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ABSTRACT

Content generation in virtual environments is becoming increasingly important with the rise
of virtual and augmented reality technologies and growing demand for immersive experiences.
This raises a problem of efficient content generation to meet with higher requirements for both the
quantity and quality of the contents that could be used inside virtual environments. This
dissertation explored the possibilities of formulating design problems as computational problems
based on optimization theory in different scenarios, and explored what can be viable application
cases, as well as what can be viable cost terms for each application case based on the theory. In
total four application scenarios are included. The optimization theory used in this dissertation is
the Markov chain Monte Carlo optimization method called “simulated annealing”. By doing this
we can transform a design problem to a computation problem and use computational methods to
quickly solve the problem and generate content.

This dissertation contains the papers published by the author during her Ph.D. Each
published article included in this dissertation deals with a specific application case based on
optimization theory.

The author investigated four distinct application cases. The first case centered on the
synthesis of drills for virtual reality racket sports. The second case focused on designing virtual
reality game level layouts, based on the layout of a real-world environment. The third case
explored collaborative gameplay design, with the aim of synthesizing game levels that require a
predetermined degree of collaboration between two players to complete. The aim of the fourth
application case was to create virtual reality fire evacuation training drills that could be used for
training purposes in simulated environments. Different cost terms are proposed based on different

application cases to synthesize contents that align with the design intent.

Keywords: Generative Design, Virtual Reality, Procedural Content Generation, Optimization

Techniques
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INTRODUCTION

Introduction of Dissertation Research

Extended reality technologies develop at a high speed. Multiple research reports have shown
investors have a highly optimistic attitude about the market of extended reality technologies. For
example, the worldwide virtual reality market size was valued at USD 35.0 billion in the year 2023,
with an anticipated compound annual growth rate (CAGR) of 13.8% expected from 2023 to 2030
[1]. The global augmented reality market was expected to grow at a compound annual growth rate
(CAGR) of 40.9% from 2022 to 2030 and reach a market size of USD 597.54 billion by 2030 [2].
The emergence of new technologies such as virtual reality (VR) and augmented reality (AR) has
had a significant impact on traditional content creation pipelines. These technologies offer new
possibilities for creating immersive and interactive experiences, but they also present new
challenges for content creators.

At the 2005 Game Developers Conference, Will Wright, a renowned game designer known
for creating games such as Sim City, discussed the challenges that game developers face when
creating content [3]. He referred to this challenge as the "Mountain of Content Problem,” which
refers to the difficulty in creating enough content within a limited amount of time while also
keeping costs under control. Game developers face pressure to produce a sufficient amount of
content that is engaging, enjoyable, and challenging for players, while at the same time also
maintaining a reasonable price for their target audience. Moreover, with the rapidly evolving
hardware devices and software tools, game developers must continuously adapt and learn new
technologies to provide their customers with the best experience possible. However, the traditional
content creation process is usually tedious, time-consuming, and labor-intensive, requires lots of
manual work, the process of modification and adjustment is also complicated. According to data
from VENNGAGE! blog [4], 36.7% of the participants reported one of the primary challenges
faced by marketers is consistently creating engaging visual content. Marketers were asked to rate
the difficulty level of producing visual content continuously on a scale of 1-10, 76.6% of marketers

rated five or higher.

! https://venngage.com/
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One of the existing research branches that focus on dealing with this problem is procedural
content generation (PCG) [5]. Refers to methods that can procedurally generate virtual contents
by computer programs. The content includes but is not limited to maps, levels, terrains, plants,
gameplay, and game objects such as rocks, enemies, traps, etc. [6]. A recent research study
indicates that the integration of PCG has the potential to enhance city-building games experience
without substantially compromising players' ability to express their creativity [7]. Another similar
research branch that has been gaining significant attention from society beyond the computer
science community is Al-generated content (AIGC) [8], content generation products such as
ChatGPT [9] and DALL-E [10] demonstrated their potential to revolutionize the way of content
creation.

One of the most widely used approaches among PCG methods is optimization [11]. The
general formulation process of optimization is to first formalize a mathematic model, also referred
to as an objective function, taking several design aspects into consideration, encode those design
considerations into the objective function, called cost terms. Then, a design problem can be
transformed into a computational design problem which can be solved using mathematical
methods [11].

This dissertation explored the possibilities of formulating design problems as computational
problems based on optimization theory in different scenarios in virtual environments, and explored
what can be viable application cases, as well as what can be viable cost terms for each application
case based on the theory. In total four application scenarios are included. Each application case is
described in detail in a published paper included as one chapter in this dissertation. The simulated
annealing optimization algorithm based on Markov Chain Monte Carlo (MCMC) was applied as
a common method for all the explored scenarios and was used to automatically synthesize contents
in virtual environments.

Simulated annealing is a widely used random search optimization algorithm developed by
the inspiration of metal thermal processing technology, first proposed in 1953 [12], and then was
applied to combinatorial optimization [13]. The algorithm has been widely used in engineering to
solve nondeterministic polynomial (NP) time complexity problems and to overcome limitations of
local minimum in optimization process and initial value dependence. The idea is derived from the
annealing process of heating a solid to a temperature high enough so that the molecules are

randomly arranged, then gradually cooling them down, and finally the molecules are arranged in
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a low-energy state to reach a stable state. More details about the algorithm theory and
implementation please refer to [14]. While genetic algorithm is a random search algorithm based
on the theory of natural selection and heredity, which combines the survival of the fittest in the
process of biological evolution with the random exchange mechanism of chromosomes in the
population [15]. Many basic concepts like evolution, locus and allele are derived from Charles
Darwin’s theory of evolution.

For more details regarding the MCMC simulated annealing and how the framework was
applied in each explored scenario, please refer to the published articles included in Chapter 1, 2, 3
and 4.

Overview of Purpose

The purpose of this dissertation was to explore ways to formulate computational design
problems based on the theory of MCMC optimization, to explore the possibilities of formulating
design problems into a generalized optimization-based framework which could be solved easily
using computational methods to help generate virtual contents. The aim was to explore ways to
simplify the content creation process. The framework could encode designer’s design
considerations inside as cost terms then transform the design problem to computational problem
which can be solved mathematically. The definition of the cost terms was different from scenario
to scenario, and all that designer needs to consider was how to combine specific scenario domain
knowledge to define cost terms to successfully generate the objective scenario.

Four application scenarios were explored in this dissertation, each one was supported by a
published article of the author which was included as individual chapter of the dissertation in
Chapter 1, 2, 3, and 4.

Significance of Research

Formulating design problem into computational design problems based on optimization

make sense in following aspects:
1. It can help simplify the design process by automating certain aspects of design and
reducing the time and effort required to manually search for optimal solutions, reducing

the budget for content creation companies [16].
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2. The design space can be more systematically explored to generate a large number of
design alternatives, which can lead to better quality solutions.

3. Optimization-based computation design approaches offer a systematic and efficient
framework for addressing complex design problems that involve numerous criteria or
constraints.

4. 1t allows the designer to control the generated results according to her/his intents with
minimal effort. This flexibility can increase the reusability of the generated contents and
provide space for creativity.

Research Questions

Research questions addressed overall

This dissertation focused on generalizing scenario design problems based on optimization to
support content generation in virtual environments. The author’s previously published papers were
included, each showed a different scenario design case. All the cases were based on the framework
of MCMC optimization called “simulated annealing”.

The research questions in this dissertation were summarized as below:

RQL. Is it possible to formulate design problems based on optimization theory?

RQ2. What can be suitable/viable application cases based on the theory?

RQ3. What can be suitable/viable cost terms for each application case based on the theory?

All the design considerations were encoded as cost terms. A brief introduction of each design
scenario and the discussion about the included cost terms were included below. For more details
about the optimization theory and explanation for cost terms, please refer to the published papers

included.

Research questions addressed in each published article

As described above, each published article demonstrated an application scenario in which a
design problem was successfully formulated as a computational design problem based on
optimization theory. The resulting synthesis was successful, producing different synthesized

results based on different target cost input values and weights according to the theory, which is a
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positive answer to RQ1. The synthesized result could trigger statistically significant differences in
human behavior. This allowed designers to have a certain degree of control over the synthesized
result, which served as a demonstration of the validity of the formulation and answered RQ2.
Different customized cost terms related to specific domain knowledge based on the explored four

particular scenarios were explored and discussed in detail in each article, which answered RQ3.

Application Casel --- Virtual Reality Racket Sports: Virtual Drills for Exercise and Training

In this case, the design of virtual reality racket sports drills was formulated as an optimization
problem. The goal was to synthesize drills for racket sports such as table tennis, tennis, badminton,
and so on. The domain knowledge applied in this scenario was the factors or parameters that could
affect the training/exercise intensity of the synthesized drill. By defining cost terms that were
related to the gameplay and mechanics of the game and allowing user to control the parameters of
the cost terms, user could easily adjust the objectives and intensity levels of the exercise drills. The
synthesized results could be used for the purpose of training or exercise, and the effectiveness of
the method was demonstrated by two studies. The first study investigated the potential usefulness
of the developed virtual reality gaming application as an exercise tool by comparing its workout
effectiveness at three intensity levels (low, medium, and high) through the collection of heart rate
readings. The second study explored the potential utility of the virtual reality gaming application
as a training tool by exploring whether there was any improvement in participants’ performance
across the three conditions (no training, virtual reality training, and real-world training). The
results indicate that a virtual reality gaming application, such as the examined virtual reality table
tennis exergame, could indeed be used effectively as both an exercise and a training tool. For more
details, please refer to [17], which is also included in the Chapter 1 Published Article #1: Virtual
Reality Racket Sports: Virtual Drills for Exercise and Training in this dissertation.

Discussion of how the paper address the research questions

First, the successfully synthesized result with certain degree of controllability to allow
designer to change the synthesized result by changing the inputs of target values for cost terms and
weights was a positive answer to RQL1 in the design of virtual reality racket sport scenario. Then,

the resulting changes on human behavior were demonstrated as significant in user study
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experiments, which was a valid proof showing the virtual reality racket sport design scenario was
a suitable case to be formulated as optimization problem and could be solved procedurally, which
answered RQ2.

The cost terms that contain specific domain knowledge considered in this case included shot
term cost and prior cost. The shot term cost included considerations for distance, speed, and
frequency for the generated shots, intended at controlling the training/exercise intensity of the
synthesized drill. While the prior cost terms were developed to control some of the features of the
gameplay before the user started to play. Various prior cost terms could have been employed,
depending on the specific design requirements of an exercise. However, in this case, with racket
sports domain knowledge applied, the prior cost terms that were explored were duration, variation,

and court side. The exploration of the cost terms answered RQ3.

Application Case2 --- Virtual Reality Game Level Layout Design for Real Environment
Constraints

In this case, the virtual reality environment's design was formulated as an optimization
problem. The aim was to explore possible ways to integrate reality information, such as physical
spatial constraints, into the optimization-based computational design framework to generate a
virtual environment layout that aligned with the reality environment layout. It enabled realistic
interaction with virtual environments as well as enhanced safety considerations for the generated
results. The domain knowledge applied in this case was the physical environment layout
information. Users first calibrated the environment layout manually using the Oculus Quest device
set, and then the real environment's information was used as input for the target values for the cost
terms in the formulated optimization problem. To evaluate the proposed method, a user study was
conducted. The results indicated that the proposed method enhanced the levels of presence and
involvement of participants in the virtual environment, and reduced the fear of collision with the
real environment and its constraints. For more details, please refer to [18], which is included in
Chapter 2 Published Article #2: Virtual Reality Game Level Layout Design for Real Environment

Constraints" in this dissertation.
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Discussion of how the paper address the research questions

Firstly, the accomplished synthesized virtual environment that integrated reality
environment considerations was a positive answer to RQ1 in virtual environment design scenario.
Secondly, the user study was conducted under Optimization, No Optimization and No Obstacles
conditions. In the Optimization condition, the layout of the real environment and its obstacles were
captured and used to automatically generate a game level layout with virtual obstacles in the exact
positions of the real obstacles. In the No Optimization condition, the real environment obstacles
were moved to different positions to create a mismatch between the real and virtual environments.
The No Obstacles condition was a baseline condition where there are no obstacles present in the
real environment, and the game level layout was the same as in the other conditions, with boundary
game level chunks and obstacle chunks in their initial positions. The result of the user study
showed participants did experience higher level of presence and involvement and experience less
collisions during the process. This provided an answer to RQ2 as it showed the virtual reality
environment design could be a suitable case to be formulated into a computational optimization
design problem.

The virtual environment was represented as an assembly of chunks, the layout design
decisions considered as cost terms included mapping cost, fitting cost, variations cost, and
accessibility cost in a total cost function. The exploration for the cost terms answered RQ3 in this

scenario.

Application Case3 --- Synthesizing Game Levels for Collaborative Gameplay In a shared
virtual environment

In this case, the collaborative gameplay design was formulated as an optimization problem.
In the case of designing collaborative gameplays in games and VR applications, the tasks requiring
users to collaborate, and the degree of collaboration required to accomplish a given task are usually
manually built or programmed by the game’s designers, which is a tedious and time-consuming
process. However, “Collaboration” is an elusive term with various definitions, designing for a
collaboration task is usually an iterative process with a lot of experience-and-test manual
adjustment resulting in low efficiency. The goal in this case was to overcome this issue. The
proposed pipeline could automatically characterize the degree of collaboration of game level

chunks and synthesize game levels with designer-defined degrees of collaboration targets.
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Al calibrated domain knowledge regarding collaboration was first explored based on context
information. Since there is no common definition for collaboration and the definition for
collaboration usually depends on specific scenarios, fifteen collaborative game levels were
designed at a preliminary stage. Then, the collaboration zone for each level was specified manually
by the research team. The idea was adopted from [21], in which various patterns that enforce
collaboration between players were described. Next, the collaboration degree for each game level
was calibrated by pre-programmed behavior tree driven Al agents. Then, the calibrated
collaboration degree for each pre-designed collaborative game level was used as domain
knowledge to formulate the collaborative gameplay design problem into an optimization problem.
As aresult, a game level designer can request game levels with different degrees of collaboration.
The designer can later edit the synthesized game level if needed, automating the whole process
and minimizing the time required to design the game levels. For more details, please refer to [19],
which was included in Chapter 3 Published Article #3: Synthesizing Game Levels for

Collaborative Gameplay In a shared virtual environment in this dissertation.

Discussion of how the paper address the research questions

The proposed method was divided into three parts. First, a game level designer was
responsible for designing playable game level chunks. Second, artificial intelligence (Al) virtual
agents were implemented to play the game level chunks. Data was collected from these agents and
was used to characterize the degree of collaboration of each game level chunk. Third, by
developing cost terms that encode various design decisions, the method can automatically
synthesize a game level that fulfills all designer-specified design decisions.

To begin with, the achieved synthesized collaborative gameplay that integrated context-
dependent collaboration degree considerations was a positive answer to RQ1. The formulation of
the collaborative gameplay design problem to an optimization problem allowed the proposed
system to synthesize several variations of game levels that satisfy the designer-defined parameters
in a few seconds. Next, user study was conducted under synthesized Low collaboration degree,
Medium collaboration degree and High collaboration degree collaborative gameplay levels. The
result showed that the different degree of collaboration targets of the synthesized game level
impacted the way the participants collaborated in the gaming application, which demonstrated that

it is suitable and viable to formulate the collaborative gameplay design problem to an optimization
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problem as an answer to RQ2. Then, the cost terms considered included collaboration costs and
prior costs. The collaboration costs included considerations for Mean Degree of Collaboration,
Variation in the Degree of Collaboration, and Degree of Collaboration Progress, aiming at
providing certain level of controllability to the collaboration related features of the synthesized
result. The prior costs that were explored were synthesized chunk total number size cost as well

as adjacent repetition cost. The exploration of the cost terms answers RQ3.

Application Case4 --- Synthesizing Shared Space Virtual Reality Fire Evacuation Training
Drills

In this case, the focused scenario was the fire evacuation training drill, which was formulated
to be an optimization problem like the three cases described above. The aim was to synthesize VR
fire evacuation training drills in a shared virtual space to explore the participants’ collaboration
behavior. The proposed optimization-based method can be used to automatically generate fire
evacuation training drills with varying levels of difficulty. The users’ assigned task was to help
virtual agents evacuate the building as quickly as possible using predefined interaction
mechanisms (voice commands, trigger fire extinguisher, physical locomotion, etc.). The
participants can join the training drill from different locations and collaborate and communicate in
a shared virtual space to accomplish the task. The proposed VR training drill authoring method
was evaluated by a user study conducted among three synthesized training drills with different
difficulty levels: low difficulty (LD), medium difficulty (MD), and high difficulty (HD). Both in-
game measurements and subjective ratings were collected to explore how the participants
collaborate in such a VR setup. For more details, please refer to [20], which was also included in
Chapter 4 Published Article #4: Synthesizing Shared Space Virtual Reality Fire Evacuation

Training Drills in this dissertation.

Discussion of how the paper address the research questions

First, the attained synthesized result of fire evacuation training drills of varying level of
difficulty was a positive answer to RQ1. Then, user studies were conducted to evaluate difference
of participants’ collaboration behavior under synthesized drills with different level of difficulty,
and the results showed that the degree of collaboration targets of the synthesized game level
impacted the way the participants collaborated in the gaming application. This showed that it is
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viable to formulate the design of fire evacuation training drill into an optimization problem as an
answer to RQ2. Finally, the domain knowledge applied in this case was the parameters that affect
the difficulty level of the generated fire evacuation training drill. The cost terms that are considered
here include Length cost, Turn cost, Fire cost and Visibility cost. The exploration for the cost terms

answers RQ3.
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Abstract

We have developed a modular virtual reality gaming application that can be used to
synthesize exercise drills for racket sports. By defining cost terms that are related to the gameplay
and the mechanics of the game, as well as by allowing a user to control the parameters of the cost
terms, users can easily adjust the objectives and the intensity levels of the exercise drills. Based on
the user-defined exercise objectives, a Markov chain Monte Carlo optimization method called
“simulated annealing” was used to optimize the exercise drill. The effectiveness of the developed
virtual reality gaming application was measured in two studies by using virtual reality table tennis
as the evaluation tool. The first study investigated the potential usefulness of the developed virtual
reality gaming application as an exercise tool by comparing its workout effectiveness at three
intensity levels (low, medium, and high) through the collection of heart rate readings. The second
study explored the potential utility of the virtual reality gaming application as a training tool by
exploring whether there was any improvement in participants’ performance across the three
conditions (no training, virtual reality training, and real-world training). The results indicate that a
virtual reality gaming application, such as the examined virtual reality table tennis exergame, could
indeed be used effectively as both an exercise and a training tool. Limitations and future research

directions are discussed further below.

1.1 Introduction

Virtual reality has proven to be an excellent tool not only for entertainment purposes, but
also for several other applications such as training [26][28][37][52], rehabilitation [33][61][83],
human behavior exploration [41][60][63], and visualization [1][20]. The use of virtual reality in
these domains allows the user to observe and interact with the provided content in a highly
immersive environment while also being entertained [31][54]. With the widespread popularity of
virtual reality devices and peripheral equipment, several real-world experiences can be converted
into virtual ones and brought into one’s own living room. The use of virtual reality for exercise
purposes can even have real-world benefits for some users. Specifically, by playing and
simultaneously exercising, users can improve their physical health and fitness while being
entertained [6][18][65].
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Since quite a few people are interested in racket sports-related games? (e.g., table tennis,
tennis, badminton, etc.), we decided to develop a modular virtual reality gaming application that
can be used for exercise and training purposes by racket sports enthusiasts, focusing mainly on
table tennis, badminton, and mini tennis. While the potential of virtual reality gaming applications
for exercise and training is appealing, designing exercise drills may become tedious for the user,
as the parameters have all been pre-set by the developer. Bearing this in mind, the virtual reality
gaming application presented in this paper allows users to customize exercise drills, as our system
is able to automatically optimize an exercise based on user-specified objectives.

The developed application was inspired by previous research on procedural content
generation for exergames [45][86][87] and virtual reality applications related to racket sports
[10][55][57][75]. Our approach took into account several parameters related to racket sports games
and represented these parameters as cost terms to a total cost function. Next, an optimization-based
approach was used to synthesize the racket sport drill. By formulating the design of the racket
sport drills as an optimization problem, in a few seconds, several exercise drills could be generated
by our system which is designed to maintain a balance among different design schemes while
ensuring the necessary variability between different generated drills. This variability is important
for keeping the user engaged. As shown in Figure 1 and the accompanying video, our approach

can be applied to different types of racket sports.

Figure 1: Our approach can optimize virtual reality exercise and training drills for different
racket sports with minimal effort from the user. From left to right: table tennis, badminton, and
mini tennis. © [2020] IEEE

The focus of the paper is twofold: (1) develop an algorithm for automatically synthesizing
exercise and training drills for racket sports, and (2) evaluate the impact of the synthesized exercise
and training drills on human performance. The effectiveness of the developed application and the

ability of our algorithm to efficiently synthesize exercise and training drills had to be evaluated,

2 https://www.worldatlas.com/articles/what-are-the-most-popular-sportsin-the-world.html

27



so two user studies were conducted to determine our method’s potential for use as an exercise and
training tool. The results indicate that this type of virtual reality application can indeed be used for
both exercise and training purposes. However, aside from the advantages of exercising in virtual
reality, there are also some limitations that should be taken into account by the research community,
something that may spur the development of additional advanced virtual reality interfaces
applicable to exercising and training in virtual reality racket sports.

The remainder of this paper is organized as follows. Related works are presented in Section
1.2. The methodology and implementation details are presented in Section 1.3. The first user study
and results are presented in Section 1.4, and the second user study and results are presented in
Section 1.5. Various limitations are presented in Section 1.6. Finally, the conclusions and potential

for future research are addressed in Section 1.7.

1.2 Related Work

Because traditional video games are generally associated with reduced energy expenditure
on part of the players due to decreased physical activity [43], strategies that allow players to
entertain themselves while also increasing physical activity have also been explored [27][35][50].
In response to the difficulty of developing effective strategies to promote physical activity [69], a
category of games called exergaming [80][84], or active video games [8], has been developed to
incorporate virtual reality technologies into video games. Generally, exergames allow players to
perform various exercise activities from the comfort of their living rooms. Such games require
physical output as a means of interaction and engagement with the game. Aside from the capacity
of such games to be used for exercise and fun, exergames are also considered a credible alternative
to conventional training. This has made it possible for exergames to be used in sports training
[13][36], breathing training for increasing lung capacity [67], balance enhancement [44], weight
control [82], and motor training [77].

The idea of using exergames to improve the health of users has been increasingly promoted
by the research, development, and health/medical communities [68][73]. When comparing non-
exergames with exergames, studies have indicated that the latter increase user enjoyment and
intrinsic motivation levels [4][5][22][58][78]. So far, studies have validated the positive health
effects of exergames [18][46] on weight loss in adolescents and adults [6][82], and on improved

balance- and movement-related physical performance in the elderly [65][85]. Moreover, it has
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been found that physical activity has positive effects on cognitive and also physical functions
[15][16][25][53][64][76]. A notable example of the above is the collaboration between West
Virginia high schools and the KONAMI gaming company, through which the arcade dance-based
video game “Dance Dance Revolution™ was included in the high school curriculum as a way to
tackle youth obesity.*

When developing exercise games, an important factor a developer needs to take into
account is the degree of physical exercise that is required by the user [66], since, according to a
prior study, players derive more enjoyment from games that are neither too difficult nor too easy
[81]. Though it is important to define physical exercise goals, when developing commercial games,
customarily it is the developers who manually set these goals [23][32]. Thus, a challenge arises
for developers to design an exercise gaming experience that can be used efficiently by users of
varying ages and fitness levels. Fitts’ law [48] and precision of difficulty [49] can be employed so
that exercise parameters can be controlled by users. In the current implementation, we considered
several parameters related to racket sports and ultimately provided users with control over the
output of their exercise drills. To automate the exercise or training drill synthesis process,
procedural techniques can be efficiently applied [14]. Such procedural techniques allow the
development of fast and scalable designs while variations across design outputs are also ensured.
Note that such techniques have already been successfully implemented in various games
[14][29][34][79][80]. Our developed procedural exercise drill design method was inspired by
previous research and by recent approaches to automatic game-level synthesis for exercising
[45][86][87]. Our application extends the current list of such exergames by proposing the use of
racket sports, and evaluates the virtual reality table tennis exergame for its potential as an exercise

and training tool.

1.3 Synthesizing Racket Sports Exercise Drills

A method was developed to synthesize exercise drills for virtual reality racket sports with
respect to several factors defined as cost terms in a total cost function. Let E = [sy, S5, ..., Sy]
denote an exercise drill, which consists of a number of s; € E shots generated by our system (it is

worth mentioning here that a virtual ball-throwing machine was used to generate the shots from

3 https://www.konami.com/games/asia/en/products/ddr_a/
4 https://www.sfgate.com/business/article/Video-dance-game-to-be-used-in-schools-West-2542902.php
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the exact same position) and assembled in a sequential order, where s; corresponds to any possible
shot. The exercise drill E is designed by a total cost function Cry¢q:(E):
Crota(E) = WSTCS + wiCp 1)

where  Cg = [CPt, ¢SP4, ¢f™] is a vector of shot cost, and ws =
[w2ist, wiPee?, wE 4] are weights that correspond to the cost terms. The CP¢, €3P°°? and ¢
terms encode the intensity of the exercise drill: C2%¢ denotes the distance covered by the user to
complete the drill and is expressed as the distance between two adjacent shots (the distance is
computed between the position P(s;) and P(s;,,) of the adjacent shot s; and s, ;, respectively),
CSPe? denotes the speed of the shots, and C2"°? denotes the frequency with which the shots are
generated. Note that each shot s; is represented by a target position P(s;), speed V(s;), and
frequency ®(s;).

The prior cost term Cp = [CP*", CK9", C5'*¢] includes the prior costs associated with the
developed exergame, such as the duration of the exercise drill (CP*"), the variations between the
shots (C¢%") and the court side (C5'*¢), and the wp = [WP*", wp %", w5t] are weights assigned to
the prior cost terms. It should be noted that aside from the proposed cost terms, various other cost
terms can be examined by the developers, depending on the characteristics of the exercise drill.
For the cost terms, we employed a Gaussian model in order to evaluate the distance between the
given objective and the target objective of the exercise drill. The source code (Unity3D project) of

our racket sports application is available at our GitHub repository: https://github.com/Hearurt/\VR-

TableTennis-System.

All cost terms presented in the below sections were computed by using normalized values
that lie within the minimum and the maximum range of each individual target. In finding the
targets, eight non-athlete healthy students (four males and four females aged 19-23) were required
to exercise for 60 minutes by playing multiple variations of the exergame at varying exercise
intensities. During that time, combinations of various target values for each cost term were tested,
and the heart rate (beats per minute) of each participant was recorded by using a heart rate sensor,
the Polar OH1+°. Based on this initial data collection, we were able to define the range and the
target values of the individual cost terms. Finally, it should be noted that the target objective of the

5 https://www.polar.com/us-en/products/accessories/oh1-optical-heartrate-sensor
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optimization process was the manipulation of exercise intensity, which in our case will be later
evaluated (see Section 4) by collecting heart rate data and self-reported perceived intensity rating.

Note that although a number of methods could be used to generate exercise and training
drills, we choose to implement an optimization-based method to solve the exercise and training
drill synthesis problem. For example, rule-based methods often fail to select appropriate
parameters for the desired outcome (especially when multiple parameters should be fulfilled
simultaneously) and, in most cases, synthesize the output in a product-appropriate manner [11].
However, optimization technique iterates through hundreds of systematic draws from the model
parameter space to search for solutions that fit all constraints set by a user, no matter how complex
the problem is, which makes it fairly reliable [71] and easy to implement new constraints/cost
terms. Moreover, optimization techniques allow the estimation of complex solutions in a fast and

scalable fashion, which rule-based techniques fail to do.

1.3.1 Shot Terms Cost

The three shot terms responsible for generating a new exercise drill E are defined in this

section.

1.3.1.1 Distance Cost

In various exercise drills, user movement within a space is quite common and, according
to sports science, locomotive movement while exercising presents various benefits [19][74]. In
order to calculate how much a user moves, it is assumed that there is a linear relationship between
the distance of two adjacent shots (the distance of the positions of two balls the time point they
bounce on the side of the user) and the distance that the user would need to cover when exercising.
Thus, we defined a cost to compute the distance between the positions of two adjacent shots as:

2
(IEl;—lZ(Si'SiH) D(P(s)P(si+1) - UD) )

2
20p

CPPH(E) =1 —exp (- )

where ap, is the target distance covered between two adjacent shots, D(P(s;), P(si4+1))
denotes the distance between the positions P(s;) and P(s;,,) of the two adjacent shots s; and

S;+1, respectively, and |E| denotes the total number of shots.
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1.3.1.2 Speed Cost

According to sports science literature [7][21][56][72], the speed in which a ball moves in
racket sports enhances the intensity of the exercise, as the athlete needs to be prepared to quickly
decide and adjust his/her movement toward the direction of a moving ball. Thus, we included a

cost term to compute the speed intensity involved in the exercise drill:

LZS-V( i) - ’
CSSpeed(E) =1—exp (— ('E' (VG0 -~ v) (3)

2
20y

where gy, is the target average ball speed in completing an exercise drill E, and V(s;)

denotes the speed of the s; shot.

1.3.1.3 Frequency Cost

The last term applied in our shot cost term is related to the frequency in which a new ball
should be generated by the virtual ball-throwing machine. Based on various sources, we found that
frequency is important in exercising, since high frequencies tend to keep an athlete vigilant as there
IS no time to rest between adjacent shots, resulting in a more intense workout
[2][3][30][40][42][47]. Thus, a frequency cost term was developed to compute the frequency

intensity involved in the exercise drills:

203 (4)

(S @) - mp)z)

CiU(E) =1—exp (—

where gy, is the target average of the ball-throwing frequency in completing an exercise

drill E, and @(s;) denotes the frequency of the s; shot.

1.3.2 Prior Cost

In this implementation, the prior cost terms were developed to control some of the features
of game play. Various prior cost terms could have been employed, depending on the specific
design requirements of an exercise. However, we limited the prior cost terms to those that are most

important for this particular virtual reality gaming application: duration, variation, and court side.
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1.3.2.1 Duration Cost

The duration cost is responsible to softly constrain the exercise drill to be of a certain
duration, and it is defined as:

Cgur(E) =1—exp <_ M) (5)

202

where t(s;) denotes the duration of a single shot and ¢, denotes the target duration of the

exercise drill.

1.3.2.2 Variations Cost

To keep the user engaged with the exercise drill—since an exercise without variation would
become less interesting—a variation term was also implemented as an additional prior cost. When
we perform exercise drills that require multiple repetitions of the same shot, the variation between
repetitions should be minimized. Thus, the variation cost term ensures that the generated shots will

or will not have the same characteristics, and it is defined as:
1
CrY(E) = “El__lz:(si,sHl)F(sirSHl) (6)
where (s;, s;+1) represents adjacent shots and I'(s;, s;4+1) returns 1 if the position and speed

of shot s;, is identical to shot s; (i.e., within a defined speed and position range); otherwise

(s;,8;4+1) returns O (the position and speed of shot s;,, is different from shot s;).

1.3.2.3 Court Side Cost

The court side cost is responsible for assigning a side to the synthesized drill, and it is

defined as:

1

Ci'e(E) = EZSL. I(s;) (7

where I1(s;) returns 0 if the shot is generated at the chosen court side; otherwise I1(s;)
returns 1. This cost term can be considered beneficial especially in cases where a racket sports

enthusiast is willing to put in extra effort for a particular shot (e.g., forehand, backhand).
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1.3.3 Optimization

An optimization approach was used to synthesize an exercise drill by generating a sequence
of shots. Since an exercise drill could be generated by a variety of shots, an optimal solution for
the user-defined target cost was searched in the solution space. Note that the target goal of the
optimizer is to fit an exercise drill to user-defined exercise objectives and intensity levels. A
Markov chain Monte Carlo optimization method, known as simulated annealing [39], with a
Metropolis-Hastings state searching step [12] was used to optimize the exercise drill. To employ

the optimization method, a Boltzmann-like objective function was defined:

f(E) = exp (=3 Croca(E) ) (8)

where t denotes the temperature parameter of the simulated annealing process [39], set to
decrease gradually during the optimization process. At every iteration, the optimizer chooses and
applies a move to the current exercise drill E to propose an exercise drill E’. Based on the three
components of the shot (position, speed, and frequency), seven different moves were developed to
be chosen by the optimizer:

* change position;

* change speed;

* change frequency;

* change position and speed;

* change position and frequency;

* change speed and frequency; and

* change position, speed, and frequency.

At the beginning of the optimization process, the number of shots defined by the user is
generated through random parameters of position (p), speed (v), and frequency (¢). At each
iteration of the optimization, one of the shots and one of the moves are selected randomly. Then
the move is applied to the selected shot and to the current exercise drill E to create a new exercise
drill E'. For example, when the “change position” move is selected, a randomly chosen shot moves
to a new position, and the system computes the cost of the new exercise drill E'. In our
implementation, the selection probabilities of the moves were set to Pr, = .25 for “change

position,” Pr,, = .25 for “change speed,” Pr, = .25 for “change frequency,” Pr,, = .10 for
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“change position and speed,” Pry, , = .05 for “change position and frequency,” P, , = .05 for
“change speed and frequency,” and Pr,,y, o, = .05 for “change position, speed, and frequency.”
Our optimization favors the individual changes for position, speed, and frequency. To decide
whether to accept a proposed exercise drill E’, our method compares the proposed total cost
Crotai(E") to the current total cost of Cr,:q;(E). The developed method accepts the proposed

exercise drill E’ based on the Metropolis criterion [12] denoted as:

Pr(E'|E) = min (1%) (9)

To optimize different exercise drill design solutions, the simulated annealing method was
employed. A temperature parameter t is first defined. When optimization begins, the temperature
parameter t is represented by a high value, allowing the optimizer to aggressively explore the
optimized results. As the iterations of the optimization evolve, the temperature parameter is
reduced until it reaches zero. An initial temperature t = 1.0 was used in the current
implementation at the beginning of the optimization and was reduced by .10 every 200 iterations.
As the temperature parameter decreases, the optimizer becomes more greedy in finding the optimal
solutions. The optimization process is completed when the total cost change is less than 5% in the

past 50 iterations. Figure 2 illustrates how the total cost Cr,:q; (E) changes over several iterations.

Optimization

Total Cost
O amb
W - w N

o

200 400 600 800 1000 1200 1400
Iterations

Figure 2: Total cost changes as the optimization process (iterations) evolves. © [2020] IEEE
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Unless otherwise specified by a user, the weights assigned to the cost terms responsible for
the shots are set to w2t = 1.0, we?*** = 1.0, and wy 7 = 1.0, and the weights of the prior cost

terms are set to wh*" = .10, wy% = .50, and w5¢ = .10. Note that the user is allowed to
control the weight values of both shot and prior cost terms to synthesize exercise drills by
prioritizing differently the objectives of the drill. Moreover, the user is allowed to control the target
values of the cost terms so that he/she can synthesize exercise drills with different levels of
difficulty, intensity, and variability. VVariations in exercise drills generated by the presented system,
while keeping both the target values and weights constant, are shown in Figure 3, whereas shots

of various distributions based on different target values are shown in Figure 4.

Figure 3: Variations in exercise drills generated by the presented system through keeping the
target exercise amounts (o, = .6, 0y = .3, and g, = .2) constant. Numbers close to balls
denote the sequence of shots. Note that for all four examples shown in this Figure, the weights of
the shot and prior cost terms remained constant. © [2020] IEEE

op=.1,0p =.2,and gy = .2 - op =.2,0p = 4,andgp = .2 - op = 4,0y = .6,and gy =.3 - op =.6,0y = .6,and g = .6 .

Figure 4: Distribution of shots when varying the target values (op, oy , and o) of the shots cost
terms. Numbers close to balls denote the sequence of shots. Note that for all four examples
shown in this figure the weight of the shot and prior cost terms remained constant. © [2020]
IEEE
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1.4 Evaluation as An Exercise Tool

This study investigates whether the developed virtual reality table tennis application can
be used also as an exercise tool. Specifically, this study was conducted to evaluate whether our
system can synthesize exercise drills that fulfill user-defined exercise targets. In this study, we
considered intensity variations of the exercise drill and we captured heart rates to investigate

whether exercise intensity differences are expressed as heart rate differences.

1.4.1 Participants

Participants were recruited through class announcements and emails. The participant group
was comprised of 36 healthy undergraduate and graduate students. None of the participants were
athletes. The students’ ages ranged from 19 to 26 years, with a mean of M = 22.31 (SD = 2.65).
All participants had prior experience with virtual reality; however, none of the participants had
experience with exercise sports games in virtual reality. No compensation was given to the students

for their participation.

1.4.2 Setup and Implementation Details

The research team conducted this study at a lab space of our university. The lab space was
9 meters long and 7 meters wide, with a ceiling height of 4 meters. All tables and chairs were
removed. The HTC Vive Pro head mounted display device was used to project the virtual reality
content, and an HTC table tennis racket® and HTC Vive tracker were used to control the virtual
racket in the virtual environment. The virtual reality gaming application was developed in the
Unity3D game engine version 2019.1.4 and ran on a Dell Alienware Aurora R7 desktop computer
(Intel Core 17, NVIDIA GeForce RTX 2080, 32GB RAM). Note that the time required by our
system to optimize an exercise drill that consists of 40 shots did not exceed 5 seconds.

A 3D virtual environment of a sports court was designed in 3Ds Max and imported into
Unity3D (see Figure 5). The dimensions of the court were identical to those of the lab space. This
was done so that the participants would be aware of their position in the real environment in order
to eliminate potential accidents that might have occurred by colliding with the walls. The table

tennis table was placed in the middle of the room, so the participants were at least three meters

& https://www.vive.com/us/VR-racket-sports-set/
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away from either wall. Finally, a Polar OH1+ optical heart rate sensor was used to capture the
heart rates of the participants to determine how exercise levels of different difficulty, intensity,

and variability affected them.

Figure 5: The virtual table tennis court that was designed and used for the purpose of the study.
© [2020] IEEE

1.4.3 Conditions of the Study

Three conditions were tested to determine whether the developed virtual reality gaming
application could be used as an effective exercise tool. Note that this is a between-group study,
which means that all participants experienced all of the three developed conditions. The conditions
were:

e Low Intensity: The user does not need to move much, the balls move with low
speed, and the shots are generated with a low frequency. The target values were set
as:o; = .2,0, = .2,and o, = .2. Based on the set target values, the heart rate of
participants was expected to reach 110 beats per minute (BPM)).

e Medium Intensity: The user is called to perform small steps to hit the ball, the
balls move a bit faster, and the shots are generated with a medium frequency. The
target values were set as: o; = .5, oy = .5, and g, = .5. In this condition, the
heart rate of participants was expected to reach 120 bpm.

e High Intensity: The user is called to perform more intense movements to hit the
ball, the balls move even faster, and the shots are generated with a high frequency.
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The target values were set as: g; = .8, oy = .8, and g, = .8. The heart rate of

participants was expected to reach 130 bpm.

Finally, we would like to mention that for all three examined conditions the weights
assigned to the shot and prior cost terms remained constant. By changing the target values of each
shot-related cost term, we were able to generate on demand an exercise drill with different
objective goals and consequently with different target exercise intensity levels expressed through
heart rate indicators. Thus, each of the abovementioned conditions made requests to our optimizer
in terms of distance, speed, and frequency objectives, and ultimately specified the intensity level

for each synthesized table tennis exercise drill.

1.4.4 Measurements

To evaluate the prospect of using a virtual reality table tennis application as an exercise
tool, the heart rate of the participants was measured using the abovementioned heart rate sensor.
Specifically, the mean heart rate of participants was computed after each trial of the exercise
segment of the study. Note that high heart rate values correspond to higher fatigue [59][62]. For
each condition (there were 10 trials in total for each intensity level), the first 30 seconds of the
heart rate data were deleted, as this was considered a warm-up period. After the exercise segment
of the study the participants were asked to provide a rating of perceived exertion (RPE), as
developed by Borg [9]. The RPE scale measures the intensity of an exercise by asking participants
to rate the perceived intensity of an activity. We used a seven-point scale in which 1 indicated “not

high at all” and 7 indicated “very, very high.”

1.4.5 Procedure

We followed a within-group study design, and we asked the participants to partake in a
three-day session. The participants experienced a different condition on each day of the study.
Note that the participants were aware of this process before the beginning of the first session. Once
the participants arrived at the lab space, the research team provided information about the project,
and the participants were asked to sign a consent form that was approved by the Institutional
Review Board of our university. During that time, the participants became aware that they would

39



be attending three sessions. Then, the participants were asked to complete a demographic
questionnaire. In the next step, the research team helped the participants with the virtual reality
equipment.

Once the virtual reality gaming application started, the research team asked the participants
to move to a position close to the table tennis table within the virtual environment. The participants
were also told that the walls of the virtual space corresponded to the walls of the real space and
that they should be careful when moving toward any of the walls. None of the participants collided
with any of the walls during the study. When the participants indicated that they were ready, the
researcher switched on the virtual ball-throwing machine. In total, the participants experienced 10
variations of the game at the same intensity condition classification. We developed 10 variations
for each condition to ensure that the participants did not lose interest while playing the exergame.

For each variation of the training session, the participants were exposed to a trial in which
40 virtual balls were placed in the ball-throwing machine. Each variation of the condition (trial)
lasted no more than two minutes. Note that in between the trials, participants were allowed to take
up to a two-minute break. To eliminate the first-order carry-over effects between the trials of the
condition, Latin squares [38] for balancing were used. Thus, each participant experienced a
different sequence of each of the variations. After the end of the exercise segment, the participants
were asked to fill in the perceived exertion scale. At the end of the final trial (day three of the
study), the participants were informed that the research team would answer questions about the
study. To standardize the study, each participant came to the lab on the same day and time
respectively for each of the three sessions that occurred during three consecutive weeks. The Latin
squares [38] ordering method was used to ensure a balance across all conditions (low, medium,
and high intensity levels). Thus, each participant experienced a different level of exercise intensity
in each of the visits. Finally, we would like to note that each participant spent no more than a total

of 120 minutes in the lab for the total of the three sessions (40 minutes per session).

1.4.6 Results

A one-way repeated measuring analysis of variance (ANOVA) was used to determine the
differences across the three developed intensity levels of the exercise. The normality assumption
of the collected data was evaluated graphically using Q-Q plots of the residuals [24]. The Q-Q

plots indicated that the obtained data fulfilled the normality criteria. A p < .05 value was deemed
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statistically significant. Boxplots of the obtained results are shown in Figure 6. By analyzing the
heart rate data, we identified significant differences across the three examined conditions [A =
.189,F(2,34) = 72.900,p < .0001,n; = .811]. Post-hoc comparisons using the Bonferroni
correction revealed that the mean heart rate during the low intensity condition (M =
108.41,SD = 6.48) was significantly lower than that of the medium intensity condition (M =
118.08,SD = 4.87) at the p < .0001 level and that of the high intensity condition (M =
125.58,SD = 4.81) atthe p < .0001 level. Moreover, the mean heart rate during the medium
intensity condition was significantly lower than that during the high intensity condition at the p <
.001 level.

By analyzing the RPE data, we also identified significant differences across the examined
conditions [A = .616,F(2,34) = 10.576,p < .0001,n5 = .384 ]. Post-hoc comparisons
using the Bonferroni correction revealed that participants reported that the low (M = 1.89,5D =
.82) and medium (M = 1.94,SD = .86) intensity conditions were less intense than the high
(M = 3.05,SD = 1.45) intensity condition, both at the p < .0001 level. No significant

difference was found between the low and medium intensity conditions.

Heart Rate RPE
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Figure 6: Boxplots of the obtained results regarding the usage of the developed method as an
exercise tool. Boxes enclose the middle 50% of the data. The median is denoted by a thick
horizontal line. © [2020] IEEE

1.4.7 Discussion

The heart rate of the participants differed across the three exercise levels and, therefore,
the three exercise intensity levels worked as expected. Moreover, the heart rate data revealed that

it is indeed possible to develop racket sports-related virtual reality gaming applications that can be
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used for exercise purposes. The developed exercise design approach also revealed that it can
automatically generate table tennis exercise drills that can allow users to exercise at user-specified
intensity levels in the comfort of their own living rooms.

Specifically, the collected data has shown that our system can optimize exercise drills that
are able to trigger the heart rate of participants close to the target heart rate value that was
anticipated for each condition. For instance, the target heart rate value for the low intensity was
expected to be 110 BPM and the mean heart rate value of the participants was found to be 108.41
BPM, the target heart rate value for the medium intensity was expected to be 120 BPM and the
mean heart rate value of all participants was found to be 118.08 BPM, and the target heart rate
value for the high intensity was expected to be 130 BPM and the mean heart rate value of all
participants was found to be 125.58 BPM. Based on these findings, it can be said that participants’
mean heart rate was closer to the target heart rate when exposed to the low and medium intensity
exercise drills compared to the high intensity exercise drill. We believe that the difference between
the expected and the actual heart rate could be adjusted by synthesizing exercise drills that take
into account the gender, age, and physical health of the users. However, all things considered, our
findings indicate that users who are willing to exercise from the comfort of their living rooms
while being exposed to a fun activity, such as playing a virtual reality game, can indeed achieve
exercise goals significantly close to their desired ones. Finally, we would like to mention that
although VRT can help people improve their performance, it does not provide a training experience
similar to a real-world one. However, this fact does not invalidate the ability of VRT to help racket
sports enthusiasts improve their skills.

Regarding the self-reported intensity of the exercises, on the one hand, we found that the
perceived difficulty of the easy and medium intensity drills was lower than that of the high intensity
drill. This finding shows that participants were only partially able to distinguish across the intensity
levels they were exposed to, since we were not able to find differences between the low and
medium intensities. A possible explanation is that the intensity level of an exercise drill can be
related to various other participant-related factors (e.g., someone who spends 2-3 days per week
at a gym might rate the medium intensity as easy compared to someone who barely exercises).
However, each user can tune the intensity of the exercise by triggering the respective target values
of the shots cost terms. This way, the developed method can be used to generate exercise drills

even for demanding tasks and users who want to exercise at a more advanced level. However, the
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fact that we were not able to find differences between the low and medium intensities is the most
interesting result of this study. This finding indicates that while the medium workout resulted in a
significantly higher heart rate over the low workout, it did not result in a significantly higher
perceived exertion. From our point of view, this finding indicates that while the level of exercise
intensity increased, the discomfort of participants stayed at low levels.

After the study, we asked participants about their experiences. Almost all of the participants
said that they really enjoyed exercising in a virtual reality environment, and many said they liked
the way the virtual reality application was designed. We believe that the participants’ levels of
enjoyment were the reason they did not rate the medium intensity level workout with a higher RPE.
This insight (increased levels of enjoyment) could be considered in implementing exercise-related
virtual reality applications as a guideline for raising the level of exercise without raising discomfort.
Another participant said that including a virtual coach or an opposing player might have also been
interesting. However, for the purpose of this study, the motion and the presence of an opposing
player might have distracted the user. Finally, it is worth noting that none of the participants

reported dizziness or any form of cybersickness.

1.5 Evaluation as A Training Tool

A second study was conducted to evaluate the usefulness of the developed virtual reality
gaming application as a training tool. For this evaluation process, the performance of our
participants was evaluated in three training conditions: no training, virtual reality training, and

real-world training. Details on this study are given in the below subsections.

1.5.1 Participants

The participants were recruited through class announcements and emails. The participant
group was comprised of 42 healthy undergraduate and graduate students. It should be noted that
none of the participants were athletes. The participants’ ages ranged from 19 to 29 years, with a
mean of M = 23.75 (SD = 2.64).

All participants had prior experience with virtual reality. None of the participants of this
study had participated in the first study, so they were unaware of the gaming application and its

mechanics. No compensation was given for participation. All participants signed a consent form
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that was approved by the Institutional Review Board of our university. The participants were
randomly divided into three groups: 1) the no training (NT) group, the group of participants that
did not receive either virtual reality or real-world training; 2) the virtual reality training (VRT)
group, the group of participants that received virtual reality table tennis training using our
application; and 3) the real-world training (RWT) group, the group of participants that received
real-world table tennis training in our recreation center. It should be noted that each group was
comprised of an equal number of participants (N = 14, nine males and five females in each group).
As this study was divided into multiple sessions (details are given in the next section), the consent

form and demographic questionnaire were administered during participants’ first visits.

1.5.2 Study Details

This study attempted to determine whether the developed virtual reality gaming application
could be used for training purposes. To this end, it measured whether the performance of the
participants was improved after participating in virtual reality training sessions. In addition, this
study attempted to investigate whether the performance of participants exposed to virtual reality
training differs from the performance of participants exposed to real-world training, or no training.
The RWT condition was added to investigate whether virtual reality training differs from real-
world training. The no training condition was included since we realized that some training would
take place during the initial performance evaluation in the recreation center. Thus, this initial
assessment alone might have inadvertently led to an improvement in the post-training evaluation.
For this reason, we decided to include the no training condition to investigate whether the changed
performance of the VRT group depended on the initial performance evaluation or on the actual
virtual reality training.

This study is divided into three parts for the VRT and RWT conditions, and into two parts
for the NT condition. For all conditions, all participants were asked to attend two 30-minute
sessions (a pre and a post-training session) at the table tennis court at the recreation center. The
pre- and post-training performance assessment of the participants was performed using a medium-
intensity exercise drill. During the performance evaluation sessions, the participants were free to
take multiple breaks if needed. For the performance evaluation process, the participants were

exposed to 10 trials in which 20 balls were placed in the ball-throwing machine. The machine used
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was the iPong V300’ table tennis ball-throwing machine. The total duration of the performance
evaluation process lasted 30 minutes, including short breaks that the participants took between the
study trials. Note that the table tennis table at the recreation center was located in a space of 7
meters long by 4 meters wide.

To evaluate the performance of the participants two measurements were captured: 1) lost
shots (the number of balls each participant was unable to hit with the table tennis racket), and 2)
mistakes (the number of balls that were either stopped by the net on the table or bounced outside
the table after the player hit the ball). Note that since our primary intention was to evaluate the
potential improvement in participants’ performance, our computations focused on the difference
(subtraction) between the post- and pre-training data collected for each participant, which were
later used for our statistical analysis process. The participants that were assigned the NT condition
did not receive any further training. They were only asked to attend the final performance
evaluation session. However, the participants that were assigned the VRT condition were asked to
participate in three training sessions, each for the duration of 30 minutes. This group of participants
trained using the developed virtual reality table tennis application, and the training sessions were
conducted in our department’s lab space. During the first two sessions the participants were trained
on low-intensity table tennis exercise drills, and during the third session the participants were
trained on a medium-intensity exercise drill (see Section 4 for more details on the low- and
medium-intensity exercise drills).

The participants that were assigned to the RWT group took part in three training sessions
at the recreation center where they trained in real-world table tennis. The participants of the RWT
condition were trained on low-intensity table tennis exercise drills during the first two sessions,
and on a medium-intensity exercise drill during the third session. The duration of each session was
30 minutes, including short breaks. A table tennis expert (the coach of a local table tennis club;
male, 44 years old with 18 years of experience as a table tennis coach) helped us tune the ball-
throwing machine (iPong V300) that was used at the recreation center. The tuning of the ball-
throwing machine was performed by the expert after experiencing multiple trials of both low and
medium exercise intensities in our virtual reality table tennis application.

In conclusion, we would like to note that all participants were aware that they would be

attending multiple training sessions before they began the first session; this was made clear when

7 http://www.ipong.net/joomla/index.php/ipong-models/ipong-v300
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the consent form was handed to them. Moreover, all participants followed the same scheduled day
pattern: pre-training performance evaluation on Tuesday, first training session on Thursday,
second training session on the following Tuesday, third training session on Thursday, and a post-
training performance evaluation on the final Tuesday. Each participant came to the lab or
recreation center at the same time on each scheduled day. This scheduling process helped us to
standardize the study. Finally, regarding the NT condition we would like to note the following.
Since participants were asked to take part in only two sessions, we tried to standardize the gap
between these sessions. Thus, considering that the last training sessions on both the VRT and RWT
were on Thursday and the post-training evaluation session was on Tuesday (a five-day gap), we
decided that the performance evaluation session for the NT condition should also be five days after

the initial performance evaluation session.

1.5.3 Results

We used the one-way between-group ANOVA to compare the performance of our
participants. We used the three conditions (NT, VRT, and RWT) as our independent variables and
the performance improvement on lost shots and mistakes (the difference between post- and pre-
training scores) as our dependent variables. The obtained results are summarized in Figure 7. Since
we conducted a between-group study, before analyzing our results we decided to explore the
homogeneity of our participants by using as dependent variables the three participant groups (the
three conditions), and as independent variables the age, height, and weight of the participants. Note
that, as mentioned before, each group was comprised of nine males and five females. The one-way
between-group ANOVA indicated no significant difference for age [F(2,39) = .901,p = .421],
height [F(2,39) = 1.188,p = .137], or weight [F(2,39) = 1.463,p = .254] across groups.
Based on the obtained results and the male/female ratio per group, it can be said that all three

groups were homogenous.
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Figure 7: Comparison across the three examined conditions (NT: no training, VRT: virtual
reality training, and RWT: real-world training) used to evaluate the developed virtual reality
table tennis application. Negative and low values indicate that our participants’ performance did
not improve at the post-training session. Positive values indicate that participant performance
improved. Boxes enclose the middle 50% of the data. The median is denoted by a thick
horizontal line. © [2020] IEEE

By analyzing the performance improvement data for lost shots, we found significant
differences across the three examined conditions [F(2,39) = 21.804,p < .001]. Post-hoc
comparisons using the Bonferroni corrected estimates revealed that the mean performance
improvement during the NT condition (M = 6.43,SD = 5.62) was significantly lower than that
of the VRT condition (M = 14.64,SD = 7.19) at the p < .002 level, and that of the RWT
condition (M = 21.35,SD = 4.92) at the p < .001 level. Moreover, we also found that the
performance improvement for the lost shots during the VRT condition were significantly lower
than that of the RWT condition at the p < .05 level.

By analyzing the performance improvement data for mistakes, we identified significant
differences across the three examined conditions [F(2,39) = 54.824,p < .001]. Post-hoc
comparisons using the Bonferroni corrected estimates showed that the mean performance
improvement of mistakes during the NT condition (M = 1.71,SD = 4.54) was significantly
lower than that of the VRT condition (M = 9.35,SD = 5.77)atthe p < .001 level, and that of
the RWT condition (M = 21.28,SD = 4.53)atthep < .0001 level. Moreover, we also found
that the mean performance improvement of mistakes for the VRT condition was significantly
lower than that of the RWT condition at the p < .001 level.
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1.5.4 Discussion

The measurements of lost shots and mistakes revealed that our method can automatically
generate training drills that can help table tennis enthusiasts improve their skills. By comparing
NT with VRT it can be said that by attending the VR training sessions participants were able to
improve their scores on lost shots. This indicates that the training sessions taught that participant
group to anticipate the ball and react more appropriately when the ball approached them. Similarly,
the participant group that was exposed to virtual reality training had a reduced number of mistakes.
This may also be a result of the first finding (reduction of lost shots). Because the participants were
anticipating a shot, they were better prepared to react and hit the ball appropriately. Therefore,
they were able to perform better overall after receiving the virtual reality table tennis training.

Significant results were also found for both lost shots and mistakes measurements when
comparing the VRT and RWT groups. These significant differences are perhaps the most
interesting result of the study. The significant results indicate that the RWT group improved their
performance even more than the VRT group. It is shown that even if this virtual reality table tennis
can be used as a training tool, it is still less effective than RWT. However, considering that we also
found a significant improvement in participants’ performance when compared to the NT condition,
virtual reality training can also be considered as an option for table tennis enthusiasts who wish to
improve their skills without having to search for a table tennis coach or partner, or attend training
sessions at a gym. Although we found that the VRT training results were lower than the RWT
results, it could be said that virtual reality training is still a reasonable and alternative way to train
for various reasons. First, people can learn how to play table tennis and improve their skills without
needing to actually be in the gym. Second, the virtual reality training for racket sports can be done
remotely, saving time and money. Third, virtual reality offers an immersive experience that
promotes repetition and retention. It is for these reasons we believe that virtual reality training for
sports has multiple potentials for peoples’ health and well-being.

Upon completion of the study, we asked participants about their experiences. All the
comments we received for the table tennis virtual reality application were quite positive,
suggesting that virtual reality table tennis could become a training tool for racket sports enthusiasts.
Several participants said that they were not expecting the use of virtual reality to help them improve
their skills and reduce the number of mistakes they made. Please note that after the end of the post-

training sessions all participants were informed of their performance. Almost all the participants
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said that the virtual reality training helped them to become more vigilant. Others said that the
virtual reality training helped them better position themselves in the court and that the virtual
reality training helped them to react more quickly. Finally, it is worth noting that none of the
participants reported dizziness or any form of cybersickness.

1.6 Limitations

There are a few limitations that we would like to note. First, the weight and balance of the
table tennis racket that was used in these studies may be problematic. A table tennis paddle weighs
between 150 g and 250 g. However, the HTC table tennis racket is 226 g, and with a Vive tracker
(89 g) attached it weighs 315 g. Although this weight differential may not be as significant for
beginners, we assume that it could be problematic for more experienced and professional table
tennis players. We believe that experimentation with fabricating and printing 3D gaming interfaces
[70] might solve this problem. Moreover, because the science and technology related to virtual
reality is rapidly evolving, we assume that future table tennis paddles for virtual reality experiences
will be more similar to actual paddles in terms of weight specifications.

A second limitation is related to missing tactile feedback. Tactile feedback is an important
factor that provides an additional parameter to consider when hitting balls [17][51]. To overcome
this issue, the use of a tactile actuator might partially solve the tactile feedback problem; however,
such a device would add additional weight to the table tennis paddle.

A third limitation is related to the physical space required for a player to use the virtual
reality gaming application. Although, as mentioned above, virtual reality racket sports can be
experienced from the comfort of one’s living room, a large play area with no obstacles would be
required in order to achieve an optimal experience without injuring oneself or damaging objects
within the real space.

A fourth limitation is that only participants with little or no table tennis experience
participated in this study. Unfortunately, we were not able to recruit intermediate or advanced table
tennis players. However, it would have been interesting to evaluate our exergame with more
experienced table tennis players so we could explore whether the findings of our studies would
also apply to them.

The last limitation we would like to mention is related to the head-mounted display that

was used for the studies, as some participants commented on it. Specifically, we used the HTC
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Vive Pro headset. Participants mentioned that the combination of the wire that connects the headset
to the computer, the weight, and the size of the headset itself all made them more concerned and
uncomfortable when moving around during game play. We assume that a wireless head-mounted
display such as the Oculus Quest might provide a better exergame experience to virtual reality

users.

1.7 Conclusions and Future Work Directions

We developed a virtual reality racket sports gaming application and a method for
synthesizing exercise drills. In this method, the user may change the parameters of the cost terms
and our system will automatically generate an exercise drill that meets these user-specified
objectives. Two user studies were conducted to evaluate the effectiveness of the developed
application as an exercise and training tool for the table tennis application. The results indicate that
virtual reality can be a solution for users who would like to exercise and achieve specified exercise
goals. The virtual reality gaming application can also be used to improve user skills. Lastly, the
flexibility of the developed gaming application in handling different types of racket sports with
minimal changes and effort is another advantage.

Future work might include the development of other virtual reality gaming applications
that can be used for exercise and training purposes. An example might be martial arts exercises
and training in virtual reality, in which the user could interact with an intelligent virtual coach. In
addition to the algorithmic development that automates the exercise and training sessions,
exploring the effects of virtual reality exercising and training on long-term health benefits, such as
weight loss and rehabilitation, is another interesting direction for future research. Considering the
popularity and attractiveness of virtual reality, we can assume that it will be used in the future as
a tool that not only entertains users, but also helps them improve their physical functions and

overall health.
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Abstract

This paper presents an optimization-based approach for designing virtual reality game level
layouts, based on the layout of a real environment. Our method starts by asking the user to define
the shape of the real environment and the obstacles (e.g., furniture) located in it. Then, by
representing a game level as an assembly of chunks and defining the game level layout design
decisions in cost terms (mapping, fitting, variations, and accessibility) in a total cost function, our
system automatically synthesizes a game level layout that fulfills the real environment layout and
its constraints as well as the user-defined design decisions. To evaluate the proposed method, a
user study was conducted. The results indicated that the proposed method: (1) enhanced the levels
of presence; (2) enhanced the levels of involvement of participants in the virtual environment; and
(3) reduced the fear of collision with the real environment and its constraints. Limitations and

future research directions are also discussed.

2.1 Introduction

Virtual reality games are designed so that the player uses controllers to navigate in the
virtual environment. However, navigation through locomotion is considered one of the universal
tasks performed in real and virtual environments [1]. Moreover, sensorimotor actions are essential
factors in providing a compelling experience for virtual reality users [2], just as the mismatching
between the real and virtual environment is equally essential in impacting the movement behavior
and arousal of virtual reality users [3]. If the user cannot naturally move around and engage with
the virtual environment as they would in a real one, then the illusion of being in another place
would diminish, making the whole play experience poor and less realistic.

Given the fact that walking is a simple and intuitive method of interaction in the
environment, providing a game player with the ability to experience the gaming environment by
walking in it would likely enhance the player’s gaming experience (i.g., the player will be able to
freely move and interact in the virtual game level environment). However, it is impossible for a
game level designer to know in advance the layout and size of the real environment and the
obstacles (e.g., furniture) involved. Therefore, s difficult to create customized game levels for
numerous real environment configurations. To overcome this challenge, this paper presents a novel

computational approach that considers both the shape of the real environment and its obstacles,
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and automatically generates game levels that take into account the real environment layout and its

constraints (see Figure 8).

Figure 8: Given a real environment and its constraints, the user can easily capture its layout using
a virtual reality controller. Later, our proposed method synthesizes a game level layout that
matches the real environment layout and its constraints. © [2021] Elsevier

Our method first considers that a game level can be represented as an assembly of multiple
game level chunks. Second, it asks the user to define the play area and the constraints/obstacles
located in it by simply using a virtual reality controller (e.g., the Oculus Touch controller); thus,
the real environment’s layout is generated. Third, our method assigns four cost terms to a total cost
function that encodes design decisions (mapping, fitting, variations, and accessibility) and
provides a designer the ability to prioritize the cost terms in order to generate level layouts with
different objectives. Finally, the game levels are synthesized using an optimization-based method,
the Markov Chain Monte Carlo. We implemented our optimization framework as a plug-in for the
Unity game engine and demonstrated how it could generate different types of games. We intend
to release the plug-in for public use.

To understand the effectiveness of our method, a user study was conducted. The results
indicated that the proposed method (1) enhanced the levels of presence, (2) enhanced the levels of
involvement of participants in the virtual environment, and (3) reduced the fear of collision with
the real environment. The significant contributions of our work include:

e An optimization-based approach to design game level layouts reflecting the real
environment and its constraints. Such a concept could be used in a variety of virtual
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reality games and therefore improving user experience while also allowing users to
immerse themselves in the virtual world and the gaming scenario.

e The ability of our approach to generate game level designs for different layouts and
constraints.

e The ability to customize the synthesized game level by prioritizing each cost term.

We think that both the game development and the virtual reality community will benefit
from such a method. Our method provides any user the ability to walk and interact in the gaming
environment more efficiently, even though in a constrained real environment (e.g., living room).
Each space is unique in shape, size, and furniture configuration (there might be empty spaces or
spaces with a lot of furniture). Therefore, a method that automatically synthesizes a game level for
any real environment is essential to provide all game players with a compelling virtual reality
gaming experience.

This paper is organized in the following sections. Section 2.2 covers related work. Section
2.3 presents preliminary information on the proposed method. Section 2.4 describes the way game
level design problems are formulated and solved. Section 2.5 outlines the details for
implementation. Section 2.6 presents the conducted user study and its results. Finally, Section 2.7

summarizes our conclusions, our method’s limitations, and potential future work.

2.2 Related Work

The difficulty of moving through a highly constrained real environment while observing
the virtual environment lies in the impact such an environment has on the sense of presence and
immersion of virtual reality users [4][5]; the result could be an experience that is entirely less
engaging to the user. Therefore, natural walking in virtual environments remains a challenge
primarily because of the large space required to allow the user to experience the virtual world [6].
However, among others, redirected walking [7][8][9] and virtual-to-real environment mapping [10]
partially solve the limited space problem of real environments by manipulating the user’s real-
world trajectories.

Several attempts have been made to overcome the limitation of experiencing a virtual
environment while walking in a real one. Nescher et al. [11] proposed a method that analyzes the

real environment in advance in order to identify walkable areas in the virtual environment. Later,
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this information is processed and used in order to provide ad hoc free walking in virtual
environments when the user finds himself in a constrained virtual environment. Shapira et al. [12]
developed a method that analyzes the user’s real environment in order to identify flat surfaces, like
a wall or a couch, which will determine candidate locations for placing virtual objects in the real
environment. Nuernberger et al. [13] developed an augmented reality application in which the
edges and planes of the real environment are detected so they can be aligned with virtual content
placement. McGill et al. [14] proposed the Augmented Virtuality [14] which adds out-of-context
information to the virtual environment only when considered necessary by the system. Other
methods include the use of occupancy maps and glass walls [15][16], virtual environment layers
[17][18], such as wireframes or other visual indicators that indicate the presence of real obstacles,
and vibrotactile actuators in the head-mounted display that trigger an alert signal when users are
approaching obstacles [18]. However, in most of the previously mentioned methods the sense of
presence was not improved, indicating a significant limitation when experiencing a virtual
environment.

Prior research has also focused on using 3D scanning technology to acquire a replica of the
real environment. For example, Kanamori et al. [19] used a 3D scanner to scan a real environment
and superimposed the 3D point cloud of the user’s real environment onto the virtual environment
through the head-mounted display. Sra et al. [20] used 3D scanning technology to acquire a 3D
model of the real environment. Then, by detecting the walkable area, they could generate fences
or water that would prevent the user from walking in specific locations. In addition, by using a
small dataset of objects, Sra et al. [20] could substitute real environment objects with virtual ones.
Although promising, this approach requires using a 3D scanner, equipment that only a limited
number of virtual reality users can access in their homes. Moreover, the applicability of such a
method in creating virtual environments for game purposes is unclear.

In this paper, it is proposed the use of an optimization-based method, which has been
extensively used in designing virtual environments quickly and affordably [21][22][23][24][25].
The optimization-based synthesis of game-related content is a critical technique used extensively
in the modern game-development process [26]. Furthermore, optimization-based design
techniques are beginning to enhance game replayability because they offer users the ability to play
multiple variations of a single game. Examples of optimization-based methods include the work

of Hartsook et al. [27] and Hullett and Mateas [28]. They employed optimization-based design
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methods for matters of adaptability or replayability. Such methods also provide the ability to
design games that adapt to a variety of constraints and parameters; both during the initialization
process and before the game starts [29][30][31]. Optimization-based methods can even alter a
game dynamically in response to events in the game [32][33][34][35].

Our method synthesizes a game level layout taking into account the real environments and
its constraints, while also allowing a game level designer to control the synthesized gaming
environment by prioritizing the cost terms of the presented total cost function. Thus, our method
facilitates designer control over generated content and gives players the ability to dictate the degree
to which the synthesized game will focus. Our method requires a simple virtual reality controller
that comes with a head-mounted display to capture the layout of the real environment. This feature
is in contrast to the 3D scanner common in previous methods [19][20]. Although no precise
information about the real environment could be captured using a virtual reality controller, our
low-cost layout-capturing method provides enough data to sufficiently synthesize the game levels.
We think our method could be useful for the automatic design of unique virtual reality game level

layouts without the need for additional hardware.

2.3  Preliminaries

This section presents the preliminary steps required to develop our pipeline. The steps
include: (1) the capture process for the real environment and its associated constraints; (2) the
game level chunks that need to be designed for synthesizing the virtual reality game levels; and (3)

generating and characterizing the virtual grid.

2.3.1 Capturing the real environment and Constraints

Our method begins by asking the user to capture the real environment and its constraints
in which the virtual reality game will be created. This process generates a virtual layout according
to the real environment in which the user is willing to play the game. The player is then asked to
use the controller, which comes with the head-mounted display, to define the real environment’s
entire play area. To do so, the player simply clicks a button when the controller is located at the
diagonal corners of the environment. In our case, we are using the Oculus Quest head-mounted

display and the Oculus Touch controller (Oculus Quest does not allow passthrough access;
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therefore, a user should take slightly off the head-mounted display to observe the real environment
during the capturing process). In larger and more complex shaped environments, in which the
shape is more than a single rectangle, the user can capture multiple rectangular shapes. Later, these
shapes are combined by our system to provide the actual shape of the environment. Note that only
the area of the plane (x, z coordinates) is captured.

Next, the user is asked to define the constraints found in the real environment. Constraints
are defined as any object that might prevent the user from moving within the physical environment
(e.g., coffee tables, couches, television stands, chairs, etc.). For this process we use the virtual
reality controller, with which the user must define a shape that encloses the objects. After the user
finishes the capturing process for the real environment and its constraints, the system generates
the environment’s layout. Figure 8 shows examples of the real environment and the associated
layouts generated based on the process described above.

This paper does not present a commercial product but a proof of concept; that is, how to
automatically design virtual reality game levels based on real environment constraints by
considering a number of game level layout design decisions. To simplify the process of capturing
the environment and its constraints, we use rectangular shapes. If a number of resources for game
level chunks are available, a developer could easily extend our approach to capture the real
environment more precisely by incorporating additional shapes or using a paint-based method to
define environment’s boundaries. However, most virtual reality systems use base stations which
enclose the user in a square shaped area. Thus, our proposed method considered only rectangular-

shaped game level chunks.

2.3.2 Game level chunks

To synthesize game levels based on a real environment and its constraints, we used game

level chunks (see Figure 9). Because this project is a proof of concept, we decided to use a

relatively small number of chunks compared to multiple 3D game objects found in a commercial

game. However, given the availability of various resources, a developer could easily extend our

approach and incorporate more game level chunks. Our particular game level chunks are divided
into three types:

e Open Space Chunks: Open space chunks are placed in free-from-obstacles grid

cells and are used to define the virtual environment’s walkable area.
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e Boundary Chunks: Boundary chunks are placed in the virtual environment’s
boundaries in order to inform users of the boundaries and prevent them from
colliding with the walls in the real environment. We developed two types of
boundary chunks: (1) the corner boundary chunk and (2) the straight boundary
chunk.

e Obstacle Chunks: Obstacle chunks are intended to substitute real environment
obstacles in the virtual reality game. These chunks inform the user that particular
areas in the virtual environment are occupied, thereby preventing the user from

colliding with real environment obstacles.

Each chunk is represented with the label that characterizes it and a directional vector (up,
down, left, right, right and up, right and down, left and up, and left and down). The directional
vector is later used to correctly align the game level chunks with the generated grid map.
Additional chunks might be needed for more complex games and real environments. However,
based on our experiments during development, we found that the three types of game level chunks
are sufficient enough to cover almost any area and allow developers to synthesize a virtual reality

game level that can fit a real environment and its constraints.
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Figure 9: Examples of game level chunks developed for the proposed project. © [2021] Elsevier

2.3.3 Grid generation and characterization

Given the area captured by the user as input, our system generates a M x N virtual grid,

which encloses the entire captured area. Later, a part of this grid is used to synthesize the game
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level. For this project, a cell in the grid has a dimension of 50 x 50 cm, which is equal to the size
of each game level chunk; however, other dimensions could also be considered. Our system uses
an inside-outside test [36] to identify which grid cells correspond to the captured area. Next, the
grid cells that correspond to the captured area become the “boundary” or “inner.” The remaining
grid cells which are not in a captured area are then excluded.

Our system assigns a directional vector (V) to the boundary cells: up, down, left, right,
right and up, right and down, left and up, and left and down. The first four vectors are assigned to
the straight boundary chunks, and the last four diagonal directional vectors are used for the corner
chunks. For the inner cells, the system labels each cell as “walkable” for any cell that could be
walked by a user, or “obstacle” for any cell occupied by a real environment obstacle. In
characterizing each cell as “walkable” or “obstacle,” we used the inside-outside test between each
cell of the grid and each obstacle shape captured by a user. Both “walkable” and “obstacle” cells
are assigned with an up vector. Figure 10 shows an example of a captured layout and its

representation in the virtual grid.
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Figure 10: A layout of the real environment (left) and its representation based in the virtual grid
(right). W stands for walkable, O stands for obstacle, and B stands for boundary grid cells. ©
[2021] Elsevier

2.4 Problem formulation and optimization

The goal of the proposed approach is to synthesize virtual reality game levels optimized
for the real environment and its constraints and other design criteria, which are encoded by cost
terms. Let L = [cy4,...,cy ] denote the current configuration of the synthesized game level
layout composed of several chunks c; ;. Although the game levels chunks are represented in a 2D

grid for simplicity, any chunk that belongs to the game level L will be represented as c;. To
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synthesize a game level, we developed a total cost function Cr:4; (L) that evaluates the quality of
a level L based on a number of costs (game level layout design decision):
Crotar(L) = wyCy(L) + wpCp(L) + wyCy(L) + wuCy(L) (10)

Cy is the mapping term that attempts to map the game level chunks according to the input
information represented as virtual grid array after the grid characterization process. Cr ensure a
one-to-one fitting between the captured area and the synthesized game level. The C,, denotes the
variation that could be introduced to the composed game level layout. The C4 represents the
accessibility term that evaluates whether the user will be able to access any open space chunk in
the synthesized level layout. Finally, the wy,, wg, wy,, and w, are weights that correspond to the
cost terms and prioritize each cost term differently during the optimization process depending on
their weighted value, given that {wy,, wg, wy,, ws} € [0, 1].

Various cost terms could be implemented to handle the layout synthesis of a game level.
However, in this implementation phase, we limited the level layout cost terms to those most
important for this project. The cost terms and the optimization process are presented in the

subsections below.

2.4.1 Mapping cost

We implemented a level layout mapping cost that tries to map the chunks composing the
game level based on the labeled grid of the real environment layout. To do so, we defined the

following cost term:
1
Cu(l) = mz(civgi) F(Civgi) (11)
where ¢; denotes a chunk of the game level, and g; denotes a grid layout cell. (¢;, g;) is

then computed based on the following condition:

I _ {0 if L(c;) = L(g;) and V(c;) = V(g;)
(cug0) 1 otherwise

where L(-) returns the label information of the chunk c; and grid cell g;, respectively. V(-)
returns the vector information of the chunks c; and grid cell g;, also respectively. This ensures that
the Cp, (L) cost term returns a high value when there is an inconsistency between the layout of the
synthesized game level and the target grid map information. Conversely, the cost term returns a

low value when the synthesized game level is mapped correctly into the grid map information.
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2.4.2 Fitting cost

To synthesize a game level layout that matches the layout of the real environment as close
as possible, we introduced the use of the fitting cost function that attempts to minimize the
difference between the area that the game level layout occupies and the area that is captured by a
user using the virtual reality controller; this is our input area. This step is achieved by tweaking
parts of the game level chunks (e.g., moving the fence of the boundary game level chunk closer to
the real environment’s captured boundary or selecting another boundary fence game object from

our dataset that better fits the target grid). The fitting cost term is then represented as:
2

Cr(L) = | 5-An(L) = 3= AR) (12)

target
where Az(L) denotes the areas of the level layout L inside the boundaries and A(R)

denotes the captured area of the real environment. Finally, V; and V; are normalization constants.

2.4.3 Variations cost

We realize that, as long as the information provided by the same real environment, the grid
array remains the same (i.e., the topology and size of the real environment and the obstacles located
in it do not change at all). Thus, the synthesized game levels would have minimal to no difference
with one another; and therefore, the synthesized game level could be considered monotonic, and
the game players might become bored quickly. In order to synthesize game levels that differ from
one another and keep the players engaged as the game levels progress, a variation cost term was
introduced to our total cost function. This cost term ensures that each generated game level will
not look the same. For the level variation cost term, we use as input the grid array generated
according to the real environment. We apply a Perlin noise [37] function to synthesize an

intermediate game level layout I. Then, the variations cost is defined as:

2
cV<L)=(|71|2ci|L<ci)—1<ci)| - o ) (13)

target
where gy, € [0, 1] is the target difference between the level layout L and the intermediate
level layout I composed of c¢; game level chunks. For example, o, = 0.50 means that the

intermediate level layout I and the synthesized level layout L are 50% similar. Figure 11 illustrates
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different intermediate level layouts placed on top of the level layout based on different variation
targets (oy). It should be noted that with the proposed method the variation can be controlled by
the user; therefore, the user can choose the amount of variation that will appear in the synthesized

game level.

(a) () oy =.25 () oy = .50 ) oy =.75 (e) oy = 1.00

Figure 11: The layout of an intermediate game level synthesized using the Perlin noise (a), and

the layout of the final synthesized game level layout in which the Perlin noise is included with

different oy, targets (4(b)—(e)). For all examples, the variation cost is given high priority, wy, =
1.00, and the accessibility cost is given low priority, w, = .05. © [2021] Elsevier

2.4.4 Accessibility cost

Because of the variations cost, we understand that a synthesized game level might become
over-occupied with obstacle chunks, blocking walkable areas that would otherwise be accessible
to a user (see Figure 11(d) and (e)). To overcome this limitation, we included in our total cost
function the accessibility cost that penalizes a synthesized game level when there are unoccupied

grid cells that are not accessible. Our accessibility cost term is represented as:
1
Ca(L) = mZ(ci,cj)H(ci,cj) (14)
which detects whether all open space area chunks c; are accessible from any other open
space chunk c;. Micie)) is computed based on the following condition:

H(c-.c,-) _ {0 ifm: ¢ —> Cj
‘ 1 otherwise

In the condition above, m denotes the path between c; and ¢;. To compute whether a path
exists between c; and ¢;, we used a simple pathfinding algorithm, the Depth-First Search [38][39].
Thus, if the pathfinding algorithm cannot connect two walkable area chunks, it returns 1 and forces
the optimizer to continue searching for a game level layout by generating new intermediate-level

layouts I(c;). Otherwise, if a path between c; and ¢; exists, the cost for that cell becomes 0;

therefore, the optimizer can achieve its goals. It should be noted that there are cases in which
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blocked areas might appear because of the capture process of the real environment and its
constraints. Because this blocked area results from the real environment’s initial capture process
and not due to the variation cost, our system does not consider that area as blocked because of the

intermediate game level layout I(c;). Therefore, it does not penalize the C4(L) cost term.

2.4.5 Optimization

The game level layout L is optimized for the defined total cost function Cy,tq;. A Markov
Chain Monte Carlo optimization technique, known as simulated annealing [40] with a Metropolis-
Hastings state searching step [41], was applied to solve this optimization problem. For this, we
first define a Boltzmann-like [42] objective function:

f(L) = exp (=2 Croea(L)) (15)
where t denotes the temperature parameter of the simulated annealing. In each iteration of
the optimization process, a move is applied to the current game level layout configuration L to
propose a new configuration of the level layout L'. In the current implementation, the following
moves were implemented:

e Replace a chunk: from the current game level layout configuration, a chunk c; is
randomly selected and replaced with another randomly chosen chunk from the
chunks dataset.

e Swap chunks: from the current game level layout configuration, two chunks are
randomly selected; the two chunks then swap positions.

¢ Rotate a chunk: our system randomly selects a ci chunk and rotates it either to —90
or +90 degrees. This move helps the optimization to align the boundary chunks in
the layout.

e Edit a chunk: our system randomly selects a boundary or obstacle chunk c; and
edits it by moving its child object (e.g., a fence) in either a positive or negative

direction of the assigned vector.
The probability of selecting the move to be applied during the optimization process at each

iteration was pre-defined by the authors. Unless otherwise specified, for the “replace a chunk”

move, we set the selection probability t0 p,cpiace = 0.30. For the “swap chunks” move, we set
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the selection probability t0 pg,,, = 0.20. For the “rotate a chunk” move, we set the selection
probability t0 protate = 0.20, and for the “edit a chunk” move, we set the selection probability to
Deait = 0.30.

The output of each move is the proposition of a new configuration of the game level layout
L. To decide whether the developed method should accept the proposed level design L’, the
proposed total cost value Cr¢q; (L") is computed and compared to the cost of the current game
level layout configuration Cr,:q;(L). To maintain the detailed balance in the optimization, our
approach accepts the proposed level Lwith the acceptance probability P(L’|L) based on the

Metropolis criterion for each move as follows:

P(L'|L) = min (1, %) (16)

To efficiently explore the solution space, simulated annealing [40] was applied. Simulated
annealing is controlled by a temperature parameter t that, at the beginning of the optimization, is
assigned a high temperature t value to allow the optimizer to explore the synthesis of the game
level solution space aggressively. During the optimization process, the temperature values t is
lowered gradually. In the current scheme, we set t = 1.00 at the beginning of the optimization
and decided to decrease it by 0.10 at every 1000 iterations until it reaches zero. Essentially, the
optimizer becomes increasingly greedy in seeking to refine the solution while it is set to terminate
if the total cost change is less than 5% over the previous 100 iterations. Based on our
experimentation, we set the weights of each component of the total cost function in our
optimization as wy, = 1.00, wp = 1.00, w, = 0.50,w, = 1.00, unless otherwise specified.

By changing the weight of each cost term, the game level designer can always control the
synthesis of the layout to emphasize specific design goals. We think that providing the game level
designer the freedom to interactively explore possible game level layout designs can be a helpful
feature. For example, the designer might want to prioritize the synthesized game level in a
particular way by simply adjusting the weights on the total cost function (e.g., if a designer wants
to assign a lower priority to the accessibility cost term, the weight of the accessibility cost term
should be set be w, < 1.00). The optimizer is responsible for generating the level layout and
proposing a game level design for the designer-specified priorities. Figure 12 shows examples of
game levels (the two games presented in Section 5) synthesized for different real environment

layouts and different weights assigned to each component of the total cost function.
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Figure 12: Example of synthesized level layouts based on different input layouts and weights
assigned to each cost term of the total cost function. For all examples, the weight of the variation
cost is set to wy, = .00. © [2021] Elsevier

2.5 Implementation details and example games

This section provides details about the implementation of our proposal and the two games

that were developed.

2.5.1 Implementation

Our virtual reality game level design framework was implemented on a Dell Alienware
with Intel a Core i7 CPU and 32 GB of memory. Our framework was developed in the Unity game
engine using C#. Our scripts are easily adaptable to different game level chunks. The user simply
needs to attach the necessary chunks to the Inspector window editor that has been implemented.
After providing input about the layout of the real environment, our system automatically
synthesizes the game level layout. The games presented in the subsections below were also
implemented in the Unity game engine using the Oculus Integration. Our application was
implemented and exported to Oculus Quest. Depending on the size of a real environment,
synthesizing a game level consisting of 100 chunks (e.g., 10 x 10 grid) requires less than 5000
iterations. Based on our current implementation running on the Oculus Quest head-mounted
display, this process can be finished in less than one minute. Finally, both games run on 65 fps in
Oculus Quest. Moreover, we tested the number of iterations needed to synthesize game levels with
different grid resolutions (5 x 5, 10 x 10, 15 x 15, and 20 x 20 grids). In this evaluation for each
grid resolution, we developed input layouts that are occupied with 0%, 25%, 50%, 75% and 100%
obstacles and we ran the optimization process five times. The results are shown in Figure 13. As
we can observe, the iterations needed are not related to the obstacle percentage but to the size of
the grid.
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Figure 13: Number of iterations needed by our system to synthesize game level layouts with
different grid resolutions (5 x 5, 10 x 10, 15 x 15, and 20 x 20 grids) and different percentages
(0%, 25%, 50%, 75% and 100%) of obstacles that occupy the grids. © [2021] Elsevier

A comparison of the virtual reality game level layout optimization between the MCMC
and Greedy algorithms is shown in Figure 14. It should be noted that, compared to MCMC, the
greedy algorithm only accepts a proposed total cost Cr,:4; (L") that provides a better configuration
than the current total cost Cry¢q;(L). The MCMC algorithm obtains a solution with a lower total
cost value (0.08) compared to the Greedy approach (0.47). The total cost value of the greedy
algorithm experiment did not change from about iteration 550 to about iteration 650. Thus, the
greedy optimization stopped at about iteration 650. Since the MCMC algorithm can accept a
solution with a cost higher than that of the current solution with a certain acceptance probability,
the sampling is capable of jumping out from a locally optimal solution. This prevents the sampling
from being performed locally, and eventually locating a more optimal solution with a lower total

cost value. Thus, the MCMC optimization stopped at about iteration 910.
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Figure 14: A comparison between optimizing the game level layout using the MCMC and the

greedy algorithm ina 5 x 5 grid. The MCMC algorithm achieves lower minima compared to the
greedy algorithm. © [2021] Elsevier
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2.5.2 Example games

We developed two virtual reality games to demonstrate how our game level layout method
can be used in gaming scenarios. The first game is called Backyard Fortune, a puzzle game. The
second game is called The Rebooter, a shooting game. The Backyard Fortune game was the basis
of the user study presented in Section 6. Below we provide more details about the games.
Screenshots of the two games from the player’s point of view are shown in Figure 15. Moreover,
Figure 16 shows a user playing the Backyard Fortune game in our lab space.

Backyard fortune The primary concept behind Backyard Fortune is for the player to collect
puzzle pieces, find the key to a treasure box, and unlock it. The player is free to move in the
walkable area of the game level and collect puzzle pieces using the Oculus Touch controller. Two
panels on the virtual controllers are positioned where the knuckles would usually be placed. The
first panel is designed like a clipboard, which provides instructions to the player on how to play
the game. The second panel is an inventory that keeps track of which pieces have been collected
in relation to the total number of puzzle pieces in the level. These panels can be toggled. The user
can hide them and bring them back if he/she wants to keep track of how many more pieces need
to be collected. The puzzle pieces are randomly placed in the walkable area once the level layout
has been generated. The primary objective is to navigate the environment and use the controllers
to collect the puzzle pieces and put them in their inventory. Once all the pieces have been collected,
a key that unlocks the treasure box appears. The player can then pick up the key, insert it in the
front of the treasure box, and unlock the box to enjoy his/her fortune.

The rebooter The Rebooter game presents more challenging conditions to the player.
Specifically, the player tries to shoot the enemies that chase him/her. The enemies have been
designed so that they have a set patrol path around the obstacle piece. The set patrol path is
included to satisfy one of the core gameplay mechanics of video games—anticipating and reacting
to non-playable characters’ patterns. In this game, the player holds a virtual gun in his/her right
hand that shoots lasers. The laser gun is used to fulfill the instruction to destroy any enemy. The

game ends once the player destroys all enemies.
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Figure 15: Screenshots of the Backyard Fortune (left) and The Rebooter (right) games.
© [2021] Elsevier

y

Figure 16: A user playing our Backyard Fortune game in our lab space. © [2021] Elsevier

2.6  User study

A user study was conducted to evaluate the proposed optimization-based game level design
method. The following sections explain the details of our study.
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2.6.1 Participants

The recruitment of participants was based on emails that were sent to all students in our
department. In total, 25 students volunteered for the study (18 males and 7 females). Participants
ranged in age from 19 to 27, with the mean age M = 21.56 (§D = 2.78). All participants had
prior experience with virtual reality games. There was no compensation for participating in the
study. The study followed a within-group design; therefore, all participants experienced all three

conditions presented in the section below.

2.6.2 Experimental conditions

Three experimental conditions were developed to evaluate participants’ experiences: (1)
when interacting with our method in which the virtual environment is optimized based on the real
environment and its constraints; (2) when interacting with a real environment that mismatches the
constraints of the virtual environment; and (3) when interacting with a free-from-obstacles real
environment. For this study, the Oculus Quest head-mounted display was used. Note that the
synthesized game level was the same for all three conditions for all participants, which means that
the game level layout that was optimized in the first condition was also used for the rest of the
conditions. The only difference was in the layout of the real environment and the manner in which
the users were made aware of the real environment obstacles. Details of the three conditions are
provided below.

e Optimization: For this condition, the layout of the real environment and the
obstacles located in it were captured using our method. Then, the game level’s
layout was automatically generated based on the proposed method. In doing so, the
boundary game level chunks were placed on the boundaries (walls) of the real
environment. Virtual obstacles were placed as substitutes in the exact position of
real environment obstacles.

e No Optimization: This condition was used to determine whether mismatching the
real and virtual environments in terms of obstacles placed in the real environment
would affect participants’ responses. For this condition, we are using the real
environment and its constraints that were initially captured using our method. Then,

the real environment obstacles (carton boxes) were moved to a different position.
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Finally, the real environment is captured using the calibration tool in Oculus Quest;
therefore, a mismatching between the real and the virtual environment was
achieved. During the gameplay, the user is informed if he/she is close to a real
environment obstacle by the guardian functionality of Oculus Quest.

e No Obstacles: This is considered our baseline condition and was used to
investigate how participants interact in the real environment while knowing in
advance that there are no obstacles (the carton boxes were removed from the play
area); this kind of real environment could be considered as safe. As in the other two
conditions, we are using the game level layout that was generated by the
optimization condition. Boundary game level chunks were placed in the virtual
environment to inform the participant about the actual boundaries of the real
environment and obstacle chunks were placed at the initial positions of real

environment obstacle.

2.6.3 Measurements

In this study, a computer-based questionnaire was provided to all participants. The purpose
was to explore their presence and fear of collision (emotional state) with the virtual environment.
Specifically, the sense of presence was measured using the Igroup Presence Questionnaire (IPQ)
[43][44], which consisted of 14 items and was divided into four parts: (1) one item reflected the
initial definition of presence, according to Slater and Usoh [45]; (2) five items reflected spatial
presence, denoting the sense of being “physically there” in the virtual environment; (3) four items
reflected involvement focused on attention during the interaction, as well as the perceived
involvement of the participants; and (4) four items reflected the experienced realism, which
evaluates the realism of the virtual environment. The four-item scale on emotion, drawn from
Tcha-Tokey et al. [46], was also used to investigate participants’ fear (emotional state) while in
the virtual environment. Finally, a section of the questionnaire asks participants for additional input
about their experience when interacting with the three experimental conditions outlined in Section
6.2.
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2.6.4 Procedure

When participants entered the lab, the research team asked them to sign a consent form
approved by the Institutional Review Board of our university if they agree to participate in the
study. Then, the participants were then asked to complete a demographics questionnaire.

As mentioned, Oculus Quest does not allow passthrough access; therefore, a member of
the research team that was experienced with the capturing process used the Oculus Quest to capture
the real environment and its constraints, and during this process the researcher took slightly off the
head-mounted display to observe the real environment. The participants were not given any
information about the conditions they would experience. They would first see the virtual
environment once they put on the head-mounted display, and then the game would start. The
research team helped the participants with the virtual reality equipment (Oculus Quest) before the
game started. Once the virtual reality gaming application started, the participants were asked to
play the game. When the game was over, a visual indication on the screen would notify the
participant. The research team then helped the participants by setting up the next experimental
condition.

To control potential carry-over effects, the sequence in which each participant would
experience the three experimental conditions was randomized using Graeco-Latin squares.
Between the conditions, the participants were asked to complete a questionnaire distributed in a
paper-based format. This time period was also used to provide participants with a short break. The
participants were informed that the virtual environment’s boundaries corresponded to the
boundaries of the real environment. However, participants were not told whether there was a match
or mismatch between the real and the virtual environments. They were able to observe it once they
put on the head-mounted display. It should be noted that none of the participants made contact
with any of the walls during the study. Each participant spent no more than 45 minutes completing

the study. All participants were aware that they were free to quit the study at any time.

2.6.5 Results

In analyzing our data, we used a one-way repeated measures analysis of variance (ANOVA)
to determine the differences across the three experimental conditions. The internal validity of the

scales of the questionnaire was measured using Cronbach’s alpha coefficient. With sufficient
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scores (0.73 < a < 0.94), we used a cumulative score for each item that belonged to each
questionnaire component. The normality assumption of the objective measurements and subjective
ratings were evaluated with Shapiro—Wilk tests at the 5% level and with the residuals’ graphic Q-
Q plots. Post hoc comparisons were conducted using Bonferroni corrected estimates. Ap < 0.05
value was deemed statistically significant. Boxplots from the obtained results are shown in Figure
17.

Statistically significant results were found for presence across the examined experimental
conditions [ A = 0.603,F (2,23) = 7.560,p < 0.005,n; = 0.397 ]. The post hoc
comparison showed that the mean score of the no optimization condition (M = 3.24,SD = 1.56)
was lower than that of the no obstacle condition (M = 4.88,SD = 1.42)atthe p < 0.005 level
and the optimization condition (M = 4.64,SD = 1.60) atthep < 0.05 level

The spatial presence of participants was statistically significant across the examined
experimental conditions [4 = 0.504, F (2,23) = 11.220,p < 0.001, n; = 0.494]. The post
hoc comparison showed that the mean score of the no optimization condition (M = 3.52,5D =
1.61) was lower than that of the no obstacle condition (M = 5.56,SD = 1.38) at the p <
0.005 level and the optimization condition (M = 4.92,SD = 1.52)atthep < 0.001 level.

We also identified a statistically significant effect on the participants’ involvement across
the examined experimental conditions [ A = 0.613,F (2,23) = 7.273,p < 0.005,n; =
0.387]. The post hoc comparison showed that the mean score of the no optimization condition
(M = 3.36,SD = 1.80) was lower than that for the no obstacle condition (M = 4.96,SD =
1.59) atthe p < 0.01 level and the optimization condition (M = 4.56,SD = 1.44)atthep <
0.05 level.

Notably, no statistically significant results were found for the experienced realism
measurement across the examined experimental conditions [A = 0.930,F (2,23) = .864,p =
0.435,n; = 0.070]. However, a statistically significant effect on the participants’ fear (emotion)
was found across the examined experimental conditions [A = 0.328,F (2,23) = 23.593,p <
0.001,n; = 0.672]. The post hoc comparison showed that the mean score of the no obstacle
condition (M = 2.32,SD = 1.10) was lower than that for the no optimization condition (M =
4.88,SD = 1.53) at the p < 0.001 level and the optimization condition (M = 3.48,SD =
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1.53) at the p < 0.05 level. Moreover, we found that the mean fear rating of the optimization

condition was lower than the no optimization condition at the p < 0.05 level.
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Figure 17: Boxplots from self-reported ratings for each examined concept across the three
experimental conditions. © [2021] Elsevier

2.6.6 Discussion

The analyses of presence, spatial presence, and involvement revealed that our method
could in fact synthesize the virtual reality game level based on the real environment and its
constraints and further synthesize game levels that keep the user engaged. Specifically, our
optimization-based method (optimization condition) was able to outperform the no optimization
condition. Please note that the no optimization condition describes the way that people experience
virtual reality games from their living room; in other words, from a real environment full of
obstacles that do not match the virtual environment in terms of constrains and appearance.
Additionally, it appeared that, during the gaming experience, the presence of our participants was
not interrupted (break-in-presence effect [5]) by the guardian functionality of Oculus. As a result,
our participants were more able to focus on and enjoy the game during the optimization and no
obstacle conditions.

Moreover, the statistical analyses showed that the proposed method could indeed provide
results close to the no obstacle condition. This encouraging finding means that the participant level
of presence, even in a constrained environment, was close to the level of presence in a free-from-
obstacles environment. This finding indicates that when participants are placed in a virtual
environment that matches the constraints of the real environment, their presence level is close to a
condition during which they know in advance that they will be able to move and interact in a free-
from-obstacles environment, even if there is no appearance matching between the two

environments. Finally, for experienced realism, participants experienced the same virtual
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environment across the three conditions. As a result, they provided similar ratings since the
experienced realism was related more to the appearance of the virtual environment and less on the
structure of the real environment [47][48].

In addition to the positive results regarding presence, we also observed interesting findings
relating to the participants’ emotional state when examining their fear during their interaction with
the three different experimental conditions. Specifically, participants indicated that when playing
the game during the no obstacle condition, their level of fear was lower than when playing in the
no optimization and the proposed optimization conditions. This result indicates that when
participants were placed in a free-from-obstacles real environment, they felt safer walking in it
because simply there were no obstacles to anticipate or avoid. However, once obstacles were
placed, the participants began to feel less safe since they needed to move more carefully in order
to avoid any potential sudden encounters like hitting an obstacle. Moreover, our results showed
that participants’ fear was rated lower during the optimization condition than in the no optimization
condition. The finding related to fear is significant because it demonstrates that, to the extent
participants become aware that there is a match between the real and the virtual environment in
terms of layout and constraints, this spatial awareness reduced the fear of colliding with the
obstacles. We consider this to be the most important finding of the study that highlights the
advantage of the proposed approach.

The participants also submitted several comments about the different conditions they
experienced. All of the comments we received for the optimization-based approach were positive,
suggesting that optimizing virtual reality game levels for real environments and their constraints
should be taken into consideration by virtual reality game developers. For the optimization
condition, some of the participants reported that once they became familiarized with the virtual
environment, they realized there was a match between the position of the real environment
obstacles and the virtual objects they were viewing. A few more said that the game objects in the
virtual environment made the location of the walkable area clear and therefore easy for them to
navigate freely in the virtual environment. Regarding the no optimization condition, some
participants reported they disliked the interruption of the Oculus’ guardian functionality. Moreover,
others noted that such mismatching between the real and the virtual environment made them more

apprehensive before performing their next step.
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In conclusion, we realized it would have been useful to collect additional data to further
understand how participants interacted in the virtual environment during the three conditions. In
particular, added feedback on data such as participants’ movements, proximity to boundaries,
proximity to real and virtual obstacles, and the number of collisions with real obstacles would have
provided additional and, potentially, useful information on the way they perceived and interacted
between the real and virtual environments. However, considering the findings from the self-
reported ratings and the comments participants submitted, we concluded that the proposed
optimization method could be a promising solution for synthesizing virtual reality game levels for

real environment constraints while also helping keep the user engaged with the game.

2.7 Conclusions, limitations, and future work

This paper introduced an optimization-based method of designing game levels based on
real environment layouts and the constraints that vary in shape and size. We think that our method
could be effectively used in a variety of real environments, including living rooms, bedrooms, or
office spaces. The proposed method synthesizes game level layouts in a fast and scalable manner
with minimum effort by the user and without the need for additional hardware (e.g., a 3D scanner)
for providing input information. Additionally, our method provides game level designers with the
necessary control of the synthesized game level in order to prioritize the objectives of the design
process by simply changing the weight that controls the cost terms.

To understand the effectiveness of the proposed method, we conducted a user study. Our
study provided a number of interesting insights into the participants’ experience in the virtual
environment. The results of the user study indicated that the proposed method was admittedly able
to enhance the participants’ presence and involvement while reducing the fear of collision with the
real environment and its obstacles.

There are several limitations that should be addressed in the future. Tackling these
limitations would allow modifications to the proposed method by making it applicable to a broader
range of users and by enhancing its efficiency to accommodate more complex gaming scenarios.
The proposed method examines only a small number of chunk types and chunks with simple
shapes. However, there may be games that require a variety of complex chunks in terms of shape
and size. Further, the proposed method looks at only the (x, z) coordinates of the real environment

and its constraints, thereby excluding the height of the environment and the obstacles contained in
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it. We think that incorporating the third dimension, or even a more precise representation of the
real environment using a 3D scanner, would allow us to synthesize game levels that match the real
environment more precisely in terms of shape and constraints.

In addition to the above-mentioned limitations, several alternative directions could also be
explored in the near future. Specifically, the current method is highly dependent on the actual size
of the real environment. We think that the implementation of a layer-based method similar to the
Flexible Spaces [49] and the Impossible Spaces [50], in addition to our optimization-based
approach, would allow game developers to design longer and more complex game levels (e.g., a
dungeon-related game). Moreover, instead of using a small number of game level chunks, we think
that experimentation with a large 3D dataset might be useful to generate game levels with enhanced
appearance alternatives within the synthesized layout. We hope that more optimization-based
approaches that synthesize virtual reality game levels for real environment constraints will be

proposed in the near future.
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Abstract

We developed a method to synthesize game levels that accounts for the degree of
collaboration required by two players to finish a given game level. We first asked a game level
designer to create playable game level chunks. Then, two artificial intelligence (Al) virtual agents
driven by behavior trees played each game level chunk. We recorded the degree of collaboration
required to accomplish each game level chunk by the Al virtual agents and used it to characterize
each game level chunk. To synthesize a game level, we assigned to the total cost function cost
terms that encode both the degree of collaboration and game level design decisions. Then, we used
a Markov-chain Monte Carlo optimization method, called simulated annealing, to solve the total
cost function and proposed a design for a game level. We synthesized three game levels (low,
medium, and high degrees of collaboration game levels) to evaluate our implementation. We then
recruited groups of participants to play the game levels to explore whether they would experience
a certain degree of collaboration and validate whether the Al virtual agents provided sufficient
data that described the collaborative behavior of players in each game level chunk. By collecting
both in-game objective measurements and self-reported subjective ratings, we found that the three
game levels indeed impacted the collaboration gameplay behavior of our participants. Moreover,
by analyzing our collected data, we found moderate and strong correlations between the
participants and the Al virtual agents. These results show that game developers can consider Al
virtual agents as an alternative method for evaluating the degree of collaboration required to finish
a game level.

Additional Key Words and Phrases: game level, chunks, collaboration, Al agents, behavior

trees, optimization

3.1 Introduction

In our daily lives, we collaborate with others on various tasks in various ways. According
to Webster’s Dictionary, “collaborations”® refers to “the work and activity of a number of
persons who individually contribute toward the efficiency of the whole.” In addition to real-
world collaborative tasks that people perform in their everyday lives (e.g., two people collaborate

to rearrange a couch), people also perform tasks in virtual worlds and video games (e.g., two people

8 https://www.merriam-webster.com/thesaurus/collaboration.
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collaborate to catch an enemy). Although collaborative experiences in humans’ daily lives are
relatively common, the evolutionary foundations of humans’ collaborative skills remain unclear
[44].

In games and VR applications, the tasks requiring users to collaborate, and the degree of
collaboration required to accomplish a given task are manually built or programmed by the game’s
designers. However, a game designer can design hundreds of game levels that share similar game
level chunks. For example, a game level designer can synthesize platform games (e.g., games
similar to Super Mario Land®) by repeating various predesigned game level chunks. In addition,
the designer is responsible for fine-tuning the degree of collaboration required for each game level,
which is a tedious and time-consuming process. To overcome these issues, we propose a pipeline
that automatically characterizes the degree of collaboration of game level chunks and synthesizes
game levels with designer-defined degrees of collaboration targets (Figure 18). As a result, a game
level designer can request game levels with different degrees of collaboration. The designer can
later edit the synthesized game level if needed, automating the whole process and minimizing the
time required to design the game levels.

In this project, we targeted the “shared goal” [1][70] and “mutual benefit” [65] aspects of
collaboration. In particular, we thought that providing a shared goal to the players (finishing the
game level) would work as a force that holds players together and allows them to coordinate their
efforts and work together toward mutual benefit. According to Uhlaner et al. [72], when there are
strong shared goals, players are more likely to prioritize group needs over personal needs. In
addition, there tends to be more cooperation and collaboration when there are strong shared goals,
and players are more likely to defer personal benefits for collective benefits. Shared goals focus
and coordinate strategic action toward mutual benefit, increasing the likelihood that players can
simultaneously fulfill individual and group goals. The proposed method is divided into three parts.
First, a game level designer is responsible for designing playable game level chunks. Second,
artificial intelligence (Al) virtual agents are implemented to play the game level chunks. We collect
data from these agents and use them to characterize the degree of collaboration of each game level
chunk. Third, by developing cost terms that encode various design decisions, our method
automatically synthesizes a game level that fulfills all designer-specified design decisions. Such a

formulation allows our system to synthesize several variations of game levels that satisfy the

® https://www.mariowiki.com/Super_Mario_Land.
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designer-defined parameters in a few seconds, offering variability across game levels. According
to the literature [40][41][80], such variability is important for keeping players engaged during
gameplay.

The scope of this project was twofold. First, we aimed to validate whether the proposed
method automatically synthesized game levels with different degrees of collaboration assigned to
them and understand how players changed their gameplay behavior and perceived these different
degrees of collaboration in the game levels. Second, we aimed to explore whether Al virtual agents
can be used to characterize the collaborative behavior of game level chunks and, thereby, provide
sufficient data that describes the collaborative behavior of players in each game level chunk. To
accomplish these aims, we conducted a user study to collect data from participants. For our user
study, we requested that our optimizer synthesize game levels requiring low, medium, and high
degree of collaboration. We collected various in-game measurements during the gameplay.
Moreover, we asked the participants to respond according to the scale we developed for this project.
The obtained results indicated that our method could synthesize the game levels in which the
participants collaborated differently across the three examined conditions (low, medium, and high
degrees of collaboration). In addition, we evaluated the ability of the Al virtual agents to provide
data that reflected the degree of collaboration required by the participants. The analysis results
showed that the participants followed a parallel collaboration pattern with the Al virtual agents,
indicating that game designers can use such agents as an alternative method for evaluating the
degree of collaboration needed to complete a given game level. In addition to the positive findings
of our study, we also discuss some limitations to guide future research in automatic game level
design for collaborative gameplay.

The rest of the paper is organized as follows. In Section 3.2, we present related work on
collaborative games and virtual reality experiences. In Section 3.3, we describe the preliminary
remarks of our project. In Section 3.4, we explain the formulation of the game level synthesis and
the optimization process. In Section 3.5, we outline the conducted user study and discuss our
findings. In Section 3.6, we review the limitations of our method. Finally, in Section 3.7, we

present our conclusions and potential future research directions.

92



Figure 18: Our method synthesizes a game level in which participants collaborate in a shared
virtual environment to play a game.

3.2 Related Work

Computer games encode problem-solving activities in which players build a strategy to
overcome the difficulties they face [57], drawing on prior problem-solving knowledge as they
explore the solution space for a given problem [33]. According to Sedano et al. [58], collaborative
games encode activities in which the players must work together toward a common outcome. This
means that the players should work collectively to identify the dominant strategy for a given in-
game problem. Most multiplayer games incorporate both collaborative and competitive mechanics.
Examples of games that require collaboration between players are Portal 2,%° Trine,!* and Keep
Talking and Nobody Explodes.'? In Keep Talking and Nobody Explodes, the players need to diffuse
a bomb. One player is responsible for explaining how to defuse the bomb by using the provided
manual, and the other player is responsible for performing the necessary operation. Providing the
option for two or more players to collaborate toward achieving a common goal defines the
subgenre of collaborative gameplay.

One of the immensely popular and largest emerging multiplayer game genres that also

encode collaboration is the Multiplayer Online Battle Arena (MOBA) [47], e.g., the League of

10 https://www.thinkwithportals.com/.
1 https://www.frozenbyte.com/games/.
12 https://keeptalkinggame.com/.
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Legends™ game. In such games, two teams of players compete to destroy each other’s base. The
individual players act collectively, while the teams coordinate to meet shared goals [71].
Additionally, Massively Multiplayer Online Role-Playing Games (MMORPGS), such as the World
of Warcraft,'* allow many players to collaborate in various tasks, such as fighting a dragon.
According to Wikipedia’s list of cooperative video games,*> some MMORPGs can be played by
players ranging from two, such as Space Duel® and Sky Force,*’ to 128, such as Freelancer'® and
The Forest.!®

Zagal et al. [81] explored how players who work together influence a game’s design by
analyzing collaborative board games. They found that some tension between collaboration and
selfish play is required to create an interesting collaborative game even though the players
ultimately share the same goal and always win or lose as a group. This tension can facilitate
discussions about how to reach the shared goal. Zea et al. [82] explored how game level designers
can use collaborative learning requirements as game design guidelines. They proposed guidelines
to help developers create more efficient collaborative games, such as “give players a common goal
and shared rewards,” “require a minimal score of each player before the group can progress, but

&

also give the players enough information to enable helping,” “make players accountable for their
actions, for example by showing their individual results to the group.” “guide group members
towards social interactions, for example require consensus to foster discussions,” and “establish a
rotating leader role.”

Rocha et al. [53] proposed various methods to force collaboration among the game players.
Among them, we can distinguish between the “shared goals” method, in which cooperating players
have similar (or identical) objectives that they must complete, putting them on the same pathway
toward their goals, and the “complementary” and “synergies between abilities” methods, both of
which involve asymmetry between the two (or more) players and their abilities. Seif EI-Nasr et al.
[59] found additional patterns that define collaboration in commercial games. Specifically, by

analyzing 14 games, they found patterns such as “players interacting with the same object,”

13 https://en.wikipedia.org/wiki/League_of Legends.

14 https://en.wikipedia.org/wiki/World_of Warcraft.

15 https://en.wikipedia.org/wiki/List_of cooperative_video_games.
16 https://en.wikipedia.org/wiki/Space_Duel.

17 https://en.wikipedia.org/wiki/Sky_Force.

18 https://fen.wikipedia.org/wiki/Freelancer_(video_game).

19 https://en.wikipedia.org/wiki/The_Forest_(video_game).
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“shared puzzles or characters,” “enemies specifically targeting separated players,” “automatic
vocalization,” and “limited (shared) resources.” Moreover, through an evaluation process, they
validated the importance of such patterns in forming collaborative gameplay. In a similar vein,
Reuter et al. [3] introduced game design patterns for collaborative player interactions. They
analyzed 15 well-known games from different genres and extracted the patterns used to guide
collaborative game designs to foster interaction between players. Later, they classified the
interactions into several dimensions (e.g., spatial and temporal). Lastly, to address the issue of
authoring collaborative multiplayer games, Reuter [51] conceptualized an authoring environment
that consisted of four modules: (1) game design patterns as player interaction templates, (2) a
formal analysis concerning structural errors, (3) collaborative balancing, and (4) a rapid
prototyping environment.

In addition to the previously mentioned work that presented findings on game design
patterns that enforce collaboration, industry experts have also discussed game mechanics and
“dynamics” used to force collaboration. Specifically, Luaret?® further defined four categories: gate,
comfort, class, and job. “Gate” refers to collaboration mechanics that require all players to be
present to complete a task (i.e., two players lifting a gate, hence the name). “Comfort” refers to
players facing a challenge that is so difficult that having more than one player is necessary.
Compared to “gate” mechanics, “comfort” mechanics indicate that it is theoretically possible but
extremely difficult for a solo player to perform the given task, thus strongly encouraging
collaborative behavior rather than rigidly enforcing it. Both “class” and “job” involve assigning
different roles to each player, either through their player avatar or character (similar to “class™) or
simply through player actions (similar to “job”). Finally, Redding? defined several collaboration
“dynamics”, which describe mechanisms used to create collaborative behavior between two
players. Redding placed these dynamics on a gradient from “prescriptive” (forced cooperation) to
“voluntary” (encouraged but not required collaboration), which included gating/tethering, exotic
challenges, punitive systems, buffing systems, asymmetric abilities, combined abilities, and
survival/attrition.

However, there are also cases where developers provided practical guidelines to force

collaboration in games. The developers of the Jamestown: Legend of the Lost Colony?? game

20 https://www.gamasutra.com/view/news/328756/The_four_atoms_of cooperative_video_games.php.
2 https://www.gdcvault.com/play/1014379/Keep-it-Together-Encouraging-Cooperative.
2 https://en.wikipedia.org/wiki/Jamestown:_Legend_of the_Lost_Colony.
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provided practical guidelines on designing collaborative games based on player observations?®
they made. Specifically, they suggested that game developers should “prevent waiting times,”
“avoid differentiating statistics like individual scores” (which contradicts Zea et al. [82]), “take
into account that the players’ skill can vary and that negative contributions could result in blaming,”
“make sure that teams only fail as a collective and that each player is able to contribute something
tangible,” and “facilitate interactions among the players.” Likewise, the developers of the Together:
Amna & Saif?* game followed similar rules to establish a relationship between the players.?
Specifically, they included the “avoid levels that could be solved without all players contributing,”
“add game mechanics that allow helping and coordination,” “have no abilities unique to each
player so that each player knows exactly what the others can do” (contradicts Zagal et al. [81]),
and “let players choose their responsibilities at any given time, for example to help when a player
has difficulties using a certain ability.” However, we should note that these suggestions coming
from research or industry sometimes differ significantly and even contradict each other in some
respects. These differences highlight the fact that, in the game design process, there is no single
right answer for most questions. Instead, decisions have to be made for each game individually
and must be based on the intended target audience. This necessity was also pointed out by Corrigan
et al. [17], who found that collaboration has to be required by the game; otherwise, the players
tend to play solitarily.

In addition to collaboration in video games, the virtual reality research community has
proposed various applications related to collaboration in a shared space. Zhou et al. [84] developed
a collaborative asymmetrical mixed reality dance game called Astaire. The players of this game
dance together while hitting the game targets shaped as musical notes spawning in the space.
Ibayashi et al. [34] developed a collaborative experience called Dollhouse VR, which facilitates an
asymmetric collaboration among users in and out of virtual reality. In Dollhouse VR, one player
uses a multitouch device to interact with the virtual environment, while the other player observes
and interacts with the virtual environment through a head-mounted display. Piumsomboon et al.
[49] developed a remote collaborative extended reality system to create new types of
collaborations across different devices. Malik et al. [43] developed a unified training tool

framework to integrate human-robot interaction into a virtual reality environment. Greenwald et

2 https://www.co-optimus.com/editorial/976/page/1/indie-ana-co-op-and-the-dev-stories-you-re-all-in-this-together.html.
2 https://togetherthegame.com/.
%5 https://www.co-optimus.com/editorial/1376/page/1/indie-ana-co-op-and-the-dev-stories-fostering-gaming-relationships.html.
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al. [31] developed a shared immersive virtual reality environment in which users interact to create
and manipulate virtual objects by using a set of hand-based tools called CocoVerse. Donalek et al.
[20] explored the potential of immersive visualization and data expiration in a collaborative, shared
virtual space. Finally, Men and Bryan-Kinns [45] explored the potential of collaborative music-
making in a shared virtual space.

Considering the abovementioned studies on collaborative games and virtual reality
experiences, it is obvious that collaborative tasks are context-dependent and diverse. Various
studies have been conducted to explore how users collaborate in groups and proposed taxonomies
to characterize users’ collaborative activities. For example, Tang et al. [66] identified six styles of
coupling---"same problem same area,” “one working, another viewing in an engaging manner,”
“same problem, different area,” “one working, another viewing,” “one working, another
disengaged” and “different problems” ---where the participants were instructed to interact with a
tabletop surface. Liu et al. [39] discussed five collaboration styles---Divide&Conquer (a parallel-
performed task in which the users must neither communicate nor help each other), LooseComm (a
parallel-performed task where the users are allowed to communicate), LooseTech (a parallel-
performed task where the users can also help each other), CloseComm (only one user can perform
the task in sequential order), and CloseTech (only one user can perform the task in sequential order,
but the second user also has an input device)---by operationalizing two dimensions: task
parallelization and shared interaction support. The results of Liu et al. [39] study also indicated
that (1) participants value collaboration even though it incurs a cost, (2) shared interaction
increases collaboration, reduces physical navigation, improves operation efficiency, and provides
a more enjoyable experience, and (3) distance increases the value of collaboration and shared
interaction.

In the present research, we used methods such as those used in procedural content
generation for virtual environments and games. Such methods, often called “constructive methods,”
use grammars [46][74], noise-based algorithms [40][75], search-based methods [42][69], or
solver-based methods [64] to generate virtual environments or game levels to maximize the
objectives of the design and/or to preserve the developer-defined constraints. For example, Arkel
et al. [73] introduced a platform game that utilizes a grammar-based procedural generation

technique to synthesize the layout of puzzle-related game levels. Since its first successful
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implementation in games such as Rogue?® and Elite?’, procedural content generation has become
a popular tool for reducing the cost of developing computer games [68]. In addition to the cost-
reduction benefits, game designers can personalize games to it players’ needs and gameplay
behaviors with procedural content generation techniques, leading to more personalized user
experiences [49]. Procedural content generation techniques also reduce storage footprint. This was
especially important in the early 1980s when memory limitations of computers and storage devices
did not allow the distribution of large amounts of predesigned content, such as game levels [4, 68].
Aside from the examples mentioned above, procedural content generation in games that encounter
collaborative gameplay is relatively uncommon. This is mainly because generating game levels
for collaboration is more challenging due to the need to ensure the mutual benefits of the
cooperation, which puts added constraints on the design spaces [73].

To the best of our knowledge, there are no available methods for evaluating the degree of
collaboration at a game level. However, there are various previously published approaches to
assessing the quality of game levels. Examples include the player challenge method [38] or the use
of rapidly expanding random trees to sample a level’s state space, which later clusters the output
tree of the rapidly expanding random trees using Markov clustering to form a representative graph
of the game level [5]. Additionally, researchers have explored spatial principles in level design to
indicate the effects of altering parts of a game level [32]. Furthermore, Berseth et al. [8] used crowd
simulation algorithms to evaluate the scenario complexity of game levels. In the current project,
we considered the use of Al virtual agents in assessing the degree of collaboration of the designed
game level chunks and, consequently, the synthesized game level; therefore, we proposed and
evaluated a method to automatically determine the degree of collaboration of a synthesized game
level. For this project, we considered previously conducted research on the procedural generation
of game levels and collaboration in shared virtual spaces to develop a method that automatically
synthesizes game levels based on designer-specified degrees of collaboration among players and
other design decisions. According to the discussed taxonomies, we mainly focused on the “same
problem same area” styles of coupling between game players, as mentioned by Tang et al. [66],
and in the LooseTech category of Liu et al. [39], since the players could perform a parallel task

and help each other to overcome the challenges of a game level. We demonstrated that our

%6 https://en.wikipedia.org/wiki/Rogue_(video_game).
27 https://en.wikipedia.org/wiki/Elite_(video_game).
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approach can be applied to generate variations at a game level based on designer-defined objectives.
Through a user study, we also validated the effectiveness of our method in generating game levels

that can impact the collaborative gameplay behavior of participants.

3.3 Preliminary Remarks

In this section, we present the different game level chunks developed for our project and
the methods we followed to characterize the degrees of collaboration for each game level chunk.
We considered synthesizing game levels for this project’s obstacle course game. Our system
composes a game level by placing game level chunks next to each other in a 1D array structure.
We chose a simplified representation of a game level mainly to validate whether the presented
methodology can synthesize game levels that fulfill the degree of collaboration targets and other
design decisions. In addition, through our user study, we aimed to explore whether the participants
could play the synthesized game levels and experience a certain degree of collaboration for each
other. Thus, we leave more complex game level structures (e.g., dungeon crawlers and open-world

game levels) for future implementations.
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(a) C1: No Help (b) C2: No Help

(d) C4: No Help {e) C5: No Help
(g) C7: Job (h) C8: Comfort (i) C9: Job
(j) C10: Job (k) C11: Comfort (1) C12: Job

(m) C13: Job (n) C14: Gate (o) C15: Gate

Figure 19: Playable game level chunks were developed by an experienced game level designer
and used in this project to synthesize game levels and account for the degrees of collaboration.
We also characterized each game level chunk based on Luaret’s taxonomy. The blue shapes
indicate the collaboration zones of each game level chunk.
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3.3.1 Game Level Chunks

In a preliminary step, we asked an experienced game level designer to design playable
game level chunks, considering different collaboration activities and the different degrees of
collaboration players need to finish each game level chunk. The designer created 15 game level
chunks. Figure 19 illustrates all game level chunks, where “playable game level chunks” denotes
a part of the game that has its own gameplay characteristics and objectives and is independent of
the other game level chunks.

Based on the theories of designing collaborative gameplay by Rocha et al. [53], Luaret?,
and Redding?, game level chunks can be divided into three categories: (1) chunks that a player
can complete on their own without the help of another player (C1, C2, C3, C4, and C5); (2) chunks
that a player can complete without the help of another player---however, if another player helps,
the players will complete the chunk faster (C6, C7, C8, C9, C10, C11, and C12); and (3) chunks
that if players do not collaborate to complete, they will become “stuck” and not be able to exit the
chunk (C13, C14, and C15). Each of these chunks are described as follows:

e C1: The exit door of this game level chunk opens when a player enters the room.

e C2: This is asimple maze where no collaboration is required. Once a player reaches
the red zone, the exit door of this game level chunk opens.

e (C3: The players cannot pass the narrow exit door simultaneously. Its exit door
opens when a player enters the room.

e C4: A player should touch the pumpkin to open the exit door of this game level
chunk.

e C5: There is a large button on the floor in this game level chunk. Its exit door opens
once a player jumps on the button.

e (C6: The player(s) should push the chest to move it to a specific place (red zone).
The speed of the chest increases proportionally to the number of players pushing it.
The exit door opens only when the player(s) places the chest on the red zone.

e (C7: One player should attract the enemy’s attention while the other player reaches
the red zone to open the exit door of this game level chunk. In the case of a single
player, that player should feint the enemy to reach the red zone to open the exit

door.
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C8: In this game level chunk, there are four bottles. The player(s) should grab the
bottles and put them in the basket. Once all bottles are in the basket, the exit door
of this game level chunk opens.

C9: There is a scroll attached to the back of the enemy. The players should
collaborate to “steal” the scroll. In particular, one player should attract the enemy’s
attention, while the other player “steals” the scroll. When a player places the scroll
in the basket, the exit door of this game level chunk opens. In the case of a single
player, that player should feint the enemy to “steal” the scroll.

C10: One player should collect the bottles and place them in a designated position,
while the other player should attract the enemies. When the players have placed all
bottles in the designated position (wooden baskets), the exit door of this game level
chunk opens. In the case of a single player, that player should run fast to prevent
the enemy from collecting the bottles and placing them in a designated position.
C11: The player(s) need to touch the pumpkins according to a particular color
sequence shown on a board to open the exit door of this game level chunk. If the
players collaborate, they will be able to exit this room faster.

C12: A player must carry the board and place it in a suitable place to form a bridge.
When a player reaches the red zone, the exit door of this game level chunk opens.
C13: In this game level chunk, players can open and close a cage by touching a
button. One player is responsible for controlling the cage, while the other is
responsible for directing the enemies to the cage. Only once the players trap all
enemies in the cage does the exit door of this game level chunk open.

C14: The players should grab the chest together and move it to the designated place
(red zone) to open the exit door of this game level chunk.

C15: Once a player reaches the top of the wall using the black ladder, the ladder
breaks. The player should then push the white ladder down to allow the other player
to climb the wall. When a player reaches the red zone, the exit door of this game
level chunk opens. If the first player that reaches the top does not push down the
white ladder, the second player will become “stuck” and not be able to exit this
chunk.
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Figure 20 illustrates different game level chunks from a first-person perspective. Moreover,
we provide gameplay examples of the synthesized game levels in the accompanying video. All
game levels and our implementations can be found on our project’s website and downloaded from

there.

(a) C2

(d) C10 (e) C11 (f) C13

Figure 20: Example scenes of the developed game level chunks from a first-person perspective.

3.3.2 Game Level Chunk Characterization

Our characterization process begins by specifying the collaboration zones at each game
level chunk. We adopted the idea of using collaboration zones from Reuter et al. [52], who
described various patterns that enforce collaboration between players. In the current project, the
collaboration zones are designer-specified areas inside the game level chunks in which we expect
both players to be present simultaneously; this means that the players collaborate to accomplish
each given task. Figure 19 illustrates the collaboration zones of different game level chunks.

For example, in the case of the C6 game level chunk (Figure 19(f)), the players should push
the chest to move it to the designated position to open the exit door. The collaboration zone of this
chunk covers the path that the players should follow when pushing the chest to the designated red
zone. Thus, if both players are present in this collaboration zone and try to push the chest together,
a high degree of collaboration will characterize that game level chunk. Therefore, the players can
push the chest faster and consequently exit that game level chunk more quickly. In this paper, we
define the degree of collaboration as the time ratio for which the virtual avatars are inside the
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collaboration zone of a game level chunk over the total time spent in that game level chunk, which,
in practice, can be translated as the “same problem same area,” as defined by Tang et al. [66].

According to the literature [41][80], the designer who created the game level chunks could
have characterized the degree of collaboration of game level chunks, or we could have recruited
participants to play each game level chunk and capture the necessary data to characterize each of
them. However, building on these approaches and adopting the ideas of Berseth et al. [6], we used
Al virtual agents to play each game level chunk. We did so because, first, the Al virtual agents
could provide more accurate data on the exact degree of collaboration required to complete each
game level chunk. Second, we aimed to explore the potential of using Al virtual agents as an
alternative method for evaluating the degree of collaboration of a game level chunk and,
consequently, of a game level. We also decided to use Al virtual agents, as several previous studies
have proved that the use of Al (virtual) agents for playtesting can provide reasonable playtesting
data [19][27][29]. In our pipeline, we integrated Al virtual agents that repeated the gameplay of
each game level chunk at super-speed in a headless mode. In addition, we introduced some
variations in the simulation (e.g., changing the starting position of each Al virtual agent) to capture
variations in how the Al virtual agents could play each game level chunk. Thus, although we
considered that each trial of the Al virtual agents might prove less useful than human data within
a fixed budget or time, the proposed automatic method could create more data.

For our Al virtual agents, we first developed behavior trees (see APPENDIX; Figure 30-
44) similar to those developed by Shoulson et al. [61] with a set of tasks in a modular fashion that
our system could use to allow the Al virtual agents to play and exit each game level chunk
successfully. Given the behavior tree that corresponds to a given game level chunk, the Al virtual
agents selected and executed the most appropriate interaction and collaboration pattern during the
runtime of the gameplay. In the Appendix of this paper, we present the behavior trees we developed
for the different game level chunks and, consequently, for the different behaviors assigned to the
developed Al virtual agents.

To obtain the degree of collaboration of each game level chunk, we assigned a random
position to each Al virtual agent at the entrance of each game level chunk and captured the degree
of collaboration that characterized a given game level chunk. For each game level chunk, we
repeated this process 10 times by randomizing the initial position of each Al virtual agent at the

beginning of their gameplay. Then, at each game level chunk, we assigned the average degree of
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collaboration of the 10 trials as the value that characterizes that particular game level chunk. As
mentioned, we denote the ratio between the time the Al virtual agents spent inside the collaboration
zone of a game level chunk to the total time spent in that game level chunk as the degree of
collaboration. Table 1 lists the obtained values characterizing the degree of collaboration of each

game level chunk.

Table 1: Classification of the game level chunks based on Luaret’s taxonomy, the degree of
collaboration of each game level chunk based on the data obtained from the Al virtual agents, the
percentage of the collaboration zone over the total area of the game lev level chunk, and the
category to which each chunk belongs (* chunks that a player can complete on their own without
the help of another player; ** chunks that a player can complete without the help of another
player---however, if another player helps, the players will complete the chunk faster; and ***
chunks that if players do not collaborate to complete, they will become “stuck” and will not be
able to exit the chunk).

Chunk ID Luaret’s Taxonomy D (¢;) Collaboration Zone (%) Chunk Category
Cl N/A .21659 25.00 *
C2 N/A 21131 25.00 *
C3 N/A 21744 25.00 *
C4 N/A 32782 14.00 *
C5 Job 27382 6.25 *
C6 Comfort 51531 13.43 *x
C7 Job 49580 62.50 *x
C8 Comfort 52015 34.51 *x
C9 Job 45949 62.50 *x

C10 Job 70475 68.75 *x
Cl1 Comfort 40382 12.50 *x
C12 Job 43350 12.58 **
C13 Job 77391 56.25 ool
Cl4 Gate 71462 37.50 flaled
C15 Gate .716937 65.63 flokal

3.4 Problem Formulation and Optimization

Our approach synthesizes game levels with respect to the degree of collaboration and other
design decisions. We outline a detailed description of the problem formulation and optimization

in the following subsections.
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3.4.1 Formulation

We begin by denoting a game level (L) composed of a designer-defined number of game
level chunks (c;) assembled in a sequential order. We represent the synthesis of the game level (L)
with a total cost function (Ct,¢,1) that encodes our game level design considerations:

Crotal(L) = WionanCeotiab + WhriorCerior (17)

Here, Cconap = [CE1ianr Clonan» Ceonap] i @ Vector of collaboration-related costs, and
Weouab = [Wok labs Weoliab Weoliap] 1S @ Vector of the corresponding weights, where each weight
€ [0, 1]. C¥ 10 Clotian, @nd CL, 105 €NCOde the collaboration-related design decisions: the mean
degree of collaboration required to complete the synthesized game level, the variation in the degree
of collaboration, and the progress of the degree of collaboration across the game level chunks.
Corior = [Chrior CR.ior] is a vector of game level prior costs that encodes design decisions, such
as the size of the game level (number of game level chunks) and repetition among adjacent game
level chunks. As mentioned before, Wp,ior = [Wpyior Wirior] is @ vector of the corresponding
weights, where each weight € [0, 1]. Based on the above formulation, we provide the game
developers with the ability to control the design decisions related to the game level by changing
the target of each cost term. In addition, we provide them with the ability to control the output
synthesized game levels by allowing them to change the priority (weight) of each cost term. This
means that even if the game level designer sets a target value for a specific cost term, if the assigned
weight of that cost term is a low value, such a design decision might not appear in the synthesized
game level due to its low priority. In contrast, if a designer assigns a high weight value to a cost

term, such a design decision would appear at the synthesized game level.

3.4.2 Collaboration Costs

We developed three cost terms to encode the design decisions regarding the degree of
collaboration at a game level (L). The collaboration costs include the mean degree of collaboration,
variation in the degree of collaboration, and progress in the degree of collaboration.

Mean Degree of Collaboration Cost: We define a cost term to control the mean degree
of collaboration the game players require to accomplish the game level (L). We define this cost as

follows:
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2
Clouan(L) = (|L|ZCiD(Ci) - PM) (18)

where p,, € [0, 1] is the target mean degree of collaboration, and D(c;) is the degree of
collaboration of the (c;) game level chunk. By assigning a low p,,value to the above equation, our
system will synthesize a game level in which the users will expect low collaboration to finish that
game level, while by assigning a high p,, target value, the system will most likely synthesize a
game level that the users will not be able to finish without collaboration. Figure 21 illustrates the

game levels synthesized by varying the value of p,.
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(a) py, = -30and p,, = .10; [C3, C5, C1, €3, C10, C11, C1, €5, C1, €3]

>

(b) Ppy =30 and p,, = .50; [C9, C2, C1, C7, C10, C11, C4, C2, C5, C2]

.

() pyy, = -30and py, = .90; [CY, C11, C7, C15, C6, C7, C4, C2, C8, C4]

.

(d) py, = .60and p,, = .10; [C3, C6, C5, C7, C13, C4, C3, C11, C6, C4]

() pp = -60and p, = .60; [C6, C4, C2, C10, C13, C10, C1, C4, C2, C12]

.

(f) ppy = -60and py, = .90; [C12, C7, €9, C6, C10, C15, C10, C6, C5, C4]

Figure 21: Different game levels synthesized by our system by varying the targets of our cost
terms. For all examples, we set the weights of the collaboration-related cost terms at w ., =
1.00, w¥yya=-30, and wk, ;. = .50, and those of the prior cost terms at w;,.;,,.= 1.00 and
wg .. = .50. The same game level chunk can appear more than once at a synthesized level (e.g.,
C1, C3, and C5 in Figure 21(a)); however, due to the adjacent repetition cost term, the system
does not repeat the same chunk one after the other.

Variation in the Degree of Collaboration Cost: We define a variation in the degree of
collaboration cost to consider the range of the collaboration required among the selected game
level chunks, as follows:
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L]

Clouan(L) = | = (D) — D)? = py (19)

where py, € [0, 1] is the target variation in the degree of collaboration, and D is the mean of the
degree of collaboration of the game level chunks. By changing the p,, target value, the developer
can specify the variation in the degree of collaboration at the synthesized game level. In particular,
by assigning a low py,, the synthesized game level will comprise game level chunks whose degree
of collaboration is close to the mean degree of collaboration target (p,,), while when the p, target
value is high, we will observe in the synthesized game level, game level chunks from the whole
spectrum of the degree of collaboration we have in our dataset.

Degree of Collaboration Progress Cost: This cost controls the progression of the degree
of collaboration along the synthesized game level. For this purpose, we allow the developer to
define a line graph (G) with a number (|L|; equal to the size of the level) of elements (g;; each g;
corresponding to a target degree of collaboration value). This line graph is used as a reference to
synthesize a game level with a degree of collaboration across the game level chunks comprising L
and aligning with the designer-defined line graph (G) while following the designer-defined mean

collaboration cost. We define the degree of collaboration progress cost as follows:

Cotan (L) = =36, (W(D() = N (D(g))) (20)
where g; is the target degree of collaboration for the i — th game level chunk from the pre-
defined line graph. V" denotes the normalized values of the degree of collaboration, D(c;), of the
game level chunk (c;) of the game level (L) and the target degree of collaboration, D(g;), of the
element (g;) of the input line graph (G). A designer can easily control the progress of the degree
of collaboration by choosing from a list of predefined curves and lines (we illustrate line graphs
and the corresponding game levels in Figure 22 or by defining and importing a new progression
line graph (G). Based on this functionality, the game level designer can specify the targets of the
mean degree of collaboration (p,,) and variance of the degree of collaboration (py/). Then, the line
graph species the progression of the game level chunks across the systemized game level. This
functionality provides the game level designer with additional control over the synthesis process

of a game level.
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3.4.3 Prior Costs

We define the prior cost terms to encode specific game level design decisions. Among
other variables, we choose the size (number of game level chunks) that constitutes a game level
and the repetition of adjacent game level chunks.

Size Cost: We define a level size cost for constraining the number of game level chunks

that compose a game level, as follows:
1
Crior@) = 1=exp (=72 (L= p)?) (@D
where pg is the designer-defined number of game level chunks, and a5 controls the spread of the
Gaussian penalty function, which is empirically set as a5 = 1.00.
Adjacent Repetition Cost: We also define a cost to penalize the repartition of similar
game level chunks, therefore eliminating the synthesis of monotonic game levels in which similar

game level chunks are placed next to one another. We represent the adjacent repetition cost as

follows:

1
Clljrior (L) = m__lz:ci,ciﬂ ['(ci civ1) (22)

where ¢; and c;,, are adjacent game level chunks in L, and I'(c;, ¢;,1) returns a high value

if ¢c; and c; ., are identical and a low value otherwise, under following the condition:

(1 if (Ci = Ci+1)
I'(cicip1) = {0 otherwise

In conclusion, game developers can consider various other prior costs depending on the

game’s objectives and design decisions.

3.4.4 Optimization

Given the game level designer-defined decisions, our system optimizes the total cost
function by applying a Markov-chain Monte Carlo (MCMC) [30] method, known as “simulated
annealing,” with a Metropolis-Hastings [13] state-searching step. Given that any number of game
level chunks can synthesize a game level, a trans-dimensional solution space encodes all possible
design outcomes of a game level. Thus, to successfully sample the solution spaces of game levels
assembled by several game level chunks, we use the reversible-jump [21] variation in the MCMC

technique. For our optimization process, we start by defining a Boltzmann-like objective function:
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f) = exp (=1 Crowa(L)) (23)
where t encodes the temperature parameter of simulated annealing. Given the current game
level (L) during the optimization process, the optimizer proposes a change to that game level,
creating a proposed game level (L'). In particular, to obtain the proposed game level (L"), our
system updates the current game level (L) by choosing one of the following moves:
e Add a Game Level Chunk: When this move is selected, the system randomly
selects a game level chunk from our game level chunk set and places it in a
randomly chosen location within the game level.
e Remove a Game Level Chunk: In this move, the system randomly selects a game
level chunk from the current layout (L) and removes it.
e Replace a Game Level Chunk: In this move, from the current game level, the
system randomly selects a game level chunk from the current layout (L) and
replaces it with a randomly selected game level chunk from our game level chunk

set.

In our method, we set the probabilities of “add a game level chunk” as p,qq = .40,
“remove a game level chunk” as premove = 20, and “replace a game level chunk” as prepigce =
.40. This approach selects the “add a game level chunk” and “replace a game level chunk” moves
with higher probability.

The optimizer accepts a proposed game level configuration (L') by comparing its total cost
value, Croeai (L"), with the total cost value, Crorq: (L), Of the current layout (L). To ensure a
detailed balanced condition in trans-dimensional optimization, the optimizer accepts a proposed
layout (L") based on the acceptance probabilities for the “add a game level chunk,” “remove a
game level chunk,” and “replace a game level chunk” moves. We define the probability of the

“add a game level chunk™ move as:

I _ . Premove U—|L| f(L1)
Paaa (L'1L) = min (1, Bezes ZELE00) (24)

the probability for the “remove a game level chunk” move as:

. p L] f(LN)
Premove (L'|L) = min (1’ T f(L)) (25)

and the probability for the “replace a game level chunk move as:
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, . L
Preplace (L'|L) = min (1' %) (26)

The acceptance probabilities during the optimization process consider the variable U,
which denotes the upper limit of the number of game level chunks. For formulation simplicity, we
assume that each game level chunk (c;) can only be selected (U;) times rather than an infinite
number of times. Thus, our system synthesizes a level of up to U = };; U; game level chunks. In
our implementation, we set U = 20 for all game level chunks.

We implement simulated annealing to effectively explore the solution space. Regarding
the temperature parameter (t) of the optimizer, at the beginning of the optimization, we set t to a
high value such that the optimizer aggressively explores the whole solution space, decreasing
gradually until reaching a value near zero. We initialize the temperature as t = 1.00 at the
beginning of the optimization and multiply it by t* = .998 after each iteration. The optimizer
becomes “greedier” when refining the optimal solution as the iteration evolves. The optimization
terminates when the change in Cr,¢q: (L) is less than 2.5% over the last 50 iterations.

Unless we specify otherwise, for all collaboration-related cost terms presented in this paper,
we set the weights at wX,,,, = 1.00, W’ 0, = .30, and wk,;;,, = .50. For the prior cost
terms, we set the weights at w;,;,,. = 1.00 and wg ;.. = .50. We assign a high weight value to
w1, S We want the optimizer to prioritize the corresponding cost term and synthesize a game
level whose mean degree of collaboration is as close as possible to the designer-specified target
value p,, . In addition, we assign a high value to wj,;,, as we want our system to synthesize a
game level whose size is the requested one. If, for example, we assign a lower value to wj,.;,,, our
system might compose a game level with either less or more game level chunks since the system
would have first tried to fulfill the design decisions having higher weight values and, consequently,
higher priorities than those with lower weight values. Finally, we assign low and medium values
t0 Woliab» Weonan» aNd wh,.;,, as such design decisions should not be prioritized by the optimizer.
The designer can also control the priority of each design goal at a given game level by changing
these weights. Figure 21 illustrates the examples of the synthesized game levels with different
targets for the collaboration cost terms. Figure 22 shows the game levels synthesized using various
degrees of collaboration progress line graphs while keeping the mean degree of collaboration target

and variation in the degree of collaboration constant.
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Figure 22: Example game levels (ps = 9) using different degrees of collaboration progress line
graphs while maintaining the mean degree of collaboration target constant. For all examples, we
use py = .50 and p, = .50 as the targets.

3.5 User Study

In this study, we explored whether our developed method can synthesize game levels with
different targeted degrees of collaboration, thereby impacting the participants’ gameplay behavior.
Moreover, we attempted to evaluate whether the Al virtual agents can characterize the degree of
collaboration in the game level chunks. We provide more details about the study and our results in
the following sections.
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3.5.1 Participants

We conducted an a priori power analysis [15] to determine the sample size for our study,
using the G*Power version 3.10 software [23]. The calculation was based on one group with three
repeated measures, 90% power, medium-to-large effect size of f = .35 [22], non-sphericity
correction € = .70, correlation among repeated measures of r = .50, and a = .05. The
analysis resulted in a recommended sample size of 25 groups of participants (for clarification, each
group was composed of two students).

We recruited the participants through e-mails sent to our department’s undergraduate and
graduate students. As we conducted this study to explore the collaborative behavior of our
participants during gameplay, they were scheduled to attend the sessions in groups of two. In total,
50 students participated in our study (25 groups of students). The age range of our participants was
18 —29 years (age: M = 19.28, SD = 1.79). All participants had previously experienced virtual
reality, and all of them played video games regularly. The participants in each group were
randomly assigned to minimize the chances that the groups were composed of students who knew
each other. The research team also asked a designated question before the beginning of the study.
Our results indicated that no group was composed of students who had played games together in
the past. We did not provide monetary compensation to our participants for their participation;
however, we provided snacks and water to them throughout the study session to compensate them
for their time and effort.

3.5.2 Setup and Implementation Details

This study was conducted in a laboratory in our department. We used the Unity game
engine version 2019.4.12 to develop our application and ran the application on two (one computer
per participant) Dell Alienware Aurora R7 desktop computers (Intel Core i7, NVIDIA GeForce
RTX 2080, 32GB RAM). The optimization of the game level with pg = 10 game level chunks
did not exceed five seconds. We used Oculus Quest and its Unity SDKs (Oculus Integration).
Finally, we used the Photon Unity Networking?® asset to enable the networking functionality
between the two computers and, consequently, to allow the participants to collaborate in a shared

virtual space.

28 https://www.photonengine.com/pun.
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3.5.3 Experimental Conditions

We developed three experimental conditions (game levels) to determine whether
optimizing the game levels with different targeted degrees of collaboration would impact the
collaboration gameplay behavior of our participants. We followed a within-group study design,
which meant that all participant groups played the three developed game levels. To balance the
conditions across the participant groups and minimize the carryover effect of gameplay knowledge
across game levels with different degrees of collaboration targets, we used the Latin squares [36]
ordering method. We used ps = 10 as the target size of the game levels for all three conditions.
The conditions were as follows:

e Low Collaboration (LC): We requested that our system create an LC game level
expecting that our participants could finish it with minimal to no collaboration
necessary. We set the target value of the degree of collaboration cost term at p,, =
.30. Under this condition, we expected the synthesized game level to be composed
mainly of the game level chunks that require low to medium degree of collaboration
activity (C1-C12).

e Medium Collaboration (MC): Under this condition, we requested that our system
synthesize a game level in which our participants would moderately collaborate to
finish it. This meant that if the participants collaborated on some parts of the game
level, they would complete the game faster. We set p,, = .50. Under this condition,
we expected the synthesized game level to be composed of game level chunks from
the whole spectrum of the degree of collaboration (C1-C15).

e High Collaboration (HC): Under the last condition, we requested our system to
synthesize a game level in which the participants should collaborate even more to
finish the level. We set py, = .70. In HC, it is highly likely that if the participants
do not collaborate, they will not be able to finish the game. Under this condition,
we expected the synthesized game level to be composed of game level chunks that

require medium to high collaboration activity (C6-C15).

We did not change the weights assigned to collaboration and prior costs across the
experimental conditions. However, we set a different target value to the mean degree of
collaboration cost term; therefore, we requested our method to synthesize a game level with a
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certain goal (i.e., a different degree of collaboration target). Additionally, for the degree of
collaboration progress term, we used a Gaussian-like line graph as a reference (similar to Figure
22(b)). This meant that the system should synthesize the game level for which at the start and end
of a level, we would be able to observe game level chunks of low degree of collaboration. In
contrast, we would observe game level chunks of a higher degree of collaboration in the middle of
the game level. We synthesized our game levels in such a way for three reasons. First, we did not
want to synthesize monotonic game levels with a near-equal degree of collaboration across the
game level chunks. Second, we wanted to synthesize game levels that included game level chunks
of low and medium degree of collaboration activity, similar to most commercial games (i.e., most
games have designated areas at each game level that require more collaboration than other areas
at the same level). Third, during a preliminary study, we realized that when we placed higher
collaboration game level chunks toward the end of the synthesized game level, the participants
tended to collaborate more than they actually collaborated. This indicated that the participants’
collaborative gameplay experiences at the end of game levels tended to override those at the
beginning of the same game levels. Figure 23 shows the three synthesized game levels we used in
our study. The LC game level (Figure 23(a)) indicated that such a game level is mainly composed
of low collaboration activity game level chunks, the MC game level (Figure 23(b)) is primarily
formed by medium collaboration activity game level chunks, and the HC game level (Figure 23(c))

is mainly composed of medium and high collaboration activity game level chunks.
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(2) pyy = 0.30and p,, = 0.50; [C2, C5, C3, C5, C11, C2, C1, C3, C4, C2]

(b) pyy = 0.50 and p,, = 0.50; [C9, C2, C1, C12, C8, C7, C8, C6, C9, C13]

‘ .

(c) pyy = 0.70 and py, = 0.50; [C11,C4,C7, C15,C10, C14, C7,C12, C9, C11]

Figure 23: Three different synthesized game levels used in our study. From top to
bottom: (a) low degree of collaboration, (b) medium degree of collaboration, and
(c) high degree of collaboration.

3.5.4 Measurements

For our study, we collected both objective and subjective data. We collected the degree of
collaboration regarding objective data mainly to understand how the three different conditions
impacted the two participants when playing at the synthesized game levels. However, we also
performed several other in-game measurements to evaluate the potential use of Al virtual agents
as a method for assessing the degree of collaboration at the game level. In particular, we collected
the following data:

e Degree of Collaboration: The ratio of time for which the virtual avatars were
inside the collaboration zone to the total time spent at the game level.

e Player Distance: The average distance between two virtual avatars during
gameplay.

e Travel Distance: The average length of the trajectory that the two virtual avatars
traveled in the game.

e Completion Time: The total time players spent finishing the game (the timer
stopped when the second player finished the game).

e Collaboration Time: The total time for which the virtual avatars were inside the
defined collaboration zones.
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e Close Proximity Time: The total time for which the two virtual avatars were in

close proximity to each other (inside one another’s personal space).

In addition to the objective data, we collected subjective data based on a scale we developed.
Inspired by Thomson et al. [67] empirically validated theory of collaboration, we created a
perceived collaboration scale comprising six items (Table 2) to capture how the participants
perceived the degrees of collaboration at the synthesized game levels. We collected the responses

from our participants using a seven-point Likert scale, where 1 = “not at all” and 7 = “totally.”

Table 2: Perceived Collaboration Scale used in this study.

Label Statement
Q1 During the gameplay, | felt | belonged to the group.
Q2 During the gameplay, | felt | helped the group.
Q3 During the gameplay, | felt | helped my partner.
Q4 During the gameplay, | felt my partner was helping me.
Q5 During the gameplay, a collaborative atmosphere was created.
Q6 During the gameplay, | collaborated with my partner to finish the game.

3.5.5 Procedure

After scheduling a date and time with the research team, the participants arrived at the
laboratory in our department. Upon arrival, the researchers provided the participants with informed
consent forms approved by the university’s Institutional Review Board. The participants were
required to sign up for inclusion in the study. Next, the research team instructed the participants to
provide their demographic information by filling out the guestionnaire. Once both participants
from each group were in the laboratory, the research team helped them with the virtual reality
equipment.

The research team was responsible for starting the game using the desktop computer. The
research team instructed the participants to play a game composed of different game level chunks.
Before the game started, we provided a short tutorial to all participants to familiarize them with
the controllers. A previous study showed that such tutorials can improve participants’ performance
and player experience [35]. When the research team clicked the play button in Unity, the

participants first saw the game level. Both participants were in the same shared real environment
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(our laboratory space) and virtual space (Figure 18). Once the game began, the research team
instructed the participants to play the synthesized game level, with the goal of finishing the game
level. The research team did not provide further information to the participants about the game and
gameplay. They also did not tell the participants whether they would need to collaborate with their
partner during gameplay. They were left to explore on their own whether such collaboration would
be necessary. The research team informed the participants that an on-screen indicator would notify
them when they finished the game level. The researchers were responsible for setting up each
subsequent game level. After the end of each game level (see Figure 23 for the LC, MC, and HC
game levels), the participants were instructed to self-report their perceived collaboration (Table 2)
through Qualtrics, which is a web-based survey tool provided by our university. We allowed the
participants to take a short break between the experimental conditions. No participant group spent
more than 60 min completing the study. We also told the participants that they could quit the study

at any time; however, no team quit the study.

3.5.6 Results

We used a one-way repeated measures analysis of variance to explore potential differences
across the examined conditions. We evaluated the normality of the collected data using Shapiro-
Wilk tests to the 5% level and the residuals’ graphic Q-Q plots. The Shapiro-Wilk tests and Q-Q
plots indicated that our data were normal. Moreover, we screened the internal validity of the
perceived collaboration scale using Cronbach’s alpha coefficient. With sufficient scores (¢ = .81
for the LC game level, @ = .89 for the MC game level, and « = .77 for the HC game level), we
used a cumulative score for the six items. The removal of items would not have enhanced these
reliability measures. We used a p-value of < .05 to denote statistical significance. Finally, we used

Bonferroni-corrected estimates for our post-hoc comparisons.

3.5.6.1 In-game Measurements.

Table 3 shows the descriptive statistics for the in-game measurements. The analysis of the
player distance data did not reveal any significant results (A = .770, F [2,23] = 3.442,p =

526, n5 = .019). Similarly, the close proximity time measurement data did not reveal any
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statistically significant differences (A = .762, F [2,23] = 3.589, p = .349, n; = .039)
across the examined conditions.

The analysis of the degree of collaboration measurement revealed significant differences
across the examined conditions (A4 = .065, F [2,23] = 166.730, p = .0001, n; = .935).
The results of post-hoc analysis revealed that the degree of collaboration during the LC condition
(M = .17,SD = .06) was significantly lower than that during the MC condition (M =
40,SD = .03), at p = .001, and the HC condition (M = .45,SD = .04), atp = .0001.
Moreover, the degree of collaboration during the MC condition was significantly lower than that
during the HC condition, atp = .001.

We identified significant results for the travel distance measurement (A = .095,
F [2,23] = 109.548,p = .0001, n; = .905) The results of the post-hoc analysis revealed that
the participants in the LC condition (M = 642.69,SD = 36.90) traveled less than that in the
MC condition (M = 717.40,SD = 58.20), at p = .001, and the HC condition (M =
799.19,5SD = 93.41), atp = .0001. Moreover, the participants in the MC condition traveled
less than they did in the HC condition, at p = .007.

The completion time measurement was also statistically significant (A = .091,
F [2,23] = 115.385, p = .0001, n; = .909). The results of the post-hoc analysis revealed
that the participants in the LC condition (M = 110.73,SD = 16.54) spent less time finishing
the game than that in the MC condition (M = 146.15,SD = 24.61),atp = .001, and the HC
condition (M = 178.91,SD = 31.70), atp = .001. Moreover, the time that the participants
spent finishing the MC condition was significantly lower than that in the HC condition, at p =
.002.

Finally, the collaboration time measurement was also statistically significant (A = .048,
F[2,23] = 229.117, p = .0001, n; = .952). The results of the post-hoc analysis revealed
that the participants in the LC condition (M = 22.72,SD = 5.86) spent less time inside the
collaboration zone than that during the MC condition (M = 59.16,SD = 9.28), atp = .001,
and the HC condition (M = 84.97,SD = 17.81), atp = .001. Moreover, the participants in
the MC condition spent less time inside the collaboration zones compared to that in the HC

condition, atp = .001.
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Table 3: Descriptive statistics of the in-game measurements across the three
experimental conditions (LC: Low Collaboration, MC: Medium Collaboration,
and HC: High Collaboration), and the obtained results.

Conditon| M | SD | Min | Max | Results
Degree of Collaboration
LC 17 .06 .05 39 LC<MC (p = .001)
MC 40 .03 .32 A7 MC<HC (p = .001)
HC 45 .04 .38 .55 LC<HC (p =.0001)
Player Distance (in cm)
LC 111.21 67.54 55.87 384.46 no significant result
MC 102.11 16.73 75.04 140.92
HC 111.45 12.75 79.93 133.96
Travel Distance (in cm)
LC 642.69 36.90 585.54 770.46 LC<MC (p =.001)
MC 717.40 58.20 638.04 832.21 MC<HC (p = .007)
HC 799.19 93.41 611.40 969.68 LC<HC (p =.0001)
Completion Time (in sec)
LC 110.73 16.54 85.34 143.86 LC<MC (p =.001)
MC 146.15 24.61 90.46 191.09 MC<HC (p = .002)
HC 178.91 31.70 112.67 236.13 LC<HC (p = .001)
Collaboration Time (in sec)
LC 22.72 5.86 11.40 35.64 LC<MC (p =.001)
MC 59.16 9.28 41.24 77.64 MC<HC (p = .001)
HC 84.97 17.81 58.77 140.89 LC<HC (p = .001)
Close Proximity Time (in sec)
LC 4.30 4.11 29 15.14 no significant result
MC 3.53 1.61 41 8.22
HC 4.30 1.45 .94 6.93

3.5.6.2 Subjective Ratings.

The perceived collaboration was also statistically significant across the examined
conditions (A = .469, F [2,23] = 27.145,p = .0001,7712, = .231). The results of the post-
hoc analysis revealed that the participants rated the LC condition (M = 4.93,SD = 1.80) lower
than the MC condition (M = 6.31,SD = .91), at p = .001, and the HC condition (M =

6.54,SD = .72), atp = .001. However, no statistically significant result was found between
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the MC and HC conditions (p = .102). Table 4 shows the descriptive statistics for the perceived

collaborations.

Table 4: Descriptive statistics of the perceived collaboration ratings across the three experimental
conditions (LC: Low Collaboration, MC: Medium Collaboration, and HC: High Collaboration)
and the obtained results.

Conditon | ™M [ sSD | Min | Max | Results
Perceived Collaboration
LC 4.93 1.80 1.17 7.00 LC <MC (p =.001)
MC 6.31 91 3.34 7.00 LC <HC (p =.001)
HC 6.54 12 4.00 7.00

3.5.6.3 Participant-Agent Correlation.

We also explored how the participants collaborated during the gameplay compared to the
Al virtual agents used to characterize the degree of collaboration of the developed game level
chunk. For this part of the study, we isolated the per-game level chunk data collected from our
participants. For the Pearson product-moment correlation analyses, we used the data obtained from
the Al virtual agents for each game level chunk and the averages obtained from the participants
for each given game level chunk for all (15) game level chunks. Table 5 summarizes the raw
numerical values used to compare the results obtained with the Al virtual agents and those obtained

from our participants.
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Table 5: Raw numerical values used to compare the results obtained with Al
virtual agents (Al) and those obtained from our participants (P).

Degree of Player Travel Distance Completion Collaboration Close
Collabora- Distance Time Time Proximity
tion Time
Chu
nk P Al P Al P Al P Al P Al P Al
ID
Cl 021 216 1153 3.840 41843 37.368 5.860 10.05 .0000 1.053 .021 .035
68 59 515 15 16 40 87 723 0 40 68 01
C2 074 211 8183 5132 95318 109.64 1544 3155 2500 5651 .072 .004
66 31 53 70 88 185 542 432 24 69 39 61
C3 297 217 1242 5889 41680 40.081 5.686 10.00 1.566 2.253 .020 .084
78 44 533 4 53 04 82 639 06 98 89 87
C4 242 327 9584 5495 46831 43567 7.315 1135 1.781 4446 .031 .076
46 82 11 95 38 03 20 065 27 27 68 20
C5 303 .273 10.32 2276 48709 36.087 8.453 9.458 2529 2.782 .034 .040
32 82 784 46 96 67 67 78 87 06 38 00
C6 594 515 4603 .6281 53.818 40.156 1456 10.04 8432 5458 .029 .069
34 31 91 3 59 09 040 309 10 90 10 98
c7 524 495 1164 1946 54.154 43553 10.66 11.60 5559 6.678 .041 .066
61 80 476 19 56 83 392 944 07 65 41 98
C8 691 520 1245 1233 89.226 81918 16.36 26.34 11.36 12.64 .031 .004
14 15 848 019 49 81 952 777 309 062 46 31
C9 637 459 9629 3211 68365 45389 1448 1563 9.256 7.161 .048 .019
97 49 62 42 94 21 255 601 26 66 72 37

Ci10 .653 .704 17.79 1454 208.75 106.59 44.00 77.62 28.12 46.55 .051 .043
18 75 996 406 490 528 969 875 076 848 04 15
Cl1 123 403 1188 1428 82990 93581 21.11 29.03 2562 9.438 .055 .000

35 82 042 864 25 84 941 274 56 18 24 00
Cl2 .097 .433 8618 1038 6535 68.061 1391 2577 1153 8102 .030 .017
61 50 64 947 83 72 274 981 55 78 64 29
C13 139 773 1644 1289 93.894 67.263 26.08 25.73 3.654 1328 .029 .013
13 91 345 808 79 03 352 684 88 221 49 05
Ci4 780 .714 1123 1258 66.392 41.048 19.88 10.83 1590 5.639 .021 .004
93 62 880 725 09 68 709 099 273 66 14 74
C15 783 769 1234 4752 68.783 66.579 15.00 17.69 11.71 1640 .012 .003
48 37 321 34 22 27 534 756 757 833 60 99

The results of our analyses revealed a moderate positive correlation for the degree of
collaboration variables (Al virtual agents and participants; r = .604,n = 15,p = .004), a
moderate positive correlation for the player distance variables (r = .613,n = 15,p = .012),
a strong positive correlation for the travel distance variables (r = .811,n = 15,p = .0001),
a strong positive correlation for the completion time variables (r = .896,n = 15,p = .0001),
and a strong positive correlation for the collaboration time variables (r = .835,n = 15,p =
.0001). No significant correlation was observed for the close proximity time variables (r =
—.033,n = 15,p = .902).
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3.5.7 Discussion

We collected both objective data related to how the participants interacted in the
synthesized game levels and subjective self-reported ratings to understand whether we could use
our method to synthesize game levels that enforce a different collaboration gameplay behavior for
our participants. The first glance at our results indicated that, although we used the degree of
collaboration as the most important cost term of our total cost function (the assigned weight for
the mean degree of collaboration cost was w ,,, = 1.00, while most other costs had weights <
1.00), four (degree of collaboration, travel distance, completion time, and collaboration time)
out of the six measurements revealed a similar pattern: the measurements under the LC condition
were lower than those under the MC and HC conditions, and the measurements under the MC
condition were lower than those under the HC condition. Based on these findings, we argue that
an optimization-based method can synthesize game levels that impact the collaboration gameplay
behavior of our participants.

In terms of the degree of collaboration measurement, we observed an offset between the
requested degree of collaboration targets (p), = .30 for the LC, p,; = .50 for the MC, and p,, =
.70 for the HC condition) and the actual collected data (.17 for the LC, .40 for the MC, and .45
for the HC condition) from our participants. The mean degree of collaboration of our participants
was closer to the target degree of collaboration under the MC (.10 offset) and LC (.13 offset)
conditions compared to the HC (.25 offset) condition. According to the literature [37][41][48],
such an offset exists between the requested and actual values. In our method, the initial
characterizations of the game level chunks from Al virtual agents were the main cause of such
differences. We scripted the Al virtual agents to complete the task as efficiently as possible without
being influenced by other parameters that might have impacted the participants (e.g., time of day,
mood, and prior virtual reality and gameplay experiences). In addition, the participant groups were
randomly composed, which meant that each participant also had to quickly understand the
gameplay behavior of their partner during the study and build their gameplay strategy based upon
that. Therefore, the main cause of the mentioned offsets could be the optimality of the Al virtual
agents to execute and solve the given tasks.

Two of the examined measurements (player distance and close proximity time) were not
significant. These findings indicate that the participants did not try to be in close proximity of each

other; instead, each participant tried to build their own strategy during the gameplay. By combining

124



both the significant and non-significant results, we realized that although the participants were
planning their gameplay strategy independently, they planned it in such a way that would benefit
the team and not only themselves, which is a typical behavior found in games [3][18][78]. Our
findings indicated that our participants collaborated to progress the game by building their own
strategies; therefore, a collaborative culture was maintained and built between the participants who
worked together toward finishing the game.

Although we noted the offset between the requested degree of collaboration and the actual
collected data, the correlation findings were also notable; they showed that the participants could
perform their tasks in parallel with the Al virtual agents. According to the literature, Al virtual
agents can be used to evaluate the difficulty of game levels [7][54][76][85]. Our study extends
such knowledge by revealing that Al virtual agents can also be used to evaluate the degree of
collaboration that characterizes a game level; therefore, it extends the potential usage of Al virtual
agents for evaluating not only the difficulty of a game level (as in [28][55]) but also the degree of
collaboration of game levels. However, as mentioned above, when game developers use Al virtual
agents, they should always consider that such a method will return the optimal collaborative
gameplay behavior and not the actual gameplay collaborative behavior that external or non-
predefined parameters might influence.

Regarding the self-reported perceived collaboration, our participants perceived LC and
HC as expected; however, they rated MC closer to HC. This result implies that the participants
could not differentiate among the three conditions; however, the performed in-game measurements
did not support this assumption. Either the targets for the degree of collaboration assigned to the
mean degree of collaboration cost term were too close, or after a certain degree of collaboration,
it was difficult for our participants to subjectively distinguish the degree of collaboration between
the game levels (MC and HC conditions in our case). Another potential explanation for this finding
could be how our participants interpreted each game level’s “mean” collaboration target and how
they reflected such interpretation on their understanding of the provided questions and their
responses. For example, the participants might have thought more in terms of “max” degrees of
collaboration for a given game level instead of the “mean” degree of that game level. Thus, instead
of interpreting how much they collaborated by averaging their collaborative behavior across a
whole level, they might have interpreted how much they collaborated in the game level chunk

where they had to collaborate the most. According to the literature, individual cognitive styles

125



impact collaborative gameplay [2][85]. Moreover, by considering that increased self-esteem [83],
self-efficacy [14], and self-motivation [25] can affect the perceived performance [11][24] of
participants, we should conduct further experimentation to properly understand and interpret how
participants perceive different degrees of collaboration during gameplay.

Another cause that could have limited the results is that our method may not have linearly
mapped spatial collaboration with the perceived collaboration of our participants. This could have
been the case for two reasons. First, a spatial approach for defining collaboration between two
entities could be considered somewhat limited, or its applicability could be restricted to only a
small number of collaborative tasks. According to the Tang et al. [75] styles of coupling, it is
obvious that people can be in the same area and work on different problems (the “different
problems” style of coupling); therefore, a spatial measurement would not necessarily describe the
collaboration between people. Second, another potential explanation is participants’ potential
overestimation of their relative contributions to collaborative endeavors [56], which means that
capturing the perceived collaboration through self-reported data could also limit our understanding
of how participants perceived their collaboration.

Furthermore, we collected comments from our participants to better understand their
gaming experience regarding the three examined game levels (LC, MC, and HC game levels).
Most participants indicated that they considerably enjoyed the collaborative experience in the
gaming environment, and many said that they liked the game they played. One participant wrote,
“This was a great experience and a really enjoyable game. | definitely felt the collaborative
atmosphere and felt that we worked well together.” Another commented, “I think that the easier
the level, the less the players are inclined to collaborate with each other.” One other participant
wrote, “The more complex puzzles made it much more necessary to interact with the other
participant and made finishing them a lot more satisfying.” Thus, according to the collected
comments, the participants not only enjoyed the developed game levels but also understood that
they had to build collaborative gameplay behavior with their partners.

Additionally, some participants noted the importance of communication in facilitating their
collaboration. In particular, one wrote, “I feel like my partner and | were always communicating
about what we needed and were able to work well together.” Another elaborated, “During the
simulation, my partner and | were able to communicate and collaborate to reach our end goal,

which was to finish all the levels. We were able to develop plans to finish the levels successfully
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and within a decent amount of time. We were also able to finish the levels correctly.” Note that,
although we did not ask the participants to communicate during the gameplay, we observed that
they were communicating. Based on our observations, as the target degree of collaboration of the
game level increased, communication between the participants also increased. This finding aligns
with those of the previous studies conducted in the field [10][12][50][77] that explored and

analyzed the collaboration behavior of the participants during gameplay.

3.6 Limitations

Synthesizing game levels for collaborative gameplay is a complex process that requires
numerous components to work harmoniously. Although the proposed pipeline can synthesize
game levels for collaborative gameplay, we should also report the limitations. Note that these
limitations do not invalidate our pipeline toward developing an automatic method for synthesizing
game levels that satisfy the degrees of collaboration targets and other design decisions. Instead,
they can help future research toward further advancement of the design of game levels for
collaborative gameplay.

In this project, we demonstrated a simple approach to synthesize a game level, which we
characterized as highly structured and linear. We think that conducting additional experiments in
which we distribute collaboration related tasks in an open-space virtual environment or form a
non-linear method (e.g., similar to the work of Ma et al. [42]) of synthesizing game levels (e.g.,
having a game level chunk that may offer two branches to get through to a common destination)
would help us further understand the collaborative gameplay behavior of the participants. In
addition, we considered only two players collaborating to finish the game. However, in multiplayer
games, we found more than two players; therefore, it is unclear how an increased number of players
can affect our results.

The developed game level chunks that we used in our project impacted our project. In
particular, the developed game level chunks were context-dependent and, thus, highly reliant on
the designer’s decisions. Given that game level and gameplay designers can use different
approaches to enforce collaboration, it would be useful to develop guidelines to help researchers
and developers more easily develop collaborative tasks for games. Furthermore, it remains unclear
how our results would be affected when we use a larger number of game level chunks to compose

a game level; this is something that we should certainly explore. Finally, you might have noticed,
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especially in Figure 22, that some chunks (e.g., C15 in Figure 22(f)) were repeated twice toward
the end of the chunk sequence, but the line graph was strictly increasing. We think that developing
a dataset with more than 15 game level chunks can introduce more variations in the degree of
collaboration of the game level chunks so that our method can more closely match the targets
requested by the game designer.

Many collaborative games (such as Portal 2°) and soccer games (such as FIFA?®) require
players to position themselves strategically across a sizable area rather than in close proximity,
and other types of collaborations do not depend on any spatial relationship at all (similar to
collaborations that occur in Keep Talking and Nobody Explodes?). Our method addresses only
one particular aspect of player collaboration---a collaboration that requires physical proximity and
task completion by two players---which we consider a limitation, given the potential variety of
collaborative gameplay that game designers can develop.

In addition, we developed behavior trees to force our Al virtual agents to collaborate to
finish each designed game level chunk to characterize the degree of collaboration of each game
level chunk. The developed behavior trees were considered highly structured and did not allow the
Al agents to explore potential alternatives. Moreover, the behavior trees did not contain actions
such as “do nothing” or “do something not related to the given game level chunk.” Such additional
behaviors can help introduce even more variations in our trials during the automatic annotation
process; however, it can also make the simulation run longer and might not capture the optimal
collaborative behavior required to finish each game level chunk. In addition, instead of manually
defining the collaboration zones, we can predict them using Al virtual agents; this is an additional
direction we should further explore. Moreover, asking a few people playing the game level chunks
can provide additional data that we can use besides the data provided by the Al virtual agents to
augment the annotation of each game level chunk, thus complementing the automatic annotation
pipelines. The abovementioned approach can lead to generalized and improved methods for
characterizing the degree of collaboration at any game level. All these limitations should be further
explored in future studies.

It will be interesting to collect data on the collaboration “in the real world,” such as chatting.
In our study, the participants were co-located in the same room; thus, collecting the data on the

time they spent discussing their strategy could have provided additional measurements to evaluate

2 https://en.wikipedia.org/wiki/FIFA_(video_game_series).
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their collaborative behavior. Moreover, we should have collected measurements to capture the
interactions that each player contributed to finishing the provided game level, such as each player’s
actions toward task completion (e.g., button clicks and gestures). Finally, including additional
questionnaires, such as a questionnaire on presence [63] and questions related to mutual awareness
and dependent actions [9], could have helped us to understand the overall experiences of our
participants.

Lastly, our current study does not encompass real-world collaboration or how virtual reality
collaboration could be translated into real-world collaboration, which we consider an additional
limitation. However, we think that such a method could be used for automatically synthesizing
serious games, such as virtual reality skill training applications (e.g., ire evacuation training) [79],
which benefit skills acquisition and retention [62]. In such a case, trainees could experience
variations in training scenarios with different degrees of collaboration, which could potentially

benefit their real-world collaboration.

3.7 Conclusions and Future Work

We developed a method that considers the degree of collaboration the players are exposed
to when playing a game. Our method provides game developers with the freedom to control various
parameters of cost terms, allowing them to design game levels with specified objectives. To
understand the potential of our method to synthesize game levels with different degrees of
collaboration objectives, we conducted a user study and collected both in-game measurements and
subjective ratings. We found that the degree of collaboration targets of the synthesized game level
of our method impacted the way the participants collaborated in the gaming application.

In the future, we will work to synthesize collaboration-aware game levels for multiple
players. We would also like to extend and evaluate our method to analyze less structured game
levels. Moreover, we wish to explore the potential of using collaboration-aware games as a training
tool to improve the collaborative behavior required by game players when playing games of
various genres. Given that defining gameplay collaboration is an under-explored domain and that
collaboration is task- and objective-dependent, we should conduct additional research toward
developing a more generalized method for controlling the degree of collaboration required for
different game levels and game genres. Finally, to further understand the collaborative gameplay

behavior of the participants, we will conduct additional studies to compare collaboration behaviors
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in which people perform tasks such as those presented in this paper while being co-located in the
same room with instructions to communicate and those not to communicate and being in separate
rooms with chat functionality enabled. Such study conditions would help us further understand
how the players perform the various tasks encoded in the game level chunks and how they

communicate to coordinate in such tasks.
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Abstract

We synthesized virtual reality fire evacuation training drills in a shared virtual space to
explore people’s collaboration behavior. We formulate the authoring process of the fire evacuation
training drill in a total cost function, which we later solve with a Markov Chain Monte Carlo
(MCMC) optimization-based method. The users’ assigned task in the synthesized training drill is
to help virtual agents evacuate the building as quickly as possible using predefined interaction
mechanisms. The users can join the training drill from different physical locations and collaborate
and communicate in a shared virtual space to finish the task. We conducted a user study to collect
both in-game measurements and subjective ratings to evaluate whether the synthesized training

drills would affect how the participants collaborated.

4.1 Introduction

Collaboration is usually characterized by shared goals, group activities, communication,
and exchanging information [17]. Roschelle and Teasley [26] defined collaboration on a joint
problem space as the “mutual engagement of people in a coordinated effort to solve a problem
together.” Various researchers [5][8] regard collaboration as an essential component of effective
training and learning in comparison to individual tasks. In the age of fast-paced development of
globalization, which has a higher requirement for productivity, especially during the COVID-19
pandemic when people have been impeded from meeting in person, the importance of remote
collaboration systems has been emphasized, as they contribute to remote team task success, reduce
travel expenses, ensure safety, reduce carbon emissions, increase efficiency, and save time and
energy.

However, the concept of collaboration is abstract and difficult to grasp [11], making it
challenging to utilize in practical applications. When implementing collaborative training
scenarios in virtual environments, designers usually manually build the contents according to their
subjective experiences and intuition in order to trigger the intended behavior in participants. This
process is tedious and time-consuming since it lacks a solid theory that supports the effectiveness
of the designed content. To better support collaboration on common tasks among the involved

group members, it is necessary to obtain a more precise understanding of collaboration and how
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to conduct immersive collaboration remotely in a shared virtual space using modern virtual reality
(VR) technologies.

The project presented in this paper focused on synthesizing VR fire evacuation training
drills in a shared virtual space to explore the participants’ collaboration behavior. Inspired by
procedural content generation approaches, we proposed an optimization-based method that
automatically generates fire evacuation training drills with varying levels of difficulty. The users’
assigned task is to help virtual agents evacuate the building as quickly as possible using predefined
interaction mechanisms (voice commands, trigger fire extinguisher, physical locomotion, etc.).
The participants can join the training drill from different locations and collaborate and
communicate in a shared virtual space to accomplish the task (see Figure 24). We evaluated the
proposed VR training drill authoring method by conducting a user study among three training drills
with different difficulty levels: low difficulty (LD), medium difficulty (MD), and high difficulty
(HD). We collected both in-game measurements and subjective ratings to explore how the

participants collaborate in such a VR setup.

s 2

Figure 24: Two players in different locations, wearing a VR headset on the VR treadmill. Their
task is to guide the agents out of the building where a simulated fire emergency occurs. The two
players are in the same virtual space even though their physical locations are different. They can
communicate, use voice commands to guide the agents outside the building, and use a fire
extinguisher to eliminate the fire in the building. We illustrate users’ and agents’ positions and
the top view of the building in the minimap. © [2022] IEEE
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4.2 Related Work

Virtual reality (VR) and augmented reality (AR) are as effective a training mechanism as
the commonly accepted methods [15]. VR can enhance learning and training. Some work focused
on training for sports [20] and education [10]. Also, some research was conducted for medical and
rehabilitation purposes [27], and for evacuation training and research purposes [19]. As for AR
training, research shows that AR, applied in education and training, has positive potential for the
future of education [18]. Moreover, AR shows great potential and can be applied in many other
fields, such as, medical education [3], corporate training [22], healthcare simulation [30],
maintenance skills [32], and vocational training [6]. For more details about VR training, please
refer to Xie et al. [34].

With network, VR and AR can be applied in remote training and collaboration scenarios.
Greenwald et al. [13] explored the immense potential for collaborative VR applications for
learning. Some researchers proposed frameworks to support collaboration in virtual environments.
For example, MedicalVR [21] is a virtual reality framework and assistive tool for medical
environment. It outlines real-time collaboration and human-centered design aspects in modern
tele-medicine. Kurillo et al. [16] presented a framework for immersive virtual environment
intended for remote collaboration and training of physical activities. For example, Tea et al. [29]
developed a multi-user immersive virtual reality application for real-time remote collaboration to
enhance design review process. Snow Dome [24], which is a mixed reality remote collaboration
application, was developed to support multi-scale interaction for a virtual reality user. Elvezio et
al. [9] demonstrated an approach to support remote collaboration in AR and VR by virtual replicas,
which allows the remote user to create and manipulate virtual replicas of physical objects in the
local environment. Besides framework, system, and application, some research focused on
adaptive avatar, Mini-Me [25], and toolkit, ColabAR [31], to promote remote collaboration.

In this paper, we propose an optimization-based method to automatically synthesize shared
space VR fire evacuation training drills with different difficulty levels. We also demonstrated how
to employ synthesized training drills on a networked VR platform with treadmills to enable remote,

collaborative training.
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4.3 Preliminary Remarks

4.3.1 System Overview

Figure 24 shows our project’s system overview. Two users are in different physical
locations and join the developed training drill, which takes place in a virtual space shared through
the Internet. Inside the shared virtual space we have synthesized fire evacuation training drill that
are generated by using our optimization-based method. Participants are able to extinguish the fires
by using an integrated fire extinguisher that will show up on their hands when they enable it. The
users can communicate with each other inside the virtual environment freely through Voice over
Internet Protocol (VolP). We placed virtual agents who can respond to participants’ voice
commands and need to be rescued. The participants’ common task is to guide all the agents outside

the building.

4.3.2 Environment Representation

We represent the input training environmentas an M X N in size 2D grid ([cy1,...,cyn]
denotes the cells of the generated grid; the resolution of the grid is defined by the designer/trainer).

Then, we represent each grid cell (c,,,) of the grid as either obstacle (T,s), fire (Tf;.c), Or empty

(Tempty) grid cell.

4.3.3 Virtual Training Environment

We designed a virtual school layout according to specific design and safety regulations*°
and standards in the US [2]. We have created several types of classrooms (standard classroom,
library, basketball court, theater, restrooms, lockers, etc.) to convey a complete impression of a
school. The average size of a classroom is 12x12 m with a height of 3.75 m to ensure that
participants can move around fast and freely while avoiding virtual objects/obstacles (desk, chairs,
etc.). Finally, we have decided to add a significant number of exits (six in total) to ensure that users
can find accessible exits under different conditions and effects that block some or most of them.

Figure 25 shows screenshots of the designed virtual environment.

30 https://www.aps.edu/facilities-design-and-construction/design-standards-and-guidelines

142



o

(a) Basketball court  (b) Biology lab (c) Amphitheatre

(e) Corridor (f) Computer lab (g) Lecture room  (h) Lockers & Exit

Figure 25: Different parts of the designed virtual environment we used in our prototype
application. © [2022] IEEE

The virtual agents can respond to specific voice commands under certain conditions (see
Figure 26). There are six usable commands implemented in the system. Among them, we
implemented four commands to instruct the agents to move, including “come here,” “follow me,”
“run,” and “crawl.” We also included the “stop” and “wait” commands to pause the movement of

agents at any time.

Figure 26: A user commands a virtual agent to “come here” and the agent moves toward the user.
© [2022] IEEE
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4.3.4 Authoring Training Drill

We represent our training drill as a composition of several fires F = [f,..., fx] taking
places in a static 3D environment. Their position and size are determined based on our proposed
optimization-based method (see Section 4). There are also several trainer-defined virtual agents
A = [a4,...,ag] placed in different locations in the virtual environment. The trainer instructs the

users of our training drill to rescue the virtual agents by helping them exit the building.

4.4 Problem Formulation

The design of the evacuation drill d is evaluated by the total cost function Cy,:q;(d):
Crotat(d) = WiengtnCrengtn(d) + WeyrnsCrurns (d)
+ Wrire Crire (d) + WyisCpis(d) (27)

where Ciengen €ncodes the length of the optimal path that the user should follow to fulfil the
necessary goals and exit the building; Cy,,-»s €ncodes the number of turns in the optimal path; Cy;;..
denotes the number of fires that the user should extinguish to fulfil the necessary goals (e.g., access
the virtual agents, help virtual agents exit the building); and C,,;; denotes the visibility conditions
of the virtual environment. wiepgen, Weurns: Wrire, aNd wy,; are the corresponding weights of each
cost term, prioritized by importance. We discuss the details for each cost term as follows.

Length Cost. The path synthesized by our system represents how far the user must walk
in the training environment to execute the required task. The length cost is used to compare the

length of the synthesized path against the user-defined target path length. We present this cost as:

Clength (d) = |2gi(A) L(P) — plengthl (28)

1

Ldiag
where Lyg;q4 is Used as a normalization term representing the diagonal length of the entire virtual
environment; p;.,q¢, denotes the user-defined path length; P; is the path between each G;(A) sub-
group of agents that are in a specific location (e.g., in the basketball court) in the virtual
environment requiring rescue, where G;(4) < A; and L(P;) is the distance between the i —
th sub-group of agents G;(A) and the closest exit in the training environment. To compute the
length of the chosen optimal path, we use an improved version of the A* algorithm [35]. For each

returned pair of adjacent cells (¢;, ¢j,1) belonging to the P; path in the grid, we compute path
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length L(P;) by summing the length of each pair of adjacent cells L(c;, ¢j,,) from the optimal

path as:
L(P) = TN £(g, ¢ien) (29)

Cj,Cjt+1

where | P;| denotes the total number of grid cells from the optimal path. Note that the obstacle T,
and fire Ty grid cells are blocked, and the empty grid cell Ty, is unblocked. However, during
the optimization process, if there is no optimal path, we label the fire grid cell as unblocked, and
therefore it can be considered part of the optimal path. Thus, the synthesized path length comes
closer to the target path length and makes the training drill more difficult since the user needs to
extinguish a fire to access that path properly.

Turn Cost. The turn cost is used to compare the number of turns in the path against a user-

defined target number of total turns p;y,ns:

Cturns (d) =

where T (P;) returns the number of turns in the optimal path P;, and |P| denotes the total number

Z|P|T(Pi)_ Pturns

Pturns

(30)

of optimal paths the users should follow to accomplish the task. To calculate 7" (P;), we consider
all triads of adjacent grid cells. If these three grid cells do not form a straight line, they are regarded
as a turn and, therefore, 7" (P;) returns 1; otherwise, it returns 0.

Fire Cost. Users must extinguish fires to reach virtual agents, access parts of the virtual
building, or exit the virtual building. The fire cost compares the number of fires that the user should

extinguish against the designer-specified target number of fires ps;y.,:

Crire(d) = %|Z|F| T'(f) — prire| (31)
where I'(f;) returns 1 if f; is found to be in the optimal path; otherwise, it returns 0. U is used as a
normalization factor representing the upper limit of the number of fires. We set U = 40 as the
upper limit value for all examples presented in this paper.
Visibility Cost. The user’s visibility in the virtual environment is computed by considering
the ratio between the area occupied by the fires over the total area of the virtual environment. We
compare it against a user-defined target value:

2iF| AU
Cvis(d) = Il;llT — Puis

(32)
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where ¥, A(f;) represents the total area occupied by the fires; A (e) represents the total area of
the entire virtual environment; and p,,;, IS user-defined target visibility. Note that a high value of

Pvis € [0, 1] denotes low visibility and vice versa.

4.5 Optimization

To assess all possible training outcomes during the optimization process, our system
optimizes total cost functions through the reversible-jump Markov chain Monte Carlo (RIMCMC)
method [12]. We apply simulated annealing using a Metropolis-Hastings state-search step [7]. We
start by defining a Boltzmann-like objective function:

f(d) = exp (=3 Crora(d)) (33)
where t encodes the temperature parameter of simulated annealing. During the optimization
process, the system proposes a new configuration of the training drill d’ by altering the current
training drill d using one of the following moves:
e Adding a fire: Our system places a randomly sized fire in a randomly chosen
position in the virtual environment.
e Removing an existing fire: Our system randomly chooses a fire from the virtual
environment to remove.
e Modifying an existing fire: Our system randomly chooses a fire from the virtual

environment and modifies its size and position.

We set the probability of adding a fire as p,4q4 = .40, the probability of removing a fire as
Premove = -20, and the probability of modifying a fire as ppeairy = .40. Through these
probabilities, our system chooses to add and modify a fire more often than choosing to remove a
fire. By applying one of these moves, our system proposes a training drill d’ and compares the
total cost of the proposed training drill Cr,:q;(d”) with the total cost of the current training drill
Crota1(d) to determine whether the system accepts the proposed training drill d’ or keeps the
current training drill d.

To ensure balanced trans-dimensional optimization, we define the probability of each
move. Our system computes the probability of adding a fire as:
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’ . remove U—|d| f(d’
Paaa(d'|d) = min (1, 2emere ZHISED) - (34

computes the probability of removing an existing fire as:

: - da ldl (@)
Premove(d'|d) = min (1’ ppT:d U= || f(d)) (35)

and computes the probability of modifying an existing fire as:

’ . dar
Pmoaify(d’|d) = min (1,];(((1))) (36)

Based on the above formulation, we set an upper limit on the number of fires during

optimization using the variable U = 40. Thus, our system synthesizes a virtual environment with
fires equal to or less than U.

We also applied simulated annealing to explore our solution space effectively. Simulated
annealing allows us to use a temperature parameter t to control the acceptance probability of the
proposed training drill d’ . If the temperature parameter is high, the system will aggressively
explore the whole solution space. If the temperature parameter is low, the optimizer will become
more selective. We initialize the temperature parameter as t = 1.00 at the beginning of
optimization. In each iteration, we multiply the temperature parameter by 0.998. The optimization
process terminates when the change in Cr,:q;(d) is less than 5% of the previous 50 iterations.

Unless specified otherwise, we set the weight of the length cost to wyep g, = 1.00, the
weight of the turn cost to we,,,,s = .40, the weight of the fire cost to wy;,.. = .60, and the weight
of the visibility cost to w,,;; = .40. Viathose weights, our system prioritizes the length of the path

and the number of fires the user must extinguish. However, the designer may change the priority

by changing the weights.

4.6 User Study

The user study was conducted between two universities (Purdue and GMU) across states
in the US. The two universities were not in the same physical spaces. The intent of our project is
to evaluate whether our proposed method can synthesize training drills with different targeted
difficulty levels, thus triggering any difference in the collaboration behavior among participants.
The methodology of the study is described in the following subsections. Figure 27 shows example

scenes from the synthesized training drill.
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Figure 27: Example scenes from the synthesized training drill. © [2022] IEEE

4.6.1 Participants

We recruited participants in both universities via class announcements and emails.
Participants from each university were randomly assigned to a group. Each group was scheduled
to attend the study simultaneously at each location. Participants in the same group remotely joined
the shared virtual space to experience the synthesized training drills. We collected data from 27
groups (54 volunteers; 34 male and 20 female). The age of the participants were between 17-30

years (M = 19.96,SD = 2.88). All participants have experienced virtual reality before.

4.6.2 Conditions

We developed three experimental conditions to determine whether the optimized training
drills with differently targeted difficulty would influence the collaboration behaviors among the
participants. The experiment followed a within-group study design. We used the Latin squares
[33] ordering method to balance the conditions and minimize the carryover effects. Figure 28
shows the three synthesized training drills used in our experiment. The conditions were as follows:

e Low Difficulty (LD): We set the target cost terms as: piengen = 280, pryrns = 30,
Prire = 3,and py;s = .20.

e Medium Difficulty (MD): We set the cost terms as: pjengen = 300, pryrns = 35,
Prire = 5,and py;s = .50.

e High Difficulty (HD): We set the cost terms as: piengen = 320, pryns = 40,
Prire = 7,and py;s = .80,
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(a) Low Difficulty (b) Medium Difficulty (c) High Difficulty

Figure 28: The three experimental conditions we used for our user study. Top: The position and
size of fires (orange cells), the optimal paths (blue cells), and the position of the virtual agents.
Bottom: The visibility of each training drill. © [2022] IEEE

4.6.3 Measurements

We collected participants’ perceived mutual awareness, mutual assistance, and dependent
actions based on the questionnaire developed by Biocca et al. [4]. For each question, we used a 7-
point Likert scale. In addition, we collected several in-game measurements to record participants’
collaborative behavior. These in-game measurements include the completion time, completion
time offset, trajectory length, distance between participants, extinguisher counts, and number of

commands.

4.6.4 Procedure

After we grouped the volunteers, we scheduled each group a specific time slot to attend the
study at their corresponding university campus. Once both participants arrived, we first asked them
to sign the consent form, which was approved by each university’s Institutional Review Board
(IRB), if they agreed to participate. Next, the research team collected the demographic information
from the participants by asking them to fill out a questionnaire. Then, our research team introduced
and helped the participants with the experiment procedures and virtual reality equipment.

Participants first joined the warm-up session to meet in the warm-up scene; integrating a
tutorial session improves participants’ performance and experience [14]. The warm-up scene was

different from the experiment scenes, but all the interaction mechanisms were the same. We
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instructed them to familiarize themselves with the voice commands and their functionality. Next,
the research team informed them how to use the fire extinguisher and enable the minimap (see
Figure 29a), and at the same time, they became familiar with the Virtuix Omni treadmill. Once
participants finished the warm-up session and agreed to start the experiment, the research team
helped them join the experiment’s scene. In Figure 29b, we show two users trying to open a path
using the fire extinguisher. The warm-up session took no more than five minutes, and each
experiment session lasted about 10 minutes (no participant spent more than one hour to complete
the entire study). We informed participants they were allowed to give up the study; however, no

participant quit.

(a) (b)

Figure 29: (a) Users can enable a minimap. The minimap provided information on players’
position, the position of the virtual agents, the exits, and the commands they could use. (b)
Two users collaborate in the shared virtual environment to open a path to escape the building.
© [2022] IEEE

4.6.5 Setup and Implementation Details

We used Unity Game Engine 2020.3.20f1 to develop the application. We also used a Dell
Alienware Aurora R7 desktop computer (Intel Core i7, NVIDIA GeForce RTX 2080, 32GB RAM)
in each university to run the application. We used Unity’s Photon asset to implement the network
frame to allow participants to communicate and collaborate in a shared virtual space. The
optimization process for authoring each training drill did not exceed 30 seconds. We used the
Virtuix Omni treadmill to allow participants to move around in the virtual environment and Oculus
Quest 2 as a VR headset. Lastly, we used the KeywordRecognizer class provided by Microsoft
and integrated it into the UnityEngine library for voice recognition.
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46.6 Results

We used one-way repeated measures analysis of variance (ANOVA) to analyze the data
collected from three experimental conditions (LD, MD, and HD). We assessed the individual
differences using post-hoc Bonferroni corrected estimates if the ANOVA was statistically

significant. We provide the descriptive statistics in the supplementary materials file.

4.6.6.1 Objective Data

The analysis revealed a statistically significant result for the completion time measurement
across the three examined conditions (A = .413,F[2,25] = 17.791,p = .000,n; = .587).
The post-hoc pairwise comparison showed that the completion time during the LD condition was
significantly lower than that for the MD (p = .030) and HD (p = .000) conditions. Moreover,
the completion time was significantly lower for the MD condition than the HD condition (p =
.012). We also found a statistically significant result for the extinguisher count measurement (A =
.381,F[2,52] = 42.179,p = .000,n; = .619). The post-hoc pairwise comparison revealed
that our participants used the virtual extinguisher less often in the LD condition than the MD (p =
.000) and HD (p = .000) conditions; moreover, the participants used the virtual extinguisher
less often during the MD condition than the HD condition (p = .019). However, the statistical
analysis did not reveal significant results for the completion time offset (A = .966,F[2,25] =
441,p = .649,n; = .034 ), trajectory length ( A = .942,F[2,52] = 1.592,p =
.213,m3 = .058 ), distance between participants ( A = .883,F[2,25] = 1.663,p =
.210,17?, = .117), and number of commands (A = .962,F[2,52] = 1.033,p = .363,77,%, =

.038). We provide the descriptive statistics in the supplementary materials file.

4.6.6.2 Subjective Self-reported Data

The mutual awareness measurement was statistically significant (4 = .618,F[2,52] =
16.062,p = .000, 77;2: = .382) across the three examined conditions. The post-hoc pairwise
comparison showed that mutual awareness was significantly lower during the LD condition than
the MD (p = .000)and HD (p = .000) conditions. Similarly, mutual assistance was statistically
significant (A = .593,F[2,52] = 17.877,p = .000,n; = .407 ). The post-hoc pairwise
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comparison revealed that mutual assistance was significantly lower during the LD condition than
the MD (p = .034) and HD (p = .000) conditions, and the MD condition was significantly
lower than the HD condition (p = .001). The dependent actions measurement was also
statistically significant across the three conditions ( A = .286,F[2,52] = 64.943,p =
.000,n7 = .717). The post-hoc pairwise comparison showed that dependent actions were rated
significantly lower during the LD condition than the MD (p = .000) and HD (p = .000)

conditions, and the MD condition was rated significantly lower than the HD condition (p = .000).

4.6.7 Discussion

The collected objective data, and more specifically the completion time and extinguisher
count measurements, revealed that our method can automatically synthesize training drills that
have different difficulty levels for executing them. These findings prove that it is possible to
synthesize fire evacuation training drills in which the trainer/designer can specify the parameters,
such as the path length, number of turns in the optimal paths, number of fires, environment
visibility, and the system can synthesize variations of the training drill without impacting the
overall objective of that drill. However, the trajectory length measurement was not statistically
significant across the three examined conditions. Considering that our participants walked the
same trajectory lengths across the three conditions, the completion time proves that they needed
more time to complete a more difficult training drill in comparison to the MD or LD training drills,
in which they extinguish fewer fires and had higher visibility. If we also consider the number of
commands measurement, we could say that our participants tried to instruct the virtual agents in
roughly the same way across the three conditions. Thus, we can say that the virtual fires (due to
completion time and extinguisher count) impacted our participants’ behavior in executing the
tasks, but not the virtual agents. Consequently, we argue that our method can synthesize training
drills based on the difficulty entailed in executing them.

In contrast, the other measurements did not differ across the three experimental conditions.
Specifically, an interesting observation was made for the completion time offset and the distance
between participants measurements. In both measurements, although the completion time offset
and the distance between participants decreased from the LD condition to the MD condition and
from the MD condition to the HD condition, the decreases were not statistically significant.

However, by looking at the mean values for the completion time offset measurement, it is evident
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that the time offset is close to 30 seconds for all three conditions. A similar observation can be
made for the distance between the participants: their mean distance is sufficient across the three
conditions, which indicates that they were in different locations in the building during the training
drills. These findings suggest that although the participants were in the same shared space, they
chose their strategies and acted independently. Such independent activity has been identified by
Tang et al. [28] as the “same problem, different area” style of coupling between two people.
Therefore, we think that our two participants preferred to utilize collaborative behavior that could
help them execute the given task in a way that was more optimal for them.

The mutual awareness measurement indicated that the participants were aware of each
other during the training drill. It seems that the difficulty of the training drill impacted their
awareness of one another. Therefore, the participants felt they were not alone while executing the
given task in the virtual environment The mutual assistance and dependent actions measurements
revealed that, as the difficulty level of the training drill increased, the mutual assistant of each
participant (the degree to which each person needed to help the other person) and their perceived
dependence on the other participant increased. These findings indicate that the participants felt the
pressure of the training drill, and they tried to assist the other participant by creating a strategy that
would help them execute the given task and assist the other person.

Overall, by combining both the objective and self-reported measurements, we can say that,
though our participants planned their strategy independently of each other, they were always aware
of the other individual in the shared virtual environment, and given their awareness, they planned
their strategy to help not only themselves but also the other participant. It looks as if this kind of
planning is common in games [1] where players on the same team work together to accomplish a
given task. Our results showed that, though the two participants were in separate locations, being
in a shared virtual space and sharing the same goals and tasks made them choose individual

strategies that benefited themselves and the team; therefore, establishing a collaborative culture.

4.6.8 Limitations

Our study had some limitations. First, our participants were not exposed to real-world
evaluations. Therefore, we cannot firmly conclude that the training platform and its performance
are effective in real-world emergency evacuation scenarios. Second, due to the hardware

limitations (we used an Omni treadmill), long-time locomotive tasks will result in the users
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needing to exert physical effort and experience fatigue [23], which could potentially decrease their
motivation. Third, our optimization-based approach only considered four design decisions to
synthesize the training drill. We think additional cost terms could be considered, such as those
related to specific training objectives.

4.7 Conclusion

In this paper, we introduced a method to synthesize training drills for fire evacuation
scenarios. Due to the proposed optimization-based formulation, a designer/trainer can easily define
the target objectives for each cost term. Our system automatically synthesizes the training scenario
where participants encounter the specified difficulty of executing a task. Thus, a designer/trainer
could easily generate several variations of a training drill, allowing trainees to experience them

and get prepared for potential real-world situations.
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DISCUSSION AND CONCLUSION

This dissertation aimed to develop a framework for formulating computational design
problems using Markov chain Monte Carlo (MCMC) optimization theory. The framework enabled
designers to encode their design considerations as cost terms and solve optimization-based
problems using computational methods to generate virtual contents. Three research questions were
addressed, namely (1) the feasibility of formulating design problems using optimization theory, (2)
suitable/viable application cases, and (3) suitable/viable cost terms for each application case based
on the theory.

This dissertation contains the papers published by the author during her Ph.D. Each
published article included in this dissertation deals with a specific application case based on
optimization theory.

Four application cases were explored, each supported by a published article included as an
individual chapter of the dissertation. The first application case involved the design of virtual
reality racket sports drills as an optimization problem. The second case focused on virtual reality
game level layout design with real environment constraints. The third case addressed the design
of collaborative gameplay in a shared virtual environment. The fourth application case involved
synthesizing shared space virtual reality fire evacuation training drills. The definition of cost terms
varied for each scenario, and designers combined specific scenario domain knowledge to define
cost terms that successfully generated the objective scenario.

The resulting synthesis was successful, producing different synthesized results based on
different target cost input values and weights according to the theory. This positively answered the
first research question. The synthesized results triggered statistically significant differences in
human behavior, demonstrating the validity of the formulation and answering the second research
question. The dissertation also explored and discussed different cost terms based on various

scenarios in each article, answering the third research question.
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APPENDIX

A THE BEHAVIOR TREES

In this section, we present the developed behavior trees, which summarize the major events

used in our game level chunks. Behavior trees describe switchings between a finite set of tasks in

a modular fashion and control the execution flow of the tasks. Events can invoke other events

during their execution. Please refer to previously published work on behavior trees [16, 26, 60] for

a detailed description of the implementation process. Here, we provide a brief description of the

main components of the behavior trees:

Composite: A composite node is a node that can have one or more children. Such a node
processes one or more of these children in either a first to last sequence or random order
depending on the particular composite node in question. In addition, at some stage, it
considers their processing complete and passes either success or failure to the parent, which
is often determined by the success or failure of the child nodes. During the time a composite
node is processing children, it continues to return “Running” to the parent.

Decorator (or Decor): A decorator node, like a composite node, can have a child node.
Unlike a composite node, a decorator node can only have a single child. The decorator
node’s function is either to transform the result it received from its child node’s status to
terminate the child, or to repeat processing of the child, depending on the type of decorator
node.

Leaf: Leaves are the most powerful node type, as they are defined and implemented to
command the game-specific actions. An example of this, as used in the behavior trees
implemented in this project, is “Go to the target.” A “Go to the target” leaf node makes the
Al virtual agent walk to a specific position in the game level chunk and return success or
failure, depending on the result. Because we can define what leaf nodes are, they can be
very expressive when layered on top of composite and decor nodes and allow the developer
to make powerful behavior trees capable of quite complicated layered and intelligently

prioritized behaviors.
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ROOT: C1
(Agent1 & 2)

SEQUENCE

ACTION 1

Go to the exit

Figure 30: Behavior tree for the C1 game level chunk (Nodes: 2; Depth: 1)

ROOT: C2
(Agent 1 & 2)

SEQUENCE
|

ACTION 1

Follow the
maze's path

ACTION 2
Go to the exit

Figure 31: Behavior tree for the C2 game level chunk (Nodes: 3; Depth: 1)

ROOT: C3
(Agent 1 & 2)

SEQUENCE

ACTION 1

Go to the exit

Figure 32: Behavior tree for the C3 game level chunk (Nodes: 2; Depth: 1)
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ROOT: C4
(Agent 1)

SEQUENCE

DECOR
Agent 2
pushes the
button

ACTION 1

Go to the
waiting point

ACTION 2

Go to the exit

Figure 33: Behavior trees for the C4 game level chunk (Left: Player 1 [Nodes: 4; Depth: 2];

ROOT: C4
(Agent 2)

SEQUENCE

ACTION 1

Go to the
button

ACTION 2
Push the
button

ACTION 3

Go to the exit

Right: Player 2 [Nodes: 4; Depth: 1] ;)

ROOT: C5
(Agent 1 & 2)

SEQUENCE
|

ACTION 1

Goto the
target

DECOR
Jump on the
button

ACTION 2
Goto the
midpoint

ACTION 3

Go to the exit

Figure 34: Behavior tree for the C5 game level chunk (Nodes: 5; Depth: 2)
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ROOT: C6
(Agent1 & 2)

SEQUENCE
|

DECOR
Reach the
target

ACTION 1 ACTION 2

Go to the chest Push the chest

ACTION 3

Go to the exit

Figure 35: Behavior tree for the C6 game level chunk (Nodes: 5; Depth: 2)

ROOT:C7 | ROOT: C7
(Agent 1) (Agent 2)
SEQUENCE SEQUENCE

ACTION 2
ACTION 1 Attract

DECOR
Agent 1 reach
the target

ACTION 1

DECOR
Reach the
target

Find the enemy enemy’s
attention

Go to the
target

ACTION 3

Go to the exit

ACTION 2
Go to the exit

Figure 36: Behavior trees for the C7 game level chunk (Left: Player 1 [Nodes: 4; Depth: 2];
Right: Player 2 [Nodes: 5; Depth: 2] ;)
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ROOT: C8
(Agent 1 & 2)

SEQUENCE
|

ACTION 1 ACTION 2

DECOR
Have two
bottles

Collect one

Collect another
bottle

bottle

ACTION 4

Go to the exit

ACTION 3
Put bottles in
the basket

Figure 37: Behavior tree for the C8 game level chunk (Nodes: 6; Depth: 2)
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ROOT: C9 ROOT: C9
(Agent 1) (Agent 2)
SEQUENCE SEQUENCE
|

ACTION 1

DECOR

Get the scroll

ACTION 3

ACTION 2
Attract
enemy’s

attention

ACTION 1
Find the scroll

Find the enemy

DECOR
Agent 1 gets
the scroll

Go to the exit

ACTION 2
Put the scroll in
the basket

ACTION 3
Go to the exit

Figure 38: Behavior trees for the C9 game level chunk (Left: Player 1 [Nodes: 5;
Depth: 2]; Right: Player 2 [Nodes: 5; Depth: 2] ;)
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ROOT: C10 ROOT: C10
(Agent 1) (Agent 2)
SEQUENCE SEQUENCE
] 1
A 2 L 2
ACTION 1 DECOR ACTION 1 ACTION 2 DECOR
Attract Agent 1 puts Collect the Collect the Collect all ACTION 4
enemy’s all bottles in bottles on the bottles on the bottles Go to the exit
attention the basket right side left side

ACTION 3
Put all bottles
in the basket

ACTION 2

Go to the exit

Figure 39: Behavior trees for the C10 game level chunk (Left: Player 1 [Nodes: 4; Depth: 2];
Right: Player 2 [Nodes: 6; Depth: 2] ;)

S——  SEEEEEEE—
ROOT: C11 ROOT: C11
(Agent1) (Agent 2)
SEQUENCE SEQUENCE
| |
L] ¥ [} L] [] []
ACTION1 ACTION 2 ACTION 3 ACTION 4 DECOR ACTION 1 ACTION2 ACTION3 DECOR
] . Touch the The color of Touch the Touch the The color of
Touch the first Touch the third Touch the fifth ) Touch the sixth .
) seventh color the board is second color fourth color ) the board is
color object color object color object . X . color object
object green object object green

ACTION 5

Go to the exit

ACTION4

Go to the exit

Figure 40: Behavior trees for the C11 game level chunk (Left: Player 1 [Nodes: 7; Depth: 2];
Right: Player 2 [Nodes: 6; Depth: 2] ;)
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ROOT: C12 ROOT: C12

(Agent 1) (Agent 2)
SEQUENCE SEQUENCE
| |
L] [
DECOR ACTION 3
A;.'l':c: 1 Agent 2 forms ACTION 3 ACTION 1 ACTION 2 Wa!ka.cross ACTION 4
ioto the a bridge with Go to the exit Gotothe Place the board the bridge Go to the exit
waiting point the board board atthe gap formed with

the board

ACTION 2
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formed with
the board

Figure 41: Behavior trees for the C12 game level chunk (Left: Player 1 [Nodes: 5; Depth: 2];
Right: Player 2 [Nodes: 5; Depth: 1] ;)

[ RooT:c13 | [ RoOT:C13 |
(Agent 1) (Agent 2)
SEQUENCE SEQUENCE
I I

DECOR
Enemies
disappear

DECOR
All enemies in
the cage

ACTION 1 ACTION 1 ACTION 3

Go to the cage Find the button Go to the exit

ACTION 2

Press the
button

ACTION 2

Go to the exit

Figure 42: Behavior trees for the C13 game level chunk (Left: Player 1 [Nodes: 4; Depth: 2];
Right: Player 2 [Nodes: 5; Depth: 2] ;)
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ROOT: C14 ROOT: C14
(Agent 1) (Agent 2)

SEQUENCE SEQUENCE
| |

ACTION 1

DECOR
Agent 2 grabs
the handle of
the chest

ACTION 1
ACTION 3 Grab the left

DECOR
Agent 1 grabs
the handle of
the chest

ACTION 3

Grab the right
handle on the
chest

Go to the exit handle of the Go to the exit

chest

ACTION 2
Move the chest
to the target

ACTION 2
Move the chest
to the target

Figure 43: Behavior trees for the C14 game level chunk (Left: Player 1 [Nodes: 5; Depth: 2];
Right: Player 2 [Nodes: 5; Depth: 2] ;)

[ Ny
ROOT: C15 ROOT: €15
(Agent 1) (Agent 2)
SEQUENCE SEQUENCE
1 |

ACTION 1
Gotothe

ACTION 3 ACTION 1 ACTION 2

DECOR
Reach the top

ACTION 3

Push the white
ladder

Go to the exit Climb the black

ladder Go to the exit

waiting point

ACTION 2
Climb the
white ladder

Figure 44: Behavior trees for the C15 game level chunk (Left: Player 1 [Nodes: 5; Depth: 2];
Right: Player 2 [Nodes: 4; Depth: 1] ;)
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