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ABSTRACT 

Author: Xu, Min. PhD 
Institution: Purdue University 
Degree Received: December 2018 
Title: Using Digital Agriculture Methodologies to Generate Spatial and Temporal Predictions of 

N Conservation, Management and Maize Yield. 
Committee Chair: Shalamar Armstrong 
 

The demand for customized farm management prescription is increasing in order to maximize 

crop yield and minimize environmental risks under a changing climate. One great challenge to 

modeling crop growth and production is spatial and temporal variability. The goal of this 

dissertation research is to use publicly available Landsat imagery, ground samples and historical 

yield data to establish methodologies to spatially quantify cover crop growth and in-season maize 

yield. First, an investigation was conducted into the feasibility of using satellite remote sensing 

and spatial interpolation with minimal ground samples to rapidly estimate season-specific cover 

crop biomass and N uptake in the small watershed of Lake Bloomington in Illinois. Results from 

this study demonstrated that remote sensing indices could capture the spatial pattern of cover crop 

growth as affected by various cover crop and cash crop management systems. Soil adjusted 

vegetation index (SAVI), enhanced vegetation index (EVI) and triangular vegetation index (TVI) 

were strongly correlated with cover crop biomass and N uptake for low and moderate biomass and 

N uptake ranges (0-3000 kg ha-1 and 0-100 kg N ha-1). The SAVI estimated cover crop biomass 

and N uptake were +/- 15% of observed value. Compared to commonly used spatial interpolation 

methods such as ordinary kriging (OK) and inverse distance weighting (IDW), using the SAVI 

method showed higher prediction R2 values than that of OK and IDW. An additional advantage 

for these remote sensing vegetation indices, especially in the context of diverse agronomic 

management practices, is their much lower labor requirements compared to the high density 

ground samples needed for a spatial interpolation analysis.  

In the second study, a new approach using the multivariate spatial autoregressive (MSAR) 

model was developed at 10-m grid resolution to forecast maize yield using historical grain yield 

data collected at farmers’ fields in Central Indiana, publicly available Landsat imagery, top 30 cm 

soil organic matter and elevation, while accounting for yield spatial autocorrelation. Relative mean 
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error (RME) and relative mean absolute error (RMAE) were used to quantify the model prediction 

accuracy at the field level and 10-m grid level, respectively. The MSAR model performed 

reasonably well (absolute RME < 15%) for field overall yield predictions in 32 out of 35 site-years 

on the calibration dataset with an average absolute RME of 6.6%. The average RMAE of the 

MSAR model predictions was 13.1%. It was found that the MSAR model could result in large 

estimation error under an extreme stressed environment such as the 2012 drought, especially when 

grain yield under these stressed conditions was not included in the model calibration step. In the 

validation dataset (n=82), the MSAR model showed good prediction accuracy overall (± 15% of 

actual yield in 56 site-years) in new fields when extreme stress was not present. The novel 

approach developed in this study demonstrated its ability to use elevation and soil information to 

interpret satellite observations accurately in a fine spatial scale.  

Then we incorporated the MSAR approach into a process-based N transformation model to 

predict field-scale maize yield in Indiana. Our results showed that the linear agreement of predicted 

yield (using the N Model in the Mapwindow GIS + MMP Tools) to actual yield improved as the 

spatial aggregation scale became broader. The proposed MSAR model used early vegetative 

precipitation, top 30 cm soil organic matter and elevation to adjust the N Model yield prediction 

in 10-m grids. The MSAR adjusted yield predictions resulted in more cases (77%) that fell within 

15% of actual yield compared to the N Model alone using the calibration dataset (n=35). However, 

if the 2012 data was not included in the MSAR parameter training step, the MSAR adjusted yield 

predictions for 2012 were not improved from the N Model prediction (average RME of 24.1%). 

When extrapolating the MSAR parameters developed from 7 fields to a dataset containing 82 site-

years on 30 different fields in the same region, the improvement from the MSAR adjustment was 

not significant. The lack of improvement from the MSAR adjustment could be because the 

relationship used in the MSAR model was location specific. Additionally, the uncertainty of 

precipitation data could also affect the relationship.  

Through the sequence of these studies, the potential utility of big data routinely collected at 

farmers’ fields and publicly available satellite imagery has been greatly improved for field-specific 

management tools and on-farm decision-making.  
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

Increasing population, soil erosion at an alarming rate, and significant changes in weather 

patterns present challenges to farmers. According to the United Nation (UN), the world population 

is projected to reach 9.8 billion in 2050 and the upward trend in population size is expected to 

continue (UN, 2017). The UN Food and Agriculture Organization (FAO) estimated that farmers 

will have to produce 50% more food by 2050 to meet the needs of the world’s population (FAO, 

2017). However, fertile soil was being lost at a rate of 24 billion tons every year around the world 

due to intensive agriculture. In the United States, 1.73 billon tons of topsoil loss via erosion was 

reported (USDA, 2007). Moreover, studies have indicated that extreme events such as heat waves 

(especially frequencies of hot nights) and large storms are likely to become more frequent or more 

intense with climate change (Walthall et al., 2012); at the same time, the occurrence of drought 

has also been on the rise (IPCC, 2007). Climate models suggest that rainfall may become less 

predictable (Walthall et al., 2012). Although there will be gains in some crops in some regions of 

the world, the overall impacts of climate change on agriculture are expected to be negative, 

threatening global food security (Nelson et al., 2009; Zhao et al., 2017).  

The United States is the largest maize producer in the world, contributing approximately 40% 

of global maize production annually (Smith et al., 2014). Over the past few decades, US maize 

yield trend has been linear with a mean 1.5% annual increase (Lobell and Azzari, 2017). Plant 

breeding and improved agronomic practices have contributed to increased agricultural productivity 

during recent past decades. Smith et al. (2014) reported that for single-cross hybrids during 1930 

to 2011, genetic gains achieved via improved phenotyping, marker assisted breeding, genetic 

engineering, and seed treatments contributed 59% to 79% of the maize yield gain. Agronomic 

management practices also play an important role in closing maize yield gap by reducing soil 

erosion, improving water and nutrient use efficiency, and control of weeds, insects and disease. 

These practices include better nitrogen (N) application timing, source, placement, and rate 

decisions (Randall and Vetsch, 2005; Randall and Sawyer, 2008; Mueller et al., 2012); better soil 

drainage (Cardwell, 1982; Kladivko et al., 2005; Nash et al., 2015); early planting dates (Kucharik, 

2008); increased plant density (Grassini et al., 2011); crop rotation (Porter et al., 1997; Sindelar et 
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al., 2015); conservation tillage (Zhang and Blevins, 1996; Licht and Al-Kaisi, 2005); cover 

cropping (Kramberger et al., 2009; Lacey and Armstrong, 2015); and other practices. To feed the 

world in 2050, gains from both plant breeding and agronomic management practices are still 

needed to sustainably increase agricultural production with an improved environmental footprint 

by making the plants more resilient in the face of extreme weather, weed competition, and other 

pest attacks in future agriculture.  

Maize production is heavily influenced by the environment. While the average maize yield has 

been increasing in the past, the yield variability increased as well. Lobell and Azzari (2017), using 

Landsat satellite images, detected that maize yield heterogeneity in US Corn Belt was rising, both 

between and within fields. They found average yield differences between the best and worst soils 

more than doubled from 2000 to 2015. They rationalized this trend could be the result of increased 

plant density, which disproportionately raised yields on productive soils. The results indicated that 

yield gains in this region were increasingly derived from the more productive soils. However, 

variation in soil N contributions via organic matter mineralization among soils and within soils 

from year to year have made fertilizer N recommendations difficult (Joern and Sawyer, 2006). 

Moreover, maize yield response to N fertilizer was found to vary depending on topography, soil 

type, groundwater levels, farm management and ever-changing environmental conditions. As a 

result, the selection of a site-specific optimum N rate was difficult to predict based on the large 

temporal and spatial variability of the N supply and crop N demand (Setiyono et al., 2011; Puntel 

et al., 2016). Therefore, data-driven nutrient management decisions based on field-specific 

information is essential.  

Digital Agriculture is the integration of digitalized data sources (yield maps, fertilizer 

application, weather information, real-time satellite imagery, unmanned aviation systems, soil 

mapping, field sensors) with advanced crop and environment models, to provide a better 

understanding of nutrient management, which helps farmers make informed and actionable on-

farm decisions to optimize resource management, reduce production loss and improve food 

security in a changing climate. So Digital Agriculture technologies have the potential to increase 

N use efficiency by matching the N requirements within field zones (Mamo et al, 2003; Mulla, 

2013; Puntel et al., 2016). Many crop models have been developed to quantify maize yield 

response to applied N fertilizer, crop rotation, and the impact of climate change at various scales 

(Jones et al., 2003; Yang et al., 2004; Setinoyo et al., 2011; Holzworth et al., 2014). Statistical 
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models and algorithms were also used to predict maize yield and the potential effects of climate 

change (Lobell et al., 2011; Lobell et al., 2015). Unfortunately, these approaches have not fully 

resolved the needed improvements from N management since N losses from maize-based systems 

are still high with negative environment impacts (Puntel et al., 2016). The EPA cites agricultural 

runoff as the leading cause of pollution of lakes and rivers, and the hypoxic zone in the Gulf of 

Mexico in 2017 was determined to be the largest since 1985 (NOAA, 2017). Planting cover crops 

was identified as the most effective management practice that reduce nitrate-N loss (INLRS, 2015). 

In practice, however, cover crop establishment, biomass production, and nutrient uptake could be 

affected by greater variability in weather, soil type, landscape position, soil drainage and water 

table, and nutrient management practices.  

The goal of this dissertation is to establish digital methodologies to spatially quantify cover 

crop growth and maize grain yield. We believe that digital methodologies that spatially analyze 

the big data routinely collected at farmers’ fields such as yields, fertilizer inputs, and publicly 

available satellite images, can provide the farmer with powerful field-specific tools to rapidly 

assess productivity and manage conservation to minimize environmental risks in maize-based 

agricultural systems. The results from this dissertation can be implemented to predict field-specific 

maize grain yield to agronomic management and to advance field adaptive N management with 

cover crop growth. This local, data-driven approach could offer insights to enhance the ability in 

decision making and implementation.  

Therefore, the specific research objectives are: 

1)  Develop algorithms that use Landsat satellite images and minimal ground samples to 

predict season-specific cover crop biomass and N uptake on a small watershed in the US 

Corn Belt; and compare the estimation accuracy with common spatial interpolation 

methods. 

2) Develop a multivariate spatial autoregressive model using Landsat satellite imagery, 

historical yield data, soil survey and digital elevation to predict field-scale maize yield in 

Indiana.  

3) Incorporate multivariate spatial statistics into a process-based N transformation model to 

predict maize yield on a field scale in Indiana. 
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CHAPTER 2. THE FEASIBILITY OF SATELLITE REMOTE SENSING 

AND SPATIAL INTERPOLATION TO ESTIMATE COVER CROP 

BIOMASS AND NITROGEN UPTAKE IN A SMALL WATERSHED 

Citation: Xu, M., C.G. Lacey, and S.D. Armstrong. 2018. The feasibility of satellite remote sensing 

and spatial interpolation to estimate cover crop biomass and nitrogen uptake in a small watershed. 

Journal of Soil and Water Conservation. 73(6): 682-692. doi: 10.2489/jswc.73.6.682 

2.1 Abstract 

The adoption of winter cover crops has been identified as one of the most effective best 

management practices to reduce non-point Nitrogen (N) loss via subsurface drainage in a 

watershed in Midwestern Corn Belt. Understanding the variation of cover crop growth and N 

cycling is vital for watershed modeling efforts that simulate cover crop adoption. However, there 

is a dearth of watershed cover crop studies that describe the variation in cover crop growth and N 

cycling and compare the ability of spatial analytical methodologies to predict cover crop biomass 

and N uptake within diverse agronomic management practices and heterogeneous soil landscapes. 

Therefore, the objective of this study is to compare the feasibility of satellite remote sensing and 

spatial interpolation methods to predict cover crop biomass and N uptake in a small watershed 

(100 – 10,000 ha). This study was undertaken during 2015 - 2017 in the Lake Bloomington 

watershed (374 ha) in McLean County, Illinois. Within the small watershed, daikon radish/oats 

(R/O), annual ryegrass/daikon radish (A/R), cereal rye/daikon radish (C/R), were adopted on 78% 

of row crop land area for both years. Strong linear relationships were observed between soil 

adjusted vegetation index (SAVI), enhanced vegetation index (EVI), and triangular vegetation 

index (TVI) and cover crop biomass, (average R2 of 0.77, 0.78, B0.76, respectively) and N uptake 

(average R2 of 0.68 for all 3 vegetation indices). Cover crop biomass and N uptake estimated by 

the SAVI method were 86% and 85%, 93% and 94%, 107% and 98% of the ground observed value 

during 2016 spring, 2016 fall and 2017 spring, respectively. Moreover, spatial pattern and different 

cover crop management fields in the study watershed were also captured by the SAVI method. 

Ordinary kriging (OK) and inverse distance weighting (IDW) showed similar mean cover crop 

biomass and N uptake values for fields with cover crops; however, both spatial interpolation 

methods showed lower prediction R2 values than that of the SAVI method. The results of this study 
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suggest that the combination of spatially accurate satellite imagery and limited ground sampling 

could be used for repeated small watershed assessment of cover crop growth. Furthermore, this 

can be used to understand cumulative cover crop impacts on soil and water quality in response to 

conservation practices and weather within a drainage basin. 

Key words: Cover crop biomass—cover crop nitrogen uptake—remote sensing—vegetation 

indices—spatial interpolation—watershed conservation 

2.2 Introduction 

Estimations of the Gulf of Mexico hypoxic zone in 2017 revealed that it is at its largest since 

1985 dead zone mapping (22730 km2), four times of the Gulf Hypoxia Task Force target of 5000 

km2 (NOAA 2017). Studies have estimated that agricultural land in Mississippi River Basin is 

responsible for 71% of nitrogen (N) load to the hypoxia zone, among which Illinois, Indiana, Iowa 

and Missouri account for 48 % of the N load (EPA 2014). Cover crops after summer cash crops 

have been identified as the most effective in-field management practice for improved soil and 

water quality in row crop agriculture. Cover crops are vital to reducing N loading to subsurface 

drainage by scavenging post-harvest soil residual inorganic N, as well as N mineralized from soil 

organic matter during the fallow season (Dinnes et al. 2002; Tonitto et al. 2006; Constantin et al. 

2010; Kaspar et al. 2012). Furthermore, the sequestered N can be recycled to the soil after winter 

kill or spring termination of the cover crops, with mineralization rate depending on cover crop 

species (Lacey and Armstrong 2014). Cover crops also exhibit beneficial effects on reduced 

sediment loss (Yeo et al. 2014), soil aggregate stability (Roberson et al. 1991), and water retention 

(Quemada and Cabrera 2002). Therefore, the adoption and management of cover crops is vital to 

reduce non-point N loss via subsurface drainage. However, cover crop growth is affected by 

weather, landscape positions and the cultural practices of farmers within the watershed. Thus, there 

is a need to better understand cover crop growth and N cycling variation.  

Cover crops are expected to reduce 30% of total N load to the Gulf of Mexico hypoxia zone in 

multiple Midwest state nutrient loss reduction strategies (Christianson et al. 2016; MONLRS 2014; 

ILNLRS 2015; IANRS 2016). Diverse physical, environmental, and farm management factors 

affect the variability of cover crop growth, thus simple arithmetic mean of sparse ground sampling 

is not adequate. Currently, estimation of cover crop biomass production has been largely based on 
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extrapolation results from plot experiments to match implementation acreages (Hively et al. 2009). 

Thus, there is a need for more studies that describe the variation in cover crop growth and N cycling 

and that compare abilities of analytical methods to predict cover crop biomass and N uptake within 

diverse agronomic management practices and heterogeneous soil landscapes. Cover crop 

establishment, biomass production, and nutrient uptake could be affected by greater variability in 

soil type, landscape position, catchment area, soil drainage, and nutrient management relative to 

establishment in controlled experimental studies of plots. Thus, it is important to evaluate the 

accuracy and utility of different spatial analytic approaches to predict and estimate the variability 

in cover crop growth and N uptake.  

Satellite remote sensing provides a tool for rapid estimation of cover crop biomass production. 

Vegetation indices (VI) based on surface reflectance in the visible and near-infrared are widely 

used to estimate canopy biomass, leaf area index (LAI), leaf chlorophyll concentration, and crop 

N status (Haboudane 2004; Gitelson 2004; Hansen and Schjoerring 2003; Prabhakara et al. 2015). 

Hively et al. (2009) first adopted NDVI derived from SPOT 5 satellite image to estimate cover 

crop biomass for fields with > 210 kg ha-1 of vegetation. They also estimated cover crop N uptake 

by multiplication with species-specific N concentration. Yet, Prabhakara et al. (2015) compared 

multiple indices and found that percent ground vegetation cover and the range of vegetation 

biomass greatly affected the performance of VI’s. Interference from non-vegetation signal (such 

as soil and crop residue reflectance) and variable sensitivity of VI’s at different biomass range also 

affected the result. However, there is a dearth of cover crop studies that describe the variation in 

cover crop growth and N cycling in small watersheds and compare the ability of spatial analytical 

methods to predict cover crop biomass and N uptake within diverse agronomic management 

practices and heterogeneous soil landscapes. There is a need to directly evaluate the performance 

of multiple satellite VI’s in small watersheds to increase the accuracy of the prediction of cover 

crop biomass and N uptake, and compare that to other spatial interpolation methods.  

OK and IDW are commonly used interpolation methods to characterize soil and crop spatial 

variability and interpolate between sampled points at both field scale (Franzen and Peck 1995; 

Kravchenko 2003; Sajid et al. 2013; Santos et al. 2015) and regional scale (Malone et al. 2014). 

The estimate at an unsampled location is based on a linear weighted combination of measurements 

at surrounding locations. The weights of OK are estimated from the semivariance function. With 

a proper semivariogram model, kriging provides the best linear unbiased estimate (Li and Heap 
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2014). The weights of IDW method are defined as the inverse function of the distance from the 

point of interest to the sampled points (Li and Heap 2008). The assumption of IDW method is that 

points close to each other are more similar in values than points that are far apart. The performance 

of spatial interpolation methods was found to be affected by data density, spatial distribution, 

temporal variation and sample size (Li and Heap 2011, 2014). 

Estimation accuracy as well as required sample size are key considerations when studying cover 

crop growth in small watersheds. This study focused on the estimation of cover crop growth over 

a sampling domain of 100 – 10,000 ha. The objective of this study was to compare the feasibility 

of satellite remote sensing vegetative indices and of spatial interpolation methods for rapid 

assessment of cover crop biomass and N uptake with minimal ground truth sample requirements. 

2.3 Materials and Methods 

2.3.1 Study area 

This study was undertaken in the Lake Bloomington watershed in McLean County, Illinois. 

The fields in this study were under corn-soybean rotation with both crops represented each year. 

In 2016, corn was planted in 24% of the agricultural land (90.7 ha), and soybeans were planted in 

76% of the agricultural land (283.3 ha). N fertilizers were either fall applied (anhydrous ammonia) 

or spring sidedressed (urea ammonium nitrate) for corn production, with N rates ranging from 160 

kg N/ha to 323 kg N/ha. Cover crops were aerial seeded into the standing cash crop each fall 

(8/28/2015 to 9/9/2015, 9/10/2016 to 9/11/2016). The cover crop species used in this study were 

oats (Avena sativa L.), daikon radish (Raphanus sativus L.), annual ryegrass (Lolium multiflorum) 

and cereal rye (Secale Cereal L.). The cover crop treatments were daikon radish/oats (R/O) or 

annual ryegrass/daikon radish (A/R) interseeded within soybean and cereal rye/daikon radish (C/R) 

interseeded within corn. A no cover crop control (No CC) was also included (Figure 2.1). Seeding 

rates were: R/O, 40.3 kg/ha oats and 4.5 kg/ha daikon radish; C/R, 77.3 kg/ha cereal rye and 6.7 

kg/ha daikon radish; A/R, 28.6 kg/ha annual ryegrass and 5.0 kg/ha daikon radish. Oats and daikon 

radish plants were terminated by the low temperature in December, and cereal rye and annual rye 

were chemically terminated using a non-selective herbicide (Glyphosate and 26, 2, 4-

Dichlorophenoxyacetic acid) at least 2 weeks before the anticipated planting of the cash crop. The 

fields in the study watershed were tile drained.  



24 
 

2.3.2 Ground cover crop biomass and N uptake sampling 

Aboveground cover crop biomass was sampled in the fall before the first frost (12/12/2015, 

11/18/2016) and in the spring before cover crop termination (4/6/2016, 4/11/2017). For every 6 ha, 

1m2 quadrant was randomly sampled with the sampling location geo-referenced using the iGIS 

app (Geometryit, 2017) on iPad Pro (Apple, Inc., 2016) devices. No biomass was collected from 

no cover crop control fields due to minimal weed presence. For 2015 fall, 2016 spring, 2016 fall, 

and 2017 spring, 25, 31, 31, and 38 aboveground cover crop biomass samples were collected, 

respectively. Plant samples were oven dried at 60 °C and weighed for dry biomass, and ground to 

pass through a 1mm sieve. Total percent N was determined with a Flash 2000 NC using a dry 

combustion method. Cover crop N uptake was calculated by multiplying the percent N by the dried 

biomass weight.  

2.3.3 Satellite remote sensing indices 

Landsat 8 Operational Land Imager (OLI) images (30m spatial resolution) covering the study 

watershed (path: 23, row:32) were downloaded within 3 days from ground sampling dates 

(imagery dates: 12/15/2015, 4/5/2016, 11/15/2016, 4/8/2017). Since various VI’s showed different 

sensitivity in different plant biomass ranges (Prabhakara et al. 2015), a selection of 9 remote 

sensing VI’s has been used to study cover crop biomass production (Table 2.1). For each GPS-

referenced sampling point, B-spline interpolation method was used to extract surface reflectance 

value of the visible and near-infrared bands using SAGA GIS. Then the 9 VI’s were computed 

using formula in Table 2.1. Linear regression was performed to study the correlation between 9 

VI’s and cover crop biomass and N uptake. The model goodness of fit R2 of the linear regression 

was used to evaluate the validity of the linear relationship between cover crop biomass and VI’s 

of the 4 sampling seasons in the study watershed.  

Leave-one-out cross validation was performed using caret package in R to estimate out-of-

sample R2 and root mean square error (RMSE) as estimates of extrapolation accuracy.  

out − of − sample	./ = 1 −
∑ (45 − 65)/8
59:
∑ (65 − 6;)/8
59:
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where Pi and Oi are predicted and observed value at point i, respectively. 

SAVI was found to have slightly higher prediction accuracy for low to medium aboveground 

biomass compared to EVI and TVI (Shen et al., 2008). In addition, our analysis of EVI, TVI, and 

SAVI suggested that these indices performed was very similarly when estimating both cover crop 

biomass and N uptake. Thus to reduce redundancy, we selected SAVI to simply demonstrate the 

comparison of remote sensing VI with the spatial interpolation methods. Continuous cover crop 

biomass and N uptake map in the study watershed were estimated from SAVI values based on the 

linear relationship with SAVI. Fall 2015 sampling data was excluded from the comparative 

analysis due to dense cloud cover (99.18% land cloud cover) that resulted in poor correlations 

between VI’s and cover crop biomass (R2 < 0.10). Therefore, biomass and N uptake estimation 

maps were only generated for 2016 spring, 2016 fall and 2017 spring season. 

2.3.4 Spatial interpolation 

OK and IDW were performed only on cover crop adopted fields in this study watershed. Both 

OK and IDW estimate the value of variable Z at an unknown location BC, D∗(BC), based on the 

data from the nearest known locations, D(B5) as  

D∗(BC) =AF5
8

59:

D(B5) 

where F5 are the weights assigned to each D(B5), and n is the number of nearest local neighbors 

used for interpolation.  

In kriging, the F5 values are calculated based on the spatial structure of data distribution, which 

is represented by sample variogram (Goovaerts 1998). In this study, an omni-directional 

exponential variogram was used. The variogram parameters (sill, range, and nugget) were 

estimated using maximum likelihood. Variogram estimation and OK were performed using the 

geoR package in R. Leave-one-out cross validation was performed to assess the accuracy of 

kriging estimates. 
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For IDW, 

F5 =
(1/H5

I)
∑ 1/H5

I8
59:

 

where H5 is the distance between the unknown location and a known location, and p is the power 

parameter. The performance of IDW is affected by the power function and the number of neighbors 

(Mueller et al. 2001; Kravchenko 2003). The power function p controls the significance of sampled 

locations on the unknown locations, and the number of neighbor locations defines how many 

nearest observations influence the estimation of unknown locations. In this study, IDW was 

performed using the gstat package in R with the power parameter ranging from 1 to 3. The 

optimum power parameter and number of neighbors were chosen based on prediction R2 using 

leave-one-out cross validation.  

2.4 Results and Discussion 

2.4.1 Linear correlation between ground samples and different satellite remote sensing 
vegetation indices 

Among the 3 sampling seasons, the cover crop biomass was found to be linearly correlated to 

9 different VI’s in this study (Figure 2.2). NDVI, the most commonly used vegetation index, 

showed good correlation with cover crop biomass with linear R2 values of 0.79, 0.67 and 0.74 for 

2016 spring, 2016 fall and 2017 spring season, respectively. This was comparable to Hively et al. 

(2009), who found NDVI could explain 73% of cover crop biomass variation. NDVI saturation 

was not experienced in our study where biomass ranged from 0 to 3000 kg ha-1, however, SAVI 

appeared to be superior to NDVI as the inclusion of soil adjusting factor (L=0.5) could lessen 

spectral responses due to background soil reflectance, especially when crop reflectance is minimal. 

In addition to SAVI, TVI and EVI showed greater correlation with cover crop biomass relative to 

NDVI. When considering the average of all 3 cover cropping seasons, SAVI, TVI and EVI showed 

similar linear goodness of fit of with cover crop biomass. More specifically, we observed that 

SAVI resulted in the best linear predictor in 2016 spring (R2 = 0.80). EVI performed the best in 

2016 fall (R2 = 0.74), and TVI was the best in 2017 spring (R2 = 0.82). Prabhakara et al. (2015) 

found that TVI was most accurate in estimating high ranges of cover crop fall biomass (R2 = 0.86) 

in their Maryland field study due to the high detectability of TVI on high biomass. Different from 
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NDVI, TVI does not reach an upper limit, thereby reducing the saturation effect and increasing 

correlation. They also reported similar linear goodness of fit R2 values between fall biomass and 

other indices studied in this study.  

Previous researchers have estimated cover crop N uptake by multiplying a constant cover crop 

N concentration by measured or estimated cover crop biomass (Hively et al. 2009) or using system 

models based on N supply and demand (Yeo et al. 2014; Lee et al. 2016). However, cover crops 

N concentration and its variability are affected by N fertilization, weather conditions, soil 

characteristics, landscape position, and sampling time, all of which are uncontrolled on areas larger 

than plots (Dean and Weil 2009; Hively et al. 2009). The literature has demonstrated that VI’s 

allow for direct, non-destructive measurements that have been found to strongly correlate with leaf 

chlorophyll content which is a direct indicator of leaf N status (Tucker and Sellers 1986; Filella et 

al. 1995; Yoder and Pettigrew-Crosby 1995; Moran et al. 2000; Lemaire et al. 2008; Schlemmer 

et al. 2013). Thus in this study, we elected to adopt VI’s to estimate cover crop N uptake with the 

intent to capture the variability in plant response to diverse management practices implemented by 

producers over whole fields. In general, we found that the linear correlation between VI’s and 

cover crop N uptake was weaker compared to biomass (Figure 2.3). SAVI, TVI and EVI resulted 

in a better positive linear correlation with cover crop N uptake relative to the other indices 

evaluated. More specifically, in the cover cropping seasons of 2016 spring, 2016 fall and 2017 

spring, the greatest explanation of cover crop N uptake variation were explained by SAVI (78%), 

EVI (57%), and TVI (73%), respectively. Reasons for less sensitivity of VI’s to cover crop N 

uptake relative to above ground biomass could be related to background soil reflectance, crop 

canopy structure, and crop N partitioning that impact cover crop N concentration, chlorophyll and 

spectra responses.  

Overall, we observed that the relationships between VI’s and cover crop biomass and N uptake 

were less evident in the fall compared to spring. This trend could be attributed to less groundcover 

from slow growth, leaf yellowing and fall frost damage of cover crop above ground biomass. 

Prabhakara et al. (2015) pointed out that remote sensing VI’s are most sensitive to healthy green 

vegetation and do not detect yellowed and browned leaves. The extent of leaves with yellowing or 

frost damage in the early winter could also reduce the correlation between remote sensing VI’s 

and cover crop biomass.  
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2.4.2 The performance of cover crop estimation using soil adjusted vegetation index 

The SAVI, TVI, and EVI showed similar prediction accuracy in cover crop biomass and N 

uptake (Table 2.2 and Table 2.3). SAVI was used to estimate cover crop production since SAVI 

was equal or superior to the other VI’s while only requiring red and NIR spectra, which is 

commonly used and can easily derived using various crop canopy sensors. 

For cover crop above ground biomass, the SAVI out-of-sample R2 and RMSE were 0.77 and 

437 kg ha-1, 0.68 and 231 kg ha-1, and 0.79 and 270 kg ha-1 in 2016 spring, 2016 fall and 2017 

spring, respectively (Table 2.2). The RMSE were 33.6%, 26.2%, and 45.5% of the 3 seasonal 

biomass means. Greater percentage of RMSE in the spring was associated with greater range of 

observed biomass as affected by cover crop species (Table 2.4). For N uptake, the SAVI out-of-

sample R2 and RMSE were 0.74 and 15.3 kg ha-1, 0.49 and 10.4 kg ha-1, and 0.69 and 11.7 kg ha-

1 in 2016 spring, 2016 fall and 2017 spring, respectively (Table 2.3). The RMSE were 34.2%, 

34.2%, and 55.7% of the 3 seasonal N uptake means. The higher percentages of N uptake RMSE 

to the observed mean were related to less robust linear relationship between SAVI and N uptake. 

The SAVI method showed slight overestimation at low range of cover crop biomass and N 

uptake and underestimation at the high range across different cover crop treatments during 

different sampling seasons (Table 2.4 and Table 2.5). For the CR/R treatment, where growing 

cover crops were present in all three seasons, the means of cover crop biomass estimated at 30-m 

resolution using the SAVI method was 86%, 106%, and 88% of the ground sample means for 2016 

spring, 2016 fall and 2017 spring, respectively. Cover crop N uptake estimated by the SAVI 

method in the CR/R treatment accounted for 85%, 101% and 90% of the N uptake measured 

directly by ground sampling in each of the 3 seasons. The SAVI method estimated spring biomass 

and N uptake means of the R/O treatment were similar with no cover crops, since radish and oats 

were terminated by the cold temperature over the winter. For cover crops in AR/R treatment, SAVI 

estimated mean biomass and N uptake were within 10% of observed value, except for biomass in 

2017 spring. Standard deviation of estimated biomass and N uptake using SAVI method was also 

found comparable to those of ground samples across cover crop treatments across 3 sampling 

seasons (Table 2.4 and Table 2.5).  
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2.4.3 Spatial interpolation using ordinary kriging and inverse distance weighting 

There was no consistent trend for overestimation or underestimation of cover crop biomass and 

N uptake using OK or IDW method. For OK, the prediction R2 using leave-one-out cross validation 

varied from 0.35 to 0.56 for cover crop biomass and from 0.36 to 0.52 for cover crop N uptake 

during the 3 sampling seasons (Table 2.2 and Table 2.3). IDW showed greater out-of-sample R2 

(0.41 – 0.64 for biomass and 0.40 – 0.62 for N uptake) when compared to OK. Both spatial 

interpolation methods showed lower R2 and higher RMSE values compared to the SAVI method. 

For all cover crop treatments, the estimated mean of cover crop biomass and N uptake in this study 

watershed using both OK and IDW methods were within 20% of ground observation when there 

were cover crops standing (Table 2.4 and Table 2.5).  

Both OK and IDW estimates at an unknown location were influenced by local neighbors and 

their weights. Therefore, the accuracy of spatial point interpolation models was dependent on the 

density and spatial arrangement of data points (Lam 2013; MacEachren and Davidson 1987). For 

kriging, the quality of the semivariogram model, which captures the major spatial features (sill, 

range, and nugget effect) of a variable, is vital for estimation accuracy (McBratney and Webster 

1986; Goovaerts 1998; Kravchenko 2003). Kravchenko (2003) reported kriging was less precise 

when a reliable sample variogram could not be obtained from the data. Hughes and Lettenmaier 

(1981) found kriging offer no clear advantage over conventional least squares when sample size is 

less than 50. Burrough and McDonnell (1998) suggested that at least 50-100 sample points to 

achieve a stable variogram for kriging. Webster and Oliver (2001) concluded that variogram 

derived from sample size less than 50 are often erratic with no evident spatial structure. Thus, with 

data clustering within different cover crop treatments and cash crop management zone across the 

study watershed, OK did not capture the spatial pattern and variability of cover crop growth (Figure 

2.4 and Figure 2.5). When extrapolating cover crop production in small watersheds, ground sample 

density as well as biomass clustering due to different agronomic management limited the 

performance of OK. For this study, according to the literature for a kriging sample size, 50 samples 

per management zone in the small watershed would be required, which equated to 450 samples 

and a sampling rate of 1.2 samples per hectare. This would translate to excessive labor, time, 

analysis and operation cost compared to the sample size used to estimate cover crop growth and N 

uptake variability at the same scale using the SAVI method. The SAVI method used a total sample 
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size of 31 and 38 for 2016 and 2017, respectively, which is equivalent to 0.08 samples ha-1 and 

0.10 samples ha-1.  

For IDW, the number of neighbors and the power parameter have large influence on estimation 

accuracy (Li and Heap 2008). Researchers have reported that IDW worked well with regularly 

spaced data, however, it was unable to account for sample spatial clustering (Li and Heap 2008, 

2014). In small watersheds, sample clustering is inevitable due to variation in landscape position, 

cash cropping systems and associated nutrient and tillage management, and cover crop selection 

from field to field. The clustering effects and variation make it difficult for IDW to capture the 

spatial pattern of cover crop (Figure 2.4 and Figure 2.5), especially for points on the field borders.  

2.5 Summary and Conclusions 

Spatial and temporal heterogeneity are important characteristics that influence both cover crop 

growth and N uptake in small watersheds. In our study we found that depending on the 

heterogeneity of the cropping system management, remote sensing VI’s and spatial interpolation 

methodologies could be used as tools to rapidly estimate and predict cover crop biomass and N 

uptake in agricultural cropping systems in small watersheds. One limitation of our study was that 

the feasibility of using satellite remote sensing VI’s is dependent on the available images during 

the time window of interest that are not obscured by heavy cloud cover. The cover cropping season 

of fall 2015 was omitted from the analysis due to heavy cloud cover, which restricted the number 

of cover crop growing periods that we analyzed from 4 to 3. Another limitation was that spatial 

interpolation methods are sensitive to unequal variance. Possible sources that influence unequal 

variance in both cover crop biomass and N uptake include multiple uncontrolled variables such as 

weather, cropping system management, cover crop selection and growth. For rapid assessment of 

cover crop biomass and N uptake, we performed the spatial interpolation using a non-clustering 

sampling scheme, instead of increasing sample density in cropping system zones to reduce unequal 

variance.  

Despite these limitations, our study found that SAVI, EVI and TVI were strongly correlated 

with both cover crop biomass and N uptake in a small watershed for low and moderate biomass 

and N uptake ranges (0-3000 kg ha-1 and 0-100 kg N ha-1). Moreover, they could be used as 

successful predictors of cover crop biomass production and N uptake. Cover crop biomass and N 
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uptake estimated using SAVI were +/- 15% of observed value, and spatial interpolation methods 

predictions were within 20% of measured biomass and N uptake on cover crop adopted fields. 

However, the SAVI method showed higher prediction R2 values than that of OK and IDW.  

Spatial variation of the cover crops growth is important for studying nutrient transport fate and 

nutrient management. Remote sensing indices could capture the spatial pattern as affected by 

various cover crop and cash crop management systems, which are common in small watersheds. 

In contrast, spatial interpolation is useful where cover crop and nutrient management practices are 

relatively uniform. Where diverse agronomic management practices exist, it could be laborious to 

collect high density ground samples for a spatial interpolation analysis, compared to the remote 

sensing VI’s. For future studies, images from unmanned aerial vehicles that allow for more flexible 

data collection could be used to advance our understanding of cover crop biomass and N uptake 

over time across various landscapes. 
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Table 2.1 Definition of remote sensing VI’s. Surface reflectance of bands are designated in the 

formula as B (blue), G (green), R (red), and NIR (near-infrared). 

Index Name Formula 

NDVI Normalized difference vegetation index (NIR – R)/(NIR + R) 

GNDVI Green normalized difference vegetation index (NIR – G)/(NIR + G) 

SR Simple ratio NIR/R 

SAVI Soil adjusted vegetation index (L = 0.5) [(NIR – R)/(NIR + R + L)](1 + L) 

G – R Green minus red G – R 

EVI Enhanced vegetation index 2.5(NIR – R)/(NIR + 6R – 7.5B +1) 

TVI Triangular vegetation index 0.5[120(NIR – G) – 200(R – G)] 

NGRDI Normalized green red difference index (G – R)/(G + R) 

VARI Visible atmospherically resistant index (G – R)/(G + R – B) 

Source: Prabhakara et al. (2015).  

 

Table 2.2 Leave-one-out cross validation of linear models between cover crop biomass and 
remote sensing indices and spatial interpolation. 

Assessment Method 2016 Spring† 2016 Fall 2017 Spring 

Remote Sensing Indices 

SAVI 0.77 (437)‡ 0.68 (231) 0.79 (270) 

TVI 0.76 (446) 0.62 (253) 0.80 (261) 

EVI 0.76 (442) 0.71(218) 0.78 (277) 

Spatial Interpolation Method 

OK 0.56 (607) 0.35 (329) 0.41 (449) 

IDW 0.64 (548) 0.46 (299) 0.41 (451) 

† Sample mean and sample size: 2016 Spring, mean = 1302 kg ha-1, n = 31; 2016 Fall, mean = 882 
kg ha-1, n = 31; 2017 Spring, mean = 593 kg ha-1, n = 38. 

‡ Number outside parenthesis is average out-of-sample R2 value, number inside parenthesis is 
RMSE (kg ha-1). 
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Table 2.3 Leave-one-out cross validation average out-of-sample R2 values of linear models 
between cover crop N uptake and remote sensing indices. 

Assessment Method 2016 Spring† 2016 Fall 2017 Spring 

Remote Sensing Indices 

SAVI 0.74 (15.3)‡ 0.49 (10.4) 0.69 (11.7) 

TVI 0.75 (15.2) 0.47 (10.6) 0.70 (11.4) 

EVI 0.72 (15.8) 0.51 (10.2) 0.68 (11.7) 

Spatial Interpolation Method  

OK 0.52 (20.8) 0.36 (11.6) 0.37 (16.5) 

IDW 0.62 (18.7) 0.54 (9.8) 0.40 (16.1) 
† Sample mean and sample size: 2016 Spring, mean = 44.8 kg ha-1, n = 31; 2016 Fall, mean = 30.4 

kg ha-1, n = 31; 2017 Spring, mean = 21.0 kg ha-1, n = 38. 
‡ Number outside parenthesis is average out-of-sample R2 value, number inside parenthesis is 

RMSE (kg ha-1). 
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Table 2.4 Means and standard deviations of cover crop biomass estimation in the study watershed. 
Season  Cover Crop Species† 

  A/R C/R R/O No CC 
  ------------------------------ Mean of Cover Crop Biomass (kg ha-1) ------------------------------ 

2016 Spring Ground Sampling - 1681.7 0 - 
SAVI method  - 1442.3 239.3 225.3 

Kriging method - 1618.4 - - 
IDW method - 1674.5 - - 

2016 Fall Ground Sampling 700.8 668.4 1187.1 - 
SAVI method  677.3 706.6 926.3 35.5 

Kriging method 763.9 796.3 1077.8 - 
IDW method 748.4 785.6 1113.8 - 

2017 Spring Ground Sampling 389.7 1275.0 0 - 
SAVI method  494.2 1121.9 34.2 62.7 

Kriging method 419.9 1090.3 - - 
IDW method 416.7 1066.7 - - 

  ---------------------- Standard Deviation of Cover Crop Biomass (kg ha-1) ---------------------- 
2016 Spring Ground Sampling - 672.1 0 - 

SAVI method  - 650.8 164.4 262.3 
Kriging method - 491.4 - - 

IDW method - 528.2 - - 
2016 Fall Ground Sampling 163.6 629.6 244.4 - 

SAVI method  233.6 485.8 281.9 135.0 
Kriging method 114.2 416.1 158.6 - 

IDW method 124.1 472.6 168.3 - 
2017 Spring Ground Sampling 157.5 346.9 0 - 

SAVI method  226.5 283.7 107.1 146.6 
Kriging method 149.7 193.1 - - 

IDW method 196.5 182.0 - - 
† Cover Crop Planting Area: AR/R (136.4 ha, 2016 Fall and 2017 Spring); CR/R (239.3 ha, 2016 Spring; 51.6 ha, 2016 Fall and 2017 

Spring); R/O (51.6 ha, 2016 Spring; 103.0 ha, 2016 Fall and 2017 Spring); No CC (83.0 ha, all seasons) 
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Table 2.5 Means and standard deviations of cover crop N uptake estimation in the study watershed. 

Season  Cover Crop Species† 
  A/R C/R R/O No CC 
  ------------------------------ Mean of Cover Crop N Uptake (kg ha-1) ------------------------------ 

2016 Spring Ground Sampling - 57.9 0 - 
SAVI method  - 49.4 9.9 9.4 

Kriging method - 56.2 - - 
IDW method - 58.3 - - 

2016 Fall Ground Sampling 22.7 24.5 41.5 - 
SAVI method  23.9 24.7 31.7 1.4 

Kriging method 24.4 29.1 38.3 - 
IDW method 24.3 28.8 39.1 - 

2017 Spring Ground Sampling 16.7 42.8 0 - 
SAVI method  17.7 38.7 1.5 2.8 

Kriging method 17.1 33.7 - - 
IDW method 17.1 35.1 - - 

  ---------------------- Standard Deviation of Cover Crop N Uptake (kg ha-1) ---------------------- 
2016 Spring Ground Sampling - 21.0 0 - 

SAVI method  - 21.4 5.4 8.7 
Kriging method - 15.7 - - 

IDW method - 17.6 - - 
2016 Fall Ground Sampling 5.3 23.1 7.4 - 

SAVI method  7.3 15.4 8.8 4.9 
Kriging method 3.9 14.1 4.3 - 

IDW method 4.1 17.6 5.7 - 
2017 Spring Ground Sampling 6.0 17.4 0 - 

SAVI method  7.6 9.5 3.9 5.2 
Kriging method 5.4 8.1 - - 

IDW method 7.2 9.5 - - 
† Cover Crop Planting Area: AR/R (136.4 ha, 2016 Fall and 2017 Spring); CR/R (239.3 ha, 2016 Spring; 51.6 ha, 2016 Fall and 2017 

Spring); R/O (51.6 ha, 2016 Spring; 103.0 ha, 2016 Fall and 2017 Spring); No CC (83.0 ha, all seasons) 
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Figure 2.1 Cover crop treatments in the study watershed. 
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Figure 2.2 Linear relationship between remote sensing indices and cover crop biomass. 
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Figure 2.3 Linear relationship between remote sensing indices and cover crop N uptake. 
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Figure 2.4 Estimated cover crop biomass of the study watershed. 
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Figure 2.5 Estimated cover crop N uptake of the study watershed. 
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CHAPTER 3. A NEW MODELING APPROACH: BIG DATA AND 
MULTIVARIATE SPATIAL STATISTICS TO GENERATE IN-

SEASON FIELD SPECIFIC MAIZE YIELD PREDICTIONS 

3.1 Abstract 

Accurate in-season yield prediction at the field scale is essential to the development of 

algorithms for improved N rate guidelines for farmers. One great challenge of modeling crop yield 

at the field scale is spatial and temporal yield variability. In this study, a new approach using the 

multivariate spatial autoregressive (MSAR) model was developed at 10-m grid resolution to 

forecast maize yield using timely remote sensing maps, site-specific top 30 cm soil organic matter 

(SOM) and elevation, while accounting for yield spatial autocorrelation. The calibration dataset 

contained 35 maize site-years, including 7 fields in Central Indiana during 2010-2016. Principal 

component analysis (PCA) revealed Landsat Green chlorophyll vegetation index (GCVI) was the 

variable that most closely associated with grain yield (r = 0.70). Thus, GCVI was used as the year-

specific variable in the MSAR model. The predictability of the MSAR model was tested on a 

separate dataset of 82 maize site-years. Relative mean error (RME) and relative mean absolute 

error (RMAE) were used to quantify the model prediction accuracy at the field level and 10-m grid 

level, respectively. The MSAR model performed reasonably well for overall field maize 

productivity in 32 out of 35 site-years of the calibration dataset (absolute RME < 15%) with an 

average absolute RME of 6.6%. The average RMAE of the MSAR model was 13.1%. In the 

validation dataset, the MSAR model showed good prediction accuracy overall (± 15% of observed 

yield in 56 site-years) in new fields when extreme stress was not present. The strength of the 

MSAR method lies in its ability to use elevation and soil information to interpret satellite 

observations accurately in a fine spatial scale. The novel approach developed in this study can be 

used with sensor-based farm management to guide in-season N application and empower farmers 

to derive value from the big data sets that are routinely collected. 

3.2 Introduction 

With the fast development of precision agricultural machinery and sensor technology, large 

volumes of data are routinely collected by farmers. These data are under-utilized due to difficulties 
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in data processing and interpretation. Better methods for using historical, field-specific data will 

promote their potential values for use in smart farming (Wolfert et al., 2017). Rapid and accurate 

in-season crop yield prediction can be used to inform policy, marketing, and insurance decisions 

at various levels (Basso et al., 2013).  

It has long been recognized that maize yield is determined by a combination of soil-plant-

atmosphere processes that are highly affected by prevailing climatic conditions, existing status of 

soil water and N reserves, and biotic stresses such as weeds, insects and disease pressure. 

Additionally, large temporal and spatial variability is present in crop nutrient demand, soil nutrient 

supply, economic optimum N rate (EONR), and maize yield due to intra-season weather variability 

and interactions with soil and landscape properties (Basso et al., 2013). Maize yield variability is 

expected to further increase under climate change (Urban et al., 2012). Currently, there is no 

reliable method to account for such variability and, therefore, the ability to predict maize yield and 

N rates at the field scale is limited (Morris et al., 2018). While county and regional level models 

are useful to inform policy and market decisions, field-scale models that can predict crop yield 

response to agronomic management practices are needed to inform data-driven crop management 

for farmers and their advisors. In this study, field scale is defined as individual fields as managed 

by farmers. 

The U.S. Department of Agriculture (USDA) yield forecasting and estimating program 

provides monthly maize yield estimates at the county level based on field measurements and 

surveys beginning August 1
st
 to November 1

st
 (USDA-NASS, 2012). However, this approach takes 

significant resources such as labor and time. Another approach for maize yield prediction is the 

use of statistical models. Statistical models are among the earliest models that were used in yield 

predictions at regional scales (Thompson, 1969). They can provide insights of crop yield trend 

under climate change (Lobell et al., 2013). Statistical models can be used to efficiently predict 

regional-scale yield with less complex computing (Basso et al., 2013). Yet, results of statistical 

models cannot be extrapolated to other areas and time due to variation in soils, landscape, and 

weather. Moreover, the spatial resolution and measurement error of commonly used 

agrometeorological input variables (e.g. temperature and rainfall) of statistical models have limited 

their applicability at the field scale.  
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In recent years, computer crop simulation models have been developed to forecast maize yield 

and evaluate agronomic consequences of crop management practices with the growing availability 

of data. Rather than regional yield estimation, crop models can be used at various scales including 

individual fields. Crop models simulate dynamic soil and crop processes based on soil, crop 

management, and weather data and have demonstrated reasonable prediction of maize yield from 

county level to regional level (Morell et al., 2016). However, due to the uncertainty and similarity 

of input parameters at the field scale, there is a great risk associated with prediction capability of 

maize yield at the field and sub-field scale (Cheng et al., 2016). Furthermore, particular skills and 

extensive data requirements for model calibration of cultivar coefficients and other input 

parameters, and lack of representative weather and soil data have constrained the use of crop 

models to predict maize yield response to N at finer scales (Puntel et al., 2016). Additionally, crop 

models usually assume homogeneity at the field scale, which can lead to considerable uncertainty 

when predicting nutrient requirement and maize yield. Due to the spatial and temporal 

heterogeneity of the dynamic interactions among management, soil and other environmental 

factors, the universal parameters settings for crop models to accurately predict maize yield may be 

unsatisfactory (Morris et al., 2018).  

Advances in remote sensing data acquisition and processing offer promise for predicting 

agricultural production remotely across a range of spatial scales. Using remote sensing data to 

forecast crop yields at the field scale is particularly useful for understanding how crop growth 

responds to management and environmental factors (Lobell, 2013). Crop leaves absorb red and 

blue light by chlorophyll, but reflect green and near-infared (NIR) radiation. Vegetation Indices 

(VIs) are mathematical combinations or ratios of spectral bands which are used to describe 

relationships between dynamic crop biophysical status and remote sensing observations (Benedetti 

and Rossini, 1993; Doraiswamy et al., 2003; Kogan et al., 2012; Bolton and Friedl, 2013). 

Blackmer et al. (1995) showed that maize canopy reflectance changed with N rates, and grain yield 

was correlated with the reflected light. Research efforts on various VIs have provided potential 

applications to site-specific forecasting of crop yield. Nevertheless, most of them rely on calibrated 

relationships between VIs and yields that are specific to locations and years, with ground 

measurements needed for each time (Baez-Gonzalez et al., 2002). To solve this issue, an approach 

called scalable satellite-based crop yield mapper (SCYM) was developed. It uses plant biomass 

generated by crop models to calibrate VIs, and then translates VIs to crop yield (Lobell et al., 2015; 
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Jin et al., 2017). However, the accuracy of SCYM depends on the accuracy of the crop model 

being used. 

Precision farming involves crop management of high-yielding and low-yielding zones within 

the field. Accurate in-season yield prediction is the first step in the development of algorithms for 

in-season N management. There is a great need to develop a method that can rapidly and precisely 

capture spatial variability of grain yield. A common challenge of the above-mentioned crop yield 

forecast methods is the lack of modeling of spatial yield heterogeneity at the field scale. To address 

this problem, Colonna et al. (2004) used the spatial autoregressive (SAR) model to deal with 

spatially correlated residuals in regression analysis of soybean yield in a 20-acre field in East 

Central Illinois from 1999 to 2001. They showed that the SAR model gave consistent unbiased 

estimates of soybean yields. However, one limitation of the SAR model is that it does not 

accommodate variables that change with time.  

In this study, a new approach using the MSAR model was developed to forecast field-scale 

maize yield using historical yield monitor data, timely remote sensing maps, and soil and landscape 

properties. The algorithms aim to account for the spatial heterogeneity feature to predict maize 

yield of individual fields. The objectives were to (1) identify factors that relate to maize yield at 

the field scale using historical yield data from individual fields, and (2) to forecast maize yield at 

the field scale by combining in-season satellite remote sensing VI and soil and landscape properties 

using a MSAR model. The results of our model can be used with sensor-based farm management 

to guide in-season N application and empower farmers to derive useful information from data they 

routinely collect. 

3.3 Materials and Methods 

3.3.1 Field N management and maize yield 

For this study, estimates of model parameters were derived using a calibration dataset and the 

performance of the model was tested on a validation dataset. The calibration data used in this study 

are from 2010 to 2016 on 7 fields in south Cass and north Carrol county, Indiana (N 40°37’26², 

W 86°25’20²), USA. The main soil information is outlined in Table 3.1. Although crop rotation 

varied, either maize or soybean was planted with each field having 5 years of maize between 2010 

and 2016 (See Table 3.2 for details). Maize planting time varied from mid-April to mid-May over 
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the studied time period (Table 3.3). The validation data included 30 fields in the same region with 

a total of 82 maize site-years from 2010 to 2016 (Table B.1). For all fields in the calibration and 

validation datasets, N fertilizer was applied in the form of urea ammonium nitrate at the rate of 

218 kg N ha
-1

 for maize following soybean and 252 kg N ha
-1

 for maize following maize. Fertilizers 

were applied at the time of planting unless otherwise noted (Table 3.3). Additionally, all sites 

received 50 kg N ha
-1

 as starter fertilizer for a total N rate of 268 kg N ha
-1

 for maize following 

soybean, and 302 kg N ha
-1

 for maize following maize. The recommended agronomic optimum N 

rate (AONR) for this region (northcentral Indiana) using field trials with sidedress N application 

was 237 kg N ha
-1

 for maize following soybean. Furthermore, paired trials of crop rotations from 

2007 to 2010 showed that the average AONR for maize following maize was 49 kg N ha
-1

 greater 

than for maize following soybean (Camberato and Nielsen, 2017). 

Maize yield monitor data were gridded to 10m x 10m by averaging harvest points within each 

grid and were reported at 15.5% moisture. Yield values more than 3 standard deviations away from 

the field mean yield were removed and then replaced by the mean of its nearest queen neighbors 

(Figure 3.1). 

3.3.2 Weather and crop data 

Daily weather variables (max/min air temperature, precipitation, solar radiation, and relative 

humidity) were obtained from the National Weather Station-Cooperative Observer Network 

(NWS-COOP) and all fields in this study shared the common nearest weather station (Logansport, 

IN). Maize maturity was assumed to be 1500 growing degree days (GDD, base 10 °C) as Relative 

Maturity records of planted maize hybrids were not available. Four growth stages were 

distinguished: early vegetative (EV, 0-483 GDD), late vegetative (LV, 484 -631 GDD), critical 

period (CP, 632-922 GDD), and effective grain filling (GF, 923-1361 GDD). Daily nighttime 

temperature was calculated as the mean of daily average temperature and daily minimum 

temperature. Mean values of daily temperatures (maximum, minimum, average, and nighttime) 

and vapor pressure deficit (VPD) of each of the four growth stages were computed separately. 

VPD is the difference between the air water vapor pressure and the saturated water vapor pressure, 

and depends on air temperature and humidity. High VPD increases plant water demand for 

sustaining diffusion of CO2 into leaves (Lobell et al., 2013). VPD has been widely used as a 

drought measure of the atmosphere drying force on plants. 
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Cumulative sum of precipitation, solar radiation, and killing degree days (KDD) were 

calculated for each of the four growth stages. For KDD, 29 °C was used as the threshold to quantify 

temperatures that may reduce maize yields since studies have found that maize yields started to 

drop when maximum temperatures exceeded 29 °C, especially during silking and early grain 

filling stages (Schlenker and Roberts, 2009; Butler and Huybers, 2015). Daily KDD is calculated 

by, 

						"##$ = &
'()* − 29, if	'()* > 29,
0,																										if	'()* ≤ 29. 																																																																																			(1) 

KDD is considered as a good measure of cumulative evaporative demand during crop growth 

(Urban et al., 2015). High KDD is expected to reduce mean yields while increasing variability by 

increased desiccation, accelerated crop development or direct damages to plant tissue or enzymes 

(Butler and Huybers, 2013). 

3.3.3 Field and soil attributes 

Digital elevation model (DEM) and soil properties in 10m x 10m grids were obtained for the 

fields from the University of Missouri Web-based clipper application (http://clipper.missouri.edu). 

Soil organic matter data was extracted from the USDA-NRCS SSURGO database and gridded to 

10-m spatial resolution. Top 30 cm soil organic matter (SOM) amount was calculated using soil 

bulk density and organic matter content of each soil horizon (Table B.2). Top 30 cm was selected 

because it is the common sampling depth for soil N determination.  

3.3.4 Landsat remote sensing vegetation index 

Remote sensing imagery of Landsat 7 ETM+ (2010 – 2012, revisit time: 18 days) and Landsat 

8 OLI (2013 – 2016, revisit time: 16 days) (Path: 21/22, Row: 32) were obtained during the maize 

growing season (May – October). Green chlorophyll vegetation index (GCVI, Gitelson et al., 2003) 

was computed to assess maize plant growth and yield development.  

GCVI = NIR/Green – 1,         (2) 

Studies have found that GCVI was positively related to maize leaf area index (LAI) ranging 

from 0 to 6.5, canopy N content, and survey-based yield (Gitelson et al., 2003; Nguy-Robertson et 

al., 2012; Schlemmer et al., 2013; Burke and Lobell, 2017). The advantage of GCVI over other 

common indices is that GCVI does not saturate at high LAI values and remains sensitive to 
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variation in LAI for denser canopies commonly found in the Midwest (Lobell et al., 2015). For 

each season, Landsat images were used when the median GCVI values for each field are the 

maximum during the growing season in this study, which commonly occurred during maize R1 to 

R2 development stage. 

3.3.5 Yield correlations with weather and remote sensing indices 

Maize yield was averaged by soil type (defined by a map unit of SSURGO) on each field for 

each maize year as the soil polygon was the smallest spatial unit. Principal component analysis 

(Zhang and Yang, 2018) was conducted in R using the stat package (R Core Team, 2017) to 

identify variables that were associated with grain yield. Variables used in the PCA included 

cumulative precipitation, cumulative solar radiation, cumulative KDD, and average VPD for each 

of the four growth stages identified above and GCVI. A biplot with points representing the scores 

of observations and vector representing the loadings of variables on the first two principal 

components was created to represent the data structure. The points on the biplot are helpful to 

highlight groups of homogeneous observations when considering all variables at the same time. 

The variable vectors on the biplot can be used to interpret correlation between variables. The cosine 

of the angle between any two variable vectors approximates their correlation. The lengths of the 

variable vectors are approximately proportional to the standard deviations of the variables, and 

they indicate how well the variables are represented by the graph. Moreover, the larger the 

projection of a point on a variable vector, the more this observation deviates from the average in 

the variable (Kroonenberg, 2008).  Scatterplots were also used to explore nonlinear relationships 

between temperature variables and maize yields. Pearson correlation coefficients (r) were 

computed where appropriate to quantify relationships between variables indicated as meaningful 

by the PCA. For nonlinear relationships, a regression model was used and R
2
 values were reported. 

3.3.6 Spatial autocorrelation analysis 

Maize yield in the fields often exhibits certain spatial patterns. In this study, existence of spatial 

clusters of grain yield was tested by the global Moran’s I statistic with queen neighbor weight 

matrix. Moran’s I statistic is commonly used as a measure of overall spatial autocorrelation (Fu et 

al., 2014). Moran’s I is calculated as  
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	(G ≠ I),																																																							(3) 

where n is the number of observations in the field of interest, B< and B= are the observations at 

locations of i and j, B̅ is the mean of observation, and ;<= is the spatial weight between locations 

of i and j. The theoretical range of Moran’s I is between -1 and 1 (Zhang and Lin, 2016). Large 

positive Moran’s I value indicates positive spatial autocorrelation, where the target value is similar 

to its neighbors. Large negative Moran’s I value means negative spatial autocorrelation, where the 

target value is different with its neighbors (e.g., a high value in a low value neighborhood). A 

Moran’s I value close to 0 implies spatial randomness (Tu and Xia, 2008).  

3.3.7 Multivariate spatial autoregressive model 

The MSAR model was developed to predict maize yield at a 10-m grid resolution using site-

specific and year-specific variables while accounting for yield spatial autocorrelation. The MSAR 

model is defined as 

K<,= = LMK<= + OPQP + ORQR + S,																																																																																																(4) 

where K<,= is maize yield at site i in year j, L is the autocorrelation parameter (-1 < L < 1), W 

is the queen neighbor weight matrix, OP  is site-specific terrain values (elevation and 0-30 cm 

SOM), OR is year-specific GCVI values, and S is the error term with N(0, U2
) distribution. The 

parameters of this model include L, QP, QR and U2
. Queen neighbor weight matrix was used as it is 

the commonly used spatial weight for a regular grid of points in agricultural studies (Colonna et 

al., 2004). GCVI was the only variable that varies over time to reduce model overfitting issues. 

The interpretation of the MSAR model is that the response of a variable depends not only on the 

explanatory variables, but also on its neighboring units. The maximum likelihood estimator of L 

was derived using the Newton-Raphson algorithm. Parameters of the MSAR model were estimated 

by the maximum likelihood method conditioning on L.  

3.3.8 Model goodness of fit 

Since there is no single method to best assess the goodness of fit, both graphical and numerical 

methods were used to highlight different features of model performance (Archontoulis and Miguez, 

2015). Graphical comparisons were used to visually assess the goodness of fit. Numerical 
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statistical indices, such as mean error (ME) and mean absolute error (MAE), were used in model 

evaluation. Relative error term, such as RME and RMAE, were used to compare model goodness 

of fit among different fields or years. In this study, absolute RME less than 15% was considered 

as good prediction overall, and RMAE less than 15% was considered as good prediction at the 10-

m pixel level. The distance between RMAE and the absolute value of RME indicates the direction 

of model yield predictions. For instance, a closer distance suggested the model yield prediction 

was mainly underestimation (positive RME) or overestimation (negative RME), while a greater 

distance suggested the error originated from both underestimated and overestimated sites in the 

field. 

VW = KX −
1
9
YKZ[
>

<?@

																																																																																																																						(5) 
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																																																																																																																(6) 

`VW =
VW
KX
× 100%																																																																																																																		(7) 

`V]W =
V]W
KX

× 100%																																																																																																												(8) 

where n is the number of data points, K<  and KZ[  are the observed and predicted values, 

respectively, and KX is the mean of observed value. 

3.4 Results and Discussion 

3.4.1 Overview of maize yield 

The study period (2010 – 2016) exhibited diverse weather conditions during the maize growing 

seasons (Table 3.4). As a result, maize yield varied annually by soil types within a field and among 

fields (average maize yield by soil type within a site-year ranged from 7.1 to 15.5 Mg ha
-1

). To 

characterize the growing season environment and their impact on yield, principal component 

analysis serves as a useful tool to visualize the correlation between grain yield and environmental 

variables. The PCA resulted in data points being clustered into 4 groups, with observations within 

2010, 2011, and 2012 clustered by year, and observations from other years clustered into one group. 
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The 2010 data cluster was characterized by a large amount of rainfall during EV and GF stages, 

the 2011 data clustered by high GF precipitation and warmer CP temperatures, and the 2012 

clustered by warmer CP temperature and low precipitation during the growing season, especially 

in the LV stage (Table 3.4). The results suggest that the variation in weather patterns during the 

growing season was a major driver for grain yield variation, despite soil type differences among 

fields (Figure 3.2). Therefore, large uncertainty may exist in in-season maize yield prediction from 

crop models when using historical average weather record due to the large annual weather 

variations. In the combined cluster by year 2013 through 2016, greater variation along the grain 

yield vector direction was found in years 2013 and 2015, which corresponded to their larger 

standard deviation of grain yield between fields (2013: 1.9 Mg ha
-1

; 2014: 0.2 Mg ha
-1

; 2015: 1.4 

Mg ha
-1

; 2016: 0.9 Mg ha
-1

). This could be due to highly variable soil N dynamics caused by 

different N application timing, different soil N mineralization and N losses through leaching and 

denitrification as affected by warm temperature due to late planting and high rainfall during the 

first half of growing season.  

3.4.2 Yield correlations with weather and remote sensing indices 

Our PCA suggested that GCVI was the variable most closely associated with grain yield 

(Figure 3.3, r = 0.70), as remotely sensed GCVI can provide a measure of crop canopy state as 

well as both spatial and temporal information. This high correlation is attributed to the fact that 

GCVI captured differences in nutrient stress that was correlated with yield (Burke and Lobell, 

2017).  Another variable that was highly correlated with grain yield was GF KDD (Figure 3.3, r = 

-0.62). For every 1 KDD accumulation during the effective grain filling stage, a 0.3% grain yield 

decrease was found in our study. Butler and Huybers (2015) found that with the high temperature 

sensitivity during the grain filling stage, KDD accumulation could increase respiration losses, 

accelerate the growth phase, and lower final kernel weight. In comparison, the relationship 

between growing season total KDD and grain yield was less evident (r = -0.48). A higher maize 

yield reduction rate (0.7%) was reported for each KDD unit during the growing season 

(Auffhammer and Schlenker, 2014). A quadratic relationship was found between grain yield and 

GF average temperature (Table 3.5), and the optimum GF average temperature was around 23 °C.  

During the critical period of kernel setting, maize grain yield was negatively associated with 

KDD and VPD (Figure 3.3, r = -0.46 and -0.49, respectively). It is also important to note that KDD 
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and VPD were positively correlated to each other during the CP (r = 0.77). Lobell et al. (2013) 

found that low yield was associated with KDD through the link of KDD to increased VPD, not via 

a confounding effect with rainfall amount. In our study, the yield reduction due to high CP VPD 

was apparent only at the highest VPD levels (Figure 3.3). These high CP VPD levels were the 

result of low precipitation and warm temperature during the 2012 growing season. Similarly, 

Lobell et al. (2014) found that rainfed maize yield was negatively correlated with July (i.e. 

generally coinciding with the CP) VPD in the Midwest. The correlation between GF KDD and 

grain yield was stronger than that of CP KDD and grain yield. The relatively stronger correlation 

between GF KDD and grain yield could be attributable to the greater negative impact of heat stress 

on the length of effective grain filling (shortened up to 8 days) and final kernel weight during GF 

than in the CP itself (Ederira et al., 2014). However, CP KDD and GF KDD also showed a high 

linear correlation (r = 0.92). Since the data used in this study lack explicit experimental design, it 

wasn’t possible to verify causal relationships (although sensitive factors associated with 

productivity were identified). 

Grain yield was weakly associated with precipitation during each of the four growth stages 

despite the great range of rainfall variation in maize growth stages across years (Table 3.4 and 

Table 3.5). A quadratic relationship was found between maize yield and seasonal total precipitation 

(R
2
 = 0.40) and the optimum seasonal precipitation was found to be 479 mm. This optimal value 

is similar to the 462 mm reported by Meng et al. (2016) for modern long-maturity maize varieties 

in the Chinese Maize Belt. The relatively weak response of grain yield to precipitation compared 

to KDD and VPD in this study could be related to the greater response of plant water deficit to 

warming than precipitation reduction found by Lobell et al. (2013). Precipitation measurements 

are subject to error. This error may be partially responsible for the weak relationship between grain 

yield and precipitation found in both statistical and process-based crop models (Schlenker and 

Roberts, 2009; Lobell et al., 2013). The prevalence of this weak relationship in the models based 

in the Midwest suggests that grain yield’s weak response to rainfall is also a basic feature of the 

normally high maize productivity in the region resulting from adequate rainfall in most years 

except for 2012 (Table 3.4).  
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3.4.3 Yield spatial structure and performance of the MSAR model 

Moran’s I coefficient indicated significant spatial autocorrelation structure of maize grain yield 

(Table 3.6), suggesting the existence of spatial clustering, where high (or low) grain yield values 

appeared in geographic groups in the field. Moran’s I value found in the calibration dataset of 35 

site-years ranged from 0.15 to 0.85, varying considerably across fields and across growing seasons. 

Grain yield was negatively associated with Moran’s I (Figure 3.4, r = -0.78), suggesting high yield 

spatial heterogeneity under unfavorable growth environments and low yield spatial heterogeneity 

under favorable growth conditions. Years that are considered very favorable for crop growth (2014 

and 2016) were associated with smaller Moran’s I value, while years with either inadequate 

precipitation (2012) or too much rainfall (2010 and 2015) overall showed larger Moran’s I value. 

This wide range of Moran’s I values indicated the spatially varying grain yield response to uniform 

applied N fertilizer was due to different soil N supply and water stress levels result from 

interactions of different soil type, landscape positions and weather characteristics. For example, 

the difference in soil N supply between a high and a low OM soil is likely to be greater in a growing 

season with low N loss potential compared to that when N loss is high. Wong and Asseng (2006) 

found that on a sub-field scale, when N was adequate for crop growth, wheat yield spatial 

variability increased with seasonal rainfall as sites with higher plant-available water conserved 

more water in wet seasons to give higher yield response than sites with low plant-available water. 

Therefore, models ignoring the observed spatial patterns of grain yield and assuming complete 

spatial randomness (uniform yield patterns) could lead to biased estimates for grain yield on 

different soils in a field.  

In this study, the MSAR model used for maize yield prediction accounted for the spatial 

autocorrelation parameter L, soil top 30 cm SOM information, and landscape variable elevation. 

Landsat GCVI was also included in the MSAR model since GCVI was the most correlated variable 

across growing seasons. Moreover, the spatial resolution of GCVI (30m) was useful to quantify 

crop status at the field scale during the growing season. To reduce the chance of model overfitting, 

GCVI was used without interactions with weather variables in the MSAR model, even though 

multiple weather variables were identified above to have association with maize grain yield. 

Additionally, the confounding effects between GCVI and weather variables could lead to model 

multicollinearity and prediction errors. For instance, GCVI was found to be negatively associated 
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with GF KDD (r = -0.77). Therefore, in this study, GCVI alone was used to represent the result of 

crop growth status response to growing season weather conditions.  

For overall field-level yields, the MSAR model performed reasonably well in 32 site-years 

(absolute RME < 15%, Figure 3.5), and the MSAR model was significantly superior to the 

corresponding linear regression model for 24 site-years among the 35 site-years. (Table 3.6). The 

average absolute RME of the MSAR model across the 35 site-years was 6.6%. For 10-m pixel 

yield predictions, the MSAR model performance was considered good in 22 site-years and the 

MSAR model resulted in lower average RMAE in 21 site-years compared to the linear regression 

model, with the average RMAE of the MSAR model being 13.1%. The spatial autocorrelation 

parameter L did not vary greatly from field to field (ranging from 0.77 to 0.91) for 7 of the studied 

fields, even though Moran’s I showed a wide range both across fields and years. The relative 

prediction error we found in this study was smaller compared to the results found by Morell et al. 

(2016) at the county scale using crop models. They also found that model accuracy improved when 

upscaling from field scale to larger spatial domains. These results suggested that MSAR model 

was appropriate to be used for grain yield prediction across years. 

3.4.4 Prediction accuracy of the MSAR model 

To test the prediction accuracy, we tested the ability of the MSAR model to forecast grain yield 

(a) in a drought year (2012), (b) in a typical year (2016), and (c) at different fields across years. 

For (a) and (b), the dataset except the forecast year was used to calibrate MSAR model coefficients 

for the 7 fields used in the calibration, and then the coefficients were used to forecast the maize 

grain yield for the particular year. For (c), the average of the MSAR coefficients of the 7 calibration 

fields (35 site-years) was used to forecast maize grain yield in 2010 – 2016 for 82 site-years (10 

site-years with maize as the previous crop, 72 site-years with soybean as the previous crop) on 30 

different validation fields (15 fields under maize-soybean rotation: ms; the other 15 fields had 

multiple maize – soybean rotation: mms) in the same region. The exact number of maize years in 

mms rotation varied from 2 to 3. 

3.4.4.1 The MSAR model performance in a drought year 

For the drought year of 2012, the MSAR model showed satisfactory prediction of overall field 

yield except on field 6. However, only 2 out of 5 fields were within 15% RMAE at 10-m pixel 
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level (Table 3.7). As expected, the predicted maize yield was generally greater than actual yield. 

This could be explained by the lack of drought stressed grain yields in the training dataset.  

3.4.4.2 The MSAR model performance in a typical year 

The 2016 growing season was considered a typical year of central Indiana (Table 3.4) with 

favorable weather conditions for maize growth. The predicted maize yield in 2016 using MSAR 

model showed a strong agreement with actual yield for all 7 fields (Table 3.7). The predicted maize 

yield was mostly lower than actual yield, likely due to favorable growth condition after the GCVI 

acquisition date (typically late July to early August) that promoted kernel growth.  

3.4.4.3 The MSAR model performance on new fields 

The MSAR model was used to predict maize grain yield in 82 site-years from fields that are 

different from the data used to derive model coefficients. These fields were located in the same 

region as the fields in the calibration dataset, and the growing season characteristics were very 

similar to the weather conditions discussed above. As the N rate application followed a similar 

routine among all of these fields (268 kg N ha
-1

 for maize following soybean, 302 kg N ha
-1

 for 

maize after maize), N rates were not considered as a variable in this study. Among all 82 site-years, 

MSAR model grain yield predictions were ± 15% of actual yield in 56 site-years (Figure 3.6). At 

the 10-m pixel level, RMAE value was found to be less than 15% in 45 site-years. The inferior 

grain yield prediction for site-years in 2012 changed the slope (i.e. deviated further from 1) 

between observed yield and predicted yield. This could be attributed to the extremely low rainfall 

during the growing season that may have altered the relationship of spatial yield response to GCVI, 

top 30 cm SOM, and field elevations. The influence of crop rotation could also affect the 

relationship of maize yield with weather, SOM and elevation during different growing conditions 

(Riedell et al., 2009). In our study, the effect of crop rotation on maize yield was not consistent. 

Yield advantages of maize-soybean rotation over multiple maize – soybean rotations were 7.3%, 

-20.2%, 2.1%, 6.9%, 6.8% and -6.4%, respectively, from 2011 to 2016. Moreover, fields in this 

study received N rates at planting (except for the sidedress N timing in 2013) that were higher than 

the state recommendation (Camberato and Nielsen, 2017). The results of the MSAR model might 

have been different for lower N rates and different N timing, and new parameter coefficients should 

be further considered. 
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In summary, the MSAR model also showed good prediction accuracy overall in new fields 

when extreme stress was not present at fine spatial scales. The strength of the MSAR method lies 

in its ability to use elevation and soil information to interpret satellite observations accurately in a 

fine spatial scale, and this method can be applied to new fields without the need for historical 

calibration.  

3.5 Conclusions 

Timely and accurate assessment of in-season maize grain yield at the field scale is needed for 

on-farm management decision support tools. Historical yield data analysis using spatial statistics 

and satellite imagery shows a great potential to forecast maize yield and identify major limitations 

in crop systems at the field scale. This study made use of historical grain yield data collected at 

farmers’ fields and publicly available Landsat data to identify factors that affect maize yield, and 

further used them to predict maize yield at the field scale by combining in-season GCVI and soil 

and landscape properties using a newly developed MSAR model.  

• PCA suggested that GCVI was the variable that most closely associated with grain yield (r = 

0.70), which is attributable to its high correlation with plant LAI and the ability to capture 

differences in nutrient stress that was correlated with maize grain yield. GF KDD was also 

found to be highly correlated with grain yield (r = -0.62). We found that a 0.3% yield decrease 

was associated with each 1 KDD accumulation during the effective grain filling stage.  

• The MSAR model performed reasonably well in 32 out of 35 site-years of the calibration 

dataset (absolute RME < 15%) with an average absolute RME of 6.6%. The average RMAE 

of the MSAR model was 13.1%. When the MSAR model was applied to the validation dataset 

containing 82 site-years, grain yield predictions were ± 15% of observed yield in 56 site-years.  

• The MSAR model resulted in large yield prediction errors under extreme stressed 

environmental conditions, such as 2012 growing season. To improve the model performance 

for a drought year, the inclusion of more years of similar stress into a separate calibration 

dataset is needed to better capture the yield responses under these conditions. 

This novel approach can be further coupled with crop models and field sensors to monitor crop 

stress and yield in an even finer spatial context.  
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Table 3.1 Dominant soil types and soil properties of the study fields. 

Soil Name Soil mukey† 0-30 cm SOM 

(%) 

Top soil texture Classification 

Cyclone, 0-2% slopes 165160 4.5 Silty Clay Loam Mesic Typic Argiaquolls 

Kendall-Fincastle, 0-1% slopes 165177 1.8 Silt Loam Mesic Aeric Endoaqualfs 

Patton, 0-2% slopes 162446 4.7 Silt Loam Mesic Typic Endoaquolls 

Starks, 0-1% slopes 165240 1.8 Silt Loam Mesic Aeric Endoaqualfs 

Rockfield-Williamstown, 1-6% slopes 165231 1.3 Silt Loam Mesic Oxyaquic Hapludalfs 

Starks, 0-3% slopes 162458 1.8 Silt Loam Mesic Aeric Endoaqualfs 

Patton, loamy substratum, 0-2% slopes 165221 5.0 Silty Clay Loam Mesic Typic Endoaquolls 

Camden, 2-6% slopes 165144 1.3 Silt Loam Mesic Typic Hapludalfs 

Fincastle, 0-2% slopes 165424 2.4 Silt Loam Mesic Aeric Epiaqualfs 

Camden, 0-1% slopes 165143 1.3 Silt Loam Mesic Typic Hapludalfs 

† SSURGO soil map key. 
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Table 3.2 Cropping history and soil types of the fields in this study. 

 Area (ha) 2010 2011 2012 2013 2014 2015 2016 Soil mukey† 

Field 1 27.84 Maize Maize Soybeans Maize Maize Soybeans Maize 165177 (51%), 165160 (39%), 

165231 (6%), 165236 (4%) Field 2 39.61 Maize Soybeans Maize Maize Maize Soybeans Maize 162446 (89%), 162458 (7%), 

162453 (4%) Field 3 31.11 Maize Soybeans Maize Maize Maize Soybeans Maize 165177 (51%), 165160 (49%) 
Field 4 51.82 Maize Maize Soybeans Maize Maize Soybeans Maize 165177 (62%), 165160 (36%), 

1655231 (2%) Field 5 36.03 Maize Soybeans Maize Maize Soybeans Maize Maize 165160 (59%), 165177 (37%), 

165230 (4%) Field 6 16.04 Soybeans Maize Maize Maize Soybeans Maize Maize 165160 (77%), 165177 (23%) 
Field 7 12.03 Soybeans Maize Maize Maize Soybeans Maize Maize 165160 (81%), 165177 (19%) 
† SSURGO soil map key. 

Table 3.3 Planting date of each field. 

 Planting Date 
 2010 2011 2012 2013 2014 2015 2016 

Field 1 4/12 5/14 - 5/13 (6/19)† 4/24 - 4/18 
Field 2 4/14 - 4/5 5/16 (6/12) 5/3 - 4/27 
Field 3 4/18 - 4/3 5/14 (6/8) 5/5 - 4/20 
Field 4 4/17 5/19 - 5/14 (6/8) 5/5 - 4/20 
Field 5 4/13 - 4/6 5/16 (6/11) - 5/3 4/26 
Field 6 - 5/10 4/13 5/15 (6/11) - 5/1 (6/3) 4/26 
Field 7 - 5/9 4/17 5/15 (6/12) - 4/30 4/27 

† Date in parentheses is N sidedress date. 
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Table 3.4 General weather conditions during maize growing season. Values are the means across fields for any particular year. 

Period Variable Unit 2010 2011 2012 2013 2014 2015 2016 Long-term† 
EV MaxT °C 23.1 26.1 23.4 26.4 24.9 24.6 23.8 24.1 

 AveT °C 17.1 20.5 16.2 20.5 18.7 19.0 17.9 18.4 
 MinT °C 11.0 14.9 9.0 14.6 12.5 13.3 11.9 12.6 
 Precipitation mm 363 230 81 171 180 306 181 215 

LV MaxT °C 29.5 29.7 31.3 26.6 28.7 25.4 27.4 29.0 
 AveT °C 24.0 23.6 23.7 22.3 23.3 20.8 21.9 23.1 
 MinT °C 18.6 17.4 16.1 18.0 18.0 16.1 16.4 17.3 
 Precipitation mm 110 17 2 39 25 117 65 43 

CP MaxT °C 30.1 33.0 33.7 28.5 26.8 27.3 28.4 28.6 
 AveT °C 23.7 26.9 26.3 22.4 20.6 22.1 23.5 22.9 
 MinT °C 17.3 20.8 19.0 16.2 14.4 17.0 18.7 17.1 
 Precipitation mm 57 24 17 102 50 124 97 86 

GF MaxT °C 30.5 29.7 31.1 28.5 28.2 27.7 28.4 28.0 
 AveT °C 25.1 23.3 24.3 22.1 22.7 21.5 23.1 22.2 
 MinT °C 19.7 16.9 17.6 15.8 17.2 15.3 17.9 16.3 
 Precipitation mm 184 143 131 29 92 65 119 123 

Total MaxT °C 26.7 28.8 27.6 27.5 26.6 26.1 26.0 26.5 
 AveT °C 20.8 22.8 20.5 21.6 20.6 20.5 20.6 20.7 
 MinT °C 15.0 16.8 13.4 15.6 14.7 14.9 15.1 14.9 
 Precipitation mm 715 415 

 

231 342 348 613 462 467 
† Assume average planting date of May 1st. 
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Table 3.5 Relationship between maize grain yield and seasonal rainfall and temperature. 

Period Variable Relationship 
Pearson 

Correlation (r) 
Model R2 

EV Precipitation Quadratic  0.36 

LV Precipitation Quadratic  0.24 

CP Precipitation Linear 0.30  

GF Precipitation Linear -0.23  

Total Precipitation Quadratic  0.40 

GF Temperature Quadratic  0.31 
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Table 3.6 Maize grain yield, Moran’s I, yield estimates from multivariate spatial autoregressive 

model, and model goodness of fit of the calibration dataset. 

Field Year Mean Ya 
Moran’s I 

of Ya 

! 
Mean 

Yhat 

ME MAE RME† RMAE 

unit  Mg ha-1   Mg ha-1 Mg ha-1 Mg ha-1 % % 

1 

2010 9.73 0.69 

0.86 

11.78 -2.05 2.42 -21.1  24.9  

2011 12.77 0.41 11.42 1.35 2.14 10.6 * 16.8 * 

2013 11.63 0.65 12.57 -0.93 2.01 -8.0  17.3  

2014 14.26 0.37 13.98 0.28 0.94 2.0 * 6.6 * 

2016 14.79 0.62 13.87 0.91 1.65 6.2 * 11.2 * 

2 

2010 7.66 0.85 

0.91 

8.46 -0.80 3.16 -10.5 * 41.3 * 

2012 10.89 0.73 10.41 0.48 1.11 4.4  10.2 * 

2013 8.79 0.74 10.31 -1.51 2.09 -17.2 * 23.8  

2014 14.05 0.50 13.63 0.42 0.90 3.0 * 6.4 * 

2016 14.61 0.38 13.32 1.29 1.46 8.8 * 10.0 * 

3 

2010 12.75 0.40 

0.77 

13.25 -0.50 1.58 -4.0 * 12.4 * 

2012 11.68 0.64 12.57 -0.89 1.62 -7.6 * 13.8 * 

2013 14.25 0.43 13.62 0.64 1.30 4.5  9.1  

2014 13.71 0.35 13.84 -0.13 1.43 -1.0 * 10.4  

2016 15.00 0.24 14.00 1.00 1.43 6.7  9.5  

4 

2010 11.52 0.68 

0.86 

12.51 -0.99 2.38 -8.6 * 20.6 * 

2011 11.61 0.55 12.76 -0.24 1.84 -2.1 * 15.9  

2013 13.42 0.46 13.38 0.05 0.98 0.3 * 7.3  

2014 13.85 0.40 13.71 0.14 0.88 1.0 * 6.4 * 

2016 15.01 0.34 13.91 1.10 1.34 7.3 * 8.9 * 

5 

2010 10.75 0.76 

0.87 

10.80 -0.05 1.93 -0.5 * 18.0 * 

2012 10.64 0.69 9.92 0.72 1.37 6.8  12.9  

2013 12.99 0.59 13.08 -0.08 1.31 -0.6  10.1 * 

2015 10.41 0.81 11.38 -0.96 2.19 -9.3 * 21.0  

2016 14.48 0.38 14.30 0.18 0.63 1.2 * 4.3 * 

6 

2011 14.58 0.15 

0.83 

12.76 1.82 2.23 12.5  15.3  

2012 10.75 0.41 12.74 -2.00 2.01 -18.5 * 18.7 * 

2013 13.79 0.28 13.12 0.67 0.87 4.8  6.3  

2015 13.19 0.62 13.12 0.08 0.94 0.6  7.2  

2016 12.75 0.37 13.28 -0.53 0.66 -4.1 * 5.2 * 

7 

2011 14.32 0.43 

0.85 

12.58 1.74 2.20 12.2  15.4  

2012 11.90 0.50 12.71 -0.81 1.13 -6.8 * 9.5 * 

2013 13.47 0.31 12.86 0.61 1.16 4.5 * 8.6 * 

2015 11.33 0.59 12.76 -1.44 2.01 -12.7 * 17.8 * 

2016 13.04 0.26 13.00 0.04 0.58 0.3 * 4.5 * 

† “*” indicates the relative error is smaller compared to the linear model without spatial 

autocorrelation structure. 
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Table 3.7 Multivariate spatial autoregressive model prediction. 

Year Field Mean Ya Mean Yhat ME MAE RME RMAE 

  -------------------- Mg ha-1 ----------------- --------- % ------- 

2012 2 10.89 10.27 0.62 1.22 5.71 11.2 

2012 3 11.68 13.29 -1.61 1.89 -13.8 16.2 

2012 5 10.64 9.59 1.04 1.61 9.8 15.1 

2012 6 10.75 14.01 -3.27 3.27 -30.4 30.4 

2012 7 11.90 13.00 -1.10 1.29 -9.3 10.8 

2016 1 14.79 13.42 1.37 1.77 9.3 12.0 

2016 2 14.61 12.75 1.86 1.97 12.7 13.5 

2016 3 15.00 13.62 1.38 1.71 9.2 11.4 

2016 4 15.01 13.40 1.61 1.78 10.7 11.8 

2016 5 14.48 14.14 0.33 0.68 2.3 4.7 

2016 6 12.75 13.64 -0.89 0.97 -7.0 7.6 

2016 7 13.04 12.92 0.12 0.64 0.9 4.9 

 

  



72 

 

 

Figure 3.1 Spatial neighbors based on queen’s contiguity. 
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Figure 3.2 Biplot derived from the first two principal components. EV, early vegetative stage; 

LV, late vegetative stage; CP, critical period; GF, grain filling period; Pcp, precipitation, mm; 

Rad, solar radiation, MJ m-2; VPD, vapor pressure deficit, kPa; KDD, killing degree days, d.°C; 

GCVI, green chlorophyll vegetation index. Each point represents the mean within a soil type and 

site-year. 
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Figure 3.3 The relationship between maize grain yield and (A) green chlorophyll vegetation 

index (GCVI); (B) grain filling period cumulative killing degree days (GF KDD) (d.°C); (C) 

critical period cumulative killing degree days (CP KDD) (d.°C); and (D) critical period mean 

vapor pressure deficit (CP VPD) (kPa); using calibration dataset from 2010 to 2016, and each 

point represents the mean within a soil type and site-year. 
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Figure 3.4 The negative linear relationship between Moran’s I statistic of grain yield and grain 

yield. Each point represents a site-year in the calibration dataset (n=35). 
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Figure 3.5 Comparison of maize grain yield predicted using MSAR model and actual grain yield 

of the calibration dataset (n=35). The 1:1 line (solid red line) and ±15% deviation (dashed black 

line) are shown. Fitted linear regression model is shown (solid black line). 
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Figure 3.6 Comparison of maize grain yield predicted using MSAR model and actual grain yield of the validation dataset (n=82). The 
1:1 line (solid red line) and ±15% deviation (dashed black line) are shown. (A) Fitted linear regression model using all site-years is 

shown (solid black line). (B) Fitted linear regression model excluding 2012 site-years is shown (solid black line).
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CHAPTER 4. INCORPORATE MULTIVARIATE SPATIAL 
STATISTICS TO A PROCESS-BASED NITROGEN 

TRANSFORMATION MODEL FOR FIELD-SCALE MAIZE GRAIN 
YIELD PREDICTION 

4.1 Abstract 

Agricultural system models are being widely used for crop yield forecasts and site-specific 

management decisions. Many efforts have been devoted to improving field-scale maize yield 

prediction for on-farm decision tools. In this study, we evaluated the performance of the N Model 

package in the Mapwindow GIS + MMP Tools (referred to as the “N Model”) in field-scale maize 

grain yield prediction, and further identified factors that affected yield prediction accuracy. A 

multivariate spatial autoregressive (MSAR) model was then incorporated to the N Model to adjust 

maize yield prediction based on historical maize yield collected from farmers’ fields from 2010 to 

2016 in central Indiana, USA. The N Model predicted higher grain yield than actual yield in most 

cases, and the linear agreement of predicted and actual yield improved as the spatial aggregation 

scale became broader using a dataset containing 35 site-years on 7 fields. However, at the soil type 

level within a field, only 56% of the yield predictions by the N Model fell within 15% of the actual 

yield. Our analysis revealed that the difference between actual and N-Model-predicted yield was 

linearly associated with early vegetative stage (EV) precipitation (r = 0.33). Moreover, the residual 

of N Model predicted yield showed significant spatial heterogeneity in all site-years. The proposed 

MSAR model used EV precipitation, top 30 cm soil organic matter and field elevation while 

accounting for spatial autocorrelation in 10-m grids to adjust yield predictions. The MSAR 

adjusted yield predictions resulted in more cases (77%) that fell within 15% of actual yield 

compared to the N Model alone when using the whole dataset. However, if the 2012 data was not 

included in the training process, the MSAR adjusted yield predictions did not improve in the 

drought year of 2012 (average RME of 24.1%). When extrapolating the MSAR parameters 

developed from the 7 fields above to a dataset containing 82 site-years on 30 different fields in the 

same region, the improvement from the MSAR adjustment was not significant. The lack of 

improvement from the MSAR adjustment could be that the relationship used in the MSAR model 

was location specific. Additionally, the uncertainty of precipitation data could also affect the 
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relationship. The MSAR approach proposed here could be used to fine tune the N Model for in-

season grain yield prediction and N management practices at the field scale.  

4.2 Introduction 

Agricultural system models have become increasingly common for crop yield forecasting in 

recent years with the growing availability of data from the farm. These models have been used by 

producers to make site-specific management decisions on nutrient management practices (Fountas 

et al., 2006; Basso et al., 2016). Researchers have been using models to understand nitrogen (N) 

dynamics (Cannavo et al., 2008) and to answer questions that cannot be addressed with field 

research such as climate change impacts (Lobell and Asseng, 2017). The results can be further 

used by policymakers to inform development assessments. Two main model development 

approaches have been used, statistical models and process-based simulation models. Both 

modeling approaches have advantages and disadvantages (See Table 4.1 for details), and both are 

dependent on the accuracy of input data. Errors in weather measurement, precipitation in particular 

(Lobell, 2013), could introduce bias into predictions made with both types of models. The selection 

of which approach to use also depends on the modeling purpose and scale. However, it is worth 

noting that all statistical models have predictors and form of functions informed by process 

understanding, and all process-based models have empirical testing and calibration (Lobell and 

Asseng, 2017).  

Statistical models use historical weather observations, satellite imagery, and crop growth and 

yield data to develop relatively simple regression equations that can be used to forecast crop 

production and economy. Data has been taken from field measurements, farmer surveys, 

government statistics, or a combination of the above (Lobell and Asseng, 2017). The performance 

of statistical models differed by climate variables and spatial scales. Statistical models were found 

to be able to reproduce many of the key features of process-based model response to changing 

temperature and precipitation, and the performance of statistical models improved as the spatial 

scale of analysis became broader (Lobell and Burke, 2010). In the literature, statistical models 

have been applied at relatively low spatial resolution, often at the scale of counties, regions or 

countries rather than field scale (Lobell and Burke, 2010). Additionally, Auffhammer and 

Schlenker (2014) reported that spatial averaging farm-level data over a county or temporal 
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averaging over the growing season can hide important interactions and nonlinearities. Moreover, 

averages derived from large regions will show less variation from year to year relative to 

averages over smaller areas (Lobell and Burke, 2010). 

Process-based crop models, on the other hand, have been widely used at various scales, from 

individual fields to large regions. Process-based crop models attempt to simulate plant 

physiological response or soil nutrient availability to weather and management factors over time 

using mathematical descriptions of physiological, chemical, and physical processes on 

homogeneous land in order to predict how a plant will grow under specific environmental 

conditions (Batchelor et al., 2002). Processes often include photosynthesis, respiration, growth and 

partitioning, development of reproductive structures, transpiration, soil chemical transformations, 

water and nutrient uptake (White and Hoogenboom, 2009). Most process-based models calculate 

at daily time steps during crop growing season and require initial conditions such as soil nutrients 

and water status, planting date and density. Irrigations, fertilizer applications, crop rotation, and 

other factors may also be considered. Following the first crop model by de Wit (1965), various 

process-based models, such as CERES-Maize (Jones and Kiniry, 1986), WOFOST (van Diepen et 

al., 1989), DSSAT (Jones et al., 2003), APSIM (Keating et al., 2003), Hybrid-Maize (Yang et al., 

2004), Maize-N (Setiyono et al., 2011) and AgMaize (Tollenaar et al., 2018), have been developed 

to understand crop growth, development and production under different environment conditions 

at various scales. Moreover, the predictability of process-based models on maize yield and N 

management has been assessed at multistate levels (Archontoulis et al., 2014; Thompson et al., 

2015; Morell et al., 2016; Puntel et al., 2018), and these models have been further used to study 

the impact of climate change (Lobell and Asseng, 2017).  

One problem when using process-based models at the field scale is that these models usually 

assume homogeneity of environmental conditions within individual fields. It is commonly 

observed that maize yield response to applied N were varies considerably across and within fields, 

and from year to year due to soil, landscape, weather and crop management factors that affect N 

supply - demand relationships (Morris et al., 2018). Even within the same region and year, field-

to-field variation in yield and yield gap can be remarkably high (Farmaha et al., 2016). As 

anticipated, maize yields were found to be significantly correlated across space due to the systemic 

nature of weather, nutrient stress, disease, and pest damage (Ozaki et al., 2008). Therefore, there 

is considerable uncertainty in results produced by the use of crop models.  
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Spatial statistics is helpful in analyzing the yield spatial and temporal variability at the field 

scale in the agricultural system. Historical yield data provides us with prior knowledge on the 

variation that exists within the field over time, which can be used to study the spatial and temporal 

variability for improved model accuracy. Spatial autoregressive model was found to be able to 

adjust for spatial autocorrelation inherent in maize yield (Zhang et al., 2010). In Chapter 3, a 

multivariate spatial autoregressive (MSAR) model that adjusted for spatial autocorrelation and 

used the season-specific remote sensing vegetation index predicted grain yield accurately when 

extreme stress was not present at the field scale. 

Reliable and comprehensive datasets are needed for an efficient model evaluation. Ideally the 

data have to cover several aspects of the soil-plant-atmosphere continuum, but in reality, such data 

are rare (Archontoulis et al., 2014). The yield data that farmers routinely collected provides an 

opportunity to evaluate model performance at the commercial field level across a range of growing 

season conditions.  

The objectives of this study were to: (1) evaluate the maize grain yield prediction accuracy of 

the N Model in the Mapwindow GIS + MMP Tools in a spatial context at the field scale; (2) 

identify factors affecting maize yield prediction at the field scale; and (3) incorporate a multivariate 

spatial autoregressive (MSAR) model into the N Model to adjust maize yield prediction based on 

historical maize yield collected from farmers’ fields from 2010 to 2016 in central Indiana, USA.  

4.3 Materials and Methods 

4.3.1 Historical maize yield data 

For this study, estimates of the MSAR model parameters were derived using a calibration 

dataset and the performance of the MSAR model adjustment was tested on a validation dataset. 

The calibration data included in this study are from 2010 to 2016 on 7 fields with a total of 35 

maize site-years in south Cass and north Carrol county, Indiana (N 40°37’26², W 86°25’20²), USA. 

The validation data included 30 fields in the same region with a total of 82 maize site-years (Table 

B.1). Details on agronomic practices were described in Chapter 3. Total N application was uniform 

in each of the site-years; 268 kg N ha-1 and 302 kg N ha-1 was applied as urea ammonium nitrate 

(UAN, 28-0-0) for maize following soybean and maize following maize, respectively. Maize yield 

monitor data were gridded to 10m x 10m by averaging harvest points within each grid and were 
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reported at 15.5% moisture. Yield values more than 3 standard deviations away from the field 

mean yield were removed and then replaced by the mean of its nearest queen neighbors.  

4.3.2 The process-based N Model in MapWindows GIS + MMP Tools 

The N Model in the MapWindows GIS + MMP Tools by Joern and Hess at Purdue University 

was used to derive maize yield prediction at a 10m x 10m grid. From this point on, this N Model 

will be called the “N Model” for simplicity. The N Model was selected due to its ability to predict 

maize N uptake in a fine spatial context. Furthermore, model calibration is not required for the N 

Model. The N Model is based on the daily dynamic balance of plant N uptake and soil N 

transformation processes. Processes considered in the N Model include soil and manure N 

mineralization, nitrification, denitrification, ammonia volatilization, nitrate leaching and crop N 

uptake, driven by temperature, soil moisture, soil texture, soil organic matter (Zhao, 2013). The 

impact of crop rotation was considered in the soil N mineralization process. In the N Model, N 

mineralization potential for the top 30 cm soils under maize after soybean was estimated to supply 

22.4 kg N ha-1 per percent of organic matter (OM), and soils under maize after maize supplies 11.2 

kg N ha-1 per percent of OM. Soil physical and chemical properties were obtained from the USDA-

NRCS web soil survey. Daily precipitation, maximum and minimum air temperature were 

obtained from the U.S. National Weather Service Cooperative Observer Program (NWS COOP).  

The N Model inputs include emergence date, maximum rooting depth, previous crop, field 

boundary, fertilizer and manure N source, rate, placement and timing. Maize N uptake estimation 

is based on a set of N uptake rates segmented by maize thermal development stages (Table 4.2), 

and maize N uptake is then translated to maize yield by assuming one kilogram of plant N uptake 

would yield 56 kilograms of maize grain. The comprehensive review by Ciampitti and Vyn (2012) 

reported that the average N internal efficiency (NIE = grain yield/plant N uptake) for modern maize 

hybrids was 56 kg kg-1. However, a wide range of NIE (0.1 – 123.4 kg kg-1) was found under 

different growth environments. At a given maize yield, 12 Mg ha-1 for example, plant total N 

uptake was found to vary between 150 kg ha-1 to 350 kg ha-1 in modern maize hybrids. In fact, the 

variability in NIE depends on many factors (hybrid, N management, plant density, other crop 

management, weather and soil properties) and the interactions between these factors, which could 

affect the predictability of the N Model.  
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A default yield potential parameter of 12.6 Mg ha-1 (200 bu/A) is used to refrain extreme N 

uptake values. In this study, yield potentials for each field were set as 110% of the highest historical 

yield on each field, and maximum rooting depth was set to be 122 cm. Detailed input parameters 

used for the N Model were presented in Table 4.3.  

4.3.3 Weather and crop data 

Daily weather variables (max/min air temperature, precipitation, solar radiation, and relative 

humidity) were obtained from the National Weather Station-Cooperative Observer Network 

(NWS-COOP) and all fields in this study shared the common nearest weather station (Logansport, 

IN). The same weather source was used by the N Model. Soil moisture was estimated using Irris 

Scheduler software (Purdue University). Maize maturity was assumed to be 1500 growing degree 

days (GDD, base 10 °C) as Relative Maturity records of planted maize hybrids were not available. 

Four growth stages were distinguished: early vegetative (EV, 0-483 GDD), late vegetative (LV, 

484-631 GDD), critical period (CP, 632-922 GDD), and effective grain filling (GF, 923-1361 

GDD). Daily nighttime temperature was calculated as the mean of daily average temperature and 

daily minimum temperature. Mean values of daily average temperature, nighttime temperature, 

vapor pressure deficit (VPD), and soil moisture of each of the four growth stages were computed 

separately. VPD has been widely used as a drought measure of the atmosphere’s drying force on 

plants. 

Cumulative sum of precipitation, solar radiation, and killing degree days (KDD) were 

calculated for the four growth stages. In this study, 29 °C based KDD was used to quantify 

temperatures that may reduce maize yields since studies have found that maize yields started to 

drop when maximum temperatures exceeded 29 °C, especially during silking and early grain 

filling stages (Schlenker and Roberts, 2009; Butler and Huybers, 2015). Daily KDD is computed 

by, 

!""# = %
&'() − 29, if	&'() > 29,
0,																										if	&'() ≤ 29. 																																																																																			(1) 

Weather conditions during the growing seasons compared to long-term average conditions are 

presented in Figure 4.1.  
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4.3.4 Field and soil attributes 

Digital elevation model (DEM) and soil properties in 10m x 10m grids were obtained for the 

fields from the University of Missouri Web-based clipper application (http://clipper.missouri.edu). 

Soil organic matter data was extracted from the USDA-NRCS SSURGO database and gridded to 

10-m spatial resolution. Top 30 cm soil organic matter (SOM) amount was calculated using soil 

bulk density and organic matter content of each soil horizon (Table B.2). Top 30 cm was selected 

because it is the common sampling depth for soil N determination.  

4.3.5 Maize yield residual analysis 

Maize yield residual, defined as actual yield minus the N Model predicted yield (8 = 8( − 89), 

was used for this analysis. Maize yield residual was averaged by soil types for each site year. For 

each of the four development stages identified above, scatterplots were used to explore the 

relationship between season-specific weather variables and maize yield residuals (Figure A.1). 

Season-specific variables included average temperature, cumulative precipitation, average soil 

moisture, cumulative excess water, average VPD, cumulative solar radiation, cumulative KDD, 

and average nighttime temperature.  

Overall spatial autocorrelation of yield residual was tested using the global Moran’s I statistic 

with queen neighbor weight matrix. Moran’s I value is calculated as  

: =
;

∑ ∑ =>?@
?AB

@
>AB

∙
∑ ∑ =>?@

?AB
@
>AB (D> − D̅)FD? − D̅G

∑ (D> − D̅)H@
>AB

	(I ≠ K),																																																							(2) 

where n is the number of observations in the field of interest, D> and D? are the observations at 

locations of i and j, D̅ is the mean of observations, and =>? is the spatial weight between locations 

of i and j. The theoretical range of Moran’s I is between -1 and 1 (Zhang and Lin, 2016). Large 

positive Moran’s I value indicates positive spatial autocorrelation, where the target value is similar 

to its neighbors. Large negative Moran’s I value means negative spatial autocorrelation, where the 

target value is different with its neighbors (e.g., a high value in a low value neighborhood). A 

Moran’s I value close to 0 implies spatial randomness (Tu and Xia, 2008).  

Maize yield residuals, similar to actual maize yields, showed high spatial autocorrelation, 

where the yield residual of one site is related to the values of its neighboring sites. Multivariate 

spatial autoregressive model (MSAR) could account for spatial autocorrelation of maize yield 
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residual and this model was used to estimate maize yield residual using site-specific and year-

specific variables. The MSAR is defined as 

8>,? = LM8>? + OPQP + ORQR + S,																																																																																																(3) 

where 8>,? is maize yield residual at site i in year j, L is the autocorrelation parameter (-1 < L 

< 1), W is the queen neighbor weight matrix, OP is site-specific terrain values (elevation and 0-30 

cm SOM), OR is early vegetative stage precipitation (year-specific), and S is the error term with 

N(0, U2) distribution. The parameters of this model include L, QP , QR  and U2. Queen neighbor 

weight matrix was used as it is the commonly used spatial weight for a regular grid of points in 

agricultural studies (Colonna et al., 2004). The maximum likelihood estimator of L was derived 

using the Newton-Raphson algorithm. Parameters of the MSAR model were estimated by the 

maximum likelihood method conditioning on L. The grain yield prediction at a given site i in year 

j adjusted by the MSAR model was calculated by:  

8V(W	(>,?) = 8X,YZ + 89	(>,?)																																																																																																															(4) 

where 8V(W	(>,?) is the MSAR adjusted grain yield prediction,  8X,YZ  is MSAR estimated yield 

residual, and  89	(>,?) is grain yield prediction by the N Model at site i in year j. 

4.3.6 Statistical measures for model performance 

Graphical comparison was used to visually assess the goodness of fit. Mean error (ME) and 

mean absolute error (MAE) were used to provide absolute error for estimating maize yield residual. 

Relative error terms for maize yield, such as RME and RMAE, were used to compare model 

goodness of fit among different fields or years using the N Model and the MSAR model.   

In this study, absolute RME less than 15% was considered as good prediction overall, and 

RMAE less than 15% was considered as good prediction at the 10-m pixel level. The distance 

between RMAE and the absolute value of RME indicates the direction of model yield predictions. 

For instance, a closer distance suggested the model yield prediction was mainly an underestimation 

(positive RME) or overestimation (negative RME), while a greater distance suggested the error 

originated from both underestimated and overestimated sites in each field. 

\] = 8̂ −
1
;
_8X̀

@

>AB

																																																																																																																								(5) 
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\b] =
1
;
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																																																																																																																	(6) 

e\] =
\]
8̂(

× 100%																																																																																																																			(7) 

e\b] =
\b]
8̂(

× 100%																																																																																																													(8) 

where n is the number of data points, 8> and 8X̀ are the actual and predicted maize yield residual, 

respectively, p is the number of model parameters, and 8̂( is the mean of actual yield. 

4.4 Results and Discussion 

4.4.1 Performance of the N Model 

A spatial evaluation of the performance of the N Model was conducted to test whether the N 

Model can be used as a decision tool for various Midwestern production systems. Predicted maize 

grain yield using the N Model and the actual grain yield were compared at three spatial aggregation 

levels and the linear agreement of predicted and actual yield improved as the aggregation scale 

became broader (Figure 4.2). At the soil type level within a field, there was no obvious trend in 

the relationship between actual and predicted yield. Around 56% of the yield predictions by the N 

Model fell within 15% of the actual yield. The predicted yield was greater than actual yield for 78% 

of all cases. Individual cases of overestimations exceeding 15% of actual yield included those 

occurring on low OM soils during a dry growing season (2012), high OM soils under maize after 

maize during seasons with normal (2016) or higher than normal precipitation (2010), and in a late 

planting season (2013). Sources of yield overestimation could be from unaccounted biotic and 

abiotic plant stresses, model omission of N immobilization processes for maize after maize, and 

uneven emergence from late planting. Greater model predicted grain yield than actual yield was 

common in farmers’ fields where it is not feasible to ensure timely nutrient supply and perfect 

control of biotic stresses (Morell et al., 2016; Cassman et al., 2003). The N Model predicted grain 

yield was below actual yield in 22% of the soil type-year cases. Model underestimation more than 

15% of the actual yield corresponded to soils with low OM during seasons with higher than normal 

precipitation such as in 2010 and 2015. This is likely due to an overestimation of N leaching loss 

under high precipitation levels.  
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At the individual field scale, field-average grain yields predicted by the N Model were greater 

than actual yields for 94% of all the site-year cases. The N Model yield prediction was considered 

reasonable for 74% of the site-year cases. Large yield overestimations corresponded to fields 1 

and 2 during 2010 and 2013 growing season. This could be related to rainfall spatial variation in 

specific site-years, especially for summer thunderstorms, when weather data collected at a station 

located 10 km away could not depict what happened on a farm.  

When site-year cases were aggregated by growing season, the N Model predicted yield and 

actual yield showed a distinct linear pattern (r = 0.91), with predicted yield slightly greater than 

actual yield in all years. The average ratio between predicted and actual yield was 1.1. The N 

Model predicted yield was within 15% of actual yield in all years except for 2013. Additionally, 

the range of predicted and actual grain yield became narrower with increasing spatial aggregation. 

This trend was also found by Morell et al. (2016), suggesting that both low and high portions of 

predicted yields were averaged out when moving from soil type within a field to across fields 

within a year. In summary, even though the N Model was built at the spatial level of soil type 

within a single field, its prediction accuracy increased with spatial aggregation, especially when 

several farms were considered for maize production prediction. Further improvement of field and 

sub-field scale predictions is needed. 

4.4.2 Analysis of maize yield residual of the N Model 

At the soil type level within a site-year, maize yield residuals ranged widely from -7.2 Mg ha-

1 to 6.8 Mg ha-1, with a mean of -1.2 Mg ha-1 in the calibration dataset. The yield residual did not 

show any significant relationship with any of the weather and stress variables considered in this 

study with the exception of EV precipitation (Figure A.1). Maize yield residual displayed a trend 

that moved toward zero with increasing EV precipitation (r = 0.33, Figure 4.3). This 

overestimation of maize yield could be due to the high plant N uptake rate during V6 to V12 stage 

assumed by the N Model (0.42 kg N ha-1 per GDD), together with more readily available N in the 

soil from applied N fertilizers when excess spring precipitation was not present (Table 4.2). In 

comparison, physiological studies of modern maize hybrids in response to various plant density 

and N stress factors found that high levels of N uptake rate didn’t start until around V10 stage 

(Ciampitti et al., 2013; Bender et al., 2013). According to Bender et al. (2013), maize N uptake 

followed a sigmoidal (S-shaped) pattern, with N uptake rate of modern maize hybrids peaking 
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during V12 to R1 growth stage (around 556-833 GDD) at 0.46 kg N ha-1 per GDD. They reported 

a lower N uptake rate during V6 to V12 stage at 0.24 kg N ha-1 per GDD. Additionally, soil N loss 

was found to have an exponential increase with spring precipitation, leading to a higher economic 

optimum N rate (EONR) with above normal spring precipitation for both maize after maize and 

maize after soybean crop sequences using a 16-year field experiment dataset in central Iowa 

(Puntel et al., 2016). Therefore, further adjustment of the module controlling plant N uptake rate 

in the N Model might be helpful for improved maize yield prediction accuracy at the soil type 

spatial level.  

At the individual field scale, maize yield residuals showed significant spatial autocorrelation 

as suggested by Moran’s I coefficient. Moran’s I of the yield residual ranged from 0.28 to 0.88 

using the calibration dataset, and varied among site-years. Moreover, a significant negative linear 

relationship was found between Moran’s I of yield residual and actual grain yield (r = -0.70, Figure 

4.4 A). The Moran’s I increased as actual grain yield decreased. This result indicated high spatial 

heterogeneity of yield residual during unfavorable growth conditions for maize. Therefore, the N 

Model showed higher spatial uncertainty during harsh environments. Moreover, maize yield 

residual Moran’s I showed a quadratic relationship with EV precipitation (Figure 4.4 B); Moran’s 

I values increased when EV precipitation was greater than 166 mm, compared to the long-term 

average EV precipitation of 215 mm. The EV stage of the growing season was found to be most 

susceptible to excess moisture conditions. In Indiana, the consequences of excess precipitation can 

be worse if adequate or systematic subsurface drainage is lacking. This could be attributed to less 

carbohydrate storage, poorly developed roots, and higher risk of plant submergence (Mukhtar et 

al., 1990; Zaidi et al., 2004; Ren et al., 2014). Therefore, excess moisture stress in the EV stage 

may affect the response of plant growth on different landscape positions and soil types within a 

field, which can lead to increased grain yield heterogeneity.  

4.4.3 Performance of the MSAR model adjusted yield 

The performance of MSAR model adjustment was evaluated at three steps: 1) evaluate the 

ability to reproduce grain yield using the whole calibration dataset; 2) evaluate the ability to 

forecast grain yield in a drought year (2012) and a typical year (2016); 3) evaluate the forecast 

accuracy when extrapolating to different fields across a range of growing seasons using the 

validation dataset. For (2), the entire dataset except the forecast year was used to calibrate MSAR 
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model coefficients for the 7 calibration fields, and then the coefficients were used to forecast the 

maize grain yield for the particular year. For (3), the average of the MSAR coefficients of the 7 

calibration fields (35 site-years) was used to forecast maize grain yield in 2010 – 2016 for 30 

different validation fields (82 site-years) under various crop rotation practices in the same region.  

The MSAR adjusted yield predictions showed better accuracy across three spatial aggregation 

levels compared to the N Model using the calibration dataset (Figure 4.2 and Figure 4.5). The 

MSAR adjusted yield predictions resulted in more cases that fell within 15% of actual yield 

compared to the N Model alone (73 vs. 53, 33 vs. 26, and 7 vs. 6 at the soil type level, site-year 

level, and year level, respectively). And the MSAR adjusted yield predictions were closer to the 

1:1 line and had lower average RME. This result indicated that by taking account of the EV 

precipitation, the spatial autocorrelation of the yield residual, and the static soil and elevation 

properties, the MSAR model was capable to improve the prediction accuracy of the N Model.  

At the field mean level, the MSAR adjusted yield predictions was superior to the N Model in 

25 site-years out of the 35 site-years in the dataset, and MSAR model showed better accuracy 

compared to a linear model without the spatial autocorrelation specification in 17 site-years (Table 

4.4). The spatial autocorrelation parameter showed a narrow range across fields (0.79 – 0.94). The 

spatial variation improvement was not significant for the remaining 18 site-years possibly because 

the EV precipitation alone cannot account for all observed spatial variation. Additionally, the 

measurement error associated with precipitation from nearby weather stations might also affect 

the relationship. Another source of error for using weather variables for empirical model 

adjustment was that weather variables other than the selected variable (e.g. temperature, solar 

radiation, and relative humidity) may alter the empirical estimates through a classical omitted 

variable problem (Auffhammer and Schlenker, 2014). Moreover, the presence of these other 

phenomena and their correlations with precipitation may be location specific. 

When historical grain yields of each specific field were used to train MSAR model parameters, 

the MSAR adjusted yield predictions did not improve in the drought year of 2012 (average RME 

of 24.1%) due to the lack of drought stressed environment in MSAR model training process (Table 

4.5). In comparison, the N Model itself showed a satisfying agreement with actual yield in 2012 

on the studied fields (Absolute RME < 15%). Conversely, in a typical year such as 2016, the 

MSAR adjustment exhibited improvement in grain yield prediction compared to the N Model on 
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6 out of 7 fields, at both field mean level and the 10-m grid level. The N Model overestimated 

grain yield at all fields, and the mean absolute RME was 13.1% in 2016. The MSAR adjusted yield 

showed an average absolute RME of 8.1%. This finding suggested that the MSAR adjustment was 

useful for improving field-scale grain yield predictions of the N Model during a growing season 

without extreme stresses. 

The ability to use the MSAR model to improve maize grain yield prediction accuracy of the N 

Model was further assessed using a validation dataset containing 82 site-years on 30 different 

fields in the same region. It was found that the improvement from the MSAR adjustment was not 

significant (Figure 4.6). The MSAR adjustment did not increase the number of cases where grain 

yield prediction was within 15% of actual yield, or the average overall accuracy (mean absolute 

RME was 17.4% and 17.5% for MSAR adjusted and N Model yield predictions, respectively). The 

N Model showed more overestimation cases with the average ratio between predicted and actual 

yield of 1.1, where the ratio for the MSAR adjusted yield prediction averaged 1.0. The lack of 

improvement from the MSAR adjustment could be because the relationships between yield 

residual and EV precipitation, soil and elevation was location specific. As discussed above, the 

uncertainty of the precipitation data and other omitted variables could also affect the relationship. 

4.5 Conclusions 

Robust agricultural process-based models under various environment conditions are needed 

for site-specific management guidelines. In this study, field-scale maize grain yield prediction 

results from the N Model in the Mapwindow GIS + MMP Tools showed that the N Model yield 

prediction was considered reasonable for 74% of the site-year cases (n=35). This finding provides 

strong evidence that the soil N processes considered in the model are capable of reflecting plant-

soil dynamics that are relevant to final yield determination. Our results showed that the N Model 

predicted higher grain yield than actual yield in most cases, and the linear agreement of predicted 

and actual yield improved as the spatial aggregation scale became broader. Yield overestimation 

could be from unaccounted biotic and abiotic plant stresses, the lack of N immobilization process 

inclusion for maize after maize cultivation, and uneven emergence associated with instances of 

late planting.  
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Historical yield and management data are valuable in refining the N Model predictions. Our 

analysis revealed that yield residuals were linearly associated with early vegetative stage (EV) 

precipitation (r = 0.33). This overestimation could be the result of the high plant N uptake rate 

during V6 to V12 stage assumed by the N Model (0.42 kg N ha-1 per GDD), and more N was 

considered readily available from applied N fertilizers when excess spring precipitation was not 

present. We found higher spatial heterogeneity of yield residuals when maize yields of the fields 

were low (< 10 Mg ha-1), indicating the N Model had greater spatial uncertainty during harsh 

environments.  

The proposed MSAR model can be used as a tool to adjust field-scale maize yield prediction. 

The MSAR adjusted yield predictions resulted in more cases that fell within 15% of actual yield 

compared to the N Model alone when using the whole dataset (n=35). However, if the 2012 data 

was not included in the training process, the MSAR adjusted yield predictions did not improve in 

the drought year of 2012 (average RME of 24.1%). This finding suggested that the MSAR 

adjustment was useful for improving field-scale grain yield predictions of the N Model during a 

growing season without extreme stresses. When extrapolating the MSAR model parameters to a 

dataset containing 82 site-years on 30 different fields in the same region, the improvement from 

the MSAR adjustment was not significant. The lack of improvement from the MSAR adjustment 

could be that the relationship used in the MSAR model was too location specific. The uncertainty 

of the precipitation data and other omitted variables could also affect these relationships. The 

approach proposed here could be used to fine tune the N Model for in-season grain yield prediction 

and N management practices at the field scale. 
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Table 4.1 Advantages and disadvantages of the two modeling approaches. 

 Process-based models Statistical models 

Advantages • Integrate effects of genetics, environment and crop 
management 
• Can be used for problem-based research 
• Can be used to study the impact of climate change, 

resource management on the modeled processes, as 
well as crop production 

• Limited reliance on field calibration data (Lobell and 
Burke, 2010) 
• Transparent assessment of model uncertainties 
• Potential to capture effects of poorly understood 

processes, such as pest dynamics 

Disadvantages • Performance depends heavily on the data used to 
develop and evaluate them 
• May be missing key processes related to extreme 

climate conditions (White et al., 2011; van Oort et 
al., 2011) 
• Can be difficult to calibrate due to a large number of 

uncertain parameters (Lobell and Burke, 2010) 
• Often parameter uncertainty is ignored (Lobell and 

Burke, 2010) 
• Improvements are needed to relate to genetics, soil 

fertility, water stress and pest damage (Boote et al., 
2013) 

• Difficulty in extrapolating beyond historical 
extremes (Lobell, 2009) 
• Collinearity between predictor variables 
• Assumptions of stationarity 
• Low signal-to-noise ratios 
• Model overfitting problem when historical records 

are limited 
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Table 4.2 Maize N uptake function in the N Model in the MapWindows GIS + MMP Tools.  

GDD (°C) 
N Uptake Rate 

(kg ha-1 °C-1) 

0-278 0.0605 

278-556 0.4234 

556-833 0.2822 

833-1111 0.2016 

1111-1389 0.1008 

1389-1528 0.1008 

 

Table 4.3 Input parameters of each field for the N Model. 

 Emergence Date Yield 

Potential†  2010 2011 2012 2013 2014 2015 2016 

Field 1 4/24 5/24 - 5/19 5/9 - 4/27 16.3 (260) 

Field 2 4/26 - 4/21 5/22 5/13 - 5/12 16.1 (257) 

Field 3 5/1 - 4/18 5/20 5/13 - 5/4 16.6 (264) 

Field 4 5/1 5/26 - 5/20 5/13 - 5/4 16.6 (264) 

Field 5 4/25 - 4/21 5/22 - 5/9 5/11 15.9 (254) 

Field 6 - 5/19 4/27 5/21 - 5/8 5/11 16.1 (257) 

Field 7 - 5/15 5/3 5/21 - 5/8 5/12 15.7 (251) 

† Numbers outside parentheses are in Mg ha-1, numbers within parentheses are in bu A-1. 
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Table 4.4 Maize grain yield, MSAR adjusted yield estimates, and model goodness of fit of the 
calibration dataset. 

Field Year Mean Ya ! 
Mean 

Yhat 
ME MAE RME† RMAE 

unit  Mg ha-1  Mg ha-1 Mg ha-1 Mg ha-1 % % 

1 

2010 9.73 

0.87 

10.44 -0.72 2.33 -7.4 A B 24.0 A B 
2011 12.77 11.02 1.75 2.39 13.7   18.7   
2013 11.63 13.81 -2.17 3.18 -18.7 A  27.3 A  
2014 14.26 13.86 0.39 1.59 2.8 A B 11.2   
2016 14.79 14.42 0.36 1.67 2.5 A B 11.3 A B 

2 

2010 7.66 

0.94 

7.23 0.43 2.76 5.6 A B 36.1 A B 
2012 10.89 9.81 1.07 1.97 9.9  B 18.1  B 
2013 8.79 12.72 -3.93 3.98 -44.7 A  45.3 A  
2014 14.05 12.41 1.64 1.85 11.7  B 13.2  B 
2016 14.61 13.93 0.68 1.17 4.6 A B 8.0 A B 

3 

2010 12.75 

0.79 

12.15 0.59 1.90 4.7 A  14.9 A  
2012 11.68 10.47 1.21 2.26 10.4   19.3   
2013 14.25 14.93 -0.68 1.34 -4.8   9.4 A  
2014 13.71 14.48 -0.78 1.54 -5.7 A  11.2 A  
2016 15.00 15.22 -0.22 0.97 -1.4 A B 6.5 A B 

4 

2010 11.52 

0.84 

11.32 0.21 2.27 1.8 A  19.7 A  
2011 11.61 12.76 -1.14 2.01 -9.9 A B 17.3 A B 
2013 13.42 13.87 -0.45 1.78 -3.3 A  13.2 A  
2014 13.85 13.46 0.40 1.58 2.9 A  11.4 A  
2016 15.01 13.97 1.03 1.36 6.9  B 9.0  B 

5 

2010 10.75 

0.91 

10.81 -0.06 2.05 -0.6 A B 19.0 A B 
2012 10.64 9.76 0.88 2.69 8.3   25.3   
2013 12.99 14.35 -1.35 2.35 -10.4 A  18.1 A  
2015 10.41 10.10 0.32 3.09 3.0 A  29.7 A  
2016 14.48 14.58 -0.10 1.16 -0.7 A B 8.0 A B 

6 

2011 14.58 

0.80 

14.09 0.49 1.41 3.4 A B 9.7 A B 
2012 10.75 9.79 0.96 1.65 8.9 A B 15.4   
2013 13.79 13.86 -0.08 0.97 -0.5 A B 7.1 A  
2015 13.19 12.71 0.48 1.13 3.6  B 8.6 A B 
2016 12.75 14.57 -1.82 1.84 -14.3 A  14.4 A  

7 

2011 14.32 

0.83 

13.95 0.37 1.54 2.6 A B 10.7 A B 
2012 11.90 10.59 1.31 1.95 11.0   16.4   
2013 13.47 14.00 -0.54 1.25 -4.0 A  9.2 A  
2015 11.33 10.47 0.86 2.18 7.6   19.3 A  
2016 13.04 14.92 -1.88 1.91 -14.4 A  14.7 A  

† “A” indicates the relative error is smaller compared to the N Model, and “B” indicates the relative 
error is smaller compared to the linear model without spatial autocorrelation structure. 
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Table 4.5 Model goodness of fit comparison of the N Model and MSAR adjusted grain yield in a 
drought year (2012) and a typical year (2016). 

   The N Model  MSAR Adjusted 

Year Field 
Mean 

Ya 

Mean 

YN 
RME RMAE  

Mean 

Yhat 
RME RMAE 

  Mg ha-1 Mg ha-1 % %  Mg ha-1 % % 

2012 2 10.89 11.62 -6.7 11.4  8.69 20.2 27.9 

2012 3 11.68 11.91 -2.0 12.5  9.31 20.3 25.4 

2012 5 10.64 11.47 -7.8 11.4  8.63 18.9 32.5 

2012 6 10.75 12.20 -13.5 14.0  7.90 26.4 28.2 

2012 7 11.90 12.34 -3.7 8.8  7.80 34.5 34.8 

2016 1 14.79 15..95 -7.9 13.5  14.29 3.3 11.8 

2016 2 14.61 16.62 -13.8 14.4  13.77 5.7 8.8 

2016 3 15.00 15.74 -4.9 9.8  15.29 -1.9 6.8 

2016 4 15.01 15.45 -3.0 8.1  13.62 9.3 10.8 

2016 5 14.48 15.89 -9.8 10.9  14.59 -0.8 8.6 

2016 6 12.75 16.20 -27.0 27.0  15.07 -18.1 18.2 

2016 7 13.04 16.37 -25.6 25.6  15.41 -18.2 18.3 
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Figure 4.1 General weather conditions during maize growing season during 2010 – 2016. (A) Early Vegetative Stage; (B) Late Vegetative 

Stage; (C) Critical Period; and (D) Grain-fill Stage. Each point represents the average temperature and precipitation across all fields within a 
year. The red dash lines indicate long-term weather averages assuming a planting date of May 1st. 
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Figure 4.2 Comparison of the N Model predicted and actual maize grain yields at three levels: (A) Soil type within a field; (B) Individual fields; and 

(C) All fields within a year. The 1:1 line (solid red line) and ±15% deviation (dotted black lines) are shown. Data from the calibration dataset with 35 
site-years. 
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Figure 4.3 Relationship between yield residual at the soil type level and EV precipitation. Each 
point represents the mean of a soil type within a site-year. Data from the calibration dataset with 

35 site-years. 
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Figure 4.4 Relationship between Moran’s I statistic of yield residual and (A) Actual yield; and (B) EV Precipitation. Each point 
represents the mean of a site-year. Data from the calibration dataset with 35 site-years. 
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Figure 4.5 Comparison of the MSAR model adjusted maize grain yield and actual maize grain yields at three levels: (A) Soil type 
within a field; (B) Individual fields; and (C) All fields within a year. The 1:1 line (solid red line) and ±15% deviation (dotted black 

lines) are shown. Data from the calibration dataset with 35 site-years. 
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Figure 4.6 Comparison of (A) the N Model yield prediction and (B) the MSAR adjusted yield prediction using the validation dataset 
(n=82). Each point represents the mean of a site-year. The 1:1 line (solid red line) and ±15% deviation (dotted black lines) are shown. 
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CHAPTER 5. CONCLUSIONS 

5.1 Conclusions 

The demand for more prescription-based and customized farm management is increasing. 

Nitrogen (N) management is one of the key elements in the Midwest maize-based agricultural 

systems. Researchers have been devoted to developing N rate guidelines and N conservation 

practices for farmers to maximize maize grain yield and maintain environmental sustainability. 

However, economic optimum N rate was found to vary by soil type and region due to interactions 

among soil properties and weather conditions (Tremblay et al., 2012). On the other hand, the 

adoption of winter cover crops has been identified as one of the most effective management 

practices in reducing non-point N loss via subsurface drainage. Still, cover crop growth is affected 

by weather, landscape positions and the agronomic practices. Therefore, digital technologies and 

analytics that can spatially assess the cover crop growth and maize yield under a changing climate 

are necessary. 

In recent years, orbital satellite, unmanned aerial vehicle, soil, water and plant sensors and 

farm machinery generate large volumes of data containing spatially-precise information that can 

be analyzed to help make informed decisions and manage risks. The goal of this dissertation 

research was to use publicly available Landsat data, limited ground-truth samples and historical 

yield data to establish methodologies to spatially quantify cover crop growth and in-season maize 

grain yield. The goal was addressed through the following objectives:  

1) Develop algorithms that use Landsat satellite images and minimal ground samples to predict 

season-specific cover crop biomass and N uptake on a small watershed in the US Corn Belt; 

and compare the estimation accuracy with common spatial interpolation methods. 

2) Develop a multivariate spatial autoregressive model using Landsat satellite images, historical 

yield data, soil survey and digital elevation to predict field-scale maize yield in Indiana.  

3) Incorporate multivariate spatial statistics into a process-based N transformation model to 

predict maize yield on a field scale in Indiana. 

Results from Objective 1 confirmed the combination of spatially accurate satellite imagery and 

limited ground sampling could be used for repeated small watershed assessment of cover crop 

growth. We found that soil adjusted vegetation index (SAVI), enhanced vegetation index (EVI) 
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and triangular vegetation index (TVI) were strongly correlated with cover crop biomass and N 

uptake for low and moderate biomass (0-3000 kg ha-1) and N uptake ranges (0-100 kg N ha-1) in 

the small watershed of Lake Bloomington in east-central Illinois. These vegetation indices could 

be used as successful predictors of cover crop biomass production and N uptake. Compared to 

commonly used spatial interpolation methods such as ordinary kriging (OK) and inverse distance 

weighting (IDW), using the SAVI method showed higher prediction R2 values than that of OK and 

IDW. Additionally, it would be labor- and resource-intensive to collect high density ground 

samples for a spatial interpolation analysis when diverse agronomic management practices exist, 

compared to the remote sensing vegetation indices. In our study, the SAVI estimated cover crop 

biomass and N uptake were +/- 15% of observed value. This finding demonstrated that remote 

sensing indices could capture the spatial pattern as affected by various cover crop and cash crop 

management systems, which are common in small watersheds.  

In Objective 2, a new approach using the multivariate spatial autoregressive (MSAR) model 

was developed at 10-m grid resolution to forecast maize yield using historical grain yield data 

collected from farmers’ fields, publicly available remote sensing maps, site-specific top 30 cm soil 

organic matter (SOM) and elevation, while accounting for yield spatial autocorrelation. Principal 

component analysis (PCA) suggested that Landsat green chlorophyll vegetation index (GCVI) 

during the R1 to R2 development stage in maize was the variable that most closely associated with 

grain yield (r = 0.70), which is attributable to its high correlation with plant LAI and its ability to 

capture differences in nutrient stress tolerance that are correlated with maize grain yield. Therefore, 

GCVI was used as the year-specific variable in the MSAR model. In the study, the MSAR model 

performed reasonably well for overall field maize productivity in 32 out of 35 site-years of the 

calibration dataset (absolute RME < 15%) with an average absolute RME of 6.6%. The average 

RMAE of the MSAR model was 13.1%. Because the empirical relationship used in MSAR model 

was based on historical crop yield, remote sensing of GCVI, and soil and landscape properties, a 

constant N conversion efficiency and constant harvest index were assumed. Therefore, the MSAR 

model could result in large prediction errors under extreme stressed environmental conditions such 

as the 2012 growing season, especially when grain yields under these stressed conditions were not 

included into the model calibration. Weather conditions for crop growth after the GCVI acquisition 

date (around R2) may also affect the performance of the MSAR model. In the validation dataset 

(n=82), the MSAR model showed good prediction accuracy overall (± 15% of observed yield in 
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56 site-years) in new fields when extreme stress was not present. The novel approach developed 

in this study demonstrated its ability to use elevation and soil information to interpret satellite 

observations accurately in a fine spatial scale.  

Results from Objective 3 indicated historical yield and management data are valuable in 

refining the N Model predictions of yield. We evaluated the performance of the process-based N 

Model developed by Joern and Hess at Purdue University in the Mapwindow GIS + MMP Tools 

in field-scale maize grain yield prediction, and further identified factors that affected yield 

prediction accuracy. The N Model was considered reasonable (i.e. RME < 15%) for 74% of the 

site-year cases (n=35). This finding provides strong evidence that the soil N processes considered 

in the model are capable of capturing the plant-soil dynamics. Our results showed that the N Model 

predicted higher grain yield than actual yield in most cases, and the linear agreement of predicted 

and actual yield improved as the spatial aggregation scale became broader. We found that that the 

yield residuals were linearly associated with early vegetative stage (EV) precipitation (r = 0.33). 

This overestimation could be the result of the high plant N uptake rate during V6 to V12 stage 

assumed by the N Model (0.42 kg N ha-1 per GDD), and more N readily available from applied N 

fertilizers when excess spring precipitation was not present. Additionally, the residual of N Model 

predicted yield showed significant spatial heterogeneity in all site-years.  

A MSAR model was then incorporated into the N Model to adjust maize yield prediction. The 

proposed MSAR model used EV precipitation, top 30 cm soil organic matter and elevation while 

accounting for spatial autocorrelation in 10-m grids. The MSAR adjusted yield predictions resulted 

in more cases (77%) that fell within 15% of actual yield compared to the N Model alone when 

using the whole dataset. If the 2012 data was not included in the training process, the MSAR 

adjusted yield predictions did not improve the yield predictions in the 2012 drought year (average 

RME of 24.1%). When extrapolating the MSAR parameters developed from 7 fields to a dataset 

containing 82 site-years on 30 different fields in the same region, the improvement from the MSAR 

adjustment was not significant. The lack of improvement from the MSAR adjustment could be 

because the relationship used in the MSAR model was location specific. Additionally, the 

uncertainty of precipitation data could also affect the relationship. The unaccounted impacts from 

crop rotation and tillage management on variability in maize plant N internal efficiency and grain 

yield could also affect the transferability of the MSAR model parameters. It is also important to 

note that the data set used in this study are from fields where N fertilizers were applied (mostly at 
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planting) at a total N rate that is above the state recommendation. For data sets containing variable 

N rates and timings, N rate and timing should also be considered as parameters when establishing 

the MSAR model. The approach proposed here could be used to fine tune the N Model for in-

season grain yield prediction at the field scale using historical data.  

Through the sequence of research studies, the utility of big data routinely collected at farmers’ 

fields and publicly available satellite data has been improved for field-specific maize yield 

prediction or cover crop growth estimation. We developed a novel approach to predict in-season 

field-specific maize grain yield, the result of which can be further implemented to agronomic 

management adjustment. For farmers who adopted cover crop to reduce nutrient loss to the 

environment, we developed a method that can be used to rapidly assess cover crop biomass 

production and N uptake. These results can be used to advance field adaptive N management. For 

future studies, unmanned aerial vehicles, as well as plant and soil sensors that allow for more 

flexible and comprehensive data collection, could be used to advance our understanding of cover 

crop growth and maize yield response to management over time across various landscapes. 
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APPENDIX A. SUPPLEMENTARY FIGURES 

 
Figure A.1 Relationship between yield residual at the soil type level and (A-D) Average mean temperature during EV, LV, CP, and 
GF, respectively; (E-H) Average nighttime temperature during EV, LV, CP, and GF, respectively; (I-L) Cumulative solar radiation 
during EV, LV, CP, and GF, respectively; (M-P) Cumulative KDD during EV, LV, CP, and GF, respectively; (Q-T) Cumulative 

precipitation during EV, LV, CP, and GF, respectively; (U-X) Average soil moisture during EV, LV, CP, and GF, respectively; (Y-
AB) Average VPD during EV, LV, CP, and GF, respectively. Each point represents the mean of a soil type within a site-year. Data 

from the calibration dataset with 35 site-years. 
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Figure A.1 continued 
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Figure A.1 continued 
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APPENDIX B. SUPPLEMENTARY TABLES 

Table B.1 Planting date, crop rotation, previous crop, soil types, and grain yield of the 82 site-years in the validation dataset. 

Year Farm ID Field 
Size 

Planting 
Date Yield† SD Rotation Previous 

Crop Soil mukey§ 

  ha  Mg ha-1 Mg ha-1    
2011 8 5.31 5/10 9.98 2.40 Other‡ Soybean 165222 (100%) 
2013 8 9.46 5/06 13.95 1.52 Other Soybean 165222 (56%), 165231 (44%) 
2016 8 4.15 4/25 15.78 0.92 Other Soybean 165231 (100%) 
2013 9 8.62 5/12 14.14 1.66 Other Soybean 165160 (53%), 165162 (47%) 
2014 9 8.62 4/24 14.06 1.48 Other Maize 165160 (53%), 165162 (47%) 
2016 9 4.05 4/25 16.40 1.11 Other Soybean 165162 (100%) 
2010 10 2.23 4/14 14.43 1.16 Other Soybean 162424 (88%), 162462 (12%) 
2012 10 2.58 4/10 10.33 1.47 Other Soybean 162424 (76%), 162458 (14%), 

162462 (10%) 
2013 10 9.91 5/07 12.70 1.81 Other Maize 162446 (94%), 162458 (4%), 

162462 (2%) 
2015 10 11.63 5/09 8.53 3.78 Other Soybean 162424 (17%), 162446 (80%), 

162458 (3%) 
2010 11 1.23 4/13 9.51 2.97 Other Soybean 165162 (74%), 165222 (26%) 
2012 11 3.57 4/02 10.06 2.27 Other Soybean 165231 (66%), 165162 (25%), 

165222 (9%) 
2013 11 2.64 5/13 14.27 2.07 Other Maize 165236 (88%), 165222 (12%) 
2015 11 20.51 4/30 12.59 2.81 Other Soybean 165160 (71%), 165231 (11%), 

165236 (11%), 165162 (4%), 
165222 (3%) 

2012 12 5.60 4/06 10.25 1.93 Other Soybean 165177 (62%), 165236 (34%), 
165239 (4%) 

2014 12 2.12 4/22 14.06 2.47 Other Soybean 165236 (91%), 165239 (9%) 
2015 12 5.60 5/04 10.43 3.55 Other Maize 165177 (62%), 165236 (34%), 

165239 (4%) 
2012 13 7.05 4/06 8.46 2.21 Other Soybean 165177 (52%), 165160 (28%), 

165239 (18%), 165231 (2%) 



115 
 

 

115 

 

 

Table B.1 continued 

Year Farm ID Field 
Size 

Planting 
Date Yield† SD Rotation Previous 

Crop Soil mukey§ 

  ha  Mg ha-1 Mg ha-1    
2012 14 9.60 4/10 11.84 1.01 Other Soybean 162423 (100%) 
2013 14 9.60 5/15 13.92 1.61 Other Maize 162423 (100%) 
2015 14 9.60 5/07 7.62 4.15 Other Soybean 162423 (100%) 
2013 15 14.76 5/12 13.87 1.57 Other Soybean 165160 (60%), 165162 (38%), 

165231 (2%) 
2010 16 1.71 4/10 8.91 2.44 Other Soybean 165231 (100%) 
2012 16 1.71 4/03 9.35 2.35 Other Soybean 165231 (100%) 
2013 16 1.71 5/13 14.81 0.85 Other Maize 165231 (100%) 
2015 16 2.32 5/02 10.76 3.56 Other Soybean 165231 (74%), 165236 (26%) 
2011 17 22.82 5/10 13.30 1.42 CS Soybean 162446 (62%), 162458 (38%) 
2013 17 22.82 5/07 14.63 1.33 CS Soybean 162446 (62%), 162458 (38%) 
2015 17 22.82 5/07 13.22 1.41 CS Soybean 162446 (62%), 162458 (38%) 
2012 18 22.30 4/11 11.79 1.86 CS Soybean 162446 (66%), 162458 (33%), 

162453 (1%) 
2011 19 35.04 5/13 14.53 2.03 CS Soybean 162424 (58%), 162446 (26%), 

162455 (5%), 162453 (4%), 
162454 (4%), 162462 (3%) 

2013 19 35.04 5/07 12.30 0.98 CS Soybean 162424 (58%), 162446 (26%), 
162455 (5%), 162453 (4%), 
162454 (4%), 162462 (3%) 

2015 19 35.04 5/08 11.59 3.34 CS Soybean 162424 (58%), 162446 (26%), 
162455 (5%), 162453 (4%), 
162454 (4%), 162462 (3%) 

2011 20 12.17 5/10 13.24 2.70 CS Soybean 162446 (82%), 162458 (10%), 
162453 (8%) 

2013 20 12.17 5/07 14.21 1.27 CS Soybean 162446 (82%), 162458 (10%), 
162453 (8%) 

2015 20 12.17 5/07 10.63 2.60 CS Soybean 162446 (82%), 162458 (10%), 
162453 (8%) 
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Table B.1 continued 

Year Farm ID Field 
Size 

Planting 
Date Yield† SD Rotation Previous 

Crop Soil mukey§ 

  ha  Mg ha-1 Mg ha-1    
2011 21 2.43 5/09 10.78 3.40 Other Soybean 165222 (100%) 
2012 21 2.43 4/13 12.37 0.65 Other Maize 165222 (100%) 
2013 21 2.43 5/15 11.73 1.64 Other Maize 165222 (100%) 
2016 21 2.43 4/26 13.18 0.42 Other Soybean 165222 (100%) 
2011 22 28.68 5/09 14.94 1.64 Other Soybean 165160 (57%), 165177 (40%), 

165231 (3%) 
2013 22 28.68 5/15 13.77 1.36 Other Soybean 165160 (57%), 165177 (40%), 

165231 (3%) 
2016 22 28.68 4/27 13.05 0.49 Other Soybean 165160 (57%), 165177 (40%), 

165231 (3%) 
2012 23 9.60 4/10 10.32 1.39 CS Soybean 165177 (98%), 165231 (2%) 
2016 23 9.60 4/25 15.62 0.84 CS Soybean 165177 (98%), 165231 (2%) 
2012 24 14.02 4/12 9.47 2.37 CS Soybean 165160 (48%), 165163 (42%), 

165231 (10%) 
2014 24 14.02 4/26 15.07 1.41 CS Soybean 165160 (48%), 165163 (42%), 

165231 (10%) 
2016 24 14.02 4/19 12.62 1.37 CS Soybean 165160 (48%), 165163 (42%), 

165231 (10%) 
2011 25 14.07 5/14 9.99 2.67 CS Soybean 165231 (44%), 165240 (38%), 

165221 (14%), 165143 (4%) 
2013 25 14.07 5/13 13.32 1.71 CS Soybean 165231 (44%), 165240 (38%), 

165221 (14%), 165143 (4%) 
2015 25 14.07 5/19 10.43 3.55 CS Soybean 165231 (44%), 165240 (38%), 

165221 (14%), 165143 (4%) 
2012 26 6.00 4/12 5.89 2.33 CS Soybean 165231 (63%), 165163 (25%), 

165160 (12%) 
2014 26 6.00 4/26 14.60 2.21 CS Soybean 165231 (63%), 165163 (25%), 

165160 (12%) 
2016 26 6.00 4/19 14.23 1.90 CS Soybean 165231 (63%), 165163 (25%), 

165160 (12%) 
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Table B.1 continued 

Year Farm ID Field 
Size 

Planting 
Date Yield† SD Rotation Previous 

Crop Soil mukey§ 

  ha  Mg ha-1 Mg ha-1    
2012 27 13.46 4/12 7.70 3.41 CS Soybean 165144 (33%), 165143 (25%), 

165221 (20%), 165240 (18%), 
165155 (4%) 

2014 27 13.46 4/26 16.14 1.86 CS Soybean 165144 (33%), 165143 (25%), 
165221 (20%), 165240 (18%), 

165155 (4%) 
2016 27 13.46 4/19 12.44 1.52 CS Soybean 165144 (33%), 165143 (25%), 

165221 (20%), 165240 (18%), 
165155 (4%) 

2012 28 10.38 4/12 4.55 2.02 CS Soybean 165163 (34%), 165231 (34%), 
165230 (32%) 

2014 28 10.38 4/26 14.34 2.27 CS Soybean 165163 (34%), 165231 (34%), 
165230 (32%) 

2016 28 10.38 4/19 13.55 1.84 CS Soybean 165163 (34%), 165231 (34%), 
165230 (32%) 

2012 29 32.19 4/11 8.08 3.47 CS Soybean 165144 (29%), 165143 (27%), 
165221 (14%), 165247 (14%), 

165240 (9%),165249 (7%) 
2014 29 32.19 4/26 15.14 1.45 CS Soybean 165144 (29%), 165143 (27%), 

165221 (14%), 165247 (14%), 
165240 (9%),165249 (7%) 

2016 29 32.19 4/18 13.05 1.76 CS Soybean 165144 (29%), 165143 (27%), 
165221 (14%), 165247 (14%), 

165240 (9%),165249 (7%) 
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Table B.1 continued 

Year Farm ID Field 
Size 

Planting 
Date Yield† SD Rotation Previous 

Crop Soil mukey§ 

  ha  Mg ha-1 Mg ha-1    
2012 30 30.58 4/12 8.62 3.39 CS Soybean 165144 (37%), 165240 (20%), 

165221 (19%), 165193 (13%), 
165247 (6%), 165210 (4%), 

165167 (1%) 
2014 30 30.58 4/26 14.83 1.79 CS Soybean 165144 (37%), 165240 (20%), 

165221 (19%), 165193 (13%), 
165247 (6%), 165210 (4%), 

165167 (1%) 
2016 30 30.58 4/18 13.78 2.16 CS Soybean 165144 (37%), 165240 (20%), 

165221 (19%), 165193 (13%), 
165247 (6%), 165210 (4%), 

165167 (1%) 
2012 31 22.22 4/12 9.03 3.75 CS Soybean 165234 (26%), 165189 (20%), 

165240 (19%), 165247 (18%), 
165221 (10%), 165144 (5%), 

165210 (2%) 
2014 31 22.22 4/27 15.06 1.37 CS Soybean 165234 (26%), 165189 (20%), 

165240 (19%), 165247 (18%), 
165221 (10%), 165144 (5%), 

165210 (2%) 
2016 31 22.22 4/19 14.10 2.40 CS Soybean 165234 (26%), 165189 (20%), 

165240 (19%), 165247 (18%), 
165221 (10%), 165144 (5%), 

165210 (2%) 
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Table B.1 continued 

Year Farm ID Field 
Size 

Planting 
Date Yield† SD Rotation Previous 

Crop Soil mukey§ 

  ha  Mg ha-1 Mg ha-1    
2011 32 33.54 5/14 12.43 2.59 CS Soybean 165240 (38%), 165221 (32%), 

165143 (12%), 165247 (11%), 
165234 (3%), 165210 (2%), 

165230 (2%) 
2013 32 33.54 5/13 13.52 1.86 CS Soybean 165240 (38%), 165221 (32%), 

165143 (12%), 165247 (11%), 
165234 (3%), 165210 (2%), 

165230 (2%) 
2015 32 33.54 5/09 9.12 3.09 CS Soybean 165240 (38%), 165221 (32%), 

165143 (12%), 165247 (11%), 
165234 (3%), 165210 (2%), 

165230 (2%) 
2012 33 14.40 4/05 11.90 1.85 Other Soybean 165177 (64%), 165160 (36%) 
2013 33 5.23 5/14 14.04 1.18 Other Maize 165160 (100%) 
2013 34 22.31 5/14 12.95 2.04 Other Soybean 165177 (90%), 165231 (5%), 

165222 (5%) 
2012 35 15.93 4/06 9.82 2.16 Other Soybean 165160 (75%), 165177 (10%), 

165230 (8%), 165239 (5%), 
165231 (2%) 

2013 35 15.93 5/16 8.86 1.34 Other Maize 165160 (75%), 165177 (10%), 
165230 (8%), 165239 (5%), 

165231 (2%) 
2015 35 15.93 5/03 10.81 2.35 Other Soybean 165160 (75%), 165177 (10%), 

165230 (8%), 165239 (5%), 
165231 (2%) 

2012 36 16.56 4/09 10.60 1.63 Other Soybean 162458 (100%) 
2011 37 12.73 5/13 13.09 2.14 CS Soybean 162446 (61%), 162458 (39%) 
2013 37 12.73 5/07 13.18 1.66 CS Soybean 162446 (61%), 162458 (39%) 
2015 37 12.73 5/07 9.84 3.01 CS Soybean 162446 (61%), 162458 (39%) 

† average grain yield at 15.5% moisture; 
‡ multiple maize – soybean rotation. The number of continuous maize years varies from 2 to 3; 
§ SSURGO soil map key. 
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Table B.2 Soil types and soil properties of the fields in maize yield prediction dataset (data from SSURGO soil database). 

Soil 
musym† 

Soil 
mukey‡ 

Soil Series 
Name 

Horizon 
Depth Texture AWC§ Wilt Pt Bulk 

Density OM pH CEC 0-30 cm 
OM 

   cm  cm cm-1 cm cm-1 g cm-3 %  cmol+ kg-1 % 
Po 162446 Patton 28 SIL 0.19 0.23 1.31 5 6.7 27.7 4.74 
   79 SICL 0.19 0.2 1.36 1.25 7 27  
   96 SICL 0.19 0.2 1.36 1.25 7.6 24.6  
   152 FSL 0.14 0.13 1.54 0.75 7.9 14.2  
RtB 162453 Rush 23 SIL 0.16 0.11 1.45 1.5 6.2 10.5 1.32 
   69 SICL 0.19 0.18 1.5 0.75 5.5 15  
   137 L 0.14 0.14 1.5 0.75 5.5 15  
   145 L 0.12 0.1 1.5 0.75 6.2 14  
   152 LCOS 0.04 0.02 1.7 0.25 7.9 3  
SrA 162458 Starks 25 SIL 0.16 0.12 1.46 2 5.7 13.2 1.79 
   97 SICL 0.19 0.19 1.47 0.75 5.8 24.4  
   142 L 0.15 0.14 1.52 0.75 6.5 16.4  
   200 SIL 0.14 0.06 1.5 0.25 7.4 7.7  
KgA 165177 Kendall 25 SIL 0.16 0.14 1.45 2 6.2 14.5 1.79 
   124 SICL 0.19 0.2 1.5 0.75 5.9 16.5  
   152 L 0.13 0.12 1.7 0.75 7.9 10.5  
Sn 165236 Sloan 30 SIL 0.16 0.18 1.45 3 7 20 3.00 
   145 CL 0.19 0.19 1.5 2 7.3 19  
   178 L 0.14 0.12 1.5 0.75 7.5 12.5  
Pk 165222 Pella 38 SICL 0.19 0.22 1.35 4 7 26 4.00 
   81 SICL 0.19 0.2 1.5 1.5 7.2 19  
   94 SICL 0.19 0.18 1.6 0.75 7.9 13.5  
   152 SIL 0.15 0.14 1.7 0.75 7.9 13.5  
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Table B.2 continued 
Soil 
musym† 

Soil 
mukey‡ 

Soil Series 
Name 

Horizon 
Depth Texture AWC§ Wilt Pt Bulk 

Density OM pH CEC 0-30 cm 
OM 

   cm  cm cm-1 cm cm-1 g cm-3 %  cmol+ kg-1 % 
Cz 165160 Cyclone 25 SICL 0.19 0.22 1.3 4.5 6.3 26.9 4.50 
   36 SIL 0.16 0.22 1.3 4.5 6.3 26.9  
   51 SICL 0.19 0.16 1.38 1.25 6.9 21.2  
   124 SICL 0.19 0.18 1.4 1.25 7.3 24.1  
   152 L 0.15 0.15 1.44 1.25 7.3 19.7  
   200 L 0.14 0.09 1.46 0.75 8.1 12.7  
FbB 165163 Fincastle 23 SIL 0.16 0.12 1.45 2.5 6.2 13 2.08 
   107 SICL 0.19 0.18 1.5 0.75 5.5 16.5  
   122 CL 0.18 0.19 1.6 0.75 6.5 16  
   152 L 0.14 0.11 1.8 0.75 7.9 10  
RrB2 165231 Rockfield 23 SIL 0.16 0.16 1.45 1.5 5.9 12.5 1.32 
   81 SICL 0.19 0.2 1.5 0.75 5.3 16.5  
   122 SICL 0.16 0.18 1.6 0.75 6.2 14.5  
   145 L 0.14 0.15 1.6 0.75 7.2 12.9  
   165 L 0.14 0.1 1.8 0.25 8.2 9  
CaA 165143 Camden 23 SIL 0.16 0.13 1.45 1.5 6.2 14 1.32 
   94 SICL 0.19 0.18 1.5 0.75 6.2 16.5  
   165 CL 0.17 0.19 1.6 0.75 6.2 13.5  
   203 L 0.14 0.09 1.65 0.75 7.9 8  
OdB2 165210 Ockley 20 SIL 0.16 0.1 1.45 1.5 6.1 9 1.42 
   38 SIL 0.16 0.11 1.45 1.25 6.1 10  
   46 SIL 0.15 0.16 1.5 0.75 5.8 14  
   94 CL 0.17 0.17 1.5 0.75 5.6 14  
   124 SCL 0.13 0.11 1.55 0.75 7 11  
   200 COS 0.03 0.01 1.85 0.25 8 2  
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Table B.2 continued 
Soil 
musym† 

Soil 
mukey‡ 

Soil Series 
Name 

Horizon 
Depth Texture AWC§ Wilt Pt Bulk 

Density OM pH CEC 0-30 cm 
OM 

   cm  cm cm-1 cm cm-1 g cm-3 %  cmol+ kg-1 % 
Pg 165221 Patton 18 SICL 0.19 0.23 1.31 5 6.7 27.7 5.00 
   30 SICL 0.19 0.22 1.23 5 6.7 27.7  
   102 SICL 0.19 0.2 1.36 1.25 7 27  
   152 FSL 0.14 0.14 1.53 0.75 7.9 14.2  
RoA 165230 Rockfield 23 SIL 0.16 0.16 1.45 1.5 5.9 12.5 1.32 
   81 SICL 0.19 0.2 1.5 0.75 5.3 16.5  
   122 SCL 0.16 0.18 1.6 0.75 6.2 14.5  
   145 L 0.14 0.15 1.6 0.75 7.2 12.5  
   165 L 0.14 0.1 1.8 0.25 7.9 9  
RwA 165234 Rush 23 SIL 0.16 0.11 1.45 2 6.2 12 1.70 
   74 SICL 0.19 0.18 1.5 0.75 5.8 17.5  
   89 CL 0.18 0.2 1.6 0.75 5.8 15.5  
   124 SCL 0.13 0.12 1.6 0.75 6.2 12.5  
   142 SL 0.07 0.05 1.7 0.25 7.9 4  
   165 COS 0.03 0.01 1.7 0.25 7.9 3  
StA 165240 Starks 25 SIL 0.16 0.11 1.45 2 6.2 15.5 1.79 
   89 SICL 0.19 0.2 1.5 0.75 5.8 18  
   117 L 0.14 0.13 1.6 0.75 6.5 14  
   152 SIL 0.15 0.07 1.7 0.25 7.2 7.5  
WoA 165247 Waynetown 23 SIL 0.16 0.11 1.45 1.5 6.2 11.5 1.32 
   81 SICL 0.19 0.19 1.5 0.75 6.1 17.5  
   94 L 0.15 0.15 1.6 0.75 6.1 13  
   137 SCL 0.13 0.12 1.6 0.75 7.2 14  
   152 LCOS 0.04 0.04 1.8 0.25 8.2 2.5  
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Table B.2 continued 
Soil 
musym† 

Soil 
mukey‡ 

Soil Series 
Name 

Horizon 
Depth Texture AWC§ Wilt Pt Bulk 

Density OM pH CEC 0-30 cm 
OM 

   cm  cm cm-1 cm cm-1 g cm-3 %  cmol+ kg-1 % 
FcA 162424 Fincastle 25 SIL 0.16 0.12 1.45 2.5 5.9 15 2.42 
   33 SIL 0.16 0.13 1.45 2 5.9 15  
   69 SICL 0.19 0.18 1.5 0.75 5.8 20  
   127 CL 0.19 0.19 1.6 0.25 6.9 20  
   150 L 0.15 0.15 1.8 0.25 7.4 10  
   200 L 0.13 0.11 1.8 0.25 8 10  
Ge 162425 Gessie 13 SIL 0.16 0.13 1.45 1.5 7.9 14.5 1.07 
   91 SIL 0.16 0.13 1.5 0.75 7.9 12  
   152 S 0.05 0.02 1.7 0.25 7.9 2  
RuB 162454 Russell 25 SIL 0.16 0.1 1.45 1.75 6.2 12.5 1.58 
   91 SICL 0.19 0.18 1.5 0.75 5.3 19  
   152 CL 0.18 0.19 1.6 0.75 6.2 17  
   203 L 0.14 0.11 1.9 0.25 7.9 9  
RuC 162455 Russell 25 SIL 0.16 0.1 1.45 1.75 6.2 12.5 1.58 
   91 SICL 0.19 0.18 1.5 0.75 5.3 19  
   152 CL 0.18 0.19 1.6 0.75 6.2 17  
   203 L 0.14 0.11 1.9 0.25 7.9 9  
SeA 162462 Xenia 25 SIL 0.16 0.11 1.45 2 6.5 12.4 1.79 
   76 SICL 0.19 0.2 1.5 0.75 5.3   
   127 CL 0.18 0.19 1.6 0.75 6.5 22.2  
   147 L 0.14 0.12 1.6 0.25 7.9 15.7  
   200 L 0.14 0.11 1.9 0.25 7.9 12.1  
Ba 165139 Beaucoup 28 SICL 0.19 0.22 1.35 2.5 6.7 24.5 2.43 
   124 SICL 0.19 0.21 1.5 1.5 7 18.5  
   165 SIL 0.15 0.17 1.6 0.75 7.9 12.5  
Ss 165239 Sloan 38 SIL 0.16 0.18 1.45 3 6.7 19 3.00 
   74 L 0.15 0.17 1.5 2 6.7 16.5  
   122 L 0.15 0.15 1.5 0.75 7.2 14  
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Table B.2 continued 
Soil 
musym† 

Soil 
mukey‡ 

Soil Series 
Name 

Horizon 
Depth Texture AWC§ Wilt Pt Bulk 

Density OM pH CEC 0-30 cm 
OM 

   cm  cm cm-1 cm cm-1 g cm-3 %  cmol+ kg-1 % 
Cy 162423 Cyclone 36 SIL 0.16 0.14 1.34 4.5 6.3 14.4 4.50 
   51 SIL 0.16 0.16 1.4 1.25 6.9 21.2  
   124 SICL 0.19 0.19 1.41 1.25 7.3 24.1  
   152 L 0.15 0.15 1.44 1.25 7.3 19.7  
   200 L 0.14 0.09 1.44 0.75 8.7 12.7  
FaA 165162 Fincastle 25 SIL 0.16 0.12 1.45 2.5 5.9 12.5 2.21 
   33 SIL 0.16 0.13 1.45 0.75 5.9 14.2  
   69 SICL 0.19 0.18 1.5 0.75 5.8 22.9  
   127 CL 0.18 0.19 1.6 0.25 6.9 21.3  
   150 L 0.14 0.15 1.8 0.25 7.4 15.7  
   200 L 0.13 0.11 1.8 0.25 8 12.1  
Pb 165218 Palms 89 MUCK 0.25 0.33 0.2 75 6.5 185 75.00 
   203 L 0.14 0.15 1.6 1.5 7.6 8.5  
CaB2 165144 Camden 23 SIL 0.16 0.12 1.3 1.5 6.2 14 1.31 
   94 SICL 0.19 0.18 1.5 0.75 6.2 16.5  
   165 CL 0.17 0.19 1.6 0.75 6.2 13.5  
   178 L 0.14 0.09 1.7 0.75 7.9 8  
Cr 165155 Cohoctah 25 FSL 0.14 0.15 1.45 4.5 7.9 16 4.05 
   81 FSL 0.14 0.12 1.6 2 7.9 10  
   112 FSL 0.14 0.11 1.6 1.25 7.9 8.5  
   152 FSL 0.14 0.08 1.6 0.75 7.9 5  
FtC3 165167 Fox 15 CL 0.14 0.17 1.65 0.75 6.2 17 0.75 
   66 CL 0.15 0.15 1.65 0.75 6.2 15.5  
   152 COS 0.03 0.03 1.7 0.25 7.9 1  
Ma 165189 Mahalasville 30 SICL 0.19 0.25 1.5 4.5 6.7 23 4.50 
   114 SICL 0.19 0.21 1.5 1.25 6.7 18.5  
   127 L 0.14 0.12 1.6 0.75 7.2 12.5  
   165 COS 0.04 0.02 1.7 0.25 7.9 2.5  
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Table B.2 continued 
Soil 
musym† 

Soil 
mukey‡ 

Soil Series 
Name 

Horizon 
Depth Texture AWC§ Wilt Pt Bulk 

Density OM pH CEC 0-30 cm 
OM 

   cm  cm cm-1 cm cm-1 g cm-3 %  cmol+ kg-1 % 
MfC3 165193 Martinsville 18 CL 0.18 0.19 1.55 1.25 6.1 14.5 1.05 
   102 SCL 0.16 0.18 1.6 0.75 5.8 15  
   155 SCL 0.16 0.15 1.6 0.75 6.5 12.5  
   178 L 0.14 0.1 1.8 0.25 7.9 7  
Wr 165249 Westland 25 L 0.15 0.17 1.45 3.5 6.7 19 3.09 
   112 CL 0.17 0.19 1.6 1.25 6.7 17  
   130 SCL 0.14 0.14 1.7 0.75 7.2 11  
   152 COS 0.03 0.02 1.8 0.75 7.9 4.5  

† SSURGO soil map unit symbol; 
‡ SSURGO soil map key; 
§ Available water capacity. 
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