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ABSTRACT

The Temperate Plains ecoregion of Indiana has experienced significant agricultural
development since the 19th century, which has left streams vulnerable to impacts such as
sedimentation and nutrient accumulation. This thesis describes first the accuracy of the USDA
Cropland Data Layer (CDL) in land cover change, and second, the relationships between
agricultural and forested land covers and stream biological integrity. I first employed the CDL to
review land cover change, particularly relating to agriculture and forest, for the area of interest
between 2010 and 2020. | determined that the CDL improved in accuracy for the area of interest
in the chosen timeframe for non-agricultural and non-forest land cover. | concluded that the CDL
was best used as a supplement to primary-source land cover measures. Next, | calculated the fish
Index of Biotic Integrity (IBI) scores for 20 sampled agricultural and forested streams in North-
Central Indiana. | also assessed the stream habitats at all sites using the Qualitative Habitat
Evaluation Index (QHEI) and percent cultivated crops in drainage basin areas for all streams.
Forested streams had significantly higher QHEI scores than agricultural streams (median = 62 and
40.4, respectively). No other relationships were statistically different, including 1BI and land cover
category, which may have been due to the small sample size (n = 20). | concluded that future
studies may build on these findings by controlling for agricultural drainage types or using precise

measures of forested land cover.
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INTRODUCTION

Over half of all land in the United States is used for agriculture (Baker and Capel, 2011).
Indiana is a heavily agricultural state, and over the last 200 years, approximately 75% of its forests
have been removed (Carman, 2013), with 80% of all land cleared for crop and animal agriculture
(Capel et al., 2018). Row crops such as corn and soybeans now dominate the central Indiana
landscape, resulting in high vulnerability of streams to agricultural pollutants (Munn et al., 2018;
U.S. EPA, 2020). Such farming practices can affect adjacent water bodies through erosion and
sedimentation from tillage, nutrient loading associated with fertilizer application, and pesticide
application (Meador and Frey, 2018; Munn et al., 2018; Nowell et al., 2018). Agricultural runoff,
i.e., water flow over farm fields resulting from irrigation, precipitation, or snowmelt, is the primary
source of these stressors. It can enter water bodies directly on the surface or through groundwater
or drainage tile fallouts and impact stream habitats and biological integrity.

Fine sediment is also a major contributor to water quality impairment. For example, the
National Rivers and Streams Assessment (NRSA) of 2013-2014 reported that 44% of all sampled
stream miles had “Fair” or “Poor” levels of excess streambed fine sediments. Two-thirds of
sampled stream miles in the Temperate Plains ecoregion, including Central Indiana, were rated
“Fair” or “Poor” due to excess streambed fine sediments; one-third of the surveyed streams were
“Poor” (U.S. EPA, 2020). Surface soil erosion contributes approximately one-third of fine
sediments in Midwestern streams, while streambanks and channels comprise two-thirds (Gellis et
al., 2017). Fine sediment can smother stream habitat and breeding areas, inhibit aquatic plant
growth, and transport sorbed contaminants into water bodies (Meador and Frey, 2018; Munn et al.,
2018; USGS, 2018). The Ohio River drainage basin, which covers most of Indiana, is estimated to
yield 44.9 tons of fine sediments from agriculture each year (Robertson and Saad, 2019).

Another large source of agricultural pollution is nutrients associated with fertilizers. Each
year in the United States, >10 million tons of nitrogen (N) and almost 2 million tons of phosphorus
(P) fertilizers are used in agricultural operations (Munn et al., 2018). However, nutrient application
is not always efficient, resulting in lost nutrients that do not contribute to agricultural production.
For example, Potter et al. (2006) estimated that 28% of applied N and 16% of applied P are
potentially lost from cropland annually. These lost nutrients often enter surface waters, causing

eutrophication and increasing N and P availability. Elevated levels of these nutrients allow algae
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to bloom excessively, which can decrease dissolved oxygen concentrations and even create
hypoxic (i.e., very low or no dissolved oxygen) conditions. Hypoxia is problematic because it often
causes organism die-offs. The Ohio River drainage basin is estimated to yield 236 kg of N and
36.8 kg of P per square kilometer per year from non-manure fertilizer application (Robertson and
Saad, 2019). The NRSA of 2013-2014 evaluated over half of the sampled rivers and streams in the
Temperate Plains ecoregion as having very high (“Poor”) levels of Total Phosphorus and Total
Nitrogen when compared to reference sites (U.S. EPA, 2020). The USGS conducted a National
Water Quality Assessment (NAWQA) of selected areas in the United States and found that the
sampled areas in Central Indiana had elevated nutrient levels (Munn et al., 2018). Nitrate and
ammonia, in particular, accumulate predominantly in water, including subsurface drains and open
streams. Indiana is one of three Mississippi River drainage basin states that provide 40% of the
nitrogen entering the Gulf of Mexico (Capel et al., 2018).

Like fertilizers, pesticides and their byproducts are present throughout field-stream systems.
Dozens of pesticide compounds may exist at a single stream site (Meador and Frey, 2018; Nowell
et al., 2018). Pesticides are not always directly toxic to fish. For example, insecticides can
indirectly affect fishes through chronic toxicity to aquatic macroinvertebrates that serve as fish
prey (Nowell et al., 2018). A model simulation also indicated that north-central Indiana streams
had a 5-50% probability that the annual mean concentration of atrazine, an herbicide, would exceed
the benchmark for drinking water (Capel et al., 2018). Agriculture has numerous and widespread
effects on Midwestern streams and rivers.

The goals of this paper are twofold. My first goal is to evaluate the United States
Department of Agriculture National Agricultural Statistics Service Cropland Data Layer as a
means to compare differences in agricultural and forested land cover over time (Chapter 3). My
second goal is to investigate the relationship between surrounding land cover (i.e., row crop versus
forest) and the biological integrity of streams in the Temperate Plains ecoregion of Indiana
(Chapter 4).

To achieve my first goal, | extracted land cover information for northern Indiana from the
USDA NASS Cropland Data Layer and classified it using relevant categories. I then used the land
cover change raster to select sites for ground truthing the projected CDL land cover type. To
accomplish my second goal, | sampled fishes at stream sites in north-central Indiana to use them
to calculate an Index of Biotic Integrity (IBI; Karr, 1981; Karr et al., 1986; Ohio EPA, 2006) for
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each site. | also assessed local stream habitats using the Qualitative Habitat Evaluation Index
(QHEI; Rankin, 1989), as well as CDL pixel counts and riparian measures to categorize sites as
agricultural or forested. Finally, I used models to determine any significant correlations between

surrounding land use and IBI scores.
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CHAPTER 1. LITERATURE REVIEW

1.1 Role of Forests

The Temperate Plains ecoregion in central Indiana includes the Illinois/Indiana Prairies,
(EPA Ecoregion 54a, hereafter “Indiana Prairies”) and the Loamy, High Lime Till Plains, (EPA
Ecoregion 55b, hereafter “Till Plains”) (Woods, 1998). The Indiana Prairies and Till Plains were
flattened from Ice Age glaciation, later resulting in areas of wetlands, forests, and tallgrass prairie.
In particular, the Indiana Prairies were predominantly prairie with oak-hickory forest, and the Till
Plains were predominantly forest. Beginning in the 19" century the land was gradually converted
to agriculture, degrading streams with chemical and fine sediment pollution, bank erosion, and
higher water temperatures (Woods, 1998). In addition, widespread and intensifying agriculture
within a flat landscape with poor drainage eventually required extensive ditching and subsurface
drain installation (Capel et al., 2018). The Midwest accounts for approximately 30% of the 1
million square kilometers of wetlands in the contiguous United States that have been converted to
agriculture through drainage. As a result, extensive land clearing and wetland draining confined
most of the remaining forests in the Indiana Temperate Plains ecoregion to isolated woodlots and
riparian zones along streams and rivers (Woods, 1998).

At the local level, stream health is controlled by the presence and quality of a riparian forest
buffer. A riparian forest buffer is an area of perennial plants bordering a water body that is managed
for conservation purposes (MacFarland et al., 2017). Riparian forests benefit adjacent- and
downstream water bodies and associated stakeholders. Among these benefits are nutrient uptake,
filtration of fine sediments in overland flow, pesticide sequestration, streambank stabilization,
shade, instream cover, and food sources (e.g., leaf fall) for aquatic biota (e.g., MacFarland et al.,
2017).

Riparian vegetation has a “baffling effect” on overland flow, weakening stormwater
surface flow and facilitating fine sediment deposition in the riparian zone. Fine sediment
deposition is also coupled with nutrification because phosphorus and certain forms of nitrogen are
sorbed by soil particles that are mobilized by surface flow. Dosskey et al. (2010) found that root
networks remaining after aboveground vegetation removal could continue to protect stream health

for decades after removal. The ability of riparian zones to control and sequester N, P, and other
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nutrients also depends on many factors, including soil type, nutrient load, vegetation composition
and nutrient uptake, and stream geomorphology. However, riparian zones generally control
nutrient and sediment deposition in streams (Naiman et al., 2005). Indeed, because two-thirds of
sedimentation is from bank and channel erosion and sedimentation can degrade algal, invertebrate,
and fish communities, maintaining a healthy root system in the riparian zone is key (USGS, 2018).

The River Continuum Concept (RCC) posits that headwater streams are typically forested,
and therefore have photosynthesis-limiting shade that creates dependence on allochthonous (i.e.,
imported organic) material by resident aquatic biota (\VVannote et al., 1980). Woody vegetation also
filters solar radiation, regulating stream temperature and summarily increasing a stream’s O2
capacity, which decreases respiratory stress in aquatic organisms (NRCS & Wildlife Habitat
Council, 2007). While woody vegetation provides the greatest shade for streams, fully-grown
grasses and forbs can sufficiently shade streams narrower than 2.5 m (Blann et al., 2002).

1.2 Stream Health Metrics

Headwater streams represent at least 50% of the overall length of all stream systems on
earth (Richardson, 2020). Also known as upper reaches, they are the source of water for larger
streams and rivers. Headwater streams are defined as 1st, 2nd, and 3rd order streams in the River
Continuum Concept, which is based on Strahler stream order, a system for classifying streams by
their number of tributaries (Strahler, 1952, 1957; Vannote et al., 1980). These headwater streams
average 0.8 to 3.7 m wide, with size increasing exponentially with Strahler stream order (Downing,
2012). Headwater streams are ranked as critically important for climate regulation, food web
dynamics, nutrient cycles, and recreation, while the larger rivers they influence are critically
important for water consumption, food sources, and flood control (Yeakley et al., 2016). They
influence connected higher-order streams by transporting nutrients, pollutants, organic matter, and
sediment downstream. However, as small and often unprotected water bodies, they are highly
vulnerable to changes in the environment (Richardson, 2019).

Several indicators are wused to determine stream health, including benthic
macroinvertebrates, fish assemblages, and physical habitat metrics. Benthic macroinvertebrates
are macroscopic invertebrate animals that live in (i.e., infauna) or on the surface of (i.e., epibenthic)
stream substrates. They are used as bioindicators because they vary in pollution tolerance by

species and cannot migrate away from polluted conditions, meaning that only a few tolerant
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species will be found in streams with suboptimal water quality. For example, agricultural
insecticides such as permethrin impact insect reproduction and development (Capel et al., 2018).
Macroinvertebrates are also more likely to be present than fish in very small, low-order streams,
and are easily captured and identified (U.S. EPA, 2013). There are several indices used in benthic
macroinvertebrate sampling, including the Ephemeroptera Plecoptera Trichoptera (EPT) Index,
which provides a rapid assessment of water quality based on the presence of the generally
pollution-intolerant insect orders Ephemeroptera, Plecoptera, and Trichoptera (Barbour et al.,
1999).

Fish assemblages reflect the diversity and numbers of fish species present in a water body.
They are used as bioindicators because a diverse assemblage requires a variety of food sources,
complex habitat for shelter, and specific spawning conditions (Barbour et al., 1999). Because fish
can move away from degraded areas, the composition of a fish assemblage is an indicator of water
quality and stream health. For example, fertilizers such as ammonia (NHz) impact the reproductive,
respiratory, and nervous systems of fishes (Capel et al., 2018). Like benthic macroinvertebrates,
there are many ways to use fishes as indicators, which can be chosen based on region, stream size,
and existing pollution level. Among the indices appropriate for small Midwestern streams are the
number and identity of darter species, headwater species, sucker species, and intolerant species; %
omnivores, insectivores, and carnivores; and total number of individuals (Karr, 1981; Karr et al.,
1986).

Stream physical habitat is an important component in determining the effects of
anthropogenic land uses on streams (Frissell et al., 1986). This is typically done by evaluating
physical habitats within, adjacent to, and along streams. This can be done to quickly estimate
stream health by using a metric-driven assessment, the Qualitative Habitat Evaluation Index
(QHELI; Rankin, 1989). Evidence of human disturbance (e.g., developed surrounding land, dams),
habitat complexity and cover, and sediment type are all components of physical habitat quality and
are easy to evaluate. In particular, riparian vegetation composition is a useful indicator because it
reduces sediment and overland nutrient runoff entering the stream, stabilizes riparian sediment,
and provides organic material for instream cover and food (MacFarland et al., 2017; Rankin, 1989).

The NRSA of 2013-2014 found that Indiana stream health indicators rated poorly (U.S.
EPA, 2020). Macroinvertebrate composition in Temperate Plains streams was rated as 46% Poor

and 30% Fair, and fish assemblages were rated as 34% Poor and 31% Fair. Notably, for all streams,
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a Poor sedimentation rating made a Poor benthic macroinvertebrate condition twice as likely. The
USGS NAWQA supported this with the conclusion that macroinvertebrate composition in the
sampled region of Indiana was influenced by physical habitat, not nutrient levels. That is, the
nutrients were sufficiently abundant not to limit the growth of biota (Munn et al., 2018).

1.3 Agriculture and Stream Integrity

Alexander et al. (2008) created an improved water-quality model to evaluate and predict
how total N and total P move from sources in the Mississippi and Atchafalaya River Basins into
the Gulf of Mexico. They found that ~50% of the N and ~25% of the P entering the Gulf of Mexico
came from corn and soybean row crop agriculture. Indiana delivered the greatest N yield (1806.6
kg/km/yr) and had the third largest share of the total flux (10.1%). Illinois, lowa, and Indiana
together accounted for 38.2% of all N flux entering the Gulf of Mexico.

A study by Kladivko et al. (2004) assessed the nitrate N concentrations from subsurface
drains in southeastern Indiana over 15 years of row crop agriculture. The area studied was the
Southeast Purdue Agricultural Center, within the Eastern Corn Belt Plains. The tile drains were
spaced variously at 5, 10, and 20 m apart. The authors determined that nitrate concentrations were
unrelated to drain spacing, but instead decreased by more than half as a result of lower fertilizer
application, the use of winter cover crops, and rotations of no-till corn and soybeans.

Stream sedimentation is problematic not only because of the accelerated changes to stream
morphology, but also because sediment is able to retain sorbed pollutants from agriculture. Wolf
et al. (2020) studied benthic macroinvertebrate responses to agricultural stream sediments and
found that intolerant species experienced mortality where highly-tolerant species did not.
However, the mortality levels were not proportional to the levels of agricultural development
between sites. This may have been due to a large decrease in biotic integrity with a small increase
in development, followed by a “ceiling” where increased development yielded almost no response.

Wang et al. (2007) sampled Wisconsin streams and found that those in high-agriculture,
low-forest regions had the greatest median N and P concentrations, fewer EPT taxa, lower counts
of EPT macroinvertebrates, and fewer overall taxa present than less developed forested regions.
However, their measurements also showed highly variable biological integrity even at low nutrient

levels, implying that non-nutrient factors impact assemblages without N and P deposition. The
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authors concluded that indirect non-nutrient factors, nutrient effects, and interactions explained
much of the variation in fish and macroinvertebrate assemblages in the selected streams.

To develop nutrient criteria specific to nutrient-heavy Indiana streams, Caskey et al. (2010)
measured the relationship between nutrient-based stressors and biotic communities. The study
streams’ basins were overwhelmingly agricultural (77%), with forested basins only comprising
16% of the study area. The two most abundant aquatic insect families were Chironomidae (41.7%)
and Hydropsychidae (17.3%), which are considered tolerant of poor stream conditions. Tolerant
species such as central stoneroller Campostoma anomalum, creek chub Semotilus atromaculatus,
and bluntnose minnow Pimephales notatus were abundant in the sampled fish communities
(13.3%, 9.9%, and 9.3% total relative abundance, respectively).

Caskey and Frey (2009) assessed agricultural stream fish community composition in the
Indiana-Ohio Eastern Corn Belt Plains ecoregion. The two most abundant fish species were central
stoneroller and bluntnose minnow (25.7% and 11.1%, respectively), accounting for 36.8% of the
fishes captured. Differences between similar biological communities were attributed to
environmental factors other than nutrient levels; a canonical correspondence analysis suggested
that an increase in mean bankfull depth (i.e., maximum possible depth of the stream channel before
stream overflow) increased the number of fish taxa present.

One of the potential sources of N and P that can affect fish and macroinvertebrate
assemblages in streams is eutrophication. Much attention has been given to the effects and
mechanisms of eutrophication in lakes. However, there is evidence that streams also exhibit
eutrophication that can impact biological integrity. In a literature review, Dodds and Smith (2016)
found that P and N control phytoplankton biomass. High levels of either nutrient can increase
benthic algal biomass, contradicting the widely-held assumption that P is the limiting nutrient for
freshwater ecosystems. They also cite several papers finding that high N and P levels jointly
decreased fish and aquatic macroinvertebrate abundances. Hypoxia is the main concern with
lacustrine eutrophication, but N and P can also cause changes in herbivory and detritus
consumption by influencing primary productivity and primary consumption.

Another way N and P pollution influence stream health is through nutrient-limited growth
and trophic changes. Evans-White et al. (2009) suggested that slight N and P increases can cause
a change in food quality, shifting trophic structure and therefore negatively impacting assemblage

diversity. Shredders are a trophic guild of macroinvertebrate species that consume plant-based
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detritus by chewing or boring. Collector-gatherers are a trophic guild of macroinvertebrate species
that consume detritus. The authors found that fast-growing shredder and collector-gatherer taxa
utilized high-P food sources and could out-compete other invertebrate taxa under eutrophic
conditions. Predators, which have a better balance between body C:N and C:P than their prey,
were less affected. There was a negative relationship between macroinvertebrate taxa diversity and
nutrient levels. Shredder taxa also decreased in diversity with increasing P, and chironomid species
dominated the community. Broadly, macroinvertebrate species with relatively high N or P
requirements are limited by those nutrients, and could grow without constraint and out-compete
other species in enriched conditions. This change in macroinvertebrate assemblage composition
can then affect other parts of the trophic system. Their results found variability in indicator taxa
even under low-nutrient conditions, which corroborated the findings of Wang et al. (2007).

Camargo and Alonso (2006) conducted a global literature review of aquatic nitrogen
pollution and identified a rise in inorganic N concentrations in water bodies everywhere. They also
listed the drastic effects of anthropogenic N eutrophication, such as hypoxia, lowered light
penetration, and trophic shifts in macroinvertebrates and fish, including the decline of salmonids
and EPT species. N pollution is therefore of critical importance for aquatic ecosystem health
worldwide. Meador and Frey (2018) studied streams across the Midwest for predictors of fish
community composition, measuring N, P, streambed sedimentation, dissolved oxygen (DO),
riparian vegetative cover, riparian disturbance, bed sediment contaminants, streamflow variability,
pesticides, and instream habitat cover. Total N was of the highest importance; however, the factors
controlling N pollution are complex and involve precipitation, tile drainage, and tillage practices.
Sedimentation and P were also important influences for the Temperate Plains ecoregion, followed
by DO, riparian vegetative cover, and riparian disturbance.

The USGS Midwest Stream Quality Assessment (MSQA), conducted in 2013, presented a
cross-section of biological impacts of various anthropogenic stressors (USGS, 2018). It determined
that sensitive forms of algae require hard substrates, cool water, and low levels of herbicides,
particularly triazines, such as atrazine. Similarly, aquatic invertebrate diversity decreases with the
presence of excessive soft substrates, such as silt and muck. Notably, mean nitrate concentration
increased exponentially with the percentage of a watershed planted in corn. Ammonia and
pesticides also degraded aquatic macroinvertebrate diversity. Fish diversity decreased with total

nitrogen and soft substrates, which cover breeding habitat and prevent reproduction. Pollutants
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like pesticides were found at higher-than-tolerable levels for invertebrates and algae. Indeed,
because riparian zones inhibit runoff, high-quality forested riparia were associated with robust

macroinvertebrate communities even within heavily agricultural watersheds.

1.4 Agricultural Drainage and the Role of Riparian Buffers

Riis et. al (2020) conducted a meta-analysis that ranked ecosystem services provided by
different riparian vegetation types. They determined that forested riparian zones were of medium-
or high importance for N and P removal, sediment removal, pesticide removal, erosion control,
flow regulation, habitat provision, regulation of microclimate, pollination, and standing woody
biomass. Other types of riparia (herbs/grass, wet forest, and wetlands) were variously ranked as
medium- or high importance for some, but not all, of the same services. For example, wetlands
were of ‘medium’ importance for standing crop of non-woody biomass, while all other types of
riparia were ‘low’ importance. Overall, dry forest riparian zones were of the highest importance
for the greatest portion of ecosystem services.

Simon and Collison (2002) observed the root numbers and strengths of young trees (<10
years on average) as well as herbaceous vegetation. They determined that riparian vegetation
influences bank stability through the number of roots per unit area and the strength of those roots.
They found that larger (>5 mm) roots typical of woody vegetation are stronger and better at bank
reinforcement than a large number of small roots per unit area, typical of herbaceous species.
However, this was based on observations during an unusually dry period. In contrast, riparian trees
came in second to switch grass Panicum virgatum in terms of bank reinforcement during a high
rainfall period. The authors recommended that riparian management should also consider other
factors, including mechanical and hydrologic properties, tree canopy cover during dormancy,
rooting depth, and transpiration, and that a mixture of woody and herbaceous species would be
most beneficial.

Pollen-Bankhead and Simon (2010) corroborated the findings of Simon and Collison
(2002. They accounted for seasons and included more riparian tree species, finding that soil
cohesion varied with season. Root volume was the critical factor in streambank stability in winter
and spring, rather than the suction force resulting from evapotranspiration. When
evapotranspiration was the most critical factor in soil cohesion, longleaf pine Pinus palustris and

river birch Betula nigra provided similar suction to switch grass. It was suggested that a
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combination of trees and switch grass is ideal for bank stability. Polvi et al. (2014) quantified
riparian species’ root tensile strengths and found that tree roots were stronger than any other
taxonomic group. While they did not account for the effects of different sediment textures on roots,
they nonetheless advised that woody and non-woody species should be used together.

It has been long accepted that riparian vegetation reduces agricultural sediment runoff into
streams (Naiman et al., 2005). The primary vehicle for sediment trapping is the physical resistance
of above-ground vegetation and its ability to slow down overland flow. Notably, it has been shown
that vegetated buffer zones can reduce sediment runoff into streams from 60% to 90% (Daniels
and Gilliam, 1996; Cooper et al., 1987). This research necessarily preceded studies of nutrient
transport, because N and P sorb to soil particles; therefore, preventing or reducing sedimentation
also prevents nutrient runoff. On the other hand, there is much debate on the effectiveness of
vegetated buffers for nutrient removal. One confounding factor is the seasonality of vegetation
versus precipitation. Liu et al. (2014) argued that plants are dormant for most of the Midwestern
winter, spring, and early summer, and the water table is too far below the root zone during the dry
season for plants to uptake N. However, subsurface flow is irregular and often heaviest during
spring when plants are exiting dormancy. A study by Stauffer et al. (2000) also indicated that
wooded riparian zones effectively protect fish and macroinvertebrate communities from intensive
agriculture in the Midwest. Indeed, their conclusion was that the quality of the riparian zone had a
greater impact on fish assemblages than runoff potential.

Osborne and Kovacic (1993) conducted a literature review to assess the potential
effectiveness of vegetated buffers. They found that forested buffer strips were generally effective
for N reduction (40-100%). These results were applicable to forested buffer strips as narrow as 16
m. Grass buffer strips were also effective to a smaller degree, reducing 10-60% of N from tile
drainage and 54-84% from surface drainage. They also studied the nutrient-reducing effects of a
vegetated buffer strip in a central Illinois field with tile drainage. They determined that forested
buffers removed nitrate from shallow tile drains better than grass buffers. However, they were
more efficient at nutrient removal from surface flow than subsurface drains.

Structural best management practices are also subject to degradation and become less
effective over time. Bracmort et al (2006) assessed grassed waterways, grade stabilization
structures, field borders, and parallel terraces that had been implemented in two highly agricultural

drainage areas of Black Creek watershed in Allen County, Indiana. Using the Soil and Water
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Assessment Tool (SWAT) the authors estimated that structure installation decreased sediment
deposition by 16-32% and decreased P deposition by 10-24% when implemented in the 1970’s
and 1980’s. After 20 or more years post-installation, the structures reduced sediment yield by only
7-10% and P yield by 7-17%.

While there is consensus that riparian vegetation reduces sedimentation in streams, studies
disagree on whether including trees is less effective, or as equally effective as grass-only buffers
(Yuan et al., 2009; Hughes and Quinn, 2014). Regardless, bank stability is improved by the
presence of trees in a riparian zone (Simon and Collison, 2002; Pollen-Bankhead and Simon, 2010;
Polvi et al., 2014), and bank erosion is the source of two-thirds of stream sedimentation (USGS,
2018).

There is similar disagreement about N and P runoff potential related to riparian vegetation
type (Liu et al., 2014; Stauffer et al., 2000). A model simulation indicated that buffer zones did
not protect invertebrate assemblages in regions where crop fields were tile-drained, including
Central Indiana (Munn et al., 2018). However, because of nutrient sorption to soil, riparian
vegetation may prevent a considerable amount of runoff to surface waters in the absence of
subsurface drainage (Carpenter et al., 1998). A literature review by Feld et al. (2018) concluded
that wooded riparian buffers of sufficient width and length could retain up to 100% of nutrients
and sediment from runoff.

Baker et al. (2006) conducted a study within the Temperate Plains region of Indiana to
investigate agricultural chemical transport routes. The study site was highly agricultural (87% of
land use) and tile drained. The two largest sources of water and chemical pollutants to Leary Weber
Ditch were overland flow and tile drains. Pesticide parent compounds were more prevalent than
degradates in overland flow than in tile drain water. Overland flow contributed less water than tile
drain flow when rainfall was <0.5 in/hr (10% and 90%, respectively) and when rainfall was >0.75
in/hr (40% and 60%, respectively). Overland flow became a significant vehicle for chemical
pollutants during extreme precipitation events, but tile drains contributed the majority of pollution
to the Leary Weber Ditch under all precipitation levels.

Stone and Wilson (2006) also studied the Leary Weber Ditch to compare pollutant flow
paths during storms. Agricultural chemicals can appear more quickly in water from tile drains than
from typical soil matrix flow due to the presence of preferential flow pathways (e.g., tunnels from

invertebrates). This faster transport prevents pollutants from adsorbing to soil particles. This study
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used chloride concentrations to test the flow contributions of both flow pathways. During two
storm events, preferential flow initially contributed little to overall flow (11% of total flow, 40%
of peak flow), although its contribution increased substantially following the initial period (51%
of total flow, 81% of peak flow). Therefore, there is potential for agricultural pollutants to bypass
adsorption by the soil matrix and be transported rapidly into tile drain effluent during heavy rainfall
events.

One of the sources of disagreement in estimates of agricultural pollutants entering streams
may be due to low resolution of stream maps used in analyses. Baker et al. (2007) evaluated the
impacts of stream map resolution on estimates and predictions of riparian buffer effectiveness.
Buffers were defined by contiguous and stream-adjacent forest- and wetland pixels from the
National Land Cover Dataset (NLCD). Buffer width was defined as the span of these forest-
wetland pixels between cropland pixels and the stream. Nutrient loading was simulated from
cropland pixels using different levels of buffer retentiveness. The authors determined that
improved estimates of buffer width, gaps, and variability from increased stream map resolution
led to generally decreased estimates of retentiveness in riparian buffers. The improved stream map
resolution improved estimates of agricultural pollutants entering streams.

Effert-Fanta et al. (2019) studied row crop agriculture in Eastern Illinois and found
increased abundances of herbivorous- and omnivorous fish in streams with intensive agriculture
and poor buffering zones. Areas with high agricultural development and little buffering also had
the highest fish and macroinvertebrate abundances, due to increased nutrients and light within
tolerable levels. The abundance of pollution-tolerant macroinvertebrates was similar across all
sites regardless of buffer quality, possibly due to the homogeneous stream substrate across sites.
However, forested buffers provided woody debris and created deeper pools in streams, creating
ideal habitat for carnivorous fish and a more balanced trophic structure. Intolerant and endangered
fish species also occupied the well-buffered, low-agriculture streams. Overall, high buffering led
to similarity between streams regardless of agricultural intensity, indicating that forested buffer
zones could control for the negative effects of agriculture. A literature review by the EPA indicated
that vegetated riparian zones >25 m wide effectively removed N by 75% or more, and that forested
buffers were more effective than grass alone (Mayer et al., 2005).

Richardson and Beraud (2014) conducted a meta-analysis of riparian forest harvesting.

Like many others, they found increased N in harvested riparian streams, but a low P response.
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They theorized this could be because of efficient uptake by P-limited primary producers. The
effects of riparian harvest overlapped the zero-effect line in a regression analysis, which the
authors suggested resulted from the differences in environments across studies. The authors also
found that aquatic macroinvertebrate density generally increased after riparian forest harvest. They
used potential evapotranspiration (PET) as a proxy for stream temperature. A higher PET (a
warmer stream) induced a greater negative response from shredders and EPT, suggesting their
sensitivity to logging under high temperatures.

The presence of riparian canopy influences the stream microclimate by decreasing sunlight
penetration, particularly in small streams with dense canopies. Canopy density is, therefore, a key
determinant of stream temperature. Streams without sufficient riparian canopies can exhibit
elevated water temperatures that create stressful conditions for fish (Evans-White, 2009).
According to Gregory et al. (1991), downed woody debris from well-developed riparian canopies
provides habitat for invertebrates and influences stream morphology, leading to greater habitat
diversity, such as deep pools, backwaters, and side channels, all of which also create cover for fish.

Riparian zone vegetation types can drastically differ in total biomass. While material from
trees results mainly from senescence (i.e., seasonal leaf fall), most material from herbaceous plants
enters a stream via flooding. Plant matter is a primary food source for aquatic invertebrates, and
while trees provide much higher biomass than herbaceous plants, this material is typically nutrient-
poor and time-consuming to break down. As a result, streams with dense canopies do not typically
support high numbers of herbivorous invertebrates. Shredders are a dominant group of
invertebrates in shaded streams that rely on autochthonous material provided from terrestrial
sources (e.g., tree leaves). Otherwise, unshaded streams have a greater abundance of invertebrates,

which creates higher food availability for fish (Gregory et al., 1991).
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CHAPTER 2. LAND COVER CHANGE IN THE CROPLAND DATA
LAYER

2.1 Data

The USDA National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL)
is one of the most extensive tools for visualizing and measuring land cover in the United States.
The CDL is in the U.S. Public Domain, can be easily viewed and downloaded online, has a 30m
resolution, and has annual data for the contiguous U.S. every year since 2008 (USDA NASS, n.d.-
b). The current recommended online interface for visualizing, selecting, and downloading CDL
data is CroplandCROS (USDA National Agricultural Statistics Service Cropland Data Layer,
2024). During this study, only its predecessor, “CropScape,” was available via the George Mason
University Center for Spatial Information Science and Systems (GMU CSISS, n.d.; USDA
National Agricultural Statistics Service Cropland Data Layer, 2020). CropScape is a strong
candidate for use in land cover analysis because it is easy to access and offers a comprehensive
range of land cover types, particularly row crops such as corn and soybeans. This study aimed to
determine the CDL’s applicability for measuring differences in landcover between years. | used
CDL data from the years 2010 and 2020, as 2010 was the first year with consistent 30m nationwide
coverage, and 2020 was the most recent year available at the time of analysis. Thirty-five counties
in the northern portion of Indiana were selected and analyzed in change visualization due to the

presence of row crop agriculture and forest.

2.2  Methods

2.2.1 Area of Interest Shapefile Export & Import

Nationwide data can be downloaded by year from the Cropland National CDL’s webpage
(USDA NASS, n.d.-a). For more narrow surveys, the data requires a defined area of interest (AOl).
This can be done two ways, either by creating a zipped ESRI shapefile or GML file, then importing
it into the CropScape program, or by directly defining an AOI using the CropScape interactive
data layer. CropScape’s built-in AOI drawing tool only allows for drawing rectangles, circles, and
polygons, or selecting AOIs based on region, state, county, or Agricultural Statistics District
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(ASD). Therefore, defining a more complex or narrow AOI must be done externally and then
imported into CropScape as either a GML file or a zipped ESRI shapefile including .shp, .shx, .dbf,
and .prj files. The “tigris” package in R allows AOI definition using state and county names or
FIPS codes. The “sf” package enables shapefile writing; shp, .shx, .dbf, and .prj files must be
zipped for import into the CropScape program. Alternatively, a shapefile can be created and
exported using queries in a GIS application.

To download AOI data from CropScape, the AOI cannot be more than 4,000,000 square
kilometers. Data can be downloaded as a raster, PDF, or CSV file. For manipulation in RStudio, a
raster or CSV is required. Depending on the AOI size, it may be necessary to manipulate the data
on a high-performance computing system. For this study, an AOI was created as a shapefile in R
including 35 northern Indiana counties (Fig. 2.1), and then imported to CropScape. CSVs of the
data were then downloaded in the default Albers projection for the years of interest. R code used
for this study, written in R version 4.1.2 (“Bird Hippie”), is included in Appendix A. Raster
manipulation in Rstudio was done using the Purdue University Scholar Cluster, a high-

performance computer cluster.
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Indiana Counties Selected for Analysis
Using the Cropland Data Layer
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Figure 2.1. Selected Indiana counties in the study AOI. The extent of the created shapefile
includes the above labeled 35 counties in northern Indiana.
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2.2.2 Land Cover Category Definition & Change Matrix

It is necessary to confirm which land cover categories are present in the AOI; this can be
done on a state- and year-by-year basis by downloading AOI-specific data from the visual
CropScape interface (GMU CSISS, n.d.). For AOIs spanning all 48 states, the pixel counts and
acreages by category are available on the Cropland FAQs page (USDA NASS, n.d.-b). Each
category also has a unique numeric value, which can be used to collapse or redefine land cover
categories. The code used in this study aggregated values from similar categories into larger
categories. It should be noted that the CDL is based on satellite imagery and is therefore meant to
be used as land cover data, not land-use. Lark et al. (2017) recommend combining CDL classes
into larger categories to reduce the error from satellite imagery; in this study, land cover change
types were collapsed into the following categories:

Afforestation: any non-forest land use category to “forest” between 2010 and 2020

Deforestation: “forest” to any non-forest land use category between 2010 and 2020

Undisturbed Forest: “forest” to “forest” between 2010 and 2020 (no change)

Agriculture: “cropland” to “cropland” between 2010 and 2020 (no change)

Other: all other categories and changes (e.g., “barren” to “developed”, “open water” to

“open water”, etc.)

For the purposes of this visualization, the category “Agriculture” also includes fallow or
idle cropland (i.e., land with nothing growing at time of measurement). Tree crops were also
classified as “Agriculture”, under the assumption that farming operations would create an
environment more similar to row crops than to natural forests. The study category “Forest”
includes evergreen, deciduous, and mixed forests; the typical forest type in the study region is
mixed hardwoods dominated by oak, hickory, and maple species.

2.2.3 Visualizing Land Cover Change & Exporting a Raster

To effectively visualize land cover change, a function must be created to reclassify each pixel
value into an aggregated category value. Two new raster images can then be drawn using this
function and the TIFs of the chosen AOIs. These can be used to create a single raster with collapsed
change categories (e.g., “A” to “B”, “B” to “A”), which is then saved as a TIF. Importing the TIF

into ArcMap or ArcGIS enables further analysis and manipulation.
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A new raster was created from the existing CDL raster images of land use in 2010 and
2020. The raster was projected onto a satellite imagery basemap in ArcMap and ArcGIS and
visually evaluated for projection accuracy. Because of the high resolution of the data, the
agricultural or forested areas had to be approximately 20 pixels or larger in size and reasonably

contiguous to be considered of significance.

2.2.4 Technical Validation and Ground Truthing

Technical validation was performed first by visually comparing contemporary satellite
imagery to the change raster. | gathered parcel numbers from a GIS layer of property boundaries
(Indiana Geographic Information Office, 2019). I then retrieved landowner contacts from publicly
available assessed value information from the Indiana Department of Local Government Finance
(DLGF, 2021). Landowners were contacted via physical or electronic mail for permission to visit
sites. | received permission to visit sixteen sites: three afforested, three deforested, five agricultural
and five undisturbed forest. All deforested sites were located in La Porte County, while the
agricultural, afforested, and undisturbed forest sites were located in Benton, Clinton, Howard,
Tippecanoe, Warren, and White counties (Fig. 2.2). Ground truthing was conducted between June
and August of 2022, in which I and at least one field crew member visually surveyed the site and,
if the CDL-projected change could not be verified visually, communicated with the landowners

about the site history.
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Cropland Data Layer Change Analysis
Ground Truthing Sites
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Figure 2.2. Map of sixteen Indiana land cover sites visited for ground truthing between June
and August 2022. Site types identified were afforested (n = 3), agriculture (n = 5), deforested
(n = 3), and undisturbed forest (n = 5).
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2.3 Results

In terms of resolution, the total combined area of the 35 counties is 14,661.75 square miles,
or 9,383,520 acres (US Census Bureau, 2011). The same AOI in the USDA Cropland Data Layer
was 9,233,581 acres. At a resolution of 30 m, there is a loss of 149,939 acres or 1.6% of the
recorded area, considered negligible.

The land use change raster displayed several patterns (Fig. 2.3). First, that the northwest
quarter of the study area, including the Kankakee River and Calumet Region, seemingly had the
highest proportion of deforestation as identified by the CDL. Second, the northeastern quarter of
the study area seemingly had the highest proportion of afforestation. Third, that the greatest
concentration of undisturbed forest was along large rivers and major tributaries. Lastly, the
overwhelming majority of the total landcover was agriculture, distantly followed by the “Other”
category.

Of the six ‘“change” sites visited, none were correctly identified by the CDL. One
“afforested” area was a planted forest older than the study timeframe of 10 years; one was a small
patch of natural forest adjacent to alternating grassy and agricultural areas; and the last was a
misidentified grassy area. The three “deforested” areas in the northwestern quadrant of the region
were determined through site reconnaissance to be long-standing bogs and wetlands, with only
one site confirmed to have experienced selective logging upstream. The sites containing
agricultural and undisturbed forest land cover (n = 10) were confirmed to have been accurately
identified by the CDL, both through ground truthing and existing literature describing land cover
type and distribution in Indiana (Carman, 2013; Munn et al., 2018; Woods, 1998).
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Figure 2.3. Raster image of the Cropland Data Layer’s measured landcover changes in
Northern Indiana between 2010 and 2020. Lower right inset shows detail of Tippecanoe
County, Indiana.
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2.4 Discussion

| determined that the CDL was accurate for cropland and undisturbed forest in the AOI.
However, it was much less accurate for areas of afforestation and deforestation. Specifically, the
sites identified as deforested were misidentified in the reference year, 2010, and were correctly
identified by 2020; the same was true for two afforested sites. These findings indicate that the
CDL experienced an improvement in accuracy for non-agricultural, non-forest landcover in
northern Indiana between 2010 and 2020 (Fig. 2.4). In a study conducted for several Midwestern
farm bureaus, the CDL showed a decrease in deciduous forest alongside an increase in woody
wetlands across multiple Midwestern states (Decision Innovation Solutions, 2013). This is
similar to my finding in northwestern Indiana, and may be due to improvements in, or improved
integration with, the USGS National Land Cover Database, which provides non-agricultural land
cover information to the CDL (USDA NASS, n.d.-b).

Lark et al. (2015) suggested analyzing all years of CDL data within the temporal window
of interest to understand the trajectory of change in land cover over time and account for
classification errors between years. This is recommended for analyzing crops that may undergo
yearly rotation. As demonstrated here, it also applies to non-crop land cover change analysis,
especially when early years of CDL data are used. In quantifying CDL accuracy for South
Dakota between 2006 and 2012, Reitsma et al. (2016) also found that land use change accuracy
was consistent for cropland and grassland. However, for categories including forests, wetlands,
and non-agricultural developed areas, they found low accuracy which decreased with time. This
contrasts with my finding that the CDL has experienced an improvement in accuracy for non-
agricultural, non-forest categories since 2010, but this discrepancy may be due to differences in
study area, years of interest, and category collapse, a general challenge also noted by Lark et al.
(2017).

Dunn et al. (2015) questioned the accuracy of the grassland area calculations in Lark et
al. (2015), partly because the CDL struggles to differentiate between grassland-type land covers
(e.g., alfalfa and other hay). However, they concluded that ground truthing and satellite imagery
should be used, rather than the CDL alone. Dunn et al. (2017) emphasized the need for ground
truthing as a direct source of landcover information. It is interesting to note that one of the six
“change” sites studied here was misidentified in 2020, and the site was a grassy area. While not

misidentified as a similar category (e.g., hay), it does support the grassland-related identification
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issues identified by other studies (Dunn et al., 2015; Dunn et al., 2017; Lark et al., 2015; Reitsma
etal., 2016).

All of the studies cited concluded that the CDL poses accuracy-based challenges for land
cover change analysis. This agrees with my results and supports the idea that the CDL should be
used for land cover change quantification only with consideration for the accuracy of the years of
interest and extensive verification from ground truthing and satellite imagery. The accuracy of
the CDL in broadly measuring agriculture, and to a lesser extent forest, in northern Indiana has
been reinforced by the ground truthing in this study
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Figure 2.4. A comparison of CDL
imagery for a selected area in
northwestern Indiana during the years
2010, 2015, and 2020. Note increasing
blue (“Woody wetlands™) and tan
(“Shrubland”) areas with temporal
progression.
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2.5 Summary

Land cover is a subject of much interest to environmental science, whether for preliminary
sampling site selection or as data analysis. The CDL is an extensive and easily accessible collection
of land cover data for the contiguous United States. At the same time, the accuracy of the CDL is
constantly improving, which poses challenges when using it in land cover change analysis. The
goal of this study was to determine whether differences in land cover between years could be
accurately measured using the CDL. The years chosen were 2010 and 2020, and the area measured
was northern Indiana. After data manipulation and visualization in R and ArcGIS and site
reconnaissance at areas of “afforestation” and “deforestation,” it was concluded that the CDL was
unreliable in identifying land cover change based on aggregated forest types for northern Indiana
between the years 2010 and 2020. Further research into the CDL as an analysis tool for land use
changes may focus on developments in its accuracy over time in identifying and differentiating
similar categories of non-agricultural land use, such as woody wetlands and deciduous forest.

In the case of studies using the CDL for land cover change analysis, it is advisable for
researchers and data analysts to seek supplemental or alternative means of land cover change
measurement. Additionally, any usage of the CDL for contemporary land cover classification
should also include site reconnaissance and visual verification through current satellite imagery.
In the case of CDL usage as a means of site selection for land cover change-based study,
communication with landowners or managers about the history of their land should be used in

addition to ground truthing and satellite imagery.

37



CHAPTER3. AGRICULTURAL AND FORESTED STREAM
BIOLOGICAL INTEGRITY

3.1 Data

3.1.1 Site Descriptions

My study focused on small streams in the Central Corn Belt Plains and Eastern Corn Belt
Plains ecoregions of Indiana. | selected study streams based on the following criteria: a wetted
width <10m, a maximum depth <1m, and accessible with permission by landowners or public
domain when sampled. The original objective was to sample at least 30 streams. However, site
selection was constrained by time limitations, inclement weather, low flow conditions, personnel
logistics, and a limited number of participating landowners. Within these constraints, | sampled 21
sites over a single season to avoid year-to-year variation.

Four sample sites were in the Central Corn Belt Plains ecoregion and 17 were in the Eastern
Corn Belt Plains ecoregion (Table 3.1). Both ecoregions occur within the EPA Level Il Central
U.S. Plains ecoregion. The sites were typically current- or past agricultural ditches or stream
reaches in the Wildcat Creek, Sugar Creek, and Big Pine Creek watersheds. A few exceptions to
the <10m stream width criterion were made for Sugar Creek sites that were wadable due to low
water conditions and could be sampled using a backpack electrofisher. Sites were located
throughout Benton, Boone, Clinton, Howard, Montgomery, Tippecanoe, Warren, and White
counties in Indiana (Fig. 3.1).

Study sites were primarily rural, with a few urban or exurban stream reaches. All sites were
characterized by adjacent land uses on a continuum from intensive agriculture to secondary forest.
At least two of the privately owned forested sites were in recovery after intensive agriculture in
previous decades. Two forested sites were properties managed by NICHES Land Trust, a local
land stewardship organization. Two sites were adjacent to active agriculture but maintained a
forested buffer zone. Three sites were owned by Purdue University: the Animal Sciences Resource
Education Center, the Purdue University Forestry and Natural Resources Farm, and Throckmorton
Agricultural Center. Another site was at Tippecanoe Battlefield and Museum, a forested public
park and national historic landmark. The remaining 11 sites were privately owned stream reaches

across the intensive agricultural-forested continuum.
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All study sites were on properties with >100m stream reaches that met the above selection
criteria. Where possible, I conducted site reconnaissance to determine site suitability for inclusion
in the study and access points for sampling. This was especially critical for selecting entry and exit
points for heavily forested streams. A few sites had obstacles (e.g., thickets adjacent to the stream
or severe channel narrowing) that made access throughout the 100m study reach difficult or
impassable. For impassable sites, modifications to the sampling protocol were made as described

in Section 3.2.1. However, most streams were fully accessible throughout the 100m study reach.

N Indiana Counties Selected for
A Fish Sampling June-July 2022
White
Benton
Howard
Tippecanoe L\_
Warren
Clinton
Montgomery Boone
036 12 18 24 :
O wm Miles
Figure 3.1. North-Central Indiana counties selected for fish sampling and QHEI assessment
from June to July 2022.
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Table 3.1. Study sites sampled between June and July of 2022. Included are site code, stream
name, latitude and longitude coordinates, Indiana county, and Level IV EPA Ecoregion.

Sampled

Stream

Site Stream Name Lat. Lon. County Level IV Ecoregion
S1 Marshall Ditch 40.50097 -87.02756 Tippecanoe 54a lllinois/Indiana Prairies
S2 Jordan Creek 40.42003 -86.97051 Tippecanoe 55b Loamy High Lime Till Plains
S3 Indian Creek 40.42165 -87.04330 Tippecanoe 55b Loamy High Lime Till Plains
S4 Opossum Run 40.22898 -87.47116 Warren 54a lllinois/Indiana Prairies
S5 Unnamed Stream 1 40.57376 -86.80646 Tippecanoe 55b Loamy High Lime Till Plains
S6 Throckmorton Ditch 40.29589 -86.89978 Tippecanoe 55b Loamy High Lime Till Plains
S7 McClamrock Ditch 40.19302 -86.37290 Clinton 55b Loamy High Lime Till Plains
S8 Mud Pine Creek 40.55466 -87.32108 Benton 54a llinois/Indiana Prairies
S9 Brown Ditch 40.47611 -87.22434 Warren 54a lllinois/Indiana Prairies
S10 Unnamed Stream 2 40.47215 -87.20654 Warren 54a lllinois/Indiana Prairies
S11 South Fork Wildcat Creek 40.32210 -86.39366 Clinton 55b Loamy High Lime Till Plains
S12 West Honey Creek 40.42748 -86.28267 Howard 55b Loamy High Lime Till Plains
S13 Burnett Creek 40.50628 -86.84590 Tippecanoe 55b Loamy High Lime Till Plains
S14 Little Potato Creek 40.22745 -86.65612 Montgomery 55b Loamy High Lime Till Plains
S15 Goldsberry Creek 40.14837 -86.67031 Boone 55b Loamy High Lime Till Plains
S16 Wolf Creek 40.13009 -86.64146 Boone 55b Loamy High Lime Till Plains
S17 Prairie Creek 40.13796 -86.60414 Boone 55b Loamy High Lime Till Plains
S18 Bowers Creek 40.18752 -86.77072 Montgomery 55b Loamy High Lime Till Plains
S19 Lye Creek Drain 40.15062 -86.81981 Montgomery 55b Loamy High Lime Till Plains
S20 Sugar Creek 40.10744 -86.82320 Montgomery 55b Loamy High Lime Till Plains
S21 Little Sugar Creek 40.05064 -86.82392 Montgomery 55b Loamy High Lime Till Plains

40




3.2 Methods and Materials

3.2.1 Site Sampling Procedures

| sampled fish communities in the study reaches with a field crew (i.e., the author plus 1-3
field personnel) between June 1%t and July 31%, 2022. Each sampling event occurred between 09:00
and 17:00. The field crew completed sample collection within two hours at most sites. We sampled
2-4 sites daily depending on weather conditions, stream morphology, and stream size. Fish were
sampled using a DC backpack electrofisher (Model ABP-3; ETS Electrofishing Systems, LLC;
Madison, WI; Figure 3.2) with the following settings: 160-190 V, a frequency of 120 Hz, and a
25% duty cycle. Small adjustments in these settings were necessary based on study reach water
chemistry. | determined the appropriate electrofisher settings for each study site based on fish
recovery time after briefly operating the electrofisher downstream of the study reach.

To sample fish in each of the study reaches, | operated the backpack electrofisher while the
remaining crew members used dip nets to collect the stunned fishes. Stunned fishes were kept in a
5-gallon (18.9L) bucket or 20L flow-through livewell filled with stream water. The electrofisher
was operated for ~30 minutes (1800 s), or until a 100m reach was covered at each site. Exceptions
were made for impassible terrain (e.g., stream too narrow and banks too steep to sample) or thick
large woody debris accumulations in the stream channel. The field crew sampled all available
stream habitats, including stream shallows and a variety of instream cover types (e.g., rootwads,
undercut banks, aquatic vegetation, and boulders).

The field crew identified captured fishes to species, counted the number of individuals of
each species in the sample, and then released them after sampling the study reach. When fishes
were highly abundant in a study reach, we processed the samples at the approximate halfway point
in the reach to prevent oxygen stress and high mortality. We then sampled and processed the fish
captured from the midpoint to the end of the study reach. All fish identifications and counts were
recorded on a site-specific field datasheet. For consistency, one field crew member recorded data
for each site, while the other field personnel identified the fish species in the sample.

I completed Qualitative Habitat Evaluation Index (QHEI; Rankin, 1989; Ohio EPA, 2006)
forms for each study site after processing the fish sample. Some bias is inherent in QHEI scoring

due to the study design. Specifically, backpack electrofishing precludes sampling very deep or fast
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streams, or streams with excessive amounts of instream cover (e.g., fallen trees) that would prevent

movement throughout the study reach.

Figure 3.2. Left: the author using an ABP-3 backpack electrofisher (ETS Electrofishing
Systems, LLC; Madison, WI). Right: a forested study stream reach with downed woody
debris.

3.2.2 Outlier Identification

In a preliminary analysis of data normality, | determined that S20, Sugar Creek, was an
outlier. S20 had a drainage area of 1041.2 km? (402 mi?); the average drainage area of all other
sites was 39.1 km? (24.3 mi?) (Fig. 3.3a). Similarly, S20’s number of individuals was 716; the
average of all other sites was 204.9 (Fig. 3.3b). Therefore, while S20 was sampleable in low-water

conditions, it did not meet the stream criteria and was excluded from the data analysis.

42



1100 1000
* 520

1000 A S00
X 800 - S .
o 3 700 1 520
L 700 - = |
s 5 600
© 600 - £ oo A
< 500 A G
g 400 A g 400
S 300 A E 300 A
O 200 | 200 7

100 - N 100 A J_

. — |
0 0

Figure 3.3. Boxplots showing outliers in Indiana stream data for drainage area in km? (left;
Figure 3.3a) and number of individual fishes captured (right; Figure 3.3b). Site 20 was an
outlier for stream drainage (1041 km?) and number of individuals (n = 716).
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3.2.3 Site Classification Metrics

| delineated the watersheds of all 20 study sites and measured the agricultural land cover
using ModelMyWatershed software (Dewitz, 2021; Stroud Water Research Center, 2017).
Cultivated crops covered at least 50% of the drainage basin area in 19 of 20 sites, at least 75% of
the drainage basin area in 16 of 20 sites, and at least 90% of the drainage basin area in 11 of 20
sites.

Before comparing site metrics, sites were categorized as agricultural or forested based on
riparian characteristics. To do this, I chose four variables related to land cover to use in a principal
components analysis (PCA): Cropland Data Layer (CDL) agriculture:forest ratio, riparian width,
the QHEI Bank Erosion and Riparian Zone metric score, and the Normalized Difference
Vegetation Index (NDVI) (Masek et al., 2006; Vermote et al., 2016). | chose a cutoff value
between agricultural and forested for each variable, and classified sites based on agreement
between variables.

| created buffers for each site to measure study site riparian landcover using the CDL.
These were written in RStudio using the sf package and centered on the site coordinates with an
approximate 1km radius. | then imported shapefiles of the buffers to CropScape, the visual
interface for the CDL. Data was downloaded in .csv format for the study year (2022) and imported
into RStudio. Landcover types were collapsed into eight categories: Cropland, Herbaceous, Water,
Developed, Barren, Forest, Pasture, and Wetlands, following the same procedure described in
Chapter 3. | used the median ratio of agriculture-to-forest pixel counts for site classification
(median = 3.3). Sites below the median were categorized as forest, and values greater than the
median were categorized as agriculture.

| measured riparian width using the measurement tool in Google Earth. Measurements in
meters were taken at the site coordinates, approximately perpendicular to the stream’s angle of
meander at the coordinates. The left and right banks’ riparia widths were averaged for a single
stream riparian measurement. Because multiple streams had no riparian zone (riparian average =
0 m), the median of the dataset could not be used for categorization. Instead, the category threshold
was based on the proposed minimum width for a functional riparian zone (20 m) proposed by Feld
etal. (2018).

Metric 4 of the Ohio EPA QHEI is Bank Erosion and Riparian Zone. The maximum

possible score for this metric is 10 and the minimum is 1. This metric includes three components:
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erosion, riparian width, and flood plain quality. Erosion is scored from 1 to 3 (none/little); riparian
width is scored from 0 (none) to 4 (wide >50m); and flood plain quality is scored based on the
land use >100m away from the stream (maximum score of 3). The median sum value of these
components was 5.6; sites below the median were classified as agriculture while sites greater than
the median were classified as forest.

The Normalized Difference Vegetation Index (NDVI) is a widely used indicator of
vegetation greenness based on satellite imagery (Remote Sensing Phenology, 2018). | used the
MODIS/Terra+Aqua Land Cover Type (LC) Yearly L3 Global 500 m SIN Grid (product ID:
MOD13A3) at the 16-day 250-m NDVI band (Masek et al., 2006; Vermote et al., 2016). This
provided lower spatial resolution and much higher temporal resolution than the CDL. The
coordinates of each site’s approximated transect center were entered into the MODISTools
package in R, along with the 16-day window that included the sampling date. The area covered
was 4 kmz centered on each of the 21 transects. The median NDVI was 0.7; sites below the median

were classified as agricultural and sites greater than the median were classified as forested.

3.2.4 Index of Biotic Integrity Calculation

| calculated fish Index of Biotic Integrity (Karr, 1981; Karr et al., 1986; Simon and Dufour,
1997; hereafter, IBI) for each site using Microsoft Excel. Using this approach, fish species’
characteristics and community composition at the sites were used to score metrics that sum to
provide the IBI. The metrics include the number of darters, madtoms, and sculpin; number of
darters; %headwater species; number of sunfish; number of minnow species; number of
suckers; %pioneer species; number of sensitive species; %tolerant
species; %oomnivores; %insectivores; %carnivores; CPUE; %simple lithophiles; and %DELTSs (i.e.,
fish exhibiting external deformities, erosions, lesions, or tumors). For sites with <50 individuals, |
used the IBI score modifications recommended by Simon and Dufour (1997). DELTs were not
counted in sampling, so all study sites with 50 or more individuals were given a score of 5. A table
of the IBI component scores is included in Appendix B.

The protocols used to calculate IBI differ based on the drainage area of the sampled stream
(i.e., <51.8 km? [10 sites] and >51.8 km? [10 sites]). | used the drainage areas of Indiana streams
provided by Hoggatt (1975). The average drainage area included in the study was 62.9 km? (min

= 11.5 km?, max = 132.6 km?). Site S10 did not have an appropriate measurement point on the
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USGS drainage map (i.e., drainage at closest measurement point = 380.7 km?). Therefore, |
approximated the S10 drainage area by averaging the drainage at the three most comparable ditches,
S1 (Marshall Ditch, 20.6 km?), S6 (Little Wea Creek Tributary, 86.5 km?), and S9 (Brown Ditch,
48.2 km?).

3.2.5 Statistical Methods

The variables included in statistical analysis were: land cover category (agricultural or
forested; hereafter, category), QHEI score, IBI score, number of individuals, number of species,
number of sensitive species, and number of tolerant species. As QHEI score includes land cover
components, it was necessary to determine the validity of using it as an independent variable with
IBI as a dependent variable. Therefore, | ran four different linear models for comparison: IBI
following category, IBI following QHEI, IBI following the cross of category and QHEI, and IBI
following category and QHEI (hereafter models 1, 2, 3, and 4, respectively).

| developed a corrected Akaike Information Criteria (AICc) model selection table using
the four linear models. Model 2 was the best model, with an AICc of 156.15 and a weight of 0.61.
The model 1 AlCc was 158.05 with a weight of 0.24. The model 4 AlCc was 159.30 with a weight
of 0.13. Model 3 was the weakest model identified, with an AlICc of 162.86 and a weight of 0.02.
(Table 3.2). Models 1 and 2 (Category and QHEI, respectively) were used in the analysis.

Table 3.2. AICc model selection output table.
Model selection based on AlCc:
K AlCc Delta AICc | AICcWt Cum.Wt LL

QHEI 3 156.15 0.00 0.61 0.61 -74.33
Category 3 158.05 1.90 0.24 0.85 -75.28
Category + | 4 159.30 3.14 0.13 0.98 -74.31
QHEI

Category * | 5 162.86 6.71 0.02 1.00 -74.29
QHEI

IBI following QHEI, number of sensitive species following QHEI, and percent tolerant
species following QHEI required use of the Pearson Product Moment Correlation coefficient or
Spearman Rank Correlation coefficient because they were all continuous variables. IBI following
category, QHEI following category, number of individuals following category, and number of
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species following category were tested using independent t-tests or nonparametric equivalents. A

p-value < 0.05 was considered significant for all tests.

3.3 Results

3.3.1 Site Classification Analysis

| conducted a principal components analysis (PCA) using the site categorization metrics,
including CDL ratio, riparian width, QHEI subsection, and NDVI. A heatmap of the correlation
matrix showed little correlation of NDVI values with any other metric. Additionally, the
correlation with the CDL agriculture-to-forest pixel ratio was close to zero (Fig. 3.4). A biplot with
square cosine values was used to determine similarity between variables, impact of each variable
on the two most significant principal components, and the amount of representation of each
variable within a component. This plot showed that CDL agriculture-to-forest ratio and QHEI
subsection were the two most well-represented variables in the two most significant principal
components; average riparian width was less well-represented; and NDVI was very poorly
represented (Fig. 3.5).
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Figure 3.4. A correlation matrix heatmap of the variables used in agriculture vs. forest land
cover classification: Cropland Data Layer agriculture:forest ratio (“cdlrat’), average wooded
riparian width (“ripav”’), mean Normalized Difference Vegetation Index value (“ndvi_m”), and
Qualitative Habitat Evaluation Index bank and riparia components (“qbr”’). Mean NDVI values
had a low correlation with other variables.
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Figure 3.5. A biplot with square cosine values of variables used in agriculture vs. forest land
cover classification. Higher square cosine values (cos2) indicate a more well-represented
variable. CDL agriculture-to-forest pixel count ratio (“cdlrat”) and QHEI Bank & Riparia

subsection score (“qbr”) are the two best-represented variables. Mean site NDVI (“ndvi_m”) is
very poorly represented.
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As supported by the PCA, NDVI proved unreliable as a means of categorizing landcover
(Table 3.3). For example, a site with no wooded riparian zone had an NDVI of 0.82, while a site
with an extensive riparian zone had an NDVI of 0.65. This is due to the NDVI’s inability to
differentiate between tree leaf greenness and other forms of vegetation, including row crops. For

this reason, NDVI was not included in the categorization of study sites.

Table 3.3. Parameters of sampled stream sites in north-central Indiana. QHEI scores and NDV I
are also included. Land cover measure parameters indicating agricultural ("Ag") land are in
bold; non-bolded items indicate forest ("Fo"). "QHEI Bank & Riparia” is the score from
Section 4 of the Ohio EPA QHEI form. Riparian width is the average of the left and right
riparia at the approximate center of the transect, perpendicular to the stream. CDL Ag:Forest is
the ratio of pixel counts for agricultural and forest land cover taken from the USDA Cropland

Data Layer.

Sampled QHE! Riparian

Stream Bank & Width CDL Land Cover
Site QHEI NDVI Riparian {m) Ag:Forest Category
81 29.0 0.53 3.0 6.5 623.60 Ag
82 63.0 0.77 7.0 199.5 023 Fo
83 63.0 0.76 85 520.0 0.05 Fo
54 51.0 0.65 9.0 2095 1.63 Fo
85 66.5 0.71 95 606.0 1.08 Fo
S6 420 0.52 4.0 0.0 18.06 Ag
s7 54.5 0.51 55 365 3.73 Ag
58 31.0 0.65 3.0 42.0 272.42 Ag
59 41.0 0.56 3.0 0.0 3.40 Ag
510 24.0 0.59 3.0 0.0 5.94 Ag
S11 72.5 0.48 5.0 19.0 8.7 Ag
512 71.0 0.57 6.5 75.0 2.99 Fo
513 62.5 0.77 10.0 46.0 0.43 Fo
514 47.0 0.82 3.0 0.0 18.01 Ag
515 67.5 0.80 6.5 108.0 292 Fo
516 73.0 0.76 6.5 80.0 317 Fo
S17 62.0 0.69 7.0 325 2.36 Fo
518 405 0.86 3.0 0.0 649.40 Ag
519 493 0.87 4.8 9.5 13.04 Ag
521 56.8 0.76 58 575 1.91 Fo
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The CDL, average riparian width, and QHEI subsection were in strong agreement for 18
out of 20 sites. The two remaining sites, S8 and S9, were ambiguous due to higher-than-expected
riparian width averages (36.5m and 42.0m, respectively) compared to the QHEI subsection and
CDL values. Site S8 was a stream in recovery from intensive agriculture, with a highly variable
upstream riparian width. Site S9 had a wide but sparsely wooded riparian buffer on the right bank
and no wooded riparian zone on the left bank. Both were also classified as agricultural by the
QHEI subsection and CDL values, which were the best-represented variables in the PCA.
Therefore, both were categorized as agricultural sites. There were 10 agricultural sites and 10

forested sites after classification (Fig. 3.6).
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Figure 3.6. Fish and QHEI stream sampling locations by land cover category (Agriculture,
Forest). Sites were located in Benton, Boone, Clinton, Howard, Montgomery, Tippecanoe,
Warren, and White counties in north-central Indiana.
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3.3.2 Summary Statistics

For all sites, the mean number of individuals captured per site was 204.9 (median = 163.5,
SD =148.4). The mean number of species identified at each site was 12.2 (median =12, SD = 6.1).
The mean site QHEI score was 53.6 (median =55.6, SD = 15.2). The mean site IBI score was 36.7
(median =40, SD = 11.1).

For agricultural sites, the mean number of individuals captured was 147.1 (median = 102.5,
SD =120.5). The mean number of species identified at each site was 10.4 (median = 12, SD = 4.5).
The mean site QHEI score was 43.1 (median =41.5, SD = 14.1). The mean site IBI score was 34.0
(median =40, SD = 12.8).

For forested sites, the mean number of individuals captured was 262.7 (median = 248.5,
SD =156.8). The mean number of species identified at each site was 13.9 (median = 13, SD = 7.1).
The mean site QHEI score was 64.1 (median = 64.8, SD = 6.6). The mean site IBI score was 39.4
(median = 40, SD = 8.9). Mean and standard deviation values for all four metrics across both

categories are provided in Table 3.4.

Table 3.4. Summary statistics (mean * standard deviation) of number of individuals, number
of species, QHEI score, and I1BI score for agricultural and forested streams.

Category Mean Individuals Mean Species Mean QHEI Mean IBI
Agricultural | 147.1 (£120.5) 10.4 (£4.5) 43.1 (x14.1) 34.0 (x12.8)
Forested 262.7 (£156.8) 13.9 (7.1) 64.1 (+6.6) 39.4 (£8.9)

3.3.3 Statistical Tests

A Shapiro-Wilk test was used to test the data for normality. Outliers were detected by
drawing boxplots. Homogeneity of variance was tested using mean-center and median-center
Levene’s tests. The Kruskal-Wallis test was used when assumptions for an independent t-test (i.e.,
“Welch’s t-test””) were not met or when the data contained outliers.

The Shapiro-Wilk test p-values (>0.05) indicated the data were normally distributed for
number of individuals, number of species, and QHEI score for both agricultural and forested
streams (Table 3.5). The Shapiro-Wilk test indicated that the 1Bl score data were not normally
distributed for agricultural sites (p = 0.011). Boxplots revealed that the number of individuals

found at agricultural site S14 was an outlier (n = 431). The boxplot of QHEI scores indicated that
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forested site S4 was also an outlier (n =51.0) (Fig. 3.7). Kruskal-Wallis tests were used for number
of individuals, QHEI score, and IBI score, while Welch’s t-test and Kruskal-Wallis test were run
for the number of species. Because the Kruskal-Wallis test requires all factors to be numeric,
agricultural was coded as 1 and forested was coded as 2.

A Shapiro-Wilk test was run for QHEI score, IBI score, percent tolerant species, number
of intolerant species, and percent cultivated crops in delineated study site watersheds. The Shapiro-
Wilk test indicated that 1BI score, number of intolerant species, and percent cultivated crops had
non-normal distributions (p = 0.035, p = 0.001, and p < 0.001, respectively) (Table 3.6). Using
boxplots, the percent tolerant species at S6 (86%) was revealed to be an outlier. The number of
intolerant species at sites S21 (n = 10), S16, and S17 (n = 11 at both sites) were also determined
to be outliers (Fig. 3.8). As mentioned in Section 3.2.3, cultivated crops accounted for at least 90%
of drainage basin area for 11 of 20 sites, which created outliers. The Spearman Rank Correlation

Coefficient was used for all correlation analyses due to violation of one or more assumptions.

Table 3.5. Assumptions and test selection for four dependent variables following land cover
(1BI, number of individuals, number of species, QHEI). Normality was tested using the
Shapiro-Wilk test. Homogeneity of variance was tested using mean-center and median-center
(“med-center”’) Levene’s tests.

Data Normality
Depe_ndent Outliers | Homogeneity of Variance | Test Used
Variable i
Agriculture Forest
Heterogeneous
Non-normal Normal Kruskal-
IBI _ _ No (mean-center p = 0.029) )
(p=0.011) | (p=0.801) (med-center p = 0.277) Wallis
No. of Normal Normal Yes ) Kruskal-
Individuals | (p=0.054) | (p=0.561) Wallis
Homogeneous Welch’s;
SNZ;:i%fs ( I\I_o(r)rria5I6) ( N_o(r)n;zlo) No (mean-center p = 0.121) Kruskal-
P p=5. p=0. (med-center p = 0.132) Wallis
Normal Normal Kruskal-
QHEL | (v=0665) | (p=0696) | Y - Wallis
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Table 3.6. Assumptions and test selection for five continuous variables (QHEI, I1BI, number of
intolerant species, percent tolerant species, percent cultivated crops in delineated study site
drainage basin). QHEI was the independent variable to be used in analysis for all other
variables except percent cultivated crops, which was analyzed with 1BI. Normality was tested
using the Shapiro-Wilk test.

Variable Data Normality Outliers Test Used
Normal
QHE (p = 0.184) No )
IBI Non-normal No Spearman Rank Sum
(p =0.035) Correlation
Normal Spearman Rank Sum
0,
% Tolerant Spp. (p =0.424) Yes Correlation
Non-normal Spearman Rank Sum
No. of Intolerant Spp. (b = 0.001) Yes Correlation
. Non-normal Spearman Rank Sum
% Cultivated Crops (b < 0.001) Yes Correlation
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Figure 3.7. Boxplots of four variables by land cover for 20 sampled sites. Variables include
number of individuals captured, number of species captured, Index of Biotic Integrity (IBI)
score, and QHEI score. Outliers are labeled with site number.
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Figure 3.8. Boxplots of IBI score, QHEI score, number of intolerant species, and percent
tolerant species for n = 20 sites. Outliers are labeled with site number; multiple outliers of the
same value are labeled on one point.

The nonparametric Kruskal-Wallis rank sum test showed no significant difference in
median IBI scores between agricultural and forested streams (y2 = 0.83, df = 1, p > 0.36). The
Kruskal-Wallis test showed no significant difference in median number of individuals between
agricultural and forested streams (y2 = 3.3, df =1, p =0.070). Welch’s t-test showed no significant
difference in mean number of species between agricultural and forested streams (df = 15.24, p >
0.2). The Kruskal-Wallis test likewise showed no significant difference in median number of
species between agricultural and forested streams (y2 = 1.05, df = 1, p > 0.3). The Kruskal-Wallis
test showed a significant difference in median QHEI scores between agricultural and forested
streams (y2 =9.14, df =1, p = 0.002).
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QHEI and IBI were not significantly correlated based on Spearman Rank Correlation
analysis (r = 0.27, df = 18, p = 0.25; Figure 3.9). There was also no significant correlation between
QHEI and percent tolerant species using the Spearman Rank Correlation coefficient (r =-0.2, df =
18, p > 0.30; Figure 3.9). QHEI and number of intolerant species were not significantly correlated
based on Spearman Rank Correlation analysis (r = 0.23, df = 18, p > 0.30; Figure 3.9). Finally,

IBI and percent cultivated crops were not significantly correlated based on Spearman Rank

Correlation analysis (r =-0.31, df = 18, p = 0.178; Figure 3.9).
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Figure 3.9. Spearman Rank Correlation plots of biotic and abiotic measures for 20 stream
sites. Clockwise from top left: QHEI score and Index of Biotic Integrity score (r =0.27, p =
0.25); QHEI and percent tolerant species (r = -0.2, p > 0.30); IBI score and percent cultivated
crops in drainage basin (r = -0.31, p = 0.178); QHEI and number of intolerant species (r =
0.23, p > 0.30).
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3.4 Discussion

My study findings suggest that fish IBls, site QHEI scores, and component scores for both
protocols were largely uncorrelated with local land use. This may have been due, in part, to the
logistical challenges encountered during the study. In particular, the number of study sites was
smaller than originally planned, which resulted in underpowered tests. The weather conditions
during sampling were also very dry (NOAA, 2023). This may have affected local fish assemblage
compositions due to fish movement away from suboptimal conditions (Ross et al., 1985).
Limitations in transect size and location may have also affected species representation in fish
samples (Karr et al., 1986). It must also be noted that the IBI calculations in my study were based
on historical drainage area measurements from Hoggatt (1975). The measurements used in my
study classify 10 of the 20 sites as “large”, while contemporary measurements of delineated
drainage area based on site coordinates classify seven of the 20 sites as “large” (Stroud Water
Research Center, 2017; USGS, 2019). Hoggatt (1975) was used by Sullivan et al. (2003) and Lau
et al. (2006) for drainage area measurement; the methods used in other studies cited in this
discussion are unknown.

Stream IBI scores for both agricultural (x = 34.0 + 12.8) and forested (x = 39.4 + 8.9) study
sample sites fell within the range of scores corresponding to Poor and Fair biotic conditions,
respectively, but were not significantly different (Doll, 2011; Karr et al., 1986). Hrodey et al.
(2009) also found that fish IBI scores of first- to fourth-order Wabash River tributaries were not
significantly different between agricultural, forested, and fallow field land uses. They suggested
this was because <400 individuals were captured at nearly half of the study sites. Shields et al.
(1995) reported higher variability in IBI scores for streams with total fish catches <400 individuals,
and Simon and Dufour (1997) recommended that sites with total catches <50 should be excluded
in IBI calculation, or the calculation must be modified. Sites S1, S2, and S19 had fewer than 50
captured individuals, and all sites except S14, S15, S16, and S17 had fewer than 400 captured
individuals, which could be the cause of the increased variability in overall IBI scores (Fore et al.,
1994).

It is possible that land cover categories used in this study were not representative in scale
to the extent that there would be measurable differences in IBIs between forested and agricultural
streams and ditches. Studies by Sullivan et al. (2003), Lau et al. (2006), and Clark-Kolaks (2022)

found no significant correlation between the riparian zone scores taken from QHEI site
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assessments and IBI scores. Similarly, Roth et al. (1996) found that catchment-scale agricultural
land cover was a strong predictor of IBI, but that reach-scale (1500 m) median vegetation width
was a weak predictor. This contradicts my lack of significant correlation between IBI score and
percent cultivated crops in study area drainage basins, further indicating a possible issue due to
sample size.

The lack of significant differences between IBI scores of forested and agricultural streams
sampled in my study may also be due to tile drainage in agricultural areas beyond the forested
riparian buffer. Previous research has suggested that forested riparian areas may be poor at
mitigating agricultural runoff to streams in the presence of tile drainage (Baker et al., 2006; Stone
and Wilson, 2006). While tile drainage was not a factor in stream classification for this study, it is
a very common feature of agricultural lands in Indiana (Pavelis, 1987), and most drainage basins
in my study were strongly agricultural (Dewitz, 2021; Stroud Water Research Center, 2017).
Alternatively, the areas adjacent to streams and ditches lacking forested riparian buffers were often
grassed. This may indicate the efficacy of grassed riparian strips in mitigating the addition of fine
sediments and nutrients to ditches and streams (Hughes and Quinn, 2014; Osborne and Kovacic,
1993; Yuan et al., 2009).

| found no significant correlation between IBl and QHEI. Regression models developed by
Moerke and Lamberti (2006) indicated that IBI was related to local and instream scale metrics,
including large woody debris volume, dissolved oxygen, specific conductivity, and turbidity,
which were not measured in my study. In a study of 29 Minnesota streams, Talmage et al. (2002)
likewise found a positive correlation between fish 1Bl and metrics such as %woody debris and
%overhanging vegetation. Sullivan et al. (2003) and Lau et al. (2006) both found significant
positive correlations between IBI and QHEI scores across east-central Indiana stream transects (n
=42 and 40, respectively). The streams sampled by Lau et al. (2006) had comparable QHEI (i.e.,
26 — 83) and fish IBI (i.e., 20 — 52) scores to those in my study. This suggests that the absence of
a significant correlation between these variables in my study may have been related to sample size.
Shields et al. (1995) studied Mississippi streams and found no significant relationship between IBI
and QHEI and attributed this (in part) to small capture numbers (i.e., n < 400 fishes) and a lack of
pristine reference sites, both of which were issues in my study.

There were no significant correlations between land cover type and the number of fish

captured or fish species richness. These relationships may have been masked by the comparably
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small number of study sites, the small physical size of the streams sampled, or the low numbers of
fish in the samples under very low water conditions. However, landscape factors related to fish
abundance and fish species richness have not been consistently identified in other studies. For
example, Hrodey et al. (2009) found that the total number of fish in a sample was best explained
by QHEI score, followed by watershed area and % upstream forest. They also found that fish
species richness was significantly higher in forested than agricultural streams. On the other hand,
Moerke and Lamberti (2006) found that species richness was most strongly predicted by drainage
area, low-flow yield, urban land cover, and lacustrine geology, while forested- and agricultural
land covers were not strong predictors of species richness. It is clear that the relationship between
landscape factors and fish abundance and fish species richness is complex and not always directly
correlated with land cover type.

There were no significant correlations between QHEI and the number of intolerant fish
species or the percentage of tolerant fish species in a sample. Lau et al. (2006) found a higher
number of intolerant fishes in natural than channelized streams, although there was no difference
in the number of tolerant fishes across these stream types. Roth et al. (1996) anecdotally observed
higher numbers of intolerant fishes at sites with Habitat Index (HI) values above 60 (n = 23) but
the relationship was not statistically quantified. Shields et al. (1995) tested correlations between
fish IBI components and 10 physical habitat measures across four categories, including riparian
conditions; severity of channel incision; substrate and habitat heterogeneity; and cover and pool
formation. They found that the number of intolerant fishes was negatively correlated with channel
depth and the presence of kudzu (Pueraria montana), an invasive vine that outcompetes shading-
and bank-stabilizing riparian plants native to the study area in Mississippi. The number of
intolerant fishes was positively correlated with the availability of pool habitat. The opposite was
true for the proportion of tolerant fishes, which was positively correlated with channel depth and
kudzu presence and negatively correlated with the availability of pool habitat. The physical
properties included in my study were based on qualitative assessments that may not have been
sufficient to capture the associations between abiotic factors and the fish community.

| found that median QHEI scores were significantly higher for forested streams (median =
62.0, IQR = 5.75) compared to agricultural streams (median = 40.4, IQR = 15.7). Hrodey et al.
(2009) also found that QHEI scores were significantly higher for forested riparian streams than

agricultural streams. Moerke and Lamberti (2006) also found that QHEI scores were positively
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correlated with the amount of local forest land cover. This makes sense, because QHEI scores
include components that score higher due to the presence of a forested riparian zone (e.g., riparian

land cover, presence of woody debris; Rankin, 1989).

3.5 Summary

The aim of this study was to investigate the relationship between surrounding land usage
(i.e., row crop versus forest status) and the biological integrity of streams in the Temperate Plains
ecoregion of Indiana. QHEI, land cover, and fish species data were collected for 20 sampled stream
sites in north-central Indiana. Mean IBI scores were not significantly different between ditches
and streams with agricultural vs. forested riparian areas, and QHEI was not significantly correlated
with IBI score in the sampled Indiana streams. These results suggest that there may be no
association between land cover and biotic integrity in Indiana Temperate Plains streams. However,
due to time and resource constraints and outlier exclusion, only 20 sites were used in analysis.
Future research on the correlations between land cover and stream biotic integrity may build on
these findings by using larger sample sizes, controlling for drainage types in agricultural fields or
the usage of non-riparian management practices, or employing precise measures of forest area
rather than binary land cover categories. The dynamics between agriculture, forests, and stream
integrity are complex and highly interconnected. A better understanding of the intricacies of
landscape-stream interactions mediated by riparia is necessary to create and improve management

strategies.
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APPENDIX A. LAND COVER CHANGE ANALYSIS R CODE

library(base)
library(utils)
library(graphics)

library(sp)
library(raster)

# packages below are only necessary if creating and exporting a shapefile in Rstudio:
library(dplyr)

library(magrittr)

library(sf)

library(tigris)

# define study area county cluster for shapefile
study_area <- tigris::counties(state = "IN", cb = TRUE) %>%
st_as_sf() %>% filter(NAME %in% c(

"Adams", "Allen", "Benton", "Blackford", "Carroll", "Cass", "Clinton",
"DeKalb", "Elkhart", "Fulton™, "Grant", "Howard", "Huntington", "Jasper",
"Jay", "Kosciusko", "LaGrange", "Lake", "LaPorte", "Marshall”, "Miami",
"Newton", "Noble", "Porter"”, "Pulaski", "St. Joseph", "Starke", ""Steuben",
"Tippecanoe”, "Tipton", "Wabash", "Warren", "Wells", "White", "Whitley"

)

#create shapefile of study area
st_write(study_area, paste0("'studyarea.shp™))

#load the TIFs downloaded from Cropscape for years 0 and 1:
tmpl <- paste("yearlraster.tif", sep = "/")
tmpO0 <- paste("yearOraster.tif", sep = "/")

#define as raster data:
tifl <- raster(tmpl)
tif0 <- raster(tmp0)

# Change raster value to 1 = "forest", 2 = "cropland”, and 3 = other:

myfun <- function(x){
z <- rep(NA, length(x))
z[which(x ==0)] <-0
z[which(x >= 141 & x <= 143)] <- 1
z[which((x>=1&x<=57) | (x>=59 & X <=77) | (x >= 205 & x <= 254))] <- 2
z[which(x ==58 | (x >= 78 & x <= 140) | (x >= 144 & x <= 204) | x >= 255)] <- 3
return(z)
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#calculate new raster:
CDL_yr0 <- calc(tif0, fun = myfun)
CDL_yr1 <- calc(tifl, fun = myfun)

# create a new raster to display the change
# 0 = outside the map (original 0)

# 1 = anything to "forest"

# 2 = "forest" to anything

# 3 = "forest" to "forest"

# 4 ="cropland" to "cropland"

# 5 = all other categorical changes

mydat <- overlay(CDL_yr0, CDL_yr1, fun = function(x,y){
z <- rep(NA, length(x)) # create a vector of NAs
zZ[(x==0&y==0)]<-0
zZ[(x!'=1&y==1)]<-1
Z[(x==1&y!=1)]<-2
zZ[(x==1&y==1)]<-3
Z[(x==2&y==2)]<-4
z[is.na(z)] <-5
return(z)

)

# save as a tif file
writeRaster(mydat, "mydat.tif")
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APPENDIX B. IBI DATA TABLE

Table B.1. Index of Biotic Integrity (IBI) component metrics for 21 sampled Indiana streams in Benton, Boone, Clinton, Howard,
Montgomery, Tippecanoe, Warren, and White counties. Streams were sampled between 6/6/2023 and 7/20/2023. Fish samples
were collected using a Smith-Root backpack electrofisher in one 100m or approximately 1800s transect. CPUE (catch per unit

effort) is the total number of individuals captured at each site. DELTs are the number of fish displaying a deformity, erosion,
lesion, or tumor. Total IBI scores and total species captured are also provided for sampled sites. Site 20 was omitted from further
statistical analysis as an outlier.

Sampled Stream Site

1Bl Components S1 s2 S3 S4 S5 S6 s7 S8 S9 s10 S11 S12 S13 S14 S15 S16 S17 S18 519 S20 S21
Darter/madtom/sculpin species 1 2 4 3 2 1 5 2 0 1 3 3 3 4 3 5 5 5 1 6 4
Darter species 1 2 3 2 1 0 5 2 0 1 3 2 2 3 3 5 4 3 0 4 3
Headwater species 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Sunfish species 2 0 1 1 0 0 0 3 3 1 2 0 1 2 1 3 3 2 0 2 3
Minnow species 1 6 9 6 3 4 6 4 5 3 5 2 6 6 9 10 8 7 0 10 9
Sucker species 1 0 0 0 0 0 1 2 1 0 1 0 2 2 3 3 1 0 0 1 4
% Pioneer species 69 33 29 59 45 46 38 13 4 71 55 24 38 74 63 57 45 41 0 57 47
Sensitive species 0 2 2 0 0 0 2 5 3 2 4 1 2 3 7 11 11 3 0 11 10
% Tolerant species 41 17 37 58 62 86 50 13 27 53 30 19 18 35 38 21 2 30 21 5 6
% Omnivores 0 0 10 19 15 13 8 8 8 0 6 0 9 19 17 7 0 22 0 5 2
% Insectivores 91 77 60 39 38 13 33 84 77 46 59 81 82 38 29 43 60 58 27 43 52
% Carnivores 3 0 0 0 0 0 ] 7 15 1 10 0 0 4 0 2 5 10 73 2 8
CPUE 32 30 279 252 131 70 240 166 107 98 98 161 141 431 415 471 502 196 33 716 250
% Simple lithophiles 25 37 26 54 60 41 54 4 T 19 36 42 40 " 23 21 19 8 0 22 33
% DELTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Total IBI Score 20 28 38 32 26 20 46 48 38 20 42 42 36 44 44 48 48 44 18 46 52

Total Species 7 8 14 10 5 5 12 15 12 6 12 5 12 15 19 25 19 16 4 21 22
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