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ABSTRACT 

Content generation in virtual environments is becoming increasingly important with the rise 

of virtual and augmented reality technologies and growing demand for immersive experiences. 

This raises a problem of efficient content generation to meet with higher requirements for both the 

quantity and quality of the contents that could be used inside virtual environments. This 

dissertation explored the possibilities of formulating design problems as computational problems 

based on optimization theory in different scenarios, and explored what can be viable application 

cases, as well as what can be viable cost terms for each application case based on the theory. In 

total four application scenarios are included. The optimization theory used in this dissertation is 

the Markov chain Monte Carlo optimization method called “simulated annealing”. By doing this 

we can transform a design problem to a computation problem and use computational methods to 

quickly solve the problem and generate content. 

This dissertation contains the papers published by the author during her Ph.D. Each 

published article included in this dissertation deals with a specific application case based on 

optimization theory. 

The author investigated four distinct application cases. The first case centered on the 

synthesis of drills for virtual reality racket sports. The second case focused on designing virtual 

reality game level layouts, based on the layout of a real-world environment. The third case 

explored collaborative gameplay design, with the aim of synthesizing game levels that require a 

predetermined degree of collaboration between two players to complete. The aim of the fourth 

application case was to create virtual reality fire evacuation training drills that could be used for 

training purposes in simulated environments. Different cost terms are proposed based on different 

application cases to synthesize contents that align with the design intent. 

 

Keywords: Generative Design, Virtual Reality, Procedural Content Generation, Optimization 

Techniques  
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INTRODUCTION 

Introduction of Dissertation Research 

Extended reality technologies develop at a high speed. Multiple research reports have shown 

investors have a highly optimistic attitude about the market of extended reality technologies. For 

example, the worldwide virtual reality market size was valued at USD 35.0 billion in the year 2023, 

with an anticipated compound annual growth rate (CAGR) of 13.8% expected from 2023 to 2030 

[1]. The global augmented reality market was expected to grow at a compound annual growth rate 

(CAGR) of 40.9% from 2022 to 2030 and reach a market size of USD 597.54 billion by 2030 [2]. 

The emergence of new technologies such as virtual reality (VR) and augmented reality (AR) has 

had a significant impact on traditional content creation pipelines. These technologies offer new 

possibilities for creating immersive and interactive experiences, but they also present new 

challenges for content creators.  

At the 2005 Game Developers Conference, Will Wright, a renowned game designer known 

for creating games such as Sim City, discussed the challenges that game developers face when 

creating content [3]. He referred to this challenge as the "Mountain of Content Problem," which 

refers to the difficulty in creating enough content within a limited amount of time while also 

keeping costs under control. Game developers face pressure to produce a sufficient amount of 

content that is engaging, enjoyable, and challenging for players, while at the same time also 

maintaining a reasonable price for their target audience. Moreover, with the rapidly evolving 

hardware devices and software tools, game developers must continuously adapt and learn new 

technologies to provide their customers with the best experience possible. However, the traditional 

content creation process is usually tedious, time-consuming, and labor-intensive, requires lots of 

manual work, the process of modification and adjustment is also complicated. According to data 

from VENNGAGE1 blog [4], 36.7% of the participants reported one of the primary challenges 

faced by marketers is consistently creating engaging visual content. Marketers were asked to rate 

the difficulty level of producing visual content continuously on a scale of 1-10, 76.6% of marketers 

rated five or higher. 

 
1 https://venngage.com/ 
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One of the existing research branches that focus on dealing with this problem is procedural 

content generation (PCG) [5]. Refers to methods that can procedurally generate virtual contents 

by computer programs. The content includes but is not limited to maps, levels, terrains, plants, 

gameplay, and game objects such as rocks, enemies, traps, etc. [6]. A recent research study 

indicates that the integration of PCG has the potential to enhance city-building games experience 

without substantially compromising players' ability to express their creativity [7]. Another similar 

research branch that has been gaining significant attention from society beyond the computer 

science community is AI-generated content (AIGC) [8], content generation products such as 

ChatGPT [9] and DALL-E [10] demonstrated their potential to revolutionize the way of content 

creation. 

One of the most widely used approaches among PCG methods is optimization [11]. The 

general formulation process of optimization is to first formalize a mathematic model, also referred 

to as an objective function, taking several design aspects into consideration, encode those design 

considerations into the objective function, called cost terms. Then, a design problem can be 

transformed into a computational design problem which can be solved using mathematical 

methods [11].  

This dissertation explored the possibilities of formulating design problems as computational 

problems based on optimization theory in different scenarios in virtual environments, and explored 

what can be viable application cases, as well as what can be viable cost terms for each application 

case based on the theory. In total four application scenarios are included. Each application case is 

described in detail in a published paper included as one chapter in this dissertation. The simulated 

annealing optimization algorithm based on Markov Chain Monte Carlo (MCMC) was applied as 

a common method for all the explored scenarios and was used to automatically synthesize contents 

in virtual environments. 

Simulated annealing is a widely used random search optimization algorithm developed by 

the inspiration of metal thermal processing technology, first proposed in 1953 [12], and then was 

applied to combinatorial optimization [13]. The algorithm has been widely used in engineering to 

solve nondeterministic polynomial (NP) time complexity problems and to overcome limitations of 

local minimum in optimization process and initial value dependence. The idea is derived from the 

annealing process of heating a solid to a temperature high enough so that the molecules are 

randomly arranged, then gradually cooling them down, and finally the molecules are arranged in 
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a low-energy state to reach a stable state. More details about the algorithm theory and 

implementation please refer to [14]. While genetic algorithm is a random search algorithm based 

on the theory of natural selection and heredity, which combines the survival of the fittest in the 

process of biological evolution with the random exchange mechanism of chromosomes in the 

population [15]. Many basic concepts like evolution, locus and allele are derived from Charles 

Darwin’s theory of evolution. 

For more details regarding the MCMC simulated annealing and how the framework was 

applied in each explored scenario, please refer to the published articles included in Chapter 1, 2, 3 

and 4. 

Overview of Purpose 

The purpose of this dissertation was to explore ways to formulate computational design 

problems based on the theory of MCMC optimization, to explore the possibilities of formulating 

design problems into a generalized optimization-based framework which could be solved easily 

using computational methods to help generate virtual contents. The aim was to explore ways to 

simplify the content creation process. The framework could encode designer’s design 

considerations inside as cost terms then transform the design problem to computational problem 

which can be solved mathematically. The definition of the cost terms was different from scenario 

to scenario, and all that designer needs to consider was how to combine specific scenario domain 

knowledge to define cost terms to successfully generate the objective scenario. 

Four application scenarios were explored in this dissertation, each one was supported by a 

published article of the author which was included as individual chapter of the dissertation in 

Chapter 1, 2, 3, and 4.  

Significance of Research 

Formulating design problem into computational design problems based on optimization 

make sense in following aspects: 

1. It can help simplify the design process by automating certain aspects of design and 

reducing the time and effort required to manually search for optimal solutions, reducing 

the budget for content creation companies [16].  
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2. The design space can be more systematically explored to generate a large number of 

design alternatives, which can lead to better quality solutions. 

3. Optimization-based computation design approaches offer a systematic and efficient 

framework for addressing complex design problems that involve numerous criteria or 

constraints. 

4. It allows the designer to control the generated results according to her/his intents with 

minimal effort. This flexibility can increase the reusability of the generated contents and 

provide space for creativity. 

Research Questions 

Research questions addressed overall 

This dissertation focused on generalizing scenario design problems based on optimization to 

support content generation in virtual environments. The author’s previously published papers were 

included, each showed a different scenario design case. All the cases were based on the framework 

of MCMC optimization called “simulated annealing”.  

The research questions in this dissertation were summarized as below: 

RQ1. Is it possible to formulate design problems based on optimization theory? 

RQ2. What can be suitable/viable application cases based on the theory? 

RQ3. What can be suitable/viable cost terms for each application case based on the theory? 

 

All the design considerations were encoded as cost terms. A brief introduction of each design 

scenario and the discussion about the included cost terms were included below. For more details 

about the optimization theory and explanation for cost terms, please refer to the published papers 

included. 

Research questions addressed in each published article 

As described above, each published article demonstrated an application scenario in which a 

design problem was successfully formulated as a computational design problem based on 

optimization theory. The resulting synthesis was successful, producing different synthesized 

results based on different target cost input values and weights according to the theory, which is a 
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positive answer to RQ1. The synthesized result could trigger statistically significant differences in 

human behavior. This allowed designers to have a certain degree of control over the synthesized 

result, which served as a demonstration of the validity of the formulation and answered RQ2. 

Different customized cost terms related to specific domain knowledge based on the explored four 

particular scenarios were explored and discussed in detail in each article, which answered RQ3. 

Application Case1 --- Virtual Reality Racket Sports: Virtual Drills for Exercise and Training 

In this case, the design of virtual reality racket sports drills was formulated as an optimization 

problem. The goal was to synthesize drills for racket sports such as table tennis, tennis, badminton, 

and so on. The domain knowledge applied in this scenario was the factors or parameters that could 

affect the training/exercise intensity of the synthesized drill. By defining cost terms that were 

related to the gameplay and mechanics of the game and allowing user to control the parameters of 

the cost terms, user could easily adjust the objectives and intensity levels of the exercise drills. The 

synthesized results could be used for the purpose of training or exercise, and the effectiveness of 

the method was demonstrated by two studies. The first study investigated the potential usefulness 

of the developed virtual reality gaming application as an exercise tool by comparing its workout 

effectiveness at three intensity levels (low, medium, and high) through the collection of heart rate 

readings. The second study explored the potential utility of the virtual reality gaming application 

as a training tool by exploring whether there was any improvement in participants’ performance 

across the three conditions (no training, virtual reality training, and real-world training). The 

results indicate that a virtual reality gaming application, such as the examined virtual reality table 

tennis exergame, could indeed be used effectively as both an exercise and a training tool. For more 

details, please refer to [17], which is also included in the Chapter 1 Published Article #1: Virtual 

Reality Racket Sports: Virtual Drills for Exercise and Training in this dissertation. 

Discussion of how the paper address the research questions 

First, the successfully synthesized result with certain degree of controllability to allow 

designer to change the synthesized result by changing the inputs of target values for cost terms and 

weights was a positive answer to RQ1 in the design of virtual reality racket sport scenario. Then, 

the resulting changes on human behavior were demonstrated as significant in user study 
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experiments, which was a valid proof showing the virtual reality racket sport design scenario was 

a suitable case to be formulated as optimization problem and could be solved procedurally, which 

answered RQ2. 

The cost terms that contain specific domain knowledge considered in this case included shot 

term cost and prior cost. The shot term cost included considerations for distance, speed, and 

frequency for the generated shots, intended at controlling the training/exercise intensity of the 

synthesized drill. While the prior cost terms were developed to control some of the features of the 

gameplay before the user started to play. Various prior cost terms could have been employed, 

depending on the specific design requirements of an exercise. However, in this case, with racket 

sports domain knowledge applied, the prior cost terms that were explored were duration, variation, 

and court side. The exploration of the cost terms answered RQ3. 

Application Case2 --- Virtual Reality Game Level Layout Design for Real Environment 

Constraints 

In this case, the virtual reality environment's design was formulated as an optimization 

problem. The aim was to explore possible ways to integrate reality information, such as physical 

spatial constraints, into the optimization-based computational design framework to generate a 

virtual environment layout that aligned with the reality environment layout. It enabled realistic 

interaction with virtual environments as well as enhanced safety considerations for the generated 

results. The domain knowledge applied in this case was the physical environment layout 

information. Users first calibrated the environment layout manually using the Oculus Quest device 

set, and then the real environment's information was used as input for the target values for the cost 

terms in the formulated optimization problem. To evaluate the proposed method, a user study was 

conducted. The results indicated that the proposed method enhanced the levels of presence and 

involvement of participants in the virtual environment, and reduced the fear of collision with the 

real environment and its constraints. For more details, please refer to [18], which is included in 

Chapter 2 Published Article #2: Virtual Reality Game Level Layout Design for Real Environment 

Constraints" in this dissertation. 
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Discussion of how the paper address the research questions 

Firstly, the accomplished synthesized virtual environment that integrated reality 

environment considerations was a positive answer to RQ1 in virtual environment design scenario. 

Secondly, the user study was conducted under Optimization, No Optimization and No Obstacles 

conditions. In the Optimization condition, the layout of the real environment and its obstacles were 

captured and used to automatically generate a game level layout with virtual obstacles in the exact 

positions of the real obstacles. In the No Optimization condition, the real environment obstacles 

were moved to different positions to create a mismatch between the real and virtual environments. 

The No Obstacles condition was a baseline condition where there are no obstacles present in the 

real environment, and the game level layout was the same as in the other conditions, with boundary 

game level chunks and obstacle chunks in their initial positions. The result of the user study 

showed participants did experience higher level of presence and involvement and experience less 

collisions during the process. This provided an answer to RQ2 as it showed the virtual reality 

environment design could be a suitable case to be formulated into a computational optimization 

design problem. 

The virtual environment was represented as an assembly of chunks, the layout design 

decisions considered as cost terms included mapping cost, fitting cost, variations cost, and 

accessibility cost in a total cost function. The exploration for the cost terms answered RQ3 in this 

scenario. 

Application Case3 --- Synthesizing Game Levels for Collaborative Gameplay In a shared 

virtual environment 

In this case, the collaborative gameplay design was formulated as an optimization problem. 

In the case of designing collaborative gameplays in games and VR applications, the tasks requiring 

users to collaborate, and the degree of collaboration required to accomplish a given task are usually 

manually built or programmed by the game’s designers, which is a tedious and time-consuming 

process. However, “Collaboration” is an elusive term with various definitions, designing for a 

collaboration task is usually an iterative process with a lot of experience-and-test manual 

adjustment resulting in low efficiency. The goal in this case was to overcome this issue. The 

proposed pipeline could automatically characterize the degree of collaboration of game level 

chunks and synthesize game levels with designer-defined degrees of collaboration targets. 
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AI calibrated domain knowledge regarding collaboration was first explored based on context 

information. Since there is no common definition for collaboration and the definition for 

collaboration usually depends on specific scenarios, fifteen collaborative game levels were 

designed at a preliminary stage. Then, the collaboration zone for each level was specified manually 

by the research team. The idea was adopted from [21], in which various patterns that enforce 

collaboration between players were described. Next, the collaboration degree for each game level 

was calibrated by pre-programmed behavior tree driven AI agents. Then, the calibrated 

collaboration degree for each pre-designed collaborative game level was used as domain 

knowledge to formulate the collaborative gameplay design problem into an optimization problem. 

As a result, a game level designer can request game levels with different degrees of collaboration. 

The designer can later edit the synthesized game level if needed, automating the whole process 

and minimizing the time required to design the game levels. For more details, please refer to [19], 

which was included in Chapter 3 Published Article #3: Synthesizing Game Levels for 

Collaborative Gameplay In a shared virtual environment  in this dissertation. 

Discussion of how the paper address the research questions 

The proposed method was divided into three parts. First, a game level designer was 

responsible for designing playable game level chunks. Second, artificial intelligence (AI) virtual 

agents were implemented to play the game level chunks. Data was collected from these agents and 

was used to characterize the degree of collaboration of each game level chunk. Third, by 

developing cost terms that encode various design decisions, the method can automatically 

synthesize a game level that fulfills all designer-specified design decisions.  

To begin with, the achieved synthesized collaborative gameplay that integrated context-

dependent collaboration degree considerations was a positive answer to RQ1. The formulation of 

the collaborative gameplay design problem to an optimization problem allowed the proposed 

system to synthesize several variations of game levels that satisfy the designer-defined parameters 

in a few seconds. Next, user study was conducted under synthesized Low collaboration degree, 

Medium collaboration degree and High collaboration degree collaborative gameplay levels. The 

result showed that the different degree of collaboration targets of the synthesized game level 

impacted the way the participants collaborated in the gaming application, which demonstrated that 

it is suitable and viable to formulate the collaborative gameplay design problem to an optimization 
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problem as an answer to RQ2. Then, the cost terms considered included collaboration costs and 

prior costs. The collaboration costs included considerations for Mean Degree of Collaboration, 

Variation in the Degree of Collaboration, and Degree of Collaboration Progress, aiming at 

providing certain level of controllability to the collaboration related features of the synthesized 

result. The prior costs that were explored were synthesized chunk total number size cost as well 

as adjacent repetition cost. The exploration of the cost terms answers RQ3. 

Application Case4 --- Synthesizing Shared Space Virtual Reality Fire Evacuation Training 

Drills 

In this case, the focused scenario was the fire evacuation training drill, which was formulated 

to be an optimization problem like the three cases described above. The aim was to synthesize VR 

fire evacuation training drills in a shared virtual space to explore the participants’ collaboration 

behavior. The proposed optimization-based method can be used to automatically generate fire 

evacuation training drills with varying levels of difficulty. The users’ assigned task was to help 

virtual agents evacuate the building as quickly as possible using predefined interaction 

mechanisms (voice commands, trigger fire extinguisher, physical locomotion, etc.). The 

participants can join the training drill from different locations and collaborate and communicate in 

a shared virtual space to accomplish the task. The proposed VR training drill authoring method 

was evaluated by a user study conducted among three synthesized training drills with different 

difficulty levels: low difficulty (LD), medium difficulty (MD), and high difficulty (HD). Both in-

game measurements and subjective ratings were collected to explore how the participants 

collaborate in such a VR setup. For more details, please refer to [20], which was also included in 

Chapter 4 Published Article #4: Synthesizing Shared Space Virtual Reality Fire Evacuation 

Training Drills in this dissertation. 

Discussion of how the paper address the research questions 

First, the attained synthesized result of fire evacuation training drills of varying level of 

difficulty was a positive answer to RQ1. Then, user studies were conducted to evaluate difference 

of participants’ collaboration behavior under synthesized drills with different level of difficulty, 

and the results showed that the degree of collaboration targets of the synthesized game level 

impacted the way the participants collaborated in the gaming application. This showed that it is 
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viable to formulate the design of fire evacuation training drill into an optimization problem as an 

answer to RQ2. Finally, the domain knowledge applied in this case was the parameters that affect 

the difficulty level of the generated fire evacuation training drill. The cost terms that are considered 

here include Length cost, Turn cost, Fire cost and Visibility cost. The exploration for the cost terms 

answers RQ3. 
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Abstract 

We have developed a modular virtual reality gaming application that can be used to 

synthesize exercise drills for racket sports. By defining cost terms that are related to the gameplay 

and the mechanics of the game, as well as by allowing a user to control the parameters of the cost 

terms, users can easily adjust the objectives and the intensity levels of the exercise drills. Based on 

the user-defined exercise objectives, a Markov chain Monte Carlo optimization method called 

“simulated annealing” was used to optimize the exercise drill. The effectiveness of the developed 

virtual reality gaming application was measured in two studies by using virtual reality table tennis 

as the evaluation tool. The first study investigated the potential usefulness of the developed virtual 

reality gaming application as an exercise tool by comparing its workout effectiveness at three 

intensity levels (low, medium, and high) through the collection of heart rate readings. The second 

study explored the potential utility of the virtual reality gaming application as a training tool by 

exploring whether there was any improvement in participants’ performance across the three 

conditions (no training, virtual reality training, and real-world training). The results indicate that a 

virtual reality gaming application, such as the examined virtual reality table tennis exergame, could 

indeed be used effectively as both an exercise and a training tool. Limitations and future research 

directions are discussed further below. 

1.1 Introduction 

Virtual reality has proven to be an excellent tool not only for entertainment purposes, but 

also for several other applications such as training [26][28][37][52], rehabilitation [33][61][83], 

human behavior exploration [41][60][63], and visualization [1][20]. The use of virtual reality in 

these domains allows the user to observe and interact with the provided content in a highly 

immersive environment while also being entertained [31][54]. With the widespread popularity of 

virtual reality devices and peripheral equipment, several real-world experiences can be converted 

into virtual ones and brought into one’s own living room. The use of virtual reality for exercise 

purposes can even have real-world benefits for some users. Specifically, by playing and 

simultaneously exercising, users can improve their physical health and fitness while being 

entertained [6][18][65].  
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Since quite a few people are interested in racket sports-related games2 (e.g., table tennis, 

tennis, badminton, etc.), we decided to develop a modular virtual reality gaming application that 

can be used for exercise and training purposes by racket sports enthusiasts, focusing mainly on 

table tennis, badminton, and mini tennis. While the potential of virtual reality gaming applications 

for exercise and training is appealing, designing exercise drills may become tedious for the user, 

as the parameters have all been pre-set by the developer. Bearing this in mind, the virtual reality 

gaming application presented in this paper allows users to customize exercise drills, as our system 

is able to automatically optimize an exercise based on user-specified objectives.  

The developed application was inspired by previous research on procedural content 

generation for exergames [45][86][87] and virtual reality applications related to racket sports 

[10][55][57][75]. Our approach took into account several parameters related to racket sports games 

and represented these parameters as cost terms to a total cost function. Next, an optimization-based 

approach was used to synthesize the racket sport drill. By formulating the design of the racket 

sport drills as an optimization problem, in a few seconds, several exercise drills could be generated 

by our system which is designed to maintain a balance among different design schemes while 

ensuring the necessary variability between different generated drills. This variability is important 

for keeping the user engaged. As shown in Figure 1 and the accompanying video, our approach 

can be applied to different types of racket sports.  

 

Figure 1: Our approach can optimize virtual reality exercise and training drills for different 

racket sports with minimal effort from the user. From left to right: table tennis, badminton, and 

mini tennis. © [2020] IEEE 

The focus of the paper is twofold: (1) develop an algorithm for automatically synthesizing 

exercise and training drills for racket sports, and (2) evaluate the impact of the synthesized exercise 

and training drills on human performance. The effectiveness of the developed application and the 

ability of our algorithm to efficiently synthesize exercise and training drills had to be evaluated, 

 
2 https://www.worldatlas.com/articles/what-are-the-most-popular-sportsin-the-world.html 
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so two user studies were conducted to determine our method’s potential for use as an exercise and 

training tool. The results indicate that this type of virtual reality application can indeed be used for 

both exercise and training purposes. However, aside from the advantages of exercising in virtual 

reality, there are also some limitations that should be taken into account by the research community, 

something that may spur the development of additional advanced virtual reality interfaces 

applicable to exercising and training in virtual reality racket sports.  

The remainder of this paper is organized as follows. Related works are presented in Section 

1.2. The methodology and implementation details are presented in Section 1.3. The first user study 

and results are presented in Section 1.4, and the second user study and results are presented in 

Section 1.5. Various limitations are presented in Section 1.6. Finally, the conclusions and potential 

for future research are addressed in Section 1.7. 

1.2 Related Work 

Because traditional video games are generally associated with reduced energy expenditure 

on part of the players due to decreased physical activity [43], strategies that allow players to 

entertain themselves while also increasing physical activity have also been explored [27][35][50]. 

In response to the difficulty of developing effective strategies to promote physical activity [69], a 

category of games called exergaming [80][84], or active video games [8], has been developed to 

incorporate virtual reality technologies into video games. Generally, exergames allow players to 

perform various exercise activities from the comfort of their living rooms. Such games require 

physical output as a means of interaction and engagement with the game. Aside from the capacity 

of such games to be used for exercise and fun, exergames are also considered a credible alternative 

to conventional training. This has made it possible for exergames to be used in sports training 

[13][36], breathing training for increasing lung capacity [67], balance enhancement [44], weight 

control [82], and motor training [77].  

The idea of using exergames to improve the health of users has been increasingly promoted 

by the research, development, and health/medical communities [68][73]. When comparing non-

exergames with exergames, studies have indicated that the latter increase user enjoyment and 

intrinsic motivation levels [4][5][22][58][78]. So far, studies have validated the positive health 

effects of exergames [18][46] on weight loss in adolescents and adults [6][82], and on improved 

balance- and movement-related physical performance in the elderly [65][85]. Moreover, it has 



 

 

29 

been found that physical activity has positive effects on cognitive and also physical functions 

[15][16][25][53][64][76]. A notable example of the above is the collaboration between West 

Virginia high schools and the KONAMI gaming company, through which the arcade dance-based 

video game “Dance Dance Revolution”3 was included in the high school curriculum as a way to 

tackle youth obesity.4 

When developing exercise games, an important factor a developer needs to take into 

account is the degree of physical exercise that is required by the user [66], since, according to a 

prior study, players derive more enjoyment from games that are neither too difficult nor too easy 

[81]. Though it is important to define physical exercise goals, when developing commercial games, 

customarily it is the developers who manually set these goals [23][32]. Thus, a challenge arises 

for developers to design an exercise gaming experience that can be used efficiently by users of 

varying ages and fitness levels. Fitts’ law [48] and precision of difficulty [49] can be employed so 

that exercise parameters can be controlled by users. In the current implementation, we considered 

several parameters related to racket sports and ultimately provided users with control over the 

output of their exercise drills. To automate the exercise or training drill synthesis process, 

procedural techniques can be efficiently applied [14]. Such procedural techniques allow the 

development of fast and scalable designs while variations across design outputs are also ensured. 

Note that such techniques have already been successfully implemented in various games 

[14][29][34][79][80]. Our developed procedural exercise drill design method was inspired by 

previous research and by recent approaches to automatic game-level synthesis for exercising 

[45][86][87]. Our application extends the current list of such exergames by proposing the use of 

racket sports, and evaluates the virtual reality table tennis exergame for its potential as an exercise 

and training tool. 

1.3 Synthesizing Racket Sports Exercise Drills 

A method was developed to synthesize exercise drills for virtual reality racket sports with 

respect to several factors defined as cost terms in a total cost function. Let 𝐸 = [𝑠1, 𝑠2, … , 𝑠𝑁] 

denote an exercise drill, which consists of a number of 𝑠𝑖 ∈ 𝐸 shots generated by our system (it is 

worth mentioning here that a virtual ball-throwing machine was used to generate the shots from 

 
3 https://www.konami.com/games/asia/en/products/ddr_a/ 
4 https://www.sfgate.com/business/article/Video-dance-game-to-be-used-in-schools-West-2542902.php 
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the exact same position) and assembled in a sequential order, where 𝑠𝑖 corresponds to any possible 

shot. The exercise drill E is designed by a total cost function 𝐶𝑇𝑜𝑡𝑎𝑙(𝐸): 

𝐶𝑇𝑜𝑡𝑎𝑙(𝐸) = 𝑤𝑆
𝑇𝐶𝑆 +  𝑤𝑃

𝑇𝐶𝑃          (1) 

where 𝐶𝑆 = [𝐶𝑆
𝐷𝑖𝑠𝑡 , 𝐶𝑆

𝑆𝑝𝑒𝑒𝑑, 𝐶𝑆
𝐹𝑟𝑒𝑞]  is a vector of shot cost, and 𝑤𝑆 =

[𝑤𝑆
𝐷𝑖𝑠𝑡, 𝑤𝑆

𝑆𝑝𝑒𝑒𝑑, 𝑤𝑆
𝐹𝑟𝑒𝑞] are weights that correspond to the cost terms. The 𝐶𝑆

𝐷𝑖𝑠𝑡, 𝐶𝑆
𝑆𝑝𝑒𝑒𝑑

 and 𝐶𝑆
𝐹𝑟𝑒𝑞

 

terms encode the intensity of the exercise drill: 𝐶𝑆
𝐷𝑖𝑠𝑡 denotes the distance covered by the user to 

complete the drill and is expressed as the distance between two adjacent shots (the distance is 

computed between the position 𝑃(𝑠𝑖) and 𝑃(𝑠𝑖+1) of the adjacent shot 𝑠𝑖 and 𝑠𝑖+1, respectively), 

𝐶𝑆
𝑆𝑝𝑒𝑒𝑑

 denotes the speed of the shots, and 𝐶𝑆
𝐹𝑟𝑒𝑞

 denotes the frequency with which the shots are 

generated. Note that each shot 𝑠𝑖  is represented by a target position 𝑃(𝑠𝑖) , speed 𝑉(𝑠𝑖), and 

frequency Φ(𝑠𝑖).  

The prior cost term 𝐶𝑃 = [𝐶𝑃
𝐷𝑢𝑟 , 𝐶𝑃

𝑉𝑎𝑟 , 𝐶𝑃
𝑆𝑖𝑑𝑒] includes the prior costs associated with the 

developed exergame, such as the duration of the exercise drill (𝐶𝑃
𝐷𝑢𝑟), the variations between the 

shots (𝐶𝑃
𝑉𝑎𝑟) and the court side (𝐶𝑃

𝑆𝑖𝑑𝑒), and the 𝑤𝑃 = [𝑤𝑃
𝐷𝑢𝑟 , 𝑤𝑃

𝑉𝑎𝑟 , 𝑤𝑃
𝑆𝑖𝑑𝑒] are weights assigned to 

the prior cost terms. It should be noted that aside from the proposed cost terms, various other cost 

terms can be examined by the developers, depending on the characteristics of the exercise drill. 

For the cost terms, we employed a Gaussian model in order to evaluate the distance between the 

given objective and the target objective of the exercise drill. The source code (Unity3D project) of 

our racket sports application is available at our GitHub repository: https://github.com/Hearurt/VR-

TableTennis-System. 

All cost terms presented in the below sections were computed by using normalized values 

that lie within the minimum and the maximum range of each individual target. In finding the 

targets, eight non-athlete healthy students (four males and four females aged 19-23) were required 

to exercise for 60 minutes by playing multiple variations of the exergame at varying exercise 

intensities. During that time, combinations of various target values for each cost term were tested, 

and the heart rate (beats per minute) of each participant was recorded by using a heart rate sensor, 

the Polar OH1+5. Based on this initial data collection, we were able to define the range and the 

target values of the individual cost terms. Finally, it should be noted that the target objective of the 

 
5 https://www.polar.com/us-en/products/accessories/oh1-optical-heartrate-sensor 

https://github.com/Hearurt/VR-TableTennis-System
https://github.com/Hearurt/VR-TableTennis-System
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optimization process was the manipulation of exercise intensity, which in our case will be later 

evaluated (see Section 4) by collecting heart rate data and self-reported perceived intensity rating.  

Note that although a number of methods could be used to generate exercise and training 

drills, we choose to implement an optimization-based method to solve the exercise and training 

drill synthesis problem. For example, rule-based methods often fail to select appropriate 

parameters for the desired outcome (especially when multiple parameters should be fulfilled 

simultaneously) and, in most cases, synthesize the output in a product-appropriate manner [11]. 

However, optimization technique iterates through hundreds of systematic draws from the model 

parameter space to search for solutions that fit all constraints set by a user, no matter how complex 

the problem is, which makes it fairly reliable [71] and easy to implement new constraints/cost 

terms. Moreover, optimization techniques allow the estimation of complex solutions in a fast and 

scalable fashion, which rule-based techniques fail to do. 

1.3.1 Shot Terms Cost 

The three shot terms responsible for generating a new exercise drill 𝐸 are defined in this 

section. 

1.3.1.1 Distance Cost 

In various exercise drills, user movement within a space is quite common and, according 

to sports science, locomotive movement while exercising presents various benefits [19][74]. In 

order to calculate how much a user moves, it is assumed that there is a linear relationship between 

the distance of two adjacent shots (the distance of the positions of two balls the time point they 

bounce on the side of the user) and the distance that the user would need to cover when exercising. 

Thus, we defined a cost to compute the distance between the positions of two adjacent shots as: 

𝐶𝑆
𝐷𝑖𝑠𝑡(𝐸) = 1 − 𝑒𝑥𝑝(−

(
1

|𝐸|−1
∑ 𝐷(𝑃(𝑠𝑖),𝑃(𝑠𝑖+1))(𝑠𝑖,𝑠𝑖+1)

 − 𝜎𝐷)
2

2𝜎𝐷
2 )             (2) 

where 𝜎𝐷  is the target distance covered between two adjacent shots, 𝐷(𝑃(𝑠𝑖), 𝑃(𝑠𝑖+1)) 

denotes the distance between the positions 𝑃(𝑠𝑖) and 𝑃(𝑠𝑖+1) of the two adjacent shots 𝑠𝑖  and 

𝑠𝑖+1, respectively, and |𝐸| denotes the total number of shots. 



 

 

32 

1.3.1.2 Speed Cost 

According to sports science literature [7][21][56][72], the speed in which a ball moves in 

racket sports enhances the intensity of the exercise, as the athlete needs to be prepared to quickly 

decide and adjust his/her movement toward the direction of a moving ball. Thus, we included a 

cost term to compute the speed intensity involved in the exercise drill: 

𝐶𝑆
𝑆𝑝𝑒𝑒𝑑(𝐸) = 1 − 𝑒𝑥𝑝 (−

(
1

|𝐸|
∑ 𝑉(𝑠𝑖)𝑠𝑖

 − 𝜎𝑉)
2

2𝜎𝑉
2 )             (3) 

where 𝜎𝑉  is the target average ball speed in completing an exercise drill 𝐸 , and 𝑉(𝑠𝑖) 

denotes the speed of the 𝑠𝑖 shot. 

1.3.1.3 Frequency Cost 

The last term applied in our shot cost term is related to the frequency in which a new ball 

should be generated by the virtual ball-throwing machine. Based on various sources, we found that 

frequency is important in exercising, since high frequencies tend to keep an athlete vigilant as there 

is no time to rest between adjacent shots, resulting in a more intense workout 

[2][3][30][40][42][47]. Thus, a frequency cost term was developed to compute the frequency 

intensity involved in the exercise drills: 

𝐶𝑆
𝐹𝑟𝑒𝑞(𝐸) = 1 − 𝑒𝑥𝑝(−

(
1

|𝐸|
∑ Φ(𝑠𝑖)𝑠𝑖

 − 𝜎Φ)
2

2𝜎Φ
2 )             (4) 

 where 𝜎Φ is the target average of the ball-throwing frequency in completing an exercise 

drill 𝐸, and Φ(𝑠𝑖) denotes the frequency of the 𝑠𝑖 shot. 

1.3.2 Prior Cost 

In this implementation, the prior cost terms were developed to control some of the features 

of game play. Various prior cost terms could have been employed, depending on the specific 

design requirements of an exercise. However, we limited the prior cost terms to those that are most 

important for this particular virtual reality gaming application: duration, variation, and court side. 
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1.3.2.1 Duration Cost 

The duration cost is responsible to softly constrain the exercise drill to be of a certain 

duration, and it is defined as: 

𝐶𝑃
𝐷𝑢𝑟(𝐸) = 1 − 𝑒𝑥𝑝 (−

(∑ τ(𝑠𝑖)𝑠𝑖
 − 𝜎τ)

2

2𝜎τ
2 )     (5) 

where τ(𝑠𝑖) denotes the duration of a single shot and 𝜎τ denotes the target duration of the 

exercise drill. 

1.3.2.2 Variations Cost 

To keep the user engaged with the exercise drill—since an exercise without variation would 

become less interesting—a variation term was also implemented as an additional prior cost. When 

we perform exercise drills that require multiple repetitions of the same shot, the variation between 

repetitions should be minimized. Thus, the variation cost term ensures that the generated shots will 

or will not have the same characteristics, and it is defined as: 

𝐶𝑃
𝑉𝑎𝑟(𝐸) =  

1

|𝐸|−1
∑ 𝛤(𝑠𝑖, 𝑠𝑖+1)(𝑠𝑖,𝑠𝑖+1)

  (6) 

where (𝑠𝑖, 𝑠𝑖+1) represents adjacent shots and 𝛤(𝑠𝑖, 𝑠𝑖+1) returns 1 if the position and speed 

of shot 𝑠𝑖+1  is identical to shot 𝑠𝑖  (i.e., within a defined speed and position range); otherwise 

(𝑠𝑖, 𝑠𝑖+1) returns 0 (the position and speed of shot 𝑠𝑖+1 is different from shot 𝑠𝑖).  

1.3.2.3 Court Side Cost  

The court side cost is responsible for assigning a side to the synthesized drill, and it is 

defined as: 

𝐶𝑃
𝑆𝑖𝑑𝑒(𝐸) =  

1

|𝐸|
∑ Π(𝑠𝑖)𝑠𝑖

        (7) 

where Π(𝑠𝑖) returns 0 if the shot is generated at the chosen court side; otherwise Π(𝑠𝑖) 

returns 1. This cost term can be considered beneficial especially in cases where a racket sports 

enthusiast is willing to put in extra effort for a particular shot (e.g., forehand, backhand). 
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1.3.3 Optimization 

An optimization approach was used to synthesize an exercise drill by generating a sequence 

of shots. Since an exercise drill could be generated by a variety of shots, an optimal solution for 

the user-defined target cost was searched in the solution space. Note that the target goal of the 

optimizer is to fit an exercise drill to user-defined exercise objectives and intensity levels. A 

Markov chain Monte Carlo optimization method, known as simulated annealing [39], with a 

Metropolis-Hastings state searching step [12] was used to optimize the exercise drill. To employ 

the optimization method, a Boltzmann-like objective function was defined: 

𝑓(𝐸) = 𝑒𝑥𝑝 (−
1

𝑡
𝐶𝑇𝑜𝑡𝑎𝑙(𝐸))            (8) 

where 𝑡 denotes the temperature parameter of the simulated annealing process [39], set to 

decrease gradually during the optimization process. At every iteration, the optimizer chooses and 

applies a move to the current exercise drill 𝐸 to propose an exercise drill 𝐸′. Based on the three 

components of the shot (position, speed, and frequency), seven different moves were developed to 

be chosen by the optimizer: 

• change position;  

• change speed;  

• change frequency;  

• change position and speed;  

• change position and frequency;  

• change speed and frequency; and  

• change position, speed, and frequency. 

 

At the beginning of the optimization process, the number of shots defined by the user is 

generated through random parameters of position (𝑝), speed (𝑣), and frequency (𝜑). At each 

iteration of the optimization, one of the shots and one of the moves are selected randomly. Then 

the move is applied to the selected shot and to the current exercise drill E to create a new exercise 

drill 𝐸′. For example, when the “change position” move is selected, a randomly chosen shot moves 

to a new position, and the system computes the cost of the new exercise drill 𝐸′ . In our 

implementation, the selection probabilities of the moves were set to 𝑃𝑟𝑝  =  .25  for “change 

position,” 𝑃𝑟𝑣  =  .25 for “change speed,” 𝑃𝑟φ  =  .25 for “change frequency,” 𝑃𝑟p,v  =  .10 for 
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“change position and speed,” 𝑃𝑟p,φ = .05 for “change position and frequency,” 𝑃𝑟v,φ = .05 for 

“change speed and frequency,” and 𝑃𝑟p,v,φ = .05 for “change position, speed, and frequency.” 

Our optimization favors the individual changes for position, speed, and frequency. To decide 

whether to accept a proposed exercise drill 𝐸′ , our method compares the proposed total cost 

𝐶𝑇𝑜𝑡𝑎𝑙(𝐸
′) to the current total cost of 𝐶𝑇𝑜𝑡𝑎𝑙(𝐸). The developed method accepts the proposed 

exercise drill 𝐸′ based on the Metropolis criterion [12] denoted as: 

𝑃𝑟(𝐸′|𝐸) = 𝑚𝑖𝑛 (1,
𝑓(𝐸′)

𝑓(𝐸)
)         (9) 

To optimize different exercise drill design solutions, the simulated annealing method was 

employed. A temperature parameter 𝑡 is first defined. When optimization begins, the temperature 

parameter 𝑡 is represented by a high value, allowing the optimizer to aggressively explore the 

optimized results. As the iterations of the optimization evolve, the temperature parameter is 

reduced until it reaches zero. An initial temperature 𝑡 =  1.0  was used in the current 

implementation at the beginning of the optimization and was reduced by .10 every 200 iterations. 

As the temperature parameter decreases, the optimizer becomes more greedy in finding the optimal 

solutions. The optimization process is completed when the total cost change is less than 5% in the 

past 50 iterations. Figure 2 illustrates how the total cost 𝐶𝑇𝑜𝑡𝑎𝑙(𝐸) changes over several iterations.  

 

 

Figure 2: Total cost changes as the optimization process (iterations) evolves. © [2020] IEEE 
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Unless otherwise specified by a user, the weights assigned to the cost terms responsible for 

the shots are set to 𝑤𝑆
𝐷𝑖𝑠𝑡 = 1.0, 𝑤𝑆

𝑆𝑝𝑒𝑒𝑑 = 1.0, and  𝑤𝑆
𝐹𝑟𝑒𝑞 = 1.0, and the weights of the prior cost 

terms are set to 𝑤𝑃
𝐷𝑢𝑟 =  .10, 𝑤𝑃

𝑉𝑎𝑟 = .50, and 𝑤𝑃
𝑆𝑖𝑑𝑒 = .10. Note that the user is allowed to 

control the weight values of both shot and prior cost terms to synthesize exercise drills by 

prioritizing differently the objectives of the drill. Moreover, the user is allowed to control the target 

values of the cost terms so that he/she can synthesize exercise drills with different levels of 

difficulty, intensity, and variability. Variations in exercise drills generated by the presented system, 

while keeping both the target values and weights constant, are shown in Figure 3, whereas shots 

of various distributions based on different target values are shown in Figure 4. 

 

 

Figure 3: Variations in exercise drills generated by the presented system through keeping the 

target exercise amounts (𝜎𝐷  =  .6, 𝜎𝑉  =  .3, and 𝜎𝛷 = .2) constant. Numbers close to balls 

denote the sequence of shots. Note that for all four examples shown in this Figure, the weights of 

the shot and prior cost terms remained constant. © [2020] IEEE 

 

 

Figure 4: Distribution of shots when varying the target values (𝜎𝐷, 𝜎𝑉 , and 𝜎𝛷) of the shots cost 

terms. Numbers close to balls denote the sequence of shots. Note that for all four examples 

shown in this figure the weight of the shot and prior cost terms remained constant. © [2020] 

IEEE 
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1.4 Evaluation as An Exercise Tool 

This study investigates whether the developed virtual reality table tennis application can 

be used also as an exercise tool. Specifically, this study was conducted to evaluate whether our 

system can synthesize exercise drills that fulfill user-defined exercise targets. In this study, we 

considered intensity variations of the exercise drill and we captured heart rates to investigate 

whether exercise intensity differences are expressed as heart rate differences.  

1.4.1 Participants  

Participants were recruited through class announcements and emails. The participant group 

was comprised of 36 healthy undergraduate and graduate students. None of the participants were 

athletes. The students’ ages ranged from 19 to 26 years, with a mean of M = 22.31 (SD = 2.65). 

All participants had prior experience with virtual reality; however, none of the participants had 

experience with exercise sports games in virtual reality. No compensation was given to the students 

for their participation.  

1.4.2 Setup and Implementation Details  

The research team conducted this study at a lab space of our university. The lab space was 

9 meters long and 7 meters wide, with a ceiling height of 4 meters. All tables and chairs were 

removed. The HTC Vive Pro head mounted display device was used to project the virtual reality 

content, and an HTC table tennis racket6 and HTC Vive tracker were used to control the virtual 

racket in the virtual environment. The virtual reality gaming application was developed in the 

Unity3D game engine version 2019.1.4 and ran on a Dell Alienware Aurora R7 desktop computer 

(Intel Core i7, NVIDIA GeForce RTX 2080, 32GB RAM). Note that the time required by our 

system to optimize an exercise drill that consists of 40 shots did not exceed 5 seconds.  

A 3D virtual environment of a sports court was designed in 3Ds Max and imported into 

Unity3D (see Figure 5). The dimensions of the court were identical to those of the lab space. This 

was done so that the participants would be aware of their position in the real environment in order 

to eliminate potential accidents that might have occurred by colliding with the walls. The table 

tennis table was placed in the middle of the room, so the participants were at least three meters 

 
6 https://www.vive.com/us/VR-racket-sports-set/ 
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away from either wall. Finally, a Polar OH1+ optical heart rate sensor was used to capture the 

heart rates of the participants to determine how exercise levels of different difficulty, intensity, 

and variability affected them. 

 

Figure 5: The virtual table tennis court that was designed and used for the purpose of the study. 

© [2020] IEEE 

1.4.3 Conditions of the Study  

Three conditions were tested to determine whether the developed virtual reality gaming 

application could be used as an effective exercise tool. Note that this is a between-group study, 

which means that all participants experienced all of the three developed conditions. The conditions 

were:  

• Low Intensity: The user does not need to move much, the balls move with low 

speed, and the shots are generated with a low frequency. The target values were set 

as: 𝜎𝑑 = .2, 𝜎𝑉 = .2, and 𝜎𝛷 = .2. Based on the set target values, the heart rate of 

participants was expected to reach 110 beats per minute (BPM)).  

• Medium Intensity: The user is called to perform small steps to hit the ball, the 

balls move a bit faster, and the shots are generated with a medium frequency. The 

target values were set as: 𝜎𝑑 = .5, 𝜎𝑉 = .5, and 𝜎𝛷 = .5. In this condition, the 

heart rate of participants was expected to reach 120 bpm.  

• High Intensity: The user is called to perform more intense movements to hit the 

ball, the balls move even faster, and the shots are generated with a high frequency. 
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The target values were set as: 𝜎𝑑 = .8, 𝜎𝑉 = .8, and 𝜎𝛷 = .8. The heart rate of 

participants was expected to reach 130 bpm.  

 

Finally, we would like to mention that for all three examined conditions the weights 

assigned to the shot and prior cost terms remained constant. By changing the target values of each 

shot-related cost term, we were able to generate on demand an exercise drill with different 

objective goals and consequently with different target exercise intensity levels expressed through 

heart rate indicators. Thus, each of the abovementioned conditions made requests to our optimizer 

in terms of distance, speed, and frequency objectives, and ultimately specified the intensity level 

for each synthesized table tennis exercise drill. 

1.4.4 Measurements  

To evaluate the prospect of using a virtual reality table tennis application as an exercise 

tool, the heart rate of the participants was measured using the abovementioned heart rate sensor. 

Specifically, the mean heart rate of participants was computed after each trial of the exercise 

segment of the study. Note that high heart rate values correspond to higher fatigue [59][62]. For 

each condition (there were 10 trials in total for each intensity level), the first 30 seconds of the 

heart rate data were deleted, as this was considered a warm-up period. After the exercise segment 

of the study the participants were asked to provide a rating of perceived exertion (RPE), as 

developed by Borg [9]. The RPE scale measures the intensity of an exercise by asking participants 

to rate the perceived intensity of an activity. We used a seven-point scale in which 1 indicated “not 

high at all” and 7 indicated “very, very high.” 

1.4.5 Procedure  

We followed a within-group study design, and we asked the participants to partake in a 

three-day session. The participants experienced a different condition on each day of the study. 

Note that the participants were aware of this process before the beginning of the first session. Once 

the participants arrived at the lab space, the research team provided information about the project, 

and the participants were asked to sign a consent form that was approved by the Institutional 

Review Board of our university. During that time, the participants became aware that they would 
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be attending three sessions. Then, the participants were asked to complete a demographic 

questionnaire. In the next step, the research team helped the participants with the virtual reality 

equipment.  

Once the virtual reality gaming application started, the research team asked the participants 

to move to a position close to the table tennis table within the virtual environment. The participants 

were also told that the walls of the virtual space corresponded to the walls of the real space and 

that they should be careful when moving toward any of the walls. None of the participants collided 

with any of the walls during the study. When the participants indicated that they were ready, the 

researcher switched on the virtual ball-throwing machine. In total, the participants experienced 10 

variations of the game at the same intensity condition classification. We developed 10 variations 

for each condition to ensure that the participants did not lose interest while playing the exergame.  

For each variation of the training session, the participants were exposed to a trial in which 

40 virtual balls were placed in the ball-throwing machine. Each variation of the condition (trial) 

lasted no more than two minutes. Note that in between the trials, participants were allowed to take 

up to a two-minute break. To eliminate the first-order carry-over effects between the trials of the 

condition, Latin squares [38] for balancing were used. Thus, each participant experienced a 

different sequence of each of the variations. After the end of the exercise segment, the participants 

were asked to fill in the perceived exertion scale. At the end of the final trial (day three of the 

study), the participants were informed that the research team would answer questions about the 

study. To standardize the study, each participant came to the lab on the same day and time 

respectively for each of the three sessions that occurred during three consecutive weeks. The Latin 

squares [38] ordering method was used to ensure a balance across all conditions (low, medium, 

and high intensity levels). Thus, each participant experienced a different level of exercise intensity 

in each of the visits. Finally, we would like to note that each participant spent no more than a total 

of 120 minutes in the lab for the total of the three sessions (40 minutes per session). 

1.4.6 Results  

A one-way repeated measuring analysis of variance (ANOVA) was used to determine the 

differences across the three developed intensity levels of the exercise. The normality assumption 

of the collected data was evaluated graphically using Q-Q plots of the residuals [24]. The Q-Q 

plots indicated that the obtained data fulfilled the normality criteria. A 𝑝 <  .05 value was deemed 
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statistically significant. Boxplots of the obtained results are shown in Figure 6. By analyzing the 

heart rate data, we identified significant differences across the three examined conditions [𝛬 =

 .189, 𝐹(2,34)  =  72.900, 𝑝 <  .0001, 𝜂𝑝
2 = .811]. Post-hoc comparisons using the Bonferroni 

correction revealed that the mean heart rate during the low intensity condition ( 𝑀 =

 108.41, 𝑆𝐷 =  6.48) was significantly lower than that of the medium intensity condition (𝑀 =

 118.08, 𝑆𝐷 =  4.87) at the 𝑝 <  .0001 level and that of the high intensity condition (𝑀 =

 125.58, 𝑆𝐷 =  4.81) at the 𝑝 <  .0001 level. Moreover, the mean heart rate during the medium 

intensity condition was significantly lower than that during the high intensity condition at the 𝑝 <

 .001 level.  

By analyzing the RPE data, we also identified significant differences across the examined 

conditions [ 𝛬 =  .616, 𝐹(2,34)  =  10.576, 𝑝 <  .0001, 𝜂𝑝
2  =  .384 ]. Post-hoc comparisons 

using the Bonferroni correction revealed that participants reported that the low (𝑀 =  1.89, 𝑆𝐷 =

 .82) and medium (𝑀 =  1.94, 𝑆𝐷 =  .86) intensity conditions were less intense than the high 

(𝑀 =  3.05, 𝑆𝐷 =  1.45 ) intensity condition, both at the 𝑝 <  .0001  level. No significant 

difference was found between the low and medium intensity conditions. 

 

Figure 6: Boxplots of the obtained results regarding the usage of the developed method as an 

exercise tool. Boxes enclose the middle 50% of the data. The median is denoted by a thick 

horizontal line. © [2020] IEEE 

1.4.7 Discussion  

The heart rate of the participants differed across the three exercise levels and, therefore, 

the three exercise intensity levels worked as expected. Moreover, the heart rate data revealed that 

it is indeed possible to develop racket sports-related virtual reality gaming applications that can be 
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used for exercise purposes. The developed exercise design approach also revealed that it can 

automatically generate table tennis exercise drills that can allow users to exercise at user-specified 

intensity levels in the comfort of their own living rooms.  

Specifically, the collected data has shown that our system can optimize exercise drills that 

are able to trigger the heart rate of participants close to the target heart rate value that was 

anticipated for each condition. For instance, the target heart rate value for the low intensity was 

expected to be 110 BPM and the mean heart rate value of the participants was found to be 108.41 

BPM, the target heart rate value for the medium intensity was expected to be 120 BPM and the 

mean heart rate value of all participants was found to be 118.08 BPM, and the target heart rate 

value for the high intensity was expected to be 130 BPM and the mean heart rate value of all 

participants was found to be 125.58 BPM. Based on these findings, it can be said that participants’ 

mean heart rate was closer to the target heart rate when exposed to the low and medium intensity 

exercise drills compared to the high intensity exercise drill. We believe that the difference between 

the expected and the actual heart rate could be adjusted by synthesizing exercise drills that take 

into account the gender, age, and physical health of the users. However, all things considered, our 

findings indicate that users who are willing to exercise from the comfort of their living rooms 

while being exposed to a fun activity, such as playing a virtual reality game, can indeed achieve 

exercise goals significantly close to their desired ones. Finally, we would like to mention that 

although VRT can help people improve their performance, it does not provide a training experience 

similar to a real-world one. However, this fact does not invalidate the ability of VRT to help racket 

sports enthusiasts improve their skills.  

Regarding the self-reported intensity of the exercises, on the one hand, we found that the 

perceived difficulty of the easy and medium intensity drills was lower than that of the high intensity 

drill. This finding shows that participants were only partially able to distinguish across the intensity 

levels they were exposed to, since we were not able to find differences between the low and 

medium intensities. A possible explanation is that the intensity level of an exercise drill can be 

related to various other participant-related factors (e.g., someone who spends 2-3 days per week 

at a gym might rate the medium intensity as easy compared to someone who barely exercises). 

However, each user can tune the intensity of the exercise by triggering the respective target values 

of the shots cost terms. This way, the developed method can be used to generate exercise drills 

even for demanding tasks and users who want to exercise at a more advanced level. However, the 
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fact that we were not able to find differences between the low and medium intensities is the most 

interesting result of this study. This finding indicates that while the medium workout resulted in a 

significantly higher heart rate over the low workout, it did not result in a significantly higher 

perceived exertion. From our point of view, this finding indicates that while the level of exercise 

intensity increased, the discomfort of participants stayed at low levels.  

After the study, we asked participants about their experiences. Almost all of the participants 

said that they really enjoyed exercising in a virtual reality environment, and many said they liked 

the way the virtual reality application was designed. We believe that the participants’ levels of 

enjoyment were the reason they did not rate the medium intensity level workout with a higher RPE. 

This insight (increased levels of enjoyment) could be considered in implementing exercise-related 

virtual reality applications as a guideline for raising the level of exercise without raising discomfort. 

Another participant said that including a virtual coach or an opposing player might have also been 

interesting. However, for the purpose of this study, the motion and the presence of an opposing 

player might have distracted the user. Finally, it is worth noting that none of the participants 

reported dizziness or any form of cybersickness. 

1.5 Evaluation as A Training Tool  

A second study was conducted to evaluate the usefulness of the developed virtual reality 

gaming application as a training tool. For this evaluation process, the performance of our 

participants was evaluated in three training conditions: no training, virtual reality training, and 

real-world training. Details on this study are given in the below subsections.  

1.5.1 Participants  

The participants were recruited through class announcements and emails. The participant 

group was comprised of 42 healthy undergraduate and graduate students. It should be noted that 

none of the participants were athletes. The participants’ ages ranged from 19 to 29 years, with a 

mean of 𝑀 =  23.75 (𝑆𝐷 =  2.64).  

All participants had prior experience with virtual reality. None of the participants of this 

study had participated in the first study, so they were unaware of the gaming application and its 

mechanics. No compensation was given for participation. All participants signed a consent form 
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that was approved by the Institutional Review Board of our university. The participants were 

randomly divided into three groups: 1) the no training (NT) group, the group of participants that 

did not receive either virtual reality or real-world training; 2) the virtual reality training (VRT) 

group, the group of participants that received virtual reality table tennis training using our 

application; and 3) the real-world training (RWT) group, the group of participants that received 

real-world table tennis training in our recreation center. It should be noted that each group was 

comprised of an equal number of participants (N = 14, nine males and five females in each group). 

As this study was divided into multiple sessions (details are given in the next section), the consent 

form and demographic questionnaire were administered during participants’ first visits.  

1.5.2 Study Details  

This study attempted to determine whether the developed virtual reality gaming application 

could be used for training purposes. To this end, it measured whether the performance of the 

participants was improved after participating in virtual reality training sessions. In addition, this 

study attempted to investigate whether the performance of participants exposed to virtual reality 

training differs from the performance of participants exposed to real-world training, or no training. 

The RWT condition was added to investigate whether virtual reality training differs from real-

world training. The no training condition was included since we realized that some training would 

take place during the initial performance evaluation in the recreation center. Thus, this initial 

assessment alone might have inadvertently led to an improvement in the post-training evaluation. 

For this reason, we decided to include the no training condition to investigate whether the changed 

performance of the VRT group depended on the initial performance evaluation or on the actual 

virtual reality training.  

This study is divided into three parts for the VRT and RWT conditions, and into two parts 

for the NT condition. For all conditions, all participants were asked to attend two 30-minute 

sessions (a pre and a post-training session) at the table tennis court at the recreation center. The 

pre- and post-training performance assessment of the participants was performed using a medium-

intensity exercise drill. During the performance evaluation sessions, the participants were free to 

take multiple breaks if needed. For the performance evaluation process, the participants were 

exposed to 10 trials in which 20 balls were placed in the ball-throwing machine. The machine used 
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was the iPong V3007 table tennis ball-throwing machine. The total duration of the performance 

evaluation process lasted 30 minutes, including short breaks that the participants took between the 

study trials. Note that the table tennis table at the recreation center was located in a space of 7 

meters long by 4 meters wide.  

To evaluate the performance of the participants two measurements were captured: 1) lost 

shots (the number of balls each participant was unable to hit with the table tennis racket), and 2) 

mistakes (the number of balls that were either stopped by the net on the table or bounced outside 

the table after the player hit the ball). Note that since our primary intention was to evaluate the 

potential improvement in participants’ performance, our computations focused on the difference 

(subtraction) between the post- and pre-training data collected for each participant, which were 

later used for our statistical analysis process. The participants that were assigned the NT condition 

did not receive any further training. They were only asked to attend the final performance 

evaluation session. However, the participants that were assigned the VRT condition were asked to 

participate in three training sessions, each for the duration of 30 minutes. This group of participants 

trained using the developed virtual reality table tennis application, and the training sessions were 

conducted in our department’s lab space. During the first two sessions the participants were trained 

on low-intensity table tennis exercise drills, and during the third session the participants were 

trained on a medium-intensity exercise drill (see Section 4 for more details on the low- and 

medium-intensity exercise drills).  

The participants that were assigned to the RWT group took part in three training sessions 

at the recreation center where they trained in real-world table tennis. The participants of the RWT 

condition were trained on low-intensity table tennis exercise drills during the first two sessions, 

and on a medium-intensity exercise drill during the third session. The duration of each session was 

30 minutes, including short breaks. A table tennis expert (the coach of a local table tennis club; 

male, 44 years old with 18 years of experience as a table tennis coach) helped us tune the ball-

throwing machine (iPong V300) that was used at the recreation center. The tuning of the ball-

throwing machine was performed by the expert after experiencing multiple trials of both low and 

medium exercise intensities in our virtual reality table tennis application. 

In conclusion, we would like to note that all participants were aware that they would be 

attending multiple training sessions before they began the first session; this was made clear when 

 
7 http://www.ipong.net/joomla/index.php/ipong-models/ipong-v300 
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the consent form was handed to them. Moreover, all participants followed the same scheduled day 

pattern: pre-training performance evaluation on Tuesday, first training session on Thursday, 

second training session on the following Tuesday, third training session on Thursday, and a post-

training performance evaluation on the final Tuesday. Each participant came to the lab or 

recreation center at the same time on each scheduled day. This scheduling process helped us to 

standardize the study. Finally, regarding the NT condition we would like to note the following. 

Since participants were asked to take part in only two sessions, we tried to standardize the gap 

between these sessions. Thus, considering that the last training sessions on both the VRT and RWT 

were on Thursday and the post-training evaluation session was on Tuesday (a five-day gap), we 

decided that the performance evaluation session for the NT condition should also be five days after 

the initial performance evaluation session. 

1.5.3 Results  

We used the one-way between-group ANOVA to compare the performance of our 

participants. We used the three conditions (NT, VRT, and RWT) as our independent variables and 

the performance improvement on lost shots and mistakes (the difference between post- and pre-

training scores) as our dependent variables. The obtained results are summarized in Figure 7. Since 

we conducted a between-group study, before analyzing our results we decided to explore the 

homogeneity of our participants by using as dependent variables the three participant groups (the 

three conditions), and as independent variables the age, height, and weight of the participants. Note 

that, as mentioned before, each group was comprised of nine males and five females. The one-way 

between-group ANOVA indicated no significant difference for age [𝐹(2,39)  =  .901, 𝑝 =  .421], 

height [𝐹(2,39)  =  1.188, 𝑝 =  .137], or weight [𝐹(2,39)  =  1.463, 𝑝 =  .254] across groups. 

Based on the obtained results and the male/female ratio per group, it can be said that all three 

groups were homogenous. 
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Figure 7: Comparison across the three examined conditions (NT: no training, VRT: virtual 

reality training, and RWT: real-world training) used to evaluate the developed virtual reality 

table tennis application. Negative and low values indicate that our participants’ performance did 

not improve at the post-training session. Positive values indicate that participant performance 

improved. Boxes enclose the middle 50% of the data. The median is denoted by a thick 

horizontal line. © [2020] IEEE 

By analyzing the performance improvement data for lost shots, we found significant 

differences across the three examined conditions [𝐹(2,39)  =  21.804, 𝑝 <  .001 ]. Post-hoc 

comparisons using the Bonferroni corrected estimates revealed that the mean performance 

improvement during the NT condition (𝑀 =  6.43, 𝑆𝐷 =  5.62) was significantly lower than that 

of the VRT condition (𝑀 =  14.64, 𝑆𝐷 =  7.19) at the 𝑝 <  .002 level, and that of the RWT 

condition (𝑀 =  21.35, 𝑆𝐷 =  4.92) at the 𝑝 <  .001 level. Moreover, we also found that the 

performance improvement for the lost shots during the VRT condition were significantly lower 

than that of the RWT condition at the 𝑝 <  .05 level. 

By analyzing the performance improvement data for mistakes, we identified significant 

differences across the three examined conditions [𝐹(2,39)  =  54.824, 𝑝 <  .001 ]. Post-hoc 

comparisons using the Bonferroni corrected estimates showed that the mean performance 

improvement of mistakes during the NT condition (𝑀 =  1.71, 𝑆𝐷 =  4.54) was significantly 

lower than that of the VRT condition (𝑀 =  9.35, 𝑆𝐷 =  5.77) at the 𝑝 <  .001 level, and that of 

the RWT condition (𝑀 =  21.28, 𝑆𝐷 =  4.53) at the 𝑝 <  .0001 level. Moreover, we also found 

that the mean performance improvement of mistakes for the VRT condition was significantly 

lower than that of the RWT condition at the 𝑝 <  .001 level.  



 

 

48 

1.5.4 Discussion  

The measurements of lost shots and mistakes revealed that our method can automatically 

generate training drills that can help table tennis enthusiasts improve their skills. By comparing 

NT with VRT it can be said that by attending the VR training sessions participants were able to 

improve their scores on lost shots. This indicates that the training sessions taught that participant 

group to anticipate the ball and react more appropriately when the ball approached them. Similarly, 

the participant group that was exposed to virtual reality training had a reduced number of mistakes. 

This may also be a result of the first finding (reduction of lost shots). Because the participants were 

anticipating a shot, they were better prepared to react and hit the ball appropriately. Therefore, 

they were able to perform better overall after receiving the virtual reality table tennis training.  

Significant results were also found for both lost shots and mistakes measurements when 

comparing the VRT and RWT groups. These significant differences are perhaps the most 

interesting result of the study. The significant results indicate that the RWT group improved their 

performance even more than the VRT group. It is shown that even if this virtual reality table tennis 

can be used as a training tool, it is still less effective than RWT. However, considering that we also 

found a significant improvement in participants’ performance when compared to the NT condition, 

virtual reality training can also be considered as an option for table tennis enthusiasts who wish to 

improve their skills without having to search for a table tennis coach or partner, or attend training 

sessions at a gym. Although we found that the VRT training results were lower than the RWT 

results, it could be said that virtual reality training is still a reasonable and alternative way to train 

for various reasons. First, people can learn how to play table tennis and improve their skills without 

needing to actually be in the gym. Second, the virtual reality training for racket sports can be done 

remotely, saving time and money. Third, virtual reality offers an immersive experience that 

promotes repetition and retention. It is for these reasons we believe that virtual reality training for 

sports has multiple potentials for peoples’ health and well-being.  

Upon completion of the study, we asked participants about their experiences. All the 

comments we received for the table tennis virtual reality application were quite positive, 

suggesting that virtual reality table tennis could become a training tool for racket sports enthusiasts. 

Several participants said that they were not expecting the use of virtual reality to help them improve 

their skills and reduce the number of mistakes they made. Please note that after the end of the post-

training sessions all participants were informed of their performance. Almost all the participants 
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said that the virtual reality training helped them to become more vigilant. Others said that the 

virtual reality training helped them better position themselves in the court and that the virtual 

reality training helped them to react more quickly. Finally, it is worth noting that none of the 

participants reported dizziness or any form of cybersickness. 

1.6 Limitations 

There are a few limitations that we would like to note. First, the weight and balance of the 

table tennis racket that was used in these studies may be problematic. A table tennis paddle weighs 

between 150 g and 250 g. However, the HTC table tennis racket is 226 g, and with a Vive tracker 

(89 g) attached it weighs 315 g. Although this weight differential may not be as significant for 

beginners, we assume that it could be problematic for more experienced and professional table 

tennis players. We believe that experimentation with fabricating and printing 3D gaming interfaces 

[70] might solve this problem. Moreover, because the science and technology related to virtual 

reality is rapidly evolving, we assume that future table tennis paddles for virtual reality experiences 

will be more similar to actual paddles in terms of weight specifications.  

A second limitation is related to missing tactile feedback. Tactile feedback is an important 

factor that provides an additional parameter to consider when hitting balls [17][51]. To overcome 

this issue, the use of a tactile actuator might partially solve the tactile feedback problem; however, 

such a device would add additional weight to the table tennis paddle.  

A third limitation is related to the physical space required for a player to use the virtual 

reality gaming application. Although, as mentioned above, virtual reality racket sports can be 

experienced from the comfort of one’s living room, a large play area with no obstacles would be 

required in order to achieve an optimal experience without injuring oneself or damaging objects 

within the real space.  

A fourth limitation is that only participants with little or no table tennis experience 

participated in this study. Unfortunately, we were not able to recruit intermediate or advanced table 

tennis players. However, it would have been interesting to evaluate our exergame with more 

experienced table tennis players so we could explore whether the findings of our studies would 

also apply to them.  

The last limitation we would like to mention is related to the head-mounted display that 

was used for the studies, as some participants commented on it. Specifically, we used the HTC 
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Vive Pro headset. Participants mentioned that the combination of the wire that connects the headset 

to the computer, the weight, and the size of the headset itself all made them more concerned and 

uncomfortable when moving around during game play. We assume that a wireless head-mounted 

display such as the Oculus Quest might provide a better exergame experience to virtual reality 

users. 

1.7 Conclusions and Future Work Directions 

We developed a virtual reality racket sports gaming application and a method for 

synthesizing exercise drills. In this method, the user may change the parameters of the cost terms 

and our system will automatically generate an exercise drill that meets these user-specified 

objectives. Two user studies were conducted to evaluate the effectiveness of the developed 

application as an exercise and training tool for the table tennis application. The results indicate that 

virtual reality can be a solution for users who would like to exercise and achieve specified exercise 

goals. The virtual reality gaming application can also be used to improve user skills. Lastly, the 

flexibility of the developed gaming application in handling different types of racket sports with 

minimal changes and effort is another advantage.  

Future work might include the development of other virtual reality gaming applications 

that can be used for exercise and training purposes. An example might be martial arts exercises 

and training in virtual reality, in which the user could interact with an intelligent virtual coach. In 

addition to the algorithmic development that automates the exercise and training sessions, 

exploring the effects of virtual reality exercising and training on long-term health benefits, such as 

weight loss and rehabilitation, is another interesting direction for future research. Considering the 

popularity and attractiveness of virtual reality, we can assume that it will be used in the future as 

a tool that not only entertains users, but also helps them improve their physical functions and 

overall health. 
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Abstract 

This paper presents an optimization-based approach for designing virtual reality game level 

layouts, based on the layout of a real environment. Our method starts by asking the user to define 

the shape of the real environment and the obstacles (e.g., furniture) located in it. Then, by 

representing a game level as an assembly of chunks and defining the game level layout design 

decisions in cost terms (mapping, fitting, variations, and accessibility) in a total cost function, our 

system automatically synthesizes a game level layout that fulfills the real environment layout and 

its constraints as well as the user-defined design decisions. To evaluate the proposed method, a 

user study was conducted. The results indicated that the proposed method: (1) enhanced the levels 

of presence; (2) enhanced the levels of involvement of participants in the virtual environment; and 

(3) reduced the fear of collision with the real environment and its constraints. Limitations and 

future research directions are also discussed. 

2.1 Introduction  

Virtual reality games are designed so that the player uses controllers to navigate in the 

virtual environment. However, navigation through locomotion is considered one of the universal 

tasks performed in real and virtual environments [1]. Moreover, sensorimotor actions are essential 

factors in providing a compelling experience for virtual reality users [2], just as the mismatching 

between the real and virtual environment is equally essential in impacting the movement behavior 

and arousal of virtual reality users [3]. If the user cannot naturally move around and engage with 

the virtual environment as they would in a real one, then the illusion of being in another place 

would diminish, making the whole play experience poor and less realistic.  

Given the fact that walking is a simple and intuitive method of interaction in the 

environment, providing a game player with the ability to experience the gaming environment by 

walking in it would likely enhance the player’s gaming experience (i.g., the player will be able to 

freely move and interact in the virtual game level environment). However, it is impossible for a 

game level designer to know in advance the layout and size of the real environment and the 

obstacles (e.g., furniture) involved. Therefore, s difficult to create customized game levels for 

numerous real environment configurations. To overcome this challenge, this paper presents a novel 

computational approach that considers both the shape of the real environment and its obstacles, 
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and automatically generates game levels that take into account the real environment layout and its 

constraints (see Figure 8).  

 

Figure 8: Given a real environment and its constraints, the user can easily capture its layout using 

a virtual reality controller. Later, our proposed method synthesizes a game level layout that 

matches the real environment layout and its constraints. © [2021] Elsevier 

Our method first considers that a game level can be represented as an assembly of multiple 

game level chunks. Second, it asks the user to define the play area and the constraints/obstacles 

located in it by simply using a virtual reality controller (e.g., the Oculus Touch controller); thus, 

the real environment’s layout is generated. Third, our method assigns four cost terms to a total cost 

function that encodes design decisions (mapping, fitting, variations, and accessibility) and 

provides a designer the ability to prioritize the cost terms in order to generate level layouts with 

different objectives. Finally, the game levels are synthesized using an optimization-based method, 

the Markov Chain Monte Carlo. We implemented our optimization framework as a plug-in for the 

Unity game engine and demonstrated how it could generate different types of games. We intend 

to release the plug-in for public use.  

To understand the effectiveness of our method, a user study was conducted. The results 

indicated that the proposed method (1) enhanced the levels of presence, (2) enhanced the levels of 

involvement of participants in the virtual environment, and (3) reduced the fear of collision with 

the real environment. The significant contributions of our work include: 

• An optimization-based approach to design game level layouts reflecting the real 

environment and its constraints. Such a concept could be used in a variety of virtual 
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reality games and therefore improving user experience while also allowing users to 

immerse themselves in the virtual world and the gaming scenario. 

• The ability of our approach to generate game level designs for different layouts and 

constraints.  

• The ability to customize the synthesized game level by prioritizing each cost term.  

 

We think that both the game development and the virtual reality community will benefit 

from such a method. Our method provides any user the ability to walk and interact in the gaming 

environment more efficiently, even though in a constrained real environment (e.g., living room). 

Each space is unique in shape, size, and furniture configuration (there might be empty spaces or 

spaces with a lot of furniture). Therefore, a method that automatically synthesizes a game level for 

any real environment is essential to provide all game players with a compelling virtual reality 

gaming experience.  

This paper is organized in the following sections. Section 2.2 covers related work. Section 

2.3 presents preliminary information on the proposed method. Section 2.4 describes the way game 

level design problems are formulated and solved. Section 2.5 outlines the details for 

implementation. Section 2.6 presents the conducted user study and its results. Finally, Section 2.7 

summarizes our conclusions, our method’s limitations, and potential future work. 

2.2 Related Work  

The difficulty of moving through a highly constrained real environment while observing 

the virtual environment lies in the impact such an environment has on the sense of presence and 

immersion of virtual reality users [4][5]; the result could be an experience that is entirely less 

engaging to the user. Therefore, natural walking in virtual environments remains a challenge 

primarily because of the large space required to allow the user to experience the virtual world [6]. 

However, among others, redirected walking [7][8][9] and virtual-to-real environment mapping [10] 

partially solve the limited space problem of real environments by manipulating the user’s real-

world trajectories.  

Several attempts have been made to overcome the limitation of experiencing a virtual 

environment while walking in a real one. Nescher et al. [11] proposed a method that analyzes the 

real environment in advance in order to identify walkable areas in the virtual environment. Later, 
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this information is processed and used in order to provide ad hoc free walking in virtual 

environments when the user finds himself in a constrained virtual environment. Shapira et al. [12] 

developed a method that analyzes the user’s real environment in order to identify flat surfaces, like 

a wall or a couch, which will determine candidate locations for placing virtual objects in the real 

environment. Nuernberger et al. [13] developed an augmented reality application in which the 

edges and planes of the real environment are detected so they can be aligned with virtual content 

placement. McGill et al. [14] proposed the Augmented Virtuality [14] which adds out-of-context 

information to the virtual environment only when considered necessary by the system. Other 

methods include the use of occupancy maps and glass walls [15][16], virtual environment layers 

[17][18], such as wireframes or other visual indicators that indicate the presence of real obstacles, 

and vibrotactile actuators in the head-mounted display that trigger an alert signal when users are 

approaching obstacles [18]. However, in most of the previously mentioned methods the sense of 

presence was not improved, indicating a significant limitation when experiencing a virtual 

environment.  

Prior research has also focused on using 3D scanning technology to acquire a replica of the 

real environment. For example, Kanamori et al. [19] used a 3D scanner to scan a real environment 

and superimposed the 3D point cloud of the user’s real environment onto the virtual environment 

through the head-mounted display. Sra et al. [20] used 3D scanning technology to acquire a 3D 

model of the real environment. Then, by detecting the walkable area, they could generate fences 

or water that would prevent the user from walking in specific locations. In addition, by using a 

small dataset of objects, Sra et al. [20] could substitute real environment objects with virtual ones. 

Although promising, this approach requires using a 3D scanner, equipment that only a limited 

number of virtual reality users can access in their homes. Moreover, the applicability of such a 

method in creating virtual environments for game purposes is unclear.  

In this paper, it is proposed the use of an optimization-based method, which has been 

extensively used in designing virtual environments quickly and affordably [21][22][23][24][25]. 

The optimization-based synthesis of game-related content is a critical technique used extensively 

in the modern game-development process [26]. Furthermore, optimization-based design 

techniques are beginning to enhance game replayability because they offer users the ability to play 

multiple variations of a single game. Examples of optimization-based methods include the work 

of Hartsook et al. [27] and Hullett and Mateas [28]. They employed optimization-based design 
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methods for matters of adaptability or replayability. Such methods also provide the ability to 

design games that adapt to a variety of constraints and parameters; both during the initialization 

process and before the game starts [29][30][31]. Optimization-based methods can even alter a 

game dynamically in response to events in the game [32][33][34][35].  

Our method synthesizes a game level layout taking into account the real environments and 

its constraints, while also allowing a game level designer to control the synthesized gaming 

environment by prioritizing the cost terms of the presented total cost function. Thus, our method 

facilitates designer control over generated content and gives players the ability to dictate the degree 

to which the synthesized game will focus. Our method requires a simple virtual reality controller 

that comes with a head-mounted display to capture the layout of the real environment. This feature 

is in contrast to the 3D scanner common in previous methods [19][20]. Although no precise 

information about the real environment could be captured using a virtual reality controller, our 

low-cost layout-capturing method provides enough data to sufficiently synthesize the game levels. 

We think our method could be useful for the automatic design of unique virtual reality game level 

layouts without the need for additional hardware. 

2.3 Preliminaries  

This section presents the preliminary steps required to develop our pipeline. The steps 

include: (1) the capture process for the real environment and its associated constraints; (2) the 

game level chunks that need to be designed for synthesizing the virtual reality game levels; and (3) 

generating and characterizing the virtual grid. 

2.3.1 Capturing the real environment and Constraints  

Our method begins by asking the user to capture the real environment and its constraints 

in which the virtual reality game will be created. This process generates a virtual layout according 

to the real environment in which the user is willing to play the game. The player is then asked to 

use the controller, which comes with the head-mounted display, to define the real environment’s 

entire play area. To do so, the player simply clicks a button when the controller is located at the 

diagonal corners of the environment. In our case, we are using the Oculus Quest head-mounted 

display and the Oculus Touch controller (Oculus Quest does not allow passthrough access; 
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therefore, a user should take slightly off the head-mounted display to observe the real environment 

during the capturing process). In larger and more complex shaped environments, in which the 

shape is more than a single rectangle, the user can capture multiple rectangular shapes. Later, these 

shapes are combined by our system to provide the actual shape of the environment. Note that only 

the area of the plane (x, z coordinates) is captured.  

Next, the user is asked to define the constraints found in the real environment. Constraints 

are defined as any object that might prevent the user from moving within the physical environment 

(e.g., coffee tables, couches, television stands, chairs, etc.). For this process we use the virtual 

reality controller, with which the user must define a shape that encloses the objects. After the user 

finishes the capturing process for the real environment and its constraints, the system generates 

the environment’s layout. Figure 8 shows examples of the real environment and the associated 

layouts generated based on the process described above.  

This paper does not present a commercial product but a proof of concept; that is, how to 

automatically design virtual reality game levels based on real environment constraints by 

considering a number of game level layout design decisions. To simplify the process of capturing 

the environment and its constraints, we use rectangular shapes. If a number of resources for game 

level chunks are available, a developer could easily extend our approach to capture the real 

environment more precisely by incorporating additional shapes or using a paint-based method to 

define environment’s boundaries. However, most virtual reality systems use base stations which 

enclose the user in a square shaped area. Thus, our proposed method considered only rectangular-

shaped game level chunks. 

2.3.2 Game level chunks  

To synthesize game levels based on a real environment and its constraints, we used game 

level chunks (see Figure 9). Because this project is a proof of concept, we decided to use a 

relatively small number of chunks compared to multiple 3D game objects found in a commercial 

game. However, given the availability of various resources, a developer could easily extend our 

approach and incorporate more game level chunks. Our particular game level chunks are divided 

into three types:  

• Open Space Chunks: Open space chunks are placed in free-from-obstacles grid 

cells and are used to define the virtual environment’s walkable area.  
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• Boundary Chunks: Boundary chunks are placed in the virtual environment’s 

boundaries in order to inform users of the boundaries and prevent them from 

colliding with the walls in the real environment. We developed two types of 

boundary chunks: (1) the corner boundary chunk and (2) the straight boundary 

chunk.  

• Obstacle Chunks: Obstacle chunks are intended to substitute real environment 

obstacles in the virtual reality game. These chunks inform the user that particular 

areas in the virtual environment are occupied, thereby preventing the user from 

colliding with real environment obstacles.  

 

Each chunk is represented with the label that characterizes it and a directional vector (up, 

down, left, right, right and up, right and down, left and up, and left and down). The directional 

vector is later used to correctly align the game level chunks with the generated grid map. 

Additional chunks might be needed for more complex games and real environments. However, 

based on our experiments during development, we found that the three types of game level chunks 

are sufficient enough to cover almost any area and allow developers to synthesize a virtual reality 

game level that can fit a real environment and its constraints. 

 

Figure 9: Examples of game level chunks developed for the proposed project. © [2021] Elsevier 

2.3.3 Grid generation and characterization  

Given the area captured by the user as input, our system generates a M × N virtual grid, 

which encloses the entire captured area. Later, a part of this grid is used to synthesize the game 
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level. For this project, a cell in the grid has a dimension of 50 × 50 cm, which is equal to the size 

of each game level chunk; however, other dimensions could also be considered. Our system uses 

an inside-outside test [36] to identify which grid cells correspond to the captured area. Next, the 

grid cells that correspond to the captured area become the “boundary” or “inner.” The remaining 

grid cells which are not in a captured area are then excluded.  

Our system assigns a directional vector (V) to the boundary cells: up, down, left, right, 

right and up, right and down, left and up, and left and down. The first four vectors are assigned to 

the straight boundary chunks, and the last four diagonal directional vectors are used for the corner 

chunks. For the inner cells, the system labels each cell as “walkable” for any cell that could be 

walked by a user, or “obstacle” for any cell occupied by a real environment obstacle. In 

characterizing each cell as “walkable” or “obstacle,” we used the inside-outside test between each 

cell of the grid and each obstacle shape captured by a user. Both “walkable” and “obstacle” cells 

are assigned with an up vector. Figure 10 shows an example of a captured layout and its 

representation in the virtual grid. 

 

Figure 10: A layout of the real environment (left) and its representation based in the virtual grid 

(right). W stands for walkable, O stands for obstacle, and B stands for boundary grid cells. © 

[2021] Elsevier 

2.4 Problem formulation and optimization  

The goal of the proposed approach is to synthesize virtual reality game levels optimized 

for the real environment and its constraints and other design criteria, which are encoded by cost 

terms. Let 𝐿 =  [𝑐1,1, . . . , 𝑐𝑀,𝑁] denote the current configuration of the synthesized game level 

layout composed of several chunks 𝑐𝑖,𝑗. Although the game levels chunks are represented in a 2D 

grid for simplicity, any chunk that belongs to the game level 𝐿 will be represented as 𝑐𝑖 . To 
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synthesize a game level, we developed a total cost function 𝐶𝑇𝑜𝑡𝑎𝑙(𝐿) that evaluates the quality of 

a level 𝐿 based on a number of costs (game level layout design decision):  

𝐶𝑇𝑜𝑡𝑎𝑙(𝐿) = 𝑤𝑀𝐶𝑀(𝐿) +  𝑤𝐹𝐶𝐹(𝐿) + 𝑤𝑉𝐶𝑉(𝐿) + 𝑤𝐴𝐶𝐴(𝐿)   (10) 

𝐶𝑀 is the mapping term that attempts to map the game level chunks according to the input 

information represented as virtual grid array after the grid characterization process. 𝐶𝐹 ensure a 

one-to-one fitting between the captured area and the synthesized game level. The 𝐶𝑉 denotes the 

variation that could be introduced to the composed game level layout. The 𝐶𝐴  represents the 

accessibility term that evaluates whether the user will be able to access any open space chunk in 

the synthesized level layout. Finally, the 𝑤𝑀, 𝑤𝐹, 𝑤𝑉, and 𝑤𝐴 are weights that correspond to the 

cost terms and prioritize each cost term differently during the optimization process depending on 

their weighted value, given that {𝑤𝑀, 𝑤𝐹 , 𝑤𝑉, 𝑤𝐴}  ∈  [0, 1].  

Various cost terms could be implemented to handle the layout synthesis of a game level. 

However, in this implementation phase, we limited the level layout cost terms to those most 

important for this project. The cost terms and the optimization process are presented in the 

subsections below. 

2.4.1 Mapping cost  

We implemented a level layout mapping cost that tries to map the chunks composing the 

game level based on the labeled grid of the real environment layout. To do so, we defined the 

following cost term:  

𝐶𝑀(𝐿) =  
1

|𝐿|
∑ Γ(𝑐𝑖,𝑔𝑖)(𝑐𝑖,𝑔𝑖)

         (11) 

where 𝑐𝑖 denotes a chunk of the game level, and 𝑔𝑖 denotes a grid layout cell. (𝑐𝑖, 𝑔𝑖) is 

then computed based on the following condition:  

Γ(𝑐𝑖,𝑔𝑖) = {
0    𝑖𝑓 ℒ(𝑐𝑖) =  ℒ(𝑔𝑖) 𝑎𝑛𝑑 𝒱(𝑐𝑖) =  𝒱(𝑔𝑖)

1                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where 𝐿(·) returns the label information of the chunk 𝑐𝑖 and grid cell 𝑔𝑖, respectively. 𝒱(·) 

returns the vector information of the chunks 𝑐𝑖 and grid cell 𝑔𝑖, also respectively. This ensures that 

the 𝐶𝑀(𝐿) cost term returns a high value when there is an inconsistency between the layout of the 

synthesized game level and the target grid map information. Conversely, the cost term returns a 

low value when the synthesized game level is mapped correctly into the grid map information. 
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2.4.2 Fitting cost  

To synthesize a game level layout that matches the layout of the real environment as close 

as possible, we introduced the use of the fitting cost function that attempts to minimize the 

difference between the area that the game level layout occupies and the area that is captured by a 

user using the virtual reality controller; this is our input area. This step is achieved by tweaking 

parts of the game level chunks (e.g., moving the fence of the boundary game level chunk closer to 

the real environment’s captured boundary or selecting another boundary fence game object from 

our dataset that better fits the target grid). The fitting cost term is then represented as:  

𝐶𝐹(𝐿) =  (
1

𝒩𝐿
𝒜ℬ(𝐿) − 

1

𝒩𝑅
𝒜(𝑅)

⏟      
𝑡𝑎𝑟𝑔𝑒𝑡

)

2

            (12) 

where 𝒜ℬ(𝐿) denotes the areas of the level layout 𝐿  inside the boundaries and 𝒜(𝑅) 

denotes the captured area of the real environment. Finally, 𝒩𝐿 and 𝒩𝑅 are normalization constants. 

2.4.3 Variations cost  

We realize that, as long as the information provided by the same real environment, the grid 

array remains the same (i.e., the topology and size of the real environment and the obstacles located 

in it do not change at all). Thus, the synthesized game levels would have minimal to no difference 

with one another; and therefore, the synthesized game level could be considered monotonic, and 

the game players might become bored quickly. In order to synthesize game levels that differ from 

one another and keep the players engaged as the game levels progress, a variation cost term was 

introduced to our total cost function. This cost term ensures that each generated game level will 

not look the same. For the level variation cost term, we use as input the grid array generated 

according to the real environment. We apply a Perlin noise [37] function to synthesize an 

intermediate game level layout I. Then, the variations cost is defined as:  

𝐶𝑉(𝐿) = (
1

|𝐿|
∑ |𝐿(𝑐𝑖) − 𝐼(𝑐𝑖)|𝑐𝑖

 −  𝜎𝑉⏟
𝑡𝑎𝑟𝑔𝑒𝑡

)

2

                   (13) 

where 𝜎𝑉 ∈  [0, 1] is the target difference between the level layout 𝐿 and the intermediate 

level layout 𝐼  composed of 𝑐𝑖  game level chunks. For example, 𝜎𝑉 = 0.50  means that the 

intermediate level layout 𝐼 and the synthesized level layout 𝐿 are 50% similar. Figure 11 illustrates 
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different intermediate level layouts placed on top of the level layout based on different variation 

targets (𝜎𝑉). It should be noted that with the proposed method the variation can be controlled by 

the user; therefore, the user can choose the amount of variation that will appear in the synthesized 

game level. 

 

Figure 11: The layout of an intermediate game level synthesized using the Perlin noise (a), and 

the layout of the final synthesized game level layout in which the Perlin noise is included with 

different 𝜎𝑉 targets (4(b)–(e)). For all examples, the variation cost is given high priority, 𝑤𝑉 =
1.00, and the accessibility cost is given low priority, 𝑤𝐴 = .05. © [2021] Elsevier 

2.4.4 Accessibility cost  

Because of the variations cost, we understand that a synthesized game level might become 

over-occupied with obstacle chunks, blocking walkable areas that would otherwise be accessible 

to a user (see Figure 11(d) and (e)). To overcome this limitation, we included in our total cost 

function the accessibility cost that penalizes a synthesized game level when there are unoccupied 

grid cells that are not accessible. Our accessibility cost term is represented as:  

𝐶𝐴(𝐿) =  
1

|𝐿|
∑ Π(𝑐𝑖,𝑐𝑗)(𝑐𝑖,𝑐𝑗)

         (14) 

which detects whether all open space area chunks 𝑐𝑖 are accessible from any other open 

space chunk 𝑐𝑗. Π(𝑐𝑖,𝑐𝑗) is computed based on the following condition:  

Π(𝑐𝑖,𝑐𝑗) = {
0    𝑖𝑓 𝜋 ∶  𝑐𝑖 → 𝑐𝑗
1         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

In the condition above, π denotes the path between 𝑐𝑖 and 𝑐𝑗. To compute whether a path 

exists between 𝑐𝑖 and 𝑐𝑗, we used a simple pathfinding algorithm, the Depth-First Search [38][39]. 

Thus, if the pathfinding algorithm cannot connect two walkable area chunks, it returns 1 and forces 

the optimizer to continue searching for a game level layout by generating new intermediate-level 

layouts 𝐼(𝑐𝑖). Otherwise, if a path between 𝑐𝑖  and 𝑐𝑗  exists, the cost for that cell becomes 0; 

therefore, the optimizer can achieve its goals. It should be noted that there are cases in which 
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blocked areas might appear because of the capture process of the real environment and its 

constraints. Because this blocked area results from the real environment’s initial capture process 

and not due to the variation cost, our system does not consider that area as blocked because of the 

intermediate game level layout 𝐼(𝑐𝑖). Therefore, it does not penalize the 𝐶𝐴(𝐿) cost term. 

2.4.5 Optimization  

The game level layout 𝐿 is optimized for the defined total cost function 𝐶𝑇𝑜𝑡𝑎𝑙. A Markov 

Chain Monte Carlo optimization technique, known as simulated annealing [40] with a Metropolis-

Hastings state searching step [41], was applied to solve this optimization problem. For this, we 

first define a Boltzmann-like [42] objective function:  

𝑓(𝐿) = 𝑒𝑥𝑝 (−
1

𝑡
𝐶𝑇𝑜𝑡𝑎𝑙(𝐿))            (15) 

where 𝑡 denotes the temperature parameter of the simulated annealing. In each iteration of 

the optimization process, a move is applied to the current game level layout configuration 𝐿 to 

propose a new configuration of the level layout 𝐿′. In the current implementation, the following 

moves were implemented:  

• Replace a chunk: from the current game level layout configuration, a chunk 𝑐𝑖 is 

randomly selected and replaced with another randomly chosen chunk from the 

chunks dataset.  

• Swap chunks: from the current game level layout configuration, two chunks are 

randomly selected; the two chunks then swap positions.  

• Rotate a chunk: our system randomly selects a ci chunk and rotates it either to −90 

or +90 degrees. This move helps the optimization to align the boundary chunks in 

the layout.  

• Edit a chunk: our system randomly selects a boundary or obstacle chunk 𝑐𝑖 and 

edits it by moving its child object (e.g., a fence) in either a positive or negative 

direction of the assigned vector.  

 

The probability of selecting the move to be applied during the optimization process at each 

iteration was pre-defined by the authors. Unless otherwise specified, for the “replace a chunk” 

move, we set the selection probability to 𝑝𝑟𝑒𝑝𝑙𝑎𝑐𝑒 =  0.30. For the “swap chunks” move, we set 
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the selection probability to 𝑝𝑠𝑤𝑎𝑝  =  0.20. For the “rotate a chunk” move, we set the selection 

probability to 𝑝𝑟𝑜𝑡𝑎𝑡𝑒 =  0.20, and for the “edit a chunk” move, we set the selection probability to 

𝑝𝑒𝑑𝑖𝑡 =  0.30.  

The output of each move is the proposition of a new configuration of the game level layout 

𝐿 . To decide whether the developed method should accept the proposed level design 𝐿’, the 

proposed total cost value 𝐶𝑇𝑜𝑡𝑎𝑙(𝐿’) is computed and compared to the cost of the current game 

level layout configuration 𝐶𝑇𝑜𝑡𝑎𝑙(𝐿). To maintain the detailed balance in the optimization, our 

approach accepts the proposed level Lwith the acceptance probability 𝑃(𝐿’|𝐿)  based on the 

Metropolis criterion for each move as follows:  

𝑃(𝐿′|𝐿) = 𝑚𝑖𝑛 (1,
𝑓(𝐿′)

𝑓(𝐿)
)            (16) 

To efficiently explore the solution space, simulated annealing [40] was applied. Simulated 

annealing is controlled by a temperature parameter 𝑡 that, at the beginning of the optimization, is 

assigned a high temperature 𝑡 value to allow the optimizer to explore the synthesis of the game 

level solution space aggressively. During the optimization process, the temperature values 𝑡 is 

lowered gradually. In the current scheme, we set 𝑡 =  1.00 at the beginning of the optimization 

and decided to decrease it by 0.10 at every 1000 iterations until it reaches zero. Essentially, the 

optimizer becomes increasingly greedy in seeking to refine the solution while it is set to terminate 

if the total cost change is less than 5% over the previous 100 iterations. Based on our 

experimentation, we set the weights of each component of the total cost function in our 

optimization as 𝑤𝑀 = 1.00, 𝑤𝐹 = 1.00,𝑤𝑉 = 0.50, 𝑤𝐴 = 1.00, unless otherwise specified.  

By changing the weight of each cost term, the game level designer can always control the 

synthesis of the layout to emphasize specific design goals. We think that providing the game level 

designer the freedom to interactively explore possible game level layout designs can be a helpful 

feature. For example, the designer might want to prioritize the synthesized game level in a 

particular way by simply adjusting the weights on the total cost function (e.g., if a designer wants 

to assign a lower priority to the accessibility cost term, the weight of the accessibility cost term 

should be set be 𝑤𝐴 < 1.00). The optimizer is responsible for generating the level layout and 

proposing a game level design for the designer-specified priorities. Figure 12 shows examples of 

game levels (the two games presented in Section 5) synthesized for different real environment 

layouts and different weights assigned to each component of the total cost function. 
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Figure 12: Example of synthesized level layouts based on different input layouts and weights 

assigned to each cost term of the total cost function. For all examples, the weight of the variation 

cost is set to 𝑤𝑉 = .00. © [2021] Elsevier 

2.5 Implementation details and example games 

This section provides details about the implementation of our proposal and the two games 

that were developed.  

2.5.1 Implementation  

Our virtual reality game level design framework was implemented on a Dell Alienware 

with Intel a Core i7 CPU and 32 GB of memory. Our framework was developed in the Unity game 

engine using C#. Our scripts are easily adaptable to different game level chunks. The user simply 

needs to attach the necessary chunks to the Inspector window editor that has been implemented. 

After providing input about the layout of the real environment, our system automatically 

synthesizes the game level layout. The games presented in the subsections below were also 

implemented in the Unity game engine using the Oculus Integration. Our application was 

implemented and exported to Oculus Quest. Depending on the size of a real environment, 

synthesizing a game level consisting of 100 chunks (e.g., 10 × 10 grid) requires less than 5000 

iterations. Based on our current implementation running on the Oculus Quest head-mounted 

display, this process can be finished in less than one minute. Finally, both games run on 65 fps in 

Oculus Quest. Moreover, we tested the number of iterations needed to synthesize game levels with 

different grid resolutions (5 × 5, 10 × 10, 15 × 15, and 20 × 20 grids). In this evaluation for each 

grid resolution, we developed input layouts that are occupied with 0%, 25%, 50%, 75% and 100% 

obstacles and we ran the optimization process five times. The results are shown in Figure 13. As 

we can observe, the iterations needed are not related to the obstacle percentage but to the size of 

the grid. 
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Figure 13: Number of iterations needed by our system to synthesize game level layouts with 

different grid resolutions (5 × 5, 10 × 10, 15 × 15, and 20 × 20 grids) and different percentages 

(0%, 25%, 50%, 75% and 100%) of obstacles that occupy the grids. © [2021] Elsevier 

A comparison of the virtual reality game level layout optimization between the MCMC 

and Greedy algorithms is shown in Figure 14. It should be noted that, compared to MCMC, the 

greedy algorithm only accepts a proposed total cost 𝐶𝑇𝑜𝑡𝑎𝑙(𝐿’) that provides a better configuration 

than the current total cost 𝐶𝑇𝑜𝑡𝑎𝑙(𝐿). The MCMC algorithm obtains a solution with a lower total 

cost value (0.08) compared to the Greedy approach (0.47). The total cost value of the greedy 

algorithm experiment did not change from about iteration 550 to about iteration 650. Thus, the 

greedy optimization stopped at about iteration 650. Since the MCMC algorithm can accept a 

solution with a cost higher than that of the current solution with a certain acceptance probability, 

the sampling is capable of jumping out from a locally optimal solution. This prevents the sampling 

from being performed locally, and eventually locating a more optimal solution with a lower total 

cost value. Thus, the MCMC optimization stopped at about iteration 910.  

 

Figure 14: A comparison between optimizing the game level layout using the MCMC and the 

greedy algorithm in a 5 × 5 grid. The MCMC algorithm achieves lower minima compared to the 

greedy algorithm. © [2021] Elsevier 
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2.5.2 Example games  

We developed two virtual reality games to demonstrate how our game level layout method 

can be used in gaming scenarios. The first game is called Backyard Fortune, a puzzle game. The 

second game is called The Rebooter, a shooting game. The Backyard Fortune game was the basis 

of the user study presented in Section 6. Below we provide more details about the games. 

Screenshots of the two games from the player’s point of view are shown in Figure 15. Moreover, 

Figure 16 shows a user playing the Backyard Fortune game in our lab space.  

Backyard fortune The primary concept behind Backyard Fortune is for the player to collect 

puzzle pieces, find the key to a treasure box, and unlock it. The player is free to move in the 

walkable area of the game level and collect puzzle pieces using the Oculus Touch controller. Two 

panels on the virtual controllers are positioned where the knuckles would usually be placed. The 

first panel is designed like a clipboard, which provides instructions to the player on how to play 

the game. The second panel is an inventory that keeps track of which pieces have been collected 

in relation to the total number of puzzle pieces in the level. These panels can be toggled. The user 

can hide them and bring them back if he/she wants to keep track of how many more pieces need 

to be collected. The puzzle pieces are randomly placed in the walkable area once the level layout 

has been generated. The primary objective is to navigate the environment and use the controllers 

to collect the puzzle pieces and put them in their inventory. Once all the pieces have been collected, 

a key that unlocks the treasure box appears. The player can then pick up the key, insert it in the 

front of the treasure box, and unlock the box to enjoy his/her fortune.  

The rebooter The Rebooter game presents more challenging conditions to the player. 

Specifically, the player tries to shoot the enemies that chase him/her. The enemies have been 

designed so that they have a set patrol path around the obstacle piece. The set patrol path is 

included to satisfy one of the core gameplay mechanics of video games—anticipating and reacting 

to non-playable characters’ patterns. In this game, the player holds a virtual gun in his/her right 

hand that shoots lasers. The laser gun is used to fulfill the instruction to destroy any enemy. The 

game ends once the player destroys all enemies.  
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Figure 15: Screenshots of the Backyard Fortune (left) and The Rebooter (right) games. 

© [2021] Elsevier 

 

Figure 16: A user playing our Backyard Fortune game in our lab space. © [2021] Elsevier 

2.6 User study  

A user study was conducted to evaluate the proposed optimization-based game level design 

method. The following sections explain the details of our study.  
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2.6.1 Participants  

The recruitment of participants was based on emails that were sent to all students in our 

department. In total, 25 students volunteered for the study (18 males and 7 females). Participants 

ranged in age from 19 to 27, with the mean age 𝑀 =  21.56 (𝑆𝐷 =  2.78). All participants had 

prior experience with virtual reality games. There was no compensation for participating in the 

study. The study followed a within-group design; therefore, all participants experienced all three 

conditions presented in the section below.  

2.6.2 Experimental conditions  

Three experimental conditions were developed to evaluate participants’ experiences: (1) 

when interacting with our method in which the virtual environment is optimized based on the real 

environment and its constraints; (2) when interacting with a real environment that mismatches the 

constraints of the virtual environment; and (3) when interacting with a free-from-obstacles real 

environment. For this study, the Oculus Quest head-mounted display was used. Note that the 

synthesized game level was the same for all three conditions for all participants, which means that 

the game level layout that was optimized in the first condition was also used for the rest of the 

conditions. The only difference was in the layout of the real environment and the manner in which 

the users were made aware of the real environment obstacles. Details of the three conditions are 

provided below.  

• Optimization: For this condition, the layout of the real environment and the 

obstacles located in it were captured using our method. Then, the game level’s 

layout was automatically generated based on the proposed method. In doing so, the 

boundary game level chunks were placed on the boundaries (walls) of the real 

environment. Virtual obstacles were placed as substitutes in the exact position of 

real environment obstacles.  

• No Optimization: This condition was used to determine whether mismatching the 

real and virtual environments in terms of obstacles placed in the real environment 

would affect participants’ responses. For this condition, we are using the real 

environment and its constraints that were initially captured using our method. Then, 

the real environment obstacles (carton boxes) were moved to a different position. 
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Finally, the real environment is captured using the calibration tool in Oculus Quest; 

therefore, a mismatching between the real and the virtual environment was 

achieved. During the gameplay, the user is informed if he/she is close to a real 

environment obstacle by the guardian functionality of Oculus Quest.  

• No Obstacles: This is considered our baseline condition and was used to 

investigate how participants interact in the real environment while knowing in 

advance that there are no obstacles (the carton boxes were removed from the play 

area); this kind of real environment could be considered as safe. As in the other two 

conditions, we are using the game level layout that was generated by the 

optimization condition. Boundary game level chunks were placed in the virtual 

environment to inform the participant about the actual boundaries of the real 

environment and obstacle chunks were placed at the initial positions of real 

environment obstacle.  

2.6.3 Measurements  

In this study, a computer-based questionnaire was provided to all participants. The purpose 

was to explore their presence and fear of collision (emotional state) with the virtual environment. 

Specifically, the sense of presence was measured using the Igroup Presence Questionnaire (IPQ) 

[43][44], which consisted of 14 items and was divided into four parts: (1) one item reflected the 

initial definition of presence, according to Slater and Usoh [45]; (2) five items reflected spatial 

presence, denoting the sense of being “physically there” in the virtual environment; (3) four items 

reflected involvement focused on attention during the interaction, as well as the perceived 

involvement of the participants; and (4) four items reflected the experienced realism, which 

evaluates the realism of the virtual environment. The four-item scale on emotion, drawn from 

Tcha-Tokey et al. [46], was also used to investigate participants’ fear (emotional state) while in 

the virtual environment. Finally, a section of the questionnaire asks participants for additional input 

about their experience when interacting with the three experimental conditions outlined in Section 

6.2.  
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2.6.4 Procedure  

When participants entered the lab, the research team asked them to sign a consent form 

approved by the Institutional Review Board of our university if they agree to participate in the 

study. Then, the participants were then asked to complete a demographics questionnaire.  

As mentioned, Oculus Quest does not allow passthrough access; therefore, a member of 

the research team that was experienced with the capturing process used the Oculus Quest to capture 

the real environment and its constraints, and during this process the researcher took slightly off the 

head-mounted display to observe the real environment. The participants were not given any 

information about the conditions they would experience. They would first see the virtual 

environment once they put on the head-mounted display, and then the game would start. The 

research team helped the participants with the virtual reality equipment (Oculus Quest) before the 

game started. Once the virtual reality gaming application started, the participants were asked to 

play the game. When the game was over, a visual indication on the screen would notify the 

participant. The research team then helped the participants by setting up the next experimental 

condition.  

To control potential carry-over effects, the sequence in which each participant would 

experience the three experimental conditions was randomized using Graeco-Latin squares. 

Between the conditions, the participants were asked to complete a questionnaire distributed in a 

paper-based format. This time period was also used to provide participants with a short break. The 

participants were informed that the virtual environment’s boundaries corresponded to the 

boundaries of the real environment. However, participants were not told whether there was a match 

or mismatch between the real and the virtual environments. They were able to observe it once they 

put on the head-mounted display. It should be noted that none of the participants made contact 

with any of the walls during the study. Each participant spent no more than 45 minutes completing 

the study. All participants were aware that they were free to quit the study at any time.  

2.6.5 Results  

In analyzing our data, we used a one-way repeated measures analysis of variance (ANOVA) 

to determine the differences across the three experimental conditions. The internal validity of the 

scales of the questionnaire was measured using Cronbach’s alpha coefficient. With sufficient 
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scores (0.73 <  𝛼 <  0.94), we used a cumulative score for each item that belonged to each 

questionnaire component. The normality assumption of the objective measurements and subjective 

ratings were evaluated with Shapiro–Wilk tests at the 5% level and with the residuals’ graphic Q-

Q plots. Post hoc comparisons were conducted using Bonferroni corrected estimates. A 𝑝 <  0.05 

value was deemed statistically significant. Boxplots from the obtained results are shown in Figure 

17.  

Statistically significant results were found for presence across the examined experimental 

conditions [ 𝛬 =  0.603, 𝐹 (2, 23)  =  7.560, 𝑝 <  0.005, 𝜂𝑝
2  =  0.397 ]. The post hoc 

comparison showed that the mean score of the no optimization condition (𝑀 =  3.24, 𝑆𝐷 =  1.56) 

was lower than that of the no obstacle condition (𝑀 =  4.88, 𝑆𝐷 =  1.42) at the 𝑝 <  0.005 level 

and the optimization condition (𝑀 =  4.64, 𝑆𝐷 =  1.60) at the 𝑝 <  0.05 level  

The spatial presence of participants was statistically significant across the examined 

experimental conditions [𝛬 =  0.504, 𝐹 (2, 23)  =  11.220, 𝑝 <  0.001, 𝜂𝑝
2  =  0.494]. The post 

hoc comparison showed that the mean score of the no optimization condition (𝑀 =  3.52, 𝑆𝐷 =

 1.61) was lower than that of the no obstacle condition (𝑀 =  5.56, 𝑆𝐷 =  1.38) at the 𝑝 <

 0.005 level and the optimization condition (𝑀 =  4.92, 𝑆𝐷 =  1.52) at the 𝑝 <  0.001 level.  

We also identified a statistically significant effect on the participants’ involvement across 

the examined experimental conditions [ 𝛬 =  0.613, 𝐹 (2, 23)  =  7.273, 𝑝 <  0.005, 𝜂𝑝
2  =

 0.387]. The post hoc comparison showed that the mean score of the no optimization condition 

(𝑀 =  3.36, 𝑆𝐷 =  1.80) was lower than that for the no obstacle condition (𝑀 =  4.96, 𝑆𝐷 =

 1.59) at the 𝑝 <  0.01 level and the optimization condition (𝑀 =  4.56, 𝑆𝐷 =  1.44) at the 𝑝 <

 0.05 level.  

Notably, no statistically significant results were found for the experienced realism 

measurement across the examined experimental conditions [𝛬 =  0.930, 𝐹 (2, 23) =  .864, 𝑝 =

 0.435, 𝜂𝑝
2  =  0.070]. However, a statistically significant effect on the participants’ fear (emotion) 

was found across the examined experimental conditions [𝛬 =  0.328, 𝐹 (2, 23)  =  23.593, 𝑝 <

 0.001, 𝜂𝑝
2  =  0.672]. The post hoc comparison showed that the mean score of the no obstacle 

condition (𝑀 =  2.32, 𝑆𝐷 =  1.10) was lower than that for the no optimization condition (𝑀 =

 4.88, 𝑆𝐷 =  1.53) at the 𝑝 <  0.001 level and the optimization condition (𝑀 =  3.48, 𝑆𝐷 =
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 1.53) at the 𝑝 <  0.05 level. Moreover, we found that the mean fear rating of the optimization 

condition was lower than the no optimization condition at the 𝑝 <  0.05 level.  

 

Figure 17: Boxplots from self-reported ratings for each examined concept across the three 

experimental conditions. © [2021] Elsevier 

2.6.6 Discussion  

The analyses of presence, spatial presence, and involvement revealed that our method 

could in fact synthesize the virtual reality game level based on the real environment and its 

constraints and further synthesize game levels that keep the user engaged. Specifically, our 

optimization-based method (optimization condition) was able to outperform the no optimization 

condition. Please note that the no optimization condition describes the way that people experience 

virtual reality games from their living room; in other words, from a real environment full of 

obstacles that do not match the virtual environment in terms of constrains and appearance. 

Additionally, it appeared that, during the gaming experience, the presence of our participants was 

not interrupted (break-in-presence effect [5]) by the guardian functionality of Oculus. As a result, 

our participants were more able to focus on and enjoy the game during the optimization and no 

obstacle conditions.  

Moreover, the statistical analyses showed that the proposed method could indeed provide 

results close to the no obstacle condition. This encouraging finding means that the participant level 

of presence, even in a constrained environment, was close to the level of presence in a free-from-

obstacles environment. This finding indicates that when participants are placed in a virtual 

environment that matches the constraints of the real environment, their presence level is close to a 

condition during which they know in advance that they will be able to move and interact in a free-

from-obstacles environment, even if there is no appearance matching between the two 

environments. Finally, for experienced realism, participants experienced the same virtual 
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environment across the three conditions. As a result, they provided similar ratings since the 

experienced realism was related more to the appearance of the virtual environment and less on the 

structure of the real environment [47][48].  

In addition to the positive results regarding presence, we also observed interesting findings 

relating to the participants’ emotional state when examining their fear during their interaction with 

the three different experimental conditions. Specifically, participants indicated that when playing 

the game during the no obstacle condition, their level of fear was lower than when playing in the 

no optimization and the proposed optimization conditions. This result indicates that when 

participants were placed in a free-from-obstacles real environment, they felt safer walking in it 

because simply there were no obstacles to anticipate or avoid. However, once obstacles were 

placed, the participants began to feel less safe since they needed to move more carefully in order 

to avoid any potential sudden encounters like hitting an obstacle. Moreover, our results showed 

that participants’ fear was rated lower during the optimization condition than in the no optimization 

condition. The finding related to fear is significant because it demonstrates that, to the extent 

participants become aware that there is a match between the real and the virtual environment in 

terms of layout and constraints, this spatial awareness reduced the fear of colliding with the 

obstacles. We consider this to be the most important finding of the study that highlights the 

advantage of the proposed approach.  

The participants also submitted several comments about the different conditions they 

experienced. All of the comments we received for the optimization-based approach were positive, 

suggesting that optimizing virtual reality game levels for real environments and their constraints 

should be taken into consideration by virtual reality game developers. For the optimization 

condition, some of the participants reported that once they became familiarized with the virtual 

environment, they realized there was a match between the position of the real environment 

obstacles and the virtual objects they were viewing. A few more said that the game objects in the 

virtual environment made the location of the walkable area clear and therefore easy for them to 

navigate freely in the virtual environment. Regarding the no optimization condition, some 

participants reported they disliked the interruption of the Oculus’ guardian functionality. Moreover, 

others noted that such mismatching between the real and the virtual environment made them more 

apprehensive before performing their next step.  
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In conclusion, we realized it would have been useful to collect additional data to further 

understand how participants interacted in the virtual environment during the three conditions. In 

particular, added feedback on data such as participants’ movements, proximity to boundaries, 

proximity to real and virtual obstacles, and the number of collisions with real obstacles would have 

provided additional and, potentially, useful information on the way they perceived and interacted 

between the real and virtual environments. However, considering the findings from the self-

reported ratings and the comments participants submitted, we concluded that the proposed 

optimization method could be a promising solution for synthesizing virtual reality game levels for 

real environment constraints while also helping keep the user engaged with the game.  

2.7 Conclusions, limitations, and future work  

This paper introduced an optimization-based method of designing game levels based on 

real environment layouts and the constraints that vary in shape and size. We think that our method 

could be effectively used in a variety of real environments, including living rooms, bedrooms, or 

office spaces. The proposed method synthesizes game level layouts in a fast and scalable manner 

with minimum effort by the user and without the need for additional hardware (e.g., a 3D scanner) 

for providing input information. Additionally, our method provides game level designers with the 

necessary control of the synthesized game level in order to prioritize the objectives of the design 

process by simply changing the weight that controls the cost terms.  

To understand the effectiveness of the proposed method, we conducted a user study. Our 

study provided a number of interesting insights into the participants’ experience in the virtual 

environment. The results of the user study indicated that the proposed method was admittedly able 

to enhance the participants’ presence and involvement while reducing the fear of collision with the 

real environment and its obstacles.  

There are several limitations that should be addressed in the future. Tackling these 

limitations would allow modifications to the proposed method by making it applicable to a broader 

range of users and by enhancing its efficiency to accommodate more complex gaming scenarios. 

The proposed method examines only a small number of chunk types and chunks with simple 

shapes. However, there may be games that require a variety of complex chunks in terms of shape 

and size. Further, the proposed method looks at only the (x, z) coordinates of the real environment 

and its constraints, thereby excluding the height of the environment and the obstacles contained in 
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it. We think that incorporating the third dimension, or even a more precise representation of the 

real environment using a 3D scanner, would allow us to synthesize game levels that match the real 

environment more precisely in terms of shape and constraints.  

In addition to the above-mentioned limitations, several alternative directions could also be 

explored in the near future. Specifically, the current method is highly dependent on the actual size 

of the real environment. We think that the implementation of a layer-based method similar to the 

Flexible Spaces [49] and the Impossible Spaces [50], in addition to our optimization-based 

approach, would allow game developers to design longer and more complex game levels (e.g., a 

dungeon-related game). Moreover, instead of using a small number of game level chunks, we think 

that experimentation with a large 3D dataset might be useful to generate game levels with enhanced 

appearance alternatives within the synthesized layout. We hope that more optimization-based 

approaches that synthesize virtual reality game levels for real environment constraints will be 

proposed in the near future.  
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Abstract 

We developed a method to synthesize game levels that accounts for the degree of 

collaboration required by two players to finish a given game level. We first asked a game level 

designer to create playable game level chunks. Then, two artificial intelligence (AI) virtual agents 

driven by behavior trees played each game level chunk. We recorded the degree of collaboration 

required to accomplish each game level chunk by the AI virtual agents and used it to characterize 

each game level chunk. To synthesize a game level, we assigned to the total cost function cost 

terms that encode both the degree of collaboration and game level design decisions. Then, we used 

a Markov-chain Monte Carlo optimization method, called simulated annealing, to solve the total 

cost function and proposed a design for a game level. We synthesized three game levels (low, 

medium, and high degrees of collaboration game levels) to evaluate our implementation. We then 

recruited groups of participants to play the game levels to explore whether they would experience 

a certain degree of collaboration and validate whether the AI virtual agents provided sufficient 

data that described the collaborative behavior of players in each game level chunk. By collecting 

both in-game objective measurements and self-reported subjective ratings, we found that the three 

game levels indeed impacted the collaboration gameplay behavior of our participants. Moreover, 

by analyzing our collected data, we found moderate and strong correlations between the 

participants and the AI virtual agents. These results show that game developers can consider AI 

virtual agents as an alternative method for evaluating the degree of collaboration required to finish 

a game level. 

Additional Key Words and Phrases: game level, chunks, collaboration, AI agents, behavior 

trees, optimization 

3.1 Introduction 

In our daily lives, we collaborate with others on various tasks in various ways. According 

to Webster’s Dictionary, “collaborations”8 refers to “the work and activity of a number of 

persons who individually contribute toward the efficiency of the whole.” In addition to real-

world collaborative tasks that people perform in their everyday lives (e.g., two people collaborate 

to rearrange a couch), people also perform tasks in virtual worlds and video games (e.g., two people 

 
8 https://www.merriam-webster.com/thesaurus/collaboration. 



 

 

91 

collaborate to catch an enemy). Although collaborative experiences in humans’ daily lives are 

relatively common, the evolutionary foundations of humans’ collaborative skills remain unclear 

[44].  

In games and VR applications, the tasks requiring users to collaborate, and the degree of 

collaboration required to accomplish a given task are manually built or programmed by the game’s 

designers. However, a game designer can design hundreds of game levels that share similar game 

level chunks. For example, a game level designer can synthesize platform games (e.g., games 

similar to Super Mario Land9) by repeating various predesigned game level chunks. In addition, 

the designer is responsible for fine-tuning the degree of collaboration required for each game level, 

which is a tedious and time-consuming process. To overcome these issues, we propose a pipeline 

that automatically characterizes the degree of collaboration of game level chunks and synthesizes 

game levels with designer-defined degrees of collaboration targets (Figure 18). As a result, a game 

level designer can request game levels with different degrees of collaboration. The designer can 

later edit the synthesized game level if needed, automating the whole process and minimizing the 

time required to design the game levels.  

In this project, we targeted the “shared goal” [1][70] and “mutual benefit” [65] aspects of 

collaboration. In particular, we thought that providing a shared goal to the players (finishing the 

game level) would work as a force that holds players together and allows them to coordinate their 

efforts and work together toward mutual benefit. According to Uhlaner et al. [72], when there are 

strong shared goals, players are more likely to prioritize group needs over personal needs. In 

addition, there tends to be more cooperation and collaboration when there are strong shared goals, 

and players are more likely to defer personal benefits for collective benefits. Shared goals focus 

and coordinate strategic action toward mutual benefit, increasing the likelihood that players can 

simultaneously fulfill individual and group goals. The proposed method is divided into three parts. 

First, a game level designer is responsible for designing playable game level chunks. Second, 

artificial intelligence (AI) virtual agents are implemented to play the game level chunks. We collect 

data from these agents and use them to characterize the degree of collaboration of each game level 

chunk. Third, by developing cost terms that encode various design decisions, our method 

automatically synthesizes a game level that fulfills all designer-specified design decisions. Such a 

formulation allows our system to synthesize several variations of game levels that satisfy the 

 
9 https://www.mariowiki.com/Super_Mario_Land. 
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designer-defined parameters in a few seconds, offering variability across game levels. According 

to the literature [40][41][80], such variability is important for keeping players engaged during 

gameplay.  

The scope of this project was twofold. First, we aimed to validate whether the proposed 

method automatically synthesized game levels with different degrees of collaboration assigned to 

them and understand how players changed their gameplay behavior and perceived these different 

degrees of collaboration in the game levels. Second, we aimed to explore whether AI virtual agents 

can be used to characterize the collaborative behavior of game level chunks and, thereby, provide 

sufficient data that describes the collaborative behavior of players in each game level chunk. To 

accomplish these aims, we conducted a user study to collect data from participants. For our user 

study, we requested that our optimizer synthesize game levels requiring low, medium, and high 

degree of collaboration. We collected various in-game measurements during the gameplay. 

Moreover, we asked the participants to respond according to the scale we developed for this project. 

The obtained results indicated that our method could synthesize the game levels in which the 

participants collaborated differently across the three examined conditions (low, medium, and high 

degrees of collaboration). In addition, we evaluated the ability of the AI virtual agents to provide 

data that reflected the degree of collaboration required by the participants. The analysis results 

showed that the participants followed a parallel collaboration pattern with the AI virtual agents, 

indicating that game designers can use such agents as an alternative method for evaluating the 

degree of collaboration needed to complete a given game level. In addition to the positive findings 

of our study, we also discuss some limitations to guide future research in automatic game level 

design for collaborative gameplay.  

The rest of the paper is organized as follows. In Section 3.2, we present related work on 

collaborative games and virtual reality experiences. In Section 3.3, we describe the preliminary 

remarks of our project. In Section 3.4, we explain the formulation of the game level synthesis and 

the optimization process. In Section 3.5, we outline the conducted user study and discuss our 

findings. In Section 3.6, we review the limitations of our method. Finally, in Section 3.7, we 

present our conclusions and potential future research directions. 
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Figure 18: Our method synthesizes a game level in which participants collaborate in a shared 

virtual environment to play a game. 

3.2 Related Work  

Computer games encode problem-solving activities in which players build a strategy to 

overcome the difficulties they face [57], drawing on prior problem-solving knowledge as they 

explore the solution space for a given problem [33]. According to Sedano et al. [58], collaborative 

games encode activities in which the players must work together toward a common outcome. This 

means that the players should work collectively to identify the dominant strategy for a given in-

game problem. Most multiplayer games incorporate both collaborative and competitive mechanics. 

Examples of games that require collaboration between players are Portal 2,10 Trine,11 and Keep 

Talking and Nobody Explodes.12 In Keep Talking and Nobody Explodes, the players need to diffuse 

a bomb. One player is responsible for explaining how to defuse the bomb by using the provided 

manual, and the other player is responsible for performing the necessary operation. Providing the 

option for two or more players to collaborate toward achieving a common goal defines the 

subgenre of collaborative gameplay.  

One of the immensely popular and largest emerging multiplayer game genres that also 

encode collaboration is the Multiplayer Online Battle Arena (MOBA) [47], e.g., the League of 

 
10 https://www.thinkwithportals.com/. 
11 https://www.frozenbyte.com/games/. 
12 https://keeptalkinggame.com/. 
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Legends13 game. In such games, two teams of players compete to destroy each other’s base. The 

individual players act collectively, while the teams coordinate to meet shared goals [71]. 

Additionally, Massively Multiplayer Online Role-Playing Games (MMORPGs), such as the World 

of Warcraft,14 allow many players to collaborate in various tasks, such as fighting a dragon. 

According to Wikipedia’s list of cooperative video games,15 some MMORPGs can be played by 

players ranging from two, such as Space Duel16 and Sky Force,17 to 128, such as Freelancer18 and 

The Forest.19 

Zagal et al. [81] explored how players who work together influence a game’s design by 

analyzing collaborative board games. They found that some tension between collaboration and 

selfish play is required to create an interesting collaborative game even though the players 

ultimately share the same goal and always win or lose as a group. This tension can facilitate 

discussions about how to reach the shared goal. Zea et al. [82] explored how game level designers 

can use collaborative learning requirements as game design guidelines. They proposed guidelines 

to help developers create more efficient collaborative games, such as “give players a common goal 

and shared rewards,” “require a minimal score of each player before the group can progress, but 

also give the players enough information to enable helping,” “make players accountable for their 

actions, for example by showing their individual results to the group.” “guide group members 

towards social interactions, for example require consensus to foster discussions,” and “establish a 

rotating leader role.” 

Rocha et al. [53] proposed various methods to force collaboration among the game players. 

Among them, we can distinguish between the “shared goals” method, in which cooperating players 

have similar (or identical) objectives that they must complete, putting them on the same pathway 

toward their goals, and the “complementary” and “synergies between abilities” methods, both of 

which involve asymmetry between the two (or more) players and their abilities. Seif El-Nasr et al. 

[59] found additional patterns that define collaboration in commercial games. Specifically, by 

analyzing 14 games, they found patterns such as “players interacting with the same object,” 

 
13 https://en.wikipedia.org/wiki/League_of_Legends. 
14 https://en.wikipedia.org/wiki/World_of_Warcraft. 
15 https://en.wikipedia.org/wiki/List_of_cooperative_video_games. 
16 https://en.wikipedia.org/wiki/Space_Duel. 
17 https://en.wikipedia.org/wiki/Sky_Force. 
18 https://en.wikipedia.org/wiki/Freelancer_(video_game). 
19 https://en.wikipedia.org/wiki/The_Forest_(video_game). 
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“shared puzzles or characters,” “enemies specifically targeting separated players,” “automatic 

vocalization,” and “limited (shared) resources.” Moreover, through an evaluation process, they 

validated the importance of such patterns in forming collaborative gameplay. In a similar vein, 

Reuter et al. [3] introduced game design patterns for collaborative player interactions. They 

analyzed 15 well-known games from different genres and extracted the patterns used to guide 

collaborative game designs to foster interaction between players. Later, they classified the 

interactions into several dimensions (e.g., spatial and temporal). Lastly, to address the issue of 

authoring collaborative multiplayer games, Reuter [51] conceptualized an authoring environment 

that consisted of four modules: (1) game design patterns as player interaction templates, (2) a 

formal analysis concerning structural errors, (3) collaborative balancing, and (4) a rapid 

prototyping environment.  

In addition to the previously mentioned work that presented findings on game design 

patterns that enforce collaboration, industry experts have also discussed game mechanics and 

“dynamics” used to force collaboration. Specifically, Luaret20 further defined four categories: gate, 

comfort, class, and job. “Gate” refers to collaboration mechanics that require all players to be 

present to complete a task (i.e., two players lifting a gate, hence the name). “Comfort” refers to 

players facing a challenge that is so difficult that having more than one player is necessary. 

Compared to “gate” mechanics, “comfort” mechanics indicate that it is theoretically possible but 

extremely difficult for a solo player to perform the given task, thus strongly encouraging 

collaborative behavior rather than rigidly enforcing it. Both “class” and “job” involve assigning 

different roles to each player, either through their player avatar or character (similar to “class”) or 

simply through player actions (similar to “job”). Finally, Redding21 defined several collaboration 

“dynamics”, which describe mechanisms used to create collaborative behavior between two 

players. Redding placed these dynamics on a gradient from “prescriptive” (forced cooperation) to 

“voluntary” (encouraged but not required collaboration), which included gating/tethering, exotic 

challenges, punitive systems, buffing systems, asymmetric abilities, combined abilities, and 

survival/attrition.  

However, there are also cases where developers provided practical guidelines to force 

collaboration in games. The developers of the Jamestown: Legend of the Lost Colony22 game 

 
20 https://www.gamasutra.com/view/news/328756/The_four_atoms_of_cooperative_video_games.php. 
21 https://www.gdcvault.com/play/1014379/Keep-it-Together-Encouraging-Cooperative. 
22 https://en.wikipedia.org/wiki/Jamestown:_Legend_of_the_Lost_Colony. 
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provided practical guidelines on designing collaborative games based on player observations23 

they made. Specifically, they suggested that game developers should “prevent waiting times,” 

“avoid differentiating statistics like individual scores” (which contradicts Zea et al. [82]), “take 

into account that the players’ skill can vary and that negative contributions could result in blaming,” 

“make sure that teams only fail as a collective and that each player is able to contribute something 

tangible,” and “facilitate interactions among the players.” Likewise, the developers of the Together: 

Amna & Saif24 game followed similar rules to establish a relationship between the players.25 

Specifically, they included the “avoid levels that could be solved without all players contributing,” 

“add game mechanics that allow helping and coordination,” “have no abilities unique to each 

player so that each player knows exactly what the others can do” (contradicts Zagal et al. [81]), 

and “let players choose their responsibilities at any given time, for example to help when a player 

has difficulties using a certain ability.” However, we should note that these suggestions coming 

from research or industry sometimes differ significantly and even contradict each other in some 

respects. These differences highlight the fact that, in the game design process, there is no single 

right answer for most questions. Instead, decisions have to be made for each game individually 

and must be based on the intended target audience. This necessity was also pointed out by Corrigan 

et al. [17], who found that collaboration has to be required by the game; otherwise, the players 

tend to play solitarily.  

In addition to collaboration in video games, the virtual reality research community has 

proposed various applications related to collaboration in a shared space. Zhou et al. [84] developed 

a collaborative asymmetrical mixed reality dance game called Astaire. The players of this game 

dance together while hitting the game targets shaped as musical notes spawning in the space. 

Ibayashi et al. [34] developed a collaborative experience called Dollhouse VR, which facilitates an 

asymmetric collaboration among users in and out of virtual reality. In Dollhouse VR, one player 

uses a multitouch device to interact with the virtual environment, while the other player observes 

and interacts with the virtual environment through a head-mounted display. Piumsomboon et al. 

[49] developed a remote collaborative extended reality system to create new types of 

collaborations across different devices. Malik et al. [43] developed a unified training tool 

framework to integrate human-robot interaction into a virtual reality environment. Greenwald et 

 
23 https://www.co-optimus.com/editorial/976/page/1/indie-ana-co-op-and-the-dev-stories-you-re-all-in-this-together.html. 
24 https://togetherthegame.com/. 
25 https://www.co-optimus.com/editorial/1376/page/1/indie-ana-co-op-and-the-dev-stories-fostering-gaming-relationships.html. 
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al. [31] developed a shared immersive virtual reality environment in which users interact to create 

and manipulate virtual objects by using a set of hand-based tools called CocoVerse. Donalek et al. 

[20] explored the potential of immersive visualization and data expiration in a collaborative, shared 

virtual space. Finally, Men and Bryan-Kinns [45] explored the potential of collaborative music-

making in a shared virtual space.  

Considering the abovementioned studies on collaborative games and virtual reality 

experiences, it is obvious that collaborative tasks are context-dependent and diverse. Various 

studies have been conducted to explore how users collaborate in groups and proposed taxonomies 

to characterize users’ collaborative activities. For example, Tang et al. [66] identified six styles of 

coupling---"same problem same area,” “one working, another viewing in an engaging manner,” 

“same problem, different area,” “one working, another viewing,” “one working, another 

disengaged” and “different problems” ---where the participants were instructed to interact with a 

tabletop surface. Liu et al. [39] discussed five collaboration styles---Divide&Conquer (a parallel-

performed task in which the users must neither communicate nor help each other), LooseComm (a 

parallel-performed task where the users are allowed to communicate), LooseTech (a parallel-

performed task where the users can also help each other), CloseComm (only one user can perform 

the task in sequential order), and CloseTech (only one user can perform the task in sequential order, 

but the second user also has an input device)---by operationalizing two dimensions: task 

parallelization and shared interaction support. The results of Liu et al. [39] study also indicated 

that (1) participants value collaboration even though it incurs a cost, (2) shared interaction 

increases collaboration, reduces physical navigation, improves operation efficiency, and provides 

a more enjoyable experience, and (3) distance increases the value of collaboration and shared 

interaction.  

In the present research, we used methods such as those used in procedural content 

generation for virtual environments and games. Such methods, often called “constructive methods,” 

use grammars [46][74], noise-based algorithms [40][75], search-based methods [42][69], or 

solver-based methods [64] to generate virtual environments or game levels to maximize the 

objectives of the design and/or to preserve the developer-defined constraints. For example, Arkel 

et al. [73] introduced a platform game that utilizes a grammar-based procedural generation 

technique to synthesize the layout of puzzle-related game levels. Since its first successful 
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implementation in games such as Rogue26 and Elite27, procedural content generation has become 

a popular tool for reducing the cost of developing computer games [68]. In addition to the cost-

reduction benefits, game designers can personalize games to it players’ needs and gameplay 

behaviors with procedural content generation techniques, leading to more personalized user 

experiences [49]. Procedural content generation techniques also reduce storage footprint. This was 

especially important in the early 1980s when memory limitations of computers and storage devices 

did not allow the distribution of large amounts of predesigned content, such as game levels [4, 68]. 

Aside from the examples mentioned above, procedural content generation in games that encounter 

collaborative gameplay is relatively uncommon. This is mainly because generating game levels 

for collaboration is more challenging due to the need to ensure the mutual benefits of the 

cooperation, which puts added constraints on the design spaces [73].  

To the best of our knowledge, there are no available methods for evaluating the degree of 

collaboration at a game level. However, there are various previously published approaches to 

assessing the quality of game levels. Examples include the player challenge method [38] or the use 

of rapidly expanding random trees to sample a level’s state space, which later clusters the output 

tree of the rapidly expanding random trees using Markov clustering to form a representative graph 

of the game level [5]. Additionally, researchers have explored spatial principles in level design to 

indicate the effects of altering parts of a game level [32]. Furthermore, Berseth et al. [8] used crowd 

simulation algorithms to evaluate the scenario complexity of game levels. In the current project, 

we considered the use of AI virtual agents in assessing the degree of collaboration of the designed 

game level chunks and, consequently, the synthesized game level; therefore, we proposed and 

evaluated a method to automatically determine the degree of collaboration of a synthesized game 

level. For this project, we considered previously conducted research on the procedural generation 

of game levels and collaboration in shared virtual spaces to develop a method that automatically 

synthesizes game levels based on designer-specified degrees of collaboration among players and 

other design decisions. According to the discussed taxonomies, we mainly focused on the “same 

problem same area” styles of coupling between game players, as mentioned by Tang et al. [66], 

and in the LooseTech category of Liu et al. [39], since the players could perform a parallel task 

and help each other to overcome the challenges of a game level. We demonstrated that our 

 
26 https://en.wikipedia.org/wiki/Rogue_(video_game). 
27 https://en.wikipedia.org/wiki/Elite_(video_game). 
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approach can be applied to generate variations at a game level based on designer-defined objectives. 

Through a user study, we also validated the effectiveness of our method in generating game levels 

that can impact the collaborative gameplay behavior of participants. 

3.3 Preliminary Remarks  

In this section, we present the different game level chunks developed for our project and 

the methods we followed to characterize the degrees of collaboration for each game level chunk. 

We considered synthesizing game levels for this project’s obstacle course game. Our system 

composes a game level by placing game level chunks next to each other in a 1D array structure. 

We chose a simplified representation of a game level mainly to validate whether the presented 

methodology can synthesize game levels that fulfill the degree of collaboration targets and other 

design decisions. In addition, through our user study, we aimed to explore whether the participants 

could play the synthesized game levels and experience a certain degree of collaboration for each 

other. Thus, we leave more complex game level structures (e.g., dungeon crawlers and open-world 

game levels) for future implementations.  



 

 

100 

 

Figure 19: Playable game level chunks were developed by an experienced game level designer 

and used in this project to synthesize game levels and account for the degrees of collaboration. 

We also characterized each game level chunk based on Luaret’s taxonomy. The blue shapes 

indicate the collaboration zones of each game level chunk. 
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3.3.1 Game Level Chunks  

In a preliminary step, we asked an experienced game level designer to design playable 

game level chunks, considering different collaboration activities and the different degrees of 

collaboration players need to finish each game level chunk. The designer created 15 game level 

chunks. Figure 19 illustrates all game level chunks, where “playable game level chunks” denotes 

a part of the game that has its own gameplay characteristics and objectives and is independent of 

the other game level chunks.  

Based on the theories of designing collaborative gameplay by Rocha et al. [53], Luaret20, 

and Redding21, game level chunks can be divided into three categories: (1) chunks that a player 

can complete on their own without the help of another player (C1, C2, C3, C4, and C5); (2) chunks 

that a player can complete without the help of another player---however, if another player helps, 

the players will complete the chunk faster (C6, C7, C8, C9, C10, C11, and C12); and (3) chunks 

that if players do not collaborate to complete, they will become “stuck” and not be able to exit the 

chunk (C13, C14, and C15). Each of these chunks are described as follows:  

• C1: The exit door of this game level chunk opens when a player enters the room.  

• C2: This is a simple maze where no collaboration is required. Once a player reaches 

the red zone, the exit door of this game level chunk opens.  

• C3: The players cannot pass the narrow exit door simultaneously. Its exit door 

opens when a player enters the room.  

• C4: A player should touch the pumpkin to open the exit door of this game level 

chunk.  

• C5: There is a large button on the floor in this game level chunk. Its exit door opens 

once a player jumps on the button.  

• C6: The player(s) should push the chest to move it to a specific place (red zone). 

The speed of the chest increases proportionally to the number of players pushing it. 

The exit door opens only when the player(s) places the chest on the red zone.  

• C7: One player should attract the enemy’s attention while the other player reaches 

the red zone to open the exit door of this game level chunk. In the case of a single 

player, that player should feint the enemy to reach the red zone to open the exit 

door.  
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• C8: In this game level chunk, there are four bottles. The player(s) should grab the 

bottles and put them in the basket. Once all bottles are in the basket, the exit door 

of this game level chunk opens.  

• C9: There is a scroll attached to the back of the enemy. The players should 

collaborate to “steal” the scroll. In particular, one player should attract the enemy’s 

attention, while the other player “steals” the scroll. When a player places the scroll 

in the basket, the exit door of this game level chunk opens. In the case of a single 

player, that player should feint the enemy to “steal” the scroll.  

• C10: One player should collect the bottles and place them in a designated position, 

while the other player should attract the enemies. When the players have placed all 

bottles in the designated position (wooden baskets), the exit door of this game level 

chunk opens. In the case of a single player, that player should run fast to prevent 

the enemy from collecting the bottles and placing them in a designated position.  

• C11: The player(s) need to touch the pumpkins according to a particular color 

sequence shown on a board to open the exit door of this game level chunk. If the 

players collaborate, they will be able to exit this room faster.  

• C12: A player must carry the board and place it in a suitable place to form a bridge. 

When a player reaches the red zone, the exit door of this game level chunk opens. 

• C13: In this game level chunk, players can open and close a cage by touching a 

button. One player is responsible for controlling the cage, while the other is 

responsible for directing the enemies to the cage. Only once the players trap all 

enemies in the cage does the exit door of this game level chunk open. 

• C14: The players should grab the chest together and move it to the designated place 

(red zone) to open the exit door of this game level chunk.  

• C15: Once a player reaches the top of the wall using the black ladder, the ladder 

breaks. The player should then push the white ladder down to allow the other player 

to climb the wall. When a player reaches the red zone, the exit door of this game 

level chunk opens. If the first player that reaches the top does not push down the 

white ladder, the second player will become “stuck” and not be able to exit this 

chunk.  
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Figure 20 illustrates different game level chunks from a first-person perspective. Moreover, 

we provide gameplay examples of the synthesized game levels in the accompanying video. All 

game levels and our implementations can be found on our project’s website and downloaded from 

there. 

 

Figure 20: Example scenes of the developed game level chunks from a first-person perspective. 

3.3.2 Game Level Chunk Characterization  

Our characterization process begins by specifying the collaboration zones at each game 

level chunk. We adopted the idea of using collaboration zones from Reuter et al. [52], who 

described various patterns that enforce collaboration between players. In the current project, the 

collaboration zones are designer-specified areas inside the game level chunks in which we expect 

both players to be present simultaneously; this means that the players collaborate to accomplish 

each given task. Figure 19 illustrates the collaboration zones of different game level chunks.  

For example, in the case of the C6 game level chunk (Figure 19(f)), the players should push 

the chest to move it to the designated position to open the exit door. The collaboration zone of this 

chunk covers the path that the players should follow when pushing the chest to the designated red 

zone. Thus, if both players are present in this collaboration zone and try to push the chest together, 

a high degree of collaboration will characterize that game level chunk. Therefore, the players can 

push the chest faster and consequently exit that game level chunk more quickly. In this paper, we 

define the degree of collaboration as the time ratio for which the virtual avatars are inside the 
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collaboration zone of a game level chunk over the total time spent in that game level chunk, which, 

in practice, can be translated as the “same problem same area,” as defined by Tang et al. [66]. 

According to the literature [41][80], the designer who created the game level chunks could 

have characterized the degree of collaboration of game level chunks, or we could have recruited 

participants to play each game level chunk and capture the necessary data to characterize each of 

them. However, building on these approaches and adopting the ideas of Berseth et al. [6], we used 

AI virtual agents to play each game level chunk. We did so because, first, the AI virtual agents 

could provide more accurate data on the exact degree of collaboration required to complete each 

game level chunk. Second, we aimed to explore the potential of using AI virtual agents as an 

alternative method for evaluating the degree of collaboration of a game level chunk and, 

consequently, of a game level. We also decided to use AI virtual agents, as several previous studies 

have proved that the use of AI (virtual) agents for playtesting can provide reasonable playtesting 

data [19][27][29]. In our pipeline, we integrated AI virtual agents that repeated the gameplay of 

each game level chunk at super-speed in a headless mode. In addition, we introduced some 

variations in the simulation (e.g., changing the starting position of each AI virtual agent) to capture 

variations in how the AI virtual agents could play each game level chunk. Thus, although we 

considered that each trial of the AI virtual agents might prove less useful than human data within 

a fixed budget or time, the proposed automatic method could create more data.  

For our AI virtual agents, we first developed behavior trees (see APPENDIX; Figure 30-

44) similar to those developed by Shoulson et al. [61] with a set of tasks in a modular fashion that 

our system could use to allow the AI virtual agents to play and exit each game level chunk 

successfully. Given the behavior tree that corresponds to a given game level chunk, the AI virtual 

agents selected and executed the most appropriate interaction and collaboration pattern during the 

runtime of the gameplay. In the Appendix of this paper, we present the behavior trees we developed 

for the different game level chunks and, consequently, for the different behaviors assigned to the 

developed AI virtual agents.  

To obtain the degree of collaboration of each game level chunk, we assigned a random 

position to each AI virtual agent at the entrance of each game level chunk and captured the degree 

of collaboration that characterized a given game level chunk. For each game level chunk, we 

repeated this process 10 times by randomizing the initial position of each AI virtual agent at the 

beginning of their gameplay. Then, at each game level chunk, we assigned the average degree of 
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collaboration of the 10 trials as the value that characterizes that particular game level chunk. As 

mentioned, we denote the ratio between the time the AI virtual agents spent inside the collaboration 

zone of a game level chunk to the total time spent in that game level chunk as the degree of 

collaboration. Table 1 lists the obtained values characterizing the degree of collaboration of each 

game level chunk. 

Table 1: Classification of the game level chunks based on Luaret’s taxonomy, the degree of 

collaboration of each game level chunk based on the data obtained from the AI virtual agents, the 

percentage of the collaboration zone over the total area of the game lev level chunk, and the 

category to which each chunk belongs (* chunks that a player can complete on their own without 

the help of another player; ** chunks that a player can complete without the help of another 

player---however, if another player helps, the players will complete the chunk faster; and *** 

chunks that if players do not collaborate to complete, they will become “stuck” and will not be 

able to exit the chunk).  

Chunk ID Luaret’s Taxonomy D (𝑐𝑖) Collaboration Zone (%) Chunk Category 

C1 N/A .21659 25.00 * 

C2 N/A .21131 25.00 * 

C3 N/A .21744 25.00 * 

C4 N/A .32782 14.00 * 

C5 Job .27382 6.25 * 

C6 Comfort .51531 13.43 ** 

C7 Job .49580 62.50 ** 

C8 Comfort .52015 34.51 ** 

C9 Job .45949 62.50 ** 

C10 Job .70475 68.75 ** 

C11 Comfort .40382 12.50 ** 

C12 Job .43350 12.58 ** 

C13 Job .77391 56.25 *** 

C14 Gate .71462 37.50 *** 

C15 Gate .76937 65.63 *** 

 

3.4 Problem Formulation and Optimization 

Our approach synthesizes game levels with respect to the degree of collaboration and other 

design decisions. We outline a detailed description of the problem formulation and optimization 

in the following subsections.  
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3.4.1 Formulation 

We begin by denoting a game level (𝐿) composed of a designer-defined number of game 

level chunks (𝑐𝑖) assembled in a sequential order. We represent the synthesis of the game level (𝐿) 

with a total cost function (𝐶Total) that encodes our game level design considerations: 

𝐶Total(𝐿) =  𝐰𝐶𝑜𝑙𝑙𝑎𝑏
𝑇 𝐂𝐶𝑜𝑙𝑙𝑎𝑏 + 𝐰𝑃𝑟𝑖𝑜𝑟

𝑇 𝐂𝑃𝑟𝑖𝑜𝑟  (17) 

Here,𝐂𝐶𝑜𝑙𝑙𝑎𝑏 = [𝐶𝐶𝑜𝑙𝑙𝑎𝑏
𝑀 , 𝐶𝐶𝑜𝑙𝑙𝑎𝑏

𝑉 , 𝐶𝐶𝑜𝑙𝑙𝑎𝑏
𝑃 ]  is a vector of collaboration-related costs, and 

𝐰𝐶𝑜𝑙𝑙𝑎𝑏 = [𝑤𝐶𝑜𝑙𝑙𝑎𝑏
𝑀 , 𝑤𝐶𝑜𝑙𝑙𝑎𝑏

𝑉 , 𝑤𝐶𝑜𝑙𝑙𝑎𝑏
𝑃 ] is a vector of the corresponding weights, where each weight 

∈ [0, 1]. 𝐶𝐶𝑜𝑙𝑙𝑎𝑏
𝑀 , 𝐶𝐶𝑜𝑙𝑙𝑎𝑏

𝑉 , and 𝐶𝐶𝑜𝑙𝑙𝑎𝑏
𝑃  encode the collaboration-related design decisions: the mean 

degree of collaboration required to complete the synthesized game level, the variation in the degree 

of collaboration, and the progress of the degree of collaboration across the game level chunks. 

𝐂𝑃𝑟𝑖𝑜𝑟 = [𝐶𝑃𝑟𝑖𝑜𝑟
𝑆 , 𝐶𝑃𝑟𝑖𝑜𝑟

𝑅 ] is a vector of game level prior costs that encodes design decisions, such 

as the size of the game level (number of game level chunks) and repetition among adjacent game 

level chunks. As mentioned before, 𝐰𝑃𝑟𝑖𝑜𝑟 = [𝑤𝑃𝑟𝑖𝑜𝑟
𝑆 , 𝑤𝑃𝑟𝑖𝑜𝑟

𝑅 ] is a vector of the corresponding 

weights, where each weight ∈ [0, 1]. Based on the above formulation, we provide the game 

developers with the ability to control the design decisions related to the game level by changing 

the target of each cost term. In addition, we provide them with the ability to control the output 

synthesized game levels by allowing them to change the priority (weight) of each cost term. This 

means that even if the game level designer sets a target value for a specific cost term, if the assigned 

weight of that cost term is a low value, such a design decision might not appear in the synthesized 

game level due to its low priority. In contrast, if a designer assigns a high weight value to a cost 

term, such a design decision would appear at the synthesized game level.  

3.4.2 Collaboration Costs  

We developed three cost terms to encode the design decisions regarding the degree of 

collaboration at a game level (𝐿). The collaboration costs include the mean degree of collaboration, 

variation in the degree of collaboration, and progress in the degree of collaboration.  

Mean Degree of Collaboration Cost: We define a cost term to control the mean degree 

of collaboration the game players require to accomplish the game level (𝐿). We define this cost as 

follows: 
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𝐶𝐶𝑜𝑙𝑙𝑎𝑏
𝑀 (𝐿) = (

1

|𝐿|
∑ 𝒟(𝑐𝑖)𝑐𝑖

 − 𝜌𝑀)
2

                   (18) 

 

where 𝜌𝑀  ∈ [0, 1] is the target mean degree of collaboration, and 𝒟(𝑐𝑖)  is the degree of 

collaboration of the (𝑐𝑖) game level chunk. By assigning a low 𝜌𝑀value to the above equation, our 

system will synthesize a game level in which the users will expect low collaboration to finish that 

game level, while by assigning a high 𝜌𝑀 target value, the system will most likely synthesize a 

game level that the users will not be able to finish without collaboration. Figure 21 illustrates the 

game levels synthesized by varying the value of 𝜌𝑀.  
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Figure 21: Different game levels synthesized by our system by varying the targets of our cost 

terms. For all examples, we set the weights of the collaboration-related cost terms at 𝑤𝐶𝑜𝑙𝑙𝑎𝑏
𝑀  = 

1.00, 𝑤𝐶𝑜𝑙𝑙𝑎𝑏
𝑉 = .30, and 𝑤𝐶𝑜𝑙𝑙𝑎𝑏

𝑃  = .50, and those of the prior cost terms at 𝑤𝑃𝑟𝑖𝑜𝑟
𝑆 = 1.00 and 

𝑤𝑃𝑟𝑖𝑜𝑟
𝑅  = .50. The same game level chunk can appear more than once at a synthesized level (e.g., 

C1, C3, and C5 in Figure 21(a)); however, due to the adjacent repetition cost term, the system 

does not repeat the same chunk one after the other. 

Variation in the Degree of Collaboration Cost: We define a variation in the degree of 

collaboration cost to consider the range of the collaboration required among the selected game 

level chunks, as follows:  
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𝐶𝐶𝑜𝑙𝑙𝑎𝑏
𝑉 (𝐿) = |

1

|𝐿|
∑ (𝒟(𝑐𝑖) − 𝒟̅)

2
𝑐𝑖

− 𝜌𝑉|               (19) 

where 𝜌𝑉 ∈ [0, 1] is the target variation in the degree of collaboration, and 𝒟̅ is the mean of the 

degree of collaboration of the game level chunks. By changing the 𝜌𝑉 target value, the developer 

can specify the variation in the degree of collaboration at the synthesized game level. In particular, 

by assigning a low 𝜌𝑉, the synthesized game level will comprise game level chunks whose degree 

of collaboration is close to the mean degree of collaboration target (𝜌𝑀), while when the 𝜌𝑉 target 

value is high, we will observe in the synthesized game level, game level chunks from the whole 

spectrum of the degree of collaboration we have in our dataset.  

Degree of Collaboration Progress Cost: This cost controls the progression of the degree 

of collaboration along the synthesized game level. For this purpose, we allow the developer to 

define a line graph (𝐺) with a number (|𝐿|; equal to the size of the level) of elements (𝑔𝑖; each 𝑔𝑖 

corresponding to a target degree of collaboration value). This line graph is used as a reference to 

synthesize a game level with a degree of collaboration across the game level chunks comprising 𝐿 

and aligning with the designer-defined line graph (𝐺) while following the designer-defined mean 

collaboration cost. We define the degree of collaboration progress cost as follows: 

𝐶𝐶𝑜𝑙𝑙𝑎𝑏
𝑃 (𝐿) =  

1

|𝐿|
∑ (𝒩(𝒟(𝑐𝑖)) −  𝒩(𝒟(𝑔𝑖)))

2

𝑐𝑖
           (20) 

where 𝑔𝑖  is the target degree of collaboration for the 𝑖 −  𝑡ℎ game level chunk from the pre-

defined line graph. 𝒩 denotes the normalized values of the degree of collaboration, 𝒟(𝑐𝑖), of the 

game level chunk (𝑐𝑖) of the game level (𝐿) and the target degree of collaboration, 𝒟(𝑔𝑖), of the 

element (𝑔𝑖) of the input line graph (𝐺). A designer can easily control the progress of the degree 

of collaboration by choosing from a list of predefined curves and lines (we illustrate line graphs 

and the corresponding game levels in Figure 22 or by defining and importing a new progression 

line graph (𝐺). Based on this functionality, the game level designer can specify the targets of the 

mean degree of collaboration (𝜌𝑀) and variance of the degree of collaboration (𝜌𝑉). Then, the line 

graph species the progression of the game level chunks across the systemized game level. This 

functionality provides the game level designer with additional control over the synthesis process 

of a game level. 
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3.4.3 Prior Costs  

We define the prior cost terms to encode specific game level design decisions. Among 

other variables, we choose the size (number of game level chunks) that constitutes a game level 

and the repetition of adjacent game level chunks.  

Size Cost: We define a level size cost for constraining the number of game level chunks 

that compose a game level, as follows: 

𝐶𝑃𝑟𝑖𝑜𝑟
𝑆 (𝐿) =  1 − 𝑒𝑥𝑝 (−

1

2𝜎𝑆
2 (|𝐿| − 𝜌𝑆)

2)            (21) 

where 𝜌𝑆 is the designer-defined number of game level chunks, and 𝜎𝑆 controls the spread of the 

Gaussian penalty function, which is empirically set as 𝜎𝑆 = 1.00. 

Adjacent Repetition Cost: We also define a cost to penalize the repartition of similar 

game level chunks, therefore eliminating the synthesis of monotonic game levels in which similar 

game level chunks are placed next to one another. We represent the adjacent repetition cost as 

follows: 

𝐶𝑃𝑟𝑖𝑜𝑟
𝑅 (𝐿) =  

1

|𝐿|−1
∑ Γ(𝑐𝑖, 𝑐𝑖+1)𝑐𝑖,𝑐𝑖+1

               (22) 

where 𝑐𝑖 and 𝑐𝑖+1 are adjacent game level chunks in 𝐿, and Γ(𝑐𝑖, 𝑐𝑖+1) returns a high value 

if 𝑐𝑖 and 𝑐𝑖+1 are identical and a low value otherwise, under following the condition: 

Γ(𝑐𝑖, 𝑐𝑖+1) =  {
1        𝑖𝑓 (𝑐𝑖 ≡ 𝑐𝑖+1)

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

In conclusion, game developers can consider various other prior costs depending on the 

game’s objectives and design decisions. 

3.4.4 Optimization  

Given the game level designer-defined decisions, our system optimizes the total cost 

function by applying a Markov-chain Monte Carlo (MCMC) [30] method, known as “simulated 

annealing,” with a Metropolis-Hastings [13] state-searching step. Given that any number of game 

level chunks can synthesize a game level, a trans-dimensional solution space encodes all possible 

design outcomes of a game level. Thus, to successfully sample the solution spaces of game levels 

assembled by several game level chunks, we use the reversible-jump [21] variation in the MCMC 

technique. For our optimization process, we start by defining a Boltzmann-like objective function: 
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𝑓(𝐿) =  𝑒𝑥𝑝 (−
1

𝑡
𝐶𝑇𝑜𝑡𝑎𝑙(𝐿))                  (23) 

where 𝑡 encodes the temperature parameter of simulated annealing. Given the current game 

level (𝐿) during the optimization process, the optimizer proposes a change to that game level, 

creating a proposed game level (𝐿′). In particular, to obtain the proposed game level (𝐿′), our 

system updates the current game level (𝐿) by choosing one of the following moves:  

• Add a Game Level Chunk: When this move is selected, the system randomly 

selects a game level chunk from our game level chunk set and places it in a 

randomly chosen location within the game level.  

• Remove a Game Level Chunk: In this move, the system randomly selects a game 

level chunk from the current layout (𝐿) and removes it.  

• Replace a Game Level Chunk: In this move, from the current game level, the 

system randomly selects a game level chunk from the current layout (𝐿 ) and 

replaces it with a randomly selected game level chunk from our game level chunk 

set.  

 

In our method, we set the probabilities of “add a game level chunk” as 𝑝𝑎𝑑𝑑 = .40, 

“remove a game level chunk” as 𝑝𝑟𝑒𝑚𝑜𝑣𝑒 = .20, and “replace a game level chunk” as 𝑝𝑟𝑒𝑝𝑙𝑎𝑐𝑒 =

 .40. This approach selects the “add a game level chunk” and “replace a game level chunk” moves 

with higher probability.  

The optimizer accepts a proposed game level configuration (𝐿′) by comparing its total cost 

value, 𝐶𝑇𝑜𝑡𝑎𝑙(𝐿′), with the total cost value, 𝐶𝑇𝑜𝑡𝑎𝑙(𝐿), of the current layout (𝐿). To ensure a 

detailed balanced condition in trans-dimensional optimization, the optimizer accepts a proposed 

layout (𝐿′) based on the acceptance probabilities for the “add a game level chunk,” “remove a 

game level chunk,” and “replace a game level chunk” moves. We define the probability of the 

“add a game level chunk” move as: 

𝑝𝑎𝑑𝑑(𝐿
′|𝐿) = 𝑚𝑖𝑛 (1,

𝑝𝑟𝑒𝑚𝑜𝑣𝑒

𝑝𝑎𝑑𝑑

𝑈−|𝐿|

|𝐿′|

𝑓(𝐿′)

𝑓(𝐿)
)           (24) 

the probability for the “remove a game level chunk” move as: 

𝑝𝑟𝑒𝑚𝑜𝑣𝑒(𝐿
′|𝐿) = 𝑚𝑖𝑛 (1,

𝑝𝑎𝑑𝑑

𝑝𝑟𝑒𝑚𝑜𝑣𝑒

|𝐿|

𝑈−|𝐿′|

𝑓(𝐿′)

𝑓(𝐿)
)           (25) 

and the probability for the “replace a game level chunk” move as: 
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𝑝𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝐿
′|𝐿) = 𝑚𝑖𝑛 (1,

𝑓(𝐿′)

𝑓(𝐿)
)       (26) 

The acceptance probabilities during the optimization process consider the variable 𝑈 , 

which denotes the upper limit of the number of game level chunks. For formulation simplicity, we 

assume that each game level chunk (𝑐𝑖) can only be selected (𝑈𝑖) times rather than an infinite 

number of times. Thus, our system synthesizes a level of up to 𝑈 =  ∑ 𝑈𝑖𝑖  game level chunks. In 

our implementation, we set 𝑈 =  20 for all game level chunks.  

We implement simulated annealing to effectively explore the solution space. Regarding 

the temperature parameter (𝑡) of the optimizer, at the beginning of the optimization, we set 𝑡 to a 

high value such that the optimizer aggressively explores the whole solution space, decreasing 

gradually until reaching a value near zero. We initialize the temperature as 𝑡 =  1.00  at the 

beginning of the optimization and multiply it by 𝑡∗  =  .998 after each iteration. The optimizer 

becomes “greedier” when refining the optimal solution as the iteration evolves. The optimization 

terminates when the change in 𝐶𝑇𝑜𝑡𝑎𝑙(𝐿) is less than 2.5% over the last 50 iterations.  

Unless we specify otherwise, for all collaboration-related cost terms presented in this paper, 

we set the weights at 𝑤𝐶𝑜𝑙𝑙𝑎𝑏
𝑀  =  1.00, 𝑤𝐶𝑜𝑙𝑙𝑎𝑏

𝑉  =  .30, and 𝑤𝐶𝑜𝑙𝑙𝑎𝑏
𝑃  =  .50. For the prior cost 

terms, we set the weights at 𝑤𝑃𝑟𝑖𝑜𝑟
𝑆  =  1.00 and 𝑤𝑃𝑟𝑖𝑜𝑟

𝑅  =  .50. We assign a high weight value to 

𝑤𝐶𝑜𝑙𝑙𝑎𝑏
𝑀  as we want the optimizer to prioritize the corresponding cost term and synthesize a game 

level whose mean degree of collaboration is as close as possible to the designer-specified target 

value 𝜌𝑀 . In addition, we assign a high value to 𝑤𝑃𝑟𝑖𝑜𝑟
𝑆  as we want our system to synthesize a 

game level whose size is the requested one. If, for example, we assign a lower value to 𝑤𝑃𝑟𝑖𝑜𝑟
𝑆 , our 

system might compose a game level with either less or more game level chunks since the system 

would have first tried to fulfill the design decisions having higher weight values and, consequently, 

higher priorities than those with lower weight values. Finally, we assign low and medium values 

to 𝑤𝐶𝑜𝑙𝑙𝑎𝑏
𝑉 , 𝑤𝐶𝑜𝑙𝑙𝑎𝑏

𝑃 , and 𝑤𝑃𝑟𝑖𝑜𝑟
𝑅  as such design decisions should not be prioritized by the optimizer. 

The designer can also control the priority of each design goal at a given game level by changing 

these weights. Figure 21 illustrates the examples of the synthesized game levels with different 

targets for the collaboration cost terms. Figure 22 shows the game levels synthesized using various 

degrees of collaboration progress line graphs while keeping the mean degree of collaboration target 

and variation in the degree of collaboration constant.  



 

 

113 

 

Figure 22: Example game levels (𝜌𝑆 =  9) using different degrees of collaboration progress line 

graphs while maintaining the mean degree of collaboration target constant. For all examples, we 

use 𝜌𝑀 = .50 and 𝜌𝑉 = .50 as the targets. 

3.5 User Study  

In this study, we explored whether our developed method can synthesize game levels with 

different targeted degrees of collaboration, thereby impacting the participants’ gameplay behavior. 

Moreover, we attempted to evaluate whether the AI virtual agents can characterize the degree of 

collaboration in the game level chunks. We provide more details about the study and our results in 

the following sections. 
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3.5.1 Participants  

We conducted an a priori power analysis [15] to determine the sample size for our study, 

using the G*Power version 3.10 software [23]. The calculation was based on one group with three 

repeated measures, 90% power, medium-to-large effect size of 𝑓 =  .35  [22], non-sphericity 

correction 𝜖 =  .70 , correlation among repeated measures of 𝑟 =  .50 , and 𝛼 =  .05 . The 

analysis resulted in a recommended sample size of 25 groups of participants (for clarification, each 

group was composed of two students).  

We recruited the participants through e-mails sent to our department’s undergraduate and 

graduate students. As we conducted this study to explore the collaborative behavior of our 

participants during gameplay, they were scheduled to attend the sessions in groups of two. In total, 

50 students participated in our study (25 groups of students). The age range of our participants was 

18 − 29 years (age: 𝑀 =  19.28, 𝑆𝐷 =  1.79). All participants had previously experienced virtual 

reality, and all of them played video games regularly. The participants in each group were 

randomly assigned to minimize the chances that the groups were composed of students who knew 

each other. The research team also asked a designated question before the beginning of the study. 

Our results indicated that no group was composed of students who had played games together in 

the past. We did not provide monetary compensation to our participants for their participation; 

however, we provided snacks and water to them throughout the study session to compensate them 

for their time and effort.  

3.5.2 Setup and Implementation Details  

This study was conducted in a laboratory in our department. We used the Unity game 

engine version 2019.4.12 to develop our application and ran the application on two (one computer 

per participant) Dell Alienware Aurora R7 desktop computers (Intel Core i7, NVIDIA GeForce 

RTX 2080, 32GB RAM). The optimization of the game level with 𝜌𝑆 =  10 game level chunks 

did not exceed five seconds. We used Oculus Quest and its Unity SDKs (Oculus Integration). 

Finally, we used the Photon Unity Networking28 asset to enable the networking functionality 

between the two computers and, consequently, to allow the participants to collaborate in a shared 

virtual space.  

 
28 https://www.photonengine.com/pun. 
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3.5.3 Experimental Conditions  

We developed three experimental conditions (game levels) to determine whether 

optimizing the game levels with different targeted degrees of collaboration would impact the 

collaboration gameplay behavior of our participants. We followed a within-group study design, 

which meant that all participant groups played the three developed game levels. To balance the 

conditions across the participant groups and minimize the carryover effect of gameplay knowledge 

across game levels with different degrees of collaboration targets, we used the Latin squares [36] 

ordering method. We used 𝜌𝑆 =  10 as the target size of the game levels for all three conditions. 

The conditions were as follows:  

• Low Collaboration (LC): We requested that our system create an LC game level 

expecting that our participants could finish it with minimal to no collaboration 

necessary. We set the target value of the degree of collaboration cost term at 𝜌𝑀 =

 .30. Under this condition, we expected the synthesized game level to be composed 

mainly of the game level chunks that require low to medium degree of collaboration 

activity (C1-C12).  

• Medium Collaboration (MC): Under this condition, we requested that our system 

synthesize a game level in which our participants would moderately collaborate to 

finish it. This meant that if the participants collaborated on some parts of the game 

level, they would complete the game faster. We set 𝜌𝑀 = .50. Under this condition, 

we expected the synthesized game level to be composed of game level chunks from 

the whole spectrum of the degree of collaboration (C1-C15).  

• High Collaboration (HC): Under the last condition, we requested our system to 

synthesize a game level in which the participants should collaborate even more to 

finish the level. We set 𝜌𝑀 = .70. In HC, it is highly likely that if the participants 

do not collaborate, they will not be able to finish the game. Under this condition, 

we expected the synthesized game level to be composed of game level chunks that 

require medium to high collaboration activity (C6-C15). 

 

We did not change the weights assigned to collaboration and prior costs across the 

experimental conditions. However, we set a different target value to the mean degree of 

collaboration cost term; therefore, we requested our method to synthesize a game level with a 
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certain goal (i.e., a different degree of collaboration target). Additionally, for the degree of 

collaboration progress term, we used a Gaussian-like line graph as a reference (similar to Figure 

22(b)). This meant that the system should synthesize the game level for which at the start and end 

of a level, we would be able to observe game level chunks of low degree of collaboration. In 

contrast, we would observe game level chunks of a higher degree of collaboration in the middle of 

the game level. We synthesized our game levels in such a way for three reasons. First, we did not 

want to synthesize monotonic game levels with a near-equal degree of collaboration across the 

game level chunks. Second, we wanted to synthesize game levels that included game level chunks 

of low and medium degree of collaboration activity, similar to most commercial games (i.e., most 

games have designated areas at each game level that require more collaboration than other areas 

at the same level). Third, during a preliminary study, we realized that when we placed higher 

collaboration game level chunks toward the end of the synthesized game level, the participants 

tended to collaborate more than they actually collaborated. This indicated that the participants’ 

collaborative gameplay experiences at the end of game levels tended to override those at the 

beginning of the same game levels. Figure 23 shows the three synthesized game levels we used in 

our study. The LC game level (Figure 23(a)) indicated that such a game level is mainly composed 

of low collaboration activity game level chunks, the MC game level (Figure 23(b)) is primarily 

formed by medium collaboration activity game level chunks, and the HC game level (Figure 23(c)) 

is mainly composed of medium and high collaboration activity game level chunks. 
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Figure 23: Three different synthesized game levels used in our study. From top to 

bottom: (a) low degree of collaboration, (b) medium degree of collaboration, and 

(c) high degree of collaboration. 

3.5.4 Measurements  

For our study, we collected both objective and subjective data. We collected the degree of 

collaboration regarding objective data mainly to understand how the three different conditions 

impacted the two participants when playing at the synthesized game levels. However, we also 

performed several other in-game measurements to evaluate the potential use of AI virtual agents 

as a method for assessing the degree of collaboration at the game level. In particular, we collected 

the following data:  

• Degree of Collaboration: The ratio of time for which the virtual avatars were 

inside the collaboration zone to the total time spent at the game level.  

• Player Distance: The average distance between two virtual avatars during 

gameplay.  

• Travel Distance: The average length of the trajectory that the two virtual avatars 

traveled in the game.  

• Completion Time: The total time players spent finishing the game (the timer 

stopped when the second player finished the game).  

• Collaboration Time: The total time for which the virtual avatars were inside the 

defined collaboration zones.  
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• Close Proximity Time: The total time for which the two virtual avatars were in 

close proximity to each other (inside one another’s personal space).  

 

In addition to the objective data, we collected subjective data based on a scale we developed. 

Inspired by Thomson et al. [67] empirically validated theory of collaboration, we created a 

perceived collaboration scale comprising six items (Table 2) to capture how the participants 

perceived the degrees of collaboration at the synthesized game levels. We collected the responses 

from our participants using a seven-point Likert scale, where 1 = “not at all” and 7 = “totally.” 

Table 2: Perceived Collaboration Scale used in this study. 

Label Statement 

Q1 During the gameplay, I felt I belonged to the group. 

Q2 During the gameplay, I felt I helped the group. 

Q3 During the gameplay, I felt I helped my partner. 

Q4 During the gameplay, I felt my partner was helping me. 

Q5 During the gameplay, a collaborative atmosphere was created. 

Q6 During the gameplay, I collaborated with my partner to finish the game. 

 

3.5.5 Procedure  

After scheduling a date and time with the research team, the participants arrived at the 

laboratory in our department. Upon arrival, the researchers provided the participants with informed 

consent forms approved by the university’s Institutional Review Board. The participants were 

required to sign up for inclusion in the study. Next, the research team instructed the participants to 

provide their demographic information by filling out the questionnaire. Once both participants 

from each group were in the laboratory, the research team helped them with the virtual reality 

equipment.  

The research team was responsible for starting the game using the desktop computer. The 

research team instructed the participants to play a game composed of different game level chunks. 

Before the game started, we provided a short tutorial to all participants to familiarize them with 

the controllers. A previous study showed that such tutorials can improve participants’ performance 

and player experience [35]. When the research team clicked the play button in Unity, the 

participants first saw the game level. Both participants were in the same shared real environment 
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(our laboratory space) and virtual space (Figure 18). Once the game began, the research team 

instructed the participants to play the synthesized game level, with the goal of finishing the game 

level. The research team did not provide further information to the participants about the game and 

gameplay. They also did not tell the participants whether they would need to collaborate with their 

partner during gameplay. They were left to explore on their own whether such collaboration would 

be necessary. The research team informed the participants that an on-screen indicator would notify 

them when they finished the game level. The researchers were responsible for setting up each 

subsequent game level. After the end of each game level (see Figure 23 for the LC, MC, and HC 

game levels), the participants were instructed to self-report their perceived collaboration (Table 2) 

through Qualtrics, which is a web-based survey tool provided by our university. We allowed the 

participants to take a short break between the experimental conditions. No participant group spent 

more than 60 min completing the study. We also told the participants that they could quit the study 

at any time; however, no team quit the study.  

3.5.6 Results  

We used a one-way repeated measures analysis of variance to explore potential differences 

across the examined conditions. We evaluated the normality of the collected data using Shapiro-

Wilk tests to the 5% level and the residuals’ graphic Q-Q plots. The Shapiro-Wilk tests and Q-Q 

plots indicated that our data were normal. Moreover, we screened the internal validity of the 

perceived collaboration scale using Cronbach’s alpha coefficient. With sufficient scores (𝛼 =  .81 

for the LC game level, 𝛼 =  .89 for the MC game level, and 𝛼 =  .77 for the HC game level), we 

used a cumulative score for the six items. The removal of items would not have enhanced these 

reliability measures. We used a p-value of < .05 to denote statistical significance. Finally, we used 

Bonferroni-corrected estimates for our post-hoc comparisons.  

3.5.6.1 In-game Measurements.  

Table 3 shows the descriptive statistics for the in-game measurements. The analysis of the 

player distance data did not reveal any significant results (𝛬 =  .770, 𝐹 [2, 23]  =  3.442, 𝑝 =

 .526, 𝜂𝑝
2  =  .019). Similarly, the close proximity time measurement data did not reveal any 
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statistically significant differences (𝛬 =  .762 , 𝐹 [2, 23]  =  3.589 , 𝑝 =  .349 , 𝜂𝑝
2  =  .039 ) 

across the examined conditions.  

The analysis of the degree of collaboration measurement revealed significant differences 

across the examined conditions (𝛬 =  .065, 𝐹 [2, 23]  =  166.730, 𝑝 =  .0001 , 𝜂𝑝
2  =  .935). 

The results of post-hoc analysis revealed that the degree of collaboration during the LC condition 

(𝑀 =  .17, 𝑆𝐷 =  .06 ) was significantly lower than that during the MC condition (𝑀 =

 .40, 𝑆𝐷 =  .03), at 𝑝 =  .001 , and the HC condition (𝑀 =  .45, 𝑆𝐷 =  .04), at 𝑝 =  .0001. 

Moreover, the degree of collaboration during the MC condition was significantly lower than that 

during the HC condition, at 𝑝 =  .001.  

We identified significant results for the travel distance measurement ( 𝛬 =  .095 , 

𝐹 [2, 23]  =  109.548, 𝑝 =  .0001, 𝜂𝑝
2  =  .905) The results of the post-hoc analysis revealed that 

the participants in the LC condition (𝑀 =  642.69, 𝑆𝐷 =  36.90) traveled less than that in the 

MC condition (𝑀 =  717.40, 𝑆𝐷 =  58.20 ), at 𝑝 =  .001 , and the HC condition (𝑀 =

 799.19, 𝑆𝐷 =  93.41), at 𝑝 =  .0001. Moreover, the participants in the MC condition traveled 

less than they did in the HC condition, at 𝑝 =  .007.  

The completion time measurement was also statistically significant ( 𝛬 =  .091 , 

𝐹 [2, 23]  =  115.385, 𝑝 =  .0001, 𝜂𝑝
2  =  .909). The results of the post-hoc analysis revealed 

that the participants in the LC condition (𝑀 =  110.73, 𝑆𝐷 =  16.54) spent less time finishing 

the game than that in the MC condition (𝑀 =  146.15, 𝑆𝐷 =  24.61), at 𝑝 =  .001, and the HC 

condition (𝑀 =  178.91, 𝑆𝐷 =  31.70), at 𝑝 =  .001. Moreover, the time that the participants 

spent finishing the MC condition was significantly lower than that in the HC condition, at 𝑝 =

 .002.  

Finally, the collaboration time measurement was also statistically significant (𝛬 =  .048, 

𝐹 [2, 23]  =  229.117, 𝑝 =  .0001, 𝜂𝑝
2  =  .952). The results of the post-hoc analysis revealed 

that the participants in the LC condition (𝑀 =  22.72, 𝑆𝐷 =  5.86) spent less time inside the 

collaboration zone than that during the MC condition (𝑀 =  59.16, 𝑆𝐷 =  9.28), at 𝑝 =  .001, 

and the HC condition (𝑀 =  84.97, 𝑆𝐷 =  17.81), at 𝑝 =  .001. Moreover, the participants in 

the MC condition spent less time inside the collaboration zones compared to that in the HC 

condition, at 𝑝 =  .001. 
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Table 3: Descriptive statistics of the in-game measurements across the three 

experimental conditions (LC: Low Collaboration, MC: Medium Collaboration, 

and HC: High Collaboration), and the obtained results. 

Condition M SD Min Max Results 

Degree of Collaboration 

LC .17 .06 .05 .39 LC<MC (𝑝 = .001) 

MC .40 .03 .32 .47 MC<HC (𝑝 = .001) 

HC .45 .04 .38 .55 LC<HC (𝑝 = .0001) 

Player Distance (in cm) 

LC 111.21 67.54 55.87 384.46 no significant result 

MC 102.11 16.73 75.04 140.92  

HC 111.45 12.75 79.93 133.96  

Travel Distance (in cm) 

LC 642.69 36.90 585.54 770.46 LC<MC (𝑝 = .001) 

MC 717.40 58.20 638.04 832.21 MC<HC (𝑝 = .007) 

HC 799.19 93.41 611.40 969.68 LC<HC (𝑝 = .0001) 

Completion Time (in sec) 

LC 110.73 16.54 85.34 143.86 LC<MC (𝑝 = .001) 

MC 146.15 24.61 90.46 191.09 MC<HC (𝑝 = .002) 

HC 178.91 31.70 112.67 236.13 LC<HC (𝑝 = .001) 

Collaboration Time (in sec) 

LC 22.72 5.86 11.40 35.64 LC<MC (𝑝 = .001) 

MC 59.16 9.28 41.24 77.64 MC<HC (𝑝 = .001) 

HC 84.97 17.81 58.77 140.89 LC<HC (𝑝 = .001) 

Close Proximity Time (in sec) 

LC 4.30 4.11 .29 15.14 no significant result 

MC 3.53 1.61 .41 8.22  

HC 4.30 1.45 .94 6.93  

 

3.5.6.2 Subjective Ratings.  

The perceived collaboration was also statistically significant across the examined 

conditions (𝛬 =  .469, 𝐹 [2, 23]  =  27.145, 𝑝 =  .0001, 𝜂𝑝
2  =  .231). The results of the post-

hoc analysis revealed that the participants rated the LC condition (𝑀 =  4.93, 𝑆𝐷 =  1.80) lower 

than the MC condition (𝑀 =  6.31, 𝑆𝐷 =  .91), at 𝑝 =  .001 , and the HC condition (𝑀 =

 6.54, 𝑆𝐷 =  .72), at 𝑝 =  .001. However, no statistically significant result was found between 
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the MC and HC conditions (𝑝 =  .102). Table 4 shows the descriptive statistics for the perceived 

collaborations.  

Table 4: Descriptive statistics of the perceived collaboration ratings across the three experimental 

conditions (LC: Low Collaboration, MC: Medium Collaboration, and HC: High Collaboration) 

and the obtained results. 

Condition M SD Min Max Results 

Perceived Collaboration 

LC 4.93 1.80 1.17 7.00 LC < MC (𝑝 = .001) 

MC 6.31 .91 3.34 7.00 LC < HC (𝑝 = .001) 

HC 6.54 .72 4.00 7.00  

 

3.5.6.3 Participant-Agent Correlation.  

We also explored how the participants collaborated during the gameplay compared to the 

AI virtual agents used to characterize the degree of collaboration of the developed game level 

chunk. For this part of the study, we isolated the per-game level chunk data collected from our 

participants. For the Pearson product-moment correlation analyses, we used the data obtained from 

the AI virtual agents for each game level chunk and the averages obtained from the participants 

for each given game level chunk for all (15) game level chunks. Table 5 summarizes the raw 

numerical values used to compare the results obtained with the AI virtual agents and those obtained 

from our participants. 
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Table 5: Raw numerical values used to compare the results obtained with AI 

virtual agents (AI) and those obtained from our participants (P). 

 Degree of 

Collabora-

tion 

Player 

Distance 

Travel Distance Completion 

Time 

Collaboration 

Time 

Close 

Proximity 

Time 

Chu

nk 

ID 

P AI P AI P AI P AI P AI P AI 

C1 .021

68 

.216

59 

11.53

515 

3.840

15 

41.843

16 

37.368

40 

5.860

87 

10.05

723 

.0000

0 

1.053

40 

.021

68 

.035

01 

C2 .074

66 

.211

31 

8.183

53 

5.132

70 

95.318

88 

109.64

185 

15.44

542 

31.55

432 

2.500

24 

5.651

69 

.072

39 

.004

61 

C3 .297

78 

.217

44 

12.42

533 

.5889

4 

41.680

53 

40.081

04 

5.686

82 

10.00

639 

1.566

06 

2.253

98 

.020

89 

.084

87 

C4 .242

46 

.327

82 

9.584

11 

5.495

95 

46.831

38 

43.567

03 

7.315

20 

11.35

065 

1.781

27 

4.446

27 

.031

68 

.076

20 

C5 .303

32 

.273

82 

10.32

784 

2.276

46 

48.709

96 

36.087

67 

8.453

67 

9.458

78 

2.529

87 

2.782

06 

.034

38 

.040

00 

C6 .594

34 

.515

31 

4.603

91 

.6281

3 

53.818

59 

40.156

09 

14.56

040 

10.04

309 

8.432

10 

5.458

90 

.029

10 

.069

98 

C7 .524

61 

.495

80 

11.64

476 

1.946

19 

54.154

56 

43.553

83 

10.66

392 

11.60

944 

5.559

07 

6.678

65 

.041

41 

.066

98 

C8 .691

14 

.520

15 

12.45

848 

12.33

019 

89.226

49 

81.918

81 

16.36

952 

26.34

777 

11.36

309 

12.64

062 

.031

46 

.004

31 

C9 .637

97 

.459

49 

9.629

62 

3.211

42 

68.365

94 

45.389

21 

14.48

255 

15.63

601 

9.256

26 

7.161

66 

.048

72 

.019

37 

C10 .653

18 

.704

75 

17.79

996 

14.54

406 

208.75

490 

106.59

528 

44.00

969 

77.62

875 

28.12

076 

46.55

848 

.051

04 

.043

15 

C11 .123

35 

.403

82 

11.88

042 

14.28

864 

82.990

25 

93.581

84 

21.11

941 

29.03

274 

2.562

56 

9.438

18 

.055

24 

.000

00 

C12 .097

61 

.433

50 

8.618

64 

10.38

947 

65.356

83 

68.061

72 

13.91

274 

25.77

981 

1.153

55 

8.102

78 

.030

64 

.017

29 

C13 .139

13 

.773

91 

16.44

345 

12.89

808 

93.894

79 

67.263

03 

26.08

352 

25.73

684 

3.654

88 

13.28

221 

.029

49 

.013

05 

C14 .780

93 

.714

62 

11.23

880 

12.58

725 

66.392

09 

41.048

68 

19.88

709 

10.83

099 

15.90

273 

5.639

66 

.021

14 

.004

74 

C15 .783

48 

.769

37 

12.34

321 

4.752

34 

68.783

22 

66.579

27 

15.00

534 

17.69

756 

11.71

757 

16.40

833 

.012

60 

.003

99 

 

The results of our analyses revealed a moderate positive correlation for the degree of 

collaboration variables (AI virtual agents and participants; 𝑟 =  .604, 𝑛 =  15, 𝑝 =  .004), a 

moderate positive correlation for the player distance variables (𝑟 =  .613, 𝑛 =  15, 𝑝 =  .012), 

a strong positive correlation for the travel distance variables (𝑟 =  .811, 𝑛 =  15, 𝑝 =  .0001), 

a strong positive correlation for the completion time variables (𝑟 =  .896, 𝑛 =  15, 𝑝 =  .0001), 

and a strong positive correlation for the collaboration time variables (𝑟 =  .835, 𝑛 =  15, 𝑝 =

 .0001). No significant correlation was observed for the close proximity time variables (𝑟 =

 −.033, 𝑛 =  15, 𝑝 =  .902).  
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3.5.7 Discussion  

We collected both objective data related to how the participants interacted in the 

synthesized game levels and subjective self-reported ratings to understand whether we could use 

our method to synthesize game levels that enforce a different collaboration gameplay behavior for 

our participants. The first glance at our results indicated that, although we used the degree of 

collaboration as the most important cost term of our total cost function (the assigned weight for 

the mean degree of collaboration cost was 𝑤𝐶𝑜𝑙𝑙𝑎𝑏
𝑀  =  1.00, while most other costs had weights < 

1.00), four (degree of collaboration, travel distance, completion time, and collaboration time) 

out of the six measurements revealed a similar pattern: the measurements under the LC condition 

were lower than those under the MC and HC conditions, and the measurements under the MC 

condition were lower than those under the HC condition. Based on these findings, we argue that 

an optimization-based method can synthesize game levels that impact the collaboration gameplay 

behavior of our participants.  

In terms of the degree of collaboration measurement, we observed an offset between the 

requested degree of collaboration targets (𝜌𝑀  =  .30 for the LC, 𝜌𝑀 = .50 for the MC, and 𝜌𝑀 =

 .70 for the HC condition) and the actual collected data (.17 for the LC, .40 for the MC, and .45 

for the HC condition) from our participants. The mean degree of collaboration of our participants 

was closer to the target degree of collaboration under the MC (.10 offset) and LC (.13 offset) 

conditions compared to the HC (.25 offset) condition. According to the literature [37][41][48], 

such an offset exists between the requested and actual values. In our method, the initial 

characterizations of the game level chunks from AI virtual agents were the main cause of such 

differences. We scripted the AI virtual agents to complete the task as efficiently as possible without 

being influenced by other parameters that might have impacted the participants (e.g., time of day, 

mood, and prior virtual reality and gameplay experiences). In addition, the participant groups were 

randomly composed, which meant that each participant also had to quickly understand the 

gameplay behavior of their partner during the study and build their gameplay strategy based upon 

that. Therefore, the main cause of the mentioned offsets could be the optimality of the AI virtual 

agents to execute and solve the given tasks.  

Two of the examined measurements (player distance and close proximity time) were not 

significant. These findings indicate that the participants did not try to be in close proximity of each 

other; instead, each participant tried to build their own strategy during the gameplay. By combining 
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both the significant and non-significant results, we realized that although the participants were 

planning their gameplay strategy independently, they planned it in such a way that would benefit 

the team and not only themselves, which is a typical behavior found in games [3][18][78]. Our 

findings indicated that our participants collaborated to progress the game by building their own 

strategies; therefore, a collaborative culture was maintained and built between the participants who 

worked together toward finishing the game.  

Although we noted the offset between the requested degree of collaboration and the actual 

collected data, the correlation findings were also notable; they showed that the participants could 

perform their tasks in parallel with the AI virtual agents. According to the literature, AI virtual 

agents can be used to evaluate the difficulty of game levels [7][54][76][85]. Our study extends 

such knowledge by revealing that AI virtual agents can also be used to evaluate the degree of 

collaboration that characterizes a game level; therefore, it extends the potential usage of AI virtual 

agents for evaluating not only the difficulty of a game level (as in [28][55]) but also the degree of 

collaboration of game levels. However, as mentioned above, when game developers use AI virtual 

agents, they should always consider that such a method will return the optimal collaborative 

gameplay behavior and not the actual gameplay collaborative behavior that external or non-

predefined parameters might influence.  

Regarding the self-reported perceived collaboration, our participants perceived LC and 

HC as expected; however, they rated MC closer to HC. This result implies that the participants 

could not differentiate among the three conditions; however, the performed in-game measurements 

did not support this assumption. Either the targets for the degree of collaboration assigned to the 

mean degree of collaboration cost term were too close, or after a certain degree of collaboration, 

it was difficult for our participants to subjectively distinguish the degree of collaboration between 

the game levels (MC and HC conditions in our case). Another potential explanation for this finding 

could be how our participants interpreted each game level’s “mean” collaboration target and how 

they reflected such interpretation on their understanding of the provided questions and their 

responses. For example, the participants might have thought more in terms of “max” degrees of 

collaboration for a given game level instead of the “mean” degree of that game level. Thus, instead 

of interpreting how much they collaborated by averaging their collaborative behavior across a 

whole level, they might have interpreted how much they collaborated in the game level chunk 

where they had to collaborate the most. According to the literature, individual cognitive styles 
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impact collaborative gameplay [2][85]. Moreover, by considering that increased self-esteem [83], 

self-efficacy [14], and self-motivation [25] can affect the perceived performance [11][24] of 

participants, we should conduct further experimentation to properly understand and interpret how 

participants perceive different degrees of collaboration during gameplay.  

Another cause that could have limited the results is that our method may not have linearly 

mapped spatial collaboration with the perceived collaboration of our participants. This could have 

been the case for two reasons. First, a spatial approach for defining collaboration between two 

entities could be considered somewhat limited, or its applicability could be restricted to only a 

small number of collaborative tasks. According to the Tang et al. [75] styles of coupling, it is 

obvious that people can be in the same area and work on different problems (the “different 

problems” style of coupling); therefore, a spatial measurement would not necessarily describe the 

collaboration between people. Second, another potential explanation is participants’ potential 

overestimation of their relative contributions to collaborative endeavors [56], which means that 

capturing the perceived collaboration through self-reported data could also limit our understanding 

of how participants perceived their collaboration.  

Furthermore, we collected comments from our participants to better understand their 

gaming experience regarding the three examined game levels (LC, MC, and HC game levels). 

Most participants indicated that they considerably enjoyed the collaborative experience in the 

gaming environment, and many said that they liked the game they played. One participant wrote, 

“This was a great experience and a really enjoyable game. I definitely felt the collaborative 

atmosphere and felt that we worked well together.” Another commented, “I think that the easier 

the level, the less the players are inclined to collaborate with each other.” One other participant 

wrote, “The more complex puzzles made it much more necessary to interact with the other 

participant and made finishing them a lot more satisfying.” Thus, according to the collected 

comments, the participants not only enjoyed the developed game levels but also understood that 

they had to build collaborative gameplay behavior with their partners.  

Additionally, some participants noted the importance of communication in facilitating their 

collaboration. In particular, one wrote, “I feel like my partner and I were always communicating 

about what we needed and were able to work well together.” Another elaborated, “During the 

simulation, my partner and I were able to communicate and collaborate to reach our end goal, 

which was to finish all the levels. We were able to develop plans to finish the levels successfully 
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and within a decent amount of time. We were also able to finish the levels correctly.” Note that, 

although we did not ask the participants to communicate during the gameplay, we observed that 

they were communicating. Based on our observations, as the target degree of collaboration of the 

game level increased, communication between the participants also increased. This finding aligns 

with those of the previous studies conducted in the field [10][12][50][77] that explored and 

analyzed the collaboration behavior of the participants during gameplay.  

3.6 Limitations  

Synthesizing game levels for collaborative gameplay is a complex process that requires 

numerous components to work harmoniously. Although the proposed pipeline can synthesize 

game levels for collaborative gameplay, we should also report the limitations. Note that these 

limitations do not invalidate our pipeline toward developing an automatic method for synthesizing 

game levels that satisfy the degrees of collaboration targets and other design decisions. Instead, 

they can help future research toward further advancement of the design of game levels for 

collaborative gameplay.  

In this project, we demonstrated a simple approach to synthesize a game level, which we 

characterized as highly structured and linear. We think that conducting additional experiments in 

which we distribute collaboration related tasks in an open-space virtual environment or form a 

non-linear method (e.g., similar to the work of Ma et al. [42]) of synthesizing game levels (e.g., 

having a game level chunk that may offer two branches to get through to a common destination) 

would help us further understand the collaborative gameplay behavior of the participants. In 

addition, we considered only two players collaborating to finish the game. However, in multiplayer 

games, we found more than two players; therefore, it is unclear how an increased number of players 

can affect our results.  

The developed game level chunks that we used in our project impacted our project. In 

particular, the developed game level chunks were context-dependent and, thus, highly reliant on 

the designer’s decisions. Given that game level and gameplay designers can use different 

approaches to enforce collaboration, it would be useful to develop guidelines to help researchers 

and developers more easily develop collaborative tasks for games. Furthermore, it remains unclear 

how our results would be affected when we use a larger number of game level chunks to compose 

a game level; this is something that we should certainly explore. Finally, you might have noticed, 
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especially in Figure 22, that some chunks (e.g., C15 in Figure 22(f)) were repeated twice toward 

the end of the chunk sequence, but the line graph was strictly increasing. We think that developing 

a dataset with more than 15 game level chunks can introduce more variations in the degree of 

collaboration of the game level chunks so that our method can more closely match the targets 

requested by the game designer.  

Many collaborative games (such as Portal 29) and soccer games (such as FIFA29) require 

players to position themselves strategically across a sizable area rather than in close proximity, 

and other types of collaborations do not depend on any spatial relationship at all (similar to 

collaborations that occur in Keep Talking and Nobody Explodes12). Our method addresses only 

one particular aspect of player collaboration---a collaboration that requires physical proximity and 

task completion by two players---which we consider a limitation, given the potential variety of 

collaborative gameplay that game designers can develop.  

In addition, we developed behavior trees to force our AI virtual agents to collaborate to 

finish each designed game level chunk to characterize the degree of collaboration of each game 

level chunk. The developed behavior trees were considered highly structured and did not allow the 

AI agents to explore potential alternatives. Moreover, the behavior trees did not contain actions 

such as “do nothing” or “do something not related to the given game level chunk.” Such additional 

behaviors can help introduce even more variations in our trials during the automatic annotation 

process; however, it can also make the simulation run longer and might not capture the optimal 

collaborative behavior required to finish each game level chunk. In addition, instead of manually 

defining the collaboration zones, we can predict them using AI virtual agents; this is an additional 

direction we should further explore. Moreover, asking a few people playing the game level chunks 

can provide additional data that we can use besides the data provided by the AI virtual agents to 

augment the annotation of each game level chunk, thus complementing the automatic annotation 

pipelines. The abovementioned approach can lead to generalized and improved methods for 

characterizing the degree of collaboration at any game level. All these limitations should be further 

explored in future studies.  

It will be interesting to collect data on the collaboration “in the real world,” such as chatting. 

In our study, the participants were co-located in the same room; thus, collecting the data on the 

time they spent discussing their strategy could have provided additional measurements to evaluate 

 
29 https://en.wikipedia.org/wiki/FIFA_(video_game_series). 
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their collaborative behavior. Moreover, we should have collected measurements to capture the 

interactions that each player contributed to finishing the provided game level, such as each player’s 

actions toward task completion (e.g., button clicks and gestures). Finally, including additional 

questionnaires, such as a questionnaire on presence [63] and questions related to mutual awareness 

and dependent actions [9], could have helped us to understand the overall experiences of our 

participants.  

Lastly, our current study does not encompass real-world collaboration or how virtual reality 

collaboration could be translated into real-world collaboration, which we consider an additional 

limitation. However, we think that such a method could be used for automatically synthesizing 

serious games, such as virtual reality skill training applications (e.g., ire evacuation training) [79], 

which benefit skills acquisition and retention [62]. In such a case, trainees could experience 

variations in training scenarios with different degrees of collaboration, which could potentially 

benefit their real-world collaboration. 

3.7 Conclusions and Future Work  

We developed a method that considers the degree of collaboration the players are exposed 

to when playing a game. Our method provides game developers with the freedom to control various 

parameters of cost terms, allowing them to design game levels with specified objectives. To 

understand the potential of our method to synthesize game levels with different degrees of 

collaboration objectives, we conducted a user study and collected both in-game measurements and 

subjective ratings. We found that the degree of collaboration targets of the synthesized game level 

of our method impacted the way the participants collaborated in the gaming application.  

In the future, we will work to synthesize collaboration-aware game levels for multiple 

players. We would also like to extend and evaluate our method to analyze less structured game 

levels. Moreover, we wish to explore the potential of using collaboration-aware games as a training 

tool to improve the collaborative behavior required by game players when playing games of 

various genres. Given that defining gameplay collaboration is an under-explored domain and that 

collaboration is task- and objective-dependent, we should conduct additional research toward 

developing a more generalized method for controlling the degree of collaboration required for 

different game levels and game genres. Finally, to further understand the collaborative gameplay 

behavior of the participants, we will conduct additional studies to compare collaboration behaviors 
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in which people perform tasks such as those presented in this paper while being co-located in the 

same room with instructions to communicate and those not to communicate and being in separate 

rooms with chat functionality enabled. Such study conditions would help us further understand 

how the players perform the various tasks encoded in the game level chunks and how they 

communicate to coordinate in such tasks. 
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Abstract 

We synthesized virtual reality fire evacuation training drills in a shared virtual space to 

explore people’s collaboration behavior. We formulate the authoring process of the fire evacuation 

training drill in a total cost function, which we later solve with a Markov Chain Monte Carlo 

(MCMC) optimization-based method. The users’ assigned task in the synthesized training drill is 

to help virtual agents evacuate the building as quickly as possible using predefined interaction 

mechanisms. The users can join the training drill from different physical locations and collaborate 

and communicate in a shared virtual space to finish the task. We conducted a user study to collect 

both in-game measurements and subjective ratings to evaluate whether the synthesized training 

drills would affect how the participants collaborated. 

4.1 Introduction 

Collaboration is usually characterized by shared goals, group activities, communication, 

and exchanging information [17]. Roschelle and Teasley [26] defined collaboration on a joint 

problem space as the “mutual engagement of people in a coordinated effort to solve a problem 

together.” Various researchers [5][8] regard collaboration as an essential component of effective 

training and learning in comparison to individual tasks. In the age of fast-paced development of 

globalization, which has a higher requirement for productivity, especially during the COVID-19 

pandemic when people have been impeded from meeting in person, the importance of remote 

collaboration systems has been emphasized, as they contribute to remote team task success, reduce 

travel expenses, ensure safety, reduce carbon emissions, increase efficiency, and save time and 

energy.  

However, the concept of collaboration is abstract and difficult to grasp [11], making it 

challenging to utilize in practical applications. When implementing collaborative training 

scenarios in virtual environments, designers usually manually build the contents according to their 

subjective experiences and intuition in order to trigger the intended behavior in participants. This 

process is tedious and time-consuming since it lacks a solid theory that supports the effectiveness 

of the designed content. To better support collaboration on common tasks among the involved 

group members, it is necessary to obtain a more precise understanding of collaboration and how 
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to conduct immersive collaboration remotely in a shared virtual space using modern virtual reality 

(VR) technologies. 

The project presented in this paper focused on synthesizing VR fire evacuation training 

drills in a shared virtual space to explore the participants’ collaboration behavior. Inspired by 

procedural content generation approaches, we proposed an optimization-based method that 

automatically generates fire evacuation training drills with varying levels of difficulty. The users’ 

assigned task is to help virtual agents evacuate the building as quickly as possible using predefined 

interaction mechanisms (voice commands, trigger fire extinguisher, physical locomotion, etc.). 

The participants can join the training drill from different locations and collaborate and 

communicate in a shared virtual space to accomplish the task (see Figure 24). We evaluated the 

proposed VR training drill authoring method by conducting a user study among three training drills 

with different difficulty levels: low difficulty (LD), medium difficulty (MD), and high difficulty 

(HD). We collected both in-game measurements and subjective ratings to explore how the 

participants collaborate in such a VR setup. 

 

Figure 24: Two players in different locations, wearing a VR headset on the VR treadmill. Their 

task is to guide the agents out of the building where a simulated fire emergency occurs. The two 

players are in the same virtual space even though their physical locations are different. They can 

communicate, use voice commands to guide the agents outside the building, and use a fire 

extinguisher to eliminate the fire in the building. We illustrate users’ and agents’ positions and 

the top view of the building in the minimap. © [2022] IEEE 
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4.2 Related Work 

Virtual reality (VR) and augmented reality (AR) are as effective a training mechanism as 

the commonly accepted methods [15]. VR can enhance learning and training. Some work focused 

on training for sports [20] and education [10]. Also, some research was conducted for medical and 

rehabilitation purposes [27], and for evacuation training and research purposes [19]. As for AR 

training, research shows that AR, applied in education and training, has positive potential for the 

future of education [18]. Moreover, AR shows great potential and can be applied in many other 

fields, such as, medical education [3], corporate training [22], healthcare simulation [30], 

maintenance skills [32], and vocational training [6]. For more details about VR training, please 

refer to Xie et al. [34].  

With network, VR and AR can be applied in remote training and collaboration scenarios. 

Greenwald et al. [13] explored the immense potential for collaborative VR applications for 

learning. Some researchers proposed frameworks to support collaboration in virtual environments. 

For example, MedicalVR [21] is a virtual reality framework and assistive tool for medical 

environment. It outlines real-time collaboration and human-centered design aspects in modern 

tele-medicine. Kurillo et al. [16] presented a framework for immersive virtual environment 

intended for remote collaboration and training of physical activities. For example, Tea et al. [29] 

developed a multi-user immersive virtual reality application for real-time remote collaboration to 

enhance design review process. Snow Dome [24], which is a mixed reality remote collaboration 

application, was developed to support multi-scale interaction for a virtual reality user. Elvezio et 

al. [9] demonstrated an approach to support remote collaboration in AR and VR by virtual replicas, 

which allows the remote user to create and manipulate virtual replicas of physical objects in the 

local environment. Besides framework, system, and application, some research focused on 

adaptive avatar, Mini-Me [25], and toolkit, ColabAR [31], to promote remote collaboration.  

In this paper, we propose an optimization-based method to automatically synthesize shared 

space VR fire evacuation training drills with different difficulty levels. We also demonstrated how 

to employ synthesized training drills on a networked VR platform with treadmills to enable remote, 

collaborative training. 
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4.3 Preliminary Remarks 

4.3.1 System Overview  

Figure 24 shows our project’s system overview. Two users are in different physical 

locations and join the developed training drill, which takes place in a virtual space shared through 

the Internet. Inside the shared virtual space we have synthesized fire evacuation training drill that 

are generated by using our optimization-based method. Participants are able to extinguish the fires 

by using an integrated fire extinguisher that will show up on their hands when they enable it. The 

users can communicate with each other inside the virtual environment freely through Voice over 

Internet Protocol (VoIP). We placed virtual agents who can respond to participants’ voice 

commands and need to be rescued. The participants’ common task is to guide all the agents outside 

the building.  

4.3.2 Environment Representation  

We represent the input training environment as an 𝑀 ×  𝑁 in size 2D grid ([𝑐1,1, . . . , 𝑐𝑀,𝑁] 

denotes the cells of the generated grid; the resolution of the grid is defined by the designer/trainer). 

Then, we represent each grid cell (𝑐𝑥,𝑦) of the grid as either obstacle (𝑇𝑜𝑏𝑠), fire (𝑇𝑓𝑖𝑟𝑒), or empty 

(𝑇𝑒𝑚𝑝𝑡𝑦) grid cell.  

4.3.3 Virtual Training Environment  

We designed a virtual school layout according to specific design and safety regulations30 

and standards in the US [2]. We have created several types of classrooms (standard classroom, 

library, basketball court, theater, restrooms, lockers, etc.) to convey a complete impression of a 

school. The average size of a classroom is 12×12 m with a height of 3.75 m to ensure that 

participants can move around fast and freely while avoiding virtual objects/obstacles (desk, chairs, 

etc.). Finally, we have decided to add a significant number of exits (six in total) to ensure that users 

can find accessible exits under different conditions and effects that block some or most of them. 

Figure 25 shows screenshots of the designed virtual environment. 

 
30 https://www.aps.edu/facilities-design-and-construction/design-standards-and-guidelines 
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Figure 25: Different parts of the designed virtual environment we used in our prototype 

application. © [2022] IEEE 

The virtual agents can respond to specific voice commands under certain conditions (see 

Figure 26). There are six usable commands implemented in the system. Among them, we 

implemented four commands to instruct the agents to move, including “come here,” “follow me,” 

“run,” and “crawl.” We also included the “stop” and “wait” commands to pause the movement of 

agents at any time. 

 

 

Figure 26: A user commands a virtual agent to “come here” and the agent moves toward the user. 

© [2022] IEEE 
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4.3.4 Authoring Training Drill  

We represent our training drill as a composition of several fires 𝐹 =  [𝑓1, . . . , 𝑓𝐾] taking 

places in a static 3D environment. Their position and size are determined based on our proposed 

optimization-based method (see Section 4). There are also several trainer-defined virtual agents 

𝐴 =  [𝑎1, . . . , 𝑎𝐵] placed in different locations in the virtual environment. The trainer instructs the 

users of our training drill to rescue the virtual agents by helping them exit the building.  

4.4 Problem Formulation  

The design of the evacuation drill d is evaluated by the total cost function 𝐶𝑇𝑜𝑡𝑎𝑙(𝑑):  

𝐶𝑇𝑜𝑡𝑎𝑙(𝑑) = 𝑤𝑙𝑒𝑛𝑔𝑡ℎ𝐶𝑙𝑒𝑛𝑔𝑡ℎ(𝑑) +  𝑤𝑡𝑢𝑟𝑛𝑠𝐶𝑡𝑢𝑟𝑛𝑠(𝑑) 

+ 𝑤𝑓𝑖𝑟𝑒𝐶𝑓𝑖𝑟𝑒(𝑑) + 𝑤𝑣𝑖𝑠𝐶𝑣𝑖𝑠(𝑑)                                (27) 

where 𝐶𝑙𝑒𝑛𝑔𝑡ℎ  encodes the length of the optimal path that the user should follow to fulfil the 

necessary goals and exit the building; 𝐶𝑡𝑢𝑟𝑛𝑠 encodes the number of turns in the optimal path; 𝐶𝑓𝑖𝑟𝑒 

denotes the number of fires that the user should extinguish to fulfil the necessary goals (e.g., access 

the virtual agents, help virtual agents exit the building); and 𝐶𝑣𝑖𝑠 denotes the visibility conditions 

of the virtual environment. 𝑤𝑙𝑒𝑛𝑔𝑡ℎ, 𝑤𝑡𝑢𝑟𝑛𝑠, 𝑤𝑓𝑖𝑟𝑒, and 𝑤𝑣𝑖𝑠 are the corresponding weights of each 

cost term, prioritized by importance. We discuss the details for each cost term as follows.  

Length Cost. The path synthesized by our system represents how far the user must walk 

in the training environment to execute the required task. The length cost is used to compare the 

length of the synthesized path against the user-defined target path length. We present this cost as: 

𝐶𝑙𝑒𝑛𝑔𝑡ℎ(𝑑) =  
1

𝐿𝑑𝑖𝑎𝑔
|∑ 𝐿(𝑃𝑖)𝒢𝑖(𝐴)

− 𝜌𝑙𝑒𝑛𝑔𝑡ℎ|              (28) 

where 𝐿𝑑𝑖𝑎𝑔 is used as a normalization term representing the diagonal length of the entire virtual 

environment; 𝜌𝑙𝑒𝑛𝑔𝑡ℎ denotes the user-defined path length; 𝑃𝑖 is the path between each 𝒢𝑖(𝐴) sub-

group of agents that are in a specific location (e.g., in the basketball court) in the virtual 

environment requiring rescue, where 𝒢𝑖(𝐴) ≤ 𝐴 ; and 𝐿(𝑃𝑖)  is the distance between the 𝑖 −

 𝑡ℎ sub-group of agents 𝒢𝑖(𝐴) and the closest exit in the training environment. To compute the 

length of the chosen optimal path, we use an improved version of the A* algorithm [35]. For each 

returned pair of adjacent cells (𝑐𝑗  , 𝑐𝑗+1) belonging to the 𝑃𝑖  path in the grid, we compute path 
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length 𝐿(𝑃𝑖) by summing the length of each pair of adjacent cells ℒ(𝑐𝑗 ,  𝑐𝑗+1) from the optimal 

path as: 

𝐿(𝑃𝑖) =  ∑ ℒ(𝑐𝑗  ,  𝑐𝑗+1) 
|𝑃𝑖|−1
𝑐𝑗 , 𝑐𝑗+1

           (29) 

where |𝑃𝑖| denotes the total number of grid cells from the optimal path. Note that the obstacle 𝑇𝑜𝑏𝑠 

and fire 𝑇𝑓𝑖𝑟𝑒 grid cells are blocked, and the empty grid cell 𝑇𝑒𝑚𝑝𝑡𝑦 is unblocked. However, during 

the optimization process, if there is no optimal path, we label the fire grid cell as unblocked, and 

therefore it can be considered part of the optimal path. Thus, the synthesized path length comes 

closer to the target path length and makes the training drill more difficult since the user needs to 

extinguish a fire to access that path properly.  

Turn Cost. The turn cost is used to compare the number of turns in the path against a user-

defined target number of total turns 𝜌𝑡𝑢𝑟𝑛𝑠: 

𝐶𝑡𝑢𝑟𝑛𝑠(𝑑) =  |
∑ 𝒯(𝑃𝑖)|𝑃| − 𝜌𝑡𝑢𝑟𝑛𝑠

𝜌𝑡𝑢𝑟𝑛𝑠
|  (30) 

where 𝒯(𝑃𝑖) returns the number of turns in the optimal path 𝑃𝑖, and |𝑃| denotes the total number 

of optimal paths the users should follow to accomplish the task. To calculate 𝒯(𝑃𝑖), we consider 

all triads of adjacent grid cells. If these three grid cells do not form a straight line, they are regarded 

as a turn and, therefore, 𝒯(𝑃𝑖) returns 1; otherwise, it returns 0.  

Fire Cost. Users must extinguish fires to reach virtual agents, access parts of the virtual 

building, or exit the virtual building. The fire cost compares the number of fires that the user should 

extinguish against the designer-specified target number of fires 𝜌𝑓𝑖𝑟𝑒: 

𝐶𝑓𝑖𝑟𝑒(𝑑) =  
1

𝑈
|∑ Γ(𝑓𝑖)|𝐹| − 𝜌𝑓𝑖𝑟𝑒|      (31) 

where 𝛤(𝑓𝑖) returns 1 if 𝑓𝑖 is found to be in the optimal path; otherwise, it returns 0. 𝑈 is used as a 

normalization factor representing the upper limit of the number of fires. We set 𝑈 =  40 as the 

upper limit value for all examples presented in this paper.  

Visibility Cost. The user’s visibility in the virtual environment is computed by considering 

the ratio between the area occupied by the fires over the total area of the virtual environment. We 

compare it against a user-defined target value: 

𝐶𝑣𝑖𝑠(𝑑) =  |
∑ 𝒜(𝑓𝑖)|𝐹|

𝒜(𝑒)
 − 𝜌𝑣𝑖𝑠|                    (32) 
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where ∑ 𝒜(𝑓𝑖)|𝐹|  represents the total area occupied by the fires; 𝒜(𝑒) represents the total area of 

the entire virtual environment; and 𝜌𝑣𝑖𝑠 is user-defined target visibility. Note that a high value of 

𝜌𝑣𝑖𝑠 ∈  [0, 1] denotes low visibility and vice versa. 

4.5 Optimization  

To assess all possible training outcomes during the optimization process, our system 

optimizes total cost functions through the reversible-jump Markov chain Monte Carlo (RJMCMC) 

method [12]. We apply simulated annealing using a Metropolis-Hastings state-search step [7]. We 

start by defining a Boltzmann-like objective function:  

𝑓(𝑑) = exp (−
1

𝑡
𝐶𝑇𝑜𝑡𝑎𝑙(𝑑))               (33) 

where 𝑡  encodes the temperature parameter of simulated annealing. During the optimization 

process, the system proposes a new configuration of the training drill 𝑑’ by altering the current 

training drill d using one of the following moves: 

• Adding a fire: Our system places a randomly sized fire in a randomly chosen 

position in the virtual environment.  

• Removing an existing fire: Our system randomly chooses a fire from the virtual 

environment to remove.  

• Modifying an existing fire: Our system randomly chooses a fire from the virtual 

environment and modifies its size and position.  

 

We set the probability of adding a fire as 𝑝𝑎𝑑𝑑 = .40, the probability of removing a fire as 

𝑝𝑟𝑒𝑚𝑜𝑣𝑒 = .20 , and the probability of modifying a fire as 𝑝𝑚𝑜𝑑𝑖𝑓𝑦 = .40 . Through these 

probabilities, our system chooses to add and modify a fire more often than choosing to remove a 

fire. By applying one of these moves, our system proposes a training drill 𝑑’ and compares the 

total cost of the proposed training drill 𝐶𝑇𝑜𝑡𝑎𝑙(𝑑’) with the total cost of the current training drill 

𝐶𝑇𝑜𝑡𝑎𝑙(𝑑) to determine whether the system accepts the proposed training drill 𝑑’ or keeps the 

current training drill 𝑑.  

To ensure balanced trans-dimensional optimization, we define the probability of each 

move. Our system computes the probability of adding a fire as:  
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𝑝𝑎𝑑𝑑(𝑑
′|𝑑) = min (1,

𝑝𝑟𝑒𝑚𝑜𝑣𝑒

𝑝𝑎𝑑𝑑

𝑈−|𝑑|

|𝑑′|

𝑓(𝑑′)

𝑓(𝑑)
)        (34) 

computes the probability of removing an existing fire as:  

𝑝𝑟𝑒𝑚𝑜𝑣𝑒(𝑑
′|𝑑) = min (1,

𝑝𝑎𝑑𝑑

𝑝𝑟𝑒𝑚𝑜𝑣𝑒

|𝑑|

𝑈− |𝑑′|

𝑓(𝑑′)

𝑓(𝑑)
) (35)  

and computes the probability of modifying an existing fire as:  

𝑝𝑚𝑜𝑑𝑖𝑓𝑦(𝑑
′|𝑑) = min (1,

𝑓(𝑑′)

𝑓(𝑑)
)       (36) 

Based on the above formulation, we set an upper limit on the number of fires during 

optimization using the variable 𝑈 =  40. Thus, our system synthesizes a virtual environment with 

fires equal to or less than 𝑈.  

We also applied simulated annealing to explore our solution space effectively. Simulated 

annealing allows us to use a temperature parameter 𝑡 to control the acceptance probability of the 

proposed training drill 𝑑’ . If the temperature parameter is high, the system will aggressively 

explore the whole solution space. If the temperature parameter is low, the optimizer will become 

more selective. We initialize the temperature parameter as 𝑡 =  1.00  at the beginning of 

optimization. In each iteration, we multiply the temperature parameter by 0.998. The optimization 

process terminates when the change in 𝐶𝑇𝑜𝑡𝑎𝑙(𝑑) is less than 5% of the previous 50 iterations.  

Unless specified otherwise, we set the weight of the length cost to 𝑤𝑙𝑒𝑛𝑔𝑡ℎ =  1.00, the 

weight of the turn cost to 𝑤𝑡𝑢𝑟𝑛𝑠 = .40, the weight of the fire cost to 𝑤𝑓𝑖𝑟𝑒  =  .60, and the weight 

of the visibility cost to 𝑤𝑣𝑖𝑠  =  .40. Via those weights, our system prioritizes the length of the path 

and the number of fires the user must extinguish. However, the designer may change the priority 

by changing the weights. 

4.6 User Study  

The user study was conducted between two universities (Purdue and GMU) across states 

in the US. The two universities were not in the same physical spaces. The intent of our project is 

to evaluate whether our proposed method can synthesize training drills with different targeted 

difficulty levels, thus triggering any difference in the collaboration behavior among participants. 

The methodology of the study is described in the following subsections. Figure 27 shows example 

scenes from the synthesized training drill. 
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Figure 27: Example scenes from the synthesized training drill. © [2022] IEEE 

4.6.1 Participants  

We recruited participants in both universities via class announcements and emails. 

Participants from each university were randomly assigned to a group. Each group was scheduled 

to attend the study simultaneously at each location. Participants in the same group remotely joined 

the shared virtual space to experience the synthesized training drills. We collected data from 27 

groups (54 volunteers; 34 male and 20 female). The age of the participants were between 17-30 

years (𝑀 =  19.96, 𝑆𝐷 =  2.88). All participants have experienced virtual reality before.  

4.6.2 Conditions  

We developed three experimental conditions to determine whether the optimized training 

drills with differently targeted difficulty would influence the collaboration behaviors among the 

participants. The experiment followed a within-group study design. We used the Latin squares 

[33] ordering method to balance the conditions and minimize the carryover effects. Figure 28 

shows the three synthesized training drills used in our experiment. The conditions were as follows:  

• Low Difficulty (LD): We set the target cost terms as: 𝜌𝑙𝑒𝑛𝑔𝑡ℎ = 280, 𝜌𝑡𝑢𝑟𝑛𝑠 =  30, 

𝜌𝑓𝑖𝑟𝑒 =  3, and 𝜌𝑣𝑖𝑠 = .20.  

• Medium Difficulty (MD): We set the cost terms as: 𝜌𝑙𝑒𝑛𝑔𝑡ℎ = 300, 𝜌𝑡𝑢𝑟𝑛𝑠 =  35, 

𝜌𝑓𝑖𝑟𝑒 =  5, and 𝜌𝑣𝑖𝑠 = .50. 

• High Difficulty (HD): We set the cost terms as: 𝜌𝑙𝑒𝑛𝑔𝑡ℎ = 320 , 𝜌𝑡𝑢𝑟𝑛𝑠 =  40 , 

𝜌𝑓𝑖𝑟𝑒 =  7, and 𝜌𝑣𝑖𝑠 = .80. 
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Figure 28: The three experimental conditions we used for our user study. Top: The position and 

size of fires (orange cells), the optimal paths (blue cells), and the position of the virtual agents. 

Bottom: The visibility of each training drill. © [2022] IEEE 

4.6.3 Measurements  

We collected participants’ perceived mutual awareness, mutual assistance, and dependent 

actions based on the questionnaire developed by Biocca et al. [4]. For each question, we used a 7-

point Likert scale. In addition, we collected several in-game measurements to record participants’ 

collaborative behavior. These in-game measurements include the completion time, completion 

time offset, trajectory length, distance between participants, extinguisher counts, and number of 

commands.  

4.6.4 Procedure  

After we grouped the volunteers, we scheduled each group a specific time slot to attend the 

study at their corresponding university campus. Once both participants arrived, we first asked them 

to sign the consent form, which was approved by each university’s Institutional Review Board 

(IRB), if they agreed to participate. Next, the research team collected the demographic information 

from the participants by asking them to fill out a questionnaire. Then, our research team introduced 

and helped the participants with the experiment procedures and virtual reality equipment.  

Participants first joined the warm-up session to meet in the warm-up scene; integrating a 

tutorial session improves participants’ performance and experience [14]. The warm-up scene was 

different from the experiment scenes, but all the interaction mechanisms were the same. We 
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instructed them to familiarize themselves with the voice commands and their functionality. Next, 

the research team informed them how to use the fire extinguisher and enable the minimap (see 

Figure 29a), and at the same time, they became familiar with the Virtuix Omni treadmill. Once 

participants finished the warm-up session and agreed to start the experiment, the research team 

helped them join the experiment’s scene. In Figure 29b, we show two users trying to open a path 

using the fire extinguisher. The warm-up session took no more than five minutes, and each 

experiment session lasted about 10 minutes (no participant spent more than one hour to complete 

the entire study). We informed participants they were allowed to give up the study; however, no 

participant quit. 

 

Figure 29: (a) Users can enable a minimap. The minimap provided information on players’ 

position, the position of the virtual agents, the exits, and the commands they could use. (b) 

Two users collaborate in the shared virtual environment to open a path to escape the building. 

© [2022] IEEE 

4.6.5 Setup and Implementation Details  

We used Unity Game Engine 2020.3.20f1 to develop the application. We also used a Dell 

Alienware Aurora R7 desktop computer (Intel Core i7, NVIDIA GeForce RTX 2080, 32GB RAM) 

in each university to run the application. We used Unity’s Photon asset to implement the network 

frame to allow participants to communicate and collaborate in a shared virtual space. The 

optimization process for authoring each training drill did not exceed 30 seconds. We used the 

Virtuix Omni treadmill to allow participants to move around in the virtual environment and Oculus 

Quest 2 as a VR headset. Lastly, we used the KeywordRecognizer class provided by Microsoft 

and integrated it into the UnityEngine library for voice recognition. 
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4.6.6 Results  

We used one-way repeated measures analysis of variance (ANOVA) to analyze the data 

collected from three experimental conditions (LD, MD, and HD). We assessed the individual 

differences using post-hoc Bonferroni corrected estimates if the ANOVA was statistically 

significant. We provide the descriptive statistics in the supplementary materials file.  

4.6.6.1 Objective Data  

The analysis revealed a statistically significant result for the completion time measurement 

across the three examined conditions (𝛬 =  .413, 𝐹[2, 25]  =  17.791, 𝑝 =  .000, 𝜂𝑝
2  =  .587). 

The post-hoc pairwise comparison showed that the completion time during the LD condition was 

significantly lower than that for the MD (𝑝 =  .030) and HD (𝑝 =  .000) conditions. Moreover, 

the completion time was significantly lower for the MD condition than the HD condition (𝑝 =

 .012). We also found a statistically significant result for the extinguisher count measurement (𝛬 =

 .381, 𝐹[2, 52]  =  42.179, 𝑝 =  .000, 𝜂𝑝
2  =  .619). The post-hoc pairwise comparison revealed 

that our participants used the virtual extinguisher less often in the LD condition than the MD (𝑝 =

 .000) and HD (𝑝 =  .000) conditions; moreover, the participants used the virtual extinguisher 

less often during the MD condition than the HD condition (𝑝 =  .019). However, the statistical 

analysis did not reveal significant results for the completion time offset (𝛬 =  .966, 𝐹[2, 25]  =

 .441, 𝑝 =  .649, 𝜂𝑝
2  =  .034 ), trajectory length ( 𝛬 =  .942, 𝐹[2, 52]  =  1.592, 𝑝 =

 .213, 𝜂𝑝
2  =  .058 ), distance between participants ( 𝛬 =  .883, 𝐹[2, 25]  =  1.663, 𝑝 =

 .210, 𝜂𝑝
2  =  .117), and number of commands (𝛬 =  .962, 𝐹[2, 52]  =  1.033, 𝑝 =  .363, 𝜂𝑝

2  =

 .038). We provide the descriptive statistics in the supplementary materials file.  

4.6.6.2 Subjective Self-reported Data  

The mutual awareness measurement was statistically significant (𝛬 =  .618, 𝐹[2, 52] =

 16.062, 𝑝 =  .000, 𝜂𝑝
2  =  .382) across the three examined conditions. The post-hoc pairwise 

comparison showed that mutual awareness was significantly lower during the LD condition than 

the MD (𝑝 =  .000) and HD (𝑝 =  .000) conditions. Similarly, mutual assistance was statistically 

significant ( 𝛬 =  .593, 𝐹[2, 52]  =  17.877, 𝑝 =  .000, 𝜂𝑝
2 = .407 ). The post-hoc pairwise 
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comparison revealed that mutual assistance was significantly lower during the LD condition than 

the MD (𝑝 =  .034) and HD (𝑝 =  .000) conditions, and the MD condition was significantly 

lower than the HD condition ( 𝑝 =  .001 ). The dependent actions measurement was also 

statistically significant across the three conditions ( 𝛬 =  .286, 𝐹[2, 52]  =  64.943, 𝑝 =

 .000, 𝜂𝑝
2  =  .717). The post-hoc pairwise comparison showed that dependent actions were rated 

significantly lower during the LD condition than the MD (𝑝 =  .000) and HD (𝑝 =  .000) 

conditions, and the MD condition was rated significantly lower than the HD condition (𝑝 =  .000).  

4.6.7 Discussion  

The collected objective data, and more specifically the completion time and extinguisher 

count measurements, revealed that our method can automatically synthesize training drills that 

have different difficulty levels for executing them. These findings prove that it is possible to 

synthesize fire evacuation training drills in which the trainer/designer can specify the parameters, 

such as the path length, number of turns in the optimal paths, number of fires, environment 

visibility, and the system can synthesize variations of the training drill without impacting the 

overall objective of that drill. However, the trajectory length measurement was not statistically 

significant across the three examined conditions. Considering that our participants walked the 

same trajectory lengths across the three conditions, the completion time proves that they needed 

more time to complete a more difficult training drill in comparison to the MD or LD training drills, 

in which they extinguish fewer fires and had higher visibility. If we also consider the number of 

commands measurement, we could say that our participants tried to instruct the virtual agents in 

roughly the same way across the three conditions. Thus, we can say that the virtual fires (due to 

completion time and extinguisher count) impacted our participants’ behavior in executing the 

tasks, but not the virtual agents. Consequently, we argue that our method can synthesize training 

drills based on the difficulty entailed in executing them.  

In contrast, the other measurements did not differ across the three experimental conditions. 

Specifically, an interesting observation was made for the completion time offset and the distance 

between participants measurements. In both measurements, although the completion time offset 

and the distance between participants decreased from the LD condition to the MD condition and 

from the MD condition to the HD condition, the decreases were not statistically significant. 

However, by looking at the mean values for the completion time offset measurement, it is evident 
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that the time offset is close to 30 seconds for all three conditions. A similar observation can be 

made for the distance between the participants: their mean distance is sufficient across the three 

conditions, which indicates that they were in different locations in the building during the training 

drills. These findings suggest that although the participants were in the same shared space, they 

chose their strategies and acted independently. Such independent activity has been identified by 

Tang et al. [28] as the “same problem, different area” style of coupling between two people. 

Therefore, we think that our two participants preferred to utilize collaborative behavior that could 

help them execute the given task in a way that was more optimal for them.  

The mutual awareness measurement indicated that the participants were aware of each 

other during the training drill. It seems that the difficulty of the training drill impacted their 

awareness of one another. Therefore, the participants felt they were not alone while executing the 

given task in the virtual environment The mutual assistance and dependent actions measurements 

revealed that, as the difficulty level of the training drill increased, the mutual assistant of each 

participant (the degree to which each person needed to help the other person) and their perceived 

dependence on the other participant increased. These findings indicate that the participants felt the 

pressure of the training drill, and they tried to assist the other participant by creating a strategy that 

would help them execute the given task and assist the other person.  

Overall, by combining both the objective and self-reported measurements, we can say that, 

though our participants planned their strategy independently of each other, they were always aware 

of the other individual in the shared virtual environment, and given their awareness, they planned 

their strategy to help not only themselves but also the other participant. It looks as if this kind of 

planning is common in games [1] where players on the same team work together to accomplish a 

given task. Our results showed that, though the two participants were in separate locations, being 

in a shared virtual space and sharing the same goals and tasks made them choose individual 

strategies that benefited themselves and the team; therefore, establishing a collaborative culture. 

4.6.8 Limitations  

Our study had some limitations. First, our participants were not exposed to real-world 

evaluations. Therefore, we cannot firmly conclude that the training platform and its performance 

are effective in real-world emergency evacuation scenarios. Second, due to the hardware 

limitations (we used an Omni treadmill), long-time locomotive tasks will result in the users 
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needing to exert physical effort and experience fatigue [23], which could potentially decrease their 

motivation. Third, our optimization-based approach only considered four design decisions to 

synthesize the training drill. We think additional cost terms could be considered, such as those 

related to specific training objectives.  

4.7 Conclusion  

In this paper, we introduced a method to synthesize training drills for fire evacuation 

scenarios. Due to the proposed optimization-based formulation, a designer/trainer can easily define 

the target objectives for each cost term. Our system automatically synthesizes the training scenario 

where participants encounter the specified difficulty of executing a task. Thus, a designer/trainer 

could easily generate several variations of a training drill, allowing trainees to experience them 

and get prepared for potential real-world situations.  
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DISCUSSION AND CONCLUSION 

This dissertation aimed to develop a framework for formulating computational design 

problems using Markov chain Monte Carlo (MCMC) optimization theory. The framework enabled 

designers to encode their design considerations as cost terms and solve optimization-based 

problems using computational methods to generate virtual contents. Three research questions were 

addressed, namely (1) the feasibility of formulating design problems using optimization theory, (2) 

suitable/viable application cases, and (3) suitable/viable cost terms for each application case based 

on the theory. 

This dissertation contains the papers published by the author during her Ph.D. Each 

published article included in this dissertation deals with a specific application case based on 

optimization theory. 

Four application cases were explored, each supported by a published article included as an 

individual chapter of the dissertation. The first application case involved the design of virtual 

reality racket sports drills as an optimization problem. The second case focused on virtual reality 

game level layout design with real environment constraints. The third case addressed the design 

of collaborative gameplay in a shared virtual environment. The fourth application case involved 

synthesizing shared space virtual reality fire evacuation training drills. The definition of cost terms 

varied for each scenario, and designers combined specific scenario domain knowledge to define 

cost terms that successfully generated the objective scenario. 

The resulting synthesis was successful, producing different synthesized results based on 

different target cost input values and weights according to the theory. This positively answered the 

first research question. The synthesized results triggered statistically significant differences in 

human behavior, demonstrating the validity of the formulation and answering the second research 

question. The dissertation also explored and discussed different cost terms based on various 

scenarios in each article, answering the third research question. 
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APPENDIX 

A THE BEHAVIOR TREES 

In this section, we present the developed behavior trees, which summarize the major events 

used in our game level chunks. Behavior trees describe switchings between a finite set of tasks in 

a modular fashion and control the execution flow of the tasks. Events can invoke other events 

during their execution. Please refer to previously published work on behavior trees [16, 26, 60] for 

a detailed description of the implementation process. Here, we provide a brief description of the 

main components of the behavior trees: 

• Composite: A composite node is a node that can have one or more children. Such a node 

processes one or more of these children in either a first to last sequence or random order 

depending on the particular composite node in question. In addition, at some stage, it 

considers their processing complete and passes either success or failure to the parent, which 

is often determined by the success or failure of the child nodes. During the time a composite 

node is processing children, it continues to return “Running” to the parent. 

• Decorator (or Decor): A decorator node, like a composite node, can have a child node. 

Unlike a composite node, a decorator node can only have a single child. The decorator 

node’s function is either to transform the result it received from its child node’s status to 

terminate the child, or to repeat processing of the child, depending on the type of decorator 

node. 

• Leaf: Leaves are the most powerful node type, as they are defined and implemented to 

command the game-specific actions. An example of this, as used in the behavior trees 

implemented in this project, is “Go to the target.” A “Go to the target” leaf node makes the 

AI virtual agent walk to a specific position in the game level chunk and return success or 

failure, depending on the result. Because we can define what leaf nodes are, they can be 

very expressive when layered on top of composite and decor nodes and allow the developer 

to make powerful behavior trees capable of quite complicated layered and intelligently 

prioritized behaviors. 
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Figure 30: Behavior tree for the C1 game level chunk (Nodes: 2; Depth: 1) 

 

Figure 31: Behavior tree for the C2 game level chunk (Nodes: 3; Depth: 1) 

 

Figure 32: Behavior tree for the C3 game level chunk (Nodes: 2; Depth: 1) 
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Figure 33: Behavior trees for the C4 game level chunk (Left: Player 1 [Nodes: 4; Depth: 2]; 

Right: Player 2 [Nodes: 4; Depth: 1] ;) 

 

 

Figure 34: Behavior tree for the C5 game level chunk (Nodes: 5; Depth: 2) 
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Figure 35: Behavior tree for the C6 game level chunk (Nodes: 5; Depth: 2) 

 

 
 

Figure 36: Behavior trees for the C7 game level chunk (Left: Player 1 [Nodes: 4; Depth: 2]; 

Right: Player 2 [Nodes: 5; Depth: 2] ;) 
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Figure 37: Behavior tree for the C8 game level chunk (Nodes: 6; Depth: 2) 

 

 

  

Figure 38: Behavior trees for the C9 game level chunk (Left: Player 1 [Nodes: 5; 

Depth: 2]; Right: Player 2 [Nodes: 5; Depth: 2] ;) 
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Figure 39: Behavior trees for the C10 game level chunk (Left: Player 1 [Nodes: 4; Depth: 2]; 

Right: Player 2 [Nodes: 6; Depth: 2] ;) 

 

 

 

  

Figure 40: Behavior trees for the C11 game level chunk (Left: Player 1 [Nodes: 7; Depth: 2]; 

Right: Player 2 [Nodes: 6; Depth: 2] ;) 
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Figure 41: Behavior trees for the C12 game level chunk (Left: Player 1 [Nodes: 5; Depth: 2]; 

Right: Player 2 [Nodes: 5; Depth: 1] ;) 

 

 

  

Figure 42: Behavior trees for the C13 game level chunk (Left: Player 1 [Nodes: 4; Depth: 2]; 

Right: Player 2 [Nodes: 5; Depth: 2] ;) 
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Figure 43: Behavior trees for the C14 game level chunk (Left: Player 1 [Nodes: 5; Depth: 2]; 

Right: Player 2 [Nodes: 5; Depth: 2] ;) 

 

 

 

 

 

Figure 44: Behavior trees for the C15 game level chunk (Left: Player 1 [Nodes: 5; Depth: 2]; 

Right: Player 2 [Nodes: 4; Depth: 1] ;) 
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