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General Aviation (GA) accidents constitute the majority of aviation related accidents. In the United 

States, there have been over 7,000 GA accidents compared to 190 airline accidents in the last 8 

years. Flight data analysis has helped reduce the accident rate in commercial aviation. Similarly, 

safety analysis based on flight data can help GA be safer. The FAA mandates flight data recorders 

for multi-engine and turbine powered aircraft, but nearly 80% of General Aviation consists of 

single engine, of which only a small portion contain any form of data recording device. GA aircraft 

flight data recorders are costly for operating pilots. Low-cost flight recorders are few and rarely 

used in GA safety analysis due to lack of accuracy compared to the certified on-board equipment. 

In this thesis, I investigate the feasibility of using a low-cost Attitude and Heading Reference 

System (AHRS) to detect hazardous states in GA aircraft. I considered the case of roll angles and 

found that the low-cost device has significant measurement errors. I developed models to correct 

the roll angle error as well as methods to improve the detection of hazardous roll angles. I devised 

a method to evaluate the time accuracy along with the angle accuracy and showed that despite the 

errors, the low-cost device can provide partial hazardous state detection information. 
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1. INTRODUCTION 

General Aviation (GA) is all civil aviation operations other than scheduled air services and non-

scheduled air transport operations for remuneration or hire [ICAO, 2009]. In the FAA's General 

Aviation Information [FAA, 2008], GA flights are described as flights conducted by operators 

other than Title 14 of the Code of Federal Regulations (14 CFR) part 121 or part 135 certificate 

holders. There are over 211,000 GA aircraft in U.S., flying over 24.8 million flight hours to about 

5,000 U.S. public airports [GAMA, 2017]. 

 

However, GA lags commercial aviation in terms of safety. There have been over 7000 GA 

accidents compared to 190 airline accidents in the last 8 years. Over the past 10 years, the FAA 

has taken several initiatives to reduce GA accidents. From 2005 to 2016, the number of total GA 

accidents and fatal accidents decreased by 57% [FAA, 2018]. However, fatal GA accidents still 

made up 94% of all fatal accidents in aviation in 2016 [NTSB, 2016]. GA safety, though better 

than it was in 2005, is still far from the safety levels achieved by commercial aviation. The 

reduction in fatal accident rates is an indication of steps taken in the right direction, but more steps 

need to be taken to further decrease the GA accident rate. 

 

Aircraft data is crucial in analyzing and identifying risk. With programs such as the Aviation Safety 

Information Analysis and Sharing Program (ASIAS) and the ‘Got Data? External Data Initiative’, 

the FAA has shown the need for good quality data in GA safety analysis to improve the safety of 

GA [FAA, 2018]. 
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1.1 Flight Data in General Aviation 

Flight Operational Quality Assurance (FOQA), also known as Flight Data Management (FDM), 

has had a role in commercial aviation since the 1960s. FOQA is a voluntary safety program that is 

designed to make commercial aviation safer by allowing commercial airlines and pilots to share 

de-identified aggregated information with the FAA so that the FAA can monitor national trends in 

aircraft operations and address operational risk issues (e.g., flight operations, air traffic control 

(ATC), and airports) [AC No: 120-82, 2004]. A Flight Safety Foundation study found that airlines 

with an active FDM program have accident rates that are 50% lower than carriers without FOQA, 

and carriers that have used FOQA for the longest also have the fewest accidents [Lau, 2007]. We 

could potentially decrease the large number of GA accidents by implementing the FOQA 

philosophy in GA. The General Aviation Joint Steering Committee (GAJSC) has emphasized the 

need for FOQA and flight data for proactive safety analysis through FAA’s Aviation Safety 

Information Analysis and Sharing (ASIAS) [FAA, 2018].  

 

However, FOQA for GA faces several road blocks: 

 FOQA requires in-flight aircraft information recording devices. Commercial aircraft have 

a variety of sensors and recording devices to enable FOQA. Regulations do not require 

small, single engine GA aircraft to be equipped with Flight Data Recorders (FDRs). As per 

14 CFR 91.609, only multiengine, turbine-powered airplane or rotorcraft having a 

passenger seating configuration of 10 or more that have been manufactured after October 

11, 1991 are required to have a flight data recorder, and only those with a passenger seating 

configuration of 6 or more are required to have a cockpit voice recorder. 
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 Many GA aircraft do not have any electronic avionic system. Quick Access Recorders 

(QAR) help collect raw flight data by directly connecting to the aircraft avionic system. 

One can use a QAR to collect flight data irrespective of a flight data recorder being on-

board or not. Without an electronic avionic system containing digital flight data, in-flight 

data acquisition is difficult in GA.  

 A GA aircraft equipped with an on-board Electronic Flight Instrument System (EFIS) can 

record aircraft data. EFIS flight data from GA aircraft include GPS data, Attitude, Heading 

Reference System (AHRS) data, communication/navigation information, and engine 

information.  However, only new GA aircraft contain EFIS, and the cost of retrofitting an 

old GA aircraft with a new EFIS is over $10,000. Many of the GA operators are the pilots 

who either rent or own the aircraft. Unlike airline operators, most of these GA pilots do not 

have any financial return on investment on the purchase of expensive in-flight data 

recorders. 

 

Independent Flight Data Recorders (iFDR) and Electronic Flight Bag (EFB) applications can 

record flight data external to the avionic system on-board. iFDRs and EFBs do not require any 

certification, but the FAA has provided advisory guidelines for their use [AC No: 91.21-1D, 2017; 

AC No: 120-76C, 2014]. iFDR, also known as Lightweight Aircraft Recording Systems, are low-

cost devices that do not connect to on-board aircraft systems. They collect flight data using their 

own sensors. For example, iFDRs include video or sound recording devices to record cockpit 

instruments. EFB applications can record GPS, traffic and weather data, but they require external 

Attitude Heading and Reference Systems (AHRS) to provide aircraft orientation. Pilots can 



18 

 

connect commercial portable AHRS devices to the handheld device system applications and 

potentially record data, but these devices cost approximately $1,000 per system.  

1.2 Data in the Safety Analysis of General Aviation 

GA safety analyses in the literature primarily use EFIS flight data. Previous safety analyses have 

used Garmin G1000 EFIS data to identify phases of flight [Goblet et al., 2015], to detect safety 

events during the approach phase of flight [Fala and Marais, 2016], and to detect anomalies in GA 

operations [Puranik and Mavris, 2018]; and the Vision 1000 camera to record and create flight 

tests for a helicopter [Kuo et al., 2017]. 

 

Since many GA aircraft do not have an EFIS and many pilots cannot afford expensive on-board 

equipment, we need low-cost flight data recording options to enable more widespread GA safety 

analysis. Several researchers have investigated the use of low-cost sensors to collect flight data in 

GA. Neuhart et al. (2009) acquired flight test data of a Cessna 172S aircraft using low-cost, 

custom-made hardware and software for simulation validation. The study used over ten types of 

sensors to monitor pilot inputs, engine performance, control surface deflections, and 

environmental conditions. The researchers concluded that the flight test data set was of sufficient 

content and quality to validate a simulation with good fidelity, with a special focus on stability and 

control characteristics. Valasek et al. (2017) used low-cost Inertial Measurement Units (IMUs) to 

characterize the derived angle-of-attack (AOA). This study directly used IMU sensor data and not 

the attitude and heading derived from the IMU (see section 2.1.1). The researchers found that in 

the case of low sensor noise, the derived AOA tracked the true AOA, but they had insufficient data 

to draw conclusions in the case of large sensor errors. Albéri et al. (2017) tested the accuracy of 

low-cost GNSS, radar and barometric sensors for in-flight altitude measurements for airborne radio 
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metric surveys. The researchers equipped an aircraft with seven altimetric sensors (three low-cost 

GNSS receivers, one inertial measurement unit, one radar altimeter and two barometers), and 

found that over the sea, two barometric altimeters together with the radar altimeter performed the 

most accurate measurement of flight altitude over the sea in the 35–66m range. The study shows 

how increasing redundancy in low-cost data collection can increase accuracy. Bonadonna et al. 

(2015) recommended the design requirements for a low-cost flight data recorder to obtain and 

analyze flight data as described in a pilot operating handbook (POH) of an experimental aircraft. 

They recommend the use of Garmin Virb to video monitor the flight data and use low-cost 

microcontrollers such as the Arduino Mega to collect and process the video data. 

 

Researchers so far have used and analyzed low-cost sensors in aircraft data collection. In the 

examples above, the low-cost data collection led to simulator validation, angle-of-attack derivation 

and generating a POH for experimental aircraft. The question remains: Can we use the data 

collected via low-cost sensors for GA safety analysis in the same manner as the data used from an 

EFIS such as the Garmin G1000? 

1.3  Research Goals and Thesis Objectives 

In our research, we investigated the feasibility of using roll angle collected from a low-cost AHRS 

(the Stratux) to detect the hazardous state of high roll angles (ϕ > 45°) for a GA aircraft compared 

to the detection when using the data from a Garmin G1000. 

 

We explored the technical knowledge requirements for building a low-cost AHRS and whether 

one could build a low-cost AHRS using open source software and hobbyist hardware for GA safety 

analysis (Section 2).  
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In section 3 we assembled a low cost AHRS (the Stratux) unit and collected flight data for 29 

training flights on SR-20 aircraft at Purdue University. We also collected the flight data from the 

on-board Garmin G1000 on the same aircraft for those 29 flights. We tested the Stratux in detecting 

high roll angles (ϕ > 45°) in comparison to the Garmin G1000. We considered the data from the 

G1000 on-board the SR-20 aircraft to provide the best obtainable measurement of the actual roll 

angle. The error between the Stratux roll angle and the G1000 roll angle was large and varied with 

angle. We examined different types of mathematical models that could help to correct the error in 

the Stratux roll angle measurements. We also varied the definition of the hazardous roll limit (45°) 

when applied to the Stratux to improve detections of the hazardous state. 

Beyond the hazardous roll angle limit of 45°, risk may increase because of higher deviation from 

the limit or due to longer time spent at hazardous roll angles. We developed a method to evaluate 

the time accuracy along with the angle accuracy in section 4  

We provide the results of our research in section 5 and the potential future work required 

(Section 6). 
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2. ATTITUDE HEADING AND REFERENCE SYSTEM (AHRS) 

Attitude Heading and Reference Systems (AHRS) are commonly used in commercial and business 

aircraft. The AHRS information is used in displaying the aircraft attitude on a glass cockpit primary 

flight display and in the aircraft’s autopilot. It provides aircraft attitude through pitch and roll 

angles. The AHRS also provides the aircraft heading angle. The pitch, roll, and heading angles are 

important information in determining whether the aircraft is in an unsafe state. 

 

Currently, portable commercial AHRS for general aviation can provide information to handheld 

devices, such as a tablets or smartphones. The information can be portrayed through a system 

application in the form of a primary flight display or an electronic attitude indicator. The market 

price for a portable AHRS ranges from $800 to $1,500. These portable AHRS are often found in 

combination with ADS-B In receivers. The high cost of the commercial portable AHRS is due to 

multiple complexities of an AHRS device and the accuracy level required, as discussed in this 

chapter. 

2.1 AHRS Anatomy 

An inertial measurement unit (IMU) consists of an accelerometer and a gyroscope. A Magnetic, 

Angular Rate and Gravity (MARG) is an IMU with a magnetometer. An AHRS device is an IMU 

or a MARG and a processing unit containing the attitude estimation logic. In academic research 

the difference between IMUs, MARGs and AHRSs is well established, but in the consumer market 

IMUs and MARGs are treated as the same and referred to as IMUs. The primary difference 

between an AHRS and an IMU is that an IMU only provides sensor data. It does not contain 
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estimation algorithms for computing attitude or heading. Figure 1 shows a structural composition 

of an AHRS unit used in aviation. 

 

Figure 1: High Level Schematic Diagram of an AHRS 

 

Sensors are of various types and grade. Sensor type defines the fundamental methodology used in 

sensing. Use of optical fibers in fiber optic gyros (FOGs), laser in accelerometers, and micro 

electromechanical systems (MEMS) are a few examples. The grade of the sensor depends on the 

accuracy and level of noise in the sensor output. The grade can be improved by calibrating the 

sensor output for known or estimated noise. Low-cost sensors are often also called automotive 

grade sensors or consumer grade sensors. Sensors used in aviation are higher in accuracy and 

reliability than automotive grade sensors and are referred to as industrial grade sensors. 

 

Some low-cost commercial IMUs available in the market are also rudimentary AHRS devices 

since they contain a microcontroller and basic level of estimation logic for obtaining attitude 

information. The attitude information is noisy and provides highly erroneous values over time 

when the body accelerates with respect to an inertial frame. 
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2.1.1 Attitude, Attitude Estimation, and Sensor Fusion Algorithm 

In this section we review the definition of aircraft attitude and explore the algorithms that are used 

to estimate aircraft attitude from sensor data. 

2.1.1.1 Attitude or Orientation 

Attitude is described between two frames. One is an inertial frame which is fixed in time and is 

not rotating or accelerating. The second frame is the object or body frame for which we measure 

the orientation. The two coordinate frames have orthogonal right-handed axes, and the position 

and orientation of each frame can be described with respect to one another. 

 

In aircraft attitude estimation the local navigation frame (also known as the local geodetic or 

tangent plane) is the inertial frame. In aviation, the local navigation frame, shown in Figure 2, is 

in the North-East-Down format. It is described by the z-axis pointing towards the direction of 

gravity and the x-axis orthogonal to the z-axis pointing towards the magnetic North Pole. By the 

right-hand rule, the y-axis becomes the axis pointing to the east and orthogonal to both x and z-

axes. 
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Figure 2: The local navigation frame in North-East-Up format compared to the Earth-Centered, 

Earth-Fixed (ECEF) frame.  

 

The body frame (denoted by superscript b in Figure 3) has the same origin as that of the local 

navigation frame and it lies within the body for which we intend to find the attitude. The axes are 

fixed with respect to the body. In the case of an aircraft, the origin is the center of gravity. The x-

axis is the axis pointing from the center of gravity to the nose of the aircraft. It is the roll axis of 

the aircraft. The y-axis points from the center of gravity to the right wingtip and is the pitch axis 

of the aircraft. The z-axis, by the right-hand rule, is downwards and orthogonal to the other two 

axes and is the yaw axis of the aircraft. 
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Figure 3: Body frame axes for an aircraft. 

 

The attitude of the body frame is the degree of angular rotation of the body frame with respect to 

the inertial local navigation frame. There are several methods to describe attitude. The three 

commonly used methods are: 

 Euler Angles: Euler Angles are the consecutive rotations of the body frame about inertial 

frame axes starting with both frames coinciding to finally reach the body frame attitude. 

There are two intermediate frames between the initial and final state of the body frame. 

The first rotation is about the common z-axis and is the ‘yaw’. The second rotation is the 

‘pitch’ rotation about the common y-axis is the first intermediate frame. Finally, the ‘roll’ 

rotation about the common x-axis is the second intermediate frame. The vector containing 

the 3 angles is called the set of Euler Angles. It is intuitive and easy to visualize attitude 

using the Euler angle representation. The final output of an AHRS is in Euler angle 

representation. However, the Euler angle representation poses mathematical problems in 

computation. At +90° pitch, the yaw and roll angle become indistinguishable. This 

phenomenon is known as a ‘gimbal lock’ [Paul D. Groves, 2008]. 
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 Coordinate Transformation Matrix: The coordinate transformation matrix, or the rotation 

matrix, is a 3x3 orthogonal matrix (Cib) that transforms a vector in the inertial frame (xi) 

to a vector in the body frame (xb). 

 𝑥𝑏 = 𝐶𝑖→𝑏 ∗ 𝑥𝑖 (1) 

One can show the coordinate transformation as a matrix of cosines of angles between the 

unit vectors of the frames, due to which these matrices are also called Direct Cosine 

Matrices (DCM). The coordinate transformation matrix representation of attitude can be 

manipulated easily. We can achieve several rotations by simply multiplying the matrices 

of each rotation. To find the original vector we need to use the inverse of the matrix. 

However, the coordinate transformation matrix is computationally intensive [Paul D. 

Groves, 2008]. 

 Quaternions: Quaternions are hypercomplex representations of attitude. An attitude 

represented by Quaternions consists of a vector containing four elements: q = (q0, q1, q2, 

q3), where q0 is the scalar component of the Quaternion and represents the magnitude of 

the rotation. The remaining three elements of the vector are complex components of the 

quaternion and represent the axis about which the rotation takes place. Quaternion algebra 

is complicated but has low computational requirements. The mathematical problem of 

‘gimbal lock’ is avoided during attitude computation using the Quaternion representation.  

 

The three methods of attitude representation are interchangeable in form. Due to this flexibility, 

the majority of the AHRS attitude estimation logic performs the computation in Quaternion form 

and outputs the result in either Euler angles or Coordinate transformation matrix form. 
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2.1.1.2 Attitude Estimation and Sensor Fusion Algorithm 

Attitude estimation and sensor fusion is a large research field on its own. We can estimate attitude 

from angular rate and from vector observations [Madgwick, 2010]. We can also compute attitude 

at a time t by numerical integration of the angular rate from the gyroscope with time, provided we 

know the initial attitude.  

 

The accelerometer and magnetometer measure the magnitude and direction of the reference frame 

with respect to the body frame. “Single-frame” algorithms estimate attitude based on 

measurements taken at a single time [Markley and Mortari, 2000]. The first person to propose the 

problem relating to single frame attitude estimation was Grace Wabha in 1965 [Wabha, 1965]. 

Wabha’s problem was to find the optimal 3x3 rotational matrix to minimize the cost function: 

L(M)for n≥ 2. In equation 2, xi and xb denote the unit vectors in the inertial reference frame and 

the body frame respectively. ai are the weights used for the weighted optimization: 

  𝐿(𝑀) =
1

2
∗ ∑ 𝑎𝑖 ∗ (𝑥𝑖 − 𝑀𝑥𝑏)2

𝑛

𝑖=1

 
(2) 

Several solutions exist in the literature to the Wabha Problem. The popular solutions are the Three-

Axis-Attitude-Determination (TRIAD), Quaternion Estimator (QUEST), Davenport’s q-method, 

Fast Optimal Matrix Algorithm (FOAM), Single Value Decomposition (SVD) and Polar 

Decomposition (PD) [Valenti et al., 2015]. 

 

Errors in attitude estimation may be due to several factors. Sensor noise errors arise based on the 

type and grade of the sensors and calibration performed compared to the level of accuracy required. 

Errors may also be due to external factors such as a strong local magnetic field impacting the 
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output of a magnetometer. Numerical integration of gyroscope angular rate also integrates the 

gyroscopic errors and propagates them with time.  

 

If the body frame accelerates or performs dynamic turns with respect to the inertial reference 

frame, then the accelerometer measures the body frame accelerations and the acceleration due to 

gravity. From the accelerometer measurements, the acceleration due to gravity and the body 

acceleration are indistinguishable and the orientation vectors in the direction of gravity are skewed. 

In such cases, body frame position and velocity estimation are required to estimate body frame 

acceleration and thereby find accurate gravity vectors to be used in attitude estimation. In many 

aerospace applications a GPS is used in combination with the given sensors to correct vector 

measurements. 

 

To negate the impact due to large possibilities of errors and obtain accurate attitude, the attitude 

estimations from angular rate, vector measurements, and GPS data are fused together. The choice 

of fusion algorithm used is based on accuracy of estimation achievable, the processing capabilities, 

and the execution time. Primarily, the industry uses Kalman Filters and the Extended Kalman 

Filters as fusion algorithms [XSENS, 2018] [Vectornav, 2018] [Madgwick, 2010]. The literature 

provides several alternatives and improvements to the Kalman Filter as a sensor fusion algorithm 

[Valenti et al., 2015]. 

2.1.2 Sensor Calibration 

Different user levels define calibration differently. In general, calibration means “sensor 

calibration”. At a system user level, calibration defines the final setup for use. In this case, the 
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AHRS calibration is defined as the orientation of placement within the aircraft to determine the 

initial orientation and thereby correct future responses.  

 

Low-cost sensors produce a lot of noise. Sensors from the same manufacturer may provide 

different results for the same input. All sensors require three primary calibrations: 

 Sensor Bias: The output for zero input. Gyroscope bias varies with time and is called the 

gyroscopic random drift/walk. 

 Scale Factor: The sensor output response to a known input. 

 Axis misalignment: Interdependency of sensor axis readings. 

Different operational temperature and vibration ranges require all the above calibrations. The 

magnetometer requires two additional calibrations: 

 Hard Iron: Known fixed magnetic field influencing sensor output. 

 Soft Iron: Varying magnetic field influencing the sensor output. 

 

These calibrations require expensive equipment and extensive technical knowledge. Many 

commercial companies use low-cost sensors for AHRS but spend thousands of dollars in 

calibrating every MEMS sensor they use. The calibration is one of the main drivers of the high 

cost of commercial AHRS units. 

2.2 Garmin G1000 and GRS 77 

A popular EFIS is the Garmin G1000 Integrated Avionics system used in several General Aviation 

aircraft. Integrated avionics consists of multiple Line Replaceable Units (LRUs). The GRS77 is 

the Attitude and Heading Reference System LRU within the G1000 [Garmin, 2015]. GMU44 is 

an external magnetometer LRU which senses and provides local magnetic field information to 
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support the function of the GRS77 [Garmin, 2010]. Garmin uses the SAE AS 8001 as the minimum 

performance standard for bank (roll) and pitch instruments [Garmin, 2010]. 

 

The GRS77 installation manual provides the operational limits and accuracy: The GRS 77/GMU 

44 is capable of maneuvers through a range of 360° in bank (roll) and pitch. The rotation rate 

capability is ±200° per second. However, ARINC 429 angular rate output messages are limited to 

±128° per second. Bank (roll) error and pitch error are within ±1.25° over the range of 30° 

bank(roll), left and right, and 15° pitch nose up and nose down. Heading is accurate to within 2° 

in straight and level flight [Garmin, 2010]. 

2.3 Survey of Low-cost IMU and AHRS 

Microelectromechanical systems (MEMS) are a technology used to create tiny integrated devices 

or systems that combine electrical and mechanical components [PRIME Faraday Partnership, 

2002]. MEMS are fabricated using integrated circuit (IC) batch processing techniques and can 

range in size from a few micrometers to millimeters. MEMS devices (or systems) can sense, 

control, and actuate on the micro scale, and generate effects on the macro scale.  

 

MEMS have many applications in the automotive, electrical, medical, and defense industries. 

Advancement in MEMS technology has reduced the size, weight, power consumption, and cost of 

the sensors used in IMUs. Sensor sizes range from 0.001mm to 0.1mm [PRIME Faraday 

Partnership, 2002; Dejan, 2018]. 

 

In comparison to more expensive Fiber Optic IMU sensors, MEMS IMU sensors have degraded 

performance [KVH Industries, 2014]. However, due to their low cost, size and weight, MEMS 



31 

 

IMUs have become very popular in the consumer market. Nearly all smartphones, hobby drones 

and UAVs, and pedometers use low-cost MEMS IMU sensors. 

2.3.1 MEMS Sensor Landscape 

An AHRS unit requires an IMU with at least a 3-axis accelerometer, 3-axis gyroscope. An IMU 

containing a 3-axis accelerometer, 3-axis gyroscope is termed as an IMU with 6 degrees-of-

freedom (DOF). Addition of a 3-axis magnetometer increases the DOF to nine. In the consumer 

market, the maximum DOF of an IMU is 10. A 10 DOF IMU contains a 3-axis accelerometer, 3-

axis gyroscope, 3-axis magnetometer, and a barometer that senses temperature and pressure. We 

explored the available low-cost IMUs with six or more degrees of freedom in the consumer market.  

 

The major smart phones (e.g., iPhone, Samsung S8) all use similar grade MEMS sensors. All the 

MEMS IMU devices cost less than $5 and are created by a small number of manufacturers. 

Hobbyist and Do-It-Yourself (DIY) electronic companies, such as SparkFun and Adafruit, make 

MEMS sensors available to the common consumer by putting MEMS sensors onto surface 

mounted technology (SMT) boards called ‘evaluation’ sensor boards or breakout boards. Figure 4 

shows the size comparison of a breakout board and a USB cable. 

 

Figure 4: IMU Breakout Board and Sensor size compared to micro USB 
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Some of the breakout boards contain a microcontroller. If there isn’t a microcontroller, one can be 

soldered on through the appropriate breakout points. The breakout boards containing MEMS IMUs 

cost about $50. APPENDIX A lists the Sensors and IMU boards available in the market as of 

September 2017. Robotics hobbyists typically use the breakout board because it provides breakout 

pins to connect additional sensors or a microcontroller to the IMUs. The microcontrollers on 

breakout boards can often be coded using an Integrated Development Environment (IDE). 

Example code and firmware for breakout boards are available in open source for hobbyists to 

retrieve sensor data and use the IMU. However, each manufacturer has their own IDE, which is an 

additional effort for the end user while evaluating different IMU boards with different 

microcontrollers.  

 

DIY electronic equipment manufacturers market their products based on the degrees-of-freedom 

of the IMU, the complexity of motion sensing algorithms available in open source, the accuracy 

and range of sensors, and the available communication mechanisms on board. Universal 

Asynchronous Receiver/Transmitter (UART), Serial Peripheral Interface (SPI) and Inter-

Integrated Circuit (I2C) are the commonly available Interfaces with I2C being the newest 

technology and the most popular. I2C data communication consists of 2 buses (SDA and SLA), 

and a user can connect several ‘master’ and ‘slave’ devices to the same bus. Therefore, a user can 

attach more than one processing unit to the same IMU. 

2.3.2 Hobbyist Unmanned Aerial Vehicle (UAV) Market 

Autopilots and Flight controllers are popular in the UAV world. There are many high quality, 

reasonably priced options. Open source forums such as Ardupilot provide material, guidelines, 

instruction, and resources in building a UAV. The autopilots commonly used in UAV fixed wings 
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are Pixhawk and Navio+. They both contain multiple IMUs and produce AHRS data for control 

of the aircraft. However, since these systems are primarily focused on the UAV market, decoupling 

AHRS data from UAV autopilot system for a GA aircraft has the following disadvantages: 

 Higher cost than conventional IMUs and microcontrollers due to additional capabilities. 

 Requires additional installation of Ground control systems, which vary depending upon 

requirements in the UAS world. 

 Pixhawk systems work once the autopilot is connected to a remote control. Leads to higher 

equipment cost which are truly not necessary for AHRS information in GA. Navio+ do 

provide AHRS code, but no documentation exists on accessibility of just the AHRS data. 

2.3.3 Survey of Open Source AHRS Software 

The most popular open source, orientation and sensor filter algorithms are Mahony and Madwig 

filters [Townsend, 2018; X-IO Technologies, 2018]. Implementations of these algorithms are 

available in MATLAB, C and C#. The Madwig and Mahony filters provide good orientation 

estimation with low computational time and are popular for small-scale UAV and robotic 

applications [Madgwick, 2010; Mahony et al., 2008]. However, these filters do not consider non-

inertial acceleration and cannot be used in applications where large centripetal accelerations are 

experienced in the body frame. To determine non-inertial acceleration, an external GPS unit or 

Pitot-static system information is required [Mahony et al., 2011]. 

 

Orientation algorithms consisting of Kalman filter (KF) and Extended Kalman filter (EKF) as 

sensor fusion algorithms are available in the open literature and implementations are available on 

open source platforms. However, the open source implementations have the following drawbacks: 
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 An implementation exists but the applicable hardware is unknown. The interface linking 

hardware to the estimation algorithm is not present or is unique to a certain type of 

hardware. 

 They are not well maintained, as there is no link to a commercial entity. KF and EKF 

require processing power greater than what is commonly available to a robotics enthusiast. 

2.4 Stratux: Open Source AHRS for GA 

We acquired a low-cost device which currently has users from the GA community and is easy to 

build. Stratux is a low-cost ADS-B In receiver and AHRS that pilots can build on their own. The 

hardware for building the Stratux is inexpensive and can be acquired from various suppliers on 

hobby websites or popular e-retailers. The Stratux software is open source. [Stratux, 2018]. We 

are interested in the AHRS data from the Stratux in this research. The net cost of our Stratux was 

$146.  Figure 5 shows the assembled hardware components of the Stratux and their relative sizes 

to a ruler and a quarter. The Stratux does not have an internal power unit and requires an external 

battery. We used a MI 10400mAh power bank to power the Stratux during flight tests. 
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Figure 5: The Stratux consists of a Raspberry Pi microcontroller, two antennae, a GPS unit, an 

IMU, and the SD card with the software. 

 

A user can download the Stratux software on an 8GB (or greater) SD card, plug the SD card into 

the Raspberry Pi, power the Stratux and use the device. The Stratux software is written in ‘Go’ 

language. ‘Go’ is an open source programming language created by Google. For our research we 

used stratux-v1.4r5 and stratux-v1.4r4 versions of the Stratux software. The Stratux software 

through the Raspberry Pi creates a Wi-Fi network. A user can connect handheld devices to this 

Wi-Fi. Similar to the commercially available portable ADS-B and AHRS devices, a user can 

access Stratux data through majority of the popular Electronic-Flight-Bag (EFB) applications and 

also visualize Stratux data without any application by accessing the Stratux webpage 

(http://192.168.10.1). Figure 6 shows a screenshot of the AHRS information displayed on a 

browser on a smart phone. 
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Figure 6: A screen shot of a Google Pixel 5 browser page showing the Stratux AHRS 

information. 

 

Even though the Stratux has an SD card onboard, it does not record any flight data. It only records 

system debug information. Stratux provides flight data over the Wi-Fi network using the GDL90 

protocol over port 4000. It also provides certain specific data sets over webservers [Stratux App 

Integration, 2018]. The webserver http://192.168.10.1/getSituation provides the GPS and AHRS 

information. To record the Stratux flight data a user would have to use an existing EFB application 

or build an application and use the existing infrastructure to record and store the data. 

  

http://192.168.10.1/getSituation
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3. DETECTING HAZARDOUS STATES USING THE STRATUX 

States are segments of time wherein a system exhibits a particular behavior. A hazardous state is 

a system state that may lead to an accident or an incident if corrective action is not taken and the 

system remains in the hazardous state for extended time [Rao and Marais, 2016]. A high roll angle 

(ϕ) is an example of such a hazardous state. For example, on January 25th, 2017 a Cirrus SR-22 

airplane crashed while on the right turn to the final approach leg to runway 32 at the Stinson 

Municipal Airport in San Antonio, Texas. The aircraft was approaching the runway at a calibrated 

speed of 103 knots, at 200 feet above the ground and in an approximate roll angle of 48° and 

entered a descent which exceeded 1,800 fpm. The report concluded that the aircraft crashed due to 

the aircraft stalling at high roll angle and excessive side slip [NTSB, 2018]. Corporate flight 

operational quality assurance (C-FOQA) of unstable approaches from 2009 also identified high 

roll angle for given height as the third most frequent cause for unstable approaches [Darby, 2010]. 

 

The definition of hazardous roll angle depends on operation, pilot certification, and phase of flight. 

We propose future work to determine hazardous roll angles from GA ASIAS in section 5.5. The 

Stratux provides the aircraft roll and pitch information. The analysis here is based on detecting 

angles beyond a user-defined hazardous roll angle limit, beyond which we consider the flight to 

be risky. 

 

For the scope of this research we assumed the Garmin G1000 AHRS as the ‘gold standard’. The 

Garmin G1000 has errors (see section 2.2), but the errors are within the FAA’s minimum 

performance standards. There was no method via which we could find the exact errors of the 

Garmin G1000 from which we received the data. Due to the lack of a higher accuracy system 
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available in the GA aircraft we flight tested and the prevalent use of Garmin G1000 for safety 

analysis in GA, we used the Garmin G1000 AHRS values as the truth. 

3.1 Experimental Setup and Data Collection 

Even though the Stratux provides roll and pitch data, there is no recording capability. We 

developed an Android application, the Stratux Logger, to collect GPS and AHRS information from 

the Stratux webserver. APPENDIX B provides the list of the variables and their descriptions. 

Figure 7 shows the screenshot of the Android application on a Google Pixel 5 phone. The G1000 

records data every 1 second and the Stratux Logger application collects data every 900 millisecond. 

Therefore, the Stratux has at least one data point within the 1 second interval of G1000 data. The 

application stores the data in ‘csv’ format. 

 

Figure 7: The User Interface (UI) of the Stratux Logger application on the Google Pixel 5 

 

We placed the Google Pixel-5 phone with the Stratux Logger application and the Stratux in the 

baggage area of three different SR-20 aircraft at Purdue University. Figure 8 shows the Styrofoam 
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mount on which we placed the Stratux and phone to strap it down to the aircraft. We visually 

aligned the Stratux longitudinal axis with the aircraft longitudinal axis. 

 

Figure 8: The mount ensures that the location and direction of the equipment is consistent in all 

flight tests. 

 

The Stratux Logger application collected flight data from 29 training flights. Flights included 

training aircraft maneuver techniques and cross-country flights. The Stratux does not have an 

internal power unit. We used an external power bank of 10400 mAh to power the Stratux. The 

battery lasts for approximately 7 hours per day. 

There were some seasonal hindrances to the data collection process. During the winter, the weather 

was often not suited for training flights. During the summer, the smartphone recording the Stratux 

data would shut down due to overheating. 

 

An SD card on-board the aircraft recorded the Garmin G1000 data. We downloaded the required 

files from the SD card. Table 1 contains the differences between the Stratux and G1000 data 

collected. The differences exist due to our experimental setup (recording time and collection 

method) and due to the inherent nature of the system (GPS time format and additional sensor data). 
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Table 1: Differences between the Stratux data collection and the G1000 data collection 

Stratux G1000 

Data is recorded throughout the day. A data 

dump contains multiple flights. 

Data is recorded only when engine is turned 

on. A data dump contains information from 

engine start to engine shutdown. 

Data is recorded every 0.9 seconds. Data is recorded every 1 second. 

GPS time is in UTC. GPS time is local (EST). 

Stratux has no information from aircraft 

sensors. (E.g.: Engine parameters, IAS). Total 

of 39 unique flight data variables. 

G1000 data contains aircraft sensor data. (E.g.: 

Engine parameters, IAS). Total of 69 unique 

flight data variables. 

3.2 Stratux Data Processing 

We read the G1000 and the Stratux csv files into MATLAB. We created two data structures for 

the Stratux and the G1000, as shown in Figure 9. Flights contain data points within each variable. 

For example, flight 1 has 6003 data points in each variable. 

 

Figure 9: Each data structure contained flight variable information. 

 

For the Stratux, we converted the Zulu time to local time. We added a new variable which provides 

a common date and time format for the Stratux and the G1000. 
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3.2.1 Segregating Flights 

A single G1000 data file recorded the data from the moment the G1000 was switched on to the 

time it was switched off. We define a flight as the time between the start time recorded on a G1000 

data sheet and the last time on that data sheet. We created substructures of each flight into the main 

G1000 family of structures. A single Stratux data file recorded data for the entire day. Calculating 

flight time is complex. Without a reference, the duration or identification of flight can only be 

based on GPS ground speed or altitude. We read the Stratux data per day and then used the GPS 

time and date in both the Stratux and the G1000 to identify the corresponding G1000 recorded 

flights in Stratux. The extra data on the Stratux is useless as it represents the aircraft in an idle state 

on the ramp and so we discarded it. Similar to the G1000 family structure, we divided the Stratux 

family structure into the identified flights. 

3.2.2 Syncing G1000 and Stratux data 

The Stratux and the G1000 have different recording times. Therefore, there were unequal data 

recordings for the same flight time. Further, both systems have inbuilt errors in recording where 

the time or information is duplicated. The Stratux also has data recording in milliseconds, whereas 

the G1000 time accuracy is only to 1 second. We therefore rounded all Stratux times up to the start 

of each next second using Matlab’s “dateshift” function. For all repeated time instances, we only 

considered the maximum value of the variable data for both the Stratux and the G1000. Since the 

G1000 is our ‘gold standard’ we find all the unique times recorded on the G1000 in Stratux for 

each flight. However, if the Stratux time was missing, then we could not use the corresponding 

G1000 data for comparison. We snipped the Stratux and the G1000 flight data structures in one-

to-one mapping of data which has a mean time difference of 1.0232 seconds between data points 

per flight. We acknowledge that the syncing and snipping of data may introduce errors, but it is 
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necessary for valid comparison of the data from two different sources. We attempted rounding the 

Stratux time up to the next second and taking the mean of variable data of non-unique time 

recordings but did not see any unreasonable or significant variation in data. From here on, we 

accepted any errors that may have been introduced and performed our analysis. For the 29 flights, 

the number of data points in each variable, after data processing, is 115,867. 

3.3 Characteristics of the Roll Angle Data from the Stratux and the G1000 

As discussed earlier, the variable of interest is the roll angle. Figure 10 shows the processed roll 

data for the first flight.  

 

Figure 10: The direction sign associated with the angle is the same in both the G1000 and the 

Stratux. Right turns are positive and left turns are negative. 

3.3.1 Error Definition 

The angle error is defined by equation 3. The error is positive when the magnitude of the G1000 

roll angle is greater than the magnitude of the Stratux roll angle. To maintain this characteristic of 
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the error, we modified the error equation with respect to the relative direction of roll between the 

G1000 and the Stratux.  

 𝑒𝑟𝑟𝑜𝑟 = 𝜙𝐺1000 −  𝜙𝑆𝑡𝑟𝑎𝑡𝑢𝑥 
(3) 

Table 2 provides the mean and variance of the error for right and left turning angles. We performed 

1- way ANOVA test for positive angle errors and negative angle errors. The p-value for the 

analysis was 2.7329*10-43, thereby proving that the two means are not equal. Thus, we cannot use 

the absolute value of roll angle to model the Stratux roll angles, since the error for left and right 

roll angles are statistically different. 

Table 2: Mean and Variance of Errors for positive and negative roll angles 

 Mean Variance 

Angles >= 0 (Right Turns) 0.4275 2.7034 

Angles < 0 (Left Turns) 0.2844 3.4963 

 

 

Figure 11: The roll angle error between the Stratux and the G1000 has large variations. 

 



44 

 

Figure 11 shows the error distribution from all data points with respect to the G1000 roll angles. 

The error between the Stratux and the G1000 is not symmetric about 0°. A hazardous roll angle 

limit is the same for positive and negative roll angles. However, this asymmetry means that the 

error at a positive hazardous roll angle limit is different from the error at a negative hazardous roll 

angle limit. We show in section 0 how the error helps define hazardous roll angle limits for the 

Stratux. 

3.4 Comparison of the Stratux roll data and the G1000 roll data 

In this research, we want to identify if we can use the roll angle data as measured by the Stratux in 

GA safety analysis, similarly to how we use roll angle data from the G1000. It is therefore 

necessary to establish if the Stratux roll angle and the G1000 roll angle are different and if the 

error between them is greater than the standards for a non-gimbal AHRS unit. Figure 12 shows the 

distribution of data based on angle for all the data points we collected. 

 

Figure 12: Stratux (Left - a) and G1000 (Right - b) roll data histogram distribution show the 

large concentration of data in lower magnitude angles 
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Figure 11 suggests that the Stratux roll angle is erroneous compared to the G1000 roll angle. We 

need to know whether we have sufficient data points for all angles from −60° to +60° to prove that 

the Stratux and the G1000 roll angles are not equivalent. We set our null hypothesis as the Stratux 

roll angles are equivalent to the G1000 roll angles. To define our null hypothesis, we considered 

the minimum operational performance standards (MOPS) for non-gimbal, on-board AHRS 

systems. 

3.4.1 Standard DO-334 

The RTCA DO-334 document provides the MOPS for on-board AHRS. It is intended for 

equipment that does not use gimbaled sensors and for equipment that outputs attitude (pitch and 

roll) [RTCA DO-334, 2012]. This document describes that strap down AHRS for an aircraft can 

be of six different categories, A1 to A6. Each category has static and dynamic accuracy associated 

with it. The lower the category value, the more stringent the accuracy requirement for the strap 

down AHRS. The highest allowable error is 2.5° for Category A4 and A5 as per FAA TSO C201 

[AC No: 20-181, 2014; Krak, 2014]. 

3.4.2 Power Analysis 

If the Stratux roll and G1000 roll are equivalent, then the error between the Stratux and G1000 

should have a mean of 0° and a maximum standard deviation of 2.5°. We set the mean error = 0° 

and a standard deviation of 2.5°as our null hypothesis. However, the error behavior is not the same 

for the entire range of observable angle as shown in Figure 11. Therefore, we test our null 

hypothesis for every 5° interval from −60° to +60°. We use the data from the first 5 flights as our 

sample data. The alternate hypothesis is that the G1000 and Stratux roll angles are not equivalent. 

We use mean error from the sample data at each 5° interval as the alternate hypothesis. We 

performed a power analysis of power = 0.9 (the probability of the alternate hypothesis being true 
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given that the null hypothesis is rejected) to determine how many data points we need to establish 

that the Stratux roll angle is not equivalent to the G1000 roll. If the number of data points we 

collected from 29 test flights came short of the required data points from the power analysis, then 

either we need more data to prove the inaccuracy between the Stratux and the G1000, or the Stratux 

and G1000 roll angles are equivalent for GA safety analysis. 

 

Table 3 shows the required number of data points from power analysis, compared to the number 

of data points we collected for two intervals of roll angles. The Stratux matches G1000 values 

more closely at roll angles of lower magnitude than angles of higher magnitude. Therefore, we 

require fewer data points to reject the null hypothesis at angles of higher magnitude and more data 

points at lower magnitude. Our power analysis show that we have sufficient data from the 29 

flights to prove that the Stratux roll angle and the G1000 roll angle are not equivalent for all angles 

ranging from −60° to +60°. 

Table 3: Required number data points from power analysis compared to the number of data 

points we collected for two intervals of roll angles 

Range of Roll Angle Required Number of Data 

Points 

Data Points we collected 

from 29 flights 

40° to 45° 22 234 

20° to 25° 642 1347 

3.4.3 Cross-Correlation and Time Shift between the Stratux and the G1000 

We have identified that the Stratux roll angle data and the G1000 roll angle data are not equivalent. 

The error comparison of the data in sections 3.3.1 and 3.4.2 above is at each data point with no 

information from nearby points. Roll data for both the Stratux and theG1000 are over a time period. 

The Stratux may be different from the G1000 because the response from Stratux is either leading 

(early) or lagging (delay), and the Stratux and the G1000 will be equivalent if the Stratux output 
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is shifted based on the lead or lag. We therefore need to check if the Stratux and the G1000 have 

a time difference in between the roll angle outputs. 

 

Cross-correlation is a way of identifying potential correlation between two, time series signals.  

Figure 13 shows the cross-correlation for all roll angles collected. The lag on the x-axis is the time 

shift between the two data points from the two signals for which we find the correlation. Lag = 0, 

is the same data point for G1000 and Stratux, lag = 1 is the next data point on Stratux and so on. 

 

Figure 13: Maximum cross-correlations between the G1000 and the Stratux roll angles occurs at 

Lag = 0. 

In the Figure 13, the maximum cross-correlation occurs at lag = 0, which shows that there is no 

time shift in the signal between the Stratux and G1000. 

3.5 Roll Angle Error Characteristics 

Figure 12 shows that we have a lot of data points between −20° and +20°. Angles greater than +40° 

and less than −40° have fewer data points. The error distribution shown in Figure 11 indicates that 
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the error between the G1000 and the Stratux is not constant, but rather varies depending upon the 

angle measured. 

 

To find the behavior of the error, we first fit a linear regression model to the error data, as shown 

by the red line in Figure 14 and equation 4. 

 

Figure 14: Linear fit for Error vs the G1000 roll angles 

 

 𝑒𝑟𝑟𝑜𝑟𝑚𝑜𝑑𝑒𝑙 = 𝑎 ∙ ϕ𝐺1000 +  𝑏 (4) 

Table 4: Co-efficient values of the linear fit for the error 

Coefficients Coefficient Value 95% Confidence Interval 

a -0.000697 -0.001879, 0.0004846 

b 0.36741 0.3574, 0.3775 

 

For the roll error to be independent upon the observed angle, the confidence interval of the slope 

of the fit cannot contain zero. Table 4 shows that the confidence interval of the coefficient of ‘a’ 

includes 0, the fit suggests that the error is independent of the G1000 Roll Angle. That is, the error 
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is independent of the angle measured. However, the r2 value (1.1537·10-5) for the fit is poor and 

that the result cannot be trusted. 

 

We created 13 intervals of 10° from −65° to +65° and fit linear models to the corresponding errors. 

Figure 15 shows the linear fits for two of the 13 intervals and Table 5 provides the statistical results 

of the two linear fits. 

 

Figure 15: (a) Linear fit of the error for the G1000 roll angle interval of 35° to 45°. (b) Linear fit 

of the error for the G1000 roll angle interval of −61° to −55°. 

 

Table 5: 95% CI of the slope of the linear fits and the r2 values, for the two angle intervals shown 

in Figure 15 

Angle Bins a 95% Confidence 

Interval  

R2 Value 

35° to 45° 0.3974 0.08389, 0.711 0.0341 

−65° to −55° 0.9234 0.1192, 1.728 0.1650 

 

The 95%confidence interval of the slope of the linear fits shown in Table 5 indicates that the errors 

varies with observed angle in the given intervals. Out of the 13 angle intervals, 9 intervals showed 
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a significance of the angle on the error and 4 indicated independence of error from the angle. Since 

the error is not uniform for all observed angles, we conclude that Stratux roll output accuracy 

changes with observed angles. 

3.6 Detecting Hazardous Bank Angle 

We used the Private Pilot-Airman Certification Standards [FAA, 2018] banking (rolling) 

maneuvers limit of 45° as the safe roll angle limit to test whether it is feasible to use the Stratux to 

detect hazardous roll angles in post-flight analysis. We assume that the G1000 roll angle data is an 

accurate measurement of the actual behavior of the system and we tested whether the Stratux 

captured the same state as the G1000. If the Stratux roll angle magnitude was less than 45° when 

the G1000 roll angle magnitude was greater than 45°, then the Stratux had a ‘Missed Detection’. 

If the Stratux roll angle magnitude was greater than 45° when the G1000 roll angle magnitude was 

less than 45°, then the Stratux had a ‘False Alarm’. Figure 16 shows that the Stratux data missed 

nearly half of the hazardous states in flight 1 and flight 7, and almost all the hazardous states in 

flight 3 and flight 5. We expected the Stratux to perform poorly in detecting hazardous state due 

to the large errors shown in Figure 11. Therefore we need to either improve the Stratux roll angles 

or change the definition of the hazardous limit applied to the Stratux to have better detection 

accuracy when using the Stratux. 
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Figure 16: Missed Detections and False Alarms of the Stratux compared to the G1000 for a 

hazardous roll angle limit of 45°. 

3.6.1 Improve Stratux roll angles 

To correct the errors in the Stratux angles, we used three different types of models: (1) a continuous 

linear model that maps the Stratux roll angles to the G1000 roll angles, (2) piecewise transfer 

functions to model the error and then correct the Stratux roll angles, and (3) piecewise polynomials 

that map the Stratux roll angles to the G1000 roll angles. In our research, we do not search for the 

‘best fit’ model for the Stratux but investigate whether it is possible to improve the detection of 

higher roll angles using a Stratux device. 

3.6.1.1 Model 1: Continuous Linear Model  

We used a continuous linear model to improve Stratux roll angle as shown by equation 5. Figure 

17shows the linear function that fits the Stratux roll angle data to the G1000 roll angle data. 

 𝜙𝐺1000 = 𝑎 ∗ 𝜙𝑆𝑡𝑟𝑎𝑡𝑢𝑥 + 𝑐 (5) 

The coefficients a and c characterize the linear model. a = 1.009 and c = 0.1276 provided a fit with 

an RMSE value of 1.7762 and r2 = 0.9563. Statistically, one would consider the fit to be a good fit. 

However, the Stratux and G1000 roll data have an unequal distribution of data recorded for all roll 
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angles. We have more data points for lower magnitude roll angles than for higher magnitude roll 

angles. The statistical results of the linear fit can be attributed to the large number of data points 

at the lower magnitude angles. 

 

Figure 17: Single Linear Model of the G1000 roll angle from the Stratux roll angles 

 

3.6.1.2 Model 2: Error Model for Stratux Roll Angles using piecewise Fourier Transfer 

We split the range of the Stratux roll data into thirteen intervals from −65° to +65° of 10° each. 

Since our goal is to correct Stratux errors, we use the Stratux roll angles to create the intervals 

rather than the G1000. We model the error as a function of the Stratux roll angle for each interval. 

Models for each interval are independent of the other, piecewise, and discontinuous. Equation 6 

shows the Fourier transfer function type that captures the error characteristics. The number of 

function parameters varies based on the interval for which we chose the model. 

 𝑒𝑟𝑟𝑜𝑟𝐺1000 = 𝑎0 + 𝑎1 × cos(𝑤 × 𝜙𝑆𝑡𝑟𝑎𝑡𝑢𝑥) + 𝑏1 × sin(𝑤 × 𝜙𝑆𝑡𝑟𝑎𝑡𝑢𝑥) + ⋯  (6) 
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In equation 7, we add the improved error back to the observed Stratux angle to find the improved 

Stratux roll angle: 

 𝜙𝐺1000 = 𝜙𝑆𝑡𝑟𝑎𝑡𝑢𝑥 + 𝑒𝑟𝑟𝑜𝑟𝐺1000 (7) 

Figure 18 shows the error models for the thirteen intervals. The amplitudes of the transfer functions 

are higher at higher magnitude roll angles because the error variations are large and because of the 

lack of data at very high angles. 

 

Figure 18: Models for the Error from 10° intervals of the Stratux roll angles 

 

3.6.1.3 Model 3: G1000 Roll Angle Model for Stratux Roll Angles using piecewise 

Polynomial functions 

With model 3 we modify the Stratux roll to directly mimic the G1000 roll angles; unlike model 2 

where we used the error to find the improved Stratux indirectly. Similar to model 2, we split the 

Stratux roll angles into thirteen intervals from −65° to +65° of 10° each. Equation 8 shows the 

polynomial function type for each of the thirteen intervals. As with model 2, all polynomial models 

for each interval are independent of each other, piecewise and discontinuous. The number of 

parameters varies based on the interval for which we chose the model. Figure 19 shows the thirteen 
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models for each interval. The number of parameters of the polynomial increase for higher 

magnitude angles due to high error and lack of data points. 

 𝜙𝐺1000 = 𝑝0 + (𝑝1 × 𝜙𝑆𝑡𝑟𝑎𝑡𝑢𝑥) + (𝑝2 × 𝜙𝑆𝑡𝑟𝑎𝑡𝑢𝑥
2 ) + (𝑝3 × 𝜙𝑆𝑡𝑟𝑎𝑡𝑢𝑥

3 ) + ⋯ (8) 

 

Figure 19: Models for the G1000 roll angles from 10° intervals of the Stratux roll angles 

 

3.6.1.4 Results on Training Set 

We created the models using the roll angle data from a random selection of 24 flights (training 

data set) out of the 29 flights. We reserve 5 flights to test the models (test data set) later in section 

5. Table 6 shows a comparison of ‘Missed Detections (MD)’ and ‘False Alarms (FA)’ between 

original Stratux values and the three models discussed above for all flights having at least one 

instance of the hazardous state (HS). Model 1, despite being a statistically good fit, does not 

improve detection of high roll angles. Model 1 cannot improve the Stratux roll angle values at high 

magnitude angles and thus cannot detect the hazardous states. Model 2 and Model 3 both improve 

upon the missed detections, but also increase false alarms. Since in Model 2 and Model 3, different 

implementations and function types gave similar results, we conclude that piecewise models 
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reduce missed detections but increase false alarms. Since the piecewise models show 

improvements, we choose Model 3 for further investigation.  

Table 6: Comparison of Missed Detections (MD) and False Alarms (FA) between the actual 

Stratux roll angle data and three models to improve the Stratux roll angles on training data set. 

No. of 

Flights 

with HS 

(ϕ G1000 

>45°) 

Actual Stratux 

Roll Angle Data 

Model 1: 

Continuous 

Linear Fit 

Model 2: 

Piecewise Fourier 

Transfer Function 

Model  

Model 3: 

Piecewise 

Polynomial 

Function Model 

MD FA MD FA MD FA MD FA 

1 47 2 42 4 29 14 27 13 

2 14 6 13 9 8 25 8 26 

3 16 7 16 7 12 17 12 20 

4 15 2 15 2 11 3 11 3 

5 40 0 39 0 21 3 21 3 

6 14 0 12 0 3 0 5 1 

7 2 0 2 0 0 1 0 1 

8 15 10 14 14 7 19 9 22 

9 5 0 2 0 0 1 0 1 

10 5 1 5 1 2 3 1 3 

 

3.6.2 Changing Roll Angle Safety Limit for Stratux 

For comparing the roll angle detection accuracy of the Stratux to the G1000 we used 45° as our 

roll angle limit. This limit is a ‘hard’ limit, in that there is no error buffer. For example, if the 

G1000 angle was 45.1° and the Stratux was 45°, we would consider the Stratux to have missed the 

detection. We also know that the Stratux roll angles are erroneous compared to the G1000 roll 

angles. Therefore, if we use a hard limit for the G1000, we must consider a ‘zone of uncertainty’ 

about that angle when applying the limit to the Stratux. We refer to these adjusted limits as the 

‘soft’ limits.  
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We used the error samples at every 1° interval of the G1000 roll angles ranging from −60° to +60° 

to find the mean error at each interval. Equation 9 defines the hazardous state limits for Stratux 

(soft limits): 

 𝑆𝑜𝑓𝑡 𝐿𝑖𝑚𝑖𝑡 =  𝐻𝑎𝑟𝑑 𝐿𝑖𝑚𝑖𝑡 ± 𝜇𝐸𝑟𝑟𝑜𝑟 (9) 

Using equation 9, we redefine the ‘Missed Detection and ‘False Alarm’ errors based on the soft 

limits for +45° and −45°: 

 If the G1000 roll angle magnitude is greater than |45°| and the Stratux roll angle magnitude 

is less than |45°|, but greater than the magnitude of the “inner” soft limit (lower magnitude 

limit), then we cannot say for certain that the Stratux missed detecting a hazardous state. 

 If the G1000 roll angle magnitude is less than |45°| and the Stratux roll angle magnitude is 

greater than |45°|, but less than the magnitude of the “outer” soft limit (higher magnitude 

limit), then we cannot say for certain that the Stratux has falsely detected a hazardous state. 

 

Figure 20 shows the instances of all angles greater than 43° in flight number 5. For ease of 

visualization, we have removed time from the x-axis and so each instance is not equally spaced in 

time. We chose 43° to have a zoomed-in view of instances near the hazardous state. The solid 

black lines indicate the hard limits and the dashed black lines indicate the soft limits. We refer to 

the lower magnitude limits as the ‘inner soft limit’ and the higher magnitude limits as the ‘outer 

soft limit’. Since the error distribution is not symmetric about 0°, the same hard limit for negative 

and positive roll angles has different soft limits for the Stratux. The zones of uncertainty are 

marked by translucent red bands. We consider the Stratux angles that lie within the red bands as 

correct detections. 
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Figure 20: Change of Hard limits to Soft (Red Bands) Limits for the Stratux for an example 

flight data. 

 

Figure 21 shows the results for missed detections and false alarms, similar to that of Figure 16. 

However, in the case of Figure 21 we use the actual Stratux and the soft limits, resulting in a 

decrease in missed detections and false alarms. 

 

Figure 21: Missed Detections and False Alarms of actual Stratux roll angles compared to the 

G1000 roll angles when we use soft limits of 45°. 
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3.6.3 Probability of Detecting Hazardous State (ϕ > 45°) 

We find two types of hazardous detection probabilities: (1) The probability of the Stratux correctly 

detecting a hazardous state given a G1000 hazardous state and (2) the probability of a G1000 

hazardous state occurring given a Stratux angle. These two probabilities give us an idea about the 

relative accuracy of hazardous state detection using the Stratux compared to the G1000. 

3.6.3.1 Probability of our Stratux detecting a G1000 Hazardous State 

We treat the detection of hazardous states as discrete independent events, where a detection is a 

success and a missed detection or false alarm is a failure. We use equation 10 to find the correct 

detections (CD) of hazardous state. If the Stratux roll angle is able to correctly identify all the 

instances of the G1000 hazardous states but has additional false alarms, then the CD of the Stratux 

drops. Previous studies have shown that nuisance alarms can decrease user trust in the system, or 

lead to operators ignoring the alarms [Cafarelli, 1998; William, 1998]. 

𝐶𝐷 = (𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝐻𝑆)𝐺1000 − 𝑀𝐷𝑆𝑡𝑟𝑎𝑡𝑢𝑥 − 𝐹𝐴𝑆𝑡𝑟𝑎𝑡𝑢𝑥 10 

We find the probability of Stratux correctly detecting a hazardous state (𝐻𝑆) given that a hazardous 

state has occurred in reality (according to the G1000), i.e. 𝑝( 𝐻𝑆𝑆𝑡𝑟𝑎𝑡𝑢𝑥 |𝐻𝑆𝐺1000). We find the 

95% confidence interval of the probability using the Clopper-Pearson method [Clopper and 

Pearson, 1934]. When we use the actual Stratux roll angles and the hard limit of 45°, the probability 

of detection for the Stratux is 0.5229 with a 95% confidence interval of 0.4749 − 0.5707. We also 

evaluate the probability of correctly detecting a hazardous state using the improved Stratux or the 

soft limits for the Stratux in section 5.1. 
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3.6.3.2 Probability of Hazardous State occurring at Stratux Angles 

Since the Stratux error varies with angle, the probability of observing a hazardous state for a given 

Stratux angle also varies. Here, we find the probability of a hazardous state (HS) occurring 

(according to G1000) for an observed Stratux angle, i.e. 𝑝( 𝐻𝑆𝐺1000 |𝜙𝑆𝑡𝑟𝑎𝑡𝑢𝑥).  

For example, if the Stratux records an angle of 40°, and the defined limit is 45° then the possibilities 

are: 

 The G1000 roll angle is greater than +45° or less than −45° and a hazardous state has 

occurred. 

 The G1000 roll angle is less than |45°| and no hazardous state has occurred.  

We developed the PDFs of the G1000 roll angles for a 1° range of the Stratux roll angles spanning 

from −60° to +60°. Figure 22 shows the PDF for +40° ≤ ϕ Stratux <+ 41° and the area under the 

curve for a hazardous state (ϕ > |45°|). 

 

Figure 22: G1000 Roll Angle PDF for the actual Stratux roll = 40° and the area under the curve 

beyond hard limit of 45° is the probability of HS. 
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In Figure 23, the solid red line indicates the ‘Ideal Probability’ of detecting the hazardous state. It 

is zero (0) between −45° and +45° and one (1) beyond the limits. The probability of a hazardous 

state for a given Stratux angle (40° in Figure 22) is the area under the PDF in Figure 22. The blue 

line with markers in Figure 23 is the probability for each Stratux angle based on the flight data. 

The probability for hazardous state is the sum of CDF for −45° and (1 – CDF) for +45°. 

 

Figure 23: Probability of HS occurring for all Stratux Angles 
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4. DETECTING ACCURACY FOR TIME ALONG WITH ANGLE 

For time accuracy, we have already established that there is no lag or lead in roll angle output 

between the Stratux and the G1000 (Section 3.4.3). Due to incorrect detection of high angles, there 

is incorrect detection of time spent in the high roll angle hazardous state. While in the high roll 

angle hazardous state (ϕ > 45°), risk increases for higher magnitude angles or for longer time spent 

in the hazardous state. Therefore, it is important to analyze the time accuracy along with the angle 

accuracy of a low-cost system such as the Stratux.  

 

In this section we evaluate the time and angle accuracy of the Stratux beyond the hazardous angle 

limit of 45°. To perform an accuracy analysis on both angle and time, we first need a function of 

angle and time. We refer to such a function as ‘Risk Level’. The function of ‘Risk Level’ remains 

the same for the Stratux and the G1000. Equation 11 shows the representation of risk level as a 

function of angle (ϕ) and time (t): 

 𝑅𝑖𝑠𝑘 𝐿𝑒𝑣𝑒𝑙 = 𝑓(𝜙, 𝑡) 11 

4.1 Definition of Risk Level (RL) 

To define risk level, we first need to define a ‘risk ladder’ [cf. Sandman et al., 1994]. A risk ladder 

describes the risk level from the lowest level to the highest level. Since aircraft accident causality 

cannot be purely attributed to single factors such as a high roll angle, for our research purpose we 

set the lowest value of risk level to 0 and highest value of risk to 100. Hunter (2006) used a similar 

risk ladder in evaluating risk perception in GA pilots. Risk level 0 indicates straight and level flight 

and risk level 100 indicates that the aircraft was at a roll angle 15° greater than the hazardous roll 

angle limit for 5 minutes or more. Since our hazardous roll angle limit is 45°, the maximum risk 
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level occurs when an aircraft exceeds 60° roll angle for 300s. For the Cirrus SR20, the maximum 

allowable roll angle for any maneuver is 60° [Cirrus POH, 2003]. Hunter (2002) found that pilots 

perceive a 45° high roll angle on the final approach to have a mean risk level of 67.2 and standard 

deviation of 17.4 for risk level ranging from 0 to 100. A study concerning perceived risk showed 

that for a given state, the perceived threat increases for a higher displaced location of risk level 

value on the risk ladder [Sandman et al., 1994]. Keeping in mind previous studies for pilots’ risk 

understanding [Hunter, 2002] and human risk perception [Sandman et al., 1994], we define the 

risk level to be 60 when roll angle value recorded exceeds the hazardous roll angle limit (45°) by 

one second. 

4.2 Definition of Risk Category (RC) 

The risk level in the previous section characterizes risk as a function of roll angle and time. The 

higher the roll angle magnitude or the longer the time, the higher the risk level will be. An FAA 

study used color coded risk gradients to evaluate GA pilots’ perception of risk associated with 

weather information because numerical risk values were confusing to many pilots [Knecht and 

Frazier, 2015]. 

 

To provide simpler feedback than risk level values, we created four risk categories from the risk 

level values. Risk Category 0 (No Risk) indicates normal aircraft operation. Risk Category 1 

(Minor) indicates the operations beyond the hazardous roll angle limit for a short duration. Risk 

Category 2 (Moderate) and Risk Category 3 (High) indicate operations well beyond the limit angle 

of 45° or operations in the hazardous state for long durations [ACS, 2018]. In our research we want 

to evaluate the risk category detection of the Stratux compared to the G1000 for any given 
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demarcation of risk category on a risk ladder. Figure 24 shows our choice of the demarcations of 

the risk categories based on the risk level (RL) values. 

 

Figure 24: Our choices for RC demarcations based on RL 

 

The RC is ‘Minor’ when the RL = 60, i.e. when the recorded roll angle crossed the hazardous limit 

of 45° for 1 second. 

4.3 Risk Level Functions 

To apply the definitions of risk level and risk category we define risk level functions. We use these 

functions to map the data from the Garmin G1000 and the Stratux to the risk level and the risk 

category definitions. In our research, we do not aim to find the ‘best’ risk level definition but test 

whether the Stratux captures the same risk categories as that of the G1000 (Section 4.4) for two 

different approaches to define the risk level function. We define the risk level function in two ways: 

 We integrate the angle with respect to time and assign the integration value to all data 

points lying within the integration. 
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 We use a predefined function to find the risk level at a given data point as function of the 

angle at the data point, and time accumulated at the data point. 

4.3.1 Integration of Angle over Time 

A simple way to capture both angle and time is to find the integral value of angle with respect to 

time. As shown in Figure 25, the roll angle is above the hazardous angle between time tstart and 

tend. The risk level is the hashed area under the red curve. Equation 12 gives the risk level (RL) 

assigned to all data points between tstart and tend: The ‘ ∆𝑡 ’ is the time difference between 

consecutive data points. 

 

𝑅𝐿(𝑡𝑠𝑡𝑎𝑟𝑡,𝑡𝑒𝑛𝑑) =  ∑
|𝜙𝑡| + |𝜙𝑡−1| 

2
× ∆𝑡

𝑡2

𝑡1

 

(12) 

 

Figure 25: Risk Level between tstart and tend is the result of integration of the angle over time. 

 

The resulting integration is always positive because we use the absolute value of the angles. We 

scale the integration results to fit the definitions of risk level and risk categories. Table 2 shows 

our choices for the range of integration results (IR) to the corresponding risk levels and risk 

categories. The table also provides the physical meaning of the aircraft flight behavior 

corresponding to the values of integration results, risk levels and risk categories. 
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Table 7: Scaling Integration Results (IR) to risk level and risk category definitions. 

IR Scaling Limit 

Ranges 

Risk Level 

Range 

Risk Category 

Value 

Physical Meaning 

𝐼𝑅𝑚𝑖𝑛 = 0 to 

𝐼𝑅𝑙𝑖𝑚𝑖𝑡1 = 45 

0 to 60 No Risk (Risk 

Category = 0) 

Level flight to limit angle of 45° 

exceeded for 0s. 

𝐼𝑅𝑚𝑖𝑛 = 45 to 

𝐼𝑅𝑙𝑖𝑚𝑖𝑡2 = 360 

60 to 65 Minor (Risk 

Category = 1) 

Limit angle of 45° exceeded for 

1s to exceeding for 8s. 

𝐼𝑅𝑙𝑖𝑚𝑖𝑡2 = 360 to 

𝐼𝑅𝑙𝑖𝑚𝑖𝑡3 = 900 

65 to 75 Moderate (Risk 

Category = 2) 

Limit angle of 45° exceeded for 

9s to exceeding for 20s 

𝐼𝑅𝑙𝑖𝑚𝑖𝑡3 = 900 to 

𝐼𝑅𝑚𝑎𝑥 =  18,000 

75 to 100 Major (Risk 

Category = 3) 

Limit angle of 45° exceeded for 

21s to 60° exceeded for 300s. 

 

Since all data points between tstart and tend in Figure 25 have the same integration results, they also 

have the same risk level and risk category values. 

Figure 26 shows the comparison of risk levels (a) and risk categories (b) of the Stratux and the 

G1000 data from the first flight test. In Figure 26 (a) the orange plot lines are the risk level values, 

the blue lines with markers are the G1000 roll angles and the red lines with marker are the Stratux 

roll angles. In Figure 26 (b) the yellow bars indicate ‘Minor Risk’, the orange bars indicate ‘Major 

Risk’ and the red bars indicate ‘High Risk’. The blue line with markers indicate both the Stratux 

and the G1000 roll angles. We used equation 11 to obtain the risk levels. The risk levels are the 

absolute values of the roll angle till the hazardous angle limit, and beyond the limit we integrate 

the angle with time. The horizontal straight sections of the risk level graph at high magnitude roll 

angles indicate data points containing the same risk levels. Within the time span when the roll 

angle data is beyond the hazardous roll angle limit, the risk categories do not decrease and are all 

identical due to the same risk level values. 
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Figure 26: Comparison of risk level (Left – a) and of risk category (Right – b) from the Stratux 

and the G1000 when we use the integration of angle over time to find the risk level values 

 

4.3.2 Two Risk Level Mapping functions 

In the case of integration of angle and time, all the data points between tstart and tend in Figure 25 

have the same risk level. For the data points to have varying risk level values, we need to compute 

the risk level at each data point and for that we can use a predefined function of angle and time. 

Each data point contains angle information but no time information. Instead of integrating with 

respect to time, we add time information to the data points. 

 

Figure 27: Increment time information for computing varying risk level 

 

In Figure 27 the risk level varies for all the points between tstart and tend. For example, the risk level 

at t1 is a function of angle at t1 (ϕt1) and incremented time at t1 (tin1) and the risk level at t2 is a 
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function of angle at t2 (ϕt2) and incremented time at t2 (tin2). We increment time if the data point 

crosses the hazardous roll angle limit value. We also increment time for angles below the limit but 

are bound to the maximum limit of 300 seconds. Table 8 provides the logic for incrementing time 

beyond the hazardous roll angle limit. ‘Time step’ is the time difference and ‘Angular Step’ is the 

angular difference between consecutive data points respectively. 

Table 8: Logic of incrementing time and risk level at data points 

Time Step Angular Step Time Allocated to data point 

>10s > 5° tin = 1s 

>10s <=5° tin  = 1s 

<=10s > 5° tin  = Time Step 

<=10s <= 5° tin = tin at previous data point + Time Step 

 

Since the function of risk level is predefined, we do not require any scaling. The predefined 

function is limited to risk level limits of 0 and 100. We assign the risk category to each data point 

based on the risk level value. 

 

Equation 13 and equation 14 show two risk level functions we chose to map the roll angle and 

time to risk levels. We did not investigate for the ‘best’ possible function but chose two arbitrary 

different mapping function to compare the Stratux and the G1000 risk level outputs. In each 

mapping, the risk level increases linearly with angle. In equation 13, the risk level is exponential 

with respect to time and in equation 14, the risk level is quadratic with respect to time. 

 𝑅𝐿𝑖 = 𝑥1 ∙ 𝜙𝑖 ∙ 𝑒𝑥2∗𝑡𝑖𝑛𝑖  (13) 

 𝑅𝐿𝑖 = (𝑥1 ∙ 𝜙𝑖) + (𝑥2 ∙ 𝑡𝑖𝑛𝑖
)

2
 (14) 
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We fit 𝑥1 and 𝑥2 in equation 13 and equation 14 to the risk level limits discussed before to limit 

the functions’ maximum and minimum values to the risk level limits. The subscript ‘i’ indicates 

each data point since we find the risk level at each data point. 

 

Similar to Figure 26, Figure 28 shows the comparison of risk levels (a) and risk categories (b) of 

the Stratux and the G1000 data from the first flight test. We used equation 14 to obtain the risk 

levels. Each data point contains a unique risk level assigned by the mapping function. Since the 

risk levels vary, the risk categories also vary. In the time span the roll data is beyond the hazardous 

limit angle, the risk categories can vary if the increment time or the magnitude of the roll angle 

varies. 

 

Figure 28: Comparison of risk level (Left – a) and of risk category (Right – b) from the Stratux 

and the G1000 when we use a predefined mapping function to find the risk level values 

 

4.4 Comparison of Risk Categories between the Stratux and the G1000 

When detecting hazardous states purely based on roll angle (Section 3.6), the Stratux could either 

succeed or fail in detecting states compared to the G1000. For risk categories, the Stratux may 

have partial failures. For example, if the G1000 risk category is ‘High Risk’, the Stratux risk 

category can be ‘High,’ ‘Moderate,’ ‘Minor,’ or ‘No Risk.’ Of the four possible risk category 
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detections, only ‘No Risk’ is a complete failure of detection. We evaluated the accuracy of the 

Stratux in detecting the discrete risk categories obtained from the risk levels, compared to the 

G1000. Similar to section 3.6.1.4, we use the data from the same 24 randomly selected flights. In 

this section we use the actual Stratux values and the ‘hard’ limit of 45° in determining the risk 

level and risk categories. We evaluate the impact of the modelled Stratux values and the soft roll 

angle limits in section 5. 

 

Table 9, Table 10, and  

Table 11 show the conditional probabilities of the Stratux risk category detection 

(i.e., 𝑝( 𝑅𝐶𝑆𝑡𝑟𝑎𝑡𝑢𝑥 |𝑅𝐶𝐺1000) ) when we used equation 12, equation 13 and equation14 to 

compute the risk levels respectively. All the columns in each table add up to 1. The green cells in 

the tables indicate the exact detection probabilities, the yellow and the orange indicate partial 

detection probabilities, and the red cells indicate complete failure probabilities. Ideally, if the 

Stratux and the G1000 had the same risk category detections, then the matrices would be 4x4 

identity matrices. 

Table 9: Conditional Probabilities of the Stratux RC matching the G1000 RC for RL derived 

from equation 12 

 G1000 

No Risk Minor Risk Moderate Risk High Risk 

Stratux 

No Risk 0.9995 0.3608 0.1159 0.2556 

Minor Risk 0.0005 0.6157 0.7391 0.2167 

Moderate Risk 0 0.0235 0.1450 0.3722 

High Risk 0 0 0 0.1556 
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Table 10: Conditional Probabilities of the Stratux RC matching the G1000 RC for RL derived 

from equation 13 

 G1000 

No Risk Minor Risk Moderate Risk High Risk 

Stratux 

No Risk 0.9998 0.6483 0.1976 0 

Minor Risk 0.0002 0.2924 0.3202 0.0690 

Moderate Risk 0 0.0593 0.4704 0.7586 

High Risk 0 0 0.0118 0.1724 

 

Table 11: Conditional Probabilities of the Stratux RC matching the G1000 RC for RL derived 

from equation 14 

 G1000 

No Risk Minor Risk Moderate Risk High Risk 

Stratux 

No Risk 0.9997 0.6420 0.1853 0 

Minor Risk 0.0003 0.2757 0.3147 0.0588 

Moderate Risk 0 0.0823 0.4871 0.7647 

High Risk 0 0 0.0129 0.1765 

 

The risk levels from the predefined functions (equations 13 and 14) produce lower number of 

‘High risk’ categories than the risk levels generated from equation 12, and the Stratux has zero 

complete failure probabilities. 

Table 10 and  

Table 11 have similar conditional probabilities. Irrespective of the mapping function we used, 

the risk categories did not change when using the same roll angle and time data. However, in the 

future, we would want to further evaluate the extent of change of risk categories with a larger 

variety of risk level mapping functions. 
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5. RESULTS: USING THE MODELLED STRATUX AND SOFT LIMITS 

TO IMPROVE DETECTIONS 

In this section, we use the improved Stratux roll angles that we developed in section 3.6.1.3 and 

the soft limits for the Stratux that we developed in section 0 to find (1) the probabilities of 

hazardous roll angle detection (similar to section 3.6.3.1) and (2) the probabilities of risk category 

detection (similar to section 4.4). We test our approach on data from 5 flights that we did not use 

to build the models earlier to improve the Stratux roll angles or to determine the soft limits of the 

Stratux. 

5.1 Detection of Roll Angles above a Defined Hazardous Limit 

We had only 13 instances of hazardous states (ϕ > 45°) in the data from the 5 test flights. Table 12 

shows the number of missed detections (MD), false alarms (FA), and correct detections (CD) for 

the actual and improved Stratux, and for the hard and soft limits. 

Table 12: Comparison of missed detections (MD), false alarms (FA) and correct detections (CD) 

for the actual and improved Stratux, and for the hard and soft limits for the Stratux when the 

hazardous angle limit is 45°. 

Actual Stratux and 

Hard Limit 

Improved Stratux 

and Hard Limit 

Actual Stratux and 

Soft Limits 

Improved Stratux 

and Soft Limits 

MD FA CD MD FA CD MD FA CD MD FA CD 

3 4 6 0 7 6 0 1 12 0 2 11 

 

The improved Stratux roll angles reduce the number of missed detections but increase false alarms 

by the same amount, thereby not improving upon the correct detections of the Stratux. The soft 

limits improve correct detection. 

Our purpose here is to assess how well our method detects anomalous behavior. Given that our 

data is all from supervised training flights, we have few instances of roll angles with magnitude 
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greater than 45°. Solely for testing our method, we define a new hazardous roll angle limit based 

on anomalous behavior in our test data set. This approach is similar to how unstable approaches 

are defined [Jiao et al., 2018]. Since we assess the anomalous behavior in the test data set, we only 

use the test data to find the new limit instead of the complete data set. 

We find the magnitude of the 95th percentile of all roll angles in the 5 test flights. For our test data 

set, that value is 19°. That is, 95% of the roll data is at or below an absolute value of 19°. Thus, 

we set the new hazardous limit to 19°.  

 

We find the probabilities of the Stratux correctly identifying roll angles having a magnitude greater 

than 19° using the methods described in section 3.6.3.1. Table 13 shows the probabilities of 

detection of roll angles greater than 19° for the actual and improved Stratux, and for the hard and 

soft limits. As shown in section 3.4.2 and section 3.5, the Stratux roll angle error varies, but the 

error is lower at lower magnitude angles than at higher magnitude angles. Since the hazardous 

limit we are using here is smaller than the previous limit of 45°, the probability of detection for 

the actual Stratux is higher than the value of 0.52 we found in section 3.6.3.1. The values in Table 

13 also indicate that the model improved Stratux roll angle has little impact on overall correct 

detection. The soft limits, however, increase the detection probability by 10%. 

Table 13: Probabilities of Detection of |ϕ| > 19° 

 
Hard Limit and 

Actual Stratux 

Hard Limit and 

Improved 

Stratux 

Soft Limits and 

Actual Stratux 

Soft Limits and 

Improved 

Stratux 

Probability of 

Correct 

Detection 

0.8308 0.8333 0.9160 0.9336 

95% CI of 

Probability 0.8030 – 0.8562 0.8056 – 0.8585 0.8946 – 0.9343 0.9140 – 0.9499 
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Since many data points are about 0°, we find the 95th percentile of roll data (in test data) with 

magnitude greater than 10°. The resulting roll angle is 37°. We find the probabilities of correct 

detection of all angles greater than |37°|. Table 14 shows results similar to that of Table 13, but 

here the improved Stratux roll angles decrease the detection probabilities for hard and soft limits. 

Applying soft limits still increases the correct detection probabilities. 

Table 14: Probabilities of Detection of |ϕ| > 37° 

 
Hard Limit and 

Actual Stratux 

Hard Limit and 

Improved 

Stratux 

Soft Limits and 

Actual Stratux 

Soft Limits and 

Improved 

Stratux 

Probability of 

Correct 

Detection 

0.6329 0.5696 0.9494 0.7848 

95% CI of 

Probability 0.5169 – 0.7386 0.4533 – 0.6806 0.8754 – 0.9860 0.6780 – 0.8694 

 

In chapter 3 and chapter 4 we used the Private Pilot maneuver limit of 45° as our hazardous roll 

angle limit. In this section we varied the limit based on the data available in the test flights. The 

definition of the hazardous roll angle limit can vary for various reasons, including the phase of 

flight, height above the ground, or pilot certification level. Since Table 13 and Table 14 do not 

conclusively indicate the impact of the improved Stratux and soft limit on the accuracy of the 

Stratux, we find the correct detection probabilities by varying the magnitude of the roll angle 

limits. That is, we find: 𝑝( |𝜙𝑆𝑡𝑟𝑎𝑡𝑢𝑥| > |𝜙𝑙𝑖𝑚𝑖𝑡| | |𝜙𝐺1000| > |𝜙𝑙𝑖𝑚𝑖𝑡|), where ϕlimit varies from 

|20°| to |48°| in the testing data set (5 flights) and |20°| to |59°| in the training data set (24 flights). 

 

In Figure 29 and Figure 30, the cyan and the magenta plot lines are the detection probabilities 

when we use the soft limits for the Stratux. The magenta line also indicates the probabilities for 

the improved Stratux roll angles similar to the red line, which indicates the improved Stratux roll 
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angles without the soft limits. The blue line is the actual Stratux roll angle detection probabilities 

without the soft limits. The improved Stratux roll angles reduce the number of missed detections, 

but also increase the number of false alarms and do not improve upon the overall correct detection. 

Furthermore, at high magnitude angles the Stratux roll angles are highly erroneous and the models 

we created using the training data do not correct for the errors in the test data. 

 

Figure 29: Correct Detection probabilities for varying roll angles for roll data in test flights. 

Model improved Stratux does not increase correct detections and do not perform well on test 

data.  



75 

 

 

Figure 30: Correct Detection probabilities for varying roll angles for roll data in training flights. 

Modelled Stratux roll angle only marginally improve the detection and is specific to training 

data. 

 

When using hard limits, the correct detection accuracy of the Stratux roll angles drop below 60% 

after the 40° limit angle. That is, for all hard limits below 40°, the actual Stratux data correctly 

detects angles beyond the limits with at least 60% accuracy. 

 

As shown in Figure 29 and Figure 30, applying the soft limits always improve the detection of the 

roll angles higher in magnitude than the defined limit. The soft limits we developed from the 

training set ensure that the correct detection probability of the actual Stratux roll angles in the test 

data set remain above 70% for all roll angle limits ranging from |20°| to |48°|. Using the soft limits 

in the training data, the probability of the actual Stratux roll angles correctly detecting angles 

higher in magnitude than the defined limit is above 80% for angles ranging from |20°| to |48°|. In 

the training set, the probability of correct detection when using soft limits remains above 60% till 

|54°|. 
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5.2 Detection of Risk Categories when using Soft Limits 

Since the soft limits helped improve the detection of roll angles beyond a hazardous roll angle 

limit, in this section we test the impact of soft limits on risk category detection. Similar to section 

4.4, we compare the risk categories from the Stratux and the G1000 roll angle data for the 5 test 

flights. We used the hazardous roll angle limit to define the risk levels (RL) and risk categories 

(RC) in section 4.1 and section 4.2. However, the soft limits for a given hard limit have two inner 

soft limits and two outer soft limits. We find the risk categories for the inner and outer soft limits 

separately. 

 

For the test data of 5 flights, we redefined our hazardous roll angle limit to a hard value of |19°| in 

section 0. Since the soft limits for the positive and negative roll angles can be different, we use the 

absolute value of the mean of the limits. For example, the positive and negative inner soft limits 

for |19°| are 18.25° and −18.11° respectively, and we use |18.18|° as the inner soft limit for the risk 

level and risk category computations. Similarly, the outer soft limit is |19.83°|. 

 

Table 15, Table 16, and Table 17 show the conditional probabilities of the Stratux risk categories 

when using the hard limit of |19°|, the inner soft limit, and outer soft limit respectively. 

Table 15: Conditional Probabilities of the Stratux RC matching the G1000 RC for RL derived 

from equation 12 for a hard limit of |19°| on the test data. 

 G1000 

No Risk Minor Risk Moderate Risk High Risk 

Stratux 

No Risk 0.9964 0.1541 0.0207 0.0036 

Minor Risk 0.0032 0.7670 0.2228 0.1950 

Moderate Risk 0.0004 0.0502 0.7047 0.0106 

High Risk 0 0.0287 0.0518 0.7908 
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Table 16: Conditional Probabilities of the Stratux RC matching the G1000 RC for RL derived 

from equation 12 for the inner soft limit of |18.18°| on the test data. 

 G1000 

No Risk Minor Risk Moderate Risk High Risk 

Stratux 

No Risk 0.9970 0.1431 0.0315 0.0036 

Minor Risk 0.0027 0.8026 0.2087 0.0742 

Moderate Risk 0.0003 0.0477 0.6693 0.0106 

High Risk 0 0.0066 0.0906 0.9117 

 

Table 17: Conditional Probabilities of the Stratux RC matching the G1000 RC for RL derived 

from equation 12 for the outer soft limit of |19.83°| on the test data. 

 G1000 

No Risk Minor Risk Moderate Risk High Risk 

Stratux 

No Risk 0.9969 0.1660 0 0.0037 

Minor Risk 0.0026 0.7602 0.3600 0.1679 

Moderate Risk 0.0005 0.0574 0.5900 0 

High Risk 0 0.0164 0.0500 0.8284 

 

The diagonal elements of the tables above give the conditional probability of the Stratux risk 

category exactly matching that of the G1000. As discussed in Section 4.4, ideally all the diagonal 

elements should be one and the sum of the elements should be four. Therefore, while comparing 

risk category probability tables, the one with the sum of diagonal elements closest to four has the 

highest accuracy of exact risk category detections. The elements above the diagonal provide the 

conditional probabilities for partial detection or complete missed detections. The elements below 

the diagonal provide the conditional probabilities of partial false alarms (i.e., a risk category higher 

than the one identified by the G1000) or complete false alarms. Ideally, all the elements above and 

below the diagonal, as well as their respective sums should be zero. Therefore, while comparing 

risk category probability tables, the table having the sum of elements below the diagonal closest 

to zero has the lowest overall missed detection probability, and the table having the sum of 

elements above the diagonal closest to zero has the lowest overall false alarm probability. 
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The information in Table 18 shows that using the inner soft limits increases risk category 

detections with a slight increase in probability of false alarms.  

Table 18: Sum of the diagonal elements, the elements below the diagonal and the elements above 

the diagonal for Table 15, Table 16 and Table 17 

 Hard limit of |19°| Inner soft limit of 

|18.18°| 

Outer soft limit of 

|19.83°| 

Sum of the diagonal 

elements 
3.2589 3.3806 3.1755 

Sum of the elements 

below the diagonal 
0.1343 0.1479 0.1269 

Sum of the elements 

above the diagonal 
0.6068 0.4717 0.6979 

 

Table 19 is similar to Table 18 except that we use equation (13 to find the risk levels and risk 

categories. APPENDIX C contains the three conditional probability tables when using 

equation (13. The data in Table 19 show that using the inner soft limits increases the probability 

of the Stratux in detecting risk categories, more closely matching that of the G1000. Therefore, 

irrespective of the risk level function we use, using inner soft limits to define the risk levels and 

risk categories improves the risk category detection of the Stratux. 

Table 19: Sum of the diagonal elements, the elements below the diagonal and the elements 

above the diagonal of conditional probability tables when we use equation (13. 

 Hard limit of |19°| Inner soft limit of 

|18.18°| 

Outer soft limit of 

|19.83°| 

Sum of the diagonal 

elements 
2.8090 3.0035 2.8027 

Sum of the elements 

below the diagonal 
0.3198 0.2641 0.2854 

Sum of the elements 

above the diagonal 
0.8712 0.7324 0.9119 
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6. CONCLUSION AND FUTURE WORK 

Using our Stratux device, we collected flight data via an android application. Compared to the 

G1000, the Stratux data missed 48% of the roll angles greater than 45° in our training set. Previous 

studies in automobile traffic information systems suggest that an accuracy level of 40% is not 

accurate enough to support user acceptance, but that 60% likely is [Fox, 1998]. Therefore, we 

developed two methods to increase the detection probability of angles beyond a hazardous roll 

angle limit when using the Stratux: (1) Use piecewise-discontinuous models to improve the Stratux 

roll angles and match that of the G1000, and (2) change the hazardous roll angle limit to soft limits 

for the Stratux. Piecewise-discontinuous models of the Stratux roll angle reduced the number of 

missed detections but increased the number of false alarms. Increasing false alarms can lead to 

decrease in user trust [Cafarelli, 1998], and when we incorporated false alarms in correct detection 

probability (equation 10), we found that the models we used to improve the Stratux roll angles in 

this research did not increase the detection probability of the Stratux. However, using soft limits 

substantially increases the detection probability of the Stratux for any definition of hazardous roll 

angle limit. 

 

To capture time and angle accuracy, we defined risk level (RL) and risk category (RC). We 

compared the RCs generated from the G1000 and the Stratux roll data for varying RL functions. 

The advantage of RC comparison over hazardous angle comparison is that the RC comparison 

provides partial failure information whereas the hazardous angle comparison is either a success or 

a failure. The RC detection probabilities of the Stratux vary when we use different methods of 

computing the RLs. However, when using mapping functions to define the RLs, the resulting RC 

detection probabilities of the Stratux did not change for two different functions. We tested the 
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impact of using soft limits to define RL and RC. Inner soft limits (lower magnitude limit) of the 

Stratux helped increase the RC detection probabilities irrespective of the method we used to 

compute the RLs. 

 

In our research, we used the Private Pilots’ rolling maneuver limit of 45° (in training set). The 

FAA’s GA Aviation Safety Information Analysis and Sharing (ASIAS) program can help in 

providing data to better determine the roll angle limit for safe operations. 

We investigated a hazardous state based on a single flight parameter, but many aircraft hazardous 

states are complex and depend on multiple dependent variables. For example, the stalling speed of 

an aircraft increases with the increase in roll angle. We will need to investigate the methods 

discussed in this research when applied to more than one dependent variable defining a hazardous 

state. 

 

The data collected in this research is from a single Stratux. To validate the methods and results we 

present in this research, we will need to apply the methods to additional low-cost AHRS devices. 

Additionally, one can find the optimum models for the Stratux roll angles, or the ideal risk level 

mapping function for roll angle and time. 
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APPENDIX A: LIST OF IMU BREAK-OUT BOARDS AND IMU SENSORS 

AVAIABLE AS OF SEPTEBER 2017 

Table 20: List of Hobbyist IMU breakout boards with 6 or more Degrees of Freedom (DOF) 

Name Price Links [ Accessed September 2017] 

6 DOF Gyro, Accelerometer 

IMU - MPU6050 

$9.9

0  

http://www.robotshop.com/en/6-dof-gyro-

accelerometer-imu-mpu6050.html  

6 Degrees of Freedom 

±2000°/sec ±16g IMU - 

ITG3200/ADXL345 

$31.

96  

http://www.robotshop.com/en/6-degrees-freedom-

imu.html  

MPU6050 6 DOF Gyro 

Accelerometer IMU 

$7.4

5  

http://www.robotshop.com/en/mpu6050-6-dof-gyro-

accelerometer-imu.html  

6 DoF Accelerometer, Gyro 

Breakout Board - LSM6DS3 

$18.

95  

http://www.robotshop.com/en/6-dof-accelerometer-

gyro-breakout-board--lsm6ds3.html  

MPU-6050 6 DOF Gyro 

Accelerometer IMU 

$7.6

7  

http://www.robotshop.com/en/mpu-6050-6-dof-

gyro-accelerometer-imu.html  

6 DOF Gyro, Accelerometer 

IMU Breakout Board - 

MPU6050 

$27.

82  

http://www.robotshop.com/en/6-dof-gyro-

accelerometer-imu-breakout-board-mpu6050.html  

PhidgetSpatial Precision 3/3/3 

High Res 3 Axis 

Compass/Gyroscope/Accelero

meter 

$140

.00  

http://www.robotshop.com/en/phidgetspatial-

precision-3-33-high-res-3-axis-

compassgyroscopeaccelerometer.html  

RoBoard RM-G146 9-Axis 

Accelerometer, Gyro and 

Compass 

$81.

13  

http://www.robotshop.com/en/roboard-rm-g146-9-

axis-accelerometer-gyro-compass.html  

FLORA Adafruit LSM9DS0 

9DoF ±2000°/sec ±16g IMU 

$17.

96  

http://www.robotshop.com/en/flora-adafruit-

lsm9ds0-9dof-2000-sec-16g-imu.html  

Adafruit LSM9DS0 9DoF 

±2000°/sec ±16g IMU 

$22.

46  

http://www.robotshop.com/en/adafruit-lsm9ds0-

9dof-2000-sec-16g-imu.html  

BNO055 9 DOF Absolute 

Orientation IMU Fusion 

Breakout Board 

$31.

46  

http://www.robotshop.com/en/bno055-9-dof-

absolute-orientation-imu-fusion-breakout-board.html  

9 Degrees of Freedom Block for 

Intel Edison 

$15.

15  

http://www.robotshop.com/en/9-degrees-freedom-

block-intel-edison.html 

9DoF AltIMU-10 

Gyro/Accelerometer/Compass/

Altimeter 

$20.

95  

http://www.robotshop.com/en/10dof-altimu-10-

gyro-accelerometercompassaltimeter.html  

http://www.robotshop.com/en/6-dof-gyro-accelerometer-imu-mpu6050.html
http://www.robotshop.com/en/6-dof-gyro-accelerometer-imu-mpu6050.html
http://www.robotshop.com/en/6-degrees-freedom-imu.html
http://www.robotshop.com/en/6-degrees-freedom-imu.html
http://www.robotshop.com/en/mpu6050-6-dof-gyro-accelerometer-imu.html
http://www.robotshop.com/en/mpu6050-6-dof-gyro-accelerometer-imu.html
http://www.robotshop.com/en/6-dof-accelerometer-gyro-breakout-board--lsm6ds3.html
http://www.robotshop.com/en/6-dof-accelerometer-gyro-breakout-board--lsm6ds3.html
http://www.robotshop.com/en/mpu-6050-6-dof-gyro-accelerometer-imu.html
http://www.robotshop.com/en/mpu-6050-6-dof-gyro-accelerometer-imu.html
http://www.robotshop.com/en/6-dof-gyro-accelerometer-imu-breakout-board-mpu6050.html
http://www.robotshop.com/en/6-dof-gyro-accelerometer-imu-breakout-board-mpu6050.html
http://www.robotshop.com/en/phidgetspatial-precision-3-33-high-res-3-axis-compassgyroscopeaccelerometer.html
http://www.robotshop.com/en/phidgetspatial-precision-3-33-high-res-3-axis-compassgyroscopeaccelerometer.html
http://www.robotshop.com/en/phidgetspatial-precision-3-33-high-res-3-axis-compassgyroscopeaccelerometer.html
http://www.robotshop.com/en/roboard-rm-g146-9-axis-accelerometer-gyro-compass.html
http://www.robotshop.com/en/roboard-rm-g146-9-axis-accelerometer-gyro-compass.html
http://www.robotshop.com/en/flora-adafruit-lsm9ds0-9dof-2000-sec-16g-imu.html
http://www.robotshop.com/en/flora-adafruit-lsm9ds0-9dof-2000-sec-16g-imu.html
http://www.robotshop.com/en/adafruit-lsm9ds0-9dof-2000-sec-16g-imu.html
http://www.robotshop.com/en/adafruit-lsm9ds0-9dof-2000-sec-16g-imu.html
http://www.robotshop.com/en/bno055-9-dof-absolute-orientation-imu-fusion-breakout-board.html
http://www.robotshop.com/en/bno055-9-dof-absolute-orientation-imu-fusion-breakout-board.html
http://www.robotshop.com/en/9-degrees-freedom-block-intel-edison.html
http://www.robotshop.com/en/9-degrees-freedom-block-intel-edison.html
http://www.robotshop.com/en/10dof-altimu-10-gyro-accelerometercompassaltimeter.html
http://www.robotshop.com/en/10dof-altimu-10-gyro-accelerometercompassaltimeter.html
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Table 20: List of Hobbyist IMU breakout boards with 6 or more Degrees of Freedom (DOF) 

Name Price Links [ Accessed September 2017] 

Grove - 9DoF ±2000°/sec ±16g 

IMU 

$12.

38  

http://www.robotshop.com/en/grove-9dof-2000-sec-

16g-imu.html  

LSM9DS1 9DoF ±2000°/sec 

±16g IMU 

$23.

70  

http://www.robotshop.com/en/lsm9ds1-9dof-2000-

sec-16g-imu.html  

MinIMU-9 v5 Gyro, 

Accelerometer and Compass 

(LSM6DS33 and LIS3MDL 

Carrier) 

$11.

95  

http://www.robotshop.com/en/minimu-9-v5-gyro-

accelerometer-compass-lsm6ds33-and-lis3mdl-

carrier.html  

Ocotpus 9DoF ±2000°/sec ±16g 

IMU Brick 

$19.

76  

http://www.robotshop.com/en/ocotpus-9dof-2000-

sec-16g-imu-brick.html 

IMU Breakout Board - MPU-

9250 

$14.

20  

http://www.robotshop.com/en/imu-breakout-board-

mpu-9250.html  

9 Degrees of Freedom - Razor 

M0 IMU 

$47.

45  

http://www.robotshop.com/en/9-degrees-of-

freedom-razor-m0-imu.html  

Variense Compact IMU 9-Axis 

$58.

20  

http://www.robotshop.com/en/variense-compact-

imu-9-axis-vmu931.html  

UM7-LT Orientation Sensor 

(AHRS) 

$134

.35  

http://www.robotshop.com/en/um7-lt-orientation-

sensor.html  

Adafruit Precision NXP 9-DOF 

Breakout Board - FXOS8700 + 

FXAS21002 

$13.

46  

http://www.robotshop.com/en/adafruit-precision-

nxp-9-dof-breakout-board-fxos8700-fxas21002.html  

LSM9DS1 9DoF ±2000°/sec 

±16g IMU Breakout Board 

$13.

46  

http://www.robotshop.com/en/lsm9ds1-9dof-2000-

sec-16g-imu-breakout-board.html 

IMU 10 DOF ±16g 3 Axis 

Accelerometer ±2000 °/s 

Gyro/Magnetometer/Barometer 

$37.

34  

http://www.robotshop.com/en/imu-10-dof-16g-3-

axis-accelerometer-2000--s-

gyromagnetometerbarometer.html  

Xadow IMU 10 DOF 

$16.

39  

http://www.robotshop.com/en/xadow-imu-10-

dof.html 

AltIMU-10 v5 Gyro, 

Accelerometer, Compass and 

Altimeter (LSM6DS33, 

LIS3MDL, and LPS25H 

Carrier) 

$17.

25  

http://www.robotshop.com/en/altimu-10-v5-gyro-

accelerometer-compass-altimeter-lsm6ds33-lis3mdl-

and-lps25h-carrier.html 

Grove IMU 10DOF v2.0 

$16.

39  

http://www.robotshop.com/en/grove-imu-10dof-

v20.html  

http://www.robotshop.com/en/grove-9dof-2000-sec-16g-imu.html
http://www.robotshop.com/en/grove-9dof-2000-sec-16g-imu.html
http://www.robotshop.com/en/lsm9ds1-9dof-2000-sec-16g-imu.html
http://www.robotshop.com/en/lsm9ds1-9dof-2000-sec-16g-imu.html
http://www.robotshop.com/en/minimu-9-v5-gyro-accelerometer-compass-lsm6ds33-and-lis3mdl-carrier.html
http://www.robotshop.com/en/minimu-9-v5-gyro-accelerometer-compass-lsm6ds33-and-lis3mdl-carrier.html
http://www.robotshop.com/en/minimu-9-v5-gyro-accelerometer-compass-lsm6ds33-and-lis3mdl-carrier.html
http://www.robotshop.com/en/ocotpus-9dof-2000-sec-16g-imu-brick.html
http://www.robotshop.com/en/ocotpus-9dof-2000-sec-16g-imu-brick.html
http://www.robotshop.com/en/imu-breakout-board-mpu-9250.html
http://www.robotshop.com/en/imu-breakout-board-mpu-9250.html
http://www.robotshop.com/en/9-degrees-of-freedom-razor-m0-imu.html
http://www.robotshop.com/en/9-degrees-of-freedom-razor-m0-imu.html
http://www.robotshop.com/en/variense-compact-imu-9-axis-vmu931.html
http://www.robotshop.com/en/variense-compact-imu-9-axis-vmu931.html
http://www.robotshop.com/en/um7-lt-orientation-sensor.html
http://www.robotshop.com/en/um7-lt-orientation-sensor.html
http://www.robotshop.com/en/adafruit-precision-nxp-9-dof-breakout-board-fxos8700-fxas21002.html
http://www.robotshop.com/en/adafruit-precision-nxp-9-dof-breakout-board-fxos8700-fxas21002.html
http://www.robotshop.com/en/lsm9ds1-9dof-2000-sec-16g-imu-breakout-board.html
http://www.robotshop.com/en/lsm9ds1-9dof-2000-sec-16g-imu-breakout-board.html
http://www.robotshop.com/en/imu-10-dof-16g-3-axis-accelerometer-2000--s-gyromagnetometerbarometer.html
http://www.robotshop.com/en/imu-10-dof-16g-3-axis-accelerometer-2000--s-gyromagnetometerbarometer.html
http://www.robotshop.com/en/imu-10-dof-16g-3-axis-accelerometer-2000--s-gyromagnetometerbarometer.html
http://www.robotshop.com/en/xadow-imu-10-dof.html
http://www.robotshop.com/en/xadow-imu-10-dof.html
http://www.robotshop.com/en/altimu-10-v5-gyro-accelerometer-compass-altimeter-lsm6ds33-lis3mdl-and-lps25h-carrier.html
http://www.robotshop.com/en/altimu-10-v5-gyro-accelerometer-compass-altimeter-lsm6ds33-lis3mdl-and-lps25h-carrier.html
http://www.robotshop.com/en/altimu-10-v5-gyro-accelerometer-compass-altimeter-lsm6ds33-lis3mdl-and-lps25h-carrier.html
http://www.robotshop.com/en/grove-imu-10dof-v20.html
http://www.robotshop.com/en/grove-imu-10dof-v20.html
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Table 20: List of Hobbyist IMU breakout boards with 6 or more Degrees of Freedom (DOF) 

Name Price Links [ Accessed September 2017] 

IMU 10 DOF ±16g 3 Axis 

Accelerometer ±2000 °/s 

Gyro/Magnetometer/Barometer 

$15.

03  

http://www.robotshop.com/en/imu-10-dof-16g-3-

axis-accelerometer-2000--s-

gyromagnetometerbarometer-c.html 

 

Table 21: List of IMU Sensors, the manufacturers, unit price and types of sensors, arranged in 

increasing order of unit price. 

Manufacturer 

Part Number 

Manufacturer Unit 

Price 

(USD) 

Types of Sensors in the 

IMU 

LSM6DS3TR STMicroelectronics 1.40928 Accelerometer, Gyroscope, 

3 Axis 

LSM330TR STMicroelectronics 1.4497 Accelerometer, Gyroscope, 

3 Axis 

LSM6DS33TR STMicroelectronics 1.46433 Accelerometer, Gyroscope, 

3 Axis 

LSM6DS0TR STMicroelectronics 1.5295 Accelerometer, Gyroscope, 

3 Axis 

LSM6DS3HTR STMicroelectronics 1.86496 Accelerometer, Gyroscope, 

Temperature, 6 Axis 

LSM6DSMTR STMicroelectronics 1.92 Accelerometer, Gyroscope, 

3 Axis 

LSM6DSLTR STMicroelectronics 1.92 Accelerometer, Gyroscope, 

3 Axis 

LSM6DSLUSTR STMicroelectronics 1.92 Not available 

BMI160 Bosch Sensortec 1.944 Accelerometer, Gyroscope, 

3 Axis 

ICM-20602 TDK InvenSense 2.0655 Accelerometer, Gyroscope, 

Temperature, 6 Axis 

ICM-20689 TDK InvenSense 2.53125 Accelerometer, Gyroscope, 

Temperature, 6 Axis 

LSM330DLCTR STMicroelectronics 2.54695 Accelerometer, Gyroscope, 

3 Axis 

BMI055 Bosch Sensortec 2.5785 Accelerometer, Gyroscope, 

3 Axis 

ICM-20648 TDK InvenSense 2.7945 Accelerometer, Gyroscope, 

Temperature, 6 Axis 

http://www.robotshop.com/en/imu-10-dof-16g-3-axis-accelerometer-2000--s-gyromagnetometerbarometer-c.html
http://www.robotshop.com/en/imu-10-dof-16g-3-axis-accelerometer-2000--s-gyromagnetometerbarometer-c.html
http://www.robotshop.com/en/imu-10-dof-16g-3-axis-accelerometer-2000--s-gyromagnetometerbarometer-c.html
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Table 21: List of IMU Sensors, the manufacturers, unit price and types of sensors, arranged in 

increasing order of unit price. 

Manufacturer 

Part Number 

Manufacturer Unit 

Price 

(USD) 

Types of Sensors in the 

IMU 

LSM330TR STMicroelectronics 2.98 Accelerometer, Gyroscope, 

3 Axis 

LSM330TR STMicroelectronics Not 

available 

Accelerometer, Gyroscope, 

3 Axis 

LSM6DS3TR STMicroelectronics 3.01 Accelerometer, Gyroscope, 

3 Axis 

LSM6DS3TR STMicroelectronics Not 

available 

Accelerometer, Gyroscope, 

3 Axis 

LSM6DS33TR STMicroelectronics 3.01 Accelerometer, Gyroscope, 

3 Axis 

LSM6DS33TR STMicroelectronics Not 

available 

Accelerometer, Gyroscope, 

3 Axis 

LSM9DS1TR STMicroelectronics 3.12018 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

LSM6DS0TR STMicroelectronics 3.14 Accelerometer, Gyroscope, 

3 Axis 

LSM6DS0TR STMicroelectronics Not 

available 

Accelerometer, Gyroscope, 

3 Axis 

BMX055 Bosch Sensortec 3.3915 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

ICM-20948 TDK InvenSense 3.6841 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

ICM-30630 TDK InvenSense 3.76656 Accelerometer, Gyroscope, 

3 Axis 

LSM6DS3HTR STMicroelectronics 3.98 Accelerometer, Gyroscope, 

Temperature, 6 Axis 

LSM6DS3HTR STMicroelectronics Not 

available 

Accelerometer, Gyroscope, 

Temperature, 6 Axis 

LSM6DSMTR STMicroelectronics 4.09 Accelerometer, Gyroscope, 

3 Axis 

LSM6DSMTR STMicroelectronics Not 

available 

Accelerometer, Gyroscope, 

3 Axis 

LSM6DSLTR STMicroelectronics 4.09 Accelerometer, Gyroscope, 

3 Axis 
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Table 21: List of IMU Sensors, the manufacturers, unit price and types of sensors, arranged in 

increasing order of unit price. 

Manufacturer 

Part Number 

Manufacturer Unit 

Price 

(USD) 

Types of Sensors in the 

IMU 

LSM6DSLTR STMicroelectronics Not 

available 

Accelerometer, Gyroscope, 

3 Axis 

FIS1100 Fairchild/ON Semiconductor 4.13875 Accelerometer, Gyroscope, 

3 Axis 

MPU-9250 TDK InvenSense 4.5087 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

BHI160 Bosch Sensortec 4.655 Accelerometer, Gyroscope, 

3 Axis 

LSM330DLCTR STMicroelectronics 5.23 Accelerometer, Gyroscope, 

3 Axis 

LSM330DLCTR STMicroelectronics Not 

available 

Accelerometer, Gyroscope, 

3 Axis 

BNO055 Bosch Sensortec 5.29375 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

BMI160 Bosch Sensortec 5.39 Accelerometer, Gyroscope, 

3 Axis 

BMI160 Bosch Sensortec Not 

available 

Accelerometer, Gyroscope, 

3 Axis 

BMF055 Bosch Sensortec 5.6925 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

ICM-20602 TDK InvenSense 5.72 Accelerometer, Gyroscope, 

Temperature, 6 Axis 

ICM-20602 TDK InvenSense Not 

available 

Accelerometer, Gyroscope, 

Temperature, 6 Axis 

LSM9DS1TR STMicroelectronics 6.4 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

LSM9DS1TR STMicroelectronics Not 

available 

Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

ICM-20689 TDK InvenSense 7.01 Accelerometer, Gyroscope, 

Temperature, 6 Axis 

ICM-20689 TDK InvenSense Not 

available 

Accelerometer, Gyroscope, 

Temperature, 6 Axis 

BMI055 Bosch Sensortec 7.14 Accelerometer, Gyroscope, 

3 Axis 
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Table 21: List of IMU Sensors, the manufacturers, unit price and types of sensors, arranged in 

increasing order of unit price. 

Manufacturer 

Part Number 

Manufacturer Unit 

Price 

(USD) 

Types of Sensors in the 

IMU 

BMI055 Bosch Sensortec Not 

available 

Accelerometer, Gyroscope, 

3 Axis 

ICM-20648 TDK InvenSense 7.74 Accelerometer, Gyroscope, 

Temperature, 6 Axis 

ICM-20648 TDK InvenSense Not 

available 

Accelerometer, Gyroscope, 

Temperature, 6 Axis 

BMX055 Bosch Sensortec 7.99 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

BMX055 Bosch Sensortec Not 

available 

Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

ICM-20948 TDK InvenSense 8.68 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

ICM-20948 TDK InvenSense Not 

available 

Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

ICM-30630 TDK InvenSense 8.88 Accelerometer, Gyroscope, 

3 Axis 

ICM-30630 TDK InvenSense Not 

available 

Accelerometer, Gyroscope, 3 

Axis 

FIS1100 Fairchild/ON Semiconductor 9.44 Accelerometer, Gyroscope, 

3 Axis 

FIS1100 Fairchild/ON Semiconductor Not 

available 

Accelerometer, Gyroscope, 

3 Axis 

MPU-9250 TDK InvenSense 10.63 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

MPU-9250 TDK InvenSense Not 

available 

Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

BNO055 Bosch Sensortec 12.07 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

BNO055 Bosch Sensortec Not 

available 

Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

BHI160 Bosch Sensortec 12.4 Accelerometer, Gyroscope, 

3 Axis 

BHI160 Bosch Sensortec Not 

available 

Accelerometer, Gyroscope, 

3 Axis 
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Table 21: List of IMU Sensors, the manufacturers, unit price and types of sensors, arranged in 

increasing order of unit price. 

Manufacturer 

Part Number 

Manufacturer Unit 

Price 

(USD) 

Types of Sensors in the 

IMU 

BMF055 Bosch Sensortec 12.98 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

BMF055 Bosch Sensortec Not 

available 

Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

MM7150-AB0 Microchip Technology 24.73 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

MM7150-AB1 Microchip Technology 24.73 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

MM7150I-AB1 Microchip Technology 30.91 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

SCC2230-E02-

05 

Murata Electronics North 

America 

62.925 Accelerometer, Gyroscope, 

3 Axis 

SCC2230-D08-

05 

Murata Electronics North 

America 

62.925 Accelerometer, Gyroscope, 

3 Axis 

SCC2130-D08-

05 

Murata Electronics North 

America 

62.925 Accelerometer, Gyroscope, 

3 Axis 

SCC1300-D02-6 Murata Electronics North 

America 

81.8615 Accelerometer, Gyroscope, 

3 Axis 

SCC1300-D04-6 Murata Electronics North 

America 

81.8615 Accelerometer, Gyroscope, 

3 Axis 

SCC1300-D02-

05 

Murata Electronics North 

America 

89.2476 Accelerometer, Gyroscope, 

3 Axis 

SCC1300-D04-

05 

Murata Electronics North 

America 

89.2476 Accelerometer, Gyroscope, 

3 Axis 

SCC2230-E02-

05 

Murata Electronics North 

America 

92.29 Accelerometer, Gyroscope, 

3 Axis 

SCC2230-E02-

05 

Murata Electronics North 

America 

Not 

available 

Accelerometer, Gyroscope, 

3 Axis 

SCC2230-D08-

05 

Murata Electronics North 

America 

92.29 Accelerometer, Gyroscope, 

3 Axis 

SCC2230-D08-

05 

Murata Electronics North 

America 

Not 

available 

Accelerometer, Gyroscope, 

3 Axis 

SCC2130-D08-

05 

Murata Electronics North 

America 

92.29 Accelerometer, Gyroscope, 

3 Axis 
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Table 21: List of IMU Sensors, the manufacturers, unit price and types of sensors, arranged in 

increasing order of unit price. 

Manufacturer 

Part Number 

Manufacturer Unit 

Price 

(USD) 

Types of Sensors in the 

IMU 

SCC2130-D08-

05 

Murata Electronics North 

America 

Not 

available 

Accelerometer, Gyroscope, 

3 Axis 

MTI-1-8A7G6T XSens Technologies BV 185.6 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

MTI-2-8A7G6T XSens Technologies BV 288 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

MTI-3-8A7G6T XSens Technologies BV 369.92 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

HG1120AA50 Honeywell Microelectronics 

& Precision Sensors 

1062.67 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

MTI-20-2A5G4 XSens Technologies BV 1298.08 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

HG1120BA50 Honeywell Microelectronics 

& Precision Sensors 

1328.67 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

MTI-30-2A5G4 XSens Technologies BV 1518.4 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

HG1120CA50 Honeywell Microelectronics 

& Precision Sensors 

1594.67 Accelerometer, Gyroscope, 

Magnetometer, 3 Axis 

S4E5A0A0A111

J00 

Epson Electronics America 

Inc-Semiconductor Div 

2304 Accelerometer, Gyroscope, 

3 Axis 

HG4930AA51 Honeywell Microelectronics 

& Precision Sensors 

6998.75 Accelerometer, Gyroscope, 

3 Axis 

HG4930BA51 Honeywell Microelectronics 

& Precision Sensors 

8498.75 Accelerometer, Gyroscope, 

3 Axis 

HG4930CA51 Honeywell Microelectronics 

& Precision Sensors 

9998.75 Accelerometer, Gyroscope, 

3 Axis 
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APPENDIX B. LIST OF STRATUX VARIABLES RECORDED 

This section describes the variables accessed through http://192.168.10.1/getSituation for the 

Stratux. 

1. GPSLastFixSinceMidnightUTC 

The time from midnight UTC (Zulu) in seconds. 

2. GPSLatitude 

Latitude of position. South is negative. 

3. GPSLongitude 

Longitude of position. West is negative. 

4. GPSHeightAboveEllipsoid 

GPS height (in feet) above WGS84 ellipsoid. 

5. GPSAltitudeMSL 

GPS height (in feet) above Mean Sea Level. 

6. GPSGeoidSep 

Difference between GPSHeightAboveEllipsoid and GPSAltitudeMSL (HAE – AltMSL). 

7. GPSPositionSampleRate 

The variable provides the calculated mean sample rate of GPS positions and other GPS data.  

8. GPSSatellitesTracked 

Number of satellites from which almanac data is received. 

9. GPSSatellites 

Number of Satellites used in solution. Increases by 1 in GPSFixQuality is 2. The value is zero if 

no GPS. 

10. GPSSatellitesSeen 

http://192.168.10.1/getSituation
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GPS Satellites from which signal is received. 

11. GPSTurnRate 

The variable provides the calculated turn rate in deg/sec. The turn rate is calculated as the slope of 

the linear regression of GPS heading. 

12. GPSGroundSpeed 

Groundspeed from GPS converted to knots. 

13. GPSTrueCourse 

True flight course. Set to -999.9 if ground speed < 3knots. 

14. GPSVerticalSpeed 

GPS vertical speed in ft/s. Climbing is positive vertical speed.  

15. GPSLastValidNMEAMessageTime 

The last time a valid NMEA message was received. Set to Stratux Clock Time. 

16. GPSLastGPSTimeStratuxTime 

Previous Stratux Clock time at which all GPS time was recorded. 

17. GPSLastGroundTrackTime 

Stratux clock time after groundspeed and course has been computed. 

18. GPSLastFixLocalTime 

Stratux clock time recorded once fix and altitude is recorded and before ground speed and track is 

determined. 

19. GPSTime 

GPS time as is. Raw GPS time value. Date in format: YYYY-MM-DD and time in format: ‘hours: 

minutes: seconds’. [Note: Stratux Clock is set to GPS time when update required.] 

20. GPSFixQuality 
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Determines how the position fix of GPS has been computed. The value is dependent on NMEA 

information. 

Table 22: Description of ‘GPSFixQuality’ values. 

GPSFixQuality Value Description 

2 2D or 3D differential GPS used in computing fix 

1 2D or 3D GPS used in computing fix 

6 Dead reckoning or a combination of 1 GPS and dead reckoning used 

0 No fix or no GPS 

 

21. GPSVerticalAccuracy 

 If UBX ( i.e. GPSLastValidNMEAMessage first component reads PUBX) Vertical 

accuracy of GPS position fix reported to 1-sigma variation. It is twice the 

GPSHorizontalAccuracy. 

 If GPSLastValidNMEAMessage first component reads GNGSA or GPGSA, then vertical 

accuracy of GPS position fix is 5*(Vertical Dilution of Precision (vdop)). 

 When no GPS, the value is 999999 

22. GPSHorizontalAccuracy 

 If UBX ( i.e. GPSLastValidNMEAMessage first component reads PUBX) Horizontal 

accuracy of GPS position fix reported with 1-sigma variation.  

 If GPSLastValidNMEAMessage first component reads GNGSA or GPGSA, then 

horizontal accuracy is: 

o if GPSFixQuality is 2: 4*(Horizontal Dilution of Precision (hdop))  

o else: 8*(Horizontal Dilution of Precision (hdop)) 

 When no GPS, the value is 999999. 

23. GPSNACp 
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Horizontal accuracy of GPS position fix reported with 95% confidence (2-sigma) in variation (As 

per AC 20-165A).  

Table 23: Horizontal positional accuracy corresponding to ‘GPSNACp’ values. 

GPSNACp Value Accuracy Range 

11 Horizontal accuracy < 3m 

10 3m < Horizontal Accuracy < 10m 

9 10m < Horizontal Accuracy < 30m 

8 30m < Horizontal accuracy < 92.6m 

7 92.6m < Horizontal accuracy < 185.2m 

6 185.2m < Horizontal accuracy < 55.6m 

0 No GPS 

 

24. GPSLastValidNMEAMessage 

Last NMEA message processed. 

25. BaroTemperature 

Temperature from BMP 280 in degree centigrade. Note that, it provides temperature of immediate 

surrounding and in this case, the temperature within the Stratux box. Should not be used as OAT. 

26. BaroPressureAltitude 

Provides the ISA pressure altitude based on the local pressure sensed, since no correction applied. 

Used in computing Baro Vertical speed. 

27. BaroVerticalSpeed 

Vertical speed computed based on Barometric altitude. ‘dt’ is the delta time and set to 0.1. 

Parameter ‘u’ is used to set 5 sec decay time for rate of climb. 

𝐵𝑎𝑟𝑜𝑉𝑆𝑝𝑑 = 𝑢 ∗ 𝐵𝑎𝑟𝑜𝑉𝑆𝑝𝑑𝑝𝑟𝑒𝑣 + (1 − 𝑢) ∗ (𝑎𝑙𝑡 − 𝑎𝑙𝑡𝑝𝑟𝑒𝑣) ∗
60

𝑑𝑡
 

If sensor value not available, BaroVerticalSpeed is set to 99999. 

28. BaroLastMeasurementTime 
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Set to Stratux clock time 

29. AHRSPitch 

Euler Pitch angle computed based on Kalman Filter fusion of IMU (accelerometer & gyroscope) 

and GPS computed pitch. Up is positive. 

30. AHRSRoll 

Euler Roll angle computed based on Kalman Filter fusion of IMU (accelerometer & gyroscope) 

and GPS computed roll. Right turn is positive. 

31. AHRSGyroHeading 

Initialized to GPS True Course. 

Euler Heading angle computed based on Kalman Filter fusion of IMU (accelerometer & gyroscope) 

and GPS computed true course. 

32. AHRSMagHeading 

Euler Heading angle computed based on magnetometer reading. Even though this computation is 

performed, it is currently not in use since magnetometer calibration has not been implemented. 

Contains 3276.7 as a dummy value. 

33. AHRSSlipSkid 

Slip and Skid angle computed in degrees from Kalman Filter of IMU and GPS sensors. Right turn 

is positive. 

34. AHRSTurnRate 

Turn Rate computed in degrees per second from Kalman Filter fusion of GPS an IMU sensor data. 

Right turn is positive. 

35. AHRSGLoad 

Provides the load factor in ‘g’s. Computed using IMU sensors. 
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36. AHRSGLoadMin 

The minimum G-load experienced till the time of computation. If the next G-load is lower than 

existing GloadMin, GloadMin is updated. 

37. AHRSGLoadMax 

The maximum Gload experienced till the time of computation. If the next G-load is greater than 

existing GloadMax, GloadMax is updated. 

38. AHRSLastAttitudeTime 

Set to Stratux clock when either GPS is valid or when GPS calculated altitude is available. 

39. AHRSStatus 

This variable is a numerical representation of the state of the Stratux components contributing to 

AHRS computation and debugging. 

Table 24: Description of State Identification Numbers in the Stratux software. 

State Identification Number Description 

1 GPS ground track is valid. The aircraft is moving. 

2 IMU is enabled and working 

4 Pressure sensor is enabled and working 

8 AHRS Calibration in progress 

16 Logging to csv 

 

The AHRSStatus is a sum of one or more of the State identification numbers in the table above. 
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APPENDIX C: THE CONDITIONAL PROBABILITY TABLES OF THE 

STRATUX RISK CATEGORIES WHEN USING EQUATION(13 TO 

GENERATE THE RISK LEVELS 

Table 25: Conditional Probabilities of the Stratux RC matching the G1000 RC for RL derived 

from equation (13 for a hard limit of |19°| on the test data. 

 G1000 

No Risk Minor Risk Moderate Risk High Risk 

Stratux 

No Risk 0.9974 0.4922 0.1000 0.0056 

Minor Risk 0.0019 0.3281 0.2188 0.0038 

Moderate Risk 0.0007 0.1719 0.5438 0.0508 

High Risk 0 0.0078 0.1375 0.9397 

 

Table 26: Conditional Probabilities of the Stratux RC matching the G1000 RC for RL derived 

from equation (13 for the inner soft limit of |18.18°| on the test data. 

 G1000 

No Risk Minor Risk Moderate Risk High Risk 

Stratux 

No Risk 0.9959 0.3409 0.1026 0.0053 

Minor Risk 0.0028 0.5170 0.2205 0.0088 

Moderate Risk 0.0013 0.1364 0.5590 0.0544 

High Risk 0 0.0057 0.1179 0.9316 

 

Table 27: Conditional Probabilities of the Stratux RC matching the G1000 RC for RL derived 

from equation 12 for the outer soft limit of |19.83°| on the test data. 

 G1000 

No Risk Minor Risk Moderate Risk High Risk 

Stratux 

No Risk 0.9971 0.4643 0.1688 0.0020 

Minor Risk 0.0024 0.3571 0.1753 0.0020 

Moderate Risk 0.0005 0.1786 0.5519 0.0994 

High Risk 0 0 0.1039 0.8966 
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