DEEP LEARNING AUGMENTED ASSESSMENT OF SKIN
PHOTODAMAGE INFORMED BY MULTIPLE DERMATOLOGISTS

by
Vladislav Gavril Matibag Marasigan

A Thesis
Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

c
0, Q{;’
,3/%-1—’%
o :5
~
@‘)&

Weldon School of Biomedical Engineering
West Lafayette, Indiana
May 2023



THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Young L. Kim, Chair
Weldon School of Biomedical Engineering

Dr. Yunjie Tong

Weldon School of Biomedical Engineering

Dr. Michael D. Zoltowski

Elmore Family School of Electrical and Computer Engineering

Approved by:

Dr. Tamara L. Kinzer-Ursem



Dedicated to my parents



ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Young Kim, who took me on as a master’s
student only last year despite having no research background as well as being a quarter way into
my professional master’s degree. He was very patient with me in making progress despite all the
pivots I’ve undergone and classes I’ve had to manage, whether I was the student or the teaching
assistant. | would also like to thank the research committee, both Dr. Michael D. Zoltowski and
Dr. Yunjie Tong for their willingness to participate in my defense and their guidance along my
graduate career. Additionally, I would like to thank my fellow lab members Sang Mok Park, Dr.
Jungwoo Leem, Semin Kweon, and Yuhyun Ji for their helpfulness and resourcefulness. Most
especially Yuhyun as he handled and guided me in determining metrics and methods in deep
learning despite such quick and short turnover times. Finally, | would like to thank my friends in
the Weldon School of Biomedical Engineering, Purdue Bells, Salt and Light Christian Fellowship,
and Kossuth Street Baptist Church, as well as my parents for their prayers and continued support
in my graduate career. I would not have accomplished this much in my graduate career if it weren’t

for the support and motivation of these people.



TABLE OF CONTENTS

LIST OF TABLES ...ttt sttt b ettt ne bt ne bt 6
LIST OF FIGURES ...ttt sttt e s e e e s e e e s nae e e snae e e nnaeeenneeean 7
ABBREVIATIONS ..ttt ettt e st e e et e e e st e e e snbe e e snbeeesnbeeesneeeans 8
Y 2 Y 29 O ISP 9
L. INTRODUCTION ...ttt ettt b e n et n b 10
2. MATERIALS AND METHODS ...ttt 13
2.1 IMAge COlIECTION ... .t 13
2.2 Dataset Organization and Validation .............cccccveviiiieiicie i 14
2.3 Network Description and Transfer Learning ..........ccccocvveieivieiieeiesiie s esie s se e see e 15
2.4 Image Preprocessing and Data AUGMENtAtiON ...........coeiereriienenineseeeeee e 15
2.5  Network ConfIQUIALIONS..........oiiiiiiiieiei et 17
TR =1 U I R 18
4, CONCLUSION. ...ttt bbb bbb e et b bbb nr e e b e 20
APPENDIX ...ttt ettt et R ettt ne et e et nne e 21
o L S 29



LIST OF TABLES

Table 1.1. FFPAS developed by McKenzie et al. [3]. Four dimensions are assessed using four
categories of severity of skin photodamage particular to patients with actinic keratosis.............. 12



LIST OF FIGURES

Figure 1.1. Scatterplot of variation for 15 different scores rated by 15 dermatologists from
110 forearm images. X-axis represents image number and Y-axis represents the standard
deviation of the 15 scores rated by the 15 dermatologists. Data was obtained from a clinical study
conducted in Wright State University Department of Dermatology. A standard deviation of 1 or
more indicates that more than half of the dermatologists do not agree in measurement of skin
(01 g g o= TP T RO PO T P PUR PP PR PRORPN 11

Figure 2.1. Examples of forearms with varying degrees of skin photodamage. Images collected
from Wright State University Department of Dermatology. (a) Example of forearm with low
severity of skin photodamage. (b) Example of forearm with medium severity of skin photodamage.
(c) Example of forearm with high severity of skin photodamage. ...........cccovveviiiiiiieieciesees 13

Figure 2.2. VGG-16 architecture adapted from Simonyan et al. [7]. Input takes a 224-by-224
sized RGB image. Conv(x)-(y) denotes the convolution filter, with x denoting the x-by-x size of
the filter applied to y-number of channels. Maxpool refers to the pooling layer. FC-z is the fully
connected layer applied to z-number of channels. Output layer uses a soft-max activation function.
....................................................................................................................................................... 15

Figure 2.3. Example output of MATLAB square segmentation algorithm. The algorithm first
rotates the original image to straighten out the arm, then crops the relevant portions of the forearm,
and finally creates a boundary mask of the arm. Square segments are generated and spaced in a
way that maximizes the amount of area covered in the forearm while maintaining consistent sizes
for each forearm sample. This example shows the right hand of the 11" subject. The expected file
name for the purple square is “1TR 3. ... 16

Figure 3.1 Confusion matrix comparison of models. Blue areas denote correct identification of
labels. Red areas denote misidentification of the labels. (a) Confusion matrix for neural network
model predictions. (b) Confusion matrix of dermatologist ratings. ..........ccccovveviiveiiieiecieseenns 19



ABBREVIATIONS

NMSC — non-melanoma skin cancer

UV — ultraviolet

BCC — basal cell carcinoma

SCC — squamous cell carcinoma

CNN — convolutional neural network

FFPAS — Dermatologic Assessment Form Forearm Photographic Assessment Scale
TP — true positive

TN — true negative

FP — false positive

FN — false negative



ABSTRACT

Non-melanoma skin cancers are primarily caused by ultraviolet radiation and affects a large
population of the United States. The only available tool to assess skin photodamage is the
McKenzie scale. However, the subjective and qualitative nature of this method leads to variability
and inconsistency among dermatologists. We propose applying a deep learning approach to
address this issue. 55 patients were assessed by 15 board-certified dermatologists rating the degree
of skin photodamage using the McKenzie scale. Using a pretrained convolutional neural network,
we train and test a model on labeled forearm images classified based on the severity of
photodamage. We employ image preprocessing and data augmentation to the dataset as well as
configure parameters and hyperparameters of the network architecture to obtain the optimal model
to predict the degree of photodamage on the skin. Cross validation is performed to ensure the
practical effectiveness of the model. Finally, performance of the neural network model is compared
to that of the dermatologist ratings to determine feasible application of this model. We envision
this as augmented technology for objective and reliable assessment of skin photodamage for

dermatologists.



1. INTRODUCTION

It is estimated that non-melanoma skin cancer (NMSC) affects close to 5.4 million persons in
the United States [1]. Ultraviolet (UV) radiation has the largest impact as a risk factor for skin
cancer, linked to two of the most common types of NMSC: basal cell carcinoma (BCC) and
squamous cell carcinoma (SCC) [2]. BCC and SCC occur on cosmetically sensitive areas such as
the face and ears, leading to additional affliction. The total cost of treating NMSC is $650 million
in the United States, yielding a heavy burden on the healthcare system in the United States. As
such, early detection and prevention of NMSC is vital in reducing costs and morbidity by accurate
and reliable assessment of skin photodamage skin damage.

To accurately diagnose skin photodamage to effectively treat patients, there is a need for a
consistent and reliable standard of measurement. This need has led to the development of an
assessment scale to measure the degree of photodamage of the skin using descriptive, visual, and
photographic grading scales [3]. However, relying on traditional methods such as visual inspection
or subjective grading scales can be time-consuming, costly, and invasive should they require skin
biopsies. These methods are also qualitative in nature and do not have clear quantitative markings
for measurement. As a result, there exists a substantial amount of disagreement and variability

amongst clinicians as shown in Figure 1.1 [4].

10



Variation in Clinician Evaluation

2.0
5 -
4515 °... . . . .-.... : ..-
3 .: ¢ 5. .. . «* e . . ® N .« ® . .a
§10 ¢ . "o...u.'.'O‘. '... ) '.’- .....:F o..
() . * A . . ..0 .
e .
j . . ., -
T05
wn

0.0

0 20 40 60 80 100

Image number

Figure 1.1. Scatterplot of variation for 15 different scores rated by 15 dermatologists from
110 forearm images. X-axis represents image number and Y-axis represents the standard
deviation of the 15 scores rated by the 15 dermatologists. Data was obtained from a clinical
study conducted in Wright State University Department of Dermatology. A standard deviation of
1 or more indicates that more than half of the dermatologists do not agree in measurement of
skin damage.

The advent of machine learning methods, specifically deep learning, marks potential for
quantitative ways for effective diagnoses in dermatology [5]. Convolutional neural networks
(CNN) have great potential in object detection and image classification. Studies have found that
CNNs have good performance in classifying dermatological diseases [6]. These methods can not
only improve accuracy but save time and reduce the burden of work for dermatologists.

This study investigates the performance of using deep learning methods to classify UV skin
photodamage to improve accuracy and effectiveness of assessment for better diagnosis and
treatment of skin diseases. 55 bilateral arm samples are used to assess the severity of photodamage
totaling 110 arm images. 15 board-certified dermatologists evaluated the arm samples using the
global assessment of the Dermatologic Assessment Form Forearm Photographic Assessment Scale
(FFPAS) across four criteria as shown in Table 1.1. Deep learning methods in this study are used
to obtain a more objective and reliable score for severity of skin photodamage by minimizing the

variability of the dermatologist scores.

11



Table 1.1. FFPAS developed by McKenzie et al. [3]. Four dimensions are assessed using four
categories of severity of skin photodamage particular to patients with actinic keratosis.

Clinical Sign Absent Moderate Severe

Fine wrinkling
Coarse wrinkling

Abnormal Pigmentation
Global

12



2. MATERIALS AND METHODS

2.1 Image Collection

In accordance with an institutional review board-approved protocol, a clinical study was
conducted on patients from clinics from Wright State University Department of Dermatology.
These patients were at least 35 years old, had fair skin (Fitzpatrick scale I or 1I), and had not used
a tanning bed or had significant exposure to the sun within six months of measurement. Examples

are shown in Figure 2.1.

Medium (M) A

Figure 2.1. Examples of forearms with varying degrees of skin photodamage. Images
collected from Wright State University Department of Dermatology. (a) Example of forearm
with low severity of skin photodamage. (b) Example of forearm with medium severity of skin
photodamage. (c) Example of forearm with high severity of skin photodamage.

The study recruited 55 subjects with varying degrees of skin photodamage. Bilateral
photographs of their forearms were taken for a total of 110 images. Clinical signs of UV skin
photodamage were assessed using the 10-point FFPAS by McKenzie that scores based on four
categories: fine wrinkling, coarse wrinkling, abnormal pigmentation, and a global assessment. 15
board-certified dermatologists, including 4 from academic and 11 from private practice

backgrounds who had a minimum of 5 years of post-residency experience, independently

13



evaluated each arm of the participants using this scale. They were trained by examples provided
by the McKenzie scale. Afterwards, the dermatologists individually, independently, and separately
evaluated each arm of the subject from a PowerPoint presentation of 110 forearms of the 55
subjects with an additional 20 forearm pictures duplicated to determine intra-rater reliability.
Dermatologists were given an unlimited amount of time to assess the samples with knowledge of
patient nor arm identification, clinical information, sources of photos. The dermatologists were
also not allowed to discuss their observations with each other. A total of 1,640 scores (110 images

x 15 dermatologists) were obtained across all samples.

2.2 Dataset Organization and Validation

An ensemble approach was utilized to categorize and organize dermatologist scores for each
bilateral forearm sample to represent the 15 observations of UV skin damage. First, the mode of
each sample amongst the dermatologist ratings was taken to represent the most frequent score of
the arms. This was done as scores of the dermatologists were inconsistent, and a reasonable
approach to determine the ground truth of the images was needed. Then, UV skin photodamage
was discretized into 3 categories: low, medium, and high. This was based on the McKenzie scale
classification: 0 is no actinic damage, 1-3 are low, 4-6 are moderate/medium, and 7-9 being
severe/high. Because there were very few data samples for no actinic damage (0), forearms
classified as such were reclassified as low.

Cross-validation is performed to determine how accurately the model will perform in
practice and prevent overfitting. This is done by splitting the data into training sets to be used in
training the model and testing sets to compare the model predictions to the actual data. The k-fold
approach is used, dividing the data into 11 subsets and performing the training and validation 11
times. The data was randomly partitioned into a 10:1 ratio of training and testing data. This was
done in such a way that each score classification group were partitioned proportionally to their
population and that at each data sample was included exactly once in a testing set among all the

folds. The 11 results for each fold are then averaged to determine the performance of the model.

14



2.3 Network Description and Transfer Learning

VGG-16 is a convolutional neural network used for object detection and image classification.
It is configured to a depth of 16 layers and has an image input size of 224-by-224 pixels [7]. Due
to a smaller working dataset, the transfer learning technique will be used. This involves using
networks already trained on a previous dataset, then applying the knowledge gained to perform a
different task [8]. This will improve the model by relying on a larger, pre-existing dataset and
applying the gained knowledge to a smaller dataset. Our pretrained model of VGG-16 comes from

MathWorks Deep Learning library. It is trained on the ImageNet database, containing over 14
million labeled images [9].

——

Q

o))

(40]

[— ——

m = X

0 00 — W W W __ NN NN [4v]

-y o o o - o w0 W o
5O 33888000 gHEngrns 8888 a £
o | mp teEci@icif@as B RSSS m | S5
c < SENEENEEENEEENSSSEEEE = e
— UUESEESBSESSSEUUU 08

(g ~——

<

[V

o~

p

Figure 2.2. VGG-16 architecture adapted from Simonyan et al. [7]. Input takes a 224-by-224
sized RGB image. Conv(x)-(y) denotes the convolution filter, with x denoting the x-by-x size of
the filter applied to y-number of channels. Maxpool refers to the pooling layer. FC-z is the fully
connected layer applied to z-number of channels. Output layer uses a soft-max activation
function.

2.4 Image Preprocessing and Data Augmentation

To train the pretrained network on the new dataset, images must be labeled and preprocessed to
the model’s requirements. Images in the dataset were taken with different resolutions under the
JPEG format but because VGG-16 only takes 224-by-224 size inputs, the images must be scaled.
Rather than scale every sample, 4 square segments of each forearm in the image (shown in Figure
2.3) were taken to increase sample size and decrease noise from outside objects in an image. This
was done by developing an automated segmentation algorithm in MATLAB. Afterwards, all

square segments are resized to 224-by-224 to match the input size. The preprocessed images are

15



then stored in a folder corresponding to their categorization (High, Medium, Low). This is done
for 11 iterations corresponding to each fold in the k-fold cross validation process, sifting them
based on training and testing data. As such, 11 folders for testing data and training data each
containing folders for each of their categorization are produced for a total of 22 folders. The

naming convention of each image is as follow: “<subject number><hand> <segment number>".

Original Image Segmented Image

Figure 2.3. Example output of MATLAB square segmentation algorithm. The algorithm first
rotates the original image to straighten out the arm, then crops the relevant portions of the
forearm, and finally creates a boundary mask of the arm. Square segments are generated and
spaced in a way that maximizes the amount of area covered in the forearm while maintaining
consistent sizes for each forearm sample. This example shows the right hand of the 11" subject.
The expected file name for the purple square is “11R_3”".

To improve performance, data augmentation techniques were used. This was done with the
following techniques:
1. Random Scale: Randomly scales the input image increasing or decreasing by 50%.
2. Random X-Reflection: Randomly flips the input image horizontally with a
probability of 0.5.

3. Random Y-Reflection: Randomly flips the input image vertically with a probability
of 0.5.

4. Random Rotation: Randomly rotates the input image by an angle between -45 to
45 degrees.

To ensure dataset consistency in model training, each set of segments are grouped together

in each fold in cross validation when partitioning the images into testing and training data.

16



2.5 Network Configurations

Configurations of the neural network were adjusted to improve performance and accuracy.
Mini batch size was set to 32 to improve generalization performance [10]. After testing and
iterating the model multiple times, a learn rate of 0.0001 was found to be most optimal. A
maximum of 64 epochs was chose to ensure the neural network converges after enough iterations.
The algorithm used to optimize training is a stochastic gradient descent with momentum. The
model was trained in MATLAB using the MATLAB Deep Learning Library running on an Intel
Core i9-10900X 3.7GHz CPU, single Nvidia GeForce RTX 3090 GPU, and 32 GB RAM. Once
the neural network has run, the model will classify images from the testing set and accuracy is
determined by calculating the percentage of correct identification by label per image. Because 4
images are produced for each subset of a sample, based on the dominating label classified in the
set of 4. If at least one of the images in the set is classified as medium in a set containing low labels
as well, the set is classified as medium. Likewise, if at least one square is labeled as high, the whole
entire set is labeled high. This is done because skin photodamage throughout a forearm is not
necessarily homogenous throughout an entire forearm. Certain parts of a forearm may exhibit
higher degrees of photodamage than other parts; however, dermatologists would label such a

sample based on the highest severity.

17



3. RESULTS

A 3-by-3 confusion matrix is used to evaluate the performance of the model. The matrix
details the performance of the model by comparing the predicted and actual labels from the testing
set of data. Generally, there are four elements to the confusion matrix: true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN). True positives and negatives
correspond to the correct classification of an existing or lack of a label. False positives and
negatives correspond to the incorrect classification of an existing or lack of a label. The 3-by-3
matrix contains 9 categories: 3 for each correct classification of each label and 6 for each
permutation of incorrect classification. Training and testing results from the 11 folds of cross
validation are used to create the confusion matrix for the neural network model while scores from
the 15 dermatologists were used for the dermatologist ratings. To quantify the performance of the
neural network model, the precision and recall of the model is calculated and compared to that of
the dermatologist ratings. Precision quantifies the number of correct predictions of a specific class

that belong to that specific class, calculated as,

Precision — TP (1)
recision =z

Recall quantifies the number of correct predictions of a specific class from all samples of

that specific class in a dataset, calculated as,

TP
- 2
Recall TP+ FN (2)

18



2 40 19.2% g 131 3 19.9%
) -
[72]
g e o £ € -
O = @ o 2 @
© 28 4 195% o h=l 125 87 257% o
L 9 o g e @
s = = = = =
K= =
-I@ 36 32 471% |52.9% :‘I‘—:" 30 120 20.0%
Precision Precision
36.5% 11.1% 18.8% 20.8% 42.9%
Low Medium  High Low Medium High
Predicted Class (a) Predicted Class (b)

Figure 3.1 Confusion matrix comparison of models. Blue areas denote correct identification of
labels. Red areas denote misidentification of the labels. (a) Confusion matrix for neural network
model predictions. (b) Confusion matrix of dermatologist ratings.

As shown in Figure 3.1, the neural network model improves on the dermatologist ratings
on precision of identifying low (85.7% vs. 81.2%) and high (88.9% vs. 57.1%) severities as well
as recall of low (80.8% vs. 80.1%) and medium (80.5% vs. 74.3%) severities; however, the neural
network model fails to improve in precision on identifying medium severities (63.5% vs. 79.2%)
and recall of high severities (47.1% vs. 80.0%).

19



4. CONCLUSION

This study used a total of 110 image samples of bilateral forearms from 55 patients to
determine the extent of photodamage from UV radiation. 15 dermatologists evaluated the images
using the Global Assessment Severity Scale to assess the clinical signs of UV photodamage. The
dermatologist ratings were grouped into low, medium, and high severities of photodamage, and a
model-based approach was used to estimate the accurate score for each bilateral forearm. Cross
validation through training and testing was done to determine the practical performance of the
model. The goal of the study was to reduce subjectivity and variability amongst dermatologist
assessment by using deep learning methods through MathWorks’ pretrained VGG-16 neural
network for image classification to obtain a less biased and objective score of the severity of

photodamage.

20



APPENDIX

The following code and functions are used to perform preprocessing methods and executing

the deep learning neural network.

Segmentation_v3 — segments forearm images into 4 square segments

clear

disp('select images folder')
selpath = uigetdir;

folder = dir(selpath);
disp('select save folder')
save_path = uigetdir;

f = input('Choose File number to start (3 or above, 3 starts at the beginning):');
for file num = f:1:112

disp(file_num)

image = imread(folder(file_num).name);

export_gen = erase(folder(file_num).name, '.JPG"); % deletes .jpg

export_gen = [export_gen ' '];

file_type = '.JPG';

% delete margins

black_row = find(image(:,1,1)<2 & image(:,1,2)<2 & image(:,1,3)<2); % get the
block bars margins

image(black_row,:,:) = [];

image(1:15,:,:) = []; % in case bar is glitchy

image(end-15:end,:,:) = []; % in case last bar is glitchy

imshow(image)
axis off

rotate_image = inc_rotate(image); % function to incrementally rotate image
imc = imcrop(rotate_image);
imc_ R = imc(:,:,1); % Red values have higher contrast

imc_R_i = imcomplement(imc_R); % inversion

BW = inc_tol(imc_R_i); % function to incrementally increase or decrease tolerance
for masking

imshow(BW)
dim = size(BW);
col = round(dim(2)/2)-90;

row = min(find(BW(:,co0l)));

boundary = bwtraceboundary(BW,[row, col], 'N');
N = 4; % square number

21




squares = create_squares(boundary,N); % (x,y)

imshow(imc)

hold on;
scatter(boundary(:,2),boundary(:,1), 'g', 'LineWidth',4);
axis on

% square creation

DL_size = 224; % vggl6 size, change according to NN

for x = 1:N
selection = squares(x).square;
x_range = min(selection(:,1)):max(selection(:,1));
y_range = min(selection(:,2)):max(selection(:,2));
im_sq = imc(y_range,x_range,:); % still flipped in image
im_sq = imresize(im_sq,[DL_size DL_size]); % resize for vggl6
plot(selection(:,1),selection(:,2), '-o', 'LineWidth',8);
axis off
% need to export images
im_export_name = [save_path '\' export_gen sprintf('%i',x) file_ type];
imwrite(im_sq,im_export_name)

end

pause

close

end

inc_rotate — function that incrementally rotates image by user input with goal to “straighten”

forearm to maximize square area

function rt_image = inc_rotate(image)
% incrementally rotates image based on user input

orientation = -1;
rotate_image = imrotate(image, orientation);

rotation = @; % track number of rotations
sw = 1;
rotation(1,sw) = rotation(1,sw) + orientation;

cont = [];
while isempty(cont)
rotate_image = imrotate(rotate_image,orientation);
rotation(1,sw) = rotation(l,sw) + orientation;
hold off
imshow(rotate_image)
hold on
yline(size(rotate_image,1)/2,'c")
axis on

cont = input('2: switch, 1: stop, else enter to cont: ');
if cont == 2

orientation = -orientation;

cont = [];

SW = sw + 1;

22




rotation(1,sw) = 0;

end
end
hold off
rt_image = imrotate(image, sum(rotation));
disp('....")
end

inc_tol — function that incrementally changes tolerance image by user input to obtain ideal

forearm mask

function BW_image = inc_tol(image)

tol = 0.5;
inc = 0.01; % increasing
cont = [];

while isempty(cont)
BW_image = im2bw(image,tol);
BW_image = imcomplement(BW_image);
imshow(BW_image)

axis on
cont = input('2: switch tol direction, 1: stop, 8: invert, enter to cont:');
if cont ==

inc = -inc;

cont = [];

elseif cont ==
image = imcomplement(image);
cont = [];

elseif cont ==
cont = 1;

end

tol = tol + inc;

end

end

create_squares — function that creates appropriately sized squares to maximize relevant area of

forearm

function sq = create_squares(boundary, N)
% boundary: based on produced boundary from bwtraceboundary
% N: number of squares (works best with 4 squares)

length_arm = max(boundary(:,2)) - min(boundary(:,2)); % expected x

out_of_bounds = 1;

iteration = 0;

while out_of_bounds
out_of_bounds = 0; % reset default
close

23




% create square

sq_len = length_arm/N - iteration; % side of square, decreasing in iteration,
(X,y)

x_b _mid = (length_arm/N - sq_len)/2; % x boundary mid points

% corners

ul corner = [1 sq_len];

ur_corner = [sq_len sqg_len];

11 corner = [1 1];

lr_corner = [sq_len 1];

sq_plot = [ul_corner; ur_corner; lr_corner; 11 corner; ul_corner]; % last
ul_corner to connect

floor(sq_len/2); % y midpoint of square
sq_y_mid; % x midpoint of square

sq_y_mid
sq_x_mid

new_b = boundary; % (y,x)

% delete sides
for a = 1:2 % 2 bounds
new_b x = new_b(:,2);
new_b y = new_b(:,1);
dup_x = new_b_x == mode(new_b_x);
new_b(dup_x,:) = []; % delete sides here
end

% separate top and bottom bounds using kmeans
idx = kmeans(new_b(:,1),2);

ki = [new_b((idx==1),2) new_b((idx==1),1)];
k2 = [new_b((idx==2),2) new_b((idx==2),1)];

% check which becomes top or bot (note switch to x,y)
if mean(k1l) > mean(k2)

top_b = ki;

bot_b = k2;
else

bot_b = ki1;

top_b = k2;

end

it_ch = @; % initialize change in iteration
1

for s = 1:N
if s ==1
add_len = x_b_mid + sq_len/2;
else
add_len = add_len + 2*x_b _mid + sq_len;
end

half_len = add_len - sq_len/2;

% segment area into slices based on number of squares

slice_top = top_b(:,1) >= (s + half_len) & top_b(:,1) < (sq_len + half_len);
slice_bot = bot_b(:,1) >= (s + half_len) & bot_b(:,1) < (sq_len + half_len);
xline(s + half_len)

xline(sq_len + half_len)

top_b_min
bot_b_max

min(top_b(slice_top,2));
max (bot_b(slice_bot,2));

24




top_bot_range = top_b_min - bot_b_max;

y_b mid = floor((top_bot_range)/2 + bot_b_max); % mid point of y boundary

area
sq_y = floor(sq_plot(:,2) + (y_b_mid - sq_y mid)); % adjusted y values
sq_x = floor(sq_plot(:,1) + add_len - sq_len/2);
new_sq = [sq_x sq_yl; % (x,y)
if top_bot_range < sq_len % if any instance of square is bigger than slice
out_of_bounds = 1;
if top_bot_range > it_ch
it_ch = sq_len - top_bot_range;
end
end
sq(s).square = new_sq;
end

iteration = iteration + it_ch; % adjust length of square that maximizes area of
the square while maintaining consistent square size
end

move_files — moves segmented images and partitions them into categorized folders based on label

disp('select images folder")
selpath = uigetdir;

folder = dir(selpath);
disp('select save folder')

save_path_1 = uigetdir;
save_path_2 = uigetdir;
save_path_3 = uigetdir;

T = readtable('GT and Cross validation copy.xlsx','Range','A2:C112");
hand = T.Hand;

hand = string(hand);

sub = T.Subject;

res = T.ModeGT;

p = length(hand);
i=1;

for x = 3:442
fn = folder(x).name;
ff = folder(x).folder;
export_name = [ff '"\' fn];
hand_ind = find(fn == 'L' | fn == 'R");
hand_mode = fn(hand_ind);
sub_num = str2num(fn(1:hand_ind-1));
T_ind = find(hand == hand_mode & sub == sub_num);
mode = res(T_ind);

if mode ==
movefile(export_name,save_path_1)
elseif mode == 2

movefile(export_name,save_path_2)

25




elseif mode == 3
movefile(export_name,save_path_3)
end
i=1+
if i ==
i

B

(I N

end
end

rename_files — Renames segments to appropriate naming convention

disp('select images folder')
selpath = uigetdir;

folder = dir(selpath);
disp('select save folder')
save_path = uigetdir;

for x = 3:442

fn = folder(x).name;

image = imread(fn);

fn(end-3:end) = []; % delete .JPG

new_name = fn;

if fn(1) == 'A’
new_name = erase(fn, 'A.I. '); % delete A.I.
hand_ind = find(new_name=='a'|new_name=='b");
new_name(3:hand_ind-1) = [];

else
% delete characters before sub number
space = max(find(new_name==" "));
new_name(1l:space) = [];

end

if new_name(end-2) == 'b'
new_name(end-2) = 'R';

elseif new_name(end-2) == 'a’
new_name(end-2) = 'L’';

end
new_name = [save_path '\' new_name '.JPG'];
imwrite(image, new_name)

end

pdnn — neural network script to initiate training and exports prediction and testing data.

test fold = categorical([]);
pred fold 1 = categorical([]);

%% separate dataset to testing and training (make sure kfolder is open)
for x = 1:11

i =1; % iteration

train name = sprintf('training %i',x);
test name = sprintf('testing %i',x);
inputSize = [224 224];

26




trainingImages = imageDatastore(train name,
'IncludeSubfolders', true,
'LabelSource', 'foldernames') ;

[

% augment data

augmenter = imageDataAugmenter (...
'RandScale', [0.5 2],
'RandXReflection', true,
'RandYReflection', true,
'RandRotation', [-45 45]);

trainingImagesAug = augmentedImageDatastore ([inputSize
3],trainingImages, 'DataAugmentation’', augmenter) ;

[

% test images

testImages = imageDatastore(test name,
'IncludeSubfolders', true,
'LabelSource', 'foldernames') ;

o)

% trainingImages.ReadFcn = @(loc)imresize (imread(loc), inputSize);
testImages.ReadFcn = @ (loc)imresize (imread(loc),inputSize);

%% pretrained neural network
net = vgglé6;
layers = net.lLayers;

oe

% Modify to use 3 categories
layers (39) = fullyConnectedLayer (3);
layers (41l) = classificationlayer;

%% retrain network

opts = trainingOptions('sgdm', 'InitiallLearnRate',
0.0001, "MaxEpochs',32, '"MiniBatchSize', 64);
myNet = trainNetwork (trainingImagesAug, layers, opts);

%% Output for classification
% first method -> normal accuracy check
predictedLabels = classify (myNet, testImages);

test fold(:,x) = testImages.Labels;
pred fold 1(:,x) = predictedLabels;

end

filename = sprintf('aug mat %i.mat',i);

save (filename, 'pred fold 1', 'test fold')
i=1i+1;

accuracy_check _v3 —to be executed after running pdnn; calculates the accuracy and produces

confusion matrix based on results of neural network

%% accuracy checking

for x = 1:11
set = categorical([]);
method = categorical ([]):;

27




L = length(pred fold 1);
for y = 0:(L/4)-1
set = pred fold 1((1+4*y): (4+4*y),x);

if any(set == 'High')
method ((1+4*y) : (4+4*y)) = 'High';
elseif any(set == 'Medium')
method ( (1+4*y) : (4+4*y)) = 'Medium';
else
method ( (1+4*y) : (4+4*y)) = 'Low';
end
end
accuracy = mean (method' == test fold(:,x));
pred fold 2(:,x) = method';
acc_fold(x) = accuracy;
end
avg_acc = mean(acc_fold);
test ¢ = test fold(:);
pred c2 = pred fold 2(:);
[c2,02] = confusionmat (pred c2,test c, 'order',6 {'Low', 'Medium', "High'});

figure ('Renderer', 'painters', 'Position', [10 10 900 9001);
cm?2 = confusionchart (c2, 02);

cm?2 .NormalizedValues;

cm?2.RowSummary = 'row-normalized';

cm?2.ColumnSummary = 'column-normalized';

28




[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

REFERENCES

H. W. Rogers, M. A. Weinstock, S. R. Feldman, and B. M. Coldiron, “Incidence Estimate
of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012,”
JAMA Dermatol, wvol. 151, no. 10, pp. 1081-1086, Oct. 2015, doi:
10.1001//JAMADERMATOL.2015.1187.

J. D’Orazio, S. Jarrett, A. Amaro-Ortiz, and T. Scott, “UV Radiation and the Skin,” Int J
Mol Sci, vol. 14, no. 6, p. 12222, 2013, doi: 10.3390/1JMS140612222.

N. E. McKenzie, K. Saboda, L. D. Duckett, R. Goldman, C. Hu, and C. N. Curiel-
Lewandrowski, “Development of a photographic scale for consistency and guidance in
dermatologic assessment of forearm sun damage,” Arch Dermatol, vol. 147, no. 1, pp. 31—
36, Jan. 2011, doi: 10.1001/ARCHDERMATOL.2010.392.

B. Schmeusser et al., “Inter- and Intra-physician variation in quantifying actinic keratosis
skin photodamage,” J Clin Investig Dermatol, vol. 8, no. 2, pp. 1-4, Dec. 2020, doi:
10.13188/2373-1044.1000065.

S. Chan, V. Reddy, B. Myers, Q. Thibodeaux, N. Brownstone, and W. Liao, “Machine
Learning in Dermatology: Current Applications, Opportunities, and Limitations,” Dermatol
Ther (Heidelb), vol. 10, no. 3, pp. 365-386, Jun. 2020, doi: 10.1007/S13555-020-00372-
O0/FIGURES/3.

A. K. Sah, S. Bhusal, S. Amatya, M. Mainali, and S. Shakya, “Dermatological Diseases
Classification using Image Processing and Deep Neural Network,” Proceedings - 2019
International Conference on Computing, Communication, and Intelligent Systems, ICCCIS
2019, vol. 2019-January, pp. 381-386, Oct. 2019, doi:
10.1109/1CCCIS48478.2019.8974487.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale
Image Recognition,” 3rd International Conference on Learning Representations, ICLR
2015 - Conference Track Proceedings, Sep. 2014, Accessed: Apr. 10, 2023. [Online].
Available: https://arxiv.org/abs/1409.1556v6

F. Zhuang et al., “A Comprehensive Survey on Transfer Learning,” Proceedings of the
IEEE, vol. 109, no. 1, pp. 43-76, Jan. 2021, doi: 10.1109/JPROC.2020.3004555.
“ImageNet.” https://image-net.org/ (accessed Apr. 16, 2023).

29



[10] D. Masters and C. Luschi, “Revisiting Small Batch Training for Deep Neural Networks,”
Apr. 2018, Accessed: Apr. 16, 2023. [Online]. Available:
https://arxiv.org/abs/1804.07612v1

30



