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ABSTRACT

Li, Huian PhD, Purdue University, December 2018. Transparent and Mutual Re-
straining Electronic Voting. Major Professors: Xukai Zou and Ninghui Li.

Many e-voting techniques have been proposed but not widely used in reality. One

of the problems associated with most of existing e-voting techniques is the lack of

transparency, leading to a failure to deliver voter assurance. In this work, we propose

a transparent, auditable, end-to-end verifiable, and mutual restraining e-voting pro-

tocol that exploits the existing multi-party political dynamics such as in the US. The

new e-voting protocol consists of three original technical contributions – universal

verifiable voting vector, forward and backward mutual lock voting, and in-process

check and enforcement – that, along with a public real time bulletin board, resolves

the apparent conflicts in voting such as anonymity vs. accountability and privacy

vs. verifiability. Especially, the trust is split equally among tallying authorities who

have conflicting interests and will technically restrain each other. The voting and

tallying processes are transparent to voters and any third party, which allow any

voter to verify that his vote is indeed counted and also allow any third party to au-

dit the tally. For the environment requiring receipt-freeness and coercion-resistance,

we introduce additional approaches to counter vote-selling and voter-coercion issues.

Our interactive voting protocol is suitable for small number of voters like boardroom

voting where interaction between voters is encouraged and self-tallying is necessary;

while our non-interactive protocol is for the scenario of large number of voters where

interaction is prohibitively expensive. Equipped with a hierarchical voting structure,

our protocols can enable open and fair elections at any scale.
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1. INTRODUCTION

1.1 Problem Statement

Voting is the pillar of modern democracies. Traditional voting, however, suffers

from both low efficiency and unintentional errors. The event surrounding the 2000 US

presidential election witnessed the shortcomings of punch-cards and other antiquated

voting systems. The Help America Vote Act [1] and the creation of the Election

Assistance Commission (EAC) [2] highlighted the determination of the US to deploy

more modern voting systems. A survey sponsored by EAC shows that 17.5% of

votes in the 2008 US presidential election were cast as absentee ballots [3]. This

demonstrates a demand for less centralized voting procedures/booths. One potential

solution is to allow voters to cast ballots on Internet-enabled mobile devices [4].

Online voting1 has been an active research topic with many advantages over tra-

ditional voting, but presents some unique challenges. For example, if a discrepancy

is found in the tally, votes need to be recounted and the source of the discrepancy

needs to be identified. The recounting and investigating should nevertheless preserve

votes’ anonymity and voters’ privacy. Other voting requirements, such as verifiability

and receipt-freeness, make the problem even more challenging due to their inherently

contradicting nature [5, 6].

Several online voting solutions [7–11] have been proposed. Some suggest keep-

ing non-electronic parallels of electronic votes, or saving copies of votes in portable

storage devices. They either fail to identify sources of discrepancy or are susceptible

to vote-selling and voter-coercion. Most solutions [6, 7, 12–16] are based on cryp-

1Online voting, Internet voting, remote voting, and electronic voting (e-voting) are used inter-
changeably in this dissertation. However, there are some subtle differences in certain literature. For
example, e-voting sometimes includes voting with electronic devices in a voting booth; while remote
voting refers to voting from anywhere through Internet, without the assumption of a booth.
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tographic techniques, such as secret sharing, mix-net, and blind signature. These

solutions are often opaque: Except casting their votes, voters do not directly partic-

ipate in collecting and tallying votes, and the voting results are typically acquired

through decryption by third parties only, such as talliers. This raises concerns over

the trustworthiness and transparency of the entire voting process. In addition, these

solutions sometimes entrust the fairness of the voting process onto the impartiality

of authorities. Voting under multiple conflict-of-interests parties is not addressed by

these solutions.

Furthermore, examination of current voting systems including online voting tech-

niques shows a gap between casting secret ballots and tallying/verifying individual

votes. This gap is caused either by the disconnection between the vote-casting process

and the vote-tallying process, or by the opaque transition (e.g., due to encryption)

from vote-casting to vote-tallying, thus damaging voter assurance with an open ques-

tion: “Will my vote count?” [17].

1.2 Major Contributions

In this work, we propose a transparent, auditable, and end-to-end verifiable voting

protocol that exploits conflict of interests in multiple tallying authorities, such as the

two-party political system in the US. It consists of a few novel techniques – universal

verifiable voting vector, forward and backward mutual lock voting, and proven in-

process check and enforcement – that, in combination, resolves the apparent conflicts

such as anonymity vs. accountability and privacy vs. verifiability.

Our main contributions are as follows:

1. Light-weight ballot generation and tallying. The new e-voting protocol

needs only (modular) addition and subtraction in ballot generation and vote tallying,

rather than encryption/decryption or modular exponentiations. Thus, the newly

proposed protocol is efficient.
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2. Seamless transition from ballots to plain votes. In our protocol, in-

dividual ballots can be aggregated one by one and the final aggregation reveals all

individual votes (in their plain/clear format). The aggregation is simply modular ad-

dition and can be performed by anyone (with modular addition knowledge and skills)

without involvement of a third-party entity. The aggregation has the all-or-nothing

effect in the sense that all partial sums reveal no information about individual votes

but the final (total) sum exposes all individual votes. Thus, the newly proposed

protocol delivers fairness in the voting process.

3. Viewable tallying and verification. The cast ballots, sum(s) of ballots,

individual votes, and sum(s) of votes for each candidate are all displayed on a public

bulletin board. A voter or anyone can view them, verify them visually, and even con-

duct summations of ballots (and as well as votes) himself. Thus, the newly proposed

protocol delivers individual and universal verifications.

4. Transparency of the entire voting process. Voters can view and ver-

ify their ballots, plain votes, and transition from ballots to votes and even perform

self-tallying [18, 19]. There is no gap or black-box [20] which is related to homomor-

phic encryption or mix-net in vote casting, tallying and verification processes. Thus,

in the newly proposed protocol, the voting process is straightforward and delivers

transparency.

5. Voter assurance. The most groundbreaking feature of our voting proto-

col, different from all existing ones, is the separation and guarantee of two distinct

voter assurances: 1) vote-casting assurance on secret ballots – any voter is assured

that the vote-casting is indeed completed (i.e., the secret ballot is confirmatively cast

and viewably aggregated), thanks to the openness of secret ballots and incremental

aggregation, and 2) vote-tallying assurance – any voter is assured that their vote is

visibly counted in the final tally, thanks to the seamless transition from secret ballots

having no information to public votes having complete (but anonymous) information

offered by the simplified (n, n)-secret sharing scheme. In addition, end-to-end indi-

vidual verification and universal verification allow the public to verify the accuracy of
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the count, and political parties to catch fraudulent votes. Thus, the newly proposed

protocol delivers full voter assurance.

Real time check and verification of any cast secret ballots and their incremental

aggregation, along with transparency, provide strong vote integrity and auditability.

Any attacks, regardless of from inside such as collusion among voters and/or a col-

lector or from outside such as external intrusion, which lead to any invalid votes, can

be detected via the tallied voting vector. All these properties are achieved while still

retaining what is perhaps the core value of democratic elections – the secrecy of any

voter’s vote.

In particular, we relax the trust assumption a bit in our protocol. Instead of as-

suming that tallying authorities who conduct tally are trustworthy,2 the new protocol,

like the split trust in the split paper ballot voting [21], splits the trust equally among

tallying authorities. As long as one tallying authority behaves honestly, misbehaviors

from one or all other tallying authorities will be detected. In addition, as we will

analyze later, our protocol is robust against collusion between voters and one tallying

authority, and any misbehavior or attack leading to an invalid tallied voting vector

will be detected. Thus, in order not to impress readers that we need trusted central

authorities, we chose to use a relatively neutral term called collectors in the rest of

the dissertation. We assume collectors will not collude since they represent parties

with conflicting interests.

Receipt-freeness and coercion-resistance are two of most challenging issues in on-

line voting. We address vote-selling by replacing visual verification with individual

verification, and adopt the concept of fake credentials to conquer voter-coercion.

We understand the scalability concern with very large number of voters, but this

concern can be addressed by incorporating a hierarchical voting structure. In reality,

most voting systems [22] present a hierarchical structure such as a tree where voting

2Some protocols realize trustworthiness (tally integrity) by using commitments and zero-knowledge
proof to prevent a tallying authority from mis-tallying and some use threshold cryptography to
guarantee the trustworthiness of tallying results (and vote secrecy) as long as t out of n tallying
authorities behave honestly.
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is first carried out in each precinct (for example, towns or counties) with relatively

small number of voters and then vote totals from each precinct are transferred to an

upper level central location for consolidation. We will have a more detailed discussion

about this later.

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 gives an overview

of typical components in a voting system, and voting requirements. Chapter 3 intro-

duces a naive voting protocol. Chapter 4 is our mutual restraining voting protocol,

together with its complexity analysis and simulation results. Chapter 5 explores the

location anonymization schemes used in our protocols. Chapter 6 presents security

and property analysis for the protocol in Chapters 4 and 5. Chapter 7 addresses

vote-selling and voter-coercion issues that exist in the previous protocols. Chapter 8

shows a prototype implementation of the protocol in Chapter 4. Chapter 9 discusses

scalability of our voting protocol. Chapter 10 provides the related work and protocol

comparison. Chapter 11 concludes the dissertation and lays out the future work.
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2. E-VOTING REQUIREMENTS AND ITS TYPICAL

COMPOSITION

In this chapter, we first go through the requirements of an e-voting system, and

then provide an overview of typical entities, stages, and cryptographic techniques in

e-voting [23].

2.1 Major E-voting Requirements

In order for an e-voting scheme to be useful in practice, it should satisfy several

requirements [15,24–27]. We review the basic requirements first, and then give a list

of requirements for countering attacks.

2.1.1 Basic Requirements

We argue that the requirements listed below are fundamental for every voting

scheme.

Correctness. If all the participants are honest and following the protocol, the

voting results reflect all voters’ will.

Privacy. Privacy implies that voter’s information should remain secret. This

is actually one of voting regulations in certain countries. If a voter’s information is

published along with his vote, this certainly violates privacy.

Verifiability. A voter can verify his vote without revealing the identity and

makes sure that his vote is counted (which is called individual verifiability). Anyone

can verify the final voting results (which is called universal verifiability).

Eligibility. Only eligible voters are allowed to vote. This is usually implemented

through authentication.
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Reliability. The system should work without compromising votes, even if certain

system failure occurs.

Transparency. Voters should be able to understand the system generally. If a

voting scheme allows a voter to participate in every stages from initial setup to final

tally and verification, voters will be able to witness the whole process. Certainly this

provides transparency, thus achieving voter assurance. In other words, voters will be

assured that his vote is correctly cast and counted through transparency.

Fairness. Information about votes cannot be learned until the voting results are

published. Any participants (even outsiders) cannot gain knowledge of the voting

results before its final publication, thus precluding preannouncement of any partial

voting results.

2.1.2 Counter Attack Requirements

It is important for a voting scheme to have certain counter attack requirements.

Such features enhance the security of the voting process. A vulnerable voting scheme

may be attacked by adversaries who will try to manipulate the election and lead to

incorrect results. A secure voting scheme should possess the following requirements.

Robustness. Robustness of a scheme guarantees resistance against active and

passive attacks, and any errors in the voting process. There might be several entities

trying to disrupt the voting process, so a robust scheme must provide the required

security and allow voters to complete voting without any interruption.

Incoercibility (Coercion-resistance). In order to manipulate the voting re-

sults, an adversary may use multiple methods to coerce voters. For example, he can

demand a voter to refrain from voting; or he can represent as a valid voter if he gets

this voter’s private key. So an incoercible voting scheme should defend against such

adversary to coerce voters.

Receipt-freeness. A voter should not be provided with a receipt which may be

used to trace the vote by aother entity. In particular, a receipt may be used as a
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Fig. 2.1. Requirements of e-voting scheme

proof to show the vote is cast as requested for vote buying and selling, and also for

voter-coercion.

Multiple-voting Detection. Multiple voting by a single voter should be iden-

tified. In a voting system allowing multiple votes, there are two approaches in litera-

ture [6,13] to address this issue. One approach is that the last vote counts. In another

approach, if all multiple votes by one voter devote to the same candidate, only one

is counted. However, if these votes go to different candidates, all votes by this voter

are cancelled. These counting approaches are usually used to defend voter-coercion.

Software Independence. Software independence requires that an undetected

change or error cannot cause an undetectable change or error in an election out-

come [28]. This usually requires thorough evaluation and examination of the voting

scheme.

Fig. 2.1 shows two levels of requirements of a voting scheme in which the first

level is fundamental, while the second level includes counter attack and advanced

requirements, and the requirements in higher level are more difficult to implement.

In general, all the requirements are equally important for remote elections. However,

depending on the voting situation and certain specific needs, some requirements may

outweigh others. As pointed out in [6], there is no single voting scheme satisfying all

requirements.

From a different perspective, several design principles for secure remote voting are

listed in [29] including proven security, trustworthy design responsibility, published
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source code, vote verification, voter accessibility, ensuring anonymization, and expert

oversight. Most of them correspond to the requirements mentioned above.

2.2 Typical Remote Voting Entities

Here we enumerate all entities that will be involved in an e-voting process. A

typical e-voting scheme includes the following entities.

Voter. Voter is a person who will choose among the contesting candidates and

cast vote. By using an authentication system, all schemes should be able to tell

an eligible voter from ineligible ones. In schemes that considering voter-coercion, a

coercer could pretend to be a voter.

Candidate. Candidate is a person contesting in the election. There are different

positions to which a candidate may contest. The list of all the contestants or candi-

dates will be shown to a voter and the voter has to decide for which candidate he has

to vote.

Authority. Authority is an entity responsible for conducting the elections. The

authority has to follow all the guidelines and implement the protocols for voting.

Typically, a voting system will have multiple authorities.

Registrar. Registrar in a voting scheme is responsible for authenticating voters.

Usually a set of registrars is assumed. They jointly issue keying materials such as

private keys and public keys to voters.

Auditor. Auditor will audit the voting process by inspecting individual votes,

final voting results, or voting logs.

Adversary. Apart from the entities above, there can be a malicious entity in the

voting model called adversary which will attempt to manipulate the voting process

and results. There are two types of adversary, external and internal. The external

adversary will actively try to coerce a voter or breach the privacy of voters and an

internal adversary, apart from breaching the privacy, may also try to corrupt the

authority from inside. Adversary can also be classified into passive and active. The
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passive adversary honestly follows the protocol but tries to infer more information,

while the active adversary aims to violate the protocol in various ways.

Bulletin Board. This is the place publicly accessible to all entities listed above,

usually with the appendive-write capability. It can be a public web site even allowing

outsiders to access (but not write functionality). In certain schemes, it is a piece of

universally accessible memory [6, 13].

However, not all schemes assume the existence of all entities mentioned above.

For example, auditor is omitted from many schemes. In some schemes, authority

may also carry the duty of registrar.

2.3 Generic Remote Voting Stages

In general, a voting scheme has several stages [30, 31] according to the voting

model, and entities participate in different stages to follow cryptographic protocols

and satisfy the requirements. The generic stages are given below.

Initialization. The authority or voting center prepares for the remote voting by

following an initialization protocol. For example, in the RSA based scheme [32], the

authority generates two large prime numbers as public and private keys for the rest

of the voting process.

Registration/Authentication. Every voter has to register and be authenti-

cated before casting vote. For example, the identity of a voter is checked using a

browser based cryptographic protocol or by an email.

Vote Casting. The voter casts his vote using the exclusive credentials or keys

given by the authority.

Vote Tallying. The authorities tally all the votes and publish the voting results.

Typically votes are anonymous and sometimes encrypted.

Vote Verification. The voter should be provided with a verification procedure

such that he can verify which candidate he has voted for.
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Auditing. Auditing is done by the authority after finishing the voting procedure.

The vote count is determined and will be sent to a central authority.

The above are generic stages followed by most of remote voting schemes. There

might be schemes that have some additional or less stages.

2.4 Assumptions and Building Blocks

In this section, we first give some common cryptographic assumptions. A few

common building blocks are presented afterwards.

2.4.1 Common Assumptions

Untappable Channel. Several remote voting schemes, especially early ones,

assume an untappable channel between communication parties, typically, voters and

authorities (or registrars). It provides information-theoretic secrecy, but is not prac-

tical in reality. Certain scheme even makes stronger and unrealistic assumption such

as an anonymous untappable channel.

Anonymous Channel. Anonymous channel is relaxed from untappable channel

in terms of security, by allowing adversaries to spy on the communication channel

and to intercept data. This is more realistic assumption about the distribution of

credentials by registrars or authorities.

Voting Booth. Many remote voting schemes assume the existence of voting

booth. The voting booths are governed by authorities, some even with guard. Usu-

ally only one voter is allowed to enter booth at a time and communication channels

are provided between voting authorities and a booth so a voter can cast his vote.

Typically no receipt is printed after a vote is casted. (In case a voter does receive a

receipt, he will be asked to destroy it before leaving the booth.) This assumption pro-

vides receipt-freeness. However, having physical booths is not a practical assumption

for remote voting.
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2.4.2 Common Building Blocks

Deniable Encryption. Deniable encryption is used against revealing encrypted

information so that the owner of this information can decrypt it in an alternative way

to different plaintext. It was introduced in [33, 34] that allows a sender to encrypt a

bit b in such a way that the resulting ciphertext can be explained as either b or 1− b

to a coercer.

Depending on which party being coerced, deniable encryption is classified into

sender-deniable scheme (resilient against coercing, i.e., demanding to see the sender’s

ciphertext), receiver-deniable scheme, and sender-and-receiver-deniable scheme. Based

on keys used between a sender and a receiver, it is also classified into public key de-

niable encryption and shared key deniable encryption. A sender-deniable public key

encryption based on RSA was proposed in [15], and a receiver-deniable encryption

scheme based on ElGamal was introduced in [35].

Zero-knowledge Proof. Zero-knowledge proof (ZKP) is also frequently used

in various stages of a e-voting scheme between senders and receivers for verification

purposes. It is a method by which one party (the prover) can prove to another

party (the verifier) that a given statement is true, without conveying any additional

information apart from the fact that the statement is indeed true. For cases where

the ability to prove the statement requires some secret information on the part of the

prover, the definition implies that the verifier will not be able to prove the statement

to anyone else.

It has two forms, non-interactive ZKP and interactive ZKP. The first form is used

primarily in voting schemes.

Secure Multi-party Computation. Secure multi-party computation is adopted

into e-voting schemes to allow participants to carry computation jointly without any-

one disclosing his data to others. Yao [36] has shown that any multi-party com-

putation can be performed using a garbled circuit representation, but it is hard to
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implement efficiently. In this dissertation, we utilize secure two-party multiplication

proposed by Samet and Miri [37].

Plaintext Equivalence Test. Plaintext equivalence test [38] is usually used to

check if two encrypted votes are identical. Given two ciphertexts {v1}r1k and {v2}r2k
respectively, with each encrypted using the same key k, a plaintext equivalence test

allows the holders of the decryption key to demonstrate that plaintexts v1 and v2 are

equal without revealing the decryption key or any information about v1 and v2.

Certainly, there are many other building blocks, such as randomizer, commitment

schemes, and Blockchain.

2.5 Primary Cryptographic Techniques

Here we present four primary cryptographic techniques including mix-net, blind

signature, threshold homomorphic encryption, and secret sharing.

2.5.1 Mix-net

Mix-net is introduced by David Chaum [39] as a technique to provide anonymous

communication, and later is applied into many e-voting schemes [13, 40, 41]. It is

based on public key cryptography to provide anonymity and untraceability. Mix-net

is multiparty communication protocol which takes input messages, shuffles them in a

random order such that all the parties know that shuffling is performed but no party

knows about shuffling algorithm.

In today’s network, a sender and a receiver no longer remain confidential because

every packet transmitted consists of IP addresses of the sender and the receiver. Any-

one can look through the packets to gain knowledge of the sender and the receiver.

By using anonymous channels we can hide the information of sender so that even the

receiver cannot relate back to the sender. In mix-net, such an anonymous communi-

cation is implemented by a set of nodes which take messages as inputs and bounce

them back in a shuffled order [42].
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When a sender wants to send a message, he passes it on to a node. Then the node

permutes and passes the message to the next node, the last node sends the message

to the receiver. As long as one node is honest and functions correctly, the anonymity

of the sender can be guaranteed. Mix-net can be implemented in two categories:

2.5.1.1 Decryption Mix-net

In this type of mix-net, the nodes have a pair of public and private keys. A public

key infrastructure is used to distribute the keys [40,42]. Let pubi be the public key and

privi the private key for the i-th node, and ri be a random padding. The encryption

protocol works as follows if a voter sends a message v through five nodes:

venc = Epub1(r1, Epub2(r2, Epub3(r3, Epub4(r4, Epub5(r5, v)))))

Here the message will be encrypted in layers, the encrypted messages will pass through

the nodes in the correct order, the nodes will decrypt the message and the last node

delivers the message v. The decryption protocol works similarly by using the private

keys.

2.5.1.2 Re-encryption Mix-net

Re-encryption mix-net also consists of multiple nodes to randomize and pass the

messages. In this process, instead of decrypting the message from previous node,

each node re-encrypts the message and passes on to the next node. Therefore if

one node is honest we can guarantee that message is anonymous. The re-encryption

mix-net can be deployed using different cryptosystems. One example is the ElGamal

cryptosystem [40,42].

2.5.2 Blind Signature

Blind signature [43] is fundamentally one kind of digital signature where the con-

tent of a message is blinded before it is signed. In another word, it allows a person
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to get a third party to sign a message without revealing the content of a message,

thus achieving confidentiality of the voter’s ballot. Usually an authority blindly signs

a voter’s vote to authenticate it. Hence the authority whose function is to verify the

eligibility of a voter will not know whom the voter votes for.

Currently blind key signature schemes are present with many public key protocols.

One of such schemes is blind RSA scheme in which a traditional RSA signature is

used. Here is a simple scheme of blind signature based on RSA signing [44]. Let (N, e)

be the authority’s public key and (N, d) be his private key where d is the inverse of

e mod φ(N). A voter chooses a random number r such that gcd(r,N) = 1, and sends

the following to the authority:

v′ = v · re mod N

The random number r is used to hide the ballot v from the authority. The authority

then signs the blinded ballot after verification and sends back S
′
.

S ′ = (v′)d = vd · (re)d = vd · r mod N

After receiving S
′
, the voter unblinds it to get the true signature S since he knows r.

S = S ′ · r−1 = vd · r · r−1 = vd mod N

Anonymous channels can be used to provide maximum privacy. A voter will get a

blind signed vote, and then submit vote to the mix-net. After all votes are cast, the

mix-net will process the encrypted votes. The authority decrypts the votes shuffled

by mix-net and displays the result to public. This approach is efficient but lacks

transparency.

2.5.3 Threshold Homomorphic Encryption

Homomorphic encryption was first proposed by Benaloh et al. [45, 46]. It refers

to a scenario in which the encryption of combined secret can be reconstructed from

multiple independently encrypted secrets. Let the operations ⊕ and ⊗ be defined
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on the plaintext space and the ciphertext space, respectively. The “product” of the

encryptions of two votes v1 and v2 is the encryption of the “sum” of two votes v1 and

v2. More specifically, E(v1⊕v2) = E(v1)⊗E(v2). Examples of partially homomorphic

cryptosystems [47] include ElGamal, Paillier, RSA, and a few others. Below we give

further detail of ElGamal and Paillier cryptosystems.

2.5.3.1 ElGamal

The ElGamal cryptosystem [48] is adopted often in e-voting schemes. It is by

nature homomorphic with multiplication. Assume in a commutative group G of

order |G| = q, the public key is (G, q, g, h) where g is a generator of G, h = gx, and x

is the secret key. The encryption of a vote v is E(v) = (α, β) = (gr, v · hr) for some

random r ∈ {0, 1, ..., q − 1}. For two votes which are encrypted as

E(v1) = (α1, β1) = (gr1 , v1 · hr1), and

E(v2) = (α2, β2) = (gr2 , v2 · hr2)

The homomorphic property is then:

E(v1) · E(v2) = (α1, β1) · (α2, β2)

= (gr1 , v1 · hr1) · (gr2 , v2 · hr2)

= (gr1+r2 , (v1 · v2)hr1+r2) = E(v1 · v2)

The encrypted votes are “summed” by using the homomorphic property of the en-

cryption function (without decrypting them). However, ElGamal is only multiplica-

tive homomorphic as shown above, so e-voting systems taking advantage of ElGamal

usually adopt a slightly modified cryptosystem which is additive homomorphic.

The modified ElGamal works as below. The encryption of a vote v is E(v) =

(α, β) = (gr, pv ·hr) where p is another independent (from g) generator of G. For two

votes which are encrypted as

E(v1) = (α1, β1) = (gr1 , pv1 · hr1), and

E(v2) = (α2, β2) = (gr2 , pv2 · hr2)
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So the additive homomorphic property is:

E(v1) · E(v2) = (α1, β1) · (α2, β2)

= (gr1 , pv1 · hr1) · (gr2 , pv2 · hr2)

= (gr1+r2 , pv1+v2hr1+r2) = E(v1 + v2)

2.5.3.2 Paillier

The Paillier cryptosystem [49] is another probabilistic encryption function for

public key cryptography. The notable feature is its homomorphic property. In this

cryptosystem, assume the public key is the modulus m and the base is g, the encryp-

tion of a vote v is E(x) = gxrm mod m2 for some random r ∈ {0, 1, ...,m − 1}. For

two votes which are encrypted as

E(v1) = gv1rm1 , and

E(v2) = gv2rm2

The homomorphic property is then:

E(v1) · E(v2) = (gv1rm1 )(gv2rm2 )

= gv1+v2(r1r2)m = E(v1 + v2 mod m)

In many e-voting schemes, all votes can be added by using homomorphic en-

cryption without decrypting them first, therefore ensuring privacy. So homomorphic

encryption is an efficient method for e-voting schemes.

2.5.4 Secret Sharing

Secret sharing is also used in many e-voting schemes due to its efficiency and

simplicity. In Shamir’s scheme [50], a secret s in a finite field is partitioned into n

shares where any k-sized subset of these n shares reveals s (k ≤ n), but any subset

of size smaller than k reveals nothing about s.

A secret sharing scheme can have the property of homomorphism. As an example,

simplified (n, n) secret sharing [51] used in this dissertation is additively homomor-

phic. Several e-voting schemes [52–54] exploit homomorphism based on secret sharing.
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Some schemes [53] utilize Shamir’s threshold secret sharing, while some [54] are based

on Chinese Remainder Theorem (CRT).

Table 2.1 summarizes the four major cryptographic techniques used in e-voting

systems. Currently, most schemes utilize mix-net and homomorphic encryption.

Table 2.1.
Typical cryptographic primitives in e-voting and their comparison

Typical Crypto-primitives Advantages Disadvantages

Mix-net
Shuffling makes votes unlinkable to voters; Multiple encryptions are needed for input;

No fixed sequence of stages is required [55,56] Large size messages are not efficiently accommodated [55,56]

Blind signature Efficient and simple to implement
Signer has no control over attributes except for those bound

by public key; Universal verifiability is hard to implement

Homomorphic encryption
Tallying procedure is simple; Susceptible to some attacks such as RSA blinding attack;

Votes cannot be tallied before being cast Concern over zero knowledge proof used in voting schemes

Secret sharing
Increased reliability and confidentiality; Robust but harder to implement;

Low security demand of communication channel Concern over scalability
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3. NAÏVE SECRET SHARING BASED VOTING

In this chapter, we provide näıve voting protocol that is based on secret sharing [57].

Below we first present the interactive protocol in detail, and then discuss the non-

interactive protocol in Section 3.7.

3.1 Assumptions and Threat Model

First, we describe the assumptions and security models here.

3.1.1 Assumptions

We assume that there are N + 3 parties: N (N > 3) voters, two conflict-of-

interests and honest collectors1 C1 and C2, and a trusted third authority Mauth.

The collectors collect certain data during the voting process, and publish all voters’

individual votes. They also work together with the third authority to find the culprit

if a voter misbehaves in the scheme. The third authority steps in only when the vote

verification fails, and he performs investigation only.

We assume the network supports both unicast and broadcast. The unicast channel

operates securely. Data integrity is enforced. A voter publishes his data through

broadcasting.

1This assumption is reasonable in real life since typically collectors from different political parties
will join together to tally all votes, which implicitly enforces mutual monitoring. More collectors in
this scheme are also allowed.
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3.1.2 Threat Model

Active and passive adversaries will threat the operations of protocol. The pas-

sive attack happens when the adversary colludes with other voters to infer certain

messages based on their own information. On the other hand, the active attack aims

to modify messages and eventually to bring down the protocol. Particularly, certain

misbehaving voter may send incorrect data to invalidate others’ votes. In the protocol

here, we will address both types of adversary.

3.2 Building Blocks

Here we describe building blocks used in the voting protocol.

3.2.1 Hash Functions

We use two types of hash functions. The first type is regular hash function, which

simply maps one data set in certain range to another set in the same range. For

example, if we define a datum of integer with four bytes, the range will be [−231, 231].

Comparing to the cryptographic hash functions mentioned later, this type is more

efficient in computation and easier in implementation.

The second is cryptographic hash function, which typically constructs fingerprint

of some data and provides assurance of data integrity [58]. It has properties of

preimage resistance, second-preimage resistance, and collision resistance.

3.2.2 Simplified (n, n)-Secret Sharing

Secret sharing (SS) is applied into our e-voting scheme. Polynomial-based thresh-

old SS scheme was first proposed by Shamir [59]. Here we adopt a simplified (n,

n)-SS scheme [51]. A secret s is split into n shares si (1 ≤ i ≤ n), s =
∑n

i=1 si,

over group Zm where m > 2n. For a group of n members, each receives one share.

All n members need to pool their shares together to recover s [60]. The scheme is
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additively homomorphic [61]: The sum of two shares si + s′i (corresponding to s and

s′, respectively) is a share of the secret s+ s′.

Theorem 3.2.1 The simplified (n, n)-SS scheme is unconditionally indistinguish-

able. That is, collusion of even up to n − 1 participants cannot gain any bit of

information on the shares of the rest. The proof is given in [61].

Corollary 3.2.2 In the simplified (n, n)-SS scheme, if k shares are known, collusion

of even up to n−1−k participants cannot gain any bit of information on the unknown

shares.

Proof When k shares are unknown, the simplified (n, n)-SS is degraded to simplified

(n−k, n−k)-SS. Thus, based on the theorem above, collusion of even up to n−1−k

participants cannot find any bit of information on the unknown shares.

This applies to the case when some shares are make public.

Corollary 3.2.3 In the simplified (n, n)-SS scheme, if the secret is known, collusion

of even up to n − 2 participants cannot gain any bit of information on the unknown

shares. In addition to that, if k shares are known, collusion of up to n − 2 − k

participants cannot gain any information of the remaining shares as long as there are

two or more unknown/secret shares.

Proof Based on the theorem above, because of the randomness of the shares, as

long as there are two or more shares are unknown, collusion of even up to n− 2− k

participants cannot find any bit of information on these unknown shares.

This corollary applied to the case in our voting protocol that after a vote or ballot is

open, collusion of up to n−2 voters cannot find any information of unknown shares. If

k shares are also known or made public, as long as two or more shares remain secret,

collusion of up to n − 2 − k voters cannot find any information of the remaining

unknown shares.
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3.2.3 Commitment Scheme

We use commitment scheme to allow a member who receives a secret share to

verify if his share is consistent with the one in the original secret holder. Commitment

scheme has been proposed in several VSS schemes such as [62, 63]. Our scheme is

based on cryptographic hash function described in Section 3.2.1. A voter commits

himself to x by computing

y = H(x)

and publishes y as a commitment to x. Any voter receiving x can verify it by comput-

ing H(x) and check if H(x) he calculated equals to y that the committer published.

3.2.4 Location Anonymization Scheme

Location anonymization scheme (LAS) is to find a unique position for each voter

Vi. The index i of Vi is known to the public. The approach taken here is based on

Zhao et al.’s scheme [51]. Given N voters, each voter Vi preloads a location vector Pi

first, and then chooses a position j randomly in a vector Pi. All voters aggregate their

Pi’s using (N , N)-SS. By checking the aggregated result, each one can observe if he

obtains a position without colliding with others. If not, another round is needed. The

voters who obtain unique positions in this round can keep their previous selections,

while others randomly make selections from remaining unoccupied positions. Each

voter at the end obtains a unique position. Due to (N , N)-SS, the obtained position

by each voter is only known to himself. More details can be found in [51].

In addition, we can also use the schemes developed in Chapter 5 which are more

robust and efficient.

3.3 Näıve Secret Sharing Based Protocol

In this section, we first briefly describe the setup of participants in the scheme,

and then give a detailed description of the scheme construction in each stage.
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3.3.1 Participants Setup

As described in Section 3.1.1, our scheme includes N voters, two2 honest collectors

with conflict-of-interests, and a third authority party. N voters cast their votes during

the voting process, and perform verification once all votes are published. Two honest

collectors also participate in every stage of the voting process, but carry different

duties. They collect the initial data, the commitment, and the intermediate vote data,

and then aggregate the intermediate vote data to generate all individual votes. The

existence of collectors in the whole voting process deters the voters from misbehaving.

The third party is not involved in any voting process but the investigation. In fact, he

steps in only when a vote fails the verification. At this moment, collectors transfer all

data in their hands to the third party, and he scrutinizes data to find the misbehaving

voter.

The involvement of the third authority party also plays an important role of

deterrence. The voters are deterred from misbehaving even from the beginning but

follow the scheme rightly during the entire voting process. If all voters follow the

scheme, there is no need to call in the third authority party. We assume that the

third party is trusted and will not disclose voters’ votes other than the misbehaving

voter to either collectors or any other voters after the investigation.

3.3.2 Protocol Construction

3.3.2.1 Initialization

We assumed two collectors C1 and C2 for simplicity, and N registered voters V1,

V2, · · · , VN , where the indices of both collectors and voters are known to the public,

the voting registration system publishes N hash functions, H1, H2, · · · , HN , and a

commitment scheme H. Each voter Vi applies LAS to acquire a unique position Li

where 1 ≤ i ≤ N . Vi also chooses N − 1 random numbers ri1, · · · , ri(i−1), ri(i+1), · · · ,
2As said earlier, more collectors can also be supported.
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riN (Notice the index here. We do not have rii). Meanwhile, for i < j, when i is odd,

Vi sends random numbers rij to C1 if j is even and to C2 otherwise, and when i is

even, he sends random numbers rij to C1 if j is odd and to C2 if j is even. For i > j,

when i is odd, Vi sends rij to C1 if j is odd and to C2 otherwise, and when i is even, he

sends rij to C1 if j is even and to C2 if j is odd. More specifically, the random number

rij goes to Collector C(i+j+1) mod 2+1 for i < j or to Collector C(i+j) mod 2+1 for i > j.

Consequently, each collector has exactly half set of random numbers. This prevents

a collector from having all random numbers from a single voter, so the collector will

not be able to deduce this voter’s vote (secret). If a voter sends a number different

from the one used for calculation afterwards, the receiving collector will detect it in

the next stage.

3.3.2.2 Anonymization

Each voter uses (N , N)-SS to cast his vote, thus achieving anonymity. Each

voter then calculates commitment of every shares, and publishes commitment data

for verification by others who receive vote shares. The collectors’ duty is to save the

published commitment as log data for the possible investigation. This stage consists

of four steps.

a) Hash Value Generation In this step, each voter Vi applies the published N

hash functions against the sequence of N −1 random numbers, ri1, · · · , ri(i−1), ri(i+1),

· · · , riN , to create N − 1 share vectors. Each vector contains N elements as follows:
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Ei1 = [H1(ri1), H2(ri1), · · · , HN(ri1)]T ,

Ei2 = [H1(ri2), H2(ri2), · · · , HN(ri2)]T ,

· · ·

Ei(i−1) = [H1(ri(i−1)), H2(ri(i−1)), · · · , HN(ri(i−1))]
T ,

Ei(i+1) = [H1(ri(i+1)), H2(ri(i+1)), · · · , HN(ri(i+1))]
T ,

· · ·

EiN = [H1(riN), H2(riN), · · · , HN(riN)]T

Simply put, Vi has an array of N − 1 share vectors as [Ei1, · · · ,Ei(i−1),Ei(i+1), · · · ,

EiN ].

b) Secret Share Concretization Next, each voter Vi generates the vector Eii.

Assuming Vi’s position Li is j and the vote is vi, Vi creates the ith vector Eii as

follows. For each element ek (k = 1, 2, · · · , N and k 6= j) in the vector Eii, we have:

ek = −Hk(ri1)−Hk(ri2)− · · · −Hk(riN) (3.1)

And the jth element ej in Eii is:

ej = vi −Hj(ri1)−Hj(ri2)− · · · −Hj(riN) (3.2)

Vi now has an array of N share vectors as [Ei1, · · · , Ei(i−1), Eii, Ei(i+1), · · · , EiN ].

This N ×N matrix is shown in Table 3.1.

The idea is that for Equation 3.3 below

Si =
N∑
l=1

Eil (3.3)

where Si is the sum of all N vectors generated by Vi, all elements in Si are 0, except

the jth element which is vi, i.e., the vote that Vi wants to cast.

c) Commitment In the third step, Vi publishes the commitment vector Cil of

Eil for l = 1, 2, · · · , i − 1, i + 1, · · · , N . Each element in Cil is a commitment of

the corresponding element in Eil. It is unnecessary to calculate and publish the
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Table 3.1.
Matrix of secret shares generated by Vi



H1(ri1) · · · H1(ri(i−1)) −H1(ri1)− · · · −H1(riN) H1(ri(i+1)) · · · H1(riN)

H2(ri1) · · · H2(ri(i−1)) −H2(ri1)− · · · −H2(riN) H2(ri(i+1)) · · · H2(riN)

· · · · · · · · · · · · · · · · · · · · ·

Hj−1(ri1) · · · Hj−1(ri(i−1)) −Hj−1(ri1)− · · · −Hj−1(riN) Hj−1(ri(i+1)) · · · Hj−1(riN)

Hj(ri1) · · · Hj(ri(i−1)) vi −Hj(ri1)− · · · −Hj(riN) Hj(ri(i+1)) · · · Hj(riN)

Hj+1(ri1) · · · Hj+1(ri(i−1)) −Hj+1(ri1)− · · · −Hj+1(riN) Hj+1(ri(i+1)) · · · Hj+1(riN)

· · · · · · · · · · · · · · · · · · · · ·

HN(ri1) · · · HN(ri(i−1)) −HN(ri1)− · · · −HN(riN) HN(ri(i+1)) · · · HN(riN)



commitment of Eii since Eii is kept by Vi himself, and consequently, no one else is

capable to check the commitment. Here the collectors perform the only duty in this

stage by saving all voters’ commitment as log data in case an investigation is required.

Meanwhile, since each collector keeps a partial set of one voter’s random numbers,

with both together covering the entire set, collectors can verify if the random numbers

they have received from this voter is indeed the ones used in the share generation and

commitment calculation. The collectors just need to use the published hash functions

and commitment scheme to compute share vectors and then their commitment vectors

against the received random numbers, and perform comparison between the published

commitment vectors with their own.

d) Distribution In the fourth step, Vi performs (N , N)-SS by sending vectors Eil

to Vl for l = 1, 2, · · · , i−1, i+1, · · · , N . Consequently, Vi also receives vectors Eli from

Vl for l = 1, 2, · · · , i−1, i+1, · · · , N , with the total of N−1 vectors. For every vector

Eli received, Vi verifies the vector by calculating the commitment and comparing to

the one published by the sending voter Vl. If a vector fails in the verification, Vi

will request Vl to resend the vector. If there is a dispute over this vector, Vi and Vl
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can ask the collector, C(l+i) mod 2+1, who is holding rli to further verify by generating

the vector and the corresponding commitment vector. We claim this misbehavior or

error is correctable. If every voter follows the scheme, Vi sums up the received N − 1

vectors together with Eii to form a new vector Bi as the intermediate vote data:

Bi =
N∑
l=1

Eli (3.4)

3.3.2.3 Collection

In this stage, each voter Vi broadcasts Bi. The collectors (voters as well, if they

want to) sum up all received N vectors into a new vector Q:

Q =
N∑
i=1

Bi (3.5)

The collectors publish the voting result Q for two reasons. First, two copies from

different collectors can be checked for consistency, which implicitly enables mutual

monitoring or even certain deterrence. Second, this allows every voter to verify his

own vote. All voters can also perform this computation if they want to, and by doing

so, they can even verify Q published by collectors.

3.3.2.4 Verification

If every voter follows the scheme honestly, his vote will be reflected in Q. Each

voter verifies his vote in his own private position. Since he also views all other

individual votes, he knows the vote total for each candidate. Thus, he can also verify

if his vote is counted by checking the vote total for each candidate.

3.3.2.5 Investigation

The investigation will be initiated in the case of misbehavior. Any misbehavior

before the collection stage can be in-progress detected, thus a voter cannot disturb
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other voters’ votes during those stages. The only way that a voter can disturb others

is through publishing incorrect Bi.

If a voter misbehaves in the collection stage, i.e., Vi broadcasts B′i such that

B′i 6= Bi, certain individual votes in Q will not be correct. Owners of these votes

will send complaint to the third authority party Mauth. In such circumstance, the

collectors are asked to send all random numbers, together with the intermediate

vote data Bi (i = 1, 2, · · · , N) and the saved log data (commitment) to Mauth. Vi

cooperates in the investigation by giving in his position Li, the genuine vote vi, and

the published v′i by collectors.

Mauth replays the scheme to find out the misbehavior. Assuming that Vi reports

his vote at the position j (i.e., Li) is not correct, we prove3 that the misbehaving

voter can be identified without revealing any voter’s position information other than

Vi’s position j.

Investigation - Anonymization Stage First, having all random numbers

transferred from collectors, Mauth executes the anonymization stage.

a) Hash Value Generation: For each voter Vk where k = 1, 2, · · · , N , Mauth runs

the hash value generation step to create Ekl for l = 1, 2, · · · , k − 1, k + 1, · · · , N .

However, Mauth is interested in the jth row (Vi’s position) only since individual votes

in other positions have passed verification. Therefore, Mauth just needs to use the

hash function Hj to generate the jth element in each vector, i.e., Hj(rkl) for l =

1, 2, · · · , k − 1, k + 1, · · · , N .

b) Secret Share Concretization: The jth element in Ekk is generated by using

Equation 3.1 for k 6= i since the position j is owned exclusively by Vi, not Vk, and

the jth element in Eii is generated by using Equation 3.2 and Vi’s genuine vi.

c) Commitment: Mauth so far has recovered the share vectors (To be exact, only

the jth row of the matrix in Table 3.1 is needed) for each voter. The data generated in

the normal scheme execution should be identical to these recovered by Mauth. Mauth

3For simplicity, our proof shown here is just for one incorrect vote. In case of multiple votes being
wrong, we can apply the same technique to find all misbehaving voters since the third party has all
necessary data.
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verifies this by calculating the commitment of the jth element in each vector and

comparing to the one given by collectors. All verification through the commitment

should be passed here because any discrepancy should have already been discovered

by the receiving voter in the fourth step (distribution) of the anonymization stage. If

the receiving voter has missed by any chance, the misbehavior can still be detected

here.

d) Distribution: Mauth then follows the distribution step in the anonymization

stage. Having N vectors Ekl (l = 1, 2, · · · , N) for each voter Vk (k = 1, 2, · · · , N),

Mauth applies Equation 3.4 to recover Bk (k = 1, 2, · · · , N). Again, Mauth is interested

in the jth row only, so he just needs to perform computation on the jth row in each

vector to generate the jth element in Bk. we now proceed to next stage.

Investigation - Collection Stage Mauth performs comparison to find the mis-

behaving voter. Having N vectors Bk (k = 1, 2, · · · , N) achieved by Mauth and

another copy of Bk submitted by collectors, Mauth can single out the misbehaving

voter who broadcasts the wrong Bk (or more precisely, wrong jth element in Bk).

As we have shown in the investigation, we reach a balance between anonymity/privacy

(of honest voters) and traceability/accountability (of the misbehaving voter). The

vote anonymity and voter privacy of all voters (even including the misbehaving voter)

are preserved except the complaining voter, while we are able to trace back to the

source and find the one accountable.

3.4 Security and Property Analysis

In this section, we argue that the common security requirements are satisfied. In

addition, our scheme achieves double-voting detection and security deterrence.

Correctness. When all voters are honest and following the scheme, a voter Vi

will have a matrix as shown in Table 3.1 after the stage in Section 3.3.2.2. The

aggregation of all column vectors [Ei1, · · · , Ei(i−1), Eii, Ei(i+1), · · · , EiN ] in the matrix

gives a vector Si as shown in Equation 3.3. All elements in Si are 0, except that the
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jth element is Vi’s vote vi where j is the secret position Vi holds. After the collection

stage in Section 3.3.2.3, we get Equation 3.5 where Q includes individual votes from

all voters. Both Bi and Si are aggregated from the same N matrices, so it is obvious

that:

Q =
N∑
i=1

Bi =
N∑
i=1

Si

Indeed Q holds all individual votes which will be verified by voters.

Vote Anonymity. By utilizing (N , N)-SS, a vote always remains anonymous

if no more than N − 2 voters collude. Since Bi is public, collusion of N − 1 voters

will disclose Eii, and consequently, the vote as well. But collusion of up to N − 2

voters will not gain any information of remaining shares based on Corollary 3.2.3,

thus achieving vote anonymity.

If voters collude to find the location information, the situation is slightly different.

collusion of up to N − 2 voters will not find the exact location that each of the

remaining honest voters has. However, if the votes in the remaining locations are the

same, they will know how these voters have voted. We assume the majority of voters

are benign. If they vote in different ways, the possibility is small for a collusion

of small fraction of voters to find out how the remaining majority have voted. If

the majority do vote for the same candidate, the collusion is meaningless since they

cannot control the election anyway.

With the assumption of collectors being honest, although a collector has more data

such as random numbers from voters thus he can further generate share vectors, the

collector cannot learn a voter’s vote without colluding with other voters or another

collector. Thus vote anonymity is also preserved from collectors.

Verifiability. The scheme provides verifiability. First, every voter at the end

of scheme can verify his own vote, thus providing individual verifiability. Second,

every voter can view all other individual votes and certainly the final vote total for

each candidate, thus providing universal verifiability. Furthermore, every voter (if he

wants to) can participate in the collection stage to tally and verify all votes published

by collectors.
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Robustness. Any faulty behavior of participants can be accurately detected thus

effectively preventing a voter from trying to disrupt the scheme. A misbehaving voter

Vi can: (a) use a different random number in calculation other than the one sent to a

collector; (b) send invalid share vector Eij (where j 6= i) to others; (c) publish invalid

commitment Cij (where j 6= i); (d) publish invalid Bi.

We first look at Case (a). A different random number will lead to a different hash

value and consequently different commitment. The collector having this random

number detects this misbehavior by calculating aforementioned two values and then

comparing to the commitment published in third step of the anonymization stage.

Now let’s look at Case (b). A share vector is invalid when Equation 3.3 does not

satisfy the condition that all elements in Si are 0, except the jth element being Vi’s

vote vi. An invalid share vector Eij (where j 6= i) will be detected immediately by

the receiving voter through checking the commitment. He will notify the sending

voter if the commitment verification fails, and request a valid share vector. However,

if somehow the receiving voter fails to detect the discrepancy and the voting process

goes through to the end, an invalid share vector will lead into incorrect votes in certain

positions. The owners of these positions will report to Mauth since their votes are not

correctly reflected in Q. At this moment, given all data from collectors, Mauth will

step in to replay the scheme and find out the culprit.

Case (c) will be tackled similarly as Case (b). Once a receiving voter receives a

share vector from a sending voter, he will calculate the commitment using the pub-

lished commitment scheme, and then compare to what the sending voter published.

The receiving voter will notify the sending voter if the commitment fails, and the

sending voter has to correct and re-publish the commitment. Both Case (b) and

Case (c) lead to the failed verification by the receiving voter. The collector having

the corresponding random number can also detect both cases, as discussed in the

commitment step of the anonymization stage.

The resolution of Case (d) relies on the third authority party. Invalid Bi leads to

wrong votes in Q, and consequently, the failed verification by voters. It will resort to
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the third authority party Mauth by providing him with all data from collectors. Mauth

replays the scheme to find out the culprit.

Security Deterrence. The existence of collectors and particularly the third

authority party deters voters from misbehaving and colluding. First, as discussed

earlier, using a different random number will be detected by collectors. Second, col-

lectors participate in the voting process with different duties from voter and monitor

the entire voting process, which serves as a deterrence to voters. Third, the capability

of the third authority party to find the misbehaving voters through the investigation

also discourages voters from wrongdoing.

Fairness. The fairness is preserved through the secret sharing since any informa-

tion about the votes cannot be learned until the voting results are published. First,

Vi creates N share vectors with N − 1 of them being sent to all other voters. Then

each voter adds the share vectors he received from all others and the one he kept for

himself, and broadcasts the intermediate vote data Bi. The collectors (and voters

if they want to) finally sum up all Bi to obtain all individual votes. Until the final

stage, any vote information other than his own cannot be obtained by a voter.

Vote Coercion. We argue that this scheme addresses the vote coercion issue.

Not like many other schemes where all vote data is aggregated and only vote totals

are published, in our scheme each individual vote is published. A voter can not only

verify his own vote, but also view others’ votes. A voter under coercion can certainly

claim any desired vote as his and provide the position information to the coercer. The

coercer can verify the vote in the given position. However, we notice the difference

of handling this issue with other schemes. For example, Clarkson et al. [64] proposed

to use or give away a fake credential for vote submission if under coercion. The votes

by fake credentials will be identified and excluded from the final tally.

Accountability. Accountability is implemented throughout the scheme. Ac-

countability is never an issue when all voters behave responsibly. However, if a voter

tries to disrupt others’ voting, we provide a mechanism to find out this voter. This
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is the only moment that a third authority party takes over the data to replay the

scheme. As discussed in the previous section, the third party will find out the culprit.

Transparency. The scheme is transparent to voters due to the fact that all

voters can not only anonymize and cast votes, but also tally votes (if they want to)

of individuals and verify their own votes. Voters do not need to send their votes to

the central authorities or central servers without knowing the internal functionality

but participate in every stage of the voting process.

Double-voting Detection. If a voter casts vote at another position besides his

own, due to (N , N)-SS addition homomorphism, the vote at this position will differ

from the one casted by the owner, so the verification will fail and an investigation

will then be initiated to detect the voter who casted multiple votes.

3.5 Complexity Analysis and Experiment Results

In this section, we first analyze the computation overhead, communication cost,

and space complexity. Then we present results from our simulation.

3.5.1 Complexity Analysis

Here we give a theoretical analysis of the cost in computation, communication, and

space at each stage. As we assumed in Section 3.3.2, there are N voters, two collectors,

and one third authority party. We assume here the communication overhead of one

message to be T c.

At the initialization stage, the computation overhead of each voter generating N−

1 random numbers is O(NT ). Each voter sends random numbers to collectors. This

can be done with two messages, with one message containing odd-indexed numbers

to one collector and another message containing even-indexed numbers to another

collector, so the communication cost for each voter is O(T c). The space complexity

is O(N) for each voter and each collector.
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The anonymization stage includes four steps. The hash value generation and the

secret share concretization yield the matrix shown in Table 3.1 for Vi. The commit-

ment produces another matrix (no computation is need for Cii though) in which each

element is calculated using the commitment scheme and the corresponding element

in Table 3.1. Therefore, the computation overhead is O(N2T ). The communication

cost includes the publication of the commitment in the third step and the secret share

distribution in the last step. In both steps, instead of having one element in one mes-

sage, we can send one vector in one message, so the communication cost for each

voter is O(NT c). The space complexity for each voter is O(N2), and for collectors is

O(N3) since the commitment by each voter has to be kept for the investigation.

At the collection stage, each collector adds N vectors into one vector to obtain N

individual votes, so the computation cost is O(N2T ). The space cost is O(N2) since

a collector needs to keep the intermediate vote data for the investigation if required.

If an authorized third party has to conduct an investigation, he will receive the

random numbers, the commitment, and the intermediate vote data of each voter

from collectors, and then replay the scheme. In addition, he also needs to compare

both the commitment and the intermediate data achieved from his own calculation

with those given by collectors. Each collector sends all required data in one message.

Therefore, the communication cost of getting data from each collector is O(T c), and

the computation overhead and the space complexity are O(N3T ) and O(N3), respec-

tively. We assume that collectors and, particularly, the authorized third party have

more computational power and space, so they have no problem in performing the

investigation.

3.5.2 Experiment Results

We present here our experiment results. Our scheme simulation is implemented

in Java. All the experiments were conducted on a computer system with Intel CPU

of frequency at 1.87 GHz and 16 GB memory. The Java MessageDigest class provides
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MD5 and SHA algorithms. We chose MD5 as our commitment scheme. For each

experiment, we ran the simulation 10 times, and then took average of the timings.

Starting with the anonymization stage, we first experimented on hash value gen-

eration and secret share concretization, which lead to the matrix in Table 3.1. The

hash functions were implemented using some shift and bit-wise operations. Fig. 3.1

shows the computation time taken by one voter. The total number of voters in this

figure (and the rest figures) ranges from 16 to 1400. As we discussed previously that

the computation overhead is O(N2T ), the curve in the figure grows as expected in

polynomial of N2 where N is the number of voters.
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Fig. 3.1. One voter generates shares

We then performed the simulation of generating the commitment that corresponds

to the third step in the anonymization stage. The commitment scheme uses the MD5

algorithm. The performance is given in Fig. 3.2. Again, the time in the figure is

measured for a single voter. We can see that Figs. 3.1 and 3.2 share certain similarity,

because the computation in both cases is of the same complexity, O(N2T ). However,
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the commitment calculation takes much more time since the MD5 algorithm is quite

complicated comparing to our own hash functions.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 200  400  600  800  1000  1200  1400

Ti
m

e 
of

 c
om

pu
tin

g 
co

m
m

itm
en

t (
m

s)

Number of voters

Fig. 3.2. One voter generates the commitment

We also simulated the distribution step in the anonymization stage where each

voter computes Bi. Fig. 3.3 shows the performance of computation by a single voter

as before. The time to compute Bi by one voter increases polynomially in N2, which

follows exactly our theoretical analysis. Comparing to the previous step, the compu-

tation here is much light.

The simulation of the collection stage is straightforward. It performs just addition

operations as in the distribution step of the anonymization stage. Fig. 3.4 shows the

performance of one collector aggregating all Bi into individual votes. The figure

reflects the computation overhead of O(N2T ) that was discussed previously.

From the simulation, we argue that our scheme is applicable to e-voting in real

life together with the voting structure discussed in Chapter 9. On the other hand,

we found that the commitment scheme (MD5 algorithm) is most expensive here.
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Fig. 3.4. One collector collects votes

Depending on the security requirement, we can select appropriate cryptographic hash

algorithms to meet the requirement, while decreasing the overall run time.
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3.6 Implementation Considerations

In this section, we discuss a few improvements that can be made in the scheme

implementation to increase the efficiency and scalability.

As discussed in the scheme construction, each vote is treated independently us-

ing (N , N)-SS. With N votes, there are N independent (N , N)-SS operations. The

performance will not be optimal when N is large. One improvement in the implemen-

tation is to treat a share vector Eij as one single number (e.g., BigInteger in Java)

and share this number using (N , N)-SS just once. Furthermore, if N is large enough

that a single number cannot represent, we can split N into M sub-ranges, with each

sub-range having N/M votes. For each sub-range, we use one number as mentioned

earlier. Then only M independent (N , N)-SS operations are needed to share all N

votes. Within each voter, M independent (N , N)-SS operations can be further paral-

lelized using the parallel programming technique. The number of sub-ranges depends

on the size of voter groups. Thus, the scheme can be effectively adapted to practical

e-voting applications of different scales.

Correspondingly, The calculation of commitment can be improved as well. In the

scheme, Vi commits every element in Eij (j = 1, 2, · · · , N and j 6= i). Instead, By

treating Eij as a single number, Vi calculates commitment simply against this num-

ber. With the commit scheme being expensive, this implementation will dramatically

improve the overall performance.

3.7 Non-interactive Voting

We can avoid the synchronization/interaction among voters during the voting

process and reduce their work. We assumed that the collectors have more compu-

tational power and space. Instead of having voters generate and distribute share

vectors during the voting process, we can let collectors jointly pre-generate them at

the earlier stage (with each collector generating half). Suppose for a voter Vi, collec-

tors C1 and C2 generate Si1 and Si2 respectively, with each element in Si1 and Si2
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are uniformly and independently selected from the domain space Z. Vi only needs to

generate Eii based on his vote vi and his position Li using Equations 3.1 and 3.2 such

that Si = Eii + Si1 + Si2 (i.e., Equation 3.3). From the Theorem 1 of the INFOCOM

paper [51], both Eii and Si (and certainly vi in the Si) are unconditionally secure.

Therefore, it is safe to let C1 and C2 each generate half amount of random share

vectors. Vi then sums up Eii with other vectors received from the collectors to get

Bi. Vi can publish Bi any time before the close of voting. This improvement saves

the overall communication cost by avoiding the direct interaction between each pair

of voters. Thus, the properties of secret sharing still hold, but voters do not need to

vote at the same time. In this setup, with the assumption of collectors being honest,

we may not even need to apply the commitment scheme.

In particular, the mutual restraining voting protocols in next chapter will elaborate

on how to implement non-interactive voting.
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4. MUTUAL RESTRAINING VOTING

In this chapter, we present our mutual restraining voting protocol [65, 66], with the

interactive protocol suitable for boardroom voting, where the voting process is decen-

tralized and the interaction between voters is encouraged, and with the non-interactive

protocol for centralized voting where no interaction is needed between voters.

4.1 Protocol Overvew

We first present security assumptions and threat model in the e-voting environ-

ment, and then describe each building block of our e-voting protocol, together with

high level overview of voting stages.

4.1.1 Assumptions and Attack Model

Similar to the assumptions in Section 3.1.1, there are N (N > 4) voters, Vi

(1 ≤ i ≤ N), and two tallying parties, or collectors, C1 and C2
1. But we do not have

a trusted third authority party here. C1 and C2 have conflicting interests : Neither

will share information with the other. The assumption of the existence of multiple

conflict-of-interests collectors was previously proposed by Moran and Naor [21], and

applied to real world scenarios like the two-party political system in the US. We also

assume that majority of voters are benign. This assumption is reasonable since the

colluding majority can easily control the election result otherwise.

In our model, collectors mutually check and restrain each other, and thus, are

assumed to follow the protocol. However, unlike previous works, we do not assume

that they are fully trustworthy, but only that they will not collude with each other due

1The protocol can be extended to more than two with no essential difficulties.
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to conflict of interests. Our protocol ensures that neither of them can tally the ballots

with the information they have before the final tallying. Some but not all voters could

be malicious in our model. They can send inconsistent information to different parties

or deliberately deviate from the protocol. We will show that the protocol can detect

such misbehaviors and identify them without compromising honest voters’ privacy.

For the interactive voting protocol presented in Section 4.2.1, secure uncast chan-

nel is needed between voters and between a voter and each collector. However, for

the non-interactive protocol in Section 4.2.3, secure uncast channel between a voter

and each collector is needed only. Such a secure channel can be easily provided with

a public key cryptosystem.

Similar to the threat model in Section 3.1.2, we consider two types of adversaries:

passive and active adversaries. The attacks can be either misbehavior from voters,

collusion among voters or voters and one collector, or external attack. In this protocol,

we consider the attacks targeting at voting only, rather than those targeting at general

computers or network systems such a denial-of-service (DoS), DDoS, jamming, and

Sybil attacks. The purposes of the attacks are either to infer a voter’s vote (i.e.,

passive adversaries) or to change the votes which favor a particular candidate or

simply invalidate the votes (i.e., active adversaries). As shown in Chapter 6, all these

attacks can either be prevented or detected.

4.1.2 Cryptographic Primitives

The building blocks of our protocol include simplified (n, n)-secret sharing and

tailored secure two-party multiplication. The former is given in Section 3.2.2. The

latter is presented below.



42

4.1.2.1 Tailored Secure Two-party Multiplication (STPM)

Tailored STPM2 is proposed in [37]. Initially, each party, Mi (i = 1, 2), holds a

private input xi. At the end of the protocol, Mi will have a private output ri, such

that x1 × x2 = r1 + r2. The protocol works as follows:

1. M1 chooses a private key d and a public key e for an additively homomorphic

public-key encryption scheme, with encryption and decryption functions being

E and D, respectively.

2. M1 sends E(x1, e) to M2.

3. M2 selects a random number r2, computes E(x1, e)
x2E(r2, e)

−1, and sends the

result back to M1.

4. M1 plugs the received value into D such that r1 = D(E(x1, e)
x2E(r2, e)

−1, d).

r1 is M1’s private output.

4.1.3 Web Based Bulletin Board

A web based bulletin board allows anyone to monitor the dynamic vote casting

and tallying in real time. Consequently, the casting and tallying processes are totally

visible (i.e., transparent) to all voters. The bulletin board will dynamically display

1) on-going vote-casting, 2) incremental aggregation of the secret ballots, and 3)

incremental vote counting/tallying. Note that all the incremental aggregations of

secret ballots, except the final one, reveal no information of any individual vote or

any candidate’s count. Only at the time when the final aggregation is completed are

all individual votes suddenly visible in their entirety, but in an anonymous manner.

It is this sudden transition that precludes any preannouncement of partial voting

results. Moreover, this transition creates a seamless connection from vote-casting

2Secure two-party multiplication (STPM) in the original paper [37] does not reveal the final product
to both parties, which is different from the typical STPM where both parties know the final product.
In order not to confuse readers, we rename it to tailored STPM.
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and ballot confirmation to vote-tallying and verification so that both voter privacy

and voter assurance can be achieved simultaneously. This is a unique feature of our

voting protocol, comparing to all existing ones.

4.1.4 Technical Components

The protocol includes three important technical components (TC).

TC1: Universal verifiable voting vector. For N voters and M candidates,

a voting vector vi for Vi is a binary vector of L = N ×M bits. The vector can be

visualized as a table with N rows and M columns. Each candidate corresponds to one

column. Via a robust location anonymization scheme described in Chapter 5, each

voter secretly picks a unique row. A voter Vi will put 1 in the entry at the row and

column corresponding to a candidate Vi votes for (let the position be Li
c), and put 0

in all other entries. During the tally, all voting vectors will be aggregated. From the

tallied voting vector (denoted as VA), the votes for candidates can be incrementally

tallied. Any voter can check his vote and also visually verify that his vote is indeed

counted into the final tally. Furthermore, anyone can verify the vote total for each

candidate.

TC2: Forward and backward mutual lock voting. From Vi’s voting vector

(with a single entry of 1 and the rest of 0), a forward value vi (where vi = 2L−Li
c) and

a backward value v′i (where v′i = 2Li
c−1) can be derived. Importantly, vi × v′i = 2L−1,

regardless which candidate Vi votes for. During the vote-casting, Vi uses simplified

(N,N)-SS to cast his vote using both vi and v′i respectively. vi and v′i jointly ensure

the correctness of the vote-casting process, and enforce Vi to cast one and only one

vote; any deviation, such as multiple voting, will be detected.

TC3: In-process check and enforcement. During the vote-casting process,

collectors will jointly perform two cryptographic checks on the voting values from

each voter. The first check uses tailored STPM to prevent a voter from wrongly

generating his share in the vote-casting stage. The second check prevents a voter
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from publishing an incorrect secret ballot when collectors collect it from him. The

secret ballot is the modular addition of a voter’s own share and the share summations

that the voter receives from other voters in the interactive protocol or from collectors

in the non-interactive protocol.

We argue that there is no incentive for a voter to give up his own voting right

and disrupt others. However, if a voter indeed puts the single 1 in another voter’s

location, the misbehaving voter’s voting location in VA and V′A will be 0, leading

to invalid VA and V′A. If this happens, C1 and C2 can jointly find this location and

then, along with the information collected during location anonymization, identify

the misbehaving person.

To prevent any collector from having all N − 1 shares of Vi, the protocol requires

that C1 have only half of Vi’s shares and C2 have the other half. Depending on

whether the voting protocol is interactive or non-interactive, the arrangement of which

collector getting exactly which shares is slight different as shown in Sections 4.2.1

and 4.2.3.

4.1.5 High-level Description of Protocol

Let vi = (B1, . . . , BN) be a voting vector. Each Bk = (bk,1, . . . , bk,M) is a bit

vector, 1 bit per candidate. To cast a ballot, a voter Vi obtains a secret and unique

index Li, which only Vi knows. To vote for the candidate cj, Vi sets bit bLi,j of BLi
,

and clears the other bits.

1. Voter registration. This is independent of the voting protocol. Each registered

voter Vi obtains a secret index Li using a location anonymity scheme (LAS)

described in Chapter 5.

2. Voting. The voter Vi votes for the candidate cj as follows:

(a) Set bLi,j = 1 and all other bits in BLi
and the other Bk, k 6= Li, to 0. Call

this set bit Li
c = (Li − 1)×M + j − 1; it is simply the number of the bit

when vi is seen as a bit vector. See TC1 in Section 4.1.4.
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(b) Compute vi = 2L−Li
c and v′i = 2Li

c−1. This converts the bit vector to

integers. Note vi×v′i = 2L−1, which is a constant. See TC2 in Section 4.1.4.

(c) Think of shares of all voters’ ballots forming an N ×N matrix (as shown

in Table 4.1). Row i represents the vote vi and Column i represents the

ballot pi. Vi computes and casts his ballot pi as follows.

i. In the non-interactive protocol, C1 and C2 generate about N−1
2

shares

each for Vi. They send the sum of the shares, Si,C1 and Si,C2 respec-

tively, to Vi. In the interactive protocol, Vi himself generates these

N−1 shares. Vi then computes his own share as sii = vi−Si,C1−Si,C2 ,

which corresponds to all elements on the main diagonal of the matrix.

ii. In the non-interactive protocol, C1 sends voter Vi the sum S̃i,C1 of the

shares C1 generated for one half of the voters. Similarly, C2 sends

voter Vi the sum S̃i,C2 of the shares C2 generated for the other half

of the voters. In the interactive protocol, Vi receives the shares from

other voters. Then Vi computes and publishes his ballot pi = sii +

S̃i,C1 + S̃i,C2 .

(d) The previous step (c) is repeated, but with v′i instead of vi. The share Vi

obtains from this step is s′ii, and the ballot is p′i which is also public.

(e) Simultaneously with the previous step, the voter also publishes his com-

mitments (gsii , gs
′
ii , gsis

′
ii), where g is the base for the discrete logarithm

problem. Two authorities jointly verify the validity of each cast ballot.

See TC3 in Section 4.1.4.

3. Tally and verification. The collectors (in fact anyone can) sum all the ballots

to get P =
∑N

i=1 pi (and the corresponding P ′ =
∑N

i=1 p
′
i). P and P ′ are public

too. VA and V′A are in a binary form of P and P ′, respectively. VA and V′A are

bit-wise identical in reverse directions. Any voter, collectors, or a third party

can verify individual ballots, tallied voting vectors VA and V′A, individual plain

votes exposed in VA and V′A, and the sum of each candidate’s votes.
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Fig. 4.1 shows the interaction between a voter and collectors/authorities along the

voting timeline based on the interactive voting protocol that will be described next.

Timeline Voter Vi Collectors Cj 

registration  
window 

vote  
casting  

window 

vote 
tallying 
window 

Register through authentication 

Location anonymization 

Cj send a set of shares to Vi 

Vi calculates his own share sii 
and publishes commitments 

Cj generate shares for all 
registered voters 

Cj use Sub-protocol 1 to 
verify sii  based on the 
published commitments 

Cj send another set of shares to Vi 

Vi calculates his secret ballot pi and 
publishes it along with commitments 

Cj use Sub-protocol 2 to 
verify pi  based on the 
published commitments 

Cj remove shares of 
registered voters who have 
not cast ballot 

Collectors (voters or any 3rd party if they want to) tally all ballots 

Fig. 4.1. Voter and collectors/authorities’ interaction along the timeline

4.2 Mutual Restraining Voting Protocol

In this section, we elaborate on the protocol in two scenarios: interactive protocol

and non-interactive protocol, together with two sub-protocols for in-process voting

check and enforcement. An example of a bulletin board is then given next.

4.2.1 Interactive Voting Protocol

Stage 1: Registration (and initialization). The following computations are

carried out on a cyclic group Z∗A, on which the Discrete Logarithmic Problem (DLP)

is intractable. A = max{A1,A2}, in which A1 is a prime larger than 21024 and A2 is
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a prime larger than 22L − 2L+1 + 1. Let the number of voters be N and the number

of candidates be M . The N voters are denoted as V1, · · · , VN .

All voters have to register and be authenticated first before entering the voting

system. Typical authentication schemes, such as public key authentication, can be

used. Once authenticated, voter Vi executes one LAS in Chapter 5 collaboratively

with other voters to obtain a unique and secret location Li. Then Vi generates his

voting vector vi of the length L = N ×M bits and arranges the vector into N rows

(corresponding to N voters) and M columns (corresponding to M candidates); Vi

fills a 1 in his row (i.e., the Lith row) and the column for the candidate he votes, and

0 in all other entries. Consequently, the aggregation of all individual voting vectors

will create a tallied vector allowing universal verifiability (TC1). This arrangement

of vector can support voting scenarios including “yes-no” voting for one candidate

and 1-out-of-M voting for M candidates with abstaining or without.

Stage 2: Vote-casting. From the voting vector vi (with a singleton 1 and all

other entries 0), Vi derives two decimal numbers vi and v′i. vi is the decimal number

corresponding to the binary string represented by vi, while v′i is the decimal number

corresponding to vi in reverse.

In other words, if Vi sets the Li
cth bit of vi to 1, we have vi = 2L−Li

c and v′i = 2Li
c−1,

thus vi× v′i = 2L−1. vi and v′i are said to be mutually restrained (TC2). This feature

will lead to an effective enforcement mechanism that enforces the single-voting rule

with privacy guarantee: The vote given by a voter will not be disclosed as long as the

voter casts one and only one vote.

Next, Vi shares vi and v′i with other voters using (N,N)-SS. Note that the sharing

process of vi and v′i is independent. Assume that a secure communication channel

exists between any two voters and between any voter and any collector. The following

illustrates of the sharing of vi:

1. Vi randomly selects N − 1 shares sil (1 ≤ l ≤ N , l 6= i) and distributes them to

the other N − 1 voters with Vl getting sil. For i < l, when i is odd, Vi sends sil

to C1 if l is even and otherwise to C2; when i is even, Vi sends sil to C1 if l is odd
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and otherwise to C2. For i > l, when i is odd, Vi sends sil to C1 if l is odd and

otherwise to C2; when i is even, Vi sends sil to C1 if l is even and otherwise to

C2.That is, sil goes to C(i+l+1) mod 2+1 for i < l or to C(i+l) mod 2+1 for i > l. This

sharing approach is similar to the one in Section 3.3.2.1. Certainly we can also

use the approach shown in Table 4.1. The only objective is to prevent a single

collector from obtaining enough information to infer a voter’s vote. Vi then

computes his own share sii = vi −
∑N

l=1,l 6=i sil, and publishes the commitment

gsii .

Let the sum of shares that Cj(j = 1, 2) receives from Vi be Si,Cj
. Vi’s own share

can also be denoted as: sii = vi − Si,C1 − Si,C2 .

2. Upon receiving N − 1 shares from other voters, Vi computes the secret ballot,

pi =
∑N

l=1 sli, which is the sum of the received N − 1 shares and his own share

sii, and then broadcasts pi.

Two collectors also have these N − 1 shares, with each having a subset. Let

the sum of the subset of shares held by the collector Cj(j = 1, 2) be S̃i,Cj
. The

secret ballot can also be denoted as: pi = sii + S̃i,C1 + S̃i,C2 .

The sharing of v′i is the same as above, and gs
′
ii is also published during this

process. In addition, Vi publishes gsiis
′
ii . These commitments, gsii , gs

′
ii , and gsiis

′
ii ,

are used by the collectors to enforce that a voter generates and casts his vote by

distributing authentic shares and publishing an authentic secret ballot pi (i.e., the

two sub-protocols described in Section 4.2.2).

Stage 3: Collection/Tally. Collectors, and voters if they want to, collect secret

ballots pi (1 ≤ i ≤ N) from all voters and obtain P =
∑N

i=1 pi. P is decoded into a

tallied binary voting vector VA of length L. The same is done for p′i (1 ≤ i ≤ N)

to obtain P ′, and consequently V′A. If voters have followed the protocol, these two

vectors should be reverse to each other by their initialization in Stage 1.

It might be possible that some voters do not cast their votes, purposely or not,

which can prevent VA or V′A from being computed. If Vi’s ballot does not appear
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on the bulletin board after the close of voting, all shares Vi sent to and received

from other voters have to be canceled out from P . Since sii = vi − Si,C1 − Si,C2 and

pi = sii + S̃i,C1 + S̃i,C2 , we have:

pi = vi − Si,C1 − Si,C2 + S̃i,C1 + S̃i,C2

Without Vi casting his secret ballot, we simply deduct (Si,C1 + Si,C2 − S̃i,C1 − S̃i,C2)

from P . Similar deduction also applies to P ′.

Stage 4: Verification. Anyone can verify whether VA is a reverse of V′A

and whether each voter has cast one and only one vote. Vi can verify the entry Li
c

(corresponding to the candidate that Vi votes for) has been correctly set to 1 and the

entries for other candidates are 0. Furthermore, the tallied votes for all candidates

can be computed and verified via VA and V′A. In summary, both individual and

universal verification are naturally supported by this protocol.

4.2.2 Two Sub-protocols

A voter may misbehave in different ways. Examples include: 1) multiple vot-

ing; 2) disturbing others’ voting; and 3) disturbing the total tally. All examples of

misbehavior are equivalent to an offender inserting multiple 1s in the voting vector.

The following two sub-protocols, which are collectively known as in-process check and

enforcement (TC3), ensure that each voter should put a single 1 in his voting vector,

i.e., vote once and only once.

4.2.2.1 Sub-protocol 1

1) Recall that in Stage 2, Vi sends N − 1 shares sil (1 ≤ l ≤ N, l 6= i) of his

secret vote vi to the other N − 1 voters as well as the two collectors; each of the two

collectors, C1 and C2, has a subset of the N − 1 shares denoted as Si,C1 and Si,C2

respectively. Similarly for v′i, Cj (j = 1, 2) gets S ′i,Cj
.
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2) Since Vi has published gsii and gs
′
ii , C1 can compute (gsii)S

′
i,C1 and (gs

′
ii)Si,C1 .

In addition, C1 computes gSi,C1
S′i,C1 . Similarly, C2 computes (gsii)S

′
i,C2 , (gs

′
ii)Si,C2 , and

gSi,C2
S′i,C2 .

3) C1 and C2 cooperatively compute gSi,C1
S′i,C2 × gS

′
i,C1

Si,C2 . A straightforward

application of Diffie-Hellman key agreement [67] to obtain gSi,C1
S′i,C2 and gS

′
i,C1

Si,C2

will not work.3 Hence, tailored STPM is used to compute gSi,C1
S′i,C2 × gS

′
i,C1

Si,C2

without disclosing gSi,C1 , gS
′
i,C1 , gSi,C2 and gS

′
i,C2 as follows:

• Execute the tailored STPM, C1 and C2 obtain r1 and r′2 respectively such that

r1 + r′2 = Si,C1S
′
i,C2

.

• Execute the tailored STPM, C1 and C2 obtain r′1 and r2 respectively such that

r′1 + r2 = S ′i,C1
Si,C2 . (Exchanging r1 and r′2 or r′1 and r2 between C1 and C2 will

not work.4)

• C1 computes gr1+r′1 , C2 computes gr2+r′2 . Obviously we have: 5

gr1+r′1 × gr2+r′2 = gr1+r′2+r′1+r2 = gSi,C1
S′i,C2 × gS

′
i,C1

Si,C2 .

4) C1 computes a combined product K1 = (gsii)S
′
i,C1 × (gs

′
ii)Si,C1 × gSi,C1

S′i,C1 ×

gr1+r′1 and similarly, C2 computes a combined product K2 = (gsii)S
′
i,C2 × (gs

′
ii)Si,C2 ×

gSi,C2
S′i,C2 × gr2+r′2 , and then they exchange K1 and K2.

5) Using Vi’s commitment gsiis
′
ii and K1, K2, each collector obtains gsiis

′
ii ×K1 ×

K2 = gsiis
′
ii × (gsii)S

′
i,C1 × (gs

′
ii)Si,C1 × gSi,C1

S′i,C1 × (gsii)S
′
i,C2 × (gs

′
ii)Si,C2 × gSi,C2

S′i,C2 ×

gSi,C1
S′i,C2 × gS

′
i,C1

Si,C2 . The collectors can verify that the product equals g2L−1
. If not,

Vi must have shared vi and/or v′i incorrectly.

3If C1 exchanges his gSi,C1 and gS
′
i,C1 with C2’s gSi,C2 and gS

′
i,C2 , since gsii and gs

′
ii are published

by Vi, C1 and C2 each can obtain gsii+Si,C1
+Si,C2 and gs

′
ii+S′

i,C1
+S′

i,C2 which correspond to gvi and
gv

′
i . Because there are only L possibilities of each voter’s vote, C1 and C2 each can simply try L

values to find out the vote vi. This violates voter privacy since both the vote and the location are
known.
4If C1 and C2 exchange r1 and r′2 for an example, C2 can obtain gSi,C1 since he has r′2 and S′

i,C2
.

With gsii being public, and vi = sii + Si,C1
+ Si,C2

, C2 can get gvi by trying out L values and
consequently find out the vote vi. Likewise, C1 can also find out vi.
5C1 and C2 cannot exchange gr1+r′1 and gr2+r′2 directly. Doing so will result in a brute-force attack
which is able to obtain the voter’s vote, as described in Section 6.1.
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4.2.2.2 Sub-protocol 2

While the Sub-protocol 1 ensures that Vi should generate sii and all shares prop-

erly, Sub-protocol 2 enforces that Vi should faithfully publish the secret ballots, pi

and p′i.

1) Recall that in the sharing of vi, Vi receives N − 1 shares from other voters,

and these shares are also received by collectors. Each of the collectors, C1 and C2,

receives a subset of these N − 1 shares, so trust is split between two collectors. The

sum of the subset of shares held by the collector Cj(j = 1, 2) is S̃i,Cj
. Cj (j = 1, 2)

will exchange gS̃i,Cj . Similarly for v′i, Cj (j = 1, 2) will exchange g
S̃′i,Cj .

2) From the published pi and p′i, the collectors compute gpi and gp
′
i . Since

gsii and gs
′
ii are published and verified in Sub-protocol 1, collectors will verify that

gsiigS̃i,C1gS̃i,C2 = gpi and gs
′
iigS̃

′
i,C1gS̃

′
i,C2 = gp

′
i . If either of these fails, Vi must have

published the wrong secret ballots pi and/or p′i.

4.2.3 Non-interactive Voting Protocol

The protocol presented in Section 4.2.1 is suitable for voting scenarios such as

boardroom voting where voters are encouraged to interact with each other. However,

it is often the case that an election involves a large group of people where the interac-

tion is impossible to be realistic. In this scenario, we allow collectors to carry the duty

of creating voters’ shares. While this eliminates the interaction between voters, the

properties of our voting protocol remain held as we will discuss in the next section.

As said earlier, it is not practical to require a large number of voters to interact

with each other during voting. Fortunately, our (N,N)-SS based voting protocol can

be designed to allow voters to vote non-interactively. Table 4.1 illustrates how the two

collectors generate respective shares for voters. In this non-interactive vote-casting,

two collectors generate shares for every voter, and interact with a voter for vote-

casting whenever the voter logs into the system to vote. Compared to the interactive
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Table 4.1.
Collectors generate all shares for each voter, with each collector gen-
erating about half of N − 1 shares

← − C1 − → ← − C2 − →

S̃i,C1 S̃i,C2

⇓ ⇓

v1 s1,1 ˆs1,2 · · · ˆs1,N/2 ˇs1,N/2+1 · · · ˇs1,N

C1, Si,C1 ⇒
...

...
...

...
...

...
...

... ⇐Si,C2 , C2

vN/2 ˆsN/2,1 ˆsN/2,2 · · · sN/2,N/2 ˇsN/2,N/2+1 · · · ˇsN/2,N

vN/2+1 ˇsN/2+1,1 ˇsN/2+1,2 · · · ˇsN/2+1,N/2 sN/2+1,N/2+1 · · · ˆsN/2+1,N

C2, Si,C2 ⇒
...

...
...

...
...

...
...

... ⇐Si,C1 , C1

vN ˇsN,1 ˇsN,2 · · · ˇsN,N/2 ˆsN,N/2+1 · · · sN,N

⇑ ⇑

S̃i,C2 S̃i,C1

← − C2 − → ← − C1 − →

Notice: vi is Vi’s vote. ˆsi,j (i 6= j) is generated by C1, and ˇsi,j (i 6= j) is by C2. Si,C1
is the sum of

all shares ( ˆsi,j) in Row i generated by C1 for Vi, and Si,C2 is the sum of all shares ( ˇsi,j) in Row i

by C2 for Vi. si,i = vi − Si,C1 − Si,C2 . S̃i,C1 is the sum of all shares ( ˆsj,i) in Column i generated by

C1, and S̃i,C2
is the sum of all shares ( ˇsj,i) in Column i by C2.

protocol, only Stage 2 is different, while the rest of the stages are the same. Steps

in this new Stage 2 are given below.

• The two collectors work together to generate all N − 1 shares for each voter Vi

in advance as shown in Table 4.1, with ŝi,j (i 6= j) by C1 and ši,j (i 6= j) by C2.

sii is derived by Vi himself. Specifically6, for the voters V1 to VN/2, C1 generates

their first N/2−1 shares (up-left of the matrix) and C2 generates their last N/2

shares (up-right of the matrix). For the voters VN/2+1 to VN , C1 generates their

last N/2− 1 shares (lower-right of the matrix) and C2 generates their first N/2

shares (lower-left of the matrix). Fig. 4.2 illustrates a case of five voters.

6N/2 should be in the form of dN/2e by applying the ceiling function (or bN/2c by taking the floor
function). (N − 1)/2 afterwards should also be in the same form. We omit this notation simply for
the sake of readability.
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Collectors: generate shares 

C1 

C2 

V1 

V2 

V3 

V4 

Voters from a precinct 

V5 

Fig. 4.2. Collectors generate shares for voters

• Whenever a voter Vi logs into the system to cast his vote, the two collectors will

each send their half of N − 1 shares (in fact, the sum of these shares, denoted

as Si,Cj
in Table 4.1, where j = 1 or 2) to this voter. Specifically, C1 sends Si,C1

(the sum of shares in one half of the ith row) to the voter, and C2 sends Si,C2

(the sum of shares in the other half of the ith row) to the voter. The voter Vi will

compute his own share as sii = vi − Si,C1 − Si,C2 , and publish his commitments

(i.e., gsii , gs
′
ii , gsiis

′
ii). Fig. 4.3 shows the communication between collectors and

voters. Under the assumption that the two collectors have conflicting interests,

they will not give away a voter’s shares to each other, so neither of them can

derive the voter’s vote from Vi’s commitment.

• The two collectors verify a voter’s vote using Sub-protocol 1 and if passed,

send the shares from the other N −1 voters (one from each voter) to this voter.

Specifically, C1 sends S̃i,C1 (the sum of shares in one half of the ith column

as shown in Table 4.1) to the voter, and similarly C2 sends S̃i,C2 (the sum of

shares in the other half of the ith column). The voter sums the shares from

the two collectors and his own share, and then publishes the secret ballot of

sii + S̃i,C1 + S̃i,C2 to the bulletin board, as shown in Fig. 4.4 as an example.
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C1 

C2 

V1 

V2 

V3 

V5 

Voters from a precinct 

Bulletin 
Board 

V4 

Fig. 4.3. Voters interact with collectors to calculate sii and commitments

(Optionally, the voter can send to just two collectors, or to only one of the

collectors to prevent the collector initiated voter coercion.) The two collectors

can verify the voter’s ballot using Sub-protocol 2.

C1 

C2 

V1 

V2 

V3 

V5 

Voters from a precinct 

Bulletin 
Board 

V4 

5.
 V

er
ifi

ca
tio

n 

Fig. 4.4. Voters interact with collectors to compute secret ballots

It is clear that although the two collectors generate shares for a voter, neither of

them can obtain the voter’s own share sii or the voter’s vote vi, unless two collectors
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collude and exchange the shares they have generated. As proven by Theorem 3.2.1,

any k voters, as long as k ≤ N − 1, can not obtain the share (thus, the vote) of

any other voters in an unconditionally secure manner. Again, as in the interactive

protocol, it may be possible that some voters do not cast their votes, preventing VA

from being computed. The solution discussed in Stage 3 of Section 4.2.1 still applies.

4.2.4 One Example of Web Based Bulletin Board

As discussed earlier, our web based bulletin board displays the on-going vote

casting and tallying processes. The incremental aggregation of secret ballots does

not reveal information about any individual vote. Only when the final aggregation

is completed, all individual votes in the voting vector are suddenly visible in their

entirety to the public, but in an anonymous manner. It is this sudden transition that

precludes preannouncement of any partial voting results.

Table 4.2.
A voting example involving 4 voters and 2 candidates (R and B)

Voter Location Vote Shares Secret ballot

V1 2 B (32) 12+5+8+7 45 (=12+1+15+17)

V2 3 R (4) 1+13+(-3)+(-7) 28 (=5+13+7+3)

V3 4 B (2) 15+7+(-10)+(-10) 30 (=8+(-3)+(-10)+35)

V4 1 R (64) 17+3+35+9 -1 (=7+(-7)+(-10)+9)

For the illustration purpose only, Table 4.2 gives an example of 4 voters with their

corresponding shares and secret ballot in a case of 2 candidates. Fig. 4.5 presents

the aggregation and tallying on the bulletin board. It is obvious that the incremental

aggregation does not disclose any information until the last secret ballot, V3’s 30, is

counted in.
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Fig. 4.5. Real-time bulletin board

4.3 Complexity Analysis and Simulation

In this section, we analyze the complexity of our mutual restraining protocol

including both interactive voting and non-interactive voting, and then give simulation

results.

4.3.1 Performance and Complexity Analysis

Here we analyze the computational complexity and communication cost for both

voters and collectors in the protocol. Suppose that each message takes T bits. Since

the protocol works on a cyclic group Z∗A (A = max{A1,A2}, in which A1 is a prime

greater than 21024 and A2 is a prime greater than 22L−2L+1+1), we see that T = O(L).

The voting protocol involves two independent sharing processes of vi and v′i. Each

voter’s communication cost is calculated as follows. In the interactive protocol, each

voter sends shares of vi to the other N − 1 voters and the two collectors, which costs

O(NT ). In the non-interactive protocol however, each voter receives shares from the

collectors only, so the cost is O(T ). In both protocols, each voter also publishes pi
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and the commitments gsii , gs
′
ii , and gsiis

′
ii , which costs O(T ). Therefore, the total

communication cost of sharing of vi for a voter is O(NT ) + O(T ) in the interactive

protocol and O(T ) in the non-interactive protocol. The communication cost of sharing

v′i is the same.

Each voter’s computation cost includes computing vi, generating N shares (in

the interactive protocol only), computing the secret ballot pi, and computing the

commitments gsii , gs
′
ii , and gsiis

′
ii , each of which costs O(T ), O(NT ) (in the interactive

protocol only), O(NT ) in the interactive protocol and O(T ) in the non-interactive

protocol, and O(T 3) respectively. The same computation cost applies to the sharing

of v′i. Notes: The commitments can typically be computed by a calculator efficiently,

thus, the complexity of O(T 3) will not become a performance issue.

The collector Cj’s communication cost involves: 1) receiving O(N) shares from

each voter in the interactive protocol with the cost of O(NT ), or sending sums of

shares to each voter in the non-interactive protocol with the cost of O(T ); 2) exchang-

ing data with the other collector in Sub-protocol 1 with the cost of O(T̃ ) (assuming

that the tailored STPM messages are encoded into T̃ -bits); and 3) publishing gS̃i,Cj

or g
S̃′i,Cj for each voter in Sub-protocol 2 with the cost of O(T ). With N voters, the

total cost for each collector is O(NT ) +O(T̃ ) +O(T ))N for the interactive protocol

and (O(T ) +O(T̃ ) +O(T ))N for the non-interactive protocol.

The computation cost of each collector includes generating N(N −1)/2 shares for

all voters (in the non-interactive protocol only) which costs O(N2T ), summing up

the pi during voting collection/tally, which costs O(NT ), and running Sub-protocol

1 and Sub-protocol 2 whose computation costs are shown below.

In Sub-protocol 1, for the collector Cj, 1) computing g
siiS

′
i,Cj , gs

′
iiSi,Cj and g

Si,Cj
S′i,Cj

costs O(T 3); 2) computing Kj involves the tailored STPM; and 3) computing gsiis
′
ii×

K1×K2 costs O(T 2). Computing Kj consists of obtaining rj and r′j with the tailored

STPM, computing grj+r′j and multiplying this with other terms. Let the complexity

for tailored STPM be O(TPMC). The total computation cost of Sub-protocol 1 for

each collector is O(T 3) +O(T 2) +O(TPMC) per voter.
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In Sub-protocol 2, the collectors: 1) compute S̃i,Cj
and S̃ ′i,Cj

; 2) compute gS̃i,Cj and

g
S̃′i,Cj ; 3) multiply gsii , gS̃i,C1 and gS̃i,C2 , and also gs

′
ii , gS̃

′
i,C1 and gS̃

′
i,C2 ; and 4) compute

gpi and gp
′
i . These computations cost O(NT ), O(T 3), O(T 2) and O(T 3), respectively.

Thus, the total computation cost of Sub-protocol 2 is O(NT )+O(T 3)+O(T 2)+O(T 3)

for each voter.

4.3.2 Simulation Results

The results presented here are from our protocol simulation implemented in Java.

The experiments were carried out on the same machine that we did for the protocol in

Chapter 3. Again for each experiment, we took the average of 10 rounds of simulation.

1-out-of-2 voting is simulated. Thus, the length of the voting vector is L = 2N where

N is the number of voters.
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Fig. 4.6. Collectors run Sub-protocol 1 in TC3 against one voter

In the non-interactive protocol, the computation time for a voter Vi is negligi-

ble since only two subtractions are needed for sii and two additions for pi, and the

commitments can be obtained by using a calculator sufficiently. Collectors however

require heavy load of calculation, so our simulation focuses on collectors’ operations.

Figs. 4.6 and 4.7 show the computation time of Sub-protocol 1 and Sub-protocol

2, respectively. Sub-protocol 1 is dominated by the tailored STPM, due to the com-
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Fig. 4.7. Collectors run Sub-protocol 2 in TC3 against one voter

putationally intensive Paillier Cryptosystem used in our implementation. However,

this should not be an issue in real life since the collectors usually possess much greater

computing power.

Fig. 4.8 shows the time for one collector to collect and tally votes. The execution

time depends on the number of voters N and the length L. As L increases, the voting

collection/tally time increases by NL = O(L2).
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Fig. 4.8. One collector collects/tallies votes
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The simulation results confirm the performance analysis in Section 4.3.1. Most

operations are quite efficient. For example, when L = 4000 (and N = 2000), col-

lecting and tallying votes took only 0.005 seconds. For the in-process enforcement

protocol however, it took the collectors 332 seconds to complete Sub-protocol 1 and

0.515 seconds to complete Sub-protocol 2. To amortize the relatively high cost, the

collectors may randomly sample voters for misbehavior checking and only resort to

full checking when a discrepancy in the tally is detected or reported.
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5. DESIGN OF ROBUST AND EFFICIENT LOCATION

ANONYMIZATION SCHEMES

Location anonymization scheme (LAS) is a key component of our voting protocols.

Inspired by the work in [61], we propose a new set of LAS that is robust and efficient.

Our new schemes solve the following problem with the previous scheme: If a member

misbehaves in next rounds by selecting multiple locations or a location that is already

occupied by another member, the location selection in [61] may never finish.

5.1 Original Location Anonymization Scheme

Our first LAS is based on the mutual lock voting mechanism in Chapter 4. It

works as follows:

1. Each voter Vi initializes a location vector Li (of length L̄) with 0s. Vi randomly

selects a location L̂i (1 ≤ L̂i ≤ L̄) and sets the L̂ith element/bit of Li to 1.

2. From Li, Vi obtains two values li and l′i by: 1) encoding Li into a decimal

number li
1; and 2) reversing Li to be L′i and encoding it into a decimal number

l′i. For example, if Li = [000010], we obtain li = 10 and l′i = 10000. Evidently,

li × l′i = 10L̄−1.

3. Vi shares li and l′i using (N,N)-SS as in Stage 2 in Section 4.2.1. All voters

can obtain the aggregated location vector LA and L′A. If Vi has followed the

protocol, LA and L′A are the reverse of the other.

1A decimal encoding, instead of a binary one, is used to encode Li. The motivation is illustrated
below. Assume that the binary encoding is adopted. Let the location vectors of voters Vi, Vj and
Vk be Li = 000010, Lj = 000010, and Lk = 000100, respectively. Therefore, LA = 001000: Voters
cannot tell if they have obtained unique locations. This will not be the case if Li uses a larger base.
However, encoding Li in a larger base consumes more resources. Decimal is a trade-off we adopted
to strike a balance between fault tolerance and performance. The probability of having more than
10 voters collide at the same location is considerably lower than that of 2.
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4. Vi checks if the L̂ith element/bit of LA is 1. If so, Vi has successfully selected

a location without colliding with others. Vi also checks if everyone has picked

a non-colliding location by examining whether max(LA) = 1 and whether the

total number of 1s equals to the number of voters. If there is at least one

collision, steps 1 through 3 will restart. In a new round, voters who have

successfully picked a location without collision in the previous round keep the

same location, while others randomly select from locations not been chosen.

5. The in-process check and enforcement mechanism in Section 4.2.2 is concur-

rently executed by collectors to enforce that a voter will select one and only

one location in each round. Furthermore, the mechanism, to be proved in

Section 6.7.1, ensures that any attempt of inducing collision by deliberately se-

lecting an occupied position will be detected. Hence, such misbehavior will be

precluded.

6. Once all location collisions are resolved in a round, each voter removes non-

occupied locations ahead of his own and obtains his real location Li =
∑L̂i

j=1(LA)j.

After the adjustment, the occupied locations become contiguous. The length of

the adjusted Li equals to the number of voters, N .

We will complement the above discussion with simulation result in Section 5.4

and security analysis in Section 6.7.1.

Notes: 1) Location anonymization, a special component in our protocols, seems

to be an additional effort for voters. However, it is beneficial since voters not only

select their secret locations, but also learn/practice vote-casting ahead of the real

election. The experiments show that 2 to 3 rounds are generally enough. 2) Location

anonymization can be executed non-interactively. 3) A malicious participant deliber-

ately inducing a collision by choosing an already occupied location will be identified.

Under the assumption that C1 and C2 have conflicting interests and thus will check

each other but not collude, more deterministic and efficient LAS can be designed. One

algorithm can be: two collectors perform double encryption (of 1 to N) and double
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shuffle before sending results to voters in a way such that neither can determine which

voter gets which number, even though a collector may collude with some voter(s).

The LAS elaborated above may need multiple rounds, which can be relatively

inefficient and inconvenient to voters. To solve this problem, we propose two new

LAS solutions, the first one is efficient and the second is collusion-resistant.

5.2 Efficient Location Anonymization Scheme Based on Chinese Remain-

der Theorem

In an election with N voters and two collectors, C1 generates a prime m1 of even

number of bits such that m1 > N and C2 generates a prime m2 of odd number of

bits such that m2 > N . Thus, m1 and m2 will be relatively prime. Each collector

Cj creates a set Uj of N random numbers from Zmj
where j = 1, 2. Each voter

Vi receives u1 ∈ U1 and m1 from C1, and u2 ∈ U2 and m2 from C2 (u1, u2 ≤ N).

According to Chinese Remainder Theorem (CRT) for the congruent system x =

u1 mod m1 and x = u2 mod m2, Vi computes his unique location Li as follows:

ai = u1m2(m−1
2 mod m1), bi = u2m1(m−1

1 mod m2), and Li = (ai + bi) mod (m1m2).

By the principle of CRT, as long as voters do not get exactly same u1 and u2,

their Li will be different. This protocol scales to any number of collectors due to the

fact that CRT accommodates a congruence system of more than two equations. As

usual, only two collectors are discussed here for the sake of simplicity.

This scheme is clearly efficient. For this scheme to work safely, we assume that

both collectors are honest in the sense that none of them would collude with a voter to

get another collector’s prime. Otherwise, if a collector gets another collector’s prime,

the collector can figure out which location belongs to which voter. In addition, as

long as at least one collector behaves honestly and selects different ui for different

voters, all voters’ locations will be different.

Notes: when m1 and m2 are large and the number of voters is small (compara-

tively), the resulted unique locations may be sparse in the range of 0 to m1m2 − 1.
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The voters run the mutual restraining voting protocol to get a tallied voting vector

which has 1 in all chosen locations but 0 in all other locations. Thus, each voter will

get a unique consecutive location by counting how many 1s from the beginning until

his location (or to say, subtracting from his location the number of zeros ahead of

this location). The same applies to the scheme in next section.

5.3 Collusion-resistant Location Anonymization Scheme Based on Tai-

lored STPM

To address the collusion concern in the CRT based LAS described above, we add

the collusion-resistant capability to it. Here we assume that there are three collectors.

Many elections have more than two candidates, e.g., having an independent candidate

besides Republican and Democratic candidates in some US presidential elections. In

case there are just two parties, we can easily add one independent auditor as an

additional collector. We denote three collectors as C1, IC, and C2. The collusion-

resistant LAS protocol works as follows.

• IC will generate two relative primes m1 and m2 such that m1 > N and m2 > N .

IC will also compute m2(m−1
2 mod m1), m1m2, and m1(m−1

1 mod m2).

• When a voter registers, C1 will select a u1 ≤ N for his and C2 will select a

u2 ≤ N for her.

• C1 and IC will compute u1(m2(m−1
2 mod m1)) = a1 + a2 using the tailored

STPM, with C1 having a1 and IC having a2. Similarly, C2 and IC will compute

u2(m1(m−1
1 mod m2)) = b1 + b2, with C2 having b1 and IC having b2.

• C1 will send a1 to the voter, and C2 will send b1 to the voter. IC will send

a2 + b2 and m1m2 to the voter.

• The voter then computes (a1 + a2 + b1 + b2) mod (m1m2) to get his unique

location. Neither of C1, IC, and C2 can find out his location.
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5.4 Complexity Analysis and Simulation

Our complexity analysis and simulation focus on the original LAS in Section 5.1.

The original LAS uses similar mechanisms of the voting protocol in Chapter 4

during each round. Thus for each round, we obtain similar complexity as analyzed in

Section 4.3.1. Roughly, the message length T in LAS is O(L̄).

The simulation for the original LAS is conducted on the same platform as in

Section 4.3.2.
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Fig. 5.1. Original LAS: number of rounds needed for location anonymization

Fig. 5.1 shows the number of rounds needed for completing location anonymiza-

tion. The length of the location vector L̄ varied from 1.5, 2, to 3 times of number of

voters N . The number of voters N varied from 64 to 1000 by an increment of 16. As

shown in Fig. 5.1, the number of rounds needed for completing location anonymization

is relatively stable for different N under a given ratio L̄/N .

Fig. 5.2 shows the time spent on location anonymization by each voter. The length

of the location vector L̄ and the number of voters N varied the same as in Fig. 5.1.

The length of the location vector is L̄ = O(N); the aggregation of location vectors is

dominated by the (N,N)-SS. The execution time is O(NL̄2). Thus, the time spent

on location anonymization is O(N2). When the ratio L̄/N = 3, 2 to 3 rounds were
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sufficient for completing location anonymization. For example, with 1000 voters, it

took no more than 0.05 seconds to anonymize voters’ locations. This demonstrates

the efficiency of the proposed LAS.
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6. SECURITY AND PROPERTY ANALYSIS

In this chapter, we demonstrate a few important properties and also analyze the

robustness of our mutual restraining voting protocol in Chapter 4 and LAS in Chap-

ter 5.

6.1 Analysis of Main Properties

Completeness (Correctness). All votes are counted correctly in this voting

protocol. That is, the aggregated voting vector VA of the length L = NA in binary

is the sum of all individual voting vector vi from each voter (VA =
∑N

i=1 vi). Likewise,

V′A =
∑N

i=1 v′i.

Verifiability. Due to its transparency, the protocol provides a full range of veri-

fiability with four levels:

1. A voter can verify that his secret ballot is submitted correctly.

2. A voter (and any third party) can verify that the aggregated voting vector is

computed correctly.

3. A voter can verify that his vote is cast correctly.

4. A voter (and any third party) can verify that the final tally is performed cor-

rectly.

About individual verification, different techniques may have different meanings

and adopt different mechanisms to implement. For example, majority of typical e-

voting techniques encrypt the votes and a voter verifies his cast ballot in an encrypted

format [68, 69], rather than in plain text format/clear vote. In this case, tallying is

normally done via homomorphic cryptosystem. Due to the fundamental principle of

homomorphic encryption, voters should be convinced that the final tally is accurate
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and their votes are correctly included in the final tally. Some e-voting techniques

utilize pairs of (pseudo-voter ID, vote) and a voter verifies his cast vote (in plain

format) according to his pseudo-voter ID. The relation between a voter’s real identity

and his pair is hidden or anonymized via an anonymous channel or mix-net [13,

70]. One representative case of this kind is the technique in [71]. A voter casts his

encrypted vote via an anonymous channel, and then sends his encryption key via the

same channel for the counter to decrypt/open his vote. The voter can verify his vote

in plain format (as well as in encrypted format). In this case, the voter’s real identity

is hidden by blind signature and anonymous channel. Here the assumption is that the

anonymous channel, mix-net and blind signature are trustworthy. Furthermore, for

all these verification scenarios, the mechanisms used for anonymization and individual

verification act as one kind of black-box and introduce a gap between a voter’s ballot

and real vote.

Like the technique in [71], our technique allows a voter to verify his vote in plain

text format. However, different from [71], the verification in our technique is visibly

realized due to full transparency and seamless transition from ballots (no information

about any vote) to all individual votes (each clear vote is anonymous to anyone except

the vote’s owner). No gap exists and no trustworthy assumption is required.

Anonymity. The protocol preserves anonymity if no more than N − 2 voters

collude. This claim follows the proof of Corollary 3.2.3 as pi is known to all. Also,

the protocol splits trust, traditionally vested in a central authority, now between two

non-colluding collectors with conflicting interests. One collector does not have enough

information to reveal a vote.

Especially in the current Sub-protocol 1, we eliminate the possibility for an at-

tacker to perform brute-force search against the intermediate result as in the original

Sub-protocol 1 in [65]. Basically, in the original Sub-protocol 1, two collectors ex-

change gr1+r′1 and gr2+r′2 , so both obtain gr1+r′2+r′1+r2 such that

gr1+r′2+r′1+r2 = gSi,C1
S′i,C2 × gS

′
i,C1

Si,C2

= (gSi,C2 )S
′
i,C1 × (gS

′
i,C2 )Si,C1 (6.1)



69

Without loss of generality, let us assume C1 wants to find out vi. Since C1 has Si,C1

and S ′i,C1
, gsii and gs

′
ii are published, and vi × v′i = 2L−1, C1 guesses vi = 2j (with

v′i being 2(L−1−j)) for j = 0, 1, · · · , L − 1, and constructs gS̄i,C2 and gS̄
′
i,C2 based on

Equations (6.2) and (6.3) respectively.

gSi,C2 = gvi−sii−Si,C1 = gvi(gsii)−1g−Si,C1 (6.2)

gS
′
i,C2 = gv

′
i−s′ii−S′i,C1 = gv

′
i(gs

′
ii)−1g−S

′
i,C1 (6.3)

C1 then verifies if (gS̄i,C2 )S
′
i,C1×(gS̄

′
i,C2 )Si,C1 , corresponding to the right hand side (RHS)

of Eqation (6.1), equals to gr1+r′2+r′1+r2 , the left hand side (LHS) of Equation (6.1).

If they are equivalent, Vi’s vote vi is found to be 2j. Otherwise, C1 guesses next

vi = 2j+1 until he finds out the correct vi.

However, in the current Sub-protocol 1 presented here, K1 contains a random

value of r1 + r′1, and similarly, K2 has r2 + r′2. C1 can compute either K2 × gr1+r′1

as shown in LHS of Equation (6.4), or K1 ×K2 as shown in LHS of Equation (6.5)

to get rid of the randomness. C1 then guesses vi as before and plugs it into RHS of

Equation (6.4) or Equation (6.5) to verify if the equations hold true. But they will

always hold true no matter what value vi is guessed. Thus, C1 will not be able to

find out vi with the brute-force search. Vote anonymity is preserved.

K2 × gr1+r′1 = gSi,C2
(s′ii+S′i,C1

+S′i,C2
)+S′i,C2

(sii+Si,C1
) = gSi,C2

v′i+S′i,C2
(sii+Si,C1

)

= g(vi−sii−Si,C1
)v′i+(v′i−s′ii−S′i,C1

)(sii+Si,C1
)

= gvi×v
′
i−siis′ii−siiS′i,C1

−s′iiSi,C1
−Si,C1

S′i,C1 (6.4)

K1 ×K2 = g(sii+Si,C1
+Si,C2

)×(s′ii+S′i,C1
+S′i,C2

)−siis′ii = gvi×v
′
i−siis′ii (6.5)

Ballot validity and prevention of multiple voting. The forward and back-

ward mutual lock voting allows a voter to set one and only one of his voting positions

to 1 (enforced by Sub-protocol 1).

The ballot of pi and p′i is ensured to be generated correctly in the forms of pi =

sii + S̃i,C1 + S̃i,C2 and p′i = s′ii + S̃ ′i,C1
+ S̃ ′i,C2

(enforced by Sub-protocol 2).

Fairness. Fairness is ensured due to the unique property of (N,N)-SS: no one

can obtain any information before the final tally, and only when all N secret ballots
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are aggregated, all votes are obtained anonymously. It is this sudden transition that

precludes any preannouncement of partial voting results, thus achieving fairness.

Eligibility. Voters have to be authenticated for their identities before obtaining

voting locations. Traditional authentication mechanisms can be integrated into the

voting protocol.

Auditability. Collectors collaboratively audit the entire voting process. Option-

ally we can even let collectors publish their commitment to all shares they generate

(using hash functions, for example). With the whole voting data together with collec-

tors’ commitments, two collectors or a third authority can review the voting process

if necessary.

Transparency and voter assurance. Many previous e-voting solutions are not

transparent in the sense that although the procedures used in voting are described,

voters have to entrust central authorities to perform some of the procedures. Voters

cannot verify every step in a procedure [72]. Instead, our voting protocol allows

voters to visually check and verify their votes on the bulletin board. The protocol is

transparent where voters participate in the whole voting process.

6.2 Robustness Against Voting Misbehavior

The protocol is robust in the sense that a misbehaving voter will be identified. In

the interactive voting protocol, a misbehaving voter Vi may:

• submit an invalid voting vector vi (v′i) with more than one (or no) 1s;

• generate wrong sii (s′ii), thus wrong commitment gsii (gs
′
ii);

• publish an incorrect secret ballot pi (p′i) such that pi 6= sii + S̃i,C1 + S̃i,C2 (p′i 6=

s′ii + S̃ ′i,C1
+ S̃ ′i,C2

).

First, we show that a voter submitting an invalid voting vector vi (v′i) with more

than one 1s will be detected. Without loss of generality, we assume two positions,

Li
c and Li

c
′
, are set to 1. (A voter can also misbehave by putting 1s at inappropriate
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positions, i.e., positions assigned to other voters; we will analyze this later.) Thus

the voter Vi obtains vi (v′i), such that

vi = 2(L−Li
c) + 2(L−Li

c
′
), v′i = 2(Li

c−1) + 2(Li
c
′−1),

vi × v′i = 2L−1 + 2L−1 + 2L−Li
c+Li

c
′−1 + 2L−Li

c
′
+Li

c−1.

All the computations are moduli operations. By using Z∗A, which has at least

22L − 2L+1 + 1 elements/bits, we have vi × v′i 6= 2L−1, thus gvi×v
′
i 6= g2L−1

. Assuming

Vi generates an invalid voting vector without being detected, this will lead to the

following contradiction by Sub-protocol 1:

g2L−1

= gsiis
′
ii × (gsii)S

′
i,C1 × (gs

′
ii)Si,C1 × gSi,C1

S′i,C1 × (gsii)S
′
i,C2

×(gs
′
ii)Si,C2 × gSi,C2

S′i,C2 × gSi,C1
S′i,C2 × gS

′
i,C1

Si,C2

= g(sii+Si,C1
+Si,C2

)(s′ii+S′i,C1
+S′i,C2

) = gviv
′
i .

Similar proof applies to an invalid voting vector without 1s.

Next, we show that Vi cannot generate wrong sii or s′ii such that sii+Si,C1 +Si,C2 6=

vi or s′ii + S ′i,C1
+ S ′i,C2

6= v′i. If Sub-protocol 1 fails to detect this discrepancy, there

is: g(sii+Si,C1
+Si,C2

)(s′ii+S′i,C1
+S′i,C2

) = g2L−1
. Since the computation is on Z∗A, we have:

(sii + Si,C1 + Si,C2)(s
′
ii + S ′i,C1

+ S ′i,C2
) = 2L−1. Given that:

sii + Si,C1 + Si,C2 6= vi, s
′
ii + S ′i,C1

+ S ′i,C2
6= v′i,

(sii + Si,C1 + Si,C2)(s
′
ii + S ′i,C1

+ S ′i,C2
) = 2L−1,

there must exist one and only one position Li
c
′

which is set to 1 and Li
c
′ 6= Li

c. This

indicates that Vi gives up his own voting positions, but votes at a position assigned

to another voter Vj (i 6= j). In this case, Vi’s voting positions in VA and V′A will be

01. This leads to an invalid tallied vector where Vi’s voting positions have all 0s and

possibly Vj’s have multiple 1s. If this happens, C1 and C2 can collaboratively find

Vi’s row that has all 0s in the voting vector (arranged in an N ×M array).

1Unless, of course, another voter puts a 1 in Vi’s position. We can either trace this back to a voter
that has all 0s in his positions, or there is a loop in this misbehaving chain, which causes no harm
to non-misbehaving voters.
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Third, we show that a voter cannot publish an incorrect pi (p′i) to disturb the

tally. Given that a misbehaving Vi publishes pi (p′i) such that sii + S̃i,C1 + S̃i,C2 6= pi

(s′ii + S̃ ′i,C1
+ S̃ ′i,C2

6= p′i), we obtain gsii+S̃i,C1
+S̃i,C2 6= gpi (gs

′
ii+S̃′i,C1

+S̃′i,C2 6= gp
′
i) which

will fail in Sub-protocol 2. Note that gsii and gs
′
ii have passed the verification of Sub-

protocol 1, and S̃i,C1 and S̃i,C2 (also, S̃ ′i,C1
and S̃ ′i,C2

) are computed by two collectors

with conflict of interests. Thus, there is no way for the voter to publish an incorrect

pi (p′i) without being detected.

The discussion shows all these misbehaviors should be caught by the collectors

using Sub-protocol 1 or Sub-protocol 2. However, assume two cases as below:

• One misbehavior mentioned above mistakenly passes both Sub-protocol 1 and

Sub-protocol 2;

• Vi does give up his own voting locations and cast vote at Vj’s locations (i 6= j).

For Case 1, the possibility leading to a valid voting vector is negligibly small as we

will discuss in Section 6.5. Even if the voting vector is valid, any voter can still verify

whether the vote in his own location is correct. This is the individual verifiability our

protocol provides.

For Case 2, if Vi casts the same as Vj at Vj’s locations, there will be a carry, ending

up one 1, but not the vote Vj has cast. If Vi casts a vote different from Vj, there will

be two 1s at Vj’s locations. Because all Vi’s locations now have 0s, the tallied voting

vector will be invalid for both scenarios. Furthermore, Vj can detect it since his vote

has been changed. Again, as we assumed earlier, there is no reason/incentive for a

voter to give up his own voting right and disturb other unknown voters.

The analysis above also applies to the non-interactive voting protocol.

6.3 Robustness Against Collusion

Here we analyze the robustness against different collusions and attacks. With

the assumption that collectors have conflicting interests, they will not collude, so we

exclude such a scenario.
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6.3.1 Robustness Against Collusion Among Voters

In the interactive protocol, pi and gsii are known. The colluding voters may try to

find unknown shares, as illustrated in Table 4.1 in column-wise, and then use them

to find out a voter’s vote. Given pi and gsii , based on Corollary 3.2.3, k equals to 1

in this case, so the protocol is robust against collusion among no more than N − 3

voters. Even if one share is known, and is used with gsii to infer vi (illustrated in

Table 4.1 in row-wise). Based on Corollary 3.2.2, N − 3 voters still cannot find out

vi. So the interactive protocol is robust as long as no more than N−3 voters (passive

adversaries) collude.

In the non-interactive protocol, a voter Vi receive one sum, Si,Cj
, of a partial set

of shares (i.e., (N − 1)/2 shares in a row in Table 4.1) from each collector Cj to

calculate sii, and another sum, S̃i,Cj
, of a partial set of shares (i.e., (N − 1)/2 shares

in a column in Table 4.1) to get pi. Having total of 4N sums for N voters, they can

build 4N equations to solve N2−N variables in a matrix (excluding shares sii in the

main diagonal). However, even N voters together cannot find out all N2 −N shares

when N > 5. After the tally is open, collusion of N − 1 voters can find out the vote

of non-colluding voter. However, the non-interactive protocol is robust as long as no

more than N − 2 voters (passive adversaries) collude.

The protocol is robust against cheating by colluding voters such as double or

multiple voting (active adversaries). Colluding voters want to disrupt the voting

process. However, even they collude, the commitments and the secret ballots of each

colluding voter have to pass the verification of both Sub-protocol 1 and Sub-protocol

2 by two collectors. Thus the disruption will not succeed as discussed in Section 6.2.

6.3.2 Robustness Against Collusion Among Voters and a Collector

Without loss of generality, let’s assume that C1 is the colluding collector.

In the interactive protocol, C1 has N/2 shares in some rows and columns as

illustrated in Table 4.1. Correspondingly, C2 has N/2 − 1 shares in these rows and
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columns. C1 has gS̃i,C2 from C2. Since S̃i,C2 is the sum of N/2 − 1 shares, based on

Corollary 3.2.3, k = 0 here, collusion with N/2−1−2 = N/2−3 will not disclose any

information of the unknown shares. But collusion with N/2 − 2 voters will find the

remaining one unknown share. In this case, C1, having N/2 shares, together with the

colluding N/2 − 2 voters, can use this share and gsii to find out Vi’s vote. However

as said earlier, collusion among a collector and no more than N/2− 3 voters will not

be able to disclose any vote information.

In the non-interactive protocol, as discussed in the previous section, for N voters

receiving 2N sums of shares from the non-colluding collector C2, it is not possible

to find out the individual shares generated by C2 when N > 5. Even a collusion

of N − 2 voters still cannot find out a voter’s vote because the shares of two non-

colluding voters are unknown and cannot be deduced from S̃i,C2 or any other sources.

Thus, a collusion of a collector with no more than N − 2 voters will not disclose any

vote information.

For both interactive and non-interactive protocols, when voters collude with a

collector to disrupt the voting by cheating, each individual voter still has to pass

Sub-protocol 1 and Sub-protocol 2 by two collectors. However, since one collector is

colluding, the voter may succeed in passing the verification.

Assume Vi colludes with C1. Vi generates s̄ii and s̄′ii (deviating from authentic sii

and s′ii) and publishes commitments gs̄ii , gs̄
′
ii , and gs̄iis̄

′
ii . For Sub-protocol 1, C1 can

derive S̄i,C1 and S̄ ′i,C1
(deviating from authentic Si,C1 and S ′i,C1

) based on Vi’s s̄ii and

s̄′ii, such that:

(s̄ii + S̄i,C1 + Si,C2)(s̄
′
ii + S̄ ′i,C1

+ S ′i,C2
) = 2L−1

Similarly, Vi’s p̄i and p̄′i (deviating from authentic pi and p′i) can also pass Sub-

protocol 2 by colluding with C1.

However, since there are non-colluding voters, the probability of leading to a valid

tallied voting vector is negligibly slim as we will discuss in Section 6.5. Even by any

chance a valid tallied voting vector is created, any voter can still tell if the vote in

the final vector is what he intended by the property of individual verifiability.
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As a result, such collusion with the purpose of cheating will be detected too.

6.4 Robustness Against Outside Attack

The protocol is robust against an outsider inferring any vote information. The

outsider does not have any information. If he colludes with insiders (voters), he will

not gain any information as long as no more than N − 2 voters collude with him.

The protocol is also robust against an outsider disrupting the voting. First, if the

outsider intercepts data for a voter from secure channel during the voting, he will not

learn any information about vote because the data itself is encrypted. Second, if the

outsider wants to change a voter’s vote or even the tallied voting vector by colluding

with voters or a collector, he will not succeed as discussed in Section 6.3.

6.5 Security Analysis of Attacks Affecting Tallied Voting Vector Without

Detection

Theorem 6.5.1 Error detectability: The probability that a random attack at any

point of the voting process in this protocol can succeed without being detected (i.e., the

tallied voting vector remains valid) is MN/2MN = 1/2(M−logM)N .

Proof Suppose an attacker wants to attack the voting system and consequently

the tallied voting vector without being detected. In the mutual restraining voting

system, an attack possibly passing the detection is the one that results in a valid

tallied voting vector. For N voters and M candidates with the voting vector bit

length of N ×M , a valid tallied voting vector VA should have only one 1 in any of N

locations, i.e., only one 1 in M bits. Thus, the number of total valid tallied vectors

is M ×M × · · · ×M = MN . Meanwhile, the number of total possible tallied vectors

is 2MN , with each of MN bits being either 0 or 1. It is reasonable to say that an

attack which is launched by an attacker at any point of the voting process, no matter

how powerful the attacker is, will result in change of some ballots and votes, thus,
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affecting the final tallied voting vector. We also assume that an attacker can only

manipulate partial ballots, not all ballots, and an attacker cannot have exact control

on the aggregation of all ballots that generates a valid tallied vector VA. The attacker

may be lucky that a valid tallied vector VA is generated. However, the probability

that a random tallied voting vector VA being valid is MN/2MN = 1/2(M−logM)N .

Since M ≥ 2 and N is large, the probability of any attack without being detected

is negligibly small. As an example, with M = 2 and N = 1000, the probability is

2−1000!

Furthermore, even if a valid tallied voting vector VA is generated, there must

be certain location containing a vote which does not match what the voter in this

location has voted for. Thus, it can be detected through individual verification and

reported by the voter who owns this location.

6.6 Correctness and Security Analysis of Two Sub-protocols

We now analyze two sub-protocols used in the voting process.

6.6.1 Correctness and Security Analysis of Sub-protocol 1

Theorem 6.6.1 Correctness of vi and v′i: Sub-protocol 1 allows collectors to

check cooperatively the correctness of vi and v′i such that K1 ×K2 × gsiis
′
ii = gviv

′
i =

g2L−1
.

Proof We show that the collectors are able to jointly verify whether Vi generates

correct sii and s′ii.
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As given in Step (d) of Sub-protocol 1, C1 and C2 exchange K1 and K2, so each

calculates K1 ×K2 as follows.

K1 ×K2 = (gsii)S
′
i,C1 × (gs

′
ii)Si,C1 × gSi,C1

S′i,C1 × gr1+r′1

×(gsii)S
′
i,C2 × (gs

′
ii)Si,C2 × gSi,C2

S′i,C2 × gr2+r′2

= (gsii)S
′
i,C1 × (gs

′
ii)Si,C1 × gSi,C1

S′i,C1 × gr1+r′2

×(gsii)S
′
i,C2 × (gs

′
ii)Si,C2 × gSi,C2

S′i,C2 × gr′1+r2

= (gsii)S
′
i,C1 × (gs

′
ii)Si,C1 × gSi,C1

S′i,C1 × gSi,C1
S′i,C2

×(gsii)S
′
i,C2 × (gs

′
ii)Si,C2 × gSi,C2

S′i,C2 × gS
′
i,C1

Si,C2

= g(sii+Si,C1
+Si,C2

)×(s′ii+S′i,C1
+S′i,C2

)−siis′ii (6.6)

Since gsiis
′
ii is published by Vi, a collector multiplies this term on both sides of the

above equation (6.6), and gets:

K1 ×K2 × gsiis
′
ii = g(sii+Si,C1

+Si,C2
)×(s′ii+S′i,C1

+S′i,C2
)−siis′ii × gsiis′ii

= g(sii+Si,C1
+Si,C2

)×(s′ii+S′i,C1
+S′i,C2

)

If sii and s′ii are generated correctly by Vi, we should have:

vi = sii + Si,C1 + Si,C2 , and v′i = s′ii + S ′i,C1
+ S ′i,C2

Thus, the following equation should hold true, since vi × v′i = 2L−1:

g(sii+Si,C1
+Si,C2

)×(s′ii+S′i,C1
+S′i,C2

) = gvi×v
′
i = g2L−1

(6.7)

In other words, if Vi does not generate the shares sii and s′ii correctly, Equation (6.7)

will fail the verification conducted by collectors.

Theorem 6.6.2 Privacy: In Sub-protocol 1 , a collector, given additional infor-

mation obtained from the other collector through exchange, will not be able to find a

voter’s vote.

Proof We prove that collectors will not be able to find Vi’s vote vi from the published

information as well as the exchanged information K1 and K2.
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For a collector, in order to obtain Vi’s vi = sii + Si,C1 + Si,C2 , there are three

possible ways to approach: (1) by somehow obtaining sii, Si,C1 , and Si,C2 and then

summing them. Clearly, from all available information and due to the DLP problem,

a collector, say C1, cannot get sii and cannot get Si,C2 either. Thus, a collector cannot

obtain vi. (2) by guessing a vote vi and checking whether vi, sii, Si,C1 , and Si,C2 satisfy

the equation vi = sii +Si,C1 +Si,C2 . Guessing vi can certainly be done by trying every

possible vote 2j for j = 0, · · · , NM − 1 where NM is the length of the voting vector.

However, the verification of vi cannot be done through the equation directly since

three values, sii, Si,C1 , and Si,C2 , cannot be obtained all together. Instead, it can only

be done through the form below:

g2j = gsiigSi,C1gSi,C2 (6.8)

A collector, say C1, has gsii and gSi,C1 but cannot get gSi,C2 from the additional

information K2 exchanged from C2. What C1 can do is as follows: for each vi = 2j,

computes S̄i,C2 = 2j − sii − Si,C1 , plugs into the above equation, but gets g2j = g2j .

This will always be true no matter what j is. And (3) by considering both vi =

sii + Si,C1 + Si,C2 and v′i = s′ii + S ′i,C1
+ S ′i,C2

together, guessing every possible vote,

and checking whether the following equation holds. From the exchanged information

K2 = (gsii)S
′
i,C2 × (gs

′
ii)Si,C2 × gSi,C2

S′i,C2 × gr2+r′2 which contains four terms, C1 cannot

get any single term, or any partial product of three or fewer terms. Moreover, r2 + r′2

(thus gr2+r′2) itself is a random value unrelated to the vote. It is necessary for C1 to

get ride of this randomness which can only be finished by multiplying gr1gr
′
1 . That

is:

K2 × gr1 × gr
′
1 = (gsii)S

′
i,C2 × (gs

′
ii)Si,C2 × gSi,C2

S′i,C2 × gr2+r′2 × gr1 × gr′1

= (gsii)S
′
i,C2 × (gs

′
ii)Si,C2 × gSi,C2

S′i,C2 × gr1+r′2 × gr′1+r2

= (gsii)S
′
i,C2 × (gs

′
ii)Si,C2 × gSi,C2

S′i,C2 × gSi,C1
S′i,C2 × gS

′
i,C1

Si,C2 (6.9)

We call the five terms in Equation (6.9), (gsii)S
′
i,C2 , (gs

′
ii)Si,C2 , gSi,C2

S′i,C2 , gSi,C1
S′i,C2 ,

and gS
′
i,C1

Si,C2 , the minimum set of terms in order to do a brute-force search. In other
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words, C1 cannot single out any individual term, or product of any two or three or

four terms, from Equation (6.9).

Now C1 guesses vi to be 2j and v′i to be 2L−j−1 for j = 0, · · · , L−1 where L is the

length of the voting vector, and constructs S̄i,C2 and S̄ ′i,C2
as follows to replace Si,C2

and S ′i,C2
in Equation (6.9), respectively.

S̄i,C2 = 2j − sii − Si,C1 , and S̄ ′i,C2
= 2L−j−1 − s′ii − S ′i,C1

After substituting Si,C2 and S ′i,C2
in Equation (6.9) with S̄i,C2 and S̄ ′i,C2

, we have:

K2 × gr1 × gr
′
1 = (gsii)2L−j−1−s′ii−S′i,C1 × (gs

′
ii)2j−sii−Si,C1

×g(2j−sii−Si,C1
)(2L−j−1−s′ii−S′i,C1

)

×gSi,C1
(2L−j−1−s′ii−S′i,C1

) × gS
′
i,C1

(2j−sii−Si,C1
)

= g2j×2L−j−1−siis′ii−siiS′i,C1
−s′iiSi,C1

−Si,C1
S′i,C1

= g2L−1 × (gsiis
′
ii)−1 × (gsii)−S

′
i,C1

×(gs
′
ii)−Si,C1 × g−Si,C1

S′i,C1 (6.10)

From Equation (6.10), we find that all terms having j have already been canceled

out. In other words, no matter what j is, Equation (6.10) always holds true. So we

conclude that C1 cannot guess Vi’s vote vi from all the given information.

6.6.2 Correctness and Security Analysis of Sub-protocol 2

Theorem 6.6.3 Correctness of pi and p′i: Sub-protocol 2 allows any collector to

check the correctness of pi such that pi = sii + S̃i,C1 + S̃i,C2, and similarly for p′i such

that p′i = s′ii + S̃ ′i,C1
+ S̃ ′i,C1

.

Proof As given in Section 4.2, Vi publishes gsii . After C1 and C2 compute and

exchange gS̃i,C1 and gS̃i,C1 , any of them can compute and verify that:

gpi = gsii × gS̃i,C1 × gS̃i,C2 = gsii+S̃i,C1
+S̃i,C2
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Similarly, any collector can also compute and verify that:

gp
′
i = gs

′
ii × gS̃

′
i,C1 × gS̃

′
i,C2 = gs

′
ii+S̃′i,C1

+S̃′i,C2

Theorem 6.6.4 Privacy: In Sub-protocol 2 , a collector, given additional infor-

mation published by the other collector, will not be able to find information about

vote.

Proof We prove that any collector such as C1 will not be able to find Vi’s vote vi

with additional information exchanged from C2. Since vi = sii +Si,C1 +Si,C2 , in order

to get vi, C1 needs to get sii and Si,C2 first. (1) Due to the DLP property, C1 cannot

get sii from the published commitment gsii . (2) From gS̃i,C2 given by C2, C1 cannot

get any information of sii and Si,C2 since S̃i,C2 contains shares of other voters’ votes.

(3) Although C1 has S̃i,C1 and pi where pi = sii + S̃i,C1 + S̃i,C2 , since C1 cannot get

S̃i,C2 from gS̃i,C2 , C1 cannot get sii from S̃i,C1 and pi either. As a result, any collector

cannot get Vi’s vote vi from the published and exchanged information.

6.7 Analysis of Location Anonymization Schemes

In this section, we analyze the properties of the location anonymization schemes

in Chapter 5.

6.7.1 Robustness of Original Location Anonymization Scheme

The analysis in Section 6.2 shows that no voter can choose more than one po-

sitions during the location anonymization process. However, this does not address

the problem that a malicious participant deliberately induces collisions by choosing

a location that is already occupied by another voter. We will demonstrate that our

proposed LAS is robust against this.
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Let the collision happen at L̂i, i.e., L̂i is chosen by Vi in the previous round,

and both Vi and Vj claim L̂i in the current round. In this case, Vj is the voter who

deliberately introduces collision. To identify a voter who chooses L̂i in a given round,

C1 and C2 do the following collaboratively. For each voter, using the tailored STPM,

C1 and C2 compute Q = gg
Si,C1

+Si,C2 (Q′ = gg
S′i,C1

+S′i,C2 ) and check if gg
10

˜̂
L−L̂i /gsii = Q

(gg
10L̂i−1

/gs
′
ii = Q′). By doing this, the collectors identify the voter who selects L̂i

without divulging others’ locations. Although the honest voter Vi who chooses L̂i is

exposed along with the malicious Vj, Vi can restore location anonymity by selecting

another location in the next round and Vj should be punished.

Of course, voters may collude to infer location information. If k voters collude,

they will know that the rest non-colluding N − k voters occupy the remaining N − k

voting locations. Since we assumed in Section 4.1.1 that majority of voters is benign,

we consider the leaking of location information in this case is acceptable and will not

endanger the voting process.

6.7.2 Correctness and Security Analysis of Chinese Remainder Theorem

Based Location Anonymization Schemes

Theorem 6.7.1 Correctness: Two CRT based LAS each compute unique non-

colliding locations for voters correctly.

Proof Each location is the solution to the system of two congruent equations Li =

u1 mod m1 and Li = u2 mod m2. Different pairs of (u1, u2) will have different Li’s,

which is guaranteed by the CRT principle. Thus, as long as at least one collector is

honest and selects a different ui for different voters, Li will be unique.

Theorem 6.7.2 Privacy of voter’s locations: The CRT based collusion-resistant

LAS is able to generate a secret location for a voter which no one but the voter knows.

Proof First, let us consider any collector, say, C1. Due to the tailored STPM, C1

knows u1 and gets a1, but cannot get any information of u2, m1, or m2. So, any
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collector will not be able to get a voter’s location. Second, let us consider IC. IC

knows m1, m2, a2, and b2, but he cannot get any information of u1 or u2. Therefore,

IC cannot get a voter’s location either. Third, for any voter, he knows m1m2, so he

can compute his own location from a1 + b1 + a2 + b2 mod m1m2. But he does not

know u1 or u2 of any voters (even his own u1 and u2), so he cannot know the locations

of any other voters.

Theorem 6.7.3 Collusion-resistance: The CRT based collusion-resistant LAS is

able to defend against the collusion of a collector and a voter.

Proof First, let us consider the case that any collector, say, C1, colludes with a voter.

C1 will know u1, a1, b1, a2+b2, m1m2. Recall that a1+a2 = u1(m2(m−1
2 mod m1), b1+

b2 = u2(m1(m−1
1 mod m2). Logically, this information corresponds to two equations

involving three variables, so C1 (and the voter) cannot get u2, m1, or m2 directly by

trying to solve the equations. Another way is that given m1m2, C1 tries to factor it

to get m1 and m2. Assume that m1 and m2 chosen by IC are large enough, so C1

will not be able to do factorization due to its difficulty.

Second, let us consider the case that IC colludes with a voter. IC has m1 and m2,

and the voter tells IC his computed location Li. From Li, IC can get u1 = Li mod m1

and u2 = Li mod m2. Except these, IC (and the voter) has no information about u1

and u2 selected by C1 and C2 for other voters. So such a collusion is meaningless.
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7. ENABLING RECEIPT-FREENESS AND

COERCION-RESISTANCE

In the mutual restraining e-voting model, since the tallied voting vector VA contains

all individual votes, a voter’s secret location can become a self-claimed receipt ex-

ploited potentially for vote-selling. It is also possible for a coercer to coerce a voter to

disclose his secret location. We argued that after all votes are open, the coerced voter

can give the coercer a random location having the requested vote. Here we address a

more advance case where the coercer requests the secret location before the final tally.

In thise case, if the voter gives a random location other than his own, the vote at this

random secret location may happen to be what the coercer wants to cast (with the

probability of 1/M). However, there can be as much as (M − 1)/M probability that

the vote is different, assuming that each candidate is equally voted. In this chapter,

we propose solutions to these vote-selling and voter-coercion problems.

7.1 Solutions to Vote-selling and Individual Verification

We first address the vote-selling issue. Instead of publishing pi from each voter

and VA as described in Chapter 4, Vi sends pi to collectors only. In addition, the

collectors randomly shift or permute VA first, and then publish the skewed voting

vector, denoted as SVA. The mechanism will prevent a voter from using his secret

location as a receipt, thus resolving the vote-selling problem.

Here we assume that collectors are benign and they randomly pick an integer k

where 1 < k < N and compute the skewed voting vector SVA from VA as follows.

SVA = VA/2
kM + VA × 2L−kM mod 2L (7.1)

= (VA + VA × 2L)/2kM mod 2L
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where the first term in Equation (7.1) is right shifted by kM bits and the second term

is left shifted by L−kM bits. kM is used so that a voter’s vote will not be separated

off in the middle. Intuitively, VA is now divided into a left part VAl
and a right

part VAr at the kMth bit such that VA = VAl
||VAr where || is the concatenation

operation. SVA is then the flip of VAl
and VAr , i.e., SVA = VAr||VAl

.

Clearly, like most receipt-free and coercion-resistant protocols such as [70], imple-

menting both receipt-freeness and individual verification normally results in a conflict.

The skewed voting vector SVA will also nullify the ability for honest voters to verify

their votes on the bulletin board. To address this individual verification issue, we

propose the following mechanism based on 1-out-of-N oblivious transfer (OT (1, N)).

1. The collector (one collector or both collectors together) will translate the tallied

voting vector into N votes, i.e., u1, · · · , ui, · · · , uN where 1 ≤ ui ≤ M and

1 ≤ i ≤ N .

2. Suppose a voter has his secret location Li where 1 ≤ Li ≤ N and the voter

wants to verify his vote (i.e., uLi
). The voter and a collector will use OT (1, N)

to perform individual verification. Optionally, we can let a voter conduct verifi-

cation using OT (1, N) with each collector independently to check if the returned

values are equal.

The detail is as follows (suppose that the collector creates a RSA public key e and

a private key d, modulus n̂):

1. A collector selects N random values r1, · · · , rN and sends all to the voter.

2. The voter Vi picks rLi
corresponding to his location Li, selects a random value

k, blinds and computes r = (rLi
+ ke) mod n̂ and sends r to the collector.

3. The collector, not knowing which ri should be used for unblinding ke, computes

k1 = (r − r1)d, · · · , ki = (r − ri)d, · · · , kN = (r − rN)d. Note that kLi
will be

k (but the collector does not know) and all others will be random values that

does not reveal any information about k.
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4. The collector computes and sends c1 = v1+k1, · · · , ci = vi+ki, · · · , cN = vN+kN

to the voter.

5. The voter, knowing kLi
must be k, gets vLi

= cLi
− k.

Notes: (1) Individual verification (IV) requires voter authentication first. (2) IV

is an interactive process between the voter and the collector. In addition, we can

let the voter conduct IV using OT (1, N) with each collector, and two IVs can be

performed independently. Both collectors must behave honestly. Otherwise, the two

independent IVs may not match with the probability of (N − 1)/N . (3) For each

voter, we assume that he can only do one IV with one of the collectors (or two IVs

each with one collector). This will prevent a voter from selecting and decrypting a

vote other than his own. Of course, there is no incentive for a voter to get another

vote (not his own) since the voter of that vote is anonymous to her. For avoiding the

voter to be coerced by an attacker during IV, special physical place/room can be set

so voters enter it to verify their votes by the above OT (1, N) IV protocol privately.

Some researchers argued that individual verification is not imperative for every

voter. Instead, it is only necessary that a random sample of voters verify their votes

to ensure that the system behaves correctly [72].

Other possible IV solutions (typically called probabilistic or randomized individual

verification [72]) are:

• collectors extract some random locations (by the protocol above) and display

their locations and corresponding votes. Voters (who own these locations but

anonymous to collectors) can verify their votes.

• Voters are divided into voting groups, with each of the groups executing the

voting protocol. Collectors randomly select some voting groups to disclose their

votes. So voters in these groups can verify their votes.

Through the randomized vote verification, all voters or groups can be convinced with

great confidence that the system works as expected.
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7.2 Solution to Voter-coercion

We utilize the fake credential concept in [13] to combat voter-coercion. Let each

voter have two (or multiple) secret locations in the voting vector: one location (i.e.,

real location) for real vote and the other(s) (i.e., fake location(s)) for fake vote(s). To

defeat the Over-the-Shoulder Coercer [70] in this e-voting system, a coerced voter can

simply cast the coerced vote at a fake location (like a panic password in [70]) other

than his real location during the presence of a coercer, and then later he casts his

real vote at his real location when the coercer is absent (as assumed in [70], remote

e-voting allows a voter to cast his vote anywhere). If multiple votes are cast by a

voter, the collectors can simply tally the real vote and ignore the other fake vote(s).

7.3 Individual Verification With Receipt-freeness

There is one noticeable difference in individual verification. In the protocol pre-

sented in Chapter 4, every voter can visually verify his vote in the tallied voting

vector VA published on the bulletin board. In the solution to vote-selling described

in Section 7.1, the tallied voting vector VA has been skewed, so individual verification

is implemented differently, such as using OT (1, N) and/or random sampling. These

individual verification techniques substitute the visual verification on the bulletin

board. They prevent a voter from using the location as a receipt to prove the vote

on the bulletin board to a third party in the protocol described in Chapter 4.
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8. PROTOTYPE IMPLEMENTATION

We developed a prototype application suite [73] that allows for functional demonstra-

tion/use of the non-interactive protocol presented in Section 4.2.3. Implemented in

PHP and Python, it runs on any web server equipped with those interpreters. While

it clearly demonstrates the principles and adheres to the cryptographic protocols

described earlier, it is still a prototype, and is in active development.

The application allows both single winner and multiple winners, and they can be

set up in one election, as shown in the example here. In the case of multiple winners,

multiple distinct choices come from a pool of candidates, and are ranked by their

respective total votes.

8.1 Roles

Three distinct groups of people are involved in this prototype application. The

administrator defines the election itself: what races are being voted on, who the

candidates are, whether or not a given race is one of the multi-winner cases, what the

time limits are (if there are any) to each stage of the election, and who the collectors

are (in the form of web addresses). This information is stored in the JSON format

and distributed to the collectors using a web application pictured in Fig. 8.1.

The collectors fulfill the role described in Chapter 4: they maintain a database

that keeps track of voter usernames, the keys they use to encrypt their ballots, and

the uploads they submit. With the exception of the keys, the information is publicly

viewable as discussed in Section 8.3. They run an application that generates their

part of the share matrix and the numbers used in location finding, calculates each

voter’s partial key, tallies the location vector if location consolidation is in use, and

tallies the actual election’s results. They also maintain a series of web applications
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Fig. 8.1. Administrator uses the election generator to create and
distribute the election file

for the voters and anyone monitoring the election. All of these tasks are handled

automatically, though a web page exists for monitor and control. This control panel

is pictured in Fig. 8.2.

The voters are the people who actually vote for the candidates. They are identi-

fied by a unique username, which may be made public, is secured with a password in

this prototype application. At each stage of the election, the voters use a web page

to give the needed information to the collectors. As the collectors operate separately
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Fig. 8.2. Collector control panel

from each other, the page the voters use packages the voter’s data securely and sends

it to each of the collectors via asynchronous javascript.

8.2 Stages

Activity is broken into four stages, three of which involve the voters, one of which

is optional, with a strictly observational fifth stage at the end.

Preliminary: Before the election is opened to voters, the administrator must

create the election file as described earlier and distribute it to the collectors. The col-

lectors, meanwhile, must set up all necessary files on their servers. A web application

has been developed that allows the administrator to easily specify necessary informa-

tion for the election file, and which automatically distributes that file to the collectors.

Once obtained, the collectors initialize their databases and open registration.

Registration: This is the first stage of the election that the voters directly partic-

ipate in. They give a username and password and send those to the collectors. If the

username is available, it is stored in the databases, and that voter is now registered.

For private elections, this step could be integrated with a security check or could be

bypassed altogether and voters could be pre-registered by election officials. This is

an example of policy rather than protocol; whatever security checks are necessary for

registration occur at a higher level than the election itself.
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The administrator may specify a time when the registration ends, or the collectors

may manually force it to end using a menu option. Either way, when the registration

closes, the collectors generate a share matrix for the location-vote and, based on the

settings of the election, open either confirmation or voting.

Confirmation: This is an optional stage that serves to consolidate locations.

From the voter’s perspective, it is very simple: they enter their username and pass-

word and, assuming they registered successfully, they are shown a success message.

However, the application quietly calculates the voter’s absolute location and “votes”

for it as discussed. The confirmation ends when all registered voters confirm or an

optional timeout occurs, whichever comes first. The collectors tally the location vote

exactly as they would a “real” vote, and publish it as a location vector.

If this behavior is not needed, the confirmation may be skipped with a setting

in the election file. If pre-registration is in use, the confirmation may act as voter

registration. For example, if a university wishes to conduct an election among its

faculty, a list of qualified voters could be generated and the confirmation stage could

be used to establish voter participation. Qualified but uninterested voters would not

“register”, and would be disqualified from the election after the timeout occurs.

Voting: Once the confirmation is finished, collectors compensate for any un-

confirmed voters and open voting. Alternatively, if the confirmation is not being

done, collectors may open voting immediately after the registration closes with no

additional work done. During this stage, voters log in using their usernames and

passwords and are presented with the names of the races and radio buttons corre-

sponding to candidates, pictured in Fig. 8.3. Behind the scenes, the login procedure

requests all necessary cryptographic data from the collectors, obtains the absolute lo-

cation, and if the confirmation was done obtains the relative location as well. These

mathematical processes may occur while the voter is making the choices. When the

voter is finished, a voting vector is generated for each instance of each race, offset by

location (relative if possible, absolute otherwise), encrypted with the corresponding

keys, and sent to the collectors. When all voters have voted or an optional admin-
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specified timeout occurs, the collectors independently tally and publish the results

and the election ends. Each collector should produce exactly the same tally results.

If collectors disagree as to the outcome, misbehavior has occurred at certain level.

Fig. 8.3. Voting screenshot

8.3 Transparency

The collectors maintain two web pages for the publishing of data: first a raw results

page that displays encrypted data in real time during the election, and secondly an

interpreted results page that displays the tallied results after the election is over.

The raw results page is opened at the beginning of registration and acts as a

dynamic bulletin board: during registration, it displays taken usernames as they are

registered. During confirmation, it displays in yes-no format whether or not that

voter has confirmed. During voting, it displays the encrypted ballots (numbers) for

each instance of each race as they are cast. A snapshot of this page midway through

the voting stage is pictured in Fig. 8.4.

The interpreted results page is opened at the close of the election when the ballots

are tallied and acts as the actual results-viewer. At the top, it displays the winner(s) of
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Fig. 8.4. Raw results page: in-progress bulletin board

each race along with how many votes they obtained. Below, it displays each location

and the choices that voter made. Examples of both are shown in Figs. 8.5 and 8.6.

Thus, anyone may verify that the tallied results match perfectly the actual votes

cast, and any voter may verify that their location’s choices are exactly the choices

they made. As the encrypted ballots are visible in the raw results page, anyone may

run their own tally and verify that the interpreted locations accurately match what

was cast. All of these verifications are done by simple observation that anyone, even

non-technical people, can perform and understand.
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Fig. 8.5. Interpreted results page: displaying winners (including ties)

Fig. 8.6. Interpreted results page: full content of all ballots
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9. DISCUSSION OF SCALABILITY AND

HIERARCHICAL DESIGN

In this chapter, we discuss scalability and design of our protocol, mainly for the

non-interactive protocol.

Given the number of candidates M , the size of the voting vector determines the

number of voters in one voting group and furthermore determines how large the in-

tegral vote values can be. Currently, most languages support arithmetical operations

on big integers of arbitrary sizes. We conducted preliminary experiments with a

voting group of 2000 voters and 2 candidates (i.e., voting vectors of 4000 bits) in Sec-

tion 4.3.2. The results show an encouraging and impressive running time. Based on

a 2004 survey by the US EAC on voting booth based elections, the average precinct

size is approximately 1100 registered voters in the US 2004 presidential election [74].

Thus, our proposed voting system is realistic and practical. Furthermore, by follow-

ing the US government structure and the precinct based election practice, we propose

the following hierarchical tallying architecture which can apply to various elections

of different scales.

• Level 1: Precinct based vote-casting. Voters belonging to a precinct form a

voting group and execute the proposed vote-casting. Precincts may be based on

the physical geography previously using voting booths or logically formed online

to include geographically remote voters (e.g., overseas personnel in different

countries).

• Level 2: Statewide vote tally. Perform anonymous tally among all precincts of

a state.

• Level 3: Conversion of tallied votes. There can be a direct conversion. The

numbers of votes for candidates from Level 2 remain unchanged and are passed
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to Level 4 (the popular vote). Otherwise, they may be converted from Level

2 by some rules before being passed to Level 4, to support hierarchies like the

Electoral Colleges in the US.

• Level 4: National vote tally.
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10. RELATED WORK AND COMPARISON

Extensive research on voting, particularly online voting recently, has been conducted.

A number of voting schemes and systems have been proposed [7–12,17,29,68,75–82].

10.1 Development of Voting Techniques

Cryptographic technique has been an indispensable component of most online vot-

ing systems. A variety of cryptographic techniques, such as mix-net, blind signature,

homomorphic encryption, and secret sharing, are deployed in electronic voting proto-

cols to secure voter’s vote. The first e-voting scheme proposed by Chaum [83] in 1981

utilizes anonymous channels (i.e., mix-net). Additional schemes [7, 13, 84–89] based

on mix-net are proposed afterwards with various optimization. For example, Aditya

et al. [88] improve the efficiency of Lee et al.’s scheme [85] through modified opti-

mistic mix-net. The scheme in [7] uses two kinds of mix-net to prevent vote updating

from being detected by coercers. However, due to the usage of mix-net, transparency

cannot be guaranteed.

A blind signature allows an authority to sign an encrypted message without know-

ing the message’s context [14, 71, 89–95]. However, it is difficult to defend against

misbehavior by authorities. Moreover, some participants (e.g., authorities) know

intermediate results before the counting stage. This violates fairness of the voting

protocol. Ring signature is proposed to replace the single signing authority. The chal-

lenge of using the ring signature is in preventing voters from double voting. Chow et

al. [96] propose using a linkable ring signature, in which messages signed by the same

member can be correlated, but not traced back to the member. A scheme combining

blind signature and mix-net is proposed in [92]. Similarly, blind signature is used in a
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debate voting [95] where anonymous channel is assumed and messages are of varying

length.

Voting schemes based on homomorphic encryption can trace back to the seminal

works by Benaloh [16, 97], and later development in efficiency [53, 69] and receipt-

freeness [15,52,98,99]. Rjaskova’s scheme [15] achieves receipt-freeness by using deni-

able encryption, which allows a voter to produce a fake receipt to confuse the coercer.

But eligibility and multi-voting prevention are not addressed. DEMOS-2 proposed

by Kiayias et al. [100] utilizes additively homomorphic public keys on bilinear groups

with the assumption that symmetric external Diffie-Hellman on these groups is hard.

Its voting support machine (VSD) works as a “voting booth” and the voting protocol

is rather complex.

Several voting schemes exploit homomorphism based on secret sharing [15,16,52,

97–99]. Some schemes [53, 69] utilize Shamir’s threshold secret sharing [59], while

some [54] are based on Chinese Remainder Theorem. In contrast, ours is based on a

simplified (n, n)-SS scheme. In the existing voting schemes, secret sharing is utilized

among authorities in two ways generally: a) to pool their shares together to get the

vote decryption key which decrypts the tallied votes [15,16,52,53,97,98,101], and b)

to pool their shares together to recover the encrypted or masked tally result [54, 69].

Instead, in our scheme, secret sharing is used among voters to share their secret votes

and then recover their open yet anonymous votes.

Particularly, some existing voting protocols require physical settings such as vot-

ing booth [21], a tamper resistant randomizer [52, 85, 102, 103], or specialized smart

cards [104]. Our protocol does not require specialized devices and is distributed by

design.

We also examined experimental voting systems. Most existing systems have voter

verifiability and usually provide vote anonymity and voter privacy by using cryp-

tographic techniques. Typically, the clerks/officers at the voting places will check

eligibility by verifying voters’ identity.



98

Using the voting booth settings, system scalability in terms of voter numbers is

hard to evaluate. Prêt à Voter [84, 105] encodes a voter’s vote using a randomized

candidate list. The randomization ensures the secrecy of a voter’s vote. After casting

his vote in a voting booth, a voter is given a receipt such that the voter can verify if

his receipt appears on the bulletin board. Unlike our proposed protocol however, a

voter will not see directly that his vote is counted. A number of talliers will recover

the candidate list through the shared secret key and obtain the voter’s vote.

ThreeBallot [106, 107] solves the verification and anonymity problem by giving

each voter three ballots. The voter is asked to choose one of the three ballots to be

verifiable. The ThreeBallot system requires a trusted authority to ensure that no

candidate is selected on all three ballots to avoid multiple-vote fraud.

Punchscan/Scantegrity [108–111] allows the voter to obtain a confirmation code

from the paper ballot. Through the confirmation code, the voter can verify if the

code is correct for his ballot. Similarly to Prêt à Voter, a voter will not directly see

that his vote is counted. A number of trustees will generate the tally which is publicly

auditable.

SplitBallot [21] is a (physical) split ballot voting mechanism by splitting the trust

between two conflict-of-interests parties or tallying authorities. It requires the untap-

pable channels to guarantee everlasting privacy.

Prêt à Voter, Punchscan/Scantegrity, ThreeBallot, and SplitBallot utilize paper

ballots and/or are based on voting booths, but ours does not. ThreeBallot and

SplitBallot seem similar to ours in terms of split trust, however both of them depend

on splitting paper ballots, unlike our protocol which utilizes electronic ballots that

are split equally between two tallying collectors.

Bingo Voting [112] requires a random number list for each candidate which con-

tains as many large random numbers as there are voters. In the voting booth, the

system requires a random number generator.

VoteBox [113,114] utilizes a distributed broadcast network and replicated log, pro-

viding robustness and auditability in case of failure, misconfiguration, or tampering.



99

The system utilizes an immediate ballot challenge to assure a voter that his ballot is

cast as intended. Additionally, the vote decryption key can be distributed to several

mutually-untrusted parties. VoteBox provides strong auditing functionality but does

not address how a voter can verify if his vote is really counted.

Prime III [115, 116] is a multimodal voting system especially devoted to the dis-

abled and it allows voters to vote, review, and cast their ballots privately and in-

dependently through speech and/or touch. It offers a robust multimodal platform

for the disabled but does not elaborate on how individual or universal verification is

done.

Scytl [64,117–119] requires dedicated hardware - a verification module (a physical

device) on top of the DRE. Also, the trust, previously on the DRE, is transferred

to the verification module. In contrast, ours is cost-efficient and does not require

additional hardware device.

In the ADDER [120] system, a public key is set up for the voting system, and the

private key is shared by a set of authorities. Each voter encrypts his vote using the

public key. The encrypted vote and its zero-knowledge proof are published on the

bulletin board. Due to the homomorphic property, the encrypted tally is obtained

by multiplying all encrypted votes on the bulletin board. The authorities then work

together to obtain the decrypted tally. ADDER [120] is similar to ours in terms of

Internet based voting and split trust, yet ADDER does not provide a direct view for

a voter to see if his vote is indeed counted in the tally.

DRE-i (Direct Recording Electronic with Integrity) voting protocol presented

in [121] shares certain similarities with our protocol in the sense that both do not

require authorities to tally votes and achieve transparency. DRE-i is designed specifi-

cally on top of the original DRE machines with the assumption of a supervised voting

environment such as a polling station or voting booth. Instead, our protocol targets

at Internet voting. Our protocol utilizes the conflicting nature in political parties,

exploits the mathematically mutual restraining property, and develops effective sub-

protocols to validate voters’ shares and ballots in real-time during the voting process.
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In addition, the DRE-i protocol currently is limited to “yes/no” voting, while our

protocol supports not only “yes/no” voting but also voting for multiple candidates,

and can be easily extended to support abstention (by adding one bit for each voter

in the voting vector).

Due to the strict and conflicting e-voting requirements [5], unfortunately there is

not any scheme/system currently satisfying all voting properties at the same time [81].

Security weakness is found even in highly referenced voting schemes [122]. The pa-

pers [123,124] particularly analyze two fundamental but important properties, privacy

and verifiability. They reviewed the formal definitions of these two properties in the

literature, and found that the scope and formulation of each property vary from one

protocol to another. As a result, they propose a new game-based definition of privacy

called BPRIV in [123] and a general definition of verifiability in [124].

Comparison with Helios. Helios [125] implements Benaloh’s vote-casting ap-

proach [126] on the Sako-Kilian mix-net [127]. It is a well-known and highly-accepted

Internet voting protocol with good usability and operability. Our voting protocol

shares certain features with Helios including open auditing and integrity.

However, there exist some important differences. First, about individual verifica-

tion, Helios allows voters to verify their encrypted votes but our new protocol allows

voters to verify their plain votes, in a visual manner. Thus, individual verification in

the new protocol is more straightforward. Second, about transparency, as acknowl-

edged by the author of Zeus, the mixing part in Helios (and Zeus) is a black box to

voters [20]. Instead, in our protocol, the voting process including ballot-casting, ballot

aggregation, plain vote verification, and tallying are all viewable (on public bulletin

board) to voters. Thus, our protocol is more transparent. Third, in terms of voter

assurance, the transition from ballots to plain votes in Helios involves mix-net (shuf-

fling and reencryption) and decryption. In contrast, such transition in our protocol is

seamless and viewable. In addition, a voter in our protocol can conduct self-tallying.

Thus, voter assurance in our protocol is direct and personal. Fourth, about the trust

issue (in terms of integrity of the tallying result), Helios depends on cryptographic
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techniques including zero knowledge proof to guarantee the trustworthiness of the

mix-net which finally transforms to the integrity of the tallying result. In contrast,

our protocol is straightly based on simple addition and viewable verification. Thus,

accuracy of the tallying result in our protocol is obvious and is easier to justify. Fifth,

about the trust issue (in terms of vote secrecy), Helios can use two or more mix-servers

to split trust. However, it assumes that at least a certain number of mix-servers do

not collude. In this case, it is similar to our assumption that two or more collectors

have conflicting interests and will not collude. Sixth, about computational complex-

ity, Helios’ ballot preparation requires modular exponentiations for each voter and

the tallying process also involves exponentiations (decryption). Instead, our ballot

generation and tallying need only modular subtractions and additions. Thus, our

protocol is more efficient.

Besides Zeus [20] and Helios 2.0 [128], there are some variants of Helios such as

BeleniosRF [129]. BeleniosRF is built upon Belenios [130]. It introduces signatures on

randomizable ciphertexts to achieve receipt-freeness. A voting authority is assumed

to be trustworthy.

Comparison with Trivitas/Civitas. Trivitas [131], based on Civitas [132],

also shares similarity with our protocol in the sense that both publish votes in plain

text onto a bulletin board so a voter can visually check the board to verify his vote.

The aforementioned gap is thus eliminated. However, there exists some differences.

In Trivitas, trial credential and trial vote are introduced. Trial votes are decrypted

and published as plain text on the bulletin board. A voter is assured through visual

checking that the trial vote in plain text on the bulletin board is indeed what he has

cast. Our protocol implements this from a different perspective. It does not need any

decryption by authorities. After vote casting, a voter can simply aggregate all secret

ballots to reveal all individual votes. He can then verify by visual checking that the

vote in his location is indeed his vote.

Comparison with existing interactive voting protocols. In aforementioned

voting protocols, most are centralized. Our non-interactive protocol is similar in
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this regard. However, some e-voting protocols are decentralized or distributed: each

voter bears the same load, executes the same protocol, and reaches the same result

autonomously [133]. One interesting application domain of distributed e-voting is

boardroom voting [18]. In such scenario, the number of voters is not large and all the

voters in the voting process will interact with each other. Two typical boardroom

voting protocols are the ones in [19,134] and our interactive voting protocol is similar

to them. In all these protocols including ours, tallying is called self-tallying: each

voter can incrementally aggregate ballots/votes themselves by either summing the

votes [134]) (as well as ours) or multiplying the ballots [19]) (and then verify the

correctness of the final tally). One main advantage of our interactive voting protocol

over other distributed e-voting protocols is its low computation cost for vote casting

and tallying. As analyzed in [18], in terms of vote casting, the protocol in [19]

needs 4N + 10 exponentiations per voter and the protocol in [134] needs 2N + 2

exponentiations. However, our interactive voting protocol needs only 2N−2 modular

additions/subtractions. In terms of tallying [18], the protocol in [19] needs 11N −

11+
(
N+M
M

)
/2 and the protocol in [134] needs 19N2 + 58N − 14Nt − 17t + 35 (here

t is the threshold in distributed key generation scheme). However, our interactive

voting protocol does not need any exponentiations besides simple modular additions.

Another property of our interactive voting protocol in terms of transparency is the

viewability of the voter’s plain vote: each voter knows and can see which plain vote

is his vote. However, in [19], plain votes are not viewable, and in [134], even though

plain votes are viewable but the voter does not know which one is his vote because

the shuffling process changes the correspondence between the initial encrypted ballots

and individual plain votes. On the other hand, our interactive voting protocol needs

the involvement of collectors which check and enforce the protocol compliance from

each voter, which increases the overall protocol cost.



103

10.2 Receipt-freeness and Coercion-resistance

Receipt-freeness refers to a scenario where a voter cannot prove to a third party

that he has cast vote for a particular candidate. It is first proposed by Benaloh and

Tuinstra in [68]. Jonker et al. [135] give an informal definition of receipt and list its

properties. However, without certain assumptions, there is incompatibility between

receipt-freeness and universal verifiability [136]. Thus, secret channels between voters

and authorities are usually assumed in order to achieve both.

Coercion-resistance deals with more powerful adversaries. The concept was first

discussed in [33], and formally introduced by Juels et al. in [13] for e-voting. Generally

speaking, an adversary may coerce a targeted voter into casting vote in a particular

manner, abstaining from voting, or even giving in his secret keys. A coercion-resistant

scheme is capable of circumventing the adversary’s demands so that the adversary

cannot distinguish whether a coerced voter follows his dictations.

The definition of coercion-resistance has been explored by several research groups.

Juels et al. [13] take an algorithmic approach. Their algorithms simulate two exper-

iments of coercion-resistance, with the first characterizing an adversary capable of

distinguishing the fake key from the genuine private key (complete coercion of the

targeted voter), and the second characterizing an ideal situation where the adversary

cannot determine whether the coercion is successful.

The definition in [137] takes an epistemic approach with symbolic settings. Küsters

and Truderung also apply the framework of their definition to other e-voting models,

and analyze the positive and negative aspects. The definitions given in [138–140] are

game-based, which share certain similarity with [13]. However, as claimed in [138],

their definition is more general and fits more e-voting protocols, while the definition

in [13] is tailored for voting in a public-key setting, with protocols having a specific

structure.

Delaune et al. [141] use the applied pi calculus to formalize coercion-resistance

and receipt-freeness. From their formalization, coercion-resistance implies receipt-
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freeness, while receipt-freeness in turn implies privacy. They apply this formalization

onto Lee et al.’s protocol [41], and model the initialization process, the keying material

generation, and the distribution process, together with processes for each entity such

as administrator, collector, and voter.

Moran and Naor [142] give a rather general definition of coercion-resistance within

the simulation-based approach, extending from a definition of coercion-resistance

in [33] for incoercible multiparty computation.

Recently, Clark and Hengartner [70] propose an over-the-shoulder coercion-resistant

voting protocol called Selections. It is based on panic passwords. When a voter is co-

erced to cast a vote at the coercer’s presence, the voter can cast the coerced vote using

a panic password and then later, the voter will cast his real vote using his real pass-

word. Selections employs an anonymous channel or mix-net for vote anonymity and

homomorphic encryption for tallying. Like most other coercion-resistant protocols,

Selections does not have a clear mechanism for voters to verify their vote.

The recent research by Grewal et al. [6] acknowledges the toughness of the voter-

coercion issue, and proposes to redefine its meaning and scope. Even for the century-

old Australian ballot which used to be coercion-free, voter-coercion is becoming an

issue because of new emerging video technology [143].

Table 10.1 gives a comparison of the voting schemes mentioned above.
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Table 10.1.
Comparison of voting schemes

Schemes/ Individual Universal Fair- Coercion- Robust- Receipt Cryptographic Tailored

Systems Verifiability Verifiability ness resistance ness freeness primitives Hardware

UVote [144] Y NK NK Y NK N Mix-net N

Zeus [145] Y Y Y N Y N Mix-net, ZKP N

Cobra [140] N N Y Y Y Y HE, EBF N

Helios [146] Y Y Y N Y N Mix-net, ZKP N

DSA Public Keys [147] Y Y Y Y Y NK HE, Mix-net, ZPK N

RSA Puzzle Lock [32] Y NK Y NK Y NK RSA N

Civitas [132] Y NK Y Y Y Y Mix-net N

Multi-Authority [148] NK Y Y Y Y Y HE, ElGamal DSA N

E-NOTE [149] Y Y Y NK Y N RSA Watchdog

Bingo [150] Y Y Y Y Y Y CM, ZKP Booth

VoteBox [151] Y Y NK Y Y Y HE, HC Booth

Prêt à Voter [152] Y Y Y Y Y Y Mix-net Booth

ADDER System [153] NK Y Y Y Y Y HE, ZKP N

Scytl [64] Y Y Y Y Y Y SS, Mix-net Booth, VM

Our protocol Y Y Y Y Y Y SS N

Y: Yes; N: No; NK: Not Known; HE: Homomorphic Encryption; EBF: Encrypted Bloom Filter; ZKP: Zero Knowledge Proof;

CM: Commitment; HC: Hash Chaining; SS: Secret Sharing; VM: Verification Module; Booth: Voting Booth
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11. CONCLUSION AND FUTURE WORK

11.1 Conclusion

We proposed a fully transparent, auditable, and end-to-end verifiable voting pro-

tocol to enable open and fair elections. It exploits the conflicts of interest in multiple

tallying authorities, such as the two-party political system in the US. Our protocol is

built upon three novel technical contributions—verifiable voting vector, forward and

backward mutual lock voting, and proven in-process check and enforcement. These

three technical contributions, along with transparent vote casting and tallying pro-

cesses, incremental aggregation of secret ballots, and incremental vote tallying for

candidates, deliver fairness and voter assurance. Each voter can be assured that his

vote is counted both technically and visually.

In addition, for the voting environment requiring receipt-freeness and coercion-

resistance, we introduced solutions on top of the voting protocol to counter vote

selling or buying with receipt and voter coercion.

In particular, the interactive protocol is suitable for election within a small group

such as boardroom voting where interaction is encouraged, while the non-interactive

protocol is designed for election within a large group where interaction is not needed

and not realistic. Through the analysis and simulation, we demonstrated the robust-

ness, effectiveness, and feasibility of our voting protocol.

11.2 Future Work

First, we will investigate and extend our e-voting protocol to other voting scenarios

such as write-in candidate voting.
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Second, we will further explore location anonymization schemes (LAS). Currently

our original LAS requires multiple rounds of computation in order for each voter to

get a unique location; while the CRT based LAS requires a very large location vector.

we need to find a LAS which is more efficient in both computation and space.

Third, we will further look into the vote-selling and voter-coercion issues. Our

current solutions are far from perfect, so there are lots of potentials to improve our

solutions.

Fourth, with better cryptanalysis techniques being developed and the emergence

of quantum computers, the discrete logarithm problem (DLP), which our protocol

relies on, will not be hard any more in the near future, consequently, the privacy

of votes in our protocol can be compromised. We should also investigate whether

everlasting privacy can be incorporated into our protocol.
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M. Backes, S. Gritzalis, and B. Preneel, Eds. Springer Berlin / Heidelberg,
2006, vol. 4176, pp. 476–488, 10.1007/11836810 34. [Online]. Available:
http://dx.doi.org/10.1007/11836810 34

[136] B. Chevallier-Mames, P. A. Fouque, D. Pointcheval, and J. Traoré, “On some
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