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ABSTRACT 

The Temperate Plains ecoregion of Indiana has experienced significant agricultural 

development since the 19th century, which has left streams vulnerable to impacts such as 

sedimentation and nutrient accumulation. This thesis describes first the accuracy of the USDA 

Cropland Data Layer (CDL) in land cover change, and second, the relationships between 

agricultural and forested land covers and stream biological integrity. I first employed the CDL to 

review land cover change, particularly relating to agriculture and forest, for the area of interest 

between 2010 and 2020. I determined that the CDL improved in accuracy for the area of interest 

in the chosen timeframe for non-agricultural and non-forest land cover. I concluded that the CDL 

was best used as a supplement to primary-source land cover measures. Next, I calculated the fish 

Index of Biotic Integrity (IBI) scores for 20 sampled agricultural and forested streams in North-

Central Indiana. I also assessed the stream habitats at all sites using the Qualitative Habitat 

Evaluation Index (QHEI) and percent cultivated crops in drainage basin areas for all streams. 

Forested streams had significantly higher QHEI scores than agricultural streams (median = 62 and 

40.4, respectively). No other relationships were statistically different, including IBI and land cover 

category, which may have been due to the small sample size (n = 20). I concluded that future 

studies may build on these findings by controlling for agricultural drainage types or using precise 

measures of forested land cover. 
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INTRODUCTION 

Over half of all land in the United States is used for agriculture (Baker and Capel, 2011). 

Indiana is a heavily agricultural state, and over the last 200 years, approximately 75% of its forests 

have been removed (Carman, 2013), with 80% of all land cleared for crop and animal agriculture 

(Capel et al., 2018). Row crops such as corn and soybeans now dominate the central Indiana 

landscape, resulting in high vulnerability of streams to agricultural pollutants (Munn et al., 2018; 

U.S. EPA, 2020). Such farming practices can affect adjacent water bodies through erosion and 

sedimentation from tillage, nutrient loading associated with fertilizer application, and pesticide 

application (Meador and Frey, 2018; Munn et al., 2018; Nowell et al., 2018). Agricultural runoff, 

i.e., water flow over farm fields resulting from irrigation, precipitation, or snowmelt, is the primary 

source of these stressors. It can enter water bodies directly on the surface or through groundwater 

or drainage tile fallouts and impact stream habitats and biological integrity.  

Fine sediment is also a major contributor to water quality impairment. For example, the 

National Rivers and Streams Assessment (NRSA) of 2013-2014 reported that 44% of all sampled 

stream miles had “Fair” or “Poor” levels of excess streambed fine sediments. Two-thirds of 

sampled stream miles in the Temperate Plains ecoregion, including Central Indiana, were rated 

“Fair” or “Poor” due to excess streambed fine sediments; one-third of the surveyed streams were 

“Poor” (U.S. EPA, 2020). Surface soil erosion contributes approximately one-third of fine 

sediments in Midwestern streams, while streambanks and channels comprise two-thirds (Gellis et 

al., 2017). Fine sediment can smother stream habitat and breeding areas, inhibit aquatic plant 

growth, and transport sorbed contaminants into water bodies (Meador and Frey, 2018; Munn et al., 

2018; USGS, 2018). The Ohio River drainage basin, which covers most of Indiana, is estimated to 

yield 44.9 tons of fine sediments from agriculture each year (Robertson and Saad, 2019). 

Another large source of agricultural pollution is nutrients associated with fertilizers. Each 

year in the United States, >10 million tons of nitrogen (N) and almost 2 million tons of phosphorus 

(P) fertilizers are used in agricultural operations (Munn et al., 2018). However, nutrient application 

is not always efficient, resulting in lost nutrients that do not contribute to agricultural production. 

For example, Potter et al. (2006) estimated that 28% of applied N and 16% of applied P are 

potentially lost from cropland annually. These lost nutrients often enter surface waters, causing 

eutrophication and increasing N and P availability. Elevated levels of these nutrients allow algae 
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to bloom excessively, which can decrease dissolved oxygen concentrations and even create 

hypoxic (i.e., very low or no dissolved oxygen) conditions. Hypoxia is problematic because it often 

causes organism die-offs. The Ohio River drainage basin is estimated to yield 236 kg of N and 

36.8 kg of P per square kilometer per year from non-manure fertilizer application (Robertson and 

Saad, 2019). The NRSA of 2013-2014 evaluated over half of the sampled rivers and streams in the 

Temperate Plains ecoregion as having very high (“Poor”) levels of Total Phosphorus and Total 

Nitrogen when compared to reference sites (U.S. EPA, 2020). The USGS conducted a National 

Water Quality Assessment (NAWQA) of selected areas in the United States and found that the 

sampled areas in Central Indiana had elevated nutrient levels (Munn et al., 2018). Nitrate and 

ammonia, in particular, accumulate predominantly in water, including subsurface drains and open 

streams. Indiana is one of three Mississippi River drainage basin states that provide 40% of the 

nitrogen entering the Gulf of Mexico (Capel et al., 2018). 

Like fertilizers, pesticides and their byproducts are present throughout field-stream systems. 

Dozens of pesticide compounds may exist at a single stream site (Meador and Frey, 2018; Nowell 

et al., 2018). Pesticides are not always directly toxic to fish. For example, insecticides can 

indirectly affect fishes through chronic toxicity to aquatic macroinvertebrates that serve as fish 

prey (Nowell et al., 2018). A model simulation also indicated that north-central Indiana streams 

had a 5-50% probability that the annual mean concentration of atrazine, an herbicide, would exceed 

the benchmark for drinking water (Capel et al., 2018). Agriculture has numerous and widespread 

effects on Midwestern streams and rivers. 

The goals of this paper are twofold. My first goal is to evaluate the United States 

Department of Agriculture National Agricultural Statistics Service Cropland Data Layer as a 

means to compare differences in agricultural and forested land cover over time (Chapter 3). My 

second goal is to investigate the relationship between surrounding land cover (i.e., row crop versus 

forest) and the biological integrity of streams in the Temperate Plains ecoregion of Indiana 

(Chapter 4). 

To achieve my first goal, I extracted land cover information for northern Indiana from the 

USDA NASS Cropland Data Layer and classified it using relevant categories. I then used the land 

cover change raster to select sites for ground truthing the projected CDL land cover type. To 

accomplish my second goal, I sampled fishes at stream sites in north-central Indiana to use them 

to calculate an Index of Biotic Integrity (IBI; Karr, 1981; Karr et al., 1986; Ohio EPA, 2006) for 
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each site. I also assessed local stream habitats using the Qualitative Habitat Evaluation Index 

(QHEI; Rankin, 1989), as well as CDL pixel counts and riparian measures to categorize sites as 

agricultural or forested. Finally, I used models to determine any significant correlations between 

surrounding land use and IBI scores. 
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 LITERATURE REVIEW 

1.1 Role of Forests 

The Temperate Plains ecoregion in central Indiana includes the Illinois/Indiana Prairies, 

(EPA Ecoregion 54a, hereafter “Indiana Prairies”) and the Loamy, High Lime Till Plains, (EPA 

Ecoregion 55b, hereafter “Till Plains”) (Woods, 1998). The Indiana Prairies and Till Plains were 

flattened from Ice Age glaciation, later resulting in areas of wetlands, forests, and tallgrass prairie. 

In particular, the Indiana Prairies were predominantly prairie with oak-hickory forest, and the Till 

Plains were predominantly forest. Beginning in the 19th century the land was gradually converted 

to agriculture, degrading streams with chemical and fine sediment pollution, bank erosion, and 

higher water temperatures (Woods, 1998). In addition, widespread and intensifying agriculture 

within a flat landscape with poor drainage eventually required extensive ditching and subsurface 

drain installation (Capel et al., 2018). The Midwest accounts for approximately 30% of the 1 

million square kilometers of wetlands in the contiguous United States that have been converted to 

agriculture through drainage. As a result, extensive land clearing and wetland draining confined 

most of the remaining forests in the Indiana Temperate Plains ecoregion to isolated woodlots and 

riparian zones along streams and rivers (Woods, 1998). 

At the local level, stream health is controlled by the presence and quality of a riparian forest 

buffer. A riparian forest buffer is an area of perennial plants bordering a water body that is managed 

for conservation purposes (MacFarland et al., 2017). Riparian forests benefit adjacent- and 

downstream water bodies and associated stakeholders. Among these benefits are nutrient uptake, 

filtration of fine sediments in overland flow, pesticide sequestration, streambank stabilization, 

shade, instream cover, and food sources (e.g., leaf fall) for aquatic biota (e.g., MacFarland et al., 

2017). 

Riparian vegetation has a “baffling effect” on overland flow, weakening stormwater 

surface flow and facilitating fine sediment deposition in the riparian zone. Fine sediment 

deposition is also coupled with nutrification because phosphorus and certain forms of nitrogen are 

sorbed by soil particles that are mobilized by surface flow. Dosskey et al. (2010) found that root 

networks remaining after aboveground vegetation removal could continue to protect stream health 

for decades after removal. The ability of riparian zones to control and sequester N, P, and other 
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nutrients also depends on many factors, including soil type, nutrient load, vegetation composition 

and nutrient uptake, and stream geomorphology. However, riparian zones generally control 

nutrient and sediment deposition in streams (Naiman et al., 2005). Indeed, because two-thirds of 

sedimentation is from bank and channel erosion and sedimentation can degrade algal, invertebrate, 

and fish communities, maintaining a healthy root system in the riparian zone is key (USGS, 2018). 

The River Continuum Concept (RCC) posits that headwater streams are typically forested, 

and therefore have photosynthesis-limiting shade that creates dependence on allochthonous (i.e., 

imported organic) material by resident aquatic biota (Vannote et al., 1980). Woody vegetation also 

filters solar radiation, regulating stream temperature and summarily increasing a stream’s O2 

capacity, which decreases respiratory stress in aquatic organisms (NRCS & Wildlife Habitat 

Council, 2007). While woody vegetation provides the greatest shade for streams, fully-grown 

grasses and forbs can sufficiently shade streams narrower than 2.5 m (Blann et al., 2002). 

1.2 Stream Health Metrics 

Headwater streams represent at least 50% of the overall length of all stream systems on 

earth (Richardson, 2020). Also known as upper reaches, they are the source of water for larger 

streams and rivers. Headwater streams are defined as 1st, 2nd, and 3rd order streams in the River 

Continuum Concept, which is based on Strahler stream order, a system for classifying streams by 

their number of tributaries (Strahler, 1952, 1957; Vannote et al., 1980). These headwater streams 

average 0.8 to 3.7 m wide, with size increasing exponentially with Strahler stream order (Downing, 

2012). Headwater streams are ranked as critically important for climate regulation, food web 

dynamics, nutrient cycles, and recreation, while the larger rivers they influence are critically 

important for water consumption, food sources, and flood control (Yeakley et al., 2016). They 

influence connected higher-order streams by transporting nutrients, pollutants, organic matter, and 

sediment downstream. However, as small and often unprotected water bodies, they are highly 

vulnerable to changes in the environment (Richardson, 2019).  

Several indicators are used to determine stream health, including benthic 

macroinvertebrates, fish assemblages, and physical habitat metrics. Benthic macroinvertebrates 

are macroscopic invertebrate animals that live in (i.e., infauna) or on the surface of (i.e., epibenthic) 

stream substrates. They are used as bioindicators because they vary in pollution tolerance by 

species and cannot migrate away from polluted conditions, meaning that only a few tolerant 
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species will be found in streams with suboptimal water quality. For example, agricultural 

insecticides such as permethrin impact insect reproduction and development (Capel et al., 2018). 

Macroinvertebrates are also more likely to be present than fish in very small, low-order streams, 

and are easily captured and identified (U.S. EPA, 2013). There are several indices used in benthic 

macroinvertebrate sampling, including the Ephemeroptera Plecoptera Trichoptera (EPT) Index, 

which provides a rapid assessment of water quality based on the presence of the generally 

pollution-intolerant insect orders Ephemeroptera, Plecoptera, and Trichoptera (Barbour et al., 

1999). 

Fish assemblages reflect the diversity and numbers of fish species present in a water body. 

They are used as bioindicators because a diverse assemblage requires a variety of food sources, 

complex habitat for shelter, and specific spawning conditions (Barbour et al., 1999). Because fish 

can move away from degraded areas, the composition of a fish assemblage is an indicator of water 

quality and stream health. For example, fertilizers such as ammonia (NH3) impact the reproductive, 

respiratory, and nervous systems of fishes (Capel et al., 2018). Like benthic macroinvertebrates, 

there are many ways to use fishes as indicators, which can be chosen based on region, stream size, 

and existing pollution level. Among the indices appropriate for small Midwestern streams are the 

number and identity of darter species, headwater species, sucker species, and intolerant species; % 

omnivores, insectivores, and carnivores; and total number of individuals (Karr, 1981; Karr et al., 

1986). 

Stream physical habitat is an important component in determining the effects of 

anthropogenic land uses on streams (Frissell et al., 1986). This is typically done by evaluating 

physical habitats within, adjacent to, and along streams. This can be done to quickly estimate 

stream health by using a metric-driven assessment, the Qualitative Habitat Evaluation Index 

(QHEI; Rankin, 1989). Evidence of human disturbance (e.g., developed surrounding land, dams), 

habitat complexity and cover, and sediment type are all components of physical habitat quality and 

are easy to evaluate. In particular, riparian vegetation composition is a useful indicator because it 

reduces sediment and overland nutrient runoff entering the stream, stabilizes riparian sediment, 

and provides organic material for instream cover and food (MacFarland et al., 2017; Rankin, 1989). 

The NRSA of 2013-2014 found that Indiana stream health indicators rated poorly (U.S. 

EPA, 2020). Macroinvertebrate composition in Temperate Plains streams was rated as 46% Poor 

and 30% Fair, and fish assemblages were rated as 34% Poor and 31% Fair. Notably, for all streams, 
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a Poor sedimentation rating made a Poor benthic macroinvertebrate condition twice as likely. The 

USGS NAWQA supported this with the conclusion that macroinvertebrate composition in the 

sampled region of Indiana was influenced by physical habitat, not nutrient levels. That is, the 

nutrients were sufficiently abundant not to limit the growth of biota (Munn et al., 2018). 

1.3 Agriculture and Stream Integrity 

Alexander et al. (2008) created an improved water-quality model to evaluate and predict 

how total N and total P move from sources in the Mississippi and Atchafalaya River Basins into 

the Gulf of Mexico. They found that ~50% of the N and ~25% of the P entering the Gulf of Mexico 

came from corn and soybean row crop agriculture. Indiana delivered the greatest N yield (1806.6 

kg/km/yr) and had the third largest share of the total flux (10.1%). Illinois, Iowa, and Indiana 

together accounted for 38.2% of all N flux entering the Gulf of Mexico. 

A study by Kladivko et al. (2004) assessed the nitrate N concentrations from subsurface 

drains in southeastern Indiana over 15 years of row crop agriculture. The area studied was the 

Southeast Purdue Agricultural Center, within the Eastern Corn Belt Plains. The tile drains were 

spaced variously at 5, 10, and 20 m apart. The authors determined that nitrate concentrations were 

unrelated to drain spacing, but instead decreased by more than half as a result of lower fertilizer 

application, the use of winter cover crops, and rotations of no-till corn and soybeans. 

Stream sedimentation is problematic not only because of the accelerated changes to stream 

morphology, but also because sediment is able to retain sorbed pollutants from agriculture. Wolf 

et al. (2020) studied benthic macroinvertebrate responses to agricultural stream sediments and 

found that intolerant species experienced mortality where highly-tolerant species did not. 

However, the mortality levels were not proportional to the levels of agricultural development 

between sites. This may have been due to a large decrease in biotic integrity with a small increase 

in development, followed by a “ceiling” where increased development yielded almost no response. 

Wang et al. (2007) sampled Wisconsin streams and found that those in high-agriculture, 

low-forest regions had the greatest median N and P concentrations, fewer EPT taxa, lower counts 

of EPT macroinvertebrates, and fewer overall taxa present than less developed forested regions. 

However, their measurements also showed highly variable biological integrity even at low nutrient 

levels, implying that non-nutrient factors impact assemblages without N and P deposition. The 
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authors concluded that indirect non-nutrient factors, nutrient effects, and interactions explained 

much of the variation in fish and macroinvertebrate assemblages in the selected streams. 

To develop nutrient criteria specific to nutrient-heavy Indiana streams, Caskey et al. (2010) 

measured the relationship between nutrient-based stressors and biotic communities. The study 

streams’ basins were overwhelmingly agricultural (77%), with forested basins only comprising 

16% of the study area. The two most abundant aquatic insect families were Chironomidae (41.7%) 

and Hydropsychidae (17.3%), which are considered tolerant of poor stream conditions. Tolerant 

species such as central stoneroller Campostoma anomalum, creek chub Semotilus atromaculatus, 

and bluntnose minnow Pimephales notatus were abundant in the sampled fish communities 

(13.3%, 9.9%, and 9.3% total relative abundance, respectively). 

Caskey and Frey (2009) assessed agricultural stream fish community composition in the 

Indiana-Ohio Eastern Corn Belt Plains ecoregion. The two most abundant fish species were central 

stoneroller and bluntnose minnow (25.7% and 11.1%, respectively), accounting for 36.8% of the 

fishes captured. Differences between similar biological communities were attributed to 

environmental factors other than nutrient levels; a canonical correspondence analysis suggested 

that an increase in mean bankfull depth (i.e., maximum possible depth of the stream channel before 

stream overflow) increased the number of fish taxa present. 

One of the potential sources of N and P that can affect fish and macroinvertebrate 

assemblages in streams is eutrophication. Much attention has been given to the effects and 

mechanisms of eutrophication in lakes. However, there is evidence that streams also exhibit 

eutrophication that can impact biological integrity. In a literature review, Dodds and Smith (2016) 

found that P and N control phytoplankton biomass. High levels of either nutrient can increase 

benthic algal biomass, contradicting the widely-held assumption that P is the limiting nutrient for 

freshwater ecosystems. They also cite several papers finding that high N and P levels jointly 

decreased fish and aquatic macroinvertebrate abundances. Hypoxia is the main concern with 

lacustrine eutrophication, but N and P can also cause changes in herbivory and detritus 

consumption by influencing primary productivity and primary consumption.  

Another way N and P pollution influence stream health is through nutrient-limited growth 

and trophic changes. Evans-White et al. (2009) suggested that slight N and P increases can cause 

a change in food quality, shifting trophic structure and therefore negatively impacting assemblage 

diversity. Shredders are a trophic guild of macroinvertebrate species that consume plant-based 
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detritus by chewing or boring. Collector-gatherers are a trophic guild of macroinvertebrate species 

that consume detritus. The authors found that fast-growing shredder and collector-gatherer taxa 

utilized high-P food sources and could out-compete other invertebrate taxa under eutrophic 

conditions. Predators, which have a better balance between body C:N and C:P than their prey, 

were less affected. There was a negative relationship between macroinvertebrate taxa diversity and 

nutrient levels. Shredder taxa also decreased in diversity with increasing P, and chironomid species 

dominated the community. Broadly, macroinvertebrate species with relatively high N or P 

requirements are limited by those nutrients, and could grow without constraint and out-compete 

other species in enriched conditions. This change in macroinvertebrate assemblage composition 

can then affect other parts of the trophic system. Their results found variability in indicator taxa 

even under low-nutrient conditions, which corroborated the findings of Wang et al. (2007). 

Camargo and Alonso (2006) conducted a global literature review of aquatic nitrogen 

pollution and identified a rise in inorganic N concentrations in water bodies everywhere. They also 

listed the drastic effects of anthropogenic N eutrophication, such as hypoxia, lowered light 

penetration, and trophic shifts in macroinvertebrates and fish, including the decline of salmonids 

and EPT species. N pollution is therefore of critical importance for aquatic ecosystem health 

worldwide. Meador and Frey (2018) studied streams across the Midwest for predictors of fish 

community composition, measuring N, P, streambed sedimentation, dissolved oxygen (DO), 

riparian vegetative cover, riparian disturbance, bed sediment contaminants, streamflow variability, 

pesticides, and instream habitat cover. Total N was of the highest importance; however, the factors 

controlling N pollution are complex and involve precipitation, tile drainage, and tillage practices. 

Sedimentation and P were also important influences for the Temperate Plains ecoregion, followed 

by DO, riparian vegetative cover, and riparian disturbance. 

The USGS Midwest Stream Quality Assessment (MSQA), conducted in 2013, presented a 

cross-section of biological impacts of various anthropogenic stressors (USGS, 2018). It determined 

that sensitive forms of algae require hard substrates, cool water, and low levels of herbicides, 

particularly triazines, such as atrazine. Similarly, aquatic invertebrate diversity decreases with the 

presence of excessive soft substrates, such as silt and muck. Notably, mean nitrate concentration 

increased exponentially with the percentage of a watershed planted in corn. Ammonia and 

pesticides also degraded aquatic macroinvertebrate diversity. Fish diversity decreased with total 

nitrogen and soft substrates, which cover breeding habitat and prevent reproduction. Pollutants 
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like pesticides were found at higher-than-tolerable levels for invertebrates and algae. Indeed, 

because riparian zones inhibit runoff, high-quality forested riparia were associated with robust 

macroinvertebrate communities even within heavily agricultural watersheds. 

1.4 Agricultural Drainage and the Role of Riparian Buffers 

Riis et. al (2020) conducted a meta-analysis that ranked ecosystem services provided by 

different riparian vegetation types. They determined that forested riparian zones were of medium- 

or high importance for N and P removal, sediment removal, pesticide removal, erosion control, 

flow regulation, habitat provision, regulation of microclimate, pollination, and standing woody 

biomass. Other types of riparia (herbs/grass, wet forest, and wetlands) were variously ranked as 

medium- or high importance for some, but not all, of the same services. For example, wetlands 

were of ‘medium’ importance for standing crop of non-woody biomass, while all other types of 

riparia were ‘low’ importance. Overall, dry forest riparian zones were of the highest importance 

for the greatest portion of ecosystem services. 

Simon and Collison (2002) observed the root numbers and strengths of young trees (<10 

years on average) as well as herbaceous vegetation. They determined that riparian vegetation 

influences bank stability through the number of roots per unit area and the strength of those roots. 

They found that larger (>5 mm) roots typical of woody vegetation are stronger and better at bank 

reinforcement than a large number of small roots per unit area, typical of herbaceous species. 

However, this was based on observations during an unusually dry period. In contrast, riparian trees 

came in second to switch grass Panicum virgatum in terms of bank reinforcement during a high 

rainfall period. The authors recommended that riparian management should also consider other 

factors, including mechanical and hydrologic properties, tree canopy cover during dormancy, 

rooting depth, and transpiration, and that a mixture of woody and herbaceous species would be 

most beneficial. 

Pollen-Bankhead and Simon (2010) corroborated the findings of Simon and Collison 

(2002. They accounted for seasons and included more riparian tree species, finding that soil 

cohesion varied with season. Root volume was the critical factor in streambank stability in winter 

and spring, rather than the suction force resulting from evapotranspiration. When 

evapotranspiration was the most critical factor in soil cohesion, longleaf pine Pinus palustris and 

river birch Betula nigra provided similar suction to switch grass. It was suggested that a 
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combination of trees and switch grass is ideal for bank stability. Polvi et al. (2014) quantified 

riparian species’ root tensile strengths and found that tree roots were stronger than any other 

taxonomic group. While they did not account for the effects of different sediment textures on roots, 

they nonetheless advised that woody and non-woody species should be used together. 

It has been long accepted that riparian vegetation reduces agricultural sediment runoff into 

streams (Naiman et al., 2005). The primary vehicle for sediment trapping is the physical resistance 

of above-ground vegetation and its ability to slow down overland flow. Notably, it has been shown 

that vegetated buffer zones can reduce sediment runoff into streams from 60% to 90% (Daniels 

and Gilliam, 1996; Cooper et al., 1987). This research necessarily preceded studies of nutrient 

transport, because N and P sorb to soil particles; therefore, preventing or reducing sedimentation 

also prevents nutrient runoff. On the other hand, there is much debate on the effectiveness of 

vegetated buffers for nutrient removal. One confounding factor is the seasonality of vegetation 

versus precipitation. Liu et al. (2014) argued that plants are dormant for most of the Midwestern 

winter, spring, and early summer, and the water table is too far below the root zone during the dry 

season for plants to uptake N. However, subsurface flow is irregular and often heaviest during 

spring when plants are exiting dormancy. A study by Stauffer et al. (2000) also indicated that 

wooded riparian zones effectively protect fish and macroinvertebrate communities from intensive 

agriculture in the Midwest. Indeed, their conclusion was that the quality of the riparian zone had a 

greater impact on fish assemblages than runoff potential. 

Osborne and Kovacic (1993) conducted a literature review to assess the potential 

effectiveness of vegetated buffers. They found that forested buffer strips were generally effective 

for N reduction (40-100%). These results were applicable to forested buffer strips as narrow as 16 

m. Grass buffer strips were also effective to a smaller degree, reducing 10-60% of N from tile 

drainage and 54-84% from surface drainage. They also studied the nutrient-reducing effects of a 

vegetated buffer strip in a central Illinois field with tile drainage. They determined that forested 

buffers removed nitrate from shallow tile drains better than grass buffers. However, they were 

more efficient at nutrient removal from surface flow than subsurface drains. 

Structural best management practices are also subject to degradation and become less 

effective over time. Bracmort et al (2006) assessed grassed waterways, grade stabilization 

structures, field borders, and parallel terraces that had been implemented in two highly agricultural 

drainage areas of Black Creek watershed in Allen County, Indiana. Using the Soil and Water 
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Assessment Tool (SWAT) the authors estimated that structure installation decreased sediment 

deposition by 16-32% and decreased P deposition by 10-24% when implemented in the 1970’s 

and 1980’s. After 20 or more years post-installation, the structures reduced sediment yield by only 

7-10% and P yield by 7-17%. 

While there is consensus that riparian vegetation reduces sedimentation in streams, studies 

disagree on whether including trees is less effective, or as equally effective as grass-only buffers 

(Yuan et al., 2009; Hughes and Quinn, 2014). Regardless, bank stability is improved by the 

presence of trees in a riparian zone (Simon and Collison, 2002; Pollen-Bankhead and Simon, 2010; 

Polvi et al., 2014), and bank erosion is the source of two-thirds of stream sedimentation (USGS, 

2018). 

There is similar disagreement about N and P runoff potential related to riparian vegetation 

type (Liu et al., 2014; Stauffer et al., 2000). A model simulation indicated that buffer zones did 

not protect invertebrate assemblages in regions where crop fields were tile-drained, including 

Central Indiana (Munn et al., 2018). However, because of nutrient sorption to soil, riparian 

vegetation may prevent a considerable amount of runoff to surface waters in the absence of 

subsurface drainage (Carpenter et al., 1998). A literature review by Feld et al. (2018) concluded 

that wooded riparian buffers of sufficient width and length could retain up to 100% of nutrients 

and sediment from runoff. 

Baker et al. (2006) conducted a study within the Temperate Plains region of Indiana to 

investigate agricultural chemical transport routes. The study site was highly agricultural (87% of 

land use) and tile drained. The two largest sources of water and chemical pollutants to Leary Weber 

Ditch were overland flow and tile drains. Pesticide parent compounds were more prevalent than 

degradates in overland flow than in tile drain water. Overland flow contributed less water than tile 

drain flow when rainfall was <0.5 in/hr (10% and 90%, respectively) and when rainfall was >0.75 

in/hr (40% and 60%, respectively). Overland flow became a significant vehicle for chemical 

pollutants during extreme precipitation events, but tile drains contributed the majority of pollution 

to the Leary Weber Ditch under all precipitation levels. 

Stone and Wilson (2006) also studied the Leary Weber Ditch to compare pollutant flow 

paths during storms. Agricultural chemicals can appear more quickly in water from tile drains than 

from typical soil matrix flow due to the presence of preferential flow pathways (e.g., tunnels from 

invertebrates). This faster transport prevents pollutants from adsorbing to soil particles. This study 
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used chloride concentrations to test the flow contributions of both flow pathways. During two 

storm events, preferential flow initially contributed little to overall flow (11% of total flow, 40% 

of peak flow), although its contribution increased substantially following the initial period (51% 

of total flow, 81% of peak flow). Therefore, there is potential for agricultural pollutants to bypass 

adsorption by the soil matrix and be transported rapidly into tile drain effluent during heavy rainfall 

events. 

One of the sources of disagreement in estimates of agricultural pollutants entering streams 

may be due to low resolution of stream maps used in analyses. Baker et al. (2007) evaluated the 

impacts of stream map resolution on estimates and predictions of riparian buffer effectiveness. 

Buffers were defined by contiguous and stream-adjacent forest- and wetland pixels from the 

National Land Cover Dataset (NLCD). Buffer width was defined as the span of these forest-

wetland pixels between cropland pixels and the stream. Nutrient loading was simulated from 

cropland pixels using different levels of buffer retentiveness. The authors determined that 

improved estimates of buffer width, gaps, and variability from increased stream map resolution 

led to generally decreased estimates of retentiveness in riparian buffers. The improved stream map 

resolution improved estimates of agricultural pollutants entering streams. 

Effert-Fanta et al. (2019) studied row crop agriculture in Eastern Illinois and found 

increased abundances of herbivorous- and omnivorous fish in streams with intensive agriculture 

and poor buffering zones. Areas with high agricultural development and little buffering also had 

the highest fish and macroinvertebrate abundances, due to increased nutrients and light within 

tolerable levels. The abundance of pollution-tolerant macroinvertebrates was similar across all 

sites regardless of buffer quality, possibly due to the homogeneous stream substrate across sites. 

However, forested buffers provided woody debris and created deeper pools in streams, creating 

ideal habitat for carnivorous fish and a more balanced trophic structure. Intolerant and endangered 

fish species also occupied the well-buffered, low-agriculture streams. Overall, high buffering led 

to similarity between streams regardless of agricultural intensity, indicating that forested buffer 

zones could control for the negative effects of agriculture. A literature review by the EPA indicated 

that vegetated riparian zones >25 m wide effectively removed N by 75% or more, and that forested 

buffers were more effective than grass alone (Mayer et al., 2005). 

Richardson and Beraud (2014) conducted a meta-analysis of riparian forest harvesting. 

Like many others, they found increased N in harvested riparian streams, but a low P response. 
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They theorized this could be because of efficient uptake by P-limited primary producers. The 

effects of riparian harvest overlapped the zero-effect line in a regression analysis, which the 

authors suggested resulted from the differences in environments across studies. The authors also 

found that aquatic macroinvertebrate density generally increased after riparian forest harvest. They 

used potential evapotranspiration (PET) as a proxy for stream temperature. A higher PET (a 

warmer stream) induced a greater negative response from shredders and EPT, suggesting their 

sensitivity to logging under high temperatures. 

The presence of riparian canopy influences the stream microclimate by decreasing sunlight 

penetration, particularly in small streams with dense canopies. Canopy density is, therefore, a key 

determinant of stream temperature. Streams without sufficient riparian canopies can exhibit 

elevated water temperatures that create stressful conditions for fish (Evans-White, 2009). 

According to Gregory et al. (1991), downed woody debris from well-developed riparian canopies 

provides habitat for invertebrates and influences stream morphology, leading to greater habitat 

diversity, such as deep pools, backwaters, and side channels, all of which also create cover for fish. 

Riparian zone vegetation types can drastically differ in total biomass. While material from 

trees results mainly from senescence (i.e., seasonal leaf fall), most material from herbaceous plants 

enters a stream via flooding. Plant matter is a primary food source for aquatic invertebrates, and 

while trees provide much higher biomass than herbaceous plants, this material is typically nutrient-

poor and time-consuming to break down. As a result, streams with dense canopies do not typically 

support high numbers of herbivorous invertebrates. Shredders are a dominant group of 

invertebrates in shaded streams that rely on autochthonous material provided from terrestrial 

sources (e.g., tree leaves). Otherwise, unshaded streams have a greater abundance of invertebrates, 

which creates higher food availability for fish (Gregory et al., 1991).  
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 LAND COVER CHANGE IN THE CROPLAND DATA 

LAYER 

2.1 Data 

The USDA National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) 

is one of the most extensive tools for visualizing and measuring land cover in the United States. 

The CDL is in the U.S. Public Domain, can be easily viewed and downloaded online, has a 30m 

resolution, and has annual data for the contiguous U.S. every year since 2008 (USDA NASS, n.d.-

b). The current recommended online interface for visualizing, selecting, and downloading CDL 

data is CroplandCROS (USDA National Agricultural Statistics Service Cropland Data Layer, 

2024). During this study, only its predecessor, “CropScape,” was available via the George Mason 

University Center for Spatial Information Science and Systems (GMU CSISS, n.d.; USDA 

National Agricultural Statistics Service Cropland Data Layer, 2020). CropScape is a strong 

candidate for use in land cover analysis because it is easy to access and offers a comprehensive 

range of land cover types, particularly row crops such as corn and soybeans. This study aimed to 

determine the CDL’s applicability for measuring differences in landcover between years. I used 

CDL data from the years 2010 and 2020, as 2010 was the first year with consistent 30m nationwide 

coverage, and 2020 was the most recent year available at the time of analysis. Thirty-five counties 

in the northern portion of Indiana were selected and analyzed in change visualization due to the 

presence of row crop agriculture and forest. 

2.2 Methods 

2.2.1 Area of Interest Shapefile Export & Import 

Nationwide data can be downloaded by year from the Cropland National CDL’s webpage 

(USDA NASS, n.d.-a). For more narrow surveys, the data requires a defined area of interest (AOI). 

This can be done two ways, either by creating a zipped ESRI shapefile or GML file, then importing 

it into the CropScape program, or by directly defining an AOI using the CropScape interactive 

data layer. CropScape’s built-in AOI drawing tool only allows for drawing rectangles, circles, and 

polygons, or selecting AOIs based on region, state, county, or Agricultural Statistics District 
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(ASD). Therefore, defining a more complex or narrow AOI must be done externally and then 

imported into CropScape as either a GML file or a zipped ESRI shapefile including .shp, .shx, .dbf, 

and .prj files. The “tigris” package in R allows AOI definition using state and county names or 

FIPS codes. The “sf” package enables shapefile writing; shp, .shx, .dbf, and .prj files must be 

zipped for import into the CropScape program. Alternatively, a shapefile can be created and 

exported using queries in a GIS application. 

To download AOI data from CropScape, the AOI cannot be more than 4,000,000 square 

kilometers. Data can be downloaded as a raster, PDF, or CSV file. For manipulation in RStudio, a 

raster or CSV is required. Depending on the AOI size, it may be necessary to manipulate the data 

on a high-performance computing system. For this study, an AOI was created as a shapefile in R 

including 35 northern Indiana counties (Fig. 2.1), and then imported to CropScape. CSVs of the 

data were then downloaded in the default Albers projection for the years of interest. R code used 

for this study, written in R version 4.1.2 (“Bird Hippie”), is included in Appendix A. Raster 

manipulation in Rstudio was done using the Purdue University Scholar Cluster, a high-

performance computer cluster.
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Figure 2.1. Selected Indiana counties in the study AOI. The extent of the created shapefile 

includes the above labeled 35 counties in northern Indiana. 
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2.2.2 Land Cover Category Definition & Change Matrix 

It is necessary to confirm which land cover categories are present in the AOI; this can be 

done on a state- and year-by-year basis by downloading AOI-specific data from the visual 

CropScape interface (GMU CSISS, n.d.). For AOIs spanning all 48 states, the pixel counts and 

acreages by category are available on the Cropland FAQs page (USDA NASS, n.d.-b). Each 

category also has a unique numeric value, which can be used to collapse or redefine land cover 

categories. The code used in this study aggregated values from similar categories into larger 

categories. It should be noted that the CDL is based on satellite imagery and is therefore meant to 

be used as land cover data, not land-use. Lark et al. (2017) recommend combining CDL classes 

into larger categories to reduce the error from satellite imagery; in this study, land cover change 

types were collapsed into the following categories: 

Afforestation: any non-forest land use category to “forest” between 2010 and 2020 

Deforestation: “forest” to any non-forest land use category between 2010 and 2020 

Undisturbed Forest: “forest” to “forest” between 2010 and 2020 (no change) 

Agriculture: “cropland” to “cropland” between 2010 and 2020 (no change) 

Other: all other categories and changes (e.g., “barren” to “developed”, “open water” to 

“open water”, etc.) 

For the purposes of this visualization, the category “Agriculture” also includes fallow or 

idle cropland (i.e., land with nothing growing at time of measurement). Tree crops were also 

classified as “Agriculture”, under the assumption that farming operations would create an 

environment more similar to row crops than to natural forests. The study category “Forest” 

includes evergreen, deciduous, and mixed forests; the typical forest type in the study region is 

mixed hardwoods dominated by oak, hickory, and maple species. 

2.2.3 Visualizing Land Cover Change & Exporting a Raster 

To effectively visualize land cover change, a function must be created to reclassify each pixel 

value into an aggregated category value. Two new raster images can then be drawn using this 

function and the TIFs of the chosen AOIs. These can be used to create a single raster with collapsed 

change categories (e.g., “A” to “B”, “B” to “A”), which is then saved as a TIF. Importing the TIF 

into ArcMap or ArcGIS enables further analysis and manipulation. 
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A new raster was created from the existing CDL raster images of land use in 2010 and 

2020. The raster was projected onto a satellite imagery basemap in ArcMap and ArcGIS and 

visually evaluated for projection accuracy. Because of the high resolution of the data, the 

agricultural or forested areas had to be approximately 20 pixels or larger in size and reasonably 

contiguous to be considered of significance. 

2.2.4 Technical Validation and Ground Truthing 

Technical validation was performed first by visually comparing contemporary satellite 

imagery to the change raster. I gathered parcel numbers from a GIS layer of property boundaries 

(Indiana Geographic Information Office, 2019). I then retrieved landowner contacts from publicly 

available assessed value information from the Indiana Department of Local Government Finance 

(DLGF, 2021). Landowners were contacted via physical or electronic mail for permission to visit 

sites. I received permission to visit sixteen sites: three afforested, three deforested, five agricultural 

and five undisturbed forest. All deforested sites were located in La Porte County, while the 

agricultural, afforested, and undisturbed forest sites were located in Benton, Clinton, Howard, 

Tippecanoe, Warren, and White counties (Fig. 2.2). Ground truthing was conducted between June 

and August of 2022, in which I and at least one field crew member visually surveyed the site and, 

if the CDL-projected change could not be verified visually, communicated with the landowners 

about the site history.
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Figure 2.2. Map of sixteen Indiana land cover sites visited for ground truthing between June 

and August 2022. Site types identified were afforested (n = 3), agriculture (n = 5), deforested 

(n = 3), and undisturbed forest (n = 5). 
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2.3 Results 

In terms of resolution, the total combined area of the 35 counties is 14,661.75 square miles, 

or 9,383,520 acres (US Census Bureau, 2011). The same AOI in the USDA Cropland Data Layer 

was 9,233,581 acres. At a resolution of 30 m, there is a loss of 149,939 acres or 1.6% of the 

recorded area, considered negligible. 

The land use change raster displayed several patterns (Fig. 2.3). First, that the northwest 

quarter of the study area, including the Kankakee River and Calumet Region, seemingly had the 

highest proportion of deforestation as identified by the CDL. Second, the northeastern quarter of 

the study area seemingly had the highest proportion of afforestation. Third, that the greatest 

concentration of undisturbed forest was along large rivers and major tributaries. Lastly, the 

overwhelming majority of the total landcover was agriculture, distantly followed by the “Other” 

category.  

Of the six “change” sites visited, none were correctly identified by the CDL. One 

“afforested” area was a planted forest older than the study timeframe of 10 years; one was a small 

patch of natural forest adjacent to alternating grassy and agricultural areas; and the last was a 

misidentified grassy area. The three “deforested” areas in the northwestern quadrant of the region 

were determined through site reconnaissance to be long-standing bogs and wetlands, with only 

one site confirmed to have experienced selective logging upstream. The sites containing 

agricultural and undisturbed forest land cover (n = 10) were confirmed to have been accurately 

identified by the CDL, both through ground truthing and existing literature describing land cover 

type and distribution in Indiana (Carman, 2013; Munn et al., 2018; Woods, 1998). 
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Figure 2.3. Raster image of the Cropland Data Layer’s measured landcover changes in 

Northern Indiana between 2010 and 2020. Lower right inset shows detail of Tippecanoe 

County, Indiana. 
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2.4 Discussion 

I determined that the CDL was accurate for cropland and undisturbed forest in the AOI. 

However, it was much less accurate for areas of afforestation and deforestation. Specifically, the 

sites identified as deforested were misidentified in the reference year, 2010, and were correctly 

identified by 2020; the same was true for two afforested sites. These findings indicate that the 

CDL experienced an improvement in accuracy for non-agricultural, non-forest landcover in 

northern Indiana between 2010 and 2020 (Fig. 2.4). In a study conducted for several Midwestern 

farm bureaus, the CDL showed a decrease in deciduous forest alongside an increase in woody 

wetlands across multiple Midwestern states (Decision Innovation Solutions, 2013). This is 

similar to my finding in northwestern Indiana, and may be due to improvements in, or improved 

integration with, the USGS National Land Cover Database, which provides non-agricultural land 

cover information to the CDL (USDA NASS, n.d.-b). 

Lark et al. (2015) suggested analyzing all years of CDL data within the temporal window 

of interest to understand the trajectory of change in land cover over time and account for 

classification errors between years. This is recommended for analyzing crops that may undergo 

yearly rotation. As demonstrated here, it also applies to non-crop land cover change analysis, 

especially when early years of CDL data are used. In quantifying CDL accuracy for South 

Dakota between 2006 and 2012, Reitsma et al. (2016) also found that land use change accuracy 

was consistent for cropland and grassland. However, for categories including forests, wetlands, 

and non-agricultural developed areas, they found low accuracy which decreased with time. This 

contrasts with my finding that the CDL has experienced an improvement in accuracy for non-

agricultural, non-forest categories since 2010, but this discrepancy may be due to differences in 

study area, years of interest, and category collapse, a general challenge also noted by Lark et al. 

(2017). 

Dunn et al. (2015) questioned the accuracy of the grassland area calculations in Lark et 

al. (2015), partly because the CDL struggles to differentiate between grassland-type land covers 

(e.g., alfalfa and other hay). However, they concluded that ground truthing and satellite imagery 

should be used, rather than the CDL alone. Dunn et al. (2017) emphasized the need for ground 

truthing as a direct source of landcover information. It is interesting to note that one of the six 

“change” sites studied here was misidentified in 2020, and the site was a grassy area. While not 

misidentified as a similar category (e.g., hay), it does support the grassland-related identification 
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issues identified by other studies (Dunn et al., 2015; Dunn et al., 2017; Lark et al., 2015; Reitsma 

et al., 2016). 

All of the studies cited concluded that the CDL poses accuracy-based challenges for land 

cover change analysis. This agrees with my results and supports the idea that the CDL should be 

used for land cover change quantification only with consideration for the accuracy of the years of 

interest and extensive verification from ground truthing and satellite imagery. The accuracy of 

the CDL in broadly measuring agriculture, and to a lesser extent forest, in northern Indiana has 

been reinforced by the ground truthing in this study 



 

 

36 

 

 

Figure 2.4. A comparison of CDL 

imagery for a selected area in 

northwestern Indiana during the years 

2010, 2015, and 2020. Note increasing 

blue (“Woody wetlands”) and tan 

(“Shrubland”) areas with temporal 

progression. 
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2.5 Summary 

Land cover is a subject of much interest to environmental science, whether for preliminary 

sampling site selection or as data analysis. The CDL is an extensive and easily accessible collection 

of land cover data for the contiguous United States. At the same time, the accuracy of the CDL is 

constantly improving, which poses challenges when using it in land cover change analysis. The 

goal of this study was to determine whether differences in land cover between years could be 

accurately measured using the CDL. The years chosen were 2010 and 2020, and the area measured 

was northern Indiana. After data manipulation and visualization in R and ArcGIS and site 

reconnaissance at areas of “afforestation” and “deforestation,” it was concluded that the CDL was 

unreliable in identifying land cover change based on aggregated forest types for northern Indiana 

between the years 2010 and 2020. Further research into the CDL as an analysis tool for land use 

changes may focus on developments in its accuracy over time in identifying and differentiating 

similar categories of non-agricultural land use, such as woody wetlands and deciduous forest. 

In the case of studies using the CDL for land cover change analysis, it is advisable for 

researchers and data analysts to seek supplemental or alternative means of land cover change 

measurement. Additionally, any usage of the CDL for contemporary land cover classification 

should also include site reconnaissance and visual verification through current satellite imagery. 

In the case of CDL usage as a means of site selection for land cover change-based study, 

communication with landowners or managers about the history of their land should be used in 

addition to ground truthing and satellite imagery. 
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 AGRICULTURAL AND FORESTED STREAM 

BIOLOGICAL INTEGRITY 

3.1 Data 

3.1.1 Site Descriptions 

My study focused on small streams in the Central Corn Belt Plains and Eastern Corn Belt 

Plains ecoregions of Indiana. I selected study streams based on the following criteria: a wetted 

width <10m, a maximum depth <1m, and accessible with permission by landowners or public 

domain when sampled. The original objective was to sample at least 30 streams. However, site 

selection was constrained by time limitations, inclement weather, low flow conditions, personnel 

logistics, and a limited number of participating landowners. Within these constraints, I sampled 21 

sites over a single season to avoid year-to-year variation. 

Four sample sites were in the Central Corn Belt Plains ecoregion and 17 were in the Eastern 

Corn Belt Plains ecoregion (Table 3.1). Both ecoregions occur within the EPA Level II Central 

U.S. Plains ecoregion. The sites were typically current- or past agricultural ditches or stream 

reaches in the Wildcat Creek, Sugar Creek, and Big Pine Creek watersheds. A few exceptions to 

the <10m stream width criterion were made for Sugar Creek sites that were wadable due to low 

water conditions and could be sampled using a backpack electrofisher. Sites were located 

throughout Benton, Boone, Clinton, Howard, Montgomery, Tippecanoe, Warren, and White 

counties in Indiana (Fig. 3.1). 

Study sites were primarily rural, with a few urban or exurban stream reaches. All sites were 

characterized by adjacent land uses on a continuum from intensive agriculture to secondary forest. 

At least two of the privately owned forested sites were in recovery after intensive agriculture in 

previous decades. Two forested sites were properties managed by NICHES Land Trust, a local 

land stewardship organization. Two sites were adjacent to active agriculture but maintained a 

forested buffer zone. Three sites were owned by Purdue University: the Animal Sciences Resource 

Education Center, the Purdue University Forestry and Natural Resources Farm, and Throckmorton 

Agricultural Center. Another site was at Tippecanoe Battlefield and Museum, a forested public 

park and national historic landmark. The remaining 11 sites were privately owned stream reaches 

across the intensive agricultural-forested continuum. 
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All study sites were on properties with ≥100m stream reaches that met the above selection 

criteria. Where possible, I conducted site reconnaissance to determine site suitability for inclusion 

in the study and access points for sampling. This was especially critical for selecting entry and exit 

points for heavily forested streams. A few sites had obstacles (e.g., thickets adjacent to the stream 

or severe channel narrowing) that made access throughout the 100m study reach difficult or 

impassable. For impassable sites, modifications to the sampling protocol were made as described 

in Section 3.2.1. However, most streams were fully accessible throughout the 100m study reach. 

 

 

Figure 3.1. North-Central Indiana counties selected for fish sampling and QHEI assessment 

from June to July 2022. 
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Table 3.1. Study sites sampled between June and July of 2022. Included are site code, stream 

name, latitude and longitude coordinates, Indiana county, and Level IV EPA Ecoregion. 
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3.2 Methods and Materials 

3.2.1 Site Sampling Procedures 

I sampled fish communities in the study reaches with a field crew (i.e., the author plus 1-3 

field personnel) between June 1st and July 31st, 2022. Each sampling event occurred between 09:00 

and 17:00. The field crew completed sample collection within two hours at most sites. We sampled 

2-4 sites daily depending on weather conditions, stream morphology, and stream size. Fish were 

sampled using a DC backpack electrofisher (Model ABP-3; ETS Electrofishing Systems, LLC; 

Madison, WI; Figure 3.2) with the following settings: 160-190 V, a frequency of 120 Hz, and a 

25% duty cycle. Small adjustments in these settings were necessary based on study reach water 

chemistry. I determined the appropriate electrofisher settings for each study site based on fish 

recovery time after briefly operating the electrofisher downstream of the study reach. 

To sample fish in each of the study reaches, I operated the backpack electrofisher while the 

remaining crew members used dip nets to collect the stunned fishes. Stunned fishes were kept in a 

5-gallon (18.9L) bucket or 20L flow-through livewell filled with stream water. The electrofisher 

was operated for ≈30 minutes (1800 s), or until a 100m reach was covered at each site. Exceptions 

were made for impassible terrain (e.g., stream too narrow and banks too steep to sample) or thick 

large woody debris accumulations in the stream channel. The field crew sampled all available 

stream habitats, including stream shallows and a variety of instream cover types (e.g., rootwads, 

undercut banks, aquatic vegetation, and boulders). 

The field crew identified captured fishes to species, counted the number of individuals of 

each species in the sample, and then released them after sampling the study reach. When fishes 

were highly abundant in a study reach, we processed the samples at the approximate halfway point 

in the reach to prevent oxygen stress and high mortality. We then sampled and processed the fish 

captured from the midpoint to the end of the study reach. All fish identifications and counts were 

recorded on a site-specific field datasheet. For consistency, one field crew member recorded data 

for each site, while the other field personnel identified the fish species in the sample. 

I completed Qualitative Habitat Evaluation Index (QHEI; Rankin, 1989; Ohio EPA, 2006) 

forms for each study site after processing the fish sample. Some bias is inherent in QHEI scoring 

due to the study design. Specifically, backpack electrofishing precludes sampling very deep or fast 
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streams, or streams with excessive amounts of instream cover (e.g., fallen trees) that would prevent 

movement throughout the study reach. 

 

 

  

Figure 3.2. Left: the author using an ABP-3 backpack electrofisher (ETS Electrofishing 

Systems, LLC; Madison, WI). Right: a forested study stream reach with downed woody 

debris. 

3.2.2 Outlier Identification 

In a preliminary analysis of data normality, I determined that S20, Sugar Creek, was an 

outlier. S20 had a drainage area of 1041.2 km2 (402 mi2); the average drainage area of all other 

sites was 39.1 km2 (24.3 mi2) (Fig. 3.3a). Similarly, S20’s number of individuals was 716; the 

average of all other sites was 204.9 (Fig. 3.3b). Therefore, while S20 was sampleable in low-water 

conditions, it did not meet the stream criteria and was excluded from the data analysis.
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Figure 3.3. Boxplots showing outliers in Indiana stream data for drainage area in km2 (left; 

Figure 3.3a) and number of individual fishes captured (right; Figure 3.3b). Site 20 was an 

outlier for stream drainage (1041 km2) and number of individuals (n = 716). 
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3.2.3 Site Classification Metrics 

I delineated the watersheds of all 20 study sites and measured the agricultural land cover 

using ModelMyWatershed software (Dewitz, 2021; Stroud Water Research Center, 2017). 

Cultivated crops covered at least 50% of the drainage basin area in 19 of 20 sites, at least 75% of 

the drainage basin area in 16 of 20 sites, and at least 90% of the drainage basin area in 11 of 20 

sites. 

Before comparing site metrics, sites were categorized as agricultural or forested based on 

riparian characteristics. To do this, I chose four variables related to land cover to use in a principal 

components analysis (PCA): Cropland Data Layer (CDL) agriculture:forest ratio, riparian width, 

the QHEI Bank Erosion and Riparian Zone metric score, and the Normalized Difference 

Vegetation Index (NDVI) (Masek et al., 2006; Vermote et al., 2016). I chose a cutoff value 

between agricultural and forested for each variable, and classified sites based on agreement 

between variables. 

I created buffers for each site to measure study site riparian landcover using the CDL. 

These were written in RStudio using the sf package and centered on the site coordinates with an 

approximate 1km radius. I then imported shapefiles of the buffers to CropScape, the visual 

interface for the CDL. Data was downloaded in .csv format for the study year (2022) and imported 

into RStudio. Landcover types were collapsed into eight categories: Cropland, Herbaceous, Water, 

Developed, Barren, Forest, Pasture, and Wetlands, following the same procedure described in 

Chapter 3. I used the median ratio of agriculture-to-forest pixel counts for site classification 

(median = 3.3). Sites below the median were categorized as forest, and values greater than the 

median were categorized as agriculture. 

I measured riparian width using the measurement tool in Google Earth. Measurements in 

meters were taken at the site coordinates, approximately perpendicular to the stream’s angle of 

meander at the coordinates. The left and right banks’ riparia widths were averaged for a single 

stream riparian measurement. Because multiple streams had no riparian zone (riparian average = 

0 m), the median of the dataset could not be used for categorization. Instead, the category threshold 

was based on the proposed minimum width for a functional riparian zone (20 m) proposed by Feld 

et al. (2018). 

Metric 4 of the Ohio EPA QHEI is Bank Erosion and Riparian Zone. The maximum 

possible score for this metric is 10 and the minimum is 1. This metric includes three components: 
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erosion, riparian width, and flood plain quality. Erosion is scored from 1 to 3 (none/little); riparian 

width is scored from 0 (none) to 4 (wide >50m); and flood plain quality is scored based on the 

land use >100m away from the stream (maximum score of 3). The median sum value of these 

components was 5.6; sites below the median were classified as agriculture while sites greater than 

the median were classified as forest. 

The Normalized Difference Vegetation Index (NDVI) is a widely used indicator of 

vegetation greenness based on satellite imagery (Remote Sensing Phenology, 2018). I used the 

MODIS/Terra+Aqua Land Cover Type (LC) Yearly L3 Global 500 m SIN Grid (product ID: 

MOD13A3) at the 16-day 250-m NDVI band (Masek et al., 2006; Vermote et al., 2016). This 

provided lower spatial resolution and much higher temporal resolution than the CDL. The 

coordinates of each site’s approximated transect center were entered into the MODISTools 

package in R, along with the 16-day window that included the sampling date. The area covered 

was 4 km² centered on each of the 21 transects. The median NDVI was 0.7; sites below the median 

were classified as agricultural and sites greater than the median were classified as forested. 

3.2.4 Index of Biotic Integrity Calculation 

I calculated fish Index of Biotic Integrity (Karr, 1981; Karr et al., 1986; Simon and Dufour, 

1997; hereafter, IBI) for each site using Microsoft Excel. Using this approach, fish species’ 

characteristics and community composition at the sites were used to score metrics that sum to 

provide the IBI. The metrics include the number of darters, madtoms, and sculpin; number of 

darters; %headwater species; number of sunfish; number of minnow species; number of 

suckers; %pioneer species; number of sensitive species; %tolerant 

species; %omnivores; %insectivores; %carnivores; CPUE; %simple lithophiles; and %DELTs (i.e., 

fish exhibiting external deformities, erosions, lesions, or tumors). For sites with <50 individuals, I 

used the IBI score modifications recommended by Simon and Dufour (1997). DELTs were not 

counted in sampling, so all study sites with 50 or more individuals were given a score of 5. A table 

of the IBI component scores is included in Appendix B.  

The protocols used to calculate IBI differ based on the drainage area of the sampled stream 

(i.e., 51.8 km2 [10 sites] and >51.8 km2 [10 sites]). I used the drainage areas of Indiana streams 

provided by Hoggatt (1975). The average drainage area included in the study was 62.9 km2 (min 

= 11.5 km2, max = 132.6 km2). Site S10 did not have an appropriate measurement point on the 
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USGS drainage map (i.e., drainage at closest measurement point = 380.7 km2). Therefore, I 

approximated the S10 drainage area by averaging the drainage at the three most comparable ditches, 

S1 (Marshall Ditch, 20.6 km2), S6 (Little Wea Creek Tributary, 86.5 km2), and S9 (Brown Ditch, 

48.2 km2). 

3.2.5 Statistical Methods 

The variables included in statistical analysis were: land cover category (agricultural or 

forested; hereafter, category), QHEI score, IBI score, number of individuals, number of species, 

number of sensitive species, and number of tolerant species. As QHEI score includes land cover 

components, it was necessary to determine the validity of using it as an independent variable with 

IBI as a dependent variable. Therefore, I ran four different linear models for comparison: IBI 

following category, IBI following QHEI, IBI following the cross of category and QHEI, and IBI 

following category and QHEI (hereafter models 1, 2, 3, and 4, respectively).  

I developed a corrected Akaike Information Criteria (AICc) model selection table using 

the four linear models. Model 2 was the best model, with an AICc of 156.15 and a weight of 0.61. 

The model 1 AICc was 158.05 with a weight of 0.24. The model 4 AICc was 159.30 with a weight 

of 0.13. Model 3 was the weakest model identified, with an AICc of 162.86 and a weight of 0.02. 

(Table 3.2). Models 1 and 2 (Category and QHEI, respectively) were used in the analysis. 

 

Table 3.2. AICc model selection output table. 

Model selection based on AICc: 

 K AICc Delta_AICc AICcWt Cum.Wt LL 

QHEI 3 156.15 0.00 0.61 0.61 -74.33 

Category 3 158.05 1.90 0.24 0.85 -75.28 

Category + 

QHEI 

4 159.30 3.14 0.13 0.98 -74.31 

Category * 

QHEI 

5 162.86 6.71 0.02 1.00 -74.29 

 

IBI following QHEI, number of sensitive species following QHEI, and percent tolerant 

species following QHEI required use of the Pearson Product Moment Correlation coefficient or 

Spearman Rank Correlation coefficient because they were all continuous variables. IBI following 

category, QHEI following category, number of individuals following category, and number of 
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species following category were tested using independent t-tests or nonparametric equivalents. A 

p-value ≤ 0.05 was considered significant for all tests.  

3.3 Results 

3.3.1 Site Classification Analysis 

I conducted a principal components analysis (PCA) using the site categorization metrics, 

including CDL ratio, riparian width, QHEI subsection, and NDVI. A heatmap of the correlation 

matrix showed little correlation of NDVI values with any other metric. Additionally, the 

correlation with the CDL agriculture-to-forest pixel ratio was close to zero (Fig. 3.4). A biplot with 

square cosine values was used to determine similarity between variables, impact of each variable 

on the two most significant principal components, and the amount of representation of each 

variable within a component. This plot showed that CDL agriculture-to-forest ratio and QHEI 

subsection were the two most well-represented variables in the two most significant principal 

components; average riparian width was less well-represented; and NDVI was very poorly 

represented (Fig. 3.5). 
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 Figure 3.4. A correlation matrix heatmap of the variables used in agriculture vs. forest land 

cover classification: Cropland Data Layer agriculture:forest ratio (“cdlrat”), average wooded 

riparian width (“ripav”), mean Normalized Difference Vegetation Index value (“ndvi_m”), and 

Qualitative Habitat Evaluation Index bank and riparia components (“qbr”). Mean NDVI values 

had a low correlation with other variables. 
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 Figure 3.5. A biplot with square cosine values of variables used in agriculture vs. forest land 

cover classification. Higher square cosine values (cos2) indicate a more well-represented 

variable. CDL agriculture-to-forest pixel count ratio (“cdlrat”) and QHEI Bank & Riparia 

subsection score (“qbr”) are the two best-represented variables. Mean site NDVI (“ndvi_m”) is 

very poorly represented. 
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As supported by the PCA, NDVI proved unreliable as a means of categorizing landcover 

(Table 3.3). For example, a site with no wooded riparian zone had an NDVI of 0.82, while a site 

with an extensive riparian zone had an NDVI of 0.65. This is due to the NDVI’s inability to 

differentiate between tree leaf greenness and other forms of vegetation, including row crops. For 

this reason, NDVI was not included in the categorization of study sites. 

Table 3.3. Parameters of sampled stream sites in north-central Indiana. QHEI scores and NDVI 

are also included. Land cover measure parameters indicating agricultural ("Ag") land are in 

bold; non-bolded items indicate forest ("Fo"). "QHEI Bank & Riparia" is the score from 

Section 4 of the Ohio EPA QHEI form. Riparian width is the average of the left and right 

riparia at the approximate center of the transect, perpendicular to the stream. CDL Ag:Forest is 

the ratio of pixel counts for agricultural and forest land cover taken from the USDA Cropland 

Data Layer. 
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The CDL, average riparian width, and QHEI subsection were in strong agreement for 18 

out of 20 sites. The two remaining sites, S8 and S9, were ambiguous due to higher-than-expected 

riparian width averages (36.5m and 42.0m, respectively) compared to the QHEI subsection and 

CDL values. Site S8 was a stream in recovery from intensive agriculture, with a highly variable 

upstream riparian width. Site S9 had a wide but sparsely wooded riparian buffer on the right bank 

and no wooded riparian zone on the left bank. Both were also classified as agricultural by the 

QHEI subsection and CDL values, which were the best-represented variables in the PCA. 

Therefore, both were categorized as agricultural sites. There were 10 agricultural sites and 10 

forested sites after classification (Fig. 3.6). 

 

 

Figure 3.6. Fish and QHEI stream sampling locations by land cover category (Agriculture, 

Forest). Sites were located in Benton, Boone, Clinton, Howard, Montgomery, Tippecanoe, 

Warren, and White counties in north-central Indiana. 
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3.3.2 Summary Statistics 

For all sites, the mean number of individuals captured per site was 204.9 (median = 163.5, 

SD = 148.4). The mean number of species identified at each site was 12.2 (median = 12, SD = 6.1). 

The mean site QHEI score was 53.6 (median = 55.6, SD = 15.2). The mean site IBI score was 36.7 

(median = 40, SD = 11.1). 

For agricultural sites, the mean number of individuals captured was 147.1 (median = 102.5, 

SD = 120.5). The mean number of species identified at each site was 10.4 (median = 12, SD = 4.5). 

The mean site QHEI score was 43.1 (median = 41.5, SD = 14.1). The mean site IBI score was 34.0 

(median = 40, SD = 12.8). 

For forested sites, the mean number of individuals captured was 262.7 (median = 248.5, 

SD = 156.8). The mean number of species identified at each site was 13.9 (median = 13, SD = 7.1). 

The mean site QHEI score was 64.1 (median = 64.8, SD = 6.6). The mean site IBI score was 39.4 

(median = 40, SD = 8.9). Mean and standard deviation values for all four metrics across both 

categories are provided in Table 3.4. 

Table 3.4. Summary statistics (mean ± standard deviation) of number of individuals, number 

of species, QHEI score, and IBI score for agricultural and forested streams. 

Category Mean Individuals Mean Species Mean QHEI Mean IBI 

Agricultural 147.1 (±120.5) 10.4 (±4.5) 43.1 (±14.1) 34.0 (±12.8) 

Forested 262.7 (±156.8) 13.9 (±7.1) 64.1 (±6.6) 39.4 (±8.9) 

3.3.3 Statistical Tests 

A Shapiro-Wilk test was used to test the data for normality. Outliers were detected by 

drawing boxplots. Homogeneity of variance was tested using mean-center and median-center 

Levene’s tests. The Kruskal-Wallis test was used when assumptions for an independent t-test (i.e., 

“Welch’s t-test”) were not met or when the data contained outliers.  

The Shapiro-Wilk test p-values (>0.05) indicated the data were normally distributed for 

number of individuals, number of species, and QHEI score for both agricultural and forested 

streams (Table 3.5). The Shapiro-Wilk test indicated that the IBI score data were not normally 

distributed for agricultural sites (p = 0.011). Boxplots revealed that the number of individuals 

found at agricultural site S14 was an outlier (n = 431). The boxplot of QHEI scores indicated that 
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forested site S4 was also an outlier (n = 51.0) (Fig. 3.7). Kruskal-Wallis tests were used for number 

of individuals, QHEI score, and IBI score, while Welch’s t-test and Kruskal-Wallis test were run 

for the number of species. Because the Kruskal-Wallis test requires all factors to be numeric, 

agricultural was coded as 1 and forested was coded as 2. 

A Shapiro-Wilk test was run for QHEI score, IBI score, percent tolerant species, number 

of intolerant species, and percent cultivated crops in delineated study site watersheds. The Shapiro-

Wilk test indicated that IBI score, number of intolerant species, and percent cultivated crops had 

non-normal distributions (p = 0.035, p = 0.001, and p < 0.001, respectively) (Table 3.6). Using 

boxplots, the percent tolerant species at S6 (86%) was revealed to be an outlier. The number of 

intolerant species at sites S21 (n = 10), S16, and S17 (n = 11 at both sites) were also determined 

to be outliers (Fig. 3.8). As mentioned in Section 3.2.3, cultivated crops accounted for at least 90% 

of drainage basin area for 11 of 20 sites, which created outliers. The Spearman Rank Correlation 

Coefficient was used for all correlation analyses due to violation of one or more assumptions. 

 

Table 3.5. Assumptions and test selection for four dependent variables following land cover 

(IBI, number of individuals, number of species, QHEI). Normality was tested using the 

Shapiro-Wilk test. Homogeneity of variance was tested using mean-center and median-center 

(“med-center”) Levene’s tests. 

Dependent 

Variable 

Data Normality 

Outliers Homogeneity of Variance Test Used 

Agriculture Forest 

IBI 
Non-normal 

(p = 0.011) 

Normal 

(p = 0.801) 
No 

Heterogeneous 

(mean-center p = 0.029) 

(med-center p = 0.277) 

Kruskal-

Wallis 

No. of 

Individuals 

Normal 

(p = 0.054) 

Normal 

(p = 0.561) 
Yes 

 

- 

 

Kruskal-

Wallis 

No. of 

Species 

Normal 

(p = 0.156) 

Normal 

(p = 0.530) 
No 

Homogeneous 

(mean-center p = 0.121) 

(med-center p = 0.132) 

Welch’s; 

Kruskal-

Wallis 

QHEI 
Normal 

(p = 0.665) 

Normal 

(p = 0.696) 
Yes 

 

- 

 

Kruskal-

Wallis 
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Table 3.6. Assumptions and test selection for five continuous variables (QHEI, IBI, number of 

intolerant species, percent tolerant species, percent cultivated crops in delineated study site 

drainage basin). QHEI was the independent variable to be used in analysis for all other 

variables except percent cultivated crops, which was analyzed with IBI. Normality was tested 

using the Shapiro-Wilk test. 

Variable Data Normality Outliers Test Used 

QHEI 
Normal 

(p = 0.184) 
No - 

IBI 
Non-normal 

(p = 0.035) 
No 

Spearman Rank Sum 

Correlation 

% Tolerant Spp. 
Normal 

(p = 0.424) 
Yes 

Spearman Rank Sum 

Correlation 

No. of Intolerant Spp. 
Non-normal 

(p = 0.001) 
Yes 

Spearman Rank Sum 

Correlation 

% Cultivated Crops 
Non-normal 

(p < 0.001) 
Yes 

Spearman Rank Sum 

Correlation 
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Figure 3.7.  Boxplots of four variables by land cover for 20 sampled sites. Variables include 

number of individuals captured, number of species captured, Index of Biotic Integrity (IBI) 

score, and QHEI score. Outliers are labeled with site number. 
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Figure 3.8. Boxplots of IBI score, QHEI score, number of intolerant species, and percent 

tolerant species for n = 20 sites. Outliers are labeled with site number; multiple outliers of the 

same value are labeled on one point. 

 

The nonparametric Kruskal-Wallis rank sum test showed no significant difference in 

median IBI scores between agricultural and forested streams (𝜒2 = 0.83, df = 1, p > 0.36). The 

Kruskal-Wallis test showed no significant difference in median number of individuals between 

agricultural and forested streams (𝜒2 = 3.3, df = 1, p = 0.070). Welch’s t-test showed no significant 

difference in mean number of species between agricultural and forested streams (df = 15.24, p > 

0.2). The Kruskal-Wallis test likewise showed no significant difference in median number of 

species between agricultural and forested streams (𝜒2 = 1.05, df = 1, p > 0.3). The Kruskal-Wallis 

test showed a significant difference in median QHEI scores between agricultural and forested 

streams (𝜒2 = 9.14, df = 1, p = 0.002).
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QHEI and IBI were not significantly correlated based on Spearman Rank Correlation 

analysis (r = 0.27, df = 18, p = 0.25; Figure 3.9). There was also no significant correlation between 

QHEI and percent tolerant species using the Spearman Rank Correlation coefficient (r = -0.2, df = 

18, p > 0.30; Figure 3.9). QHEI and number of intolerant species were not significantly correlated 

based on Spearman Rank Correlation analysis (r = 0.23, df = 18, p > 0.30; Figure 3.9).  Finally, 

IBI and percent cultivated crops were not significantly correlated based on Spearman Rank 

Correlation analysis (r = -0.31, df = 18, p = 0.178; Figure 3.9). 

 

 

Figure 3.9. Spearman Rank Correlation plots of biotic and abiotic measures for 20 stream 

sites. Clockwise from top left: QHEI score and Index of Biotic Integrity score (r = 0.27, p = 

0.25); QHEI and percent tolerant species (r = -0.2, p > 0.30); IBI score and percent cultivated 

crops in drainage basin (r = -0.31, p = 0.178); QHEI and number of intolerant species (r = 

0.23, p > 0.30).  
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3.4 Discussion 

My study findings suggest that fish IBIs, site QHEI scores, and component scores for both 

protocols were largely uncorrelated with local land use. This may have been due, in part, to the 

logistical challenges encountered during the study. In particular, the number of study sites was 

smaller than originally planned, which resulted in underpowered tests. The weather conditions 

during sampling were also very dry (NOAA, 2023). This may have affected local fish assemblage 

compositions due to fish movement away from suboptimal conditions (Ross et al., 1985). 

Limitations in transect size and location may have also affected species representation in fish 

samples (Karr et al., 1986). It must also be noted that the IBI calculations in my study were based 

on historical drainage area measurements from Hoggatt (1975). The measurements used in my 

study classify 10 of the 20 sites as “large”, while contemporary measurements of delineated 

drainage area based on site coordinates classify seven of the 20 sites as “large” (Stroud Water 

Research Center, 2017; USGS, 2019). Hoggatt (1975) was used by Sullivan et al. (2003) and Lau 

et al. (2006) for drainage area measurement; the methods used in other studies cited in this 

discussion are unknown. 

Stream IBI scores for both agricultural (�̅� = 34.0 ± 12.8) and forested (�̅� = 39.4 ± 8.9) study 

sample sites fell within the range of scores corresponding to Poor and Fair biotic conditions, 

respectively, but were not significantly different (Doll, 2011; Karr et al., 1986). Hrodey et al. 

(2009) also found that fish IBI scores of first- to fourth-order Wabash River tributaries were not 

significantly different between agricultural, forested, and fallow field land uses. They suggested 

this was because <400 individuals were captured at nearly half of the study sites. Shields et al. 

(1995) reported higher variability in IBI scores for streams with total fish catches <400 individuals, 

and Simon and Dufour (1997) recommended that sites with total catches <50 should be excluded 

in IBI calculation, or the calculation must be modified. Sites S1, S2, and S19 had fewer than 50 

captured individuals, and all sites except S14, S15, S16, and S17 had fewer than 400 captured 

individuals, which could be the cause of the increased variability in overall IBI scores (Fore et al., 

1994). 

It is possible that land cover categories used in this study were not representative in scale 

to the extent that there would be measurable differences in IBIs between forested and agricultural 

streams and ditches. Studies by Sullivan et al. (2003), Lau et al. (2006), and Clark-Kolaks (2022) 

found no significant correlation between the riparian zone scores taken from QHEI site 
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assessments and IBI scores. Similarly, Roth et al. (1996) found that catchment-scale agricultural 

land cover was a strong predictor of IBI, but that reach-scale (1500 m) median vegetation width 

was a weak predictor. This contradicts my lack of significant correlation between IBI score and 

percent cultivated crops in study area drainage basins, further indicating a possible issue due to 

sample size. 

The lack of significant differences between IBI scores of forested and agricultural streams 

sampled in my study may also be due to tile drainage in agricultural areas beyond the forested 

riparian buffer. Previous research has suggested that forested riparian areas may be poor at 

mitigating agricultural runoff to streams in the presence of tile drainage (Baker et al., 2006; Stone 

and Wilson, 2006). While tile drainage was not a factor in stream classification for this study, it is 

a very common feature of agricultural lands in Indiana (Pavelis, 1987), and most drainage basins 

in my study were strongly agricultural (Dewitz, 2021; Stroud Water Research Center, 2017). 

Alternatively, the areas adjacent to streams and ditches lacking forested riparian buffers were often 

grassed. This may indicate the efficacy of grassed riparian strips in mitigating the addition of fine 

sediments and nutrients to ditches and streams (Hughes and Quinn, 2014; Osborne and Kovacic, 

1993; Yuan et al., 2009). 

I found no significant correlation between IBI and QHEI. Regression models developed by 

Moerke and Lamberti (2006) indicated that IBI was related to local and instream scale metrics, 

including large woody debris volume, dissolved oxygen, specific conductivity, and turbidity, 

which were not measured in my study. In a study of 29 Minnesota streams, Talmage et al. (2002) 

likewise found a positive correlation between fish IBI and metrics such as %woody debris and 

%overhanging vegetation. Sullivan et al. (2003) and Lau et al. (2006) both found significant 

positive correlations between IBI and QHEI scores across east-central Indiana stream transects (n 

= 42 and 40, respectively). The streams sampled by Lau et al. (2006) had comparable QHEI (i.e., 

26 – 83) and fish IBI (i.e., 20 – 52) scores to those in my study. This suggests that the absence of 

a significant correlation between these variables in my study may have been related to sample size. 

Shields et al. (1995) studied Mississippi streams and found no significant relationship between IBI 

and QHEI and attributed this (in part) to small capture numbers (i.e., n < 400 fishes) and a lack of 

pristine reference sites, both of which were issues in my study. 

There were no significant correlations between land cover type and the number of fish 

captured or fish species richness. These relationships may have been masked by the comparably 
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small number of study sites, the small physical size of the streams sampled, or the low numbers of 

fish in the samples under very low water conditions. However, landscape factors related to fish 

abundance and fish species richness have not been consistently identified in other studies. For 

example, Hrodey et al. (2009) found that the total number of fish in a sample was best explained 

by QHEI score, followed by watershed area and % upstream forest. They also found that fish 

species richness was significantly higher in forested than agricultural streams. On the other hand, 

Moerke and Lamberti (2006) found that species richness was most strongly predicted by drainage 

area, low-flow yield, urban land cover, and lacustrine geology, while forested- and agricultural 

land covers were not strong predictors of species richness. It is clear that the relationship between 

landscape factors and fish abundance and fish species richness is complex and not always directly 

correlated with land cover type. 

There were no significant correlations between QHEI and the number of intolerant fish 

species or the percentage of tolerant fish species in a sample. Lau et al. (2006) found a higher 

number of intolerant fishes in natural than channelized streams, although there was no difference 

in the number of tolerant fishes across these stream types. Roth et al. (1996) anecdotally observed 

higher numbers of intolerant fishes at sites with Habitat Index (HI) values above 60 (n = 23) but 

the relationship was not statistically quantified. Shields et al. (1995) tested correlations between 

fish IBI components and 10 physical habitat measures across four categories, including riparian 

conditions; severity of channel incision; substrate and habitat heterogeneity; and cover and pool 

formation. They found that the number of intolerant fishes was negatively correlated with channel 

depth and the presence of kudzu (Pueraria montana), an invasive vine that outcompetes shading- 

and bank-stabilizing riparian plants native to the study area in Mississippi. The number of 

intolerant fishes was positively correlated with the availability of pool habitat. The opposite was 

true for the proportion of tolerant fishes, which was positively correlated with channel depth and 

kudzu presence and negatively correlated with the availability of pool habitat. The physical 

properties included in my study were based on qualitative assessments that may not have been 

sufficient to capture the associations between abiotic factors and the fish community.  

I found that median QHEI scores were significantly higher for forested streams (median = 

62.0, IQR = 5.75) compared to agricultural streams (median = 40.4, IQR = 15.7). Hrodey et al. 

(2009) also found that QHEI scores were significantly higher for forested riparian streams than 

agricultural streams. Moerke and Lamberti (2006) also found that QHEI scores were positively 
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correlated with the amount of local forest land cover. This makes sense, because QHEI scores 

include components that score higher due to the presence of a forested riparian zone (e.g., riparian 

land cover, presence of woody debris; Rankin, 1989). 

3.5 Summary 

The aim of this study was to investigate the relationship between surrounding land usage 

(i.e., row crop versus forest status) and the biological integrity of streams in the Temperate Plains 

ecoregion of Indiana. QHEI, land cover, and fish species data were collected for 20 sampled stream 

sites in north-central Indiana. Mean IBI scores were not significantly different between ditches 

and streams with agricultural vs. forested riparian areas, and QHEI was not significantly correlated 

with IBI score in the sampled Indiana streams. These results suggest that there may be no 

association between land cover and biotic integrity in Indiana Temperate Plains streams. However, 

due to time and resource constraints and outlier exclusion, only 20 sites were used in analysis. 

Future research on the correlations between land cover and stream biotic integrity may build on 

these findings by using larger sample sizes, controlling for drainage types in agricultural fields or 

the usage of non-riparian management practices, or employing precise measures of forest area 

rather than binary land cover categories. The dynamics between agriculture, forests, and stream 

integrity are complex and highly interconnected. A better understanding of the intricacies of 

landscape-stream interactions mediated by riparia is necessary to create and improve management 

strategies. 
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APPENDIX A. LAND COVER CHANGE ANALYSIS R CODE 

library(base) 

library(utils) 

library(graphics) 

library(sp) 

library(raster) 

 

# packages below are only necessary if creating and exporting a shapefile in Rstudio: 

library(dplyr) 

library(magrittr) 

library(sf) 

library(tigris) 

 

# define study area county cluster for shapefile 

study_area <- tigris::counties(state = "IN", cb = TRUE) %>% 

  st_as_sf() %>% filter(NAME %in% c( 

        "Adams", "Allen", "Benton", "Blackford", "Carroll", "Cass", "Clinton", 

        "DeKalb", "Elkhart", "Fulton", "Grant", "Howard", "Huntington", "Jasper", 

        "Jay", "Kosciusko", "LaGrange", "Lake", "LaPorte", "Marshall", "Miami", 

        "Newton", "Noble", "Porter", "Pulaski", "St. Joseph", "Starke", "Steuben", 

         "Tippecanoe", "Tipton", "Wabash", "Warren", "Wells", "White", "Whitley" 

          )) 

 

#create shapefile of study area 

   st_write(study_area, paste0("studyarea.shp")) 

 

#load the TIFs downloaded from Cropscape for years 0 and 1: 

tmp1 <- paste("year1raster.tif", sep = "/") 

tmp0 <- paste("year0raster.tif", sep = "/") 

 

#define as raster data: 

tif1 <- raster(tmp1) 

tif0 <- raster(tmp0) 

 

# Change raster value to 1 = "forest", 2 = "cropland", and 3 = other: 

myfun <- function(x){ 

  z <- rep(NA, length(x)) 

  z[which(x == 0)] <- 0 

  z[which(x >= 141 & x <= 143)] <- 1 

  z[which((x >= 1 & x <= 57) | (x >= 59 & x <= 77) | (x >= 205 & x <= 254))] <- 2 

  z[which(x == 58 | (x >= 78 & x <= 140) | (x >= 144 & x <= 204) | x >= 255)] <- 3 

  return(z) 

} 
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#calculate new raster: 

CDL_yr0 <- calc(tif0, fun = myfun) 

CDL_yr1 <- calc(tif1, fun = myfun) 

 

# create a new raster to display the change 

# 0 = outside the map (original 0) 

# 1 = anything to "forest" 

# 2 = "forest" to anything 

# 3 = "forest" to "forest" 

# 4 = "cropland" to "cropland" 

# 5 = all other categorical changes 

 

mydat <- overlay(CDL_yr0, CDL_yr1, fun = function(x,y){ 

  z <- rep(NA, length(x)) # create a vector of NAs 

  z[(x == 0 & y == 0)] <- 0 

  z[(x != 1 & y == 1)] <- 1 

  z[(x == 1 & y != 1)] <- 2 

  z[(x == 1 & y == 1)] <- 3 

  z[(x == 2 & y == 2)] <- 4 

  z[is.na(z)] <- 5 

  return(z) 

}) 

 

# save as a tif file 

writeRaster(mydat, "mydat.tif") 
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APPENDIX B. IBI DATA TABLE 

Table B.1. Index of Biotic Integrity (IBI) component metrics for 21 sampled Indiana streams in Benton, Boone, Clinton, Howard, 

Montgomery, Tippecanoe, Warren, and White counties. Streams were sampled between 6/6/2023 and 7/20/2023. Fish samples 

were collected using a Smith-Root backpack electrofisher in one 100m or approximately 1800s transect. CPUE (catch per unit 

effort) is the total number of individuals captured at each site. DELTs are the number of fish displaying a deformity, erosion, 

lesion, or tumor. Total IBI scores and total species captured are also provided for sampled sites. Site 20 was omitted from further 

statistical analysis as an outlier. 
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