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ABSTRACT

Vogel, James P. PhD, Purdue University, December 2018. On the Structured Eigen-
value Problem: Methods, Analysis, and Applications. Major Professor: Jianlin
Xia.

This PhD thesis is an important development in the theories, methods, and appli-

cations of eigenvalue algorithms for structured matrices. Though eigenvalue problems

have been well-studied, the class of matrices that admit very fast (near-linear time)

algorithms was quite small until very recently. We developed and implemented a

generalization of the famous symmetric tridiagonal divide-and-conquer algorithm to

a much larger class of rank structured matrices (symmetric hierarchically semisper-

able, or HSS) that appear frequently in applications. Altogether, this thesis makes

valuable contributions to three different major areas of scientific computing: algorith-

mic development, numerical analysis, and applications. In addition to the previously

stated divide-and-conquer algorithm, we generalize to larger classes of eigenvalue

problems and provide several key new low-rank update algorithms. A major con-

tribution the analysis of the structured eigenvalue problem. In addition to standard

perturbation analysis, we elucidate some subtle and previously under-examined issues

in structured matrix eigenvalue problems such as subspace contributions and secular

equation conditioning. Finally, several applications are studied.
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1. INTRODUCTION

As an illustration of the power of our techniques and how they fill a major need in the

scientific computing community, consider the important problem of clinical magnetic

resonance imaging (MRI). In one of the popular state-of-the-art methods for this

problem, one combines multichannel compressed sensing with parallel imaging [16]

and the result is a very large, dense (few zeros), and symmetric encoding matrix.

In these methods (and in many image processing problems), the bottleneck step in

terms of computational complexity and thus run time is performing a regularization

optimization, which at its heart involves computing the set of all eigenvalues of the

encoding matrix several times; where the diagonal of this matrix is updated at each

step of the regularization.

There are several ways to solve for these eigenvalues. Given that matrix is large

and dense, the algorithm to do this must be very general. For instance, consider the

vast set of eigenvalue algorithms in Demmel’s and Golub & Van Loan’s influential

numerical linear algebra textbooks [22, 33]. The only algorithms in this large collec-

tion that would work for the above regularization problem all require the use of either

reduction of the matrix to tridiagonal form, trace-minimization, or an LDLT factor-

ization and subsequent inertia-based bisection scheme. Each of these sub-routines

scales with O(n3) time complexity and O(n2) storage complexity, and thus are pro-

hibitively slow for large matrices.

Moreover, they do little or nothing to utilize the plethora of structure in the ma-

trices endemic to this image processing problem. As shown in [16], these encoding

matrices have hierarchical rank structure, and can be well-approximated by hierarchi-

cal semiseperable (HSS) matrices. This class of matrices will be formally defined in

following chapter, but heuristically the meaning both physically and algebraically is

straightforward. Physically, this corresponds to a system of n nodes where the interac-
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Fig. 1.1. The above figure is reprinted from [90]; it shows the HSS tree
for a given symmetric HSS matrix

tions between far-away or “far-field” nodes are much weaker than so-called“near-field”

interactions, and thus they can be accurately approximated with little computational

expense, much in the spirt of fast-multipole methods (FMM) [6,35].

Algebraically, they correspond to matrices where each off-diagonal block has a

rank r (relative to a tolerance τ) which is small compared to the matrix size n. To

be HSS, a matrix must also fulfill a hierarchical nesting property which allows it to

admit a nice tree structure and very fast operations. We express and discuss this

condition in the following chapter. Our algorithms take advantage of this structure

to run in O(r2n log2 n) time and with O(rn log n) storage.

While our algorithms are very fast, they are also extremely general and highly

(provably) accurate. Returning to the MRI problem above, it would certainly be

possible to customize a fast eigensolver for this problem (to our knowledge no such

algorithm exists), but it would be of little use to those outside of the medical imaging

community. The current state of “fast eigensolvers” finds itself in a relative stalemate

where scientists and engineers lack the mathematical expertise to customize eigen-

solvers for their applications and the matrix algebra community lacks the man-hours
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Fig. 1.2. A heuristic diagram of our general approximation strategy

to realistically derive algorithms for all of the important applications that rely upon

eigenvalues and spectral decompositions.

The solution is to design algorithms in“the middle” (see Figure 1.2 below), for

as large of a class of matrices as possible that still consistently and accurately admit

algorithms in near-linear time and storage. We strongly believe that HSS matrices,

and moreover the more general multi-layer hierarchically semiseparable matrix class

(MHS) are the matrix classes that provide the most advantages in terms of the fast

algorithms they admit, feasibility of rigorous analysis, suitability for high-performance

implementations, and vast size that touches applications in nearly every field of science

and engineering.

As one moves from right to left, the size of the class of matrices grows larger but

the type of algorithms that are stable and accurate for that matrix class grow slower.

We design algorithms for as large of classes of matrices as possible while still being

near-linear time. There is a direct relationship between HSS matrices and tridiagonal

or sparse matrices. This can be seen through the limit behavior of the eigenvectors

as the off-diagonal rank r goes to 1 or to n/2, and as such it is a natural intermediate

structure.

Returning again to our medical imaging example, it becomes clear that the ac-

curacy of these eigenvalue algorithms can be an extremely important topic in ap-

plications. With thousands of sets of spectra computed during the regularization

process [16], a seemingly small propagation of error could result in wild undulations

in the reconstructed image. Given the context of a clinical MRI, to be accepted into
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practice and thus useful, our algorithms must demonstrate extremely rigorous stabil-

ity and controllable accuracy results. Moreover, the structure of the decompositions

and the nature of error must be completely understood in order to bound error in

pathological cases. Even in far less life-and-death applications of eigensolvers, given

the fundamental role played by eigendecomposition as subroutines of scientific pro-

cesses, it is essential that they be rigorously analyzed in every aspect. This will be

the biggest contribution of this thesis; gaining fundamental insight into the analytical

nature of the structured eigenvalue problem.

Until recently, almost all near-linear time solvers (both for linear systems and for

eigendecompositions) were either unstable numerically or unable to be proven stable.

But within the past 10 years, work by Martinsson, Rokhlin, Xia, and others [49, 73,

91, 92, 95] have introduced stable near-linear time algorithms for structured linear

systems and the pertinent analysis to prove it. In this thesis, we introduce several

fast and stable eigensolvers for large classes of matrices and the supporting analysis.

Previously, there were very few such eigensolvers. The most notable such algorithm

is the symmetric tridiagonal divide-and-conquer algorithm of Gu and Eisenstat [39],

which is provably stable and accuracy and runs in O(n log n) time and storage. It

is currently very widely used and high-performance parallel implementations can be

found in standard eigenvalue packages such as SCALAPACK and ANASAZI. This

algorithm forms the basis of our work and will be introduced in the following chapter

along with some classical eigenvalue analysis tools and results.

However, HSS (and moreover MHS) matrices are a much larger matrix class than

tridiagonal. The smaller of the two classes, HSS, includes: banded matrices, Toeplitz

matrices, the discretization of most elliptic PDEs, many problems from areas such as

geophysics and electrical engineering, and can well-approximate matrices in countless

more applications. The generalization from tridiagonal to HSS is highly nontrivial.

In Chapter 3, we briefly discuss the HSSEIG algorithm which we introduced in our

recent paper [88]. In Chapter 2 we give some of the recent developments in numerical

linear algebra that allowed us to make such a novel generalization. These include
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hierarchical matrix techniques, randomized sampling, and structured perturbation

analysis.

One notable feature about many of the algorithms in this thesis, buoying our

ability to do rigorous analysis, is that many of the eigensolvers presented are so-

called “direct” solvers, rather than iterative. The name is a slight-misnomer, as it

can easily be shown using elementary Galois theory that any matrix of size larger

than 4 × 4 will not in general have eigenvalues representable in floating point. This

follows from the insolvability of the group A5, and in practice only the most trivial of

matrices have eigenvalues that are exactly representable on computers. As such, it is

a fact of life that all eigenvalue algorithms must have at least one iterative component.

The distinction then lies in where in the scheme of the algorithm the iterative

component(s) occur. If the outer-most loop is an iterative process, the entire algo-

rithm is referred to as iterative. This includes QR iterations, bisection, trace-min,

and most eigensolver the reader is likely familiar with. However, in some special

cases, most notably symmetric HSS and symmetric MHS matrices, we can perform

an eigendecomposition where only one small and relatively simple subroutine is iter-

ative. This can lead to many benefits, such as less reliance on convergence criteria

and knowledge of the underlying structure. But the best benefit is that this greatly

facilitates rigorous analysis of the algorithm. To better illustrate the idea of a “direct

solver,” we discuss the famous result of Golub [32] for the eigenvalues of a diagonal

matrix plus a symmetric rank-one update. Let D be a diagonal matrix ∈ Rn×n and

v ∈ Rn×1. We wish to

find {λi} such that (D + vvT )x = λix for some x ∈ Rn×1, x 6= −→0 (1.1)

To find the exact eigenvalues {λi} satisfying (1.1), one would need to find the

determinant det(D + vvT − Iλ). For a general matrix, analytically determining the

determinant requires factorial time, which is infeasible computationally. This is why
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the eigenvalues are often approximated via an iterative method. But with a few lines

of clever algebra, one can show that is determinant is equivalent to

f(λ) = 1 +
n∑
i=1

vni
di − λ

. (1.2)

.

Without loss of generality (for we can deflate the problem if necessary), assume

that vi 6= 0 for i = 1, 2, ..., n, and that each eigenvalue of our original problem is

unique, then by definition our eigenvalues are the values of λ satisfying

det(D + vvT − λI) = 0.

We then note that

det(D + vvT − λI) = det(D − λI)det(I + (D − λI)−1vvT )

=
n∏
i=1

(di − λ)

(
1 +

n∑
i=1

u2
i

(di − λ)

)
,

and we have (1.2) above.

As will be shown in the following chapter, there are several methods to solve this

equation very consistently, accurately, and efficiently. While an iterative method must

ultimately be used for this subroutine, it can be a relatively simple, well-understood,

and very well-analyzed iterative method. And if finding the zeros of (1.2) is the only

iterative procedure in the entire eigenvalue algorithm (which is the case for many of

the eigenvalue algorithms presented in this thesis), we are able to exercise a wonderful

amount of control over the relevant analysis.

Returning once more to the the medical imaging application, we note that while

HSSEIG can be applied to many regularization optimization encoding problems, in

some cases the off-diagonal rank r is fairly large, around
√
n. This gives HSSEIG

quadratic time-complexity instead of the aspired near-linear time (the complexity of

this algorithm is described in more detail in Chapter 4). Thus, the clinical MRI

example provided motivation to generalize our algorithms to even larger classes of

structured matrices. One important such class is the aforementioned MHS matrices,
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recently introduced by Xia [94]. These have a multi-layer structure, which nests

an HSS matrix within an HSS matrix, and in this way allows us to solve high-

dimensional problems still in near-linear time. It is also possible to generalize HS-

SEIG to non-symmetric matrices and generalized eigenvalue problems, and Chapter

3 we discuss extending the HSSEIG algorithm non-symmetric HSS and generalized

eigenvalue problems. This large variety of structured eigenvalue algorithms will allow

problems from wide-ranging disciplines to be studied.

With this in mind, while we are excited that future work on MHS eigenvalue

algorithms will allow us to solve important problems in medical imaging extremely

quickly, accurately, and in a provably stable way, this is merely one example of the

power of our work. The classes of matrices are extremely general, and thus their

comprehensive analysis illuminates stability issues both within a plethora of their ap-

plications, and outside of them. By this, we mean that we can apply our eigensolvers

as extremely fast preconditioners to general sparse problems, and given the surfeit of

analysis on the eigenvalue perturbation and distributions, we will be able to give very

rigorous bounds on how well the matrices have been preconditioned.

Finally, we note that these algorithms all have the potential for very high-performance

implementations. Already, we have managed to implement HSSEIG in such a way

that it scales like O(n log3 n) for large classes of HSS matrices, and can be accurate

to any user-specified tolerance, even machine precision in some cases. Indeed, there is

likely much future work which can follow from this research program, as will be dis-

cussed in Chapter 6. This thesis seeks to lay a sound foundation; in each of algorithm

development, numerical analysis, and applications, for that research program.
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2. BACKGROUND MATERIAL

2.1 Foundations

At the very heart of structured eigenvalue computation is a very old idea: per-

forming a rank-one update to a symmetric eigenvalue problem. We first review this

in 2.1.1. In the section following we discuss how this idea was leveraged by Cuppen,

Gu, and others in the 1980’s and 1990’s to design novel eigensolvers for symmetric

tridiagonal matrices. As we seek more general algorithms, we briefly discuss the is-

sues at play when generalizing to a multi-rank update in 2.1.3. Finally, in 2.1.4, we

give some important classical eigenvalue perturbation theory and results, which we

expand upon in our own analysis work in this thesis.

2.1.1 Fast rank-one update to the symmetric eigenproblem

An important underlying subroutine in many of the algorithms in this thesis is the

rank-one update to the symmetric eigenproblem. This problem is well studied. We

are able to consistently compute an update stably and accurately in O(n) complexity.

We follow the same algorithm as in [88] where details can be found, but here review

the important concepts.

Suppose that A is a real and symmetric n× n matrix with a known eigendecom-

position A = QΛQT . Further suppose that z is a real n× 1 vectors and that we wish

to solve for all eigenvalues of the symmetric matrix Â = A+ zzT . It is shown in [101]

that this is equivalent to solving for the eigenvalues of the matrix

Λ + vvT , where v = QT z. (2.1)
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This is a diagonal matrix plus rank-one update, and is very inexpensive compu-

tationally. It was shown in the previous section that solving for all eigenvalues of

Λ + vvT is equivalent to solving for all zeros of the secular equation

f(λ) = 1 +
n∑
j=1

v2
j

Λj,j − λ
. (2.2)

There are several ways to solve this equation efficiently. One of the most popular

methods, which is employed often in the algorithms presented in this thesis, is to

solve the secular equation via the rootfinder of Li [64]. The reason it is employed here

is because it allows us to utilize the interlacing property of the eigenvalues and poles

in the rank-one update problem to have superior stability properties. We are forced

to employ specific stability checks for the final root, but as it is for one root this does

not affect our overall complexity [88].

This root finder also admits acceleration via the Fast Multipole Method (FMM)

[6, 35], which allows linear complexity time and storage. In the FMM, we have a

function of the form

ϕ(ξ) =
n∑
j=1

cjϕ(ξ − ξj)

where ϕ(x) is either log(x), 1/x, or 1/x2, and we wish to evaluate the function

at m points. While standard evaluation gives quadratic complexity, the FMM gives

O(m+ n), while still being accurate to machine precision.

The eigenvectors of Λ + vvT also take on a simple form

xj =
(λjIn×n − diag(λ))−1v

‖(λjIn×n − diag(λ))−1v‖
. (2.3)

However, computing these vectors explicitly is an O(n2) operation, so the eigenvec-

tor matrix is seldom formed explicitly in efficient implementations of the divide-and-

conquer algorithm. Fortunately the Cauchy-like form of these eigenvector matrices

gives a convenient compressed storage.

One major issue that must be resolved to preserve the algorithm’s stability is that

if there exists λ, µ such that |λ − µ| is small, rapid loss of orthogonality will occur

as shown in [24]. However, if as proposed in [39], we instead solve for the exact
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Fig. 2.1. A tridiagonal matrix split into blocks with a rank-one update

eigenvalues of a slightly perturbed problem Λ + v̂v̂T , we have backwards stability

and orthogonality is preserved. The vector v̂ needs to computed with the following

formula:

v̂k =

( ∏k−1
j=1(Λk,k − λj)

∏n
j=k(λj − Λk,k)∏k−1

j=1(Λk,k − Λj,j)
∏n

j=k+1(Λj,j − Λk,k)

)−1/2

(2.4)

In this way, we can consistently update the symmetric eigenproblem in a stable

and efficient manner, and we utilize this frequently in our work.

2.1.2 The tridiagonal divide-and-conquer algorithm

These ideas can be used to efficiently solve for all eigenvalues of a large symmetric

and real matrix the can be expressed as a hierarchy of diagonal (or more generally

block diagonal) matrices and a set of rank-one (or more generally rank-r) updates.

The simplest case of this is when the matrix is tridiagonal. Suppose that A is an

n× n real, symmetric, and tridiagonal matrix.

A =


a1 b1

b1
. . . . . .

. . . an− 1 bn−1

bn−1 an

 . (2.5)
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Then we can write A as the sum of a block diagonal matrix and a rank-one update,

as in Figure 2.1.

Further suppose that the spectral decompositions Ã1 = Q1Λ1Q
T
1 and Ã2 =

Q2Λ2Q
T
2 have been computed. Then we have that

A =

 Q1

Q2

 Λ1

Λ2

+ βzzT

 QT
1

QT
2

 , (2.6)

where zT = (qT1 , q
T
2 ), with qT1 the last row of Q1 and qT2 the first row of Q2.

The matrices Ai, i = 1, 2 can also be divided recursively, finding the eigenvalues of

Ã1 and Ã2 by further subdivisions with rank-one updates, and so on. In this was, an

n×n eigenvalue problem can be reduced to a set of m×m eigenvalue problems with

a set of rank-one corrections, where m << n is a number small enough where the

computational cost of solving the eigendecompositions of size m×m directly is small

compared to the cost of the whole algorithm. This idea was first proposed in [21] and

was formulated in a fast and stable way in [39]. The algorithm in [39] forms much of

the theoretical basis for this thesis.

2.1.3 Fast multi-rank update to the symmetric eigenproblem

However, to fully generalize the work of Gu and and others, it is not sufficient

to consider just rank-one updates. Instead, we must consider multi-rank (rank k)

updates where 1 < r << n, though in practice r may be on the order of several

thousand for sufficiently large n. There has been significant work done in this area,

but no existing algorithm had suitable accuracy, efficiency, and stability properties, so

we opted to write our own. This multi-rank update algorithm is a significant portion

of this thesis. In this section we briefly describe what make this subroutine difficult

to perform in practice, what has been tried to solve it historically, and the weaknesses

of the historical algorithms that we will improve upon.



12

One of them most common methods to solve a multi-rank update historically has

been to break the rank-r update into r rank-one updates. Mathematically, we have

that

Â = Λ + ZZT = Λ +
r∑
i=1

ziz
T
i .

It is a known result [13, 22] that finding the eigenvalues of a rank-one update to

a diagonal matrix is mathematical equivalent to solving for the roots of the secular

equation

f(λ) = 1 +
n∑
j=1

vi(j)
2

Λ(j, j)− λ
. (2.7)

This method of multi-rank update by multiple rank-one updates hasO(rn) compu-

tational complexity and is very accurate for well-separated problems, that is problems

where the gaps between all eigenvalues is sufficiently large. However, for clustered

eigenvalues, it has poor stability. This stability issue will be further discussed in

subsequent chapters. Moreover, it is an inherently sequential process, while it may

admit a pipelining process, a true distributed memory implementation would require

a different approach. This method is highly recommended if a user has a problem

they wish to solve sequentially on well-separated problems, but in other cases our

new method may be a superior approach.

Before describing the second common family of methods, we point out how the

intuitive generalization approach does not work in this case. By this, we mean we

wish to examine how the secular equation is derived, and if a similar approach could

be used to derive a more general secular equation for a multi-rank update. It is

shown in several places such as [22] that the secular equation is derived from a simple

determinant expansion. If one takes this process one step further, another satisfactory

result is achieved. It is shown in a few places such as [2] that the secular equation for

a rank-two update is
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f(λ) =
n∑
q=1

n∑
r=q+1

(v1qv2r − v1rv2q)
2

(λ− dq)(λ− dr)
−

n∑
q=1

v2
1q + v2

2q

λ− dq
+ 1. (2.8)

However, if we examine the above equation and consider what the determinant

expansion of a general multi-rank update would look like, we see that the number of

terms is O(r!n), not O(rn) as one might hope. With this in mind, the approach is

inferior to most standard eigendecomposition techniques, and cannot be used in the

multi-rank case.

The second popular approach are called inertia-bisection based approaches. These

rely on Sylvester’s Inertia Theorem [72], which tells us that for any symmetric matrix

A and invertible matrix L, the inertia or number of positive and negative eigenvalues

is the same for A and for D with A = LDLT . Often for a low-rank update an LDLT

factorization is much cheaper to compute than an eigendecomposition. This can be

exploited to quickly evaluate the inertia of A with many shifts, and thus locate the

eigenvalues using a bisection scheme. In the presence of further structure, it is shown

such as in [90] that an inertia-bisection approach can be done in a fast and structured

way. But there is a natural bottleneck in this approach of O(n2) computational

complexity, and therefore it is unsatisfactory for our purposes.

In this thesis, we seek an algorithm that both is computationally superfast, or in

nearly linear time complexity, but also has excellent data locality for parallelization

and remains stable in the presence of clusters. To do this we use a fundamentally

different approach in using a quasi-Newton optimization approach, with highly struc-

tured formulations and algebraic expansions to increased efficiency and an inverse

eigenvalue problem to preserve orthogonality. We will say much more about quasi-

Newton methods and how to effectively compute a multi-rank update in Chapter 3.

Moreover, Chapter 4 will give detailed convexity and complexity analyses of our new

methods.
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2.1.4 Classical eigenvalue perturbation analysis

The comprehensive analysis proposed for this thesis will rely heavily on novel new

analysis techniques for the matrix eigenvalue problem, but these techniques all stem

from and take their spirit from the rich literature of classical eigenvalue perturbation

analysis. And in fact, a result from almost 70 years ago is used notably in our

preliminary analysis. This is Weyl’s Theorem [102], which states that if M, H, and

P are symmetric matrices with M = H + P, where the eigenvalues of these three

matrices are respectively {λ1 ≥ ... ≥ λn}, {ν1 ≥ ... ≥ νn}, and {ρ1 ≥ ... ≥ ρn}, then:

νi + ρn ≤ λi ≤ νi + ρi for all i = 1, ..., n

It is useful to use as it gives a rough but universally applicable bound on the shift

of eigenvalues after a symmetric rank-one update, a subroutine frequently performed

in our algorithms. Another extremely powerful eigenvalue analysis theorem that

we often employ is due to Sylvester [80]. This theorem states that for any invertible

matrix P such that PAP T = S, then the number of eigenvalues with positive, zero, or

negative parity respectively is the same for matrices P and S. This so-called “Inertial

Theorem” has powerful ramifications for fast bisection methods that still prove very

useful to us. There is an excellent collection of classical results such as these in

Wilkinson’s monograph on the matrix eigenvalue problem [101].

More still, there are several important results from the later 20th century that look

slightly deeper in the structure of matrices to develop tighter bounds on eigenvalue

perturbation. Many such as Paige [69] showed how in the case of well-separated

eigenvalues, the effects of perturbations will be lessened and problems are more stable.

Several papers such as [7, 10] utilized the notion of invariant subspaces to better

analyze the spectrum. This technique can be generalized and will be used extensively

in this thesis. The textbooks of Parlett [72] and Watkins [100] give a complete

recounting of the important classical perturbation results for the symmetric and non-

symmetric eigenvalue problems respectively.
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Fig. 2.2. Predecessors and precursors to the HSS matrix

2.2 Recent developments

In this section we give some more recent theoretical and computational develop-

ments in the field of numerical linear algebra that have had a direct impact on this

thesis work. The two most important are those of hierarchically semiseparable (HSS)

matrices and randomized techniques. We also briefly mention some recent develop-

ments in parallel computing here. Parallel numerical linear algebra has been around

for decades, but there are some special nuances that arise when applying parallelism

to randomized or hierarchical algorithms.

2.2.1 Hierarchically semiseparable matrices (HSS)

The notion of a hierarchical matrix dates back to the 1980’s. The earliest vari-

ants were those developed by particle physicists for the n-body problem, who noticed

that far-field interactions were weaker and needed less information to be represented
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accurately. Notable early work on this was done by Barnes and Hut [5, 25], with

a major breakthrough being the Fast Multipole Method (FMM) of Greengard and

Rokhlin [6,35], which in many ways laid the foundation for hierarchical matrix com-

putations for years to come.

Many aspects of hierarchical matrix algebra, such as nested dissection [30] and

the multi-frontal technique [26], come from the computational partial differential

equation (comp. PDE) community. Wolfgang Hackbusch, considered by many to be

the founder of the modern hierarchical matrix algebra research area, had previously

done pioneering work in comp. PDE’s through his work in multi-grid methods [42].

Around the turn on the 21st century, Hackbusch, introduced the numerical linear

algebra community to the H-matrix [43], which combined hierarchical matrices with

the formalism of an algebra and was one of the biggest developments in the history

of hierarchical matrices. H− matrices were studied extensively in the first ten years

of the 21st century [44,46].

Hierarchical matrix algebra also relies heavily on methods of algebraic compres-

sion, and there was much work in this area by the numerical linear algebra community

in the 1990’s. Some pioneering work in this area was done by Tyrtshnikov [83, 84].

Subsequently Gu and Eisenstat introduced the rank-revealing QR decomposition [40],

which became ubiquitous in hierarchical matrix computations. It is still widely in use

albeit in new randomized forms.

A final precursor to the HSS formalism we study is the separable nesting property

of matrix row and column basis. This property occurs naturally in matrices arising in

many applications, but perhaps nowhere is it more pronounced than in control prob-

lems arising from electrical engineering applications. These problems were efficiently

solved by sequentially semiseparable matrix representations by Chandraskekaran and

others [18].

Finally, this leads us to the hierarchically semiseparable (HSS) matrix representa-

tion, which is the one mostly studied in this thesis. It is formally defined below. We

should also note there are other popular nested hierarchical matrix alternatives to the
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HSS form currently in use. The two most notable being the H2 [45,47] matrix and the

inverse fast multipole method (IFMM) [1]. We choose to focus on the HSS formalism

here due to its superior stability properties, amongst other convenient features.

Definition 2.2.1 Hierarchically Semiseparable Matrix: Suppose that T is a

full postordered binary tree with 2k − 1 nodes. Further suppose that A is an n × n

real matrix defined hierarchically such that at each node i of T there exist matrices

Di, Ui, Vi, Ri, Wi, and Bi (called HSS generators) satisfying the following relations

for i = 1, 2, ..., 2k − 1 :

Di
∼= A|ti×ti =

 Dc1 Uc1Bc1V
T
c2

Uc2Bc2V
T
c1

Dc2

 ,

Vi =

 Vc1

Vc2

 Wc1

Wc2

 , Ui =

 Vc1

Vc2

 Rc1

Rc2

 .

Let

A−i =
(
A|ti×tci A|ti×tri

)
, A

|
i =

 A|tci×ti
A|tri×ti

 .

The blocks A−i and A
|
i are called the HSS block row and column associated with node i,

respectively.The maximum numerical rank of al HSS blocks is called the HSS rank of

A, denoted by r. Note that for HSS matrices, the optimal size for the leaf-level blocks

is approximately 2r, where r is the HSS rank of the matrix. In the case that A is a

symmetric matrix, we also have the relations that Ui = Vi for all i, Ri = Vi for all i,

and Bi = BT
j , where node j is the sibling of node i.

Algorithms have recently been developed by Gu, Xia, and others that compute

HSS matrix factorization, multiplication, inversion, etc. in a way that is both stable,

very accurate, and extremely fast [91–93,95]. However, until very recently, there was

little literature on how to quickly compute the eigendecomposition of an HSS matrix.

Recently, a novel algorithm based on a fast LDL factorization and an inertia-based

bisection scheme was introduced [90] and used to find a small subset of the eigenvalues

of an HSS matrix in O(n) time or all eigenvalues in O(n2) time. While this was an
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Fig. 2.3. Heuristic illustration of a basic randomized sampling procedure

extremely important step in the evolution of structure eigenvalue algorithms, it fails

to achieve near-linear complexity, and also does not give gives the eigenvectors of

the HSS matrix or various other spectral decompositions. Still, the analysis in [90]

provides many interesting ideas which we expand upon in this thesis.

2.2.2 Randomized sampling

Randomized sampling is an extremely valuable tool-box within numerical linear

algebra, that has been around for a long time but is only now starting to be well-

understood and be rigorously analyzed. The main idea is that if we have massively

large matrices such that they are either too large to store in memory or very slow to

store, then if we carefully sample a subset of the rows or columns (or more generally

blocks or elements), then we can construct a new smaller matrix that is close to the

original matrix with respect to norms with high probability.

This idea was first introduced over 60 yeas ago by Ulman and Von Neumann [27].

It is now used widely in many areas of numerical linear algebra, such as machine

learning [60], high-performance computing [3], and theoretical computer science [23].

Recently, it has been extended to aid in the fast (near-linear time) construction

of hierarchical forms (such as HSS) to well-approximate a matrix. This was first
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introduced by Rokhlin [69], and there is a very nice survey by Halko, Martinsson,

and Tropp [43] which illustrates some of the novel ways randomized sampling can be

applied to hierarchical matrix algebra problems.

In the case of HSS matrices, it was shown in [97] that a Toeplitz matrix admits

an HSS construction in near-linear time. This was further extended to work on fast

eigensolvers in [90]. The eigenvalue algorithms in [90] are O(n2) time complexity, but

they do well to illustrate the power of randomization in rank-structured eigenvalue

algorithms. Most notably, a recent paper by Gu [38] utilizes tools from randomized

sampling and invariant subspaces to quickly compute a Singular Value Decomposition

(SVD) of a matrix, if only the top part of the spectrum is required.

Perhaps the most notable recent development in randomized sampling is in its

analysis, and we will make lots of use of these developments in this thesis. This

analysis centers largely around so called “concentration inequalities” which provide

probabilistic bounds on how a random variable deviates from its expectation. Com-

mon concentration inequalities include Markov’s inequality, Chebyshev’s inequality,

and Bernstein’s inequality. The latter plays in a very important role in randomized

numerical linear algebra, and thus we state a special case useful to our work. Let

X1, ..., Xm be independent Bernouli random variables taking values ±1 with equal

probability. Then for every ε > 0 :

P{| 1
n

n∑
i=1

Xi| > ε} ≤ 2 exp{− nε2

2(1 + ε/3)
}. (2.9)

Using these types of concentration inequalities and their generalizations, many

authors have recently been able to prove powerful results on the high success prob-

abilities of their stochastic algorithms, essentially allowing users to treat their codes

as deterministic; albeit it much faster [11,20,52]. We will make use of these ideas and

expand upon them throughout this thesis.
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2.2.3 Modern parallel computing

Though parallel computing has been around for decades, it is still a rapidly de-

veloping field. An excellent recently published text by Gallopoulos, Phillipe, and

Sameh [29] does very well to illustrate the current state of parallel computing, to

highlight the recent development, and to elucidate the major strategies by which

these types of algorithms can be analyzed. We make extensive use of this reference.

The aforementioned tridiagonal divide-and-conquer algorithm, which forms the basis

of our work, has been effectively parallelized for over a decade [81].

Moreover, the HSS structures targeted by many of our algorithms also have huge

potential to be parallelized. In the cases of parallel HSS construction, parallel ULV

factorization, and parallel HSS linear system solutions, this has already been done

[99]. Moreover, such algorithms are currently being developed for distributed memory

environments [74, 98]. This gives us much reason to be believe that our eigensolvers

will enjoy similar parallizability properties. These papers also perform significant

analysis of the communication costs of these parallel algorithms, giving us a natural

benchmark when performing parallel analysis on our high-performance eigensolvers.

We pay particular attention to the study of process grids for HSS matrices in [98].

They consider the relationship between different process grids due to the interaction

between parent and children grids. In the case that Gi = Gc1 ∪Gc2 , |Gc1| = |Gc2|, the

children process grids can have the same shape and the parent grid can be generated

by combining the two smaller grids. This previous work in parallel HSS algorithms has

reduced the redistribution cost to a pairwise exchange. This choice of process groups

demonstrates a pursuit of utilizing every processing unit. An alternative approach

reduces the redistribution cost into a pairwise exchange type as well. This choice

bounds the the communication cost in each group while allowing some idling. In our

implementation, we will combine the two techniques, and this will give more control

over the size of the process grid on each level.
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Fig. 2.4. The above figure is reprinted from from [95]; it shows an illustra-
tion of a switching level (here denoted by ls) in the context of supernodal
elimination

Much or our high-performance computing work focused on implementing and

analyzing adaptive processes for detecting and utilizing matrix structure with however

much or little information about the matrix the user provides. A lot of work in this

area has already been done, mostly in the context of randomized HSS construction

such as in [90]. These papers show that we do not a priori require any information

about the rank-structure of a matrix in order to construct a compact HSS or MHS

representation.

A particularly important idea is that of the switching level. This concept is that

within an HSS tree, at lower levels it will be faster to use standard numerical linear

algebra techniques but at higher levels it will be much faster to use hierarchical

techniques. Determining where the optimal location to put this switching level is a

major factor in optimizing any HSS or MHS algorithm. We illustrate this idea with

the above picture, an example from [95].
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Switching levels play a vital role in the algorithms introduced throughout this

thesis. While no parallel implementation is included in this work, one is in progress

and results will be communicated through future work. In the future, in addition to

rudimentary parallelization, it may also be possible to do more sophisticated modern

computing techniques such as through the use of GPUs, communication-avoiding al-

gorithms, error-resistant algorithms, and more adaptive implementations. Moreover,

as the field of high-performance computing continues to develop this research program

will make sure to utilize the latest cutting edge tools and trends.
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3. METHODS FOR THE STRUCTURED EIGENVALUE

PROBLEM

3.1 Superfast divide-and-conquer eigenvalue algorithm

The basis for our divide-and-conquer algorithm is the tridiagonal divide-and-

conquer algorithm discussed in the introduction. As we describe the generalization in

detail in this section, we first succinctly state the full algorithm below so that it can

be referenced compared to the superfast divide-and-conquer below. Note that in the

divide stage, instead of a trivial subtraction of individual matrix elements at each tree

node, we must transform a set of B and D generators as each node is visited. There

is a similar increase in problem difficulty in the conquer. Instead of performing a

sequence of single-rank updates, we must perform a sequence of multi-rank updates.

But first we discuss a vitally important implicit pre-processing step. It is obvious

that a tridiagonal matrix is already in a native data structure that allows for fast

computation. However, in contrast, the full HSS case must often be transformed to

a nearby problem to take advantage of data sparsity.

3.1.1 Construct

The algorithm can be used to quickly compute the eigendecomposition of matrices

with the low-rank property. These types of matrices arise in various fields, and their

HSS forms (or approximations of these forms) can be constructed with a variety of

different strategies. If the numerical values of the individual matrix entries is the

extent of what we know about the matrix, then a direct HSS construction [95] may

be used. In practice, this is usually unnecessary. Often, fast algebraic or analytical

methods can be employed for the construction of the HSS matrix, and the cost is about
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Algorithm 1 Tridiagonal divide-and-conquer

1: procedure (Input: matrix A; output: eigenvalue vector λ)

2: for level i from 0 to s− 1 do . s ≤ log2 n

3: for block diagonal matrices j from 1 to 2i do

4: Partition Aj =

 Aj,1 0

0 Aj,2

+ βzzT

5: Store scalar β

6: end for

7: end for

8: for block diagonal matrices j from 1 to 2s do

9: Directly solve for eigendecomposition of j such that Aj = QjΛjQ
T
j

10: end for

11: for level i from s− 1 to 0 do

12: for block diagonal matrices j from 1 to 2i do

13: Form Λ + βzzT from Q’s, Λ’s, β from previous level

14: Solve secular equation to obtain eigenvalues Λ of (Λ + βzzT )

15: for eigenvalue k from 1 to size(Q) do

16: Column k of Q′ = (λkI−Λ)−1z
‖(λkI−Λ)−1z‖

17: end for

18: Form last or first row of Q =

 Q1 0

0 Q2

Q′ . if j is odd/even resp.

19: end for

20: end for

21: λ = diag(Λ)

22: end procedure

This algorithm is O(n2) as shown or O(n log n) if accelerated with the FMM. The

most expensive steps are 14, 16, and 18, which are all O(n2) or O(n log n) with FMM.

O(n) or less. For example, for banded matrices, an HSS form can be constructed
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adaptively. For Toeplitz matrices, the HSS construction can be done in nearly O(n)

flops with the help of randomized methods. These are explained as follows.

If A is banded with blocks Ajj on the main diagonal and Aj,j+1 on the first block

superdiagonal, then the HSS generators look like [91]

Di =


Aj−1,j−1 Aj−1,j

Aj,j−1 Aj,j Aj,j+1

Aj+1,j Aj+1,j+1

 , Ui =


I 0

0 0

0 I

 ,

Rc1 =

 I 0

0 0

 , Rc2 =

 0 0

0 I

 , Bc1 =

 0 0

Aj+1,j+2 0

 ,

where the zero and identity blocks have sizes bounded by the half bandwidth. Thus,

the bandwidth of A determines its off-diagonal rank bound r.

Our algorithm can also be applied to Toeplitz matrices, and may be modified

for other structured matrices (Toeplitz-like, Hankel, and Hankel-like) with the aid

of displacement structures [31, 37, 50, 63, 70]. In fact, the rank structure of Toeplitz

matrices in Fourier space is known as follows.

Theorem 3.1.1 [61, 71] For a Toeplitz matrix A, let C be a Cauchy-like matrix

resulting from the transformation of T into Fourier space through the use of displace-

ment structures. Then the off-diagonal numerical ranks of C are O(log n) for a given

tolerance.

In particular, to preserve the symmetry as well as the real entries [61], we use the

following Cauchy-like form:

C = FnAF∗n, (3.1)

where Fn is the order-n normalized inverse discrete Fourier transform matrix. C

can be approximated by an HSS form via a randomized HSS construction [90]. This

construction is based on fast Toeplitz matrix-vector multiplication and randomized

low-rank approximation, and costs O(n log2 n).

For applications involving simple discretized kernel matrices, multipole expansions

may be used to construct the HSS form [14].
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For practical problems such as Toeplitz matrices, a dense matrix A is approxi-

mated by an HSS form Ã first. We thus study the impact of off-diagonal compression

on the accuracy of the eigenvalues and verify that the accuracy is well controlled by

the approximation tolerance (and the FMM accuracy which, as an implementation

issue, can be made very high and is not discussed). The study can be viewed as

structured perturbation analysis for Hermitian eigenvalue problems. Previously, for

special cases such as tridiagonal or banded A, there have been various studies on

whether a small off-diagonal entry or block can be neglected [48,54,57,69,103]. Here

for dense A, we are only truncating the singular values of the off-diagonal blocks. A

significant benefit of an HSS approximation is to enable us to conveniently assess how

the off-diagonal compression affects the accuracy of the eigenvalues.

3.1.2 Divide

An n×n symmetric HSS matrix A has the following form [18,95]. Let T be a full

postordered binary tree with k nodes i = 1, 2, . . . ,k, and each node i is associated

with a contiguous index set ti that satisfies tk ≡ {1 : n} and ti = tc1∪ tc2 , tc1∩ tc2 = ∅

for each nonleaf node i with children c1 and c2 and c1 < c2. The matrix A is in a

symmetric HSS form if there exist matrices Di, Ui, Ri, and Bi (called HSS generators)

corresponding to each node i of T , such that

A|ti×ti ≡ Di =

 Dc1 Uc1Bc1U
T
c2

Uc2B
T
c1
UT
c1

Dc2

 , (3.2)

Ui =

 Uc1

Uc2

 Rc1

Rc2

 , (3.3)

where A|ti×tj denotes a submatrix of A selected by the row index set ti and column

index set tj. Clearly, Ui is a basis matrix of an off-diagonal block (where we assume

Ui has full column rank). It is usually said to be a nested basis (matrix). Since

Bc2 = BT
c1

, we usually do not mention Bc2 .

For notational convenience, we make the following assumptions:
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• unless otherwise specified, we use c1 and c2 for the left and right children of a

nonleaf node i, respectively;

• assume the rank of each off-diagonal block Uc1Bc1U
T
c2

is (bounded by) r; more

specifically, the order of Bc1 is (bounded by) r;

• par(i) and sib(i) denote the parent and the sibling of a node i in the HSS tree

T , respectively;

• k is the root of T .

Let

A−i =
(
A|ti×tci A|ti×tri

)
, A
|
i =

 A|tci×ti
A|tri×ti

 . (3.4)

The blocks A−i and A
|
i are called the HSS block row and column associated with node

i, respectively. The maximum numerical rank of all HSS blocks is called the HSS

rank of A, denoted by r in this paper. Note that for HSS matrices, the optimal size

for the leaf-level blocks is 2r [92], where r is the HSS rank of the matrix. As such,

this is the block size we used in our algorithm.

In our superfast DC method, the HSS matrix is divided into a block diagonal

matrix (with smaller HSS diagonal blocks) plus a low-rank update. The eigenvalues

and eigenvectors are recursively computed, with the major computations accelerated

by FMM.

In the “dividing” stage, we recursively write the HSS matrix A as the sum of a

block diagonal matrix (with two HSS diagonal blocks) plus a rank-r update.

Let i be a nonleaf node of T , and DC is applied to Di. If i = k, then this is to

divide the overall matrix A. It is clear that we can rewrite in the following form:

Di =

 Dc1

Dc2

+

 Uc1

Uc2

 Bc1

BT
c1

 UT
c1

UT
c2

 .
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If we further compute an eigendecomposition of

 Bc1

BT
c1

, this would result in

a rank-2r update to diag(Dc1 , Dc2). However, it turns out that we can write a more

compact low-rank update, instead:

Di = diag(D̃c1 , D̃c2) + ZiZ
T
i , (3.5)

where

D̃c1 = Dc1 − Uc1U
T
c1
, D̃c2 = Dc2 − Uc1B

T
c1
Bc1U

T
c2
, (3.6)

Zi =

 Uc1

Uc2B
T
c1

 .

That is, by modifying the diagonal blocks, we can write Di as a rank-r update to

diag(D̃c1 , D̃c2). Note that this is much more preferable, since the diagonal blocks can

be quickly updated with our scheme below. On the other hand, the later conquering

stage is usually a much more expensive process, and a rank-2r update would double

its cost.

A critical issue is then to preserve the HSS structure in the dividing step, so

that the HSS ranks of D̃c1 and D̃c2 do not increase. In fact, the HSS forms of D̃c1

and D̃c2 can be quickly updated based on those of Dc1 and Dc2 , respectively. This

follows from the property of the nested basis Ui. Similar structure updates have been

exploited previously in HSS factorization and inversion [93, 95, 96]. Here, we show

how to perform the HSS update in a more intuitive way.

Theorem 3.1.2 For the nested basis Ui associated with node i, let H be a square

matrix with size equal to the column size of Ui. Then UiHU
T
i is an HSS matrix, with

the HSS generators D̂j, Ûj, R̂j, B̂j for j = 1, 2, . . . , i− 1:

Ûj = Uj, R̂j = Rj, (3.7)

B̂j = Rj(Ril · · ·Ri1)H(Ril · · ·Ri1)
TRT

sib(j), (3.8)

D̂j = UjRj(Ril · · ·Ri1)H(Ril · · ·Ri1)
TRT

j U
T
j , (j: leaf), (3.9)

where j→ il → · · · → i1 → i is the path connecting j to i.
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Proof A construction procedure in [95] may be used to show this, but a more natural

proof is by induction. That is, let Ti be the subtree of T with root i. The induction

is done on the number of levels of Ti.

If Ti has two levels,

UiHU
T
i =

 Uc1Rc1

Uc2Rc2

H
(
RT

c1
UT
c1

RT
c2
UT
c2

)
(3.10)

=

 Uc1(Rc1HR
T
c1

)UT
c1

Uc1(Rc1HR
T
c2

)UT
c2

Uc2(Rc2HR
T
c1

)UT
c1

Uc2(Rc2HR
T
c2

)UT
c2

 .

Then

B̂c1 = Rc1HR
T
c2
, D̂c1 = Uc1(Rc1HR

T
c1

)UT
c1
, D̂c2 = Uc2(Rc2HR

T
c2

)UT
c2
.

The results follow immediately.

Assume the results are true for Ti with 2, 3, . . . , l − 1 levels. We show they are

also true for Ti with l levels. In fact Tc1 and Tc2 has l − 1 levels. By induction,

Uc1(Rc1HR
T
c1

)UT
c1

is an HSS matrix with generators Dj, Uj, R̂j, B̂j for j = 1, 2, . . . , c1−

1, where

B̂j = Rj(Ril · · ·Ri2)(Rc1HR
T
c1

)(Ril · · ·Ri2)
TRT

sib(j)

= Rj(Ril · · ·Ri2Rc1)H(Ril · · ·Ri2Rc1)
TRT

sib(j).

Since c1 = i1 is the immediate descendent of i that is in the path from j to i.

Similarly, apply induction to Uc2(Rc2HR
T
c2

)UT
c2

, for j = c1 + 1, c1 + 2, . . . , c2 − 1.

For the nonleaf node j = c1, it obviously holds. To summarize, the results hold for

all j = 1, 2, . . . , i− 1.

Thus, by setting i ≡ k in the Lemma, we can see that UkHU
T
k and A have the

same U,R generators. They are usually said to have common nested off-diagonal

bases. For such matrices, it is convenient to verify the following result.

Theorem 3.1.3 Assume two conformably partitioned symmetric HSS matrices A

and C have the same U,R generators, and the off-diagonal ranks of A and C are



30

bounded by r. Then A ± C can be written as an HSS form with the same U,R gen-

erators as those of A and C, and the off-diagonal ranks of A ± C are bounded by

r.

Combining the results in the two lemmas, we have the following theorem for the

fast HSS update in the dividing stage.

Theorem 3.1.4 Use the same notation, and set i = k. The matrix A − UkHU
T
k

has the same U,R generators as A, and its D,B generators can be obtained via the

following updates:

Bj ← Bj −Rj(Ril · · ·Ri1)H(Ril · · ·Ri1)
TRT

sib(j), (3.11)

Dj ← Dj − UjRj(Ril · · ·Ri1)H(Ril · · ·Ri1)
TRT

j U
T
j , (j: leaf), (3.12)

and the off-diagonal ranks of A− UkHU
T
k are bounded by r.

Note that this update involves the update of the generators associated with all

the descendants of i.

By setting i to be c1 and H to be I gives the HSS structure of D̃c1 . Similarly,

set i to be c2 and H to be BT
c1
Bc1 to get the HSS structure of D̃c2 . The dividing

procedure can then be recursively applied to D̃c1 and D̃c2 . Theorem guarantees that

the HSS structures are preserved throughout the recursive dividing procedure.

As a simple example, consider a symmetric HSS matrix A with 7 nodes in its HSS

tree T :

A ≡ D7 =

 D3 U3B3U
T
6

U6B
T
3 U

T
3 D6

 , U3 =

 U1R1

U2R2

 , U6 =

 U4R4

U5R5


D3 =

 D1 U1B1U
T
2

U2B
T
1 U

T
1 D2

 , D6 =

 D4 U4B4U
T
5

U5B
T
4 U

T
4 D5

 .

The dividing scheme works as

D7 = diag(D̃3, D̃6) + Z7Z
T
7 ,
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where

Z7 =

 U3

U6B
T
3

 =


U1R1

U2R2

U4R4B
T
3

U5R5B
T
3

 .

and the generators of A are updated as follows to get those of D̃3 and D̃6:

• B1 ← B1 −R1R
T
2 ,

• B4 ← B4 −R4B
T
3 B3R

T
5 .

• D1 ← D1 − U1R1R
T
1 U

T
1 ,

• D2 ← D2 − U2R2R
T
2 U

T
2 ,

• D4 ← D4 − U4R4B
T
3 B3R

T
4 U

T
4 ,

• D5 ← D5 − U5R5B
T
3 B3R

T
5 U

T
5 .

The two subproblems D̃3 and D̃6 are further divided via the following updates to

the generators:

• D1 ← D1 − U1U
T
1 ,

• D2 ← D2 − U2B
T
1 B1U

T
2 ,

• D4 ← D4 − U4U
T
4 ,

• D5 ← D5 − U5B
T
4 B4U

T
5 .

In general, to divide Di we update all the B generators associated with the left

nodes in Ti, and the D generators associated with the leaves. The update of the

B,D generators can follow a top-down sweep, so as to reuse some computations. For

example, once Bj for has been updated, then the update of Bc for a child c of j looks

like

Bc ← Bc −RcRj(Ril · · ·Ri1)H(Ril · · ·Ri1)
TRT

j R
T
sib(c),
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where (Ril · · ·Ri1) has already been computed. This thus can be performed recursively

as follows. Initially for node i, let

Si = I.

Then for j, the update of Bj becomes

Bj ← Bj −RjSpar(j)S
T
par(j)R

T
sib(j).

Then let

Sj = RjSpar(j),

which is used for later updates. After all the B generators are updated, Sj =

RjRkl
· · ·Rk1 is already available. We further compute UjSj and use it to update

Dj.

Here, in the dividing process, H is determined based on whether the above pro-

cedure is applied to the left or the right child branch of i.

In addition, further computational savings are possible. Clearly, the D,B gener-

ators may need to be updated up to lmax times, where lmax = O(log n) is the total

number of levels in T . As an improvement, we may accumulate the updates so as to

save the intermediate multiplication costs for forming the updates. In practice, this

may be skipped to simplify the algorithm, since the cost in the conquering stage later

usually dominates the total cost (especially when r is very small).

3.1.3 Conquer

In the “conquering” stage, we compute the eigendecomposition of A from those

of the subproblems. The rank-r update in (3.5) is split into r rank-1 updates. We

start with the following case with a single rank-1 update:

diag(D̃c1 , D̃c2) + zzT . (3.13)

Just like in the standard DC, suppose we have computed the eigendecompositions

D̃c1 = Q̃c1Λ̃c1Q̃
T
c1
, D̃c2 = Q̃c2Λ̃c2Q̃

T
c2

. Then

diag(D̃c1 , D̃c2) + zzT = diag(Q̃c1 , Q̃c2)(Λ̃ + vvT ) diag(Q̃T
c1
, Q̃T

c2
), (3.14)
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where

Λ̃ = diag(Λ̃c1 , Λ̃c2) ≡ diag(λ̃j, j = 1, 2, . . .), v = diag(Q̃T
c1
, Q̃T

c2
)z. (3.15)

Here, we can assume all λ̃j’s are distinct, and v has no zero entry. Otherwise, the

deflation strategy in Section 3.1.3 is applied. In the following, we discuss how to

quickly find the eigendecomposition of (3.13) with the aid of FMM.

We keep each part of this subsection compact, since much of the technical details

can be generalized from [19, 39] (although the actual algorithm design and imple-

mentation are far less trivial). We include only essential descriptions to introduce

necessary notation and to sketch the basic ideas. Some pseudocodes will be included

to assist in the understanding.

FMM in one dimension

FMM in one dimension will be used at multiple places in our algorithm. Here, we

only briefly mention its basic idea. The reader is referred to [6, 14, 15, 35] for more

details.

Suppose we wish to evaluate the following function at multiple points λ:

Φ(λ) =
N∑
j=1

αjφ(λ− λ̃j), (3.16)

where {λ̃j}Nj=1 are given real points, {αj}Nj=1 are constants, and φ(x) is a specific

kernel function of interest. In our case, φ(x) is either 1/x, log(x), or 1/x2. FMM

is designed to quickly evaluate Φ(λ) at M points {λi}Mi=1 without using the dense

matrix-vector multiplication Kα, where K = (φ(λi − λ̃j))M×N .

The FMM implementation we use is based on [14], where explicit accuracy and

stability estimates are given. We briefly describe the results here. Suppose (a, b) and

(c, d) are two well-separated intervals and λi ∈ (a, b), i = 1, . . . ,M, λ̃j ∈ (c, d), j =

1, . . . , N . Compute a truncated Taylor series expansion of φ:

φ(λ− λ̃) ≈
p∑

k=1

fk(λ)gk(λ̃), (3.17)
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where a proper scaling is applied to fk and gk. The relative approximation error

is [14]

ε =
1 + η

1− η
ηp, (3.18)

where η ∈ (0, 1) depends on the separation between (a, b) and (c, d). Thus, p only

needs to be O(log τ) to reach a desired accuracy τ . Then, this enables us to write a

low-rank approximation

K = (φ(λi − λ̃j))M×N ≈ Û
M×p
· Ĉ
p×p
· V̂ T

p×N
,

where the elementwise relative approximation error is given. Furthermore, the proper

scaling of the Taylor series expansion guarantees that the entries of Û and V̂ have

magnitudes bounded by 1, and the entries of Ĉ have magnitudes roughly proportional

to those of K [14, Section 6.2]. This enables us to stably evaluate Kα to a desired

accuracy with complexity O(M +N) instead of O(MN).

When λi and λ̃j come from the same set of points, then the process is done

hierarchically as in the standard FMM so as to reach the overall linear complexity.

In our implementation, we make the separation parameter η ≤ 2
3

and the accuracy τ

to be around 10−10 or even smaller.

Note that when FMM is used in our DC algorithm, it implicitly approximates

the intermediate matrices. For example, an elementwise relative error ε is introduced

into the intermediate eigenmatrices. Such an error may be propagated to later com-

putations. Due to the hierarchical DC scheme, it is expected that the error may be

magnified by only up to about log n times, similar to the approximation error results

in [4,34]. Such error propagations are thus well controlled, and in practice, the accu-

racy of the eigenvalues is consistent with the tolerance. We can similarly understand

the behaviors of the numerical errors in the FMM matrix-vector multiplication, just

like the stability analysis for a hierarchical matrix factorization in [89].



35

Computing the eigenvalues by solving the secular equation

As in the tridiagonal DC scheme, the eigenvalues λ are the roots of the secular

equation

f(λ) = 1 +
n∑
j=1

v2
j

λ̃j − λ
= 0, (3.19)

which can be solved with Newton’s method. To ensure the quick and stable solution of

(3.19), we follow the modified Newton’s method in [22], which is based on the Middle

Way in [64]. This modified Newton’s method involves the evaluation of functions of

the forms ϕ(λ) =
∑n

j=1

v2j

λ̃j−λ
and ϕ′(λ) for multiple λ. This can be accelerated by

FMM with φ(x) = 1/x or 1/x2 in (3.16).

Just as mentioned in [22], two or three Newton iterations are sufficient to reach

the machine precision. This strategy works for all the roots of the secular equation

except the largest one, for which we follow [39] and use basic rational interpolation

with several safeguards for stability based on the algorithm in [13].

Computing the eigenvectors stably

As has been extensively studied [21, 24, 78], the computation of the eigenvectors

via the simple formula qj = (Λ̃ − λjI)−1v can have stability issues. In particular, if

|λi− λj| is small for two eigenvalues λi and λj, the corresponding eigenvectors qi and

qj may be far from orthogonal [24]. A stable computational strategy [39] is to solve

for the eigenvectors of a slightly perturbed problem Λ̃ + v̂v̂T , which has the exact

eigenvalues λj. The vector v̂ = (v̂i)
n
k=1 is computed based on Löwner’s formula [22]:

v̂i =

√√√√ ∏i−1
j=1(λ̃i − λj)

∏n
j=i(λj − λ̃i)∏i−1

j=1(λ̃i − λ̃j)
∏n

j=i+1(λ̃j − λ̃i)
, (3.20)

where the eigenvalues are ordered from the largest to the smallest. The vector v̂ can

be quickly evaluated with FMM applied to log v̂i [39]. That is, set φ(x) = log(x) in

(3.16).
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The eigenvectors associated with all the eigenvalues λj can be assembled into a

matrix Q̂ ≡
(

v̂i
λ̃i−λj

)
i,j

. While we do not explicitly form this matrix, we still need to

normalize its columns to obtain orthonormal eigenvectors and to ensure the stability

of later calculations. Let sj be the inverse of the norm of column j of Q̂. It is used

to scale that column as in

Q
(1)
i =

(
v̂isj

λ̃i − λj

)
i,j

, with sj =

(
n∑
i=1

v2
i

(λ̃i − λj)2

)−1/2

, (3.21)

where the superscript in Q
(1)
i is used to indicate that the result is from a single rank-1

update (3.13). Once again, the computation of sj can be accelerated by FMM, with

φ(x) = 1/x2 in (3.16). Note that Q̂ is now converted into the orthogonal Cauchy-like

matrix Q
(1)
i (a Cauchy-like matrix is a matrix whose (i, j) entry looks like

αiβj
di−fj for

four vectors α, β, d, f).

Rank-r updated eigendecomposition

The above process needs to be repeated r times for the rank-r update in (3.5).

We summarize the process in the following lemma and skip the details.

Theorem 3.1.5 Suppose D̃c1 = Q̃c1Λ̃c1Q̃
T
c1

and D̃c2 = Q̃c2Λ̃c2Q̃
T
c2

are the eigende-

compositions of D̃c1 and D̃c2 in (3.5), respectively. Let

Zi = (z(1), . . . , z(r)), Q(0) = diag(Q̃c1 , Q̃c2), v(0) = (Q(0))T z, λ
(0)
j = λ̃j.

Suppose the eigendecomposition of diag(λ
(i−1)
j |nj=1) + v(i)(v(i))T is

diag(λ
(i−1)
j |nj=1) + v(i)(v(i))T = Q

(i)
i diag(λ

(i)
j |nj=1)(Q

(i)
i )T ,

where Q
(i)
i is in a Cauchy-like form and v(i) = (Q

(i−1)
i )T z(i). Then the eigendecompo-

sition of Di in (3.5) is

Di = (Q
(0)
i Qi) diag(λ

(r)
j |nj=1)(Q

(0)
i Qi)

T ,

where

Qi = Q
(1)
i · · ·Q

(r)
i . (3.22)
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That is, λ
(r)
j |nj=1 are the eigenvalues of Di in (3.5) and Q

(0)
i Qi is the eigenmatrix of

Di. For completeness, if i is a leaf node of the HSS tree, we set Q
(0)
i = I and compute

Qi directly via the eigendecomposition of the diagonal block Di.

Application of the eigenmatrix to vectors and structure of the eigenmatrix

Note that we do not form the eigenmatrix Q
(0)
i (Q

(1)
i · · ·Q

(r)
i ) of Di or the eigenma-

trix Q of A explicitly. In practical applications, the eigenvectors of A are often used

under the following circumstance: applications of the eigenmatrix or its transpose to

vectors. In fact, such a process is already needed in the DC process for computing v

in (3.15). Thus, we illustrate this as part of the eigendecomposition.

For an individual matrix Q
(1)
i of the form (3.21), to multiply (Q

(1)
i )T and a vector

z, we have (
(Q

(1)
i )T z

)
j

= sj

n∑
i=1

v̂izi

λ̃i − λj
. (3.23)

Similarly to [19, 39], this can be accelerated by FMM with φ(x) = 1/x in (3.16). To

apply Qi to a vector, we just need to repeat this r times.

The overall strategy for applying Q or QT to a vector z is basically the one

in [19, 22]. For our case, this can be done with the aid of the HSS tree T . More

specifically, associate Qi in (3.22) with each node i of T . Then we use a multilevel

procedure to compute the eigenmatrix-vector product.

For convenience, Algorithm 2 shows how to apply QT to z, as needed in forming

v in (3.15). The multiplication of Q and z can be performed similarly, and can be

used if we need to extract any specific column of Q.

Clearly, the data-sparse structure of Q defined by Q1, . . . , Qk in their Cauchy-like

forms is very useful for the fast application of Q or QT to a vector. On the other

hand, we may also understand the data sparsity of Q based on its off-diagonal rank

structure. It can be shown that the eigenmatrix of Λ̃+ v̂v̂T has off-diagonal numerical

ranks at most O(log n) for a given tolerance. Thus, the off-diagonal numerical ranks
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Algorithm 2 Application of QT to a vector, where Q is the eigenmatrix of A

1: procedure eigmv(Q1, . . . , Qk, z) Output: QT z, where Q is represented by

Q1, . . . , Qk

2: Partition z into pieces zi following the sizes of Di for all leaves i

3: for i = 1, . . . ,k do . k: root of T

4: if i is a nonleaf node then . c1, c2: children of i

5: zi ←

 zc1

zc2


6: end if

7: for i = 1, 2, . . . , r do . r: column size of Zi in (3.5)

8: zi ← (Q
(i)
i )T zi (fast evaluation via FMM) . As in (3.23)

9: end for

10: end for

11: Output zk . zk = QT z

12: end procedure

of Q are at most O(r log2 n). Since this rank structure of Q is not actually used in

our algorithms, we omit the details.

Deflation

If the vector v has a zero entry, or if Λ̃ has two equal diagonal entries, deflation

strategies can be applied. This is already shown in [24, 39]. For example, if vj = 0,

then Λ̃ + vvT has an eigenvalue

λj = λ̃j.

If Λ̃ has two (or more) identical diagonal entries λ̃i = λ̃j, then a Householder trans-

formation can be used to zero out vj so as to convert into the previous case. (In these

cases, the eigenmatrix of Λ̃ + vvT is then block diagonal and may involve Cauchy-like

or Householder diagonal blocks.) A similarly strategy can be applied if vj is small or

if the difference between λ̃i and λ̃j is small, and the detailed perturbation analysis
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is provided in [24, 39]. This step is standard but important for the efficiency of the

algorithm.

Rank structure of the eigenmatrix

According to the next section, we see that the cost of applying Q or QT to a vector

is O(rn log n). It is worth pointing out that Q is also rank structured, although the

off-diagonal numerical ranks are slightly higher. To see this, we first state a lemma,

which is obvious based on FMM (see, e.g. [6, 14, 79]).

Theorem 3.1.6 Assume all the eigenvalues λ̃i and λj are distinct, then the Cauchy-

like matrix has off-diagonal numerical ranks O(log n) for a given tolerance.

However, unlike the tridiagonal DC, here repeated eigenvalues may arise (theoreti-

cally). For this case, the eigenmatrix can be represented by a block diagonal form

with the block structure conforming exactly to that of HSS approximation with the

eigenvector structure at each node equal to a concatenation of two matrices of the

following types:

• Householder forms as mentioned for the repeated eigenvalues;

• Cauchy-like forms similar for remaining distinct eigenvalues.

Obviously, a Householder matrix has maximum off-diagonal rank 1. Thus,

Proposition 3.1.1 The eigenmatrix of Λ̃ + v̂v̂T has off-diagonal numerical ranks

O(log k) for a given tolerance, where k is the number of distinct diagonal entries of

Λ̃.

In practice, we may have clustered eigenvalues instead of repeated ones. While this

does not change the theoretical rank structure (as in tridiagonal DC), it may cause dif-

ficulties to the actual computations. The detailed study is beyond the focus of this pa-

per and will be given in future work. But it has been commonly observed [19,22,24,39]

that clustered eigenvalues pose a problem for classical divide-and-conquer eigensolvers
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since this can cause the eigenvectors to lose orthogonality and the evaluation of the

secular equation diverges. One thing we would like to point out is, even though the

Cauchy-like form may be very ill conditioned in this case, hierarchical rank structured

methods are still very reliable due to a significant stability advantage over standard

methods [89]. That is, the numerical errors only propagate along the tree levelwise or

by at most O(log n) times. We would like to mention that this is also related to the

following known result, which indicates that symmetric Toeplitz problems are nice

applications of our superfast DC method.

Theorem 3.1.7 [61,71] Let T be a Toeplitz matrix, and C be a Cauchy-like matrix

resulting from the transformation of T into Fourier space through the use of displace-

ment structures [31, 37, 50, 63, 70]. Then the off-diagonal numerical ranks of C are

O(log n) for a given tolerance.

With these results, all the matrices Q
(1)
i , . . ., Q

(r)
i have off-diagonal numerical ranks

at most O(log n). A straightforward multiplication indicates that Qi has off-diagonal

numerical ranks at most O(r log n), which is the contribution to the off-diagonal ranks

of Q from the current dividing level. The recursive dividing procedure is performed

for O(log n) levels, so we need to accumulate such rank contributions from all the

O(log n) levels. This yields the following result on the rank structure of Q.

Theorem 3.1.8 The off-diagonal numerical ranks of Q are at most O(r log2 n) for

a given tolerance.

Therefore, together with the Cauchy-like/Householder structures is a natural way

to multiply the eigenmatrix and a vector. We usually do not convert Q into a rank

structured matrix, since it would cost more. Lastly, the rank bounds in this subsection

will also be useful For without the rank-property, a complexity below O(n2) would

not be able to be achieved, since the eigenmatrix-vector products would then not be

able to be accelerated.
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Table 3.1.
Example (KMS Toeplitz matrix): Complexity ξ of NEW for finding all the
eigenvalues (as compared with XXC14), complexity ξ̃ of NEW for applying
the eigenmatrix to a vector, and storage σ of NEW for the eigenmatrix.

n 160 320 640 1280 2560 5120 10240

XXC14 ξ 3.17e08 1.19e09 4.72e09 1.82e10 7.14e10 2.82e11 1.12e12

ξ 1.55e08 5.45e08 1.70e09 4.86e09 1.32e10 3.44e10 8.70e10

NEW ξ̃ 3.40e05 1.26e06 4.53e06 1.36e07 3.81e07 1.01e08 2.61e08

σ 3.84e03 1.02e04 2.56e04 6.14e04 1.43e05 3.28e05 7.37e05

3.1.4 Numerical results

• NEW: our superfast DC eigensolver;

• XXC14: the HSS eigensolver in [90];

• λi: the eigenvalues of A (here, the results from the Matlab function eig are

used as the “exact” eigenvalues);

• λ̂i: the numerical eigenvalues;

• Q̂: the numerical eigenmatrix with column q̂i being the numerical eigenvector

associated with λ̂i;

• γ = maxi ‖Aq̂i−λ̂iq̂i‖2
n‖A‖2 : the residual, as used in [39];

• θ = maxi ‖Q̂T q̂i−ei‖2
n

: the loss of orthogonality, as used in [39];

• e =

√
Σn

i=1(λi−λ̂i)2

n
√

Σn
i=1λ

2
i

: the relative error;

• ξ, ξ̃, σ: complexity measurements as in [88]
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The HSS block sizes are chosen following the strategies in common HSS practices.

A tolerance is used in the HSS approximation and FMM (if applicable) so that both

NEW and XXC14 reach accuracies e around 10−10. A smaller tolerance is also tested

for NEW to reach higher or even the machine accuracy.

We first consider a banded symmetric matrix A with full bandwidth 10 and with

its nonzero entries uniformly distributed in [−1, 1].

We test A with its size n varying from 250 to 8000. In Table 3.2, we show the

complexity ξ of NEW and XXC14 to reach similar accuracies in the eigenvalues. Clearly,

the asymptotic complexity scales like O(n log2 n) in NEW and O(n2) in XXC14, as also

illustrated in Figure 3.1(i). The reference lines for O(n log2 n) and O(n2) are also

shown. For n = 4000, NEW is already about 70 times faster than XXC14.

NEW further gives a structured eigenmatrix Q, which can be applied quickly to a

vector. See Table 3.2 for its cost ξ̃ and the storage σ. The storage is also plotted in

Figure 3.1(ii), and scales like O(n log n). On the other hand, the eigenmatrix is not

available from XXC14.

Table 3.2.
Example 3.1.4 (banded random matrix): Complexity ξ of NEW for find-
ing all the eigenvalues (as compared with XXC14), complexity ξ̃ of NEW

for applying the eigenmatrix to a vector, and storage σ of NEW for the
eigenmatrix.

n 250 500 1000 2000 4000 8000

XXC14 ξ 3.01e10 1.73e11 9.01e11 4.66e12 2.34e13 Failed

ξ 6.62e09 1.84e10 4.80e10 1.27e11 3.33e11 8.56e11

NEW ξ̃ 1.25e07 3.43e07 9.05e07 2.32e08 5.90e08 1.48e09

σ 5.50e04 1.32e05 3.08e05 7.04e05 1.58e06 3.56e06
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Fig. 3.1. Example 3.1.4 (banded random matrix): Complexity ξ of NEW

and XXC14 for finding all the eigenvalues, and storage σ of NEW for the
eigenmatrix.

The accuracies are shown in Table 3.3, following the measurements in [39]. Both

methods reach similar accuracies in the eigenvalues. Since NEW also produces the

eigenvectors, we report the residual γ and the orthogonality measurement θ. In

particular, θ for NEW reaches nearly machine accuracy.

Table 3.3.
Example 3.1.4 (banded random matrix): Accuracy (error e, residual γ,
and loss of orthogonality θ) of the methods.

n 250 500 1000 2000 4000

XXC14 e 2.28e− 10 1.43e− 10 5.59e− 11 3.31e− 11 2.27e− 11

e 2.96e− 11 3.15e− 11 9.02e− 10 8.31e− 11 8.32e− 11

NEW γ 4.39e− 11 3.23e− 11 1.42e− 10 8.47e− 11 6.48e− 11

θ 4.29e− 16 7.39e− 16 1.53e− 15 3.99e− 15 8.73e− 15
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Seconly, we consider the Kac-Murdock-Szego (KMS) Toeplitz matrix A as in [82],

with its entries given by

Aij = ρ|i−j|, ρ = 0.5.

The matrix A is known to be very ill conditioned. The ill-conditioning implies that

there are both very large and small eigenvalues, which we show that we are able to

capture to near machine precision by testing this matrix with multiple tolerances. A

has the same eigenvalues as the Cauchy-like matrix C in, and our tests are done on

C.

The maximum off-diagonal numerical rank of C grows with n as O(log n). We

test C with sizes n ranging from 160 to 10240, and show the complexity ξ of NEW

and XXC14 to reach similar accuracies in the eigenvalues. The performance results are

given. NEW takes less work than XXC14 for all the cases. For n = 10240, NEW is over

12 times more efficient.

NEW further gives a structured eigenmatrix Q, which can be applied quickly to a

vector. The eigenmatrix is not available from XXC14.

We have also compared NEW with the Matlab built-in eig function, which is highly

optimized. Our algorithm is initially slower for smaller n, but scales much better. For

n = 2560, 5120, 10240, the runtimes of NEW are 12.3, 40.0, 80.9 seconds, respectively

(on a MacBook Pro with an Intel Core i7 CPU and 8GB memory), and those of eig

are 5.1, 36.6, 270.0 seconds, respectively. Clearly, even if our code is far less optimized

and the Matlab runtime is pessimistic for non-built-in routines, NEW already shows

significant advantages for larger n.

We indicate the cost and storage are consistent with the theoretical prediction.

We also note the comparison with the MATLAB eig function. For small matrices,

eig is faster in terms of computation time. This is because of the large constant in

the O(r2n log n) + O(rn log2 n) in our algorithm, and also because of optimization

of the built-in MATLAB eig function. Still, around n = 500, there is a crossover

point and our algorithm is faster for KMS matrices than the O(n3) complexity eig

function. Very similar results hold for other HSS matrices.
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The accuracies are shown. Both methods reach similar accuracies in the eigen-

values. Since NEW also produces the eigenvectors, we report the residual γ and the

orthogonality measurement θ. In particular, θ for NEW reaches nearly machine pre-

cision. he accuracy measure γ used is the square of the residual normalized by the

spectral norm of the matrix. This is done for two reasons. The first is historical, as

this is the measure used in [39], which contains the algorithm we generalize, showing

that we get similarly satisfactory results. The second reason is that is allows one to

see how many digits of accuracy are preserved for a given HSS approximation.

Table 3.4.
Example ((KMS Toeplitz matrix): Accuracy (error e, residual γ, and loss
of orthogonality θ) of the methods when the tolerance in the off-diagonal
compression and FMM is set to be around 10−10.

n 160 320 640 1280 2560

XXC14 e 2.40e− 10 1.02e− 10 5.80e− 11 4.39e− 11 3.84e− 11

e 1.00e− 09 1.07e− 10 1.47e− 10 9.32e− 11 8.45e− 11

NEW γ 3.49e− 09 1.49e− 09 7.38e− 10 2.53e− 10 9.99e− 11

θ 1.79e− 16 3.69e− 16 7.94e− 16 6.56e− 16 8.53e− 16

We would like to point out that, with a smaller tolerance, the residual and error

in NEW can reach nearly machine precision too, as shown below. The corresponding

cost of NEW is higher than with the 10−10 tolerance, but still scales like O(n log3 n).

As mentioned at the beginning of this section, the residual measurement we use

follows [39] and is not the regular one, so as to show that our structured DC eigensolver

can reach desired accuracies, and can also reach machine precision. We have also

checked the regular accuracy measurements. For the tests, the regular errors |λi− λ̂i|

are in the magnitudes around 10−19 ∼ 10−16, mostly 10−19 ∼ 10−17. (The errors are

consistent with the bound.) The regular residuals ‖Aq̂i − λ̂iq̂i‖2 are around 10−11 ∼
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Table 3.5.
Example (KMS Toeplitz matrix): Accuracy (error e, residual γ, and loss of
orthogonality θ) of NEW when the tolerance in the off-diagonal compression
and FMM is set to be around 10−15.

n 160 320 640 1280 2560

e 9.64e− 16 1.01e− 15 1.27e− 15 1.07e− 15 1.31e− 15

NEW γ 4.14e− 15 4.40e− 15 6.69e− 15 7.62e− 15 6.26e− 15

θ 4.25e− 16 5.33e− 16 7.24e− 16 9.37e− 16 7.18e− 16

10−10. We have also computed the gaps ĝi = minj 6=i |λ̂i − λj|, which are around

10−6 ∼ 10−3. It is known that if λ̂i is the Rayleigh quotient of A and q̂i, then

|λi− λ̂i| ≤ ‖Aq̂i− λ̂iq̂i‖2
2/ĝi [22]. Here, our results are observed to roughly follow such

a relationship.

Next we look at a symmetric Toeplitz matrix T with its first column given by

t0:n−1 = randn(n, 1). (3.24)

Here we show the performance of our algorithm for symmetric Toeplitz matrices

with increasing sizes to illustrate scaling properties. Note that for large n the scaling

is nearly linear. This near linear scaling appears even for moderately size matrices for

matrices with HSS rank small compared to the matrix size. This is illustrated below

which plots Example 2 and Example 3, which has lower HSS ranks, side-by-side.

For our final example, we consider a matrix we denote as B chosen according to

formula

Ai,j =

√
|x(n)
i − x

(n)
j |, (3.25)

with the points x
(n)
i = cos(π(2i+ 1)/2n), the zeros of the nth Chebyshev polynomial.

This is a symmetric HSS matrix. Its HSS rank r does grow as the matrix size n

grows, but as in Example 2, the growth is moderate. Thus we are still able to exhibit
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Table 3.6.
Flops and ratio of Flops for finding all eigenvalues of a random Toeplitz
matrix of size n.

n 1280 2560 5120 10240 20480

HSS rank (r) 66 71 76 82 88

Flops 4.38e10 1.29e11 3.68e11 1.05e12 2.94e12

ratio n2/n1 2 2 2 2

ratio O(n log3 n) 2.64 2.58 2.53 2.49

ratio NEW 2.93 2.87 2.86 2.79

ratio O(n2) 4.00 4.00 4.00 4.00
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Fig. 3.2. Left: complexity versus matrix size for finding all eigenvalues of
a random Toeplitz matrix of size n. Right: complexity versus matrix size
for finding all eigenvalues of a matrix of type B with size n. In both cases
note that τ = 1e− 6.

near linear scaling. Complexity results for this examples are plotted above against

appropriate reference lines.



48

Table 3.7.
Flops and ratio of Flops for finding all eigenvalues of a rmatrix of type B
with size n.

n 320 640 1280 2560 5120

HSS rank (r) 10 10 11 12 13

Flops 7.54e09 2.20e10 6.21e10 1.71e11 4.59e11

ratio n2/n1 2 2 2 2

ratio O(n log3 n) 2.81 2.72 2.64 2.58

ratio NEW 2.92 2.82 2.75 2.69

ratio O(n2) 4.00 4.00 4.00 4.00

3.2 Multi-rank update

While the above algorithm is certainly very impressive, it has some fundamental

issues that limit the types of problems it can be used for. First of all, due to the con-

ditioning of the secular equation (see figure), we can see that for clustered eigenvalues

poor conditioning will be amplified if updates are repeated consecutively. Thus we

need to find a stabler way to do this process to allow us to consider more pathological

problems.

κ =

(
2

ui − li

)(∑
i

2v2
i

(ui − li)2

)(
1 +

∑
i

2v2
i

ui − li

)−1

(3.26)

Secondly, this approach is not very useful in the context of parallel computing. It

has poor spacial and temporal locality, and is overly reliant on BLAS 1 and BLAS

2 operations. thus we need to find a way to compute all rank-one updates simul-

taneously. This section presents a possible approach to do this. It is still ongoing

work.
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Fig. 3.3. The secular equation for the single-rank update

3.2.1 Eigenvalue computation

For a fixed eigenvalue λ, it is straightforward to identify an exact reduced basis

of dimension r with an unknown vector of coefficients w ∈ Rr,

q(λ) = (λI − Σ)−1Uw. (3.27)

We can split this basis into a small number of (nearly) singular components in

λ ∈ [λmin, λmax] and a smooth component that is amenable to interpolation from

a small number of interpolation points λ̂i. We then project the eigenvalue problem

into this reduced basis. It is convenient to orthogonalize the complete basis, so the

resulting problem is a generalized eigenvalue problem.

We use a Cauchy kernel interpolation that is defined by three parameters σmin, σmax,

and s. s is the number of interpolation points. λ̂i, and the remaining parameters de-

fine an interval that is disjoint. With respect to this interval, we partition Σ and U

into two blocks,
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Σ =

 Σ1 0

0 Σ2

 , U =

 U1

U2

 , (3.28)

such that the diagonals of Σ1 ∈ Rp×p are excluded from the interval and Σ2 ∈

R(n−p)×(n−p) are contained in the intervals. The dimension of the reduced subspace

will be p+rs, so we will fine-tune the interval and s to minimize this dimension while

maintaining a target interpolation error bound.

In partitioned form, the form of the eigenvector of λ is

q(λ) =

 q1

(λI − Σ2)−1U2w

 , (3.29)

where we no longer try to restrict the form of q(λ) in the first block, expanding the

subspace dimension to p+ r. We approximate the Cauchy kernel with an interpolant

of the form

q(λ) ≈

 q1∑s
i=1 ci(λ)(λ̂iI − Σ2)−1U2w

 . (3.30)

We quantify the separation between the excluded poles and the interpolation

domain by a parameter ∆ defined as

∆ =
(λmin − σmax)(σmin − λmax)

(λmax − λmin)(σmin − σmax) + (σmin − λmin)(λmax − σmax)
(3.31)

The details of this interpolation are not relevant to this application except for the

interpolation points and error bounds. The interpolation points are determined by a

Jacobi elliptic function, dn, and the quarter period, K, as

∆1 = λmax − λmin + σmin − σmax,

∆2 = σmin − λmax + ∆′(λmin − σmax),

∆′ =
∆

1
√

1−∆2
,

m(z) =
(∆1 + ∆2)λmax(z + 1) + (∆2 −∆2)σmin(z − 1)

2(∆1z + ∆2

,
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λi = m(dn(K(
√

1− (∆′)2
2i− 1

2s
,
√

1− (∆′)2)).

Two practical bounds on the maximum pointwise relative error are

ε = max||I − (λ− Σ2)
s∑
i=1

ci(λ)(λ̂iI − Σ2)−1||2 (3.32)

ε ≤ 2 exp

(
−π2/2

ln(4/∆′)
s

)
≤ 2 exp

(
−π2/2

ln(8/∆)
s

)
. (3.33)

This is the small parameter that we should use to bound other errors more directly

relevant to the eigenvalue problem.

Besides projection errors, we should also be wary of conditioning issues. If we now

expand the eigenvectors for λ ∈ [λmin, λmax] in an approximate space,

q(λ) ≈

 I ... 0

0 (λ̃1I − Σ2)−1U2 ... (λ̃sI − Σ2)−1U2




q1

ŵ1

...

ŵs

 , (3.34)

we want to make sure that there isn’t a large growth in the norm of the coeffi-

cient vector relative to q(λ). We can independently orthonormalize the columns for

each interpolation point by substituting (λ̂iI − Σ2)−1U2 → (λ̂iI − Σ2)−1U2[UT
2 (λ̂iI −

Σ2)−2U2]−1/2.

At an interpolation point, when ci(λ̂j) = δij, the 2-norm of q and the interpola-

tion vector will be equal. From the approximate factorization of the coefficient vector

inherent in the interpolation, ŵi ≈ ci(λ)w, we can relate any remaining conditioning

problems to large positive negative values in ci(λ) that cancel in forming the interpo-

lation. Past studies show that this type of behavior is highly benign. Thus, while the

basis is not orthonormal, we do not expect it to contribute significantly to degrading

the numerical accuracy of the projection.
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The final step in setting the projected problem is to fully calculate and simplify the

matrix elements. To simplify the presentation and clarify the necessary computational

work, we define some useful sub-matrices,

Bi = UT
2 (λ̂iI − Σ2)−1U2,

Ci = UT
2 (λ̂iI − Σ2)−2U2,

Ei = C
−1/2
i Bi,

Fij = EiC
−1/2
j .

The main trick used to simplify expressions are partial fraction expansions, which

allow us to reduce all terms to Ei and Fij. The left-hand matrix of the projected

eigenvalue problem is


Σ1 + U1DU

T
1 U1DE

T
q ... U1DE

T
s

E1DU
T
1 λ̂1I − F11 + E1DE

T
1 ...

λ̂1F1s−λ̂sFT
s1

λ̂s−λ̂1
+ E1DE

T
s

...
...

. . .
...

EsDU
T
1

ˆlambda2Fs1−λ̂1FT
1s

λ̂1−λ̂s
+ EsDE

T
1 ... λ̂sI − Fss + EsDE

T
s

 (3.35)

The right-hand matrix is


I 0 ... 0

0 I ...
F1s−FT

s1

λ̂s−λ̂1
...

...
. . .

...

0
Fs1−FT

1s

λ̂1−λ̂s
... I

 . (3.36)

If we are constructing Bi and Ci matrices for multiple partitions at once, we

can consolidate and accelerate the arithmetic using fast Cauchy kernel summation

techniques such as the fast multipole method. While we are making an a priori

assumption that the projection basis is well-conditioned, we can test this a posteriori

by examining the eigenvalues of the right-hand matrix.
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Since all the projection work must be performed simultaneously to take advantage

of fast methods, we must decide how to partition the problem efficiently before any de-

tailed calculations of the eigendecomposition take place. Thus we need a sensible cost

model to minimize over the choice of partitions. We choose a simple, greedy, divide-

and-conquer strategy of repeatedly bisecting the approximation domain of eigenvalues

and only consider the cost of the projected eigenvalue problems. Thus, the original

unprojected problem is valid over R and size n with characteristic cost of n3. For

a target projective error ε, we can fine-tune λtextcut that defines a partition into two

subintervals, (−∞, λcut] and [λcut,∞), and adjust the values of σmin and σmax for each

subinterval to minimize the dimensions of the two projected problems, p1 + rs1 and

p2 + rs2. We allow the bisection of the interval when we believe it will reduce the cost

of solving the projected problem by satisfying

(p1 + rs1)3 + (p2 + rs2)3 < n3. (3.37)

We repeat this assessment the requested bisections until our cost model predicts

that further bisection will not reduce the overall cost of the eigenvalue problem. At

this point, we form all of the projected problems and solve for the various eigen-

value intervals simultaneously. We generally expect O(n/(r log ε−1)) partitions of

dimension O(r log ε−1), leading to an O(r2n log2 ε−1) complexity for the eigensolver

step. Pathological clustering on the diagonals of Σ to enforce a relative gap between

specific diagonal entries or small clusters that can can be numerically resolved by

the precision of the arithmetic. For double-precision arithmetic, an extremely small

relative perturbation should suffice.

Assembling the global set of eigenvalues from the eigenvalues of the projected

problems is straightforward as long as an eigenvalue on a boundary should be ap-

proximated well by both intervals sharing the boundary point, so you should simply

be able to pick one and ignore the other without problems. If multiple degenerate

eigenvalues appear at a boundary, then the degeneracy may be broken differently by

each partition. It is important to extract the eigenvectors of this eigenvalue cluster
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from a single interval to avoid orthogonality problems. A conservative approach to

dealing with eigenvalues at boundary points is to repartition and resolve to avoid the

issues altogether.

3.2.2 Forward eigenvalue problem

Here we find the vector λ and n × r matrix Y that drive the residual of the

eigenvalue problem down to a satisfactory error. This is done through a BFGS quasi-

Newton optimization scheme. The keys to the forward problem are utilizing the

structure of the eigenvectors, clever data storage and order of operations to minimize

cost, and a heavy reliance on the FMM. Intuitively, it is the simpler of the two

problems we solve for this scheme.

3.2.3 Objective function

The objective function for the forward eigenvalue problem is to minimize the

following:

f(x) = ‖diag(XT ÃX)− d‖2 (3.38)

Accurately, stably, and efficiently evaluating the objective function is a fundamen-

tal issue to the algorithm. We need to be able to do so in O(r2n) time complexity

consistently, while maintaining numerical accuracy and stability. This is done by

leveraging the FMM and doing things in a specific order to bring down the cost.

Noting the special structure of our eigenvector matrix from (2.1) this becomes:

f(x) = ‖diag((V Y ) · (1/(di−λj))Tn×n(A+V V T )(V Y ) · (1/(di−λj))n×n)−d‖2 (3.39)

We can further simplify the equation to phrase it in terms of simpler subroutines.

f(x) = ‖diag(XTDX +XTV V Tx) (3.40)
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where we are aided by the structure in (2.3) but do not include it in equation (2.4)

for compactness. This essentially comes down to two simpler sub-problems:

• computing column norms of our structured matrix

• computing matrix-vector multiplications with our structured matrix

Consider first the norm computation. We note that our structured matrix can be

written as a generalized Cauchy-like matrix C = (UV ) · (1/(xi − yj). It is possible to

compute these in O(r2n), but one must be very careful in the manipulation to ensure

complexity is reduced.

An individual entry C(i, j) can be represented as follows:

C(i, j) =
U(i, :)V (:, j)

xi − yj
so the norm (squared) for the jth row would be

‖C(j, :)‖2
2 =

n∑
j=1

(U(i, :)V (:, j))2

(xi − yj)2
=

n∑
j=1

U(i, :)V (:, j)V (:, j)TU(i, :)T

(xi − yj)2

Now if we let Aj = V (:, j)V (, j)T , noting that these can all be precomputed in

O(r2n), then we have

‖C(j, :)‖2
2 =

n∑
j=1

AjU(i, :)U(:, i)T

(xi − yj)2

The difficulty here is to form Bi =
∑

j=1
Aj

(xi−yj)2
efficiently. To do this, let’s

consider Bi ∈ Rr×r and its (k, k) element.


B1(k, k)

...

Bn(k, k)

 =


(x1 − y1)−2 ... (x1 − yn)−2

...
...

(xn − y1)−2 ... (xn − yn)−2




A1(k, k)
...

An(k, k)


This only costs O(n) to do by the FMM. So if we let k run through 1 ≤ k ≤ r,

we see that it takes only O(r2n) to compute all Bi(k). Thus, we these ideas in mind,
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we can use the following algorithm to compute the entire eigenvector matrix-vector

product in O(r2n).

Algorithm 3 Evaluation of the forward problem objective function f(z) with a given

set of parameters d, V, Y,Λ

1: procedure fobj(d, V, Y,Λ)

Output: f(z), where z is represented by d, V, Y,Λ

2: Initialize f(z) = 0

3: Initialize vector A = 0 ∈ Rn

4: for k = 1, ..., n do

5: A(k) = V (:, k)V (:, k)T

6: end for

7: Initialize cell array B = 0 ∈ Rr×r×n

8: for i = 1, ..., r do

9: for j = 1, ..., r do

10: B(i, j, :) = FMM(K,A), where K(x, y) = (d(x)− Λ(y, y))−2

11: for k = 1, .., n do

12: f(z) = f(z) + (B(i, j, k)U(i, :)U(i, :)T − Λi)

13: end for

14: end for

15: end for

16: end procedure

3.2.4 Derivative operators

Fundamental to the Newton scheme are the formation of the derivative operators

for the optimization problems. As the optimization space being searched in is of

dimension rn, keeping the complexity down is of fundamental importance. For the

first derivative operator, this can be done by noting lots of zero components in the
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derivative and using the fast-multipole method throughout to approximate far-field

interactions.

for the second derivative operator, we do not form the entire Hessian but form

an HSS approximation of it. This is admissible because the off-diagonal blocks of

this Hessian will be bounded by roughly r log n due to the displacement rank prop-

erties of Cauchy and Cauchy-like matrices, as his been previously proven in the lit-

erature. In this was we can do a fast randomized construction and moreover do

HSS-eigendecompositions and linear system solves involving this Hessian matrix very

quickly.

3.2.5 Inverse problem

The inverse objective function is:

g(x) = ‖QTQ− I‖2 (3.41)

subject to the constraint f(x) < ε

where f(x) is the forward eigenvalue problem and ε is a pre-determined tolerance

based on global tolerance.

We can solve this using the definition of the 2 norm as the largest eigenvalue

(since the Hessian matrix will be symmetric positive definite. We thus use the power

method and repetitively apply the matrix QTQ − I to a random vector iteratively

until it converges to an eigenvector. We then use the Rayleigh quotient to find the

corresponding eigenvalue, which is our objective function. In practice, this randomly

chosen vector is performing quite well for a variety of tests. However, it may be pos-

sible to choose a more specific initial vector based on the information in the problem

to accelerate convergence. This has not been looked at rigorously yet and will be left

for future work.

For the derivative operators, we do an approximation. We set the function as

taking a finite power of products and this works in practice. In fact, in practice we



58

have found that approximating this infinite product by only the square of the matrix

is sufficiently good for finding the derivative vector and derivative matrix. In the

future, we will do more rigorous analysis to see why this is the case. It is likely that

for certain special cases, a higher number of products in the expression is required

(likely when the eigenvalues are particularly clustered). In these cases, we may need

to come up with alternative algorithms. But for now the heuristic of a quadratic

approximation serves us well as an initial proof of concept for this inverse problem

approach to stabilizing the eigenvectors.

This problem is solved much like the forward problem; with either a Newton

or quasi-Newton approach. The numerical results shown in this thesis are with a

quasi-Newton approach due to ease of implementation, but in practice one may get

better performance for a large class (and more general class) of problems by using the

full Newton method. The comparison of these two methods and their analysis will

explored in depth in future work, but we present them both here to give the reader

a full view of feasible possibilities in attacking this difficult problem. The algorithm

shown below is for the full Newton method, as the quasi-Newton approach can be

easily ascertained from it.

3.2.6 Algorithm

3.2.7 Numerical results

All tests run by testing matrix A generated by the following Matlab code:
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Algorithm 4 Multi-rank update algorithm

1: procedure MR-update(d, V )

Output: Y, V̂ ,Λ

2: Solve for eigenvalues Λ using spectrum slicing

3: Solve for Sylvester vectors Y using structured Newton’s method

4: Solve for minimum of unconstrained problem: βµ(Y ) = f(Y ) + µϕ(Y )

5: while ‖∇(βµ)‖ > tol do

6: Construct HSS approx. to Hessian H̃1 (FMM, randomized sampling)

7: Compute eigendecomposition H̃1 = QΛQT

8: Modify Λ as necessary to preserve positive definiteness

9: p = QΛ−1QT (−∇(βµ))

10: Compute step length α with Wolfe Line Search

11: Y ←− Y + αp

12: end while

13: Solve for perturbed rank-r vectors V̂ using structured Newton’s method

14: Solve for minimum of unconstrained problem: βµ(V̂ ) = g(V̂ ) + µϕ(V̂ )

15: while ‖∇(βµ)‖ > tol do

16: Construct HSS approx. to Hessian H̃2 (FMM, randomized sampling)

17: Compute eigendecomposition H̃2 = QΛQT

18: Modify Λ as necessary to preserve positive definiteness

19: p = QΛ−1QT (−∇(βµ))

20: Compute step length α with Wolfe Line Search

21: V̂ ←− V̂ + αp

22: end while

23: end procedure

3.3 Sparse matrices

In this section we briefly note that by invoking a well-known result from graph

theory to show that class of problems in which our family of algorithms can be
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Table 3.8.
Complexity for performing a multi-rank update, residual tolerance set to
1e-6, orthogonality tolerance set to 1e-15

r \n 2000 4000 8000 16000

10 1.61e09 3.27e09 6.49e09 1.30e10

20 6.44e09 1.29e10 2.55e10 5.19e10

40 2.50e10 5.21e10 1.09e11 2.24e10

80 1.03e11 2.11e11 4.13e11 8.20e11

Table 3.9.
Accuracy for performing a multi-rank update, residual tolerance set to
1e-6, orthogonality tolerance set to 1e-15, r held constant at r = 20

n 2000 4000 8000 16000

γ 7.41e-09 4.33e-09 8.90e-09 1.02e-08

θ 8.64e-16 7.94e-16 8.13e-16 9.88e-16

effectively extended to the large class of sparse discretized problems. The work of

Spielman and Tang [77] states that for any planar graph, one can constructively prove

the existence of a separator of order O(
√
n). This allows us to make the following

proposition.

Proposition 3.3.1 Let A be a symmetric matrix resulting from the discretization of

a 2-dimensional n× n graph. Then a separator can be found so that the HSS rank of

A is at most O(
√
n).
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If the standard dense divide-and-conquer algorithm is applied to a two-dimensional

sparse problem, the computational complexity would be roughly O(n2), following the

complexity analysis in [88]. While this is better complexity than many existing algo-

rithms, if the algorithm and complexity analysis are examined more carefully the cost

can be decreased dramatically. For example, consider one of the computational bot-

tlenecks of the algorithm, matrix-matrix multiplications of R generators in the divide

portion of the algorithm in order to recursively update the B generators throughout

the dividing process. From [88], we have that the cost is:

ξ1 =
lmax∑
l=1

2l
lmax∑
l̃=l+1

2l̃−l · (5 · 2r3) ≈ 16r3 · 2lmaxlmax = O(r2n log n).

However, this assumes that each R generator is treated as an unstructured dense

matrix. In fact, in the sparse case, the R generators are just permutation matrices,

and thus they can be multiplied at much smaller cost. It can similarly be shown for

other bottleneck stages of the divide process that the computational complexity is

reduced asymptotically by a factor of r for the case of sparse matrices. The complexity

for conquer is unchanged asymptotically, though in practice this stage is faster for

sparse matrices due to deflation. This implies that our algorithm can compute an

eigendecomposition of any sparse 2-dimensional discretized problem in O(n3/2 log2 n)

complexity, which is a major improvement over many existing algorithms for this

class of problem. This will justified numerically in Section 5.

As a further justification of the decreased computation of R generator computa-

tions, consider the HSS generator structure of a general banded matrix. As it has

been show by several algorithms such as [17] that a sparse matrix can be transformed

to a banded form in linear time, we do not lose any generality. Suppose that A is
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banded with blocks Ajj on the diagonal and Aj,j+1 on the first block superdiagonal,

then the HSS generators look like [91]

Di =


Aj−1,j−1 Aj−1,j

Aj,j−1 Aj,j Aj,j+1

Aj+1,j Aj+1,j+1

 , Ui =


I 0

0 0

0 I

 ,

Rc1 =

 I 0

0 0

 , Rc2 =

 0 0

0 I

 , Bc1 =

 0 0

Aj+1,j+2 0

 ,

where the zero and identity blocks have sizes bounded by the half bandwidth.

We also note that for many 3-dimensional discretized problems, a separator of

order O(n2/3) can be found. Though this is not true in general. Nonetheless, this

means that for large classes of 3-dimensional discretized problems, our algorithm can

be used to compute a structured eigendecomposition in O(n5/3 log2 n) computational

cost, which is again faster than many current common approaches.

3.4 Extensions

In this section we extend to the superfast divide-and-conquer algorithm to non-

symmetric and generalized eigenvalue problems. In future, we hope to do even further

extensions.

3.4.1 Superfast singular value decomposition

For any matrix A of size n×m with n ≥ m, there exists a singular value decom-

position (SVD),

A = UΣV T (3.42)

where U is an m × n orthogonal matrix, V is an n × n orthogonal matrix, and

Σ = diag(σ1, ..., σn) with σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0.
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As a straightforward extension to the algorithm in [88], we can quickly compute

the SVD of any rank-structured A by doing an analogous divide procedure to that

discussed in Section 2 and [88], solving for the SVD of a block-diaogonal matrix, and

then recursively doing rank-one updates to the SVD. The recursion is very similar

to that found in Section 2 of [88] so we only briefly discuss how it differs from the

symmetric eigenvalue problem case, and we also clarify how to quickly and stably

compute the SVD of the modified block-diagonal matrix and the rank-r updates.

Let i be a non leaf node of T , and DC is applied to D1. If i = k, then we divide

the entire matrix A.

Di =

 Dc1

Dc2

+

 Uc1

Uc2

 Bc1

Bc2

 V T
c1

V T
c2


We avoid compiuting an eigendecomposition of

 Bc1

Bc2

 , which would result in

an unnecessarily computationally expensive rank-2r update to diag(Dc1 , Dc2). Instead

we write our low rank update as follows:

Di = diag(D̃c1 , D̃c2) + YiZ
T
i , where (3.43)

D̃c1 = Dc1 − Uc1Bc1V
T
c1
, D̃c2 = Dc2 − Uc2Bc2V

T
c2
, (3.44)

Yi =

 Uc1Bc1

Uc2Bc2

 , Zi =

 Vc1

Vc2

 . (3.45)

We can then find the SVD of the original matrix A by solving for the SVD of the

block-diagonal matrix formed from updating the D generators and then recursively

doing rank-one updates to the SVD, until we have the SVD of the original matrix A.

The first step of the conquer process is to solve for the SVDs of the leaf-level

updated Di blocks. Similarly to the eigendecomposition case, given the small size of

these blocks, a relatively expensive (cubic complexity in time) method can be chosen

and the global cost will still be near-linear. For this reason, we choose a method which

is cubic in time but very accurate, stable, and requiring only very simple operations;
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the algorithm of Lawson, Hanson, and Chan [58]. The singular vectors at the leaf

level will be completely unstructured unlike in the latter stages of the algorithm. But

this does not affect the global efficiency of the algorithm.

The key step in the conquer section of the algorithm is rank-r update to the

SVD. In this paper, this is done by r rank-one updates to the SVD, as this allows

us to utilizes lots of existing formalisms. In particular, we rely on the SVD update

algorithm presented in [12]. Here we summarize the main ideas ideas found in [12]

and then discuss how they can be utilized in our general SVD algorithm.

Suppose that A = UΣV T is a singular decomposition and vwT a rank-one update.

We know that the singular values and left vectors Â = A + vwT can be solved by

solving the eigenproblem for ÂÂT and the right singular vectors can be found by

ÂT Â. We aim to write this in the form

Â = A+ v1v
T
1 + v2v

T
2 ,

so that we can apply the well-developed theories of the rank-one update to the sym-

metric eigenvalue problem. We then note that

ÂÂT = (UΣV T + vwT )(V ΣUT + wvT ),

ÂÂT = AAT + UΣV TwvT + vwTV ΣUT (wTw)vvT .

Similarly, we we have that

ÂT Â = (V ΣUT + wvT )(UΣV T + vwT ),

ÂT Â = ATA+ V ΣUTvwT + wvTUΣV T + (vTv)wwT .

Using strategies from [12,41] we can take Schur decompositions and write

ÂÂT = AAT + vQρ1Q
T
1 v

T + ŵQ1ρ2Q
T
1 ŵ

T = AAT + v1v
T
1 + v2v

T
2 ,

where v1 =
√
−ρ1vQ1 and v2 =

√
ρ2ŵQ1. Similarly we have that

ÂT Â = ATA+ wQ2σ1Q
T
2w

T + v̂Qwσ2Q
T
2 v̂

T = AAT + ρ1v1v
T
1 + ρ2v2v

T
2 ,
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where v3 =
√
−σ1wQ2 and v3 =

√
σ2v̂Q2.

This allows us to use the strategies from the conquer section of [88] to design a

very efficient and stable algorithm of a superfast-DC-SVD in a straightforward way.

The asymptotic cost is the same as in the symmetric eigenvalue problem case, the

complexity is again O(r2n log 2) + O(rn log2 n) with slightly under double the total

cost of the eigendecomposition algorithm.

3.4.2 Superfast generalized eigenvalue problems

We know that historically the tridiagonal divide-and-conquer algorithm has the

ability to be extended to the generalized eigenvalue problem Ax = λBx, in which

both A and B are symmetric tridiagonal matrices and moreover B is a positive def-

inite matrix [28, 85]. The algorithms in [28, 85] provide two well known strategies

to generalized eigenvalue problems for structured matrices. We will first summarize

these two methods, then give an explanation as to why the rank structured case does

not admit these generalizations, and finally provide an alternative approach.

The main concept in [28] is to observe that because the matrix is tridiagonal, our

update problem QT (A− λB)Q = (D− yyT )− λ(I −wwT ) is able to be expressed as

QT (A− λB)Q = (D − εwwT )− λ(I − wwT ), where ε is a constant, i.e.,

B =

 A1 0

0 A2

− εvvT . (3.46)

Which gives us an extremely similar approach to the standard tridiagonal divide-and-

conquer approach. Suppose that subproblems Aix = λBix, i = 1, 2 have been

computed, then we obtain the following eigendecompositions:

QT
1 (A1 − λB1)Q1 = Λ1 − λIs,

QT
2 (A2 − λB2)Q2 = Λ2 − λIn−2.

We then have Q = Q1 ⊕Q2, Λ = Λ1 ⊕ Λ2 with w = QTv which gives us that:

QT (A− λB)Q = (Λ− εwwT )− λ(I − wwT )
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This yields a secular equation, however there are key differences to the ones in [64,88].

Suppose that f(λ) is the standard secular equation and then further suppose that

g(λ) is the equation which solves the secular equation subroutine of the generalized

eigenvalue problem that we wish to solve.

g(λ) = (ε− λ)−1f(λ) =
n∑
i=1

w2
i

di − λ
− 1

ε− λ
.

In the general rank-structured case a similar method is possible yet it is not

computationally feasibly in less than O(n2) complexity. We can see that this by

examining how the matrix Λ− εI will be replaced by Λ− yyT . However because this

is no longer a diagonal matrix, it will increase the evaluation cost for the secular

equation from linear to quadratic complexity.

The other well known approach to the problem is to apply a transformation to

both sides of the matrix equation which yields a standard eigenvalue problem which

can be solved by canonical techniques. Since B is an SPD matrix, we are able to

factorize

Ax = λLLTx. (3.47)

Then by first pre-multiplying by the inverse of the Cholesky factors then post-

multiplying, an equivalent problem arises,

Ãx = L−1AL−Tx = λx. (3.48)

The work most notable for the tridiagonal case is by [85]. There they prove

that if A and B are tridiagonal matrices, we then have that the matrices L−1 and

L−T in the above equation are actually quasiseparable. The product Ã is thus also

quasiseparable. In theory we could extend this concept to HSS matrices. Notice that

according to [?], there is a feasible way to accurately and efficiently compute part of

an inverse of an HSS matrix. However, since the framework described above would

require the entirety of the inverse matrix, yet this would be a stability nightmare to

actually compute. Thus neither of the two well known approaches described here are

practical to generalize to the HSS case.



67

As we know how important both the efficiency and stability features are to our

algorithmic design, we decided to propose a third more robust method, which is

based on the method of simultaneous diagonalization purposed by [62]. Which yields

a stable approach that is consistently found to be still near-linear in computational

complexity. We Follow the general framework in [62], which considers the simple case

where a matrix is low rank. However, our work considers the more general case where

the matrix need only have a low rank-property. But the same framework can be

employed. It should be noted that [62] uses a canonical eigensolver for the diagonal-

ization, so employing a superfast eigendecomposition algorithm causes a significant

speedup.

In the first major computation of the algorithm one computes a standard superfast

eigendecomposition for the matrix B noting that B = XTΣX, where X is used to

denote the eigenvectors in structured form and Σ is the eigenvalues matrix which due

to symmetry properties will all be real and positive as B is an SPD matrix. Due

to this property, one can easily form the inverse square root of the diagonal matrix

Σ and then compute X ′ = XΣ−1/2. In the next step we compute an intermediate

matrix C by transforming A by X through the use of multiplicative pre and post

factors. So this gives us that C = (X ′)TAX ′. As we are multiplying HSS matrices

with one another, the process can be done very fast without rank structured being

altered. Below we give a sketch of a lower bound proof for the HSS rank of the

matrix C. We also discuss how this affects the overall computational complexity

of our algorithm. After these steps, we must simply compute a second superfast

eigendecomposition, this time finding eignevalues and eigenvectors of C. We obtain

C = (X ′′)TΣ′X ′′. Once we have finished this computation, one easily computes the

eigenvector and eigenvalue solution of the generalized eigenvalue problem we originally

wanted to solve as Q = X ′X ′′ and respectively Λ = QTAQ. The major framework

for our superfast generalized eigendecomposition algorithm can be found in the table

in following section. The cost can be shown both analytically and computationally

to be similar to that of the standard eigenvalue algorithm and the singular value
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decomposition algorithm. As will be shown in Section 4 and Section 5, this algorithm

can be quite effective in quickly solving certain classes of discretized problems.

3.4.3 Switching levels

While the algorithm in [88] is very fast, scaling nearly-linearly in time and storage,

significant computational savings can be made if three switching levels are employed.

A switching level is where for levels lmax to lα of the tree using dense linear algebra

is more cost-effective than structured linear algebra due to the small block size. This

is important for efficient implementation for the superfast eigendecomposition, but it

is even more crucially important for the generalized eigendecomposition and sparse

matrix examples given in Section 3, and the discussion of use of switching levels is

also revisited in that section.

As an example, consider the direct eigendecomposition computations at the leaf

level of a matrix. Suppose the matrix size is n and each leaf level block has a small

constant size equal to m. The cost to compute a full eigendecomposition of each block

will be
(n/m)∑
i=1

5m3 +O(1) = O(n).

where the asymptotic constant is quite small. If on the other hand, we were to

employ structured linear algebra, we would still get O(n) cost, but with a much

larger constant. It is thus natural to solve for the following three constants each time

when doing a superfast eigendecomposition:

• m, the leaf level block size. In HSS linear solvers [92], the optimal value for

this parameter can be shown to be 2r, where r is the HSS rank of the matrix.

However, for HSS eigensolvers, a slightly larger value is optimal.

• lα is where we start to structure the intermediate eigenvector matrices. Below

this level, they are stored densely, above we use Cauchy-like and Householder

representations. The benefit of using dense linear algebra is not having a large
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constant associated with FMM but a larger value of lα will affect all levels as

the application of eigenvector matrices is recursive.

• lβ, is where fast root-finding techniques are employed. At lower levels of the

HSS tree, it is more effective to use an O(n2) bisection scheme to solve for the

updated eigenvalues than inverse interpolation-based root-finding. In practice

setting lβ ≈ lα gives good performance but is not quite optimal.

The idea of bisection and inertia evaluation as a means of eigenvalue solutions can be

found in many places such as [72]. More recently, an algorithm in [90] combined these

ideas with HSS structures to design an O(n2) algorithm for computing all eigenvalues

of a symmetric matrix. However, given that our subproblems are effectively diagonal

plus rank-r, a much simpler algorithm can be used and is preferable to optimize one’s

implementation.

These three parameters are highly coupled, and the best way to solve for them is

to numerically solve a simple optimization problem for total floating point operations

where r is set to be constant and m, lα, and lβ make up the solution vector. To

illustrate this, we examine the simple case when only one switching level parameter,

say m, is to be solved for. For an optimal switching level we want the computational

costs below and above the switching level to be equal. The actual expression is longer

and can be derived easily from the detailed complexity analysis in Section 3.1 of [88],

but to simplify the problem we can approximate this equivalence as

αm2n = βr2n log2m, (3.49)

where α is the constant associated with the cubic-time dense eigendecompositon al-

gorithm used at the leaf-level and β is roughly the constant associated with the whole

conquer section of the algorithm. Taking a derivative of this and setting to zero gives

no closed form solution for the switching level. When all complexity terms are in-

cluded and all three coupled switching levels are included, finding analytic expressions

that express or even well-approximate optimal switching levels becomes even more
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difficult, and a simple numerical optimization solution becomes a more viable and

attractive way of solving this problem.

Fortunately, this optimization problem for all three parameters can be set up

easily using the complexity analysis in Section 3.1 of [88] and this problem can be

solved numerically as a simple pre-computation and takes constant time to solve.

Conversely, it can be shown to have great computational benefit. While the benefit

is problem dependent on the HSS rank of the matrix and moreover the distribution

of rank of the matrix, a significant speedup is usually noticed.
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4. ANALYSIS FOR THE STRUCTURED EIGENVALUE

PROBLEM

While many readers of this thesis may focus on the impressive scaling results in the

previous section or the promising applications in the section that follow, we encour-

age a thorough read of this analysis discussion which we find to be a key part to this

research program. While much work has been done in the past decade studying how

the use of hierarchical matrices (and off-diagonal compression in general) affects the

solution of linear systems, there is little work in this area for the analogous matrix

eigenvalue problem. We seek to lay a foundational framework for how to approach

such a problem theoretically, which we hope to follow up on with a significant amount

of future work. We start with some basic convexity results which guide some algo-

rithmic choices used for the multi-rank update sub-routines. We then review some

detailed complexity arguments that show the near-linear scaling that are hallmarks

of our class of algorithms. Finally we take a deep dive into the algorithms’ accu-

racy; both at a global level and looking at the stability and accuracy of individual

components such as a 2× 2 block solution and in solving the secular equation.

4.1 Convexity analysis

A fundamental issue to the analysis of the multi-rank update problem algorithms

is that of convexity. In order to show that the algorithm will converge to a suitable

global maximum, we must show that that the optimization problems are in fact

convex. This require two things; that the second derivative of the Hessian matrix for

these problems is positive semi-definite, and that the feasible regions are convex. We

prove these properties here.
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4.1.1 Higher derivatives in forward eigenvalue problems

In this case the feasible region for optimization is unconstrained, so it is trivial

that the region is convex. It suffices to show that the higher derivative operators have

non-negative eigenvalues. We can prove this directly from the definition of convexity.

Proof.

f(x) = ‖diag(XTDX +XTV V Tx)‖2 (4.1)

Thus f(λx+ (1− λ)y) ≤ f(λx) + f((1− λ)y)

(by the triangle inequality of vector norms)

Similarly f(λx) + f((1− λ)y) = λf(x) + (1− λ)f(y)

(by the homogeneity property of vector norms)

As this holds for any x, y ∈ Rn, we have that f is convex �

4.1.2 Higher derivatives in inverse eigenvalue problems

In the case of the inverse problem, we have a constrained optimization region,

but the convexity of this region is again trivial because it is a norm bound. Thus

all we must do again is show that the higher derivative operators have non-negative

eigenvalues. Again, we can prove this directly from the definition of convexity.

Proof.

g(x) = ‖QTQ− I‖2 (4.2)

Thus g(λx+ (1− λ)y) ≤ g(λx) + g((1− λ)y)

(by the triangle inequality of vector norms)

Similarly g(λx) + g((1− λ)y) = λg(x) + (1− λ)g(y)



73

(by the homogeneity property of vector norms)

As this holds for any x, y ∈ Rn, we have that g is convex �

4.2 Complexity analysis

A fundamental feature of all of the algorithms in this thesis is that they scale near-

linearly in run time and storage complexity. While the numerical results presented

herein give a good indication of this, it is also important that we present theoretical

proofs of these properties. In this section, we show the theoretical asymptotic compu-

tational complexity for the two main algorithms in this thesis; the multi-rank update

algorithm and the superfast divide-and-conquer algorithm.

4.2.1 Mulit-rank update

The storage for the multi-rank update is the most essential part of the complexity,

and thus we go over it in detail. The first object that needs to be stored is the

structured eigenvector matrix. This consists of:

• Y , the Sylvester matrix, which contains up to rn nonzero elements

• λ, the eigenvalue matrix, which contains up to n nonzero elements

• V, the rank-r update matrix, which contains up to rn nonzero elements

• d, the initial eigenvalue vector, which contains up to n nonzero elements

• a small normalization matrix

All of this combined gives O(rn) data for the eigenvector representation. This

is also the cost of the first derivative vector for the objective functions. The most

expensive cost is that of storing the Hessian matrix. Note that this is theoretically
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O(n2) data, but we can take advantage of the rank structure and perform a random-

ized HSS construction on this matrix. As noted in the literature, the cost of this

construction is O(r2n log n), where k is the largest off-diagonal rank. Thus in this

case the Hessian formation has a cost of O(r2n log n), which becomes the dominant

global cost for the algorithm.

4.2.2 Superfast divide-and-conquer

To facilitate the understanding the algorithm complexity analysis, the framework

of the algorithm is given below. Here, it is assumed that the HSS tree T is a complete

binary tree with lmax + 1 levels, with the root at level 0 and the leaves at level lmax.

Table 4.1.
Major operations in the superfast DC algorithm and their complexity

Outer-most Inner-most Operation Complexity

loop loop subtotal

l = 1 : lmax−1
Descendents j of i Updating Bj generators ξ1 = O(r2n log n)

Leaf descendants j of i Updating Dj generators ξ2 = O(r2n log n)

l = lmax Leaves i Eigendecomposition of Di ξ3 = O(r2n)

l = lmax−1 : 0

Intermediate eigenmatrix- ξ4 = O(rn log2 n)

vector product

ith rank-1 update Rootfinding ξ5 = O(rn log n)

(i = 1, . . . , r) Finding perturbed ξ6 = O(rn log n)

eigenproblem

Normalization ξ7 = O(rn log n)

The dividing stage involves three nested loops. The outer-most loop is a top-down

sweep through the levels l of the HSS tree, the next loop is through the nodes i at a

given level l, and the inner-most loop is through each descendent j of i.
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The conquering stage is also done by three nested loops. The outer-most loop is

a bottom-up sweep through the levels l of the HSS tree, the next loop is through the

nodes i at a given level, and the inner-most loop is through each of the r rank-one

updates. At each step, we complete four tasks. The first task is to form the vector v in

Λ̃ + vvT as in other work. The next step is to approximately solve for the eigenvalues

λ of Λ̃ + vvT by finding the roots of the secular equation. The third step is to solve

the perturbed eigenvalue problem to find a vector v̂ such that λ is an exact eigenvalue

of Λ̃ + v̂v̂T . Finally, find the orthogonal eigenmatrix of Λ̃ + vvT . This eigenmatrix

has a Cauchy-like form defined by v̂, s, diag(Λ̃), and λ’s.

Before presenting the complexity analysis, we mention the two types of off-diagonal

ranks involved. One type is the off-diagonal rank bound r of A, which is problem

dependent. Another type includes the off-diagonal ranks of each matrix implicitly

involved in the FMM matrix-vector evaluation.

For the kernel functions φ(x) involved in this work, it can be shown that r̃ is

bounded, so that each FMM matrix-vector product can be implemented in linear

complexity.

We now derive analytically the complexity of our algorithm. The numerical results

give a view of how the algorithm scales in practice. The results in this section and

the numerical results agree asymptotically. The framework has a summary of the

complexity of the major computations and introduces notation. As often done in

HSS algorithms [92, 95], we assume that the leaf level D generators have size 2r, all

the R,B generators have size r, and the HSS tree has lmax + 1 ≈ log( n
2r

) levels.

During the dividing stage, at each level l of the HSS tree, there are 2l nodes i.

For each i at level l, we update Bj generators associated with each descendant j of i.

There are 2l̃−l nodes j at level l̃ = l + 1, . . . , lmax. Four more matrix multiplications

and one matrix subtraction is needed for each j. Thus, the total cost to update all

the Bj generators is
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ξ1 =
lmax∑
l=1

2l
lmax∑
l̃=l+1

2l̃−l · (4 · 2r3) ≈ 16r3 · 2lmaxlmax = O(r2n log n),

where the low order terms are dropped (this is done similarly later).

The update of the Dj generators at level lmax follows the update of all the Bj

generators. The cost is

ξ2 =
lmax∑
l=1

2l · 2lmax−l(2 · 2r3) = O(r2n log n).

At the leaf level we compute the eigendecomposition of Di for each leaf i. The

total cost is

ξ3 =
n

2r

(
2 · (2r)3

)
= O(r2n).

During the conquering stage, for each node i at each level l of the HSS tree, a

sequence of operations are performed to find the eigenvectors.

One operation is to perform the intermediate eigenmatrix-vector multiplication in

terms of Qi1 , . . . , Qi associated with i and its descendants. Each FMM application

involved here has linear complexity O( n
2l̃

), where n

2l̃
is the size of Qj for j at level

l̃ = l, l + 1, . . . , lmax. Here, Qj is further given by r Cauchy-like matrices. This cost

of the intermediate eigenmatrix-vector multiplication associated with i is thus

lmax∑
l̃=l

2l̃−l · r ·O(
n

2l̃
) = O(r

n

2l
(lmax − l)). (4.3)

The subtotal for all i is

ξ4 =
lmax∑
l=1

2l
lmax∑
l̃=l

2l̃−l · r ·O(
n

2l̃
) = O(rn log2 n).

Another operation is to solve r secular equations associated with each node i. The

cost with FMM for each secular equation is O( n
2l

). Thus, the subtotal is

ξ5 =
lmax−1∑
l=0

2l · r ·O(
n

2l
) = O(rn log n).

The costs in the other operations are

ξ6 = O(rn log n), ξ7 = O(rn log n).
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Therefore, we obtain the total cost ξ = ξ1+· · ·+ξ7 for the superfast DC algorithm.

Clearly, if r is bounded, the cost ξ4 for applying the intermediate eigenmatrices to

vectors dominates the complexity. In general, the conquering stage costs a lot more

than the dividing stage. In addition, by setting l = 0 (for i = k), we get the cost ξ̃

for applying the eigenmatrix Q of A to a vector. The storage for the Qi matrices in

terms of Cauchy-like forms can be easily counted. These results are summarized in

the following theorem, where the result for a Toeplitz matrix is used.

Theorem 4.2.1 Assume all the intermediate eigenvalues in the superfast DC scheme

are uniformly distributed. The algorithm costs ξ to find all the eigenvalues and ξ̃ to

apply the eigenmatrix to a vector, where

ξ = O(r2n log n) +O(rn log2 n), ξ̃ = O(rn log n).

The storage for the eigenmatrix is

σ = O(rn log n).

Specifically, if A is a banded symmetric matrix with finite bandwidth,

ξ = O(n log2 n), ξ̃ = O(n log n), σ = O(n log n),

and if A is a symmetric Toeplitz matrix,

ξ = O(n log3 n), ξ̃ = O(n log2 n), σ = O(n log2 n).

4.3 Accuracy analysis

In this section we first provide a uniform bound on eigenvalue accuracy of our

algorithm that holds for any problem. We then show several very useful special cases

that highlight that in most real-life we get much better accuracy than the uniform

bound.
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4.3.1 Uniform eigenvalue accuracy bound

Given that the eigenvalue algorithm in [88] often begins with a pre-processing

step of approximating a symmetric matrix A with a symmetric HSS form Ã, it is

important to rigorously understand the relationship between the compression of the

off-diagonal blocks of A and the accuracy of the computed eigenvalues with respect to

the the original matrix eigenvalue problem. While in general one can have a variable

tolerance for different blocks of an HSS form Ã, for ease of discussion we assume here

that each off-diagonal block has been compressed with a uniform tolerance τ.

In [88], a uniform bound is proved for such eigenvalue accuracies. While this bound

is sharp, in many practical cases it is quite pessimistic. In this section we restate

some of the major structured perturbation analysis results from [88] and then expand

upon the discussion that paper to illustrate some common special cases where even

stronger eigenvalue accuracy results hold. This has important practical implications,

as it means for large classes of problems we can truncate the off-diagonal blocks very

aggressively and still expect to recover very accurate eigenvalues.

Consider a block 2× 2 form A that admits a one-level HSS approximation:

A ≡

 A11 A12

A21 A22

 ≈ Ã ≡

 D1 U1B1U
T
2

U2B
T
1 U

T
1 D2

 , (4.4)

As shown in [88], we can derive a bound on how well the eigenvalues λ̃i of Ã ap-

proximate those of A. Given an HSS construction where the off-diagonal block A12

is approximately equal to the compressed form U1B1U
T
2 , we can write an explicit

formulation for the error of matrix A, here denoted by E.

A12 =
(
U1 Û1

) B1

B̂1

 UT
2

ÛT
2

 = U1B1U
T
2 + Û1B̂1Û

T
2 . (4.5)

Thus,

A = Ã+ E, with E =

 0 Û1B̂1Û
T
2

Û2B̂
T
1 Û

T
1 0

 .
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This follows from the fact that the row bases Ui and Ũi are orthogonal, and thus that

‖E‖2 = ‖B̂i‖2. Thus it is easy to show the following lemma.

Theorem 4.3.1 For A and Ã, suppose ||B̂1||2 ≤ τ . Then

|λi − λ̃i| ≤ τ.

In [88], the lemma is then used to derive a uniform bound on the eigenvalue accuracy

relative to off-diagonal compression τ and the number levels l one uses in their HSS

approximation. We state the theorem without proof here, as it is proven in [88].

Theorem 4.3.2 Suppose a multilevel HSS approximation Ã to A is constructed via

truncated SVDs applied to the off-diagonal blocks of A, so that each B generator is

obtained with the accuracy τ . Let l be the total number of levels (excluding the root) in

the HSS tree. Then the approximation error matrix E = A− Ã satisfies the following

bound that is attainable:

||E||2 ≤ lτ. (4.6)

Thus,

|λi − λ̃i| ≤ lτ.

This bound is shown to be sharp in [88], but to be sharp the error matrix of an HSS

approximation must have a very special, pathological, structure. In many practical

situations, the uniform bound turns out to be quite pessimistic. Here we give a

few important cases where stronger results can be given. In particular, two major

strategies we employ to find tighter accuracy bounds are to examine the separation

of the eigenvalues λi of A and to consider possible decay properties of the matrix A.

Both strategies are briefly hinted at in [88], but we expand both discussions here.

4.3.2 Well-separated eigenvalues

For eigenvalues that are well separated, once can combine with results in [53] and

show the following proposition.
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Proposition 4.3.1 Let E = A − Ã be the HSS approximation error. Then for any

eigenvalue λi of A satisfying |λi − λi+1| > 2lτ , |λi−1 − λi| > 2lτ , we have

|λi − λ̃i| ≤ ||Eqi||2, (4.7)

where qi is the eigenvector associated with λi.

As mentioned in [88], this result is particularly useful as it allows us to map

the effect of off-diagonal truncation to eigenvalue accuracy through matrix vector

products. By this we mean that the qi in the above proposition can be found simply

from the numerical eigenvector matrix. It is also important to note that in the case

when eigenvalues are not well separated, we can still make improvements. If the

clustering is tight enough, one may aggressively deflate the problem to a desired

tolerance.

4.3.3 Decaying norm structure

A second important special case that is very common to structured matrix com-

putations is when the off-diagonal blocks exhibit a decay property. For example the

common matrix kernels 1/|x−y| and 1/|x−y|2 exhibit this property when the points

are relatively uniformly distributed and arbitrary real values are chosen for the di-

agonal entries. As such, here we give some very useful error diminishing effects so

that the approximation errors in some off-diagonal blocks have little impact on the

accuracy of certain eigenvalues.

Following the eigenvalue perturbation analysis in [69], there is a useful shielding

effect related to the compression of the off-diagonal blocks of A. That is, for certain

eigenvalues λ of A originating from say A11, the accuracy of λ is roughly shielded

from the approximation error within the other subproblem A22 (λ is said to originate

from A11 [69] in the sense that it is a certain continuous function of the perturbation).

That is, the HSS approximation error δ in A22 appears in the error bound of λ like

O(δ2).
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In particular, if the singular values of the off-diagonal blocks quickly decay to a

desired accuracy τ , then a compact HSS form Ã can be used to compute the eigen-

values with satisfactory accuracies. This type of problem is an important application

of HSS methods. For example, when A results from the discretization of a kernel

function that is smooth away from the diagonal singularity, then the off-diagonal

blocks have a decay property, i.e., they quickly decay when they are farther away

from the diagonal. If the off-diagonal blocks has the decay property, then there is

also an attractive multiplicative effect [69] for the off-diagonal blocks. As an example,

consider a two-level HSS approximation to a block 4× 4 matrix A = (Aij)4×4, where

the decay property looks like

‖Ai,i+1‖2 ≤ τ1, i = 1, 2, 3,

‖Ai,i+2‖2 ≤ τ2 � τ1, i = 1, 2,

‖Ai,i+3‖2 ≤ τ3 � τ2, i = 1.

Fig. 4.1. an illustration of block 4× 4 matrix with a decay property

For an eigenvalue λ of A originating from the leading block 2 × 2 principal sub-

matrix A1:2,1:2, let

δ1 = min
λ̂∈λ(A1:2,1:2)

|λ−λ̂|, δ2 = min
λ̂∈λ(A2:4,2:4)

|λ−λ̂|, δ3 = min
λ̂∈λ(A3:4,3:4)

|λ−λ̂|,

Based on a derivation in [69],

δ2 /
1

δ3

τ1(τ2 +
1

δ2

τ 2
1 ).
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When λ is separated from the eigenvalues in λ(A2:4,2:4) and λ(A3:4,3:4), the impact

of τ1 on the accuracy appears as O(τ 3
1 )+O(τ1τ2) and is significantly diminished. Thus,

τ1 does not have to be very small. This also indicates that some extreme eigenvalues

of A may be accurately approximated by those of the HSS form Ã.

However, in many cases the decay property is too weak to take advantage of the

above results but large enough that performing full low-rank updates to the relevant

symmetric eigenvalue sub-problem is not an efficient approach. In these cases, a

refinement strategy can be employed successfully. Details of the refinement strategy

and analysis are given below is Section 4.3.4.

4.3.4 Iterative refinement

We next introduce and prove the reliability of a major practical improvement over

the algorithm in [88], the use of refinement. This applies to cases where the eigen-

values are not necessarily well-separated, and while they exhibit a decay property,

the decay may be very weak. This is a very common situation in structured matrix

computations.

For many problems, it is often the case that the singular values σi of A12 decay to

around τ1 but then decay very slowly. Now suppose τ1 is close to the desired eigenvalue

accuracy τ , but is slightly larger. Thus, if we compute an approximate eigenvalue λ̃

based on the rank-r update, and especially if λ̃ is close to its nearby eigenvalues, the

accuracy in λ̃ may only be τ1 and is not sufficient. A similar phenomenon occurs when

the eigenvalues are weakly clustered, that is clustered enough where a full rank-one

update would be inefficient and possibly unstable but traditional deflation techniques

cannot be applied without sacrificing accuracy. Thus this refinement strategy is of

essential importance to a practical implementation of our algorithm.
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Our technique is to refine the accuracy by a reasonable amount, without the need

to include any additional low-rank update beyond σr so as to save a significant amount

of work. To illustrate the idea, consider a 2× 2 problem

A = Ã+ E ≡

 1

1 + τ2

+ τ1

 u1

u2

( u1 u2

)
, (4.8)

where τ1 ≥ τ2 > τ and ||( u1 u2 )T ||2 = 1 (if this norm is not 1, we can scale the

vector and modify τ1). Hence, the distance τ2 between the two eigenvalues of Ã as

follows is not larger than ‖E‖2:

λ̃1 = 1 + τ2, λ̃2 = 1. (4.9)

Therefore, to reach the desired accuracy τ , the rank-one update matrix E is not

supposed to be ignored. On the other hand, we can improve the accuracy of λ̃1

and λ̃2 based on the following refinement strategy without recomputing them via the

rank-one update.

Consider a given tolerance τ < τ2 ≤ τ1. Let λ1 and λ2 be the eigenvalues of A,

and

λ̂1,2 =


1 + 1

2
(τ1 + τ2)± 1

4

(
τ1 + τ2 +

√
τ 2

1 + τ 2
2

)
, if |u1| ≤ |u2|,

1 + 1
2
(τ1 + τ2)± 1

4

(
τ1 − τ2 +

√
τ 2

1 + τ 2
2

)
, otherwise.

(4.10)

Then for i = 1, 2,

|λi − λ̂i| ≤


1
4
(τ1 + τ2)− 1

4

√
τ 2

1 + τ 2
2 , if |u1| ≤ |u2|,

−1
4
(τ1 − τ2) + 1

4

√
τ 2

1 + τ 2
2 , otherwise.

If furthermore, τ1 = τ2, then

|λi − λ̂i| <


3
16
τ1, if |u1| ≤ |u2|,

3
8
τ1, otherwise.

(4.11)

Proof The eigenvalues of A are

λ1,2 = 1 +
1

2
(τ1 + τ2)± 1

2

√
τ 2

1 + 2τ1τ2(u2
2 − u2

1) + τ 2
2 .
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If |u1| ≤ |u2|, then

λ1 ≥ 1 +
1

2
(τ1 + τ2) +

1

2

√
τ 2

1 + τ 2
2 ,

λ1 ≤ 1 +
1

2
(τ1 + τ2) +

1

2

√
(τ1 + τ2)2 = 1 + τ1 + τ2.

λ̂1 is in fact the middle point of the interval

[1 +
1

2
(τ1 + τ2) +

1

2

√
τ 2

1 + τ 2
2 , 1 + τ1 + τ2], (4.12)

and

|λ1 − λ̂1| ≤
1

4
(τ1 + τ2)− 1

4

√
τ 2

1 + τ 2
2 .

Also, λ̂2 is the middle point of the interval

[1, 1 +
1

2
(τ1 + τ2)− 1

2

√
τ 2

1 + τ 2
2 ]. (4.13)

We can similarly show the bound for |λ2 − λ̂2|. In particular, if τ1 = τ2, then

|λi − λ̂i| ≤
1

2
(1−

√
2

2
)τ1 <

3

16
τ1.

The case |u1| > |u2| can be similarly shown and is omitted.

The implication of this proposition is as follows. If τ1 and τ2 are close to the

tolerance τ but are not small enough to be ignored, we can further improve the

accuracy of λ̃1,2 by replacing them by λ̂1,2. The accuracy of the eigenvalues can

be improved from τ1 to either 3
16
τ1 or 3

8
τ1. In practice, this refined accuracy may

be sufficient and then we avoid including additional low-rank updates in the DC

scheme. In addition, the intervals give tighter bounds for λ1,2 than the standard ones

[1 + τ2, 1 + τ1 + τ2] and [1, 1 + τ1], respectively.

4.3.5 Effect of off-diagonal compression

As a test of the effect of off-diagonal compression, we form a 1000× 1000 matrix

by randomly (Matlab randn) selecting diagonal entires and randomly selecting off
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diagonal blocks of rank 2. Specifically, this is done by randomly generating basis

vectors and orthonormalizing, setting singular values σ1 and σ2 as desired, and copying

this to other off-diagonal block to preserve symmetry. The result is:

A =

 d1 (u1, u2)diag(σ1, σ2)(v1, v2)T

(u1, u2)diag(σ1, σ2)(v1, v2)T d2

 .

For various values of σ1 and σ2, we check the accuracy of the eigenvalues (element-

wise) when σ2 is set to 0. For each experiment we ran each value pair 20 times and

average since there was decent variance from trial to trial. Though we note that the

theoretical bounds showed later on were never violated within our numerical tests.

Table 4.2.

maxi{λi−λ̃iηi
} for various σ1 and σ2, illustrating that |λi − λ̃i| ≤ σ1σ2

ηi
in all

cases.

σ1/σ2 1e− 5 1e− 6 1e− 7 1e− 8

1e− 1 8.56e− 08 7.42e− 09 5.38e− 10 9.65e− 10

1e− 2 2.06e− 08 2.03e− 09 1.94e− 10 3.47e− 11

1e− 3 5.46e− 10 5.41e− 11 4.41e− 12 3.34e− 13

1e− 4 9.53e− 11 3.34e− 11 1.49e− 12 8.43e− 14

4.3.6 Eigenspace contributions

Suppose we wish to compute the error of such an eigenspace contribution, |ỹi−yi|.

If our HSS tree has only 2 levels (a 4×4 HSS matrix), then we can prove the following

lemma which will be needed when proving tight error bounds.

Lemma: Let yi be an entry in the projection of the vector y at the root level of a block

4 HSS tree, then the error in this entry is bounded as follows:|ỹi−yi| ≤ yi

(
1− γi

γi−εi

)
,
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Fig. 4.2. holding σ1 constant, we vary σ2 and see how accuracy is affected
when it is dropped.

where εi is the error of eigenvalue λi at the previous level and γi is the gap between

eigenvalue λi and its closest neighbor.

Proof: Note that the eigenvector entries at the lower level theoretically take on the

form:

Q(i, j) =
vipj

di − λj
.

But there is an error induced by the off-diagonal compression. Suppose that

the error of eigenvalue λi is bounded by εi, which in practice depends on both the

compression tolerance and the gap between λi and its neighbors. So we are essentially

projecting the rank-r updates by perturbed eigenvectors:
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Fig. 4.3. effect of off-diagonal compression on eigenvalue accuracy

Fig. 4.4. holding σ2 constant, we vary σ1 and see how accuracy is affected
when it is dropped.

˜Q(i, j) =
vipj

di − λj ± εj
.

We now solve for the maximum perturbation of these projections. WLOG, assume

that all entries of the vector v are positive and that the induced error εj is positive. In

this way we can bound the the positive difference between the perturbed projection

and the theoretical projection:

QTv(i) =
n∑
k=1

v
(2)
k v

(1)
k pi

dk − λi − εi



88

≤
n∑
k=1

v
(2)
k v

(1)
k pi

γi − εi
=

pi
γi − εi

n∑
k=1

v
(2)
k v

(1)
k .

But we need to consider the exact expression of pi, or at least provide an up-

per bound for it in terms of the eigenvalue gap and the norm of the vector we are

projecting:

pi =

 n∑
k=1

(
v

(1)
k

dk − λi

)2
−1/2

≤

 n∑
k=1

(
v

(1)
k

γi

)2
−1/2

= γi

(
n∑
k=1

(v
(1)
k )2

)−1/2

=
γi

‖v(1)‖2

.

So we have that the bound expression for the perturbed projections is:

QTv(i) ≤ γi
‖v(1)‖(γi − εi)

n∑
k=1

v
(1)
k v

(2)
k ,

and from a straightforward calculation it follows the error in these projections is

bounded by:

|ỹi − yi| ≤ yi

(
1− γi

γi − εi

)
�

We note this gives us a lot of insight into the perturbation at each level.

A =


D1 U1B1U

T
2 U1R1B3R

T
4 U

T
4 U1R1B3R

T
5 U

T
5

U2B
T
1 U

T
1 D2 U2R2B3R

T
4 U

T
4 U2R2B3R

T
5 U

T
5

U4R4B
T
3 R

T
1 U

T
1 U4R4B

T
3 R

T
2 U

T
2 D4 U4B4U

T
5

U5R5B
T
3 R

T
1 U

T
1 U5R5B

T
3 R

T
2 U

T
2 U5B

T
4 U

T
4 D5



+


0 E1 E3

ET
1 0

0 E4

ET
3 ET

4 0



(4.14)
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In future work, we will combine this result with the global theorems in [88] to come

up with a more nuanced theory of eigenvalue perturbation analysis. In particular,

with such a theory it may be possible to aggressively truncate off-diagonal blocks and

still recover accurate eigenvalues. This could help stretch the utility of the algorithm

to general matrix structures such as sparse (possibly with no discernible rank-pattern)

matrices and the preconditioning of dense large unstructured matrices. We note that

unlike the bounds in [88], the bounds in this section are not tight. That will be

another important topic in future work, as understanding the worst case scenarios

insofar as eigenvalue accuracy are concerned should should lots of light on this theory.

4.3.7 Conditioning of the secular equation

We now derive a secular equation for the form of the above tests. This is very

important for practical applications; specifically in ones that have clustered eigen-

values. Many well-known eigenvalue algorithms are known to only perform well in

cases when their spectra are well-separated. The divide-and-conquer flavor of algo-

rithms presented in this thesis have been shown numerically to perform well in more

pathological cases such as clustered eigenvalues, but the theoretical arguments in this

subsection hope to shed a more rigorous light as to why this is the case. Analytically,

we seek to find zeros of the following determinant function:

det

D − Iλ−
 u1 u2 0 0

0 0 u1u2




0 vT1

0 vT2

vT1 0

vT2 0




Utilizing the product rule for determinants, we write:
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= det(D − Iλ) det

(I − (D − Iλ)−1

 u1 u2 0 0

0 0 u1u2




0 vT1

0 vT2

vT1 0

vT2 0



 .

But the first term is never nonzero if we have distinct eigenvalues and no nonzero

components of our low-rank updates (and if we don’t we can always deflate to that

form), so we only need to consider finding the zeros of the following:

det

(I − (D − Iλ)−1

 u1 u2 0 0

0 0 u1u2




0 vT1

0 vT2

vT1 0

vT2 0



 .

Now applying the Sylvester Determinant Theorem, one can show that this is

equivalent to:

det




1 0 ...

0 1 ...

−σ1

∑n/2
i=1

u
(1)
i v

(1)
i

λ−di −√σ1σ2

∑n/2
i=1

u
(2)
i v

(1)
i

λ−di ...

−√σ1σ2

∑n/2
i=1

u
(1)
i v

(2)
i

λ−di −σ2

∑n/2
i=1

u
(2)
i v

(2)
i

λ−di ...



 .

At this point, one must simply compute the determinant explicitly by expansion

and get the following secular equation:

f(λ) = 1−σ2
1

 n/2∑
i=1

u
(1)
i v

(1)
i

λ− di

 n/2∑
i=1

u
(1)
i v

(1)
i

λ− di+n/2

−σ1σ2

 n/2∑
i=1

u
(1)
i v

(2)
i

λ− di

 n/2∑
i=1

u
(2)
i v

(1)
i

λ− di+n/2



−σ1σ2

 n/2∑
i=1

u
(2)
i v

(1)
i

λ− di

 n/2∑
i=1

u
(1)
i v

(2)
i

λ− di+n/2

−σ2
2

 n/2∑
i=1

u
(2)
i v

(2)
i

λ− di

 n/2∑
i=1

u
(2)
i v

(2)
i

λ− di+n/2

±O(
σ2

1σ
2
2

η
).

So if we drop σ2, we get an element-wise error of:
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|f(λ)− ˜f(λ)| = σ1σ2

 n/2∑
i=1

u
(1)
i v

(2)
i

λ− di

 n/2∑
i=1

u
(2)
i v

(1)
i

λ− di+n/2


+σ1σ2

 n/2∑
i=1

u
(2)
i v

(1)
i

λ− di

 n/2∑
i=1

u
(1)
i v

(2)
i

λ− di+n/2

+O(
σ2

2

η
)

From this it is clear that the error term is of the form σ1σ2
ηi
.

Another way to see this is to examine the following bound.

maxλ{|f(λ)− ˜f(λ)|}
minλ{|f ′(λ)− ˜f ′(λ)|}

,

This gives a similar asymptotically, though with slightly different constants. In

future work, we will work to more rigorously understand this conditioning relationship

and how it affects eigenvalue solutions in the context of global problems.
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5. APPLICATIONS FOR THE STRUCTURED

EIGENVALUE PROBLEM

In this chapter we give some examples of important applications of structured eigen-

value problems.

5.1 Functions of matrices

To begin, we note that functions of matrices are a simple example of how to apply

our algorithms to solve various computational science and engineering, but with a

profound impact. The well developed theory of functions of matrices allows us to

apply the divide-and-conquer algorithm to a large class of problems. We note, as

stated in [51], the following property:

Definition 5.1.1 (matrix function via Jordan canonical form). Let f be defined on

the spectrum of A ∈ Cn×n and let A have the Jordan canonical form A = AJZ−1.

Then

f(A) = Zf(j)Z−1 = Zdiag(f(Jk))Z
−1.

Thus for any function of a symmetric matrix with a low-rank property, repre-

sentable by a Taylor expansion, the function can be computed to high precision in

nearly linear time and storage complexity, following the complexity analysis in [88].

As an example, consider the exponential of a Toeplitz matrix. This problem is of

great interest in computational engineering and is still an active field of study. Yet

the simple application of superfast divide-and-conquer is faster than available popular

existing methods [9, 55,75].
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5.2 Spectral projectors

As another application, from the structured eigenvector matrix which can be com-

puted in near-linear time, we obtain for no additional cost any spectral projector.

Moreover, the projector is guaranteed to be orthogonal, which plays in important

role in applications.

Let k be the number of eigenvectors required in our spectral projector. Then

the cost of extracting the spectral projector from the superfast divide-and-conquer

structured eigenvector matrix is:

lmax∑
i=1

2i
(nα

2i

)
rk = O(rkn log n).

This is comparable to other recent work on fast spectral projectors. A notable

competitor algorithm is that of Kressner and Susnjara [56], which also utilizes the

hierarchical structure of banded matrices. But instead of using eigenvector structure,

they leverage the work of Nakatsukasa et al. [65–67] to utilize a variant the QDWH

algorithm to compute the spectral projector. A very good survey of the use and

justification for decay properties and hierarchical methods for banded and structured

spectral projector can be found in [8]. However, the superfast divide-and-conquer

eigensolver has two advantages as a spectral projector over other recent methods in

that it will have guaranteed near machine precision orthogonality and it can be used

for any matrix in the large class of symmetric HSS matrices; not just banded matrices.

5.3 Optimization

In this section we show the algorithms in this thesis and the one in [88] can

be combined to greatly accelerate traditional barrier optimization methods. While

extremely accurate and robust, traditional barrier methods are prohibitively slow

for large problems and thus no longer commonly used in practice. However, our

accelerated versions can be shown to be competitive with state-of-the art methods
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for quadratic programming problems, and likely would show even stronger results

for more pathologically non-linear problems. Though we leave these pathological

problems for future work. In particular, problems from the optimization area of

semidefinite programming show a lot of promise to utilize our methods, and will

certainly be revisited in future work.

The barrier method combines strict feasibility with the well-studied formalisms of

unconstrained optimization algorithms. It generalizes well to pathologically nonlinear

problems, and thus has lots of practical uses in applications. This method involves

choosing a barrier function, which we denote here as ϕ(x), that tends to ∞ as a

constraint is nearly violated. We discuss the choice of barrier function below. Then,

instead of optimizing our original objective function, we find the minima of a sequence

of augmented problems:

βµ(x) = f(x) + µϕ(x). (5.1)

We start with µ as some moderately sized constant and let it go to zero. As shown

in [36], this guarantees both convergence to the optimal solution, while maintaining

strict feasibility throughout. There are, however, exhaustive possibilities on how to

solve these unconstrained problems. In this thesis we focus on the standard Newton

method with Wolfe line search, as presented in [36, 68], as well as how it can be

accelerated using HSS algorithms.

It is noted in [36, 68] that several choices of barrier function ϕ(x) are admissible.

The two mentioned as common are 1/x and log(x). We note that the one used in our

implementations was log(x).

First consider the special case of linear programming and with a logarithmic bar-

rier function. We can write the augmented objective function, its gradient, and its

Hessian cleanly and explicitly. Let r = b− Ax, and we use Matlab notation.

βµ(x) =
n∑
i=1

xi − µ
m∑
j=1

log(b(j, 1)− A(j, :)x) =
n∑
i=1

xi − µ
n∑
j=1

r(j, 1) (5.2)
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∇(βµ(x))(i, 1) = 1 + µ
m∑
j=1

A(j, i)

r(j, 1)
(5.3)

∇2(βµ(x))(i, k) = µ

m∑
j=1

A(j, i)A(j, k)

r(j, 1)2
(5.4)

If A can be approximated by a rank-k matrix, where k is very small compared to

the size of A, then this Hessian can be written in terms of data-sparse generators,

where the generators are formed using the Fast Multipole Method (FMM) with well-

studied kernel function 1/x2. This is the primary reason log(x) was chosen. Further,

it is commonly thought of as a reliable choice of barrier function [36,68].

A similar argument can be made to show that general quadratic programming

problems where the constraint matrices have a low-rank property also admit an HSS

Hessian. This has been verified numerically. Moreover, our initial tests show us that

several classes of more general non-linear optimization problems admit HSS Hessians.

We will further investigate such problems in future work.

The bottleneck for HSS-Newton is still SVD, Hessian formation, and eigendecom-

position, but they are considerably faster in this case. The complexity of the initial

SVD performed is given in Section 2. Moreover, each FMM application is only O(m)

so we can get all generators in O(mn). We do compute the band of the Hessian ex-

plicitly, but this can easily be shown to have negligible complexity for a small band.

Moreover, as shown in [90], we can convert the banded plus semiseperable matrix to

an HSS matrix via randomized sampling in O(r2 log n). Similarly, the entire eigende-

compositon of an HSS matrix also only takes O(r2n log n), when the algorithm in [88]

used. Moreover, as an HSS matrix can be applied to a vector in O(rn log2 n), the

matrix vector products involved in the finding the search direction are also quite fast.

Moreover, while this Hessian and its eigendecomposition will not be data sparse,

the HSS approximation to the Hessian only requires O(n log n) entries to be stored,

which is comparable to the original sparse A. Moreover, as the eigenvectors of a

symmetric HSS matrix can be shown to be HSS [88], and as the algorithm in [88]

stores them in data-sparse form, the storage for the entire HSS-Newton barrier method
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Algorithm 5 Accelerated Barrier Method for Linear or Non-Linear Optimization

1: procedure HSS-Newton(A, constraints) Output: optimal solution vector x

2: A ≈ UΣV T (pre-computation: HSS-SVD), with U ∈ Rm×k, Σ ∈

Rk×k,diag, V ∈ Rn×k, k small

3: for i = 1, 2, 3, ...10 do µ = 102−i

4: Solve for minimum of unconstrained problem: βµ(x) = f(x) + µϕ(x)

5: while ‖∇(βµ)‖ > tol do

6: Construct HSS approx. to Hessian H̃ (FMM, randomized sampling)

7: Compute eigendecomposition H̃ = QΛQT

8: Modify Λ as necessary to preserve positive definiteness

9: p = QΛ−1QT (−∇(βµ))

10: Compute step length α with Wolfe Line Search

11: x←− x+ αp

12: end while

13: end for

14: end procedure

is O(rn log n). This is a considerable savings from the non-accelerated version both

in terms of operation count and storage.

We briefly mention two important features of our algorithms that guarantee con-

vergence, as shown in [68]. In Newton’s method, the Hessian matrix must be SPD

to ensure we reach a global minimum (not a maximum or saddle point). But in

practice, the matrix will have small negative eigenvalues at various stages of compu-

tation. In [68] it is shown that a very theoretically sound method of preserving the

SPD form is taking an eigendecompositon of H, replacing all nonpositive eigenvalues

with small positive ones, and proceeding. But this is rarely done in practice for the

eigendecompositon is time consuming and may destroy the sparsity of H. However,

in our case the run-time and storage for an HSS eigendecompositon is quasilinear, so



97

we can use this method without difficulty. Our line search is implemented with the

Strong Wolfe conditions.

We cannot guarantee accuracy of our HSS-Newton method. That is because in

this method we are not really solving the stated problem but a nearby problem with

nicer properties. Moreover, the question of just how “nearby” we are is completely

problem-dependent (based on the decay rate of the singular values). We tested 40

full rank LP problems from the UF collection, and only in 3 cases (80bau3b being

the only one in representative results shown below) were we successful, where we say

the implementation is “successful” if it satisfies the following 3 properties:

• algorithm converges in time less than a standard Newton implementation

• function value f(x) is of correct order of magnitude with ≥ 2 digits correct

• x lies in feasible region of original problem, not just of nearby problem

In the cases where HSS-Newton was not successful, our implementation re-runs

with taking a full-SVD. In such cases, the code gives the correct solution but the total

run time is much slower than a standard Newton. In conclusion, HSS-Newton is a

very fascinating idea theoretically, and in certain situations it can accelerate Newton’s

method, but it it does not seem to be a reliable strategy for general LP problems.

Finally, we consider a specific example of HSS-optimization where our method

has a clear advantage over existing methods. We examine semidefinite programs with

constraints derived from the Kalman-Yakubovich-Popov lemma, commonly referred

to as KYP-SDP optimization problems [87]. These problems take the form:

min cTx

s.t. KH
i (ϕ⊗ Pi)Ki +Mi(x) � 0, i = 1, ..., L

A traditional method for these problems is an interior-point method such as

in [86,87]. But it was noted in [59] that this problem has rank structure, and semisep-

arable matrix structure was used to accelerate the standard algorithm faster than the
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Table 5.1.
comparison of Newton’s method and HSS-Newton for some linear pro-
gramming problems

Newton Size Run Time Optimal Solution % error

itest6 11x17 0.012s .0000 -

chemcom 288x744 8.727s 825.0000 0.00%

80bau3b 2262x12061 363.650s 700.0000 0.00%

HSS-Newton Size Run Time Optimal Solution % error

itest6 11x17 3.957s 0.0035 -

chemcom 288x744 12.154s 825.0453 0.00%

80bau3b 2262x12061 29.607s 709.3344 1.33%

standard O(n6) complexity. However, if these algorithms are extended in a straight-

forward way using more sophisticated rank structures and more modern implemen-

tations such as superfast DC, the algorithm can be accelerated all the way to nearly

O(n3) complexity, a drastic improvement of almost three orders of magnitude. In the

following section, this claim will be illustrated with numerical experiments. More-

over, many other classes of semidefinite programs, such as those listed in [86] also can

exploit rank-structure to dramatically accelerate convergence. This will be explored

more extensively in future work.
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6. FUTURE WORK

In the future I plan to continue to make several contributions to this research program.

I will continue to work on eigenvalue algorithms, eigenvalues analysis, and eigenvalue

applications, as well as continue related work in rank-structured optimization.

For algorithms, there is more work that can be done for an effective multi-rank

update. The inverse algorithm wherein has some robustness issues that need to be

addressed. Moreover, this algorithm can be extended for multi-rank updates for

sparse eigenvalue problems, multi-rank singular value decomposition updates, and

multi-rank generalized eigenvalue decomposition updates. As far as global eigenvalue

algorithms, work can be done to extend this work to high-dimensional problems,

non-symmetric eigenvalue problems, and even non-linear problems.

For analysis, much more work can be done doing rudimentary work on accuracy

and convergence properties of multi-rank updates to the symmetric eigenvalue prob-

lem. Methods will likely involve looking at individual sup-spaces in more detail than

this thesis. This will lead to tighter and more useful bounds for global eigenvalue

algorithm accuracy, and should allow us to consider more pathological problems such

as those with clustered spectra.

For applications, there is a lot of work that can be done in computational physics

applications; such as quantum mechanics, statistical mechanics, numerical relativity,

astrophysics, scattering theory, and plasma physics. There is also further work that

can be done of general partial differential equation solvers. The work in this thesis can

be extended to challenging national security problems like passive aperture radar and

cyber-physical systems. Finally, it is our hope to continue to work on the promising

application of medical imaging discussed in the introduction of this thesis.

In terms of optimization, this thesis laid the groundwork for a promising new

flavor of algorithms, and we plan to explore this channel in depth. Initial work will
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be on linear programming, quadratic programming, integer linear programming, and

geolocation problems. Down the road, as the theory becomes more well understood,

it will be possible to do work such as structural dynamics, matrix equations, sparse

principal component analysis, mixed integer quadratic programming, linear matrix

inequalities, and non-linear programming (via automatic differentiation).

The author of this work is very excited for a long and challenging career as a

research mathematician!
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