Figure 4.24.: Three iterations of the map, represented in tube topology, capture
unstable (red) and stable (blue) manifolds in the Earth-Moon CR3BP+LT with alt =
7e-2, α = −76.5◦, and Hlt = −1.604

conclusion that no transit motion exists. While the results plotted in Figure 4.23(b)

may lead to a claim that transit is not possible with the given alt, α, and Hlt com-

bination, it is clear an intersection does exist when additional map iterations are

included. Only a few specific insights are available from the maps in Figures 4.23(b)

and 4.24. First, arcs within the intersection regions, such as the point marked by an

orange asterisk in Figure 4.25(a), are guaranteed to transit the P2 region in the time

prescribed by the manifolds bounding the arc. Since this arc is bounded by the third

map iteration of each manifold, the trajectory, plotted in orange in Figure 4.25(b),

includes five crossings through the Σ2 hyperplane: three crossings for each manifold,

with one shared between the manifolds. A second guarantee is that arcs along a

manifold, such as the blue asterisk on M3
Σ2

(Ws−
2 ) in Figure 4.25(a), will remain on

the manifold and will asymptotically approach the associated periodic orbit. Because

a portion of M3
Σ2

(Ws−
2 ) lies within M3

Σ2
(Wu+

1 ), arcs from the system interior (e.g.,

the blue trajectory plotted in Figure 4.25(b) that is associated with the blue asterisk

map state) may transit the E1 gateway within Wu+
1 and also reach Γ2. In essence,

this scenario represents a capture as the spacecraft remains on Γ2, near P2, as long

as the α angle is maintained. Finally, some insights regarding non-transit motion is
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(a) Three states are selected on the map
within the third map iterations of one or
both of the manifolds (zoomed-in view
of Figure 4.24)

(b) The trajectories that result from the
selected map states; the map states are
again located by asterisks

Figure 4.25.: A transit trajectory (orange), a trajectory to Γ2 (blue), and a captured
trajectory (green) in the Earth-Moon CR3BP+LT with alt = 7e-2, α = −76.5◦ and
Hlt = −1.604

also available from the map. Consider a state withinWu+
1 (capable of transit into the

P2 region via the E1 gateway) but not within Ws−
2 , such as the state located by the

green asterisk in Figure 4.25(a). The corresponding trajectory cannot pass through

the E2 gateway before crossing Σ2 at least twice, i.e., the trajectory may pass through

the E2 gateway after crossing Σ2 three or more times. Additionally, the trajectory

may return to the system interior via the E1 gateway if the green asterisk lies within

any mappings of W S+
1 (not included in the plots). This non-transit path, plotted in

green in Figure 4.25(b), crosses Σ2 five times after passing through M3
Σ2

(Ws−
2 ) and

additional crossings of Σ2 may occur if propagated for a longer interval.

While the overall behavior of the three arcs depicted in Figure 4.25 are very

different, the initial conditions that are selected from the map are located very close

to one another. Each arc originates on Σ2 with a similar θv angle and slightly different

d̃ values (that translate to different y values). When propagated in reverse time, these

states yield arcs that remain near one another and pass through the E1 gateway.

When propagated in forward time, the arcs maintain similar geometries until they
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reach Γ2, plotted in cyan in Figure 4.25(b). At this point, the red arc passes through

the gateway, the blue arc asymptotically approaches Γ2, and the green arc returns

toward P2. Without the manifolds to differentiate these chaotic behaviors, the path

of each arc is difficult to predict. Additionally, the same techniques may be leveraged

in other applications, such as the identification heteroclinic connections between the

two LTPOs [78], or the determination of arcs that do not transit either gateway.

Clearly, the manifolds associated with the gateway LTPOs serve as useful structures

to differentiate many types of motion.

4.5.2 Global Transit Search

To determine the combinations of α and Hlt that permit transit, as well as the

details of each transit opportunity, the process of identifying intersections between

manifolds is automated to evaluate the criteria over the grid of α and Hlt values that

satisfy the gateway energy constraints. For each combination:

1. Compute the low-thrust periodic orbits, Γ1(α,Hlt) and Γ2(α,Hlt).

2. Construct an initial representation ofWu+
1 andWs−

2 with a small number of arcs

(31 are used per orbit to minimize the computation time) and iterate the map

n times, yielding the mappings Mp
Σ2

(Wu+
1 ) and Mp

Σ2
(Ws−

2 ) for p = 1, 2, . . . , n.

Note that, at some combinations of α and Hlt, a subset of the arcs along a

manifold may not reach a map return; some escape through one of the gateways,

while others reach the P2 singularity, defined here as a state with r23 < 5e-3

nondimensional units, or approximately 192 km in the Earth-Moon system.

These arcs are excluded from the map iterations following the escape or impact

“event” to avoid excessively long propagation times.

3. Fill “gaps” in each mapping, Mp
Σ2

(W). Gaps may occur when arcs on the

manifold fail to reach the map, as described in the previous step. Gaps also

occur due to the nonlinear dynamics in the CR3BP+LT. For example, while

all of the arcs representing W may reach the map, they may not be uniformly
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distributed across the range of d̃ and θv values. Large inter-arc differences in d̃

or θv (θv almost always reflects the most uneven coverage) at Σ2 can result in

large distances between points on Mp
Σ2

(W). Gaps are filled via two techniques:

a. Discrete Fourier Series. The y, ẋ, and ẏ states that are used to con-

struct Mp
Σ2

(W) are approximated via discrete Fourier series. (This choice

of variables produces a more accurate approximation of Mp
Σ2

(W) than fit-

ting the series directly to d̃ and θv.) This Fourier scheme is only applied

when Mp
Σ2

(W) is uniformly sampled in τ (the time-of-flight along Γ from

τ = 0 to the manifold arc “step-off” point), i.e., when all the arcs rep-

resenting W reach the map. The Fourier representations of y, ẋ, and ẏ

states are transformed into the tube topology and compared to the data

points on Mp
Σ2

(W). If the error between the Fourier representation and

the true manifold states exceeds a certain threshold, the Fourier represen-

tation is abandoned in favor of the second strategy. If the error in the

approximation remains within the desired limits, points are selected from

the Fourier approximations to minimize the maximum inter-point distance

along Mp
Σ2

(W).

b. Interpolation and Propagation. When Mp
Σ2

(W) is not uniformly sampled

in τ , or when the Fourier series fail to accurately approximate Mp
Σ2

(W),

additional points on Mp
Σ2

(W) are computed by propagating arcs from the

originating periodic orbit, Γ, to the pth map iteration. Points along Γ are

selected between the τ values associated with the manifold arcs that bound

large gaps on Mp
Σ2

(W). These initial conditions are then propagated and

included in Mp
Σ2

(W) (assuming the arcs do not escape or impact P2 before

reaching the map). Gaps in Mp
Σ2

(W) are iteratively filled until all gaps

are smaller than some tolerance, or until a maximum number of iterations

occurs.
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If the gaps in Mp
Σ2

(W) cannot be filled, the pth map iteration is abandoned and

not incorporated in subsequent steps. This failure occurs most frequently at

higher Hlt values where manifold arcs are more likely to escape or impact.

4. Compute intersecting regions between two manifold mappings, Mp
Σ2

(Wu+
1 ) and

Mk
Σ2

(Ws−
2 ). If intersections exist, the bounds of the region, denoted Ap,k, are

extracted for further analysis.

Following the completion of these steps for the gridded α and Hlt values, several

properties of the data are investigated.

As a first exploration of the transit options between E1 and E2 in the Earth-Moon

CR3BP+LT with alt = 7e-2, consider a binary measure of “transitability.” The pth

iteration of MΣ2(Wu+
1 ) is compared with Mk

Σ2
(Ws−

2 ) for k = 1, . . . , n. The smallest

k for which an intersection between manifolds occurs is captured and plotted for

p = 1, 2, and 3 in Figure 4.26. Accordingly, each plot in the figure depicts the most

(a) p = 1 (b) p = 2 (c) p = 3

Figure 4.26.: Earliest intersections of Mp
Σ2

(Wu+
1 ) by Mk

Σ2
(Ws−

2 )

rapid (in terms of map iterations) transit opportunities for arcs within Wu+
1 at each

of the three map iterations. Black points indicate that no intersections exist between

Mp
Σ2

(Wu+
1 ) and Mk

Σ2
(Ws−

2 ) for k = 1, 2, or 3. Empty space in each plot represents

combinations of α and Hlt that cannot be analyzed, including areas above and below

the E1 and E2 energy curves. Points below the energy curves do not possess Hlt
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values that are sufficiently high to open both gateways and are discarded from the

search. However, the automated search considers all points above the curves, and the

remaining empty regions are discarded due to failures to fill gaps in the mappings

during step 3 of the algorithm outlined above. The forbidden region geometries

associated with these difficult combinations of α and Hlt frequently include wide

gateways, thus, the arcs on the two manifolds are more likely to escape, particularly

after the first map iteration. Additionally, many arcs along these manifolds pass

near the P2 singularity and, subsequently, are discarded. The combinations of α and

Hlt most straightforwardly analyzed are those located near the E1 and E2 energy

curves. These combinations are linked to geometries defined by the forbidden region

boundaries with relatively narrow gateways; these dynamics yield manifolds that cross

Σ2 several times.

To understand the results in Figure 4.26, consider the transit example identified

by the red arc in Figure 4.25(a) with α = −76.5◦ and Hlt = −1.604. In energy

space, this trajectory is located very near the E2 energy curve, above and to the

left of the intersection between the E1 and E2 curves. The mappings in Figure 4.24

demonstrate that the only manifold intersection for this configuration (for p, k ≤ 3)

occurs at p = k = 3. Thus, the α and Hlt combination is located in a black, no-transit,

region in Figures 4.26(a) and 4.26(b) as neither M1
Σ2

(Wu+
1 ) nor M2

Σ2
(Wu+

1 ) intersects

any of the Ws−
2 map iterations. However, the corresponding region in Figure 4.26(c)

is colored yellow to indicate that M3
Σ2

(Wu+
1 ) includes an intersection with Mk

Σ2
(Ws−

2 )

for k = 3. Many of the points near the bounding E1 and E2 energy curves are

characterized by similar trends: the first transit opportunity for these α and Hlt

configurations occurs only after three map iterations of each manifold. However, for

configurations slightly further from the two energy curves, intersections occur earlier,

yielding a smaller number of map iterations for those transits. For example, the

yellow band in Figure 4.26(a) identifies α and Hlt configurations for which the first

transit opportunity at M1
Σ2

(Wu+
1 ) occurs with M3

Σ2
(Ws−

2 ). As this sequence links the

p = 1 map iteration and the k = 3 iteration, the total number of map iterations to
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complete the transit is p+ k− 1 = 3, whereas the red trajectory from Figure 4.25(b)

crosses Σ2 five times.

The number of map iterations required to complete a transit is directly linked to

the minimum time-of-flight (TOF) for the transit. A TOF metric for an intersec-

tion area, Ap,q is computed by averaging the TOF for the arcs on Mp
Σ2

(Wu+
1 ) and

Mk
Σ2

(Ws−
2 ) that bound Ap,k and then summing the two averages. Although these

minimum TOFs for each intersection, plotted in Figure 4.27, do not necessarily sup-

ply an accurate measure of the true TOF along any arc in Ap,q, this approximation

does facilitate comparisons between various α and Hlt combinations. For instance,

(a) p = 1 (b) p = 2 (c) p = 3

Figure 4.27.: Minimum times-of-flight for intersections between Mp
Σ2

(Wu+
1 ) and

Mk
Σ2

(Ws−
2 ) for k = 1, 2, and 3

the yellow (p = 1, k = 3) region in Figure 4.26(a), when mapped to the same α

and Hlt values in Figure 4.27(a), corresponds to TOFs between 7.0 and 8.0 nondi-

mensional time units (about 30-35 days in the Earth-Moon system). Similarly, the

yellow (p = 3, k = 3) region in Figure 4.26(c) corresponds to TOFs in Figure 4.27(c)

between 8.5 and 9.0 (about 37-40 days). These TOFs are consistent with the TOFs

for the red (p = 2, k = 2) region in Figure 4.26(b) as well as with the TOFs for the

blue (p = 3, q = 1) region in Figure 4.26(c). This result is expected given that the

total number of map iterations during the transit, p+ q − 1, is identical for all three

of these regions. Thus, it is consistent that the shortest times-of-flight are associated
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with the (p = 1, k = 1) region in Figure 4.26(a); the minimum TOF for this region

is below 6.5 nondimensional time units, or less than 28 days. In summary, a diverse

selection of transit options are available by locating intersections between the hyper-

bolic manifolds of E1 and E2 orbits. Transit arcs are most frequently available for

Hlt values close to the bounding E1 and E2 energy curves.

4.5.3 Capture Within Non-Intersecting Manifolds

Recall that one strategy to prohibit transit, presented in Section 4.4.3, employs

an (α, Hlt) pair located below the E2 energy curve; a more general configuration with

both the E1 and E2 gateways open is available by inspecting the manifold intersections

(or lack thereof). For instance, the results in Figure 4.26 include regions of black,

non-transit options located very near the E1 energy curve where the E1 and E2 energy

curves intersect. These regions are large and visible at the scale depicted in Figures

4.26(a) and 4.26(b), but are very small in Figure 4.26(c). These latter results for

p = 3, reproduced at a larger scale in Figure 4.28(a), also to include a set of non-transit

options, colored black, near the intersection of the two energy curves. Selecting one of

these configurations yields a map with no intersections between manifold mappings,

as depicted in Figure 4.28(b) for α = 70◦ and Hlt = −1.614. Thus, an arc that passes

through the E1 gateway, i.e., through the red Wu+
1 mappings, will not exit through

the E2 gateway for the given number of map iterations (in this case, three). Although

both of these strategies supply only a limited number of options to avoid transiting

E2, this limitation may benefit the design process by narrowing the number of control

parameters. Another strategy to avoid transit through the E2 gateway is to select

states from within the Mp
Σ2

(Wu+
1 ) for the maximum value of p that are not located

within one of the Mk
Σ2

(Ws−
2 ) contours, such as the green arc plotted in Figure 4.25.

Finally, the control curve method described in Section 4.2 offers yet another option

to manipulate the gateway geometry and capture a trajectory in the P2 region.
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(a) Earliest intersections of
M3

Σ2
(Wu+

1 ) by Mk
Σ2

(Ws−
2 ); Some

configurations, marked by black
dots, do not include transit options
for k = 1, 2, or 3

(b) The Mp
Σ2

(Wu+
1 ) (red) and

Mp
Σ2

(Ws−
2 ) (blue) manifolds do not

intersect for p = 1, 2, or 3 with α = 70◦

and Hlt = −1.614

Figure 4.28.: Although both the E1 and E2 gateways are open, some α and Hlt

configurations do not include transit options in the Earth-Moon CR3BP+LT for
alt = 7e-2

While the E1 and E2 hyperbolic manifolds reveal a plethora of transit options

through the P2 region, manifold intersections are most readily available for only a

small range of Hlt values. As visualized in Figure 4.26, the algorithm employed in this

section struggles to locate manifold intersections with the Hlt value corresponding to

a particular α angle is significantly larger than the Hlt(E1(α)) and Hlt(E2(α)) values

due to the more chaotic manifold geometries apparent at such energies. Accordingly,

additional strategies, discussed in the next section, are employed to identify “high-

energy” arcs that capture in the P2 region by leveraging a low-thrust force.

4.6 Strategies for High-Energy Capture

When the properties of periodic orbits and their manifolds are unavailable (ei-

ther because they are difficult to compute, unknown, or because the system is non-

autonomous), Poincaré maps may be employed to explore the system. As noted in

the previous section, low-thrust periodic orbit (LTPO) manifolds are most readily
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available to guide transit trajectories when the Hlt value along a trajectory is near

the E1 and E2 gateway energies. In other words, the LTPO manifolds are most useful

to design low-energy transit and capture itineraries. In this section, two strategies

to design high-energy, low-thrust lunar capture trajectories are explored. The first

scheme leverages a low-thrust apsis map to identify points in the lunar region at a

high Hnat value that result in captured motion. The second technique augments an

L2 Lyapunov manifold with low-thrust to decrease the Hnat value along the trajec-

tory before arriving in the lunar region, where a similar (but lower energy) low-thrust

apsis map is employed to identify capture options. In both strategies, the low-thrust

force is aligned with the anti-velocity direction to supply the maximum Hnat rate

of change and the mass is modeled as a linear function of time, consistent with the

constant specific impulse model defined in Equation (2.92). Accordingly, the low-

thrust acceleration magnitude is parameterized by the thrust magnitude, f , and the

time-varying spacecraft mass, m, as in Equation (2.79). The resulting CR3BP+LT

model is non-autonomous and non-conservative, yet dynamical structures persist and

are captured in the Poincaré maps.

4.6.1 Apsis Maps

Poincaré maps that capture trajectory apses, i.e., apsis maps, are employed in

this analysis to visualize flow patterns near the Moon. An apsis is a point where the

relative velocity between the spacecraft and a primary body is zero, i.e., a point such

that

ṙj3 = (~r − ~rj) • (~v − ~vj) = 0, (4.32)

where ~rj and ~vj are the position and velocity of the jth primary body in the rotat-

ing frame relative to the system barycenter. For lunar capture applications, apses

relative to the Moon (i.e., P2 in the Earth-Moon system) are of particular interest.

Accordingly, the set of initial states
{
~Xi,0

}
, are selected near the Moon, where each

initial state is a planar apsis (periapsis or apoapsis) with respect to the Moon at a
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specific Hnat value. The mapping hyperplane is the periapsis condition, ṙ23 = 0 and

r̈23 > 0. Because the initial states all satisfy Equation (4.32) for j = 2 and are all

characterized by the same Hnat value, the four-dimensional planar problem is fully

represented on a two-dimensional map, enabling straightforward visualization of the

complete dynamics.

To construct the apsis map for this analysis, each initial state, ~Xi,0, is propagated

until one of the following stopping conditions occurs:

1. Impact: r23 ≤ rmoon. The initial states of arcs that reach this condition are

colored orange.

2. Escape: r23 > 115,000 km. The initial states of arcs that escape are colored

by the location of the spacecraft when r23 reaches the escape radius; a location

with x > xmoon is an “L1 escape” and is colored purple while a location with

x < xmoon is an “L2 escape” and is colored green.

3. Hover: ‖~v‖ = 0. The initial states of arcs that reach this condition are colored

blue.

4. Capture: the pth periapsis is reached. The initial states of arcs that remain near

the Moon without reaching the other stopping conditions are colored yellow.

The map is visualized by coloring the initial apsis states by the behavior of the

resulting arc, i.e., the final “fate” of the trajectory as described by the stopping

conditions above. For example, a map of ballistic motion in the Earth-Moon CR3BP

for Hnat = −1.584, displayed in Figure 4.29, includes distinct regions of impact,

capture, and escape motion. For this map, the initial states are propagated for a

maximum of p = 2 perilunes. Gradients of the colors are included to indicate the

number of apses that occur along an arc between the initial state and the stopping

condition. Although captured arcs always reach the pth perilune, arcs that reach

one of the other stopping conditions never reach the pth perilune. Thus, the color

gradients for the impact, escape, and hover fates distinguish regions of the map by the

number of apses reached. For example, the dark orange propeller-shaped contour that

includes the Moon’s profile at (0,0) represents the initial states of arcs that impact
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Figure 4.29.: A ballistic lunar apsis map for Hnat = −1.584 and p = 2 map returns
in Moon-centered rotating coordinates.

the Moon before reaching the first perilune; the return number for these arcs is zero.

In contrast, the lighter orange regions reach one perilune before impacting the Moon.

Gradients in escape colors reveal similar differences. Finally, note that no hover arcs

are identified in this ballistic map but are apparent in low-thrust apsis maps that are

discussed later in this section.

Distinct structures, i.e., colored lobes, are visible in the map and are linked to other

known structures in the CR3BP. For example, the invariant manifolds associated with

the L1 and L2 Lyapunov orbits at the same Hnat value bound the L1 and L2 escape

regions [79, 80, 81]. This relationship is consistent with the separatrix properties of

the planar periodic orbit hyperbolic manifolds; all states within the manifold remain

bounded and transit through one of the forbidden region gateways, as discussed in

Section 4.5. Accordingly, an apsis map with this visualization scheme supplies useful

information for capture applications. A spacecraft entering the lunar region may

target an apsis in one of the capture regions to remain near the Moon for at least p
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map iterations; if an apsis along the incoming trajectory is located in one of the escape

regions, the spacecraft will depart within p map iterations. Similarly, a trajectory that

targets a point within the impact regions will reach the lunar surface.

If only discrete data is required from the map, e.g., a discrete trajectory fate met-

ric, the time required to compute a map is significantly reduced by employing a mesh

refinement strategy. Rather than propagating a fine grid of initial states to identify

the trajectory fates throughout the lunar region, a course grid (i.e., a grid with more

distance between initial states) is employed. The course grid is refined to accurately

locate boundaries between the distinct structures while avoiding unnecessary compu-

tations in locations where there is no change in the trajectory fate. The algorithm

used to accomplish this mesh refinement strategy is detailed further in Section E.2.

4.6.2 Low-Thrust Apsis Maps

Apsis maps may also be employed in the CR3BP+LT with anti-velocity-pointing

thrust to explore options for lunar capture by leveraging a low-thrust force. The

low-thrust map is constructed in the same way as the ballistic map: a set of apses

near the Moon, all at a consistent initial Hnat value, Hnat,0, are propagated with anti-

velocity-pointing thrust for p returns to the periapsis hyperplane and colored by the

fate of the resulting trajectory. When the thrust magnitude is very small, as in Figure

4.30(a), the low-thrust apsis maps appear very similar to the ballistic maps. However,

as the thrust magnitude increases, the structures on the map change, as illustrated

in Figure 4.30(b). For example, the low-thrust apsis map for f = 3e-2 (consistent

with the capabilities of Lunar IceCube) retains a teardrop-shaped lobe of L1 escape

motion near the center of the map, as well as some L1 and L2 escape regions on the

left and ride sides of the plot. However, there is significantly less escape motion in

the center of the plot; instead, many more options for capture exist. Because the

propagation is implemented with anti-velocity-pointing thrust, a strategy to decrease

2https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#periapsisMap varThrustMag

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#periapsisMap_varThrustMag
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#periapsisMap_varThrustMag
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(a) f = 3e-2 (LIC capability) (b) f = 7e-2 (DS1 capability)

Figure 4.30.: Low-thrust lunar periapsis maps for Hnat,0 = −1.584 and p = 2 in
Moon-centered rotating coordinates. The initial states are propagated with anti-
velocity-pointing thrust with Isp = 2500 seconds (Animation2)

Hnat, it is not surprising that fewer arcs escape during the two map returns. As the

energy decreases, the L1 and L2 gateways close, prohibiting transit from the lunar

region. At a larger thrust magnitude of f = 7e-2 (a Deep Space 1 capability), the

apsis map, plotted in Figure 4.30(b) includes even more opportunities for capture.

When a greater number of map iterations are permitted, the number of arcs that

impact the Moon increases, as seen for f = 3e-2 and p = 75 in Figure 4.31. In fact,

the only change between the p = 2 (i.e., Figure 4.30(a)) and the p = 75 maps is that

a large portion of the arcs that are captured for p = 2 impact the moon by p = 75.

This simple transition is not guaranteed in general; an arc that is initially captured

may escape the region given additional time, as observed in the ballistic apse map in

Figure 4.29, particularly when the initial Hnat value is increased. However, it is useful

to note that arcs propagated with an anti-velocity low-thrust force tend to remain

captured at “sufficiently low” Hamiltonian values.

Finally, for capture applications it is useful to explore the instantaneous Keplerian

elements associated with the final states on the low-thrust arcs represented by the

periapsis map. The eccentricity of the captured arcs is of particular interest as it sup-

3https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020 Cox/
#periapsisMap varNumReturns

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#periapsisMap_varThrustMag
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#periapsisMap_varNumReturns
https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#periapsisMap_varNumReturns
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Figure 4.31.: Low-thrust lunar periapsis map for Hnat,0 = −1.584 and p = 75 in
Moon-centered rotating coordinates (Animation3)

plies some information about the “stability” of a captured arc in that trajectory with

an eccentricity near unity is energetically close to a hyperbolic path that may depart

the lunar region while a captured arc with an eccentricity near zero is energetically

far from an escaping path. The eccentricity of the captured arcs, displayed in Figure

4.32, is closest to unity at the boundaries of the capture and impact regions and is

closest to zero in the center of the capture regions. Accordingly, an initial condition in

the dark blue regions of the eccentricity map yields a nearly circular lunar orbit after

75 map iterations. These initial conditions also avoid lunar impact for the greatest

number of map returns. In contrast, an initial condition near the boundary of the

capture and impact regions depicted in Figure 4.31 is characterized by a much higher

eccentricity (near 0.7 in this case) and is likely to impact the Moon if propagated for

additional map returns. This insight may be incorporated into the design process to

https://engineering.purdue.edu/people/kathleen.howell.1/Publications/Dissertations/2020_Cox/#periapsisMap_varNumReturns
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Figure 4.32.: Eccentricity of captured arcs for Hnat,0 = −1.584 and p = 75

deliver a final, captured trajectory with a particular eccentricity or to identify the

initial conditions that can deliver the lowest-energy captured arcs.

While the boundaries of the colored regions in the planar, ballistic apsis maps (e.g.,

Figure 4.29) are defined by the L1 and L2 Lyapunov manifolds, no such structures

are known to bound the regions on the low-thrust apsis maps. As noted above, be-

cause the thrust orientation, âlt, is aligned with the evolving anti-velocity vector, the

CR3BP+LT is nonautonomous, does not admit an integral of the motion, and includes

no periodic solutions. Accordingly, hyperbolic low-thrust manifolds analogous to the

Lyapunov manifolds are not available to bound the transit and capture trajectories.

Despite the lack of dynamical structures that may be employed to predict transit

or capture, it is clear that some form of structure persists in this nonautonomous

model. Flow-based concepts, such as Lagrangian Coherent Structures observed in a

finite-time Lyapunov exponent field, reveal order in many nonautonomous systems

that do not admit periodic orbits, invariant manifolds, or other dynamical structures

[82]. This line of study is not pursued in this investigation and is left for future work.
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4.6.3 Hovering with Low-Thrust

The low-thrust maps include a new type of behavior, colored blue and termed

“hover” motion, that is not present in the ballistic map. These initial states yield tra-

jectories that, when propagated with anti-velocity-pointing thrust, eventually reach

a velocity magnitude of zero. Due to the implementation of the control law, as the

velocity magnitude approaches zero (numerically equivalent to 2−52 nondimensional

units, or about 2.27e-16 km/s in the Earth-Moon system), as in Figure 4.33(b), the

orientation of the velocity vector is poorly defined, oscillating with numerical noise

as well as the with spacecraft motion. Accordingly, the hover is accomplished by

(a) Moon-centered Earth-Moon rotating
frame with the low-thrust zero accelera-
tion contours (ZACs) for reference

(b) The hover arcs reach a velocity mag-
nitude of zero

Figure 4.33.: Sample arcs from the low-thrust apsis map in Figure 4.30(b); the “hover”
arcs (blue) reach a zero velocity magnitude in the vicinity of the ZAC

rapidly reorienting the low-thrust acceleration vector, an impractical control method

in practice.

Despite the practical difficulty of accomplishing a hover maneuver, the associated

map regions supply insights for trajectory design. In the maps depicted in Figure 4.30,

the initial states that yield hover motion are located on several of the boundaries be-
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tween states linked to captured motion and states associated with L1 or L2 escape. A

sample of the trajectories initiated from these states, plotted in Figure 4.33, illustrate

the differences between the regions. The initial states for the five sample arcs are

selected in a horizontal line at y = 16, 384.6 km spanning the blue hover region near

x = 6× 104 km in Figure 4.30(b). (A similar band of hover motion is included in the

map for f = 3e-2 at the boundary between capture and L2 escape motion in the L2

gateway.) The arcs, plotted in position space in Figure 4.33(a), initially flow along

the −ŷ direction toward L2 and toward the E2 ZAC, plotted in gray. One intuitive

hypothesis to explain the hover motion is that the arcs reach one of these equilibria

states. However, because âlt changes continuously with the orientation of ~v when the

velocity-pointing control law is employed, no single point on the ZAC is associated

with a trajectory; during the hover maneuvers (located at the ends of the blue arcs),

the location of the instantaneous low-thrust equilibrium solution changes as rapidly

as the orientation of âlt. Accordingly, the hover arcs do not intersect an equilibrium

point. In fact, the locations where the arcs reach v = 0 appear unrelated to the ZAC.

Instead, the hover locations are the points where the forbidden regions “catch up”

with the low-thrust trajectory. Recall that Hnat decreases monotonically when the

anti-velocity-pointing control law is applied; thus, as the trajectories evolve from the

initial states on the apsis map, the forbidden regions grow, increasingly restricting

the motion of the spacecraft. At the hover locations, the boundary of a forbidden

region, the ZVC, intersects with the trajectory, leaving the space “in front” of the

hover location (i.e., in the direction of the trajectory evolution prior to the hover)

accessible but the area “behind” the hover location inaccessible. Having reached a

lower Hnat value, an alternative control technique (a velocity-aligned direction is un-

defined) may be employed to further influence the trajectory evolution. Indeed, the

low-thrust acceleration is particularly influential on the spacecraft path due to the

low velocity magnitude at these points. Thus, the map states associated with hover

motion are candidates for further study.
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4.6.4 Lunar IceCube Reference Trajectory

The Lunar IceCube trajectory is referenced as a source of realistic parameters

to illustrate the proposed design strategies. Lunar IceCube (LIC), a 14 kilogram,

6U “cubesat”, is equipped with a low-thrust propulsion system that can deliver up

to 1.15 millinewtons (f ≈ 3e-2 in the Earth-Moon CR3BP+LT) of force with a

specific impulse, or Isp, of 2500 seconds.[6] About 5 days after deployment from

EM-1, LIC flies past the Moon, as illustrated in Figure 4.34, and the subsequent

trajectory extends far from the Earth and Moon. A little less than six months later,

the spacecraft returns to the Moon and employs the low-thrust propulsion system

to decrease the orbital energy and capture into a polar lunar orbit. For the current

analysis, only the final approach to the Moon and the subsequent energy decrease and

capture are considered. During this final phase, the Hnat value in the Earth-Moon

rotating frame remains between -1.53 and -1.4; the Hamiltonian fluctuates because

the trajectory is propagated in an ephemeris model in which Hnat is not an integral of

the motion. Accordingly, Hnat values in this range are employed as reasonable values

to illustrate the proposed capture strategies. Additionally, while the trajectory does

include several small thrusting arcs prior to the long, final burn, the mass change

is negligible (0.011 kg of the 14 kg wet mass); thus, the initial mass for all capture

strategies is set to 100%.

4.6.5 Capture Initiated Near the Moon

One strategy for high-energy capture initiates thrusting in the anti-velocity di-

rection when the spacecraft arrives in the vicinity of the Moon, as illustrated by the

Lunar IceCube (LIC) trajectory in Figure 4.34. Clearly, capture near the Moon is

accomplished in this specific scenario, but the single LIC trajectory does not supply

information about other nearby solutions. For a more general view of capture oppor-

tunities in the lunar region, an apsis map is constructed. Consistent with the LIC

trajectory, the set of initial states is characterized by an Hnat value of -1.425, and the
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(a) Earth-Centered J2000 frame
(b) Earth-Centered Earth-Moon rotat-
ing frame

(c) Earth-Centered Sun-Earth rotating
frame

(d) Earth-Centered Earth-Moon rotat-
ing frame

Figure 4.34.: Planar projections of a LIC trajectory option in a variety of reference
frames; blue arcs represent ballistic (coasting) motion, while red arcs indicate that the
low-thrust engine is active (burning). This baseline solution begins at a deployment
epoch of June 27, 2020 at 21:08:03 UTC, and ends in a low-lunar orbit on May 22,
2021.

propagation is modeled with an Isp value of 2500 seconds. Two thrust magnitudes

are employed: the LIC thrust capability of f = 3e-2, and a larger thrust magnitude

of f = 7e-2, consistent with a Deep Space 1 (DS1) capability. To explore capture

options, each point on the map is propagated for up to 20 map returns (i.e., apses),

and the initial conditions are colored by the fate of the associated trajectory, con-

sistent with the scheme in Figure 4.29. The resulting maps, plotted in Figure 4.35,



222

are dominated by escaping trajectories. The lack of other types of motion is not

(a) f = 3e-2 (LIC capability) (b) f = 7e-2 (DS1 capability)

Figure 4.35.: Apsis maps in the Moon-centered Earth-Moon rotating frame for Hnat =
−1.425, Isp = 2500 seconds, and p = 20 map returns.

surprising given the high energy and small thrust force; at energies this high, the low-

thrust propulsion is generally not sufficient to prevent the spacecraft from departing

the lunar region. (For these high energy maps, departure is defined by the radius

r23 > 385, 000 km.) However, thin bands of more nuanced behavior appear in the

maps between the large regions of L1 and L2 escapes. Zooming in on the structures

within the black boxes in Figure 4.35, as depicted in Figure 4.36, reveals even thin-

ner bands of initial conditions with different fates. At the resolution available in

these maps, no capture options are revealed for the LIC thrust capability. This result

does not necessarily preclude capture at this energy and thrust capability; a modi-

fied thrust strategy may adjust some of the collision arcs to achieve capture. When

a larger thrust magnitude is employed, as in Figure 4.36(b), capture opportunities

become available. These apses, colored yellow on the map, correspond to arcs that

pass through 20 apses without colliding with the Moon or departing the lunar region.

Although capture opportunities are apparent at the higher thrust capability, they are

generally isolated and located on the boundaries between bands of other behaviors,

in contrast with the dense bands of L1 escape, L2 escape, and impact motion. In-
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(a) f = 3e-2 (LIC capability) (b) f = 7e-2 (DS1 capability)

Figure 4.36.: Close-up views of the apsis map regions marked by black squares in
Figure 4.35 reveal chaotic motion; Moon-centered Earth-Moon rotating frame

deed, one of the defining characteristics of the high-energy apsis maps in Figures 4.35

and 4.36 is chaos : initial states at apses located close together frequently yield very

different arcs, particularly in the thin bands viewed in Figure 4.36. Selecting several

points in this regions with impact and capture motion, as labeled in Figure 4.36, and

plotting the associated trajectories, visualized in Figure 4.37, illustrates the chaotic

nature of the dynamics. For each set of arcs, the initial conditions are located at a

(a) f = 3e-2 (LIC capability) (b) f = 7e-2 (DS1 capability)

Figure 4.37.: The arcs associated with the points labeled in Figure 4.36 illustrate the
chaotic nature of the dynamics; Moon-centered Earth-Moon rotating frame
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consistent y-coordinate, and are separated by an x distance of less than 39 kilometers.

(The velocity magnitude is a function of the Hnat value and the velocity direction is

orthogonal to the ~r23 vector.) Despite the similar initial states, the evolution of each

trajectory varies significantly.

Although no capture opportunities are apparent for the LIC thrust magnitude of

f = 3e-2, the geometries of the arcs represented by the map are similar to the LIC

ephemeris solution. For example, the large lobe common to the arcs in Figure 4.37(a)

is very similar to the LIC trajectory at the beginning of the thrust arc that delivers

the spacecraft to lunar orbit, plotted in Figure 4.34(b). These similarities, as well as

first-hand knowledge of the difficulties associated with designing the LIC trajectory,

suggest that the chaos observed in the this planar apsis map is also a significant factor

within the spatial ephemeris model.

For either of the thrust levels, opportunities for capture exist only in the thin,

chaotic bands. Accordingly, a design strategy that initiates the capture burn near

the Moon is likely to be sensitive, diverging from the desired behavior when small

perturbations are encountered. This sensitivity affects not only the design process,

but has implications for operations as well. Any failure in the propulsion or nav-

igation systems are likely to effect large changes on the trajectory and may place

the spacecraft on a path that does not capture near the Moon, effectively ending a

cubesat mission like Lunar IceCube.

4.6.6 Capture Initiated Far from the Moon

As an alternative to a strategy that initiates the capture sequence at a location

near the Moon, consider a strategy that employs low thrust to decrease the Hnat value

prior to arrival at the Moon. As illustrated in the apsis maps for Hnat = −1.584,

depicted in Figure 4.29, opportunities for capture are more abundant and less chaotic

at lower energies than the high-energy results illustrated in Figure 4.35. In fact, a

majority of the points on the low-energy map represent capture opportunities with
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far less sensitivity than the options at Hnat = −1.425. Accordingly, a spacecraft that

enters the lunar region with a lower Hnat energy value is afforded more flexibility in

achieving lunar capture; even if the baseline trajectory is perturbed from a specific

target, the spacecraft is unlikely to rapidly depart the region.

To isolate low-thrust arcs that reach the lunar vicinity at a low energy, the invari-

ant manifolds associated with a ballistic L2 Lyapunov orbit are employed. In previous

studies, such arrival arcs have been produced by propagating a trajectory in reverse

time from a low lunar orbit to some energetic or physical hyperplane [6]. While this

method reveals capture paths, it restricts the exploration to a specific destination

orbit. By utilizing the separatrix property of the L2 Lyapunov manifolds, a more

general set of capture options may be constructed. The proposed capture strategy is

comprised of several steps:

1. Propagate the stable manifold, Ws+, associated with an Earth-Moon L2 Lya-

punov orbit in reverse time to a hyperplane, Σ1, that is located exterior to the

L2 gateway.

2. Propagate the stable manifold states with anti-velocity-pointing low-thrust in

reverse time from Σ1 to another hyperplane, Σ2 that serves as an interface

between a high-energy trajectory incoming to the Moon and a low-thrust arc

that decreases the Hnat energy. These low-thrust arcs are collectively notated

W̃lt as a “pseudo-manifold.”

3. Construct a low-thrust apsis map (anti-velocity-pointing thrust, forward time)

at the same Hnat energy value as the L2 Lyapunov orbit

4. Overlay the ballistic unstable manifold, Wu−, associated with the L2 Lyapunov

orbit on the low-thrust apsis map and identify intersections with capture op-

portunities.

From a mission sequence (i.e., forward time) perspective, a spacecraft approaching

the Moon first targets a state at Σ2 “inside” W̃lt. At Σ2, the low-thrust propulsion

is enabled with an anti-velocity-pointing orientation and the spacecraft proceeds to

Σ1. During this propagation, the Hnat value along the trajectory decreases to match
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the energy associated with the L2 orbit. At Σ1, the low-thrust force is disabled

and the trajectory is allowed to evolve ballistically, bounded by the L2 Lyapunov

manifold separatrices, Ws+ and then Wu−. Apses on the trajectory during this

ballistic evolution are plotted on the apsis map and compared with the low-thrust

behavior available at each apsis; assuming one or more of the apses correspond to a

low-thrust trajectory that captures about the Moon, the low-thrust propulsion is re-

enabled at the appropriate apsis to begin a low-thrust spiral into a low-energy lunar

orbit.

To illustrate this sequence, parameters consistent with the LIC trajectory are

again employed. Select an L2 Lyapunov orbit with an Hnat value of -1.584, a low en-

ergy level that still permits transit through the L2 gateway. The stable manifold that

arrives at the orbit from the right side, Ws+, is propagated in reverse time to the Σ1

hyperplane, located exterior to the system at x = 81, 422.6 km in the Moon-centered

Earth-Moon rotating frame, as depicted in Figure 4.38(a). At this hyperplane, a

(a) The low-thrust arcs (red) flow di-
rectly into and onto the ballistic L2 Lya-
punov manifold (blue); Moon-centered
Earth-Moon rotating frame. The ballis-
tic motion is bounded by the forbidden
region at Hnat = −1.584

(b) Initial conditions for the low-thrust
arcs are selected at Σ1from the interior
(red points) of the ballistic manifold,
and from the manifold itself (blue); tube
topology at x = 81, 422.6 km

Figure 4.38.: At the Σ1 hyperplane, low-thrust arcs flow into and onto the ballistic
L2 Lyapunov manifold
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tube-topology representation of the manifold is constructed, consisting of a radial co-

ordinate, d = (ỹu− y)/(2ỹu), and an angular coordinate θv = arctan(ẏ/ẋ), consistent

with the definitions in Section 3.4. When plotted in polar form, as in Figure 4.38(b),

this topology supplies a full representation of the planar states (i.e., all four Cartesian

components of the state vector are available from the 2D representation). Because the

full state is represented on the map, determining whether a planar trajectory exists

within the manifold separatrix is straightforward - simply consider if the trajectory

is encircled by the manifold contour on the map. Leveraging this technique, a set of

states inside the manifold are selected (plotted as red dots in Figure 4.38(b)). These

states are then employed as initial conditions for low-thrust arcs that are propagated

in reverse time with anti-velocity-pointing thrust to the second hyperplane, Σ2. Ad-

ditionally, the manifold states (plotted in blue) are also propagated to Σ2 with the

same thrust strategy, yielding the W̃lt set; although these arcs appear similar to a

manifold structure, they are not mathematically related to the originating periodic

orbit, nor are they manifold arcs associated with a low-thrust periodic orbit.

The Σ2 hyperplane serves as an interface between an incoming high-energy tra-

jectory and a low-thrust arc that decreases the Hnat energy. To facilitate high-energy

capture, Σ2 should be sufficiently far from the low-energyWs+ manifold such that the

energy change along the low-thrust arcs between Σ2 and Σ1 is large. Placing the Σ2

hyperplane at x = −687, 871.5 km (again in the Moon-centered Earth-Moon rotating

frame), as illustrated in Figure 4.39(a), supplies an energy change consistent with the

LIC trajectory. At this interface, a mapping strategy similar to the tube topology em-

ployed at Σ1 is applied; the y-coordinate of the arcs replaces the scaled y-coordinate,

but the velocity angle, θv, is identical to the previous definition. However, in contrast

to the map at Σ1, this mapping cannot represent the full state in a 2-dimensional

plot due to the variations in the Hnat values associated with the low-thrust arcs at

Σ2. Accordingly, Hnat is included in the mapping, yielding a 3-dimensional surface,

a projection of which appears in Figure 4.39(b). This mapping illustrates a similar

structure: The low-thrust arcs propagated from within the ballistic manifold, plotted
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(a) The low-thrust arcs (red) originate
at the Σ2 hyperplane, and have a similar
geometry to the Lunar IceCube (LIC)
approach path; Moon-centered Earth-
Moon rotating frame

(b) A projection of the low-thrust states
at Σ2. Low-thrust arcs propagated from
the stable manifold (black) completely
enclose low-thrust arcs propagated from
the interior of the manifold

Figure 4.39.: Low-thrust trajectories that flow into a ballistic manifold decrease the
Hnat value while simultaneously delivering the spacecraft to the lunar vicinity; Moon-
centered Earth-Moon rotating frame

in red, remain within low-thrust arcs propagated from the manifold itself, W̃lt, plot-

ted in black. In contrast to the ballistic CR3BP, this apparent low-thrust separatrix

behavior is not predicted by the dynamics, but it does persist across a variety of Σ2

locations and a variety of Hnat energy values. Increasing the density of the low-thrust

arcs propagated from within the ballistic manifold confirms this separatrix behavior:

all of the points within W̃lt flow into Ws+.

While this analysis is conducted in the Earth-Moon CR3BP+LT, solar gravity

is a non-negligible force far from the system barycenter, i.e., along the arcs that

approach Σ2. The geometry of the LIC trajectory, propagated in an Earth-Moon-Sun

ephemeris model, is different than the Earth-Moon arcs despite the similarities in the

states at Σ2, as illustrated in Figure 4.39(b). Indeed, previous investigations note

the importance of solar gravity during this approach to the Earth-Moon system [6].

However, including the Sun in the model eliminates the autonomous nature of the

gravitational dynamics, complicating the analysis by adding an epoch-dependency.
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Thus, to develop the proposed capture strategy, solar gravity is omitted from the

model. For mission-specific applications, a relevant epoch (or range of epochs) limits

the scope of the design problem, and the low-thrust arcs may be propagated between

Σ1 and Σ2 in the appropriate dynamical environment. Regardless of the specific

model employed for the approach to Σ1, the method remains unchanged.

Once a spacecraft has navigated through the low-thrust pseudo-manifold, W̃lt,

and, subsequently, the ballisticWs+ manifold, the trajectory remains bounded by the

L2 Lyapunov unstable manifold that departs the orbit to the left, Wu−. However,

the Hnat energy associated with the trajectory and the bounding manifold are not

sufficiently low to prevent escape from the lunar region. Accordingly, additional

thrusting must be incorporated to reduce the Hnat value, i.e., to capture about the

Moon. The low-thrust apse map constructed at the same energy level as the ballistic

manifold with anti-velocity-pointing thrust, plotted in Figure 4.40, identifies locations

in the lunar region where the thruster may be re-activated to capture in a low-energy

orbit about the Moon. Note that this map is constructed with the same parameters as

Figure 4.40.: Ballistic L2 Lyapunov unstable manifolds (black) overlaid on a low-
thrust apsis map (anti-velocity-pointing, f = 3e-2, Isp = 2500 sec) for Hnat = −1.584
and p = 20; Moon-centered Earth-Moon rotating frame
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the map in Figure 4.30(a), but this latter map is propagated to 20 apses (a sufficient

amount of time for the low-thrust force to decrease the Hnat value such that both

gateways are closed) whereas the map in Figure 4.30(a) is propagated to only two

apses. Accordingly, the 20-return map includes all of the information available in the

2-return map; every escape and impact condition from the 2-return map is captured

by the 20-return map. However, some of the initial conditions that yield capture

motion for two map returns escape or impact the Moon when propagated for 20

returns. Overlaying the Wu− ballistic manifold apses on the map (plotted as black

dots and labeled with map return number), reveals a specific subset of the capture

opportunities that are accessible from within the manifold separatrix. The first and

second manifold apsis regions overlap almost entirely with capture opportunities;

thus, nearly every arc within the L2 Lyapunov manifold can be linked to a low-thrust

path that delivers a capture trajectory. Consequently, the majority of the arcs within

W̃lt at Σ2 (Figure 4.39(b)) may be linked to a low-energy lunar orbit.

Several sample arcs are constructed to illustrate the capture process. The initial

states for the arcs are located within the W̃lt contour at Σ2, as depicted by the

colored symbols in Figure 4.41(a). Each arc is propagated with anti-velocity-pointing

low-thrust to Σ1, where the thrust is disabled and the arcs are allowed to evolve

ballistically. The arcs coast for different time intervals: arcs 1 and 2 coast to the

first apsis, arcs 3 and 4 coast to the second apsis, and arcs 5 and 6 coast to the

third apsis. As expected, these apses, plotted as colored symbols in Figure 4.41(c),

remain within the Wu− separatrix. Additionally, each of these apses is located in

the yellow-colored capture region on the low-thrust apsis map. In contrast to the

capture initiated near the Moon, the coast periods between Σ1 and the subsequent

apses provide opportunities for orbit determination and navigation updates before

the second low-thrust maneuver is initiated to capture near the Moon. Additional

coasting time can be incorporated into the trajectory by directly targeting insertion

onto the L2 Lyapunov orbit, i.e., by following an arc on W̃lt and, equivalently, on

Ws+, as illustrated by arc 1 in Figures 4.41(a) and 4.41(b). The initial state for arc
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(a) Initial states for the arcs at Σ2 within
the W̃lt contour

(b) Intermediate states for the arcs at
Σ1

(c) Following a ballistic coast within Wu−, each arc re-
enables the low-thrust force at an apsis to capture about
the Moon; Moon-centered Earth-Moon rotating frame

Figure 4.41.: Arcs that reach a low-energy lunar orbit are designed by identifying
appropriate states on the Σ2, Σ1, and apsis maps

1, represented by a blue square, is located very near the W̃lt boundary at Σ2 and

remains near theWs+ contour at Σ1. From the Σ1 hyperplane, a ballistic coast along

Ws+ delivers the spacecraft to the Lyapunov orbit where an arbitrarily long coast

may be included. At some later time (e.g., when a phasing constraint is satisfied),

a small maneuver is sufficient to perturb the spacecraft from the periodic orbit and

place it on the unstable manifold, WU+, such that the spacecraft reaches the apses

in Figure 4.41(c).
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Although the six sample arcs are clearly separated on the Σ2, Σ1, and apsis maps,

the arcs follow similar paths through configuration space. The physical trajectories,

plotted in Figure 4.42, are particularly dense as the arcs approach the Moon. The Lu-

(a) Configuration space representation
in the Moon-centered Earth-Moon ro-
tating frame

(b) A zoomed view of the lunar region

Figure 4.42.: Sample capture trajectories in configuration space; Moon-centered
Earth-Moon rotating frame

nar IceCube (LIC) trajectory, plotted in gray, follows a similar path as the the sample

arcs, but differs considerably near the Moon. Although many of these differences are

a result of the different models employed to propagate the arcs (recall that the LIC

trajectory is propagated in a full, spatial ephemeris model whereas the sample arcs

are propagated in the planar, Earth-Moon CR3BP+LT), some of the differences are

certainly due to the thrust strategy. The sample arcs employ low-thrust to decrease

the Hnat value, constraining the approach geometry to flow through the L2 gateway.

In contrast to these sample arcs, the LIC trajectory, characterized by a much higher

Hnat value and an initial ballistic coast, is not similarly constrained.

Another useful illustration of the capture trajectories is the Hnat energy evolution

through time and space. The LIC trajectory, plotted in gray in Figure 4.43, coasts

to the lunar vicinity before initiating a low-thrust maneuver to decrease energy and

capture near the Moon. (Because the LIC trajectory is propagated in an ephemeris
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(a) Temporal representation (b) Spatial representation

Figure 4.43.: The Hnat energy along the sample arcs and the LIC trajectory decreases
to a low-energy lunar orbit

model with forces not included in the CR3BP+LT, such as solar gravity, the Hnat

value is not constant during the coast.) In contrast, the capture arcs designed via the

strategy detailed in this investigation initiate a low-thrust maneuver to decrease the

Hnat value immediately, as is evident in the time-history plotted in Figure 4.43(a). A

spatial representation of these planar trajectories in Figure 4.43(b) further illustrates

the relationship between the Hnat value along the arcs and geometry of the forbidden

region. In this representation, each horizontal “slice” of the forbidden region surface

is the zero velocity contour at the corresponding Hnat value. The planar projection

of the LIC trajectory maintains a high Hnat value, remaining unconstrained by the

forbidden region. Rather than offering flexibility, this lack of an energy constraint

results in sensitivities that create design difficulties, as illustrated in the chaotic apsis

maps depicted in Figures 4.35 and 4.36. In contrast, the colored trajectories that

employ thrusting to reduce the Hnat energy before arriving at the Moon pass just

above the L2 gateway and are relatively bounded near the Moon. As a result, the

ballistic coast arcs that begin at Σ1 remain captured for several returns to the apsis

map, bounded by Wu−. Thrusting may resume at any of the apses that overlap with

low-thrust capture motion to further decrease the Hnat value along the trajectory
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such that escape from the lunar region is not possible, i.e., delivering the spacecraft

to a low-energy lunar orbit.

Trajectory designs that reduce the Hnat energy prior to arriving near the Moon

benefit from reduced chaos compared to trajectories that begin energy-reducing ma-

neuvers near the Moon. These differences between the high-energy, high-chaos dy-

namics and the low-energy, low-chaos dynamics are apparent when comparing energy-

optimal low-thrust spirals on apsis maps. Additionally, a trajectory that reaches the

lunar vicinity with a relatively low Hnat energy may incorporate coasting segments

prior to the final low-thrust maneuver, facilitating orbit determination and navigation

updates. While this analysis has focused on the lunar region, the capture strategies

may be generalized for capture about any secondary body in a CR3BP system. Ad-

ditionally, capture via the L1 gateway may be accomplished via similar processes.

Finally, this investigation considers only the planar dynamics but may be applicable

to the spatial realm. The separatrix properties of spatial manifolds are less well-

established than the separatrix nature of planar manifolds, but appear to behave

similarly.
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5. INTERACTIVE TRAJECTORY DESIGN SOFTWARE

The delivery of new information to an individual, regardless of their expertise, is of-

ten aided by a visual, interactive environment. Many of the most popular trajectory

design tools, e.g., the General Mission Analysis Tool (GMAT) [83], Systems Tool

Kit [84], Copernicus [85], and FreeFlyer [86], are designed to operate primarily as

graphical user interfaces (GUIs), allowing mission designers to interact with visual

representations of trajectory data. While most of these software tools support anal-

yses only in an ephemeris model, mission design efforts in lower-fidelity models such

as the CR3BP or CR3BP+LT also benefit from a visual and interactive environ-

ment. Several tools developed in the early 2000’s, namely Generator [87] and LTool

[88], leveraged dynamical systems theory for mission design applications and laid the

groundwork for future interactive software. One derivative of these early tools is

the Adaptive Trajectory Design (ATD) software developed at Purdue University and

NASA Goddard; it supplies an interactive GUI for multi-body trajectory design in

the Earth-Moon and Sun-Earth CR3BP systems [89, 90, 91]. A catalog of periodic

and quasi-periodic structures in the Earth-Moon and Sun-Earth system, developed

to complement ATD, supplies a GUI that allows a user to explore a diverse range of

dynamical structures to be included in a trajectory design [92, 93]. Similar tools, in-

cluding an ATD “module” that supports mission analysis for the Wide Field InfraRed

Survey Telescope (WFIRST) [94] and a module for locating and correcting transfers

between libration point orbits [95], have also been developed. In this investigation, a

new version of the ATD software is developed to address shortcomings in the original

design while also incorporating its strengths. Within this new ATD architecture, tools

that enable an intuitive exploration of the CR3BP+LT and facilitate future research

are developed.
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5.1 A New Adaptive Trajectory Design Architecture

Before discussing the dedicated low-thrust trajectory design tools developed to

support this investigation, the new architecture for the ATD software is detailed.

This new architecture, denoted version 2 or “v2” seeks to maintain and enhance

the strengths of the original ATD software, i.e., version 1 or “v1”. These strengths

include:

• The ability to assemble arcs from multiple dynamical structures (e.g., conic

arcs, CR3BP periodic orbits, periodic orbit manifolds, or quasi-periodic orbits)

to construct an itinerary

• A catalog of pre-computed dynamical structures

• The ability to compute new dynamical structures as needed

• An interactive environment to apply constraints to an itinerary and perform

differential corrections

While ATD v1 supplies many useful capabilities, it is also limited by several short-

comings; the v2 architecture is designed to address these shortcomings and anticipate

future requirements, as summarized in Table 5.1. When combined, these shortcom-

ings make ATD v1 difficult to extend to new applications. For example, the common

Table 5.1.: Solutions implemented in ATD v2 to address shortcomings in ATD v1

Shortcoming (v1) Solution (v2)

Supports only the Earth-Moon and
Sun-Earth CR3BP

Object-oriented MATLAB and Java
code enables analyses agnostic to
model and system

Compiled C++ scripts lack error han-
dling and are difficult to compile on
some OS

A Java library interfaces with MAT-
LAB with intuitive error handling,
compiles easily on every OS

Analysis tools are entangled with the
visualization tools

Stand-alone plug-ins supply analysis
tools to a core visualization framework

Many critical parameters are hard-
coded and are inconsistent between
scripts

System parameters and software set-
tings are saved in JSON files



237

(and relatively simple) need to enable analyses in addition CR3BP systems (e.g.,

Sun-Mars, or Saturn-Titan) in ATD v1 requires the modification of a large portion

of the source code. Rather than modify the existing code, the decision was made to

begin from scratch. The new architecture is separated into three main components:

a Java library that enables rapid and model-agnostic analyses (i.e., analyses in the

CR3BP, CR3BP+LT, ephemeris, and other models), an interactive MATLAB GUI,

and a suite of plug-ins that supply analysis tools, additional GUIs, or additional Java

libraries. The development of this software has been a collaborative effort with other

members of the Multi-Body Dynamics Research Group at Purdue University; please

see the Acknowledgments section for a list of contributors.

5.1.1 Java Library: atd-core

The most common analysis required in multi-body dynamics research is the nu-

merical integration of a state. This process can be computationally expensive and

slow in an interpreted language (i.e., code that is compiled in real time as it is run)

like MATLAB. In the ATD v1 software, rapid numerical integration is performed

by compiled C++ scripts that employ the GNU Science Library (GSL) [96]. While

this method is fast and accurate, the GSL library must be compiled separately for

each operating system (and for different versions of the same operating system, e.g.,

Windows 10 vs Windows 7), a process that can be incredibly tedious, particularly

on Microsoft Windows. Additionally, the interfaces between MATLAB and the C++

scripts must be explicitly coded to convert arrays of memory “pointers” into more

useful objects; such conversions are prone to low-level errors that crash the MAT-

LAB software and are tedious to develop, particularly when a large number of C++

functions are to be accessed from MATLAB.

To mitigate the difficulties associated with the ATD v1 C++ back-end code,

a new Java library, named “atd-core”, is developed. The Java language was se-

lected for several reasons. First, in contrast to C++ code, Java is straightforwardly
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compiled once, then distributed and run on any operating system. Second, because

MATLAB is written in Java, the custom atd-core library functions are easily called

from MATLAB scripts without the need for interface functions to translate between

the two languages. As MATLAB is the tool of choice for many astrodynamicists

throughout academia and industry, this simple interface enables ATD to be incor-

porated into existing work flows. For example, a few lines of code suffice to load

the Java library in a MATLAB script; the propagation, corrections, and continua-

tion methods within the atd-core may then be called directly from the MATLAB

script. Next, Java provides powerful object-oriented programming constructs that

are employed to write analysis tools that are model- and system-agnostic. For ex-

ample, a Propagation class includes a propagate() function that accepts a generic

AbstractDynamicsModel object as an input. The AbstractDynamicsModel defines

key functions, such as getEquationsOfMotion(), that are common to all types of dy-

namics models. Accordingly, this single propagate() function (with event detection

and other useful features) is applied to any dynamical model that incorporates the

AbstractDynamicsModel functionality. This design pattern is applied to many other

aspects of multi-body analyses in the atd-core library: linearization, differential cor-

rections, and continuation routines are all model- and system-agnostic. Finally, as a

compiled language, Java code runs much more quickly than MATLAB scripts, though

not quite as quickly as C, C++, or Fortran code. Accordingly, numerical integration

of trajectories is completed rapidly in the Java library; the small speed decrease from

a similar C++ integration is deemed acceptable given the straightforward interface

between Java and MATLAB.

To ensure that this core library maintains the highest possible quality, a rigorous

set of unit tests are included with the source code. These unit tests include checks on

all of the classes and methods, including comparisons with results from the industry-

standard GMAT software. The tests cover practically every instruction in the library,

as revealed by the code coverage report in Figure 5.1. Every addition to the library

1https://www.jacoco.org

https://www.jacoco.org


239

Figure 5.1.: Code coverage report for atd-core; generated with JaCoCo 0.8.41

is tested against the existing unit tests and a strict set of code coverage limits certifies

that the software remains accurate and predictable. Finally, a thorough set of docu-

mentation aids in the validation effort; the process of describing the functionality of

a method or class is frequently sufficient to identify design flaws. A math specifica-

tion document outlines the mathematics employed in each method, and a thorough

set of “Javadocs” describes the inputs and outputs of every function. As a result of

the unit tests, code coverage, and documentation, the atd-core library supplies a

high-quality suite of analysis tools for use in scripts and graphical user interfaces.

5.1.2 MATLAB Interface: atd-matlab

While the atd-core library supplies powerful tools to be employed in custom

scripts, a graphical user interface (GUI) is a useful addition to the ATD software that

enables interactivity and exploration. Due to the prevalence of MATLAB in astrody-

namics work flows and the powerful plotting capabilities it supplies, the main ATD

graphical user interface is coded in MATLAB. Similar to the atd-core library, MAT-

LAB runs on all major operating systems; thus, the interface is available to practically

all users. Object-oriented programming is again employed to define basic objects that

facilitate analyses in multiple dynamics models; this strategy also minimizes redun-

dant code and duplicated (possibly inconsistent) parameters. The primary function
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of this MATLAB interface, named “atd-matlab”, is to supply a visual, interactive

environment, pictured in Figure 5.2. The atd-matlab software stores trajectory arcs

Figure 5.2.: The Earth-Moon L2 halo family depicted in position space (left) and as
a time series (right)

and other dynamically relevant data sets as a collection of “plot objects,” i.e., data

than can be visualized in 3D and interacted with via the cursor, inspired by existing

interactive design software [97, 98, 99, 100]. Accordingly, atd-matlab supplies func-

tions to plot data in a variety of reference frames across many different coordinates

(e.g., Cartesian position and velocity coordinates, Hamiltonian values, time, etc.) as

well as functions to interact with the data in a 3D environment. Brushing and link-

ing, a powerful visualization tool that correlates data across visualizations [101], is

another key component of atd-matlab. In essence, when a trajectory (or any other

data structure) is selected (i.e., “brushed”) in one view, the software selects the same

structure in all other available views (i.e., the views are “linked”). Figure 5.2 demon-

strates this multi-view linking: A single halo orbit, colored green, is selected by the

user from the family of halo orbits in one view but is highlighted in both views.
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In contrast to the original ATD version, v1, the new GUI supplies only the most

basic analysis tools; more advanced methods are available from dedicated plug-ins.

By separating the visualization and interactivity routines from the analysis tools,

atd-matlab is capable of supporting numerous use cases without any modifications

to the base code; a specific set of plug-ins may be loaded for each analysis task.

Additionally, by supplying only the most basic tools by default and allowing the user

to load more complex plug-ins as the need arises, atd-matlab follows the “progressive

data disclosure” paradigm [102], facilitating a gradual learning curve.

5.1.3 Plug-ins

The plug-in architecture developed for atd-matlab ensures that the software is

flexible and extensible. As described above, the main atd-matlab software supplies

only the most basic visualization and interactivity tools; individual plug-ins can lever-

age these tools and provide analysis capabilities. For example, a “CR3BP Dynamics”

plug-in is enabled by default and supplies the interface to select a CR3BP system.

This plug-in computes the locations of the equilibrium points, plots forbidden region

boundaries, and offers GUIs to numerically integrate states within the CR3BP, in-

cluding the hyperbolic manifolds associated with the equilibria. Similarly, a “CR3BP

Periodic Orbit” plug-in provides an interface to load and plot families of periodic

orbits. Individual orbits may be extracted from their families, and the hyperbolic

manifolds associated with an orbit may be computed. With the exception of the

CR3BP Dynamics plug-in, all plug-ins are stand-along packages that can be loaded

and unloaded as needed. Accordingly, an alternative plug-in to analyze and compute

CR3BP orbits may be developed and straightforwardly enabled; this independence be-

tween plug-ins is the primary mechanism that enables the flexibility and extensibility

of atd-matlab. Because plug-ins are packaged individually, the atd-matlab software

does not need to be modified to support new analyses. Additionally, researchers may

modify a plug-in to suit their own needs without affecting the functionality of other
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plug-ins or the main atd-matlab software; these modified plug-ins can be distributed

between researchers as easily as sharing a .zip file, enabling rapid prototyping and

collaboration.

In addition to the CR3BP Dynamics and CR3BP Periodic Orbit plug-ins, several

other plug-ins are available. At the time of writing, these additional plug-ins include:

• BCR4BP Dynamics Plug-in: similar to the CR3BP Dynamics plug-in, an

interface to construct a bicircular restricted 4-body problem (BCR4BP) model

is available; once constructed, this model can be employed in numerical inte-

gration. The zero-acceleration contours may also be visualized.

• Ephemeris Dynamics Plug-in: provides an interface to load and unload

SPICE ephemeris data kernels, and a GUI to construct an N -body ephemeris

model. These ephemeris models are added to the list of available dynamics

models for use in numerical integration.

• Map Explorer Plug-in: defines a format for Poincaré map data and supplies

an interface to load data from the local file system. Once loaded, the map

data can be visualized in a dedicated GUI in a number of reference frames and

coordinates; data points may also be colored by a scalar coordinate value. In-

dividual points on the map may be selected to reveal the underlying structures,

i.e., the trajectory associated with the point.

• Differential Corrections Plug-in (In development): allows the user to as-

semble arcs into an itinerary, select patch-point locations, apply constraints,

and perform differential corrections via a multi-dimensional Newton-Raphson

scheme

Additional plug-ins exist to support analyses in the CR3BP+LT and are the focus of

the rest of this chapter.

The ATD software (v1 and v2) is available on an internal Purdue University

website; please direct all inquiries to Kathleen Howell (howell@purdue.edu).

mailto:howell@purdue.edu
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5.2 Low-Thrust Analyses in ATD V2

Analyses within the CR3BP+LT are enabled by the development of several soft-

ware products. First, a Java library, atd-core-low-thrust, augments the capabil-

ities of the atd-core library with the CR3BP+LT dynamics model as well as dedi-

cated classes to locate equilibrium solutions. The atd-core-low-thrust library also

supports the addition of a low-thrust force to any other dynamics model, including

the CR3BP, BCR4BP, or an ephemeris model. Second, two plug-ins to atd-matlab

provide GUIs to generate and interact with the CR3BP+LT equilibria, to propagate

with any separable control law, and to explore LTPOs and their associated manifolds.

The descriptions included in this section are meant as a brief overview of these tools;

more detailed documentation for users is included with each software product.

5.2.1 Java Library: atd-core-low-thrust

Similar to the atd-core, analysis tools for low-thrust trajectory design are in-

cluded in a Java library entitled atd-core-low-thrust. This library primarily pro-

vides tools for analysis in the CR3BP+LT but is designed for use in any dynamical

model. For example, a package of control policy objects compute a low-thrust ac-

celeration vector that can be applied to any dynamical model. Although the control

policies are currently limited to those described in Section 2.2.4, additional policies

may be straightforwardly implemented in the library by extending well-defined in-

terfaces to support variable specific impulse thrust models, feedback control laws, or

any other control parameterization. The atd-core-low-thrust library also supplies

event functions to be employed during numerical integration of low-thrust trajectories

and constraints for use in differential corrections processes.
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5.2.2 General Low-Thrust Propagation

Two plug-ins to atd-matlab supply visual, interactive interfaces for the

atd-core-low-thrust library. The first plug-in, simply named “Low-Thrust Dynam-

ics” visualizes the low-thrust equilibrium points, the forbidden regions, and provides

a GUI to propagate an arbitrary state in the CR3BP+LT with a low-thrust control

law. The second plug-in offers the means to select pre-computed families of low-

thrust periodic orbits, compute new families, and view family hodographs, similar to

the CR3BP Periodic Orbit plug-in described above.

Recall that the CR3BP+LT augments the ballistic CR3BP dynamics with an

arbitrary low-thrust acceleration, ~alt, a vector that is separated into the thrust mag-

nitude, f , the spacecraft mass, m, and the orientation, âlt, as defined in Equation

(2.79). Each of these quantities is computed by a control policy; by selecting one pol-

icy for each component, a variety of low-thrust control parameterizations are available

(see Section 2.2.4). The low-thrust dynamics plug-in supplies a GUI to select the var-

ious control policies and set the relevant parameters, as seen in Figure 5.3. Consistent

with the discussion in Section 2.2.4, only one thrust magnitude policy is available:

the constant thrust magnitude parameterization. Next, two orientation policies are

possible: the policy that fixes the âlt vector in the rotating frame (as displayed in

the figure), and the policy that aligns âlt with ±~v. Finally, the mass policy may

be selected to vary the mass with a constant specific impulse (CSI, pictured in the

figure), or to fix the mass at a constant value. The initial state for the propagation,

displayed in the fields at the top of the GUI in Figure 5.3, is populated when the

GUI is opened. For example, the user may select a point on an existing structure by

right-clicking; a subsequent click on the ”Propagate” context-menu item opens the

propagation GUI and auto-fills the initial state with the point the user has selected.

Finally, the time-of-flight (TOF) along the arc is specified and a set of propagation

events may be included to stop the propagation or mark useful points along the path.
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Figure 5.3.: GUI to propagate a trajectory with low-thrust

5.2.3 Equilibrium Point Analyses

In addition to supplying a propagation GUI, the Low-Thrust Dynamics plug-

in allows the user to set the magnitude and orientation of a low-thrust vector and

visualize the corresponding equilibrium points and forbidden regions (i.e., the ZVCs).

The interface consists of a series of fields for the alt, α, β, and Hlt values, as seen in

Figure 5.4. Changes to the alt or β values affect the entire set of zero acceleration

contours (ZACs), while changes to the α angle move the markers for the distinct

equilibria (diamonds). When the forbidden regions are visualized (not shown in this

depiction), modifications to any of the four fields are reflected in changes to the

forbidden region boundaries. In this example, the Earth-Moon system was selected
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Figure 5.4.: The low-thrust dynamics plug-in visualizing the stability of the Earth-
Moon ZACs for alt = 7e-2

to initialize the analysis. The Low-Thrust Dynamics plug-in was then loaded. The

alt value is set to 7e-2, a value that represents the thrust capability delivered by Deep

Space 1. The α angle is 57◦ and the β angle is 17◦. Accordingly, four ZACs exist and

are colored by stability, as selected in the plug-in interface.

A parameter space view of the ZACs is also available and is linked to the con-

figuration seen in Figure 5.4. Clicking the ”Show Energy Curves” button from the

plug-in interface opens a window that plots the ZACs in α vs. Hlt space, as seen in

Figure 5.5. By selecting a point in this space, the α and Hlt values are adjusted to

match the selected point. This link between the visualizations in the main interface

and the parameter space view facilitates rapid exploration of the equilibrium points
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Figure 5.5.: Parameter-space view of the Earth-Moon ZACs for alt = 7e-2 and β =
17◦. The distinct solutions at α = 57◦ are marked by diamonds and the Hamiltonian
value is represented by the red asterisk

and the forbidden region geometries associated with various control orientations and

Hlt values. For example, the diverse forbidden region gateway configurations near the

cusps in the E3 ZAC are straightforwardly explored by selected nearby points.

Finally, the hyperbolic manifolds associated with any of the distinct equilibrium

solutions may be propagated. A simple interface, displayed in Figure 5.6, allows the

user to select a mode as well as the specific manifold branches to propagate. In this

example, the stable (blue) and unstable (red/orange) manifolds associated with the

Earth-Moon E1
3(0.07, 57◦, 17◦) point are propagated. Similar to the state propaga-
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Figure 5.6.: The Earth-Moon E1
3(0.07, 57◦, 17◦) hyperbolic manifolds are propagated

via a simple GUI

tion interface, the time-of-flight is straightforwardly modified, and events along the

propagation may be implemented.

The interfaces supplied by the Low-Thrust Dynamics plug-in are meant to supply

a catalog of dynamical structures that communicate the results of this investigation

to other researchers. While a more conventional catalog (i.e., a reference document

with quantitative data and visual representations) may be constructed, the diversity

of the low-thrust structures makes such an undertaking difficult. For instance, the

locations of the CR3BP+LT equilibrium points vary with µ, alt, α, and β; a thorough

documentation of these points requires many pages of reference material. On the

other hand, the few hundred lines of code contained within the plug-in are sufficient

to explore the equilibria across the full range of parameters.
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5.2.4 Low-Thrust Periodic Orbit Analyses

Distinct from the Low-Thrust Dynamics plug-in, the low-thrust periodic orbit

plug-in supplies tools to analyze families of low-thrust periodic orbits (LTPOs). Pre-

computed families located on the local file system may be loaded and plotted, as in

Figure 5.7. Multiple views of the family are available by selection coordinates in the

Figure 5.7.: A family of low-thrust periodic orbits is displayed in position space and
as a hodograph; brushing and linking ensures that orbits selected in one view are also
selected in the other

main interface or by selecting the ”Explore Family” option from the LTPO family

context menu. The resulting GUI, displayed on the right in Figure 5.7, shows the

family hodograph; the coordinates here are also adjustable. Consistent with the rest of

the atd-matlab suite, selections made in one view are reflected in all other views. This

brushing and linking enables comparisons across coordinates and reference frames for

a quick exploration of the LTPO family. Consistent with the CR3BP Periodic Orbit
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plug-in, individual family members may be extracted for further analysis, including

the propagation of the stable and unstable manifolds.

An additional interface displays all available LTPO families that match the alt and

β values specified in the low-thrust dynamics plug-in GUI. By default, the families

are plotted in the α vs. Hlt parameter space, as displayed in Figure 5.8, but can also

be displayed via other coordinates. The user toggles between the ZACs to view the

Figure 5.8.: An interface to view families in the context of the ZAC energy curves

families that exist within the center subspaces of the various equilibrium solutions.

In the figure, the E2 ZAC is selected; the ZAC curve itself is colored by its stability

properties while the orbit families are assigned arbitrary colors to distinguish between

families. Horizontal lines represent families with a fixed Hlt value that evolve in the α

angle, as discussed in Section 3.4.2. Similarly, the vertical lines represent families with

a fixed α angle that evolve in the Hlt. New families of LTPOs may be constructed

by selecting an existing orbit from one of the families or an equilibrium solution with

a center manifold. Similar to the Low-Thrust Dynamics plug-in, this tool supplies a
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catalog of dynamical structures within the CR3BP+LT and the real-time computation

of new families enables the exploration of systems that have not been documented.
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6. CONCLUDING REMARKS

As the number of low-thrust enabled space missions grows, strategies to design trajec-

tories that incorporate a low-thrust force are increasingly important. This investiga-

tion facilitates the preliminary design of such trajectories by identifying relationships

between useful metrics such as energy or geometry and the low-thrust control pa-

rameters, namely the magnitude and orientation of the low-thrust acceleration vector

relative to the rotating frame. In contrast to many other studies, this work does not

leverage optimization or other numerical algorithms to “guess and check” or “grid

search” for control parameters that meet a specific goal. Instead, a dynamical sys-

tems perspective is adopted. When reasonable simplifications are incorporated into

a combined multi-body, low-thrust model, useful insights become apparent and dy-

namical structures are straightforwardly computed. These results are summarized

below.

6.1 Insights from Dynamical Systems Theory

To construct a suitable dynamical model, the circular restricted 3-body prob-

lem (CR3BP) is augmented with a low-thrust force to form the CR3BP+LT. As the

addition of low thrust to the model only increases the complexity and the number

of independent variables, simplifying assumptions are explored. Most notably, the

magnitude of the low-thrust acceleration is held constant, a strategy equivalent to as-

suming a constant spacecraft mass; Monte Carlo analyses verify that this assumption

is reasonable in planet-moon systems. When the orientation of the low-thrust accel-

eration vector is also held constant in the rotating frame, the CR3BP+LT reduces

to a conservative, autonomous system with an integral of the motion, Hlt. Within

this model, the ballistic CR3BP integral, Hnat, is revealed to vary independently of
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the spacecraft path, enabling straightforward relationships between the orientation

of the low-thrust force and the evolution of Hnat. Additionally, symmetry properties

within this simplified model facilitate the prediction of flow patterns without requir-

ing additional computation. Finally, when the low-thrust acceleration vector varies

in magnitude or in orientation, the time-derivative of Hnat still reveals useful insights.

Control strategies to extremize Ḣnat or to maintain a constant Hnat value along a

low-thrust arc are straightforwardly derived.

6.2 Novel Dynamical Structures

When the low-thrust acceleration vector is held constant in the rotating frame, a

plethora of dynamical structures are available to guide low-thrust trajectories. The

first structure considered in this investigation is the set of equilibrium points associ-

ated with a CR3BP+LT system and a particular low-thrust acceleration vector. The

number, locations, and stability properties of these equilibria vary with the orien-

tation angles, α and β, and with the acceleration magnitude, alt. The equilibrium

points also vary from system to system as the µ value changes. For very small alt

magnitudes, the low-thrust equilibria remain near the ballistic Lagrange points and

are characterized by similar stability properties. However, as alt increases to the

magnitudes associated with spacecraft such as Deep Space 1, the low-thrust equi-

librium solutions can vary significantly from the ballistic solutions. Novel locations

and energy values associated with the low-thrust points yield new forbidden region

geometries that can be leveraged for transit and capture applications.

Once the low-thrust equilibrium points are located and analyzed, dynamical struc-

tures predicted by the local, linearized dynamics are constructed. The hyperbolic

manifolds, i.e., the stable and unstable manifolds, associated with the equilibrium

solutions supply novel flow patterns throughout the CR3BP+LT, particularly on the

rings of solutions that encircle L3, L4, and L5. Additionally, many of the low-thrust

equilibria include a 2D or 4D center manifold that includes periodic orbits. The ge-
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ometries of these orbits range from ballistic-like motion to entirely new orbit paths.

Both the hyperbolic and center manifolds yield variations in Hnat that may be em-

ployed to navigate between ballistic structures.

The final set of dynamical structures included in this investigation are the man-

ifolds associated with low-thrust periodic orbits (LTPOs). Consistent with ballistic

(i.e., CR3BP) periodic orbits, most LTPOs posses a hyperbolic subspace that includes

stable and unstable manifolds. In the planar dynamics, these manifolds appear to act

as separatrices between transit and non-transit flow, analogous to the ballistic peri-

odic orbit manifold separatrices. By leveraging these separatrices, transit and capture

trajectories that rely on a low-thrust force are straightforwardly identified. Addition-

ally, every LTPO exists as part of a family; thus, a single LTPO initialized from the

center manifold of an equilibrium point yields infinitely many additional LTPOs. In

contrast to the ballistic periodic orbit families, these low-thrust sets may evolve in

several parameters, including the Hlt value and the low-thrust control parameters,

alt, α, and β.

6.3 Interactive Trajectory Design Software

Due to the increased dimension of the design space as compared to the ballis-

tic CR3BP, an interactive suite of trajectory design software is developed to enable

exploration of the CR3BP+LT. These tools iterate upon the existing Adaptive Tra-

jectory Design (ATD) software developed at Purdue University and NASA Goddard

to address shortcomings in the original code and implement new data visualization

techniques. Two plug-ins dedicated to the CR3BP+LT allow the user to investigate

the low-thrust equilibrium solutions, the associated hyperbolic and center manifolds,

and the low-thrust periodic orbits and their hyperbolic manifolds. Any of these dy-

namical structures may be selected, adjusted, and included in an itinerary to construct

a preliminary trajectory design for a low-thrust spacecraft.
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6.4 Recommendations for Future Work

As low-thrust spacecraft continue to visit destinations throughout the solar sys-

tem, an understanding of the dynamics that govern the low-thrust trajectory segments

is increasingly necessary. Many avenues for future work in this area are apparent and

are listed below:

1. Explore other systems —The bulk of this investigation has focused on the

Earth-Moon CR3BP+LT with occasional comparisons to the Sun-EMB system.

It is clear from the analyses discussed in Section 2.2.6 that the influence of the

low-thrust acceleration on the ballistic structures varies dramatically with the

system mass ratio and the characteristic quantities. For example, the Deep

Space 1 alt value affects the Sun-EMB dynamics more strongly than the Earth-

Moon dynamics. Accordingly, a more detailed investigation of structures within

the Sun-EMB system, as well as other systems of interest (e.g., Mars-Phobos,

Saturn-Titan, Jupiter-Io, Pluto-Charon), are of interest.

2. Applications for mixed mode —The hyperbolic and center modes associ-

ated with the low-thrust equilibrium points are explored in detail in this work.

The “mixed” modes, on the other hand, are left for future work. These modes

include a stable/unstable component that attracts/repels flow as well as an os-

cillatory component; the resulting linear motion resembles a spiral that asymp-

totically approaches or departs the equilibrium point. The L4/5 points in the

Pluto-Charon system are characterized by a similar spiral-type linearization.

The properties of and applications for these “spiral manifolds” remain to be

investigated.

3. Energy plane intersections —Strategies to leverage the intersection of two

energy planes parameterized by the same low-thrust acceleration magnitude,

alt, and a β angle of zero are presented in Section 4.3. Extending these tools

to incorporate different alt magnitudes, including one ballistic plane (alt = 0)

and one low-thrust plane (alt 6= 0), as well as non-zero β angles will greatly
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increase the capability of this tool. Due to the complexity of the mathematics,

it would be particularly useful to build a software tool to display the intersection

geometry and the corresponding maps at the intersection hyperplane.

4. Control curve extensions —The design algorithms that leverage control

points and control curves, described in Section 4.2, may be extended to incor-

porate nonzero β angles for applications to spatial trajectories. Additionally,

feasible region geometries that are non-rectangular may be of interest to enable

more targeted analysis.

5. Quasi-periodic low-thrust orbits —Many of the low-thrust periodic orbits

(LTPOs) explored in this work posses a nontrivial center subspace, i.e., quasi-

periodic orbits exist near the LTPOs. The computation of these structures and

an exploration of their properties, particularly in regimes where no ballistic

quasi-periodic structures are apparent, may facilitate novel trajectory options.

6. LTPO family bifurcations —Bifurcations in LTPO families are apparent

in Section 3.4.2; the families that result from these bifurcations remain to be

computed and may offer even more exotic geometries than already available

from the LTPOs that are initialized directly from the equilibrium point center

manifold.

7. Structure in velocity-aligned model —Clear distinctions between flow pat-

terns are apparent in the periapsis maps constructed for velocity-aligned low-

thrust arcs in Section 4.6. However, the CR3BP+LT with this orientation policy

is nonautonomous and does not include dynamical structures such as periodic

orbits or invariant manifolds to bound the various flow patterns. Nevertheless,

order persists amidst the chaos; a flow-based investigation (e.g., the computa-

tion of Lagrangian Coherent Structures and/or finite-time Lyapunov exponent

fields) may supply additional insight.

These recommendations offer several potential areas for future research to further

support the construction of preliminary low-thrust trajectory designs.
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Poincaré Map Topology. Ph.D. dissertation, Purdue University, May 2017.

[101] R. Becker and W. Cleveland. Brushing scatterplots. Technometrics, 29(2):
127–142, 1987.

[102] J. Carroll and C. Carrithers. Blocking learner error states in a training-wheels
system. Hum. Factors, 26(4):377–389, August 1984.

[103] E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equa-
tions, volume I - Nonstiff Problems of Springer Series in Computational Math-
ematics. Springer, 2nd edition, November 2011.

[104] J. Kawaguchi, A. Fujiwara, and T. K. Uesugi. The ion engines cruist opera-
tion and the Earth swingby of ’Hayabusa’ (MUSES-C). In 55th International
Astronautical Congress, Vancouver, Canada, 2004.

[105] Y. Tsuda, M. Yoshikawa, M. Abe, H. Minamino, and S. Nakazawa. System
design of the Hayabusa 2–Asteroid sample return mission to 1999 JU3. Acta
Astronaut., 91:356–362, 2013.

[106] H. Ji, F.-S. Lien, and E. Yee. A new adaptive mesh refinement data struc-
ture with an application to detonation. J. Comput. Phys., 229(23):8981–8993,
November 2010.



264

A. NUMERICAL INTEGRATION

Throughout this document, trajectories are propagated using version 3.6 of the Apache

Commons Math Java library1. Specifically, an embedded 8(5,3) Dormand-Prince in-

tegrator is employed for the numerical integration. The details of the method are

available from the documentation2:

“This integrator is an embedded Runge-Kutta integrator of order 8(5,3)

used in local extrapolation mode (i.e. the solution is computed using the

high order formula) with stepsize control (and automatic step initialization)

and continuous output. This method uses 12 functions evaluations per step

for integration and 4 evaluations for interpolation.”

. . .

“This method is based on an 8(6) method by Dormand and Prince (i.e. or-

der 8 for the integration and order 6 for error estimation) modified by Hairer

and Wanner to use a 5th order error estimator with 3rd order correction.”

[103]

In general, a relative tolerance of 1e-12 and an absolute tolerance of 1e-14 are em-

ployed to minimize numerical error in the integration scheme.

1https://commons.apache.org/proper/commons-math/
2https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/
math3/ode/nonstiff/DormandPrince853Integrator.html

https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/ode/nonstiff/DormandPrince853Integrator.html
https://commons.apache.org/proper/commons-math/
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/ode/nonstiff/DormandPrince853Integrator.html
https://commons.apache.org/proper/commons-math/javadocs/api-3.6/org/apache/commons/math3/ode/nonstiff/DormandPrince853Integrator.html
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B. SYSTEM AND SPACECRAFT PARAMETERS

This appendix chapter lists detailed parameters for systems and spacecraft used

throughout this document to enable others to reproduce the results as closely as

possible.

Table B.1 lists system parameters for CR3BP systems used in this document

Table B.2 lists the low-thrust propulsion system parameters for a variety of space-

craft that are relevant to this analysis
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Table B.1.: CR3BP System Parameters

P1 P2 µ [nondim] L∗ [km] T∗ [sec]

Earth Moon 0.0121505842699404 384747.991979046 375699.859037759
Sun Earth Barycenter 3.04042340382006e-06 149597894.005107 5022636.42910374
Sun Mars Barycenter 3.22715499610173e-07 227940471.963575 9446616.3421449

Pluto Charon 0.108539888353507 19596.2113365379 87830.6129323748

Table B.2.: Low-Thrust Spacecraft Parameters1

Spacecraft
Engine Propellant Wet Mass Propellant Max Spacecraft Isp

Sources
Type Type [kg] Mass [kg] Thrust [mN] [sec]

Deep Space 1 NSTAR2 Xenon 486.3 81.5 92 1900-3200 [43]
Hayabusa IES3 Xenon 510.0 66.2 22.8 2760–3000 [104, 44]

Hayabusa 2 IES3 Xenon 608.6 66.5 27.0 2740–2890 [105, 44]
Dawn NSTAR2 Xenon 1217.8 425 91.0 1814–3127 [45]

Lunar IceCube BIT-34 Iodine 14 1.5 1.15 2500 [6]

1 Many thanks to Robert Pritchett for locating references for many of these data
2 NASA Solar electric propulsion Technology Application Readiness (NSTAR)
3 Ion Engines System (IES); includes four thrusters but operates only three at a time
4 Busek Ion Thruster (BIT)
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C. MONTE CARLO ANALYSES

This chapter details the parameters and distributions employed in Monte Carlo anal-

yses in this investigation. Many of these details are included in the text where an

analysis is described, but the specifics of the implementation are not generally within

the scope of the discussion and are relegated to this appendex.

C.1. Low-Thrust Hamiltonian Rate Validation

The goal of this Monte Carlo analysis is to measure the change in the Hlt value due

to the time-varying spacecraft mass in a variety of CR3BP+LT systems. To obtain a

result that represents the system as a whole, a large number of arcs are propagated.

The initial conditions are uniformly distributed in the following ranges:

{x, y, z} ∈ [−1.2, 1.2]; {ẋ, ẏ, ż} ∈ [−0.875, 0.875]; m = 1.

These ranges capture the majority of the motion typically studied, including families

of periodic orbits in the vicinity of the Lagrange points, both in and out of the plane.

The low-thrust acceleration vector is assigned a constant thrust magnitude consistent

with the Deep Space 1 parameters, F = 9.2e-5 kN, M3,0 = 486 kg, and the mass flow

rate is modeled as a CSI process via Equation (2.92) with Isp = 1900 sec. Although

Deep Space 1 is capable of an Isp of up to 3200 seconds (see Table B.2), the minimum

Isp value is employed to maximize the mass flow rate. Like the initial state, the

orientation of the acceleration vector is randomly chosen from a uniform distribution

of the two angles,

α ∈ [−π, π], β ∈ [−π/2, π/2],
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that span the entire unit sphere; the orientation is fixed for each propagation. Ac-

cordingly, the magnitude of ~alt changes only as the spacecraft mass evolves. Each arc

is propagated until one of the following conditions is met:

1. τ ≥ π – a maximum time-of-flight (TOF) is reached

2. r13 ≥ 2 – a maximum distance from P1 is reached

3. r13 ≤ 10−4 – a minimum distance from P1 is reached

4. r23 ≤ 10−4 – a minimum distance from P2 is reached

5. m ≤ 0.83 – a minimum spacecraft mass is reached

As the goal is to compare results between systems, a consistent nondimensional max-

imum time-of-flight of π, or half of the system period, is employed in condition 1.

Similar structures tend to have similar sizes in nondimensional units, e.g., a portion

of the halo orbits in the Earth-Moon and Sun-Earth systems have periods of approx-

imately π, corresponding to about 2 weeks in the Earth-Moon system and to about 6

months in the Sun-Earth system. On the other hand, the mass flow rate is a constant

of the dimensional terms; the ṁ value for Deep Space 1 is approximately 4.94e-6

kg/s2. At this rate, the available propellant (17% of the spacecraft wet mass) is spent

in 193.67 days. Accordingly, for CR3BP+LT systems with a rotation period greater

than 2 × 193.67 = 387.34 days, the propellant will run out before the maximum

time-of-flight is reached. The 5th condition ensures that the propagation ends when

the available propellant has been depleted. The 2nd condition ends the propagation

of trajectories departing the system. As this investigation is primarily interested in

motion near the two primaries, arcs that depart before the time or propellant run out

are not relevant. Finally, the 3rd and 4th conditions end the propagation of trajecto-

ries passing very close to the centers of the primary bodies. These distances are not

identical to the physical radii of the bodies but are instead meant to avoid numerical

difficulties at the singularities, i.e., at the center of the primaries.
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Once a trajectory has been propagated, the Hlt values along the trajectory are

computed. The metric of interest is the maximum deviation of Hlt from the initial

value,

max|∆Hlt| = max
τ

∣∣Hlt(τ)−Hlt(0)
∣∣ . (2.123)

To account for the various arc times-of-flight, this energy change is scaled by the total

time-of-flight on the arc,

∆τ = τf − 0, (C.1)

where τf is not necessarily equal to the τ value associated with the maximum energy

change as expressed in Equation (2.123). Finally, the maximum energy change is

scaled by the natural Hamiltonian difference between the L1 and L5 points,

∆Hnat = Hnat(L5)−Hnat(L1), (2.122)

as discussed in Section 2.2.6. To evaluate the energy rate, max|∆Hlt| /∆τ/∆Hnat,

for a CR3BP+LT system, a large number of arcs are propagated and the energy rate

is computed for each arc. The results of the Monte Carlo, plotted in Figure C.1 for

the Earth-Moon system, may be evaluated in several ways. First, a histogram of the

energy rates, as seen in Figure C.1(a), displays the distribution of the energy rate over

the full Monte Carlo. The mean, median, and standard deviation of this distribution

are included in the plot for reference. To validate that these statistics represent the

behavior of the system, the mean value is plotted against the number of trials (i.e.,

the number of propagated arcs) in Figure C.1(b). The mean stabilizes after the first

60,000 trials; the median and standard deviation also stabilize in the same number of

trials, though their evolutions are not plotted. To further validate the analysis, the

“fates” of the propagated arcs are evaluated. Nearly half of the arcs remain within

the maximum r13 distance, as seen by the in Figure C.1(c), until the maximum TOF

is reached. The vast majority of the remaining arcs reach the maximum distance

before the maximum TOF; only a small number of the arcs impact P1, as defined by
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(a) Hamiltonian rate histogram (b) Moving mean of Hamiltonian rate

(c) Trajectory fates (d) Trajectory times-of-flight

Figure C.1.: Earth-Moon ∆Hlt Monte Carlo Results

the 3rd condition. Finally, because the maximum TOF is less than the time required

to exhaust the propellant supplies, none of the propagations are ended to the mass

constraint.

The analysis is repeated for the Pluto-Charon system and the results are collected

in Figure C.2. Like the Earth-Moon system, the statistics describing the Hamiltonian

rate stabilize within about 60,000 trials and the propagated arcs either reach the

maximum TOF or the maximum r13 distance. Propagations in the Sun-EMB system,

visualized in Figure C.3, follow a similar trend. Finally, results in the Sun-Mars

system differ slightly from the others in the fate of the propagated arcs. The half-
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(a) Hamiltonian rate histogram (b) Moving mean of Hamiltonian rate

(c) Trajectory fates (d) Trajectory times-of-flight

Figure C.2.: Pluto-Charon ∆Hlt Monte Carlo Results

period of the Sun-Mars rotation is 343.5 days, much longer than the time required

to exhaust the propellant. Thus, the majority of the propagations end due to the

propellant constraint and no arcs reach the maximum TOF. The arcs that do not reach

the propellant constraint escape the system, i.e., reach the maximum r13 distance.

These results are discussed further in Section 2.2.6.
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(a) Hamiltonian rate histogram (b) Moving mean of Hamiltonian rate

(c) Trajectory fates (d) Trajectory times-of-flight

Figure C.3.: Sun-EMB ∆Hlt Monte Carlo Results
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(a) Hamiltonian rate histogram (b) Moving mean of Hamiltonian rate

(c) Trajectory fates (d) Trajectory times-of-flight

Figure C.4.: Sun-Mars ∆Hlt Monte Carlo Barycenter Results
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C.2. Validate acceleration magnitude decrease

A Monte Carlo analysis identical to the analysis described in Section C.1 is em-

ployed to explore the effect of changes in F on the low-thrust Hamiltonian evolution.

In this case, the thrust magnitude is decreased from the Deep Space 1 capability of

9.2e-5 kN to 1e-5 kN. As postulated in Section 2.2.6, this thrust magnitude reduction

should yield a Ḣlt/∆Hnat ratio of about 1e-2. The results for the Sun-EMB system,

plotted in Figure C.5, confirm this prediction. Compared to the results for F = 9.2e-5

(a) Hamiltonian rate histogram
(b) Moving mean of Hamiltonian rate

(c) Trajectory fates (d) Trajectory times-of-flight

Figure C.5.: Sun-EMB ∆Hlt Monte Carlo results for F = 9.2e-7 kN
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kN, the mean Hamiltonian rate has decreased by two orders of magnitude (2.26e+00

decreases to 2.43e-2).
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D. EQUILIBRIUM POINT SEARCH

The low-thrust equilibrium solutions solve Equations (3.15) – (3.17), reprinted below

for convenience.

xeq

[
1− 1− µ

r3
13

− µ

r3
23

]
+ µ

[
−1− µ

r3
13

− µ

r3
23

]
+

µ

r3
23

+ alt cos(α) cos(β) = 0, (3.15)

yeq

[
1− 1− µ

r3
13

− µ

r3
23

]
+ alt sin(α) cos(β) = 0, (3.16)

zeq

[
−1− µ

r3
13

− µ

r3
23

]
+ alt sin(β) = 0. (3.17)

This system of three equations is a function of five variables, x, y, z, α, and β.

Accordingly, infinitely many solutions exist. By selecting convenient values of specific

variables (i.e., selecting values that remove terms from the equations, simplifying

them to permit analytical solutions), insights about the structure of the solutions

and several analytical solutions are available. The following list outlines the search

for solutions.

1. Set α = 0 or α = π, i.e., set sin(α) = 0

As a result of this constraint, Equation (3.16) simplifies to

yeq

[
1− 1− µ

r3
13

− µ

r3
23

]
= 0. (D.1)

The number of variables is reduced by one, but there are still infinitely many

solutions (3 equations, 4 variables). Thus, additional constraints are required.

(a) Set yeq 6= 0

An analytical solution is available. See Section 3.2.3 for details.

(b) Set yeq = 0

Equation (3.16), i.e., Equation (D.1), is solved, and the number of variables
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is reduced by one. The system (2 equations, 3 variables) still possesses

infinitely many solutions. Additional constraints are required.

i. Set zeq = 0; (requires β = 0)

Equation (3.17) is solved and the number of variables is reduced by

two. Under these conditions, Equation (3.15) is only a function of x but

is transcendental. A one-dimensional line search yields three distinct

solutions for the planar collinear points. See Section 3.2.1 for details.

ii. Set zeq 6= 0; (implies β 6= 0)

The system of 2 equations is a function of 3 variables (x, z, β); additional

constraints are required.

A. Set β = ±π/2, i.e., set cos(β) = 0

While the cos(β) term disappears from Equation (3.15), the system of

2 equations and 2 variables (x, z) is transcendental and no analytical

solution or straightforward iterative solution is apparent.

B. Set xeq = 0

Similar to the solutions for β = ±π/2, the equations appear transcen-

dental and no solution is apparent. However, by exploring the limits

of the low-thrust pseudo-potential gradient expressions, an approxi-

mate expression for the location of a point on the highly out-of-plane

equilibria is derived. See Section 3.2.2 for the details.

2. Set β = ±π/2; (implies zeq 6= 0)

When the out-of-plane angle, β, is oriented orthogonal to the xy-plane, α is

undefined. Accordingly, α is removed from the system, yielding a set of three

equations and three variables (x, y, z). Equation (3.16) once again simplifies to

the form expressed in Equation (D.1); additional constraints are implemented

to gain further insight.

(a) Set yeq 6= 0

An analytical solution is available. See Section 3.2.3 for details.



278

(b) Set yeq = 0

Equation (3.16), i.e., Equation (D.1), is solved, reducing the system to two

equations with two variables (x, z). With the implicit constraint that z 6= 0,

this case is identical to 1.b.ii.A.

3. Set β = 0; (implies z = 0)

The number of variables is reduced by one; the system of two equations is a

function of three variables (x, y, α). Further consraints are necessary to obtain

a distinct solution.

(a) Set yeq 6= 0

Because the alt sin(α) cos(β) term in Equation (3.16) is not zero, terms

within the square brackets are not necessarily zero and the familiar strategy

of substituting those terms into Equation (3.15) does not apply. The system

of two equations remains parameterized by three variables.

i. Set α = 0

Identical to 1.a

ii. Set α = ±π/2

This constraint removes the low-thrust terms from Equation (3.15), but

the remaining system of two equations, parameterized by x and y, is

transcendental and cannot be solved analytically.

iii. Set xeq = 0

Similar to the α = ±π/2 constraint, the system (now parameterized by

y and α) is transcendental and no analytical solution is available.

(b) Set yeq = 0

As a result of this constraint, Equation (3.16) reduces to

alt sin(α) cos(β) = alt sin(α) = 0. (D.2)

This equation is satisfied if and only if α = 0 or π; thus, this case is identical

to 1.b.i.
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4. Set α = ±π/2

With the selection of α, the number of free variables is reduced by one, yielding a

system of three equations and four variables (x, y, z, β). Additional constraints

are required.

(a) Set yeq 6= 0

Because the alt sin(α) cos(β) term is not zero under these constraints, Equa-

tion (3.16) is not simplified to the form expressed in Equation (D.1); addi-

tional constraints are required.

i. Set zeq = 0; (implies β = 0)

The resulting system of two equations and two variables (x, y) is tran-

scendental and cannot be solved.

ii. Set zeq 6= 0; (implies β 6= 0)

The system of three equations and four variables (x, y, z, β) requires

additional constraints to yield a distinct solution.

A. Set β = ±π/2

Identical to 2.a

(b) Set yeq = 0

i. Set zeq = 0; (implies β = 0)

ii. Set zeq 6= 0; (implies β 6= 0)
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E. MISCELLANEOUS ALGORITHMS

A variety of algorithms have been developed to support the analyses in this investiga-

tion. Several of the more complex algorithms are explained below to facilitate future

research in the CR3BP+LT.

E.1. Distinct Equilibrium Point Computation

A set of distinct equilibrium points is parameterized by the system mass ratio,

µ, and the low-thrust acceleration parameters, alt, α, and β. In this investigation,

variations in the equilibrium solutions with the α angle are explored. Accordingly,

the sets of equilibria, Ei, are computed for fixed µ, alt, and β values; the α angle

varies throughout each set. Once these sets, the zero acceleration contours (ZACs),

are constructed, the distinct equilibrium solutions at a particular α angle may be

computed. The processes to compute the ZACs and the distinct equilibrium points

are described in detail below.

ZAC Computation via Continuation

To compute the ZACs, the µ, alt, and β parameters are first fixed. Depending

on the value of these parameters, up to six or as few as two distinct ZACs may ex-

ist. The number of distinct ZACs for the specified µ, alt, and β values is available

by comparing alt to the saddles in the ballistic gravitational acceleration magnitude

field, as discussed in Section 3.2.5. However, computing the locations of these saddles

can be difficult due to the topology of the acceleration magnitude field; the differen-

tial corrections schemes attempted thus far frequently fail to converge. To avoid this

numerical difficult, six ZAC candidates are constructed. To distinguish these candi-
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dates from the true ZACs, the candidates are denoted Ẽi, where i is the index of the

candidate ZAC. A single point on each Ẽi structure is computed from the analytical

and semi-analytical solutions derived in Sections 3.2.1, 3.2.2, and 3.2.3, as defined in

the following list:

Ẽ1 is initialized at the collinear equilibrium point for α = 180◦ and β = 0◦ that

solves Equation (3.19)

Ẽ2 is initialized at the collinear equilibrium point for α = 180◦ and β = 0◦ that

solves Equation (3.20)

Ẽ3 is initialized at the collinear equilibrium point for α = 180◦ and β = 0◦ that

solves Equation (3.21)

Ẽ4 is initialized from the analytical solution described by Equation (3.42) for α =

180◦ and y > 0

Ẽ5 is initialized from the analytical solution described by Equation (3.42) for α =

180◦ and y < 0

Ẽ6 is initialized at the highly-out-of-plane point described by Equation (3.31) for

α = 180◦

Of these six initializations, only the points for the Ẽ4 and Ẽ5 structures are exact

locations of equilibrium points. Thus, a differential corrections process is employed

to solve for the location (x, y, and z) of a solution at the specified α, β, alt, and

µ values for each candidate ZAC. In other words, the location variables are varied

to satisfy the constraint Equations (3.15) – (3.17). In the systems explored in this

investigation, namely the Earth-Moon and Sun-EMB systems, convergence from these

initial solutions to exact equilibrium points is rapid regardless of the required β angle.

Once the initial solutions on each candidate ZAC are corrected, a pseudo-arclength

continuation process is employed to construct an entire candidate ZAC. The location

variables (x, y, and z) are varied, as is the α angle, while the β, alt, and µ values

are held constant. It is frequently useful to limit the step size of the continuation

process so that the change in α between subsequent solutions is reasonably small; in

this work, a maximum angle change of 0.5◦ is used to supply a visually continuous
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structure. Following the computation of the six candidate ZACs, the solutions may

be concatenated into the true ZACs. In practice, this is not always necessary. For

example, when plotting the ZACs to display the α angle, as in Figure 3.7, or stability

properties, as in Figure 3.17, the points from the candidate ZACs may be plotted

together; any overlap between the candidate ZACs is not apparent. However, when

the ZACs must be identified as distinct structures, the concatenation process benefits

by recognizing the following qualitative configurations:

1. All six candidate ZACs are distinct ZACs, i.e., Ei = Ẽi, as in Figure 3.7(a). This

configuration generally corresponds to very small alt values or to β angles near

±90◦.

2. The three candidate ZACs initialized near L3, L4, and L5 are merged into E3,

as in Figures 3.7(b) and 3.7(c), i.e.,

E1 = Ẽ1, E2 = Ẽ2, E3 =
{
Ẽ3, Ẽ4, Ẽ5

}
, E4 = Ẽ6.

This configuration is generally available for non-large |β| angles (e.g., below 60◦)

and moderate alt values (e.g., 7e-2 in the Earth-Moon system or 1e-2 in the

Sun-EMB system)

3. The E1 and E2 ZACs together include Ẽi for i = 1, . . . , 5, and E3 = Ẽ6, as in

Figure 3.7(d). This configuration corresponds to non-large|β| angles and to large

alt values (e.g., 5e-1 in the Earth-Moon system or 3e-2 in the Sun-EMB system)

In configuration 3, the E1 and E2 structures are composed of the first five candidate

ZACs; no general algorithmic method to determine which candidate ZACs form the

true ZACs has been identified, but they are straightforwardly sorted when viewed in

configuration space.
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Interpolation and Corrections

Following the computation of the candidate ZACs for a specified µ, alt, and β

combination, a set of distinct equilibrium solutions may be identified for a particular α

angle. First, an interpolation process computes all of the candidate equilibrium points

on a single candidate ZAC at the desired α angle. Next, the candidate equilibrium

points from all of the candidate ZACs are adjusted via differential corrections to the

exact equilibrium solution given the required µ, alt, α, and β parameters. Finally,

the locations of the converged solutions are compared to one another to identify the

unique, i.e., distinct solutions. In this investigation, two points are deemed distinct if

any of the position differences (i.e., ∆x, ∆y, or ∆z) is greater than a small tolerance,

ε > 0

E.2. Mesh Refinement

To construct the apsis maps in Section 4.6, a large number of initial conditions

are propagated to a set of stopping conditions. Each map is visualized by coloring the

initial conditions by the “fate” of the resulting arc. Regions of distinct fate behaviors

are identified and may be targeted to deliver different types of low-thrust trajectories.

Because the fate metric is discrete, the number of computations is greatly reduced by

employing a mesh refinement algorithm. In other words, only the boundaries between

distinct regions need to be located; points within each region need not be evaluated.

As mesh refinement algorithms are actively studied by other researchers, an existing

algorithm has been employed in this investigation; the cell-based structured adaptive

mesh refinement (CSAMR) algorithm described by Ji, Lien, and Yee [106] is selected.

The mesh is defined as a set of rectangular cells ; the four corners of the cell are

nodes, as displayed in Figure E.1. The size of a cell is denoted by its level. When a

mesh is initialized, it consists of a single cell at level 0. In the example displayed in

the figure, the level 0 cell has corner nodes at (-1,-1), (-1, 1), (1, 1), and (1, -1). Each

node is evaluated to determine the mesh metric at the node location; in this example,
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Figure E.1.: Example of a mesh; cells are marked by black squares and nodes are
colored points

the metric is a simple binary value, but in the apsis map application, the metric is

the fate of a trajectory propagated from the node location. If each of the four corners

has the same metric value, the cell is uniform; otherwise the cell is non-uniform. The

goal of the mesh refinement algorithm is to subdivide non-uniform cells to refine the

location of the discontinuities between node metrics.

Several algorithmic parameters are required to tune the mesh refinement process.

First, a minimum refinement level is specified. Every cell is subdivided, regardless

of its uniformity, until this minimum level is reached. For example, consider the

level 0 cell in Figure E.1. The four corners at |x| = 1 and |y| = 1 all yield the same

metric; thus, the level 0 cell is uniform. However, the interior of the cell is not entirely

uniform and additional refinement must occur to isolate the red, sickle-shaped region.

Accordingly, the minimum level is set to three and the level 0 cell is subdivided three

times, yielding 43 = 64 equally-sized level 3 cells. The nodes associated with these

smaller cells locate some of the red points in the figure, yielding non-uniform cells

that are subdivided further to refine the boundary between the metric values. The

second parameter specifies a minimum cell size to limit the duration of the refinement
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process. Left unchecked, refinement will continue to subdivide the cells forever. Thus,

the minimum cell size ensures that the refinement cannot proceed indefinitely.

With the aforementioned parameters selected for an analysis, the refinement al-

gorithm begins. The refinement loop, represented by the orange box in Figure E.2,

runs until a flag indicates that the refinement should halt. During the first few it-

Figure E.2.: Mesh refinement algorithm

erations, the flag is set to true to ensure the minimum mesh level is reached. Once

that threshold is surpassed, the flag remains true while new subdivisions are made.

The bulk of the algorithm logic is contained within the loop through all of the cells
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in the mesh, represented by the purple box in Figure E.2 and expanded in Figure

E.3. Note that once the minimum level has been reached, the subdivision of a cell

Figure E.3.: Inner loop through cells in mesh refinement

triggers the subdivision of neighboring cells, i.e., cells that share a (partial) edge with

the cell being subdivided, until the relative level difference between the neighbors is

at most 1. A clever process to quickly identify the parent, child, and neighbors of

a cell reduces the computational cost of the refinement and is detailed in [106]. By

applying this refinement algorithm, the number of numerical integrations is greatly

reduced. For instance, a single-return ballistic apsis map at Hnat = −1.59 requires
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36,854 propagations when a grid of initial states is employed but only 6,415 propaga-

tions when the mesh refinement algorithm is applied to the same region, a reduction

of 82.6%. A problem-agnostic version of this algorithm is available on GitHub1.

1https://github.com/adcox/adaptive-mesh-refinement

https://github.com/adcox/adaptive-mesh-refinement
https://github.com/adcox/adaptive-mesh-refinement
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