HIGH-THROUGHPUT CALCULATIONS AND EXPERIMENTATION
FOR THE DISCOVERY OF REFRACTORY COMPLEX
CONCENTRATED ALLOYS WITH HIGH HARDNESS

by

Austin Hernandez

A Thesis
Submitted to the Faculty of Purdue University
In Partial Fulfillment of the Requirements for the degree of

Master of Science in Materials Engineering

:—ia’g’c
I _A— %
o g

\

@')f

School of Materials Engineering
West Lafayette, Indiana
May 2022



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Kenneth H. Sandhage, Co-Chair

School of Materials Engineering

Dr. Michael S. Titus, Co-Chair

School of Materials Engineering

Dr. Alejandro Strachan

School of Materials Engineering
Dr. Janelle Wharry

School of Materials Engineering

Approved by:
Dr. David F. Bahr



To my parents, Antonio Hernandez Jr and Corina Hernandez

And to my love, Audrey Doughty



ACKNOWLEDGMENTS

I would like to thank my committee for their extremely helpful guidance throughout my
graduate school journey, and especially my co-advisors, Dr. Titus and Dr. Sandhage for their
never-ending patience and support. I would also like to thank everyone at Kepner laboratories and
from my research group that has assisted me in any way, namely Dr. Mario Caccia, Yujie Wang,
Adam Caldwell, Alex Strayer, Sona Avetian, Priyatham Tumurugoti, Camilla McCormack, Caleb
Schrad, Tom Mann, Glenn Peterson, Saeid Kakooei, Pavan Srivas, Sunghwan Hwang, Dr.
Dongsheng Wen and many others. [ am also extremely grateful for the help of Sharmila Karumuri,
Zack McClure, and Saswat Misra for their expertise in data science and machine learning as this
project would not be possible without them.

I am also eternally grateful for my family, who has supported me throughout my academic
career, and especially my grandparents for always worrying about me and cheering me on, and my
dad for always encouraging me to strive for greatness.

Finally, I am extremely grateful for the love of my life, Audrey, for her unwavering support
and encouragement, no matter how many nights I work late and her constant effort to see the

positive side of everything.



TABLE OF CONTENTS

LIST OF TABLES ...ttt ettt 7
LIST OF FIGURES ..ottt s e 8
ABSTRACT ...t ettt s st 11
1. INTRODUCTION ....oooiiiiiiiiiieee et s 13

2. A CALPHAD-BASED APPROACH TO DESIGN REFRACTORY CONCENTRATED
COMPLEX ALLOYS CAPABLE OF FORMING A CONTINUOUS Al;O3; PROTECTIVE

SCALE UPON OXIDATION AT 1000 CC ....coiiiiiiiiiieieniieieeieesteete sttt sttt 19
2.1 INEEOAUCTION ...ttt ettt et et e ettt e bt e sat e e be e bt e ssbeebeesaeeens 19
2.2 Construction of Initial Compositional Design Space ..........cccccveevvieeerieeriiieniieeeiee e 20

2.3 Computational Methods: Scripts Created for the Down-Selection of a Grid of Alloys... 21

2.3.1  Get_phases and StIUCIUIES........cecuieriieriieiieniie et eiee ettt e et eseeeebeebeesereereenaeeeene 21
2.3.2  Try calculating SOIVUS......cc.eiiiuiiiiiiieciie ettt et eaaeesanee e 22
2.3.3  Get _fabrication mMethod ..........ccueieiiiiiiiiicie e 23

2.4 Results and DISCUSSION ...cueruiiriiiiiiiiitieieitieieetese ettt ettt sttt ettt sae e 25
2.5 CONCIUSIONS ...euttentieiieteete ettt ettt sttt et sa et s bt et s st st et e s bt e bt eate s bt eneenaeenee 32
3. HIGH-THROUGHPUT EXPERIMENTATION FOR THE DISCOVERY OF HIGH
STRENGTH ALLOYS BY ACTIVE LEARNING ......ccoiiiiiiiieieeeee e 33
3.1 INEEOAUCHION ...ttt sttt ettt ettt et sbe et s e b eaees 33
3.2 MEEROAS. ..ttt b et sa et beeanan 37
3.2.1 Method of Alloy Selection: Active Learning Using Bayesian Global Optimization 37
3.2.2  Experimental MethOdS.........ccoouiiiiiiiiiiiiiie et s 40
Alloy Fabrication MEIROAS ................ccoecueeeieiiieeieeiieeieeie ettt ese e eaee s 40
Post-Fabrication Sample PreParation ................ccccceecueeeueerieeieeesiesiesiieeneeessessseeseesseensens 42
SAMPLle CRAVACIEFIZALION .......c...oeeeeeeeiieeiieeieeeieeee ettt ettt ettt e s ateebeesseeenseenne 43

3.3 Results and DISCUSSION ....ccuiiiuiiiiiiiiieie ettt ettt ettt et ettt ebeesaeeebeesaee e 44
3.3.1 1% Iteration of ACtive Learning...........cccooveveeveeeueoreeeeeeeeeeeeeeeeeee e 44
3.3.2 2" Iteration of ACtive LEArning............coevveuivevevereeeeeeeeereeeeeeesese e seseeeeseseneeen. 47
3.3.3 3" Iteration of Active LEarning .............occveveueveveveveieeeeeeeereeeeeesesseseeeesesseseeeesenneenn, 50



3.3.4 4" Tteration of ACtiVe Learning ........c.oovovueueviveeiieeeeeeeee e 53

3.3.5 5™ and final Iteration of Active Learning ...........cccocoeeveveeueeeeeeeeeeeeeeeeseeeeeeennenn. 56
3.3.6 Review of All Active Learning I[terations ............ccceevievireriienieiiiienieeie e 59
3.3.7 Experimental and Theoretical Yield Strength ...........cccocoveviiiiiiiniiiniiiieieeieeeeee, 62

34 CONCIUSIONS ...ttt ettt st et et e st e bt e sab e e beesaeeenbeenbeesaeeans 65
4. CONCLUDING REMARKS AND FUTURE WORK .......ccccooiiiiiiiinieecieeeereee e 67
APPENDIX ...ttt ettt h et s h e bttt h et et b e et she et eat ettt e i et 68
REFERENCES ...ttt ettt et sttt st b et b et sat et e et nbe e e 71



LIST OF TABLES

Table 2-1 Comparison of compositions with minimum and maximum optimized values. .......... 29
Table 3-1 Data for 15 round of active I€arning. ............c.ocooveeveeeriereeeeeeeeeeeeee e 46
Table 3-2 Data for 2™ round of active 1earning. .............ccooevevevveeeeeeeeeeeeeeseeeeee e 49
Table 3-3 Data for 3™ round of active 1€arning. ............o.cooveveveverreeeeeeeeeeee oo 52
Table 3-4 Data for 4™ round of active [€arning. ..............cocveveveeieereeeeeeeee e 55
Table 3-5 Data for 5™ round of actiVe 1€ArMING ..........oeveviveveeieeeeeeeeeeeeeeeeee e 58

Table 4-1. The compositions, lattice parameters, predicted shear strength found from the Curtin
model, yield strength found by multiplying by a Taylor factor of 2.75 for BCC polycrystals, GP
model predictions, and experimental yield strength, if measured for AL alloys.........c.ccccuveenneee. 70



LIST OF FIGURES

Figure 1-1. Ashby plot showing Ni-based superalloys in the orange region and comparing their
high temperature strength to recent works involving RCCAs. Adapted from Ref. [14]. ............. 15

Figure 1-2. Mass gain versus time curve of NV1 at 1100 °C and a total time of 200 hours. This
result shows unprecedented oxidation resistance of an RCCA when compared to other RCCAs
previously reported. Figure adapted from Ref. [15]. ..cccooiiiiiiiiiiiiceeee e 16

Figure 1-3. a) Hardness parity plot of predicted hardness values and their accuracy when compared
to the initial training set. b) Results of active learning loop and differences when using property
plus composition (Loop I) versus composition plus knowledge. Adapted from Ref. [21]........... 17

Figure 1-4. A plot showing the mass gain over area versus a specific strength. Ni-based superalloys
currently provide superior oxidation resistance than any RCCA, but there are some RCCAs with a
higher specific strength. The target property space is a specific strength of 70 MPa cm?/g and a
MAass AN OF 1 ME@/CMZ. .......oviieieieeeeeeeeeeeee ettt es s esnees 18

Figure 2-1 The elemental palette considered. It consisted of the 9 refractory elements (Ti, Zr, Hf,
V, Nb, Ta, Cr, Mo, and W) plus Al for oxidation resistance. Adapted from Ref. [9]. ................. 21

Figure 2-2 a) A graphical representation of the boiling point issue when melting volatile elements
such as Al and Cr with high melting point elements such as Mo and W. The
get_fabrication_method function aimed to solve this issue. b) An attempt at arc melting a
CrMoW alloy that underwent significant Cr vaporization and formation of large pores.............. 24

Figure 2-3 . a) 3D color mapping of the initial design space. b)t-SNE plot with ideal mixing entropy
plotted With @ GreySCAlE. ...c.uiiiieiiieiiiecieeee et e e e e e ens 25

Figure 2-4 a) All alloys that are single phase and possess a BCC solvus temperature lower than
1000 °C. b) Powder processing alloys. ¢) Arc meltable alloys.........cccccceevviiiiieniieiciienieeieeieeee. 26

Figure 2-5 The frequency of elements in the compositions of both fabrication methods. Elements
with some solubility at high temperature with Al (V, Nb, Mo, Ti) show a good number of single
phase compositions, and those that readily form intermetallic compounds (Cr, Zr, Hf, and Ta) are
JOW T QUANEIEY. ©eeeeviieiiieeetie et e eite et e ettt e et e e st e e st e e eeaeeesteeeesseeessseeessaeesnsaeessseeensseesnsseensseeensseenn 27

Figure 2-6 a) Multi-objective optimization plot and Pareto front for arc melt-able alloys. b) Multi-
objective optimization plot and pareto front for powder processing alloys. ¢) Quantity of systems
that lie on the Pareto front of arc melt-able alloys. d) Quantity of systems that lie on the Pareto
front of powder procesSiNg AllOYS. .......iieuiieiiiiiiiie et e e e es 28

Figure 2-7 Correlation heatmap between the predicted hardness of all single-phase arc meltable
ALLOYS. 1.ttt ettt e e e bt et b e et e e tte et e e bt e ette et e eaeeenaeenbeenneeenbeennaens 30

Figure 2-8 Correlation heatmap between the predicted hardness of all single-phase powder
PTOCESSING AIIOYS .euiiiiiiiieeiii ettt e e et e e et e et e e e aaeesbeeessbeeessseeessaeessseeensseeensseesnseeenses 31

Figure 3-1 The proposed machine learning accelerated materials discovery framework that
combines machine learning, ab initio simulations, high-throughput (low-fidelity) and full-scale

8



(high-fidelity) experiments. Target metrics are a low mass gain in oxidizing environments and high
strength. From NSF DMREF Proposal.........cc.cocieiiiiiiiinieiiieieeie et 34

Figure 3-2 A simplistic schematic of the active learning procedure, and a similar process is
followed in the present work. Adapted from Ref. [25].....coovviiiiiieiiiiiiieeeee e 35

Figure 3-3. a) A comparison between RT yield strength and grain size of different processing
methods. b) An analysis of the Vickers hardness and room temperature strength of both multi- and
single-phase alloys from the HEA dataset. ...........cccoeiiieiiiiiiieiiiiccecce e 36

Figure 3-4. Visualization of the number of alloys with hardness data that belong in each design
space. By reducing the dimensionality of the design space, it is revealed that there is a large gap
in knowledge of strength for single phase, Al-bearing, 4-component RCCAS. ........ccccevveruennnene 36

Figure 3-5. A flow chart summarizing the Bayesian Global Optimization process. This figure is
credited to Sharmila Karumuri and Ilias Bilionis. ..........cocooiiiiiiiiiniininiiiceeecceecee 38

Figure 3-6. The amended BGO process showing the primary differences from a regular BGO
process. The model assumed the experimental data was equal to the predicted hardness, which was
then fed back into itself to compute a new maximum EI value for identifying the next alloys. This
figure is credited to Sharmila Karumuri and Ilias Bilionis. ..........cccceeveiiiiiiieniiecciie e 39

Figure 3-7. A workflow detailing the process from a grid of alloys potential RCCAs to a list of
experiments, with the active learning loop a critical step in discovering novel alloy properties. 40

Figure 3-8 A typical ingot shape after fabrication. The shape, presence of a shrinkage cavity, and
luster of the final product is relevant for data storage purposes. ........cccceeeveevieenieecieeneenieeieenenn. 42

Figure 3-9. Results of HV testing compared to predictions for round 1 of active learning. b) XRD
scans showing single set of BCC peaks for all alloys inround 1. ........c.cccooeiviiiiiciiiiiienieeen 44

Figure 3-10. Polished micrographs taken with BSE imaging in the 1% round of active learning.
Most of the alloys appear to have chemical MiCroSegregation. .........cecueveereerieneeiieneenienieneenens 45

Figure 3-11 Hardness parity plot showing results of 1st round and comparison with literature data.
....................................................................................................................................................... 45

Figure 3-12. HV and XRD results for 2" round of active learning. All alloys are harder than the
benchmark, and the XRD scans only show 1 set of BCC peaks..........ccccovveveiiiiniieiiieeeiieceieeee, 47

Figure 3-13. Polished micrographs taken with BSE imaging in the 2™ round of active learning.48

Figure 3-14 Hardness parity plot of the 2™ round which shows little agreement with the
experimental hardness VAIUES. ........cccviiiiiiiiiiicee et e e e aae e earee s 48

Figure 3-15 HV results and XRD scans for 3™ round of active 1€arning ..............cccooeveveeeenen.. 50
Figure 3-16. Polished micrographs taken with BSE imaging in the 3™ round of active learning. 51

Figure 3-17. Hardness parity plot of the 3™ round showing excellent agreement with measured
VATUCS. .ttt ettt sttt b et h et e h ettt b e e h ettt saeeaenaeens 51

Figure 3-18. HV results and XRD scans for the 4™ round of active learning. ................cccoo......... 53



Figure 3-19. Polished micrographs taken with BSE imaging in the 4™ round of active learning.
Most of the alloys appear to have chemical microsegregation, except for 4.2........ccccecevvenennnens 54

Figure 3-20. Hardness parity plot of the 4™ round showing excellent agreement with the line of
TINEAT It ..ottt et st b et be et e 54

Figure 3-21 HV and XRD data from final round of active learning. Last alloy tested is the hardest
out of all alloys tested N thiS 100D, .....eeieiiieiiieciie e e 56

Figure 3-22. Polished micrographs taken with BSE imaging in the 5" round of active learning. All
the alloys appear to exhibit chemical miCroSEEregation. ........cccevveerueriereriienienieeieneee e 57

Figure 3-23 Hardness parity plot of the 5™ round of active learning. Model appears to predict
extremely HV well after only 5 1teTations.........ccveevviiiiiieeiiie ettt 57

Figure 3-24 a) Compilation of XRD scans for all active learning alloys. b) Comparison of each
iteration to the previous round and to literature values. Maximum is CrNbTiW with an HV of 630.
c) Convergence of hardness predictions versus experimental values. ...........cccoeceerevieiienienieenen. 59

Figure 3-25 Plotting hardness versus at% of elements present in AL loop. No obvious trends are
observed through these COMPATISONS. .......eeeuiiiiiiieiiie ettt saee e e eaaee s 60

Figure 3-26. Compilation of hardness results from all iterations. Benchmark of AIMoNbTi is
shown to have been passed by 15 alloys......cccueviiiiiiiiiiiieieeeeee e 61

Figure 3-27. Correlation mapping of hardness versus composition and other thermodynamic
PLOPETEIES. .. .veeiteeutietie et etteetteesteestteeateenseessaeesseessseenseenseessseenseessseanseenseesaseenseessseenseenseesnseenseennseanne 62

Figure 3-28. Stress strain curve of the strongest alloy evaluated by compression testing. The peak
stress is recorded at the point of yielding and is circled. ..........coeveiieeiiieiiiiieieee e 63

Figure 3-29. The RT yield strength comparisons of different categories of CCAs found in the
literature. The three AL alloys tested are on the right-most column, and it is seen that a slight
improvement over AINbTaTi (YS: 1152 MPa) was accomplished. ............cccooeveeiiiinienienieenen. 63

Figure 3-30. The predicted yield stresses at room temperature and 1000 °C are compared, and the
experimental results are also shown in the plot. The actual yield strength of the three alloys show
some agreement with the predicted values, and there the Al6-Hf41-Mo029-Nb24 exhibits
anomalous high strength at both temperatures. Credit for DFT calculations goes to Dr. Dongsheng
Wen and the GP model to Sharmila Karumuri. ...........coccooiiiiriiiniininiieiceeeceeeeseee s 64

10



ABSTRACT

Ni-based superalloys continue to exert themselves as the industry standards in high stress and
highly corrosive/oxidizing environments, such as are present in a gas turbine engine, due to their
excellent high temperature strengths, thermal and microstructural stabilities, and oxidation and
creep resistances. Gas turbine engines are essential components for energy generation and
propulsion in the modern age. However, Ni-based superalloys are reaching their limits in the
operating conditions of these engines due to their melting onset temperatures, which is
approximately 1300 °C. Therefore, a new class of materials must be formulated to surpass the
capabilities Ni-based superalloys, as increasing the operating temperature leads to increased
efficiency and reductions in fuel consumption and greenhouse gas emissions. One of the proposed
classes of materials is termed refractory complex concentrated alloys, or RCCAs, which consist of
4 or more refractory elements (in this study, selected from: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W)
in equimolar or near-equimolar proportions. So far, there have been highly promising results with
these alloys, including far higher melting points than Ni-based superalloys and outstanding high-
temperature strengths in non-oxidizing environments. However, improvements in room
temperature ductility and high-temperature oxidation resistance are still needed for RCCAs. Also,
given the millions of possible alloy compositions spanning various combinations and
concentrations of refractory elements, more efficient methods than just serial experimental trials
are needed for identifying RCCAs with desired properties. A coupled computational and
experimental approach for exploring a wide range of alloy systems and compositions is crucial for
accelerating the discovery of RCCAs that may be capable of replacing Ni-based superalloys.

In this thesis, the CALPHAD method was utilized to generate basic thermodynamic properties
of approximately 67,000 Al-bearing RCCAs. The alloys were then down-selected on the basis of
certain criteria, including solidus temperature, volume percent BCC phase, and aluminum activity.
Machine learning models with physics-based descriptors were used to select several BCC-based
alloys for fabrication and characterization, and an active learning loop was employed to aid in
rapid alloy discovery for high hardness and strength. This method resulted in rapid identification
of 15 BCC-based, four component, Al-bearing RCCAs exhibiting room-temperature Vickers

hardness from 1% to 35% above previously reported alloys. This work exemplifies the advantages
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of utilizing Integrated Computational Materials Engineering- and Materials Genome Initiative-

driven approaches for the discovery and design of new materials with attractive properties.
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1. INTRODUCTION

The electrical energy required to sustain the growing global population must meet ever-
increasing demands. One of the most well-known and highly-studied methods for electricity
generation involves the use of gas turbine engines. Hundreds of hours of sustained, high
temperature operation are required for gas turbine engines. Such engines require the use of
materials with a combination of high temperature and fatigue strength, creep and oxidation
resistance, fracture toughness, and microstructural and thermal stability'2. To date, Ni-based
superalloys have answered this demand and are capable of operating at about 70% of their melting
points, or between 900 and 1100 °C, for long periods of time in harsh environments, unlike other
alloy classes. To accomplish this engineering feat, thousands of engineers for over 70 years
contributed to designing, testing, characterizing, and implementing these alloys with marked
improvement over the decades’. Through fine tuning of processing and manufacturing controls
and improvements such as directional and single crystal casting, the lifespans of Ni-based alloys
have remarkably quadrupled since the early days of superalloys.> Another feature of Ni-based
superalloys that allows for sustained operation in highly oxidizing environments is the formation
of a protective a-Al>Os scale on the alloy surface.**

As previously mentioned, the energy requirements for modern society have risen
significantly, and turbine engines must also improve their operating temperatures to match this
demand. It is well known that increasing the peak operating temperature of an engine can improve
engine efficiency for enhanced electricity production and reduced greenhouse gas emissions.
Because Ni-based superalloys are reaching their limits due to their onset melting points of
approximately 1300 °C, alternative materials must be interrogated to surpass this ceiling.®

Promising alternatives are the refractory complex concentrated alloys’®. Refractory alloys
containing W, Mo, Nb, and Ta are an attractive class of materials for high temperature
environments due to their relatively high melting points®. However, prior studies of the oxidation
resistance and the room temperature ductility of refractory alloys indicate that both properties
require significant improvements in order for these materials to be seriously considered as
alternatives to Ni-based superalloys.® !

Refractory high entropy alloys (RHEAs) or refractory complex concentrated alloys
(RCCAs) are alloys that consist of four or more refractory elements (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
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and W) in equimolar or near equimolar proportions. The idea behind multiple principal elements
is that the configurational entropy (since ASidcal = -R).; c;logc;) of a solid solution can be
maximized when elements are in equimolar proportions and increases further when more elements
are added."" A high configurational (or mixing) entropy, in theory, could have a pronounced effect
on the phase equilibria, phase transformation kinetics, and lattice distortion, and therefore a
pronounced effect on the properties of an HEA or CCA, although some recent work has put the
theory of equimolar alloys possessing optimal properties in question.” Nevertheless, this theory
resulted in an explosion of research efforts to discover alloys with superior properties than current
state-of-the-art alloys and the field has made notable progress with novel alloys in a short time
span %1213

There are many notable examples of RCCAs that exhibit high strength at elevated
temperatures and possess comparable densities to Ni-based superalloys. The Ashby plot shown
Figure 1-1 gives many examples of recently discovered RCCAs with attractive high temperature
strength and some with lower densities than Ni-based superalloys.'* The Ni-based superalloys in
the orange region consist of well-known alloys such as Rene 41, Waspaloy, Inconel 718, Hastelloy
X, Haynes HR-110, and more. AINbTiV is an example of an RCCA with comparable strength to
these alloys and possesses a lower density. Another notable example is the AIMoo.sNbTao sTiZr,
which exhibits the highest yield strength from this figure at 1000 °C, and also possesses a lower
density than Ni-based superalloys, although further work is required for many of these alloys to
assess their room temperature ductility and oxidation resistance.

In terms of progress made in discovering RCCAs that with inherent oxidation resistance
by formation of a protective oxide scale, an alloy termed “NV1” was discovered by K.C. Lo et
al.’®, which is a 7-component alloy containing with a composition of approximately Al17.6-Si2.9-
Ti5.4-Cr25.2-Nb15.2-M020.3-Tal3.4. Oxidation tests were performed, and the result at 1100 °C
for 200 hours and compared to other RCCAs is shown in Figure 1-2. NV 1 represents a significant
milestone in the oxidation resistance of RCCAs, and it was found that the protective scales formed
were CrTaOs, AlbO3, and Cr203, although it is possible that CrTaO4 hindered the formation of
alumina and chromia. So far, this RCCA possesses the highest oxidation resistance to date when

compared to other RCCAs.

14



Al, ;NbTaTi, ;Zr, ,

\
AlMo, ;NbTa, TiZr Crvio. -NbbTa. . Tizr
2000 08 98
Aly sNbTa, 3 Tiy (Vo ,2r [

AIND, (Ta, ;Ti, Z \ \ \ HMoNDIE: MO
© 1000- 15189511y s&lp g \ \ / \
S \ / o)
o \ /

s o
CrNbTIVZr
S‘: 500+ \ \ v Aly g NDTaTiZr
02. \ MoNbTavwW
;: A'Nb\Tlv A'Q)N b;fao.lT'uVo‘zz'x 3 O'/ HfNbTaTiZr
3 o)
£ 200
; Al, CoCrCuFeNi~— .
3
>

O
100
Al,CoCrCuFeNi /o CrNbTiZe Ni alloys

NBTIV,Zr™ .
Zr
50 2
NbTIVZr O\
AlCoCrCuFeNi

5000 6000 7000 8000 9000 10000 11000 12000
Density (kg/m?3)

Figure 1-1. Ashby plot showing Ni-based superalloys in the orange region and comparing their high
temperature strength to recent works involving RCCAs. Adapted from Ref. [14].

However, there remains a glaring key issue: the vast number of possible alloys to be
examined that result when mixing multiple elements in various compositions and concentrations.
Serial experimentation alone is not a feasible method of exploration as it is inefficient, wasteful
and would require an incredible number of experimental trials. Therefore, exploring the limitless
compositional space requires an Integrated Computation Materials Engineering (ICME) approach.
ICME, as the name implies, involves integrating computational tools to aid in the identification of
novel materials with superior properties.'® In this approach, the CALPHAD, or CALculation of
PHAse Diagrams method may be utilized to predict phase fraction, transformation temperature,
liquidus and solidus temperatures, aluminum activity, and potentially many more thermodynamic
properties.”!”!8 Such information is crucial to determining whether an alloy is suitable for a given
application. The method requires thermodynamic databases and phase diagrams for multi-
compoenent systems, which are gathered from experimental trials. Thermodynamic properties of

high order systems (e.g., quaternary and quinary systems), are extrapolated from lower order
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systems (e.g., binary and ternary systems). The predictive power of the CALPHAD method has
been proven in several previous works of coupling experimental data with the CALPHAD
predictions, but there is still much progress to be made concerning the accuracy of these

predictions.’
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Figure 1-2. Mass gain versus time curve of NV1 at 1100 °C and a total time of 200 hours. This result shows
unprecedented oxidation resistance of an RCCA when compared to other RCCAs previously reported. Figure
adapted from Ref. [15]. Licensed under CC BY 4.0.

Exploring the compositional space efficiently is also made possible by machine learning,
as this method can facilitate discovery and understanding for advanced alloy design efforts.222
Passive machine learning involves the use of several physics-based descriptors such as mechanical
properties, microstructure, and electronic properties to identify trends and facilitate the process of
uncovering new materials with attractive properties with limited human interaction.?? Active
learning, on the other hand, is the procedure of selecting a number of candidates for experimental
trials based on a balance of exploration and exploitation and a maximum expected improvement
in the model and is based on Bayesian optimization frameworks.?* The process can choose to test
compositions in an unknown space (exploration), and also choose compositions that theoretically
maximize a particular property (exploitation). One such work conducted by C. Wen et al.,*!
exemplifies this approach, and a summary of results is shown in Figure 1-3. The authors employed

two different types of active learning approaches: training a machine learning model on the

property-composition relationship (termed Loop I), and then introducing physics-based descriptors
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related to mechanical properties, such as differences in atomic radii, configurational entropy,
valence electron configuration, shear modulus, lattice distortion energy, and many more features
(termed Loop II). Through this active learning method, 35 out of 42 alloys exhibited higher
hardness than previously reported in literature, with 17 alloys possessing 10% greater hardness
than the original training dataset. This work proved the value of utilizing physics-based descriptors
coupled with an iterative active learning approach to rapidly discover alloys with high hardness,
and that only employing composition versus property based machine learning is not as effective
in predicting hardness when implementing features related to mechanical properties in the machine

learning model.
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Figure 1-3. a) Hardness parity plot of predicted hardness values and their accuracy when compared to the initial
training set. b) Results of active learning loop and differences when using property plus composition (Loop I) versus
composition plus knowledge. Adapted from Ref. [21].

For this thesis, a grid of alloys was constructed with justifications provided for the
parameters of the grid, and trends with compositions and thermodynamic quantities found by the
CALPHAD method (such as Al activity and solidus temperature) were identified. Down-selection
and filtering followed this analysis, as the goal of this work was to discover alloys with certain
properties, such as a single-phase microstructure, high solidus, and high hardness. A second design
objective is to select possible alumina formers by incorporating Al and maximizing activity of Al
Figure 1-3 shows the main goals previously mentioned; the specific strength of some RCCAs
surpass that of Ni-based superalloys, but the oxidation resistance still needs improvement, and a
comparable mass gain to Ni-based superalloys with higher specific strength is ultimately the goal

of this work (e.g., mass gain of 1 mg/cm? and specific strength of 70 MPa cm?/g). Once the final
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subset of alloys was selected, an active learning loop was employed for rapid exploration and

exploitation of the RCCA compositional design space of single-phase alloys.
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Figure 1-4. A plot showing the mass gain over area versus a specific strength. Ni-based superalloys currently
provide superior oxidation resistance than any RCCA, but there are some RCCAs with a higher specific strength.
The target property space is a specific strength of 70 MPa cm?/g and a mass gain of 1 mg/cm?.
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2, A CALPHAD-BASED APPROACH TO DESIGN REFRACTORY

CONCENTRATED COMPLEX ALLOYS CAPABLE OF FORMING A

CONTINUOUS ALO; PROTECTIVE SCALE UPON OXIDATION AT
1000 °C

2.1 Introduction

The CALPHAD method utilizes the principle of the Gibbs energy minimization at a given
temperature and pressure to predict the equilibrium state of a system. The thermodynamic
description is stored in a database, which is then used by software such as PANDAT and Thermo-
Calc to construct phase diagrams.!® For multi-principal element alloys (MPEAs), the
thermodynamic descriptions of lower order systems such as binaries and ternaries are extrapolated
to construct a higher order thermodynamic database. The downside of the method comes in the
attempt to derive phase diagrams of multi-component systems, where there is simply not enough
data to make a truly accurate prediction on the equilibrium phases of a CCA. Numerous
experimental works have verified the accuracy of CALPHAD predictions for some systems
(depending on the composition of the alloy), such as the work of Manzoni et al.*® Manzoni
evaluated the AICoCrCuFeNi system which includes brittle alloys with intermetallic phases, by
making several adjustments to the composition and studying the effects of heat treatments at
various conditions and comparing the observed phases to phases predicted by Thermo-Calc, which
showed agreement on some alloys.

The goal of this work is to explore the compositional space of RCCAs and determine
possible a-Al2Oj scale forming alloys. The CALPHAD method has been employed along with a
high-throughput approach. High-throughput methods and experimentation have been utilized
heavily in the pharmaceutical industry to rapidly discover novel drug compounds and, as a result,
has greatly accelerated drug research and development®®. The same process of screening can be
applied to computational approaches for advanced alloys. High-throughput screening using the
CALPHAD method is ideally capable of accelerating the goal of discovering high strength,
oxidation resistant alloys by computing the stability range of the BCC phase, aluminum activity,
and melting onset temperatures across hundreds of alloy systems. Further acceleration of alloy
discovery can be facilitated using machine learning models and an active learning loop?”¥, which

will be elucidated in the following chapter of this thesis.
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2.2 Construction of Initial Compositional Design Space

To begin the high-throughput screening process, a palette of elements, a step size between
compositions, and the number of elements for any given system must be defined, and the palette
of elements is shown in Figure 2-1°. In this work, alloys with the nine refractory elements
mentioned previously, in addition of aluminum for oxidation resistance, with a 5 at% step size,
were used to construct the grid of alloys for the computation of thermodynamic properties for all
possible combinations of four component, Al-bearing RCCAs. A 5% step size was chosen for this
dataset for a reduction in computational time, to expedite the active learning process, and to
mitigate the possibility of testing alloys close in composition. To further expedite the calculations,
alloys containing greater than 40 at% aluminum were disregarded as intermetallic formation with
high a percentage of aluminum was of great concern, and a large drop in solidus temperature was
also expected.

The thermodynamic quantities calculated were equilibrium phases, volume fraction of phases,
activity of Al, solidus and liquidus temperatures, densities, BCC solvus temperatures, and the
crystal structure of each phase (only differentiating between intermetallic and BCC solid solution
phases). After the thermodynamic properties of the initial design space were computed, further
filtering was required for selection of alloys exhibiting single phase BCC microstructures (i.e. a
volume fraction of solid solution BCC equal to unity) at 1000 °C, and for feasibility of fabrication
through solidification processing. Several scripts were written in the programming language
Python, using the SDK TC-Python and the thermodynamic database for high entropy alloys,
TCHEAA4.
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Figure 2-1 The elemental palette considered. It consisted of the 9 refractory elements (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
and W) plus Al for oxidation resistance. Adapted from Ref. [9]. Licensed under CC BY 4.0.

2.3 Computational Methods: Scripts Created for the Down-Selection of a Grid of Alloys

2.3.1 Get _phases and_structures

The get_phases_and_structures? function allows for a quick and easy assessment
of the equilibrium phases present in any given alloy and the volume fraction of these phases. The
composition and temperature of an alloy were inputted, and the equilibrium phases and their
volume percentages at that temperature were found using the get_stable_phases function in
the tc_python_plotter python file.

The sublattices of the equilibrium phases were evaluated using the calc_sublattice
function, which provided dictionaries of the site fractions of an element in a phase. The contents
of the dictionary were then evaluated. If the keys (keys are the subject that a value is assigned to,
e.g., if the element Al has an atomic fraction of 0.4, then the key value pair is “Al: 0.4”) of the
value and values of the first two dictionaries outputted were equal, then this phase was considered
disordered. The phase was then assigned to have a value of ‘SS’, which meant that the phase was
a solid solution. Otherwise, if the outputted dictionaries were found to be different, then the phase

was assigned as ‘IM’ meaning an intermetallic or ordered phase.

21



A dictionary was created of all phases and their assignments, and an overall assignment for
the alloy was generated; if only SS phases were present in the alloy, then the alloy was assigned
as ‘SS’. If there were both SS and IM phases present, then the alloy was assigned as ‘SS+IM’. If
there were only intermetallic phases present, then the alloy was assigned as ‘IM’.

Furthermore, a one-hot encoding term was created based on the phases present and the
assignment generated for the alloy. If only FCC and BCC solid solution phases (i.e., phases
assigned ‘SS’) were present, then the encoding term was ‘FCC+BCC’. If the previous condition
was true, but there were intermetallic phases present, then the encoding term was
‘FCC+BCC+Secondary’. If there were solid solution BCC or FCC phases and intermetallic phases
present, then the encoding term was ‘BCC/FCC+Secondary’. If the alloy consisted of a single
FCC/BCC phase, then the encoding term was ‘FCC/BCC only’. Otherwise, if an alloy only
contained intermetallic phases, then the encoding term was ‘Other’.

This function provided, in a dictionary, the stable phases present in an alloy at a given
temperature, the crystal structure of those phases, the general crystal structure of the alloy, the
volume fraction of all phases, and the one-hot encoding term for the alloy. This information was
then used to filter out alloys based on a number of criteria, such as single phase only, volume

fraction of BCC phase, and so on.

2.3.2 Try_calculating_solvus

The try_calculating_solvus function was built due to internal issues from Thermo-
Calc that arose from calculating the solvus temperature of the BCC phase for certain alloys. It
utilized the calc_transformation function of the tc_python_plotter package, which
required several parameters: the phase of interest, the volume fraction of that phase, and the
reference temperature, which needed to be close to the theoretical solvus temperature of the phase
of interest.

The function was used to identify the stable phases in the alloy, to check if the BCC phase
was present, and to check if the solidus temperature was calculated; this was necessary because
the calc_transformation function sometimes returned a temperature that was equal to the
solidus temperature, even if the reference temperature was over 50% different from the solidus
temperature. In which case, the try calculating_solvus function scanned a range of

temperatures in 50 K increments starting at 150 K and ending at 2500 K. The starting points and

22



ending points were chosen after evaluating the accuracy of Thermo-Calc’s predictions at the
extremes of temperature.

The function was then used to evaluate, at each incremental temperature, if the solvus was
calculable. If an error was returned after attempting to calculate the solvus temperature, or if the
solvus temperature returned was equal to the solidus temperature, then the function continued to
scan through the range of temperatures until a value not equal to the solidus temperature was
returned, or the 2500 K limit was reached. If the limit was reached and no solvus temperature was

found, then the solvus returned was simply “None”.

2.3.3 Get _fabrication_method

In earlier experimental trials to fabricate an alloy of CrMoW through arc melting, it was found
that there was significant loss of Cr and extremely large void formation that likely resulted from
evaporation of Cr. The Cr boiling point is approximately 2672 °C>°, and the binary equiatomic
alloy of MoW has a liquidus temperature of approximately 3200 °C>!. Clearly, the incorporation
of Cr in liquid MoW, or even just pure liquid Mo and liquid W can cause significant mass loss of
Cr. Furthermore, Al has a boiling point of approximately 2470 °C>? and it can be inferred that a
similar attempt to incorporate Al into an equiatomic MoW alloy could result in significant mass
loss through evaporation. Figure 2-2 shows the differences in boiling and melting points of Al and
Cr and the melting points of other refractory elements.

A workflow was developed to split the alloy processing into two different methods - arc
melting or powder metallurgy. The workflow functioned as follows:

1. Calculation of the liquidus temperature with nominal amounts of Cr and/or Al.

2. Calculation of the liquidus temperature of the alloy upon removing Cr and/or Al.

3. Ifthe liquidus of the Al-bearing alloy, or the liquidus of the Al- and Cr-free alloy exceeded

the boiling point of Al, then the powder metallurgy route was the recommended process.

4. 1If the liquidus of the Al- and Cr-free alloy was less than the boiling point of Al, then arc

melting was the recommended process.

This function was written as an attempt to mitigate Al and Cr loss by filtering out alloys that

contained high melting point elements such as Nb, Ta, Mo, and W and that would likely evaporate
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large amounts of Al and Cr if fabrication was conducted by arc melting. The powder processing
route was a more viable option for the fabrication of alloys with high melting points, as processing
steps such as the Pechini method and mechanical alloying do not involve the metal alloy liquid
state or temperatures exceeding the boiling points of Al and Cr.

A function that can be utilized to generate homogenization windows of compositions was also
formulated but was not used in the work as expediting the active learning process was of the

highest priority. This function in included in the appendix.
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Figure 2-2 a) A graphical representation of the boiling point issue when melting volatile elements such as Al and Cr

with high melting point elements such as Mo and W. The get_fabrication_method function aimed to solve this

issue. b) An attempt at arc melting a CrMoW alloy that underwent significant Cr vaporization and formation of large
pores.
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2.4 Results and Discussion

Visualization of the data is key to discovering trends in thermodynamic properties with
composition. A 3D color map of the unfiltered design space at 1000 °C is shown in Figure 2-3a,
where the red and pink dots indicate compositions with relatively high solidus temperatures. Their
location also reveals aggregations near the single-phase region, as well as high Al activity, which
suggested compositions with higher melting point refractory elements, such as W and Mo, and
potentially high Al contents with high volume fractions of the BCC phase. In Figure 2-3b, the ideal
mixing entropy is plotted as a function of composition over all alloy systems. While such a plot
could yield alloys with a “high entropy” effect that is said to stabilize the single phase region**-4,

there was little variation in the color over the entire plot; that is, alloys with particularly high

entropies were not clearly identified from this plot.

Mapping of 67,440 4-Component Al Containing Alloys t-SNE Plot for visualization of composition data
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Figure 2-3 . a) 3D color mapping of the initial design space. b)t-SNE plot with ideal mixing entropy plotted with a
greyscale.

The filtering steps were then applied; that is, the scripts mentioned in the previous section
were used to filter out alloys that were not single-phase BCC, and to filter out alloys with a BCC
solvus temperature higher than 1000 °C. This reduced the design space dramatically from 67,440
compositions to 6,522 single phase compositions. Another t-SNE plot has been provided in Figure
2-4, revealing large gaps in the compositional space. It was evident that the single-phase
compositions tended to aggregate around a base element, especially in the case of W, Ta, and Hf.

The single-phase alloys were then separated by the get_fabrication_method function into
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two categories depending on fabrication method: arc melting or powder processing. There were
5,144 alloys deemed “arc-meltable” and 1,378 alloys suggested for powder processing, both of
which are shown in Figure 2-4, with the black dots indicating the alloys present after applying the
filter methods.

Arc Melt-able Alloys (5,144)

Figure 2-4 a) All alloys that are single phase and possess a BCC solvus temperature lower than 1000 °C. b) Powder
processing alloys. ¢) Arc meltable alloys.
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The frequency of an element occurring in both fabrication design spaces can be quantified
as well (Figure 2-5). Unsurprisingly, the number of single phase BCC compositions containing Zr
were low, as Zr forms more intermetallic compounds with Al than compared to other elements.>’
There were also few Hf containing compositions, as Hf has similar bonding characteristics as Zr
with respect to AL.>® It was also apparent that there were a high number of Ti-, V-, Nb-, and Mo-
containing compositions in the arc melting category, and relatively high numbers of V-,Nb, and
Mo-containing compositions in the powder metallurgy space. However, the number of Ti-
containing alloys dropped off dramatically for powder metallurgy processed alloys. In both
categories, there were relatively few compositions for Cr and Ta, but these elements also form a
high number of intermetallic compounds with Al .!737

Number of Arc Meltable Alloys Containing Element Number of Powder Metallurgy Alloys Containing Element
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Figure 2-5 The frequency of elements in the compositions of both fabrication methods. Elements with some
solubility at high temperature with Al (V, Nb, Mo, Ti) show a good number of single phase compositions, and those
that readily form intermetallic compounds (Cr, Zr, Hf, and Ta) are low in quantity.

Investigating the Pareto front of the Al activity and solidus temperature can also provide
insight into the types of systems and compositions that are the most optimized in terms of those
quantities (the compositions that simultaneously maximize the Al activity and the solidus
temperature). Al activity can possibly be used as a surrogate for oxidation resistant alloys, although
it is only one factor in terms of forming a protective alumina layer.* Nevertheless, it provides a
starting point and can allow an efficient means of testing compositions sequentially. The Pareto

front between the solidus temperature and Al activity for both processing methods are shown in
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Figure 2-6a, b, and the systems and frequency of the systems along the front are given as well in

2-6¢, d.
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Figure 2-6 a) Multi-objective optimization plot and Pareto front for arc melt-able alloys. b) Multi-objective
optimization plot and pareto front for powder processing alloys. ¢) Quantity of systems that lie on the Pareto front of
arc melt-able alloys. d) Quantity of systems that liec on the Pareto front of powder processing alloys.

40 and 15 compositions lie on the Pareto front for AM and PM methods, respectively. The
Al compositions for both fabrication methods ranged from 0.05 to 40 at%, and Al activity for the
AM method ranged from 1x10° to 0.000408 whilst Al activity for PM methods ranged
from .000113 to .00112, which is remarkable as a drop in at% of Al from 40 to 5% was associated
with a only drop of a single order of magnitude in Al activity. A summary of the minimum and

maximum activity and solidus temperature as well its composition is provided by Table 2-1.
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Table 2-1 Comparison of compositions with minimum and maximum optimized values.

Composition (at%) Al activity Solidus (°C) Fabrication
method
Al5.0M040.0Ta30.0Ti25.0 | le-6 (min) 2553 (max) Arc melt
Al40.0V30.0W15.0Cr15.0 | .000408 (max) 1621 (min) Arc melt
Al5.0M030.0Nb5.0W60.0 | .000113 (min) 2768 (max) Powder
Al40.0V10.0W45.0Cr5.0 | .00112 (max) 1301 (min) Powder

Hardness predictions were computed for all single-phase BCC compositions, and a
correlation heatmap was created for both fabrication subsets, with the hardness predictions, at%
of elements, and thermodynamic quantities plotted against each other to observe correlations
between predicted hardness and the mentioned quantities. The correlation heatmap for arc melt-
able alloys is shown in Figure 2-7, and the heatmap for powder processing alloys is shown in
Figure 2-8.

The correlation plot for arc meltable compositions show some trends in the predicted
hardness (left-most column in Figure 2-7), namely that at% Al, has a strong positive correlation
with Al activity, at% W has a weak positive correlation with Al activity while at% Ti, enthalpy of
mixing of the system, and mixing entropy and the solidus temperature have negative medium
correlations with Al activity. Enthalpy of mixing has a strong negative correlation with at% Al,
and medium positive correlation with at% Hf, Ta, Ti, and mixing entropy. Entropy of mixing has
medium positive correlations with at% Hf, Zr, Ta, and Ta and medium negative correlations with
at% Al V, W, Cr, and Al activity. Correlations for the PM compositions exhibited similar

relationships when compared the AM compositions.
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Predicted Hardness, Composntlon and Thermodynamlc Propertles Correlation Heatmap for AM alloys
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Figure 2-7 Correlation heatmap between the predicted hardness of all single-phase arc meltable alloys.
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Predicted Hardness, Composition, and Thermodynamic Properties Correlation Heatmap for PM alloys
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Figure 2-8 Correlation heatmap between the predicted hardness of all single-phase powder processing alloys
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2.5 Conclusions

In summary, a set of conditions were placed upon a grid of alloys, and the thermodynamic
quantities pertinent to high strength, high oxidation resistant alloys such as solidus temperature,
activity of aluminum, and presence of a solid solution phase were calculated at 1000 °C. With
restraints such as 4 components, a 5% step size, a maximum Al percentage, and the 9 refractory
elements, thermodynamic properties were calculated in a rapid fashion, and then further down-
selected to a smaller, more manageable subset with the goal of performing high-throughput
experimental trials for further alloy discovery. By using scripts that take into account the
processability of any given composition, it was possible to parse out the subset further and
recommend certain fabrication methods. This technique resulted in compositions that were
recommended for powder processing to be high in high-melting point elements such as Mo and
W, as attempting to make alloys high in these elements by solidification processing would likely
cause significant evaporation and mass loss.

Through the use of a suite of data visualization tools, trends were elucidated, and key areas of the
design space worth further exploration were identified. Essentially, it was found that there was a
concentration of V-based alloys in both processing methods, likely due to the large solubility of
Al in V at high temperatures®®, whereas other elements such as Zr, Hf, Cr, and Ta show little Al
solubility in the binary phase diagrams.!”*>7 Promising alloy systems on the Pareto front
optimizing Al activity and solidus temperatures were identified for future work for testing such
alloys. Correlation heatmaps yielded trends relevant for alloy design, such as the W content in

relation to Al activity and predicted hardness versus atomic percent of certain elements.
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3. HIGH-THROUGHPUT EXPERIMENTATION FOR THE
DISCOVERY OF HIGH STRENGTH ALLOYS BY ACTIVE LEARNING

3.1 Introduction

As there were a large number of possible RCCA compositions to evaluate, a strategy was
needed to efficiently examine the design space based on a target property. Machine learning has
been proving to be an extremely effective tool for reducing the time and effort required to discover
new drugs?®, track business trends®’, evaluate biological impacts of changing ecosystems and
climate*’, assess legal works, identify efficient methods of transportation*!, and other applications
to benefit society.

The field of materials science has also seen significant benefit from use of machine learning
to analyze large amounts of materials data, either compiled neatly in an easily accessible format,
or manually searched for in the literature. Researchers have been able to identify trends in material
properties based upon several different inputs such as atomistic (e.g., valence electron
configuration (VEC), average atomic radius, and atomic volume misfit), mechanical properties,
and thermodynamic information (ab initio simulations and CALPHAD predictions).?!?24!
However, there is still a need for experimental trials to accelerate materials discovery and confirm
materials properties. A machine learning accelerated materials discovery framework with a clear
set of goals is necessary for undertaking this task. A set of low- and high-fidelity experiments, and
a schematic of the framework used in this work is shown in Figure 3-1. In this work, the low-
fidelity, high-throughput experiments were given priority and high-fidelity, “low throughput”
experiments reserved for future work (once a set of alloys with desirable properties have been

discovered with low-fidelity experimental trials).
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Figure 3-1 The proposed machine learning accelerated materials discovery framework that combines machine
learning, ab initio simulations, high-throughput (low-fidelity) and full-scale (high-fidelity) experiments. Target
metrics are a low mass gain in oxidizing environments and high strength. From NSF DMREF proposal

To combine machine learning and design of experiments (DOE), an active learning
procedure was utilized. Active learning is the process of using machine learning models to predict
the properties from an array of possible experiments in a design space containing unknown
properties in order to fill in the gaps of uncertainty with targeted experiments.??” A set of
experiments is then chosen based on either the maximum expected improvement of a property
(Vickers hardness in this study), or the maximum uncertainty of an area in the design space. The
batch of alloys are then characterized, the data gathered is used to amend the model, and a new
batch of experiments is suggested. An illustration has been provided in Figure 3-2.2” This
procedure, termed an active learning loop, is repeated until the expected improvement has reached

a maximum and multiple alloys with desirable properties are found.
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Figure 3-2 A simplistic schematic of the active learning procedure, and a similar process is followed in the present
work. Adapted from Ref. [25]. Licensed under CC BY 4.0.

In this work, the active learning loop was focused on maximizing Vickers hardness (HV),
as the HV and yield strength exhibit good correlations in steels, bronzes, Al alloys, Ni-based
superalloys, and other alloy families*’. A review of the present HEA database published by
Cristopher Borg et al. in 2020%, reveals that, for all microstructures (BCC, FCC, and multi-phase),
the hardness shows good correlation with the yield strength (Figure 3-3b), so that hardness may
be used as a surrogate characteristic for strength.*? Another possible surrogate model for strength
is grain size, as it well-known that the Hall-Petch relationship can be used to predict strength, but
upon analyzing the data (Figure 3-3a), there is a large variation in strength depending on the
processing method. Further analysis of the database, shown in Figure 3-4, reveals that there is a
stunning lack of data on the hardness of single phase, 4-component, Al-bearing alloys with the 9
refractory elements (only 3 entried), which is the design space of this study. The absence of data
also implies that there is largely unexplored compositional space in this sector of HEAs, and this
work was aimed at filling a substantial gap in knowledge. The three aforementioned alloys are
equimolar compositions of AIMoNbTi (HV: 509, As-Casted), AINbTaTi (HV: 458, As-Casted),
and AINbTi1V (HV: 448, annealed). Discovering RCCAs that surpass the hardness values of these
three reported alloys is a key goal of this study.
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Color Coded Comparison: All Processing
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Figure 3-3. a) A comparison between RT yield strength and grain size of different processing methods. b) An
analysis of the Vickers hardness and room temperature strength of both multi- and single-phase alloys from the HEA

dataset.
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Figure 3-4. Visualization of the number of alloys with hardness data that belong in each design space. By reducing
the dimensionality of the design space, it is revealed that there is a large gap in knowledge of strength for single
phase, Al-bearing, 4-component RCCAs.
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3.2 Methods

3.2.1 Method of Alloy Selection: Active Learning Using Bayesian Global Optimization

Sharmila Karumuri is credited for this work. Bayesian global optimization (BGO) deals
with solving the problem shown below with limited budget evaluation:

x* = argmaxE(y|x) (3-1)
where x”is the location of the next experiment, argmaxE is the acquisition function, y is the input
hardness, and x are the input descriptors used to predict hardness (melting point, volume atomic
misfit, average atomic radius, asymmetry of atomic radii, reduced phase one-hot-encoding, VEC,
entropy of mixing, density, solidus and liquid temperatures, range of Young’s modulus, range of
density, range of melting points, range of bulk modulus, range of VEC, and range of atomic radii).
BGO involves optimization by sequential information acquisition and is an algorithm that
determines the next experiment based on interested in minimizing/maximizing a value. The
location of the next experiment is then found by maximizing a function called the acquisition
function (AF) at a(x), where a(x) is expected improvement. The AF quantifies how much
information there is in evaluating at x, which is the next experiment.

There are multiple steps in conducting such a process, and a flowchart is shown in Figure

3-5:

1. Start with an initial dataset.

2. Construct a surrogate model using Gaussian process.

3. Ifenough computational/experimental budget is available, proceed to the next step and
the next experimental location is chosen.

4. Select the next experiment location at x’ based on where the AF determines there is a
maximum expected improvement (EI)

5. Perform experiment at x’ and get the quantity of interest y’

6. Add new data and repeat from step 2
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Augment the dataset
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Figure 3-5. A flow chart summarizing the Bayesian Global Optimization process. This figure is credited to Sharmila
Karumuri and Ilias Bilionis.

For the purpose of this study, the process has been amended and a batch of ‘m’
compositions is recommended for testing. The EI is used as our AF a(x), which will both explore

and exploit the design space:

a(x) = EI(x) = (m(x) —m*) @ (M) + o(x)e (M) (3-2)

o(x) o(x)
where m(x) is the predicted mean hardness of alloy x, o(x) is the uncertainty of hardness of alloy
x,m’ is the maximum hardness in dataset, ® and ¢ are cumulative and probability density functions,
respectively, chosen to exploit and explore the design space. In the original BGO process, the
algorithm suggested a single experimental location for each iteration. Clearly, a single experiment

per iteration would be insufficient in a high-throughput effort to discover RCCAs with optimal
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properties, so a batch of ‘m’ compositions was suggested instead. However, the previous algorithm
would suggest alloys close in composition at the top ‘m’ max location of the AF, so the process

needed to be amended to overcome this issue as shown in Figure 3-6.

Initial dataset & = {x;,y;}7_,

v

Fit istical surrogate model f(.) |

Return
G i)

* Yes,i=1, 9'=9

AF based on f(.) A

l Maximize

| New experiment at x; |

Assuming y; = f(x})

Augment the dataset
D'=D'VU {x},y]}

‘

| Fit statistical surrogate model f(.) |

i<m
Yes,i=i+1

B &
‘ No
Carry out new experiments at{x/}" |
and get the hardness data {y;}/_,

|

Augment the dataset
D =D U {x}, ¥},

Figure 3-6. The amended BGO process showing the primary differences from a regular BGO process. The model
assumed the experimental data was equal to the predicted hardness, which was then fed back into itself to compute a
new maximum EI value for identifying the next alloys. This figure is credited to Sharmila Karumuri and Ilias
Bilionis.

The amended algorithm was similar to the general BGO process, but the inner loop was
changed (highlighted in the orange box in the figure) so that the top ‘m’ experiments were diverse
in composition. For the first experiment suggested in a batch, the usual BGO procedure was
followed where the AF was maximized. The change in the process came in the second alloy
suggested; the algorithm assumed that the predicted hardness of the first alloy was the same as the

experimental result, and the result was added to a copy of the original dataset. The surrogate model
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was then rebuilt, and the second experiment suggested was located where the AF was at a
maximum. This procedure of continuously updating the surrogate model was repeated until a set
number of ‘m’ compositions had been suggested, and those recommended compositions were
subsequently fabricated and tested, with the experimental data being added to the original dataset,
which constituted a single loop.

The active learning procedure was a crucial part of the workflow (Figure 3-7), and the
alloys recommended by active learning were a part of the down-selected subset of alloys from the

original dataset of alloys from the previous chapter.

TC will calculate:
*  Activity of Al, density, phases

present, phase equilibria, volume

and crystal structure of each phase HT Thermo-Calc caleulations /‘\
’ : LN
solidus and liguidus, and BCC solvus performed USing TCHEA4 :

temperature

Pareto front investigated é ’”

Active learning models

Alloy fabrication and batch '

homogenization methods

Experiment performed and
T data gathered

Figure 3-7. A workflow detailing the process from a grid of alloys potential RCCAs to a list of experiments, with the
active learning loop a critical step in discovering novel alloy properties.

3.2.2 Experimental Methods

Alloy Fabrication Methods

All alloys fabricated in this active learning study were melted together from pure elements
using a custom-built tri-arc melter with a 195-amp power source (XMT 350 CC/CV, Miller
Electric, Appleton, WI, USA). Pure elements of aluminum granules (8-12 mm, 99.9% purity, Alfa
Aesar, Ward Hill, MA, USA), titanium granules (1-10 mm, 99.99% purity excluding Na and K,

40



Alfa Aesar), vanadium foil (1 mm thick, 99.7% purity, Alfa Aesar), chromium chunks (2-3 mm,
99.995% purity, Alfa Aesar), niobium wire (I mm diameter, 99.8% purity, Alfa Aesar),
molybdenum wire (1 mm diameter, 99.94% purity, Alfa Aesar), hafnium wire (1 mm diameter,
99.95% purity excluding a nominal amount of 3% Zr, Alfa Aesar), and tungsten powder (average
particle size of 21 microns, 99.9% purity, Alfa Aesar) were used. Pure elements with a total
nominal mass of 5 grams before melting were weighed out on a high precision microbalance
(ME36S, Sartorius AG, Goettingen, GER) to 4 significant figures.

After the charge material was weighed, the raw elements were evenly distributed and placed
on a water-chilled copper hearth. The arc melter was then evacuated with a roughing pump
(TRIVAC D2.5E, Leybold GmbH, Cologne, GER) for twenty minutes to allow the vacuum
pressure to reach approximately 150 mTorr. The chamber was then filled with an inert cover gas
of ultra-high purity argon (UHP Ar) (99.999% purity, Indiana Oxygen, Indianapolis, IN, USA).
The evacuation/UHP Ar backfilling procedure was repeated three times. Upon completion of the
backfilling procedure, the flow rate was monitored and controlled by a flow meter (Cole-Parmer,
Vernon Hill, IL, USA) and kept constant at approximately 1400 mL/min.

All alloys were fabricated in a cover gas of UHP Ar to achieve a low oxygen concentration
during melting. To further reduce the pO», a Ti gettering furnace (OG120 gas purification furnace,
Oxy-Gon Industries, Epsom, NH, USA) was utilized. Finally, a local getter of high purity
zirconium was initially melted at the start of and during each experiment to remove residual
oxygen left over from the backfilling procedure and inward diffusion of oxygen from the outside
environment. An O3 analyzer (Thermox CG1000, AMETEK Process Instruments, Berwyn, PA,
USA) was utilized to record the oxygen concentration of the exhaust gases. After melting the Zr
getter for Oz purification, the charge material was melted into a single button and kept in the liquid
state for approximately one minute, flipped and remelted 5 times to ensure homogeneity

throughout the ingot.
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Figure 3-8 A typical ingot shape after fabrication. The shape, presence of a shrinkage cavity, and luster of the final
product is relevant for data storage purposes.

Upon completion of fabrication, the ingot, possessed a boule shape (Figure 3-8), which
resembles a water droplet with a contact angle greater than 90°. Overall dimensions of alloy ingots
ranged from approximately 6.5 to 8.5 mm in height and 13 to 16 mm in diameter. All alloys were
weighed after fabrication to assess mass loss through evaporation, as both Al and Cr were prone

to boiling at temperatures in excess of 2400 °C.

Post-Fabrication Sample Preparation

Samples were sectioned into multiple pieces with a wire EDM (FX-20K, Mitsubishi Electric,
Tokyo, JPN). Slices (2 mm) from near the center of the ingots were taken for mounting in
conductive bakelite for hardness testing and microstructural evaluation. Cross-sectional samples
were hot mounted with a compression mounting system (SimpliMet 4000, Buehler, Lake Bluff,
IL, USA). Polishing was achieved by starting plane grinding with a 15 micron diamond platen
(Allied High Tech Products, Inc., Rancho Dominguez, CA, USA), then a 9 micron diamond platen
(Allied High Tech Products, Inc.), followed by fine polishing with a 6 micron diamond suspension
in glycol (Allied High Tech Products, Inc) on a woven polishing cloth (Gold label, Allied High
Tech Products, Inc) for approximately 5-10 minutes. The next polishing step was achieved by
polishing with a 1 micron diamond suspension in glycol on a woven polishing cloth (Tech-cloth,
Allied High Tech Products, Inc.) for approximately 5-10 minutes. Finally, the samples were
polished for approximately 10 minutes on a non-woven, low nap porous polyurethane pad (Chem-

Pol, Allied High Tech Products, Inc.) with a 0.04 micron colloidal silica suspension. The mounted
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and polished specimens were then ultrasonicated in acetone for 5 minutes, and finally dried with
forced air to remove residual particulates and surface contamination from the polishing procedure.

6 Cylindrical specimens approximately 4.67 to 4.82 mm in diameter were cut with a wire EDM
(FX-20K, Mitsubishi Electric, Tokyo, JPN) from the ingot for compression testing. The ends of
the sample were then cut down to a height of approximately 6.8 mm, and the faces of the samples
were further smoothed by surface grinding to ensure flat, parallel surfaces. The samples were then
shipped off to GE Research (1 Research Cir, Niskayuna, NY 12309) for compression testing to
determine yield strength. The sample was preloaded with 5 Ibf and a strain rate of 0.0017 in/s was

applied until the sample failed, and peak load was recorded.

Sample Characterization

Upon completion of polishing, 16 hardness measurements were obtained on each sample.
These measurements were taken by using an automatic micro-indenter (AMH43, Leco
Corporation, St. Joseph, MI, USA) with 500 gram-force of load applied, and a dwell time of 13
seconds. The indents were arranged in a 4x4 square grid with each indentation spaced 300 microns
from neighboring indentations. The location of the grid was chosen such that multiple
microstructures (i.e., middle, side, and lower regions) are tested in order to fully sample the
variation in hardness in a single ingot.

To verify phase a single-phase microstructure in the as-cast condition, X-ray diffraction (D2
Phaser diffractometer, Bruker, Billerica, MA, USA) was conducted using Cu K-ao radiation (A =
0.154 nm) with a scan rate of 0.23 degrees/s. To account for instrumental peak shifting, a standard
of Nickel powder (99.8% purity, Alfa Aesar) was used, with a small amount placed on the surface
of the sample.

Following XRD analysis, the alloys were examined in an SEM (NanoNova 450, FEI, Hillsboro,
OR, USA) with a 15 kV accelerating voltage and a spot size of 5 microns, using BSE and SE
imaging modes, and the elemental composition was verified using standardless EDS (AZtec

software, Oxford Instruments, Abingdon, UK).
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3.3 Results and Discussion

3.3.1 1 Iteration of Active Learning

In the first round of active learning, 6 alloys were recommended for hardness testing and
subsequently fabricated by arc melting. The nominal compositions, compositions measured by
EDS, predicted hardness and standard deviation of the prediction, mass loss of the ingot, predicted
crystal structure, predicted BCC solvus temperature, solidus, and are tabulated in Table 3-1.

The HV data, along with the prediction and predicted standard deviation, are plotted in
Figure 3-9a. Just in this first round, 3 alloys with higher hardness than the benchmark (AIMoNbT1)
were found, and the experimental values were well within the predicted standard deviation. In
Figure 3.9b, the XRD scans show a single set of BCC peaks for all alloys, despite microsegregation

seen in most of the micrographs in Figure 3-10.
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Figure 3-9. Results of HV testing compared to predictions for round 1 of active learning. b) XRD scans showing
single set of BCC peaks for all alloys in round 1.

Despite the microsegregation, the spread of the data of the different alloys was relatively
narrow. The hardness parity plot is given in Figure 3-11. The first-round results exhibited good

agreement with the linear fit found for the other alloys in the database.
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Figure 3-10. Polished micrographs taken with BSE imaging in the 1% round of active learning.
Most of the alloys appear to have chemical microsegregation.
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Figure 3-11 Hardness parity plot showing results of 1st round and comparison with literature data.
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Table 3-1 Data for 1* round of active learning.

System Nominal Measured Predicted Measured | % mass @ Al activity | Solidus BCC Predicted Crystal
Comp. Comp. HV (o) HV (o) loss °C solvus Structure (Phase)
°C
AlCrVW Al40Cr30 Al40Cr31 549 (164) 515 (12) 2.7 .00036 1570 665 SS (BCC)
V25W5 V25W4
AlCrMoTi Al35Cr45 Al34Cr45 521 (160) 654 (30) 2.8 .00012 1640 764 IM (B2)
Mo5Til5 Mo5Til6
AlCrMoV Al35Cr35 Al34Cr36 500 (162) 492 (36) 2.0 .000202 1663 819 SS (BCC)
Mo5V25 Mo5V25
AlMoVW Al40Mo5 Al37Mo5 498 (165) 471 (22) 3.05 .000169 1863 640 SS (BCC)
V50W5 V53W5
AlCrVW Al25Cr45 Al23Cr46 479 (169) 523 (19) 34 8.3x10° 1777 891 SS (BCC)
V25W5 V26W5
AlCrtMoV A130Cr60 Al29Cr61 476 (163) 453 (8) 1.6 .000174 1624 828 SS (BCC)
Mo5V5 Mo5V5




3.3.2 2" Tteration of Active Learning

In the second round of active learning, 4 alloys were tested instead due to time and labor
constraints. The same kind of data that was collected in Table 3-1 is tabulated in Table 3-2.

In the second round, all alloys tested were harder than AIMoNbTi, but the predicted mean
HV were somewhat lower than the experimental mean (Figure 3.12a). However, the predicted
standard deviation was in a similar range as the experimental data. Just like the previous active
learning round, the XRD scans exhibit only BCC diffraction peaks. All the BSE micrographs of
the alloys show significant chemical microsegregation. The hardness parity plot in Figure 3.14
shows more deviation than in the 1% round, but that may be due to exploration of unknown
compositional space.
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Figure 3-12. HV and XRD results for 2™ round of active learning. All alloys are harder than the benchmark,
and the XRD scans only show 1 set of BCC peaks.
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Figure 3-13. Polished micrographs taken with BSE imaging in the 2" round of
active learning.

Hardness Parity [HV]

1200 — Linear Fit
* Literature data (train) - all 4comp
Literature data (train) - refractory 4comp

Lo * Design space top10 predmean alloys
* BatchO

- 800 * Batchl
g © Batch2: Al40.0Mo5.0Ti30.0Cr25.0
B i Batch2: Al5.0V35.0Nb35.0W25.0
T “mp ® Batch2: A120.0M020.0Ti30.0C:30.0
A Batch2: A130.0V35.0Nb20.0W15.0

400 -Y"

B
200 /Ifjf
0
0 200 400 600 800 1000 1200

Experimental

Figure 3-14 Hardness parity plot of the 2" round which shows little agreement with the experimental hardness
values.
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Table 3-2 Data for 2™ round of active learning.

System | Nominal Measured Predicted Measured % Al Solidus BCC Predicted Crystal
. . o
Comp. Comp. HY (o) HY (o) rilass activity oC solvus °C Structure (Phase)
0ss
Al40Cr25 Al40Cr25 541 (145) 636 (9) 9.8 0.000137 1593.29 975.98 IM (B2)
AIMoTiCr | Mo5Ti30 Mo5Ti30
AI5SNb35 AI2Nb36 327 (188) 525 (17) 33 1.63x10°® 2137.62 149.47 SS (BCC)
AIVNbW V35W25 V37W25
AI20Cr30 | Al20Mo020Ti3 482 (148) 638 (13) 1.8 9.90x10°® 1790.18 933.15 IM (B2)
AMoTiCr | Mo20Ti30 0Cr30
AI30Nb20 | AI23Nb23V39 439 (156) 650 (60) 4.3 5.83x10° 1907.54 439.65 SS (BCC)
AIVNbW V35W15 W15



3.3.3 3" Iteration of Active Learning

Results for 3" round of active learning are displayed in Table 3-3.

In the 3™ round of active learning, three out of the four alloys exhibited higher hardness
than the benchmark (Figure 3-15) and XRD scans show good agreement with the previous round,
The predictions were close to the experimental values. Micrographs of the alloys are shown in
Figure 3-16 and two alloys exhibits substantial microsegregation (3.1 and 3.2) while 3.3 and 3.4
appear to exhibit very little chemical segregation, but this would need to be verified with further
EDS analysis. Overall, the spread of the hardness results for an alloy are about the same as those
in the previous rounds (see standard deviations) and the hardness parity plot (Figure 3-17) shows

excellent agreement to the line of linear fit.
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Figure 3-15 HV results and XRD scans for 3" round of active learning
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Figure 3-16. Polished micrographs taken with BSE imaging in the 3™ round of active learning.
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Figure 3-17. Hardness parity plot of the 3™ round showing excellent agreement with measured values.
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Table 3-3 Data for 3" round of active learning.

System Nominal Measured Predicted Measured % mass Al activity Solidus BCC Predicted Crystal
Comp. Comp. HYV (o) HYV (o) loss oC solvus © | Structure (Phase)
C
Al5SHf40Mo30 Al6Hf4 444 (174) 513 (10) 0.38 2.55x10°® 1853 989 SS (BCC)
AlHfMoNb N25 Mo29Nb24
Al10NbS AI8NDS 510 (152) 582 (33) 3.7 5.31x10® 1972 136 SS (BCC)
AINDVW V70W15 V73W14
Al15Cr30Ti20 | Al15Cr30 566 (135) 529(11) 0.8 1.63x10°7 1554 734 IM (B2)
AlICITiV V35 Ti20V35
Al15Cr15Mo5 | All15CrlS 517 (143) 394 (14) 2.7 2.24x10°® 1701 799.46 IM (B2)
AlCrMoTi Ti65 Mo5Ti65




3.3.4 4" Iteration of Active Learning

Table 3-4. lists the data from this set of experiments.

In the 4™ round of active learning, two out of the four alloys were harder than the
benchmark, and the predictions again show excellent agreement with the results. HV and XRD
data are shown in Figure 3-18 and the XRD scans again show a single set of BCC peaks.
Microsegregation was observed for most of the alloys in round 4 (Figure 3-19), although alloy 4.2
showed no apparent microsegregation. Predictions also matched well with this round, as seen in

the hardness parity plot (Figure 3-20).
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Figure 3-18. HV results and XRD scans for the 4™ round of active learning.
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Figure 3-19. Polished micrographs taken with BSE imaging in the 4™ round of active learning. Most of the alloys
appear to have chemical microsegregation, except for 4.2.
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Figure 3-20. Hardness parity plot of the 4" round showing excellent agreement with the line of linear fit.

54



9

Table 3-4 Data for 4" round of active learning.

System Nominal Measured Predicted Measured % Al Solidus BCC Predicted Crystal
Comp. Comp. HYV (o) HY (o) mass | activity °C solvus °C | Structure (Phase)
loss
AINbVW AI15Nb30V30W25 AI8Nb33 565 (135) 632 (36) 7.31 1.11x10° | 2068.32 305.22 SS (BCC)
5
V34W25
AICrNbV Al5Cr25Nb30V40 Al6Cr25 516 (145) 505 (6.5) 0.21 | 1.60x10° | 1738.19 = 938.65 SS (BCC)
Nb30V39 °
AlMoNbW Al5Mo5 Al3Mo5 464 (157) 387 (23) 3.4 | 3.09x10° | 2451.53  279.42 SS (BCC)
6
Nb75W15 Nb76W16
AlCrvW Al10Cr65 Al10Cr65 495 (147) 544 (17) 4.8 1.74x10° | 1886.11 964.48 SS (BCC)
5
V20W5 V20W5




3.3.5 5% and final Iteration of Active Learning

Results for 5™ round of active learning are displayed in Table 3-5.

In this round, the hardest alloy was discovered with the measured composition of
AI31V32Nb27W10 (nominal AI35V30Nb25W10) and an HV of 690. More extensive analysis
(such as TEM) of this alloy will be required to elucidate the causes of this high hardness, and an
alloy from the same system (AINbVW) should be compared to it for further understanding. The
XRD scans show a single set of BCC peaks for all alloys. Besides the hardest alloy, the predictions

for the other alloys were excellent.

a) b) . .
- HV of 5th Round of Active Learning Alloys XRD Results for Round 5 Active Learning Alloys
700 ==
600 B

g, * x x

- RS
500 """ T e e e

B b
4001 === AIMONbTI
% Predicted HV
| Predicted Std. Dev.

300

a0 oy oW
oN ol _\'QA’L'\N -
X Py

Figure 3-21 HV and XRD data from final round of active learning. Last alloy tested is the hardest out of all alloys
tested in this loop.
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Figure 3-22. Polished micrographs taken with BSE imaging in the 5" round of active learning. All the alloys appear
to exhibit chemical microsegregation.
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Figure 3-23 Hardness parity plot of the 5% round of active learning. Model appears to predict extremely HV well
after only 5 iterations.
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Table 3-5 Data for 5" round of active learning

System Nominal Measured Predicted Measured % Al Solidus BCC Predicted Crystal
Comp. Comp. HV (o) HV (o) mass activity °C solvus °C Structure (Phase)
loss
AIVTIiW Al15Til0 Al2.5Til0 562 (138) 541 (50) 7.0 6.52x10 1721 867 SS (BCC)
5
V45W30 V44W43.5
AIVWCr Al15V35 All11Cr26 575 (135) 579 (35) 11.7 2.27x10° | 1939.09 | 857.04 SS (BCC)
5
W20Cr30 V42W21
AlMoVW AI20Mo020 All7Mo21 539 (138) 493 (15) 2.9 2.14x10° | 2138.15 | 432.06 SS (BCC)
5
V55W5 V56W6
AIVNDW Al35V30 Al31V32 576 (130) 690 (17) 43 0.000116 | 1829.9 532.55 SS (BCC)
Nb25W10 Nb27W10




3.3.6 Review of All Active Learning Iterations

When reviewing the data for all the active learning iterations, little progress was found in
the accuracy of the model (Figure 3-24c¢). Also, the benchmark was 509 HV, and this procedure
yielded 15 alloy compositions with HV values from 1 to 35% higher than the HV benchmark of
509. In Figure 3-24a, all XRD scans are compiled and it can be inferred that, at the resolution of
XRD measurements, every alloy possessed a BCC-based structure with no intermetallic
compounds detected by XRD analysis. In Figure 3-24b, it is seen that comparing the hardness to
AIMoNDbTi, the hardest alloy that fit our design space, there were 15 new, BCC-based alloys
discovered with high hardness. Compared to CrNbTiW (HV: 630), the hardest 4 component alloy
with refractory elements, there were 4 alloys that surpassed that benchmark. Figure 3-24c shows
the difference between the model’s predictions to the experimental value. From this plot, the model

did not appreciably improve with each iteration.

b) Comparison of Literature vs Active Learning alloys
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Figure 3-24 a) Compilation of XRD scans for all active learning alloys. b) Comparison of each iteration to the
previous round and to literature values. Maximum is CrNbTiW with an HV of 630. c) Convergence of hardness
predictions versus experimental values.
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Figure 3-25 attempts to correlate the at% of an element to hardness. An analysis of the
atomic percent of a single element reveals that no single element appears to have an appreciable
effect on the Vickers hardness of an alloy. However it can be seen that in some alloys with over
50 at% of an element, there is a drop in the hardness (see Ti and Nb), which can support the theory

of a high-entropy alloy exhibiting severe lattice distortion with near equimolar compositions.

HV versus at% Element
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Figure 3-25 Plotting hardness versus at% of elements present in AL loop. No obvious trends are observed through
these comparisons.

Figure 3-27 shows correlations between hardness, composition, and thermodynamic
quantities such as solidus temperature and activity of Al. Correlations of hardness with a single
element are shown, and it appears that there is a strong negative correlation with at% Nb and Ti,
although this is likely skewed by alloys 4.3 and 3.4 for their high Nb and Ti contents, respectively.
Interestingly, almost all quantities appear to have some effect on the lattice parameter (except
hardness has little to no correlation with lattice parameter) as at% Ti, at% Nb, and at% W have
strong positive correlations, while at% Al, Cr, and BCC solvus temperature have a medium
negative correlation. Density, solidus, and entropy exhibit medium positive correlations with the

lattice parameter.
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Figure 3-26. Compilation of hardness results from all iterations. Benchmark of AIMoNbTi is shown to have been

passed by 15 alloys.
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Experimental Hardness, Composition, and
Thermodynamic Properties Correlation Heatmap for AL alloys
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Figure 3-27. Correlation mapping of hardness versus composition and other thermodynamic properties.

3.3.7 Experimental and Theoretical Yield Strength

Three alloys from the top seven hardest were chosen for room temperature compression
testing, which were the nominal compositions of AI35-V30-Nb25-W10, A120-Cr30-Mo020-Ti30,
and Al15-V30-Nb30-W25. The other alloys in the top seven hardest were disregarded for testing
as they were either too brittle for sample preparation (such as Al35-Cr45-Mo5-Til5 and Al40-
Cr25-Mo5-Ti30) or is too compositionally close to another hard alloy (such as AI30-Nb20-W15-
V35). The alloy exhibiting the highest yield stress (which is considered to be the peak stress as
these alloys exhibited no ductility) is A120-Cr30-Mo020-Ti30 (1209 MPa), followed by A135-V30-
Nb25-W10 (1019 MPa) and Al15-V30-Nb30-W25 (980 MPa), although all of the alloys tested
failed catastrophically (best result is shown in Figure 3-28). Comparisons of RT yield strength

with previously reported alloys are given in Figure 3-29, and it can be shown that there is slight
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improvement over the strongest alloy in the design space of 4-component, single-phase, Al-bearing

RCCAs (AINbTaTi, YS of 1152 MPa).
Stress-strain curve of Al20-Cr30-Mo20-Ti30

1200 -

16066 Yielding

800 A
600 1

400 -

Stress (MPa)

200 A

0-

1

T T

0 1 2 3 4
Strain (%)

B

Figure 3-28. Stress strain curve of the strongest alloy evaluated by compression testing. The peak stress is recorded
at the point of yielding and is circled.
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Figure 3-29. The RT yield strength comparisons of different categories of CCAs found in the literature. The three
AL alloys tested are on the right-most column, and it is seen that a slight improvement over AINbTaTi (YS: 1152
MPa) was accomplished.
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The theoretical shear strength was calculated from DFT using the Curtin model of edge

4445 with a strain rate of 0.01 s™' at room temperature and 1000 °C. A

dislocations in BCC crystals
Taylor factor of 2.75 for BCC polycrystals was used to calculate the yield strength.*%4” Figure 3-
30 shows the comparison between yield stress at room temperature, 1000 °C, GP model predictions
(same model as used for the active learning) and the experimental results of the three alloys
evaluated by compression testing. Actual values of the shear and yield strength, temperature,

Gaussian Process model predictions, and lattice parameters are provided in the appendix.
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Figure 3-30. The predicted yield stresses at room temperature and 1000 °C are compared, and the experimental
results are also shown in the plot. The actual yield strength of the three alloys show some agreement with the
predicted values, and there the A16-Hf41-M029-Nb24 exhibits anomalous high strength at both temperatures. Credit
for DFT calculations goes to Dr. Dongsheng Wen and the GP model to Sharmila Karumuri.

From Figure 3-30, it can be shown that many of the alloys have similar predicted room
temperature (from both GP and Curtin model) and high temperature strength compared to each

other, with the exception of 6Al-41Hf-29Mo-24Nb, which exhibits extraordinarily high strengths
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of 2436 MPa and 1461 MPa for room and high temperature conditions, respectively, and 1360
MPa from the GP model. This alloy had a hardness of 513 HV (Table 3-3), which was average

compared to the other active learning alloys.

3.4 Conclusions

Active learning has already proven to be a useful tool in the field of materials science, and
it has again played a crucial role in this study to rapidly discover high hardness alloys with minimal
experimental trials. Through an amended Bayesian global optimization strategy that selected
batches of alloys for experimental trials, 22 alloys were tested, and 15 of those alloys were harder
than those previously reported in the literature that fit the design criteria of this work.

The model showed little to no improvement in predictions, and even though only 11 alloy
systems were queried out the total of 84 in the design space, the active learning loop was capable
of discovering multiple high hardness alloys. XRD and microstructural analyses do not reveal the
formation of intermetallic compounds in the as-cast condition, although most exhibited some
degree of microsegregation, and others did not. For example, alloys 1.1, 1.3, 1.4, 1.5, 2.1, 2.2, 2.3,
24,3.1,3.2,4.1,4.3,4.4,5.1,5.2, 5.3, and 5.4 exhibited chemical microsegregation in the form
of a dendritic microstructure. Alloys 1.2, 1.6, 3.3, 3.4, and 4.2 exhibited microstructures more
representative of a single phase but point EDS analysis will be required to assess this. With this
method of combining machine learning models with physics-based descriptors and the process of
down-selecting Thermo-Calc generated alloys by filtering out those with undesirable properties,
improved hardness, ranging from 1 to 35% over AIMoNbTi, was achieved.

Several trends can be found with composition with the lattice parameter, such as at% Ti, Nb,
and W exhibited a notably strong positive correlation, while density, entropy of mixing, and
solidus temperature exhibited a medium positive correlation. At% Al, Cr, and BCC solvus
temperature exhibited a medium negative correlation. Further investigation of the AINbVW (such
as TEM analysis and comparison with another alloy of the same system, but lower hardness) and
AICrMoTi system are recommended for further study, as these two systems consistently resulted
in high hardness.

Room temperature compression testing was also conducted, and the results reveal somewhat
high strength, with a maximum yield strength of 1209 MPa (measured at fracture due to lack of
ductility) for the composition of Al120-Cr30-Mo020-Ti30. Compared to the yield strength of other
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alloys in the database with the selected design space, there is a small improvement over the alloy
AINbTaTi, with possesses a room temperature yield strength of 1152 MPa. Predicting the yield
strength using the Curtin model and Gaussian Process model was also performed, and good
agreement is found between the experimental and predicted results. An anomalously high strength
alloy was predicted with the composition 6Al-41Hf-29Mo0-24Nb was also found through the
Curtin model predictions, and further characterization and experimentation of this alloy should be

considered for future work.
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4. CONCLUDING REMARKS AND FUTURE WORK

In summary of this thesis, thermodynamic properties of thousands of potential RCCAs were
calculated, and machine learning was used to sample the design space for the purpose of replacing
the current standard, Ni-based superalloys. RCCAs as a class of materials are still in their infancy,
and there is a vast space of unexplored compositional territory. Efficient sampling of the
compositional space is a daunting task, but a possible avenue for rapid exploration is proposed
using the CALPHAD method, active learning, and rapid experimentation by maximizing low-
fidelity data acquisition such as hardness. Of course, strength is only a small factor in determining
if a material is suitable for desired harsh environments.

In the future, the alloys will require post-processing treatment to truly verify the single-phase
microstructure predicted by Thermo-Calc, and a new set of hardness data should be gathered. The
model should also account for the processing method. Also, only four-component alloys are
considered in this work, and the number of possible alloys expand exponentially when just a single
element is added to the mix, so another active learning loop with five component alloys may be
considered. Furthermore, oxidation testing is needed to determine the RCCA mass gain over time,
which is a crucial piece of information needed to balance between high strength with oxidation
resistance.

For even more rapid experimental trials, high-throughput screening by the use of diffusion
multiples should be explored. Diffusion multiples are an assembly of three or more alloys in
contact and held at high temperature for an extended period of time to produce a compositional
gradient. They have been proven to be an incredibly effective tool**° to map out the properties
and microstructure of various systems, and this approach would undoubtedly accelerate RCCA
discovery, as such experiments could elucidate the relationship between composition, mechanical
properties, and oxidation behavior in a far more efficient manner than serial hardness testing.

Overall, the future of RCCAs is highly promising, and through efforts like the Materials
Genome Initiative, and a toolbox involving machine learning and high-throughput
experimentation, the discovery of suitable replacements of Ni-based superalloys within the next

decade seems likely.
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APPENDIX

Get _homogenization window :

The get_homogenization_window function can be used to determine the
homogenization temperature and number of cycles based off of the Scheil melting point, the solid
solution solvus temperature, the homologous temperature (i.e., 60% of the solidus temperature),
and the solidus temperature. This function, although very useful, was not used in this work as
expediting the active learning process is the highest priority. However, future work will
undoubtedly call for the need for homogenization treatments to verify single phase microstructures.
Although this function can be used to calculate the temperatures and cycles for alloy
homogenization, it does not provide the time for the homogenization treatment. If the user has not
already calculated the mentioned parameters, the script will automatically calculate them and add
them to a dictionary.

The contents of the dictionary were then evaluated, and the parameters were compared to
determine the proper homogenization temperature and number of cycles. Minimum and maximum
initial temperatures indicated the temperature window for homogenization in the first cycle,
whereas minimum and maximum final temperatures indicate the homogenization window in the
next cycle, if applicable. The number of stages was indicated, and a second homogenization cycle
was recommended for low Scheil melting points to remove the low melting point phases.

In the case of a failure to calculate the Scheil melting point due to an internal error from
the Thermo-Calc SDK, the program was used to determine if the homologous temperature was
less than the solid solution solvus temperature. If it was true, then the minimum initial
homogenization temperature was set equal to the solid solution solvus temperature and the
maximum initial temperature was then set equal to the solidus temperature. In the case that the
Scheil melting point and solid solution solvus temperature calculations failed, the minimum initial
temperature was set equal to the homologous temperature and the maximum initial temperature
was set equal to the solidus temperature. A single homogenization cycle was recommended for
both cases.

In the case of a failure to calculate the solid solution solvus temperature, and with the
homologous temperature less than the Scheil melting point, the minimum initial temperature was

set equal to the homologous temperature. The maximum initial temperature was set equal to the
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Scheil melting point, the minimum and maximum final was set equal the homologous and solidus
temperatures, respectively, and a single homogenization treatment was recommended.

In the case where the solvus temperature was less than the homologous temperature, and
with the homologous temperature less than the Scheil melting point, the minimum initial and
minimum final temperatures was set to the homologous temperature, the maximum initial
temperature was set to the Scheil melting point, the maximum final temperature was set to the
solidus temperature, and a single homogenization treatment was recommended.

In the case where the solvus temperature was greater than the homologous temperatures,
and less than the Scheil melting point, the minimum initial temperature was set to the solvus. The
maximum initial homogenization treatment was set to the Scheil melting point, and a single
homogenization cycle was recommended.

In the case where the homologous temperature was less than the Scheil melting point, and
with the Scheil melting point less than the solid solution solvus temperature, the minimum and
maximum initial temperatures were set to the homologous temperature and the Scheil melting
point, respectively. The minimum final temperature and the maximum final temperature were set
to the solid solution solvus temperature and the solidus temperature, respectively, and a double
heat treatment was recommended.

In the case where the Scheil melting point was less than both the homologous and solvus
temperature, the minimum and maximum initial temperatures were set to the Scheil melting point
to prevent the melting of a low-melting-point phase. After the initial cycle, a second cycle was
recommended between the minimum and maximum temperatures of the solvus and solidus
temperatures, respectively.

Finally, if the Scheil melting point was lower than both the homologous and solvus
temperatures, and the homologous temperature was less than the solvus temperature, the minimum
and maximum initial temperatures were set to the Scheil melting point. The minimum and
maximum final homogenization temperatures were set to the homologous and solidus temperatures,

respectively, and a double homogenization cycle was recommended.
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Table 4-1. The compositions, lattice parameters, predicted shear strength found from the Curtin model, yield strength found by multiplying by a Taylor factor of
2.75 for BCC polycrystals, GP model predictions, and experimental yield strength, if measured for AL alloys.

Composition (at%) Lattice 1y (MPa) at | 1y (MPa)at | Yield stress | Yield stress | GP model | Experimental
Parameter | RT 1000 °C (MPa)  at | (MPa) at | YS (MPa) | YS (MPa)
(A) RT 1000 °C at RT
Al40-Cr31-V25-W4 3.044 320.81 113.97 882.32 3134 1100.7
Al34-Mo5-Til6-Cr45 3.041 462.33 211.78 1271.4 582.4 1183.3
Al34-Mo05-V25-Cr36 3.014 338.25 126.04 930.19 346.61 1101.3
Al37-Mo05-V53-W5 3.082 222.86 54.65 612.86 150.29 1094.8
Al23-V26-W5-Cr46 2.992 349.13 138.49 960.1 380.85 1071.8
Al29-Mo05-V5-Cr61 3.124 | 409.07 182.46 1124.94 501.77 1109.5
Al40-Mo5-Ti30-Cr25 3.115 305.93 110.62 841.3 304.2 1217.5
Al2-V37-Nb36-W25 3.179 500.93 230.11 1377.56 632.86 1250.5
Al120-M020-Ti30-Cr30 3.113 478.59 230.13 1316.12 632.86 1066.9 1209
Al23-V39-Nb23-W15 3.144 352.56 125.94 969.54 346.34 1163.5
Al6-Hf41-M029-Nb24 3.359 885.86 531.49 2436.12 1461.6 1360.6
Al8-V73-Nb5-W14 3.084 266.7 78.62 733.43 216.2 1087.8
Al15-V35-Ti20-Cr30 3.047 | 464.09 194.93 1276.25 536.06 1173.9
Al15-Mo5-Ti64-Crl6 3.19 260.4 89.66 716.1 246.56 1238.8
Al8-V34-Nb33-W25 3.177 | 462.38 205.31 1271.55 564.6 1279.7 980
Al6-V40-Nb29-Cr25 3.126 | 496.46 210.12 1365.27 577.83 1172.2
Al3-Mo05-Nb76-W16 3.272 132.65 33.14 364.79 91.14 1162.6
Al10-V20-W5-Cr65 2.947 285.23 110.18 784.4 303.0 1100.5
Al11-Cr26-V42-W21 3.036 320.36 124.68 881.0 342.87 1175.1
A17-Mo021-V56-W6 3.082 277.42 89.86 762.9 247.12 1074.0
Al31-V32-Nb27-W10 3.172 284.78 86.82 783.15 283.76 1112.3 1019
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