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ABSTRACT

Su, Huiting MS, Purdue University, December 2018. Optimal Parameter Setting of
Single and Multi-task LASSO. Major Professor: Hong Wan.

This thesis considers the problem of feature selection when the number of predic-

tors is larger than the number of samples. The performance of supersaturated design

(SSD) working with least absolute shrinkage and selection operator (LASSO) is stud-

ied in this setting. In order to achieve higher feature selection correctness, self-voting

LASSO is implemented to select the tuning parameter while approximately optimize

the probability of achieving Sign Correctness. Furthermore, we derive the probability

of achieving Direction Correctness, and extend the self-voting LASSO to multi-task

self-voting LASSO, which has a group screening effect for multiple tasks.
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1. INTRODUCTION

1.1 Feature Selection

Modern regression analysis often involves huge number of features, which is also

called variables. They are predictors that may have impact on the response. Ordinary

least squares (OLS) method is often used to estimate coefficients for the variables.

A situation comes up more and more often, where the number of features p is

larger than the number of observations n. For example, we want to classify healthy

patients from cancer patients based on their gene expression. No more than 100

observations are available, while there can be 6000 to 60,000 features in the gene

data [1]. In this situation, ordinary least squares (OLS) method cannot be used to

fit the models as it requires at least p samples for p variables. Thus, it is necessary

to reduce the number of features.

Feature selection is a way to screen the features and only keep the features that

are most informative. It is particularly important when the true underlying model

is sparse, and it can be used to remove redundant or irrelevant features for further

study. The benefits of feature selection include: 1) Avoid over-fitting, and improve

the prediction performance of the model; 2) Construct more interpretable model,

and help understand the underlying mechanism; 3) Provide models that can save

computational effort.

Typical domains using feature selection include literature mining, gene expres-

sion array analysis, and combinatorial chemistry. For example, feature selection is

becoming a prerequisite for constructing models in bioinformatics due to the high

dimensional nature of models in this field [2].

Popular feature selection methods include subset selection, dimension reduction,

and regularization (also known as shrinkage). Subset selection is a group of methods
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that fit a model on a subset of features, and select a subset of features which gives

the best model. It includes best subset selection, stepwise selection, and backward

stepwise selection (also known as backward elimination). The best-subset selection

method simply fits a model on each subset of features and compares the error rate of all

the models, which requires large amount of computational effort. Stepwise selection

and backward stepwise selection are greedy search strategies that make changes to

the chosen subset progressively [1]. However, the stepwise selection methods only

improve the predicting performance under certain circumstances, for example, when

few predictors have a strong relationship with the response. Dimension reduction

methods like principal components regression and partial least squares transform the

predictors and fit OLS model on the transformed variables. The principal components

regression selects linear combinations that represent the predictors best while reducing

the dimention, but this selection is not supervised, which means that the predicting

performance is not guaranteed to be the best with the chosen linear combination.

The partial least squares takes the response into consideration, but generally does

not achieve much performance improvement in practice. Shrinkage methods add

regularization term into the objective function, or equivalently add constraints to the

model, so that some coefficients are shrunken towards zero. LASSO (least absolute

shrinkage and selection operator), and Elastic Net are shrinkage methods.

1.2 LASSO

The LASSO (least absolute shrinkage and selection operator) proposed by Robert

Tibshirani [3] is a widely used regularization technique to simultaneously conduct

feature selection and regression.

For OLS, the goal is to minimize the residual sum of squares (RSS). LASSO is

very similar to a technique called Ridge Regression which adds an l2 penalty to the

RSS, but LASSO uses l1 penalty instead. By adding the constraint that the sum of

the absolute value of the regression coefficients should be less than a specific value,
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LASSO forces some certain coefficients to be shrunken to zero. For ridge regression,

the coefficients of irrelevant variables can be very close to zero, but not exactly zero,

which means that it keeps all the p variables in the model. On the contrary, LASSO

can shrink some coefficients to zero, and thus perform variable selection. Its ability

of performing variable selection lies on the form of the l1 penalty.

There are many variants proposed in the literature, such as fused LASSO, elas-

tic net, adaptive LASSO, and group LASSO. Fused LASSO is proposed in 2005 by

Robert Tibshirani for problems in which features can be ordered according to some

criterion, and it encourages not only the sparsity of coefficients, but also sparsity of

their differences [4]. While the LASSO penalty does not take the correlation between

variables into consideration, ridge regression has the property of shrinking strongly

correlated variables towards each other. Elastic net penalty combines the LASSO

penalty and ridge penalty by adding them together, and thus has the property of

both methods [5]. Adaptive lasso proposed by Zou et al. in 2006 uses a weighted

penalty to avoid falsely selecting noise predictors [6]. Group LASSO proposed by

Yuan et al. selects specific features that are grouped together simultaneously for a

task [7]. In our research, the original version of LASSO is considered, but it can also

be extended to the variants.

1.3 Parameter Tuning for LASSO

The parameter λ has tremendous effect on the performance of LASSO, so a method

to determine the value of λ is of significant importance. As LASSO perform feature

selection and coefficient estimation simultaneously, the performance of LASSO can

be measured by the prediction error or feature selection accuracy.

Cross Validation (CV) methods and information criteria is often used in model

selection. The computation effort for information criteria is less, but the degrees of

freedom (DF) of LASSO and error variance are required to calculate the information
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criteria [8]. Thus, cross validation is a preferable method for model selection. How-

ever, these model selection methods focus only on minimizing the prediction error.

On the other hand, the self-voting method proposed in the work of Dadi and

Wan [9] maximizes the feature selection accuracy of LASSO. This method determines

the value of λ based on the probability that LASSO selects the correct features. In

our research, the performance measure of LASSO is also feature selection accuracy,

and the parameter λ is tuned to maximize it.

1.4 SSD Working with LASSO

Generally, data gathering and feature selection are considered separately. When

investigating complex systems like large scale computer simulation models, the value

or level of features can be varied according to the experimenter’s choice. In order

to figure out the features which have significant effects on the system performance

measured by some specific performance metric, a screen experiment is often conducted

on the system.

However, simulation is very computationally expensive. A simulation run for a

system with moderate complexity may last a few days. The screening process using

factorial design can be computationally unaffordable as it requires a large number of

runs. Therefore, an effective experimental design should help experimenter to reduce

simulation run and allocate computational effort to more informative combination of

feature levels.

Booth and Cox [10] first introduced a cost-effective design called supersaturated

design (SSD), in which the number of runs n in the design is smaller than the number

of parameters p. Various techniques have been developed to construct SSD with

optimal performance, and they are widely implemented in practice.

Dadi proposed a LASSO-based optimality criteria and partial gradient algorithms

to construct supersaturated designs which approximately optimize the variable selec-
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tion performance of LASSO. In our research, we use the algorithm proposed by Dadi

to generate design for our screening process.

1.5 Multi-task Feature Selection

In the setting of multi-task learning, there are l > 1 responses which can also be

called tasks. Our objective is to solve several regression problems for related tasks

at once. The basic assumption in Multi-task feature selection is tasks are related.

While learning independently using single-task feature selection methods for different

tasks may achieve lower error, these tasks share common underlying sparsity, which is

usual in practice. Learning one task can benefit from the information of other tasks.

Thus learning the models simultaneously can give more interpretable model and can

be useful in practice.

Obozinski et al. [11] extended the single-task LASSO to a block-regularization

method called multi-task LASSO, which enforces the feature selection to be the same

across tasks. Instead of penalizing the sum of l1 norm, the multi-task LASSO penalizes

the sum of l2 norms of a block of coefficients for each feature. The coefficients are

shrunken to zero simultaneously when a feature is not significant for any task, which

is a grouping effect. The performance of multi-task LASSO depends on the level of

sharing. Here we consider the scenario where all tasks share a subset of significant

features.

1.6 Objective and Contribution

In the first part of this thesis, we study the performance of single-task LASSO

working with SSD through a realistic case. In the second part, we derive the prob-

ability of multi-task LASSO achieving Direction Correctness, and demonstrate the

self-voting procedure for multi-task LASSO selecting tuning parameter. Then exper-

iments are conducted to compare the performance of LASSO when selecting tuning

parameter with self-voting procedure or cross-validation.
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2. PROBLEM STATEMENT

The problem we want to solve is select feature when the number of experiment runs

is less than the number of factors.

2.1 Feature Selection

For single response, consider the linear model

y = Xβ0 + ε (2.1)

where y = (y1, y2, ..., yn)T is the response vector which is n dimensional, X is

an n × p design matrix, β0 is a p dimensional vector of the true coefficients of the

predictors, and ε is an n dimensional random noise vector in which all the elements

are independent and identically normal distributed.

The Ordinary Least Square (OLS) estimate for the regression coefficients is

β̂ = argminβ||y −Xβ||2 = (XTX)−1XTy (2.2)

When p is larger than n, XTX is singular, and not invertible. Regularization is

introduced into the model to resolve this issue. With L1 penalization, the estimate

becomes

β̂λ = argminβ
1

2n
||y −Xβ||22 + λ||β||1 (2.3)

where ||β||1 =
∑

j |βj| is the l1-norm penalty.

2.2 Multi-task Feature Selection

Under the setting of multi-task learning, there are l linear models we want to

learn. The model becomes

Y = XB0 +E (2.4)
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where Y = (y1,y2, ...,yl) is a n× l matrix of responses of l tasks, X is an n× p

design matrix as previous, B0 = (β0
1,β

0
2, ...,β

0
l ) is a p × l true coefficient matrix of

the predictors for l tasks, and E is an n× l dimensional random noise vector in which

all the elements are independent and identically normal distributed.

Using multi-task lasso penalty [11], the solution is

B̂λ = minB
1

2n
||Y −XB||2Fro + λ||B||21 (2.5)

where ||A||Fro =
√∑

ij a
2
ij is the Frobenius norm, and ||B||21 =

p∑
j=1

||Bj||2 is the

l2,1 norm.
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3. CASE STUDY

3.1 Introduction

The performance of SSD working with self-voting LASSO is studied in this chapter

with a realistic case.

3.2 Case Description

A simplified manufacturing system case is studied in previous work implementing

CSB (Controlled Sequential Bifurcation) method [12]. Furthermore, the results of

CSB-X method and factorial design are reported in [13]. In the case, we want to

figure out which machines to invest among 20 types of machines. In this section,

partial gradient algorithm will be used to construct an RSS-Optimal SSD for ex-

periment, and Self-Voting LASSO (least absolute shrinkage and selection operator)

will be implemented to screen significant features. For detailed introduction of the

system, please refer to [12].

The features which influence the system performance are the number of fast or

slow machines at each station and the number of each kind of transporters. As shown

in table 3.1, the current number of machines /transporters is taken as the “level -

1”, and “level 0” and “level 1”, which are determined according to the cost of each

machine/transporter for experiment.

Performance measure of the system is the weighted mean cycle time of different

products, which we want to minimize. It is obtained from discrete event simulation.

There are 20 features in total, and simulation is time consuming for such a large

system. Thus, supersaturated design experiment is needed and efficient in this case.
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Table 3.1.
Feature Description and Levels (Unit Number)

Feature Feature Description Level -1 Level 0 Level 1

1 slow machines in OXIDIZE 92 93 94

2 fast machines in STEPPER 0 1 2

3 fast machines in COAT 0 2 4

4 slow machines in CLEAN 42 45 48

5 fast machines in TEST1 0 2 4

6 fast machines in TEST2 0 2 4

7 slow machines in STEPPER 30 32 34

8 slow machines in COAT 25 29 33

9 fast machines in CLEAN 0 2 4

10 slow machines in TEST1 21 25 29

11 slow machines in TEST2 21 25 29

12 slow machines in LOAD QUARTZ 5 13 21

13 slow machines in UNLOAD QUARTZ 5 13 21

14 fast machines in LOAD QUARTZ 0 5 10

15 fast machines in UNLOAD QUARTZ 0 5 10

16 AGVs 0 5 10

17 slow machines in DEVELOP 10 31 52

18 CONVEYORS 6 9 12

19 fast machines in OXIDIZE 0 1 2

20 fast machines in DEVELOP 0 13 26
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3.3 Description of Experiments

To identify significant features among the 20 features, partial gradient method

using RSS criteria is used to generate a 12 × 20 supersaturated design matrix Xc,

with RSS(k = 2) = 382.4067, ES2 = 6.9053, D − Optimal(k = 2) = 0.97491, A −

Optimal(k = 2) = 1.0587.

Xc =



+ − + + + − + − − − − + + + − − − − + −

− − − − − + + + − + + − − + + − − + + −

+ + − + + + − + − + + + + − + − − + − +

+ + − − − + + + + − − + + + + + − − + +

+ + + − − − − + − + − − − − − − + − + +

− − + − − − + − − − + + − − − + − + − +

+ − − + + − + − + + + − − + + + + − − +

+ − − + − + − − + + − + + − − + + + + −

− + − − + − − − − − − − + + − + + + − −

− + + + + + + + + + − − − − − + − − − −

− − + − + + − − + − + − + − + − + − + +

− + + + − − − + + − + + − + + − + + − −



.

The simulation model of the system is developed in Arena c©, a discrete event

simulation and automation software. For each replication, 365 days of operation

are simulated with a 300-hour warm-up period to eliminate the influence of initial

conditions. We code in Visual Basic for Applications (VBA) to control the simulation,

and collect output data automatically.

Input of the simulation model is number of machines, according to the high or low

level in the SSD matrix Xc. The performance measure calculated from the simula-

tion is the long-run average cycle time (hours) weighted by percentage of 4 different

products (A: 0.15, B: 0.35, C: 0.3, D: 0.2), taken the average of 10 replications. There

are 100 simulations in total, each contains 10 replications.

Then we implement Self-voting LASSO studied in [9] to screen significant features

for every simulation. When using LASSO to conduct feature selection, we need to tune

the parameter λ. Self-voting LASSO on the other hand, can select λ automatically
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while maximizing the correct selection probability of LASSO. For every simulation,

there is a set of significant features selected. For the 100 runs of Self-voting LASSO,

count the selected frequency of each feature, and estimate the probability P−1,0sv of

LASSO selecting each feature.

The experiment is conducted on a ThinkPad c© X1 carbon laptop, with Intel(R)

Core(TM) i5-5200U CPU@2.20 GHz, and 64-bit operating system.

3.4 Numerical Results

In order to make the experiment comparable to result of CSB in [12], and result

of CSB-X and the factorial design in [13], two experiments are conducted:

• Experiment 1 take level -1 and level 0 as low level and high level, compared

with CSB result;

• Experiment 2 take level -1 and level 1 as low level and high level, compared

with CSB-X and factorial design result.

Result of the two experiments are reported in table 3.2, where P̂−1,0sv and P̂−1,0sv are

the estimated probabilities of self-voting method selecting each feature in experiment

1 and experiment 2 respectively. β̂CSB and β̂CSB−X are the estimated regression

coefficients of CSB and CSB-X respectively. Features selected by CSB, CSB-X and

factorial design are shown in bold font. For P̂−1,0sv and P̂−1,0sv , the features with chosen

probability larger than 80% are shown in bold font. We can see that the self-voting

result in experiment 2 is highly consistent with results of CSB-X and factorial design.

Note that the response is simply the weighted average cycle time of four different

products. The actual goal is to reduce the cycle time of all the four products simul-

taneously. If changing the level of some feature gives rise to the cycle time of some

products and reduces the cycle time of the others, then the effect on the weighted

average cycle time can be counteracted. The reason why the weighted average cycle

time works in this case is all features have same direction of effects on the cycle time
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Table 3.2.
Self-Voting Lasso Result vs CSB, CSB-X and Factorial Design

Feature P̂−1,0sv β̂CSB P̂−1,1sv β̂CSB−X
95% Confidence Interval from

the Factorial Design

1 0 0.08 0 -0.00527 (-0.0057, 0.0467)

2 0.01 -1.39 0.11 -1.269 (-1.333, -1.205)

3 1 -2.2 0.8 -2.006 (-2.070, -1.943)

4 0 -0.39 0.02 -0.162 (-0.206, -0.118))

5 0 -3.03 0.89 -2.772 (-2.812, -2.732)

6 0 -3.27 0.8 -2.784 (-2.815, -2.753)

7 0 -0.14 0 -0.239 (-0.283, -0.195)

8 0 -0.02 0 -0.295 (-0.344, -0.247)

9 0.92 -1.34 1 -1.404 (-1.471 -1.338)

10 0 0.19 0 -0.291 ( -0.335, -0.247)

11 0 -0.14 0 -0.281 (-0.325, -0.238)

12 0.79 -1.62 0.04 -0.846 (-0.888, -0.804)

13 0.84 -1.56 0.98 -0.838 (-0.895, -0.781)

14 0 -0.83 0 -1.676 (-1.709, -1.644)

15 1 -0.74 1 -1.638 (-1.674, -1.603)

16 1 -4.14 1 -3.169 (-3.211, -3.126)

17 0 -1.78 0.05 -0.84 (-0.858, -0.822)

18 0 0.08 0 -1 ( -1.053, -0.942)

19 0.89 -0.55 1 -0.569 (-0.607, -0.532)

20 0.29 -1.77 0.27 -2.476 (-2.566, -2.385)

of each product. Adding machines in the system would not prolong the cycle time of

any product. Implement LASSO separately on the cycle time of four products in one

simulation, and report the result in 3.3. For each feature, the coefficients for different

products have the same sign (positive or negative).
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Table 3.3.
LASSO Result for Different Products

Feature A B C D Feature A B C D

1 0 0 0 0 11 0 0 0 0

2 0 0 0 0 12 0 0 0 0

3 0.66 0.79 0.32 0.67 13 -1.22 -0.16 0 0

4 0 0 0 0 14 0 0 0 0

5 0.00 0 0 0 15 -3.46 -1.64 -0.44 -0.89

6 0.00 0 0 0 16 -1.93 -0.66 0 -0.21

7 0 0 0 0 17 0 0 0 0

8 0 0 0 0 18 0 0 0 0

9 -1.60 -1.41 -0.63 -0.92 19 2.16 1.16 0.24 0.51

10 0 0 0 0 20 0 0 0 0
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Conduct experiments on the scenario of varying the value of one feature reduce

some responses and raise the others. Keep the same number of observations and

number of features, and the same design. Generate 100 true model randomly with

two significant features in each. The coefficients of the true features are generated fol-

lowing a uniform distribution, with different signs. The response is also the weighted

average cycle time of four products.

Use LASSO to perform feature selection and regression on every model. Only for

59 model out of 100 models, the LASSO selected the correct significant features in the

true model. On the contrary, for 95 out of 100 models in which same features have

same effects on different products, the LASSO selected the correct significant features.

A typical sample result is shown in table 3.4. For this model, the coefficients of the

7th feature for different products are all positive, so the feature is chosen and the

estimated coefficient is close. However, for the 11th feature, the effects on different

products are counteracted. Thus, this feature is not selected by LASSO, though it is

significant.

Table 3.4.
Result of Scenario with Different Effect

Feature βA βB βC βD β̂ Feature βA βB βC βD β̂

1 0 0 0 0 0 11 -3.11 -5.54 6.45 3.47 0

2 0 0 0 0 0 12 0 0 0 0 0

3 0 0 0 0 0 13 0 0 0 0 0

4 0 0 0 0 0 14 0 0 0 0 0

5 0 0 0 0 0 15 0 0 0 0 0

6 0 0 0 0 0 16 0 0 0 0 0

7 4.21 4.95 6.90 6.12 4.42 17 0 0 0 0 0

8 0 0 0 0 0 18 0 0 0 0 0

9 0 0 0 0 0 19 0 0 0 0 0

10 0 0 0 0 0 20 0 0 0 0 0
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In order to overcome the drawback in this scenario, a different way of adding

penalty which can consider different effects on multiple responses is needed. As

mentioned in the introduction, Obozinski et al. [11] proposed a method called multi-

task LASSO, which select features considering across tasks (different responses). This

method will be discussed in detail and further studied in the following chapter.



16

4. MULTI-TASK FEATURE SELECTION

4.1 Introduction

This chapter derives the probability of multi-task LASSO achieving Direction Cor-

rectness (PDC), and demonstrate the self-voting procedure to select tuning parameter

using the PDC.

4.2 Correct Selection

The predictor is said to be a true variable if ||βj||2 6= 0, and is said to be untrue

if ||βj||2 = 0. Denote the set of indexes of true variables as A = {j : ||βj||2 6= 0}, and

the set of indexes of untrue variables as C = {j : ||βj||2 = 0}. The number of true

variables is denoted as q.

There are two types of correctness that we consider: the estimated probability of

achieving Sign Correctness (SC) and probability of achieving Direction Correctness

(DC). Let sgn(·) be the function giving the sign of each element in a matrix or

vector, and D(·) be the function giving the direction of each row vector in a matrix.

For example, D(βj) =
βj
||βj ||2 .

If and only if the true variables are selected, and the signs of the selected variables

are equal to the sign of true variables, sign correctness is achieved. In addition to

sign correctness, if for each selected variable, the vector of estimated coefficients is

parallel with the vector of true coefficients, direction correctness is achieved.

Note that when l = 1, D(βj) =
βj
|βj | = sgn(βj), which means Direction Correctness

degenerates to the Sign Correctness of LASSO for single task.
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4.3 Probability of Direction Correctness

Denote the rows of matrices with subscripts, and the columns with superscripts.

For example, X1 is the first column of matrix X, and β1 is the first row of matrix

B.

The multi-task loss function 2.5 is convex, so the solution that minimizes the loss

function must satisfy the KKT condition. The gradient of loss function is ∀j, k

1

2n

∂
l∑

k=1

n∑
i=1

[yik − (xi1β1k + xi2β2k + ...+ xijβjk + ...)]2

∂βjk
+ λ ·

∂

p∑
j=1

√√√√ l∑
k=1

β2
jk

∂βjk
(4.1)

1

n
(Xj)T (−Y +XB) + λg (4.2)

Where g =
∂||βj ||2
∂βjk

. However, when ||βj||2 = 0, the loss function is not differentiable,

and subgradient is used in this case.

gj =
βj
||βj||2

, ∀j s.t. ||βj||2 6= 0 (4.3)

gj : ||gj||2 ≤ 1, ∀j s.t. ||βj||2 = 0 (4.4)

The multi-task LASSO estimate in equation 2.5 must satisfy the KKT condition as

below [14].

1

n
(Xj)T (−Y +XB̂) + λ · β̂j

||β̂j||2
= 0, ∀j s.t. ||β̂j||2 6= 0 (4.5)

|| − 1

nλ
(Xj)T (−Y +XB̂)||2 ≤ 1, ∀j s.t. ||β̂j||2 = 0 (4.6)

The condition for correct selection is Â = A, and it is equivalent to

β̂Ĉ = βC = 0 (4.7)

Where βC is a matrix containing the coefficients of untrue variables. Similarly, we

denote the matrix containing the coefficients of true variables as βA, the dimension

of which is q · l.
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Thus, XB = XAβA. Then we have

Y = XAβA +E (4.8)

Add the correct selection condition 4.7 and equation 4.8 into the KKT condition,

then we have

1

n
(Xj)T (−XAβA −E +XAβ̂A) + λ · β̂j

||β̂j||2
= 0, ∀j ∈ A (4.9)

||(Xj)T (−XAβA −E +XAβ̂A)||2 ≤ nλ, ∀j ∈ C (4.10)

Condition 4.9 can be rewritten as

1

n
XT

A(−XAβA −E +XAβ̂A) + λD(β̂A) = 0 (4.11)

where D(β̂A) is the directions of each vector β̂j, ∀j ∈ A .

Add direction correctness condition D(β̂A) = D(βA) to 4.11 to ensure the direc-

tion correctness. The condition becomes

β̂A − βA = (XT
AXA)−1(XT

AE − nλD(βA)) (4.12)

Replace β̂A − βA in 4.10, we have

||(Xj)T [XA(XT
AXA)−1(XT

AE − nλD(βA))−E]||2 ≤ nλ, ∀j ∈ C (4.13)

Define V = (XT
AXA)−1(XT

AE − nλD(βA)). Then 4.12 is simplified as

β̂A = βA + V (4.14)

In order to ensure D(β̂j) = D(βj), we need to make sure D(Vj) = D(βj),∀j ∈ A.

When Vj and βj are parallel, i.e.

∃kj s.t. Vj = kjβj,∀j ∈ A (4.15)

the angle θj between them could be 0 or π. They need to satisfy

||Vj||2 < ||βj||2,∀j s.t. θj = π (4.16)
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To summarize, the conditions for multi-task lasso achieving direction correctness

are

||(Xj)T [XA(XT
AXA)−1(XT

AE − nλD(βA))−E]||2 ≤ nλ, ∀j ∈ C (4.17)

∃kj s.t. Vj = kjβj, ∀j ∈ A (4.18)

||Vj||2 < ||βj||2, ∀j s.t. θj = π (4.19)

As each element in E is normal distributed, the probability of these conditions

hold can be estimated using Monte Carlo Method. As in simulation, it is almost

impossible to get exactly parallel vectors, the second condition is relaxed to

| Vj · βj
||Vj||2 · ||βj||2

| > cos θ0 (4.20)

cos θ0 is set as a simulation parameter.

4.4 Self-Voting Multi-Task LASSO

Similar as the self-voting LASSO, we can also use the self-voting procedure for

multi-task LASSO. The procedure is:

1. Sample several reasonable initial values λ0. Use multi-task LASSO to get esti-

mation β̂λ
0
.

2. Regress only on estimated true variables and get the estimation β̂Âλ0 .

3. Take β̂Âλ0 as the true coefficient and estimate the PDC using Monte Carlo

Method. Approximate an “optimal” λ∗.

4. If λ∗ is equal to λ0, terminate the procedure and use Âλ
0

as the final result.
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5. NUMERICAL EXPERIMENTS

5.1 Introduction

This chapter contains numerical simulations conducted to study and compare the

performance of multi-task LASSO and single-task LASSO when using self-voting or

cross-validation to select tuning parameter. To have a reasonable comparison, the

frequency of achieving Sign Correctness (SC) is chosen as the performance measure.

5.2 Description of Experiments

We study the performance of multi-task LASSO and compare with cross-validation

in 7 different scenarios. Number of observations, number of features, number of tasks,

and number of true features are varied in different scenarios.

For each scenario, we generate an optimal supersaturated design based on RSS2

criterion at first. The SSDs used in all the scenarios are shown in the Appendix A.

Then run 100 replications in which different models and responses are generated. In

every replication, the true variables are randomly chosen, and their coefficients βA are

generated according to a uniform distribution UNIF (3, 7). The random noise E is

normal distributed as N(0, 1). After the response is calculated, multi-task self-voting

LASSO is implemented to screen the features. As the Monte Carlo estimation for

PDC is computationally expensive, parallel computing is used to save time.

Given self-voting has local convergence, multiple starting points λ0 is used to

approximate the optimal λ. The λ∗ which achieves highest PDC is chosen as the final

result. L-BFGS-B method is used in the optimization process of λ.

To compare the performance, multi-task LASSO and single-task LASSO with

cross-validation are also implemented to select feature. For single-task LASSO, it is
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implemented to each task separately, and then the result is combined. Note that only

when the sign of every element in the matrix β̂ is correct, the Sign Correctness is

achieved. The estimated probability of achieving Sign Correctness is compared in the

experiment.

The simulation model is developed in R, and the experiment is conducted on a

ThinkPad c© X1 carbon laptop, with Intel(R) Core(TM) i5-5200U CPU@2.20 GHz,

and 64-bit operating system.

5.3 Numerical Result

5.3.1 Scenario 1

For scenario 1, we use a 12 × 16 supersaturated design X1216 generated with

RSS2 criterion, where RSS(k = 2) = 140.86, ES2 = 5.2, D − Optimal(k = 2) =

0.98, A − Optimal(k = 2) = 1.04. There are 3 different tasks i.e. responses, and 2

true variables.

X1216 =



− + − − + − − + + + + + − + + +

− + − − − + − + − + − − + − − −

+ − + + + + − + + + − + + − + +

+ + − + + − − − − − + + − − − −

− + + + + + + − + − + − + + + −

− − − − + + + − − − − + + + − +

+ + − + − − + − + + − − + + − +

− + + + − − + + − − − + − − + +

+ − + + − + − + − − + − − + − +

+ − + − + − − − − + − − − + + −

+ − − − − − + + + − + − + − + −

− − + − − + + − + + + + − − − −



.

The result in one replication looks like in table 5.1. In this case, true coefficients

are randomly generated. Multi-task self-voting LASSO achieves Sign Correctness

while multi-task CV and single-task CV do not.
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The frequency of the 3 methods achieving Sign Correctness is shown in table 5.2.

The ratio of Multi-task Self-Voting LASSO achieving Sign Correctness is 0.94, which

is much higher than Multi-task LASSO tuned with CV and Single-task LASSO with

CV. Multi-task LASSO and Single-task LASSO do not show much difference when

both tuned with cross-validation.

5.3.2 Scenario 2, 3 and 4

For scenario 2, 3 and 4 we have more features (p = 22) while the number of

observations stays the same (n = 12). In scenario 2, the estimated PSC of single-task

LASSO drops as the model size increases, while the estimated PSC is almost the same

for the other two methods.

In scenario 3, number of observations and features are the same as they are in

scenario 2, but there are more tasks to consider (l = 5). Achieving Sign Correctness

is supposed to be harder in this scenario. The result in a typical replication looks like

table 5.3, where the coefficients of feature 3 to feature 12 are not shown, as they are

all zero.

The estimated probabilities of three methods achieving Sign Correctness in all

three scenarios are reported in table 5.2. In a supposedly harder scenario like scenario

3, the performance of multi-task self-voting LASSO is still significantly better than

the other two methods. Furthermore, as there are more tasks to consider at the same

time, the performance of single-task LASSO drops considerably.

In Scenario 4, the number of tasks is increased to l = 7, and thus raises difficulty

of achieving Sign Correctness. Multi-task self-voting LASSO achieved 100% correct

selection, while the performance of multi-task LASSO with CV does not vary much.

However, the estimated probability of sign correct selection is only 0.08 for single-task

LASSO in this scenario.
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Table 5.2.
PSC of Different Scenarios

Scenario n p l q Multi-task SV Multi-task CV Single-task CV

1 12 16 3 2 0.94 0.62 0.66

2 12 22 3 2 0.97 0.58 0.48

3 12 22 5 2 0.99 0.55 0.14

4 12 22 7 2 1 0.53 0.08

5 12 22 5 4 0.51 0.05 0

6 16 26 3 2 0.96 0.45 0.4

7 16 30 5 2 0.97 0.54 0.16
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5.3.3 Scenario 5

In the fourth scenario, we keep the other settings the same as scenario 3, and only

change the number of true variables from 2 to 4. Though the SSD is designed for 2

true variables, sometimes we are unable to know the exact number of true variables.

Thus, we want to know how bad the algorithms perform under this circumstance. The

result reported in table 5.2 shows that, in scenario which is not so ideal, multi-task

self-voting LASSO still performs better than the other two methods.

5.3.4 Scenario 6 and 7

The model size is again enlarged in scenario 6, and the estimated PSC of multi-

task self-voting LASSO is almost constant, while the estimated PSC of the other two

methods drop accordingly.

5.3.5 Conclusion

In conclusion, the multi-task self-voting LASSO outperform LASSO working with

cross-validation in terms of feature selection accuracy. It achieves PSC no less than

95% in most of the scenarios we consider. While the estimated PSC of other methods

decrease when the scale of the model increase, the performance of multi-task self-

voting LASSO is robust.
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Table 5.3.
Example of Result of Scenario 2

Feature True Coefficients Multi-task SV result

1 -5.21 5.71 4.11 6.60 5.79 -3.20 3.31 2.71 4.23 3.83

2 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0

17 5.75 -4.37 -4.52 5.33 3.75 3.47 -2.80 -2.75 3.10 2.22

18 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0

Feature Multi-task CV result Single-task CV result

1 -4.42 4.57 3.75 5.84 5.29 -3.57 4.29 3.05 4.24 5.11

2 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 -0.38 0 0 0

15 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0

17 5.07 -4.09 -4.02 4.53 3.25 4.39 -3.82 -3.43 2.84 2.85

18 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0

22 0 0 0 0 0 0 0 0 0 0
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6. SUMMARY AND FUTURE WORK

In our research, we studied the optimal selection of tuning parameter for single-task

and multi-task LASSO. We first studied the feature selection performance measured

by probability of achieving Sign Correctness of LASSO, working with LASSO-optimal

supersaturated design. Then we extended the probability of achieving Sign Correct-

ness to probability of achieving Direction Correctness, and derived the condition of

achieving Direction Correctness for multi-task LASSO. Using this probability proved,

we developed an iterative procedure to select tuning parameter λ to maximize the

feature selection performance. The performance of multi-task self-voting LASSO is

studied in numerical experiments, and different scenarios were taken into considera-

tion. It outperforms multi-task or single-task LASSO using cross-validation to select

tuning parameter.

Our work can be extended in future research in several directions. First, the run

time and performance of multi-task self-voting LASSO is influenced by the starting

value of tuning parameter λ. In our research, starting value λ0 is randomly generated

according to uniform distribution in an empirical range. In future research, we expect

to develop a method, which can be proved theoretically, to select a starting value of

tuning parameter that is close to the optimal value. In this way, the feature selection

accuracy can be even higher, and the number of iterations can be smaller.

Furthermore, the probability of achieving Direction Correctness can be extended

for other methods in LASSO family with more complex penalty form. For example,

group LASSO [7] and exclusive LASSO [15] also have grouping or block selection

effect, and can benefit from analysis of correct selection.
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APPENDIX A

DESIGN

The designs used in the experiments are all generated using partial gradient algorithm

for optimal SSD proposed by Dadi [9]. All the designs are generated with RSS2

criterion.

Table A.1.
Design: Optimal 12× 16 SSD based on RSS2

- + - - + - - + + + + + - + + +

- + - - - + - + - + - - + - - -

+ - + + + + - + + + - + + - + +

+ + - + + - - - - - + + - - - -

- + + + + + + - + - + - + + + -

- - - - + + + - - - - + + + - +

+ + - + - - + - + + - - + + - +

- + + + - - + + - - - + - - + +

+ - + + - + - + - - + - - + - +

+ - + - + - - - - + - - - + + -

+ - - - - - + + + - + - + - + -

- - + - - + + - + + + + - - - -
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