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ABSTRACT

Van Every, Philip M. M.S., Purdue University, May 2018. Multicore Xinu. Major
Professor: Douglas E. Comer.

Multicore architectures employ multiple processing cores that work together for

greater processing power. Shared memory, symmetric multiprocessor (SMP) systems

are ubiquitous. All software must be explicitly designed to support SMP processing,

including operating systems. XINU is a simple, lightweight, elegant operating system

that has existed for several decades and has been ported to many platforms. How-

ever, XINU has never been extended to support multicore processing. This project

incrementally adds SMP support to the XINU operating system. Core kernel mod-

ules, including the scheduler and memory manager, have been successfully extended

without overhauling or completely redesigning XINU. A multicore methodology is

laid out for the remaining kernel modules.
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1. INTRODUCTION

1.1 Processor Speed and Memory Access Speed

Several decades ago, a typical processor ran with a clock speed on the order

of MHz. Modern processor clocks cycle at speeds on the order of GHz [1]. As

clock speeds increase, heat dissipation is becoming a limiting factor. Even with

sophisticated multilevel cache architectures, memory systems are unable to keep up

with modern processors’ demand for data [1]. Modern manufacturing techniques

are approaching upper limits on the complexity of computer circuitry that they can

produce.

Faced with these barriers, computer vendors have begun to add more processors

to increase computational power. Multiprocessor and multicore platforms raise new

and unique challenges for software designers.

1.2 Operating Systems and Concurrency

Operating systems often allocate processor time to multiple processes and then

switch between them at a high frequency, giving the impression of simultaneous exe-

cution. However, because there is only one processor, only one processes is executing

at a time. Such concurrency is implicitly provided to an application developer by a

unicore operating system.

Multicore systems allow for true parallelism: Two or more processes or threads

of execution may execute on two or more processing cores at the exact same time.

However, such parallel execution cannot be exploited implicitly. An application pro-

grammer must design multi-threaded applications and the operating system must

manage them. In order to manage multi-threaded applications on a multicore plat-
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form, the operating system itself must be designed to provide multicore support.

Thus, Multicore support has become standard among modern operating systems.

1.3 The XINU Operating System

Written in the C programming language for deployment on embedded systems,

XINU is a small, simple, efficient, and elegant operating system [2]. XINU uses mini-

malist implementations of all standard kernel modules, including process management

and scheduling, devices and drivers, file systems, etc. It is widely used as a teaching

tool, but also employed in real industrial systems. While XINU has been ported to

run on a diverse collection of architectures and embedded platforms, it has not yet

been extended to run in a multicore environment.

This project incrementally adds multicore support to the XINU operating system

while maintaining its policies, semantics, organizational paradigms, and intuitive de-

sign style. Thus, this is not an overhaul or redesign of XINU, but rather an extension

of XINU to the world of parallel execution.

1.4 Roadmap

Chapter 2 defines potentially ambiguous terms related to operating systems and

parallel processing. To provide a basis for the discussion of a multicore XINU design,

Chapter 3 gives an overview of relevant parallel computing principles and multicore

operating system design paradigms. Chapter 4 explains and analyzes the policies and

mechanisms of an example multicore XINU design. Finally, Chapter 5 provides some

big picture perspective and identifies opportunities for continued work.
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2. DEFINITIONS AND ABBREVIATIONS

2.1 Parallel Computing Terms

Concurrent Execution, a.k.a. Multiprogramming, Multitasking: This is an

execution scheme in which multiple processes share a processor and take turns run-

ning, typically with a preemptive, time-sharing scheduler.

Parallel Execution, a.k.a. True Concurrency: This is an execution scheme in

which multiple processes run simultaneously on more than one processor or core.

Semaphore: A Semaphore is a cooperative process synchronization primitive that

allows a set number of processes to execute a protected section of code at any given

time, causing ineligible processes to reschedule and block until a currently executing

process exits the protected code section. These are typically used to synchronize ac-

cess to a limited, shared resource, such as a device or memory buffer.

Mutex: A mutex is binary semaphore, i.e. a semaphore that protects a singular

resource which only one process may access at a time.

Spinlock: Similar to a mutex, a spinlock ensures mutually exclusive execution of a

critical section of code. However, a splinlock does so by causing the process to stall

and waste CPU execution cycles rather than reschedule.

TAS - Test And Set: TAS is a spinlock implementation algorithm that works by

continually attempting to atomically set a bit in memory until successful, thereby
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marking the location as locked.

CAS - Compare And Swap: CAS is a spinlock implementation algorithm that

works by continually comparing a memory location to a given value and attempting

to atomically exchange the value in memory with the given value, thereby marking

the location as locked.

CPU, Processor, and Core: Typical SMP systems have a single CPU with mul-

tiple cores. In such a system, all cores can be thought of as separate processors, and

the terms “core”, “processor”, and “CPU” become synonymous. When discussing

multicore XINU, this work uses the terms interchangeably.

Processor/Cache Affinity: To improve cache performance, a multicore OS may

attempt to schedule a process on the same core each time the process is selected to

run. The process is said to have affinity to the processor on which it is scheduled.

The intent is that each time the process is scheduled, the processor’s L1 cache will

still hold cache lines from its previous execution, leading to a lower cache miss ratio.

Processes, Lightweight Processes, and Threads: The XINU operating system

does not use virtual memory addressing. When discussing XINU, the concept of a

process is similar to a thread or lightweight process. This work broadly refers to any

unit of execution as a process.

SMP - Symmetric Multiprocessing: SMP is a multiprocessing paradigm in which

all cores behave identically, share a memory system, and execute within the bounds

of a common, shared OS.

AMP - Asymmetric Multiprocessing: AMP can be broady defined as anything

that is not SMP [3]. In this scenario, cores behave differently. For example, one
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core runs a main OS and another core runs a real time OS for specific, time sensitive

computations.

MESI: MESI refers to a cache coherence protocol on SMP systems where each pro-

cessing core has its own memory cache. Cache lines are tracked and maintained in

one of four states: Modified, Exclusive, Shared, and Invalid.

MOESI: The MOESI protocol performs cache coherence in a manner similar to the

MESI, but uses an additional cache line state: the Owned state.

ERG - Exclusive Reservation Granule: The ERG is the smallest amount of

memory that can be marked for exclusive access in an SMP system.

Reentrant Spinlock, a.k.a. Recursive Spinlock: A reentrant spinlock allows

a process that already holds a spinlock to reacquire the spinlock without spinning

again. Similarly, a reentrant mutex allows a process that already holds a mutex to

reacquire the mutex without blocking again.

Data Race, a.k.a. Race Condition: A data race occurs when multiple processes

or threads attempt to modify the same piece of shared memory. If access to the

shared memory is not mutually exclusive, the data object it represents may end up

in an incorrect state.

Lock Acquisition: To acquire a synchronization primitive is to obtain the primi-

tive, preventing other processes from executing the critical section of code that the

primitive protects, e.g. to lock a spinlock or mutex.



6

Lock Release: To release a synchronization primitive is to reset it so that other

processes may acquire it. E.g. to unlock a spinlock or mutex.

Critical Section: In a parallel or concurrent execution environment, a critical sec-

tion is a body of code that contains a potential data race. Execution of critical

sections of code must be mutually exclusive.

ISR - Interrupt Service Routine, Interrupt Handler: An ISR is the body of

code assigned to be executed when a particular interrupt occurs.

GIC - Generic Interrupt Controller: On an ARM multicore system, the GIC is

configurable interrupt control device. It enables/disables interrupt forwarding, con-

trols which core will receive particular interrupt signals, and controls the order in

which interrupts will be forwarded and processed based on assigned interrupt priori-

ties.

APIC - Advanced Programmable Interrupt Controller: On an x86 multicore

system, the APIC is configurable interrupt control device. It has similar duties to the

ARM GIC.

IPI - Inter-Processor Interrupt: An interrupt generated by a processing core and

sent to other processing cores via the GIC or APIC.

2.2 Operating Systems Terms

OS - Operating System: An operating system is a body of system management

software that directly interfaces with and controls computer hardware.
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System Call, a.k.a. Trap, Supervisor Call: A system call is a functions imple-

mented in OS software that provides access to system resource in a controlled manner

that upholds OS operational policies.

2.3 XINU Terms

LLMM - Low Level Memory Manager: LLMM refers to XINU’s low level mem-

ory manager.

HLMM - High Level Memory Manager: HLMM refers to XINU’s high level

memory manager.

Lock: A lock (Section 4.3) is a multicore XINU wrapper on a hardware spinlock that

implements a reentrant spinlock.

x-section: A multicore XINU critical section starting with the xsec beg function and

ending with the xsec end function, described in Section 4.3. A process executing in

an x-section may not be interrupted or preempted, and it may not yield the processor.
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3. BACKGROUND

In an SMP system, all processing cores have symmetric access to shared memory and

devices. Often, SMP cores have their own L1 cache, but share access to higher levels

of the memory system. Figure 3.1 illustrates how caches are associated with cores.

Fig. 3.1.: A typical SMP architecture.

3.1 Mutual Exclusion Primitives

Any concurrent or parallel software must protect shared data from data races.

Mutual exclusion primitives ensure that only a single process will execute a critical

section of code at any given time. Commonly used mutual exclusion primitives are

discussed below.

3.1.1 Disabling Interrupts

If a processor is interrupted while accessing shared data, it may be directed to

run an ISR that accesses the same shared data, creating a data race. If a process is

preempted while accessing shared data, the next process may access the same shared

data, again leading to a data race. A single core OS may prevent such preemption

by disabling interrupts while executing critical sections of kernel code. Single core
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versions of XINU, UNIX, Linux, and Windows disable interrupts while executing

critical sections in OS kernel code [2–6]. This method of mutual exclusion is usually

only used by the OS, and not by application programs. Disabling interrupts is not

sufficient for mutual exclusion in a multicore environment because it does not prevent

other cores from simultaneously accessing a critical section of code in parallel.

3.1.2 Mutexes

The name “mutex” is derived from the first letters of the words “mutual” and

“exclusion”. After a process acquires a mutex, other processes attempting to acquire

the mutex will reschedule, yielding the processor and blocking until the mutex is

released. Only one process may hold the mutex at a time, and will thus have mutually

exclusive access to the critical section that the mutex protects. An operating system

is responsible for implementing a mutex and may provide a mutex a.p.i. for use by

application programs.

3.1.3 Spinlocks

The mechanics of a spinlock are well hinted by its name. Spinlocks attempt to

“lock” a memory location by atomically setting the location to a designated value,

usually 1. When attempting to acquire a spinlock that is already taken, a core

will continuously attempt to acquire the spinlock until successful. The continuous,

repetitive lock attempting behavior is called “spinning”.

A process acquiring a spinlock avoids rescheduling while waiting to enter a critical

section, but wastes processor execution cycles. Spinlocks are used to provide mutual

exclusion between cores on a multicore system.

Multicore architecture allows for atomic memory accesses with particular instruc-

tions, like the atomic exchange instruction (XCHG) in x86 architectures [7] and the ex-

clusive load and store instructions (LDREX/STREX) in arm architectures [8]. These
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instructions can be used to implement spinlocks using the test and set and compare

and exchange algorithms [3, 6, 9].

3.1.4 Notable Variations

Various locking primitives can be built on top of mutexes and spinlocks. For in-

stance, read/write mutexes are designed to cater to the classic readers/writers prob-

lem, and allow multiple processes to read protected memory or a single process to

modify the protected memory [1, 9].

Re-entrant mutexes and spinlocks may be acquired multiple times by a single

owner without causing the owner to block. Allowing multiple acquisitions is desirable

in situations where a mutex or spinlock owning entity may make calls to multiple

functions that execute critical sections protected by the same mutex or spinlock.

These are also called recursive locks [1, 9].

3.2 Memory Considerations

Implementation of synchronization primitives and other parallel or concurrent

processing algorithms is constrained by the capabilities of the underlying hardware,

particularly the memory system. The following sections address some particularly

relevant SMP memory considerations.

3.2.1 Memory Consistency

Processors may use store buffers for writes to the memory system. The store

buffer may reorder writes to memory, and may store them for a short time before

sending them out on the memory bus. While store buffers make the memory system

more efficient, they temporarily force multiple cores in an SMP system to have an

inconsistent view of the state of shared memory locations. From the programmer’s
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point of view, such computational inconsistency is compounded a if compiler reorders

memory writes.

In an SMP system, such inconsistencies are particularly troublesome for critical

sections of code. If a spinlock acquisition and the first line of a critical section of

code are swapped by memory or compiler reordering, the beginning of the critical

section will be executed before the spinlock is held. If the release of a spinlock is

swapped with the last line of a critical section, the last line of the critical section will

be executed after the spinlock has been released.

ARM uses a weakly consistent memory model, meaning ARM systems are subject

to both processor reordering and compiler reordering [8,10]. The x86 architecture uses

a stronger memory consistency model [7,11] that is less prone to processor reordering,

but still subject to compiler reordering.

C compilers provide directives to eliminate memory reordering when they are in-

voked. ARM and x86 provide memory barrier instructions, like DMB (Data Memory

Barrier) and MFENCE, that ensure memory consistency when they are executed.

These directives and instructions are used in spinlock implementations to prevent

critical sections of code from being executed outside the bounds of the spinlock.

3.2.2 Cache Coherence

Processing cores in SMP systems often have their own L1 caches. If two or more

caches hold the same cache line and that cache line is modified by one of the proces-

sors, the cache line must be updated in the other processor’s cache. Otherwise, the

two caches are incoherent.

Fortunately, modern SMP architectures implement fast cache coherence protocols

in hardware. The MESI protocol is implemented at the hardware level in x86 archi-

tectures [7]. ARMv7 and up uses the MOESI protocol in conjunction with hardware

monitors to maintain not only cache coherence, but also implement LDREX/STREX

instructions used for memory spinlocks [8]. Thus, on modern platforms, cache coher-
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ence is transparent to the multicore OS designer; It is handled automatically by the

hardware.

3.2.3 False Sharing

Because cache coherence protocols operate on an entire cache line at a time, two

spinlock words that share a cache line both appear locked when either one is locked.

An unlocked spinlock that resides in the same cache line as a locked spinlock will

appear to be unavailable, and the processor will spin unnecessarily when trying to

acquire it. The phenomenon is known as “false sharing”, and the cache line size is

known as the Exclusive Reservation Granule. To prevent false sharing, multicore OS

designers often space spinlocks at least the size of the ERG apart in memory [3, 8].

3.3 Multicore OS Design

Operating systems use global data structures to track and coordinate process

execution, manage memory, files, devices, and otherwise maintain computing infras-

tructure. As noted in Section 3.1, disabling interrupts is not sufficient for mutual

exclusion in a multicore system. Operating systems on multicore platforms must

therefore provide some other means of mutual exclusion in kernel critical sections.

Several multicore OS design paradigms are described below.

3.3.1 Master-Slave Kernels

An early multicore UNIX implementation avoided data races by only allowing

kernel code to execute on a particular core [12], called the “master” core. To execute

kernel code, a process running on a non-master core, called a “slave” core, would

have to stop running and add itself to the scheduling list for the master core. Such

a design is called a “master-slave” kernel. In master-slave kernels, the master core

becomes a bottleneck [12].
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3.3.2 Spinlocked Kernels

The alternative approach is to allow parallel execution of kernel code. Kernel

functions often require complete and immediate execution, making it infeasible to

reschedule when acquiring a mutex. Furthermore, high level synchronization primi-

tives like mutexes and semaphores employ shared data structures that must also be

protected. For instance, a mutex might track waiting processes on a list. If multiple

processes attempt to add themselves to the list while acquiring an already locked mu-

tex, they would have to modify the shared mutex list atomically, which would require

another mutex. To protect that mutex list, another mutex would be required, and so

on. Therefore, spinlocks must be used to protect parallel access to an operating sys-

tem kernel. Operating Systems that use spinlocks to allow for parallel kernel access

are called “spinlocked kernels” [12].

When designing a spinlocked kernel, consideration must be given to the granularity

of allowed parallel access. Coarse grained locking allows minimal parallelism and

requires relatively low design complexity. Fine grained locking allows for a higher

degree of parallelism but requires greater complexity of design.

Early multicore UNIX and Linux designs used “giant locking” between two cores

[5,12,13]. A single spinlock protected access to the entire kernel. Only one core could

access any part of the kernel at a time. This approach allows for the same level of

parallel kernel execution as a master-slave kernel without the overhead of migrating

processes that wish to access the kernel to a specific core.

Subsequent UNIX and Linux designs used coarse grained locking [5,12,13]. With

coarse grained locking, a small number of spinlocks protect entire kernel modules.

For instance, one spinlock may protect access to the entire process table and all

processes, while another spinlock protects access to all devices and device drivers.

However, as the number of cores running in a OS increases, the contention on the

spinlocks becomes an efficiency bottleneck, leading to poor scalability [5, 12,13].
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More modern SMP kernels employ fine grained locking, in which more locks allow

for a greater degree of parallel kernel access with less contention [5, 12, 13]. For

instance, all process entries, devices, files, etc. may be protected by their own locks

and can thus be accessed and modified independently and in parallel. Fine grained

spinlocked kernels are more scalable, but exhibit a much greater complexity of design

than their coarse grained counterparts.

3.3.3 Scheduling

To reduce contention on its ready list of eligible processes, an SMP OS scheduler

might maintain a process queue for each core [3]. This allows for L1 cache affinity.

However, it makes priority inversions impossible to avoid [14]. Priority inversions

occur when a high priority process is waiting on one core’s queue while a low priority

process runs on another core. The benefits of L1 cache affinity in such a scheduling

scheme may be negligible for SMP systems in which all cores share an L2 cache [15].

3.3.4 Deadlocks

Deadlocks occur when processes attempt to acquire multiple synchronization prim-

itives cyclically. All processes in the cycle may become blocked, waiting for the other

blocked processes in the cycle to release a synchronization primitive. To avoid locking

cycles, operating systems often use nested locking [5, 12]. If all processes attempt to

acquire synchronization primitives in the same nested order, no deadlock can occur.

3.3.5 Interrupts

In an SMP system, interrupts can be dynamically processed on any available core.

Generally, however, interrupts are statically routed to predetermined cores [3]. Static

interrupt routing allows interrupt handlers to exploit cache affinity.
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On ARM SMP systems, a configurable interrupt management device called the

Generic Interrupt Controller (GIC) routes each interrupt to the core that is configured

to handle the interrupt. On x86 SMP systems, the Advanced Programmable Interrupt

Controller performs similar interrupt management duties.

3.3.6 Initialization

Typically, a single core is used to boot the OS, initializing all OS data structures.

Auxiliary cores are started up, but they simply block on a spinlock created by the

bootstrap core until it is ready for them to be released [3]. Linux calls this a “holding

pen” [5]. The single bootstrap core may initialize key kernel data structures, including

spinlocks, without the possibility of data races related to parallel execution. When

auxiliary cores begin running, they perform any necessary self initialization and may

or may not help to perform other system initialization in parallel.
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4. MULTICORE XINU

4.1 Introduction

XINU disables interrupts to achieve mutual exclusion between concurrently exe-

cuting processes, as shown in Algorithm 4.1.

Algorithm 4.1 Unicore XINU critical sections use disable/restore.

intmask mask = disable();

/* execute kernel critical section */

restore(mask);

The disable() function call marks the beginning of a XINU critical section. It

disables interrupts and returns the value of the processor’s interrupt mask before it

was called. The restore(mask) function call ends the critical section, restoring the

processor’s interrupt mask to its state just before the call to disable().

XINU disable/restore supports nested critical sections. A nested critical section

will will restore a saved interrupt mask before returning control to the outer critical

section. When the outermost critical section is finished executing, interrupts will be

re-enabled. This recursive mutual exclusion paradigm greatly simplifies kernel code

organization because kernel functions may freely call other kernel functions. Table 4.1

shows an example function call sequence with nested disable/restore critical sections.

As mentioned previously, preventing preemption is not sufficient for mutual exclu-

sion on a multicore platform. Spinlocks must be added to the XINU kernel to provide

multicore support.



17

Table 4.1.: Example of nested disable/restore critical sections

Stack Frame Code Execution Interrupts

top level mask = disable(); func a(); restore(mask); enabled

func a mask = disable(); func b(); restore(mask); disabled

func b mask = disable(); /* critical section */ restore(mask); disabled

4.1.1 Medium Grained Spinlocking

With the goal in mind of maintaining XINU’s simplicity and elegance, multicore

XINU uses medium grained spinlocking. The medium spinlocking granularity allows

for a high degree of kernel parallelism while keeping kernel logic simple.

Global structures each have their own lock. However, they each have only one lock,

even in instances where multiple locks on a single data structure may be possible.

For example, the tty device control block (Section 4.9) consists of three character

buffers and a several configuration variables. A fine grained locking design might use

a spinlock to protect each buffer and another spinlock to protect the configuration

variables. In such instances, multicore XINU uses a single spinlock to protect an

entire composite data structure. Medium spinlock granularity allows for a design

that generally maximizes parallel efficiency without diminishing XINU’s economy of

mechanism.

4.1.2 XINU Invariants

Operating systems can be analyzed in terms of their policies and mechanisms [2,6].

Policies express desired system behavior at a high level. Mechanisms exist to enforce

operating system policies. XINU expresses policies in clearly and concisely stated

invariants. For example, the scheduling invariant states:

At any time, the highest priority eligible process is executing. Among

processes with equal priorities, scheduling is round-robin. [2]
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Multicore XINU preserves XINU invariants as much as possible. In instances

where invariants cannot be perfectly preserved, they are minimally amended.

For example, consider the scheduling invariant mentioned above. In a multicore

XINU, multiple processes may execute in parallel. The scheduling invariant must

expand to define the new scheduling capability. Preserving as much of the original

invariant as possible, the multicore scheduling invariant pluralizes process to processes,

as follows:

At any time, the k highest priority eligible processes are executing, where k

is the number of cores. Among processes with equal priorities, scheduling

is round-robin.

4.1.3 XINU Levels

XINU kernel modules are conceptually organized into a multilevel software archi-

tecture. The lowest level consists of the platform hardware. Hardware is abstracted

further and further away from successively higher levels, which use the services pro-

vided by lower levels. A level is comprised of a cohesive set of data object definitions,

an a.p.i. that provides access to the services defined within the level, and XINU in-

variants that define the behavior within the level. Figure 4.1 shows the organization

of XINU levels.

This chapter will explain multicore XINU in a bottom up fashion, starting with

the hardware.

4.2 Hardware

Multicore XINU is built on top of three basic multicore operations: spinlocks,

inter-processor interrupts, and core self-identification. Hardware-dependent imple-

mentations of each of the three are discussed below. As a consequence of XINU’s

multilevel software organization, any platform that supports the three capabilities

can support multicore XINU.
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Fig. 4.1.: XINU’s multilevel software architecture

An example ARM platform used herein is the H3 Allwinner system on the Orange

Pi development board. The Orange Pi has a quad-core ARM cortex A7 processor

with a 32 KB L1 instruction and data cache per core, and a 512 KB shared L2

cache. Various versions of the Orange Pi provide different devices and main memory

capacities.

An example x86 platform is emulated with a virtual machine on QEMU and Virtu-

alBox for multicore XINU. A XINU VM running on each emulator can be configured

to use as many cores as the host machine can provide.

4.2.1 Spinlocks

The functions spin lock and spin unlock encapsulate hardware spinlocking on

each platform.

On the ARM platform, hardware monitors in each L1 cache coordinate with each

other, and with a global monitor in the L2 cache to implement the MOESI cache

consistency protocol. The monitors track the state of entire cache lines, and work

together to implement the ARM exclusive store instruction, strex. Multicore XINU
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uses the ARM exclusive store instruction to implement a spinlock as outlined in [8].

Figure 4.2 shows ARM spinlock assembly code that implements a spinlock.

Fig. 4.2.: ARM assembly spinlock implementation

The ARM spinlock assembly code waits until a memory location is unlocked and

then continuously attempts to lock it with an exclusive store until successful. As

discussed in Section 3.2.1, the dmb memory barrier instruction enforces memory con-

sistency after a spinlock is acquired and before it is released.

The GNU C compiler contains compiler directives that can be used to imple-

ment the test and set algorithm. The x86 VM spinlock implementation leverages the

directives as shown in Figure 4.3.

4.2.2 Inter-Processor Interrupts

The function sendipi sends an inter-processor interrupt to a target core. A core

uses the bcastipi function to broadcast an inter-processor interrupt to all other

cores. As discussed in Section 3.3.5, the GIC on the ARM platform and the APIC

on the x86 platform are used to send inter-processor interrupts.
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Fig. 4.3.: x86 spinlock implementation in C

4.2.3 Core Identification

Multicore XINU determines which core is currently executing a section of code

with the getcid function. On the ARM platform, each core reads its ID from a per

core co-processor register. On the x86 platform, each core has its own local APIC

register from which it can read its ID

4.3 Lock Management

As mentioned previously, on a multicore platform spinlocks are required to protect

access to kernel data structures. Spinlocks are organized in the same way as other

XINU data objects. A global spinlock table tracks spinlock entry structures. A

spinlock is accessed individually by its index in the table, known as its lock ID.

As mentioned in Section 4.1, XINU uses recursive disable/restore. Because spin-

locks must be used to protect critical sections in multicore XINU, and critical sec-

tions can be nested, a lock that protects a critical section may be locked multiple

times by the same process in nested critical sections. Section 3.1.4 introduced the

re-entrant/recursive spinlock, which allows for such behavior. Multicore XINU uses

recursive spinlocks. The multicore XINU recursive spinlock data structure is called
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a “lock.” A global table of lock entries tracks information about all XINU locks. A

lock table entry, lentry, is shown in Figure 4.4.

Fig. 4.4.: An entry in the global lock table

The lock member of each lentry is the actual memory word used by the spin lock

function. The lownwer and lcount members are used to implement recursive locking.

The lpad array in each entry is used to pad the lock to the size of the ERG to prevent

false sharing.

When a process acquires a lock with the lock function, it first checks lowner to see

if the core on which it is running already owns the lock. If so, it increments lcount.

Otherwise it calls the spin lock function to acquire the lock memory word. When

a process releases a lock with the unlock function, it decrements lcount. When

lcount reaches 0, the process releases the lock memory word with the spin unlock

function.

XINU provides semaphores to higher levels, including the application level, for syn-

chronization and mutual exclusion. As mentioned in the previous chapter, semaphores

allow for a process to reschedule if necessary when attempting to access a shared re-

source. Spinlocks are only needed by the kernel to synchronize access to its internal

data structures. As a consequence, there is no need to create or destroy spinlocks

dynamically. Multicore XINU statically initializes all spinlocks during the boot se-

quence.
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4.3.1 Lock Policies

Section 4.5.5 will explain the motivation for listing a core as a lock owner in

the lentry data structure. However, when a process acquires a lock with the lock

function, the matching call to unlock must eventually be made by the same process.

Therefore, a process can conceptually be considered the owner of the lock.

Because other processes waste execution cycles while spinning on a spinlock, a

lock owning process should release the lock as soon as possible after acquiring it.

Two spinlock policies arise from this directive:

Lock Policy 1: No process should be interrupted while holding a lock.

If a process is interrupted while holding a lock, other processes will spin unnecessarily

while the process holding the lock executes its interrupt service routine. Furthermore,

if the process holding the lock is preempted by a timer interrupt, other processes that

require the lock will wastefully spin until the lock holding process resumes execution.

Because there is no guarantee that the lock holding process will ever resume execution,

a deadlock could occur.

Lock Policy 2: No process should yield a core while holding a lock.

If a process yields a core while holding a lock, other processes attempting to acquire

the lock will be forced to spin until the process holding the lock resumes execution.

4.3.2 X-Sections

Lock policy 1 can be enforced with the existing disable/restore paradigm. How-

ever, disabling interrupts will not prevent a process from voluntarily yielding the

processor by rescheduling. XINU provides an existing function to temporarily de-

fer rescheduling: resched cntl. The function uses a defer count to support nested

calls. Each time a process makes a nested call to defer rescheduling, resched cntl
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increments a defer count. Each time a process makes a call to resume reschedul-

ing, the defer count is decremented. When the defer count reaches 0, resched cntl

triggers rescheduling if a rescheduling attempt was made. The nesting capabilitiy of

resched cntl makes it a suitable enforcer for lock policy 2.

Multicore XINU combines the two lock policies and their supporting mechanisms

into the x-section1 a.p.i. The function xsec beg() marks the beginning of an x-

section, and the complimentary xsec end() function marks its end.

Fig. 4.5.: The xsec beg and xsec end functions

Because the functions called within an xsec function (disable/restore, resched cntl,

and lock/unlock) all support nested calling, x-sections may be nested.

1short for XINU critical section
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Table 4.2.: Example of nested x-sections

Stack Frame Code Execution Saved Interrupt Mask Defer Count Lock Count

top level mask = xsec beg(lock); func a(); xsec end(mask,lock); enabled 0 0

func a mask = xsec beg(lock); func b(); xsec end(mask,lock); disabled 1 1

func b mask = xsec beg(lock); /* x-section */ xsec end(mask,lock); disabled 2 2

Subsequent sections will illustrate scenarios in which it is necessary to acquire

multiple spinlocks. Variadic versions of the xsec beg and xsec end functions, support

multi-locking. The functions perform nested locking by acquiring a given list of locks

in the given order and releasing the locks in reverse order to prevent deadlocks.

Ultimately, an x-section is a special kind of critical section in which interrupts are

disabled, rescheduling is deferred, and one or more locks are held. If a rescheduling

attempt is made within an x-section, actual rescheduling will be deferred and later

triggered at the end of the x-section by the resched cntl function. Algorithm 4.2

shows the typical use of an x-section. Table 4.2 shows an example nested x-section

function call sequence.

Algorithm 4.2 typical use of an x-section

mask = xsec beg(lock);

/* execute kernel critical section protected by lock */

xsec end(mask, lock);

4.3.3 Deadlock Prevention with Nested Locking

As mentioned in Section 3.3.4, one way to prevent deadlocking is to acquire locks

in a common nesting order. The nature of XINU’s multilevel architecture is such

that higher level functions generally call lower level functions but not vice versa. As

a consequence, some nested locking is already accomplished. Locks in lower levels

will be nested within locks in higher levels by the preexisting XINU system call

architecture. Another locking policy follows:
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Lock Policy 3: Locks used in lower levels should be nested within locks

used in higher levels.

This policy does not address multi-locking of locks that reside in the same level.

A designated locking order must be assigned to locks within each level. This problem

is solved with another locking policy:

Lock Policy 4: Locks in the same level must be nested in the same prede-

termined order.

Strictly enforcing a globally agreed upon nested locking order ensures that dead-

locks will not occur on spinlocks within the XINU kernel. To express a nested locking

hierarchy, the ‘>’ notation will be used hereafter. Specifically, if lock B should be

nested within lock A, the mandated nesting order will be denoted as A > B.

4.3.4 X-Sections and Semaphores

Because x-sections defer rescheduling, a process cannot synchronize on a semaphore

from within an x-section. In instances where semaphore synchronization cannot be

avoided, explicit calls to the lock and unlock functions can be used, but the program-

mer must explicitly ensure that the lock holding process will not yield the processor.

An example sequence that uses both locks and semaphores is shown in Algorithm 4.3.

Semaphores are described in more detail in Section 4.6.

4.4 Memory Manager

In XINU, memory management is split between a High Level Memory Manager

(HLMM) and a Low Level Memory Manager (LLMM) [2]. In the spirit of illustrating

the multicore XINU bottom up, this section starts with the LLMM.
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Algorithm 4.3 critical section that requires both locks and semaphores

mask = disable();

lock(lock);

/* execute kernel critical section protected by lock */

unlock(lock);

wait(semaphore); /* wait on a semaphore, potentially rescheduling */

lock(lock);

/* execute kernel critical section protected by lock */

unlock(lock);

restore(mask);

4.4.1 Low Level Memory Manager

The LLMM organizes memory as a linked list of blocks called the free list. The

head of the list is stored globally. Processes use the LLMM to allocate arbitrarily

sized sections of memory.

In multicore XINU, access to the free list is protected with a lock named the

memlock. Where versions of the LLMM functions disable and restore interrupts, the

multicore versions begin and end an x-section with the memlock.

4.4.2 High Level Memory Manager

The HLMM leases statically sized buffers to processes from preexisting buffer

pools. Buffer pools are managed in a global table, buftab. Individual buffer pools are

implemented as a linked list of buffers. A notable difference between the HLMM and

the LLMM is that the HLMM uses synchronous memory allocation [2]. A counting

semaphore tracks the number of available buffers left in a buffer pool. To allocate a

buffer from a buffer pool, the function getbuf first waits on the counting semaphore

until a buffer is available2. When a buffer is available, getbuf unlinks it from the

2Semaphores are described in more detail in Section 4.6
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buffer pool list and returns it to the calling process. Conversely, the function freebuf

returns a buffer to the pool by linking it back into the buffer pool list and then

signaling the buffer pool’s counting semaphore, allowing other processes to use it.

In multicore XINU, race conditions can be identified in two places: when multiple

processes attempt to create a buffer pool in parallel and when multiple processes

attempt to allocate or free a buffer in parallel. Thus, the buftab and each buffer

pool must be protected by locks. This could be accomplished with a single lock on

the buffer pool table. However, such coarse grained locking would needlessly prevent

parallel access to separate buffer pools. Providing slightly finer lock granularity by

assigning a spinlock to each buffer pool allows for parallel access to separate buffer

pools.

Multicore XINU uses an x-section with a designated lock, the buftablock, to

protect access to the global buffer pool table.

The functions getbuf and freebuf alter a buffer pool’s linked list of buffers.

To prevent race conditions on this linked list, each buffer pool is assigned a lock.

Where getbuf and freebuf use disable/restore to achieve mutual exclusion, mul-

ticore XINU uses an x-section on the buffer pool’s lock, with a notable difference:

buffer pools are designed to be allocated synchronously. Processes must therefore

be allowed to synchronize on a semaphore from within calls to getbuf. Under the

disable/restore paradigm, blocking calls to wait can be made from within a crit-

ical section without issue. Section 4.3.4 explains why a call to wait that may result

in rescheduling cannot be made from within an x-section. Fortunately, the solution

to the problem is trivial. The x-section simply begins after the call to wait. Thus,

the buffer pool’s counting semaphore ensures that the number of process attempting

to allocate a buffer in parallel will be no larger than the number of available buffers.

The subsequent x-section on the buffer pool’s spinlock ensures safe parallel access to

the buffer pool’s internal data structures.
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4.5 Process Manager

The XINU Process Manager Layer is responsible for the creation, scheduling, and

termination of processes. Processes are identified by their entries in a global process

table. XINU uses a finite state machine (FSM) to maintain process states. Allowable

transitions between process states are defined by state transition system calls. Figure

4.7 shows allowable state transitions in the Process Manager Layer.

Fig. 4.6.: Allowable Process Manager state transitions in XINU

XINU uses a global ready queue to hold processes that are eligible for execution

but are not currently executing. Chapter 3 analyzes the trade offs associated with the

use of separate ready queues for each core, and points out that priority inversions are

unavoidable in a per core queueing scheme. Recall that multicore XINU’s scheduling

invariant states:

At any time, the highest priority eligible processes are executing. Among

processes with equal priorities, scheduling is round-robin.

Priority inversions directly violate the scheduling invariant. Therefore, multicore

XINU continues to use a single, shared ready queue.
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4.5.1 Multiple Schedulers

The following XINU global data structures maintain scheduling state information:

• The Defer structure holds state information that allows the processor to defer

rescheduling temporarily.

• The variable currpid holds the I.D. of the currently executing process.

• The variable preempt acts as a preemption counter. When the counter reaches

0, the currently executing process is preempted so that another process may

run.

In order to run its own scheduler, each core requires its own instance of each of the

global variables listed above. A new global table, the cputab, contains an entry with

separate instances of these variables for each core. After the XINU boot sequence3,

no core ever accesses the cputab entry of another core. Therefore, protected access

to the cputab is not necessary.

4.5.2 create

The create system calls accesses two shared, global data structures: the process

table and a process entry in the table. A global lock, proctablock, protects access

to the process table. Process table scanning is done within an x-section on the

proctablock. To protect each process entry, multicore XINU assigns each process a

lock. As create checks the state of each process, it first locks the process’ lock. If

the process is in the FREE state, create uses the process entry to create the new

process. Otherwise, create unlocks the process lock and continues its scan.

Before returning, create unlocks the new process lock and then ends its x-section

on the proctablock. Thus, the acquisition and release of each process’ lock is nested

within the acquisition and release of the proctablock: i.e. proctablock > process

lock.
3Section 4.10 describes the multicore boot sequence in greater detail
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4.5.3 resume

The resume system call moves a process from the SUSPENDED state to the

READY state and places the process on the ready queue. The function accesses two

shared, global data structures: the ready queue and the process entry. Both data

structures must be locked to avoid race conditions. Process locks have already been

introduced. The global readylock protects access to the ready queue.

Subsequent sections show that several operations remove a process from the head

of a queue. Initially unaware of which process will be found at the head of the queue,

these operations must first lock the queue to check which process is at the head of

the queue, and then lock the process that is being removed. As a consequence, a new

lock policy dictates the nested locking order between queues and processes:

Lock Policy 5. queue lock > process lock

Because resume is only defined for processes in the SUSPENDED state, resume

begins by checking the state of the process. Only the process’ lock must be locked to

check the process’ state. A näıve multicore implementation of resume might there-

fore start by acquiring the process’ lock. However, if it finds the process in the

SUSPENDED state, resume will then have to acquire the readylock. To adhere to

lock policy 5, the näıve resume would have to release the process’ lock, acquire the

readylock, and then re-acquire the process’ lock. The näıve resume would then have

to check the state of the process again because the process’ state may have changed

after its lock was released.

In order to avoid such repetitive and cumbersome lock logic, the actual multicore

XINU resume starts its x-section by acquiring both the readylock and the process’

lock using the variadic version of xsec beg described in Section 4.3.2.

The drawback of this locking style is that a kernel function may occasionally

acquire a lock that it ends up not needing. For instance, if resume acquires the

readylock and a process’ lock and finds that the process is not in the SUSPENDED

state, it will simply exit its x-section and return in error. Because the ready queue
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Algorithm 4.4 cumbersome locking in a näıve multicore resume implementation

lock(process)

if process is SUSPENDED then

/* enforce correct nesting order */

unlock(process)

lock(readylock)

lock(process)

/* process state may have changed */

if process is SUSPENDED then

ready(process)

unlock(process)

unlock(readylock)

return OK

else

unlock(readylock)

end if

end if

unlock(process)

return SYSERR

is not accessed in this case, it is unnecessary to acquire the readylock. However,

because the readylock is held for such a short time, it is unlikely that it will cause

notable contention. Multicore XINU employs a lock once approach, in which all

necessary locks are acquired once at the beginning of an x-section.

The lock once approach considers benefit of avoiding cumbersome lock/unlock/re-

lock logic to outweigh the risk of very briefly acquiring a lock unneces-

sarily. Therefore, kernel functions acquire any locks that they may need

one time in the correct nested order at the beginning of their x-sections.
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Algorithm 4.5 simple multilocking in mulicore XINU resume

begin x-section with readylock and process lock

if process is SUSPENDED then

ready(process)

end x-section

return OK

end if

end x-section

return SYSERR

4.5.4 ready

Because ready is called from kernel functions other than resume, it also begins

an x-section with the readylock and the lock of the process being readied. Recall

that nested x-sections are allowable because multicore XINU uses reentrant locking.

In multicore XINU, ready must check that a process is not in the FREE or

DEAD4 states before adding the process to the ready list. Multicore ready then adds

the process to the ready queue and calls resched to enforce the scheduling invariant.

However, a problem unique to multicore XINU appears at this point: because each

core is running its own scheduler, forcing a single core to reschedule to the highest

priority process on the ready queue is not sufficient to enforce the multicore XINU

scheduling invariant.

Consider the following scenario: Process A is running on core 0 with priority 20.

Process B is running on core 1 with priority 10. Process A adds a new process,

C, with priority 15 to the ready queue and then reschedules. Because A’s priority is

higher than C’s, process A will continue to run and leave C on the ready list. Because

process C has a higher priority than process B on core 1, core 1 must reschedule in

order to preserve the multicore scheduling invariant.

4Section 4.5.8 describes the DEAD process state.
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In general, adding a process to the shared ready queue affects the schedulers

running on every core. Therefore, every core must reschedule when a process is

added to the ready queue. In multicore XINU, resched broadcasts an IPI to all

other cores, causing them to reschedule. Because ready makes the call to resched

from within an x-section, the calling core will not actually reschedule until it leaves

its x-section.

4.5.5 resched

The resched function moves processes between the READY and CURRENT

states. It cannot use an x-section, because rescheduling must be allowed: that is

the whole point of resched. Multicore resched must therefore use locks to protect

its critical section independent of the x-section a.p.i.

If the process at the head of the ready queue has a priority at least as great as

the currently executing process, rescheduling must occur, leading to an interesting

problem: the old process must context switch to the new process. In accordance

with the second lock policy5, the old process must release the locks it has acquired.

However, the instant the old process releases these locks, other cores can alter the two

processes that are switching in a way that invalidates the rescheduling. For instance,

a process may be attempting to suspend the new process. When the old process

releases the new process lock, the new process may suddenly be suspended, but the

processor will context switch and begin running it anyway. Consequently, resched

must hold its locks across the context switch and release them afterward. Therefore,

resched is allowed to break the second lock policy6. This constraint provides the

motivation for marking a core as a lock’s lowner in the lock’s table entry, rather than

a process: While the I.D. of the currently executing process changes during a context

switch, the I.D. of the currently executing core does not. Thus, a core may acquire

locks, perform a context switch, and then release the locks.

5Lock Policy 2. No process should yield the processor while holding a lock.
6Fortunately, this is the only occurrence of a policy exception.
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In order for the new process to release the previous process’ lock, it must be able

to retrieve the I.D. of the previous process. Thus, another consequence of the need to

hold locks across a context switch arises: The I.D. of the previously executing process

must be stored where the new process can retrieve it. Each entry in the global CPU

table holds a variable called prevpid for this purpose. Before performing the context

switch, the old process stores its I.D. in prevpid for the new process to retrieve later.

After its context switch, multicore resched still has some work to do. This work

is encapsulated in the function ctxsw ret (context switch return). Algorithm A.1

shows the full algorithm for resched.

4.5.6 ctxsw ret

The ctxsw ret function encapsulates necessary post conext switch clean up. It is

called by a process that has just begun running after a context switch. If the previous

process is in the DEAD state, ctxsw ret frees the stack that was allocated for the

previous process and sets its state to FREE. The ctxsw ret function then releases

the locks on the current and previous processes and the readylock.

It is not necessarily the case that the next process will resume execution in

resched. In XINU, a newly created process begins execution at the start of its

designated function the first time it is selected to run by the scheduler. In such cases,

the newly created process does not have an opportunity to execute ctxsw ret. To

ensure that a newly created process will run the ctxsw ret function, a pointer to

ctxsw ret is pushed onto each new process’ stack just after the pointer to the pro-

cess’ main function. In multicore XINU, a newly created process executes ctxsw ret

the first time it runs. When it returns from ctxsw ret, the newly created process

then executes its main function.
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4.5.7 suspend

As shown in Figure 4.7, a process may be suspended from either the CURRENT or

READY states. Thus, to ensure mutual exclusion,the x-section in multicore suspend

locks both the readylock and the process’ lock. If the process is in the READY

state, suspend removes it from the ready queue and places it in the SUSPEND state.

If the process is currently executing, suspend places the process in the SUS-

PENDED state. The suspend function then calls resched to select a new process to

run. In multicore XINU, when a core sees that a process is in the CURRENT state,

the process may be running on a different core. The core executing suspend must

therefore determine whether the process is executing on another core by checking its

process table entry. If so, multicore suspend sends an IPI that causes the core on

which the process is currently executing to reschedule. Otherwise, multicore suspend

can simply call resched.

4.5.8 kill

While other Process Manager functions manage strictly defined state transitions

between narrow subsets of XINU process states, the kill function terminates a pro-

cess in any non-FREE state.

For single-core XINU, kill is accomplished by removing the process from any data

structure it might be part of, deallocating all resources associated with the process,

and then marking the process’ table entry as FREE.

In multicore XINU, kill is more complicated for several reasons. First, processes

may no longer safely deallocate their own memory. Second, the process selected for

termination may currently be running on another core. Finally, process manager data

structure locks must now be acquired. Each of these problems is addressed below.
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Processes may no longer deallocate their own memory.

A dying XINU process (i.e. a process that calls kill on itself) deallocates its own

memory in the kill function. The deallocated memory includes the process’ stack,

on which the current call to kill is running. Therefore, until the call to kill returns,

the dying process is executing with a stack that is considered re-allocatable by the

memory manager. If another process were being created at that exact moment, the

memory manager could allocate the stack to the new process. Both processes, the

dying process and the newly created process, would then be running on the same stack

memory, possibly leading to inconsistencies. This scenario is impossible, however,

because kill prevents preemption with disable/restore. The dying process is

therefore able to finish the call to kill before any other process gets a chance to

allocate memory.

In multicore XINU, a process running on another core may reallocate the memory

that a dying process has just freed. Therefore, processes may no longer deallocate

their own memory in multicore XINU. However, a process must still be able to self

terminate when it finishes running. To allow a processes to self terminate without

deallocating their own memory, a new process state, the DEAD state, is used.

Fig. 4.7.: Mulicore XINU Process Manager state transitions with the DEAD state
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In multicore XINU, a self terminating process places itself in the DEAD state.

When the kill functions exits its x-section, the DEAD process calls resched. After

the resulting context switch, the newly scheduled process executes ctxsw ret, sees

that the previous process is in the DEAD state, and frees the previous process’ stack.

The process selected for termination may currently be running on another

core.

To terminate a process that is currently running on another core, kill uses an

inter-processor interrupt. Multicore core kill places the process in the DEAD state

and then sends an IPI to the core on which the process is running, causing it to

reschedule.

Process manager data structure locks must now be acquired.

Per the lock once approach and lock policy 5, multicore kill locks all queues

where a process might be found before attempting to terminate the process. Because

multicore kill must be able to terminate a process in any state other than FREE

or DEAD, it must lock all of the queues associated with all possible process states

before locking the process to determine its state. Locking all of these data structures

temporarily prevents all scheduling on all cores. As a consequence, any core executing

a kernel function that has nothing to do with the process being terminated (e.g.

suspending or resuming an entirely different process) will needlessly block until the

kill operation is complete. Such blocking is not ideal for efficiency, but it still allows

for reasonably simple code that is guaranteed to be deadlock free via nested locking.
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4.6 Process Coordination

4.6.1 Semaphores

Data structures and functions that implement counting semaphores in XINU

comprise the Process Coordination Layer. As described in Chapter 3, a counting

semaphore is a high level synchronization primitive that causes a processor to yield

the processor if necessary and wait until it is allowed to proceed. When called on a

semaphore, the wait system call places the calling process on a per semaphore queue

in the WAITING state if the semaphore’s count is less than or equal to 0. A WAIT-

ING process remains on a semaphore’s queue until it is released by signal or until

the semaphore is destroyed.

Like other core kernel data structures, XINU semaphores are tracked in a global

semaphore table. Multicore XINU uses a global lock, the semtablock, to protect

the global semaphore table. Because two or more cores may attempt to access a

semaphore’s internal data structures in parallel, multicore XINU semaphores each

have their own lock. Multicore XINU replaces disable/restore with an x-section

on a semaphore’s lock and any other necessary locks.

4.6.2 Adding Multiple Processes to the Ready Queue

When a semaphore is deleted, reset, or signaled multiple times at once, multiple

processes are transitioned from the semaphore’s queue to the ready queue. The

semdelete, semreset, and signaln functions add multiple processes to the ready

queue by iterating over a semaphore’s queue and calling ready on each process. The

ready function triggers rescheduling. To prevent unnecessary, repetitive rescheduling,

XINU defers rescheduling until all iterations are complete. In multicore XINU, each

core has its own defer mechanism. When a core defers rescheduling, it only defers

rescheduling for itself.
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Therefore, the semdelete, semreset, and signaln functions must prevent unnec-

essary rescheduling on all cores by acquiring the readylock until they are finished

executing. This prevents other cores from accessing the ready queue until all new

processes have been transitioned from a semaphore’s queue to the ready queue.

4.7 Process Communication

XINU allows for two kinds of interprocess communication: process to process

message passing and inter-process communication ports.

4.7.1 Process to Process Message Passing

A XINU process may directly pass single word messages to another process by

placing the word in a dedicated location in the receiving process’ table entry. The

receiving process can then retrieve the word directly. XINU processes use a blocking

receive function to retrieve messages. Thus, if no message is present when a process

calls receive, the process places itself in the RECEIVING state and reschedules.

The send function places a RECEIVING process back on the ready queue.

XINU also offers a timed receive, recvtime, which times out if a message is not

received within a certain time frame. A process performing a timed receive places

itself on a queue of sleeping processes, called the sleep queue, in the TIMED RECV

state. The sleep queue is explained further in Section 4.8. For now, it suffices to say

that it is protected by a new lock, called the sleepqlock.

The send function delivers a message to a process. If the target process is in

the TIMED RECV state, send moves it from the sleep queue to the ready queue. If

the target process is in the RECEIVING state, send moves it to the ready queue.

In observance of lock policies 3 (nested locking by layer) and 5 (queue > process),

multicore send replaces disable/restore with an x-section on the sleepqlock, the

readylock, and the lock of the target process.
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A XINU process calling receive is guaranteed to be in the CURRENT state.

In multicore XINU, another process on another core might terminate the receiving

process, placing it in the DEAD state, just before the receiving process enters its x-

section. Thus, a process executing multicore receive must check its own state before

attempting to retrieve a message. This exposes an interesting consequence of the

addition of the DEAD state in multicore XINU: a process might continue to execute

after it has been terminated. Multicore XINU kernel functions must ensure that such

a process does not do any real processing, and simply exits. Fortunately, XINU kernel

functions generally check all process states in accordance with XINU’s well defined

process state transitions, so changes required by the addition of the DEAD state are

minimal.

4.7.2 Inter-Process Communication Ports

A global table, porttab, holds information about ports. The porttab is trivially

protected in multicore XINU with a new lock. A single XINU port consists of a

bounded message queue, two semaphores, and several state variables. The sender

semaphore blocks processes that attempt to add a message to a full port and the

receiver semaphore blocks processes that attempt to remove a message from an empty

port [2]. When one considers sending processes as message producers and receiving

processes as message consumers, XINU ports provide an iconic example of the classical

producer/consumer problem [2,6, 9].

Critical sections in port functions are protected with disable/restore, which allows

for use of XINU semaphores without issue. In multicore XINU, locks must be used

to protect each port. Section 4.3.4 explained why kernel functions cannot safely wait

on a semaphore from within an x-section: x-sections defer rescheduling and the wait

function requires rescheduling to function correctly. Consequently, multicore XINU

port related functions do not use x-sections. Instead, before accessing a port data
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structure, they acquire the port’s lock directly with the lock function and release it

before any call to wait.

Ultimately, semaphores and locks work together in the producer consumer scheme.

Semaphores ensure that only the appropriate number of producers or consumers are

active while locks ensure correct and consistent access to shared data structures.

Fig. 4.8.: Multicore producers synchronized in the producer consumer problem

4.8 Real Time Clock Manager

XINU uses a platform’s real time clock device to generate timer interrupts ev-

ery millisecond. Timer events serve two purposes in XINU: triggering scheduling

preemption when a process has completed its time slice and implementing delayed

events.

4.8.1 Preemption

In unicore XINU, a global preemption counter is used to preempt a process at the

end of its time slice. When a process becomes current, the preemption counter is set to

a predetermined value, typically two milliseconds. The timer interrupt handler, called

clkhandler, decrements this counter every millisecond when the timer generates an
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interrupt. When the preemption counter reaches 0, clkhandler reschedules, giving

the process at the head of the ready queue a chance to run if it has sufficient priority.

In multicore XINU, each processing core is running its own scheduler. Therefore,

the CPU table contains a preemption counter for each core. Using the APIC on the

x86 platform and the GIC on the ARM platform, the timer interrupt is routed to all

cores. Each core decrements its own preemption counter and reschedules as needed.

4.8.2 Delayed Events

Processes that wish to delay for a predetermined period of time call sleep to

place themselves on the global sleep queue in the SLEEPING state. During each

timer interrupt, clkhandler checks the sleep queue and wakes any processes that are

finished delaying, moving them to the ready queue and placing them in the READY

state.

4.8.3 Asymmetry in clkhandler

In multicore XINU, access to the sleep queue is protected with a lock called the

sleepqlock. All cores receive timer interrupts, but it is only necessary for one core

to maintain the sleep queue. Multicore clkhandler is therefore implemented as

an asymmetric interrupt handler. Only the main core with I.D. 07 performs sleep

queue maintenance when executing clkhandler. Core 0 is also solely responsible for

counting the seconds that XINU has been running.

4.9 Device Manager

The data for each XINU device is stored in a structure called a device control

block. The data structures, function a.p.i., and interrupt handlers that manage a

device comprise the device’s driver. Device drivers are relatively large and complex

7checked with the getcid function (Section 4.2)
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code modules with unique operational requirements. Therefore, the implications of

operating each device on a parallel platform must be considered independently.

XINU includes device drivers for ethernet devices, remote and local file system

devices, remote disk devices, and GPIO devices, to name a few. This section explains

how XINU has been extended to support parallel access to its TTY driver, which

provides basic user interaction via a terminal and command line.

4.9.1 TTY Driver

The TTY control block contains variables that hold configuration data, three I/O

buffers (input, output, and echo), and input and output semaphores for each buffer.

All of this shared data must be protected during parallel access. As with XINU ports

(Section 4.7.2), the use of the blocking wait function with semaphores in TTY driver

functions precludes the use of x-sections. Locks must be acquired directly via the

lock function and locking policies must be explicitly enforced in the driver code.

The three buffers and their semaphores each constitute independent instances of

the classical producer/consumer problem. As with ports, a lock on each queue would

allow for mutual exclusion. However, yet another lock would then have to be used for

protected access to the rest of the TTY control block. In many instances, two or more

of these locks may be needed for a device driver operation. In such cases, the device

programmer would have to be particularly careful to release all locks in the correct

order before waiting on a semaphore. A predetermined lock nesting order would have

to be established among all of these locks to prevent deadlocks. This fine locking

granularity in a device driver very quickly introduces some non-trivial complexities.

Section 4.1.1 stated the intention of the multicore XINU design to use medium

grained spinlocking for this very reason. Rather than add complex, fine grained

spinlock management logic throughout its TTY driver, multicore XINU uses a single

lock on the entire TTY control block. The benefit of a single lock on the control

block is its economy of mechanism: The logic surrounding the use of a single lock is
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easier to reason about, understand, implement. The down side of using a single lock

lies in the potential for lock contention. Processes accessing entirely separate buffers

in parallel my spin unnecessarily on the single, shared lock. Simplicity and elegance

are key components of XINU’s identity. Therefore, the simpler solution was chosen

for multicore XINU.

4.10 Initialization

XINU begins operation with interrupts disabled. The boot sequence initializes

interrupt handlers and all kernel data structures before enabling interrupts, creating

and resuming several key system processes, and then falling into a busy loop to

become the null process. The null process is a process that spins and does nothing. It

has the lowest possible scheduling priority (0), and exists purely so that the processor

will always have a process that is ready to run.

Multicore XINU begins running on a single core. Multicore XINU is therefore

able to initialize all kernel data structures safely without acquiring any spinlocks.

The main core then starts up the other cores. On the x86 platform, the main core

sends inter-processor interrupts to other cores via the APIC. On the ARM platform,

the main core starts other cores by writing to special CPU control registers.

Where XINU uses a single null process, multicore XINU running on n cores uses

n null processes. Stack space for each null process is statically reserved in XINU

memory. A newly awakened core sets its stack pointer to point to its reserved null

stack.

The newly started core then performs any necessary self initialization, like enabling

caches and configuring interrupts. When a new core has finished its self initializa-

tion, it calls resched to check for any available, higher priority processes. It then

enables local interrupts and falls into its null process busy loop, using its dedicated

bootstrapping stack to become a null process.
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When there are no active processes, many SMP systems will temporarily put a

core in a low power, sleeping state until an interrupt wakes them back up when there

is more processing to do. However, XINU uses a busy waiting process, so the use of

multiple null processes in multicore XINU is a an intuitive extension.
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5. CONCLUSIONS

Chapter 3 walked through some important parallel programming concepts before

cataloguing and analyzing several SMP operating system design patterns. This back-

ground provided context and a platform from which to discuss multicore XINU. Typ-

ical modern SMP operating systems employ a fine-grained, spinlocked kernel design.

Multicore XINU takes a medium grained spinlocking approach.

Chapter 4 explained some key multicore XINU mechanisms, exposing and ana-

lyzing foundational principles that arise when extending an operating system to a

multicore platform. Multicore XINU maintains XINU’s semantics and key principles.

To support multicore XINU, a platform must be capable of implementing spinlocks,

inter-processor interrupts, and core self identification. Multicore XINU uses recursive

locking, and upholds established locking policies with the x-sections. Nested locking

prevents deadlocks. Medium grained locking and the lock once approach sacrifice

a small amount of potential parallelism for economy of mechanism in core kernel

functions. XINU regularly uses classical producer/consumer interactions and multi-

core XINU locks work harmoniously with semaphores to allow parallel producer and

consumer execution while protecting shared data structures.

5.1 Remaining Levels

A diligent reader may have noticed that the Intermachine Communication and

File System kernel levels were left out of Chapter 4, and that only a single device

driver was presented. As alluded to in Section 4.9, device drivers are large and

complex software modules for which multicore support must be engineered on a case

by case basis. The ethernet driver is particularly important to subsequent levels that

require network communication. Remaining device drivers and levels are a work in
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progress. X-section methodology will provide a convenient framework for appending

the remaining levels, and the lock per control block precedent established in the

multicore TTY driver will guide the development of other multicore device drivers.

As more device drivers are brought into multicore XINU, design decisions can be

made about how to distribute device interrupt handling among cores.
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A. APPENDIX

Table A.1.: Multicore XINU Lock Policies

Policy Enforcing Mechanism

1 No process can be interrupted while holding a lock. {disable/restore}

2 No process can reschedule while holding a lock. Deferred Rescheduling

3 To avoid deadlocks, lower level locks must be nested within upper level locks. Multilevel Architecture

4 To avoid deadlocks, locks within a level will follow a predetermined nesting order. OS Programmer

5 Process locks must be nested within queue locks. OS Programmer

Table A.2.: Allowable XINU process states and their meanings.

State Meaning

FREE Process table entry is unused.

CURRENT Process is currently running.

READY Process is on ready queue.

RECV Process waiting for message.

SLEEP Process is sleeping.

SUSP Process is suspended.

WAIT Process is on semaphore queue.

RECTIM Process is receiving with timeout.

DEAD Process has terminated but its resources have not yet been deallocated.
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Algorithm A.1 multicore resched

if rescheduling deferred on this core then

record that attempt was made

return

end if

lock(readylock)

lock(current process)

if current process is still eligible (in the CURRENT state) then

if current process is still highest priority then

unlock(current process)

unlock(readylock)

return

end if

{current process will not remain current}

set process state to READY and insert in the ready queue

end if

set prevpid for this core to the ID of the current process

dequeue process from head of ready list and make it current on this core

reset time slice for new process and update process entries

context switch between old and new processes

perform ctxsw ret {return from context switch}

return
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Fig. A.1.: The full multicore XINU process state machine


