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ABSTRACT

Gupta, Mayank MSIE, Purdue University, December 2018. Computer Vision Ap-
proach for Estimating Human Health Parameters. Major Professor: Vaneet Aggar-
wal.

Measurement of vital cardiovascular health attributes, e.g., pulse rate variabil-

ity, and estimation of exertion level of a person can help in diagnosing potential

cardiovascular diseases, musculoskeletal injuries and thus monitoring an individual’s

well-being. Cumulative exposure to repetitive and forceful activities may lead to mus-

culoskeletal injuries which not only reduce workers’ efficiency and productivity, but

also affect their quality of life. Existing techniques for such measurements pose a great

challenge as they are either intrusive, interfere with human-machine interface, and/or

subjective in the nature, thus are not scalable. Non-contact methods to measure

these metrics can eliminate the need for specialized piece of equipment and manual

measurements. Non-contact methods can have additional advantages since they are

potentially scalable, portable, can be used for continuous measurements, and can be

used on patients and workers with varying levels of dexterity and independence, from

people with physical impairments, shop-floor workers to infants. In this work, we use

face videos and the photoplethysmography (PPG) signals to extract relevant features

and build a regression model that can predict pulse rate, and pulse rate variability,

and a classification model that can predict force exertion levels of 0%, 50%, and 100%

(representing rest, moderate effort, and high effort), thus providing a non-intrusive

and scalable approach. Efficient feature extraction has resulted in high accuracy for

both the models.
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1. INTRODUCTION

Regular and non-invasive measurement of important health attributes such as pulse

rate (PR), pulse rate variability (PRV), and blood pressure (BP), force exertion level

are important due to their fundamental role in tracking one’s fitness level, diagnosis of

cardiovascular diseases, and monitoring of well-being. Such measurements are essen-

tial to obtain warning signs for heart diseases, anxiety, fatigue, and musculoskeletal

disorders (MSDs) at home, while working in the office, or during heavy-lifting jobs

such as in manufacturing shop floors. It becomes really imperative if these frequent

measurements can be done passively using non-contact methodologies. This work

explores the use of facial features from the videos of human to predict these vital

health attributes.

This work proposes the use of computer vision and machine learning technique

that can predict health related metrics such pulse rate (PR), pulse rate variability

(PRV) and force exertion level of the person using the features extracted from the

face video. Pulse rate is the number of times per unit time that the arteries expand

and contract in response to the heart, and is usually expressed in beats per minute

(bpm). Several studies [1–4] suggest that the heart rate of a normal adult is in the

range of 50-90 bpm while during sleep heartbeat of around 40-50 bpm is considered

normal. However, abnormalities in the heart is considered as a key factor for heart

disease and heart failure [5]. Pulse rate variability is the variation in the time interval

between two expansions of the artery. It is usually measured by the variation in beat-

to-beat interval. This metric is considered as a non-invasive technique for measuring

autonomic nervous system (ANS) activity [6]. The autonomic nervous system has two

branches; sympathetic nervous system (SNS) and parasympathetic nervous system

(PNS) and is regulated by hypothalamus. Its function includes control of respiration,

cardiac regulation, vasometer activity and certain reflex actions like coughing, sneez-
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ing, swallowing, and vomiting. High-frequency (HF) component of PRV is affected

by efferent vagal (parasympathetic) activity and it decreases during the conditions

of acute time pressure, emotional strain, mental stress, and elevated anxiety [7–9].

The low-frequency (LF) component of PRV is known to contain both sympathetic

and vagal influences [10]. In the United States, 155 million people work full-time

as part of their daily lives. Although all employers are ethically required to provide

a safe and healthy workplace for their employees, people are still getting hurt daily.

Workplaces injuries like musculoskeletal disorders are preventable, and workplace risk

factors are known. However, monitoring these factors reliably and in a scalable way

is a key challenge. As per [11], MSDs such as strains and sprains that occur due

to overexertion constitutes of 349,050 cases that poses a huge burden on American

workers and industries. Overexertion has been known to be the most promising cause

of disabling injury as reported by the 2017 Liberty Mutual Workplace Safety Index

report that causes a huge direct cost of around $ 13 billion. There are multiple fac-

tors that contributes towards MSDs, but physical work demands has always been

an important contributor for MSDs. Furthermore, they not only impact individual

worker’s health and quality of life [12], they also result in significant cost to employ-

ees and society (e.g., workers compensation, medical care, loss productivity, training

temporary workers). [13–19]. Therefore, it leads to the necessity of measuring PR,

PRV, and exertion level frequently and accurately as it provides critical signs of one’s

well being and any abnormality could lead to potential health problems.

High force exertion levels are reported as the most common contributing factors

with sufficient evidence to suggest a causal relationship for work-related musculoskele-

tal disorders (MSDs) [20–24]. A comprehensive report by the National Institute for

Occupational Safety and Health (NIOSH) lists high/sustained force, repetitive move-

ments, and poor biomechanical postures are contributors to MSDs, with conclusion

that evidence exists linking force to musculoskeletal injuries [25].

Several key physiological and biomechanical mechanisms are proposed for how

force exertions lead to injuries. For instance, chronic low back pain can be a result
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of tears in the soft tissues [26]. For instance, high and/or frequent force exertions

initiates lumbar disc damage and degeneration [27]. In addition to high force exer-

tions, prolonged/sustained force exertions could also lead to work-related MSDs. For

example, prolonged force exertions could lead to wrist injuries where frequent force

exertions by the hand (e.g., pinching and griping) lead to and exacerbate inflamma-

tion of the carpal tunnel cumulative tissue stress can eventually lead to injuries [28].

Currently, the gold standard techniques for measuring PR, and PRV include using

intrusive contact devices such as electrocardiogram (ECG), chest straps, and pulse

oximeters. Traditionally, ECG was extensively used for such measurement but recent

trend has been shifted towards using pulse oximeters because of its low cost. Pulse

oximeters depends on photoplethysmography (PPG) signal for the measurement of

PR and PRV. These devices are generally attached to the skin surface, usually on

fingertip or earlobe for such measurements. PPG is a low cost, non-invasive optical

technique for volumetric measurement of an organ. It utilizes opto-electronic com-

ponents: a source of light to illuminate the skin and a photodetector to measure the

small variation in the light intensity. PPG detects the blood volume change inside

the arteries when the skin is illuminated by the light source. The light when pro-

jected on the skin surface travels through the skin, arteries, and blood vessels. There

are two type of reflected lights received by the pulse oximeter: surface reflections

and sub-surface reflections. The reflection from the skin is surface reflection and is

constant whereas the reflection from blood inside the vessels changes because of the

change in blood volume with each cardiac cycle. The intensity of the sub-surface

reflected light carries the information that can be utilized to calculate the required

health parameters. The change in the volume of blood in arteries and capillaries is

in synchronization with the cardiac cycle. PPG waveform comprises of two compo-

nents, namely the AC and the DC component. AC component comprises of a pulsatile

physiological waveform caused by the changes in the blood volume with each heart

beat and DC component is slow varying and contains low frequency components as-

sociated with respiration, sympathetic nervous system, and thermoregulation [29].
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Therefore, extraction of PPG waveform is very important to measure the well being

of the individual. Although pulse oximeter is easy to use, they have limitations for

frequent measurements. First, it requires the purchase of equipment and needs ei-

ther the health provider or the user to manually perform the measurements. Second,

the device needs to be carried to the different places that the user goes, limiting its

use. Third, the finger clip-on and earlobe clip-on may not always fit well on every

individual due to varying size of fingers and earlobes. The improper fitting of the

device may lead to estimation errors [30]. Fourth, using clip on may be potentially

uncomfortable during long use.

Although repetition, postures, and vibration are contributors to injuries, force

is one of the hardest to measure because it is difficult to observe and depend on

individual’s effort. For example, changes in expressions are subtle unless high forces

and strong efforts are needed. Many methods are currently available to measure the

force exertion levels. However, each method vary in reliability and feasibility as they

are either 1) intrusive (e.g., disrupts the worker while they are performing their job),

2) interfere with human machine interface (e.g., need to install force gauges on tool-

handles and machine controls), 3) subjective, and most importantly 4) not widely

scalable across all workers, jobs, and workplaces as trained ergonomics and safety

professionals are needed to implement these methods.

Various methods have been used by different researchers to measure, estimate

workers hand force exertions. For example, the physical exertion level is commonly

rated using visual scales [31]. Other techniques include estimating hand forces through

context, i.e., using the object weights or checking the carrying loads by observing

and interviewing the workers [32], measured with a force gauge or mimicked on a

hand dynamometer by workers [33, 34], observed by ergonomists, or measured by

electromyography on the forearm muscles [35, 36].

The conventional method to measure hand grip force uses hand grip dynamome-

ters [33,34]. Most hand dynamometers operate using strain gauge and directly mea-

sures hand grip strength. In workplaces, the workers may be asked to replicate the
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tasks forces on grip dynamometers. Although these devices provide actual force mea-

surements, their usability is limited due to their availability to workers.

In observational methods, the force levels are observed and estimated by trained

ergonomists. The ergonomists are trained to recognize these subtle cues (twist in

body, strain in face, perspiration). These signs will become more clear in high force

assessing requirements. This method could be also performed on recorded videos of

the workers. This method is subjective and based on the estimations [37].

Electromyogram (EMG) is a signal that can be measured from the skin surface.

Various studies have used the EMG sensors to measure the muscle activation and

hand grip strength. The EMG signals measures the activation of forearm muscles.

The recorded signals can be filtered and normalized with the maximum activity to

represent the hands grip forces [35, 36, 38]. This method requires the EMG sensors

which are not widely available, cannot be used in workplaces due to time constrains,

and are intrusive to workers.

Thus, this work considers the use of non-contact based robust approach where

passive video of the face can be used to estimate the health metrics of the individual

without the need of any specialized piece of equipment.

Monitoring of health parameters like pulse rate and pulse rate variability using

non-contact methods like videos from camera has been recently considered in [39–46],

where it is shown that the PPG signal can be extracted from the videos of the face.It

can be done without any dedicated source of light with the help of low cost digital

camera. The non-contact measurement using camera’s video could find many appli-

cations including determination of health parameters of people working in an office

environment, shop-floor, newborn infants in the hospital where using contact probes

may not be possible. These applications are promising because of the availability

of cameras in these places. In these works, the PPG signal is extracted from each

individual, and thus the coefficients of the video features that provide the PPG signal

are dependent on the individual. In contrast, we do not consider individual charac-

teristics in the prediction. The proposed method can thus help predict health metrics
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of an individual for which no training sample has been collected in the past, making

our methodology robust. Also, the use of non-contact methodology has an additional

advantage of being scalable, and portable since the presence of camera is ubiquitous

in all electronic gadgets carried by the users.

The novel approach proposed in this work has three key steps. The first step

considers designing the experiments to gather the data. This involves capturing the

video of the subjects under different conditions. Second step involves extracting the

“right” features from different frames of the video. Once the features corresponding

to the face in each frame are obtained, the third step includes training a deep neural

network to learn health parameters from the above obtained features.

1.1 Key Contributions

The key contributions in predicting cardiovascular parameters and force exertion

level are summarized here:

1.1.1 Cardiovascular Parameters:

• One of the key contribution is designing an experiment in order to collect the

data that can help in predicting pulse rate and pulse rate variability from the

facial videos. To the best of our knowledge, there is no existing data-set that

contains such information required to train the machine learning model.

• Most of the work that has been done in providing non-contact mechanism for

estimating pulse rate and pulse rate variability doesn’t involve using machine

learning approach. Most of the methods are dependent on using techniques

of signal processing, and other domain knowledge to estimate cardiovascular

parameters passively. There have been certain work that uses machine learning,

but none of the work predicts pulse rate variability using machine learning. This

work uses the data collected from the designed experiment and extends the use
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of machine learning in such prediction. The approach has been evaluated on

a group of people with different ethnicities, where we find that the proposed

approach has lower than 7.4% error in predicting each of the pulse rate, low-

and high- frequency components of the pulse rate variability. The proposed

approach also reduces the root mean squared error in predicting pulse rate

variability by 83.3% as compared to the state-of-the-art.

1.1.2 Force Exertion Level

• This work provides first ever approach for predicting the force exertion level

using techniques of computer vision and machine learning, to the best of our

knowledge. The proposed algorithm classifies between three different levels of

force exertion, i.e., 0%, 50%, & 100%. The methodology provides an overall

accuracy of over 80% in correctly classifying these three levels. This algorithm

uses efficient feature extraction methods from the facial videos and the PPG

signals to perform the classification. The proposed method first uses a classifi-

cation based on features extracted from the video data to classify between two

levels, 100% and ≤ 50%. The features from the PPG signals are then used to

differentiate between 0% and 50%. Since the PPG signals can be obtained from

the face videos [42], this approach is a computer vision approach with the face

video as an input and an estimate of force exertion level as the output. Since

we are not aware of an existing data set containing face videos and the force

exertion levels, we design our own experiment to collect the relevant data for

training our model. The data is collected using 20 subjects in total, where each

subject was asked to perform different levels of force exertion activities and their

videos & PPG data was recorded. Relevant set of features are extracted from

this data and two neural networks are trained to achieve an overall accuracy of

81.7%.
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• The second key contribution in our work is the extraction of average movement

of facial landmarks from the video data. Such features has never been used

to train a machine learning algorithm for predicting force level in the existing

literature, to the best of our knowledge. The feature extraction is essential

since the large number of features in the face video may cause the classification

algorithm to overfit to training samples and generalize poorly to new samples.

It has been demonstrated that the extracted features are the key features in

training the model to provide the classification between high (100%) & low

(0% & 50%) force exertion level. Deepface algorithm [47] has been used to

process the collected videos. The different frames of the videos are aligned and

human face is detected in each frame using Deepface. The spatial location of

facial landmarks (128 points on the face) are tracked in the entire video and the

average movement of each landmark is calculated relative to its position in the

first frame of the video. The detailed explanation on such feature extraction is

given in Section 4.2.2.

• The third contribution in the proposed paper includes efficient feature extrac-

tion from photoplethysmogram (PPG) signals. PPG signal is collected for each

subject at every force exertion level during our experiments. PPG signal has

been utilized to extract various kind of features as detailed in Section 4.2.2.

This approach of feature extraction is novel, and has not been studied in prior

works to the best of our knowledge. The extracted PPG features provide second

level of classification between 0% and 50% force exertion levels in our work. For

the cases where the face video signals predict the low levels (0% or 50%), the

extracted features from the PPG signals are used to obtain efficient classifica-

tion.

• The proposed approach is shown to be robust to unseen data from an activity

level that is different from the activities in our experiment. This is done by

recording the face video and the PPG signals of the subjects at a new activity



9

level corresponding to when the subject is talking. The average movement

landmarks for talking were extracted from the videos, and were used to predict

force exertion level from our first model. If the first model predicts low, the

extracted PPG features from the obtained PPG signal are passed through our

second trained model. The results shows that first model classifies 7 out of 7

subjects belonging to low (0% & 50%) force exertion level category and second

model predicts 0% force exertion level for 5 out of 7 subjects

The rest of the chapters are organized as follows: The discussion on the related

work is presented in chapter 2. The experiments conducted to gather the data is ex-

plained in chapter 3. The novel approach adapted to process videos, extract features,

and train neural networks is explained in 4. The results obtained in this work are

demonstrated in chapter 5. Chapter 6 provides additional discussions for the obtained

results and Chapter 7 concludes the thesis with a brief mention of the potential future

work.
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2. LITERATURE STUDY

Over the past decade, there has been interest in developing methodologies for mea-

suring health metrics like pulse rate, pulse rate variability, blood pressure, and blood

oxygen level using non-contact devices (e.g., camera videos) as opposed to contact

devices [39–42, 48–51]. Although pulse oximeter device provides easier method for

measuring PR and PRV than using ECG, but non contact method has its own ben-

efits as discussed in chapter 1.

The authors in [49] showed that it is possible to extract PPG signal from the video

using complementary metal-oxide semiconductor camera by illuminating a region of

tissue using through external light emitting diodes at dual wavelength (760nm and

880nm). Further, the authors of [39] demonstrated that PPG signal can be estimated

by just using ambient light as a source of illumination along with simple digital cam-

era. Further in [40], PPG waveform was estimated from the videos recorded using low

cost webcam. The red, green, and blue channels of the images were decomposed into

independent sources using independent component analysis. One of the independent

source was selected to estimate PPG and further calculate PR, and PRV. All these

works showed the possibility of extracting PPG signal from the videos and proved

the similarity of this signal with the one obtained using contact device.

The authors of [42] proposed a methodology that overcomes a challenge in ex-

tracting PPG for people with dark skin tones. The challenge due to slight movement

and low lighting conditions during recording a video is also addressed. They imple-

mented the method where PPG signal is extracted from different regions of the face

and signal from each region is combined using their weighted average making weights

different for different people depending on their skin color.

There are other attempts where authors of [43–45, 52] have introduced different

methodologies to make algorithms for estimating pulse rate robust to illumination
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variation and motion of subjects. The paper [45] introduces a chrominance-based

method to reduce the effect of motion in estimating pulse rate. The authors of [44]

uses a technique in which face tracking and Normalized Least Square adaptive filtering

is used to counter the effects of variations due to illumination and subject movement.

The paper [52] resolves the issue of subject movement by choosing the rectangular

ROI’s on the face relative to the facial landmarks and facial landmarks are tracked in

the video using pose-free facial landmark fitting tracker discussed in [46] followed by

the removal of noise due to illumination to extract noise-free PPG signal for estimating

pulse rate.

Recently, use of machine learning in prediction of health parameteres have gained

attention. The paper [53] used supervised learning methodology to predict the pulse

rate from the videos taken from any off-shelf camera. The authors trained the support

vector machine with radial basis function. Their model showed the possibility of using

machine learning methods to estimate pulse rate. However, our method outperforms

their results when root mean squared error of the predicted pulse rate is compared

which is discussed later in the paper. The authors in [54] proposed a deep learning

methodology to predict pulse rate from the facial videos. The researchers trained

a convolutional neural network (CNN) on the images generated using Short-Time

Fourier Transform (STFT) applied on the R, G, & B channels from facial region of

interests. The authors of [53,54] only predicted pulse rate and this work is extended

in predicting pulse rate variability as well.

All the related work discussed above utilizes filtering and digital signal processing

to extract PPG signal from the video which is further used to estimate the PR and

PRV. The method proposed in [42] is person dependent since the weights will be

different for people with different skin tone. In contrast, we propose a deep learning

model to predict the PR and PRV which is independent of the person who is being

trained. Thus, the model would work even if there is no prior training model built

for that individual and hence, making our model robust.
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Advances in computer vision and machine learning have the potential to address

limitations of current ergonomics state-of-the-art methods for collecting force exer-

tion data in workplace exposure assessments. Automated video exposure assessment

has been used in previous studies to automatically quantify repetitive hand activity

with the use of digital video processing [55]. Using video recordings to measure the

ergonomic risk factor of repetitive motions, the investigators developed algorithms

that tracked the hand and calculated kinematic variables of tasks such as frequency

and speed [56]. The authors of [57] demonstrated that marker-less video tracking

algorithm can be used to measure duty cycle and hand activity levels in repetitive

manual tasks. The computer vision-based motion capture has been used previously to

track and build on-site biomechanical model of the body and minimize work related

ergonomic risk factors on construction sites [58–60]. The computer vision approach

provides a promising tool for quantifying ergonomic risks from repetitive movements

and potentially non-neutral postures; however, force exertion levels are another key

ergonomic risk factor that computer vision techniques have not been developed to

detect force exertion levels that may associate with injury risks.

Photoplethysmogram (PPG) is an optical technique for the volumetric measure-

ment of the organ. It generates a pulsating wave based on the changes in volume

of the blood flowing inside the arteries. Recently, there has been growing interest of

the researchers in exploring PPG signal. Till date, the PPG signal has been used to

extract information such as oxygen saturation level, blood pressure, respiration rate,

pulse rate, and pulse rate variability. It is also a promising technique that is used in

early screening of various atherosclerotic pathologies [61]. The amplitude of the PPG

has been used as an indicator to vascular distensibility [62]. This information is used

by anesthesiologists to judge subjectively whether a patient is sufficiently anesthetized

for surgery. PPG waveform can be a useful tool for detecting and diagnosing cardiac

arrhythmias as well. The researchers have also analyzed first and second derivative

of PPG signal. The first derivative of the PPG can also be used to calculate the aug-

mentation index which is a measure of arterial stiffness [61]. The measure of arterial
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stiffness can be further be related to vascular aging [63]. There have been numerous

applications of PPG signal and researchers are still exploring the potential of this

signal.



14

3. DATA COLLECTION

This chapter focuses on the novel experimentation methodology developed for collect-

ing the data to train a machine learning model. There are two different kind of ex-

periments conducted to capture data related to cardiovascular parameters (pulse rate

and pulse rate variability) and force exertion level of the person respectively. Both the

experiments are conducted at Purdue campus under the Institutional Review Board

protocol No. 1707019484 & 1708019605. The details of both the experiments are

given below.

3.1 Experiments for cardiovascular parameters

The experiment is designed to collect data in order to predict pulse rate and pulse

rate variability. From here on, this experiment would be denoted as Experiment A.

3.1.1 Set-Up

In order to predict the vital health metrics, the face video of the person are used.

Therefore, the foremost task in the experiments is to capture the human facial videos.

The videos are captured using a 5 MP front-facing Hello face-authentication camera

(1080p HD) from Microsoft Surface Book, that has 30 frames per second (fps). It is a

Microsoft-designed infrared camera with designated infrared light source to increase

accuracy of face recognition. The camera is capable of capturing red, green and

blue color bands. The authors of [39] suggested that green channel of the video

outperforms blue and red channel in estimating the health parameters. Therefore,

the green channel of the camera is utilized to maximize the signal noise ratio for
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Fig. 3.1. Experimental set-up. The contact probe of Shimmer3 GSR+
is attached to the earlobe and laptop camera is placed around 0.5 m
away from the subject.

model training. The features obtained from these videos will be used to predict the

health metrics.

In order to train the data, true values of PR and PRV are calculated using a contact

measurement device, Shimmer3 GSR+, that records the ground truth PPG signal.

The earlobe is chosen as the suitable position for recording PPG since it is close to the

face. This proximity is cared about since face is used for our video recordings as well.

Subjects were asked to sit still for capturing the video, facing towards the camera

at a distance of approximately 0.5m, and PPG signal was recorded simultaneously

through Shimmer3 GSR+ device. One minute video was recorded for each subject.

The longer the duration for PPG signal, the better estimate it gives for pulse rate

variability [64]. Therefore, 1 minute was considered as the sufficient time for our
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experiments. The set-up for conducting experiments is shown in figure 3.1 where a

person is sitting still in front of the camera with Shimmer attached on the earlobe.

3.1.2 Experiments

The measurement for each subject is obtained in a room with constant lighting

and background environment to reduce the variations in terms of illumination in the

videos and across different subjects. The method of conducting the experiments is

shown in Figure 3.1. The study involved people of different skin colors, race, and

age to introduce variability in the data. Different activity levels are designed that

need to be performed by each subject. The different activity levels at which the

measurements were collected are: Rest Position, Brisk Walk, and Exercise, and are

described next.These different activity level ensures variation in the ground truth

values of pulse rate and pulse rate variability, thus providing variation in the dataset.

Activity Levels

The different activity levels designed are:

Rest Position: The first experiment was conducted when each participant was

at rest condition. Each subject was asked to relax and sit still in front of the camera.

The video and Shimmer device recordings were performed simultaneously. The main

aim for this activity level was to capture the cardiovascular parameters at normal

levels.

Brisk Walk: The next experiment involved data collection of the same partici-

pants after they were asked to do brisk walk for 0.25 mile at a speed of 3-4 mph on the

treadmill. The video and shimmer recordings were captured as soon as the subject

complete the brisk walk. It was made sure that there was no time gap between the

walking and video recording. This helped in capturing the changed health parameters

due to walking and helped obtain variety in pulse rate in the collected data set.
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Exercise: The last experiment involved the task of performing either push-up

or sit-up by each participant. All subjects were asked to perform as many push-ups

or sit-ups as they can such that they exert themselves to their full capacity. The

typical for this exercise was 10-25 push-ups or sit-ups depending on the individual.

The video and Shimmer device recordings were performed as soon as each participant

completed the task of performing this exercise. This activity was designed to elicit

high pulse rate since the individual was working out at their full capacity.

The reason for three different kind of activities was to capture wide range of

conditions for the training data. During the rest position, the pulse rate of the

subject will be normal but it will increase as person switches to brisk walk and then

to exercise. Figure 3.2 shows the difference in the mean value of pulse rate (bpm) for

different subjects under three levels of activity. The mean pulse rate for rest, walk,

and exercise condition was recorded to be 72.9, 79.6, and 98.53 respectively. Each

subject was asked to quickly record the video and PPG after each activity so that the

pulse rate does not go back to normal before taking the video. Each subject was given

a rest of 10-15 minutes before each activity so as to recover the pulse rate and bring

it back to normal level. The rest time was enough to recover as for healthy adults,

pulse rate falls at a rate of about 20 beats per minute after intense exercise [65]

3.2 Experiments for exertion level

An another experiment has been designed to collect the data that will be used

to predict force exertion level. A study was conducted where each subject exerted

varying levels of muscle force. During these activities, we collected the videos of the

person performing the activity as well as data regarding the volumetric blood flow by

capturing PPG signal using pulse oximeter. Figure 3.3 shows the complete set-up we

used in our study. From here onwards, this experiment would be called as Experiment

B.
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Fig. 3.2. The mean value of pulse rate measured in beats per minute
for all the subjects under different activity levels.
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Fig. 3.3. The experimental setup with a subject holding a grip dy-
namometer and pulse oximeter attached to the earlobe. The GoPro
attached on the tripod is used to capture the video

3.2.1 Study participants

Twenty healthy volunteers participated in this study. The participants were re-

cruited from a university population through email including a description of the

study. This study was reviewed by the university’s Institutional Review Board and

all participants provided informed consent. The only exclusion criteria were current

injuries that prevented participants from performing force exertions. Sixteen males

and 4 females participated in the study, all were right hand dominant, and their ages

ranged from 18 to 29 years. The details of all the subjects that participated in the

study is given in Table 3.1.
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3.2.2 Study Setup

The power grip dynamometer was used to measure the grip force of each subject.

This devise helps in measuring the maximum isometric strength of the hand and

forearm muscles and hence helps us collecting the ground truth of force exertion level

for each subject.

A GoPro camera was used to capture the video of our subjects while they were

performing different kind of activities. We placed GoPro in front of the subject,

around 0.5 meter away from face, and video recorded the subject during the entire

experiment. It is a 12 MP camera and recordings are done at 50 frames per second.

The photoplethysmogram (PPG) signals were recorded using using pulse oximeter.

The PPG signals were captured by Shimmer GST+. This device has a contact probe

that is attached to the earlobe. The earlobe is chosen as the suitable position for

recording the PPG.. Although the signals could be estimated using the non-contact

methodologies [42], in this study the actual PPG signals were recorded using pulse

oximeter to minimize the errors of estimation.

Table 3.1.
Data for 20 subjects in Experiment B

Female (n=4)

Mean ± SD Min Max

Age (years) 20.0±1.4 19 22

Weight (lb) 124.0±33.9 100 148

Grip Force (lb) 47.0±15.4 30 62

Male (n=16)

Mean ± SD Min Max

Age (years) 20.8±2.7 18 29

Weight (lb) 133.8±21.7 110 168

Grip MVC (lb) 88.8±20.4 62 118
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3.2.3 Study Design

At the beginning of the data collection session, participants were provided a de-

scription of the study, and written consent was collected. First, the subjects were

seated in front of the white background to minimize the noise in video processing in

detecting the face. The handheld dynamometer was calibrated as per the hand size to

ensure standardized and comfortable gripping postures for each subject. This follows

attaching pulse oximeter’s contact probe properly to the subject’s earlobe.

Participants were given a 5-minutes practice period to familiarize with the devices

and environment. The overall study involved three different activity levels at different

setting of grip dynamometer. In the first trial, each participant performed a grip

exertion at maximum force that they are capable of. The subjects were instructed

to maintain the maximum force for 9 seconds (note that although the magnitude of

the force may decrease during the 9-seconds, participants continued to exert their

maximum effort). The recordings were stopped after 9 seconds.The second exertion

trial was 0% grip force. In this trial, subjects were asked to hold the grip dynamometer

without exerting any grip force. The subjects rested for 5-10 minutes between each

force exertion levels to prevent fatigue effects from carrying over to the next force

exertion trial. The rest period was also enough for subjects to recover from increased

pulse rate during the activity [65]. Finally, the last trial was force exertions at 50%

of maximum force . In this trial, each subject was asked to exert exactly 50% of their

maximum grip contraction. The distribution of the grip force for different subjects is

reported in Table 3.1.
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4. METHODOLOGY

This chapter gives a detailed explanation about the methodology used to process the

recorded data during our experiments and convert it into meaningful features that can

help us in predicting the cardiovascular parameters (pulse rate, pulse rate variability)

and force exertion level for each subject.

The overall method adopted for processing data from both the experiments in-

cludes three main steps:

1) Processing the videos using techniques of computer vision to extract the relevant

regions from each frame of the video

2) Feature extraction from each of the processed frame.

3) Training a neural network model that will take extracted features as an input

and outputs the predictions.

4.1 Video Processing

In this work, videos are processed using an existing state-of-the-art algorithm

called Deepface [47]. This algorithm has been developed by the researchers at Face-

book. Deepface is a face recognition algorithm that consists of four main stages: 1.

Detect 2. Align 3. Represent, and 4. Classify.

There have been other work in developing algorithm for facial recognition [66–71],

but Deepface [47] reached an accuracy of 97.35% in Labeled Faces in the Wild (LFW)

dataset and reduced the error in face recognition of current state-of-the art by more

than 27%. The high accuracy in Deepface is achieved by revisiting both alignment

and representation step. 3D face alignment has been done using piecewise affine

transformation and face representation is derived using 9-layer neural network which
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is a key for the high performance. Therefore, we utilized Deepface for recognizing

faces in our approach.

4.1.1 Video Processing for Experiment A

The video is recorded for 1 minute for each subject under different activities as

referred in 3.1.2 but for our analysis, first 50 seconds of the video are used (The last

8-9 seconds video was corrupted for 3 subjects and in order to keep consistency, we

trimmed our videos to 50 seconds). Entire video is broken into frames where each

frame is composed of red, green, and blue color bands. The first step in the video

processing involved the detection of human face in each frame of the video. The

detected human face is then aligned automatically by DeepFace using 3D alignment

method [47]. The aligned face was cropped from the image using the landmark points

on the face shown in Figure 4.2.

4.1.2 Video Processing for Experiment B

The 9 seconds video of each subject is trimmed to 7 seconds before passing it to

Deepface. The first 2 seconds of videos are removed because each subject requires

initial 1-2sec to reach to the required force level. Each video is recorded at 50 frames

per second and hence, consists of 350 frames We process all these frames using Deep-

face that recognizes and aligns the face of each subject across the frames using 68

landmark points on the face. Figure 4.1 shows how deepface is used to extract faces

from the each frame in the video. Figure 4.1 (a) is an example of an actual frame in

the video. DeepFace recognizes the face of the person in each and crops the face out

of it as shown in Figure 4.1 (b). This algorithm helps identify 68 landmark points

on the face as depicted in Figure 4.1 (c) and track these 68 landmark points over the

whole video The 68 landmark points represents the contour of the face, eyebrows,

eyes, lips, and nose. Detecting and aligning the face in each frame of the video is
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Fig. 4.1. The steps followed for feature extraction from each frame
of the video. (a) The actual image (one of the many frame) from the
video captured during the experiment. (b) The detected and aligned
face using DeepFace. (c) The face along with the 68 landmarks on it.
These 68 landmark points are used by DeepFace in face recognition.

one of the most critical step in our overall methodology, because relevant features to

train a neural network will be extracted from the output of Deepface.

4.2 Feature Extraction

The extraction of “right” features is important as it plays significant role in train-

ing a neural network. The choice of relevant features leads to the simplification of

the models which in turn requires shorter training time [72]. “Right” set of features

helps in avoiding the curse of dimensionality and leads to generalization of the model

by reducing the variance in the model [73].

4.2.1 Feature Extraction for Experiment A

The image was cropped so as to have only face feature and removing extra pixel

values from the images. The forehead was carefully retained since it contains the

maximum information about blood perfusion inside the arteries [42]. Therefore, the
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amount of information contained in the pixel values of forehead was important for

our analysis. The cropped images were used for training the deep learning model.

The stages of video processing are shown in Figure 4.2. The pixel instensity values

becomes the relevant set of features, D0, from experiment A.

4.2.2 Feature Extraction for Experiment B

Features from Videos

Deepface utilizes the information of 68 landmark points on the face. The proposed

method use 128 landmark points on the face as shown in Figure 4.4. Based on

68 landmark points, we locate 60 more landmarks on the face that lies on the left

and right cheeks. Thirty landmarks on each cheek is located based on the location

of landmarks on the contour of the face and eyes. Different landmark points can

be grouped together based on the location on the face as: 1: Contour of Face (17

landmarks), 2: Left Eye with left eye brow (11 landmarks), 3: Right eye with right

eyebrow (11 landmarks), 4: Nose (9 landmarks), 5: Lips (16 landmarks), 6: Left

Cheek (32 landmarks), 7: Right Cheek (32 landmarks).

All the 128 landmark points are tracked in 350 frames for each video. The location

(x and y co-ordinate values) of each landmark is extracted and based on the location,

the average movement of each landmark with respect to its location in the first frame

is calculated over the entire video. For each video, average movement, dj,of each

landmark, j, is given in equation 4.1

dj =

∑n
i=1

√
(xji − xj1)2 + (yji − yj1)2

n
(4.1)

where n is the number of frames in the video. Thus, the set D1={d1, d2.......d128}

is our first set of features used in the prediction of exertion level. These features are

potential indicator of exertion level as they depict how each point on the face moves

in the entire video when subjects are asked to perform different exertion level activity.
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Features from PPG

The other set of features is derived using PPG signal captured during our data

collection experiments. PPG signal of each subject consists of multiple beats where

each beat is defined as the set of consecutive values of PPG having a maximum PPG

value between two minimum values as highlighted in yellow color in Figure 4.3 (a).

Therefore, for each beat we have a starting point denoted at T1, maximum point

denoted as T2, and end point denoted at T3. The total number of beats of 7 seconds

recorded PPG were varied from 8 to 12 beats. Therefore, from each PPG signal

following features are extracted:

• Time interval between T1 and T2 is extracted for first 5 beats

• Time interval between T2 and T3 for first 4 beats

• Time interval between T1 and T3 for first 4 beats

• Standard deviation of PPG values at T2 for all beats

• Standard deviation of PPG values at T1 for all beats

• Mean of three time intervals: T1 and T2, T2 and T3 and T1 and T3

• Standard deviation of three time intervals: T1 and T2, T2 and T3 and T1 and

T3

The above mentioned 21 features were extracted from PPG signal corresponding

to each video. The set of these 21 features is referred to as D2 in rest of the document.

The PPG features extracted from the signal corresponds to the cardiovascular activi-

ties of the person during different experiment levels. In this work, we extracted these

features from PPG signal that is captured using a contact device. Recently there

have been advancements in passively estimating the PPG signal using facial video

without the need of any contact device. There are many state-of-the-art techniques

discussed in [39–42,48–51] that utilizes videos of the human to extract PPG signal.
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Fig. 4.3. Collected PPG Signals (a) 0% grip force (b) 50% grip force;
T1: time at first local minimum of the beat, T2: time at local max
of the beat, T3: time at the end of the beat

Fig. 4.4. The location of 128 landmark points on the face for different
subjects. Additional 60 landmarks have been identified on the face
for efficient model training

The features extracted for model training is our main novelty as none of the other

authors have extracted such features and used machine learning to predict the force

exertion level. This is the first ever work that utilizes such facial and PPG features.
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Fig. 4.5. The architecture of a fully connected neural network with
three hidden layers for training features from Experiment A
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4.3 Model Training

4.3.1 Model Training for Experiment A

We train a deep learning model using TensorFlow to estimate the health metrics.

The model was trained through multi layered neural network. The architecture of the

neural network, NN0, used for training D0 is shown in figure 4.6. A fully connected

neural network with three hidden layers is used. The network consisted of rectified

linear units (ReLU) and the rectifier activation is given as f(x) = max(0, x), where x

is the input to the neuron. The network is trained using back propagation algorithm

with mean squared error as the loss function. The green color band was shown to be

the best source for extracting information about the health parameters [39]. Hence,

we utilized all the pixel values corresponding to the green channel of each frame

to train our machine learning model. Image from each frame is down sampled to

20x20 image. Hence, we used 400 features from each frame to train the model. The

features were normalized to bring them in a range of [0,1] so that it becomes easy

for neural network to learn from the data. The down sampling was done to reduce

the computational expense of our model. The actual response value i.e. PR and

PRV was extracted from the PPG signal recorded during our experiment. In order to

extract actual PR from PPG, we computed power spectral density (PSD) of the PPG

signal using fast Fourier transform (FFT) algorithm. The PR is then estimated as

the frequency corresponding to the maximum power in the PSD (PR= 60. f bpm),

where f is the required frequency. The LF and HF components of PRV are calculated

by computing the area under the PSD curve between specific frequency range. For

LF, the frequency range is 0.04-0.15Hz and for HF, it is 0.15-0.4Hz. We used PR,

HF, and LF as a response variable to train our model.

The PR and the two components of PRV estimated from PPG were trained for

the whole video of 50s which contains 1500 frames. The computation accuracy of

PRV increases with video duration [64], therefore, we utilized the whole video at once

to train the network.
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4.3.2 Model Training for Experiment B

After all the relevant features D1 and D2 are extracted, we train two neural

networks : NN1 & NN2 to predict the three levels of exertion level of human. The

feature set D1 is used for training NN1 that classifies 100% force exertion level and

rest of other levels (0% & 50% ) and further feature set D2 is trained on NN2 to

classify between 0% and 50% level.

The architecture of both NN1 and NN2 used to train the features is same as

shown in Figure 4.6. The extracted features D1 & D2 were used as the input data

into a neural network with 1 input , 3 hidden and 1 output layers as shown in Figure

4.6. For each hidden layer, 35 neurons are used. The activation function used in the

training of network is exponential linear units (ELUs) [74] as defined in equation 4.2.

Batch normalization is used in each hidden layer [75]. The use of drop-out is one of

the simplest way to avoid over-fitting of the neural network [76]. Drop-out rate was

set to 50% to avoid over-fitting in all the three hidden layers. This will help in better

generalizing the network for unseen data. In the output layer, two neurons were used

for 100% and rest (0% and 50%) for NN1 & 0% force exertion and 50% force exertion

level for NN2. The best performance of the network is achieved with using Adam [77]

as an optimizer along with categorical cross-entropy as a loss function.

f(x) =

x, if x ≥ 0

α× (ex − 1) if x ≤ 0

(4.2)
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Fig. 4.6. The architecture of a fully connected neural network with
three hidden layers
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5. RESULTS

This chapter details about the prediction results in case of both the types of problems

considered in this work: regression problem in order to predict pulse rate, and pulse

rate variability; classification of prediction of force exertion level of the human. The

results are computed from the different neural network models. The point to note

here is that, for regression problem, the output layer had 1 neuron with mean squared

error and a loss function, whereas in classification problem, the output layer of the

neural networks used had two neurons and categorical cross entropy has been used

as the loss function.

5.1 Result for predicting Pulse rate and pulse rate variability

5.1.1 Pulse Rate

The values of PR predicted by the model were compared with the true values

calculated from the readings of contact device and the errors were calculated accord-

ingly. The mean absolute percentage errors were calculated using leave-one-out cross

validation. To be more specific, since there are 20 subjects in total, nineteen out of

the twenty subjects are chosen and picked out all observations from those nineteen

subjects to make up our entire training set. All observations for the subject that

was left out from the training set were considered as the test set. This procedure is

iterated for each subject to make sure that model is tested on each individual. Since

the data from test set is completely new compared to the training set, this tells us

how the model predicts on subjects it has never seen before, regardless of skin tone,

race, and facial features.
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The Mean absolute percentage error (MAPE) and Root Mean Squared Error

(RMSE) for our predictions is calculated. The mean of errors on all 20 subjects

was found to be 4.6%. Similarly, RMSE value for our test set is found out to be

4.39. The authors of [53] reported a RMSE of 9.52 on test set in predicting PR

meaning that our model outperforms theirs and shows a reduction in RMSE by 53%

for predicting PR.

Figure 5.1 shows how the test and train loss varies with number of iterations run

by the neural network. For computation, mean squared error is used as the loss

function. The number of iterations were chosen based on the behavior of test and

train loss. If the number of iterations were too low, it lead to under-fitting wherein

both train and test error were high and if number of iterations were too many, it lead

to over-fitting. In order to avoid these scenarios, the model is run for 170 epochs.

Figure 5.2 shows a scatter plot between predicted and actual values of pulse rate.

The straight line shown is a 45 degree line (y = x), and the closeness of the scatter

points to the straight line indicates the high accuracy of our model.

5.1.2 Pulse Rate Variability

Another health metric considered in this paper is pulse rate variability. The model

is trained using High-Frequency component and Low-Frequency component of PRV.

The separate models to train our model to predict the HF component and the LF

component are designed.

The models are tested using leave-one-out cross validation method similar to the

pulse rate. The model makes predictions on the user who has not been seen before in

the training data. The number of iterations to run our PRV model is chosen as 200.

The test and training losses with iterations for the LF and the HF component of the

PRV are depicted in Figure 5.3 and Figure 5.5, respectively.

For predicting normalized LF, mean absolute percentage error on test set is 4.58%,

and the root mean squared error is 3.49. On the other hand, the MAPE for normalized



35

Fig. 5.1. Behavior of train loss and test loss for predicting pulse rate.
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Fig. 5.2. Scatter plot of the predicted PR value vs. the ground truth
PR value. The straight line is function y = x. The closeness of the
points to the line indicates the model accuracy.
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Fig. 5.3. Training loss and test loss for predicting Low Frequency
(LF) component of PRV
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Fig. 5.4. Scatter plot of the predicted LF value vs. the ground truth LF value.
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Fig. 5.7. Plot of behavior of Mean Absolute Percentage Error against
number of hidden layers in a neural network for predicting cardiovas-
cular parameters

HF is found to be 10.2%, and the RMSE is 4.96 for test data. The mean RMSE of

PRV for our model is 4.3 whereas the mean RMSE taken over different skin colored

people in [42] is 25.3 thus providing 83% decrease in the RMSE for predicting PRV.

Figure 5.4 and Figure 5.6 depict the comparison between the actual values and the

predicted values for the two components of the PRV, respectively.

The neural network used in predicting all the above stated cardiovascular param-

eters uses three hidden layers in their architecture. Figure 5.7 provides the reasoning

for this choice. Figure 5.7 shows how MAPE changes with respect to the number of

hidden layers in the neural network while predicting different cardiovascular param-

eters. The value of MAPE is higher when 2 hidden layers are used as compared to

3 hidden layers. This could be because of insufficient number of layers to learn the
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pattern in the data well. Also, we see that as the number of hidden layers exceeds

3, there is increase in the value of MAPE for all the three variables of interest. This

could be because network might be over-fitting the training dataset because of higher

number of layers and hence doesn’t generalize well on the test dataset, and hence

higher MAPE.

5.2 Results for predicting Force Exertion Level

This section summarizes the classification results of both neural networks i.e., NN1

& NN2. The performance of final model is discussed along with the noise analysis

that shows the robustness of the trained model.

5.2.1 Force level classification using D1

The classification between 100% (group A) and 0% & 50% (group B) is done using

NN1. The model is trained using a fully connected neural network as architecture

that utilizes average movement of landmark points. The neural network is trained

for 200 epochs. The number of epochs are decided based on the performance of

test and train loss curves . The test loss for the performance of neural network is

reported using leave one out cross validation approach meaning during training the

neural network, the data for average movements of all force level for 19 subjects is

used and once the model is trained, the performance is measured using data from

1 subject that has been left out of training. This approach has been repeated for

all the subjects and the average accuracy on test set has found to be 90% . The

graph in figure 5.8 represents the behavior of accuracy and loss value for test and

training dataset for one of the subject. Table 5.1 shows the accuracy results for all

subjects. The subjects with ’o’ represents that they have been correctly classified for

a particular group and subjects having ’x’ corresponding to a particular group shows

that the class is predicted incorrectly. We can predict Group B correctly for all the
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Fig. 5.8. The behavior of accuracy and loss values of NN1 for test
and train dataset against number of epochs

subjects except subject no. 6 and also we predict group A correctly 17 out of 20

subjects leading to an overall accuracy of 90%.

5.2.2 Force level classification using D2

After classifying Group A and Group B using NN1, NN2 is used to classify the

0% and 50% force exertion level in Group B. This neural network model utilized

all the features extracted from PPG that has been described in section 4.2.2. This

neural network is trained for 175 epochs. The number of epochs are chosen such that

model doesnot ovefit. The technique of early stopping [78] is used here to avoid over-

fitting, reduce variance in the model and generalize model well over unseen data. This

model also uses same approach of ”leave one out” as has been discussed in previous
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Table 5.1.
Table showing prediction results for NN1

Subject ID 1 2 3 4 5 6 7 8 9 10

Group A o o o o o o o o o o

Group B o o o o o x o o o o

Subject ID 11 12 13 14 15 16 17 18 19 20

Group A o o x x x o o o o o

Group B o o o o o o o o o o

Table 5.2.
Table showing prediction results for NN2

Subject ID 1 2 3 4 5 6 7 8 9 10

Group B-0% o o o x o x o o o o

Group B-50% o o x o o o x o x o

Subject ID 11 12 13 14 15 16 17 18 19 20

Group B-0% o o o o o o o o o o

Group B-50% o o x x o o o x o o

subsection. The average accuracy on 20 subjects is 80% for NN2. The behavior of

the accuracy and loss values for testing and training data while training the neural

network is shown in Figure 5.9. Table 5.2 shows the average accuracy results for each

subjects. The subjects with ’o’ represents that they have been correctly classified for

a particular group and subjects having ’x’ corresponding to a particular group shows

that the class is predicted incorrectly. The model can correctly predict 0% force

exertion level for 18 out of 20 subjects and 50% force exertion level for 14 subjects

out of total of 20 leading to an overall accuracy of 80%.
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Table 5.3.
Table showing final prediction results from NN1 & NN2

Subject ID 1 2 3 4 5 6 7 8 9 10

0% force exertion o o o o o x o o o o

50% force exertion o o x x o o x o x o

100% force exertion o o o o o o o o o o

Subject ID 11 12 13 14 15 16 17 18 19 20

0% force exertion o o o o o o o o o o

50% force exertion o o x x o o o x o o

100% force exertion o o x x o o o x o o

5.2.3 Final Model

The proposed methodology breaks the process of classifying different force exer-

tion levels into two steps and the accuracy results for two scenarios are presented

separately. The overall accuracy of the two models combined is calculated to be

81.7%. The predictions for all the subjects has been combined together from NN1

and NN2 and has been shown in Table 5.3. There were some subjects that had same

facial expression during both 50% and 0% force exertion level experiment and there

was no significant difference between average movement of the 128 landmarks between

these two levels. Hence, it is not advisable to use average movement of the landmark

points as classifying feature between 0% & 50% force exertion level. Therefore, PPG

features were extracted that related the cardiovascular parameters with force exertion

level.

In this work, it was attempted to train one neural network that uses both facial

features and PPG features together and classify three levels of force exertion. The

accuracy result for such neural network was below 70% and the the further reason to

train two different neural networks are given in section 6.2
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5.2.4 Model Robustness

In order to check the robustness of the model that classifies force exertion level,

we collected the data of 7 additional subjects while they were performing different

kind of activity. The videos of the subjects using the same experimental set-up are

captured when they were not performing any sort of force exertion activity, but are

talking. Each subject was asked to speak a paragraph on themselves for 9 seconds for

and their video along with PPG data was recorded during this activity. This activity

is named as ”talking”.

Using the same processing technique, D1 and D2 set of features are extracted for

all the subjects during talking. The set D1 is passed through trained NN1 and set

D2 is passed through trained NN2 and predictions are made as of what activity level

they belong to.

It is interesting to note that for all the 7 subjects when D1 is passed through NN1,

it always predicts group B for the activity level which means that the algorithm is

able to differentiate between talking and 100% and therefore gives high probability to

group B. When set of features derived from PPG are used as an input to the trained

NN2, for 5 out of 7 subjects, the model predicted it to be 0% force exertion level and

for 2 out of 7 subjects, model predicts as if subjects are at their 50% force exertion

level. Note that the data corresponding to talking was not used while training the

network. It is completely unseen data for our two trained neural networks.
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6. DISCUSSION

It has been demonstrated that the techniques of computer vision and machine learn-

ing can predict the pulse rate, pulse rate variability, and force exertion level using

extracted features and provides a novel approach for such estimation. Understand-

ing force exertion levels has important implications across domains and applications,

and in this work, the approach is demonstrated in the context of workplace injuries.

Specifically, varying levels of force and duration/frequency of these forces are pre-

dictive of musculoskeletal injuries. This section provides more discussion on using

machine learning in prediction of force exertion level and provides more insights on

the selected features for the prediction of force exertion level.

6.1 Machine Learning in Classifying Force Levels

The use of machine learning is two-fold in this work. First, the machine learning

is used in DeepFace algorithm for facial recognition that our team further augmented

with increased number of features. Secondly, we use machine learning to generate a

classifier to predict different force exertion levels.

There are various methodologies [66–71, 79, 80] proposed that can achieve facial

recognition but the methodology proposed in [47] outperforms other methods and re-

sults in the accuracy of 97.35% in Labeled Faces in the Wild (LFW) dataset, reducing

the error in face recognition of current state-of-the-art by more than 27%. The 9 layer

neural network used in Deepface makes it more robust to detect faces in the video

for our study and henceforth extract relevant features from the video frames. These

facial features represent a key component for force classification.

The second use of machine learning is force classification. In this step, we added

additional novelty by leveraging the underlying physiological mechanisms of generat-
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ing muscle forces to improve force classification accuracy. Thus, features from PPG

are included as well and deployed a fully connected neural network to train a model

that can distinguish between different force exertion levels. The neural networks are

known to be universal approximators [81] and hence we use them to identify the

underlying function explaining the relationship between the features and response

variable.

6.2 Facial Features Selection

The average movement of detected facial landmarks along with the cardiovascular

features derived from PPG in different exertion levels have been used to classify the

force exertion levels. The novelty lies in choosing these relevant facial features. As

the person increases her effort level, facial expression tends to change and there are

differences in the average movement of the facial landmarks for different force exertion

level. The identification of these visual cues were drawn for tools and techniques

from the field of human factors. Specifically, ergonomics practitioners are trained

to associate (through observation) cues like ”Substantial Effort with Changed Facial

Expression” with an MVC of 70 % and very strong effort. In contrast, ”Obvious

Effort, But Unchanged Facial Expression” is associated with 40 % MVC and moderate

effort [82]

Figure 6.2 & Figure 6.1 shows how different groups of facial landmarks behave

differently for three different force exertion levels. Figure 6.1 shows the average move-

ment of landmark groups for three randomly picked subjects. It is interesting to note

that landmarks belonging to nose always shows least movement in all the three force

exertion levels. On the other hand, face contour, eyes and cheeks show high average

movements over the entire video. Figure 6.2 generalizes this behavior over all the

subjects and depicts the box plot of each force exertion level for all the 7 groups of

landmarks. The change in the location of the landmarks on the face is explained by

the motion of the muscles beneath the skin of the face. As body changes its actions,
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it leads to the changes in the facial expression [83] and thus we observe the movement

of landmarks for different force exertion levels. It is further interesting to note that

average movement of landmarks are robust against day to day variations like change

in the lighting around them, presence of make-up on the face etc. as well as robust

for different people belonging to different skin tone. Therefore, choice of such facial

feature leads to high accuracy of our model and make it robust for classifying higher

force exertion level.

As noted previously, changes in facial expressions are observed typically for strong

exertions ( 60-70 % MVC); however, a known musculoskeletal injury mechanism is

continuous and prolonged sub-maximal force exertions. Specifically, although a single

moderate ( 30-50 % MVC) exertion may not lead to immediate injuries, repeated

and prolonged exertions at these levels lead to cumulative trauma disorders. The

key challenge is that facial expressions are more likely to be unchanged during these

exertion levels and therefore average movement of landmarks is not used for classifying

lower level of force exertion i.e., 50% and 0%. Thus, we further distinguished lower

levels of force exertions using cardiovascular parameters of the person which would

be captured from PPG signal. This changing trend can be seen in Figure 4.3 where

the increasing trend of PPG signal is observed for 50% force exertion level and a

stationary signal for 0% force exertion level. Figure 6.3 shows the observed variation

in one of the PPG feature i.e., time interval between T3 and T1 for first four beats, for

0% and 50% force exertion levels. The mean and standard deviation of time interval

between T3 and T1 for 0% effort level is 1.03s and 0.55s respectively where mean and

standard deviation for 50% force exertion level is 0.86 sec and 0.52 sec respectively.

Higher force exertion activity increases the heart rate of the person because of faster

cardiac cycles, hence we see differences in PPG extracted features between 0% & 50%

effort level. Therefore, both average movement and PPG features become important

features in our study.

For our analysis, we utilized cardiovascular features derived from the PPG signal

that had been captured using a contact device placed on the earlobe of the subjects.
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Although this technique requires contact, continued innovation in wearables (e.g.,

fitness watches and activity trackers) has provided many options for collection of

continuous PPG signals without significant cost to employers or usability/workflow

burden to workers. Furthermore, over the last decade, there have been ongoing re-

search in developing methods for estimating PPG signals from the facial videos using

non contact methodology. The authors in [49] provided a technique that extracts PPG

signal from the human facial videos using complimentary metal-oxide semiconductor

camera with the use of external light emitting diodes. Also, the authors of [39, 40]

demonstrated that PPG signal can be estimated by just using ambient light as a

source of illumination along with simple digital camera. Further advancements led to

the formulation of more robust methodology that overcomes challenges in extracting

PPG for people having dark skin tones [42]. There are many existing methods that

can be easily used to derive PPG signal directly from the facial videos. Future work

incorporating these techniques have the potential to make this proposed methodology

completely passive and non-contact.

6.3 Non-contact Exposure Assessment

The force exertions has been considered as one of the main contributing factors

in current risk assessment tools [84–86]. The high variability of the identified risk

score with respect to the estimated force exertion parameters is reported in current

assessment tools. For example, the Strain Index Assessment [86] score will double

if the intensity of the exertion changes from 20% to 40% [24]. In addition, [87]

reported weak correlation values between the ergonomists estimates and the worker’s

self-reports for pinch and grip force. The proposed non-contact assessment method

for classifying force levels can provide an objective automated estimations of hand

forces.
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6.4 Prediction of Pulse Rate

The use of machine learning in predicting pulse rate and pulse rate variability from

the facial videos has been successfully demonstrated. The other researchers in the

field have utilized videos of the person and estimate the PPG signal that was utilized

to calculate the PR and PRV, but in this work, instead of predicting PPG signal,

more granualar features of PPG: PR, & PRV have been predicted. In doing so, this

work predicts the average value of PR over the whole video of 50 seconds. It is known

that the PR of the person can change during the interval of 50 seconds, but this work

doesn’t predict the changing trend of the pulse rate over a period of time. However,

the methodology discussed in this work may be used to predict pulse rate for shorter

(such as 5 seconds) videos as well that can give us idea about how individuals pulse

rate is changing over time. This work considered longer videos because predictability

of PRV improves with the length of the video [64]. On the other hand, continuous

prediction of the changing trend of pulse rate over a given time would be an interesting

exercise and would require different approach and modeling scheme such as recurrent

neural networks (RNNs) [88] for such predictions and is not in the scope of this work.
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7. CONCLUSION

The monitoring of health parameters like PR, PRV, and exertion level is important

to keep check on individual’s health and spot the potential cardiovascular diseases

and musculoskeletal injuries. Recently, the use of non-contact method such as using

camera videos is preferred over contact methods like pulse oximeters and observa-

tional methods for such measurement. In this work, a computer vision and machine

learning technique is leveraged to predict pulse rate, LF & HF component of pulse

rate variability, and force exertion level. The physiological parameters are remotely

predicted using the video of human face captured using a laptop’s camera. The subtle

changes in the face pixels intensity over the different frames of the video are exploited

to train a neural network with three hidden layers. Because computer vision is not in-

trusive to the workers and can be done without the need for specialize equipment, this

technique will provide workplaces a transformative tool for ensuring on-the-job car-

diovascular problems and force requirements (effort level and duration at these levels)

do not contribute to workplace injuries. Experimental evaluations are performed for

twenty subjects, and the proposed approach demonstrates significant improvement

as compared to the baselines thus validating that the approach has the potential to

be applied in real scenarios. Although current work accurately classifies three force

exertion levels, work is ongoing to expand this technique to other exertion levels to

better meet the varying needs of different workplaces.
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[2] Å. Hjalmarson, E. A. Gilpin, J. Kjekshus, G. Schieman, P. Nicod, H. Henning,
and J. Ross, “Influence of heart rate on mortality after acute myocardial infarc-
tion,” The American journal of cardiology, vol. 65, no. 9, pp. 547–553, 1990.

[3] D. H. Spodick, “Survey of selected cardiologists for an operational definition of
normal sinus heart rate,” The American journal of cardiology, vol. 72, no. 5, pp.
487–488, 1993.

[4] J. W. Mason, D. J. Ramseth, D. O. Chanter, T. E. Moon, D. B. Goodman,
and B. Mendzelevski, “Electrocardiographic reference ranges derived from 79,743
ambulatory subjects,” Journal of electrocardiology, vol. 40, no. 3, pp. 228–234,
2007.

[5] K. Fox, I. Ford, P. G. Steg, M. Tendera, M. Robertson, R. Ferrari et al., “Heart
rate as a prognostic risk factor in patients with coronary artery disease and left-
ventricular systolic dysfunction (beautiful): a subgroup analysis of a randomised
controlled trial,” The Lancet, vol. 372, no. 9641, pp. 817–821, 2008.

[6] G. G. Berntson, J. Thomas Bigger, D. L. Eckberg, P. Grossman, P. G. Kaufmann,
M. Malik, H. N. Nagaraja, S. W. Porges, J. P. Saul, P. H. Stone et al., “Heart
rate variability: origins, methods, and interpretive caveats,” Psychophysiology,
vol. 34, no. 6, pp. 623–648, 1997.

[7] P. Nickel and F. Nachreiner, “Sensitivity and diagnosticity of the 0.1-hz com-
ponent of heart rate variability as an indicator of mental workload,” Human
Factors, vol. 45, no. 4, pp. 575–590, 2003.

[8] P. Jönsson, “Respiratory sinus arrhythmia as a function of state anxiety in
healthy individuals,” International journal of psychophysiology, vol. 63, no. 1,
pp. 48–54, 2007.

[9] N. Hjortskov, D. Rissén, A. K. Blangsted, N. Fallentin, U. Lundberg, and
K. Søgaard, “The effect of mental stress on heart rate variability and blood
pressure during computer work,” European journal of applied physiology, vol. 92,
no. 1-2, pp. 84–89, 2004.

[10] S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C. Barger, and R. J.
Cohen, “Power spectrum analysis of heart rate fluctuation: a quantitative probe
of beat-to-beat cardiovascular control,” science, pp. 220–222, 1981.



58

[11] U. B. of Labor Statistics, “Survey of occupational injuries and illnesses, in coop-
eration with participating state agencies,” U.S Department of Labor, 2016.

[12] R. Wells, “Why have we not solved the msd problem?” Work, vol. 34, no. 1, pp.
117–121, 2009.

[13] M. J. Hoozemans, A. J. Van Der Beek, M. H. Fringsdresen, F. J. Van Dijk,
and L. H. Van Der Woude, “Pushing and pulling in relation to musculoskeletal
disorders: a review of risk factors,” Ergonomics, vol. 41, no. 6, pp. 757–781, 1998.

[14] B. R. da Costa and E. R. Vieira, “Risk factors for work-related musculoskeletal
disorders: a systematic review of recent longitudinal studies,” American journal
of industrial medicine, vol. 53, no. 3, pp. 285–323, 2010.

[15] P. W. Buckle and J. J. Devereux, “The nature of work-related neck and upper
limb musculoskeletal disorders,” Applied ergonomics, vol. 33, no. 3, pp. 207–217,
2002.

[16] W. M. Keyserling, “Workplace risk factors and occupational musculoskeletal
disorders, part 2: A review of biomechanical and psychophysical research on risk
factors associated with upper extremity disorders,” AIHAJ-American Industrial
Hygiene Association, vol. 61, no. 2, pp. 231–243, 2000.

[17] S. P. Schneider, “Musculoskeletal injuries in construction: a review of the lit-
erature,” Applied occupational and environmental hygiene, vol. 16, no. 11, pp.
1056–1064, 2001.

[18] K. G. Hauret, B. H. Jones, S. H. Bullock, M. Canham-Chervak et al., “Mus-
culoskeletal injuries: description of an under-recognized injury problem among
military personnel,” American journal of preventive medicine, vol. 38, no. 1, pp.
S61–S70, 2010.

[19] E. Koppelaar and R. Wells, “Comparison of measurement methods for quanti-
fying hand force,” Ergonomics, vol. 48, no. 8, pp. 983–1007, 2005.

[20] P. W. Buckle and J. Jason Devereux, “The nature of work-related neck and
upper limb musculoskeletal disorders,” Applied Ergonomics, vol. 33, no. 3,
pp. 207–217, 2002. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0003687002000145

[21] W. M. Keyserling, “Workplace Risk Factors and Occupational Musculoskeletal
Disorders, Part 2: A Review of Biomechanical and Psychophysical Research on
Risk Factors Associated with Upper Extremity Disorders,” AIHAJ - American
Industrial Hygiene Association, vol. 61, no. 2, pp. 231–243, mar 2000. [Online].
Available: http://www.tandfonline.com/doi/abs/10.1080/15298660008984532

[22] S. P. Schneider, “Musculoskeletal injuries in construction: A review
of the literature,” pp. 1056–1064, nov 2001. [Online]. Available: http:
//www.tandfonline.com/doi/abs/10.1080/104732201753214161

[23] K. G. Hauret, B. H. Jones, S. H. Bullock, M. Canham-Chervak, and
S. Canada, “Musculoskeletal injuries: Description of an under-recognized
injury problem among military personnel,” American Journal of Preventive
Medicine, vol. 38, no. 1 SUPPL., pp. S61–S70, jan 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0749379709006746



59

[24] E. Koppelaar and R. Wells, “Comparison of measurement methods for
quantifying hand force,” Ergonomics, vol. 48, no. 8, pp. 983–1007,
jun 2005. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1080/
00140130500120841

[25] National Institute for Occupational Safety and Health (NIOSH), “Musculoskele-
tal disorders and workplace factors: a critical review of epidemiologic evidence
for WMSDs of the neck, upper extremity and low back,” 1997. [Online].
Available: https://stacks.cdc.gov/view/cdc/21745

[26] A. Schwarzer, “The prevalence and clinical features of internal disc disruption in
patients with chronic lbp,” Spine, vol. 20, pp. 1878–1883, 1995.

[27] M. A. Adams, B. J. Freeman, H. P. Morrison, I. W. Nelson, and P. Dolan,
“Mechanical initiation of intervertebral disc degeneration,” Spine, vol. 25, no. 13,
pp. 1625–1636, 2000.

[28] B. Fung, K. Chan, L. Lam, S. Cheung, N. Choy, K. Chu, L. Chung, W. Liu,
K. Tai, S. Yung et al., “Study of wrist posture, loading and repetitive motion
as risk factors for developing carpal tunnel syndrome,” Hand surgery, vol. 12,
no. 01, pp. 13–18, 2007.

[29] J. Allen, “Photoplethysmography and its application in clinical physiological
measurement,” Physiological measurement, vol. 28, no. 3, p. R1, 2007.

[30] J. M. Haynes, “The ear as an alternative site for a pulse oximeter finger clip
sensor,” Respiratory care, vol. 52, no. 6, pp. 727–729, 2007.

[31] G. Borg, “Psychophysical scaling with applications in physical work and the
perception of exertion,” Scandinavian journal of work, environment & health,
pp. 55–58, 1990.

[32] D. S. Stetson, B. A. Silverstein, W. M. Keyserling, R. A. Wolfe, and J. W. Albers,
“Median sensory distal amplitude and latency: comparisons between nonexposed
managerial/professional employees and industrial workers,” American Journal of
Industrial Medicine, vol. 24, no. 2, pp. 175–189, 1993.

[33] J. S. Casey, R. W. McGorry, and P. G. Dempsey, “Getting a grip on grip force es-
timates: Avaluable tool for ergonomic evaluations,” Professional Safety, vol. 47,
no. 10, p. 18, 2002.

[34] R. W. Bohannon, A. Peolsson, N. Massy-Westropp, J. Desrosiers, and J. Bear-
Lehman, “Reference values for adult grip strength measured with a jamar dy-
namometer: a descriptive meta-analysis,” Physiotherapy, vol. 92, no. 1, pp. 11–
15, 2006.

[35] P. J. Keir and J. P. Mogk, “The development and validation of equations to
predict grip force in the workplace: contributions of muscle activity and posture,”
Ergonomics, vol. 48, no. 10, pp. 1243–1259, 2005.

[36] S. N. Sidek and A. J. H. Mohideen, “Mapping of emg signal to hand grip force at
varying wrist angles,” in Biomedical Engineering and Sciences (IECBES), 2012
IEEE EMBS Conference on. IEEE, 2012, pp. 648–653.



60

[37] Z. J. Fan, B. A. Silverstein, S. Bao, D. K. Bonauto, N. L. Howard, and C. K.
Smith, “The association between combination of hand force and forearm posture
and incidence of lateral epicondylitis in a working population,” Human factors,
vol. 56, no. 1, pp. 151–165, 2014.

[38] P. Spielholz, B. Silverstein, M. Morgan, H. Checkoway, and J. Kaufman, “Com-
parison of self-report, video observation and direct measurement methods for
upper extremity musculoskeletal disorder physical risk factors,” Ergonomics,
vol. 44, no. 6, pp. 588–613, 2001.

[39] W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic
imaging using ambient light.” Optics express, vol. 16, no. 26, pp. 21 434–21 445,
2008.

[40] M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Advancements in noncontact,
multiparameter physiological measurements using a webcam,” IEEE transactions
on biomedical engineering, vol. 58, no. 1, pp. 7–11, 2011.

[41] Y. Sun, S. Hu, V. Azorin-Peris, S. Greenwald, J. Chambers, and Y. Zhu,
“Motion-compensated noncontact imaging photoplethysmography to monitor
cardiorespiratory status during exercise,” Journal of biomedical optics, vol. 16,
no. 7, pp. 077 010–077 010, 2011.

[42] M. Kumar, A. Veeraraghavan, and A. Sabharwal, “Distanceppg: Robust non-
contact vital signs monitoring using a camera,” Biomedical optics express, vol. 6,
no. 5, pp. 1565–1588, 2015.

[43] M. A. Haque, R. Irani, K. Nasrollahi, and T. B. Moeslund, “Heartbeat rate
measurement from facial video,” IEEE Intelligent Systems, vol. 31, no. 3, pp.
40–48, May 2016.

[44] X. Li, J. Chen, G. Zhao, and M. Pietikinen, “Remote heart rate measurement
from face videos under realistic situations,” in 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition, June 2014, pp. 4264–4271.

[45] G. de Haan and V. Jeanne, “Robust pulse rate from chrominance-based rppg,”
IEEE Transactions on Biomedical Engineering, vol. 60, no. 10, pp. 2878–2886,
Oct 2013.

[46] X. Yu, J. Huang, S. Zhang, and D. N. Metaxas, “Face landmark fitting via
optimized part mixtures and cascaded deformable model,” IEEE Transactions
on Pattern Analysis & Machine Intelligence, no. 11, pp. 2212–2226, 2016.

[47] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap
to human-level performance in face verification,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 1701–1708.

[48] F. P. Wieringa, F. Mastik, and A. F. W. v. d. Steen, “Contactless multiple
wavelength photoplethysmographic imaging: A first step toward “spo2 camera”
technology,” Annals of Biomedical Engineering, vol. 33, no. 8, pp. 1034–1041,
Aug 2005. [Online]. Available: https://doi.org/10.1007/s10439-005-5763-2

[49] K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual
wavelength photoplethysmography: a further step toward noncontact pulse
oximetry,” Review of scientific instruments, vol. 78, no. 4, p. 044304, 2007.



61

[50] B. D. Holton, K. Mannapperuma, P. J. Lesniewski, and J. C. Thomas, “Signal
recovery in imaging photoplethysmography,” Physiological measurement, vol. 34,
no. 11, p. 1499, 2013.

[51] M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac
pulse measurements using video imaging and blind source separation.” Optics
express, vol. 18, no. 10, pp. 10 762–10 774, 2010.

[52] A. Lam and Y. Kuno, “Robust heart rate measurement from video using select
random patches,” in 2015 IEEE International Conference on Computer Vision
(ICCV), Dec 2015, pp. 3640–3648.

[53] A. Osman, J. Turcot, and R. El Kaliouby, “Supervised learning approach to
remote heart rate estimation from facial videos,” in Automatic Face and Gesture
Recognition (FG), 2015 11th IEEE International Conference and Workshops on,
vol. 1. IEEE, 2015, pp. 1–6.

[54] G.-S. Hsu, A. Ambikapathi, and M.-S. Chen, “Deep learning with time-frequency
representation for pulse estimation from facial videos,” in Biometrics (IJCB),
2017 IEEE International Joint Conference on. IEEE, 2017, pp. 383–389.

[55] C. H. Chen, Y. H. Hu, T. Y. Yen, and R. G. Radwin, “Automated video
exposure assessment of repetitive hand activity level for a load transfer task,”
Human Factors, vol. 55, no. 2, pp. 298–308, apr 2013. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0018720812458121

[56] R. L. Greene, D. P. Azari, Y. H. Hu, and R. G. Radwin, “Visualizing
stressful aspects of repetitive motion tasks and opportunities for ergonomic
improvements using computer vision,” Applied Ergonomics, vol. 65, pp. 461–472,
2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S000368701730056X

[57] O. Akkas, C.-H. Lee, Y. H. Hu, T. Y. Yen, and R. G. Radwin,
“Measuring elemental time and duty cycle using automated video processing,”
Ergonomics, vol. 59, no. 11, pp. 1514–1525, nov 2016. [Online]. Available:
https://www.tandfonline.com/doi/full/10.1080/00140139.2016.1146347

[58] M. Liu, S. Han, and S. Lee, “Tracking-based 3d human skeleton extraction from
stereo video camera toward an on-site safety and ergonomic analysis,” Construc-
tion Innovation, vol. 16, no. 3, pp. 348–367, 2016.

[59] J. Seo, R. Starbuck, S. Han, S. Lee, and T. J. Armstrong, “Motion data-driven
biomechanical analysis during construction tasks on sites,” Journal of Computing
in Civil Engineering, vol. 29, no. 4, p. B4014005, 2014.

[60] R. Starbuck, J. Seo, S. Han, and S. Lee, “A stereo vision-based approach to
marker-less motion capture for on-site kinematic modeling of construction worker
tasks,” in Computing in Civil and Building Engineering (2014), 2014, pp. 1094–
1101.

[61] M. Elgendi, “On the analysis of fingertip photoplethysmogram signals,” Current
cardiology reviews, vol. 8, no. 1, pp. 14–25, 2012.



62

[62] J. Dorlas and J. Nijboer, “Photo-electric plethysmography as a monitoring de-
vice in anaesthesia: application and interpretation,” BJA: British Journal of
Anaesthesia, vol. 57, no. 5, pp. 524–530, 1985.

[63] N. A. Shirwany and M.-h. Zou, “Arterial stiffness: a brief review,” Acta Phar-
macologica Sinica, vol. 31, no. 10, p. 1267, 2010.

[64] W.-H. Lin, D. Wu, C. Li, H. Zhang, and Y.-T. Zhang, “Comparison of heart
rate variability from ppg with that from ecg,” in The International Conference
on Health Informatics. Springer, 2014, pp. 213–215.

[65] B. WELLNESS, Your Heart Beat and Your Health, 2010 (accessed
November 3, 2018), http://www.berkeleywellness.com/fitness/exercise/article/
your-heart-beat-and-your-health.

[66] O. Barkan, J. Weill, L. Wolf, and H. Aronowitz, “Fast high dimensional vec-
tor multiplication face recognition,” in Proceedings of the IEEE International
Conference on Computer Vision, 2013, pp. 1960–1967.

[67] X. Cao, D. Wipf, F. Wen, G. Duan, and J. Sun, “A practical transfer learn-
ing algorithm for face verification,” in Proceedings of the IEEE International
Conference on Computer Vision, 2013, pp. 3208–3215.

[68] D. Chen, X. Cao, F. Wen, and J. Sun, “Blessing of dimensionality: High-
dimensional feature and its efficient compression for face verification,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2013, pp. 3025–3032.

[69] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discrimi-
natively, with application to face verification,” in Computer Vision and Pattern
Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 1.
IEEE, 2005, pp. 539–546.

[70] G. B. Huang, H. Lee, and E. Learned-Miller, “Learning hierarchical representa-
tions for face verification with convolutional deep belief networks,” in Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE,
2012, pp. 2518–2525.

[71] Y. Sun, X. Wang, and X. Tang, “Deep convolutional network cascade for facial
point detection,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2013, pp. 3476–3483.

[72] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical
learning. Springer, 2013, vol. 112.

[73] M. L. Bermingham, R. Pong-Wong, A. Spiliopoulou, C. Hayward, I. Rudan,
H. Campbell, A. F. Wright, J. F. Wilson, F. Agakov, P. Navarro et al., “Appli-
cation of high-dimensional feature selection: evaluation for genomic prediction
in man,” Scientific reports, vol. 5, p. 10312, 2015.

[74] D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network
learning by exponential linear units (elus),” CoRR, vol. abs/1511.07289, 2015.
[Online]. Available: http://arxiv.org/abs/1511.07289



63

[75] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015.
[Online]. Available: http://arxiv.org/abs/1502.03167

[76] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The Jour-
nal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[77] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980

[78] R. Caruana, S. Lawrence, and C. L. Giles, “Overfitting in neural nets: Back-
propagation, conjugate gradient, and early stopping,” in Advances in neural
information processing systems, 2001, pp. 402–408.

[79] P. J. Phillips, J. R. Beveridge, B. A. Draper, G. Givens, A. J. O’Toole, D. S.
Bolme, J. Dunlop, Y. M. Lui, H. Sahibzada, and S. Weimer, “An introduction
to the good, the bad, amp; the ugly face recognition challenge problem,” in Face
and Gesture 2011, March 2011, pp. 346–353.

[80] M. Osadchy, “Synergistic face detection and pose estimation with energy-based
models,” Journal of machine learning research : JMLR., 2007.

[81] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[82] T. J. Armstrong, “Acgih tlv for hand activity level,” in Biomechanics in Er-
gonomics. CRC Press, 2007, pp. 377–390.

[83] C. Fantoni and W. Gerbino, “Body actions change the appearance of
facial expressions,” PLoS One, vol. 9, no. 9, 2014. [Online]. Available:
http://search.proquest.com/docview/1564617673/

[84] S. Hignett and L. McAtamney, “Rapid entire body assessment,” in Handbook of
Human Factors and Ergonomics Methods. CRC Press, 2004, pp. 97–108.

[85] L. McAtamney and E. N. Corlett, “Rula: a survey method for the investigation
of work-related upper limb disorders,” Applied ergonomics, vol. 24, no. 2, pp.
91–99, 1993.

[86] J. Steven Moore and A. Garg, “The strain index: a proposed method to analyze
jobs for risk of distal upper extremity disorders,” American Industrial Hygiene
Association Journal, vol. 56, no. 5, pp. 443–458, 1995.

[87] S. Bao, N. Howard, P. Spielholz, and B. Silverstein, “Quantifying repetitive
hand activity for epidemiological research on musculoskeletal disorders–part ii:
comparison of different methods of measuring force level and repetitiveness,”
Ergonomics, vol. 49, no. 4, pp. 381–392, 2006.

[88] S. Grossberg, “Recurrent neural networks,” Scholarpedia, vol. 8, no. 2, p. 1888,
2013.


