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ABSTRACT 

Ni-based superalloys continue to exert themselves as the industry standards in high stress and 

highly corrosive/oxidizing environments, such as are present in a gas turbine engine, due to their 

excellent high temperature strengths, thermal and microstructural stabilities, and oxidation and 

creep resistances. Gas turbine engines are essential components for energy generation and 

propulsion in the modern age. However, Ni-based superalloys are reaching their limits in the 

operating conditions of these engines due to their melting onset temperatures, which is 

approximately 1300 °C. Therefore, a new class of materials must be formulated to surpass the 

capabilities Ni-based superalloys, as increasing the operating temperature leads to increased 

efficiency and reductions in fuel consumption and greenhouse gas emissions. One of the proposed 

classes of materials is termed refractory complex concentrated alloys, or RCCAs, which consist of 

4 or more refractory elements (in this study, selected from: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) 

in equimolar or near-equimolar proportions. So far, there have been highly promising results with 

these alloys, including far higher melting points than Ni-based superalloys and outstanding high-

temperature strengths in non-oxidizing environments. However, improvements in room 

temperature ductility and high-temperature oxidation resistance are still needed for RCCAs. Also, 

given the millions of possible alloy compositions spanning various combinations and 

concentrations of refractory elements, more efficient methods than just serial experimental trials 

are needed for identifying RCCAs with desired properties. A coupled computational and 

experimental approach for exploring a wide range of alloy systems and compositions is crucial for 

accelerating the discovery of RCCAs that may be capable of replacing Ni-based superalloys.  

In this thesis, the CALPHAD method was utilized to generate basic thermodynamic properties 

of approximately 67,000 Al-bearing RCCAs. The alloys were then down-selected on the basis of 

certain criteria, including solidus temperature, volume percent BCC phase, and aluminum activity. 

Machine learning models with physics-based descriptors were used to select several BCC-based 

alloys for fabrication and characterization, and an active learning loop was employed to aid in 

rapid alloy discovery for high hardness and strength. This method resulted in rapid identification 

of 15 BCC-based, four component, Al-bearing RCCAs exhibiting room-temperature Vickers 

hardness from 1% to 35% above previously reported alloys. This work exemplifies the advantages 
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of utilizing Integrated Computational Materials Engineering- and Materials Genome Initiative-

driven approaches for the discovery and design of new materials with attractive properties. 



 
 

13 
 

 INTRODUCTION 

The electrical energy required to sustain the growing global population must meet ever-

increasing demands. One of the most well-known and highly-studied methods for electricity 

generation involves the use of gas turbine engines. Hundreds of hours of sustained, high 

temperature operation are required for gas turbine engines. Such engines require the use of 

materials with a combination of high temperature and fatigue strength, creep and oxidation 

resistance, fracture toughness, and microstructural and thermal stability1,2. To date, Ni-based 

superalloys have answered this demand and are capable of operating at about 70% of their melting 

points, or between 900 and 1100 °C, for long periods of time in harsh environments, unlike other 

alloy classes. To accomplish this engineering feat, thousands of engineers for over 70 years 

contributed to designing, testing, characterizing, and implementing these alloys with marked 

improvement over the decades3. Through fine tuning of processing and manufacturing controls 

and improvements such as directional and single crystal casting, the lifespans of Ni-based alloys 

have remarkably quadrupled since the early days of superalloys.2 Another feature of Ni-based 

superalloys that allows for sustained operation in highly oxidizing environments is the formation 

of a protective α-Al2O3 scale on the alloy surface.4,5  

 As previously mentioned, the energy requirements for modern society have risen 

significantly, and turbine engines must also improve their operating temperatures to match this 

demand. It is well known that increasing the peak operating temperature of an engine can improve 

engine efficiency for enhanced electricity production and reduced greenhouse gas emissions. 

Because Ni-based superalloys are reaching their limits due to their onset melting points of 

approximately 1300 °C, alternative materials must be interrogated to surpass this ceiling.6  

 Promising alternatives are the refractory complex concentrated alloys7,8. Refractory alloys 

containing W, Mo, Nb, and Ta are an attractive class of materials for high temperature 

environments due to their relatively high melting points9. However, prior studies of the oxidation 

resistance and the room temperature ductility of refractory alloys indicate that both properties 

require significant improvements in order for these materials to be seriously considered as 

alternatives to Ni-based superalloys.8–10  

 Refractory high entropy alloys (RHEAs) or refractory complex concentrated alloys 

(RCCAs) are alloys that consist of four or more refractory elements (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, 
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and W) in equimolar or near equimolar proportions. The idea behind multiple principal elements 

is that the configurational entropy (since ΔSideal = -R∑ 𝑐௜ log 𝑐௜௜ ) of a solid solution can be 

maximized when elements are in equimolar proportions and increases further when more elements 

are added.11 A high configurational (or mixing) entropy, in theory, could have a pronounced effect 

on the phase equilibria, phase transformation kinetics, and lattice distortion, and therefore a 

pronounced effect on the properties of an HEA or CCA, although some recent work has put the 

theory of equimolar alloys possessing optimal properties in question.9 Nevertheless, this theory 

resulted in an explosion of research efforts to discover alloys with superior properties than current 

state-of-the-art alloys and the field has made notable progress with novel alloys in a short time 

span.9,12,13  

There are many notable examples of RCCAs that exhibit high strength at elevated 

temperatures and possess comparable densities to Ni-based superalloys. The Ashby plot shown 

Figure 1-1 gives many examples of recently discovered RCCAs with attractive high temperature 

strength and some with lower densities than Ni-based superalloys.14 The Ni-based superalloys in 

the orange region consist of well-known alloys such as Rene 41, Waspaloy, Inconel 718, Hastelloy 

X, Haynes HR-110, and more. AlNbTiV is an example of an RCCA with comparable strength to 

these alloys and possesses a lower density. Another notable example is the AlMo0.5NbTa0.5TiZr, 

which exhibits the highest yield strength from this figure at 1000 °C, and also possesses a lower 

density than Ni-based superalloys, although further work is required for many of these alloys to 

assess their room temperature ductility and oxidation resistance.  

In terms of progress made in discovering RCCAs that with inherent oxidation resistance 

by formation of a protective oxide scale, an alloy termed “NV1” was discovered by K.C. Lo et 

al.15, which is a 7-component alloy containing with a composition of approximately Al17.6-Si2.9-

Ti5.4-Cr25.2-Nb15.2-Mo20.3-Ta13.4. Oxidation tests were performed, and the result at 1100 °C 

for 200 hours and compared to other RCCAs is shown in Figure 1-2. NV1 represents a significant 

milestone in the oxidation resistance of RCCAs, and it was found that the protective scales formed 

were CrTaO4, Al2O3, and Cr2O3, although it is possible that CrTaO4 hindered the formation of 

alumina and chromia. So far, this RCCA possesses the highest oxidation resistance to date when 

compared to other RCCAs. 
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However, there remains a glaring key issue: the vast number of possible alloys to be 

examined that result when mixing multiple elements in various compositions and concentrations. 

Serial experimentation alone is not a feasible method of exploration as it is inefficient, wasteful 

and would require an incredible number of experimental trials. Therefore, exploring the limitless 

compositional space requires an Integrated Computation Materials Engineering (ICME) approach. 

ICME, as the name implies, involves integrating computational tools to aid in the identification of 

novel materials with superior properties.16 In this approach, the CALPHAD, or CALculation of 

PHAse Diagrams method may be utilized to predict phase fraction, transformation temperature, 

liquidus and solidus temperatures, aluminum activity, and potentially many more thermodynamic 

properties.9,17,18 Such information is crucial to determining whether an alloy is suitable for a given 

application. The method requires thermodynamic databases and phase diagrams for multi-

compoenent systems, which are gathered from experimental trials. Thermodynamic properties of 

high order systems (e.g., quaternary and quinary systems), are extrapolated from lower order 

Figure 1-1. Ashby plot showing Ni-based superalloys in the orange region and comparing their high 
temperature strength to recent works involving RCCAs. Adapted from Ref. [14]. 
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systems (e.g., binary and ternary systems). The predictive power of the CALPHAD method has 

been proven in several previous works of coupling experimental data with the CALPHAD 

predictions, but there is still much progress to be made concerning the accuracy of these 

predictions.19 

 Exploring the compositional space efficiently is also made possible by machine learning, 

as this method can facilitate discovery and understanding for advanced alloy design efforts.20–22 

Passive machine learning involves the use of several physics-based descriptors such as mechanical 

properties, microstructure, and electronic properties to identify trends and facilitate the process of 

uncovering new materials with attractive properties with limited human interaction.23 Active 

learning, on the other hand, is the procedure of selecting a number of candidates for experimental 

trials based on a balance of exploration and exploitation and a maximum expected improvement 

in the model and is based on Bayesian optimization frameworks.24 The process can choose to test 

compositions in an unknown space (exploration), and also choose compositions that theoretically 

maximize a particular property (exploitation). One such work conducted by C. Wen et al.,21 

exemplifies this approach, and a summary of results is shown in Figure 1-3. The authors employed 

two different types of active learning approaches: training a machine learning model on the 

property-composition relationship (termed Loop I), and then introducing physics-based descriptors 

Figure 1-2. Mass gain versus time curve of NV1 at 1100 °C and a total time of 200 hours. This result shows 
unprecedented oxidation resistance of an RCCA when compared to other RCCAs previously reported. Figure 

adapted from Ref. [15]. Licensed under CC BY 4.0. 
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related to mechanical properties, such as differences in atomic radii, configurational entropy, 

valence electron configuration, shear modulus, lattice distortion energy, and many more features 

(termed Loop II). Through this active learning method, 35 out of 42 alloys exhibited higher 

hardness than previously reported in literature, with 17 alloys possessing 10% greater hardness 

than the original training dataset. This work proved the value of utilizing physics-based descriptors 

coupled with an iterative active learning approach to rapidly discover alloys with high hardness, 

and that only employing composition versus property based machine learning is not as effective 

in predicting hardness when implementing features related to mechanical properties in the machine 

learning model. 

 For this thesis, a grid of alloys was constructed with justifications provided for the 

parameters of the grid, and trends with compositions and thermodynamic quantities found by the 

CALPHAD method (such as Al activity and solidus temperature) were identified. Down-selection 

and filtering followed this analysis, as the goal of this work was to discover alloys with certain 

properties, such as a single-phase microstructure, high solidus, and high hardness. A second design 

objective is to select possible alumina formers by incorporating Al and maximizing activity of Al. 

Figure 1-3 shows the main goals previously mentioned; the specific strength of some RCCAs 

surpass that of Ni-based superalloys, but the oxidation resistance still needs improvement, and a 

comparable mass gain to Ni-based superalloys with higher specific strength is ultimately the goal 

of this work (e.g., mass gain of 1 mg/cm2 and specific strength of 70 MPa cm3/g). Once the final 

Figure 1-3. a) Hardness parity plot of predicted hardness values and their accuracy when compared to the initial 
training set. b) Results of active learning loop and differences when using property plus composition (Loop I) versus 

composition plus knowledge. Adapted from Ref. [21]. 
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subset of alloys was selected, an active learning loop was employed for rapid exploration and 

exploitation of the RCCA compositional design space of single-phase alloys. 

  

Figure 1-4. A plot showing the mass gain over area versus a specific strength. Ni-based superalloys currently 
provide superior oxidation resistance than any RCCA, but there are some RCCAs with a higher specific strength. 

The target property space is a specific strength of 70 MPa cm3/g and a mass gain of 1 mg/cm2. 
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 A CALPHAD-BASED APPROACH TO DESIGN REFRACTORY 
CONCENTRATED COMPLEX ALLOYS CAPABLE OF FORMING A 
CONTINUOUS Al2O3 PROTECTIVE SCALE UPON OXIDATION AT 

1000 °C 

2.1 Introduction 

The CALPHAD method utilizes the principle of the Gibbs energy minimization at a given 

temperature and pressure to predict the equilibrium state of a system. The thermodynamic 

description is stored in a database, which is then used by software such as PANDAT and Thermo-

Calc to construct phase diagrams.16 For multi-principal element alloys (MPEAs), the 

thermodynamic descriptions of lower order systems such as binaries and ternaries are extrapolated 

to construct a higher order thermodynamic database. The downside of the method comes in the 

attempt to derive phase diagrams of multi-component systems, where there is simply not enough 

data to make a truly accurate prediction on the equilibrium phases of a CCA.  Numerous 

experimental works have verified the accuracy of CALPHAD predictions for some systems 

(depending on the composition of the alloy), such as the work of Manzoni et al.25 Manzoni 

evaluated the AlCoCrCuFeNi system which includes brittle alloys with intermetallic phases, by 

making several adjustments to the composition and studying the effects of heat treatments at 

various conditions and comparing the observed phases to phases predicted by Thermo-Calc, which 

showed agreement on some alloys.  

The goal of this work is to explore the compositional space of RCCAs and determine 

possible α-Al2O3 scale forming alloys. The CALPHAD method has been employed along with a 

high-throughput approach. High-throughput methods and experimentation have been utilized 

heavily in the pharmaceutical industry to rapidly discover novel drug compounds and, as a result, 

has greatly accelerated drug research and development26. The same process of screening can be 

applied to computational approaches for advanced alloys. High-throughput screening using the 

CALPHAD method is ideally capable of accelerating the goal of discovering high strength, 

oxidation resistant alloys by computing the stability range of the BCC phase, aluminum activity, 

and melting onset temperatures across hundreds of alloy systems. Further acceleration of alloy 

discovery can be facilitated using machine learning models and an active learning loop27,28, which 

will be elucidated in the following chapter of this thesis. 



 
 

20 
 

2.2 Construction of Initial Compositional Design Space  

To begin the high-throughput screening process, a palette of elements, a step size between 

compositions, and the number of elements for any given system must be defined, and the palette 

of elements is shown in Figure 2-19. In this work, alloys with the nine refractory elements 

mentioned previously, in addition of aluminum for oxidation resistance, with a 5 at% step size, 

were used to construct the grid of alloys for the computation of thermodynamic properties for all 

possible combinations of four component, Al-bearing RCCAs. A 5% step size was chosen for this 

dataset for a reduction in computational time, to expedite the active learning process, and to 

mitigate the possibility of testing alloys close in composition. To further expedite the calculations, 

alloys containing greater than 40 at% aluminum were disregarded as intermetallic formation with 

high a percentage of aluminum was of great concern, and a large drop in solidus temperature was 

also expected.  

The thermodynamic quantities calculated were equilibrium phases, volume fraction of phases, 

activity of Al, solidus and liquidus temperatures, densities, BCC solvus temperatures, and the 

crystal structure of each phase (only differentiating between intermetallic and BCC solid solution 

phases). After the thermodynamic properties of the initial design space were computed, further 

filtering was required for selection of alloys exhibiting single phase BCC microstructures (i.e. a 

volume fraction of solid solution BCC equal to unity) at 1000 °C, and for feasibility of fabrication 

through solidification processing. Several scripts were written in the programming language 

Python, using the SDK TC-Python and the thermodynamic database for high entropy alloys, 

TCHEA4.  
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2.3 Computational Methods: Scripts Created for the Down-Selection of a Grid of Alloys 

2.3.1 Get_phases_and_structures 

The get_phases_and_structures29 function allows for a quick and easy assessment 

of the equilibrium phases present in any given alloy and the volume fraction of these phases. The 

composition and temperature of an alloy were inputted, and the equilibrium phases and their 

volume percentages at that temperature were found using the get_stable_phases function in 

the tc_python_plotter python file.  

The sublattices of the equilibrium phases were evaluated using the calc_sublattice 

function, which provided dictionaries of the site fractions of an element in a phase. The contents 

of the dictionary were then evaluated. If the keys (keys are the subject that a value is assigned to, 

e.g., if the element Al has an atomic fraction of 0.4, then the key value pair is “Al: 0.4”) of the 

value and values of the first two dictionaries outputted were equal, then this phase was considered 

disordered. The phase was then assigned to have a value of ‘SS’, which meant that the phase was 

a solid solution. Otherwise, if the outputted dictionaries were found to be different, then the phase 

was assigned as ‘IM’ meaning an intermetallic or ordered phase.  

Figure 2-1 The elemental palette considered. It consisted of the 9 refractory elements (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, 
and W) plus Al for oxidation resistance. Adapted from Ref. [9]. Licensed under CC BY 4.0. 
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A dictionary was created of all phases and their assignments, and an overall assignment for 

the alloy was generated; if only SS phases were present in the alloy, then the alloy was assigned 

as ‘SS’. If there were both SS and IM phases present, then the alloy was assigned as ‘SS+IM’. If 

there were only intermetallic phases present, then the alloy was assigned as ‘IM’.  

Furthermore, a one-hot encoding term was created based on the phases present and the 

assignment generated for the alloy. If only FCC and BCC solid solution phases (i.e., phases 

assigned ‘SS’) were present, then the encoding term was ‘FCC+BCC’. If the previous condition 

was true, but there were intermetallic phases present, then the encoding term was 

‘FCC+BCC+Secondary’. If there were solid solution BCC or FCC phases and intermetallic phases 

present, then the encoding term was ‘BCC/FCC+Secondary’. If the alloy consisted of a single 

FCC/BCC phase, then the encoding term was ‘FCC/BCC only’. Otherwise, if an alloy only 

contained intermetallic phases, then the encoding term was ‘Other’. 

This function provided, in a dictionary, the stable phases present in an alloy at a given 

temperature, the crystal structure of those phases, the general crystal structure of the alloy, the 

volume fraction of all phases, and the one-hot encoding term for the alloy. This information was 

then used to filter out alloys based on a number of criteria, such as single phase only, volume 

fraction of BCC phase, and so on.  

2.3.2 Try_calculating_solvus  

The try_calculating_solvus function was built due to internal issues from Thermo-

Calc that arose from calculating the solvus temperature of the BCC phase for certain alloys. It 

utilized the calc_transformation function of the tc_python_plotter package, which 

required several parameters: the phase of interest, the volume fraction of that phase, and the 

reference temperature, which needed to be close to the theoretical solvus temperature of the phase 

of interest.  

The function was used to identify the stable phases in the alloy, to check if the BCC phase 

was present, and to check if the solidus temperature was calculated; this was necessary because 

the calc_transformation function sometimes returned a temperature that was equal to the 

solidus temperature, even if the reference temperature was over 50% different from the solidus 

temperature. In which case, the try_calculating_solvus function scanned a range of 

temperatures in 50 K increments starting at 150 K and ending at 2500 K. The starting points and 
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ending points were chosen after evaluating the accuracy of Thermo-Calc’s predictions at the 

extremes of temperature.  

The function was then used to evaluate, at each incremental temperature, if the solvus was 

calculable. If an error was returned after attempting to calculate the solvus temperature, or if the 

solvus temperature returned was equal to the solidus temperature, then the function continued to 

scan through the range of temperatures until a value not equal to the solidus temperature was 

returned, or the 2500 K limit was reached. If the limit was reached and no solvus temperature was 

found, then the solvus returned was simply “None”.  

 

2.3.3 Get_fabrication_method  

In earlier experimental trials to fabricate an alloy of CrMoW through arc melting, it was found 

that there was significant loss of Cr and extremely large void formation that likely resulted from 

evaporation of Cr. The Cr boiling point is approximately 2672 °C30, and the binary equiatomic 

alloy of MoW has a liquidus temperature of approximately 3200 °C31. Clearly, the incorporation 

of Cr in liquid MoW, or even just pure liquid Mo and liquid W can cause significant mass loss of 

Cr. Furthermore, Al has a boiling point of approximately 2470 °C32 and it can be inferred that a 

similar attempt to incorporate Al into an equiatomic MoW alloy could result in significant mass 

loss through evaporation. Figure 2-2 shows the differences in boiling and melting points of Al and 

Cr and the melting points of other refractory elements. 

A workflow was developed to split the alloy processing into two different methods - arc 

melting or powder metallurgy. The workflow functioned as follows: 

1. Calculation of the liquidus temperature with nominal amounts of Cr and/or Al. 

2. Calculation of the liquidus temperature of the alloy upon removing Cr and/or Al. 

3. If the liquidus of the Al-bearing alloy, or the liquidus of the Al- and Cr-free alloy exceeded 

the boiling point of Al, then the powder metallurgy route was the recommended process. 

4. If the liquidus of the Al- and Cr-free alloy was less than the boiling point of Al, then arc 

melting was the recommended process. 

This function was written as an attempt to mitigate Al and Cr loss by filtering out alloys that 

contained high melting point elements such as Nb, Ta, Mo, and W and that would likely evaporate 
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large amounts of Al and Cr if fabrication was conducted by arc melting. The powder processing 

route was a more viable option for the fabrication of alloys with high melting points, as processing 

steps such as the Pechini method and mechanical alloying do not involve the metal alloy liquid 

state or temperatures exceeding the boiling points of Al and Cr. 

A function that can be utilized to generate homogenization windows of compositions was also 

formulated but was not used in the work as expediting the active learning process was of the 

highest priority. This function in included in the appendix. 

 

a) 

b) 

Figure 2-2 a) A graphical representation of the boiling point issue when melting volatile elements such as Al and Cr 
with high melting point elements such as Mo and W. The get_fabrication_method function aimed to solve this 
issue. b) An attempt at arc melting a CrMoW alloy that underwent significant Cr vaporization and formation of large 

pores. 
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2.4 Results and Discussion 

Visualization of the data is key to discovering trends in thermodynamic properties with 

composition. A 3D color map of the unfiltered design space at 1000 °C is shown in Figure 2-3a, 

where the red and pink dots indicate compositions with relatively high solidus temperatures. Their 

location also reveals aggregations near the single-phase region, as well as high Al activity, which 

suggested compositions with higher melting point refractory elements, such as W and Mo, and 

potentially high Al contents with high volume fractions of the BCC phase. In Figure 2-3b, the ideal 

mixing entropy is plotted as a function of composition over all alloy systems. While such a plot 

could yield alloys with a “high entropy” effect that is said to stabilize the single phase region33,34, 

there was little variation in the color over the entire plot; that is, alloys with particularly high 

entropies were not clearly identified from this plot. 

 

 The filtering steps were then applied; that is, the scripts mentioned in the previous section 

were used to filter out alloys that were not single-phase BCC, and to filter out alloys with a BCC 

solvus temperature higher than 1000 °C. This reduced the design space dramatically from 67,440 

compositions to 6,522 single phase compositions. Another t-SNE plot has been provided in Figure 

2-4, revealing large gaps in the compositional space. It was evident that the single-phase 

compositions tended to aggregate around a base element, especially in the case of W, Ta, and Hf. 

The single-phase alloys were then separated by the get_fabrication_method function into 

a)                                                                   b) 

Figure 2-3 . a) 3D color mapping of the initial design space. b)t-SNE plot with ideal mixing entropy plotted with a 
greyscale. 
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two categories depending on fabrication method: arc melting or powder processing. There were 

5,144 alloys deemed “arc-meltable” and 1,378 alloys suggested for powder processing, both of 

which are shown in Figure 2-4, with the black dots indicating the alloys present after applying the 

filter methods.  

  

Figure 2-4 a) All alloys that are single phase and possess a BCC solvus temperature lower than 1000 °C. b) Powder 
processing alloys. c) Arc meltable alloys. 

a) 

c) 
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The frequency of an element occurring in both fabrication design spaces can be quantified 

as well (Figure 2-5). Unsurprisingly, the number of single phase BCC compositions containing Zr 

were low, as Zr forms more intermetallic compounds with Al than compared to other elements.35 

There were also few Hf containing compositions, as Hf has similar bonding characteristics as Zr 

with respect to Al.36 It was also apparent that there were a high number of Ti-, V-, Nb-, and Mo-

containing compositions in the arc melting category, and relatively high numbers of V-,Nb, and 

Mo-containing compositions in the powder metallurgy space. However, the number of Ti-

containing alloys dropped off dramatically for powder metallurgy processed alloys. In both 

categories, there were relatively few compositions for Cr and Ta, but these elements also form a 

high number of intermetallic compounds with Al .17,37  

Investigating the Pareto front of the Al activity and solidus temperature can also provide 

insight into the types of systems and compositions that are the most optimized in terms of those 

quantities (the compositions that simultaneously maximize the Al activity and the solidus 

temperature). Al activity can possibly be used as a surrogate for oxidation resistant alloys, although 

it is only one factor in terms of forming a protective alumina layer.4 Nevertheless, it provides a 

starting point and can allow an efficient means of testing compositions sequentially. The Pareto 

front between the solidus temperature and Al activity for both processing methods are shown in 

Figure 2-5 The frequency of elements in the compositions of both fabrication methods. Elements with some 
solubility at high temperature with Al (V, Nb, Mo, Ti) show a good number of single phase compositions, and those 

that readily form intermetallic compounds (Cr, Zr, Hf, and Ta) are low in quantity. 
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Figure 2-6a, b, and the systems and frequency of the systems along the front are given as well in 

2-6c, d.  

40 and 15 compositions lie on the Pareto front for AM and PM methods, respectively. The 

Al compositions for both fabrication methods ranged from 0.05 to 40 at%, and Al activity for the 

AM method ranged from 1x10-6 to 0.000408 whilst Al activity for PM methods ranged 

from .000113 to .00112, which is remarkable as a drop in at% of Al from 40 to 5% was associated 

with a only drop of a single order of magnitude in Al activity. A summary of the minimum and 

maximum activity and solidus temperature as well its composition is provided by Table 2-1. 

  

Figure 2-6 a) Multi-objective optimization plot and Pareto front for arc melt-able alloys. b) Multi-objective 
optimization plot and pareto front for powder processing alloys. c) Quantity of systems that lie on the Pareto front of 

arc melt-able alloys. d) Quantity of systems that lie on the Pareto front of powder processing alloys. 
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Table 2-1 Comparison of compositions with minimum and maximum optimized values. 

Composition (at%) Al activity Solidus (°C) Fabrication 
method 

Al5.0Mo40.0Ta30.0Ti25.0 1e-6 (min) 2553 (max) Arc melt 
Al40.0V30.0W15.0Cr15.0 .000408 (max) 1621 (min) Arc melt 
Al5.0Mo30.0Nb5.0W60.0 .000113 (min) 2768 (max) Powder 
Al40.0V10.0W45.0Cr5.0 .00112 (max) 1301 (min) Powder 

 

Hardness predictions were computed for all single-phase BCC compositions, and a 

correlation heatmap was created for both fabrication subsets, with the hardness predictions, at% 

of elements, and thermodynamic quantities plotted against each other to observe correlations 

between predicted hardness and the mentioned quantities. The correlation heatmap for arc melt-

able alloys is shown in Figure 2-7, and the heatmap for powder processing alloys is shown in 

Figure 2-8.  

 The correlation plot for arc meltable compositions show some trends in the predicted 

hardness (left-most column in Figure 2-7), namely that at% Al, has a strong positive correlation 

with Al activity, at% W has a weak positive correlation with Al activity while at% Ti, enthalpy of 

mixing of the system, and mixing entropy and the solidus temperature have negative medium 

correlations with Al activity. Enthalpy of mixing has a strong negative correlation with at% Al, 

and medium positive correlation with at% Hf, Ta, Ti, and mixing entropy. Entropy of mixing has 

medium positive correlations with at% Hf, Zr, Ta, and Ta and medium negative correlations with 

at% Al, V, W, Cr, and Al activity. Correlations for the PM compositions exhibited similar 

relationships when compared the AM compositions.
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Figure 2-7 Correlation heatmap between the predicted hardness of all single-phase arc meltable alloys. 
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Figure 2-8 Correlation heatmap between the predicted hardness of all single-phase powder processing alloys 
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2.5 Conclusions 

In summary, a set of conditions were placed upon a grid of alloys, and the thermodynamic 

quantities pertinent to high strength, high oxidation resistant alloys such as solidus temperature, 

activity of aluminum, and presence of a solid solution phase were calculated at 1000 °C. With 

restraints such as 4 components, a 5% step size, a maximum Al percentage, and the 9 refractory 

elements, thermodynamic properties were calculated in a rapid fashion, and then further down-

selected to a smaller, more manageable subset with the goal of performing high-throughput 

experimental trials for further alloy discovery. By using scripts that take into account the 

processability of any given composition, it was possible to parse out the subset further and 

recommend certain fabrication methods. This technique resulted in compositions that were 

recommended for powder processing to be high in high-melting point elements such as Mo and 

W, as attempting to make alloys high in these elements by solidification processing would likely 

cause significant evaporation and mass loss. 

Through the use of a suite of data visualization tools, trends were elucidated, and key areas of the 

design space worth further exploration were identified. Essentially, it was found that there was a 

concentration of V-based alloys in both processing methods, likely due to the large solubility of 

Al in V at high temperatures38, whereas other elements such as Zr, Hf, Cr, and Ta show little Al 

solubility in the binary phase diagrams.17,35–37 Promising alloy systems on the Pareto front 

optimizing Al activity and solidus temperatures were identified for future work for testing such 

alloys. Correlation heatmaps yielded trends relevant for alloy design, such as the W content in 

relation to Al activity and predicted hardness versus atomic percent of certain elements. 

  



 
 

33 
 

 HIGH-THROUGHPUT EXPERIMENTATION FOR THE 
DISCOVERY OF HIGH STRENGTH ALLOYS BY ACTIVE LEARNING 

3.1 Introduction 

As there were a large number of possible RCCA compositions to evaluate, a strategy was 

needed to efficiently examine the design space based on a target property. Machine learning has 

been proving to be an extremely effective tool for reducing the time and effort required to discover 

new drugs26, track business trends39, evaluate biological impacts of changing ecosystems and 

climate40, assess legal works, identify efficient methods of transportation41, and other applications 

to benefit society. 

The field of materials science has also seen significant benefit from use of machine learning 

to analyze large amounts of materials data, either compiled neatly in an easily accessible format, 

or manually searched for in the literature. Researchers have been able to identify trends in material 

properties based upon several different inputs such as atomistic (e.g., valence electron 

configuration (VEC), average atomic radius, and atomic volume misfit), mechanical properties, 

and thermodynamic information (ab initio simulations and CALPHAD predictions).21,22,41 

However, there is still a need for experimental trials to accelerate materials discovery and confirm 

materials properties. A machine learning accelerated materials discovery framework with a clear 

set of goals is necessary for undertaking this task. A set of low- and high-fidelity experiments, and 

a schematic of the framework used in this work is shown in Figure 3-1. In this work, the low-

fidelity, high-throughput experiments were given priority and high-fidelity, “low throughput” 

experiments reserved for future work (once a set of alloys with desirable properties have been 

discovered with low-fidelity experimental trials). 
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To combine machine learning and design of experiments (DOE), an active learning 

procedure was utilized. Active learning is the process of using machine learning models to predict 

the properties from an array of possible experiments in a design space containing unknown 

properties in order to fill in the gaps of uncertainty with targeted experiments.21,27 A set of 

experiments is then chosen based on either the maximum expected improvement of a property 

(Vickers hardness in this study), or the maximum uncertainty of an area in the design space. The 

batch of alloys are then characterized, the data gathered is used to amend the model, and a new 

batch of experiments is suggested. An illustration has been provided in Figure 3-2.27 This 

procedure, termed an active learning loop, is repeated until the expected improvement has reached 

a maximum and multiple alloys with desirable properties are found. 

  

Figure 3-1 The proposed machine learning accelerated materials discovery framework that combines machine 
learning, ab initio simulations, high-throughput (low-fidelity) and full-scale (high-fidelity) experiments. Target 

metrics are a low mass gain in oxidizing environments and high strength. From NSF DMREF proposal 
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In this work, the active learning loop was focused on maximizing Vickers hardness (HV), 

as the HV and yield strength exhibit good correlations in steels, bronzes, Al alloys, Ni-based 

superalloys, and other alloy families42. A review of the present HEA database published by 

Cristopher Borg et al. in 202043, reveals that, for all microstructures (BCC, FCC, and multi-phase), 

the hardness shows good correlation with the yield strength (Figure 3-3b), so that hardness may 

be used as a surrogate characteristic for strength.42 Another possible surrogate model for strength 

is grain size, as it well-known that the Hall-Petch relationship can be used to predict strength, but 

upon analyzing the data (Figure 3-3a), there is a large variation in strength depending on the 

processing method. Further analysis of the database, shown in Figure 3-4, reveals that there is a 

stunning lack of data on the hardness of single phase, 4-component, Al-bearing alloys with the 9 

refractory elements (only 3 entried), which is the design space of this study. The absence of data 

also implies that there is largely unexplored compositional space in this sector of HEAs, and this 

work was aimed at filling a substantial gap in knowledge. The three aforementioned alloys are 

equimolar compositions of AlMoNbTi (HV: 509, As-Casted), AlNbTaTi (HV: 458, As-Casted), 

and AlNbTiV (HV: 448, annealed). Discovering RCCAs that surpass the hardness values of these 

three reported alloys is a key goal of this study.   

Figure 3-2 A simplistic schematic of the active learning procedure, and a similar process is followed in the present 
work. Adapted from Ref. [25]. Licensed under CC BY 4.0. 
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a) b) 

Figure 3-3. a) A comparison between RT yield strength and grain size of different processing methods. b) An 
analysis of the Vickers hardness and room temperature strength of both multi- and single-phase alloys from the HEA 

dataset. 

Figure 3-4. Visualization of the number of alloys with hardness data that belong in each design space. By reducing 
the dimensionality of the design space, it is revealed that there is a large gap in knowledge of strength for single 

phase, Al-bearing, 4-component RCCAs. 
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3.2 Methods 

3.2.1 Method of Alloy Selection: Active Learning Using Bayesian Global Optimization 

Sharmila Karumuri is credited for this work. Bayesian global optimization (BGO) deals 

with solving the problem shown below with limited budget evaluation: 

                                               𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥E(y|x)                                                      (3-1) 

where x* is the location of the next experiment, argmaxE is the acquisition function, y is the input 

hardness, and x are the input descriptors used to predict hardness (melting point, volume atomic 

misfit, average atomic radius, asymmetry of atomic radii, reduced phase one-hot-encoding, VEC, 

entropy of mixing, density, solidus and liquid temperatures, range of Young’s modulus, range of 

density, range of melting points, range of bulk modulus, range of VEC, and range of atomic radii).   

BGO involves optimization by sequential information acquisition and is an algorithm that 

determines the next experiment based on interested in minimizing/maximizing a value. The 

location of the next experiment is then found by maximizing a function called the acquisition 

function (AF) at a(x), where a(x) is expected improvement. The AF quantifies how much 

information there is in evaluating at x, which is the next experiment. 

There are multiple steps in conducting such a process, and a flowchart is shown in Figure 

3-5: 

1. Start with an initial dataset. 

2. Construct a surrogate model using Gaussian process. 

3. If enough computational/experimental budget is available, proceed to the next step and 

the next experimental location is chosen. 

4. Select the next experiment location at x’ based on where the AF determines there is a 

maximum expected improvement (EI) 

5. Perform experiment at x’ and get the quantity of interest y’ 

6. Add new data and repeat from step 2 
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For the purpose of this study, the process has been amended and a batch of ‘m’ 

compositions is recommended for testing. The EI is used as our AF a(x), which will both explore 

and exploit the design space: 

              𝑎(𝑥) = 𝐸𝐼(𝑥) = (𝑚(𝑥) − 𝑚∗) 𝛷 ቀ
௠(௫)ି௠∗

ఙ(௫)
ቁ +  𝜎(𝑥)𝜑 ቀ

௠(௫)ି௠∗

ఙ(௫)
ቁ               (3-2) 

where m(x) is the predicted mean hardness of alloy x, σ(x) is the uncertainty of hardness of alloy 

x, m* is the maximum hardness in dataset, Φ and φ are cumulative and probability density functions, 

respectively, chosen to exploit and explore the design space. In the original BGO process, the 

algorithm suggested a single experimental location for each iteration. Clearly, a single experiment 

per iteration would be insufficient in a high-throughput effort to discover RCCAs with optimal 

Figure 3-5. A flow chart summarizing the Bayesian Global Optimization process. This figure is credited to Sharmila 
Karumuri and Ilias Bilionis. 
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properties, so a batch of ‘m’ compositions was suggested instead. However, the previous algorithm 

would suggest alloys close in composition at the top ‘m’ max location of the AF, so the process 

needed to be amended to overcome this issue as shown in Figure 3-6.  

 

The amended algorithm was similar to the general BGO process, but the inner loop was 

changed (highlighted in the orange box in the figure) so that the top ‘m’ experiments were diverse 

in composition. For the first experiment suggested in a batch, the usual BGO procedure was 

followed where the AF was maximized. The change in the process came in the second alloy 

suggested; the algorithm assumed that the predicted hardness of the first alloy was the same as the 

experimental result, and the result was added to a copy of the original dataset. The surrogate model 

Figure 3-6. The amended BGO process showing the primary differences from a regular BGO process. The model 
assumed the experimental data was equal to the predicted hardness, which was then fed back into itself to compute a 

new maximum EI value for identifying the next alloys. This figure is credited to Sharmila Karumuri and Ilias 
Bilionis. 
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was then rebuilt, and the second experiment suggested was located where the AF was at a 

maximum. This procedure of continuously updating the surrogate model was repeated until a set 

number of ‘m’ compositions had been suggested, and those recommended compositions were 

subsequently fabricated and tested, with the experimental data being added to the original dataset, 

which constituted a single loop.  

The active learning procedure was a crucial part of the workflow (Figure 3-7), and the 

alloys recommended by active learning were a part of the down-selected subset of alloys from the 

original dataset of alloys from the previous chapter. 

 

3.2.2 Experimental Methods 

Alloy Fabrication Methods 

All alloys fabricated in this active learning study were melted together from pure elements 

using a custom-built tri-arc melter with a 195-amp power source (XMT 350 CC/CV, Miller 

Electric, Appleton, WI, USA). Pure elements of aluminum granules (8-12 mm, 99.9% purity, Alfa 

Aesar, Ward Hill, MA, USA), titanium granules (1-10 mm, 99.99% purity excluding Na and K, 

Figure 3-7. A workflow detailing the process from a grid of alloys potential RCCAs to a list of experiments, with the 
active learning loop a critical step in discovering novel alloy properties. 
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Alfa Aesar), vanadium foil (1 mm thick, 99.7% purity, Alfa Aesar), chromium chunks (2-3 mm, 

99.995% purity, Alfa Aesar), niobium wire (1 mm diameter, 99.8% purity, Alfa Aesar), 

molybdenum wire (1 mm diameter, 99.94% purity, Alfa Aesar), hafnium wire (1 mm diameter, 

99.95% purity excluding a nominal amount of 3% Zr, Alfa Aesar), and tungsten powder (average 

particle size of 21 microns, 99.9% purity, Alfa Aesar) were used. Pure elements with a total 

nominal mass of 5 grams before melting were weighed out on a high precision microbalance 

(ME36S, Sartorius AG, Goettingen, GER) to 4 significant figures.  

After the charge material was weighed, the raw elements were evenly distributed and placed 

on a water-chilled copper hearth. The arc melter was then evacuated with a roughing pump 

(TRIVAC D2.5E, Leybold GmbH, Cologne, GER) for twenty minutes to allow the vacuum 

pressure to reach approximately 150 mTorr. The chamber was then filled with an inert cover gas 

of ultra-high purity argon (UHP Ar) (99.999% purity, Indiana Oxygen, Indianapolis, IN, USA). 

The evacuation/UHP Ar backfilling procedure was repeated three times. Upon completion of the 

backfilling procedure, the flow rate was monitored and controlled by a flow meter (Cole-Parmer, 

Vernon Hill, IL, USA) and kept constant at approximately 1400 mL/min. 

All alloys were fabricated in a cover gas of UHP Ar to achieve a low oxygen concentration 

during melting. To further reduce the pO2, a Ti gettering furnace (OG120 gas purification furnace, 

Oxy-Gon Industries, Epsom, NH, USA) was utilized. Finally, a local getter of high purity 

zirconium was initially melted at the start of and during each experiment to remove residual 

oxygen left over from the backfilling procedure and inward diffusion of oxygen from the outside 

environment. An O2 analyzer (Thermox CG1000, AMETEK Process Instruments, Berwyn, PA, 

USA) was utilized to record the oxygen concentration of the exhaust gases. After melting the Zr 

getter for O2 purification, the charge material was melted into a single button and kept in the liquid 

state for approximately one minute, flipped and remelted 5 times to ensure homogeneity 

throughout the ingot.  
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Upon completion of fabrication, the ingot, possessed a boule shape (Figure 3-8), which 

resembles a water droplet with a contact angle greater than 90°. Overall dimensions of alloy ingots 

ranged from approximately 6.5 to 8.5 mm in height and 13 to 16 mm in diameter. All alloys were 

weighed after fabrication to assess mass loss through evaporation, as both Al and Cr were prone 

to boiling at temperatures in excess of 2400 °C.  

Post-Fabrication Sample Preparation 

Samples were sectioned into multiple pieces with a wire EDM (FX-20K, Mitsubishi Electric, 

Tokyo, JPN). Slices (2 mm) from near the center of the ingots were taken for mounting in 

conductive bakelite for hardness testing and microstructural evaluation. Cross-sectional samples 

were hot mounted with a compression mounting system (SimpliMet 4000, Buehler, Lake Bluff, 

IL, USA). Polishing was achieved by starting plane grinding with a 15 micron diamond platen 

(Allied High Tech Products, Inc., Rancho Dominguez, CA, USA), then a 9 micron diamond platen 

(Allied High Tech Products, Inc.), followed by fine polishing with a 6 micron diamond suspension 

in glycol (Allied High Tech Products, Inc) on a woven polishing cloth (Gold label, Allied High 

Tech Products, Inc) for approximately 5-10 minutes. The next polishing step was achieved by 

polishing with a 1 micron diamond suspension in glycol on a woven polishing cloth (Tech-cloth, 

Allied High Tech Products, Inc.) for approximately 5-10 minutes. Finally, the samples were 

polished for approximately 10 minutes on a non-woven, low nap porous polyurethane pad (Chem-

Pol, Allied High Tech Products, Inc.) with a 0.04 micron colloidal silica suspension. The mounted 

Figure 3-8 A typical ingot shape after fabrication. The shape, presence of a shrinkage cavity, and luster of the final 
product is relevant for data storage purposes. 
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and polished specimens were then ultrasonicated in acetone for 5 minutes, and finally dried with 

forced air to remove residual particulates and surface contamination from the polishing procedure. 

6 Cylindrical specimens approximately 4.67 to 4.82 mm in diameter were cut with a wire EDM 

(FX-20K, Mitsubishi Electric, Tokyo, JPN) from the ingot for compression testing. The ends of 

the sample were then cut down to a height of approximately 6.8 mm, and the faces of the samples 

were further smoothed by surface grinding to ensure flat, parallel surfaces. The samples were then 

shipped off to GE Research (1 Research Cir, Niskayuna, NY 12309) for compression testing to 

determine yield strength. The sample was preloaded with 5 lbf and a strain rate of 0.0017 in/s was 

applied until the sample failed, and peak load was recorded. 

Sample Characterization 

Upon completion of polishing, 16 hardness measurements were obtained on each sample. 

These measurements were taken by using an automatic micro-indenter (AMH43, Leco 

Corporation, St. Joseph, MI, USA) with 500 gram-force of load applied, and a dwell time of 13 

seconds. The indents were arranged in a 4x4 square grid with each indentation spaced 300 microns 

from neighboring indentations. The location of the grid was chosen such that multiple 

microstructures (i.e., middle, side, and lower regions) are tested in order to fully sample the 

variation in hardness in a single ingot. 

To verify phase a single-phase microstructure in the as-cast condition, X-ray diffraction (D2 

Phaser diffractometer, Bruker, Billerica, MA, USA) was conducted using Cu K-α radiation (λ = 

0.154 nm) with a scan rate of 0.23 degrees/s. To account for instrumental peak shifting, a standard 

of Nickel powder (99.8% purity, Alfa Aesar) was used, with a small amount placed on the surface 

of the sample. 

Following XRD analysis, the alloys were examined in an SEM (NanoNova 450, FEI, Hillsboro, 

OR, USA) with a 15 kV accelerating voltage and a spot size of 5 microns, using BSE and SE 

imaging modes, and the elemental composition was verified using standardless EDS (AZtec 

software, Oxford Instruments, Abingdon, UK). 
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3.3 Results and Discussion 

3.3.1 1st Iteration of Active Learning 

In the first round of active learning, 6 alloys were recommended for hardness testing and 

subsequently fabricated by arc melting. The nominal compositions, compositions measured by 

EDS, predicted hardness and standard deviation of the prediction, mass loss of the ingot, predicted 

crystal structure, predicted BCC solvus temperature, solidus, and are tabulated in Table 3-1. 

 The HV data, along with the prediction and predicted standard deviation, are plotted in 

Figure 3-9a. Just in this first round, 3 alloys with higher hardness than the benchmark (AlMoNbTi) 

were found, and the experimental values were well within the predicted standard deviation. In 

Figure 3.9b, the XRD scans show a single set of BCC peaks for all alloys, despite microsegregation 

seen in most of the micrographs in Figure 3-10.  

Despite the microsegregation, the spread of the data of the different alloys was relatively 

narrow. The hardness parity plot is given in Figure 3-11. The first-round results exhibited good 

agreement with the linear fit found for the other alloys in the database. 

 

  

a)                                                            b) 

Figure 3-9. Results of HV testing compared to predictions for round 1 of active learning. b) XRD scans showing 
single set of BCC peaks for all alloys in round 1. 
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Figure 3-11 Hardness parity plot showing results of 1st round and comparison with literature data. 

Figure 3-10. Polished micrographs taken with BSE imaging in the 1st round of active learning. 
Most of the alloys appear to have chemical microsegregation. 
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Table 3-1 Data for 1st round of active learning. 

System Nominal  

Comp. 

Measured 

Comp. 

Predicted 

HV (σ) 

Measured  

HV (σ) 

% mass 

loss 

Al activity Solidus 

°C 

BCC 

solvus 

°C 

Predicted Crystal 

Structure (Phase) 

AlCrVW Al40Cr30 

V25W5 

Al40Cr31 

V25W4 

549 (164) 515 (12) 2.7 .00036 1570 665 SS (BCC) 

AlCrMoTi Al35Cr45 

Mo5Ti15 

Al34Cr45 

Mo5Ti16 

521 (160) 654 (30) 2.8 .00012 1640 764 IM (B2) 

AlCrMoV Al35Cr35 

Mo5V25 

Al34Cr36 

Mo5V25 

500 (162) 492 (36) 2.0 .000202 1663 819 SS (BCC) 

AlMoVW Al40Mo5 

V50W5 

Al37Mo5 

V53W5 

498 (165) 471 (22) 3.05 .000169 1863 640 SS (BCC) 

AlCrVW Al25Cr45 

V25W5 

Al23Cr46 

V26W5 

479 (169) 523 (19) 3.4 8.3x10-5 1777 891 SS (BCC) 

AlCrMoV Al30Cr60 

Mo5V5 

Al29Cr61 

Mo5V5 

476 (163) 453 (8) 1.6 .000174 1624 828 SS (BCC) 
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3.3.2 2nd Iteration of Active Learning 

In the second round of active learning, 4 alloys were tested instead due to time and labor 

constraints. The same kind of data that was collected in Table 3-1 is tabulated in Table 3-2. 

In the second round, all alloys tested were harder than AlMoNbTi, but the predicted mean 

HV were somewhat lower than the experimental mean (Figure 3.12a). However, the predicted 

standard deviation was in a similar range as the experimental data. Just like the previous active 

learning round, the XRD scans exhibit only BCC diffraction peaks. All the BSE micrographs of 

the alloys show significant chemical microsegregation. The hardness parity plot in Figure 3.14 

shows more deviation than in the 1st round, but that may be due to exploration of unknown 

compositional space.  

 

 

 

 

 

 

Figure 3-12. HV and XRD results for 2nd  round of active learning. All alloys are harder than the benchmark, 
and the XRD scans only show 1 set of BCC peaks. 
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Figure 3-13. Polished micrographs taken with BSE imaging in the 2nd round of 
active learning. 

Figure 3-14 Hardness parity plot of the 2nd round which shows little agreement with the experimental hardness 
values. 
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Table 3-2 Data for 2nd round of active learning. 

System Nominal    
Comp. 

Measured    
Comp. 

Predicted    
HV (σ) 

Measured 

HV (σ) 

% 
mass 
loss 

Al 
activity 

Solidus 

°C 

BCC 
solvus °C 

Predicted Crystal 
Structure (Phase) 

AlMoTiCr 

Al40Cr25 

Mo5Ti30 

Al40Cr25 

Mo5Ti30 

541 (145) 636 (9) 9.8 0.000137 1593.29 975.98 IM (B2) 

AlVNbW 

Al5Nb35 

V35W25 

Al2Nb36 

V37W25 

327 (188) 525 (17) 3.3 1.63x10-6 2137.62 149.47 SS (BCC) 

AlMoTiCr 

Al20Cr30 

Mo20Ti30 

Al20Mo20Ti3
0Cr30 

482 (148) 638 (13) 1.8 9.90x10-6 1790.18 933.15 IM (B2) 

AlVNbW 

Al30Nb20 

V35W15 

Al23Nb23V39
W15 

439 (156) 650 (60) 4.3 5.83x10-5 1907.54 439.65 SS (BCC) 



 

50 
 

3.3.3 3rd Iteration of Active Learning 

Results for 3rd round of active learning are displayed in Table 3-3. 

In the 3rd round of active learning, three out of the four alloys exhibited higher hardness 

than the benchmark (Figure 3-15) and XRD scans show good agreement with the previous round, 

The predictions were close to the experimental values. Micrographs of the alloys are shown in 

Figure 3-16 and two alloys exhibits substantial microsegregation (3.1 and 3.2) while 3.3 and 3.4 

appear to exhibit very little chemical segregation, but this would need to be verified with further 

EDS analysis. Overall, the spread of the hardness results for an alloy are about the same as those 

in the previous rounds (see standard deviations) and the hardness parity plot (Figure 3-17) shows 

excellent agreement to the line of linear fit. 

  

Figure 3-15 HV results and XRD scans for 3rd round of active learning 
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Figure 3-16. Polished micrographs taken with BSE imaging in the 3rd round of active learning. 

Figure 3-17. Hardness parity plot of the 3rd round showing excellent agreement with measured values. 
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Table 3-3 Data for 3rd round of active learning. 

System Nominal     
Comp. 

Measured    
Comp. 

Predicted      
HV (σ) 

Measured           
HV (σ) 

% mass 
loss 

Al activity Solidus 

°C 

BCC 
solvus °

C 

Predicted Crystal 
Structure (Phase) 

AlHfMoNb 

Al5Hf40Mo30
N25 

Al6Hf4 

Mo29Nb24 

444 (174) 513 (10) 0.38 2.55x10-6 1853 989 SS (BCC) 

AlNbVW 

Al10Nb5 

V70W15 

Al8Nb5 

V73W14 

510 (152) 582 (33) 3.7 5.31x10-6 1972 136 SS (BCC) 

AlCrTiV 
Al15Cr30Ti20

V35 
Al15Cr30 
Ti20V35 

566 (135) 529(11) 0.8 1.63x10-5 1554 734 IM (B2) 

AlCrMoTi 
Al15Cr15Mo5

Ti65 
Al15Cr15
Mo5Ti65 

517 (143) 394 (14) 2.7 2.24x10-6 1701 799.46 IM (B2) 
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3.3.4 4th Iteration of Active Learning 

 Table 3-4. lists the data from this set of experiments. 

In the 4th round of active learning, two out of the four alloys were harder than the 

benchmark, and the predictions again show excellent agreement with the results. HV and XRD 

data are shown in Figure 3-18 and the XRD scans again show a single set of BCC peaks. 

Microsegregation was observed for most of the alloys in round 4 (Figure 3-19), although alloy 4.2 

showed no apparent microsegregation. Predictions also matched well with this round, as seen in 

the hardness parity plot (Figure 3-20). 

  

Figure 3-18. HV results and XRD scans for the 4th round of active learning. 
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Figure 3-19. Polished micrographs taken with BSE imaging in the 4th round of active learning. Most of the alloys 
appear to have chemical microsegregation, except for 4.2. 

Figure 3-20. Hardness parity plot of the 4th round showing excellent agreement with the line of linear fit. 



 

 
 

55 

Table 3-4 Data for 4th round of active learning. 

System Nominal    
Comp. 

Measured    
Comp. 

Predicted    
HV (σ) 

Measured    
HV (σ) 

% 
mass 
loss 

Al 
activity 

Solidus 
°C 

BCC 
solvus °C 

Predicted Crystal 
Structure (Phase) 

AlNbVW Al15Nb30V30W25 Al8Nb33 

V34W25 

565 (135) 632 (36) 7.31 1.11x10-

5 
2068.32 305.22 SS (BCC) 

AlCrNbV Al5Cr25Nb30V40 Al6Cr25 
Nb30V39 

516 (145) 505 (6.5) 0.21 1.60x10-

6 
1738.19 938.65 SS (BCC) 

AlMoNbW Al5Mo5 

Nb75W15 

Al3Mo5 

Nb76W16 

464 (157) 387 (23) 3.4 3.09x10-

6 
2451.53 279.42 SS (BCC) 

AlCrVW Al10Cr65 

V20W5 

Al10Cr65 

V20W5 

495 (147) 544 (17) 4.8 1.74x10-

5 
1886.11 964.48 SS (BCC) 
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3.3.5 5th and final Iteration of Active Learning 

Results for 5th round of active learning are displayed in Table 3-5.  

In this round, the hardest alloy was discovered with the measured composition of 

Al31V32Nb27W10 (nominal Al35V30Nb25W10) and an HV of 690. More extensive analysis 

(such as TEM) of this alloy will be required to elucidate the causes of this high hardness, and an 

alloy from the same system (AlNbVW) should be compared to it for further understanding. The 

XRD scans show a single set of BCC peaks for all alloys. Besides the hardest alloy, the predictions 

for the other alloys were excellent.  

 

 

  

Figure 3-21 HV and XRD data from final round of active learning. Last alloy tested is the hardest out of all alloys 
tested in this loop. 
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Figure 3-22. Polished micrographs taken with BSE imaging in the 5th round of active learning. All the alloys appear 
to exhibit chemical microsegregation. 

Figure 3-23 Hardness parity plot of the 5th round of active learning. Model appears to predict extremely HV well 
after only 5 iterations. 
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Table 3-5 Data for 5th round of active learning 

System Nominal        
Comp. 

Measured    
Comp. 

Predicted     
HV (σ) 

Measured 
HV (σ) 

% 
mass 
loss 

Al 
activity 

Solidus   
°C 

BCC 
solvus °C 

Predicted Crystal 
Structure (Phase) 

AlVTiW Al15Ti10 

V45W30 

Al2.5Ti10 

V44W43.5 

562 (138) 541 (50) 7.0 6.52x10-

5 
1721 867 SS (BCC) 

 

AlVWCr Al15V35 

W20Cr30 

Al11Cr26 

V42W21 

 

575 (135) 579 (35) 11.7 2.27x10-

5 
1939.09 857.04 SS (BCC) 

AlMoVW Al20Mo20 
V55W5 

Al17Mo21 

V56W6 

 

539 (138) 493 (15) 2.9 2.14x10-

5 
2138.15 432.06 SS (BCC) 

AlVNbW Al35V30 

Nb25W10  

 

Al31V32 

Nb27W10 

576 (130) 690 (17) 4.3 0.000116 1829.9 532.55 SS (BCC) 



 

59 
 

3.3.6 Review of All Active Learning Iterations 

When reviewing the data for all the active learning iterations, little progress was found in 

the accuracy of the model (Figure 3-24c). Also, the benchmark was 509 HV, and this procedure 

yielded 15 alloy compositions with HV values from 1 to 35% higher than the HV benchmark of 

509. In Figure 3-24a, all XRD scans are compiled and it can be inferred that, at the resolution of 

XRD measurements, every alloy possessed a BCC-based structure with no intermetallic 

compounds detected by XRD analysis. In Figure 3-24b, it is seen that comparing the hardness to 

AlMoNbTi, the hardest alloy that fit our design space, there were 15 new, BCC-based alloys 

discovered with high hardness. Compared to CrNbTiW (HV: 630), the hardest 4 component alloy 

with refractory elements, there were 4 alloys that surpassed that benchmark. Figure 3-24c shows 

the difference between the model’s predictions to the experimental value. From this plot, the model 

did not appreciably improve with each iteration. 

 

 

Figure 3-24 a) Compilation of XRD scans for all active learning alloys. b) Comparison of each iteration to the 
previous round and to literature values. Maximum is CrNbTiW with an HV of 630. c) Convergence of hardness 

predictions versus experimental values.  
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Figure 3-25 attempts to correlate the at% of an element to hardness. An analysis of the 

atomic percent of a single element reveals that no single element appears to have an appreciable 

effect on the Vickers hardness of an alloy. However it can be seen that in some alloys with over 

50 at% of an element, there is a drop in the hardness (see Ti and Nb), which can support the theory 

of a high-entropy alloy exhibiting severe lattice distortion with near equimolar compositions. 

 Figure 3-27 shows correlations between hardness, composition, and thermodynamic 

quantities such as solidus temperature and activity of Al. Correlations of hardness with a single 

element are shown, and it appears that there is a strong negative correlation with at% Nb and Ti, 

although this is likely skewed by alloys 4.3 and 3.4 for their high Nb and Ti contents, respectively. 

Interestingly, almost all quantities appear to have some effect on the lattice parameter (except 

hardness has little to no correlation with lattice parameter) as at% Ti, at% Nb, and at% W have 

strong positive correlations, while at% Al, Cr, and BCC solvus temperature have a medium 

negative correlation. Density, solidus, and entropy exhibit medium positive correlations with the 

lattice parameter. 

  

Figure 3-25 Plotting hardness versus at% of elements present in AL loop. No obvious trends are observed through 
these comparisons. 
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Figure 3-26. Compilation of hardness results from all iterations. Benchmark of AlMoNbTi is shown to have been 
passed by 15 alloys. 
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3.3.7 Experimental and Theoretical Yield Strength 

Three alloys from the top seven hardest were chosen for room temperature compression 

testing, which were the nominal compositions of Al35-V30-Nb25-W10, Al20-Cr30-Mo20-Ti30, 

and Al15-V30-Nb30-W25. The other alloys in the top seven hardest were disregarded for testing 

as they were either too brittle for sample preparation (such as Al35-Cr45-Mo5-Ti15 and Al40-

Cr25-Mo5-Ti30) or is too compositionally close to another hard alloy (such as Al30-Nb20-W15-

V35). The alloy exhibiting the highest yield stress (which is considered to be the peak stress as 

these alloys exhibited no ductility) is Al20-Cr30-Mo20-Ti30 (1209 MPa), followed by Al35-V30-

Nb25-W10 (1019 MPa) and Al15-V30-Nb30-W25 (980 MPa), although all of the alloys tested 

failed catastrophically (best result is shown in Figure 3-28). Comparisons of RT yield strength 

with previously reported alloys are given in Figure 3-29, and it can be shown that there is slight 

Figure 3-27. Correlation mapping of hardness versus composition and other thermodynamic properties. 
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improvement over the strongest alloy in the design space of 4-component, single-phase, Al-bearing 

RCCAs (AlNbTaTi, YS of 1152 MPa).  

Figure 3-29. The RT yield strength comparisons of different categories of CCAs found in the literature. The three 
AL alloys tested are on the right-most column, and it is seen that a slight improvement over AlNbTaTi (YS: 1152 

MPa) was accomplished. 

Figure 3-28. Stress strain curve of the strongest alloy evaluated by compression testing. The peak stress is recorded 
at the point of yielding and is circled. 

Yielding 
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The theoretical shear strength was calculated from DFT using the Curtin model of edge 

dislocations in BCC crystals44,45 with a strain rate of 0.01 s-1 at room temperature and 1000 °C. A 

Taylor factor of 2.75 for BCC polycrystals was used to calculate the yield strength.46,47 Figure 3-

30 shows the comparison between yield stress at room temperature, 1000 °C, GP model predictions 

(same model as used for the active learning) and the experimental results of the three alloys 

evaluated by compression testing. Actual values of the shear and yield strength, temperature, 

Gaussian Process model predictions, and lattice parameters are provided in the appendix. 

From Figure 3-30, it can be shown that many of the alloys have similar predicted room 

temperature (from both GP and Curtin model) and high temperature strength compared to each 

other, with the exception of 6Al-41Hf-29Mo-24Nb, which exhibits extraordinarily high strengths 

Figure 3-30. The predicted yield stresses at room temperature and 1000 °C are compared, and the experimental 
results are also shown in the plot. The actual yield strength of the three alloys show some agreement with the 

predicted values, and there the Al6-Hf41-Mo29-Nb24 exhibits anomalous high strength at both temperatures. Credit 
for DFT calculations goes to Dr. Dongsheng Wen and the GP model to Sharmila Karumuri. 
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of 2436 MPa and 1461 MPa for room and high temperature conditions, respectively, and 1360 

MPa from the GP model. This alloy had a hardness of 513 HV (Table 3-3), which was average 

compared to the other active learning alloys. 

3.4 Conclusions 

Active learning has already proven to be a useful tool in the field of materials science, and 

it has again played a crucial role in this study to rapidly discover high hardness alloys with minimal 

experimental trials. Through an amended Bayesian global optimization strategy that selected 

batches of alloys for experimental trials, 22 alloys were tested, and 15 of those alloys were harder 

than those previously reported in the literature that fit the design criteria of this work.  

The model showed little to no improvement in predictions, and even though only 11 alloy 

systems were queried out the total of 84 in the design space, the active learning loop was capable 

of discovering multiple high hardness alloys. XRD and microstructural analyses do not reveal the 

formation of intermetallic compounds in the as-cast condition, although most exhibited some 

degree of microsegregation, and others did not. For example, alloys 1.1, 1.3, 1.4, 1.5, 2.1, 2.2, 2.3, 

2.4, 3.1, 3.2, 4.1, 4.3, 4.4, 5.1, 5.2, 5.3, and 5.4 exhibited chemical microsegregation in the form 

of a dendritic microstructure. Alloys 1.2, 1.6, 3.3, 3.4, and 4.2 exhibited microstructures more 

representative of a single phase but point EDS analysis will be required to assess this. With this 

method of combining machine learning models with physics-based descriptors and the process of 

down-selecting Thermo-Calc generated alloys by filtering out those with undesirable properties, 

improved hardness, ranging from 1 to 35% over AlMoNbTi, was achieved. 

Several trends can be found with composition with the lattice parameter, such as at% Ti, Nb, 

and W exhibited a notably strong positive correlation, while density, entropy of mixing, and 

solidus temperature exhibited a medium positive correlation. At% Al, Cr, and BCC solvus 

temperature exhibited a medium negative correlation. Further investigation of the AlNbVW (such 

as TEM analysis and comparison with another alloy of the same system, but lower hardness) and 

AlCrMoTi system are recommended for further study, as these two systems consistently resulted 

in high hardness.  

Room temperature compression testing was also conducted, and the results reveal somewhat 

high strength, with a maximum yield strength of 1209 MPa (measured at fracture due to lack of 

ductility) for the composition of Al20-Cr30-Mo20-Ti30. Compared to the yield strength of other 
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alloys in the database with the selected design space, there is a small improvement over the alloy 

AlNbTaTi, with possesses a room temperature yield strength of 1152 MPa. Predicting the yield 

strength using the Curtin model and Gaussian Process model was also performed, and good 

agreement is found between the experimental and predicted results. An anomalously high strength 

alloy was predicted with the composition 6Al-41Hf-29Mo-24Nb was also found through the 

Curtin model predictions, and further characterization and experimentation of this alloy should be 

considered for future work. 
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 CONCLUDING REMARKS AND FUTURE WORK 

In summary of this thesis, thermodynamic properties of thousands of potential RCCAs were 

calculated, and machine learning was used to sample the design space for the purpose of replacing 

the current standard, Ni-based superalloys. RCCAs as a class of materials are still in their infancy, 

and there is a vast space of unexplored compositional territory. Efficient sampling of the 

compositional space is a daunting task, but a possible avenue for rapid exploration is proposed 

using the CALPHAD method, active learning, and rapid experimentation by maximizing low-

fidelity data acquisition such as hardness. Of course, strength is only a small factor in determining 

if a material is suitable for desired harsh environments.  

In the future, the alloys will require post-processing treatment to truly verify the single-phase 

microstructure predicted by Thermo-Calc, and a new set of hardness data should be gathered. The 

model should also account for the processing method. Also, only four-component alloys are 

considered in this work, and the number of possible alloys expand exponentially when just a single 

element is added to the mix, so another active learning loop with five component alloys may be 

considered. Furthermore, oxidation testing is needed to determine the RCCA mass gain over time, 

which is a crucial piece of information needed to balance between high strength with oxidation 

resistance.  

For even more rapid experimental trials, high-throughput screening by the use of diffusion 

multiples should be explored. Diffusion multiples are an assembly of three or more alloys in 

contact and held at high temperature for an extended period of time to produce a compositional 

gradient. They have been proven to be an incredibly effective tool48–50 to map out the properties 

and microstructure of various systems, and this approach would undoubtedly accelerate RCCA 

discovery, as such experiments could elucidate the relationship between composition, mechanical 

properties, and oxidation behavior in a far more efficient manner than serial hardness testing. 

Overall, the future of RCCAs is highly promising, and through efforts like the Materials 

Genome Initiative, and a toolbox involving machine learning and high-throughput 

experimentation, the discovery of suitable replacements of Ni-based superalloys within the next 

decade seems likely. 
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APPENDIX 

Get_homogenization_window: 

The get_homogenization_window function can be used to determine the 

homogenization temperature and number of cycles based off of the Scheil melting point, the solid 

solution solvus temperature, the homologous temperature (i.e., 60% of the solidus temperature), 

and the solidus temperature. This function, although very useful, was not used in this work as 

expediting the active learning process is the highest priority. However, future work will 

undoubtedly call for the need for homogenization treatments to verify single phase microstructures. 

Although this function can be used to calculate the temperatures and cycles for alloy 

homogenization, it does not provide the time for the homogenization treatment. If the user has not 

already calculated the mentioned parameters, the script will automatically calculate them and add 

them to a dictionary.  

 The contents of the dictionary were then evaluated, and the parameters were compared to 

determine the proper homogenization temperature and number of cycles. Minimum and maximum 

initial temperatures indicated the temperature window for homogenization in the first cycle, 

whereas minimum and maximum final temperatures indicate the homogenization window in the 

next cycle, if applicable. The number of stages was indicated, and a second homogenization cycle 

was recommended for low Scheil melting points to remove the low melting point phases.  

 In the case of a failure to calculate the Scheil melting point due to an internal error from 

the Thermo-Calc SDK, the program was used to determine if the homologous temperature was 

less than the solid solution solvus temperature. If it was true, then the minimum initial 

homogenization temperature was set equal to the solid solution solvus temperature and the 

maximum initial temperature was then set equal to the solidus temperature. In the case that the 

Scheil melting point and solid solution solvus temperature calculations failed, the minimum initial 

temperature was set equal to the homologous temperature and the maximum initial temperature 

was set equal to the solidus temperature. A single homogenization cycle was recommended for 

both cases. 

 In the case of a failure to calculate the solid solution solvus temperature, and with the 

homologous temperature less than the Scheil melting point, the minimum initial temperature was 

set equal to the homologous temperature. The maximum initial temperature was set equal to the 
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Scheil melting point, the minimum and maximum final was set equal the homologous and solidus 

temperatures, respectively, and a single homogenization treatment was recommended.  

 In the case where the solvus temperature was less than the homologous temperature, and 

with the homologous temperature less than the Scheil melting point, the minimum initial and 

minimum final temperatures was set to the homologous temperature, the maximum initial 

temperature was set to the Scheil melting point, the maximum final temperature was set to the 

solidus temperature, and a single homogenization treatment was recommended. 

In the case where the solvus temperature was greater than the homologous temperatures, 

and less than the Scheil melting point, the minimum initial temperature was set to the solvus. The 

maximum initial homogenization treatment was set to the Scheil melting point, and a single 

homogenization cycle was recommended. 

 In the case where the homologous temperature was less than the Scheil melting point, and 

with the Scheil melting point less than the solid solution solvus temperature, the minimum and 

maximum initial temperatures were set to the homologous temperature and the Scheil melting 

point, respectively. The minimum final temperature and the maximum final temperature were set 

to the solid solution solvus temperature and the solidus temperature, respectively, and a double 

heat treatment was recommended.  

 In the case where the Scheil melting point was less than both the homologous and solvus 

temperature, the minimum and maximum initial temperatures were set to the Scheil melting point 

to prevent the melting of a low-melting-point phase. After the initial cycle, a second cycle was 

recommended between the minimum and maximum temperatures of the solvus and solidus 

temperatures, respectively. 

Finally, if the Scheil melting point was lower than both the homologous and solvus 

temperatures, and the homologous temperature was less than the solvus temperature, the minimum 

and maximum initial temperatures were set to the Scheil melting point. The minimum and 

maximum final homogenization temperatures were set to the homologous and solidus temperatures, 

respectively, and a double homogenization cycle was recommended. 
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Table 4-1. The compositions, lattice parameters, predicted shear strength found from the Curtin model, yield strength found by multiplying by a Taylor factor of 
2.75 for BCC polycrystals, GP model predictions, and experimental yield strength, if measured for AL alloys. 

Composition (at%) Lattice 
Parameter 
(A) 

τy (MPa) at  
RT 

τy (MPa) at  
1000 °C 

Yield stress 
(MPa) at 
RT 

Yield stress 
(MPa) at 
1000 °C 

GP model 
YS (MPa) 
at RT 

Experimental 
YS (MPa) 

Al40-Cr31-V25-W4 3.044 320.81 113.97 882.32 313.4 1100.7  
Al34-Mo5-Ti16-Cr45 3.041 462.33 211.78 1271.4 582.4 1183.3  
Al34-Mo5-V25-Cr36 3.014 338.25 126.04 930.19 346.61 1101.3  
Al37-Mo5-V53-W5 3.082 222.86 54.65 612.86 150.29 1094.8  
Al23-V26-W5-Cr46 2.992 349.13 138.49 960.1 380.85 1071.8  
Al29-Mo5-V5-Cr61 3.124 409.07 182.46 1124.94 501.77 1109.5  
Al40-Mo5-Ti30-Cr25 3.115 305.93 110.62 841.3 304.2 1217.5  
Al2-V37-Nb36-W25 3.179 500.93 230.11 1377.56 632.86 1250.5  
Al20-Mo20-Ti30-Cr30 3.113 478.59 230.13 1316.12 632.86 1066.9 1209 
Al23-V39-Nb23-W15 3.144 352.56 125.94 969.54 346.34 1163.5  
Al6-Hf41-Mo29-Nb24 3.359 885.86 531.49 2436.12 1461.6 1360.6  
Al8-V73-Nb5-W14 3.084 266.7 78.62 733.43 216.2 1087.8  
Al15-V35-Ti20-Cr30 3.047 464.09 194.93 1276.25 536.06 1173.9  
Al15-Mo5-Ti64-Cr16 3.19 260.4 89.66 716.1 246.56 1238.8  
Al8-V34-Nb33-W25 3.177 462.38 205.31 1271.55 564.6 1279.7 980 
Al6-V40-Nb29-Cr25 3.126 496.46 210.12 1365.27 577.83 1172.2  
Al3-Mo5-Nb76-W16 3.272 132.65 33.14 364.79 91.14 1162.6  
Al10-V20-W5-Cr65 2.947 285.23 110.18 784.4 303.0 1100.5  
Al11-Cr26-V42-W21 3.036 320.36 124.68 881.0 342.87 1175.1  
A17-Mo21-V56-W6 3.082 277.42 89.86 762.9 247.12 1074.0  
Al31-V32-Nb27-W10 3.172 284.78 86.82 783.15 283.76 1112.3 1019 
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