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ABSTRACT

Sexual harassment is regarded as a serious issue in society, with a particularly negative
impact on young children and adolescents. Online sexual harassment has recently gained
prominence as a significant number of communications have taken place online. Online sexual
harassment can happen anywhere in the world because of the global nature of the internet,
which transcends geographical barriers and allows people to communicate electronically.
Online sexual harassment can occur in a wide variety of environments such as through work
mail or chat apps in the workplace, on social media, in online communities, and in games [1].
However, especially for non-native English speakers, due to cultural differences and language
barriers, may vary in their understanding or interpretation of text-based sexual harassment
[2]. To bridge this gap, previous studies have proposed large language models to detect
and classify online sexual harassment, prompting a need to explore how language models
comprehend the nuanced aspects of sexual harassment data. Prior to exploring the role of
language models, it is critical to recognize the current gaps in knowledge that these models
could potentially address in order to comprehend and interpret the complex nature of sexual
harassment.

The Large Language Model (LLM) has attracted significant attention recently due to its
exceptional performance on a broad spectrum of tasks. However, these models are charac-
terized by being very sensitive to input data [3], [4]. Thus, the purpose of this study is to
examine how various LLMs interpret data that falls under the domain of sexual harassment
and how they comprehend it after replacing Out-of-Vocabulary words.

This research examines the impact of Out-of-Vocabulary words on the performance of
LLMs in classifying sexual harassment behaviors in text. The study compares the story
classification abilities of cutting-edge LLM, before and after the replacement of Out-of-
Vocabulary words. Through this investigation, the study provides insights into the flexibility
and contextual awareness of LLMs when managing delicate narratives in the context of sexual

harassment stories as well as raises awareness of sensitive social issues.
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1. INTRODUCTION

Online sexual harassment has become a growing problem in modern society as a result of
people spending a greater amount of time online. According to the Pew Research Center,
41% of Americans have personally experienced some form of online harassment [5]. Online
sexual harassment consists of distinctive characteristics that make it easier for offenders
to victimize individuals regardless of their location, target multiple victims simultaneously,
avoid being caught, and maintain a certain level of anonymity [6], [7]. In addition, online
sexual harassment can happen at any time and anywhere because people constantly use
the Internet, and the Internet has the characteristic of allowing people to communicate
beyond geographic and time limits. There are many different settings where online sexual
harassment can happen, including private social networks, online forums, work email or
messengers, and in-game [1], [8]. Therefore, anyone can become a victim of online sexual
harassment, regardless of the target’s age or location. Previous studies show that adolescents
are more vulnerable to online sexual harassment than adults [9]. Moreover, people who are
not familiar with the culture or language may often find it difficult to understand or recognize
instances of sexual harassment, even if they do occur [10].

The emergence of the Large language model (LLM) has opened up opportunities for
natural language processing (NLP), showing themselves to be useful in a wide variety of areas
such as machine translation, text generation, and speech processing [11], [12]. Especially,
LLMs are increasingly utilized for solving social issues, including the detection and the
online classification of sexual harassment, and NLP demonstrated its broad social impact
[13]. Numerous previous studies have been conducted to address the sexual harassment issue,
such as sexual harassment detection in conversations or classification of sexual harassment
types on social media [14]-[17]. However, the ability to identify and produce consistent
results for similar texts is crucial to demonstrate the reliability of LLMs for complex social
tasks, especially in sensitive domains like sexual harassment. Due to the nature of LLM,
which is highly sensitive to input, prompt sensitivity of LLMs in various linguistic contexts
in certain domains is of great interest [3], [18], [19]. It begs the question of whether language

models are capable of picking up on the subtleties that are present in language when it comes
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to specific and narrow domains such as sexual harassment, given how difficult it is to discern
these nuances.

This study aims to evaluate the classification capabilities of LLMs for both original
sentences and sentences where OOV words have been replaced. The author also examines
the effectiveness of LLMs in categorizing narratives from the sexual harassment story dataset.
The author’s goal is to compare the ability of LLMs to comprehend original sentences with
OOV words and sentences without OOV words and to explore their capacity to classify
narratives accurately within this sensitive domain. Through this study, the author seeks to
provide insights into the performance and adaptability of LLMs in this context.

In this research, the author explores the potential of multiple LLMs by employing a
SafeCity dataset provided by [20] which is composed of sexual harassment stories. This
study’s main goal is to evaluate and compare how well different Large Language Models
(LLMs) do at classifying the text containing OOV words and the text without OOV words

within the sensitive domain of sexual harassment narratives.

1.1 Definitions

In the broader context of thesis writing, the author defines the following terms:

(commonly: LLMs) An artificial intelligence tool that is capable of handling a variety of
natural language processing tasks such as question-and-answer, text generation, and machine

translation tasks. [21]

(commonly: NLP) Computational approaches to analyzing and understanding the text, to

obtain human-like language processing in various tasks. [22]

(commonly: OOV) Words that are not seen in the training data. [23]

1.2 Scope

This study aims to assess the impact of small differences in input on an LLM’s ability to

classify sexual harassment stories before and after replacing Out-of-Vocabulary words.
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The scope of this research is the evaluation of LLM’s perception before and after replacing
OOV words in the dataset, particularly within the sensitive domain of sexual harassment
narratives. In this study, the author will examine the BERT-based classification model to
gain comprehensive insights into its proficiency in comprehending datasets with and without
OOV words. Our investigation will use a slightly modified multi-level OOV replacement
technique proposed by [24] as well as a qualitative analysis of classification results before

and after replacing OOV words in the dataset.

1.3 Significance

This research delves into the nuanced and challenging domain of the classification of
text within the context of narratives related to sexual harassment. By focusing on the
classification of sexual harassment stories and examining the performance of LLMs, this
study serves as a valuable resource for understanding the capabilities of LLMs in a sensitive
context. This approach will also enable us to explore how LLM handles slightly different
inputs in sensitive domains that may have niche vocabulary and concepts. By situating this
research in the context of sexual harassment, it advances the larger goal of addressing and
promoting awareness of this important issue. If LLM showed robustness to small differences,
it might be employed to identify instances in which non-native English speakers are uncertain
about online sexual harassment situations. Furthermore, the LLM features towards the
sexual harassment domain discovered in this study could contribute to protecting non-native
English speakers from online sexual harassment. This study highlights the interdisciplinary
value of Artificial Intelligence (AI) in addressing societal challenges and encourages the

responsible use of NLP in situations with real-world, significant social repercussions.

1.4 Research Question

The main research question of this study is: How does the replacement of OOV words im-
pact the classification performance of LLMs in the sexual harassment domain? The objective

of this question is to compare how LLM perceives scenarios containing and not containing
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various OOV words in a narrow domain. By answering this query, the author hopes to shed

light on the reliability and sensitivity of LLM’s understanding of OOV words.

1.5 Assumptions

The assumptions for this study include:

o First, the author assumes the selected dataset contains a representative and compre-
hensive sample of the language used in real-world situations. As shown in previous
studies [25]-[27], data quality is a pivotal factor in the success of natural language
processing (NLP) models. The author assumes the selected dataset encapsulates the
abundance and diversity of language use in the context of sexual harassment, ensuring
that the model is exposed to a wide range of language nuances, expressions, and parsing
patterns. Representative datasets are considered essential to cultivating the ability of
large language models (LLMs) to effectively identify and generalize paraphrasing pat-
terns by capturing the complexity of language specific to sexual harassment narratives.
This assumption becomes particularly important given the nuanced nature of the sub-
ject in which nuanced changes in language play an important role in communicating

meaning and intention.

o Second, the author assumes that the method used for replacing out-of-vocabulary
(OOV) words with in-vocabulary (IV) words effectively captures the semantic context
of the original sentence. This assumption is based on the premise that the replacement
words are semantically similar to the OOV words they replace, thereby preserving the
overall meaning and intent of the sentence. Additionally, the author assumes that
the replacement process maintains syntactic correctness and grammatical coherence to

ensure the fluency and readability of the modified sentences.

1.6 Limitations

The limitations for this study include:
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« First, biases in dataset and models. This research acknowledges the possibility of bias
in both the dataset and the pre-trained models. Due to the nature of the sexual ha-
rassment domain, there are not many datasets available. Also, the author only used
the SafeCity dataset for this research. The acknowledgment includes the potential for
over- or underrepresentation of particular demographics, viewpoints, or experiences
related to sexual harassment in the dataset. The study acknowledges that these biases
within the dataset may restrict the applicability of findings to a broader domain be-
cause the training data for the models might not adequately represent the wide range
of experiences and expressions. In addition, this study recognizes the possibility of
biases present in the pre-trained models. Large volumes of random data are exposed
to models during the pre-training phase, which may unintentionally contain societal
biases found in online content. This study acknowledges that these model biases may

affect how the models interpret and handle paraphrased sentences.

e Second, the author focuses exclusively on single-class data instances, excluding multi-
class data instances from the analysis. The decision to re-label the dataset to contain
only single-class data instances may introduce biases and limitations in the model’s
training and evaluation process. By excluding multi-class instances, the study over-
looks potentially valuable information and patterns present in the data, limiting the
generalizability of the findings. Furthermore, the exclusion of multi-class instances
may impact the model’s ability to handle real-world scenarios where text instances
may belong to multiple categories simultaneously. Therefore, the findings of this study
should be interpreted with caution, recognizing the inherent limitations imposed by

the exclusion of multi-class data instances from the analysis.

o Third, the size of the dataset. After selecting single-class data instances, there are
5,002 instances in the dataset. Small dataset sizes may provide limited information for
LLMs to understand and categorize sexual harassment stories. Because of this, LLMs
could not fully comprehend the various facets and contexts of sexual harassment stories.
These limitations due to the small dataset size could limit the generalizability of our

findings and reduce the performance and reliability of our models.
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1.7 Delimitations

The delimitations for this study include:

o First, this research exclusively investigates the effect of out-of-vocabulary (OOV) re-
placement on the classification performance of LLM and does not explore alternative
methodologies for enhancing model performance, such as data augmentation or feature
engineering. While OOV replacement represents one approach to address vocabulary
gaps and improve model robustness, it is not the only strategy available for optimizing
LLM performance. By focusing solely on OOV replacement, this study may overlook
the potential benefits offered by other techniques, such as generating synthetic data
through data augmentation or extracting informative features through engineering.
Consequently, the findings of this research may provide an incomplete understanding
of the broader landscape of methodologies for enhancing LLM performance, empha-
sizing the importance of future studies that explore and compare multiple strategies

in tandem.

« Second, the exclusion of specific LLMs. Recognizing the vast landscape of LLMs, this
study deliberately narrows its focus to the BERT-based model. While BERT is widely
used in text classification tasks, the exclusion of other models is acknowledged as a de-
liberate limitation. Focusing on a specific model allows for more detailed comparisons

and investigations, even if not all of the models that exist can be explored.

1.8 Summary

This chapter provided the scope, significance, research question, assumptions, limitations,
delimitations, definitions, and other background information for the research project. The
next chapter provides a review of the literature relevant to sexual harassment, OOV words,

and large language models.
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2. REVIEW OF RELEVANT LITERATURE

This chapter provides a review of the literature relevant to Sexual harassment, the Large

Language Model, and Out-of-Vocabulary words.

2.1 Sexual Harassment

2.1.1 Definition

Sexual harassment is characterized by inappropriate behavior with a sexual component,
as defined by [28]. Numerous approaches exist for defining sexual harassment both from
legal and psychological perspectives. The legal definition of sexual harassment in the U.S.
is provided by The Equal Employment Opportunity Commission (EEOC) Guidelines. They
define sexual harassment as, verbal or physical conduct of a sexual nature that unreasonably
interferes with the employees work or creates an intimidating, hostile or offensive working
environment [29, p. 1]. This definition targets the work environment. In contrast, there are
psychological definitions that emphasize the behavior of offenders and the experience of vic-
tims [30]. According to [31], sexual harassment is defined as actions that degrade, condemn,
or denigrate a person because of their gender. [32] define sexual harassment as unwanted male
conduct that prioritizes a woman’s sexual role over her duty as an employee. [33] introduced
a comprehensive framework for defining sexual harassment, encompassing six distinct behav-
iors. These encompass verbal harassment or abuse, subtle coercion towards sexual activities,
unwarranted physical contact such as patting or pinching, persistent bodily contact with
another person, requests for sexual favors coupled with implicit or explicit threats regarding
an individual’s job security, and requests for sexual favors coupled with implicit or explicit
promises of favorable treatment in relation to an individual’s employment status. [34] define
sexual harassment as unwanted sexual behavior at work that the recipient finds insulting,
overwhelmed, or endangers her health. A relatively recent definition from [35] is behav-
ior that is unwanted and that is intended to be offensive, confrontational, intimidating, or

humiliating.
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The emergence of the digital age has changed the nature of sexual harassment in recent
times, raising the pressing problem of online sexual harassment. According to [36], online
harassment affects 40% of internet users, with varied degrees of intensity. Compared to
other demographic groups, young adults are most likely to encounter online harassment.
Approximately 64% of adults under 30 have encountered some kind of online harassment [5].

Conventional interpretations of sexual harassment have mainly focused on physical in-
teractions that occur in public or workplace settings. However, defining, comprehending,
and dealing with sexual harassment now presents a number of additional difficulties and
complexities due to the digital age. A wide range of actions falls under the umbrella of cyber
sexual harassment [37], from overt and unwanted sexual advances to more covert forms of
coercion through the internet, like stalking [38], sharing private information without consent,
and online grooming [39]. Because of the anonymity and worldwide reach of the internet,
offenders can target victims anywhere in the world, making it a widespread problem with
far-reaching effects [7], [40].

Researchers define online harassment in various ways. The broad definition is hostile
behavior occurs online [41], [42]. [43] have defined online sexual harassment as behavior in-
cluding sexual requests, image-based harassment, sexual coercion, and hate speech. [44] de-
fined online harassment as inappropriate conduct sent to a young person online or published
online for public viewing. [45] define online harassment as aggressive behavior or actions of
interpersonal hostility that are conveyed over the internet or other electronic media. They
conducted a thorough review of the literature and provided definitions for online sexual ha-
rassment, conceptualizing them by bullying components such as intended harm [46]-[48],
power imbalance, and frequency of harassment behavior [49]. [46] defines online harassment
as an interpersonal activity through a computer to intentionally hurt another worker in the
workplace. [49] defines online harassment as frequent online communication that targets a
specific person and results significant mental stress and/or the risk of physical harm. [50],
[51] conceptualize online harassment as workplace harassment, defining it as actions that
the victim believes make the workplace unpleasant or hostile. [52] provides a scoping review
of online sexual harassment literature, and attempts to define terms used to describe online

sexual harassment in the adolescent population. In this study, the author defines online sex-
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ual harassment as the act of causing unwanted sexual discomfort and aversion online such

as verbally or visually aggressive sexual conversations, jokes, and insults.

2.1.2 Impacts

According to clinical observations by [53], [54], sexual harassment can affect victims in
various aspects, both mentally and physically. From therapeutic experience data and sexual
employment survey, [54] found that victims go through certain stages of emotional changes
including confusion, self-blame, fear, anxiety, depression, anger, and disillusionment. They
also compared sexual harassment victims to victims of rape, battering, and incest, and found
all of them experience grief, shame, guilt, fear, and rage. Among the victims of various vi-
olence, sexual harassment victims usually experience these emotions for a longer time. [55]
analyzed the data from questionnaires and records from the Institute’s crisis counseling ser-
vice, and found that sexual harassment victims experience psychological stress symptoms
such as general tension or nervousness, persistent anger, and fear, as well as decreased pro-
ductivity and self-confidence. [56], [57] studied the harmful effects of sexual harassment
and came to the conclusion that sexual harassment can and does cause serious issues with
women’s mental health. In addition, sexual harassment was investigated to have a physi-
cal effect on the victim. [58] investigated previous studies [54], [55] and found that sexual
harassment victims suffered physical symptoms such as fatigue, migraines, weight loss, and
insomnia. Research has shown that teenagers, who use the internet more frequently than
adults, are particularly susceptible to online sexual harassment [36], [59]. Studies conducted
by [37], [60]-[63] have also shown that adolescents who experience online sexual harassment
may experience emotional and physical health issues as a result, with women being the vic-
tims more frequently. [64] conducted an online survey on 594 adolescents, and found that
there is a significant correlation between girls’ anxiety and depressive symptoms when they
experience online harassment.

Whether in traditional or online forms, sexual harassment is a widespread and compli-
cated problem that requires a nuanced understanding. Due to the complexity of the issue,

various definitions have evolved to include a variety of inappropriate behaviors. Since a sig-
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nificant portion of the population experiences online harassment to varying degrees [5], the
digital age has given rise to new challenges in the field of cybersexual harassment. Young
adults are particularly susceptible to these online threats [36], and the ease of perpetrating
such harassment across geographical boundaries has made it a global issue [6], [7]. Un-
derstanding the nuances of both traditional and cybersexual harassment, as well as the
ramifications and proactive measures that can be taken to prevent and address this type of

victimization, is crucial as we navigate this dynamic environment.

2.1.3 Sexual Harassment Dataset

Due to the highly sensitive nature of the subject matter, collecting a dataset on sexual
harassment proves to be an extremely difficult task [14], [17], [65]. This difficulty stems
primarily from the need to respect and protect the privacy and safety of victims. Many people
are hesitant to publicly share their sexual harassment experiences, which contributes to the
scarcity of publicly available datasets. Furthermore, sexual harassment incidents frequently
occur within specific environments, such as specific groups or organizations, limiting the
diversity and scope of available data. These incidents are frequently handled confidentially
or go unreported [66]-[68], making curating comprehensive public datasets difficult.

Researchers navigate the challenges of dataset collection through various approaches.
Some researchers scrape datasets manually from social media like Twitter, Reddit, and
Facebook, and some utilize public datasets, mainly the SafeCity dataset. [14] conducted
a classification of sexual harassment stories, collected datasets from the known Sexual Ha-
rassment forums between November 2016 and December 2018, postings containing tags of
sexual abuse from Reddit, and tweets about sexual harassment from Twitter. After that,
they manually identified the data related to sexual harassment and got 5119 text sentences
as a final dataset. [17] first discovered an open-source harassment dataset on Github, which
includes 408 profane words associated with harassment, offense, or humor. Following that,
they extracted tweets from Twitter that contained at least one word from the offensive key-
words list, and got 3604 tweets for the classification task. [69] used two datasets on sexual

harassment: Comment on Sexual Harassment (CSH), which had 212,751 comments, and
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Chat Sexual Predators (CSP), which had 155,128 conversations and 2,058,781 messages.
After removing text elements such as abbreviations, emoticons, digits, symbols, and vary-
ing text lengths, which made classification difficult, they got 20,000 comments from CSP
and 25,000 from CSH. SafeCity platform is the biggest public online forum for reporting
sexual harassment experiences. They provide 9,892 sexual harassment stories tagged as 13
forms. [70] studied sentiment analysis-based sexual harassment detection using the SafeCity
dataset. [71] collected 10,622 hate speech posts from Twitter and classified them into 3 types
of harassment, indirect, physical, and sexual harassment. [72] reinforced the classification
model by including elements like location, time, and relationship with victims and harassers,
using the SafeCity dataset as well. [73] scraped Indonesian tweets based on 11 keywords
related to sexual harassment on 4 - 6 May 2022, and got 2990 tweets. [74] compared feature
selection methods for sexual harassment on Facebook, using randomly selected 4000 posts
from the MyPersonality dataset and 50 chat logs between volunteers and predators from the
Perverted-Justice Foundation.

Some researchers create their own datasets and release them to the public. [75] provides
an annotated corpus consisting of 25000 tweets and offensive word lexicons containing 5 cate-
gories: sexual, racial, appearance-related, intellectual, and political harassment content. [20]
utilized the data from the top 3 most dense categories in the SafeCity dataset for sexual

harassment classification, and released their dataset splits to the public.

2.1.4 Classification of Sexual Harassment Type

Studies to detect and classify the various types of sexual harassment have emerged along
with the interest in sexual harassment. [17] crawled tweets including harassment content
including profane words and labeled them as data implying sexual harassment and data in
a non-sexually harassing. Then, they conduct binary classification with various machine
learning models such as SVM, Naive Bayes, Logistic Regression, Random Forest, Gradient
Boost, KNN, Adaboost, MLP, and stochastic Gradient, as well as deep learning models such
as BERT, BiLSTM, CNN-BiLSTM, LSTM, CNN, and ULMFit. BERT model showed the
highest accuracy of 83.56%. [76] proposed a pattern-based approach using a person iden-
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tification module to detect online sexual harassment messages in social media. They used
the normalization module to convert informal text that included spelling errors, slang, and
contradictions to formal format and showed this module increased the classification perfor-
mance. They identified patterns for sexual harassment text and achieved a 0.72 f1 score.
[77] utilized a data augmentation technique called SMOTE [78] and neural networks such
as CNN, LSTM, and Bi-GRU to classify harassment tweets into 4 categories (harassment,
indirect harassment, physical harassment, sexual harassment). Their method showed a 0.46
f1 score, which shows the difficulty of classifying harassment data. [73] collected 2990 In-
donesian tweets, used TF-IDF as a feature, and conducted binary classification using LSTM,
SVM, and naive bayse. They achieved 86.54% accuracy with the SVM algorithm. [79] pro-
posed RNN-based harassment type classification approach and back-translation method for
imbalanced dataset. They classified the tweet dataset into 4 categories (harassment, indi-
rect harassment, physical harassment, sexual harassment), and resulted 0.47 f1 score using
MultiProjected AttentionRNN. [15] proposed a model that classifies Chinese text data into
four categories: general chat, uncomfortable, violated, and insulted according to the degree
of harassment. They utilized a BERT-based pre-trained model and a 1-layer classifier. [70]
collected data from SafeCity, a crowdsourcing platform for sexual harassment and abuse sto-
ries, and proposed the classification method that combines TF-IDF with machine learning
and achieved 81% accuracy with the SGD classifier. [20] proposed an automatic classification
approach working both for single-label and multi-label models to classify sexual harassment
stories from SafeCity, labeled as groping, ogling, and commenting. They achieved 86.5% ac-
curacy with the CNN-RNN model. Determining the optimal approach for the classification
of sexual harassment stories depends on various factors. It is difficult to determine the best
approach because the dataset, experimental conditions, and performance evaluation metrics
used for each study are different. However, approaches using the neural network model,
especially SVM and RNN-based models showed good results. Among the studies utilizing
the English dataset, a study from [17] using the BERT model showed the highest accuracy of
83.56% in terms of accuracy, indicating the possibility that transformer-based models could

be effective in identifying subtleties in sexual harassment content.

22



2.2 Large Language Models(LLMs)

2.2.1 Definition and Evolution of LLM

Language models are machine learning models that can comprehend and generate human
languages [12], [80], [81]. Generally, language models aim to anticipate future tokens by mod-
eling the probability of word sequences [21], [82]-[84]. They are used in Natural Language
Processing(NLP) specializing in text-based data processing based on the language structure
and statistical characteristics present in data. Recent studies [80], [85]-[87] demonstrated
that increasing the size of language models, data sizes, and overall computation can increase
model performance. This led to the advent of Large Language Models(LLMs), large-sized
pre-trained language models. According to [82], LLMs are described as transformer lan-
guage models, which are trained on vast amounts of text data and have hundreds of billions
of parameters, such as GPT-3 [85], PaLM [87], Galactica [88], and LLaMA [89]. [21] defined
LLMs as one category of artificial intelligence that has surfaced as a potent instrument for
an extensive array of applications, including question-and-answer, natural language process-
ing, and machine translation. [90] defined LLMs as models of the statistical distribution of
elements in an extensive public corpus of human-generated texts. In this context, tokens
including punctuation marks, words, fragments of words, or individual characters.

The first breakthrough of the neural language modeling approach was proposed by [91].
They proposed a neural language model that understands the distributed representation of
words and the probability function for word sequences at the same time and demonstrated
their approach improves the state-of-art approaches dramatically by experiment. Neural net-
work based language model uses static word embeddings such as Word2veC [92] and GloVe
(93], it had a fundamental problem in that it was difficult to understand the multiple mean-
ings of a word might have in context. Researchers introduced Sequence-to-sequence learning
to solve this problem [94], and it performed well in high-level language work such as machine
translation [95], [96], question generation [97], image captioning [98], and speech recognition
[99]. After that, deep learning based language modeling approaches appeared. Recurrent
neural networks(RNN), in particular, long short term memory(LSTM) [100] was the most
widely used among them [101], [102]. [L03] improved traditional RNN by integrating the vec-

23



tor containing contextual information of the sentence. Following this, researchers have made
endeavors to improve the computing complexity and network structure of RNN [104]. [105]
proposed an approximate training algorithm that utilizes only a small subset of the whole
vocabulary, and experiments on translation tasks. They demonstrated their method works
as similar as, or outperforms the state-of-art methods on translation tasks while decreas-
ing computing complexity. [106] proposed LightRNN, which reduces the number of vectors
required for a large vocabulary by using a 2-component shared embedding, which arranges
words in a table and shares row and column vectors. They experimented on language mod-
eling tasks and achieved comparable performance to the two state-of-the-art LSTM RNN
algorithms while decreasing model size and running time. However, RNN and related model
and LSTM have a vanishing gradient problem, that prevents them from maintaining context
in a long sentence [107], [108]. It leads to the Transformer models, which enable to use of
larger data and architecture and capture longer sequences using parallel training [109].

Since the advent of the transformer model [110], researchers have conducted various stud-
ies to create more efficient and powerful language models. [111] proposed a transformer-based
model that can learn 80% longer dependency than RNNs and resolves context fragmentation
problem which occurs when the context is selected regardless of the meaning of a sentence,
and the contextual information required to predict the following word is absent from the
model. [112] proposed present Open Pre-trained Transformers, which are decoder-only pre-
trained transformers, and released full models. They compared their method with existing
methods and provided analysis for prompting, few/zero/one-shot, and bias/toxicity evalua-
tion tasks.

Transformer has been such a success that almost all pre-trained models use it as the back-
bone. The generative pre-trained model has drawn a lot of interest lately. [113] proposed the
generative pre-training(GPT) model, which utilizes the transformer model architecture and
combines supervised fine-tuning with unsupervised pre-training for language understanding
tasks. Following GPT, [30] proposed Bidirectional Encoder Representations from Trans-
formers(BERT), using a pre-trained bidirectional encoder that considers both left and right
context with a masked language model. They achieved new state-of-art performance on

11 NLP tasks. The pre-trained model has received great attention, and research has been
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actively conducted to scale up and further improve it. Inspired by BERT, [114] proposed
RoBERTa, which is the extension of BERT. They scaled up a batch size, trained the model
with longer sentences, and dynamically changed the masking pattern, improving BERT on
several NLP tasks. [115] proposed DistilBERT, only 40% size and 60% faster version of
BERT while achieving 97% language understanding performance. They used knowledge dis-
tillation during pre-training. [116] proposed AIBERT, the model with 18x fewer parameters
and 1.7x faster training speed. They used 2 parameter reduction techniques, one to divide a
large vocabulary embedding matrix into two smaller matrices, and the other to prevent the
parameters from increasing as the network depth increases. [117] introduced XLNet, a gener-
alized autoregressive pretraining method. Optimizing the expected likelihood across different
factorization order permutations enables bidirectional context learning and overcomes the
drawbacks of BERT with its autoregressive formulation. [118] proposed pre-training frame-
work ERINE, which takes into consideration lexical, syntactic, and semantic information in
corpora during the training phase. Following this, encoder-decoder-based pre-trained models
have emerged, such as T5 [119] and BART [120].

As previous studies demonstrated scaling up model parameters can improve the model
performance [121], large-scale pre-trained models developed. [85] proposed the GPT-3, au-
toregressive language model trained with 175 billion parameters. They experimented with
GPT-3 on one, zero, and few-shot settings on various NLP tasks such as language modeling
and question answering, and demonstrated the strength of GPT-3 for generating high-quality
answers without fine-tuning or gradient updates. Similarly, large models with billions of pa-
rameters such as PANGU [122], GShard [123], Switch-transformers [124] developed. More
recently, MetaAl proposed LLaMA [89], containing 7B to 65B parameters and trained with
trillions of tokens. Google Research [125] proposed Pathways Language Model (PaLM), a
densely activated Transformer model including 540-billion parameters.

The majority of language models were pre-trained with English, and some researchers
pre-trained models on different language corpus and improved performance on specific lan-

guages. [126] used French corpus and [127] used Korean corpus for pre-training.
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2.2.2 Applications of LLM

LLMs can be widely used and are rapidly evolving in various applications. LLMs are
beneficial for several natural language processing applications including natural language
processing tasks such as text classification [128]-[130], text and content generation [131]-
[133], information retrieval [134], [135], chatbot systems such as educational systems [136]
and virtual assistants [137], machine translation tasks [138]-[140], text mining [141]-[144],
data summarization [145]-[148], and speech processing [149]-[151]. Due to LLMs’ wide range
of applicability, researchers actively conducting studies that employ LLMs to address social
problems.

[152] explored the advantages and disadvantages of LLMs as well as their potential
to increase the effectiveness and efficiency of clinical, educational, and research work in
medicine. [128]-[130] proposed text classification using a large language model along with
various techniques such as transfer learning and fine-tuning. [153] proposed Plug and Play
language model, which combines pre-trained language model with attribute classifiers and
enables attribute controlling for text generation. [154] use the word representations as the
model training parameter, and improve the limitation of high cost in large search space
of existing lexically-constrained text generation approaches. [155] proposed sentiment con-
trollable dialogue generation model, which generate the conversation text contains specified
emotion implicitly or explicitly. [156] proposed the storytelling framework that user can
give multiple topics to the model and model generates the story based on given topics.
[133] utilized BART and T5 model for graph-to-text generation task, and achieved new
state-of-the-art results. [157] introduced Seq2Seq constrained keyword-based text generation
technique. [158] explored the few-shot data augmentation technique for information retrieval
tasks. In the medical field, LLM has also been broadly utilized in chatbots; studies have been
done comparing the responses of chatbots based on LLM with those of real doctors. [159]
compared consent forms of 6 surgical procedures generated by LLM based chatbots and
surgeons, and found that chatbot-generated consent forms are simpler, and get better scores
for completeness and accuracy. [160] compared LLM based chatbot’s response and Ophthal-

mologist’s response about patient eye care questions, and patients could only distinguish
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between chatbots and real people’s answers with 61.3% accuracy. Furthermore, LLM-based
chatbots are also used to give health advice on heart attacks [161] and are used in the field
of education [136]. [138] studied the effectiveness of large language models in machine trans-
lation, and proposed a novel smoothing method for training large data sets. Additionally,
LLM is actively utilized in the field of machine translation. [140] examine the capabilities of
LLMs such as GPT-3.5, GPT-4, and BLOOM for real-time machine translation tasks, and
suggest a machine translation system that is effective for languages with fewer resources.
LLM is also widely used in text mining and data summarization tasks in various domains.
For instance, [142] proposed SMedBERT for medical text mining, [143] proposed BioBERT
for biomedical text mining, [144]proposed Finbert for financial text mining, and [141] pro-
posed MatSciBERT for materials domain text mining. Similarly, [147] proposed the data
summarization model BioBERTSum for the biomedical field using a sentence position em-
bedding mechanism. [162] introduced a large-scale multi-document summarization dataset
and model for news articles. [163], [164] focused on long-document summarization task.
Moreover, LLMs are also employed in tasks involving speech recognition. [149] compared
several language model integration methods for speech recognition, both on medium-sized
and large-sized datasets. [151] proposed automatic speech recognition system and outper-
form monolingual baselines by adding a conformer encoder to LLaMA model. In addition
to these examples, LLMs are actively applied and vastly evolving in a wide range of fields,
and researchers developing new models and applications at a very rapid pace.

There are multiple studies using LLMs for addressing social issues. [165] explores and
evaluates LLMs for real-world security challenge scenarios including cryptography and re-
verse engineering. [17] use LLM for online sexual harassment classification. [16] proposed
'Llama guard’, an LLM-based safety tool targeting human-AT interaction. This tool is useful
for classifying specific safety risks arising from LLM prompts and detects conversations that
violate safety risk guidelines such as violence& hate, sexual content, guns & illegal weapons,
and self harm. [166] and [167] proposed hate speech detection techniques using GPT-based
LLM and showed that LLM-based detection method surpassed existing approaches. [168§]
proposed fine-tuned BERT to detect cyberbullying and demonstrated that BERT outper-
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formed CNN, LSTM, or BiLSTM models. [169] explores LLMs’ ability to detect implicit

hate speech and their ability to express confidence in their responses.

2.3 Out-of-Vocabulary(OOV) Word

2.3.1 Definition

Word embeddings are widely used as a feature for neural networks in various NLP tasks,
but Out-of-Vocabulary(OOV) words degrade the model performance due to the information
loss [170]. OOV words are words that are not in the model’s training set. OOV words consist
of new words that come from various sources such as scientific and engineering terms, new
terms from social life, political terms, and foreign words [171]. They also contain typos and

slang words [172].

2.3.2 OOV Word Handling

The OOV word problem has been approached in the literature in several ways. Several
works use morphemes to generate the embeddings for OOV words. [173] utilized morpheme
vectors to compute word embeddings. [174] proposed word embeddings that combine mor-
phological and distributional information. [175] propose the morphological structure based
OOV embedding generation method that is trained with the function of spelling distribution
of words using Bi-LSTM architecture. Their method is useful for low-resource languages.
But morpheme-based approaches struggle with foreign language words and names. Other ap-
proaches use character-level language models or embeddings, which work directly with word
characters rather than pre-established word tokens. [176] suggested the open-vocabulary
word embedding model that generates the word embedding using RNN and character-level
embeddings. [177] proposed the language model using character-level inputs employing CNN
and RNN, and outperformed morpheme-based models with fewer parameters. [178] proposed
the embedding model that utilizes character n-gram count vector and single layer transforma-
tion. [179] proposed a several subword modeling approach to get word representations from
characters and morphemes of a word. Their method using morphemes showed strong per-

formance on machine translation tasks for morphologically rich languages. [180] introduced
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the FastText model that can encode rare words. They use the sum of character n-grams for
word representation and use subword units to model morphology.

Furthermore, some researchers explored techniques that incorporate contextual infor-
mation and deep learning methods. [175] suggested the method that considers both the
morphology and context of the word to predict embeddings for OOV words. They employed
recurrent network and attention mechanisms to capture the right and the left contextual
information. [181] proposed HiCE, the method to construct the OOV embeddings using
attention-based architecture on a few-shot learning setting. [182] extended the work of [175]
by considering the embeddings of surrounding words as well as the characters of the word.
They proposed a network called "Comick’ that predicts the embeddings of OOV words using
morphology, contextual information, and an attention mechanism. [183] proposed a method
to adapt unsupervised word embeddings for noisy and small datasets using a neural network
with one single hidden layer. They estimate embeddings into a low dimensional sub-space
that enables the embeddings to fit the complexity of the target task. [184] proposed a POS
tagging system using a deep neural network. They predict the word embedding for OOV
words using semantic and morphological information using a pre-trained model learned by
FastText embeddings and Bi-LSTM layer architecture. [185] proposed the word embedding
model for Korean Characters(Hangeul), using Convolutional Neural Network(CNN) archi-
tecture with an attention mechanism. Their model demonstrated the robustness under a
high-noise level environment.

Some works focused on embedding generation for specific tasks, such as Part-of-Speech
(POS) tagging or machine translation tasks. [176] proposed the sequence tagging method to
build the word embeddings by compositing the characters using Bi-LSTM. [186] proposed
the model for rare words, utilizing the word log frequency and auxiliary loss. [187] proposed
the neural machine translation model that is robust to various kinds of noise using adversar-
ial training and structure-invariant representation. [172]proposed the contrastive learning
framework for building a robust embedding model for OOV words. They use a mixture of
characters and sub-words as input.

Several different methods have been suggested for handling OOV words in addition to
the ones already described. [188] proposed the method to calculate the average embedding
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of the context for unknown words. [24] proposed a multi-level OOV handling method that
resembles the human brain’s inference system. Their approach is composed of 3 phases,
analogy, decoding, and prediction, combining multiple strategies to resolve limitations of
previous approaches that focus on specific types of OOV words. In the text classification task,
their approaches demonstrated competitive performance in the majority of experiments on
noisy and short text datasets. [189] proposed the Misspelling Oblivious (word) Embeddings
(MOE), the method to generate embeddings that are robust to typo and misspelling by
learning from real typo data collected from the web. [190] propose a model that is robust
to typos and misspellings, using the method to encode words as character sequences. They
divide the target word into 3 parts, Beginning, Middle, and End vectors to generate the
embeddings. They experimented with 3 languages(English, Russian, and Turkish) and 3
tasks, paraphrase generation, sentiment analysis, and textual entailment identification. Their
method is more robust to typos than word2vec and FastText models especially when noise
level is high. [191] proposed the variant of BERT, CharacterBERT that modifies the tokenizer

process to subword level and improves performance on the the less general domains.

2.4 Summary

This chapter provided a review of the literature relevant to sexual harassment, large lan-
guage models, and OOV handling. The next chapter provides the framework and method-

ology to be used in the research project.
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3. METHODOLOGY

This chapter provides the framework and methodology to be used in the research study.

3.1 Study Design

This study aims to conduct an analysis of LLM’s performance of sexual harassment story
classification tasks before and after replacing Out-of-Vocabulary words. The research seeks
to identify the subtle impacts on the interpretability, sensitivity, and general performance of
the ensuing sexual harassment narrative categorization task of LLMs. The author replaces
OOV words, conducts text classification with the BERTForSequenceClassification model on
the dataset before and after replacement, and compares their performance before and after

replacement.

3.2 Dataset

3.2.1 Dataset Description

The author uses the SafeCity dataset karlekar2018safecity to train our model for the
classification. SafeCity platform is the biggest public online forum for reporting sexual ha-
rassment experiences, and sexual harassment stories are submitted and tagged as 13 forms
by the forum users. The stories were mainly collected in India, and other countries such as
Kenya, Nepal, and Malaysia. The author uses the dataset provided by [20], which contains
9,892 stories from the top 3 categories, commenting, ogling, and groping from the SafeCity
dataset. The dataset is composed of stories categorized into different types of sexual ha-
rassment. Verbal sexual harassment-related behaviors were classified as a "Commenting"
class, visual sexual harassment-related behaviors were classified as an "Ogling" class, and
physical sexual harassment-related behaviors were classified as a "Groping" class. Examples
of "Commenting" class could include making sexually explicit comments or jokes, and bully-
ing or humiliating someone using sexually suggestive language. Behaviors such as following
someone with one’s gaze focusing on their body, leering at someone with obvious sexual

intent, and whistling while staring at someone’s body could be examples of "Ogling" class.
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Table 3.1. Example of SafeCity dataset

Description Commenting | Ogling | Groping
a girl was teased by a boy and he was 0 1 0
showing some facial expression to the

girl.

Me and my friends were coming back 1 1 0

from our internship and going to-
wards the Dwarka sector 10 metro
station. There is a wine and beer
shop where a lot of men hang around
and pass comments and behave inde-
cently.

This happened to me in the last 30 0 0 1
days during the day. I took a shared
auto rickshaw to reach the malviya
nagar market and a man touched me
inappropriately.

In the "Groping" class, behaviors indicating grabbing someone’s body, suggestively touching
someone’s body, and pinching or squeezing someone’s body parts in a sexual manner without
permission can be included. Specifically, 39.3% of the dataset pertains to "Commenting,"
21.4% to "Ogling," and 30.1% to "Groping." This dataset contains both single-label and multi-
label datasets, consisting of 8,191 training samples and 1,701 test samples for each category.
Single-label dataset is for binary classification, and it consists of 2 columns, description and
category. If the story in the description column contains sexual harassment it is labeled as 1,
and if not it is labeled as 0. Multi-label dataset is for multi-class classification and it contains
4 columns, including description, commenting, ogling, and groping. The corresponding type
of sexual harassment is labeled 1 if it is included in the story and 0 if not, and some stories
include one or more sexual harassment components. The author use a multi-label dataset

for this study. Table 3.1 is an example of a multi-label dataset.
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Table 3.2. Dataset Distribution

Class Label | # of Instances
Commenting 0 2,013 (40.5%)
Ogling 1 668 (13.4%)
Groping 2 2,321 (46.4%)
Total 5,002

3.2.2 Dataset Preprocessing

The author utilized the multi-label dataset, excluding entries associated with two or more
categories, thus focusing solely on instances belonging to a single category. The dataset
had 5,002 stories that were unique to one category. The author re-labeled the dataset as
commenting, ogling, and groping. There are 2,013 instances (40.5%) for Commenting, 668
instances (13.4%) for Ogling, and 2: 2,321 instances (46.4%) for Groping. Among the entire
dataset, 51.2% contain at least one out-of-vocabulary (OOV) word. The author lower-cased
and lemmatized all data, and tokenized the data with BERT Tokenizer. The final dataset
distribution is described in Table 3.2.

3.3 Models

The author used DistilBERT for the replacement of OOV words, and BERT for the
classification.

In the process of replacing out-of-vocabulary (OOV) words with in-vocabulary words
from the dataset, a step involves masking the OOV words and using a language model to
predict the masked words. Here, DistilBERT was employed for this task. The detailed
procedure will be discussed in the section 3.4.

The author used a BertForSequenceClassification model based on bert-base-uncased from
HuggingFace with the SafeCity dataset for the classification. bert-based-uncased model in-
cludes 12 layers, 12 attention heads, and 768 hidden sizes with 110M parameters. It utilizes
the BERT model, which comprises several layers, including embeddings, encoder, and pooler

layers. The embeddings layer handles token, position, and token type embeddings. The en-
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coder layer consists of multiple BertLayers, each containing attention, intermediate, and
output sublayers. Finally, the pooler layer aggregates token representations for classifica-
tion. The model also includes dropout layers for regularization. The structure of the model
the author used in this study is proposed in Figure 3.1.

There are several reasons for the selection of BERT based model in this study. According
to the study conducted by [17], BERT showed the best performance on the sexual harassment
story classification task when compared to other machine learning algorithms and deep
learning algorithms. In addition, The BERT-based models are the most widely used for
text classification tasks in the HuggingFace platform. These models leverage the BERT
architecture and undergo fine-tuning tailored to their specific objectives. This approach has
been prevalent due to its effectiveness in achieving state-of-the-art performance across various
natural language processing tasks. The most of previous studies on sexual harassment story
classification use CNN, RNN, or Bi-LSTM-based classification models. Since this study
focuses on the LLM, the author utilized the BERT model for the classification task. [192]
proposed the strategy to select a suitable approach to using LLM in text classification. In our
study, document length is short, a number of documents is more than 1,000, time allocation
is not limited, and the budget is limited. In this case, they recommend annotating a large
sample and fine-tuning a smaller model. The author already has a fully annotated dataset,
and BERT is smaller than GPT-3 and widely used in text classification tasks, which makes
BERT an appropriate selection. In addition, a previous study by [192] showed that fine-
tuned BERT performed almost as well as the GPT-3 model, which is larger, in most NLP
tasks.

BERT (Bidirectional Encoder Representations from Transformers) devlin2018bert
BERT is a language model that has been pre-trained using unlabeled text data. It was pro-
posed by Google and has significantly advanced natural language processing. It is built on
the Transformer architecture, and featured with its capacity to encode words bidirectionally
to take into account context from both directions within a sentence. This allows for a richer
comprehension of the context in actual conversations or papers.

DistilBERT (Distilled Bidirectional Encoder Representations from Trans-
formers) sanh2019distilbert DistilBERT is a lightweight version of BERT that was proposed
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Figure 3.1. BertForSequenceClassification Model Structure

by HuggingFace. DistilBERT is based on the BERT architecture but focused on reducing
the number of parameters to lower the computational cost and footprint of the model. Even
with a large reduction in parameters over BERT, DistilBERT preserves the important as-
pect of BERT: bidirectional context encoding. This indicates that it can effectively encode
words and retain performance across a range of natural language processing tasks even with
a reduced model size. DistilBERT is extensively used in settings with limited resources and

in applications that call for effective NLP models.

3.4 OOV Replacement

Since BERT uses the WordPiece algorithm to create vocabulary schuster2012japanese,
the author uses the WordPiece algorithm to detect OOV words. The author obtained a

list of in-vocabulary words using BERT Tokenizer, and for each sentence in the dataset,
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the author selected OOV words that were not included in the vocabulary list. Based on
[24], the author adopt a multi-level approach that resembles the human thought process
maluf2013alfabetizaccao to replace OOV words. In comparison with various existing OOV
handling approaches such as fastText [180], HiCE [181], and Comick [182], experiments have
demonstrated that their multi-level OOV handling methods exhibit generally satisfactory
results across datasets encompassing noisy text and diverse contexts. It is composed of 3
steps, analogy, decoding, and prediction.

In the Analogy step, the author replaced OOV words with synonyms found in thesaurus
dictionaries. The author modified the existing approach by incorporating a prediction model
to select the most suitable word among the initial synonyms obtained in the first step. This
addition was made considering that the dataset belongs to a narrow domain and to prepare
for instances where suitable in-vocabulary synonyms for replacement words cannot be found
in the dictionary. Next, in the Decoding step, the author replaced OOV words with words
having similar morphological structures. Additionally, in cases where an appropriate in-
vocabulary word could not be found even after the decoding step, the author utilized the
average embedding of in-vocabulary words among the synonyms obtained in the first step.

In the first step, the author used a dictionary and masked language model to search for
synonyms of OOV words. The author used the [193] API and retrieved the top 10 synonyms
for each OOV word. Datamuse API returns related words with the original OOV word
even if it is a foreign language or the name of a person. For example, the term 'matatu’
means privately owned minibusses used as shared taxis in Kenya. Datamuse API returns
words like ’local taxi’, 'minibus’, and ’share taxi’ which are relevant to and fully reflect the
original meaning of the OOV word. For the same word, there were no synonyms found
in the WordNet dictionary. Also, datamuse API finds the synonym based on the context
information of the word. For instance, for the word "Pashupatinath’ which means Hindu
temple in Nepal, WordNet returned nothing but datamuse returned some words related to
the place of the temple and Hindu religion. The author selected the top 10 words because
based on the empirical observations by [24], datamuse API generally turns return noise after
10 words. Among 10 candidates obtained from datamuse API, the author select words that

are in-vocabulary words.
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After extracting candidate replacement words for OOV words from datamuse and masked
language prediction model, the author found common words among the words obtained from
each method. If no match was found, the author checked whether the word was a typo or a
spelling error using the spelling checking library [194]. Symspellpy is a spellchecking library
using Levenstein distance, and it enhanced the searching speed by precomputing possible
spelling errors for the dictionary. The author selected only the words with a Levenshtein
distance of 2 or less from the original word and chose only those that are in-vocabulary
words.

If the author couldn’t find replacement words for OOV words in the previous step, the
author used the average embedding values of the in-vocabulary words among the synonyms
obtained from the datamuse API. In case there’s no in-vocabulary word in datamuse API
synonyms list, the author used the average embedding values of the in-vocabulary words pre-
dicted from the DistilBERT masked language prediction model. If there are multiple words
in the list, the author selects the word with the most similar embedding value with the
average embedding value. The author employed cosine similarity when calculating the simi-
larity of embedding value. For the embedding model, the author chose the BERT embedding
method. A study conducted by [195] compared the text classification performance using var-
ious word embedding methods such as FastText, word2vec, ELMo, GloVe, and BERT with
various classification datasets. The BERT model outperformed other embedding methods
in text classification tasks on single-label datasets. In cases where the entire sentence or
specific words are in a different language, those sentences are manually translated to English

sentences with the same meaning. Our replacement approach is described in Figure 3.2.

3.5 Classification

The aim of this study is to assess and compare the performance of Large Language Models
(LLMs) for the task of sexual harassment story classification before and after the replacement
of OOV words. The author evaluated the model’s classification performance in this analysis.
The investigation will focus on analyzing the data that the model correctly and incorrectly

classifies. The purpose of this analysis is to identify differences in the features and patterns
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Figure 3.2. Proposed OOV word replacement flow

of correctly classified cases versus incorrectly labeled cases, illuminating the advantages
and disadvantages of the large language model for correctly classifying sexual harassment
stories. A thorough investigation into the incorrectly classified cases will also be conducted
to identify the particular difficulties or subtleties that cause mistakes in the classification
procedure. Comparing the classification performance before and after OOV replacement
allows for a better understanding of the large language model’s domain understanding and
generalization capabilities. This provides insights into how effectively the model operates

within specific domains.

3.5.1 Dataset splitting and Cross-validation

The author performs a 3-class classification on a fine-tuned bert-based-uncased model
with the SafeCity dataset and compares the performance of each model. The author uses
80% (3,627 instances) of the dataset for training and 20% (1,375 instances) for testing. The

author use 20% of the training dataset for the validation set. The author divides the dataset
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into 5 folds and performs cross-validation for reliable results. The author takes the average
value of cross-validation as the final result. For each model, the author conducts classification

twice, using the original dataset and the OOV-replaced dataset.

3.5.2 Model Training

The author used the BertForSequenceClassification model with 1 classification layer. For
training, the author utilized the AdamW optimizer with a learning rate of 2e-6. Additionally,
a linear scheduler with warmup was employed to adjust the learning rate during training. The
number of epochs was set to 10. These settings were chosen to balance model performance
and training efficiency. Deliberate parameter optimization and fine-tuning were omitted, as
the primary objective of this study was not to engineer a high-performance model, but rather
to compare the model’s performance pre- and post-replacement of OOV words. The author
trained the model on the original dataset and replaced the dataset with the same train and

test set.

3.6 Result Analysis

3.6.1 OOV Feature Analysis

The author analyzed examples where the model made correct and wrong classifications
to study the types of out-of-vocabulary (OOV) words in each scenario. The author used
TF-IDF (Term Frequency-Inverse Document Frequency) to identify if an out-of-vocabulary
word was a term related to the sexual harassment domain. TF-IDF is a statistical metric
that evaluates the importance of a word in a document compared to a set of documents by
multiplying the term frequency by the inverse document frequency. The author calculated the
TF-IDF values for each out-of-vocabulary (OOV) word in the document using the complete
Safecity dataset as the reference text. The author labeled out-of-vocabulary (OOV) words
as relevant to the dataset if they had TF-IDF values of 0.64 or higher in our analysis. This
threshold was chosen because, upon investigating the TF-IDF values calculated for each
word, the author found that values below 0.64 were indicative of words unrelated to the

sexual harassment domain.
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3.6.2 SHAP Analysis

The author uses the SHapley Additive exPlanations (SHAP) analysis proposed by [196].
SHAP is the game theory based method to explain the impact of each input feature on
the model’s prediction by comparing predictions with and without each feature. It employs
simplified explanation models to provide insights into complex machine learning models. To
analyze which words had the greatest impact on the model’s predictions for correctly and
incorrectly classified instances in each dataset, the author employed the SHAP method. For
the language model, the SHAP baseline value is the model output when the entire sentence
is masked. SHAP values explain how unmasking each word impacts the model output by
changing from the baseline value to the final prediction value in an additive manner. Positive
SHAP values indicate that a feature positively contributes to increasing the model’s output
or likelihood of a certain class prediction. Conversely, negative SHAP values indicate that a
feature negatively contributes to the model’s output or decreases the likelihood of a certain
class prediction. For example, in Figure 3.3, the saliency plot shows how each input feature
affects the model’s prediction for each class.

Saliency Plot

x-axis: Output Text
y-axis: Input Text

he touched | my breasts | during break

LABELO| 0.0| -0.799 | -1.639 -0.746 -1.016
LABEL1 | 0.0 -0.409 -0.991 -0.523 -0.777

LABEL2 | 0.0| 0.931 1.959 0.964 0.94

Figure 3.3. SHAP Analysis Saliency Plot

The example sentence belongs to the 'LABEL 2’ class. Figure 3.4 represents a graph
where the SHAP values indicate how much each word influenced the model’s classification of
this sentence into the 'LABEL 2’ class. Higher SHAP values suggest that the corresponding
word had a significant impact on the model’s decision to classify this sentence into that

particular class.
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Figure 3.4. SHAP Analysis Bar Graph

In this study, the author used the SHAP value to figure out the word that has the
highest impact on the model’s prediction and conducted the comparative analysis on the
model trained on the original dataset and the model trained on the dataset after OOV

replacement.

3.7 Summary

This chapter provided the framework and methodology to be used in the research study.

The next chapter provides experimental results.
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4. RESULTS

This chapter presents the experimental results, focusing on assessing the model’s perfor-
mance before and after replacing out-of-vocabulary (OOV) words. The author delves into
three scenarios: instances where the model classified data correctly before but incorrectly
after OOV replacement, vice versa, and where classification results remained consistent. Ad-
ditionally, the author examines the characteristics of OOV words in original data where the
model made correct and incorrect classifications. Employing the SHAP method, the author
investigates the impact of individual words on the model’s predictions for both correctly and
incorrectly classified instances across datasets. Through this comprehensive analysis, the
author aims to understand the sensitivity of the model to OOV words and their behavior in

a narrow domain with and without such words.

4.1 Evaluation Metrics

The author used the following metrics to measure the performance of each model: ac-
curacy, precision, recall, and F1 score. In a classification task, the precision is the number
of true positives divided by the total number of elements classified as positive class by the
model. Recall is the number of true positives divided by the total number of elements that
actually belong to the positive class. True Positive here means the number of items correctly
labeled as belonging to the positive class. Accuracy is the measurement of error. This in-
dicates how close a given result is to its true value. Accuracy in multi-class classification is
defined as the number of correct classifications divided by the number of all classifications.
F1 score is the harmonic mean of the precision and recall.

The model trained on the original dataset achieved an accuracy of 80%, with precision,
recall, and F1-score values varying across classes. Class 0 (Commenting) exhibited a precision
of 79% and a recall of 84%, while Class 1 (Ogling) had a precision of 81% and a recall of 53%.
Class 2 (Groping) showed the highest precision of 82% and the highest recall of 85%. The
model trained on the replaced dataset, on the other hand, achieved a slightly lower accuracy
of 79%. Despite similar precision values, the OOV replaced model displayed slightly lower

recall values across Class 0 and Class 1, and showed slightly higher recall value in Class 2
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Table 4.1. Model Performance on Original Dataset

Class Precision | Recall | F1-Score
Commenting 0.79 0.84 0.81
Ogling 0.81 0.53 0.62
Groping 0.82 0.85 0.75
Accuracy 0.80

Table 4.2. Model Performance on Replaced Dataset

Class Precision | Recall | F1-Score
Commenting 0.81 0.82 0.82
Ogling 0.81 0.43 0.54
Groping 0.81 0.86 0.81
Accuracy 0.79

Table 4.3. The most influential words for model prediction (Original dataset)

Label Correct Incorrect
Commenting | commenting, commented, comments, boys, harassment its, staring

Ogling staring, og, ling, stared, was guys, touched, at, for, and

Groping touched, touch, and, raped, touching boys, pictures, cal, a, teasing

compared to the original model. The detailed model performance on the original dataset

and the dataset after OOV replacement is shown in Table 4.1 and Table 4.2.

4.2 SHAP Analysis

The author aimed to identify the most influential words that the model relied upon when
classifying data into each class using SHAP. The author analyzed specific words that played
a crucial role in the model’s classification decisions for each class. The author selected the
most frequently occurring words among those identified to have the highest positive SHAP
values.

Starting with the model trained on the original dataset, for the "Commenting" class,
when the model correctly classified data belonging to this class, the frequently mentioned
words that had the most significant impact on the model’s decision were ’commenting,’

‘commented,” ’comments,” ’boys,” and ’harassment. On the other hand, in cases where
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Table 4.4. The most influential words for model prediction (Replaced dataset)

Label Correct Incorrect
Commenting | commenting, commented, comments, and, comment staring

Ogling staring, gazing, and, was a, my, following, touched, at

Groping touched, touch, and, touching, raped a, and, was

data belonging to this class were misclassified, ’its” and ’staring’ were selected as the words
that most frequently influenced the model’s decision. For the "Ogling" class, when the
model classified data correctly, 'staring,” ’og,” ’ling,” 'stared,” and 'was’ were identified as
the most influential words. However, when data was misclassified, ’guys,” touched,” ’at,’
for,” and ’and’ were the words most frequently influencing the model’s decision. In the
groping class, when the model correctly classified data, 'touched,” ’touch,” ’and,” 'raped,’
and 'touching’ were frequently mentioned as the most influential words. Conversely, when

‘cal,” ’a,” and ’teasing’ were the

the model misclassified data in this class, ’boys,” 'pictures,’
words most frequently influencing the model’s decision.
For the dataset after the OOV replacement, notable discrepancies in the classification
results were observed. Specifically, concerning data within the "Commenting" class, instances
correctly classified featured ’commenting,” ’commented,” ’comments,’ ’and,” and 'comment’
as the most influential words. Conversely, for misclassified data, ’staring’ was frequently cited
as having a significant influence. Regarding the "Ogling" class, correct classifications were
characterized by ’staring,” "gazing,” ’and,” and 'was’ emerging as the predominant influential
words. Conversely, instances of misclassification within this class were associated with ’a,’
‘my,” "following,” "touched,” and 'at’ as the most influential terms. Within the "Groping" class,
instances correctly classified were marked by 'touched,” 'touch,’” and,’” "touching,” and raped’
as the frequently mentioned influential words. Conversely, instances of misclassification

within this class were linked with ’a,” ’and,” and ’was’ as the most influential terms. Word

lists are described in the Table 4.3 and Table 4.4.
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4.3 Comparison of Model Prediction on the Original Dataset and Replaced
Dataset

Together with these statistical performance indicators, the author analyzed data features
in case the model classifies correctly and incorrectly before and after replacing OOV words
to get a deeper understanding of the results.

The author analyzed the data feature using SHAP analysis in three cases: 1) The data
is classified correctly before replacement but incorrectly after replacement (C-I), 2) The
data is classified incorrectly before but correctly after replacement (I-C), and 3) The data is
classified both correctly (C-C) or incorrectly (I-I) before and after replacement. The author
found that out of a total of 1,375 test instances, 862 instances were correctly classified by both
models, while 370 instances were misclassified by both. Also, 84 instances that were correctly
classified in the original dataset were incorrectly classified in the replaced dataset, and 59
instances that were incorrectly classified in the original dataset were correctly classified in

the replaced dataset. Figure 4.1 describes the number of instances in each case.

63% (862)

4% (59

nC-C uC-I n]l-C mI-]

Figure 4.1. Analysis of Correct and Incorrect Classifications Before and After
Replacement

45



4.3.1 Same Results Before and After OOV Replacement (C-C, I-I)

For a total of 1,232 instances, the model exhibited consistent results before and after
replacement. Out of these, 862 instances were correctly classified in both the pre- and post-
replacement datasets, while 370 instances were consistently misclassified in both datasets.

The author utilizes SHAP values to identify the word that has the most influence on the
model’s prediction. In the "Commenting" class, for instance, the same keyword was identified
as the most influential for 177 instances before and after replacement, while different key-
words were selected for 144 instances. Similarly, in the "Ogling" class, 24 instances had the
same influential word, while different words were identified for 29 instances. The "Groping"
class exhibited a similar pattern, with 193 instances having the same influential word before
and after replacement, while 295 instances had different influential words. Out of the total
862 instances correctly classified before and after OOV replacement, 54% (468 instances)
had different words identified as most influential. Although there were more instances in
the "Commenting" class where the most influential word remained the same before and after
replacement, the other two classes saw a higher number of instances where the influential
word changed.

The analysis of instances incorrectly classified both before and after replacing OOV words
yields the following findings. In cases where the same word was identified as most influential
both before and after replacement, there were 4 instances in the "Commenting" class, 24
instances in the "Ogling" class, and 99 instances in the "Groping' class. Conversely, instances
where different words were identified as most influential before and after replacement were
17 instances in the "Commenting" class, 44 instances in the "Ogling" class, and 182 instances
in the "Groping" class. Out of a total of 370 instances, only 28% (127 instances) had the
same word identified as the most influential before and after replacement.

In Figure ??, the most frequently selected common word when the model chose the same
word as the most influential before and after OOV word replacement is listed. When the
model correctly classified the class of the data, the most influential words were primarily
words that were relevant to the dataset and related to each class across all three classes.

In the "Commenting" class, 'Commenting’, ’'comments’, and 'commented’ were selected as
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Figure 4.2. Comparison of Consistency in Outcome Between Most Influential
Words Selected Before and After OOV Replacement

Table 4.5. Comparison of Predicted Classes Before and After OOV Replacement (I-I)

Label Same | Different
Commenting 20 1
Ogling 60 8
Groping 267 14

the most influential words, while in the "Ogling" class, ’staring’, and in the "Groping" class,
‘touch’, ’touched’; and ’'touching’ were identified. This indicates that in both the pre- and
post-replacement models when correctly classifying the classes, the most influential words
selected were the words that closely related to the meaning of the name of each class.
Conversely, when the model incorrectly classified the class of the data, it selected words
that were relevant to the dataset but unrelated to the respective class or entirely unrelated
to the domain as the most influential words. For example, in the "Commenting" class, words
like ’staring’, ’and’, and ’looks’ were present, in the "Ogling" class, 'bus’, ’at’, ’stalking’, and
in the "Groping" class, ’and’, 'whistling’, ’harassment’” were identified.

Table 4.5 represents the number of instances predicted for each class that are the same and
different when the model predicts both incorrectly before and after the OOV replacement,
and Figure 4.3 describes the number of predictions in each class. In the "Commenting" class,

both models predicted 20 cases as the same class before and after replacing OOV words,
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Figure 4.3. Comparison of Predicted Classes Before and After OOV Replacement (I-1)

with only 1 instance being predicted differently. Among them, for the model before the
replacement, 5 of them were predicted as the "Ogling" class and 16 were predicted as the
"Groping" class. For the model after the replacement, 6 instances were classified as the
"Ogling" class, and 15 were classified as "Groping" class. For the "Ogling" class, there are
60 instances classified to the same class before and after OOV replacement, and 8 instances
classified to the different classes. The model before replacement classified 43 instances to
the "Commenting" class and 25 to the "Groping" class. On the other hand, the model
after replacement classified 45 instances to the "Commenting" class and 23 instances to the
"Groping" class. The majority of instances for the I-I case fall into the "Groping" class. In
the "Groping" class, 267 instances are classified to the same class by both models, and 14
are classified to a different class. Before the replacement, 252 instances are classified as the
'"Commenting" class and 29 are classified as the "Ogling" class. After OOV replacement, 250
instances were classified as the "Commenting" class, and 31 were classified as the "Ogling"

class.
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Table 4.6. Top Common Keywords Before and After OOV Replacement
When Correctly Classified

Class Keywords
Commenting | '’commenting’, ’comments’, ’'commented’, "harassment’, ’and’, 'bad’, on’, 'were’, "the’
) ) ) ) ) ) Y )
Ogling 'staring’, ’and’, 'was’, 'guy’, 'pm’, 'any’, 'college’, 'showed’, ’happens’, ’disturbed’
Groping ‘touch’, 'touched’, *touching’, ’and’, 'my’, ‘'me’, "her’, 'tried’, 'guy’, 'was

Table 4.7. Top Common Keywords Before and After OOV Replacement
When Incorrectly Classified

Class Keywords

Commenting 'staring’, "and’, 'looks’, touches’
Ogling 'bus’, ’at’; 'stalking’, ’harassment’; 'travelling’, ’side’, ’it’; ’avail’, 'pictures’, ’street’
Groping "and’, "whistling’, "harassment’, 'were’; ’bad’, 'teasing’, ’happened’, 'pictures’; stalking’, ’a’

4.3.2 Different results before and after replacement (C-I, I-C)

Out of a total of 1,232 instances, 84 instances that were correctly classified in the original
dataset were incorrectly classified in the replaced dataset. Among them, 15 instances belong
to the "Commenting" class, 6 instances belong to the "Ogling" class, and 63 instances belong
to the "Groping" class. Considering the dataset distribution shown in Table 3.2, it can be
observed that the number of instances in the "Commenting" and "Groping" classes does not
differ significantly. However, in the replaced dataset, the number of instances incorrectly
classified is much higher in the "Groping" class. Therefore, when comparing the original
dataset with the replaced dataset, it is evident that the highest increase in errors occurred
in the "Groping" class.

On the other hand, 59 instances that were incorrectly classified in the original dataset
were correctly classified in the replaced dataset. Among them, 12 instances belong to the
"Commenting" class, 3 belong to the "Ogling" class, and 44 belong to the "Groping" class.
Similarly, the number of instances in the "Groping" class is relatively high compared to the
total number of instances.

Table 4.8 describes the number of instances the model select the same influential word
before and after OOV replacement. In the case of C-C, out of a total of 84 instances, the

model selects the same word as the most influential word before and after replacement in 14
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Table 4.8. Number of Instances With the Same Influential Word (C-I, I-C)

C-1|1I-C
# of instances with same influential word | 14 | 2
Total 84 | 59

Table 4.9. Domain of OOV words in the Original Dataset
Type of OOV word Correct Incorrect
Relevant to the dataset | 224 (32.32%) | 88 (12.7%)
Irrelevant to the dataset | 254 (36.65%) | 127 (18.33%)
Total 478 215

Table 4.10. The most frequent OOV words

Type of OOV word Correct Incorrect
) o snatching (23), groped (18), catcall (14), catcalled (9),
Relevant to the dataset inappropriately (17), indecent (14), groping (14) | misbehaved (8), leh (7), catcalling (6)
] rickshaw (14), chowk (13), safecity (6), rickshaw (4),
Irrelevant to the dataset buttock (8), rajiv (7), quot (5) buea (4), winking (3)

instances. On the other hand, in the I-C case, the model selects the same word as the most

influential word in 2 instances out of 59 instances.

4.4 OOV Feature Analysis

The author investigated the characteristics of OOV words in the original dataset con-
cerning instances where the model correctly and incorrectly classified them. This analysis is
only subject to the model trained on the original dataset because only the original dataset
contains OOV words.

Among 1,375 instances in the test set, 693 instances (50.4%) contain OOV words. Out of
478 instances when the model’s predictions were accurate, 224 occurrences had OOV words
that are relevant to the dataset and 254 instances had OOV words that are irrelevant to the
dataset. In contrast, out of 215 instances of OOV words, 88 were identified as relevant OOV
words and 127 as irrelevant OOV words when the model’s predictions were inaccurate.

The author examined the most frequent OOV words for each scenario: when the model

classified an instance correctly and when it misclassified it. The prevalent OOV words differed
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between the two cases. In instances where the model accurately classified, the frequently
occurring OOV words that are relevant to the dataset included ’snatching,” 'groped,’ inap-
propriately,” ’indecent,” and ’groping.” On the other hand, OOV words that are irrelevant
to the dataset such as 'rickshaw,” 'chowk,” ’buttok,” 'rajiv,” and 'quot’ were common. For
cases where the model misclassified, dataset-relevant words like ’catcall,” ’catcalled,” 'mis-
behaved,” ’leh,” and ’catcalling’ were frequently observed, whereas dataset-irrelevant terms
such as ’safecity,” 'rickshaw,” 'buea,” and 'winking’ appeared frequently. These findings are

depicted in Table 4.10, illustrating the prevalent words and their frequencies for each case.

4.5 Summary

In this chapter, the author describes the results of the experiments conducted. In the
next chapter, the author will discuss the findings from the results, limitations, and future

plans.
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5. DISCUSSION, LIMITATIONS AND FUTURE PLAN

In this chapter, the author will provide the interpretation of the results, limitations of our

approach, and future plans.

5.1 Discussion

5.1.1 Model Performance

The results indicate that the model trained on the original dataset showed varying per-
formance across different classes with an overall accuracy of 80%. The model demonstrated
relatively high recall in the "Commenting" class and the "Groping" class, suggesting that
the model accurately identified instances in this class. The recall for the "Ogling" class was
53%, suggesting that the model accurately detected a substantial number of commenting
instances but also misclassified instances from other classes as commenting. Furthermore,
the "Ogling" class had a relatively low F1-Score (62%), showing that the model had difficulty
reliably detecting instances in this class. The "Groping" class showed the highest precision
of 82%, demonstrating a strong ability to identify instances belonging to this class correctly.

While the differences were not substantial, the model achieved a slightly lower overall
accuracy of 79% when trained on the replaced dataset. Precision and recall values for
the "Commenting" and "Groping" classes demonstrated minimal differences of within 2%
before and after OOV replacement, indicating relatively consistent results. However, for the
"Ogling" class, there was a noticeable decrease (10%) in recall from 53% to 43% after OOV
replacement.

Despite the marginal differences observed, the overall trend suggests a slight decline in
model performance following OOV replacement. The decrease in recall and F1-Score for the
"Ogling" class after OOV replacement implies that the model’s ability to correctly identify
instances within this class decreased. This could mean that the distribution or properties
of the data were changed by replacing OOV terms, which made it harder for the model
to correctly identify instances of the "Ogling" class. The minimal changes in precision,

recall, and Fl-score for the "Commenting" and "Groping" classes suggest that the impact
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of OOV replacement on these classes was relatively insignificant. This could indicate that
the original dataset provided sufficient information for the model to effectively learn and
generalize patterns within these classes, even after the replacement of OOV words. Overall,
our results highlight the complex and class-specific impacts of OOV substitution on model

performance.

5.1.2 SHAP Analysis

The analysis of influential words through SHAP values provides valuable insights into
the model’s decision-making process and the impact of OOV replacement on classification
results.

The results reveal the distinct patterns of influential words for each class. Words like
"commenting," "commented," and "comments," which are associated with harassing behavior
and commenting, played a crucial role in correctly classifying instances in the "Commenting"
class. On the other hand, instances misclassified within this class were often characterized
by the presence of terms like "staring," suggesting challenges in delineating clear boundaries
between classes. In the "Ogling" class, similar observations were noted, where words related
to visual attention, such as "staring" and "gazing" were influential in correctly classifying
instances. However, misclassified instances exhibited more varied items, including "guys" and
"touched", indicating potential ambiguity in class distinctions. Similarly, in the "Groping'
class, words indicating physical touch, such as "touched" and "touch" were identified as the
most frequently occurring influential words in the case of correctly classified instances. When
the instance in this class is misclassified, more general words such as "boys", and "pictures"
were identified as the most influential words.

After OOV replacement, the analysis showed notable changes in influential words. For
instance, in the "Commenting" class, the replacement led to a shift from specific commenting-
related terms to more general terms like "and," reflecting a broader scope of influence in the
decision-making process. Despite these changes, certain influential words remained consis-
tent across correctly classified instances within each class, highlighting the robustness of

these features in capturing class characteristics. However, influential terms that were not
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necessarily representative of the classlike "staring" in the "Commenting" class or "pictures"
in the "Groping" classwere frequently found in misclassified cases.

It indicates the models ability to capture domain-specific words, but the model exhibited
a tendency to misclassify instances when they contained domain-related words that did not
clearly belong to one class, or when context was required to discern the content. This
highlights the complexity of the classification task in the sexual harassment domain and the

need for further refinement in model training and feature selection strategies.

5.1.3 Comparison of Model Prediction on the Original Dataset and Replaced
Dataset

Same Results Before and After OOV Replacement (C-C, I-I)

The analysis of instances correctly classified both before and after replacing OOV words
reveals the following insights. While a significant number of instances were classified into
the correct class both before and after OOV word replacement, there were often differences
in the words identified as having the most influence on the model’s decisions, as revealed in
4.2. The model exhibited a tendency to select different influential words before and after
replacement, regardless of whether it correctly or incorrectly classified the instances, with
this tendency being more pronounced in cases of incorrect classification. The presence and
quantity of OOV words in the original data were not crucial factors since the number of
OOV words in each case widely varied, from instances ranging from those without any OOV
words to those containing multiple OOV words.

In case instances were correctly classified into their respective classes (C-C), the author
delved deeper into the words the model identified as most influential. After replacing OOV
words, the words selected by the model as influential tend to be more domain-related. For
example, in Figure 5.1, where the OOV words 'RanchiBhagalpur’ and ’Andai’ were replaced
with more general words like Indian’ and ’canal’, the model selected 'touched’ as the most
influential word after replacement, whereas 'people’ was chosen before replacement. In an-
other example, Figure 5.2, where the OOV word was ’snatching’ replaced by ’grab’, the word

‘grab’ became the most influential after replacement, whereas 'chain’ was chosen before re-
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placement. Furthermore, in the examples provided in Figure 5.3, where there were no OOV
words, the model selected crowd’ and 'man’ as the most important words for each sentence
before replacement, while 'touched” and ’grabbed’ were chosen after replacement. Even in
cases where there were no OOV words, the model tended to select domain-related words as
the most influential, whether the OOV word was relevant to the domain or not. Additionally,
in the "Ogling" class, ’ogling’” was mostly replaced by 'gazing’ Before replacement, 'og’ or
‘ling” were chosen as the most influential words, while ’gazing’ was selected after replace-
ment. Although the original model’s vocabulary did not include the word ’ogling’, it seemed
to understand its influence contextually. For sentences containing the word ’staring’, the

model consistently selected ’staring’ as the keyword before and after replacement.

Original: Few bad people touched my private pants in RanchiBhagalpur express at Andai railway station.

Replaced: Few bad people touched my private parts in Indian express at canal railway station.

Figure 5.1. Instance classified correctly both before and after replacement

Original: Chain snatching.
Replaced: Chain grab.

Figure 5.2. Instance classified correctly both before and after replacement

before
I was buying vegetables in the market when a man came in the crowd touched me in a wrong way and walked off

before
I was walking on the street when a man suddenly grabbed my breast and ran away. He was nowhere to be found.

Figure 5.3. Instance classified correctly both before and after replacement

The experiment showed similar results in cases where the model incorrectly classified the
instances both before and after the OOV replacement (I-I). In the example in Figure 5.4,

"idling” was the OOV word replaced by 'wandered’. Before replacement, ’girls’ was selected as
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the most influential word, whereas after replacement, 'whistling’ became the most influential.
Even in instances where there were no OOV words, the most influential words chosen by the
model before and after replacement differed. In the example in Figure 5.5, the model trained
on the original data chose 'while” as the most influential word, while the model trained on the
replaced data selected 'whistling’. It was observed that even when the model misclassified the
class, the model trained on the replaced data tended to select more domain-related words
as the most influential. In addition, when the model incorrectly classified instances both
before and after the OOV replacement, in almost all cases it can be seen that both models
classified data into the same class.

It can be inferred that in case the model correctly classified the instance, the model
demonstrates improved contextual comprehension following the replacement of OOV words,
and this pattern persists regardless of the presence or frequency of OOV words. Moreover,
it suggests that the model trained on the dataset after OOV replacement has the potential
to exhibit enhanced performance and improved ability to generalize. On the other hand, the
result suggests that if the model is incorrectly predicted, the classification performance of

the model did not change significantly before and after the OOV replacement.

Original: Street guys idling besides the streets, winking and whistling and calling girls.
Replaced: Street guys wandered besides the streets, winking and whistling and calling girls.

Figure 5.4. Instance classified incorrectly both before and after replacement

after before

Whistling while girls go walking from campus to hotel.

Figure 5.5. Instance classified incorrectly both before and after replacement

In Table 4.6 and 4.7, we can see that when the model properly selected keywords related
to the class, it classified them correctly, while selecting ambiguous words or words unrelated

to the domain resulted in incorrect classification.
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Different results before and after replacement (C-I, I-C)

It is shown that cases showing different results between the original dataset and the
dataset after OOV word replacement predominantly occur in the ’Groping’ class.

In instances where the model initially classified correctly but misclassified after the re-
placement of OOV words, there were several cases where two models produced different
classification outcomes for the same sentences. For instance, as depicted in Figure 5.6, the
model trained on the original dataset correctly classified the sentence by selecting "person”
as the most influential word, while the model trained on the dataset after OOV replacement
misclassified the same sentence by choosing "car" as the most influential word. Similarly, in
Figure 5.7, both models selected "me" as the most influential word, with the model trained on
the original dataset correctly classifying the sentence while the model trained on the dataset
after OOV replacement misclassified it. These instances suggest that OOV replacement may

lead to a decrease in model performance in case there’s no OOV word in the sentence.

before after
Person stalking in a car.

Figure 5.6. Instance classified correctly before but incorrectly after replacement

before & after
When I was going to tuition class, a guy was stalking me.

Figure 5.7. Instance classified correctly before but incorrectly after replacement

However, when considering instances with spelling errors or multiple OOV words in the
original dataset, a different trend was observed. The model after OOV replacement showed
better performance in these cases. For example, as shown in Figure 5.8, the model trained
on the original dataset misclassified the sentence by selecting "thank" as the most influential
word, whereas the model trained on the dataset after OOV replacement correctly classified

the sentence by selecting "comments”.
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Original: I was going home yesterday to my grandma's place when I met this boy that studied in our schoo, I was carrying
things in both my hands. I strethced my hands so he could greet my wrist but instead he hugged me so tight. I then pulled
away and he said I looked beautiful and sexy. i was mnot copmfortable with his comments but i said thank you. he later
invited me to his house to cook for him but i declined since he was taking the conversation too far and also considaering the

way he was looking at me.

Replaced: I was going home yesterday to my grandma's place when I met this boy that studied in our school, I was carrying
things in both my hands. I stretched my hands so he could greet my wrist but instead he hugged me so tight. I then pulled
away and he said I looked beautiful and sexy. i was not comfortable with his comments but i said thank you. he later invited
me to his house to cook for him but i declined since he was taking the conversation too far and also considering the way he

was looking at me.

Figure 5.8. Instance classified incorrectly before but correctly after replacement

Furthermore, the author thoroughly examines the cases in which the model consistently
chooses the same word as the most influential, both before and after OOV substitution. In
Figure 4.8, there are 14 instances for the C-I case and 2 instances for the I-C case. In the
C-I case, the majority (12) of them were instances that did not include OOV words. This
indicates model after OOV replacement struggles to classify the instance without the OOV
word. On the other hand, in the I-C case, the model showed similar behavior before and
after OOV replacement. Except for 2 instances, model after replacement generally selects
more domain-specific words as the most influential word, leading to accurate predictions.

These findings suggest that, while OOV replacement may have a negative impact on
model performance in case there are no OOV words in the sentence, it can improve perfor-
mance in scenarios including multiple spelling errors or multiple OOV words. From this,
it can be inferred that OOV replacement can enhance the contextual understanding of the
model and contribute to the model performance when the dataset contains multiple OOV
words or words with typos. Therefore, the impact of replacing OOV words on model perfor-

mance can vary depending on the sentence’s structure and context.
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5.1.4 OOV Feature Analysis

The distribution of OOV words that are relevant to the dataset and irrelevant to the
dataset differs between instances classified correctly and incorrectly by the model. When
the model’s predictions were correct, instances frequently included OOV words relevant to
the sexual harassment domain, such as ’snatching,” 'groped,” and ’inappropriately,” demon-
strating that the model effectively captured domain-specific language patterns. In contrast,
cases misclassified by the model had a higher frequency of OOV words that are irrelevant
to the dataset, indicating that the model may struggle to understand and contextualize the
instances including novel keywords outside the domain.

The analysis of the most frequent OOV words further highlights the distinction between
correctly and incorrectly classified instances. In the case where the model correctly classified
data, prevalent OOV words that are relevant to the dataset reflect themes relevant to the
classification task, such as instances of harassment or inappropriate behavior. Prevalent
OOV words that are irrelevant to the dataset were the words that indicate taxi, the part
of the body, and the name of the place. On the other hand, misclassified cases frequently
include OOV words that are relevant to the dataset and were ambiguous to classify into
one class, such as ’catcall’ and 'misbehaved’, and this leads the model to become confused
or misread novel phrases. OOV words that are irrelevant to the dataset contain words like

"Safecity” and "winking’.

5.2 Limitations

While this study provides insights into the impact of OOV words in the sexual harass-
ment domain, several limitations should be considered. Firstly, the findings are specific to
the SafeCity dataset, which can limit their generalizability to different datasets in sexual
harassment domains. Furthermore, factors like the OOV replacement method, the quality
of replaced words, and their semantic alignment with the OOV terms can affect how effec-
tive OOV replacement is. Moreover, this study only focuses on a single LLM model and

its classification ability, so the findings may vary depending on the type of LLM and task.
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Further research is necessary to explore the biases in the model training procedure and the

interpretation of misclassification.

5.3 Future Plan

In the future, the author aims to address several key limitations and expand the range of
the study to get more generalizable results. First, the author recognizes the importance of
dataset diversity and intends to broaden our dataset collection to compare the results within
different datasets. By comparing various kinds of sexual harassment story datasets, the
author will be able to get an enhanced and generalized understanding of the impact of OOV
words in classification tasks within this domain. Additionally, the author plans to expand the
type of LLM and compare each model to get a broader perspective. Conducting comparative
studies will provide insights into the strengths and weaknesses of different LLMs, as well as

their input sensitivity to the OOV words in narrow domains.

5.4 Summary

This section provides the discussion, limitations, and future plan of this study.
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