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ABSTRACT

For the first time in history, the world-wide material resource use by humanity has reached

a record breaking 100 giga tons (gt) along with the release of 49.30 gt of greenhouse gases

and 2.10 gt of solid waste. Such large-scale increases in anthropogenic emissions and waste

flows could mean reaching catastrophic global temperatures and ecosystem destruction in

the near future. In order to better manage resource usage and implement strategies to reduce

waste flows and natural resource use intensity, a comprehensive environmental flow account-

ing is required, which proves to be a challenging task to accomplish. Hence, the current

work aims at advancing the current techniques and reducing the efforts to map environ-

mental flows by developing automated mechanistic and bottom-up approaches for material,

thermodynamic and economic flow accounting. An integrative flow accounting framework

based on process modeling, Input-Output theory and advanced thermodynamic principles is

developed here that complements the existing top-down and empirical approaches. The de-

veloped techniques are demonstrated via multiple environmental sustainability assessments

at high spatial, temporal, and sectoral resolutions ranging from accounting flows at a single

process level to multi-regional economy-wide flows. Finally, the framework of material flow

accounting was automated by building a Python based tool called - Material Flow Data Ex-

traction and Simulator (MFDES), to reduce the time lead times of constructing material flow

maps. MFDES was also implemented on a collaborative cloud platform called PIOT-Hub

that generates material flow maps in the form of Physical Input-Output Tables (PIOTs).

The potential applications of this research include performing environmental impact assess-

ments of single/multiple supply chains, developing circular economy strategies, quantifying

effects of renewable energy expansion, and assessing different types of sustainability policy

implications. Further, the cloud-based automated tools built in this work make it possible

for researchers from different areas of expertise to synergistically collaborate on large scale

projects for sustainable design of emerging processes and technologies.
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1. INTRODUCTION

For the first time in history, the world-wide material resource use by humanity has hit a

record breaking 100 giga metric tonnes (Gt) in 2017 with only 8% of this total coming

from recycling [ 1 ]. Of the 100 Gt consumed to build different types of infrastructures and

products, 49.30 Gt of green house gases (GHGs) and 2.10 Gt of solid waste was sent back

into the nature as emissions and waste flows [ 2 ][ 3 ]. These concerning numbers are projected

to further go up by more than 52% for GHG emissions and 60% for solid wastes by the

year 2050 [ 3 ][ 4 ]. Such large scale increases in anthropogenic emissions and waste flows could

mean reaching potentially catastrophic global temperatures much before the predictions [  5 ].

Recent studies have predicted that the 2050 projection of 1.5°C [  6 ] rise in global temperature

will now be attained by 2030 [ 7 ]. These alarming numbers indicate that there has never been

a more critical time in human history to better manage our material resource usage, reduce

destruction of natural ecosystems, and to keep the global temperatures under habitable limits

for all life forms on our planet.

The first and foremost step in managing our material resource usage would be to com-

prehensively account/quantify all types of relevant flows from a sustainability standpoint.

These flows could be both physical - material and thermodynamic flows, and economic -

monetary flows. Although human activities influence and interact with nature only in terms

of physical flows, there is a parallel need to track monetary flows to help in maintaining

economic and social sustainability, and to further track economic changes induced by global

climate changes and environmental policy implications. Comprehensive flow accounting cre-

ates ways to better understand how flows move from one human activity to another, and

eventually back into the nature as physical flows. Such an understanding of flow movements

enables development of sustainable resource use strategies ranging from increasing produc-

tion efficiencies at a single process at an industry level to economy-wide circular economy

implementations.

To achieve comprehensive flow accounting, advances have been made both in terms of

metrics used for quantifying, and methodologies/frameworks to account different types of

flows [ 8 ][ 9 ][ 10 ][ 11 ][ 12 ]. In most of the existing methods and metrics, two common themes can

14



be identified: top-down frameworks and their excessive reliance on empirical data. Top down

approaches rely on using widely available empirical data-sets such as government records

to feed into the methodology. Some of the commonly used top-down approaches include

economic and physical input output (IO) analysis and material flow accounting (MFAs).

The spatial, temporal and sectoral resolution of flow accounting through such methods is

constrained by the available granularity in the data-sets used. To overcome granularity

challenges, various allocation methods [ 13 ] [ 13 ] are used to disaggregate the flows to a finer

scale. However, the allocation methods can only be used until meaningful interpretations

can be made from disaggregation as the assumptions made for the aggregated flows may not

necessarily hold true for the disaggregated flows. The heterogeneity in flow characteristics

also tend to increase rapidly with disaggregation. For example, when allocating the US-

wide fertilizer requirements of agriculture sector to its different sub-sectors, an averaged

fertilizer input per unit output of agriculture sector may not be accurately representing the

actual requirements of all the sub-sectors. The fertilizers required to grow different crops

in the aggregated agriculture sector vary greatly in terms of quantities and fertilizer type

used. This could lead to either overcounting or undercounting fertilizer requirements while

allocation. Further, animal farming sub-sectors also fall under the agriculture sector and it

makes no meaningful interpretation to use averaged fertilizer inputs as farm animal feeds.

Allocation challenges are also prevalent in monetary flow disaggregations. For example, when

spatially allocating the average economic throughput of the US agriculture sector to the

agriculture sectors across different states, the average throughput may not be representative

of a state’s agriculture sector profile as the agriculture industry size varies greatly in the US

(ex: California vs Alaska).

To overcome disaggregation challenges, bottom-up approaches such as process Life Cycle

Assessment (LCA) can be used to quantify flows while maintaining high granularity. While

process LCAs can provide high granular resolution in the form of highly detailed industry

production recipes, they are generally based on empirical data-sets which may be aggre-

gated spatially [ 14 ]. For example, the production recipe of biodiesel can be different in India

when compared to Brazil [ 15 ] and a LCA based on average empirical data will not show

spatial differences in environmental impact assessed. Also, the production technologies tend
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to continuously evolve over time. Furthermore, LCA models scale linearly but the per-unit

material requirements of production can change with economies of scale. For example, in the

production of biodiesel from algae, the electricity required to operate a technical component

called raceway paddle wheel (it ensures proper mixing of carbon dioxide and nutrients) is

nearly independent of the algal growth rate [ 16 ]. An LCA of such a production processes

will scale the electricity required linearly with algal production and will not be able to show

the influence of economies of scale. To overcome some of these challenges, methods such as

hybrid Input Output LCA (IO-LCA) approaches have also been established to utilize the ad-

vantages offered by both bottom-up and top-down approaches [ 17 ] [ 18 ], [  19 ]. In such hybrid

approaches, high sectoral resolution is maintained for the flows in focus for which physical

data is available and the information of all other flows at an aggregated level is also retained.

However, even the hybrid methods rely excessively on empirical data. While there are no

inherent disadvantages of using empirical data in any of the flow accounting approaches,

allocation could be an ubiquitous challenge at every step where empirical data is not avail-

able. Currently, there are no established bottom-up approaches that can mechanistically

simulate (including economies of scale) missing flow information and, at the same time, be

seamlessly compatible with top-down approaches. This results in lack of full accounting of

waste flows, understanding interdependence between different industries in a region and a

complete visibility into opportunities to improve material utilization and reduce emissions

or wastes.

The research presented in this dissertation aims to address the challenges discussed above

by proposing a new bottom-up flow accounting framework that uses computational and

mechanistic models to account material, thermodynamic and monetary flows at high spa-

tial, temporal and sectoral levels. While advancing the flow accounting research, the current

work ensures that the technique developed is compatible and complements other established

techniques. To this regard, it also attempts to advance the status quo of flow accounting

research a step further by integrating existing bottom-up, top-down, empirical and mecha-

nistic flow accounting methods through a novel cloud-based collaborative infrastructure. To

successfully achieve these overall aims, the research work was divided into 5 specific research

objectives which are discussed as individual chapters in this document (table  1.1 ). Each
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specific objective addresses a unique research gap in the material flow accounting literature

and the methodology developed is demonstrated via a case study. Chapter  2 specifically at-

tempts to address the research gaps in performing spatial Life Cycle Assessment. Currently,

LCAs primarily rely on empirical data that scales linearly and if often available only at high

regional aggregation levels. To tackle these challenges, computational process models were

developed that are based on mechanistic principles and can simulate the required LCA inputs

at high resolutions. In chapter  3 , the research gap of a lack in established methods to quan-

tify advanced thermodynamic flows for sustainability assessment of emerging technologies is

addressed. An entropy generation assessment was performed at individual process levels of

a technology for which empirical data was not available the quantified entropy flows were

used in performing a thermodynamic sustainability assessment for opportunities in process

improvement. Chapter  4 broadens the scope of the methods established in the previous

chapters by integrating the mechanistic models with the Input-Output (IO) framework to

perform bottom-up economy-wide sustainability assessments by tracking material flows in

a regional economy and quantifying waste along with identifying strategies to implement

circular economy. While the first 3 chapters attempt to establish methodologies to quan-

tify different types of physical flows, chapter  5 attempts to bridge multiple bottom-up and

top-down flow accounting frameworks through a collaborative cloud infrastructure where

different researchers with varied modeling expertise can upload their models and data. The

cloud infrastructure simultaneously simulates the different models, characterizes flows, and

provides a compilation of flows from all the models in one standard format which can then

be further used for sustainability assessment of material use.

Finally, chapter  6 focuses on using economic analysis for impact of adoption of emerging

technologies, particularly focusing on renewable energy expansion. This chapter further

improves the existing allocation methods for monetary flow disaggregation. The methods

developed in these five chapters together attempt to address multiple research gaps discussed

above by establishing and standardizing bottom-up flow accounting methods, developing

collaborative computational tools, and improving top-down allocation techniques.

The final chapter  7 presents an overall conclusion by summarizing the contribution of

this dissertation to achieve an advanced, reproducible and inclusive environmental flow ac-
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Table 1.1. Specific objectives and case studies
Chapter Objective Approach Case study
1 Quantifying material flows LCA Spatial LCA of biodiesel production

at high spatial disaggregation – in North and Central Indiana, USA
2 Quantifying advanced thermodynamic Entropy Phosphorus recovery in

flows for sustainability assessment generation a waste-water treatment system
3 Quantifying physical economy IO theory Agro-based physical economy

of a region at high sectoral disaggregation – model for the state of Illinois, USA
4 Developing a collaborative tool to integrate IO theory Circular economy strategies for

multiple material flow modeling methods – the agro-based economy of Illinois, USA
5 Computational Platform for spatially IO theory Wind energy expansion in the US

disaggregate economic impact analysis – –

counting framework that can be used for sustainability assessment of emerging technologies,

moving towards lower material wastes and implementing circular economy. Future possi-

bilities of application and improvement for the work presented in this dissertation are also

discussed in this chapter.
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2. COMPUTATIONAL PROCESS MODELS TO QUANTIFY

INDUSTRIAL MATERIAL FLOWS AT HIGH SPATIAL

RESOLUTION TO PERFORM SPATIAL LIFE CYCLE

ASSESSMENT

This chapter is based on the following published article: [ 20 ] V. S. G. Vunnava and

S. Singh, “Spatial life cycle analysis of soybean-based biodiesel production in

Indiana, USA using process modeling,” Processes, vol. 8, no. 4, p. 392, Mar.

2020. DOI:  10.3390/PR8040392 

2.1 Chapter overview

In this chapter ( 2 ), a computational approach of using chemical process models is used

to achieve the first research objective ( 1.1 ) by simulating material flows at high spatial reso-

lution representative of a region. To perform regionally specific environmental assessments,

input data should be representative of the industries and material consumption patterns in

the region being studied. Using spatially aggregated data-sets for impact assessment may

not provide accurate quantification of impacts. To demonstrate how bottom-up computa-

tional approaches can be used in such situations, a case study of performing a spatial LCA of

biodiesel production in Northern and Central Indiana is provided. Chemical process models

were used to simulate material flows in soybean based biodiesel production systems in the

two regions. Using material flow data from process models in conjunction with other avail-

able regional data-sets, the variations in environmental impacts of producing biodiesel were

quantified for 61 counties in Indiana. The case study discussed in this chapter attempts to

to show how a standardized and reproducible technique such as process modeling can be

used to get material flow information at high spatial disaggregation.

2.2 Motivation and background

Life cycle assessment (LCA) models are widely used to assess the sustainability of bio-

based energy or material production. These models are developed to quantify the environ-
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mental, societal, and/or economic impact of production systems [ 21 ]. While several LCA

studies have highlighted the positive impacts of a shift to bio-based production, it has also

been shown that a shift to bio-based energy or products leads to a “food vs. fuel” de-

bate and also exacerbates the environmental challenges due to the Land Use and Land Use

Change (LULUC) associated with bioenergy crops [ 22 ]. LCA studies have shown that bio-

fuels from different cropping systems producing ethanol or biodiesel can reduce greenhouse

gas emissions and non-renewable energy production, and increase other impacts such as eu-

trophication and acidification related to nitrogen release [ 23 ]. Thus, the choice of agricultural

system and management has significant impact on the sustainability aspect of bio-based en-

ergy or products [  24 ]. In their study, Qin et al. (2018), show that changing land management

practices, such as reducing tillage intensity, can change the life cycle emissions for ethanol

production significantly. Other studies have also shown similar results, highlighting how

regional practices on agricultural systems result in significantly different life cycle emissions.

Soybean-based biodiesel was shown to have 70% lower Green House Gas (GHG) emission if

land use change impact in Argentina was not considered [ 25 ], highlighting the role of the re-

gional sourcing of feedstock in accounting for true life cycle emissions. A 2018 study focused

on the life cycle emissions of soybean-based biodiesel produced in the US, using a national

average for farming practices and the pathway of soy-oil to biodiesel conversion through

transesterification [  26 ]. This study also found that soybean biodiesel significantly reduces

GHG and nonrenewable energy consumption, however, accounting for LUC can result in

additional GHG emissions. The comparison of sugarcane-based ethanol production in India

and Brazil shows that Indian ethanol had lower impact, highlighting that the same product

originating in different location can have different environmental impact [ 27 ]. Thus, it is

important to account for regional variations and farm activities to improve the reliability of

the life cycle environmental impacts of producing bioenergy. If the regional activity includes

the clearing of tropical forests, the life cycle GHG can be worse than conventional diesel,

as was the case for Brazilian soybean-based biodiesel production [ 28 ]. Further, whether

the soybean is processed within a region to produce soybean biodiesel or imported as final

product also has an impact on total life cycle impact, as was found in a study on soybean

diesel being used in Europe from soybean grown in Brazil [ 29 ]. In this study, it was found
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that cultivation and transportation played an important role. Through several studies, it

has been established that regional cultivation practices [ 30 ] and processing pathways play

an important role in truly estimating the sustainability of bio-based energy or products.

Following this lead of variations in impact from regional practices, there has been a

growing interest in incorporating spatially explicit information in LCA studies. To incor-

porate regional information in the calculation of life cycle emissions for bio-based products,

methods like GIS [ 31 ] and detailed mechanistic models [ 32 ], or spatial land use models [ 33 ]

for capturing the variations, are being increasingly used. Utilizing mechanistic model of

DNDC Tabatabaie et al [ 32 ], demonstrated the variations in life cycle emissions for biodiesel

produced in Orgeon, USA as a result of temperature variation and soil organic carbon. Spa-

tial models of LUC have been combined to show the impact on life cycle emissions from

1st generation biofuels in the European Union [ 33 ]. Another study focused on the South-

western Michigan region and simulated the production of three different types of feedstock

for corn–ethanol production in different watersheds using an EPIC model [ 34 ]. This study

found the impact of feedstock type to be more prominent than the region where the second-

generation feedstock was being cultivated.

While these studies have incorporated the impact of variations in feedstock growing

stage, these studies have not accounted for the regional variations in the processing of the

feedstock. Processing variations can have significant variation in life cycle emissions, as

these form a significant step in the conversion to final product. Studies have shown that

the size and capacity of power plants using biomass also impact the environmental impacts

of products from these plants [ 35 ]. A critical review on integrating the spatial dimensions

in LCA studies highlights that process recontextualization for a particular region should be

adopted in order to develop regional life cycle inventories [ 36 ]. Hence, for spatial LCAs,

utilizing process modeling for capturing the impact of variations in processing of biomass

feedstock can contribute significantly to improving the representativeness of results for that

region. However, such studies have not been widely done, mainly due to the lack of enough

information about regional processing plants and for confidentiality reasons. In this work,

this specific gap in the literature is addressed for soybean-based bio-diesel production. The

focus of our work is on capturing the variation within a state. As it has been shown that
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different parts of states can experience huge variations in agricultural practices owing to

soil quality changes or farm size, etc., this causes variations in the processing of feedstock

as well. Further, the size and type of processing plant can also result in variation in life

cycle emissions. To capture this effect, soybean-based biodiesel production in northern and

central Indiana was considered. A regionalized life cycle inventory is built on the farming,

transportation and processing life cycle stages for the two regions. For capturing upstream

life cycle stages, average data from SimaPro have been utilized. Results are presented for a

functional unit of 1 liter of soybean biodiesel produced in north and central Indiana.

2.3 Methodology

A cradle-to-gate process LCA methodology has been followed here using standard Inter-

national Organization for Standards (ISO) practices. The first step involved identifying the

soybean-based biodiesel production system in Indiana. The cradle-to-gate boundary includes

all upstream processes required for the production of biodiesel up to the point of biodiesel

output. Figure  2.1 shows the system boundary for the production of biodiesel in both

north and central Indiana. Once the system boundary was selected, a regionalized life cycle

inventory (LCI) was built. In this case, the regionalization accounted only for the life cycle

stages of farming, transportation and biodiesel processing. Upstream processes were mod-

eled using unit process information from LCA datasets such as ecoinvent and USLCI, hence

the upstream processes represent average production. Final LCA results were obtained using

the TRACI 2.1 (US version) Life Cycle Impact Assessment (LCIA) method and analyzed for

global warming potential and eutrophication impact categories. The base year of analysis

was 2013 and results have been normalized for per-liter biodiesel production for comparative

analysis between the life cycle impacts of biodiesel from north vs. central Indiana.

2.3.1 System and System Boundary

Indiana is a major producer of soybean in US and ranks among the top five producers

(about 7% of total soybean produced in the USA [  37 ]. US Energy Information Agency

(EIA) provides a detailed, state-level biodiesel production capacity information for several
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Figure 2.1. (A) Cradle-to-Gate System boundary for northern Indiana biodiesel produc-
tion; (B) Cradle-to-Gate System boundary for central Indiana biodiesel production

years [  38 ]. Table  2.1 shows the production processes for biodiesel in Indiana along with

the feedstock type. In 2013, two biodiesel plants were active. The plant in northern Indiana

utilizes soybean as feedstock and the facility has full soybean-to-biodiesel production process

infrastructure. The plant in central Indiana utilizes soy-oil from a dedicated soy-oil producer

to make biodiesel. This difference in biodiesel production process from these plant location

leads to different system boundaries in performing LCA for biodiesel obtained from different

locations. Hence, to quantify these differences, two different system boundaries were selected

for biodiesel production in Indiana. Figures 1A and 1B (in figure  2.1 ) show the cradle-to-

gate system boundary for soybean-based biodiesel produced in northern and central Indiana.

Table 2.1. Biodiesel Production Capacity in Indiana. Data from Energy Information
Agency (EIA), US Dept of Energy.

Location Plant Capacity Feedstock
Claypool, Kosciusko county, Indiana 99 Mega gallons per year Soybean
Morrisontown, Shelby county, Indiana 5 Mega gallons per year Soybean oil
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2.3.2 Regional Life Cycle Inventory for Biodiesel from Soybean in Indiana

After identifying the system boundaries and pertinent life cycle stages for the life cycle

of biodiesel production in northern and central Indiana, regional life cycle inventories were

built as described below.

Soybean Farming

The life cycle stage of soybean farming for producing biodiesel in Northern and Central

Indiana have differences in farm operations and resource consumption. Hence, the data for

soybean yield, land used, water applied, and fertilizer applied to soybean fields in the 61

counties studied (2013 data) were collected from the United States Department of Agricul-

ture (USDA) and National Agriculture Statistics Service (NASS) [ 37 ]. The emissions from

the soybean farms were calculated based on the Conservation Effects Assessment Project by

Natural Resources Conservation Service [  39 ]. Spatial data for farming stage were collect-

ed/calculated (shown in supplementary material along with calculation methods) for each

northern and central Indiana county that grows soybeans. This dataset includes spatial

variation in land harvested, fertilizer usage, land irrigated, water usage based on irrigation

practices, yield and production and nitrogen/phosphorus emissions. An aggregated overview

of the data collected are shown in table  2.2 .

Soybean Biodiesel Production

For the life cycle stage of soybean processing, the industry standard to produce soy diesel

is crushing soybeans, extracting the soy oil, then using transesterification to convert the soy

oil to soy diesel. In 2013, two facilities in Indiana were capable of producing biodiesel—the

plants are located in Shelby and Kosciusko county [ 40 ]. The soy diesel production capacity

of Indiana was 104 million gallons, with 99 million coming from the northern processing

plant (Kosciusko county) and the balance was produced at a central Indiana plant (Shelby

county) [ 40 ]. In Kosciusko county, the facility manufactures soybean oil and soy diesel on the

same property. Hence, in the northern facility, the whole process from soybean to biodiesel

production is done. The co-product from the facility is soybean meal. The producer in Shelby
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Table 2.2. Aggregated inventory data for north and central biodiesel production life cycle
stages (Source: USDA NASS and USDA NRCS report)

Life Cycle Stage Material flow North Indiana Central Indiana
Soybean farming Acres of soybean crop harvested - sq. m 5.530000e+09 308000000.0
– Water applied - cubic m 6.750000e+08 37500000.0
– Soybean - kg 1.800000e+09 91200000.0
– Fertilizer applied - N (kg) 2.840000e+06 3420000.0
– Bio fixation - N (kg) 1.510000e+08 192000000.0
– Fertilizer applied - P2O5 (kg) 1.720000e+07 20800000.0
– Fertilizer applied - K2O (kg) 4.620000e+07 55700000.0
– N emissions air (kg) 1.170000e+07 14900000.0
– N emissions soil (kg) 3.850000e+06 4910000.0
– N emissions water (kg) 1.000000e+07 12800000.0
– P emissions water (kg) 1.200000e+06 1530000.0
Soybean processing Soybeans used (kg) 1.800000e+09 91200000.0
– Sodium hydroxide (kg) 1.730000e+07 878000.0
– Methanol (kg) 3.490000e+07 1760000.0
– Hexane (kg) 3.680000e+08 18600000.0
– Water (kg) 1.730000e+07 878000.0

county does not produce soybean oil onsite, and instead uses soybean oil from another facility

in the same city of Morrisontown. Hence, in the central facility, the process involves buying

soybean oil from the nearby soybean crusher. In this case, the co-product of soymeal is

produced at the crusher unit, hence the impact was allocated using mass-based allocation

to biodiesel production. As seen in table  2.1 , the capacity of production in the northern

facility is significantly larger than central facility production. This implies that one can

assume almost all soy-biodiesel to come from the northern facility, however, for the purpose

of demonstrating the impact of variations in processing pathways, a comparative LCA was

performed here. The functional unit used for comparison in this study is per-liter biodiesel,

which is being produced in both pathways. Mass-based allocation was used at the respective

process units for the allocation of life cycle impacts to biodiesel and co-products. Process

models were built for the conversion process in Aspen Plus (Version 8.8, Aspen Technologies)

to obtain the unit process data that were fed into SimaPro (Version 9, PRé Consultants) for

the life cycle stage of soybean processing to biodiesel.
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Biodiesel Production Process Modeling

For soybean biodiesel production, a two-stage process was used.

Stage 1—Soybean to soybean oil conversion: In the first stage, soybeans are first cleaned

to separate out any particulate contaminants before being cracked. After cracking open the

beans, all the hulls are separated using blasts of air. Once hulls are separated, the beans are

crushed into flakes and then processed to extract oil using a hexane extraction process. The

soybeans were assumed to contain 19.2% oil in the form of three triglycerides: linoleic, oleic

and palmitic fatty acids [  40 ]. The various unit operational blocks used in Aspen plus are

shown below in figure  2.2 . Some of the assumptions about unit operations will result in

variations from actual plant flows, however, most of the chemical processes were captured.

Figure 2.2. Stage 1 of soy diesel production process

Stage 2—Soybean oil to biodiesel conversion: Soybean oil was converted into biodiesel by

a series of transesterification reactions in the presence NaOH. Soybean undergoes transester-

ification in a reaction tank and the outputs of the reaction are a mixture of methylated fatty

acid molecules (biodiesel) (ex: CH3-L, CH3-O and CH3-P), glycerol, and unreacted inter-

mediate products, along with the catalyst NaOH. This mixture is then selectively distilled to

separate out biodiesel. Reaction kinetics for soybean biodiesel production was obtained from

literature [ 41 ]. As in stage 1, some of the modeling assumptions about unit operations will

result in variations from actual plant flows, however most of the chemical processes are cap-
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tured. The operational blocks modeled in Aspen plus are shown in figure  2.3 . The northern

facility combines both these stages in a single plant. Therefore, for northern biodiesel pro-

duction, these two stages were combined as single plant data. The central Indiana uses

the soybean oil from a soybean crushing facility nearby and is transported to the soybean

biodiesel production facility by truck. The specific type of Aspen Plus reactors (or aspen

blocks) that were used are shown in table  2.3 .

Figure 2.3. Stage 2 of soy diesel production process

Table 2.3. Aspen plus reactor blocks used in modeling
Unit operation Aspen Plus Block Block details
Transesterification RCSTR Rigorous simulation with kinetics reactions
Methanol Recovery RadFrac Rigorous multi-stage distillation model
Water Washing Liquid-Liquid Extractor Rigorous multi-stage liquid-liquid
– – extractor model
Biodiesel Purification RadFrac Rigorous multi-stage liquid-liquid
– – extractor model

Transportation Life Cycle Stage

The next important difference in biodiesel production in North and Central facility is the

logistics involved in moving the feedstock between processes. As seen in the system boundary

(figure  2.1 ), the transportation in north and central biodiesel production involves moving

soybean first to the grain elevators, and then to either the grain crusher, as in the central
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region, or to the biodiesel plant, as in the north region. The calculation of the transportation

life cycle stage is described for both systems below.

Northern Biodiesel Production: In northern production system, soybeans were either

directly transported to the facility (if the distance of the facility is less than 30 mi from

the farm) [ 42 ] or transported to local grain elevator first, from which point the soybeans

were then transferred to the processing facility. Since county elevator centers are present

in almost all counties in Indiana [ 43 ], the distance between the production facility and all

the northern county centers were calculated using Google maps (shortest driving time) and

truck transportation was chosen as the mode of transport to ship the grains. The distances

were used, along with the weight of the soybeans transported from each county to the

biodiesel plant in SimaPro, to calculate the county-wise environmental impacts associated

with transporting the soybeans.

Central Biodiesel Production: In the central facility, the feedstock is soybean oil which

comes from a nearby crusher (Bunge North America) in Morrisontown. Once again, it

is assumed that all central Indiana counties will ship their grains to the facility via grain

elevators, with only one exception: the distance to facility is less than 30 mi, in which case the

grains are directly shipped to the crushing facility. Similar to the northern counties, Google

maps was used to calculate the distances and was used along with the weight transported in

SimaPro to calculate the county-wise environmental impacts associated with transporting

the soybeans.

Upstream Life Cycle Inventory Data

Additional inputs to the farming life cycle stage and processing stage for production of

biodiesel were modeled using unit process information from Ecoinvent and US LCI datasets.

These upstream data include inputs to the farming stage such as various types of fertilizers

and chemical inputs in soybean diesel production (eg: Hexane for extraction process). Hence,

the upstream process representation is an average representation that does not capture any

regional variation in manufacturing impact for those products. The material flow mapping

to SimaPro is shown in supplementary material.
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2.3.3 Allocating Spatial Impacts at County Scale to Soybean Based Biodiesel
Production

Spatial variations of assessed impacts occur due to variations in farming stage at county

scale and associated transportation to the biodiesel plants. Since only one soybean biodiesel

plant exists for each region studied, the final impacts due to farming required for support-

ing biodiesel production and transportation are allocated back to the county based on their

contribution to biodiesel production. It was assumed that all counties in a region contribute

towards the supply of soybeans for biodiesel production. The amount each county supplies

to the biodiesel production was assumed to be equal to the county’s soybean relative pro-

duction within a region multiplied by the demand for soybean at the biodiesel plant. For

example, if a county ‘A’ produces ‘X’% of the soybeans in the northern Indiana region, then

it was assumed that ‘X’% of the total demand of soybeans by the biodiesel plant in the north

was met by the county ‘A’ and ‘X’% of all the impacts associated with producing a liter of

biodiesel in the northern plant was allocated to the county ‘A’. Similarly, impacts associated

with transporting the ‘X’% of soybean demand to the biodiesel plant was allocated to county

‘A’. The same allocation technique was applied to impacts of biodiesel production in cen-

tral Indiana. The percentage calculation for each county is provided in the supplementary

material.

2.4 Results

2.4.1 Northern Indiana

Figures  2.4 and  2.5 (1st and 3rd columns) show the per-liter biodiesel environmental

impacts of producing biodiesel at the northern plant in Claypool, Indiana. Among the im-

pact of all the north counties studied, specific patterns of environmental impacts were found.

Allen and White county were the top counties in the north that had the highest environ-

mental impacts in terms of global warming potential, eutrophication, water consumed, and

land used per liter of biodiesel produced. These results were consistent with the fertilizer

and water application practices observed during the life cycle inventory collection. These

counties tend to use some of the highest fertilizer and water per acre of soybean crop in the
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entire state. On the other hand, Starke and Steuben counties in the north had the lowest

environmental impacts in all the categories studied. When assessing transportation-related

global warming and eutrophication impacts, it may initially seem trivial that the farther

the soybeans must be transported, the larger the impacts. However, since different counties

produce different amounts of soybeans, the results show the impacts considering not only

distance travelled, but also the individual county’s contribution to the total biodiesel plant’s

soybean demand. The highest environmental impacts related to this distance, coupled with

soybean contribution, were seen in the counties of Benton and Jasper.

Figure 2.4. Farming life cycle stage impact assessment

2.4.2 Central Indiana

Figures  2.4 and  2.5 (2nd and 4th columns) show the per-liter biodiesel environmental

impacts of producing biodiesel at the central soybean oil plant in Morrisontown, Indiana.

Similar to the northern counties, some specific patterns were also observed in the central

counties. Montgomery and Randolph counties had the highest environmental impacts re-

lated to water and land use, global warming potential, and eutrophication. Like the northern

counties, this observation is consistent with the high fertilizer and water usage data observed

in the life cycle inventory data collected. Of all the counties studied in the central region,
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Figure 2.5. Transportation and biodiesel production life cycle stage impact assessment

Vermillion and Marion counties had disproportionately low impacts per liter of biodiesel pro-

duced. This was again consistent with the very low fertilizer usage observed in the county

based on the life cycle inventory data collection. When it comes to transporting the soy-

beans to Morrisontown, unlike the northern counties, the impacts were primarily related to

distance transported and only slightly based on the contributions of the individual counties

towards biodiesel production in the central plant. This can be explained by the dispropor-

tionately smaller biodiesel production capacity of the central plant coupled with a relatively

uniform soybean production in the central counties. Since the soybeans were assumed to

be first transported to the soybean oil processing center and then to the biodiesel plant

(not directly to the biodiesel plant, as in the north counties), it is possible that the soy-

bean oil processing center, which produces relatively generic commodities (oil and soymeal)

compared to the biodiesel plant, sees a relatively uniform supply from the soybean farmers.

Since the production facility is small, it may not be profitable in central Indiana for farmers

to transport to biodiesel production, hence there is a lower impact from transportation in

life cycle of biodiesel production in this part of state. Overall, at an aggregate level, both

regions performed similarly in terms of global warming potential, but the northern region

performed slightly better than the central in terms of eutrophication.
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2.5 Conclusions

There were some commonalities between the studied environmental impacts of the north-

ern and central Indiana counties. Irrespective of geographic region, the counties had higher

environmental impacts if the fertilizer and water application was high. From the life cycle

inventory data and the impacts studied, it appears that the farming practices vary greatly

from county to county in both northern and central Indiana, hence sourcing soybean from

different counties can result in a different overall impact for biodiesel production. However,

based on the transportation model assumed in this study, it appears that the transportation-

related environmental impacts are different in northern and central regions. While the central

region was not sensitive to the contribution of individual counties towards biodiesel produc-

tion, and was mainly sensitive to the distance travelled, the northern region was sensitive

to both distance and the contributions of individual counties. This can be attributed to the

volume of transportation based on capacity of the biodiesel production plant, which is much

lower in the central plant.

Based on the environmental impacts calculated and patterns observed in this study, it

can be concluded that the spatial distribution of environmental impacts of bio-based energy

production depend on at least four factors: (1) fertilizer and water application rates for

feedstock, (2) land usage, (3) distance to the processing plant, and (4) the available options

for soybean farmers to sell their harvested soybeans. While the technology for biobased

processing can be same, it can have different spatial impacts based on these factors. Hence,

from a life cycle perspective, these sub-regional spatial variations can make the same prod-

uct being produced in a different facility more favorable from an environmental perspective.

Thus, these sub-regional impacts of a processing facility must also be considered while de-

ciding on the environmental friendliness of products made using almost the same technology.

Such spatial impact variations are not currently included in LCAs for bio-based energy and

production, however, they must be included for decision making. Although not included in

this study, it is also recommended that other factors, such as soil quality and percentage of

cover crops in a county, along with energy inputs, be included in future studies, as these can

also influence the spatial environmental impacts.
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3. COMPUTATIONAL BOTTOM-UP METHODS TO

QUANTIFY ADVANCED THERMODYNAMIC FLOWS TO

PERFORM THERMODYNAMIC SUSTAINABILITY

ASSESSMENT

This chapter is based on the following published article: [ 44 ] V. S. G. Vunnava and

S. Singh, “Entropy generation analysis of sequential Anaerobic Digester Ion-

Exchange technology for Phosphorus extraction from waste,” Journal of Cleaner

Production, vol. 221, pp. 55–62, Jun. 2019. DOI:  10.1016/J.JCLEPRO.2019.02.020 

3.1 Chapter overview

In the previous chapter (ch- 2 ), bottom-up computational methods were established to

quantify material flows at high spatial resolution when no regional empirical data was avail-

able to perform environmental impact assessment. In this chapter, bottom-up computational

methods are proposed to quantify another type of physical flow: thermodynamic flow. In

environmental sustainability research literature much emphasis has been given to material

and monetary flows when compared to thermodynamic flows. This can be attributed to the

focus of the research community on achieving better material resource use intensity with the

help of existing mass-balance approaches to account material flows. The inherent thermo-

dynamic irreversibilities in all the production systems and the abstract nature of the field

make it challenging to quantify thermodynamic flows, especially more complex thermody-

namic flows like entropy. However, thermodynamic efficiency is closely linked to material use

intensity. Most of the energy used for human activities is produced by combustion of various

natural material inputs and the per unit energy requirement of transforming materials could

vary greatly based on the production process [ 45 ]. This means that if the thermodynamic

efficiency of a production process is improved, it can lead to a reduction in overall material

usage related to energy generation. Therefore, accounting thermodynamic flows could be

equally important as accounting material flows for achieving reduction in global resource use

intensity.
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Several thermodynamic methods and metrics have been used in comparative analysis to

select the technologies with minimal energy consumption. Simplest form of energy anal-

ysis involves assessment of total energy requirement by fuel or electricity consumption for

running a system [ 46 ]. However, as the complexity of the systems increase, simple energy

analysis does not provide in-depth insights into thermodynamic performance of the tech-

nology such as specific the design improvements needed to reduce the energy consumption

and identifying the reasons behind energy inefficiencies. To overcome this deficit of energy

analysis, exergy has been used as a metric which can provide insight into specific inefficient

components of the system under study [ 47 ]. In a typical exergy analysis, the available energy

consumption of various processes in the system under study are calculated and the processes

that have highest exergy losses are identified. These selected processes are then put forward

for improvement in design to improve energy utilization. Further, to include supporting up-

stream and downstream processes of a system, both energy and exergy analyses have been

improvised on a life cycle scale to quantify cumulative consumption [ 48 ]. To achieve de-

sign optimization to improve efficiencies of identified sub-systems, more advanced methods

such as exergy loss minimization and entropy generation analysis (EGA) have been used for

system design optimization[ 47 ][ 49 ].

This chapter aims to demonstrate how entropy generation analysis can quantify the in-

efficiencies in a technical system and provide a starting point to improve thermodynamic

efficiency via design optimization, which could consequently help reduce material use inten-

sities. A case study of an emerging phosphorus recovery technology was used to demonstrate

the application of bottom-up entropy generation analysis.

3.2 Motivation and Background

Phosphorus (P) is a critical resource as it is a major nutrient for food production and the

availability of P is limited with irregular geographical distribution. Most of the commercial

phosphate ores are disproportionately concentrated in a very few countries with the highest

reserves being found in Morocco, China, Algeria, Syria, South Africa, Australia and the US

[ 50 ]. Considering the recent supply and demand ratio, it is predicted that the world’s demand

for P will overrun supply by 2033 [  51 ], i.e., the world may reach peak P production. However,
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the demand of P will keep increasing as the demand of food production increases with

increasing population. Despite the anticipated gaps in supply and demand of P, currently

the available P in waste streams is not completely recovered. This leads to large amount

of P being wasted as discharges of waste-water produced in agriculture, storm water [ 52 ]

and livestock waste [ 53 ]. Along with the waste of valuable resource, this also leads to major

environmental challenges such as eutrophication and oceanic dead zones [ 54 ]. It is estimated

that it costs the US nearly 2.2 billion USD annually in damages due to P and nitrogen (N)

water pollution [ 55 ]. A recent incident of toxic algal bloom was associated to P release in

the Lake Eerie causing water supply cut-off for the citizens [  56 ]. Therefore, it is extremely

important to recover P not only to meet the growing demand, but also to reduce the negative

environmental impacts associated with P run-off along with reducing economic damage of

infrastructure caused by struvite scaling in WWTPs [ 57 ].

The multiple benefits associated with P recovery from waste-water and treatment plants

have motivated development of novel technologies [ 58 ], several of which are still at lab or

pilot scale. While recovery of P can provide environmental and economic benefits, to avoid

unintended consequences such as increased energy consumption, a thorough assessment of

available options is necessary before large scale adoption of technologies under development.

Since sustainability assessment of an emerging technology is a multidimensional problem,

different metrics have been proposed to understand the trade-offs due to adoption on a

new technology. For example, carbon footprint [ 59 ] focusing on GHG reduction, water

footprint [ 60 ] improving water sustainability, ecological footprint [  61 ] providing insights into

land utilization etc. Due to the multidimensional nature, there is also emphasis on using

multiple footprints together for decision making [ 62 ] to include the insights about trade-

offs. Systems approach such as Life cycle assessment (LCA) methodologies have been used

recently to evaluate such trade-offs [ 63 ]. While cumulative energy metrics used frequently in

LCA provide an overall energy assessment, these do not provide a mechanistic understanding

about opportunities to further improve technologies for reducing energy consumption. As

reducing energy consumption is considered a key factor in reducing GHGs [ 12 ], understanding

how to reduce energy intensity of nutrient recycling technologies will be critical to select

and implement the most sustainable technology for P recovery. Hence, a first principle
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thermodynamic assessment such as EGA will provide required mechanistic insight into energy

consumption inefficiencies.

Approaches like EGA and entropy generation minimization (EGM) [ 47 ] will also prove

useful to improve the design of waste treatment systems in order to achieve the goal of

clean and sustainable technologies at large scale. However there are no studies of waste-

water treatment plants using advanced thermodynamic methodologies such as EGA, that

present a rigorous thermodynamic assessment for design improvement. Thermodynamics

will play a crucial role in assessing sustainability of technologies for creating closed loop

material cycles such as in P recovery by providing insights into energy requirement for the

large scale adoption of technologies. Therefore, this case study is focused on implementing

an advanced thermodynamic method of EGA for performing sustainability assessment of a

modeled P recovery technology. First, the EGA methodology and its advantages as metric

for energy sustainability assessment of recycling technologies is described. Second, a brief

review of existing P recovery technologies is presented. Finally, EGA is implemented on the

modeled sequential anaerobic digestion (AD) - ion exchange (IE) system (a system where

AD is sequentially followed by IE) for P recovery from waste-water is presented. Selection

of IE based technology was based on studies showing that IE systems provide good trade-off

between P recovery rate, energy consumption and other environmental impacts [ 64 ]. The

reason for choosing EGA over exergy analysis is that the current case study considers an

anaerobic digester and no exergy data is available for all the biochemical reactions that take

place inside the digester. Whereas entropy changes of the biochemical reactions that take

place inside the digester can be calculated from online biochemical databases as explained

in the next section (  3.3 ) and entropy changes for ion-exchange can be calculated using batch

experiments. Further, EGA provides insight into the mechanistic causes behind energy losses

in each of the unit operations.
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3.3 Methodology

3.3.1 Entropy Generation Analysis (EGA) Methodology

EGA and exergy analysis are closely related as both originate from second law of thermo-

dynamics and account for losses in system. EGA focuses on quantifying entropy generation

(Ṡgen), which is a “residue” needed to complete the entropy balance. Ṡgen is directly related

to exergy analysis of the system as established by the Gouy-Stodola theorem (eq  3.1 ). In eq

 3.1 , T0 is the temperature at which the system is functioning, Ẇ rev is the theoretical work

that can be performed by a system in the absence of any irreversibilities and Ẇ is the actual

work that is performed by a system. The difference between these quantities is called exergy

lost which is quantified in exergy destruction methods. The methods of EGA and EGM

have mostly been used for industrial designs after the work done by Bejan. These methods

also allow the selection of most thermodynamically efficient technologies for scaling up from

several new technologies under development [ 65 ] for waste-water treatment and nutrient re-

covery. Considering the strength of EGA in informing design improvements, it is utilized

in current work for performing thermodynamic sustainability analysis of nutrient recovery

system. EGA approach is based on first principle estimation of energy losses using mech-

anisms behind entropy generation, so it allows for analyzing the system for improvement

opportunities by relating the design to mechanisms of losses.

Ẇ rev − Ẇ = T 0Ṡgen (3.1)

It is evident from eq  3.1 that Ṡgen is directly proportional to the exergy lost. This means

that same conclusions about system efficiency can be made either by calculating exergy lost

or Ṡgen. In the current study Ṡgen calculation approach is taken and Ṡgen calculation opens

up an opportunity for system design improvement. The equation for the second law of

thermodynamics is shown in eq  3.2 . In eq  3.2 , S is the entropy of the control volume (CV);

Ti is the temperature at which the heat transfer Q̇i enters the CV, ṁsi is the entropy flow

into or out of the system. The second law of thermodynamics states that the Ṡgen term in eq

 3.2 is always greater than or equal to zero. It can be zero in the hypothetical case where all
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the changes in the system are reversible. Hence, a goal of designing sustainable technologies

for minimum energy consumption is to minimize the entropy generation in the system to

achieve the goal of reduction in energy wastage.

Ṡgen = dSCV

dt
−

∑
i

Q̇i

T i
+

∑
out

ṁsi −
∑
in

ṁsi,

with Ṡgen ≥ 0
(3.2)

Eq  3.2 provides an opportunity to improve the design as all the terms on the right side

of the equation can be calculated based on chemical composition information for streams,

mechanisms of entropy change in the unit operations in a system and heat flow information,

thus allowing to quantify the net Ṡgen for the given system. Each term on the right hand

side of the equation can be further expanded as functions of mass/ heat transfer and design

characteristics for each sub-process and unit operation in the system. With the knowledge

of Ṡgen as function of mass/heat and design characteristics, it becomes possible to create

an objective function to minimize the Ṡgen for the system and provides the starting point

to do EGM. However, EGM is a complex task and computationally expensive, therefore it

is usually preceded by EGA to identify the sub-processes where there are opportunities for

improvement. In this work, the EGA approach on P recovery technology was demonstrated

to pave the way for design improvements in upcoming technologies using EGA followed by

EGM.

3.3.2 Current P recovery technologies

Several P recovery technologies are available today at various stage of development. Ta-

ble  3.1 lists some of the major P recovery technologies available at industrial scale. Most

of the current P recovery technologies that are used commercially implement crystalliza-

tion and precipitation processes to convert the water soluble phosphate molecules (usually

orthophosphates) in waste-water into solid forms such as struvite. Since, these processes

require flows rich in phosphate ions and such flows are usually located after biological treat-

ment of waste-water, crystallization and precipitation is located at the end of waste-water
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treatment. There are a number of industrial scale processes that are currently deployed to

recover P from waste-water. Among these nutrient recovery processes, IE technology has

also been put forth as a potential method if it can be made economically competitive. The

benefit of IE method involves easier operation compared to fluidized bed reactors. REM

NUT is one of the process that uses ion exchange technique and allows for a simultaneous

removal of ammonium ions and phosphate ions from waste-water. IE technology is already

being used in municipal waste-water treatment plants (WWTP) to remove/ recover nitrogen

compounds like ammonium using zeolite resins [ 64 ]. IE takes place with the help of a resin,

that can be an anion exchange or a cation exchange resin, which are loaded with charged

functional groups. These contain “counter ions” that are exchanged with ions that are to be

separated from the effluent. Hybrid anion exchange (HAIX) resins have also been developed

to separate phosphate from waste-water [ 66 ]. HAIX resins work more like adsorbent resins

than IE resins. These are loaded with particles with high affinity for phosphate ions and are

embedded inside a polymeric anionic resin irreversibly. HAIX do not contain any counter

ions but are loaded with charges that have very high selective affinity for phosphate ions and

are also able to capture phosphate ions in the presence of high background concentrations of

other anions like sulfate, chloride, and bicarbonate present in waste-water [ 66 ]. The authors

reported 90% recovery of P entering the system in less than 10 bed volumes. This is one the

main reasons that IE was selected in this study to demonstrate application of EGA in waste

recovery system, since IE improves the recovery rate.

Table 3.1. Phosphorus recovery technologies at Industrial Scale [  58 ]
Process Developer Feed Method Final product Influent flow P conc. (mg/l) at installed sites
AirPrex Berliner

Wasserbetribe
Digested sludge/
sludge liquor

Crystallization Struvite 13.7

Crystalactor® DVH Water BV Liquid Crystallization Calcium phosphate 60 - 80
Ostara Pearl™ University of British

Columbia / Ostara
Liquid Crystallization Struvite 60 - 150

Phosnix Unitika Ltd. Liquid Crystallization Struvite 100 - 150
Seaborne Seaborne Environmental

research laboratory
Digested sludge Acid leaching,

crystallization
Struvite 600

3.3.3 EGA for Phosphorus (P) recovery from Waste Water Treatment Plant

P recovery model in the current study is a side stream process associated with a waste-

water treatment plant (WWTP). A side stream process is one which runs independently
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alongside the main waste-water treatment process and uses some products from the main

process as its inputs. The side stream for P recovery here (figure  3.1 ) uses the sludge liquor

from the secondary sedimentation stage of WWTP as the starting input material. The

sludge at this stage is rich in phosphates [ 58 ]. The system boundary in this work has two

unit operations: Anaerobic Digester (AD) and Ion-Exchange (IE). The role of AD is to make

the P present in sludge available for recovery while IE efficiently recovers the P generating

clean water at the end. In anaerobic conditions, i.e., in the absence of oxygen, the organisms

present in AD reactor make the P present in biomass available in a soluble form that can

be separated in the IE stage of the recovery process. For this study, it was assumed that

the sludge liquor from the anaerobic digester consists only of carbon (C), nitrogen (N) and

P compounds. Carbon was assumed to exist only as acetate, N as ammonium and P as

orthophosphate [ 67 ].

The AD contains P accumulating organisms (PAOs) which release P as ortho-phosphate

under anaerobic digestion. The phosphate and ammonium rich solution is then sent to an

anion exchange column followed by a cation exchange column. Both phosphate (PO−3
4 ) and

ammonium (NH+1
4 ) ions get selectively exchanged at anion and cation exchanger respec-

tively. Once the ion-exchange columns are saturated with phosphate and ammonium ions,

brine solution is passed through the columns to regenerate the resins. The eluate from the

ion exchange columns now contain NaCl, P as phosphate ions and N as ammonium ions. To

this solution, MgCl2 and NaOH are added to precipitate out struvite (MgNH4PO4.6H2O),

similar to the chemical precipitation method but this time with much more P recovered as

struvite. Thermodynamics of regeneration cycle and struvite precipitation method is not

studied in this work as the focus is on demonstrating the applicability of EGA method and

it is difficult to assume how regeneration cycle works with our hypothetical modeled system.

To calculate the total Ṡgen in the modeled P recovery process, eq  3.2 is used along with

the relationship of terms to the control volume (CV) of system as shown in fig  3.2 . The

current study uses a control volume approach. In this approach, the internal properties are

averaged throughout the control volume (ex. average heat flow, average mass flow, etc) and

local in-equilibrium is not considered. Such a type of approach is also called as black-box

approach [  68 ]. A black-box approach is taken because it is not feasible (within the scope of
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(1): ANAE-IN (2): ANAE-OUT/ ANIX-IN (3): ANIX-OUT/ CATIX-IN
(4): CATIX-OUT (5): Q̇AE (6): Q̇IE

Figure 3.1. Sequential AD-IE P Recovery System (Dotted Line shows the CV for EGA)

this study) to know the distributions of temperature, pressure, density, etc inside the AD

tank as plenty of biochemical reactions take place alongside metabolizing microorganisms.

Hence, the contribution to entropy change in control volume due to local irreversibilities is

not accounted for which will require more complex flow pattern modeling. The overview of

the EGA methodology for the P recovery system is shown in figure  3.3 .

Figure 3.2. Entropy flows in a control volume (CV)
Scv is the entropy of the control volume, s is the specific entropy, ṁ is the mass flow rate and Q̇

T is the
entropy flow due to heat Q exchanged, and T is the temperature at the control volume boundary.

The method begins with system design selection which includes identification of all the

flows within the CV. In the second step, the second law of thermodynamics is applied onto

the CV. In the third step each sub-system within in the CV is analyzed individually and

mechanisms associated with entropy generation in each sub-system are are calculated in
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Figure 3.3. EGA of P recovery method

order to evaluate the total rate of change in entropy within the CV (dSCV
dt

). Results are

evaluated to identify the mechanisms contributing the most to total (Ṡgen), thus providing

an opportunity for improving design to minimize (Ṡgen). The details of calculations in each

sub-system is provided in the following sections.

Entropy change calculation in Anaerobic Digester (AD)

For AD, the change in entropy of the whole CV is related to the chemical reactions that

lead to change in the forms of existing chemical compounds. Since it is a black box approach

and the flows are not steady during the chemical reactions, the term dSCV
dt

for each unit

operation is calculated as the product of the molar flow rate of the reacting species enter-
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ing the unit process and the change in molar entropy (∆S°) of the chemical reaction. The

associated biochemical reactions happening in AD are shown in table  3.2 . All the biochem-

ical reactions inside the digester are part of a larger biological pathway called Ketogenesis

[ 69 ]. The PAOs take in acetate molecules under anaerobic conditions and store them in the

form of poly-hydroxy butyrate and in the process of ingesting acetate, they release P as

orthophosphates. The initial and final states of CV used for calculation in anaerobic diges-

tion are shown in figure  3.4 . The entropy change associated with this state change is the

mechanism leading to entropy change of control volume during anaerobic digestion process.

Hence, calculating the contribution of these mechanisms (i.e. biochemical reactions) for total

entropy generation in the system allows to identify the processes that can be optimized for

reducing entropy generation.

Figure 3.4. Initial and final stages of AD for calculation of Entropy Change in AD.

This entropy change for reactions was calculated with the help of the standard Gibbs

energy equation, ∆G° = ∆H° − T∆S° (H-enthalpy, G-Gibbs free energy, S-entropy and

T-Temperature). ∆G° values were found from the MetaCYC database [ 70 ] of biological

pathways and ∆H° values were calculated based on bonds broken and formed during the

reactions. Finally, ∆S° values were calculated using ∆G°, ∆H° and the temperature of 25°C

[ 71 ] which was temperature of operation for AD. Other operating temperatures may lead to

a different value, however the data was limited to perform calculations for other operating

temperatures. Product of final value of ∆S° and molar flow rate was used as total entropy

change in the control volume during the AD step.
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Entropy change calculation in Ion Exchange (IE)

Similar to AD, initial and final states of the system were required to calculate total

entropy change in CV associated with IE. For the IE, the initial and final states are related

to the change in the form of ionic site which results in the overall entropy change of the

system. In this case, the entropy change value for the cation exchange reaction was found

in the literature and the entropy change of anion exchange reaction was calculated using the

Langmuir isotherm eq.( 3.3 ). It relates standard entropy change ∆S°, equilibrium constant

KC , standard enthalpy change ∆H°, the universal gas constant R and the temperature T of

the IE chemical reaction.

lnKC = ∆S°
R
− ∆H°

RT
(3.3)

To calculate ∆S°, the unknown parameters KC and ∆H° were found by performing batch

ion exchange experiments at different temperatures using Purolite® MN500 (Hydrogen as

counter ion) as the cation exchange resin and Purolite® FerrIX™A33E as the anion exchange

resin. ∆S° was then calculated using the intercept of a linear plot of 1/T versus ln KC. Since,

the entropy generation is dependent on the type of resin based on the isotherm characteristics,

changing the type of resins can be a way of minimizing overall entropy generation for this

system. The method shown here, can be used for different types of resin to understand such

design changes.

Entropy Flow Rates at various streams in the P recovery system

Last two terms in eq.  3.2 for calculation of total entropy generation in the overall

system are related to flows streams. Six flow streams (see figure  3.1 ) were considered

based on input and output of the unit operations. These streams are input stream to

AD (ANAE-IN), output stream from AD (ANAE-OUT), input stream to anion exchanger

(ANIX-IN), output stream from anion exchanger (ANIX-OUT), input to cation exchanger

(CATIX-IN), and output from Cation exchanger (CATIX-OUT). To calculate the entropy of

the chemical mixtures that go into each of these operations, ASPEN Plus-analysis module

was used. ASPEN provides these standard relationships easily, so it used values from this
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software. It was assumed that researchers interested in entropy calculation will either be able

to use literature values, thermodynamic principle or will have access to standard databases

such in ASPEN Plus. This allowed us to calculate the contribution of flow streams (ṁsi)

in Equation  3.2 .For entropy generation of the heat flow from the the heat pumps used to

maintain temperature, a heat pump with a 30 kW capacity and an efficiency of 70% was

assumed to calculate the contribution of heat source in entropy generation associated with

the process.

3.4 Results

Table  3.2 and figure  3.5 show the results of ∆S° calculations for AD biochemical

reactions and ion exchange batch experiments respectively. Figure  3.5 is the graphical

representation of the isotherm equation (eq  3.3 ) which is plotted from experimental values

of Kc at various temperatures and the value of ∆S° is calculated from its intercept value.

Table 3.2. Biochemical reactions inside anaerobic digestion
No. Reaction ∆G° (kCal/mol) ∆H° (kCal/mol) ∆S° (kCal/mol-K)

1 Acetate + ATP + CoenzymeA −−→ -11.19 -95.00 -0.28
AcetylCoA + AMP + diphosphate

2 AcetylCoA + AcetylCoA −−→ 7.06 4.00 -0.01
AcetoacetylCoA + HCoA

3 AcetoacetylCoA + AcetylCoA + H2O −−→ -9.58 16.5 -0.087
HMGCoA + HCoA + H+

4 HMGCoA −−→ -1.26 1.00 0.0076
Acetoacetate + AcetylCoA

5 Acetoacetate + NADH + H+ −−→ 3.38 -82 -0.28
(R)–3-hydroxybutanoate

Table  3.3 shows Ṡgen for the complete side stream process of P removal studied in

this work. Since, the process requires a steady temperature of (25°C), the heat pump was

continuously removing heat from the CV, thus leading to heat flow out from the system (-

70.13 kJ/K-hr). At the given removal efficiency of the IE resins, the total Ṡgen is 149.03 Kj/K-

hr. As can be seen, the entropy change in AD is -ve which indicates a favorable process as

contribution to entropy generation is negative. This is mainly because the organisms utilize

the embodied energy of the waste organic compound for energy. Similarly, it can be seen that

both anion exchange and cation exchange have -ve contribution to the entropy generation

rate of the system which is because the ion-exchange process is driven by chemical potential

and both reactions occur with a negative entropy change. There is a gradual reduction of
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K c as a function of temperature, See eq. (  3.3 )

Figure 3.5. Experimental Calibration Curve to calculate of ∆H° and ∆S° for Anion Exchange Unit

entropy of flow streams, the input stream has 43.84 Kj/K-hr while the final output stream

from cation exchange is only 1.93 KJ/K-hr which can be attributed to relatively pure stream

of water leaving the system and high retention of PO−3
4 and NH+1

4 in IE system which can

be recovered with the regeneration cycle not studied here. Another important factor not

discussed in the study is the cost and maintenance of ion exchange resins. Studies have

shown that their maintenance can be costly at times [ 72 ], which will be focus of future

study when full life cycle of the system maintenance can be included. From this analysis, it

was concluded that the system can be made more efficient by improving the heat exchange

system as it contributes the most to the total Ṡgen. If the improvement in micro-organisms

allow the biochemical reactions to operate at same efficiency but without the requirement

of maintaining temperature at 25°C, it may reduce the requirement of heat removal, thus

lowering the entropy generation. This is obvious from an energy sustainability perspective,

however the method allows a quantification of how much reduction can be made when the

technology is adopted at large scale.

Although EGM is not performed in this study, EGA followed by EGM will accomplish

the task of design optimization. By using the Ṡgen calculated for the P recovery system as

the starting value, the right hand side of eq  3.2 can now be treated as an objective function

for Ṡgen minimization. The optimization can then be done utilizing various design variables
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Table 3.3. Entropy generation at each operation of the P recovery process
Operation dSCV

dt
(kJ/K-hr) ∑ Q̇

T
(kJ/K-hr) ∑

out ṅs (kJ/K-hr) ∑
in ṅs (kJ/K-hr) Ṡgen = dSCV

dt
- ∑ Q̇

T

+ ∑
out ṅs - ∑

in ṅs (kJ/K-hr)
Anaerobic digestion -17.00 -70.13 38.63 43.84 47.92

Anion Exchange -0.15 -70.13 34.64 38.63 65.99
Cation Exchange -2.30 -70.13 1.93 34.64 35.12

Total =149.03

that determine the overall design of P recovery the system. At the end of optimization,

these variables are assigned new values given by the optimization algorithm which in turn

effect the overall design of the system. A system design based on these optimized design

parameters will be thermodynamically more efficient (reduced Ṡgen) compared to the one

optimization process was started with. Since, the quantification of entropy generation here

is based on mechanistic approach, the values can easily be scaled up as the flow rates and

hour of operation changes.

3.5 Conclusion

Second law based analyses are seldom performed on nutrient recovery systems involving

different unit operations. In the current study, a second law based thermodynamic analysis

was performed on a modeled side stream P recovery system. EGA is proposed to be a viable

approach for comparison and selection of most sustainable nutrient recovery technology. The

application of EGA on systems involving biological operations such as anaerobic digestion

and chemical operations such as ion exchange was demonstrated. By performing EGA,

critical inefficiencies in a system can be identified and these sub-processes can be improved

or modified to improve the overall performance of the system. In the analysis presented

here, the maximum entropy generation is related to the temperature maintenance of the

system at 25°C which is related to the exothermic chemical reactions in both ketogenesis

cycle and the ion-exchange process. If the design of these systems can be modified to

improve heat dissipation there would be less energy requirement to maintain the desired

isothermal conditions. Hence, with the additional insights of causal factors in the entropy

generation found in this study, future studies can now utilize the mass/ heat transfer and

design characteristics of targeted unit operation, to create an objective function to minimize

47



the total entropy generation rate for the complete process. This will involve identifying the

role of mechanisms of flow patterns, mixing and reactor/column design for heat dissipation.

The variables for optimization may come from the design characteristics of the heat exchanger

used to maintain the temperature, from the parameters that go into selection of the reactor

type used for anaerobic digestion and also from the type of ion exchange columns used

in the ion exchange stage to selectively remove phosphate anions and ammonium cations.

Optimizations such as these usually have a lot of variables and performing an analytic

optimization is often difficult. Hence, optimizations that employ methods like evolutionary

algorithms can be used. Therefore, this work concludes that EGA and EGM can give new

insights into how designers can improve the performance of technologies for sustainable

energy consumption before large scale adoption. EGA is suggested as a complementary first

step to study thermodynamic sustainability of emerging technologies in conjunction with

other metrics that have been widely used so far. An EGA based comparative study can also

help in determining which of the systems studied have the highest potential for improvement

and can be a targeted for performing an EGM [ 73 ]. The formulations that come from

performing an EGA can be applied to several different systems performing similar functions

(in the current case, P recovery) and the relative significance of Ṡgen from different sources

among the systems under study can be discussed for performing a comparative study.

In terms of technology, the study here led to a conclusion that AD-IE systems can be

a viable and sustainable technology with very less energy requirement if heat requirement

can be reduced by design optimization as per our preliminary analysis. However, optimizing

energy consumption during operations (which is a long term impact for technology adop-

tion) needs to be complemented with a life cycle analysis (LCA) approach to include the

upstream energy requirements to build the system, prepare resin etc, which will be part of

a future study. In conclusion, EGA and EGM provide a very promising approach for design

and optimization of waste recovery technologies before adoption at large scale to avoid the

unintended consequence of increased energy demand. This will help to meet both resource

and energy sustainability goals.
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4. MAPPING ECONOMY-WIDE MATERIAL FLOWS USING

MECHANISTIC, BOTTOM-UP PHYSICAL SUPPLY USE

TABLES AND PHYSICAL INPUT OUTPUT TABLES

4.1 Chapter overview

The previous chapters (ch- 2 & ch- 3 ) established how bottom-up computational approaches

can be used to quantify material flows for a specific region and thermodynamic flows in the

absence of empirical data to perform sustainability assessment related to material and en-

ergy flows. This chapter focuses on scaling these established approaches to quantify flows

at an economy level consisting of different sectors, thus achieving high sectoral resolution to

perform sustainability assessments. Since the established bottom-up computational meth-

ods used in the previous chapters are reproducible spatially, temporally, and sectorally, these

were employed to quantify material flows, across multiple economic sectors in a region. This

chapter attempts to increase the scope of mechanistic bottom-up approaches from quanti-

fying material flows in a single production technology to modeling detailed and accurate

regional physical economies. Such an approach can finally overcome the challenges of both

allocation in top-down approaches and linear flow scaling in empirical bottom-up approaches.

To show how the mechanistic bottom-up approaches presented in this work can be used to

model physical economies, a case study of agro-based economy of Illinois, USA is used. Dif-

ferent material flows of industries in the agro-based economy of Illinois are simulated and

quantified using the methods discussed so far. The accounted flows are then used in conjunc-

tion with the Input-Output (IO) theory to account for the material flow interactions between

industries and develop a physical economy model within the IO framework. The physical

economy model was then used to implement system scale circular economy strategies in the

agro-based economy modeled. In this chapter, before demonstrating the case study, a gen-

eral methodology is presented first to establish a standardized approach for using bottom

up approach to map regional physical economy using Physical Input-Output Tables (PIOTs)

and then an approach to use the developed tables for circular economy strategies is given.

Standardization of approach will contribute to reproducibility of results, thus contributing
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to confidence in these systems scale transition strategies and can be used for wide range of

studies by the research community.

4.2 Motivation and background

IO methods [ 74 ] have provided a robust framework for research in Industrial Ecology (IE)

to map industrial and economic sector interconnections at multiple scales ranging from state

[ 75 ] [ 76 ] [ 77 ], national [ 78 ] [ 79 ], and global scale [ 80 ] [ 81 ] [ 82 ]. The mapping of interconnec-

tions through input output theory makes it possible to study cascading impacts in economy

due to change(s) in one sector(s) or industry along with evaluating total environmental im-

pacts using the environmentally extended Input-Output (EEIO) approach. One such IO

based modeling technique is Physical Input-Output Tables (PIOTs), which provides a com-

prehensive accounting framework for tracking material flows from one economic sector to

another and to the final end users. By doing so, PIOTs can help perform detailed Economy

Wide Material Flow Accounting (EW-MFA) which plays an important role in evaluating

and improving our resource use efficiency. PIOTs record all the transactions in physical

units, thus it also considers the flows such as emissions and wastes which are not reported in

construction of purely monetary input output tables (MIOTs), but added in enhanced EEIO

models.

As PIOTs can help track commodities used, produced, emissions and waste flows for

each sector, it provides a framework to map all the material flows in an economic region and

provide a physical economy model for the region being studied [ 83 ]. Moreover, PIOTs are

compatible with national accounts of economic flows and can be used in conjunction with

national level Material Flow Accounts (MFAs). Some of the PIOTs applications include un-

derstanding the physical metabolism and structure of an economy [  84 ], water energy nexus

at regional city levels [ 85 ], tracking elemental flows across a regional physical economy [ 75 ],

and modeling solid waste recycling scenarios [ 86 ]. However, the true potential of PIOTs and

their applications can be realized only if material flows are accounted at highly disaggre-

gated economic sectors level. PIOTs developed using aggregated flows only provide minor

improvements to conventional MFAs by allocating all the material flows in the economy to

a few highly aggregated sectors. This aggregation gives rise to complications such as sector
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aggregation bias during material flow allocation. The aggregation bias was demonstrated in

a recent study using EEIO by highlighting overestimation of raw-materials requirement in

an analysis using aggregated biomass sector [ 87 ]. Despite the known benefits of PIOTs, their

development in a timely fashion for different regions of the world has been very slow. This

has limited the use of PIOTs in solving relevant problems in IE such as material tracking

over multiple years or at highly disaggregated regional scale. Specifically, sub-national level

tracking of materials flows using PIOTs is very rare except for a few studies that only track

one or a few type of materials [ 75 ] [ 76 ][ 85 ]. This is mainly because developing PIOTs at

highly disaggregated economic sectors at regional levels has always been very challenging

[ 83 ]. The primary hurdles to build disaggregated PIOTs include reliable data unavailabil-

ity, data heterogeneity, validation, and continuity of data collection for long term updating.

Additionally, compiling the regional data in the PIOT framework itself is very tedious even

for a moderate size economic region [ 75 ]. Therefore, there is a critical need to improve the

methodologies and tools for development of PIOTs at desired disaggregation level. This

chapter aims at addressing these research gaps using mechanistic and bottom-up models to

simulate material transformation processes across different industries in a region and use the

material flow information extracted from them to model physical economies.

The chapter is organized as follows: section  4.3.1 details how mechanistic and bottom-up

approaches can be used develop engineering models (EMs) that can simulate material flows

associated with various economic sectors in a region, section  4.3.2 provides details on how

the material flow information from the models can be used to construct the physical economy

model in the form of Physical Supply Use Tables (PSUTs) and PIOTs. Finally, section  4.4 

describes the application of the methodology using a case study to identify system scale

circular economy transition strategies for the agro-based physical economy model of Illinois,

USA.

4.3 Methodology

Computational models called “Engineering models” (EMs) form the core of the method-

ology presented in this chapter. EMs are scaled mechanistic models that mimic the material

transformation processes in various economic sectors of a given region. They are based on
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fundamental mass balance and physics based equations that mechanistically simulate pro-

duction of various commodities and wastes without relying on any empirical data related to

outputs of an economic sector during the modeling process. Empirical data were used only

to validate the developed models. Once EMs were developed and validated for a specific

production process, material flow information from them was used in construction of the

physical economy model for the given region. The EM development process consists of three

stages: identifying the economic sectors to be modeled, using physics based mechanistic ap-

proaches to model material transformation processes taking place in the identified economic

sector, and to scale the developed EM to represent material flows of the region being studied.

These three development stages are described in detail in the subsections below.

4.3.1 EM development process

Identifying economic sectors

The North American Industry Classification System (NAICS) [ 88 ] of economic sector

classification was used to identify economic sectors. Specifically, all economic sectors were

tagged with a 6-digit NAICS code, which is the most detailed economic sector classifica-

tion system available in the NAICS (more the no of digits in the code, more detailed the

classification is). The most detailed sector classification was selected to ensure the EMs

developed accurately represent the production technology of economic sectors. As the level

of economic sector aggregation goes higher, the underlying model of production technologies

get more unrealistic and only represent an averaged material transformation process for all

the sub-sectors in the aggregated sector. By selecting 6-digit level of disaggregation, the

economic sectors can not only be well represented by EMs but can always be aggregated (by

combining multiple EMs) to higher levels of classification if required.

Modeling the material transformation processes

A single EM type cannot be used to model the flows for all industries in the economy

as the underlying material transformation processes are different for different industries.

For example, agricultural industries involve growth of various biomass such as crops and

52



livestock, whereas chemical industries involve chemically transforming materials from one

form to another, while a metal forming industry involves operations such as welding and

machining. Hence, several types or categories of EMs will be needed to capture physical

flows reliably for different sectors to capture all material flows. While the number of EM

categories needed depends on the variations in production technologies of economic sectors

being modeled, in this study three categories of EMs were used based on the scope and

variations in production technologies of the economic sectors considered in the case study. All

the industries that involve growing biomass were categorized as “Biomass” type and all the

industries involving chemical transformation were categorized as “Process” type. Industries

that do not perform any material transformation, but use joining/separating techniques

such as in assembly were categorized as “operations” type. After categorizing the sectors

by EM type needed, EM were developed using appropriate computational tools such as

Python/Matlab code for biomass growth, ASPEN/ChemCad (process modeling software)

models for process type and Python based model to simulate operations.

Scaling EMs to represent flows in the economy

After selecting the economic sectors to be modeled and developing the EMs using ap-

propriate computational techniques, the EMs are scaled for a selected region, to accurately

represent the material flows in the sector for a particular year using either input side or

output side data. This scaling could be nonlinear (unlike LCA or similar approaches that

always scale models linearly) based on the underlying mechanistic approach used to model

material transformation. A typical EM is shown in figure  4.1 along with possible scaling

variables that can be used (table  4.1 ).

Table 4.1. Typical flows available as scaling variables in an EM
Model material flow feature Type

Raw material Input
Intermediate input Input
Intermediate output Output
Commodity production Output
Waste and emissions Output
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Figure 4.1. A typical engineering model (EM)

Raw: Raw materials, II: Intermediate Input, IO: Intermediate Output, Com: Commodity

The flows Raw 1 through Raw 4 are the raw material inputs to the model, II1 and II2

are intermediate inputs to the subsystems in the model, IO1 through IO3 are intermediate

outputs from subsystems in the model, Com 1 through Com 3 are the commodity outputs

of the model, and Waste 1 is the waste flow from the model. Since EMs are mechanistic

in nature, each of these flows can be used for scaling an EM, which will scale all the flows

to follow the mass balance and material transformation constraints. These constraints are

inbuilt in the EMs and can be enhanced when additional knowledge about the technology

or transformation of material flows in a sector becomes available. The scaling data can be

highly heterogeneous and certain assumptions could be needed when required. For example,

consider an EM modeled for the soybean processing industry. A mass-based allocation

assumption is required to assign the reported soybean production in a region to different

industries that consume soybeans. Such information may not be available in any standard

data-sets and requires industry specific data available in a region (ex: soy bean association

in Illinois, USA. [ 89 ]). Wherever possible, standard scaling data sets from sources such as

USDA [ 90 ], USGS [ 91 ], and USEIA [ 38 ] which provide county/state level information were

used to maintain the reproducibility of the approach to other regions in the US. In table
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 4.1 , two types of flows are shown that can be used for scaling – input and output. The

input side scaling is simpler than output side scaling. Whenever input scaling data in the

form of commodity consumption (as raw material or intermediate input) was available, the

material flow input data for all possible input commodities was used to scale EMs. Since

EMs are based on underlying production or operation methodology, it scales as defined

by the method encoded into it. Input side data can be usually obtained from state level

commodities information which are either published by local public agencies or industry

associations. In some cases, university extension offices and not-profit organizations also

release regional data, especially for primary sector industries like agriculture. For example,

going back to the soybean processing example, the input side scaling data could be the total

quantity of soybeans crushed in a region provided by agricultural department statistics or

state soybean industry association.

If only the commodity production data was available (output scaling), it is not as straight-

forward as using the input side commodity consumption data. This is due to the inherent

“input driven” nature of the EMs. The encoded methods used to build EMs rely on a series

of input data (material flow in this study) which is further used as input parameters in

multiple simulating functions defined in source code of EMs. Therefore, EMs usually are

run in forward direction, i.e. generating outputs for given inputs. Thus, it is not feasible

to simulate these models backwards, i.e., provide outputs and return inputs which makes it

a “one-way process”. In order to sidestep this ‘one-way process’, in our approach, the EMs

were run using multiple input estimates till the outputs of the model match the available

commodity production data for scaling. Since this could involve trying with a large set of

inputs, the process is automated for testing different range of inputs. The EMs are given a

range of inputs as an automated program using which EMs simulate the model for each input

given and return a series of outputs. The input flow range can be estimated approximately

using the order of the output number (ex: 106 or 108 kg) and using mass balances and sto-

ichiometry information from the documented process methodology used for the engineering

model. Although it is challenging to deduce the inputs based on multiple simulations till

desired output is matched, it is a one-time process for each sector being scaled and automa-

tion provides faster search of valid inputs that follows the mass balances. Finally, once the
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models are scaled, they are validated on a case-by-case basis as demonstrated in the case

study.

While validating scaled EMs, it is important to validate both inputs and outputs of an

EM. A highly accurate validation of material outputs of an EM could be of no use if the

input side validation is not accurate (a model can be realistic only when both inputs and

outputs are accurate). While developing EMs, care are has to be taken to make sure that

each material flow (input or output) associated with an EM should be realistically close to

the material flow information available in validation data. The data used for scaling, in

most cases, can also be used for validating the model. For example, if regional level material

flow information is available for inputs and outputs of a particular industry for which an

EM was modeled, the input information can be used to scale the model and the output

information can be used to validate the model. Since the EMs are mechanistic in nature, if

they are correctly modeled and scaled, their outputs should be close to the output material

flow information available. If both inputs and outputs are not available, then a decision must

be made about how to use the only available input/output data. If any missing information

can be approximately deduced, it can be used in either scaling or validation based on a case

by case basis.

4.3.2 Converting data from EMs into PSUTs and PIOTs

After modeling, scaling, and validating the developed EMs, the input and output material

flow information from them can then be used construct PSUTs and PIOTs. Based on the EM

developed, different material flow information can be arranged to occupy various placeholders

such as natural inputs, commodities, and wastes in a PSUT as shown in table  4.2 . The

description of the variables used is provided in table  4.3 .

After populating all the variables in both the table  4.2 , they are then converted into

an industry by industry PIOT using an adaptation of the conversion model D described

in Eurostat manual (Fixed product consumption structure assumption where each product

has its own consumption/sales patterns, irrespective of where it is produced) [20]. The

adapted conversion is described here using the equations eq  4.1 through eq  4.3 . First a

transformation matrix T (industry by commodity matrix) is defined (eq  4.1 ) which will be
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Table 4.2. Structure of Physical Supply Table (PST) and Physical Use Table (PUT)

Supply Case Study Industries Imports – Total
Natural inputs – – – –
Commodities SC IC – TSC
Waste flows SW – – –
Use Case Study Industries Exports Final demand Total
Natural inputs UN – – –
Commodities UC EC FC TUC
Waste flows – – – –

Table 4.3. Description of variable used in PSUTs
Variable notation Variable type Variable detail
SC Matrix Commodity by industry supply
SW Matrix Waste flows by Industry supply
IC Column vector Import of commodites
UN Matrix Natural resource flows by Industry use
UC Matrix Commodity by industry use
FC Column vector Final demand of commodity
EC Column vector Export of commodities

All the variables starting with “T” represent column or row sums and are column/row vectors

used to multiply and transform all the asymmetric matrices in the PSUT into a symmetric

PIOT. T matrix can be interpreted as the record of the contribution of each industry to the

supply of each commodity. The calculated Z and FD matrices can then be used to construct

a PIOT as shown in table  4.4 .

T = SCT · diag(TSC)−1 (4.1)

The asymmetric UC and FC can then be transformed into symmetric industry by indus-

try intermediate demand matrix Z and final demand FD matrices respectively by multiplying

them with the T matrix (eq  4.2 and  4.3 ).

Z = T ·UC (4.2)
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FD = T · FC (4.3)

Table 4.4. PIOT constructed from the developed PSUTs (Z: intermediate demand, FD:
Final demand, TI: Total of industry)

PIOT Industries Final demand Waste flows Total
Industries Z FD (TSW )T TI
Natural resources TUN – – –
Total TI – – –

The tables  4.2 and  4.4 can now quantitatively represent the physical economy of a

region. In the next section ( 4.4 ), a case study to model the physical agro-based economy of

Illinois is presented which follows the same template of methodology described in this section.

The resulting tables may be unbalanced as not all the available physical commodities are

included in the developed EMs. The imbalances can be handled by using external data

such as trade, imports/exports, and consumer final demand. Since the entire process of

extracting material flow information from the simulated EMs, constructing PSUTs and then

transforming them into PIOTs can become very tedious and time consuming (especially

when multiple EM types are involved), a Python based automated tool called Material Flow

Data Extractor and Simulator (MFDES) was developed that can drastically reduce the time

and effort to construct PSUTs/PIOTs from any number of developed EMs (presented in the

next chapter  5 ).

It has to be noted that while PSUTs provide highly detailed and useful information at

a specific commodity level, only PIOTs can quantify inter-industry dependencies. Further,

since PIOTs are symmetric matrices, they can be used to perform standard IO analysis using

Leontief’s inverse matrix L (eq  4.4 ) [ 74 ]. In eq  4.4 , A is called the technical coefficient

matrix which is derived using information from the Z matrix and the FD column vector.

The L matrix can be used to calculate the changes in economic throughput of all industries

being studied with respect to final demand changes of specific industries by the end user.
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Further, as seen in table  4.4 , PIOTs can also capture the dependencies of various industries

on natural resources.

L = (I−A)−1 (4.4)

In eq  4.4 , each element of the technical coefficient matrix A is calculated using eq  4.5 .

Where zi,j represents each element of Z matrix and Xj represents each element of the column

sum vector TI (see table  4.4 )

ai,j = zi,j/Xj (4.5)

∆X = L ·∆FD (4.6)

4.4 Case study

Illinois is one of the major agricultural state in the US producing some of the highest

percentages corn and soybean grains in the country [ 37 ]. It also houses a big biofuel industry

based on corn and soybean [ 92 ]. This case study section attempts to capture a highly

detailed physical economy model for the major economic sectors that constitute this agro-

based economy in Illinois. To this regard, the physical economy model was developed using

the methodology discussed in the previous section (  4.2 ).

4.4.1 EMs for agro-based economy of Illinois

The major agro-based sectors in Illinois were first identified and tagged with a 6-digit

NAICS code as shown in table  4.5 and the EM type was given to each sector based on the

type of material transformation processes. The different computational techniques used to

develop the EMs in table  4.5 and their validation is discussed in the following subsections.

Modeling field crops

Field crops (EMs 1-5 in table  4.5 ) were modeled using Python Crop Simulation Envi-

ronment (PCSE) PCSE is a Python package for building crop simulation models [  93 ]. PCSE
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Table 4.5. The agro-based sectors modeled in Illinois, USA
EM No Sector name NAICS code EM type
1 Soybean farming 111110 Plant growth model – Python
2 Bean farming 111130 Plant growth model – Python
3 Wheat farming 111140 Plant growth model – Python
4 Corn farming 111150 Plant growth model – Python
5 Potato farming 111211 Plant growth model – Python
6 Hog farming 112210 Animal growth model – Python
7 Urea manufacturing 325311 Chemical process model – Aspen plus
8 Soybean crushing 311224 Chemical process model – Aspen plus
9 Soybean biodiesel 324199 Chemical process model – Aspen plus
10 Corn alcohol manufacturing 325193 Chemical process model – Aspen plus
11 Ammonia manufacturing 325311 Chemical process model – Aspen plus

provides the environment to implement crop simulation models which give crop yield infor-

mation and much more. Since only the crop yield data was used in this study, other outputs

such as plant phenology, respiration and evapotranspiration parameters that PCSE models

produce are not discussed. The PCSE simulation engine produces outputs for daily time

steps and requires four primary inputs:

1. Weather data: The PCSE NASA weather data provider Python module was used to

collect weather data. The historical weather data for a location can be accessed by

using the latitude and longitude values in the Python module.

2. Model parameters: Three model parameters - crop, soil and site parameters are encap-

sulated as a single parameter which is used by the PCSE simulation engine to set the

characteristics of the crop being modeled. An example parameter is the atmospheric

CO2 concentration at the crop site.

3. Agromanagement information: This includes all the schedule of all the farming ac-

tivities such as date of sowing, date of harvesting, amounts of fertilizer and water

applied.

4. Configuration file: This file specifies what components should the simulation engine

use and store as final and intermediate output.
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For each of the four inputs, PCSE provides a range of data provider options. For example,

NASA power API [ 94 ] was used in this study as the primary weather data provider. However,

PCSE supports other data providers such as excel files containing weather data. Complete

information on all the data providers are available at the PCSE documentation website [ 95 ].

PCSE reports the crop yield in terms of mass per unit area (kg per hectare). This yield data

was multiplied with the field crop area cultivated from USDA [ 37 ] to get the total crop yield

for each field crop modeled in Illinois.

Modeling animal farming sectors

Animal farming sectors (EM No. 6 in table  4.5 ) were modeled using custom Python

programs that were built to simulate the animal farming practices for the state of Illinois,

USA. The models built were based on animal biomass growth rate, feed consumption, and

overall mass balance equations. The animal farming models take 3 primary inputs:

1. Feed composition: Since different farm animals have different nutrition requirements,

the models consider the feed composition (ex: 60% soymeal, 20% DDGS and 20% corn)

as an input.

2. Feed intake: The amount of feed that each farm animal intakes.

3. Model parameters: These parameters include details on the exact animal type, farm

age distribution, and average daily mass gain rates for each age group.

The three types of input information were obtained for each of the animal farming model

from sources such as USDA NASS [ 37 ].

Biomass processing and chemical manufacturing sectors

The sectors with conventional chemical processing (EMs 7-11 in table  4.5 ) were mod-

eled using Aspen Plus process modeling software. Aspen Plus is an industry standard soft-

ware for developing process models for various chemical processes in chemical manufacturing

industries. A typical process model developed using Aspen plus involves rigorous applica-

tion of mass and thermodynamic first principles that determine how different chemicals are
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trans-formed from one form to another. Process modeling allows the development of highly

accurate process models when all the relevant modeling data is available. For example, if

the chemical reaction kinetics are known for each reaction taking place in the soybean oil to

biodiesel conversion process, an EM can be developed that takes in soybean oil input data

and accurately calculates the amount of biodiesel produced. However, information such as

chemical kinetics may not be available for all processes being modeled. In such cases, pure

mass balance and stoichiometric equations can also be used to specify the exact amounts

of input being transformed into an output. This becomes highly useful when dealing with

nonconventional chemical material flows such as animal feed, soybean, and corn meal, etc.

Once a process model was developed for an industry in Aspen Plus, it was scaled to match

the material flows of the representing industry in Illinois.

4.4.2 Validating EMs developed for Illinois agro-based economy

The scaling variables and variable used for validation for each EM is shown in table

 4.6 . As seen in the table, the scaling and validation data is highly heterogeneous as it is

challenging to find a single Illinois regional level material flow information for all the sectors

being modeled. However, similar type of scaling datasets were available for models developed

using similar modeling methods. For example, for all the farming sectors modeled, fertilizer

and area fertilized was available from the USDA NASS online tool [ 37 ]. These crop farming

models were then validated using the crop yield data again from the USDA NASS. Standard

datasets from agencies such as USDA NASS and Energy Information Agency [  92 ] were used

wherever possible to make the scaling and validation methodology as reproducible as possible

for other regions too.

4.4.3 Reproducibility of EMs and their applications to other regions

The development process of the EMs ensured that they can be reproducible to other

regions. While the underlying mechanistic processes of EMs are industry or production

recipe specific, their scaling is completely controlled by the EM developers to make EMs

representative of the regional industry being modeled. Two types of standardized scaling
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were employed in this chapter. For the PCSE models, regionally specific data such as

weather and fertilizer management are fed to the models independent of the main mechanistic

process code block/program file. Such auxiliary scaling/region specific information were

stored in “.yaml” files. Yaml files are human readable programs with very minimal syntax.

An example of yaml file code block containing scaling information for soybean farming in

Illinois is shown in appendix ( A.1 ). The information in yaml files can be changed accordingly

to make the EM representative of another regions. For Aspen Plus models models, since

manipulating different models through the Aspen Plus software can be time taking, models

were accessed remotely through a Python code that can scale specific flows in an EM to make

it representative of a given region. The example code to access the soybean oil production

Aspen Plus model remotely to scale flows is shown in appendix ( A.2 ). Further, standard

Aspen plus methods such as NRTL (Non-Random Two-Liquid), Ideal, and Redlich-Kwong-

Soave were used during EM development to ensure that EMs can be easily used by other

researchers familiar with process modeling techniques. The property methods used for the

EMs in this study are shown in appendix (table  A.1 )

4.4.4 Constructing the physical economy model

After validating all the EMs for the agro-based sectors developed, the material flow

information was extracted from them to construct PSUTs. The various material inputs and

outputs of each EM were tabulated as individual columns following the structure shown

in table  4.2 . While this process of extraction can be done manually, an automated tool

(chapter  5 ) was used to reduce the time and effort in constructing the tables. The PSUTs

constructed for the agro-based economy of Illinois are shown in tables  4.7 and  4.8 . A

heatmap version of the tables is provided in figure  4.2 for a better qualitative understanding.

In order to handle imbalances, a closed economy was assumed and all the imbalances were

assigned to a “Rest of Economy” (ROE) sectors. Each of these tables quantify material flows

in the form of commodities and waste being supplied or used by the industries modeled.

Since the EMs developed are bottom-up and mechanistic in nature, information such as any

available elemental chemical composition of different flows is retained throughout the process.

64



This means that the granularity can be taken a step further by constructing elemental PSUTs.

The heatmaps of carbon PSUTs are shown in figures  4.3 .
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Figure 4.2. The heatmap representation of the PSUTs constructed
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Figure 4.3. The heatmap representation of the carbon PSUTs constructed
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Figure 4.4. The heatmap representation of the full material and carbon PIOT constructed

The various matrices of the PSUTs developed were then assigned to the variables in

PSUT table structure to construct a PIOT that quantifies the physical economy model in an

industry by industry table format. Using eq  4.1 and  4.3 , the PSUTs were transformed to a

full material PIOT and carbon PIOT as shown in tables  4.4 . All the tables and heatmaps

presented here provide a highly detailed physical map of materials flowing from one agro-

based industry to another in Illinois, while barely relying on any empirical data or the LCA

data-sets. Such physical economy models can be critically useful to better manage regional

resource usage and to track elemental use efficiencies of different industries. Together, the

two tables provide a highly disaggregate material flow information at detailed economic

sector and commodity level. For example, highly useful information shown in table  4.9 can

be derived from the PSUTs constructed for the agro-based economy of Illinois.

4.4.5 Identifying circular economy strategies

Since it was possible to capture highly detailed chemical characteristic information of

individual material flows across the physical economy model, they can be used to determine

the recycling potential of various waste flows. The identified waste flows can then be recycled
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Table 4.9. Information derived from PSUTs and PIOTs
Industry Information Name Value Units
Highest mass output Corn farming 3.20E+08 tons/oper-yr
Least mass output Bean farming 1.30E+05 tons/oper-yr
Highest mass input Corn ethanol manufacturing 2.10E+07 tons/oper-yr
Least mass input Bean farming 3.90E+03 tons/oper-yr
Highest known elemental C output Corn farming 3.40E+07 tons/oper-yr
Least known elemental C output Bean farming 3.90E+04 tons/oper-yr
Highest known elemental C input Soybean crushing 4.10E+06 tons/oper-yr
Least known elemental C input Corn ethanol manufacturing 3.50E+02 tons/oper-yr
Highest commodity use intensity Ammonia manufacturing 1.20E+00 tons/ton
Least commodity use intensity Bean farming 3.00E-02 tons/ton

to implement a circular economy strategy. It has to be noted that some waste flows may

have very high concentrations of a valuable chemicals, but the required recycling/extraction

technology may not be available. The available recycling technologies could constrain the

real potential of recycling. If the technology is available, the waste flows can be supplied

as an input to the recycling industry where it transforms them into valuable commodities.

New EMs can be developed for the new recycling stage and can then be included in the

PSUT construction to reflect the recycling of materials. In this case study, the manure flow

from hog farming and industrial waste water from ammonia manufacturing, corn ethanol

manufacturing, and soybean crushing were identified as flows which can be potentially re-

cyclable. A new recycling industry was included in the economy to process them and the

entire process of constructing PSUTs and PIOTs was repeated as in the previous section.

The revised PIOT constructed is shown in figure  4.5 .

It can be observed from the heatmap that the recycling sector is taking inputs (last col-

umn) from hog farming, ammonia and corn ethanol manufacturing sectors, and supplying

recycled materials (last row) to all other sectors, thus reducing the demand for virgin input

material flows. This means that the demand for materials from other sectors in the modeled

physical economy may go down. For example, the demand for nitrogen fertilizer by all the

crop farming sectors is now partially met by recycled hog manure. This leads to a decrease

in demand for urea coming from the urea manufacturing sector. Such a reorganization is

material flows across the sectors will lead to structural changes in the physical economy and
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Figure 4.5. The heatmap of PIOT after implementing recycling

these changes are shown in a heatmap (figure  4.6 ) as changes in intermediate material use

intensities (contribution of each industry per unit intermediate output). It can be interpreted

from the heatmap that most industries such as crop farming sectors and ammonia manu-

facturing now use less materials from other sectors per unit output as their requirements

are now partially met by the recycling sector. While such conclusions may seem intuitive,

there can be counter intuitive structural changes too. For example, it can be seen that the

material requirements per unit output of urea manufacturing has increased slightly. This

can be attributed to the non linear nature of economies of scale. This is a reflection of

the fact that material requirements for urea production is non linear and depends on the

amount of urea produced. Such a conclusion can never be made from other approaches that

use empirical LCA data sets to linearly scale material flows. These structural changes and

increase in recycling can provide a comprehensive pathway to enable system wide transition

into a circular economy with reduced overall waste flows coming out of the physical economy

(figure  4.7 ).

Further, to demonstrate how the symmetric PIOTs can be used, final demand changes

(∆FD) were simulated for the outputs of three industries: Corn farming (100 tons), dry

corn milling (200 tons), and urea manufacturing (50 tons). The Leontief inverses (L) were
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Figure 4.6. Structural changes induced in the physical economy

Figure 4.7. Percentage reduction in waste flows in the physical economy

calculated (using eq  4.4 ) for both the baseline scenario and after implementing circular

economy. Then, using eq  4.7 from the previous section (also shown below), changes in

physical throughput (∆X) of all the industries were calculated. The difference in change

of throughputs (CE scenario - Baseline scenario) is shown in the bar chart figure  4.8 . It

has to be noted that the total flow throughput changes include both the commodity flows

and waste flows. Several useful information can be extracted from this demonstrative bar
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chart to understand how the physical economy responds to demand fluctuations in both

the scenarios. The negative values in the bar chart indicate that the total throughput

change of an industry was smaller in magnitude when compared to the baseline scenario.

For example, for the given final demand fluctuations, some industries such as soybean oil

manufacturing will be producing relatively smaller quantities compared to baseline scenario.

The introduction of the recycling industry has restructured the physical dependencies of

the industries and the overall physical economy modeled responds accordingly based on the

different final demand changes induced.

∆X = L ·∆FD (4.7)

Figure 4.8. Difference in change of physical throughputs (including commodities and
waste flows) of industries before and after CE (tons)
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4.5 Conclusions

The mechanistic and bottom-up approach of developing EMs to simulate material trans-

formations and using the data from them to construct PSUTs and PIOTs proved to be a

comprehensive technique to account economy-wide material flows without overly relying on

empirical data. The only empirical data used was in validating and scaling the models,

but not in modeling the mechanisms of material transformations. Once validated, the same

EMs can now be used for other regions or to find material flows in consequential scenario

assessments, thus making this approach highly reproducible. Since the final output of the

approach is in the from of PSUTs and PIOTs, it can also be highly compatible with other

existing top-down and hybrid flow accounting techniques. Finally, as demonstrated in the

case study, the established approach can have wide ranging applications by providing novel

insights on material flows and their environmental impacts. However, since the the overall

approach presented here can be very tedious and time consuming, the next chapter (ch- 5 )

aims at providing ways to automate much of the approach to reduce lead times in modeling

highly detailed physical economies and further increase the scope of applications.
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5. AUTOMATING THE PROCESS OF MATERIAL FLOW

SIMULATION, EXTRACTION, AND CHARACTERIZATION

TO QUANTIFY PHYSICAL FLOWS AT HIGH SPATIAL,

TEMPORAL, AND SECTORAL RESOLUTION

5.1 Chapter overview

The last three chapters (ch- 2 ,ch- 3 ,ch- 4 ) established mechanistic and bottom-up mod-

eling methods that can accurately quantify physical flows at both single process levels and

at an economy wide level with multiple economic sectors. Since the implementation of the

methodology presented so far can be tedious and time taking, this chapter focuses on pro-

viding automated tools that can significantly reduce the efforts required to implement the

methodology. The chapter also discusses how the developed tools were implemented on a

could-based collaborative environment to help researchers with different modeling expertise

and backgrounds to synergistically collaborate on large scale sustainability projects.

5.2 Motivation and background

The primary hurdles to build disaggregated PIOTs include reliable data availability, data

heterogeneity, validation, and continuity of data collection for long term updating. Addi-

tionally, compiling regionalized empirical data for PIOT construction can be very tedious

even for a moderate level economic size and region [ 75 ]. Therefore, there is a critical need

to improve the methodologies and tools for development of PIOTs at desired disaggregation

level through automation that can also reduce the over dependency on empirical data and

manual PIOT construction. In this chapter, this need for an automated tool for construct-

ing PIOTs is addressed. The tool developed is called Material Flow Data Extractor and

Simulator (MFDES) and it was developed using Python programming language. The rest of

the chapter is structured as follows. Advancement in Industrial Ecology (IE) related tools

that have overcome significant challenges in modeling through automation (Section  5.3 ) are

discussed first. In Section  5.4 , a detailed description is given for the MFDES tool developed

that extracts data from EMs and converts them into PSUTs and PIOTs via data integration
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and standardized back-end data infrastructure. Next, in Section  5.5 , details are provided on

the cloud infrastructure for implementation of MFDES in a collaborative environment for

automation of PIOT generation. This cloud infrastructure developed is called PIOT-Hub

and was developed using Purdue’s MyGeo Hub infrastructure that provides an easy to use

Graphical User Interface (GUI) for generating PIOTs. Finally, in section  5.7 , potential fu-

ture applications are discussed along with additional development for future functionalities

on PIOT-Hub and possibilities of integration of the PIOT-Hub with other existing IE tools.

5.3 Overview of Existing Automation Tools in Industrial Ecology

In recent years there has been a growing interest in the IE community regarding au-

tomation and collaborative model development because of the tedious nature of model de-

velopment along with lack of reproducibility and transparency. Reproducibility of results

is an important criteria in most established scientific disciplines for design. As IE moves

towards redesigning our economy and industrial systems towards the goal of sustainability,

reproducibility will become essential to identify the most robust pathway. IE community

is making gradual progress in this direction to enable large scale collaborations and repro-

ducible model development. In table  5.1 , some of the existing IE tools and methods are

listed which address the need of automation in developing MIOT [  78 ] and hybrid tables

[ 19 ], that are widely used to identify the scenarios for sustainable growth, transition to low

carbon economy and circular economy. The most commonly found methods in tool and

method development in IE focus on using top-down approaches. Top down approaches rely

on using available empirical data data such as large survey data sets and government records

to feed into the IO models. One application of the top-down approach is focused on hybrid

tables which are a combination of PIOTs and Monetary Input-Output Tables (MIOTs). Hy-

brid tables can be very useful when parts of the economy can be difficult to represent in

physical units (such as service sectors) but the relevant monetary flow data could be widely

available. This also highlights the data heterogeneity issue in modeling the full physical

economy. Hence, to overcome the problem of data heterogeneity, researchers have proposed

an computational methods to develop hybrid supply-use tables (HSUTs) [ 96 ]. In the work

by Merciai and Schmidt, the authors describe a method that relies on an existing database
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called the EXIOBASE for the construction of multi-regional HSUTs [ 96 ]. In their work,

hybrid tables use both monetary and physical data to generate the supply and use tables for

43 countries and 5 rest of the world regions. The developed algorithm is automated to pro-

cess the physical flow data available from the Food and Agriculture Organization statistics,

United Nations Comtrade data [  104 ], energy supply use tables and data from the supply

use tables from the previous studies by the authors’ institute [  105 ]. Since most of the data

is from international-level data sets, the built hybrid tables are aggregated at national or

multi-national levels.

Another significant advancement has been provided by development of Industrial Ecology

Virtual Laboratory (IELab) [  98 ], to overcome the challenge of data unavailability and tedious

nature of multi-regional input-output (MRIO) model generation. The IELab is an automated

collaborative platform that has been used to develop multi regional supply-use tables and

MRIO tables for multiple countries [ 78 ], [ 98 ], [ 106 ], [ 107 ]. The automated platform utilizes

international, national, and sub-national monetary data available generally from agencies

such as US Bureau of Economic Analysis [ 108 ] or other survey agencies to construct supply

use tables. Since there are many non-survey approaches [  74 ] (ex: Simple Location Quotient,

Flegg Location Quotient, etc.) to disaggregate a national level input-output table, the IELab

automates the process of disaggregation based on the non-survey approach selected by users.

To create the multi-regional tables the algorithm relies on regional proxy data (such as state

GDP, employment, personal consumption expenditure, etc.) and follows an optimization ap-

proach to transform the national supply use tables to regional supply use tables. The IELab

can theoretically generate monetary supply use tables at very high levels of disaggregation

provided corresponding constraining data sets (ex: regional GDP, personal consumption and

expenditure, etc. at detailed sectoral classifications level) are also available at equally high

disaggregation levels [  78 ]. However, since the algorithm utilizes an optimization approach,

if the data quality that forms basis of disaggregation is not good or is at highly aggregated

level, the reliability of tables generated can be doubtful. Hence, IE lab provides a significant

advancement to generation of MRIO tables using computational power, however relies on

availability of national level data and supplementary data to generate MRIO models. This

is not limiting for generation of MRIOs as national level IO and supporting data are avail-
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able for many countries even though lagged, but such information for physical flows are not

available, hence IELab currently does not provide automated generation of PIOTs.

In another recent work [ 97 ], the focus was on agricultural commodities in order to doc-

ument the complex flows of agriculture and food commodities in the global economy. Agri-

culture being one of the primary sectors, usually has a better level of disaggregated data

available at an international level from agencies such as the Food and Agriculture Organi-

zation. Capitalizing on this, the authors developed a model called Food and Agriculture

Biomass Input- Output (FABIO) model, which is a set of multi-regional supply, use and

input-output tables in physical units [  97 ]. The model brings together multiple data sources

related to trade, crop production, and utilization in physical units along with supplementary

technical data to build consistent and balanced supply use tables. FABIO uses data sources

such as FAOSTAT [ 109 ], UN Comtrade [ 104 ], and Energy Information Egency (EIA) [  92 ],

and also fills/estimates any missing data manually. FABIO covers 191 countries and 130 agri-

culture, food and forestry products from 1986 to 2013. Although FABIO has a standardized

methodology for building physical supply use tables from large public datasets, it relies on

FAOSTAT data which is at national level so does not produce tables at sub-national/regional

levels. Further, the reliance on FAOSTAT data puts this method in top-down approach cat-

egory.

Another approach to create these models is the bottom-up approach that builds from fine

scale to coarse scale, instead of the top-down approach where the super-structure is already

known to create detailed models.In a study by Hanes and Carpenter [ 99 ], a detailed MFA/

supply-chain work was performed that falls in bottom-up approach category . In this work,

a tool called material Flow through Industry (MFI) is used to provide lists of production

recipes and uses them to model the physical supply chain of the product of interest. MFI

tool focuses on mapping the material flow through selected product, instead of mapping

the whole economy as per the IO framework. Hence, it provides useful analysis related

to a particular supply chain, however does not provide insights into overall economy wide

material flow accounting.

Other tool developments in the IE domain have focused on making tasks such as data

transformation and data visualization easy. A tool called Pymrio [ 100 ] was developed to
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break down large data sets and perform high level abstraction to analyze global MRIO

databases like EXIOBASE, WIOD and EORA26. To make the calculations involved in

converting supply use tables to input-output tables easy, tools such as [ 102 ] and PyIO [ 101 ]

were developed. In another work, to make data extraction from online sources easy and to

convert data in formats usable in hybrid Life Cycle Assessment, a tool called USIO was also

developed [ 103 ]. The specific features and input requirements for all the tools discussed in

this section are shown in table  5.1 

So far, most of the methodologies, algorithms and tool developed in the literature have

mainly followed a top-down approach of processing the available national and regional level

physical/monetary databases to build physical/monetary supply use tables, and in a few

cases, use some form of optimization approach for sectoral disaggregation. Few bottom-up

based tools such as MFI are not standardized to create IO models, hence creating large scale

economy wide models using bottom-up approach is not feasible currently. The work in this

chapter aims to complement these tools based on top-down approaches with a bottom-up

approach based tool called Material Flow Data Extractor and Simulator (MFDES) that aims

to utilize mechanistic knowledge of our physical systems in automating the development of

PSUTs and PIOTs. MFDES was also implemented on a collaborative cloud platform, PIOT-

Hub to advance PIOT generation collaboratively. Next, the structure and functionality of

MFDES tool (Section  5.4 ) and the implementation of it tool in a collaborative cloud platform,

PIOT-Hub (Section  5.5 ) is described.

5.4 Automating PIOT generation via MFDES tool : Architecture, Information
flow and Data structures

The Material Flow Data Extractor and Simulator (MFDES) tool is built following a

bottom-up approach that automatically extracts data from the fundamental bottom-up

physics based engineering models (EMs) to account for material flows that are then con-

verted to PSUTs and PIOTs. At the core of MFDES, computationally developed EMs

are used to simulate each economic sector through Python implementation. These EMs are

developed to simulate material transformation operations for different industries in the econ-

omy and are based on fundamental mass, energy balance and chemical kinetics equations.
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When EMs are simulated at the scale at which an industry operates in a region, it enables

the extraction of all relevant material flow information of that industry. Since the material

flow data is extracted from computational models representing material flows and material

transformations for an industry, the data reliability is high. Mass balances are automatically

maintained and uncertainty around input and output flows are reduced. The material flow

information about resource use, products and emissions, completes the requirements to build

a PSUT for the regional industry being simulated. The data from all the EMs representing

different industries in a regional economy can then be used to develop a highly accurate

PSUT and PIOT. Similar to the approach discussed previously (ch- 4 ), MFDES maps each

industry to the corresponding NAICS sector classification (US specific) [ 88 ] to maintain the

IO sectoral framework. After mapping NAICS codes, MFDES automates the process of sim-

ulating individual EMs, extracting the relevant data from simulation results, characterize the

flow based on chemical composition, and finally, constructs a PSUT and PIOT along with

their heatmaps. The key novelty of MFDES is in providing this functionality of automating

the mapping of stream information from bottom up EMs of industries to respective supply

and use tables.

The MFDES tool implementation has been divided into 5 modules (see figure  5.1 ). The

main architecture of MFDES is built in Python with different modules with functions to

simulate models and extract data from models (module 1); process heterogeneous data from

EM simulation for material flow characterization (module 2); data mapping to generate

PSUTs (module 3); balancing using additional data (module 4) and finally conversion of

PSUTs to PIOTs (module 5). The approach used by MFDES functionalities in modules 4

and 5 overlap with other tools that generate IO based models as it relies on standard methods

for transforming PSUTs to PIOTs, however, modules 1 through 3 are unique in approach

and capability to automate data acquisition through bottom-up approach that provides the

link from EMs to PIOT. The different functional modules of MFDES are discussed below.

5.4.1 Module 1: Simulation and Data Extraction

Module 1 in MFDES tool consists of a Python based script that takes in heterogeneous

EMs built using different modeling techniques and simulates them to extract the material
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Figure 5.1. Overview of the MFDES tool developed

flow data for the corresponding economic sector. Each of the EMs that are input to module

1 represent different economic sectors in a region. In order to ensure that these models

represent the physical flows in the economic region and MFDES can extract the relevant

flows, EMs must be first scaled and primed into a format that MFDES can simulate. Scaling

of EMs is independent of MFDES tool, so that users can simulate any regional economy.

Priming is done as part of the MFDES tool for standardization of extracting data from EMs

to be mapped to PSUTs.

Scaling the EMs: Although EMs are very good at representing the material transfor-

mation processes of various industries, they need to be scaled appropriately so that they are

also representative of the scale at which an industry operates in a region. Hence, the scaling

process is tightly linked to the EM development and user dependent. The users would be

required to upload scaled models as appropriate for their region of interest. MFDES will not

perform any scaling operations to allow the users to select specific year and size of regional

operations for which PIOTs are desired. There are different approaches that the users can

adopt for scaling based on industrial information or survey based data sets.

Priming the EMs: Priming involves modification steps to make an EM compatible with

MFDES. These modifications usually involve simple tweaking of the variable names used in

an EM so that they can be parsed and passed on as a MFDES object or as a .csv file in case

a black-box like model (model with just in/out material flow information) is used. These

name tweaking is part of standardization approach like other simulation engines for enabling
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automation of material tracking. For example, if an EM represents the biofuel industry

and is built in Aspen Plus software, then there will be a series of variable names in the

EM representing different flows and sub-systems in the process of producing biofuel. Now,

to prime this EM, some of the variable names containing relevant material flows have to be

changed/edited to make it compatible with MFDES. MFDES then processes this information

to keep track of the relevant flows picked during the simulation process. This process of

priming must be done by the user by modifying the variable names in the EMs using the

priming manual that will be provided for PIOT-Hub model uploads or leave to MFDES to do

it automatically by specifying the variable names used via upload meta information option

in the GUI. An example of priming process is provided in the supplementary material.

Data Extraction and Storage: Once EMs are primed, MFDES invokes different sim-

ulation infrastructures to simulate different EMs based on their types (ex: Aspen plus,

Python, MATLAB, etc.) and extracts raw data from the EMs. Raw data extracted contains

information about mass flows for each relevant stream, that is model specific. Each EM

is simulated using a relevant EM simulator based on the file extension type. For example,

if EM1 is a python file, then MFDES recognizes the .py extension of the file and invokes

a Python compiler to simulate the material flows for the industrial sector represented by

EM1. The functionality of invoking different EM simulators and extracting the outputs of

the simulated EMs for building PSUT/PIOT is novel and unique to the MFDES tool. While

it may be obvious to automatically simulate a series of single file types (say .py files) that

represent different sectors, it is not a straightforward approach to simulate different model

file types, and simultaneously process material flows from all model types to develop PSUTs

and PIOTs. MFDES provides standardization for extraction of the data and compilation to

generate the PSUTs and PIOTs. MFDES provides the required infrastructure that can run

a variety of model types used for simulating a physical economy and maintain compatibility

during material flow extraction from different model types.

5.4.2 Module 2: Data processing for Material Flow Characterization

The raw data from the previous module cannot be directly used as it will still be in the

format compatible with different simulators invoked. In the data processing stage, MFDES
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is equipped to automatically clean the raw data by stripping any simulator specific non-

material flow information so that data flows can be characterized. The automatic process

of stripping non-material flow information from EMs and categorizing them is novel and

unique to MFDES. MFDES stores all the recorded information from the EMs in temporary

memory files and interprets the internal nomenclature used by the EMs to identify different

flows and selectively pick only the essential material flow information. For example, if an

EM is developed using Aspen Plus process modeling software, then MFDES looks for the

nomenclature used for identifying flows in the variable explorer section (input flows are tagged

by ‘#0’ character and outputs are tagged by ‘#1’ character in Aspen Plus) of the model

and picks only the input and output material flows and leaves out any intermediate flows in

the model. After stripping and cleaning raw data from Aspen Plus models, MFDES looks

for individual chemical constituents in each flow extracted and matches them with existing

information in its database. Similarly, if Python based models are uploaded, MFDES looks

for variable tags used to mark input/output material flows in the priming stage and extracts

material flow information from the tagged variables after simulating them. For classification

of materials into products or wastes, MFDES maintains a database that contains the chemical

composition of all commodities in the form of individual component and mass fractions.This

database will be provided as default to users, however as new models for additional materials

are added to the system, this database will be updated. MFDES then calculates the mass

fractions of all the material flows it extracts from the EMs and compares them with the

available mass fraction combinations. If there is a match, it assigns the database name for

the extracted material flow. If not, it will create a new material in the the database and

store the new mass fraction combinations.

Once mapping material flow information to the information in database is complete,

MFDES identifies the flows based on priming information as either a “commodity”, “raw

material”, “emission” or “waste”. These are the datatypes defined in the MFDES tool for final

organization to build PSUTs and PIOTs. “Commodity” flows simply identify the different

commodities that are supplied and used by industries, raw materials identify the material

inputs from the nature to industries, emissions and wastes identify the material flows from

industries to nature.
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Table 5.2. Physical supply use table format used by MFDES
Use table Industry codes

Code 1 Code 2 Code 3 Export Final demand
Commodity 1 - - - - -
Commodity 2 - - - - -
Commodity 3 - - - - -
Commodity 4 - - - - -

Natural resource 1 - - - - -
Natural resource 2 - - - - -

Total - - - - -
Supply table Industry codes

Code 1 Code 2 Code 3 Import
Commodity 1 - - - -
Commodity 2 - - - -
Commodity 3 - - - -
Commodity 4 - - - -

Emission 1 - - - -
Waste 1 - - - -

Total - - - -

5.4.3 Module 3: Data reorganization and Partial PSUT Construction

MFDES takes all the data stored in the four flow types (commodity, raw material, emis-

sion or waste) from the flow characterization step and reorganizes these in the form of a

PSUT first. This is another innovative feature that connects the engineering model outputs

to the macroeconomic framework of PSUTs and PIOTs. The standard PSUT format used

by the MFDES is same as shown in the previous chapter (table  4.2 ). Although this step

involves only reorganization of data simulated through EM engines and classified in step 2, it

is normally time consuming if done manually for a large economy with all the commodities,

waste and emissions data. Hence, another key strength of MFDES is in automating the

whole process of simulating (i.e. generating reliable data), classifying and finally organiz-

ing it in an easy to interpret user-friendly format. At this stage, MFDES has all the data

required to build PSUTs except for the columns and rows relating to exports, imports and

final consumer demand. Hence, at this stage the PSUTs are only partially completed with

information of supply and use of commodities by various sectors in the economy.
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5.4.4 Module 4: Balancing PSUT and External Data Integration

The PSUTs generated by module 3 are generally unbalanced as supply and use in an

economy will not balance without inclusion of imports, exports and consumer use. These

partially completed PSUTs will need to be balanced with trade and consumer demand (TCD)

data that cannot be obtained from engineering models alone. However, from this step, the

tables can be used with the standard IO theory to generate balanced tables and perform

further analysis. Many balancing approaches already exist in the literature [ 110 ] [  111 ] [ 112 ].

MFDES combines the partially completed PSUT with any available user specific trade (ex:

state level impart/export data) and consumer demand (TCD) data to build a complete

PSUT. In this stage, all the missing information in the partially completed PSUTs can be

filled by uploading .csv files containing missing information. These .csv files can be uploaded

to the MFDES tool just like any other EMs. But on recognizing the .csv file type, MFDES

will not invoke any simulator for these file. It simply parses through the missing information

and extracts the required information to complete the PSUT. If all the data is filled correctly,

the PSUTs will be mostly balanced except for places where external balancing information

is unavailable, or the confidence intervals of data reported are too high . Finally, once PSUT

balancing and construction is complete the results can be rendered to user and also passed

on to module 5 for PIOT construction.

5.4.5 Module 5: PSUT to PIOT Construction

Module 5 uses custom built Python libraries to convert PSUTs to PIOTs. The PSUTs

from module 4 are provided as input to the Python libraries in module 5 which transforms

PSUTs to PIOTs using a modified version of the Model D approach from the Eurostat [ 113 ]

manual (eq  4.1 to  4.3 ). This final module also provides multiple ways of visualizing the

constructed PIOTs: 1) raw PSUT and PIOT in .csv table format, and 2) heatmap of the

PIOT. All the visualization forms are based on the raw PIOT constructed. MFDES uses the

data from this raw PIOT and applies the data to different visualization program libraries

encoded with the MFDES infrastructure.
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5.5 PIOT-Hub : A Cloud Based implementation of the MFDES tool for PIOT
Generation

PIOT-Hub has been developed on a collaborative cloud platform to make building PSUTs

and PIOTs easily accessible and more collaborative by implementing the MFDES tool on a

cloud based service. Deployed on a production quality HUBzero [ 114 ] based science gateway

called MyGeoHub [ 115 ], PIOT-Hub builds upon the open source HUBzero science gateway

framework and directly leverages HUBzero’s support for online collaboration, scientific data

management, hosting of dynamic online simulation tools, as well as common functions includ-

ing federated authentication and user management, connection and job submission mecha-

nism to high performance computing (HPC) systems on the Purdue campus and national

resources such as XSEDE. In addition, MyGeoHub provides the capabilities to interoperate

with remote data repositories and cyberinfrastructures with synergistic functions and social

networking tools such as group, wiki, blog, ticket, and forum, making it an ideal platform

for the development, publication, and dissemination of PIOT-Hub to the user community.

The beta version of PIOT-Hub has been released for early testing by a small group of

selected users. It will be released to the public once all the underlying cyberinfrastructure

and workflow for the collaborative environment has been established and tested.

There are several challenges in implementing the PIOT-Hub to map full economy. First,

the system needs to support several types of input models commonly used by the community,

including open source python models, Aspen Plus models, and CSV files. Second, the Aspen

Plus software runs on Windows while the rest of the system are Linux based. In addition,

the Aspen Plus software is proprietary with complex installation and set-up process. Third,

users upload python or Aspen Plus modeling code as input for MFDES jobs. However, it

poses a security risk to execute user-provided code on the server side, leading to system

vulnerability to malicious attacks. Finally, when the size of the PIOT table grows, it could

become data and computationally intensive, making it harder to scale to a large number

of users or support a large number of industry segments. Hence, a cloud based modular

PIOT modeling system to address these challenges was developed. Implemented as a Jupyter

Notebook (JN) [  116 ] application, PIOT-Hub provides an easy to use web based user interface

that collects user inputs in a flexible format and presents PIOT, PST and PUT outputs in
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Figure 5.2. Overview of PIOT-Hub Infrastructure

multiple ways. As shown in figure  5.2 , the functionality of PIOT-Hub includes an easy to

use GUI front-end built on the JN that is integrated with back-end simulation services. Users

can launch the JN instance in a virtual container on MyGeoHub to set input parameters

or get results through a web browser. Once users set all of the required input parameters

on the web, the information is submitted to the back-end services. The back-end PIOT

services consist of four modules: (1) a python model engine that is responsible for executing

python input models; (2) an Aspen Plus model engine that runs on a remote Aspen Plus

server with a service API that accepts Aspen Plus model input and returns output after

execution; (3) a controller that runs on MyGeoHub and is responsible for preprocessing user

requests, creating MFDES jobs, dispatching the jobs to either the python engine or Aspen

Plus engine, getting the results back, and merging the results in the MFDES job instances

once all simulations are done; and (4) a visualization module for converting the outputs to

tables or network diagrams.

The PIOT-Hub front-end user interface and most of the back-end services including the

controller and python model engine are built in Python using open source python pack-
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ages such as Jupyter Widgets for GUI, Matplotlib/NetworkX for result visualization, and

Numpy/Pandas for data processing. The service API on the Aspen Plus server is built using

Javascript with Node.js, which provides an access point to the controller running on MyGeo-

Hub for receiving simulation requests and sending the simulation results back. The Aspen

Plus simulation engine manages the user requests through Docker containers and RabbitMQ

for scalable and efficient data processing.

The PIOT-Hub tool is designed to be a usable, scalable, and secure online modeling

environment. The system automatically detects the input model type and dispatches it to

the corresponding back-end processing engine. Priming manual will be made available to

help users prepare their models so that they comply with the format expectation of the tool.

The PIOT-Hub tool currently runs python models on the hub server and Aspen Plus models

on a remote Aspen Plus server. Aspen Plus backend services will be migrated in future

to Linux server using windows VM support. Validation code is added to prevent malicious

attack as well as to provide feedback to the user if the model fails to run. Furthermore,

in each user session, the PIOT-Hub tool runs in a secure virtual container on the HUBzero

platform which helps mitigate the security risk as well.

The flowchart for the cloud implementation process, called PIOT-Hub is shown in figure

 5.3 . When a user uploads a model, PIOT-Hub will attempt to parse it and check if the

model is primed and compatible with MFDES. The model will proceed to next stage if

primed, if not, PIOT-Hub will notify users that the model is not primed. A primed model

will be handled by MFDES following all the steps in section  5.4 to generate PSTs, PUTs

and PIOTs.

5.6 Automated PIOT Generation Demo on PIOT-Hub

In this section, the tool functionalities and step by step information on using the tool is

presented.The same agro-based industries of Illinois from previous chapter (ch- 4 ) were used

as an example to automate extraction of the physical flows using PIOT-Hub and develop a

PIOT and a heatmap of the PIOT. Users begin the process by uploading different EMs that

are developed and primed to the PIOT-Hub using the GUI. The screenshot of input GUI of

PIOT-Hub is shown in figure  5.4 . In figure  5.4 , the drop-down list a and b allow users
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Figure 5.3. PIOTHub: Collaborative cloud implementation of the MFDES tool

to select the region and the year associated with the uploaded EM. The text field c allows

users to name the corresponding industry represented by EM. PIOT-Hub is also capable of

dealing with NAICS classification codes for EMs representing industrial sectors. Users can

directly select the relevant preloaded NAICS code using the drop-down list d prompted while

entering the sector name. As discussed in Section  5.5 , users can utilize the default models

on PIOT-Hub in the drop-down list in e or upload/change EMs f. However, the current

selection of EMs are limited by the models developed in our group, which will be expanded.

The red and green buttons (g and h) enable removing uploaded EMs and uploading new

EMs respectively. Since EMs could also have many supporting files as per priming needs,

the users are required to upload all files associated with an EM as a zip file. File types such

as .csv, .py, .mat, and aspen plus .bkp files are currently accepted). For each EM upload,

PIOTHub creates a directory in the user’s home on MyGeoHub and unpacks all the files in

the directory to be accessed by the MFDES job instance. Once all the EMs are uploaded

and data input is complete, users submit the job using ‘Run’ button to start the simulations.

After submitting the job using ‘Run’ button, MFDES initiates different simulating en-

vironments based on EM file extensions and proceeds with all the steps shown in figure

 5.3 . Once simulation is complete, the GUI takes the user to the output tab. All the results
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Figure 5.4. Input tab of the PIOTHub

Figure 5.5. Output tab of the PIOTHub with PIOT view as a table.

generated by the PIOT-Hub can be directly viewed within the GUI as PST, PUT or PIOT.

It also provides users with options to view and download the heatmap of PIOT and material

flow network of PIOT. Figure  5.5 shows a PIOT for Illinois generated using the simulation

of EMs.

The tables such as the one shown in figure  5.5 can be downloaded as .csv files using the

“Download view” button at the bottom of the output window. The heatmap view (figure

 5.6 ) can also be downloaded as high-resolution images. The default units shown across all

output tables is metric tons. Unless external information related to final demand, imports

and exports is given, MFDES assigns all the unbalanced material flows to the rest of economy
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sector (RoE). If users also upload these information as a .csv model file in the input window,

MFDES will use that data to fill in respective columns and rows in the tables and the table

format will be updated.

The tool and GUI features will be further advanced as per initial beta tester’s feedback.

Figure 5.6. Output tab of the PIOTHub with PIOT view as a heatmap.

5.7 Discussions and Potential Tool Applications

Mapping our physical economy continuously as the technologies, industrial design and

consumption patterns change is a significant challenge. This tool is being developed with

a vision to provide the much needed automation in generating the material flow map us-

ing the power of mechanistic engineering models and advances in cyberinfrastructure. The

cloud based PIOT-Hub provides a novel platform that enables a faster generation of PIOTs

using bottom-up approach implemented via MFDES that generates PSUTs and PIOTs for

a region and converts it into a network map of material flows in the modeled region. Hence,

PIOT-Hub can be a place where industries, academics and stakeholders can collaborate to

understand material flows and their dependency with other industries in the region. The key

novelty of this platform is that it allows integration of mechanistic EMs for physical econ-
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omy modeling using a bottom-up approach with the macroeconomic view of economy. The

mechanistic approach also allows visualizing the material flow network changes in real time.

The automation of bringing such large-scale complex information together to build the PIOT

models is another key novelty and unique strength of this tool, along with the adaptability

and scalability for any region and any emerging technology that can be modeled using first

principle knowledge. While, the current implementation is focused on regional scale where

homogeneous technology was assumed for each sector, the method and tool can be expanded

to include multiple technologies being used in same sector as percentage share of production.

A significant advantage of the MFDES tool is that it can overcome the basic limitations of

complete dependence on survey-based databases that form the foundation of modeling in

IE and time lag that arises due to reliance on survey data. It also serves a larger goal of

enabling collaborations between engineering modeling community and Industrial ecologists.

While this tool goes a step further and integrates EMs to generation of PIOTs, it remains

compatible to be integrated in future with other methodologies and build on the progress

made so far, especially the constrained optimization approaches to fill data gaps such as

in MRIO construction. It can also be used in utilizing the survey databases to reconcile

results and perform comparative analysis of survey-based vs model-based results, while not

demonstrated in the demo presented here. Finally, some potential applications envisioned

for the tool that can support mapping physical economy and decision making are presented

below :

1. Material Flow Maps to Identify Vulnerability in Production Systems due to Risks to a

particular Industry: Once the physical economy of a region is modeled, it can be used

to study the material intensities of different supply chains in the economy and trace

everything back to unit process levels as MFDES uses a bottom-up approach. This

can be used to identify the vulnerabilities for production in a region which can be used

by plant managers and engineers to anticipate material supply challenges.

2. Material Flow Dynamics for Future Planning of Material Supplies: Since, EMs are

capable of simulating scenarios, such scenarios can be executed fast on PIOT-Hub
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to generate time series of material flow networks, providing insights into potential

dynamic changes.

3. Evaluating Impact of recycling technologies on Material Flow Networks : Another

important application using PIOT-Hub can be in the area of identifying the impact of

implementing circular economy on material flow intensities. Using EMs, it is possible

to identify co-products/ waste flows in one industry that can be used as potential

feedstocks in another industry. Using this information, an EM for a new recycling

technologies can be added to waste processing sector and PIOTs updated to evaluate

material intensities in new economy.

4. Identifying the best Emerging Technology for Scale Up: The integration of EMs to up-

date PIOTs, allow to test scale up of any emerging technology such as recycling systems

etc for it’s impact on material flows, which can help in selection of best technology.

PIOT-Hub eliminates the need to install or set up any software by end users. However,

for Aspen Plus a license agreement needs to be provided currently, which can be overcome

by moving to open source process modeling softwares. The system is scalable to multiple

simultaneous users as well as to large computation needs by leveraging the high performance

computation (HPC) resources provided by campus clusters or national cyberinfrastructure

such as XSEDE. Its modular architecture makes it easy to expand the tool to support models

of different types in the future. However, the cloud implementation and capacity of PIOT-

Hub is at an early stage of development, mainly limited in large scale PIOT generation,

multiple user access and implementation of potential applications discussed above. Our

future work entails scaling up the capability for wider IE audience, adding features for

industrial stakeholders and academic research use. Further, integration of this tool with open

source tools such as US-IO may also be pursued for hybrid model creation or for comparison of

economic structure presented by MIOTs vs PIOTs. Through this tool, a faster, reproducible

and collaborative mapping of the physical economy using PIOT framework was envisoned.

Model and data sharing between users will be enabled in the future to facilitate online

collaboration. Provenance information will be automatically recorded and associated with

each MFDES job, making it easy to reproduce the results when needed. This automation
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tool and cloud infrastructure developed will also be helpful in validating the reproducibility

of PIOTs being generated in one group by other researchers, thus enabling open science

approach to material tracking and collaboration. Reproducibility of material tracking models

in the economy has been challenging due to the significant effort and propriety nature of

data being used to create such models in the past.
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6. COMPUTATIONAL METHODS TO QUANTIFY

MONETARY FLOWS AT HIGH SECTORAL RESOLUTION

AND TO PERFORM SUSTAINABILITY ASSESSMENT

This chapter is based on the following published article:

[ 78 ] F. Faturay, V. S. G. Vunnava, M. Lenzen, et al., “Using a new USA multi-

region input output (MRIO) model for assessing economic and energy impacts

of wind energy expansion in USA,” Applied Energy, vol. 261, no. 3, p. 114 141,

Mar. 2020. DOI:  10.1016/j.apenergy.2019.114141 

6.1 Chapter overview

This final chapter of the dissertation attempts to further advance the research of top-

down approaches by using methods to quantify monetary flows at high spatial, temporal,

and sectoral levels. While the previous chapters focused on advancing mechanistic bottom-

up approaches, it is equally important to continue advancements in the capabilities of ex-

isting top-down approaches. To achieve a comprehensive flow accounting framework, the

advantages offered by all existing approaches have to be embraced as no single approach

(bottom-up nor top-down) can account all flow types at all levels of spatial, temporal, and

sectoral disaggregation. Therefore, in this chapter, new computational methods are dis-

cussed that can disaggregate monetary flows at a national level to sub-regional levels while

maintaining high sectoral resolution. A case study of disaggregating the US national IO

table into a 52 region Multi-Regional IO table is used explain and demonstrate the compu-

tational disaggregation techniques. Further, to show how developing such MRIO tables can

aid in performing advanced sustainability assessment, the developed MRIO table was used

to quantify the multi-regional economic and energy impacts of wind energy expansion in the

US.
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6.2 Motivation and background

United States (US) is going through an energy transition like many other countries around

the world and adoption of renewable energy options such as solar and wind energy has

emerged as a competitive option over fossil fuels in several markets. In 2017, US was ranked

second globally to bring new wind energy capacity in operation and added 7 gigawatts

(GW) of wind energy capacity in 2017 [ 117 ]. Overall 89 GW of electricity was generated

(3% of its total electricity supply mix) from wind at year end only second to China. A US

Department of Energy study [ 118 ] predicts that if wind energy share continuous growing

at the current pace, it will account to 35% of the total electricity supply by the year 2050.

Consequently, adding renewable energy generation capacity results in local economic impacts

originating from manufacturing, operations and maintenance activity along with spill-over of

these impacts into other regions due to the supply chain effects and the interconnected nature

of of various regional economies. Quantifying such impacts has been a topic of investigation

over the last two decades across the world. The scope of investigations ranged from assessing

localized economic impacts in a region [ 119 ], market uncertainty analysis [ 120 ], job creation

or employment effects [  121 ], and quantifying emissions of deployment using hybrid Life Cycle

Assessments (LCAs) [  122 ] [  123 ]. The research objective of this chapter specifically addresses

this aspect of sustainability assessment using economic Multi-regional Input-Output (MRIO)

analysis [  74 ].

Since the regional economic sectors in the US actively interact with sectors in other re-

gions, deploying wind energy infrastructure in one region can have impacts on economic

sectors in other regions and these impacts can be quantified using MRIO analysis. MRIO

analysis makes it possible to study the the direct and indirect economic changes at multi-

regional levels in response to final demand changes of the economic outputs of specific in-

dustries in a given region under study. However, regionally disaggregate MRIO models are

not readily available for the US economy. In order to perform various types of multi-regional

impact assessments of renewable energy expansion, there is a need for rapid and continuous

MRIO model development. In this chapter, a computational method is presented to enable

rapid MRIO development for the US economy and to use the developed MRIO model for
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quantifying economic and energy impacts of wind energy expansion. The method presented

uses the Industrial Ecology Virtual Laboratory (IE Lab) [ 124 ] that proved to be highly effec-

tive in development of MRIO models for other countries such as Australia [ 125 ], China [ 126 ]

[ 127 ], Indonesia [ 128 ], Japan [ 129 ], Taiwan [ 130 ] along with a global MRIO model [ 131 ].

IE Lab makes it possible to disaggregate a national level Input-Output (IO) table into a

MRIO model using various non-survey approaches of disaggregation [ 74 ]. At its core, IE

Lab uses a constrained optimization algorithm to reconcile various raw regional data it uses

to constrain the national IO table. The complete methodology of IE Lab construction can

be found in the work by Lenzen et al. [ 124 ]. The case study specifically attempts to answer

two questions: 1) how to use computational methods to build a MRIO model for the US,

and 2) how to use the developed MRIO model to calculate economic and energy impacts of

wind energy expansion in the US.

Rest of the chapter is organized as follows: the details on US MRIO model construction

is provided first along with various types of raw data used, it is followed by details of data

collected for wind energy infrastructure deployment in ten regions of the US, and finally,

details on the environmentally extended MRIO analysis performed is provided.

6.3 Methodology

The primary data needs for using the IE lab infrastructure are called raw datafeeds.

Raw datafeeds constitute various regional data that are collected and formatted to start

disaggregating any available aggregated data such as a national IO table. The raw datafeeds

collected are shown in table  6.1 . The 2017 national supply-use tables obtained from Bureau

of Economic Analysis (BEA) were the main source for the construction of US MRIO. These

national level tables when fed into IE Lab are disaggregated into sub-national or regional

tables using non-survey regionalization methods [ 74 ] to get an initial estimate of the US

MRIO. Of the various non-survey methods available in IE Lab [ 124 ], the Flegg Location

Quotient (LQ) was selected over basic regionalized methods such as Simple LQ and Cross

LQ as it performs better to estimate the inter-regional input coefficients [  132 ]. The initial re-

gionalization of the national supply-use tables into regional tables was done by using regional

weights, which describe the economic structure of a region in comparison to the nation. To
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this end, the census data available for 1058 sectors at 6-digit North American Industry Clas-

sification System (NAICS) code level [ 133 ] for 52 regions (50 states, District of Columbia,

and Puerto Rico) was used as regional weights (also called ”proxy”) for disaggregating na-

tional supply-use table at regional level. The resulting MRIO is used as an ”initial estimate”

for the optimization step within the IE Lab. IE Labs then uses the initial estimate along

with various regional datafeeds collected as to perform constrained optimization on different

parts of the MRIO (table  6.1 ) and develop the final MRIO model. One of the primary

constraints used is that all MRIO elements must be positive with the exception of changes

in inventories and subsidies. More information on the optimization solvers used and default

IE Lab constrains construction can be read in the work by Lenzel et al. [  124 ]. Once the

MRIO model was developed, it was then used to perform environmentally extended MRIO

analysis of wind energy expansion in the US (more about the developed MRIO model is

available in results section of this chapter).

Table 6.1. Primary data used for US MRIO construction
Data Years Regions Sectors MRIO part constrained Sources

1 National Supply-Use Tables
a. Detail-level 2007-2017 1 402 ID, FD, VA US Bureau of Economic Analysis
b. Summary-level 2007-2017 1 72 ID, FD, VA

2 GDP by state 2007-2017 52 64 VA US Bureau of Economic Analysis
3 Private consumption expenditure 1997-2017 52 15 FD US Bureau of Economic Analysis
4 Export and import 2008-2017 52 33 Export, Import US Dept of Commerce
5 Census 2001-2017 52 1058 Proxy for regionalization US Bureau of Labor Statistics

(ID = Intermediate Demand, FD = Final Demand, VA = Value Added)

6.3.1 Method for collecting regionalized economic impacts of wind energy ex-
pansion

To understand the impacts of wind energy expansion in the US, a scenario of installing

500 megawatts (MW) wind energy capacity (Turbine size: 2300 kW and Number of turbines:

218) in each of the top ten wind energy producing states (table  6.2 ) in the US was modeled.

These ten states accounted most of the wind energy capacity in the US (63 GW of 89 GW

total, or 70% of total production). The individual contribution of all the remaining 42 states

is very small when compared to the top ten states, hence only the top 10 states were focused

to study the renewable energy expansion impact. Although new wind energy farms were
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installed in only ten of the states, the economies of each state in the US are highly connected

and dependant on each other and the IE Lab allows to quantify the cascading/ripple economic

impacts across the nation. Since the IE Lab can report the economic impacts at a highly

disaggregated sector level (up to 1058 economic sectors at 6-digit NAICS) it makes it possible

to understand the economic impacts at finest scale of disaggregation such as 6-digit of NAICS

sectors level in each of the state.

Table 6.2. Installed Wind energy capacity (MW) in top 10 States of the US (2016)
State Installed capacity (MW)

1 Texas 21450
2 Iowa 6974
3 Oklahoma 6645
4 California 5561
5 Kansas 5110
6 Illinois 4026
7 Minnesota 3499
8 Oregon 3213
9 Washington 3075
10 Colorado 3029

(Source: http://www.neo.ne.gov/statshtml/205.htm)

To obtain multi-regional economic impacts, USLab is initially fed with the data related

to direct economic disruption in terms of increased final demand that take place individually

in top ten wind energy producing sates due to installing new wind energy capacity. The

state wise economic disruption data was obtained from the Jobs and Economic Development

Impacts (JEDI) models [ 134 ] by National Renewable Energy Laboratory (NREL) of the US.

The JEDI tool provides state economic data such as direct costs of building a new wind

energy farm, labor costs, material and service costs, etc. table  6.3 shows a full list of the

data provided by JEDI tool that are mapped to sectors and sub-sectors. After mapping the

JEDI tool data to sub-sectors, it was further mapped and classified according to NAICS

nomenclature as the IE Lab needs data mapped to the economic sectors using NAICS codes.

The sectors that are directly impacted by the demand created and value added in economy

due to installation of new wind capacity and their associated NAICS codes and US-MRIO

sectors are shown in Table  6.4 . The wind turbine equipment was assumed to be imported
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from other countries and the cost of the equipment is assumed to be an infrastructure

investment that is provided by the local governments in each of the ten states. The US-

MRIO table constructed already accounts for imports in the coefficients, hence the final

demand for wind turbine was used as a government final demand for creating capital in the

economy.

Table 6.3. Type of JEDI data for each of the ten states.
Sector Sub-sector
Equipment Turbines, Blades, Towers, Transportation
Balance of Plant Materials, Construction (concrete rebar, equip, roads and site prep)

Transformer, Electrical (drop cable, wire), HV, Line extension,
Labor, Foundation, Erection, Electrical, Management/supervision.

HV Sub/Interconnection Materials, Labor, Engineering, Legal Services, Land Easements, Site Certificate
Labor Costs-Personnel Field Salaries, Administrative, Management
Materials and Services Vehicles, Fees, Permits, Licenses, Misc. Materials, Insurance,

Fuel (motor vehicle gasoline), Tools and Misc., Supplies, Spare
Parts Inventory, Materials and Services Subtotal, Sales Tax (Materials
& Equipment Purchases), Other Taxes/Payments

(Source: NREL JEDI model [ 134 ])

Table 6.4. Concordance matrix of sectors related to wind energy installation and US-MRIO sectors.
NAICS code NAICS sector name related to wind energy installation US-MRIO sector name
221115 Wind Electric Power Generation Wind Electric Power Generation
237130 Power and Communication Line and Related Structures Construction Construction
238120 Structural Steel and Precast Concrete Contractors Construction
324110 Petroleum Refineries Manufacturing
333611 Turbine and Turbine Generator Set Units Manufacturing Manufacturing
333612 Speed Changer, Industrial High-Speed Drive, and Gear Manufacturing Manufacturing
334416 Capacitor, Resistor, Coil, Transformer, and Other Inductor Manufacturing Manufacturing
335312 Motor and Generator Manufacturing Manufacturing
336112 Light Truck and Utility Vehicle Manufacturing Manufacturing
484230 Specialized Freight (except Used Goods) Trucking, Long-Distance Transportation and Warehousing
524126 Direct Property and Casualty Insurance Carriers Finance and Insurance
541110 Offices of Lawyers Professional, Scientific, and Technical Services
541199 All Other Legal Services Professional, Scientific, and Technical Services
541320 Landscape Architectural Services Professional, Scientific, and Technical Services
926150 Misc. Services Other Services (except Public Administration)
926150 Fees, Permits, Licenses Public Administration
339999 Misc. Materials Manufacturing
921130 Sales Tax (Materials & Equipment Purchases) Public Administration
522292 Debt Payment (average annual) Finance and Insurance
522292 Equity Payment - Corporate Finance and Insurance
524126 Land Lease Real Estate and Rental and Leasing
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6.3.2 Method to quantify the multi-regional impacts using the US-MRIO table

A representative template of a 3 region MRIO table that IE Lab generates is shown below

in figure  6.1 . The methodology starts with an existing national MRIO table that IE Lab

generated for the year 2017. Once the table is generated, “shocks” (data from JEDI models)

were injected into the table to the gross fixed capital formation (GFCF) and consumer final

demand (CFD) in the final demand block. GFCF and CFD together account for all the

demand for goods and services that required to build a new wind energy project [ 135 ].

Figure 6.1. Representative template for MRIO table generated by IE Lab. (RoE: rest
of economy), Shaded Region shows the part of economy where shocks were introduced.

In input-output analysis, installing a new wind energy project is not assumed as a value-

added investment but it is rather seen as an increase in demand for goods from all the

industries that make it possible to build a new wind energy project which leads to new capital

formation. For example, in the case of wind energy expansion, GFCF includes spending on

land improvements, turbine towers, machinery, equipment purchases, construction of roads
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and industrial buildings which leads to increase in capital formation. These GFCF and CFD

shock values in the final demand block are obtained from the JEDI model which provides the

local economic data related to installing new wind energy infrastructure in a specific state.

The JEDI model uses the project development and on-site labor data coupled with turbine

manufacturing and the related local supply chain data to calculate the regional final demand

change (GFCF and CFD values). With these data, USMRIO table was used to calculate

the induced impacts over rest of the states in the US. After the introduction of shocks, IE

Lab was run again with shock data to calculate the change in economic throughput for all

the sectors in each of the states using eq  6.1 . Import and export activities were included

into the intermediate matrix, and therefore the input coefficient A captures the international

effects. To measure the change of output X resulted from as a result of shocks in FD - y ,

the Leontief model was used as:

X = (I − A)−1y (6.1)

In this work, only a short term impact (1 year) was analyzed resulting from the shocks

introduced. Hence it was assumed the structure of the US economy to be fixed. Long term

structural change due to introduction of more renewable energy was not considered, however

should result in redistribution of energy supply and demand. This is out of scope for the

simulations carried out in this study.

6.3.3 Estimating manufacturing sector energy footprint due to wind energy
expansion

To calculate the spatial energy footprint of installing new wind energy capacity across

US, the Environmentally Extended-MRIO (EE-MRIO) approach was used. In this approach,

an energy consumption column for manufacturing sector was constructed based on a US

government survey data. This survey by the US-Energy Information Administration (US-

EIA) provides a detailed energy consumption (it refers to all the direct energy used by a

sector for non-fuel purposes) data for manufacturing sector as part of Manufacturing Energy

Consumption Survey (MECS) datasets [ 38 ]. The choice of selecting manufacturing sector
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was informed by a) high energy consumption by manufacturing sector and b) high economic

impact of installing new wind energy capacity in manufacturing sectors across US states.

However, the data for energy consumption in manufacturing sector was not available for all

US states in MECS, hence a regionally aggregated (4 census region aggregation) analysis at

the 3-digit NAICS aggregation level was performed. Figure  6.2 shows the 4 census regions

in the US.

Figure 6.2. The 4-census regions of the US

The energy consumption data obtained from the EIA website for the four regions is shown

in table  A.2 in the appendix(section  A ). The data was available in the NAICS format that

was compatible with the available NAICS aggregation in the IE Lab. Energy Consumption

(E) values were available for 21 manufacturing sectors at 3-digit NAICS level desegregation

(311–339; discontinuous series) for 4 regions as defined by U.S Census Bureau and the unit

of energy required was given in terms of trillions of British thermal units (btu). In eq  6.2 ,

E (1×n) denotes the direct energy inputs for each industry and Ω (1 × n) denotes the direct

energy intensity for each industry (R=region of interest) which was calculated as energy

input per unit total throughput (X) for manufacturing sectors in each region. ERi values are

from table  A.2 in appendix and XRi values are from the generated MRIO table by IE Lab.
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It must be noted that each vector is an aggregation of 4 regional vectors corresponding to

the 4 census regions.



ΩR1

ΩR2
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ΩR4
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(6.2)

Now to calculate the change in energy consumption, the EE-MRIO approach is invoked

by using product of the energy intensity with the change in economic throughput as per

eq  6.3 . Here, XRi was obtained from eq  6.1 for the final demand change induced by wind

energy expansion.

∆ERi = ΩRi∆XRi (6.3)

6.4 Results

6.4.1 The US economic structure in the form of MRIO table

A heatmap of the 2017 US-MRIO table is shown in figure  6.3 . The heatmap is presented

only at 2-digit NAICS aggregation level (20 sectors) for simplifying the presentation, as

visually representing 1058 sectors connections (6-digit NAICS level) in all regions was not

feasible. The heat map allows for a visual assessment of the country’s inter-regional supply-

chain structure across 52 regions and 20 sectors. For example, the dark row of matrices

for California indicate a high contribution of California to the national economy. California

was one of the main manufacturing hubs representing a national share of 11.2%, followed by

Texas (7.5%), and Ohio (5.2%). California also produced more than one fourth of agricultural

output, followed by Florida (6.5%), and Washington (6.1%). The dark row of matrices of New

York and Texas represent a large finance and insurance sector, and mining and quarrying

sector, respectively. Texas, along with California, is also the primary host for national wind

electric power generation with a combined output of more than 45% of the country’s total

output, again indicated by the dark row on the heat map.
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The heat map in figure  6.3 also shows inter-regional supply-chain flows, indicating

the dependence of a region on the rest of regions. The regional inter-linkages demonstrate

the importance of using MRIO tables for supply-chain analysis. For example, Texas has

significant mining-related industries such as petroleum refineries, and oil and gas extraction.

These products making the strongest inter-regional exporters of mining outputs from Texas

to other regions. The MRIO table can also able to trace the flows of money and materials

attached to a product that are vital for economic spill-over and footprint analysis.

Figure 6.3. Heat Map of the US-MRIO Table for 2017

6.4.2 Multi-regional economic impacts of installing wind energy infrastructure

Installing new wind energy farms induces new economic throughputs for the whole of US.

The direct impacts due to the activities related to the construction and installation of new
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wind energy were introduced in the model as shocks i.e. change in final demand as ∆FD.

The shocks were introduced at 3-digit disaggregation level in the US MRIO model generated

at 3-digit disaggregate level for year 2017. The values of ∆FD at 3-digit disaggregate level

for the NAICS sectors impacted by installation of wind infrastructure in each state are

uploaded as “Shock Data”. The simulation results using eq  6.1 show that the installation

of wind energy farms in these 10 states, potentially leads to a $26,929,083,000 (approx.

$26 billion) of total economic throughput change in the country. The calculation shows

the positive short-term economic impact of introducing new renewable energy capacity in

the country. This aligns with increase in labour and physical commodity demand to meet

the increased economic activities. While the local impacts are directly felt in the state

experiencing the increase in economic activities due to installation of new wind capacity, the

positive economic effects also spill over as shown by the MRIO calculations. The state-wise

change in throughput using the IE Lab is shown in figures  6.4 and  6.5 . As one would

expect, the top ten states where new wind energy capacity was installed (figure  6.4 ) show

significant change in economic throughput. However, the US MRIO table built in the IE

Lab made it possible to capture the economically significant multi regional impacts from the

remaining states too. As shown in figure  6.5 , these remaining states contribute to around

11% of the total economic impacts, i.e. approx. $3 billion, a substantial amount. The

nation-wide sector level distribution of change in economic throughput is shown in figure

 6.6 . Figure  6.6 also shows that the top two sectors that contributed to the change in total

throughput are Manufacturing and Construction. This is intuitive as installing new wind

energy farms does involve a large amount of commodities from these two sectors, however

quantification through MRIO model allows to see the spill over effect of increased activity

in these sectors throughout the national economy. The statewide distribution for the top 6

sectors with the largest economic throughput change is shown in figure  6.7 . The 6 maps

in the figure  6.7 shows the spatial distribution of economic impact spill over in different

sectors. It is interesting to see that installing new wind farms in just 10 states has positive

economic impact in states of Montana, Alaska, Wisconsin, North and South Dakota for

sectors such as Finance and Insurance, Manufacturing etc. Such analysis can provide insights

into multi-state cooperation for adoption of energy technologies that can meet both the goal
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of environmentally friendly energy generation for self-reliability and economic prosperity

with increase in economic opportunities, a win-win scenario.

Figure 6.4. Direct multi-regional economic impacts

Figure 6.5. Indirect multi-regional economic impacts

6.4.3 Manufacturing sector energy analysis

The estimated energy intensity (Ω) of manufacturing sector in each of the 4-census region

is shown in table  A.3 in the appendix ( A ). The changes in direct energy consumption using
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Figure 6.6. Total national economic impact by sector (log scale)

US MRIO for 4 census regions for 21 manufacturing sub-sectors was calculated and their

percentage changes are shown in figure  6.8 below. One common observation among all

the 4 regions was that the change in energy consumption was the greatest for the primary

metal manufacturing sector. This can be attributed to the increase in demand for more

primary metals like iron, copper, aluminium, etc that are associated with installing new

wind turbines. More demand implies increase in production volume and hence, increase

in energy consumption. Similarly, an increase in energy consumption for the Machinery

manufacturing can be attributed to the increase in demand for machinery required to install

new wind turbines and both the census regions, Midwest and West have a considerable

concentration of machinery manufacturing industries. The reason why some sectors showed

significant increase in energy consumption and some did not can be attributed to how tightly

or loosely these sectors are related to wind energy sector. The sectors such as primary metal

110



(a) Manufacturing sector (b) Construction sector

(c) Finance and Insurance sector (d) Transport and Wherehousing sector

(e) Professional, Sci.& Tech. services (f) Public Administration

Figure 6.7. Top 6 Sector wise and state wise economic impacts in thousands of USD
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and machinery manufacturing discussed before tend to be closely related to wind energy

sector while other sectors such as paper, food and furniture manufacturing tend to be loosely

related.

Figure 6.8. 4 census region-wise change in energy consumption (%) across the manufac-
turing sub-sectors

6.5 Conclusions

Creation of a US-MRIO table using the IE Lab platform has provided a very useful model

to study the potential impacts of wind energy expansion in the US economy. Growing con-

cerns of impact of greenhouse gas emissions due to rising population and increase in energy

demand is leading to adoption of renewable energy technologies. While there is still a strong

coal and natural gas-based generation, several federal agencies such as National Renewable

Energy Laboratory (NREL) have been providing guidance on clean energy transitions and

addition of new capacity because of the vast land resource that US possess. This provides

ample opportunity for generation of wind and solar energy power. Through this study, it

was demonstrated that adoption of wind energy only in top 10 states has a huge positive

economic impact on rest of the US. Governments and citizens can equally benefit from such

a boost in local and federal economy along with potential benefits of reduction in greenhouse

gases providing the pollution abatement over long term. However, energy footprint of the

new renewable energy capacity addition is also important to account for understanding the

total increase in energy demand vs gain in additional capacity. While this increase in energy
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demand is a onetime increase for the particular year, the generation capacity added will be

functional for at least 25 years. Hence, overall there should be a net energy gain due to the

installation of new wind farms in the US.

The results on energy consumption analysis in different regions from this study can

potentially be used to calculate the energy return on investment (ERIO). These MRIO

based ERIO for each region can help governments understand how introducing a new mix of

renewable energy production in a region (ex: wind, solar, hydro, etc) can lead to impacts in

other regions, providing a framework to establish interregional co-operation to shift towards

lower environmental impacts. For example, studies were performed using I-O methodology

to evaluate Chinese national level household indirect energy consumption (HIEC) and inform

policymakers about the effects of using alternate energy sources on HIEC at a national level

[ 136 ]. The US-MRIO table generated from this work can be used to further advance such

HIEC analysis studies to calculate effects of using alternate energy sources in different regions

within US. Since the IE Lab is also equipped to produce a time series of US-MRIO tables,

it can also help in setting an optimal growth rate for renewable energy’s share in the total

energy supply mix based on given budget and environmental load constraints. Such growth

studies using I-O methodology were performed in the past at national level to quantitatively

analyse US energy policy [  137 ] and more recently to understand the transformation of Turkish

economy [  138 ]. Further, US-MRIO tables can also be used by policy makers to study different

scenarios such as multi regional impacts associated with achieving the target of limiting the

global warming to 1.5 °C, 2 °C and 3 °C by 2100 or declining the CO2 emissions by 20% or

30% by 2030.
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7. DISSERTATION SUMMARY AND FUTURE WORK

7.1 Research gaps addressed

7.1.1 Mapping material flows at spatial resolution for LCA

Followed by the introductory chapter (ch- 1 ), chapter  2 presents how material flows

were quantified with the help of process modeling techniques at high spatial resolution which

were then used in performing environmental sustainability assessment. Further, process

models were developed to be representative of industrial production levels in the given region

which made it possible to overcome the linearity challenges of LCA data-sets by taking the

economies of scale into consideration. The process modeling approach described in the case

study is reproducible for other regions provided the underlying mechanistic mass balances

and chemical kinetics modeling is modeled accurately. Developed process models need to

be sensitive to the variations in material input characteristics and production recipes of the

region under study to accurately quantify material flows. For example, if the feedstock of

producing biodiesel is cotton seed oil instead of soybean oil in a different region, modifications

have to be made to the process model developed to accommodate the change in input material

characteristics. The transesterification reactions modeled must take into account the new

triglyceride compositions in cotton seed oil. By having such control over the individual

unit-operations in the model, reproducibility of the approach described in this chapter can

be maintained. Further expanding on the scope of the method described, process modeling

approach can also be used in performing consequential environmental impact assessment. For

example, a consequential LCA can be performed to calculate potential impacts of introducing

cotton seed oil based biodiesel production system in Indiana. Since such an industry does

not exist in Indiana, no empirical data will be available in LCA data sets to perform impact

assessment and using spatially aggregated data or data from another region will not be

able to accurately model the scenario. To overcome these challenges, process models can be

developed to simulate cotton seed based biodiesel production in Indiana.
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7.1.2 Quantifying advanced thermodynamic flows using EGA

In chapter  3 , a bottom-up thermodynamic flow quantification approach was established.

Using this approach, advanced thermodynamic sustainability assessments can be performed

with minimal empirical data requirements. Since most of the empirical thermodynamic

data available is from an energy usage standpoint, such bottom-up approaches could provide

means to get a comprehensive understanding of the thermodynamic efficiencies of the various

systems being studied for sustainability assessment. This thermodynamic flow accounting

framework maintains all the advantages offered by the bottom-up material flow accounting

from the previous chapter ( 2 ) framework and can even be appended on top of it. For example,

the material flow accounting performed for the soybean biodiesel case study can be taken

a step further by applying EGA to the already developed Aspen Plus process model. The

energy flows from the biodiesel model can then be linked via LCA data-sets to upstream

sources producing the required energy. The advancements in thermodynamic efficiencies of

sub-systems of the biodiesel production can then be directly linked to reduction in impacts

associated with upstream sources supplying the energy. Together with the methods from the

previous chapter, both the types of physical flows (material and thermodynamic) can now

be holistically quantified, thus providing a detailed understanding of physical flows and aid

in reduction of overall resource usage.

7.1.3 Modeling the physical economy of a region using bottom-up approach

In chapter  4 , the scope of the established bottom-up methods from previous chapters

was further expanded to quantify flows at an economy-wide level. Mechanistic models that

can simulate material transformation processes in various economic sectors were developed

(EMs). The models outputs were then integrated with the IO framework of PSUTs and PI-

OTs to provide a standardized scheme to quantify material flows at high sectoral and spatial

resolution. This integrated and over-encompassing method established retains all the data

resolution related to flows from each individual components (a single EM) while expanding

to model a much larger system such as the physical economy of a region. This chapter

also discusses the various methods that are available to model, scale, and validate different
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types of material transformation processes (PCSE, Python, Aspen Plus, etc). Finally, a very

detailed demonstrative case study was provided to show how the developed framework can

be used. The agro-based physical economy model for Illinois was developed in the form of

PSUTs and PIOTs using 11 EMs that simulated material flows across 11 different economic

sectors. The PSUTs and PIOTs were interpreted to get highly useful information such as

carbon and nitrogen usage in different sectors. Finally, the detailed chemical composition

information available of all the material flows was then used to model potential recycling of

wastes into useful commodities to increase material circularity. With a new recycling sector

included, new PSUTs and PIOTs were developed to analyze changes in resource use patters,

structural changes and reduction in overall waste flows from the physical economy modeled.

7.1.4 Automated tools and cloud platform for physical economy modeling

In chapter  5 , information was provided on the development of automated tools (MFDES)

and collaborative cloud infrastructure (PIOTHub). Since the lead times and efforts required

can be very high to develop novel EMs and construct new PSUTs and PIOTs for different

regions and economic sectors, most of the model independent and standardized steps in the

approach were automated. MFDES tool developed can simultaneously simulate EMs devel-

oped using different techniques, extract material flows from them, characterize the flows as

various commodities and waste, and finally, construct PSUTs and PIOTs to model a physical

economy. It also provides a heatmap visualization for a more qualitative interpretation of

the physical economy. To increase the applications of the MFDES tool, it was implemented

on a cloud-based collaborative platform called PIOTHub. Researchers across the world can

upload novel EMs developed using different techniques that simulate material flows at dif-

ferent spatial, sectoral, and temporal resolutions. PIOTHub then simulates all the models,

compiles different heterogeneous data from the simulation results, and generates PIOTs and

PSUTs to model physical economies under study. The PIOTHub platform also makes it

possible to share EMs and developed PIOTs with other researchers.
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7.1.5 Computational tools for disaggregating national level economic data for
sustainability assessment

In the final chapter  6 , since bottom-up approaches may not be suitable in all scenarios,

further improvements to existing allocation methods are explored, especially allocation of

aggregated monetary flows. In their current stage, bottom up models such as EMs cannot

directly quantify monetary flows, especially abstract flows from industries such as service

sectors. While the numeric value of a physical flow (ex: kg of steel) remains the same

irrespective of where and how the flow exists, monetary flow values can vary a lot. The

same commodity can have different monetary values in different parts of the world and the

value can even reduce to nothing when its turns into waste. Therefore, to enable a holistic

integration of all existing flow accounting methods, advances have to be made in other

approaches too as addressed in this chapter. A computational platform called IE Lab was

used to disaggregate national level monetary flows of the US economy into multi-regional and

multi-sectoral flows. Constrained optimization techniques were employed to use any available

regional information as a constrain to allocate a national level flow to individual region and

economic sector. Using the MRIO developed using IE lab, a case study of assessing multi-

regional economic and energy impacts of wind energy expansion was performed within the

EEIO framework.

7.1.6 Conclusion of objectives

With the methods demonstrated in each of the chapters of this dissertation, a mechanis-

tic, comprehensive and integrative environmental flow accounting framework was established.

Further, automated tools and collaborative cloud infrastructures were developed to reduce

the lead times in flow accounting and promote cross-disciplinary collaborations. The work in

this dissertation provides a template to perform mechanistic bottom-up accounting of mate-

rial and thermodynamic flows. The flows can be accounted ranging from a single process at

an individual industry level to modeling complete physical economy of a region, while main-

taining high granularity in terms of material composition (ex: elemental level granularity).

The flows accounted using the approaches presented here can be used to create highly detailed
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maps of environmentally relevant flows in economies and provide highly useful information

such as material consumption and emission trends, interdependencies among industries (both

within and across regions), impacts of deploying new technologies, and strategies for novel

environmental policy implementations. Finally, the mechanistic approaches are compatible

with existing data-sets (ex: LCI databases) which make it possible to seamlessly use mech-

anistic model based simulated data wherever empirical data is unavailable (or not reliable)

to perform sustainability assessment.

7.2 Future work

The research advancement made in this dissertation established a method to integrate

multiple flow accounting methods and modeling techniques. The current MFDES and PIO-

THub tools developed can simulate and handle material flows coming models built in com-

putational environments such as Aspen Plus, Python, Excel, and can integrate the outputs

with existing data built in other models environments. A modular approach was built into

the tool architecture which enables adding new modules parallel to the existing ones that

currently process three different computational environments. In the future, more modules

can be added into the architecture to make it compatible with a wide range of modeling

techniques used in multiple research areas. For example, models built in other programming

languages, Aspen energy flow models, LCA software, and discreet even simulation software

can be appended in MFDES to reel in more models to construct a much bigger physical

economy models. Finally, while MFDES can technically process data from outputs of other

top-down approaches such as the IE Lab, it was primarily built to address the need of han-

dling heterogeneity in bottom-up modeling techniques. Integrative modules can be built

and added to MFDES to bridge top down monetary flow modeling and allocation techniques

with bottom-up and mechanistic physical flow techniques to greatly increase the scope of

applications.
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A. APPENDIX

A.1 Scaling PSCE models (Ch- 4 )

The following yaml file contents describe how parameters can be changed for PCSE

models to be used in other regions.

Figure A.1. YAML file contents

A.2 Scaling Aspen Plus models (Ch- 4 )

The following example code block simulates the soybean-oil to biodiesel aspen plus model

using regionally specific soybeans given as input (ex: 100, 200, 300, 400, 500 tons) to the

developed EM.

Figure A.2. Scaling aspen plus models for other regions
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A.3 Aspen Plus property methods used (Ch- 4 )

Table A.1. Aspen Plus properties used
NAICS code Aspen Plus model Property method used
325311 Urea manufacturing SR-POLAR
311224 Soybean crushing NRTL
325199 Soybean biodiesel Dortmund modified UNIFAC
325193 Corn ethanol manufacturing NRTL
325311 Ammonia manufacturing Electrolyte NRTL

A.4 NREL JEDI data (Ch- 6 )

Table A.2. State level data obtained from JEDI models
NAICS code Industry name Northeast Midwest South West
311 Food 68 472 360 213
312 Beverage and Tobacco Products 12 16 41 25
313 Textile Mills NA 2 70 3
314 Textile Product Mills 1 NA 20 NA
315 Apparel NA NA 4 NA
316 Leather and Allied Products NA 1 1 NA
321 Wood Products 62 38 206 78
322 Paper 215 273 1,393 209
323 Printing and Related Support 13 28 40 8
324 Petroleum and Coal Products 171 565 1,944 834
325 Chemicals 134 835 2,405 154
326 Plastics and Rubber Products 29 98 127 39
327 Nonmetallic Mineral Products 96 229 354 149
331 Primary Metals 194 978 428 84
332 Fabricated Metal Products 36 193 79 37
333 Machinery 20 90 43 10
334 Computer and Electronic Products 28 28 32 73
335 Electrical Equip., Appliances, and Components 14 18 32 6
336 Transportation Equipment 24 149 110 36
337 Furniture and Related Products 4 14 15 4
339 Miscellaneous 13 15 22 8

(units: trillions of btu, NA: data not available from EIA)
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Table A.3. Energy intensity (Ω) calculated using EIA data [ 38 ]
Industry NAICS code North East Mid West South West
Food Manufacturing 311 0.000583116 0.00181635 0.00127221 0.00121331
Beverage and Tobacco Product Manufacturing 312 0.000497471 0.000377224 0.000525558 0.00040122
Textile Mills 313 – 0.000736844 0.00282679 0.000769023
Textile Product Mills 314 0.000169234 – 0.00106396 –
Apparel Manufacturing 315 – – 0.0003933 –
Leather and Allied Product Manufacturing 316 – 0.000193356 0.000173328 –
Wood Product Manufacturing 321 0.00546519 0.00153828 0.00492586 0.00389057
Paper Manufacturing 322 0.00508736 0.00421134 – 0.00769425
Printing and Related Support Activities 323 0.000772912 0.000919893 0.00163856 0.000544709
Petroleum and Coal Products Manufacturing 324 0.00152013 0.00295213 – 0.00388171
Chemical Manufacturing 325 0.000655978 0.0031344 – 0.00099441
Plastics and Rubber Products Manufacturing 326 0.000680356 0.0010015 0.00132194 0.00113219
Nonmetallic Mineral Product Manufacturing 327 0.00481122 0.00659544 0.00683479 0.00615514
Primary Metal Manufacturing 331 0.00387278 0.00748617 0.00445002 0.00224592
Fabricated Metal Product Manufacturing 332 0.000528459 0.00137666 0.000623642 0.00057652
Machinery Manufacturing 333 0.000282959 0.000473533 0.000267088 0.000162782
Computer and Electronic Product Manufacturing 334 0.000319879 0.000366641 0.000266612 0.000363404
Electrical Equipment, Appliance, and Component ... 335 0.000406049 0.000314312 0.000495699 0.000249206
Transportation Equipment Manufacturing 336 0.000267506 0.000432323 0.00032901 0.000193093
Furniture and Related Product Manufacturing 337 0.000289326 0.000473192 0.000404329 0.000215003
Miscellaneous Manufacturing 339 0.000251328 0.000240088 0.000359855 0.000129004
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