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Connected and autonomous vehicle (CAV) technologies provide disruptive and 

transformational opportunities for innovations toward intelligent transportation systems. 

Compared with human driven vehicles (HDVs), the CAVs can reduce reaction time and human 

errors, increase traffic mobility and will be more knowledgeable due to vehicle-to-vehicle (V2V) 

and vehicle-to-infrastructure (V2I) communication. CAVs’ potential to reduce traffic accidents, 

improve vehicular mobility and promote eco-driving is immense. However, the new 

characteristics and capabilities of CAVs will significantly transform the future of transportation, 

including the dissemination of traffic information, traffic flow dynamics and network 

equilibrium flow. This dissertation seeks to realize and enhance the application of CAVs by 

specifically advancing the research in three connected topics: (1) modeling and controlling 

information flow propagation within a V2V communication environment, (2) designing a real-

time deployable cooperative control mechanism for CAV platoons, and (3) modeling network 

equilibrium flow with a mix of CAVs and HDVs.  

Vehicular traffic congestion in a V2V communication environment can lead to congestion 

effects for information flow propagation due to full occupation of the communication channel. 

Such congestion effects can impact not only whether a specific information packet of interest is 

able to reach a desired location, but also the timeliness needed to influence traffic system 

performance. This dissertation begins with exploring spatiotemporal information flow 

propagation under information congestion effects, by introducing a two-layer macroscopic model 

and an information packet relay control strategy. The upper layer models the information 

dissemination in the information flow regime, and the lower layer model captures the impacts of 

traffic flow dynamics on information propagation. Analytical and numerical solutions of the 

information flow propagation wave (IFPW) speed are provided, and the density of informed 

vehicles is derived under different traffic conditions. Hence, the proposed model can be 
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leveraged to develop a new generation of information dissemination strategies focused on 

enabling specific V2V information to reach specific locations at specific points in time. 

In a V2V-based system, multiclass information (e.g., safety information, routing information, 

work zone information) needs to be disseminated simultaneously. The application needs of 

different classes of information related to vehicular reception ratio, the time delay and spatial 

coverage (i.e., distance it can be propagated) are different. To meet the application needs of 

multiclass information under different traffic and communication environments, a queuing 

strategy is proposed for each equipped vehicle to disseminate the received information. It enables 

control of multiclass information flow propagation through two parameters: 1) the number of 

communication servers and 2) the communication service rate. A two-layer model is derived to 

characterize the IFPW under the designed queuing strategy. Analytical and numerical solutions 

are derived to investigate the effects of the two control parameters on information propagation 

performance in different information classes.  

Third, this dissertation also develops a real-time implementable cooperative control 

mechanism for CAV platoons. Recently, model predictive control (MPC)-based platooning 

strategies have been developed for CAVs to enhance traffic performance by enabling 

cooperation among vehicles in the platoon. However, they are not deployable in practice as they 

require anembedded optimal control problem to be solved instantaneously, with platoon size and 

prediction horizon duration compounding the intractability. Ignoring the computational 

requirements leads to control delays that can deteriorate platoon performance and cause 

collisions between vehicles. To address this critical gap, this dissertation first proposes an 

idealized MPC-based cooperative control strategy for CAV platooning based on the strong 

assumption that the problem can be solved instantaneously. It then develops a deployable model 

predictive control with first-order approximation (DMPC-FOA) that can accurately estimate the 

optimal control decisions of the idealized MPC strategy without entailing control delay. 

Application of the DMPC-FOA approach for a CAV platoon using real-world leading vehicle 

trajectory data shows that it can dampen the traffic oscillation effectively, and can lead to smooth 

deceleration and acceleration behavior of all following vehicles. 

Finally, this dissertation also develops a multiclass traffic assignment model for mixed traffic 

flow of CAVs and HDVs. Due to the advantages of CAVs over HDVs, such as reduced value of 

time, enhanced quality of travel experience, and seamless situational awareness and connectivity, 
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CAV users can differ in their route choice behavior compared to HDV users, leading to mixed 

traffic flows that can significantly deviate from the single-class HDV traffic pattern. However, 

due to a lack of quantitative models, there is limited knowledge on the evolution of mixed traffic 

flows in a traffic network. To partly bridge this gap, this dissertation proposes a multiclass traffic 

assignment model. The multiclass model captures the effect of knowledge level of traffic 

conditions on route choice of both CAVs and HDVs. In addition, it captures the characteristics of 

mixed traffic flow such as the difference in value of time between HDVs and CAVs and the 

asymmetry in their driving interactions, thereby enhancing behavioral realism in the modeling. 

New solution algorithms will be developed to solve the multiclass traffic assignment model. The 

study results can assist transportation decision-makers to design effective planning and 

operational strategies to leverage the advantages of CAVs and manage traffic congestion under 

mixed traffic flows. 

This dissertation deepens our understanding of the characteristics and phenomena in domains 

of traffic information dissemination, traffic flow dynamics and network equilibrium flow in the 

age of connected and autonomous transportation. The findings of this dissertation can assist 

transportation managers in designing effective traffic operation and planning strategies to fully 

exploit the potential of CAVs to improve system performance related to traffic safety, mobility 

and energy consumption.  
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 INTRODUCTION 

1.1 Background 

In the past century, the automobile significantly enhanced the mobility of goods and people 

and expedited economic development. However, the increasing ownership of automobiles in the 

past few decades has brought three major challenges to the transportation system: traffic 

accidents, mobility issues, and environmental pollution. In 2016, one and one-quarter million 

people died worldwide due to traffic accidents, while in the US, traffic accidents took almost 

40,000 peoples’ lives and injured over four million people. Traffic congestion caused almost 

seven billion hours of travel delay in the US and an equivalent $160 billion lost in terms of 

productivity; additionally, it caused almost three billion gallons of additional fuel consumption 

and 56 billion pounds of additional carbon dioxide (Lapuerta et al., 2017)—all of which, to a 

certain extent, contribute to global warming, as is becoming evident today. Unfortunately, most 

of these issues are due to human failings; for example, over 90% percent of traffic accidents are 

due to human error. Heterogeneous driving behaviors and human reaction time dramatically 

reduce the mobility of traffic flow. There is little if any cooperation between drivers concerning 

routes and timing, which increases the possibility for traffic congestion. Further, drivers 

generally do not drive at an environmentally-friendly speed; nor do they choose ‘eco-routes,’ 

often—all adding to air pollution.   

The emerging technologies of connected and autonomous vehicles have great potential to 

address the challenges of traffic accidents, mobility issues, and environmental pollution. A 

connected vehicle can exchange information and data with other connected vehicles and 

infrastructures through vehicle-to-vehicle (V2V) communication and vehicle-to-infrasturcture 

(V2I) communication, respectively. In the V2V-based system, vehicles themselves generate 

information and relay it to other vehicles through a ‘multi-hop’ process, enabling drivers to make 

informed decisions by providing them with the real-time information needed to understand the 

evolving traffic network conditions better. Autonomous vehicles can independently detect the 

surrounding environment using a variety of advanced sensors for self-driving—all without 

human control, enhancing the mobility of the less-able population (such as the elderly) and 

improving traffic safety by reducing human error. Compared to regular human-driven vehicles 
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(HDVs), a connected and autonomous vehicle (CAV) (a vehicle that is equipped with both 

autonomous and connected technologies) will significantly alleviate the three major issues in 

transportation system due to the following characteristics: 

(1). Fewer errors. The CAV can drive itself with fewer human errors due to advances in 

computing and sensing technologies, thereby dramatically reducing traffic accidents. 

(2). Greater knowledge of traffic conditions. CAVs can generate and exchange information with 

each other through V2V communication in real time. Additionally, they can access the 

information from the control center through V2V communication. Hence, CAVs may be 

better informed about traffic conditions compared to HDVs.  

(3). Greater mobility. CAVs can form a ‘platoon’ to drive cooperatively with each other, 

significantly increasing link capacity and reducing traffic congestion.  

(4). Less reaction time. CAVs can process information faster than human beings, especially from 

multiple sources, leading to smaller reaction times.  

(5). Easier to control traffic. CAVs can choose routes cooperatively to avoid possible traffic 

congestion.  

The novel characteristics and capabilities of CAVs will significantly transform the future of 

transportation, including the dissemination of traffic information, traffic flow dynamics, and 

network equilibrium flow. Further, many technical barriers and research questions need to be 

addressed to fully exploit the potential of CAVs. In this dissertation, we seek to realize and 

enhance the application of CAVs by specifically advancing knowledge through the following 

three interrelated topics: 

(1). Modeling and controlling information flow propagation in V2V communication 

environments. Understanding the characteristics of spatiotemporal information flow 

propagation in a V2V-based traffic system is important, as most applications require timely 

and reliable information delivery. However, modeling information flow propagation in 

space and time is challenging. Factors in both traffic and communication regimes 

significantly affect the reliability of V2V communication and information spread. The 

traffic flow dynamics contribute to the occurrence of V2V communications. The 

communication constraints such as communication frequency, channel capacity, and 

communication range etc. significantly contribute to the reliability of V2V communications. 

A better understanding of the effects of factors in both traffic flow and information flow 
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regimes on spatiotemporal propagation of information flow will provide insights to aid 

in the design of traffic management strategies built upon V2V communications. 

(2). Designing cooperative control strategies for ‘platoons’ of CAVs. CAV platoons can benefit 

transportation systems in many ways, including the need to increase road capacity, reduce 

energy consumption and tailpipe emissions, and facilitate V2V-based applications (e.g., 

involving data sharing and dissemination) due to the relatively fixed position of the vehicles 

within a platoon. The control model for a platoon of CAVs would include adaptive cruise 

control (ACC) and cooperative adaptive cruise control (CACC), designed to optimize an 

individual vehicle’s performance. The behavior of the vehicles in the platoon controlled by 

ACC and CACC models are non-cooperative. In comparison, the model predictive control 

(MPC)-based cooperative control strategies can coordinate the behaviors (accelerations or 

decelerations) of all of the following vehicles in a CAV platoon to maximize the platoon 

performance, including efficiency, safety, and comfort, based on information collected from 

these vehicles through V2V communications, enabling CAVs in a platoon to collaborate 

with each other and operate under a common goal. Prior studies suggest that these strategies 

can lead to smoother deceleration behavior and more responsive and agile acceleration 

behavior compared with non-cooperative controllers.  

(3). Developing a multiclass traffic assignment model for mixed traffic flow with CAVs and 

HDVs. CAVs offer users the potential to save valuable time, enhance the quality of the 

travel experience, and create seamless situational awareness and connectivity.  CAV users 

might differ in their route choice behavior compared to HDV users, leading to mixed traffic 

flows that could significantly deviate from the single-class HDV traffic pattern. The 

multiclass traffic assignment model characterizes the interactions of route choices of CAVs 

and HDVs, providing a modeling framework to estimate the network equilibrium flow in the 

transition period when both CAVs and HDVs exist. Thereby, it assists transportation 

decision-makers to design effective planning strategies to reduce traffic congestion under 

mixed traffic flows. 

As shown in Figure 1-1, the relationships of the three topics can be summarized in three 

ways.  First, information flow propagation can significantly impact the dynamics of CAV 

platoons through providing CAVs with information, such as adjacent vehicles’ kinematic states. 

The platoon of CAVs will also impact V2V communications as the traffic flow dynamics 
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significantly contribute to the occurrence and reliability of V2V communications. Second, a 

platoon of CAVs can enhance mobility, increase link capacity, and reduce travel time and energy 

consumption. These advantages will impact the route choices of CAVs. Additionally, the 

multiclass traffic assignment model can estimate the distribution of both CAV and HDV flows in 

the network. It will be useful to deploy AV-dedicated lanes to improve the system performance; 

therein, providing CAVs the useful information related to the locations where platooning is 

possible.  Third, information flow propagation can provide drivers real-time traffic information, 

which can impact their route choice behavior, significantly changing the network flows. 

 

Figure 1.1 The framework of the three research topics 

Although recent literature has sought to address the modeling needs of the three research 

topics (see e.g., Kim et al., 2017a; Wang et al., 2014; Gong and Du, 2018; Chen et al., 2016; 

Chen et al., 2017; Levin and Boyles, 2015),  the characteristics and emerging phenomena arising 

from CAVs are not fully captured by these models. Thereby, gaps exist between the capabilities 

of the existing models and the application needs of CAVs in different traffic and communication 

environments. 

(1). A unified theory to model information flow propagation under congested V2V 

communication environments is lacking. Due to limited channel capacity, a V2V 

communication channel can be fully occupied in certain traffic and communication 

environments, preventing vehicles from sending and receiving information. Effective 

strategies are needed to prevent congestion; therefore, a modeling framework is needed to 

characterize the information flow propagation in space and time under congested V2V 

communication environments. 
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(2). There are no effective mechanisms to control multiclass information propagation under V2V 

communications. Most of the existing studies in the domain of information flow propagation 

are only descriptive: they lack control of information flow propagation. Thereby, 

propagation performance related to information spread (defined as the proportion of vehicles 

informed with a specific information packet), time delay bounds, and spatial coverage (i.e., 

distance it can be propagated) may not satisfy the application needs of the information under 

certain traffic and communication environments. Additionally, V2V-based systems  may 

need to simultaneously propagate multiclass information (e.g., safety information, routing 

information, and work zone information); therefore, the application needs related to 

propagation performance can be different. For example, urgent traffic accident information 

(e.g., road is blocked by an accident) needs to be delivered to all vehicles in the impacted 

area with low latency. By comparison, routing information needs to reach only a certain 

proportion of vehicles to avoid possible congestion arising from the provision of 

information on the suggested route. Also, work zone information or sudden hard brake 

information may need to be propagated in a small area in the vicinity of where they are 

generated. Research efforts are needed to design effective mechanisms to control multiclass 

information propagation under V2V communications. 

(3). Currently, there is no real-time deployable cooperative control mechanism for a platoon of 

CAVs. The existing MPC-based cooperative control mechanisms are not deployable in 

practice as they require the embedded optimal control problem to be solved instantaneously, 

with platoon size and prediction horizon duration compounding the intractability. Ignoring 

the computational requirements leads to control delays that can deteriorate platoon 

performance, and may cause collisions between vehicles. Therefore, a new cooperative 

control mechanism is needed to enable effective and efficient control of CAV platoons in 

real time. 

(4). Also, there is no traffic assignment model currently that captures the characteristics of CAVs 

and the interactions between the route choices of CAVs and HDVs. Compared to HDVs, 

CAVs can reduce the value of time, increase link capacity and reduce energy consumption 

by forming a platoon. In addition, due to V2V and V2I communications, CAVs can 

understand traffic conditions better than HDVs. The effects of these characteristics of CAVs 

on route choice of both CAVs and HDVs have not been fully captured by existing models.  
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1.2 Objectives of the dissertation 

The objectives of this dissertation are threefold: (1) development of an integrated framework 

for modeling and controlling information flow propagation under V2V communication 

environments; (2) design of a cooperative control strategy for CAV platoons, and  (3) modeling 

network equilibrium under the mixed traffic flow of CAVs and HDVs. This dissertation seeks to 

provide traffic managers efficient and effective traffic operational and planning strategies in the 

age of connected and autonomous transportation to systematically reduce travel costs and 

improve traffic mobility and safety. These specific objectives will be achieved through the 

following tasks: 

(1). Develop a macroscopic model to characterize the spatiotemporal propagation of information 

flow in a congested V2V communication environment. To address congestion effects 

associated with information flow propagation induced by communication channel capacity 

being fully occupied, an information flow relay control strategy will be proposed. This 

strategy seeks to exclude information that is dated in the communication buffer under a first-

in, first-out queue discipline, from being relayed if the information flow regime is congested. 

It trades off the need to enable the dissemination of every information packet as far as 

possible, against the congestion effects that accrue because of the presence of multiple 

information packets. A macroscopic model will be developed to characterize the 

information flow propagation wave (IFPW) for an information packet in a congested V2V 

communication environment under the designed information relay control strategy. The 

model will help to analytically determine solutions for asymptotic IFPW speed and density 

of vehicles informed with the specific information of interest, which can aid in the design of 

traffic management strategies built upon the timely propagation of information through V2V 

communications. 

(2). Develop a queuing-based modeling approach to control the propagation of multiclass 

information under V2V communication environments. A queuing strategy will be developed 

for each V2V equipped vehicle to propagate the received information packets in multiple 

classes. This strategy will enable the control of propagation performance of multiclass 

information related to information spread, time delay bounds, and spatial coverage to meet 

the heterogeneous application needs of this information. The analytical model will be used 
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to generate insights on the effects of the control parameters in the queuing strategy on 

information flow propagation speed and density of informed vehicles.  

(3). Develop a real-time deployable MPC-based cooperative platooning strategy for platoons of 

CAVs to maximize performance with regard to safety, mobility and comfort. An idealized 

MPC-based cooperative control strategy is proposed for CAV platooning based on the 

strong assumption that the imbedded optimal control problem can be solved instantaneously. 

The idealized MPC strategy can coordinate the behaviors of all following CAVs in the 

platoon efficiently and maneuver them safely. To address the issue of control delay of the 

idealized MPC strategy induced by the computational time for solving the embedded 

optimal control problem, a deployable model predictive control (DMPC) with first-order 

approximation (DMPC-FOA) approach will be developed. It not only addresses the issues 

of control delay of the idealized MPC strategy efficiently, but can also accurately 

characterize the optimal control decisions of the idealized MPC strategy. Thereby, it can be 

applied for real-time cooperative control of a CAV platoon. The conditions for stability of 

the idealized MPC strategy will also be discussed to better dampen traffic oscillations in the 

platoon.  

(4). Develop a multiclass traffic assignment model for mixed traffic flow of CAVs and HDVs. 

This model considers the effects of both CAVs and HDVs on travel costs—including the 

heterogeneous value of time, the asymmetric travel costs of HDVs and CAVs, and the 

energy saved by CAVs through platooning on AV-dedicated lanes. Additionally, it also 

characterizes the interactions of route choices between CAVs and HDVs due to different 

knowledge levels of traffic conditions. The proposed multiclass traffic assignment model 

can provide better behavioral realism in charactering the mixed traffic flow, and can assist 

transportation decision-makers to design effective planning and operational strategies to 

leverage the advantages of CAVs to manage traffic congestion under mixed traffic flows. 

1.3 Organization of the dissertation  

This dissertation consists of six chapters. Figure 1.2 provides an overview and illustrates the 

relationship between the four main chapters. Chapter 2 proposes an information relay control 

strategy to address the information congestion effects that accrue because of the presence of 

multiple information packets. A two-layer framework is developed to model the information 
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flow propagation under congested V2V communication environments. It consists of integro-

differential equations in the upper layer to model the information flow dissemination due to V2V 

communications and partial differential equations in the lower layer to characterize traffic flow 

dynamics. Based on the two-layer model, the analytical solutions of IFPW speed, density of 

informed vehicles and necessary conditions for the existence of IFPW are derived under 

homogeneous traffic conditions (i.e., unidirectional traffic flow with uniform density). A 

numerical method is also developed to solve the two-layer model to estimate the spatiotemporal 

dissemination of information under heterogeneous traffic conditions.  

 

Figure 1.2 Organization of the dissertation  

Chapter 3 proposes a control method for the propagation of multiclass information to meet 

the application needs of information of each information class related to information spread, time 

delay bounds, and spatial coverage under different traffic and communication environments. The 

control method is constructed on a queuing strategy developed for equipped vehicles to 

disseminate the received information packets, enabling control of the propagation of multiclass 

information through two control parameters: number of communication servers and 

communication service rates. A two-layer model is derived to characterize the information flow 

propagation in space and time under the designed queuing strategy. Analytical and numerical 

solutions will be developed to solve the two-layer model under different traffic flow conditions, 
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which provide insights on the effects of the two control parameters on information flow 

propagation performance.  

Chapter 4 proposes an idealized MPC-based cooperative control strategy for CAV platooning 

based on the strong assumption that the embedded optimal control problem can be solved 

instantaneously. It also proposes a solution algorithm for the embedded optimal control problem 

to maximize platoon performance. It then develops two approaches to deploy the idealized 

strategy: the deployable MPC (DMPC) and the DMPC with first-order approximation (DMPC-

FOA), that estimate the optimal control decisions of the idealized MPC strategy without entailing 

control delay. However, under the DMPC approach, the optimal control decisions of the 

following vehicles in the platoon may deviate significantly from those of the idealized MPC 

strategy, while the DMPC-FOA approach can accurately characterize them. An analytical 

method is derived for the sensitivity analysis of the optimal control decisions. Further, stability 

analysis is performed for the idealized MPC strategy, and a sufficient condition is derived to 

ensure its asymptotic stability under certain conditions. 

Chapter 5 develops a multiclass traffic assignment model for mixed traffic flow with CAVs 

and HDVs. The route choices of HDV and CAV users are characterized by the cross-nested logit 

(CNL) model and user equilibrium (UE) model, respectively. The CNL model captures HDV 

users’ uncertainty associated with limited knowledge of traffic conditions while overcoming the 

route overlap issue of logit-based stochastic user equilibrium. The UE model characterizes 

CAV’s capability for acquiring accurate information on traffic conditions. Additionally, the 

multiclass model can capture the characteristics of mixed traffic flow, such as the difference in 

value-of-time between HDVs and CAVs, and the asymmetry in their driving interactions—

thereby enhancing behavioral realism in the modeling. A route-swapping-based solution 

algorithm embedded with a self-regulated step size choice technique is proposed to solve the 

proposed model efficiently. Sensitivity analysis of the proposed model is performed to gain 

insights into the effects of perturbations on the mixed traffic equilibrium, which facilitates the 

estimation of traffic state and identification of critical elements under expected or unexpected 

events. 

Chapter 6 concludes this dissertation with a summary of the insights. Novelties and 

significant contributions are identified. Finally, potential directions for future research are 

discussed.  
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 ANALYTICAL MODEL FOR INFORMATION FLOW 

PROPAGATION WAVE UNDER AN INFORMATION RELAY 

CONTROL STRATEGY IN A CONGESTED VEHICLE-TO-VEHICLE 

COMMUNICATION ENVIRONMENT  

2.1 Introduction 

Over the past few decades, dynamic traffic assignment models have sought to address how 

information affects traffic flow (e.g., Mahmassani and Peeta, 1995; Peeta and Yu, 2002; Paz and 

Peeta, 2009). In the context of vehicle-to-vehicle (V2V) communication, we seek to address how 

traffic flow impacts information propagation so as to develop a new generation of information 

dissemination strategies that can ensure that information reaches a desired location at specific 

time in order to achieve systemwide or individual level objectives for the V2V-based traffic 

system. 

Connectivity in a V2V-based traffic system can be enabled by two types of communication: 

periodic and event-driven. Information broadcast by either type of communication is sealed into 

an information packet. Periodic communication using an information packet, often labeled 

beacon message, is used to proactively broadcast a vehicle’s position, speed, heading, brake 

status, and other data to all neighboring vehicles. Such information can be of critical importance 

to the “receiver” vehicles; for example, it can enable the detection of an unsafe road condition. A 

beacon message is characterized by its short lifetime that spans only one hop or a few hops of 

broadcasting communication, with a high frequency of up to 10 times per second. Hence, beacon 

messages are appropriate for communicating with the local neighbors of the “sender” vehicle, 

and can be leveraged to alert drivers of potential collisions and hazards by providing up-to-date 

status information (Yang et al., 2004; Yeo et al, 2010; Talebpour et al., 2014). 

Event-driven communication is triggered by a specific event, such as accident, sudden brake, 

or congestion, etc. It is useful for warning vehicles to approach the affected area with caution or 

adopt an alternate route to their destinations (Ding et al., 2010). It requires the multi-hop 

dissemination of an information packet that contains information related to the event (such as 

congestion or route guidance). The information packet released by the sender can be relayed by 

other vehicles inside and outside the initial sender’s communication range, depending on the 

traffic characteristics and dynamics. Therefore, vehicles store the received information packet in 
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their communication buffers and retransmit it to other vehicles. Since traffic safety and 

efficiency related applications have requirements related to information coverage and latency, it 

is critical to understand how information propagates in space and time in a V2V-based traffic 

system. This study considers the event-driven communication context, where multiple 

information packets, triggered by different events, are propagated simultaneously through multi-

hop dissemination.  

Modeling the information flow propagation through a multi-hop dissemination mechanism is 

challenging for a V2V-based traffic system, because the following characteristics need to be 

modeled appropriately. First, factors in both the information flow regime (such as information 

packet generation rate, communication frequency, and communication buffer size) and the traffic 

flow regime (such as traffic speed and density) significantly affect the characteristics of 

information flow propagation (Kim and Peeta, 2016; Kim et al., 2016; Kim and Peeta, 2017b; Du 

and Dao, 2015; Du et al., 2016). The density of information flow changes with the traffic 

dynamics. In addition, due to limited channel capacity, the large number of information packets 

generated by multiple vehicles in a small space and a short time period can lead to congestion in 

the information flow regime, even if the traffic flow regime is not congested. For example, 

information flow congestion can exhibit trailing effects even if the traffic flow congestion 

dissipates. Second, congested information flow can cause a high degree of mutual interference 

among the transmitted signals. Any information packet that propagates to other vehicles in the 

vicinity of a vehicle is subject to signal attenuation over distance and interference imposed by 

other signals transmitted from surrounding vehicles. Third, a simple broadcasting protocol can 

lead to an exponential growth of retransmitted messages that congest a network, referred to as a 

broadcast storm (Tseng et al., 2002; Karagiannis et al., 2011). This phenomenon can cause 

packet collisions, implying that neither can the information stored in the communication buffer 

be disseminated nor can other information packets be stored into this buffer. Therefore, the 

multi-hop dissemination requires a special information relay control strategy to prevent packet 

collisions, so that information packets can share the limited channel capacity efficiently. 

Past studies have addressed specific aspects of information flow propagation, including 

expected information propagation distance (Jin and Recker, 2006; Wang, 2007; Wang et al., 

2010; Wang et al., 2011; Wang et al., 2012; Yin et al., 2013; Wang et al., 2015), connectivity of 

inter-vehicle communication (Jin et al., 2006; Ukkusuri and Du, 2008; Jin and Recker, 2010), 
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and throughput of information packets to be transmitted to a given distance (Chen et al., 2010). 

However, all of these analytical studies are based on the assumption of instantaneous spatial 

propagation of information; that is, they do not consider the time dimension. They simply 

assume that the vehicles’ locations are known based on some space headway distribution. 

Thereby, these approaches lack realism as they do not consider the impact of traffic flow 

dynamics on information propagation. Further, most of these analytical approaches oversimplify 

the wireless communication constraints (e.g., communication range, communication frequency, 

channel capacity, signal interference, etc.). Therefore, while the assumption of instantaneous 

information propagation can be analytically convenient, it has limitations in characterizing 

information flow propagation in the real world.  

To facilitate the analysis of information propagation characteristics and the impacts of traffic 

dynamics at an aggregate level, Kim et al. (2015, 2017b) introduce the concept of an information 

flow propagation wave (IFPW). When an information packet is generated in a V2V-based traffic 

system, it spreads through the relay process of multi-hop communications. From a macroscopic 

perspective, an IFPW “front” forms a moving boundary that separates the traffic flow into 

informed and uninformed regions, and moves towards the uninformed region (Kim et al., 2017b). 

This IFPW can be characterized by the direction and speed of the moving boundary. The 

quantification of speed and position of the IFPW front provides the macroscopic characteristics 

of information flow propagation. Kim et al. (2017b) proposed an analytical model to describe 

information propagation in space and time, to quantify the speed and position of the IFPW front. 

It incorporates modeling realism by not assuming instantaneous information propagation, and by 

considering V2V communication constraints that are consistent with the real world. They apply 

different approaches to solve the proposed two-layer model for homogeneous conditions and 

heterogeneous conditions. The homogeneous conditions refer to the situation (i.e., unidirectional 

traffic flow with uniform traffic flow density) when the impacts of the traffic flow dynamics on 

the IFPW speed are uniform in space and time. The heterogeneous conditions refer to situation 

where the impacts of the traffic flow dynamics on the IFPW speed are not uniform in space and 

time. The analytical model provides capabilities to: (i) derive a closed-form solution of IFPW 

speed under homogeneous conditions, (ii) develop a numerical method to estimate the IFPW 

speed for heterogeneous conditions, (iii) incorporate the effects of congested traffic, such as the 

backward traffic propagation wave, on information flow propagation, (iv) capture V2V 
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communication constraints in a realistic manner using a communication kernel, (v) illustrate the 

linkage between information flow propagation and the underlying traffic dynamics, and (vi) 

factor the impacts of communication constraints on the success rate of V2V communication, 

which is consistent with real-world V2V communications. 

 

Figure 2.1 Information flow propagation wave under the information relay control strategy 

The Kim et al. (2017b) model considers the case where any V2V information can always be 

transmitted and retransmitted, implying the absence of information flow congestion. The 

proposed study models the more complex, and realistic case that involves information flow 

congestion effects, arising from the broadcast storm problem, whereby an equipped vehicle 

receives a large amount of information and retransmits it to other vehicles. It proposes an 

information relay control strategy to address these congestion effects, and models the IFPW 

under this strategy. To the best of our knowledge, this is the first study to analytically model and 

characterize V2V-based information flow propagation under congestion effects. Additionally, it 

also factors the effects of traffic flow dynamics. 

As stated earlier, an information relay control strategy is essential to prevent the endless 

broadcasting of the same message and collisions of information packets. This study assumes that 

all information packets have the same priority to be propagated in the information flow regime. 

Under this assumption, we propose an “information exclusion” relay control strategy, whereby if 

the communication buffer is full when new information packets arrive, the first-in-first-out 

(FIFO) queue discipline is applied to remove the earlier information packets from the buffer, and 

exclude them from being relayed. 
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The proposed information relay control strategy leads to special characteristics for the IFPW 

under information flow congestion. As illustrated in Figure 2.1, some informed vehicles (i.e., 

those that have received the information of interest) cannot retransmit the specific information 

packet as it is removed from their communication buffer. Thereby, only a subset of informed 

vehicles may serve as relay vehicles to retransmit the information packet of interest. This causes 

the formation of two information-relaying waves, one in the direction of traffic and the other 

opposite to it.  

This study conceptually extends the IFPW proposed by Kim et al. (2017b), and proposes a 

new analytical modeling approach, to address information flow propagation under congestion 

effects while factoring traffic flow dynamics. It enables the exploration of the following three 

questions in a congested V2V communication environment. First, under what traffic and 

information flow-related conditions can the specific information packet propagate in the network? 

These conditions relate to the density of V2V-equipped vehicles and the rate at which event-

driven information packets are generated in the traffic stream. This question addresses the 

necessary conditions for the formation of an IFPW. Second, how fast can the specific 

information packet of interest be transmitted? This question is addressed by determining the 

asymptotic IFPW speed. Third, what is the number of equipped vehicles that can receive the 

specific information packet when the proposed information relay control strategy is applied? 

This question seeks to determine the asymptotic density of informed vehicles, which is the 

number of vehicles that can receive the specific information packet if the IFPW exists. By 

comparison, Kim et al. (2017b) address only the second question, and for the uncongested 

information flow regime.  

The proposed two-layer model consists of an information dissemination model in the upper 

layer and a traffic flow model in the lower layer. A Susceptible-Relay-Excluded (SRX) model, 

which conceptually extends a Susceptible-Infected-Recovered model (Kendall, 1957) for disease 

spreading in epidemiology, is proposed to characterize the spatiotemporal information 

propagation flow in the upper layer. It uses integro-differential equations (IDEs) to model the 

information flow propagation under the proposed information relay control strategy. The lower 

layer adopts the Lighthill-Whitham-Richards (LWR) model (Lighthill and Whitham, 1955; 

Richards, 1956) to describe the traffic flow dynamics. The two layers are linked through the 

density of the V2V-equipped vehicles. 
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The contributions of this study are as follows. First, we develop an analytical model to 

characterize the spatiotemporal propagation of an information packet under information flow 

congestion. This model factors the information relay control strategy and constraints related to 

V2V communication and traffic flow dynamics. Thereby, the proposed model addresses the 

realism issues identified earlier, in characterizing information flow propagation for V2V-based 

traffic systems. Second, the necessary conditions for the formation of an IFPW are derived under 

the homogeneous conditions. When the necessary conditions are satisfied, solutions for the 

asymptotic IFPW speed and the asymptotic density of informed vehicles are analytically 

obtained. These analytical solutions facilitate the exploration of the impact of traffic and 

information flow-related factors, including traffic flow density and average duration for which a 

specific information packet is relayed, on the IFPW speed and the density of informed vehicles. 

It provides valuable insights for the design of V2V communication-based applications, especially 

under dense V2V communication environments. Third, the numerical solution method for the 

proposed two-layer model enables the analysis of information propagation under heterogeneous 

conditions. This enables characterizing information flow propagation for general traffic 

conditions.  

The remainder of this paper is organized as follows. The next section discusses the modeling 

framework of the proposed model to characterize the IFPW. Section 3 formulates a two-layer 

model to characterize the IFPW in space and time under the proposed information relay control 

strategy. Section 4 analytically solves for the asymptotic IFPW speed and the asymptotic density 

of informed vehicles under homogeneous conditions. Section 5 presents the numerical solution 

method for the proposed two-layer model for heterogeneous conditions. Results from numerical 

experiments are discussed in Section 6, to demonstrate the effectiveness of the proposed two-

layer model. Section 7 provides some concluding comments.  

2.2 Preliminaries 

2.2.1 Modeling framework  

The IFPW is the combination of two propagation waves in two regimes: the information 

dissemination wave in the information flow regime and the traffic flow propagation wave in the 

traffic flow regime. As illustrated in Figure 2.2, the upper layer is used to capture the information 
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dissemination wave and the lower layer is used to capture the traffic flow propagation wave. In 

particular, the lower layer model describes the traffic flow dynamics by adapting the 

hydrodynamic LWR model. The LWR model has been used extensively due to its capability for 

capturing key real-world traffic flow phenomena such as shock waves and spillbacks. The traffic 

flow propagation is formulated as a system of partial differential equations (PDEs). Vehicles in 

this layer are grouped into two mutually exclusive classes: equipped vehicles E and unequipped 

vehicles U, based on the capability for V2V communication. The traffic layer is coupled with the 

information (upper) layer through the density of equipped vehicles. As shown in Figure 2.2, 

while the equipped vehicles are associated with both information flow propagation (through the 

communication success rate) and traffic flow dynamics, the unequipped vehicles are associated 

only with the traffic flow dynamics. 

 

Figure 2.2 The modeling framework for information flow propagation 

The upper layer model describes the information dissemination dynamics among equipped 

vehicles in time and space. To characterize the information dissemination dynamics, the 

equipped vehicle set E is divided into three disjoint sets, denoted by S, R, and X. Notation 𝑆 

denotes the set of information-susceptible vehicles; they are the V2V-equipped vehicles that 

have not received the information of interest. The set of information-relay vehicles, denoted by R, 

refers to equipped vehicles that receive the information and store it in communication buffer so 

as to relay it to susceptible vehicles. To prevent information packet collisions, information relay 

vehicles may exclude some information packets from the communication buffer based on the 

information relay control strategy. If an information relay vehicle excludes the specific 
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information packet from its communication buffer, implying that this equipped vehicle can no 

longer relay the information of interest, then it becomes an information-excluded vehicle, 

denoted by X. Applying this concept to the upper layer modeling, the information dissemination 

dynamics is formulated as a spatial Susceptible-Relay-Excluded (SRX) model, which is 

motivated by the analogy between the dissemination of information among equipped vehicles 

and the spread of an infectious disease among individuals. 

As stated earlier, the communication signal decays over distance due to the mutual 

interference from equipped vehicles. Kim et al. (2017b) propose a probabilistic communication 

model that incorporates the success rate of single-hop communication based on the distance 

between equipped vehicles. This study adopts the communication kernel that represents the 

success rate of single-hop communication as a function of distance between two equipped 

vehicles. After an equipped vehicle receives information, it acts as a relay vehicle that stores 

information in the communication buffer and retransmits it to surrounding susceptible vehicles. 

Note that while the information relay control strategy can prevent information packet collisions, 

it impacts the success rate of information dissemination as some susceptible vehicles may not 

receive the information packet before all surrounding relay vehicles exclude the information 

packet. The next section presents the information relay control strategy that will be adopted in 

the modeling framework. 

2.2.2 Information relay control strategy  

Consider a highway with a stream of traffic flow consisting of equipped and unequipped 

vehicles. Different event-driven information packets are generated and propagated by equipped 

vehicles through multi-hop V2V communications. Each equipped vehicle broadcasts its received 

information packets to surrounding susceptible vehicles within communication range. When an 

equipped vehicle receives multiple packets, it filters the information packets to identify those that 

have not been received before. It then moves them into the communication buffer, where 

information packets are temporarily stored for retransmission, as shown in Figure 2.3. This study 

applies a first-in, first out (FIFO) information relay control strategy that excludes the information 

packet stored for the longest time in the communication buffer from being transmitted, when a 

new information packet is moved into it.  
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Figure 2.3 Illustration of information relay control strategy from communication buffer 

Let parameter 𝜆𝑒 be the effective information arrival rate, which represents the number of 

unduplicated information packets moved into the communication buffer per unit time. The 

effective information arrival rate is affected by unsuccessful V2V communication and removal 

of duplicated information packets (i.e., information packets that have already been received 

before). Because such events are random and independent, this study assumes that the arrival of 

effective information packets into the communication buffer follows a Poisson process. Denote 

C as the communication buffer size, which is defined as the maximum number of information 

packets that can be stored in the communication buffer. This study assumes that each equipped 

vehicle equally shares the channel capacity, and is able to send all information packets in the 

communication buffer through each V2V communication. Assume that the communication 

buffer is full under the situation of congested information flow. When the FIFO queue discipline 

is applied, the information exclusion follows a Poisson process with parameter 𝜆𝑒  for each 

equipped vehicle. Under this information relay control strategy, the duration of information 

packet in the communication buffer follows an exponential distribution with the mean 𝐶 𝜆𝑒⁄ . The 

mean duration of an information packet in the communication buffer is estimated under different 

densities of equipped vehicles in Section 6.1. A detailed description of the SRX model is 

provided in the next section.  

2.3 Modeling the spatiotemporal propagation of information flow  

2.3.1 Modeling information dissemination flow in the upper layer under uncongested V2V 

communication 

The IFPW is the combination of two propagation waves in two layers: the information 

dissemination wave in the upper layer and the traffic flow propagation wave in the lower layer. 
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Consider that a specific information packet of interest is generated initially by an equipped 

vehicle located at location 0 at time 0. This vehicle disseminates the information packet to the 

surrounding vehicles through the multi-hop broadcasting process. For an uncongested V2V 

communication environment (that is, no information congestion), where any V2V information 

can always be transmitted and retransmitted, Kim et al. (2015, 2017b) proposed a spatial 

susceptible-informed model to describe the dissemination of a specific piece of information 

between equipped vehicles as follows: 

∂𝑆(𝑥, 𝑡)

∂𝑡
= −𝛽 ∙ 𝑆(𝑥, 𝑡) ∙ ∫ 𝐾(𝑥, 𝑦) ∙ 𝐼(𝑦, 𝑡)𝑑𝑦

𝛀

 (2.1a) 

∂𝐼(𝑥, 𝑡)

∂𝑡
= −

∂𝑆(𝑥, 𝑡)

∂𝑡
, (2.1b) 

where 𝐼(𝑥, 𝑡) and 𝑆(𝑥, 𝑡) denote the density of informed vehicles and the density of susceptible 

vehicles at time 𝑡  and location 𝑥 , respectively. Parameter 𝛽  denotes the communication 

frequency and Ω denotes the spatial domain. Function 𝐾(𝑥, 𝑦) is a communication kernel which 

represents the probability that a susceptible vehicle at location 𝑦  successfully receives an 

information packet sent from an information-relay vehicle at location 𝑥 . It is a decreasing 

function with respect to the distance between the two equipped vehicles. The communication 

kernel factors the impacts of communication constraints (e.g. communication range, 

communication frequency, channel capacity, signal interference, etc.) on the success rate of V2V 

communication. The term  ∫ 𝐾(𝑥, 𝑦) ∙ 𝐼(𝑦, 𝑡)𝑑𝑦
𝛀

 denotes the aggregate probability that a 

susceptible vehicle located at point 𝑥  successfully receives the specific information from an 

informed vehicle over the space domain Ω.  

2.3.2 Information dissemination flow in the upper layer under congested V2V communication 

This study models the information dissemination flow with the information relay control strategy 

in a congested V2V communication; that is, it considers information flow congestion unlike Kim 

et al. (2017b). In a congested V2Vcommunication environment, an equipped vehicle receives 

and relays a large amount of information packets through the limited channel capacity. The 

communication buffer of the equipped vehicle can be full through accumulating information 

packets. To prevent the endless broadcasting of the same message and collisions of information 
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packets, the information relay control strategy is applied, whereby if an effective information 

packet is received and enters into the communication buffer, the FIFO rule would be used to 

exclude the information packet stored for the longest time in the communication buffer from 

being transmitted.  

Let 𝑡 be the current time. Denote 𝑤 as the time step for the discrete-time model. Without loss 

of generality, suppose 𝑡 = 𝑛𝑤, where 𝑛 ∈ ℕ+ is a positive integer. As stated previously, under 

the information control strategy, informed vehicles consist of information-relay vehicles and 

information-excluded vehicles. Suppose an informed vehicle located at 𝑥  receives this 

information packet at 𝜏 = 𝑖𝑤 time units ago, 𝑖 ∈ ℕ+. At the current time 𝑡, the probability for an 

informed vehicle to broadcast this specific information packet to a nearby susceptible vehicle, 

denoted by 𝐻(𝑥, 𝑡, 𝜏), is equal to the probability that the information packet received 𝜏 time units 

ago is not excluded from the communication buffer. The information exclusion rate is 𝜆 = 𝜆𝑒 𝐶⁄ . 

Based on the assumption that the information packet exclusion follows the Poisson process, the 

probability that an informed vehicle remains an information-relay vehicle in the past 𝜏 time units 

satisfies:  

𝐻(𝑥, 𝑡, 𝜏) = 𝑒−𝜆𝜏. 
   

(2.2) 

Denote ∆𝑆(𝑥, 𝑡) = 𝑆(𝑥, 𝑡) − 𝑆(𝑥, 𝑡 − 𝑤) , which represents the number of susceptible 

vehicles at location 𝑥  becoming informed in time interval [𝑡 − 𝑤, 𝑡]. Let ∆𝐼(𝑦, 𝑡 − 𝜏) be the 

density change of informed vehicles at location 𝑦  at time 𝑡 − 𝜏 . Note that ∆𝐼(𝑦, 𝑡 − 𝜏) =

−∆𝑆(𝑦, 𝑡 − 𝜏), because any equipped vehicle is either susceptible or informed. Conceptually 

adapting and modifying from epidemiology, ∆𝑆(𝑥, 𝑡) is formulated as: 

∆𝑆(𝑥, 𝑡) = −𝑆(𝑥, 𝑡 − 𝜏) ∙∑∫ ∆𝐼(𝑦, 𝑡 − 𝑖𝑤) ∙ 𝐾(𝑥, 𝑦) ∙ 𝑤𝛽 ∙ 𝐻(𝑦, 𝑡, 𝑖𝑤)𝑑𝑦
Ω

𝑛

𝑖=1

 

= −𝑆(𝑥, 𝑡 − 𝜏) ∙∑∫ ∆𝐼(𝑦, 𝑡 − 𝑖𝑤) ∙ 𝐾(𝑥, 𝑦) ∙ 𝑤𝛽 ∙ 𝑒−𝜆∙𝑖𝑤𝑑𝑦
Ω

,

𝑛

𝑖=1

 

 

 

 

 

   

(2.3) 

where 𝑤𝛽 denotes the number of transmissions occurring in 𝑤 time units. The term ∫ ∆𝐼(𝑦, 𝑡 −
Ω

𝜏) ∙ 𝐾(𝑥, 𝑦) ∙ 𝑤𝛽 ∙ 𝑒−𝜆𝜏𝑑𝑦 denotes the probability that susceptible vehicles at location 𝑥 receive 

the information packet sent by vehicles that received this packet 𝜏 time units ago, over the space 

domain Ω . It can be analytically shown that if 𝐻(𝑦, 𝑡, 𝑖𝑤) ≡ 1  and 𝑤 → 0 , equation (2.3) 

converts into equation (2.1a). 
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We derive a continuous-time formulation by taking 𝑤 → 0 in equation (2.3). Divide both 

sides of equation (2.3) by 𝑤, and take the limit as 𝑤 → 0. Then, we have: 

lim
𝑤→0

∆𝑆(𝑥, 𝑡)

𝑤
=
∂𝑆(𝑥, 𝑡)

∂𝑡
 

= lim
𝑤→0

− 𝑆(𝑥, 𝑡 − 𝑤) ∙∑∫
∆𝐼(𝑦, 𝑡 − 𝑖𝑤)

𝑤
∙ 𝐾(𝑥, 𝑦) ∙ 𝑤𝛽 ∙ 𝑒−𝜆∙𝑖𝑤𝑑𝑦.

Ω

𝑛

𝑖=1

 

 

 

 

 

(2.4) 

Note that 

∆𝐼(𝑦, 𝑡 − 𝑖𝑤) = 𝐼(𝑦, 𝑡 − 𝑖𝑤) − 𝐼(𝑦, 𝑡 − (𝑖 − 1)𝑤) ≈
∂𝐼(𝑦, 𝑡 − 𝑖𝑤)

∂𝑡
𝑤. (2.5) 

Equation (2.4) can be written as:  

∂𝑆(𝑥, 𝑡)

∂𝑡
= lim
𝑤→0

− 𝑆(𝑥, 𝑡 − 𝑤) ∙∑∫
∂𝐼(𝑦, 𝑡 − 𝑖𝑤)

∂𝑡
∙ 𝐾(𝑥, 𝑦) ∙ 𝑤𝛽 ∙ 𝑒−𝜆∙𝑖𝑤𝑑𝑦.

𝛀

𝑛

𝑖=1

 (2.6) 

Recall that 𝜏 = 𝑖𝑤. Then (∂𝐼(𝑦, 𝑡 − 𝑖𝑤) ∂𝑡⁄ ) ∙ 𝑤 denotes the number of equipped vehicles 

that become informed during time interval [ 𝑡 − 𝜏 − 𝑤, 𝑡 − 𝜏] . Note that 

(∂𝐼(𝑦, 𝑡 − τ) ∂𝑡⁄ )𝐾(𝑥, 𝑦)𝑒−𝜆τ is continuous and bounded in the time domain. Therefore, it is 

Riemann integrable. Equation (2.6) can be reformulated as:  

∂𝑆(𝑥, 𝑡)

∂𝑡
= −𝛽 ∙ 𝑆(𝑥, 𝑡) ∙ ∫ ∫

∂𝐼(𝑦, 𝑡 − 𝜏)

∂𝑡
∙ 𝐾(𝑥, 𝑦) ∙ 𝑒−𝜆𝜏𝑑𝜏𝑑𝑦

𝑡

0Ω

. (2.7) 

As ∆𝐼(𝑦, 𝑡 − 𝜏) = −∆𝑆(𝑦, 𝑡 − 𝜏)  implies that ∂𝐼(𝑥, 𝑡 − τ) ∂𝑡⁄ = −∂𝑆(𝑥, 𝑡 − 𝜏) ∂𝑡⁄ . 

Therefore, 

∂𝑆(𝑥, 𝑡)

∂𝑡
= 𝛽 ∙ 𝑆(𝑥, 𝑡) ∙ ∫ ∫

∂𝑆(𝑦, 𝑡 − 𝜏)

∂𝑡
∙ 𝐾(𝑥, 𝑦) ∙ 𝑒−𝜆𝜏𝑑𝜏𝑑𝑦

𝑡

0𝛺

. (2.8) 

Let 𝑅(𝑦, 𝑡) = −∫
∂𝑆(𝑦,𝑡−τ)

∂𝑡
∙ 𝑒−𝜆𝜏𝑑𝜏

𝑡

0
, which denotes the density of information-relay vehicles 

at location 𝑦 at time 𝑡, i.e., vehicles with the information packet in their communication buffer. 

Let 𝑢 = 𝑡 − 𝜏, then  

𝑅(𝑦, 𝑡) = −∫
∂𝑆(𝑦, 𝑢)

∂𝑡
𝑒−𝜆(𝑡−𝑢)𝑑𝑢

𝑡

0

. (2.9) 

The partial derivative of 𝑅(𝑦, 𝑡) with respect to 𝑡 has the following form  

∂𝑅(𝑦, 𝑡)

∂𝑡
= −

∂𝑆(𝑦, 𝑡)

∂𝑡
+ ∫

∂𝑆(𝑦, 𝑢)

∂𝑡
∙ 𝜆 ∙ 𝑒−𝜆(𝑡−𝑢)𝑑𝑢

𝑡

0

 

= −
∂𝑆(𝑦, 𝑡)

∂𝑡
− 𝜆 ∙ 𝑅(𝑦, 𝑡). 

(2.10) 
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Let 𝑋(𝑥, 𝑡)  denote the density of information-excluded vehicles at location 𝑥  at time 𝑡 . As 

informed vehicles include the information-relay vehicles and information-excluded vehicles, 

𝐼(𝑥, 𝑡) = 𝑅(𝑥, 𝑡) + 𝑋(𝑥, 𝑡). Based on this definition, we have: 

∂𝑅(𝑥, 𝑡)

∂𝑡
+
∂𝑋(𝑥, 𝑡)

∂𝑡
=
∂𝐼(𝑥, 𝑡)

∂𝑡
= −

∂𝑆(𝑥, 𝑡)

∂𝑡
. (2.11) 

Substituting equation (2.11) into equation (2.10) yields:  

∂𝑋(𝑥, 𝑡)

∂𝑡
= 𝜆 ∙ 𝑅(𝑥, 𝑡). (2.12) 

Equation (2.12) specifies the rate at which the information-relay vehicles exclude the specific 

information packet from the communication buffer at time 𝑡 and become information-excluded 

vehicles. Substituting 𝑅(𝑦, 𝑡) = −∫
∂𝑆(𝑦,𝑡−τ)

∂𝑡
∙ 𝑒−𝜆𝜏𝑑𝜏

𝑡

0
 into equation (2.8) yields: 

∂𝑆(𝑥, 𝑡)

∂𝑡
= −𝛽 ∙ 𝑆(𝑥, 𝑡) ∙ ∫ 𝑅(𝑦, 𝑡) ∙ 𝐾(𝑥, 𝑦)𝑑𝑦

Ω

. (2.13) 

Hence, the information dissemination dynamics under the given information relay control 

strategy can be formulated as the following integro-differential equations (IDEs) 

{
  
 

  
 
∂𝑆(𝑥, 𝑡)

∂𝑡
= −𝛽 ∙ 𝑆(𝑥, 𝑡) ∙ ∫ 𝑅(𝑦, 𝑡) ∙ 𝐾(𝑥, 𝑦)𝑑𝑦

Ω

                           

∂𝑅(𝑥, 𝑡)

∂𝑡
= 𝛽 ∙ 𝑆(𝑥, 𝑡) ∙ ∫ 𝑅(𝑦, 𝑡) ∙ 𝐾(𝑥, 𝑦)𝑑𝑦

Ω

− 𝜆 ∙ 𝑅(𝑥, 𝑡)      

∂𝑋(𝑥, 𝑡)

∂𝑡
= 𝜆 ∙ 𝑅(𝑥, 𝑡).                                                                        

 

(2.14a) 

 

(2.14b) 

 

(2.14c) 

We label the IDE system (2.14) as the Susceptible-Relay-Excluded (SRX) model.  

The IDE system (2.14) conceptually extends the susceptible-infected-removed epidemic 

model that was originally proposed by Kendall (1957, 1965) to describe the spatiotemporal 

spreading of a disease. If 𝑅(𝑥, 𝑡) ≥ 0  and 𝜆 > 0  in equation (2.14c), then 𝑋(𝑥, 𝑡)  is a non-

decreasing function with respect to time. As time passes, the specific information packet 

becomes dated in the communication buffer, and the probability of excluding it from the 

communication buffer increases. Given a sufficiently long time, all the information-relay 

vehicles at a location will become information-excluded vehicles if 𝜆 > 0. That is, 𝑋(𝑥, 𝑡) →

𝐼(𝑥, 𝑡) and 𝑅(𝑥, 𝑡) → 0, as 𝜆 > 0 and 𝑡 → ∞. Note that if 𝜆 = 0, equation (2.14) is equivalent to 

equation (2.1), denoting an uncongested V2V communication environment. 
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2.3.3 Traffic flow model   

The evolution of IFPW depends not only on the characteristics of communication in the 

information layer but also on the traffic flow dynamics in the traffic layer for the following 

reasons. First, the communication kernel (i.e., 𝐾(𝑥, 𝑦)) is associated with traffic flow density. A 

high equipped-vehicle density can induce high communication interference. Second, the 

spatiotemporal vehicle dynamics impacts the IFPW speed. This study applies the first-order 

LWR model to describe the evolution of traffic flow in the space and time, which is able to 

reproduce some essential features of traffic flow, such as the formation and propagation of traffic 

waves. It assumes that the behavior of traffic at a given point in space and time is only affected 

by the state of the system in a neighborhood of that point (Daganzo, 1995). The model consists 

of the flow conservation law and an explicit density-flow relationship known as the fundamental 

diagram of traffic flow. The flow conservation law and the fundamental diagram can be 

expressed as the following PDE model: 

∂𝑘(𝑥, 𝑡)

∂𝑡
+
∂𝑞(𝑥, 𝑡)

∂𝑥
= 0 (2.15) 

          𝑢(𝑥, 𝑡) = 𝐹(𝑘, 𝑥, 𝑡), (2.16) 

where 𝑘(𝑥, 𝑡) is the traffic flow density at location 𝑥 at time 𝑡, 𝑞(𝑥, 𝑡) is the instantaneous 

flow, and 𝐹(𝑘, 𝑥, 𝑡)  is the fundamental diagram in which 𝑘(𝑥, 𝑡)  and the space mean speed 

𝑢(𝑥, 𝑡) are related by a continuous and piecewise differentiable equation. The PDE system is 

able to model the backward and forward traffic shock waves induced by perturbation of the 

traffic system.  

2.3.4 Solutions for homogeneous and heterogeneous conditions 

For homogeneous conditions, the traffic flow layer (equations (2.15) and (2.16)) is a single 

class traffic flow model that is sufficient to characterize the impacts of traffic flow dynamics on 

the IFPW. This is because when traffic flow is unidirectional and the traffic flow density is 

uniform, the traffic flow dynamics only shift the IFPW towards the direction of traffic flow and 

do not change the densities of vehicles of different classes (see Kim et al. (2017b) for more 

details). Thereby, the impacts of the traffic flow dynamics on the IFPW speed and density of 

informed vehicles are uniform in space and time. The two layers are part of a coupled system in 

which dynamics occur in each system simultaneously, consisting of the information 
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dissemination dynamics in the upper layer and the traffic flow dynamics in the lower layer. The 

two-layer model (equations (2.14), (2.15) and (2.16)) can be solved sequentially under 

continuous time setting. The closed-form solution for the IFPW speed and asymptotical density 

of informed vehicles will be derived in section 4 based on the two-layer model. 

When traffic flow is heterogeneous, the densities of vehicles of different classes can be 

changed by the moving traffic flow (e.g., bidirectional traffic flow). The impacts of the traffic 

flow dynamics on the IFPW speed are not uniform in space and time (Kim et al., 2017b). This 

makes it necessary to track the density of vehicles in each class in each cell in the lower layer, 

which requires discretizing the two-layer model. A numerical solution method will be proposed 

in section 5 to capture the interactions between the upper and lower layers sequentially under 

discrete time settings.  

2.4 Asymptotic solutions of IFPW speed and density of informed vehicles under 

homogeneous conditions 

2.4.1 Asymptotic IFPW speed and asymptotic density of informed vehicles  

The asymptotic IFPW speed is the sum of the asymptotic information dissemination wave 

speed and the traffic flow propagation wave speed. Let 𝑐 > 0  denote the information 

dissemination wave speed. In epidemiology literature, the existence of traveling wave solution of 

the spatial Susceptible-Infected-Recovered model has been well studied. Kendall (1965) and 

Mollison (1972) proved that if the kernel function 𝐾(𝑥, 𝑦) satisfies some conditions (discussed 

later), the traveling waves exist when 𝑐 is greater than a minimum value. Atkinson and Reuter 

(1976) analyzed Kendall’s model for a general class of averaging kernels and obtained a criterion 

for the existence of the minimum traveling wave speed. Aronson (1977) proved that the 

minimum traveling wave speed is the asymptotic speed, and derived the traveling wave solution 

for any time. In the following, we aim to derive the conditions for existence of the IFPW, the 

corresponding asymptotic information dissemination wave speed and asymptotic density of 

informed vehicles under a given traffic flow density and the proposed relay control strategy. 

As discussed in Section 3.1, the communication kernel 𝐾(𝑥, 𝑦)  significantly impacts the 

traveling wave solutions. By factoring communication constraints, Kim et al. (2017b) showed 

that communication is subject to attenuation over distance. The communication kernel 𝐾(𝑥, 𝑦) is 

a decreasing function of communication distance. This study adopts the Gaussian 
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communication kernel which is a special form of the Nakagami model with Nakagami shape 

parameter of 0.5 (Naveen and Rajeswari, 2011). We use the Gaussian communication kernel 

based on Kim et al., (2017b) who found it to be a good fit for the one-hop success rate of V2V 

communication. 

  𝐾(𝑥, 𝑦) =
𝑏

𝑎√𝜋
𝑒
−(𝑥−𝑦)2

𝑎2  , 𝑎 > 0,  0 < 𝑏 ≤ 1,                                                                    (2.17) 

where 𝑎 and 𝑏 are parameters to be estimated using real-world V2V communication data under 

given communication constraints and traffic flow density. Let  

�̅�(𝑥, 𝑦) =
1

𝑎√𝜋
𝑒
−(𝑥−𝑦)2

𝑎2 , 𝑎 > 0.                                                                                           (2.18) 

Substituting equation (2.17) and (2.18) into equation (2.14) yields: 

{
  
 

  
 
∂𝑆(𝑥, 𝑡)

∂𝑡
= −𝛽𝑏 ∙ 𝑆(𝑥, 𝑡) ∙ ∫ 𝑅(𝑦, 𝑡) ∙  �̅�(𝑥, 𝑦)𝑑𝑦

Ω

                 

∂𝑅(𝑥, 𝑡)

∂𝑡
= 𝛽𝑏 ∙ 𝑆(𝑥, 𝑡) ∙ ∫ 𝑅(𝑦, 𝑡) ∙  �̅�(𝑥, 𝑦)𝑑𝑦

Ω

− 𝜆𝑅(𝑥, 𝑡)

∂𝑋(𝑥, 𝑡)

∂𝑡
= 𝜆 ∙ 𝑅(𝑥, 𝑡) .                                                                   

 (2.19) 

Suppose information propagation starts at time 0. Then, 𝐼(𝑥, 0) = 𝑅(𝑥, 0) + 𝑋(𝑥, 0) = 0. All 

equipped vehicles at different locations are susceptible vehicles. As the traffic flow is 

homogeneous, the initial density of susceptible vehicles at different locations is the same. Let σ 

denotes the density of susceptible vehicles, i.e., 𝑆(𝑥, 0) = σ. Note that σ is also the density of 

equipped vehicles. Denote the initial value for 𝑅(𝑥, 0) as 𝑅0(𝑥). Aronson (1977) derived the 

solution for the spatial Susceptible-Infected-Recovered model with population density 

normalized to one. To apply the Corollary developed by Aronson (1977) for deriving the 

solution of the SRX model (3.14), 𝑆(𝑥, 𝑡), 𝑅(𝑥, 𝑡), 𝑋(𝑥, 𝑡) and 𝑡 are rescaled as follows:  

𝑆̅(𝑥, 𝑡) =
1

𝜎
𝑆(𝑥, 𝑡) (2.20a) 

�̅�(𝑥, 𝑡) =
1

σ
𝑅(𝑥, 𝑡) (2.20b) 

�̅�(𝑥, 𝑡) =
1

𝜎
𝑋(𝑥, 𝑡) (2.20c) 

𝑡̅ =
1

𝜎𝛽𝑏
𝑡. (2.20d) 
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Denote γ = 𝜆 (σ𝛽𝑏)⁄ . Substituting equations (2.20) into equation (2.14), we have the 

following scaled SRX model: 

{
  
 

  
 
∂𝑆̅(𝑥, 𝑡̅)

∂𝑡̅
= −𝑆̅(𝑥, 𝑡̅) ∙ ∫ �̅�(𝑥, 𝑡̅) ∙  �̅�(𝑥, 𝑦)𝑑𝑦

Ω

                        

∂�̅�(𝑥, 𝑡̅)

∂𝑡̅
= 𝑆̅(𝑥, 𝑡̅) ∙ ∫ �̅�(𝑥, 𝑡̅) ∙  �̅�(𝑥, 𝑦)𝑑𝑦

Ω

− γ�̅�(𝑥, 𝑡̅)        

∂�̅�(𝑥, 𝑡̅)

∂𝑡̅
= γ ∙ �̅�(𝑥, 𝑡̅),                                                                    

    (2.21) 

with initial conditions: 𝑆̅(𝑥, 0) = 1, �̅�(𝑥, 0) = 𝑅0(𝑥) σ⁄ , and �̅�(𝑥, 0) = 0. 

Recall that communication kernel 𝐾(𝑥, 𝑦) is a function of the distance between the sender 

and receiver vehicles. It can be written as the convolution type, i.e., �̅�(𝑧) (𝑧 = |𝑥 − 𝑦|). To 

derive an analytical solution for equation (2.21), Aronson (1977) proved that kernel �̅�(𝑧) must 

satisfy four conditions: 

(C1) K̅(z) is a nonnegative even function defined in ℝ with ∫ K̅(z)
∞

−∞
dz = 1. 

(C2) There exists a ν ≥ 0, such that ∫ eμzK̅(z)
∞

−∞
dz < ∞ for all μ ∈ [0, ν]. 

(C3) Define  A𝛾(𝜇) =
1

𝜇
[∫ 𝑒𝜇𝑧�̅�(𝑧)
∞

−∞
𝑑𝑧 − 𝛾]. For each 𝛾 < 1, there exists a sufficiently 

large 𝜈 > 0  and a 𝜇∗ = 𝜇∗(𝛾) , such that 0 < 𝑐̅∗ ≡  A𝛾(𝜇) = inf{ A𝛾(𝜇): 𝜇 ∈ [0, ν]} , 

𝜕𝜇  A𝛾(𝜇) < 0 for 𝜇 ∈ [0, 𝜇∗ ] and 𝜕𝜇 A𝛾(𝜇) > 0 for 𝜇 ∈ (𝜇∗, 𝜈), where 𝜕𝜇 A𝛾(𝜇) is the 

first order partial derivative of  A𝛾(𝜇) with respect to 𝜇. 

(C4) For any �̃� ∈ [0, ν] , there exists a 𝑟 = 𝑟(�̃�) ≥ 0  such that 𝑒𝜇𝑥�̅�(𝑥) =

min{𝑒𝜇𝑦�̅�(𝑦): 𝑦 ∈ [0, 𝑥]} for all  𝜇 ∈ [0, �̃�] and 𝑥 ≥ 𝑟(�̃�).  

Theorem 2.1: Communication kernel function �̅�(𝑧) , defined by equation (2.18), satisfies 

conditions (C1)-(C4). 

Proof: Step 1: �̅�(𝑧) satisfies condition (C1). 

Proof:∫ �̅�(𝑧)
∞

−∞
𝑑𝑧 = ∫

1

𝑎√𝜋
𝑒
−𝑧2

𝑎2 𝑑𝑧 = 1
∞

−∞
; condition (C1) holds. 

Step 2: �̅�(𝑧) satisfies condition (C2). 

Proof: ∫ 𝑒𝜇𝑧�̅�(𝑧)
∞

−∞
𝑑𝑧 = ∫ 𝑒𝜇𝑧

1

𝑎√𝜋
𝑒
−𝑧2

𝑎2
∞

−∞
𝑑𝑧 =

1

𝑎√𝜋
𝑒0.25𝑎

2μ2 × (𝑎√𝜋) = 𝑒0.25𝑎
2𝜇2 . 

Thereby, for any given 𝜈 ≥ 0, ∫ 𝑒𝜇𝑧�̅�(𝑧)
∞

−∞
𝑑𝑧 < ∞ for all 0 ≤ 𝜇 ≤ 𝜈. 
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Step 3: �̅�(𝑧) satisfies condition (C3). 

Proof: Note that 

𝜕𝜇  A𝛾(𝜇) = −
1

𝜇2
[∫ 𝑒𝜇𝑧�̅�(𝑧)

∞

−∞

𝑑𝑧 − 𝛾] +
1

𝜇
∫ 𝑧 ∙ 𝑒𝜇𝑧�̅�(𝑧)
∞

−∞

𝑑𝑧 

= −
1

𝜇2
[√2𝑒0.25𝑎

2𝜇2 − 𝛾] +
1

𝑎√𝜋

1

𝜇
𝑒0.25𝑎

2𝜇2∫ 𝑧 ∙ 𝑒−(
𝑧
𝑎
−0.5𝑎𝜇)

2∞

−∞

𝑑𝑧. 

Let ℎ =
𝑧

𝑎
− 0.5𝑎𝜇, then z = 𝑎ℎ + 0.5𝑎2𝜇 

𝜕𝜇  A𝛾(𝜇) = −
1

𝜇2
[√2𝑒0.25𝑎

2𝜇2 − 𝛾] +
1

√𝜋𝜇
𝑒0.25𝑎

2𝜇2∫ (𝑎ℎ + 0.5𝑎2𝜇) ∙ 𝑒−ℎ
2
𝑑ℎ

∞

−∞

 

= −
1

𝜇2
[√2𝑒0.25𝑎

2𝜇2 − 𝛾] + 𝑒0.25𝑎
2𝜇2 ∙

1

2
𝑎2. (2.22) 

According to equation (2.22), 𝜕𝜇 A𝛾(𝜇) → −∞ as 𝜇 → 0+, and 𝜕𝜇  A𝛾(𝜇) → +∞ as 𝜇 → +∞. 

Note that 𝜕𝜇 A𝛾(𝜇)  is a continuous function of 𝜇 . There must exist a positive 𝜈  such that 

𝜕𝜇  A𝛾(𝜇) < 0 for 𝜇 ∈ [0, 𝜇∗ ] and 𝜕𝜇 A𝛾(𝜇) > 0 for 𝜇 ∈ (𝜇∗, 𝜈), where 𝜇∗ = 𝜇∗(𝛾) is the point at 

which 𝜕𝜇 A𝛾( 𝜇
∗) = 0. 

Step 4: �̅�(𝑧) satisfies condition (C4). 

Proof: 𝑒𝜇�̃��̅�(�̃�) =
1

𝑎√𝜋
𝑒
−�̃�2

𝑎2
+𝜇�̃�

=
1

𝑎√𝜋
𝑒0.25𝑎

2𝜇2𝑒−(
�̃�

𝑎
−0.5𝑎𝜇)

2

.                                (2.23) 

Equation (2.23) implies that 𝑒𝜇�̃��̅�(�̃�)  increases monotonically with respect to �̃� ∈

(0,0.5𝑎2𝜇], and decreases monotonically with respect to �̃� ∈ (0.5𝑎2𝜇,+∞). For �̃� = 0, we have 

𝑒𝜇�̃��̅�(�̃�) =
1

𝑎√𝜋
. For �̃� = 𝑎2𝜇 , 𝑒𝜇�̃��̅�(�̃�) =

1

𝑎√𝜋
.  Note that 𝑒𝜇�̃��̅�(�̃�)  decreases when �̃� ∈

[0.5𝑎2𝜇,+∞) . Thereby, 𝑒𝜇�̃��̅�(�̃�) <
1

𝑎√𝜋
= min {𝑒𝜇�̃��̅�(�̃�): �̃� ∈  [0, 𝑎2𝜇]}  for �̃� ∈ (𝑎2𝜇,+∞) . 

Hence, for a fixed �̃� ∈ [0, 𝜈], 𝑒𝜇𝑥�̅�(𝑥) = min{𝑒𝜇�̃��̅�(�̃�): �̃� ∈ [0, 𝑥]} for all 𝜇 ∈ [0, �̃�] when 𝑥 ≥

𝑎2�̃� = 𝑟(�̃�). Theorem 2.1 is proved.  

Definition 2.1: Asymptotic wave speed (Aronson and Weinberger, 1978): Speed 𝑐̅∗ is called the 

asymptotic wave speed if, for any 𝑐1̅  and 𝑐2̅  with 0 < 𝑐1̅ < 𝑐̅
∗ < 𝑐2̅ , the density of infected 

people (i.e., informed vehicles in our context) tends to be zero uniformly in the region |𝑥| ≥ 𝑐2̅𝑡, 

whereas it is bounded away from zero uniformly in the region|𝑥| ≤ 𝑐1̅𝑡 for sufficiently large 

time 𝑡.  
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Definition 2.2: Asymptotic density of informed vehicles: The asymptotic density of informed 

vehicles at location 𝑥 is defined as lim𝑡→∞𝐼(𝑥, 𝑡) if the limit exists. 

Theorem 2.2 (Aronson, 1977): Assume  �̅�(𝑧)  satisfies conditions (C1)-(C4) and 0 < 𝛾 < 1. Let 

�̅�(𝑥, 𝑡) be the solution of equation (2.21). 

(1) If 𝑐̅ > 𝑐̅∗, then for every 𝑥 ∈ ℝ 

lim
𝑡→∞,|𝑥|≥𝑐𝑡

�̅�(𝑥, 𝑡) = 0.       (2.24) 

(2) If 0 < 𝑐̅ < 𝑐̅∗, then for every 𝑥 ∈ ℝ 

lim
𝑡→∞,|𝑥|≥𝑐𝑡

�̅�(𝑥, 𝑡) = α(γ), (2.25) 

where α(γ) is the unique solution of α in (0,1) of the following equation:  

1 − α = 𝑒−α γ⁄ . (2.26) 

And  𝑐̅∗ is the minimum value of  A𝛾(𝜇) for all 0 < 𝜇 < 𝜈, i.e.,  

            𝑐̅∗ ≡  A𝛾(𝜇) = inf {
1

𝜇
[∫ 𝑒𝜇𝑧�̅�(𝑧)
∞

−∞
𝑑𝑧 − 𝛾]: 0 < 𝜇 < 𝜈}.   

Remark 2.1 (Necessary conditions for existence of the IFPW): By the definition of asymptotic 

wave speed, Theorem 2.2 implies that for 0 < 𝛾 < 1 , the information dissemination wave 

solution of equation (2.21) exists and the asymptotic wave speed is 𝑐̅∗ . This provides the 

necessary condition for existence of the IFPW. In particular, 𝛾 = 𝜆 (σ𝛽𝑏)⁄ < 1 implies 1 𝜆⁄ =

𝐶 𝜆𝑒⁄ > 1 (σ𝛽𝑏)⁄ . Recall that 𝐶 𝜆𝑒⁄  represents the mean duration of information packet in the 

communication buffer. Therefore, condition 𝛾 < 1 quantifies the time length to be reserved for 

broadcasting the information packet of interest such that the IPFW exists. 

As equation (2.21) is a scaled version of equation (2.14) with �̅�(𝑥, 𝑡) =
1

σ
𝑋(𝑥, 𝑡), and 𝑡̅ =

1

σ𝛽𝑏
𝑡, the following corollary holds.  

Corollary 2.1 (Asymptotic information dissemination wave speed): Let 𝑐∗ be the asymptotical 

information dissemination speed of equation (2.14) and 𝐼(𝑥, 𝑡) be the corresponding solution. If 

0 < 𝛾 < 1, then 

𝑐∗ = σ𝛽𝑏𝑐̅∗ = σ𝛽𝑏 ∙ inf {
1

𝜇
[∫ 𝑒𝜇𝑧�̅�(𝑧)

∞

−∞

𝑑𝑧 − 𝛾] : 0 < 𝜇 < 𝜈} . 
 

(2.27) 

And, for any 0 < 𝑐 < 𝑐∗  

lim
𝑡→∞,|𝑥|≥𝑐𝑡

𝑋(𝑥, 𝑡) = σ lim
𝑡→∞,|𝑥|≥𝑐𝑡

�̅�(𝑥 + 𝑐𝑡, 𝑡) = σ ∙ α(γ). (2.28) 
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Remark 2.2 (Asymptotic density of informed vehicles): Let 𝐼∗  be the asymptotic density of 

informed vehicles. Recall that lim𝑡→∞ 𝑋(𝑥, 𝑡) = lim𝑡→∞ 𝐼(𝑥, 𝑡) for 𝜆 > 0. Note that vehicles are 

moving at a uniform speed. Equation (2.26) implies that, given a sufficiently long time, the 

density of information-excluded vehicles at any place within the wave front would be σ ∙ α(γ). It 

implies that, if 𝜆 > 0,  

𝐼∗ = lim
𝑡→∞

𝐼(𝑥, 𝑡) = lim
𝑡→∞

𝑋(𝑥, 𝑡) = σ ∙ α(γ)     ∀𝑥. (2.29) 

Recall that σ denotes the density of equipped vehicles. Then, the asymptotic proportion of 

informed vehicles at each location is 𝐼∗ σ⁄ = α(γ). 

Equations (2.27) and (2.29) show that the asymptotic information dissemination speed and 

the asymptotic density of informed vehicles, respectively, can be obtained by solving a nonlinear 

equation under homogeneous conditions with 0 < 𝛾 < 1. Equations (2.27) and (2.29) are one-

dimensional nonlinear equations that can be solved using the Newton method. This helps to 

circumvent the more complex numerical solution methods.  

It should be noted here that equation (2.27) is valid even if 𝛾 = 0. Recall that, if 𝜆 = 0, 

equation (2.14) is reduced to the Susceptible-Informed (SI) model (1). The following theorem 

presents the asymptotic information dissemination speed for equation (2.27).  

Theorem 2.3: If 𝜆 = 0, then 𝑐∗ = √
𝑒

2
σ𝛽𝑏𝑎.  

Proof: Note that γ = 𝜆 (σ𝛽𝑏)⁄ . Therefore, γ = 0 if 𝜆 = 0. According to equation (2.27):  

𝑐∗ = σ𝛽𝑏 ∙ inf {
1

𝜇
[∫ 𝑒𝜇𝑧�̅�(𝑧)
∞

−∞
𝑑𝑧]: 0 < 𝜇 < 𝜈}. 

Recall that  A𝛾(𝜇)=
1

𝜇
[∫ 𝑒𝜇𝑧�̅�(𝑧)
∞

−∞
𝑑𝑧], if γ = 0. We have  

𝜕𝜇 A𝛾(𝜇) = −
1

𝜇2
∫ 𝑒𝜇𝑧�̅�(𝑧)
∞

−∞

𝑑𝑧 +
1

𝜇
∫ 𝑧 ∙ 𝑒𝜇𝑧�̅�(𝑧)
∞

−∞

𝑑𝑧

= −
1

𝜇2
√2𝑒0.25𝑎

2𝜇2 + 𝑒0.25𝑎
2𝜇2 ∙

√2

2
𝑎2. 

     

(2.30) 

Note that 𝜕𝜇 A𝛾(𝜇) < 0, for 𝜇 ∈ [0,√2 𝑎⁄ ),  𝜕𝜇  A𝛾(𝜇) = 0 for 𝜇 = √2 𝑎⁄ , and 𝜕𝜇 A𝛾(𝜇) > 0, 

for 𝜇 ∈ (√2 𝑎⁄ ,∞). In addition, according to Theorem 2.1, 𝜈 needs to be greater than √2 𝑎⁄ . This 

indicates that the minimum value of  A𝛾(𝜇) is obtained at 𝜇 = √2 𝑎⁄ . Then,   

𝑐̅∗ = inf{ A𝛾(𝜇): 0 < 𝜇 < 𝜈} =  A𝛾(√2 𝑎⁄ ) =
1

𝜇
∫ 𝑒𝜇𝑧�̅�(𝑧)
∞

−∞

𝑑𝑧 =
𝑎

√2
∙ 𝑒0.5. 
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Hence, 𝑐∗ = σ𝛽𝑏𝑐̅∗ = √
𝑒

2
σ𝛽𝑏𝑎.                

Theorem 2.3 shows that the closed-form solution of the asymptotic information 

dissemination speed provided by equation (2.27) at 𝜆 = 0 is the same as that derived in Kim et al. 

(2017b). Note that as all informed vehicles would repetitively broadcast the specific information 

packet, all susceptible vehicles will become informed eventually if 𝜆 = 0. Therefore, the SI 

model (2.1) is a special case of the proposed model when the information packet is propagated in 

an uncongested information regime with 𝜆 = 0.  

Theorem 2.4 (Aronson, 1977): Let 𝑐̅ > 0  be the speed of the traveling wave (i.e., the 

information dissemination wave in our context) of equation (2.21). If  �̅�(𝑧)  satisfies conditions 

(C1)-(C4) and 𝛾 ≥ 1, then lim𝑡→∞,|𝑥|≥𝑐�̅��̅�(𝑥, 𝑡) = 0.  

As equation (2.21) is a scaled version of equation (2.14) with �̅�(𝑥, 𝑡) =
1

σ
𝑋(𝑥, 𝑡) , the 

following corollary holds based on Theorem 2.4.  

Corollary 2.2: Denote 𝑐 > 0 as the information dissemination speed of the SRX model (2.14). If 

𝛾 ≥ 1, then lim𝑡→∞,|𝑥|≥𝑐𝑡 𝑋(𝑥, 𝑡) = σ lim𝑡→∞,|𝑥|≥𝑐𝑡 �̅�(𝑥, 𝑡) = 0. 

Remark 2.3 (Conditions at which the IFPW does not exist): As discussed earlier, if the 

information exclusion rate 𝜆 is strictly positive, then all informed vehicles at location 𝑥, 𝐼(𝑥, 𝑡), 

will become information-excluded vehicles gradually. Corollary 2.2 implies that the information 

dissemination wave does not exist with 𝛾 > 1, i.e., the positive 𝑐 does not exist. This indicates 

that the specific information packet only propagates to a limited area and cannot be received by 

equipped vehicles that are far away from the initial sender vehicle. Note that 𝛾 = 𝜆 (σ𝛽𝑏)⁄ . If the 

information exclusion rate 𝜆  is too high, or the density of susceptible vehicles  σ  or the 

communication frequency 𝛽 is too low, any information packet will not be propagated far away. 

Namely, they are propagated locally and fade out over distance.  

2.4.2 Traffic flow propagation wave speed 

The traffic flow propagation wave speed, denoted by 𝑐𝑇, is determined by the fundamental 

diagram which is a continuous and a non-increasing function defined on [0, 𝑘𝑗], where 𝑘𝑗 is the 

jam density. This study adopts the following triangular fundamental diagram (Jin and Recker, 

2006): 
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𝑐𝑇 = {

𝑢𝑓,                     0 ≤ 𝑘 ≤ 𝑘𝑐
𝑘𝑐(𝑘𝑗 − 𝑘)

(𝑘𝑗 − 𝑘𝑐)
𝑢𝑓,    𝑘𝑐 ≤ 𝑘 ≤ 𝑘𝑗 ,

 
(2.31) 

where 𝑢𝑓 is the free flow speed, and 𝑘𝑐 is the critical density.  

We label the IFPW speed in the direction of vehicular traversal as the forward IFPW speed. 

The IFPW speed opposite to the direction of vehicular traversal is defined as the backward IFPW 

speed. Note that when 𝛾 ≥ 1, the specific information packet cannot be propagated to other 

equipped vehicles that are far away because of the information relay control strategy. Then, both 

the forward and backward asymptotic IFPW speeds are 0. When 𝛾 < 1 , the information 

propagation wave speed 𝑐∗  is positive. The specific information packet keeps propagating to 

susceptible vehicles in the traffic network. As V2V communications and vehicle movements 

occur simultaneously, the solution of the forward asymptotic IFPW speed is expressed as 𝑐∗ + 𝑐𝑇, 

while the solution of the backward asymptotic IFPW speed is expressed as 𝑐𝑇 − 𝑐
∗  on the 

unidirectional highway.   

2.5 Numerical solution method for the two-layer model under heterogeneous conditions 

The asymptotic speed and aympototic density derived in the previous section rely on the 

assumption of homogeneous conditions. Under heterogeneous conditions, the IFPW cannot reach 

a stable state as the communication kernel varies with traffic density and impacts of traffic flow 

dynamics on IFPW are non-uniform. The analytical solutions represented by equations (2.27) 

and (2.29) cannot be applied for the case for heterogeneous conditions. In this section, we 

provide a numerical method to solve for the proposed two-layer model formulated by equations 

(2.14), (2.15) and (2.16). The numerical solution method can obtain the density variations of the 

four vehicle classes in the space and time domains.  

The numerical solution method divides the space and time domains into cells with length ∆𝑥 

and time interval ∆𝑡, respectively. To approximate the solutions of IDEs in equation (14), the 

Runge-Kutta method is applied at each time step. The Runge-Kutta method adopts the Euler 

method to approximate the partial derivatives (i.e., the derivatives of 𝑆(𝑥, 𝑡), 𝑅(𝑥, 𝑡) and 𝐷(𝑥, 𝑡) 

with respect to 𝑡 at each time step). The main difficulty to approximate the partial derivatives is 

to calculate the convolution term (∫ 𝑅(𝑦, 𝑡) ∙  𝐾(𝑥, 𝑦)𝑑𝑦
Ω

) in equation (2.14). In this study, the 

Fast Fourier Transform (FFT) method is used to calculate this term due to its computational 
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efficiency. Let ℎ(𝑠) = ∫ 𝑅(𝑦, 𝑡) ∙  𝐾(𝑥, 𝑦)𝑑𝑦
Ω

. As the space is discretized into cells, according 

to discrete FFT theory (Brigham, 1974), we have  

ℱℎ(𝑠) =
2𝐿

𝑁
ℱ𝑌(𝑠) ∙ ℱ𝐾(𝑠) 

=∑ 𝑅(𝑙∆𝑥, 𝑡)𝑒2𝜋∙𝑗∙𝑠∙𝑙∙∆𝑥
𝑁 2⁄

𝑙=−𝑁 2⁄
∙∑ 𝐾(𝑙∆𝑥)𝑒2𝜋∙𝑗∙𝑠∙𝑙∙∆𝑥

𝑁 2⁄

𝑙=−𝑁 2⁄
, 

(2.32) 

where ℱ denotes the FFT operator, 𝐿 is the communication range, and 𝑁 is the number of 

cells within communication range in the two directions; 𝑗 is the imaginary unit that satisfies 𝑗2 =

−1. According to equation (2.32), the inversion of FFT provides ℎ(𝑠).  

The generalized cell transmission finite difference equations proposed by Daganzo (1995) 

are adopted to solve the PDE model (equations (2.15) and (2.16)) as follows: 

[𝑘(𝑥, 𝑡 + ∆𝑡) − 𝑘(𝑥, 𝑡)] ∆𝑡⁄ = [𝑞(𝑥 − ∆𝑥, 𝑡) − 𝑞(𝑥, 𝑡) ∆𝑥⁄ ]    (2.33) 

𝑞(𝑥, 𝑡) = min {𝑇(𝑘(𝑥, 𝑡)), 𝑄 (𝑘𝑗 − 𝑘(𝑥 + ∆𝑥, 𝑡))},    (2.34) 

where T specifies the maximum flow that can be sent by the upstream cell and Q specifies 

the maximum flow that can be received by the downstream cell.  

To numerically solve the two-layer model for heterogeneous conditions, the single-class 

discrete traffic flow in the lower layer is solved first at time interval 𝑡. Then, the following two 

steps are applied to update the number of vehicles by vehicle class at time interval 𝑡, which 

connect the upper and lower layers consistently in terms of the number of vehicles by vehicle 

class.  

Step 1: Determine the number of vehicles of each class 𝑧 ∈ {𝑆, 𝑅, 𝑋, 𝑈} that advance to the 

downstream cell using the outcomes of the lower layer (equations (2.33) and (2.34)) and the 

proportion of vehicles of each class in the previous time interval in the upper layer, as follows:  

𝑞𝑧(𝑥, 𝑡) =
𝑘𝑧(𝑥,𝑡−∆𝑡)

𝑘(𝑥,𝑡−∆𝑡)
∙ 𝑞(𝑥, 𝑡),     𝑧 ∈ {𝑆, 𝑅, 𝑋, 𝑈},                                                      (2.35)  

where 𝑞𝑧(𝑥, 𝑡) represents the vehicular flow of class 𝑧 leaving cell 𝑥 per unit time at time 𝑡 and 

𝑘𝑧(𝑥, 𝑡 − ∆𝑡) represents the density of class 𝑧 at cell 𝑥 and time 𝑡 − ∆𝑡, for all 𝑧 ∈ {𝑆, 𝑅, 𝑋, 𝑈}. 

Equation (2.35) indicates that the number of vehicles of each class advancing to the downstream 

cell is proportional to the previous time interval’s proportion of vehicles by vehicle class in the 

upper layer. 

Step 2: Update the number of vehicles by vehicle class in each cell of the upper layer using 

the discrete multi-class flow conservation law, as follows: 
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[𝑘(𝑥, 𝑡 + ∆𝑡) − 𝑘(𝑥, 𝑡)] ∆𝑡⁄ = [𝑞(𝑥 − ∆𝑥, 𝑡) − 𝑞(𝑥, 𝑡) ∆𝑥⁄ ], 𝑧 ∈ {𝑆, 𝑅, 𝑋, 𝑈}. (2.37) 

In equation (2.37), 𝑘𝑆(𝑥, 𝑡) , 𝑘𝑅(𝑥, 𝑡)  and 𝑘𝑋(𝑥, 𝑡)  represents 𝑆(𝑥, 𝑡) , 𝑅(𝑥, 𝑡)  and 𝑋(𝑥, 𝑡) , 

respectively, that describe the number of vehicles of each class in the upper layer.  

This process is repeated to solve for the spatiotemporal propagation of information flow. 

2.6 Numerical experiments  

2.6.1 Experiment design 

Table 2.1 Cell characteristics and experiment parameters 

Variables Units Value Variables Units Value 

Free flow speed (𝑢𝑓) km/h 108 Total number of cells - 2,000 

Time interval (∆𝑡) seconds 0.5 Critical density (𝑘𝑐) 
vehicles

/km/lane 
42 

Cell length (∆𝑥) meters 15 Jam density (𝑘𝑗) 
vehicles

/km/lane 
167 

Number of lanes - 1 Communication frequency (𝛽) Hz 2 

Market penetration rate (W) % 50 Communication range (R) meters 300 

This section presents the experiment setup, and the parametric calibration of the information 

exclusion rate that describes the duration of retransmission period caused by limited channel 

capacity. The numerical experiments are conducted on a highway consisting of 2,000 cells, 

which is equivalent to 30 km of length. The cell characteristics and experiment parameters are 

provided in Table 2.1.         

A simulation-based approach is used to calibrate the information exclusion rate. The aim of 

the simulation-based approach is to generate realistic synthetic data for the information exclusion 

rate under various congested V2V communication environments. We first analyze the number of 

information packets that can be transmitted over a limited channel capacity, which is assumed 

equivalent to the communication buffer size. The scenario that will be used for the parametric 

calibration is as follows. Assume that there is one channel reserved for event-driven 

communication, and that single channel is shared by multiple transmitters. The system is capable 

of transmitting data with the maximum data rate of 3 Mbps. For a given vehicle density k, the 

expected number of equipped vehicles is 2 ∙ 𝑘 ∙  𝑅 ∙ 𝑊, where R is the communication range and 

𝑊 is the market penetration rate of V2V-equipped vehicles. As only one communication per 
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time interval can be used for communication, the available channel capacity has to be shared by 

2 ∙ 𝑘 ∙ 𝑅 ∙ 𝑊 vehicles, and one vehicle, at maximum, is allowed to transmit s/(2 ∙ 𝑘 ∙ 𝛽 ∙ 𝑅 ∙ 𝑊) 

bits per second, where 𝑠 is the channel capacity. For example, with R=0.3 km, k=60 veh./km, 𝛽 

=2Hz, 𝑊 =50%, the maximum transmission rate for each V2V communication is calculated as:   

  𝐶 =
𝑠

2 ∙ 𝑘 ∙ 𝛽 ∙ 𝑅 ∙ 𝑊
=

3 ∙ 106

2 ∙ 60 ∙ 2 ∙ 0.3 ∙ 0.5
= 83,333 𝑏𝑖𝑡 = 10,417 𝑏𝑦𝑡𝑒. 

Assume that each packet size is 500 bytes; then, 21 packets per communication is the 

maximum transmission rate in terms of the number of packets that each V2V communication can 

transmit. The information exclusion rate is estimated by factoring the calculated communication 

buffer capacity using the simulation-based approach. The approach is as follows. For a given 

density k, vehicles are assumed to be randomly distributed along the 30 km highway. The 

simulation is conducted for 60 minutes. It is performed for the scenarios in which each equipped 

vehicle is assumed to generate a packet with a generation rate of 1 packet per 20 seconds, and 

communicate with other equipped vehicles within communication range. Suppose that the other 

equipped vehicles within communication range receive multiple packets from multiple senders, 

and retransmit these packets to surrounding vehicles with a given maximum broadcasting 

capacity. This leads the receiver vehicle to receive some new information packets that need to 

replace the old packets in the communication buffer. The simulation mimics the communication 

buffer where new information packets are received from other equipped vehicles and old 

information packets are excluded from the communication buffer at a time instant. The duration 

of information retransmission is determined by tracking the time after the information packet is 

received and before it is excluded from the communication buffer. The communication range R 

and communication frequency 𝛽 are set as 300 meters and 2 times/second, respectively. The 

results of the information exclusion rate are summarized in Table 2.2. 
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Table 2.2 Communication kernel parameters and information exclusion rate under various 

densities 

Density 

(veh./km) a b C 𝜆 

Density 

(veh./km) a b C 𝜆 

10 0.464 0.864 125 0.002 90 0.125 0.195 14 0.559 

20 0.410 0.685 62 0.01 100 0.109 0.175 12 0.595 

30 0.345 0.548 41 0.042 110 0.101 0.165 11 0.592 

40 0.273 0.420 31 0.08 120 0.088 0.145 10 0.629 

50 0.224 0.345 25 0.175 130 0.083 0.140 10 0.662 

60 0.191 0.292 21 0.309 140 0.081 0.131 9 0.694 

70 0.156 0.246 18 0.321 150 0.073 0.121 9 0.709 

80 0.138 0.218 15 0.441 160 0.070 0.116 8 0.725 

To obtain the communication kernel (2.17), Monte Carlo simulations are performed to mimic 

V2V communications under different traffic conditions, where successful V2V communication 

is affected by interference caused by simultaneous information transmissions from several 

equipped vehicles within the communication range. Successful communication between sender 

and receiver vehicles is identified by Signal to Interference Plus Noise Ratio (SINR) (Gupta and 

Kumar, 2000), which is defined as the signal power of the sender vehicle divided by the signal 

power of all interference from other equipped vehicles and background noise. The receiver 

vehicle 𝑏 can receive information from sender vehicle 𝑎 if  

𝑃𝑎 ‖𝛿𝑎 − 𝛿𝑏‖
2⁄

∑ 𝑃ℎ/‖𝛿ℎ − 𝛿𝑏‖
2 + 𝜗ℎ∈𝐸,ℎ≠𝑎

≥ 𝜎, 

where 𝛿ℎ and 𝑃ℎ denote the coordinates and signal power of equipped vehicle ℎ, respectively. 

𝜗  denotes the power of background noise. 𝐸  denotes the set of equipped vehicles within 

communication range of vehicle 𝑎 which simultaneously transmit an information packet at the 

same time instant to vehicle 𝑎 . The transmitted information from vehicle 𝑎  is successfully 

received by vehicle 𝑏 if the SINR is greater than or equal to threshold 𝜎. The simulation is 

repeated 100 times. Each simulation run randomly locates equipped vehicles based on the traffic 

density to account for the location randomness of equipped vehicles within the communication 

range of the sender vehicle. The parameters of the calibrated communication kernel are presented 

in Table 2.2. Kim et al. (2017b) provide details of calibration of the communication kernel.  
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2.6.2 IFPW under homogeneous conditions 

We first compute the analytical solution of the asymptotic IFPW speed under homogeneous 

conditions. Suppose the traffic flow density is 30 veh./km. According to Table 2.2, with 50% 

penetration rate of equipped vehicles, the parameters 𝑎 and 𝑏 in equation (2.17) are 0.345 and 

0.548, respectively. The information exclusion rate is 𝜆 = 0.042. Applying these parameters, the 

analytical solution of the IFPW speed under the information relay control strategy can be 

computed as follows. Initially, all equipped vehicles are susceptible at each location, thereby:  

𝑆(𝑥, 0) = σ = 30 × 0.5 = 15 veh. km⁄ = 0.225 veh. (15 m)⁄ . 

Note that 𝛾 = 𝜆 (σ𝛽𝑏)⁄ = 0.042/(0.225 ∙ 2 ∙ 0.548) = 0.1703 < 1. According to Corollary 2.1, 

the IFPW exists, whose speed can be computed using equation (2.27):  

𝑐∗ = σ𝛽𝑏𝑐̅∗ = 0.225 ∙ 2 ∙ 0.548 ∙ inf {
1

𝜇
[∫ 𝑒𝜇𝑧�̅�(𝑧)

∞

−∞

𝑑𝑧 − 𝛾] : 0 < 𝜇 < 𝜈}. 

Note that 

1

𝜇
[∫ 𝑒𝜇𝑧�̅�(𝑧)

∞

−∞

𝑑𝑧 − 𝛾] =
1

𝜇
[∫ 𝑒𝜇𝑧�̅�(𝑧)

∞

−∞

𝑑𝑧 − 𝜆 (σ𝛽𝑏)⁄ ] 

=
1

𝜇
[∫ 𝑒𝜇𝑧

1

0.345√𝜋
𝑒
−𝑧2

0.345

∞

−∞

𝑑𝑧 − 0.1703]. 

 

 

 

(2.37) 

Using the Newton method, the minimum value of equation (2.37) is 0.3595, which is 

obtained at 𝜇 = 3.869. Then, 𝑐∗ = 0.225 ∙ 2 ∙ 0.548 ∙ 0.3595 = 0.0887 km/s= 319.13 km/h. 

According to equation (2.31), the traffic flow speed under density 30 veh./km is 108 km/h. 

Thereby, the forward IFPW speed is 319.13 + 108 = 427.13 km/h, and the backward IFPW 

speed is 108 − 319.13 = −211.13 km/h.   
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(a) Asymptotic IFPW speed 

 

(b) Asymptotic proportion of informed vehicles. 

Figure 2.4 Asymptotic IFPW speed and asymptotic proportion of informed vehicles 

Figure 2.4(a) compares the analytical solutions with the numerical solutions of the 

asymptotic IFPW speeds for different traffic conditions. The numerical solutions of the 

asymptotic IFPW speeds are computed using the method provided in Section 5. As can be 

observed from Figure 2.4(a), the analytical solutions match well with the numerical solutions for 

the forward and backward IFPW speeds. Note that this experiment only compares IFPW speeds 

under the cases where the traffic density is less than 60 veh./km. If traffic density is higher than 

60 veh./km under the current V2V communication setting, then 𝛾 > 1. Based on Remark 3, the 

IFPW does not exist. Thereby, the asymptotic IFPW speed does not exist for these cases when 

traffic density is higher than 60 veh./km. 

Figure 2.4(a) also shows that the asymptotic IFPW speed reduces when the equipped vehicle 

density increases, which causes V2V communication congestion and higher information 

exclusion rate. This comparison clearly shows that the information flow propagation speed may 
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be overestimated if V2V communication congestion occurs. The overestimation of information 

flow propagation speed would significantly impact the effectiveness of V2V communication-

based applications.  

The following example illustrates the analytical and numerical solutions for asymptotic 

density. If the traffic flow density is 30 veh./km, then the asymptotic density of informed 

vehicles is calculated using equation (2.29) as: 

        𝐼∗ = 0.225 ∙ α(𝛾) = 0.225 ∙ {α|1 − α = 𝑒−α 𝛾⁄ ; 𝛼 ∈ (0,1)}. 

As γ = 0.042 (0.225 ∙ 2 ∙ 0.548)⁄ , α = 0.997 is the solution of 1 − α = 𝑒−α γ⁄  for α ∈ (0,1). 

Hence, 𝐼∗ = 0.997 ∙ 0.225 = 0.224 veh./cell. The asymptotic proportion of informed vehicles is 

calculated by dividing 𝐼∗  with the density of equipped vehicles in each cell, which is 

0.224 0.225⁄ = 0.997.  

  Figure 2.4(b) compares the analytical and numerical solutions for the asymptotic proportion 

of informed vehicles. It shows that the numerical solutions overlap with the analytical solutions, 

implying that the numerical algorithm proposed in Section 5 can effectively solve the two-layer 

model for the spatiotemporal propagation of information flow. Figure 2.4(b) also shows that 

when traffic density is less than 30 veh./km, most equipped vehicles can receive the specific 

information. The asymptotic proportion of informed vehicles decreases dramatically as the traffic 

flow density increases. When traffic density is 50 veh./km, only around 55% of the equipped 

vehicles can receive the specific information packet. This is because the information exclusion 

rate increases with the traffic density.  
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Figure 2.5 The density of relay and excluded vehicles over space, at 𝑡 = 100 and 𝑡 = 200 

seconds (𝑘 = 30 veh./km). 

Next, we explore the impact of the information relay control strategy on information 

dissemination. Suppose a specific information packet is sent by an equipped vehicle at location 0 

at time 0. The traffic density is 30 veh./km.  Figure 2.5 shows the densities of three classes of 

vehicles (R, X and I) at 𝑡 = 100  seconds and 𝑡 = 200  seconds over the spatial dimension, 

respectively. As stated before, 𝐼(𝑥, 𝑡) = 𝑅(𝑥, 𝑡) + 𝑋(𝑥, 𝑡). These results are obtained by solving 

the IDEs (equation (2.14)) and PDE (equations (2.15) and (2.16))) numerically. The distribution 

of 𝐼(𝑥, 100)  demonstrates that the specific information packet is disseminated 12 km 

downstream and 6 km upstream in 100 seconds. Most of the information-relay vehicles (class R) 

are located close to both fronts of the IFPW. This is because information-relay vehicles have 

received this specific information packet recently, and have a high probability having this packet 

in their communication buffers for propagation at the current time. Note that the density of 

information-relay vehicles (e.g., 𝑅(𝑥, 200)) is relatively low between 0 km and 10 km. As time 

passes, the density of information-relay vehicles reduces to zero until all informed vehicles 

exclude the information packet.  
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Figure 2.6 Density contour of information-relay vehicles at 𝑘 = 60 veh./km and λ = 0.31. 

2.6.3 Scenario in which IFPW does not exist 

According to Corollary 2.2, when 𝛾 > 1, the IFPW does not exist and the information cannot 

propagate to vehicles far away from the location of the initial informed vehicles. Consider 

unidirectional flow with uniform traffic density 𝑘 = 60 veh./km . At time 0, only equipped 

vehicles in the cell located at point 0 are informed vehicles, and all other equipped vehicles are 

susceptible vehicles. The information exclusion rate is 0.31 packets per second according to 

Table 2.2. In this context, 𝛾 = 1.41 > 1.  Figure 2.6 shows the density contour of information-

relay vehicles. It demonstrates that the density of information-relay vehicles has the highest 

value in the region close to point 0 at time 0. However, the density of information-relay vehicles 

decreases dramatically in space and time. After 21 seconds, while the information packet is 

propagated to 0.22 km upstream and 0.61 km downstream, the density of information-relay 

vehicles is only 0.3 veh./km, and continues decreasing. Recall that only information-relay 

vehicles can propagate the specific information packet. A susceptible vehicle located far away 

from the initial sender vehicle will not receive this information packet as there would be no 

information-relay vehicles in the vicinity of it. 

2.6.4 IFPW under heterogeneous conditions 

This section investigates the impact of traffic flow dynamics on information propagation 

under the information relay control strategy in heterogeneous conditions. We consider the traffic 

density variation due to a traffic incident on a unidirectional highway with a traffic density of 50 

veh./km. As illustrated in Figure 2.7(a), the incident occurs at location A at time 0. It reduces the 

highway capacity by a third of its initial value for 4 minutes, before the incident is cleared. Line 
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AB in Figure 2.7(a) separates the congested traffic and the free flow traffic departing from the 

incident occurrence location. Lines AD and BF in Figure 2.7(a) represent two forward 

propagating traffic waves caused by the occurrence and clearance of the incident, respectively. 

After the incident occurs, vehicles are jammed at the incident location, leading to a traffic wave 

propagating backward.  

Assume that an information packet is generated at time 0 at location C that is 4 km upstream 

of the incident occurrence location. The numerical solution method proposed in Section 5 is used 

to characterize the IFPW under heterogeneous conditions. The impact of the traffic flow 

dynamics on the success rate of a single-hop communication is captured by the kernel function. 

The information exclusion rate varies with the traffic density according to Table 2.2.  

Figure 2.7(b) illustrates the formation and evolution of the backward and forward IFPWs. 

After the sender vehicle generates the information packet, the backward IFPW takes some time 

to stabilize and propagate at the asymptotic speed. The front of the backward IFPW shows a 

lower density of informed vehicles. By contrast, the forward IFPW is significantly affected by 

the variation of traffic density. This effect is illustrated by the five stages of the forward IFPW, 

presented as five arrows with labels a, b, c, d, and e in Figure 2.7(b). First, the IFPW reaches the 

asymptotic speed and propagates forward, i.e., stage (a). When the forward IFPW enters the 

traffic jam area, i.e., stage (b), its speed decreases dramatically as the information exclusion rate 

increases due to the congestion in the information flow regime that is caused by the increased 

equipped-vehicle density. When the forward IFPW passes through the traffic jam area and 

reaches the saturation flow rate area, i.e., stage (c), its speed increases due to the reduced 

communication interference and a smaller information exclusion rate. After stage (c), the 

forward IFPW enters the free flow traffic area, i.e., stage (d), where the forward IFPW 

propagates at maximum speed. Later, when the information packet propagates further to catch 

the traffic flow that is not impacted by the traffic incident, i.e., stage (e), the speed of the forward 

IFPW reduces to the same value as that in stage (a).  
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(a) Contour of traffic density 

 

(b) Contour of informed vehicle density under the heterogeneous conditions 

Figure 2.7 Contour of traffic density and Contour of informed vehicle density under the 

heterogeneous conditions 

2.7 Concluding remarks 

This study explores the spatiotemporal information flow propagation under information 

congestion effects, by introducing a two-layer macroscopic model and an information packet 

relay control strategy. An IDE system is established in the upper layer to model the information 

dissemination in the information flow regime. The LWR model is used in the lower layer to 

capture the impacts of traffic flow dynamics on information propagation. Under homogeneous 

conditions, this study derives the necessary conditions for existence of the IFPW. These 

necessary conditions can be used to quantify the minimum information broadcasting time 

duration in a complex V2V-based traffic system to ensure the propagation of a specific 

information packet, especially under congested communication environments. The asymptotic 

IFPW speed and asymptotic density of informed vehicles can be obtained analytically by solving 

one-dimensional nonlinear equations derived from the two-layer model. The analytical solutions 
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help to circumvent computationally-expensive numerical methods to estimate the performance of 

information propagation in terms of timeliness and informed vehicle density for V2V-based 

applications. The numerical experiments show that the IFPW speed decreases as the information 

packet exclusion rate increases, to prevent packet collisions under information congestion 

conditions. A large information packet exclusion rate can cause information to be propagated 

only locally. This implies that equipped vehicles far away from the sender vehicle will not be 

informed. These findings provide valuable insights for the design of effective V2V 

communication-based applications, especially for trading off the information dissemination 

duration for each information packet against the number of information packets to disseminate, 

under dense V2V communication environments. Hence, this study can be leveraged to develop a 

new generation of information dissemination strategies focused on enabling specific V2V 

information to reach specific locations at specific points in time. 

This work can be extended in several directions. First, the assumption of uniform information 

exclusion rate can be relaxed as it may dynamically change in time and space. Second, this study 

assumes all information packets have equal priority to propagate. In real-world applications, 

different information packets may have different priorities. For example, safety-related 

information is more urgent than non-safety related information, and should be given a higher 

priority. Hence, the propagation of information packets with different priorities in space and time 

can be explored. Third, the IFPW speed and asymptotic density of informed vehicles under the 

proposed information relay control strategy can be compared with those under other strategies 

(for example, counter-based, distance-based, and stochastic strategies). Fourth, in addition to 

communication constraints such as communication range, communication frequency, channel 

capacity, signal interference, etc., the environment (e.g., weather) and vehicle size (e.g., truck) 

can also impact V2V communication (Talebpour and Mahmassani, 2016). While these factors 

are not considered in this study, they can be captured in a straightforward manner by the 

communication kernel.    
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 MULTICLASS INFORMATION FLOW PROPAGATION 

CONTROL UNDER VEHICLE-TO-VEHICLE COMMUNICATION 

ENVIRONMENTS 

3.1 Introduction 

The rapid development of vehicle-to-vehicle (V2V) communication technologies has motivated 

their use for a wide spectrum of innovative solutions to enhance transportation safety, efficiency, 

and sustainability. A V2V communications-based traffic system can potentially be leveraged to 

enhance traffic safety by more effectively detecting emerging conflict situations, improve traffic 

efficiency through information-based and other control strategies, and reduce energy 

consumption and emissions. For example, this entails the communication of a vehicle’s status to 

other vehicles and/or the surrounding infrastructure, and thereby the exchange of information on 

travel/traffic conditions. Hence, vehicles equipped with such a capability for two-way 

communications can potentially gain spatio-temporal knowledge on travel-related conditions, 

which can be used to develop vehicle-level travel strategies and/or network-level traffic 

management strategies. Further, V2V-based traffic systems enable decentralized information 

generation and dissemination. Vehicles in a V2V-based system can generate information and 

relay it to other vehicles through multi-hop processes. Unlike centralized information systems, a 

V2V-based traffic system can potentially provide timely information in emergency/disaster 

situations by avoiding delays associated with data collection and communication with control 

center. 

Understanding the characteristics of spatiotemporal information flow propagation in a V2V-

based traffic system is important as most applications require timely and reliable information 

delivery. However, modeling information flow propagation in space and time is challenging. 

Factors from both traffic flow domain and communications domain significantly affect the 

reliability of V2V communication and information propagation. The traffic flow dynamics affect 

occurrence of V2V communications. Communication constraints, such as communication 

frequency, channel capacity, and communication power, significantly affect the reliability of 

V2V communications.  

In the literature, various models have been proposed to characterize information flow 

propagation in different traffic flow and communication environments. These models can be 
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classified into microscopic and macroscopic. Microscopic models address information flow 

propagation by considering the spatial distribution of traffic flow. They factor the effects of the 

random positions of equipped vehicles in the traffic stream on information flow propagation. 

Simulation and analytical models have been developed to analyze the V2V propagation 

performances related to connectivity of inter-vehicle communication (Ukkusuri and Du, 2008) 

and the expected information propagation distance (Wang, 2007; Wang et al., 2010; Wang et al., 

2011; Wang et al., 2012; Yin et al., 2013; Wang et al., 2015; Du and Dong, 2015; Du et al., 

2016), under different traffic flow scenarios. However, these models oversimplify the effects of 

communication constraints by assuming that information can be retransmitted instantaneously. 

This assumption neglects the time latency of information flow propagation. Thereby, these 

models only characterize information dissemination in the space domain, but not in the time 

domain.  

To address the aforementioned gaps, some recent studies have sought to characterize 

information flow propagation at a macroscopic level (Kim et al. 2017; Wang et al. 2018; Kim et 

al., 2018) by introducing the concept of information flow propagation wave (IFPW). They use 

the notion that when information spreads through multi-hop broadcasting communications, from 

a macroscopic perspective, there is a moving boundary that separates traffic flow into informed 

and uninformed regions, and moves towards the uninformed region like a wave. By leveraging 

the analogy of the IFPW with disease spread in epidemiology, analytical models are developed 

to characterize the IFPW. These macroscopic models relax the assumption of instantaneous 

information propagation and can describe the spatiotemporal spread of information in the traffic 

flow. In addition, these models capture the effects of V2V communication constraints 

realistically using a communication kernel. Further, interactions between V2V communications 

and traffic flow dynamics are captured by incorporating the effects of congested traffic, such as 

the backward propagating traffic wave, on information flow propagation. 

The models discussed heretofore are descriptive, and seek to describe the spatiotemporal 

propagation of information to address effects of traffic flow dynamics and/or communication 

constraints. However, they lack a capability to control the propagation of information flow, 

which is necessary for traffic management applications in a V2V-based traffic system. For 

example, real-time traffic/routing information can help travelers choose better routes to reduce 

travel time. However, congestion can worsen if all travelers receive the same information and 
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choose the same (or similar) routes in an uncoordinated V2V-based system or receive and choose 

the same routing suggestions. Hence, the propagation of information flow needs to be controlled 

so that the spatiotemporal access to information varies across vehicles in such a way as to 

improve system performance. Similarly, under emergency evacuation, the propagation speed of 

evacuation information needs to be controlled so that it can reach different areas in the affected 

region with different impact levels at the desired times to reduce the severe traffic congestion or 

gridlock that would otherwise occur due to the simultaneous evacuation of all evacuees. 

Another common characteristic of previous studies is that they only consider the propagation 

of a specific information packet of interest or one type of information. In practical applications, 

information can belong to different classes (e.g., safety information, routing information, work 

zone information). Hence, a V2V-based system may need to propagate information from 

different information classes simultaneously. However, the application needs of information 

from different information classes can be different, in terms of three performance measures: (i) 

information spread, defined here as the proportion of vehicles informed with a specific 

information packet, (ii) bounds on time delays for this information to reach specific locations, 

and (iii) spatial coverage, defined here as the distance this information can be propagated from 

its point of origin. For example, urgent traffic accident information (e.g., road is blocked by an 

accident) needs to be delivered to all vehicles in the impacted area with low latency. By 

comparison, routing information needs to reach only a certain proportion of vehicles to avoid 

possible congestion arising from the provision of information on the suggested route. Work zone 

information or sudden hard brake information may need to be propagated in a small area in the 

vicinity of where they are generated. 

This study designs a queuing-based modeling approach to control the propagation of 

information of different information classes to meet application needs related to information 

spread, time delay bounds, and spatial coverage. An information class is defined as a type of 

information which has similar application needs in terms of the three propagation performance 

measures. To enable control for multiclass information flow propagation, this study assumes that 

the size of each information packet is the same and the channel capacity is shared equally with 

all equipped vehicles within communication range of that vehicle (Wang et al., 2018). Under this 

assumption, an equipped vehicle can send data containing multiple information packets during 

one transmission, whose number is determined by the size of one information packet, channel 
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capacity, communication frequency, and the number of equipped vehicles within communication 

range of that vehicle. This implies that an equipped vehicle can serve (send) multiple information 

packets simultaneously.  

To better characterize the information service (sending) process in our queuing-based 

approach, we denote a “virtual communication server” (hereafter, referred to as “communication 

server”) as the storage amount in the transmitted data that is equal to the size of an information 

packet. A communication server can serve at most one information packet at a time. The total 

number of communication servers is equal to the maximum number of information packets that 

an equipped vehicle can send simultaneously during one transmission, which is labeled the 

transmission capacity. We denote communication service time as the time duration an 

information packet is in the communication server. During the communication service time, the 

information packet will be repetitively sent by the equipped vehicle where the number of 

transmissions depends on the communication frequency which is the number of data 

transmissions per unit time enabled by the V2V device characteristics in the vehicle. We denote 

the mean communication service rate for a server as the inverse of the mean communication 

service time of all information packets served by that server.  

To enable control for multiclass information flow propagation, for the first time in the 

literature, a queuing strategy is developed for each V2V-equipped vehicle to propagate the 

information packets of different information classes that it receives or generates. We assume 

information packets in different information classes will form different queues. Thereby, when 

an information packet is received by an equipped vehicle, it will be forwarded to the queue for 

the information class it belongs to. After being in the queue, the information packet will enter a 

communication server for this information class to be disseminated. It will be deleted from the 

server after its assigned communication service time is reached. Based on this conceptual 

queuing strategy, information propagation control is enabled by assigning different number of 

communication servers and mean communication service rates to different information classes to 

send the information. It should be noted that the mean communication service rate for an 

information class determines the mean communication service time of each information packet 

in the information class, which impacts the number of transmissions of each information packet 

in this class. Due to existence of communication failure, an information packet cannot be 

guaranteed to be received by other vehicles if it is just sent once by an equipped vehicle. The 
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queuing strategy allows an equipped vehicle to control the number of transmissions of an 

information packet by leveraging the mean communication service rate so as to control the 

number of vehicles within communication range of this vehicle that can receive the information 

packet. Thereby, while the mean communication service rate does not impact the success rate of 

one V2V communication, it significantly impacts the total success rate of V2V communications 

by allowing an equipped vehicle to transmit information multiple times. Also, the number of 

communication servers assigned to an information class significantly impacts the mean waiting 

time in the queue for information packets in that class, which impacts the information flow 

propagation speed. Thereby, two control parameters, the number of assigned communication 

servers and mean communication service rate, can be determined for each information class to 

achieve the desired propagation performance related to information spread, time delay bounds, 

and spatial coverage.  

This study conceptually extends the macroscopic models developed by Kim et al. (2017) and 

Wang et al. (2018), and proposes a new two-layer analytical modeling approach to characterize 

the IFPW under the proposed queuing strategy. An integro-differential equation (IDE) model is 

derived to characterize the spatiotemporal information propagation flow under the designed 

queuing strategy in the upper layer. The lower layer adopts the Lighthill-Whitham-Richards 

(LWR) model (Lighthill and Whitham, 1955; Richards, 1956) to characterize the traffic flow 

dynamics. The two-layer model enables investigation of the following three questions. First, 

what is the density of equipped vehicles that can receive a specific information packet under 

given values of the two control parameters? This question seeks to provide insights on 

controlling information spread. Second, how do the two control parameters in the queuing 

system impact the propagation speeds of specific information packets of interest belonging to 

different information classes? Addressing this question is useful for controlling the time delay of 

information packets of different information classes in reaching desired locations. Third, what 

are the conditions that can ensure the specific information packet can form a wave to be 

propagated over the traffic stream, and how the two control parameters impact the propagation 

distance of an information packet? This question addresses the necessary conditions for the 

formation of an IFPW which is related to the spatial coverage of information. 

The contributions of this study are fourfold. First, a queuing strategy is developed for an 

equipped vehicle to propagate the received information. It enables control for multiclass 
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information flow propagation by determining the values of the two control parameters in the 

queuing strategy. A two-layer model is developed to characterize the spatiotemporal IFPW based 

on the designed queuing strategy. It factors the effects of both traffic flow dynamics and 

communication constraints on information flow propagation. Second, NS-3 simulation (Noori 

and Olyaei., 2013; Talebpour et al., 2016) is used to investigate the reliability of V2V 

communications in different traffic flow environments. The communication kernel is calibrated 

using the data from the NS-3 simulations performed, which enables capturing the effects of 

communication constraints (e.g., communication frequency, channel capacity, communication 

power) on information flow propagation more realistically. Third, the necessary conditions for 

the existence of IFPW and the analytical solution for the asymptotic density of informed vehicle 

are derived under homogenous conditions (i.e., unidirectional flow with uniform traffic flow 

density). To the best of our knowledge, the solution of the IDE system analogy to the proposed 

model has not been studied before even in the epidemiology literature. These analytical 

expositions quantify the impacts of the two control parameters on the density of informed 

vehicles and the spatial coverage. Fourth, numerical solutions are designed to solve the two-layer 

model under homogeneous as well as heterogeneous conditions. They aid in quantifying the 

relationship between the two control parameters and the asymptotic IFPW speed under 

homogeneous traffic conditions. Further, they provide valuable insights for controlling multiclass 

information flow propagation to achieve the desired performance in terms of information spread, 

the time delay to reach the target locations, and spatial coverage under heterogeneous conditions.  

The remainder of the paper is organized as follows. The next section discusses the designed 

queuing strategy and the framework of the proposed model to characterize the IFPW. Section 3 

formulates a two-layer model to characterize the IFPW in space and time under the proposed 

queuing strategy. In Section 4, the analytically solution for the asymptotic density of informed 

vehicles and the condition for existence of IFPW under homogeneous traffic conditions are 

discussed. In addition, the numerical solution method is presented to solve the proposed two-

layer model for heterogeneous conditions. Results from numerical experiments are discussed in 

Section 5, to demonstrate the effectiveness of the proposed model to control the propagation 

performance of different information classes. Section 6 provides some concluding comments.  



64 

 

 

 

3.2 Preliminaries  

Consider a highway with a traffic flow stream consisting of V2V-equipped and V2V-

unequipped vehicles. Information is generated and broadcasted to other equipped vehicles 

through multi-hop V2V communications. Each equipped vehicle receives information from other 

equipped vehicles and broadcasts such information and the information it generates to all other 

equipped vehicles within communication range. Let information packets relayed in the traffic 

flow be divided into 𝑠 classes, each of which has different requirements in terms of information 

spread, time delay bounds and spatial coverage. Let ℒ = {1,2,⋯ 𝑠}  denotes the set of 

information classes. When an equipped vehicle receives multiple packets, it filters the 

information packets to identify those that have not been received before. It then moves such 

unduplicated information packets (labeled effective information packets) into the queues for the 

corresponding information classes to wait to be propagated according to the information class 

they belong to. The effective information arrival rate is affected by unsuccessful V2V 

communication and removal of duplicated information packets. Because such events are random 

and independent, following Wang et al. (2018) and Zhang et al. (2016), this study assumes that 

the arrival of effective information packets to different information classes follows a Poisson 

process. Let 𝜆1, 𝜆2⋯ , 𝜆𝑠  be the arrival rate of information packets for information classes 

1,2⋯ , 𝑠, respectively. 

Suppose that the size of all information packets disseminated over the traffic flow is identical, 

and the channel capacity is shared equally with all equipped vehicles within communication 

range. Let 𝑁  denote the transmission capacity, which describes the number of information 

packets that can be delivered by an equipped vehicle through one V2V communication. In this 

study, we assume the transmission capacity for all equipped vehicles to be the same. It should be 

noted that 𝑁 has an upper bound determined by the size of an information packet, the density of 

the traffic flow, the communication frequency and the channel capacity (Wang et al., 2018).  

To control propagation performance for each information class, a queuing strategy for 

relaying information of different information classes is designed in this study, as shown in Figure 

3.1. Note that an equipped vehicle can transmit 𝑁  information packets during one 

communication. To better illustrate the queuing strategy, we assume an equipped vehicle has 𝑁 

communication servers each of which can serve one information packet. A communication 

server represents the storage amount in the transmitted data that is equal to the size of one 
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information packet (see Figure 3.1). The number of the communication servers assigned to a 

particular information class determines the maximum number of information packets in this 

information class that can be transmitted simultaneously by an equipped vehicle. Let 𝑛𝑗 be the 

number of communication servers assigned to information class 𝑗,  𝑗 ∈ ℒ. To control multiclass 

information flow propagation, information packets in different classes will form different queues 

(see Figure 3.1). If one communication server for information class 𝑗  is empty, the first 

information packet in the queue for information class 𝑗 will enter into the server to be sent out. 

Let 𝑢𝑗  be the mean communication service rate (packets/second) for information packets in 

information class 𝑗. The inverse of 𝑢𝑗 (i.e., 1 𝑢𝑗⁄ ) is the mean communication service time (i.e., 

transmission duration) for an information packet in information class 𝑗. The information packet 

in the communication server will be transmitted repetitively until the communication service 

time is reached. Thereby, the communication service time significantly impact the number of 

vehicles that can receive the specific information of interest of information class 𝑗. 

 

Figure 3.1 Queuing strategy for relaying information of different classes 

To facilitate modeling, we assume the communication service time of each information 

packet in an arbitrary class 𝑗,  𝑗 ∈ ℒ follows an exponential distribution with mean 1 𝑢𝑗⁄ . The 

communication service time can be generated randomly in advance according to the exponential 

distribution with mean 1 𝑢𝑗⁄ . An information packet will be removed from the system if its 

assigned communication service time is reached. Note that for an arbitrary information class 𝑗, 

the arrival of information packets follows a Poisson process with parameter 𝜆𝑗  and the 

corresponding communication service time follows an exponential distribution with mean 1 𝑢𝑗⁄ . 
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Thereby, propagation of information packets in information class 𝑗 follows a 𝑀/𝑀/𝑛𝑗  queuing 

process.  

Note that the mean communication service rate for information packets in an arbitrary 

information class 𝑗 (i.e., 𝑢𝑗) impacts the number of vehicles that can receive information packets 

from this information class. Further, according to the queueing theory,  the mean communication 

service rate (𝑢𝑗) and the number of assigned communication servers (i.e., 𝑛𝑗) for information 

class 𝑗 determine the mean waiting time of an information packet in the queue. Thereby, the 

propagation performance of an information packet of information class 𝑗 in terms of information 

spread, time delay bounds, and spatial coverage can be controlled by assigning various values to 

𝑛𝑗  and 𝑢𝑗 . It should be noted that the propagation performance of information of different 

information classes is constrained by the total number of communication servers in an equipped 

vehicle.  

Under the designed queuing strategy, equipped vehicles are divided into four vehicle classes, 

the susceptible vehicles (labeled 𝑆 ), the information-holding vehicles (labeled 𝐻 ), the 

information-relay vehicles (labeled 𝑅 ) and the information-excluded vehicles (labeled 𝐸 ). 

Susceptible vehicles are equipped vehicles that have not received the specific information packet 

of interest. They become information-holding vehicles if they receive that information packet 

and are holding it in the queue for transmittal. The information-holding vehicles become 

information-relaying vehicles if that information packet enters a communication server to be 

disseminated to the other vehicles. Once the communication service time is reached for that 

information packet, it will be removed from the vehicle. The information-relying vehicle then 

becomes an information-excluded vehicle. It is worth noting that the susceptible vehicles can 

become information-relaying vehicles directly if the specific information packet of interest enters 

into a communication server without waiting in a queue; that is, when this information packet is 

received/generated, there is no queue for the corresponding information class.  

Similar to Kim et al. (2017) and Wang et al. (2018), the IFPW consists of two waves: the 

information dissemination wave in the information flow domain and the traffic flow propagation 

wave in the traffic flow domain. A two-layer model is developed in this study to model the IFPW. 

The modeling framework is shown in Figure 3.2. In the upper-layer, integro-differential 

equations (IDEs) will be derived to characterize the information dissemination waves. This layer 

describes how vehicle densities by vehicle class will change instantaneously through V2V 
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communications under the designed queuing strategy. The lower layer describes the traffic flow 

dynamics. In this study, the LWR model will be used to characterize traffic flow dynamics. 

Based on the two-layer model, the asymptotic IFPW speed, the asymptotic density of informed 

vehicles and the conditions for existence of IFPW will be investigated in this study. 

 

Figure 3.2 Modeling framework of IFPW under the designed queuing strategy 

3.3 Modeling the multiclass information flow propagation wave  

3.3.1 Modeling the information flow dissemination wave in the upper layer 

Assume the specific information packet of interest belongs to an arbitrary information class 

𝑗,  𝑗 ∈ ℒ. This section seeks to model the information dissemination wave in the upper layer 

under the designed queuing strategy. It describes the instantaneous change in the density of 

equipped vehicles by vehicle class (i.e., 𝑆, 𝐻, 𝑅, 𝐸 for information packets in class 𝑗) due to V2V 

communications. The impacts of communication constraints (communication power, 

communication frequency, signal interference, etc.) on the success of V2V communications is 

explicitly factored in this model. 

Let 𝑡 be the current time. Divide the time horizon of interest uniformly into consecutive time 

windows of length 𝑤 each. Denote 𝑆𝑗(𝑥, 𝑡) and 𝐼𝑗(𝑥, 𝑡) as the densities of the susceptible vehicles 

and the vehicles informed with the specific information packet of interest in information class 𝑗, 

respectively, at time 𝑡 and location 𝑥. Note that the informed vehicles consist of vehicles from 
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classes 𝐻,𝑅 and 𝐸  which have received this information packet. Let ∆𝑆𝑗(𝑥, 𝑡) = 𝑆𝑗(𝑥, 𝑡) −

𝑆𝑗(𝑥, 𝑡 − 𝑤) be the density of vehicles informed with the specific information packet of interest 

during time [𝑡 − 𝑤, 𝑡].  Denote ∆𝐼𝑗(𝑦, 𝑡 − 𝑤) = 𝐼𝑗(𝑥, 𝑡) − 𝐼𝑗(𝑥, 𝑡 − 𝑤)  as the density change of 

informed vehicles at location 𝑥  during time interval [𝑡 − 𝑤, 𝑡] . Note ∆𝐼𝑗(𝑦, 𝑡 − 𝑤) =

−∆𝑆𝑗(𝑥, 𝑡 − 𝑤) as an equipped vehicle is either susceptible or informed. Let the current time be 

𝑡 = 𝑚 ∙ 𝑤; 𝑚 is a positive integer. Conceptually adapting from epidemiology and modifying, 

∆𝑆𝑗(𝑥, 𝑡) is formulated as: 

∆𝑆𝑗(𝑥, 𝑡) = −𝑆𝑗(𝑥, 𝑡 − 𝑤) ∙ ∫ 𝐾(𝑥, 𝑦) ∙ 𝑤𝛽 ∙ 𝑅𝑗(𝑦, 𝑡)𝑑𝑦
Ω

 (3.1) 

where Ω denotes the domain of space, 𝛽  is communication frequency, and 𝑤𝛽  denotes the 

expected number of transmissions occurring in time length 𝑤. Also, 𝑅𝑗(𝑦, 𝑡) is the density of 

vehicles relaying the specific information packet of interest in information class 𝑗 at time 𝑡 and 

location 𝑦. Function 𝐾(𝑥, 𝑦) is a communication kernel which represents the probability that a 

susceptible vehicle at location 𝑦 can successfully receive the specific information packet sent 

from a vehicle at location 𝑥  under a given communication environment (communication 

frequency, channel capacity, communication power, etc.) and traffic flow environment (traffic 

density, etc.). It characterizes the reliability of V2V communication realistically by capturing the 

impact of factors in both the communication and traffic flow domains. In the study experiments 

in Section 5, function 𝐾(𝑥, 𝑦) is calibrated using NS-3 simulation. ∫ 𝐾(𝑥, 𝑦) ∙ 𝑤𝛽 ∙ 𝑅𝑗(𝑦, 𝑡)𝑑𝑦Ω
 

denotes the probability that a susceptible vehicle at location 𝑥 receives the specific information 

packet of information class 𝑗 sent by an informed vehicle over the space domain Ω. 

Suppose the mean arrival rate of information packets in information class 𝑗,  𝑗 ∈ ℒ  is 𝜆𝑗 

packets/second. Let 𝑛𝑗  and 𝑢𝑗  be the number of communication servers and the mean 

communication service rate (packets/second) assigned to information class 𝑗, respectively. 𝑛𝑗 and 

𝑢𝑗 are controllable parameters which will be leveraged to control the propagation of the specific 

information packet of interest of information class 𝑗 . To ensure the information packets in 

information class 𝑗 can be propagated by an equipped vehicle, 𝑛𝑗 and 𝑢𝑗 are selected such that 

𝜆𝑗 < 𝑛𝑗𝑢𝑗, ∀𝑗 ∈ ℒ.  

As discussed earlier, under the designed queuing strategy, the arrival and service process of 
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information packets in information class 𝑗 follow 𝑀/𝑀/𝑛𝑗   queue process. Thereby, at current 

time 𝑡, the vehicles that are relaying the specific information packet of interest of information 

class 𝑗 consist of two groups: (1) the vehicles relaying the specific information packet without 

the information-holding process (i.e., queuing process). This implies when these vehicles receive 

the specific information packet, there is no queue for information class 𝑗  in these vehicles. 

Thereby, the specific information packet of interest can enter into the communication server to 

be disseminated out directly; and (2) the vehicles relaying the specific information packet with 

an information-holding process (queue process), i.e., the specific information packet of interest 

experiences a queuing process before entering into the communication server.  

Let 𝑇𝑗
𝑞
 be the waiting time for the specific information packet of interest of information class 

𝑗, and 𝑊𝑗
𝑞
(𝑣𝑗) = Pr {𝑇𝑗

𝑞
≤ 𝑣} be the probability that the waiting time of this information packet 

in the queue is less than 𝑣. According to Gross et al. (2008, page 71), we have  

𝑊𝑗
𝑞(𝑣) = Pr{𝑇𝑗

𝑞
≤ 𝑣} = 1 −

𝑟𝑗
𝑛𝑗𝑃𝑗

0

𝑛𝑗! (1 − 𝜌𝑗)
 𝑒−(𝑛𝑗𝑢𝑗−𝜆𝑗)𝑣𝑗 (3.2) 

where 𝑟𝑗 = 𝜆𝑗 𝑢𝑗⁄ ; 𝜌𝑗 = 𝜆𝑗 (𝑛𝑗𝑢𝑗)⁄ ; and 𝑃𝑗
0 is the probability that there is no information packet 

of information class 𝑗 in the system, formulated as  

𝑃𝑗
0 = (

𝑟𝑗
𝑛𝑗

𝑛𝑗! (1 − 𝜌𝑗)
+ ∑

𝑟𝑗
𝑙

𝑙!

𝑛𝑗−1

𝑙=0

)

−1

  (3.3) 

According to Eq. (3.2),  

𝑊𝑗
𝑞(0) = Pr{𝑇𝑗

𝑞
≤ 0} = Pr{𝑇𝑗

𝑞
= 0} = 1 −

𝑟𝑗
𝑛𝑗𝑃𝑗

0

𝑛𝑗! (1 − 𝜌𝑗)
  (3.4) 

where 𝑊𝑗
0 is the probability that the specific information packet is received by a vehicle at a time 

instant when there is no queue for information class 𝑗. Let 

𝜉𝑗 =
𝑟𝑗
𝑛𝑗𝑃0

𝑛𝑗! (1 − 𝜌𝑗)
  (3.5) 

Then  

𝑊𝑗
𝑞(0) = 1 − 𝜉𝑗   (3.6) 

From Eq. (3.2), we have  

Pr {𝑇𝑗
𝑞
> 𝑣} = 1 −𝑊𝑗

𝑞(𝑣) =
𝑟𝑗
𝑛𝑗𝑃0

𝑛𝑗! (1 − 𝜌𝑗)
 𝑒−(𝑛𝑗𝑢𝑗−𝜆𝑗)𝑣𝑗 (3.7) 

Let 𝑇𝑗
𝑠 be the service time of the specific information packet of interest in the communication 
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server, and Pr {𝑇𝑗
𝑞
≤ 휃} be the probability that the communication service time is less than 휃. 

Recall the communication service time follows exponential distribution with mean 1 𝑢𝑗⁄ , then  

Pr{𝑇𝑗
𝑞
≤ 휃} = 1 − 𝑒−𝑢𝑗𝜃 (3.8) 

This implies  

Pr{𝑇𝑗
𝑞
> 휃} =  𝑒−𝑢𝑗𝜃 (3.9) 

𝑅𝑗(𝑦, 𝑡) can then be formulated as  

𝑅𝑗(𝑦, 𝑡) = 𝐴𝑗(𝑦, 𝑡) + 𝐵𝑗(𝑦, 𝑡)  (3.10) 

where 

𝐴𝑗(𝑦, 𝑡) = 𝑊𝑗
𝑞
(0) ∙∑∆𝐼𝑗(𝑦, 𝑡 − 𝑖𝑤) ∙ Pr{𝑇𝑗

𝑠 > 𝑖𝑤}

𝑡/𝑤

𝑖=1

 

= (1 − 𝜉𝑗) ∙∑∆𝐼𝑗(𝑦, 𝑡 − 𝑖𝑤) ∙ 𝑒
−𝑢𝑗∙𝑖𝑤

𝑡/𝑤

𝑖=1

 

 

 

 

 

𝐵𝑗(𝑦, 𝑡) =∑∫ ∆𝐼𝑗(𝑦, 𝑡 − 𝑖𝑤) ∙
𝜕(Pr {𝑇𝑗

𝑞
> 𝑣})

𝜕𝑣
∙ Pr{𝑇𝑗

𝑠 > 𝑖𝑤 − 𝑣}
𝑖𝑤

0

𝑑𝑣

𝑡/𝑤

𝑖=1

 

=∑∫ ∆𝐼𝑗(𝑦, 𝑡 − 𝑖𝑤) ∙ (𝑛𝑗𝑢𝑗 − 𝜆𝑗) ∙ 𝜉𝑗 ∙ 𝑒
−(𝑛𝑗𝑢𝑗−𝜆𝑗)𝑣 ∙ 𝑒−𝑢𝑗∙(𝑖𝑤−𝑣)

𝑖𝑤

0

𝑑𝑣

𝑡/𝑤

𝑖=1

 

 

where 𝐴𝑗(𝑦, 𝑡) is the accumulated density of vehicles relaying the specific information packet of 

interest of information class 𝑗 without queuing process at location 𝑦  and current time 𝑡 . 

∆𝐼𝑗(𝑦, 𝑡 − 𝑖𝑤) ∙ Pr{𝑇𝑗
𝑠 > 𝑖𝑤} is the density of vehicles informed at time 𝑡 − 𝑖𝑤 and relaying the 

specific information packet at location 𝑦 and current time 𝑡. 𝐵𝑗(𝑦, 𝑡) is the accumulated density 

of vehicles relaying the specific information packet after queuing process at location 𝑦  and 

current time 𝑡 . The term ∫ ∆𝐼𝑗(𝑦, 𝑡 − 𝑖𝑤) ∙
𝜕(Pr {𝑇𝑗

𝑞
>𝑣})

𝜕𝑣
∙ Pr{𝑇𝑗

𝑠 > 𝑖𝑤 − 𝑣𝑗}
𝑖𝑤

0
𝑑𝑣  denotes the 

density of vehicles at location 𝑦 that become informed 𝑖𝑤 time units ago and are propagating the 

specific information at current time 𝑡 after experiencing the queuing process.  

To derive the continuous model, let 𝑤 → 0, and divide both side of Eq. (3.1) by 𝑤, then we have  

lim
𝑤→0

∆𝑆𝑗(𝑥, 𝑡)

𝑤
=
∂𝑆𝑗(𝑥, 𝑡)

∂𝑡
 

= lim
𝑤→0

− 𝛽𝑆𝑗(𝑥, 𝑡 − 𝑤) ∙ ∫ 𝐾(𝑥, 𝑦) ∙ 𝑤
(𝐴𝑗(𝑦, 𝑡) + 𝐵𝑗(𝑦, 𝑡))

𝑤
𝑑𝑦

Ω

 

 

 

(3.11) 

Note   
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∆𝐼𝑗(𝑦, 𝑡 − 𝑖𝑤) = 𝐼𝑗(𝑦, 𝑡 − (𝑖 − 1)𝑤) − 𝐼𝑗(𝑦, 𝑡 − 𝑖𝑤) ≈
∂𝐼𝑗(𝑦, 𝑡 − 𝑖𝑤)

∂𝑡
𝑤. (3.12) 

Then  

lim
𝑤→0

− 𝛽𝑆𝑗(𝑥, 𝑡 − 𝑤) ∙ ∫ 𝐾(𝑥, 𝑦) ∙ 𝑤 ∙ 𝐴𝑗(𝑦, 𝑡)𝑑𝑦
Ω

 

= lim
𝑤→0

− 𝛽(1 − ξ
𝑗
)𝑆𝑗(𝑥, 𝑡 − 𝑤) ∙∑∫

∂𝐼𝑗(𝑦, 𝑡 − 𝑖𝑤)

∂𝑡
∙ 𝐾(𝑥, 𝑦) ∙ 𝑤 ∙ 𝑒−𝑢𝑗∙𝑖𝑤𝑑𝑦.

𝛀

𝑡/𝑤

𝑖=1

 

 

 

(3.13a) 

and  

lim
𝑤→0

− 𝛽𝑆𝑗(𝑥, 𝑡 − 𝑤) ∙ ∫ 𝐾(𝑥, 𝑦) ∙ 𝑤 ∙ 𝐵𝑗(𝑦, 𝑡)𝑑𝑦
Ω

 

= lim
𝑤→0

− 𝛽𝑆𝑗(𝑥, 𝑡 − 𝑤) ∙ ∫ 𝐾(𝑥, 𝑦) ∙ 𝑓𝑗(𝑦, 𝑖𝑤)𝑑𝑦
Ω

 

 

 

 

(3.13b) 

where  

𝑓𝑗(𝑦, 𝑖𝑤) =∑∫
∂𝐼𝑗(𝑦, 𝑡 − 𝑖𝑤)

∂𝑡
𝑤 ∙ (𝑛𝑗𝑢𝑗 − 𝜆𝑗)𝜉𝑗 ∙ 𝑒

−(𝑛𝑗𝑢𝑗−𝜆𝑗)𝑣 ∙ 𝑒−𝑢𝑗∙(𝑖𝑤−𝑣)
𝑖𝑤

0

𝑑𝑣

𝑡/𝑤

𝑖=1

 (3.13c) 

Note the terms (∂𝐼𝑗(𝑦, 𝑡 − 𝜏) ∂𝑡⁄ )𝐾(𝑥, 𝑦)𝑒−𝜆𝜏  and  ∫
∂𝐼(𝑦,𝑡−𝜏)

∂𝑡
∙ (𝑛𝑗𝑢𝑗 − 𝜆𝑗) ∙ 𝜉𝑗 ∙ 𝑒

−(𝑛𝑗𝑢𝑗−𝜆𝑗)𝑣 ∙
𝜏

0

𝑒−𝑢𝑗∙(𝜏−𝑣)𝑑𝑣  is continuous and bounded in the time domain. Both of them are Riemann 

integrable. Thereby, Eq. (3.13a) and Eq. (3.13b) can be written, respectively, as 

lim
𝑤→0

− 𝛽(1 − 𝜉𝑗)𝑆𝑗(𝑥, 𝑡 − 𝑤) ∙∑∫
∂𝐼𝑗(𝑦, 𝑡 − 𝑖𝑤)

∂𝑡
∙ 𝐾(𝑥, 𝑦) ∙ 𝑤 ∙ 𝑒−𝑢𝑗∙𝑖𝑤𝑑𝑦

𝛀

𝑡/𝑤

𝑖=1

 

= −𝛽 ∙ (1 − 𝜉𝑗) ∙ 𝑆𝑗(𝑥, 𝑡) ∙ ∫ ∫
∂𝐼𝑗(𝑦, 𝑡 − 𝜏)

∂𝑡
∙ 𝐾(𝑥, 𝑦) ∙ 𝑒−𝑢𝑗𝜏𝑑𝜏 ∙ 𝑑𝑦

𝑡

0𝛺

 

 

 

(3.14a) 

lim
𝑤→0

− 𝛽𝑆𝑗(𝑥, 𝑡 − 𝑤) ∙ ∫ 𝐾(𝑥, 𝑦) ∙ 𝑓𝑗(𝑦, 𝑖𝑤)𝑑𝑦
Ω

 

= 𝛽𝑆𝑗(𝑥, 𝑡) ∙ ∫ ∫ ∫
∂𝐼𝑗(𝑦, 𝑡 − 𝜏)

∂𝑡

𝜏

0

𝑡

0

𝐾(𝑥, 𝑦)(𝑛𝑗𝑢𝑗 − 𝜆𝑗)𝜉𝑗 ∙ 𝑒
−(𝑛𝑗𝑢𝑗−𝜆𝑗)𝑣𝑒−𝑢𝑗∙(𝜏−𝑣)𝑑𝑣 ∙ 𝑑𝜏 ∙ 𝑑𝑦

Ω

 

 

 

(3.14b) 

Note ∂𝐼𝑗(𝑥, 𝑡 − 𝜏) ∂𝑡⁄ = −∂𝑆𝑗(𝑥, 𝑡 − 𝜏) ∂𝑡⁄ , submitting Eq. (3.14) into Eq. (3.11), we have  

∂𝑆𝑗(𝑥, 𝑡)

∂𝑡
= 𝛽 ∙ (1 − 𝜉𝑗) ∙ 𝑆𝑗(𝑥, 𝑡) ∙ ∫ ∫

∂𝑆𝑗(𝑦, 𝑡 − 𝜏)

∂𝑡
∙ 𝐾(𝑥, 𝑦) ∙ 𝑒−𝑢𝑗𝜏𝑑𝜏𝑑𝑦

𝑡

0𝛺

+ 

𝛽𝑆𝑗(𝑥, 𝑡) ∙ ∫ ∫ ∫
∂𝐼𝑗(𝑦, 𝑡 − 𝜏)

∂𝑡

𝜏

0

𝑡

0

𝐾(𝑥, 𝑦)(𝑛𝑗𝑢𝑗 − 𝜆𝑗)𝜉𝑗 ∙ 𝑒
−(𝑛𝑗𝑢𝑗−𝜆𝑗)𝑣𝑒−𝑢𝑗∙(𝜏−𝑣)𝑑𝑣 ∙ 𝑑𝜏 ∙ 𝑑𝑦

Ω

 

 

 

(3.15) 

According to Eq. (3.10) and Eq. (3.12), in continuous space, the density of information-relaying 

vehicles can be written as 
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𝑅𝑗(𝑦, 𝑡) = −(1 − 𝜉𝑗)∫
∂𝑆𝑗(𝑦, 𝑡 − 𝜏)

∂𝑡
∙ 𝑒−𝑢𝑗𝜏𝑑𝜏

𝑡

0

− 

∫ ∫
∂𝑆𝑗(𝑦, 𝑡 − 𝜏)

∂𝑡

𝜏

0

∙ (𝑛𝑗𝑢𝑗 − 𝜆𝑗)𝜉𝑗 ∙ 𝑒
−(𝑛𝑗𝑢𝑗−𝜆𝑗)𝑣 ∙ 𝑒−𝑢𝑗∙(𝜏−𝑣)𝑑𝑣 ∙ 𝑑𝜏

𝑡

0

 

(3.16) 

The terms −(1 − 𝜉𝑗) ∫
∂𝑆𝑗(𝑦,𝑡−𝜏)

∂𝑡
∙ 𝑒−𝑢𝑗𝜏𝑑𝜏𝑑𝑦

𝑡

0
 and −∫ ∫

∂𝑆𝑗(𝑦,𝑡−𝜏)

∂𝑡

𝜏

0
∙ (𝑛𝑗𝑢𝑗 − 𝜆𝑗)𝜉𝑗 ∙

𝑡

0

𝑒−(𝑛𝑗𝑢𝑗−𝜆𝑗)𝑣 ∙ 𝑒−𝑢𝑗∙(𝜏−𝑣)𝑑𝑣 ∙ 𝑑𝜏  denote the density of information-relaying vehicles without 

queuing process and with queuing process, respectively. Let 휂 = 𝑡 − 𝜏, then  

𝑅𝑗(𝑦, 𝑡) = 𝑓𝑗,1(𝑦, 𝑡) + 𝑓𝑗,2(𝑦, 𝑡) (3.17a) 

where  

𝑓𝑗,1(𝑦, 𝑡) = −(1 − 𝜉𝑗)∫
∂𝑆𝑗(𝑦, 휂)

∂휂
∙ 𝑒−𝑢𝑗(𝑡−𝜂)𝑑휂

𝑡

0

 (3.17b) 

𝑓𝑗,2(𝑦, 𝑡) = −∫ ∫
∂𝑆𝑗(𝑦, 휂)

∂휂

𝑡−𝜂

0

∙ (𝑛𝑗𝑢𝑗 − 𝜆𝑗)𝜉𝑗 ∙ 𝑒
−(𝑛𝑗𝑢𝑗−𝜆𝑗)𝑣 ∙ 𝑒−𝑢𝑗∙(𝑡−𝜂−𝑣)𝑑𝑣 ∙ 𝑑휂

𝑡

0

 (3.17c) 

The derivative of 𝑅𝑗(𝑦, 𝑡) with respect to 𝑡 is  

𝜕𝑅𝑗(𝑦, 𝑡)

𝜕𝑡
=
𝜕𝑓𝑗,1(𝑦, 𝑡)

𝜕𝑡
+
𝜕𝑓𝑗,2(𝑦, 𝑡)

𝜕𝑡
 (3.18(a) 

where  

𝜕𝑓𝑗,1(𝑦, 𝑡)

𝜕𝑡
= −(1 − 𝜉𝑗)

∂𝑆𝑗(𝑦, 𝑡)

∂𝑡
+ 𝑢𝑗(1 − 𝜉𝑗)∫

∂𝑆𝑗(𝑦, 휂)

∂휂
∙ 𝑒−𝑢𝑗(𝑡−𝜂)𝑑휂

𝑡

0

 

= −(1 − 𝜉𝑗)
∂𝑆𝑗(𝑦, 휂)

∂𝑡
− 𝑢𝑗𝑓𝑗,1(𝑦, 𝑡) − 𝑢𝑗𝑅𝑗(𝑦, 𝑡) 

 

 

(3.18b) 

𝜕𝑓𝑗,2(𝑦, 𝑡)

𝜕𝑡
= −∫

∂𝑆𝑗(𝑦, 휂)

∂휂
∙ (𝑛𝑗𝑢𝑗 − 𝜆𝑗)𝜉𝑗𝑒

−(𝑛𝑗𝑢𝑗−𝜆𝑗)(𝑡−𝜂)𝑑휂
𝑡

0

+ 𝑢𝑗𝑓𝑗,1(𝑦, 𝑡)  (3.18c) 

Thereby,  

𝜕𝑅𝑗(𝑦, 𝑡)

𝜕𝑡
= −(1 − 𝜉𝑗)

∂𝑆𝑗(𝑦, 휂)

∂𝑡
− ∫

∂𝑆𝑗(𝑦, 휂)

∂휂
∙ (𝑛𝑗𝑢𝑗 − 𝜆𝑗)𝜉𝑗 ∙ 𝑒

−(𝑛𝑗𝑢𝑗−𝜆𝑗)(𝑡−𝜂)𝑑휂
𝑡

0

− 𝑢𝑗𝑅𝑗(𝑦, 𝑡) 

(3.19) 

Let 𝐻𝑗(𝑦, 𝑡) = −∫
∂𝑆𝑗(𝑦,𝜂)

∂𝜂
∙ 𝜉𝑗 ∙ 𝑒

−(𝑛𝑗𝑢𝑗−𝜆𝑗)(𝑡−𝜂)𝑑휂
𝑡

0
. According to Eq. (3.7), the probability that 

an information packet in information class 𝑗 is received by a vehicle at time 휂 and is waiting in 

the queue at current time 𝑡 (𝑡 > 휂)  is  𝜉𝑗 ∙ 𝑒
−(𝑛𝑗𝑢𝑗−𝜆𝑗)(𝑡−𝜂).  This implies that 𝐻𝑗(𝑦, 𝑡) is the 

density of information-holding vehicles at location 𝑦 and time 𝑡. Differentiating 𝐻𝑗(𝑦, 𝑡) with 

respect to 𝑡, we have  

𝜕𝐻𝑗(𝑦, 𝑡)

𝜕𝑡
= −𝜉𝑗

∂𝑆𝑗(𝑦, 𝑡)

∂𝑡
− (𝑛𝑗𝑢𝑗 − 𝜆𝑗)𝐻𝑗(𝑦, 𝑡) (3.20) 

Let 𝐸𝑗(𝑥, 𝑡)  denote the density of information-excluded vehicles at location 𝑥  at time 𝑡 . As 
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informed vehicles consist of the information-holding, information-relaying and information-

excluded vehicles, 𝐼𝑗(𝑥, 𝑡) = 𝐻𝑗(𝑥, 𝑡) + 𝑅𝑗(𝑥, 𝑡) + 𝐸𝑗(𝑥, 𝑡). Thereby, we have 

∂𝐻𝑗(𝑥, 𝑡)

∂𝑡
+
∂𝑅𝑗(𝑥, 𝑡)

∂𝑡
+
∂𝐸𝑗(𝑥, 𝑡)

∂𝑡
=
∂𝐼𝑗(𝑥, 𝑡)

∂𝑡
= −

∂𝑆𝑗(𝑥, 𝑡)

∂𝑡
. (3.21) 

Substituting Eq. (3.19) and Eq. (3.20) into Eq. (3.21), yields  

∂𝐸𝑗(𝑥, 𝑡)

∂𝑡
= 𝑢𝑗𝑅𝑗(𝑥, 𝑡) (3.22) 

According to the above analysis, we have the following IDE system: 

{
 
 
 
 

 
 
 
 
∂𝑆𝑗(𝑥, 𝑡)

∂𝑡
= −𝛽𝑆𝑗(𝑥, 𝑡)∫ 𝑅𝑗(𝑦, 𝑡) ∙ 𝐾(𝑥, 𝑦)𝑑𝑦

Ω

                                                                                      

𝜕𝐻𝑗(𝑥, 𝑡)

𝜕𝑡
= 𝛽 ∙ 𝜉𝑗 ∙ 𝑆𝑗(𝑥, 𝑡)∫ 𝑅𝑗(𝑦, 𝑡) ∙ 𝐾(𝑥, 𝑦)𝑑𝑦

Ω

− (𝑛𝑗𝑢𝑗 − 𝜆𝑗) ∙ 𝐻𝑗(𝑥, 𝑡)                                       

𝜕𝑅𝑗(𝑥, 𝑡)

𝜕𝑡
= (1 − 𝜉𝑗) ∙ 𝛽𝑆𝑗(𝑥, 𝑡)∫ 𝑅𝑗(𝑦, 𝑡) ∙ 𝐾(𝑥, 𝑦)𝑑𝑦

Ω

+ (𝑛𝑗𝑢𝑗 − 𝜆𝑗) ∙ 𝐻𝑗(𝑦, 𝑡) − 𝑢𝑗 ∙ 𝑅𝑗(𝑥, 𝑡)     

𝜕𝐸𝑗(𝑥, 𝑡)

𝜕𝑡
= 𝑢𝑗 ∙ 𝑅𝑗(𝑥, 𝑡)                                                                                                                                

 

 (3.23a) 

(3.23b) 

(3.23c) 

(3.23d) 

For simplicity, we will label the IDE system (3.23) as the susceptible-holding-relaying-

excluded (SHRE) model. It describes the instantaneous change in densities of vehicles by vehicle 

class for dissemination of an information packet in information class 𝑗. Eq. (3.23) shows that 

susceptible vehicles become informed vehicles at a rate proportional to the densities of 

susceptible vehicles and information-relaying vehicles (see Eq. (3.23a)). According to Eq. 

(3.23b), information-holding vehicles become information-relaying vehicles at a rate inversely 

proportional to (𝑛𝑗𝑢𝑗 − 𝜆𝑗). Thereby, if the assigned number of communication servers (𝑛𝑗) and 

the mean communication service rate (𝑢𝑗) are increased, information-holding vehicles would 

become information-relaying vehicles faster. This implies that the specific information packet of 

interest experiences less waiting time in the queue. Hence, it can be propagated in the traffic 

stream at a higher speed. Eq. (3.23c) indicates that the density change of information-relaying 

vehicle increases monotonically with respect to number of communication servers (𝑛𝑗) and the 

mean communication service rate (𝑢𝑗 ). According to Eq. (3.23d),  the density change of 

information-excluded vehicles is proportional to 𝑢𝑗. Note 1/𝑢𝑗 denotes the mean communication 

service time of information packets of information class 𝑗 . If 𝑢𝑗  is smaller, the information 

packet would stay in the commination server for a longer time, implying that it can be 

disseminated more times using the repetitive broadcast process. This will impact both the IFPW 
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speed and asymptotic density of informed vehicles. Thereby, we can control 𝑛𝑗 and 𝑢𝑗 to meet 

the application needs of information packets in information class 𝑗.  

It is worth noting that Eq. (3.23d) can be used to characterize the dissemination wave of 

information packets in an arbitrary information class 𝑗,  𝑗 ∈ ℒ. As ∑ 𝑛𝑖
𝑠
𝑖=1 = 𝑁, we can assign 

different number of communication servers and mean communication service rates for different 

information classes appropriately to meet their application needs simultaneously. Eq. (3.23) also 

implies that if 𝜉𝑗 ≡ 0 (i.e., 𝑃𝑗
0 = 0, or 𝑛𝑗𝑢𝑗 → 𝜆𝑗), the SHRE model becomes the susceptible-

relaying-excluded model studied by Wang et al. (2018). It models the information flow 

dissemination wave under an information-relay control strategy where there is no queuing delay 

(i.e., no information-holding vehicles).  

3.3.2 Modeling the traffic flow dynamics in the lower-layer 

The upper-layer SHRE model describes how the density of vehicles by vehicle class changes 

instantaneously due to V2V communications. It captures the impacts of communication 

constraints on success rate of V2V communications, as also factors the effects of the queuing 

strategy and the distribution of information-relaying vehicles on the IFPW formation. As 

mentioned before, the IFPW is a combination of the information flow dissemination wave and 

the traffic flow propagation wave. This section models the traffic flow dynamics to determine the 

traffic flow propagation wave. The effects of traffic flow dynamics on IFPW are threefold. First, 

they impact the success rate of V2V communications (i.e., 𝐾(𝑥, 𝑦)) by determining the number 

of equipped vehicles within communication range of an information-relaying vehicle. Second, 

the number of the vehicles sending the specific information depends on the spatial distribution of 

information-relaying vehicles which evolves with the traffic flow dynamics. Third, the traffic 

flow speed significantly contributes to the IFPW speed. It adds to the IFPW speed in the 

direction of vehicular traversal and reduces the IFPW speed in direction opposite to that of 

vehicular traversal.  

In this study, the first-order LWR model is used to describe the traffic flow dynamics. It can 

reproduce some essential features of traffic flow, such as the formation and propagation of traffic 

flow waves. The model consists of the flow conservation law and an explicit density-flow 

relationship known as the fundamental diagram of traffic flow. The flow conservation law and 

the fundamental diagram can be expressed as the following PDE model: 
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∂𝑘(𝑥, 𝑡)

∂𝑡
+
∂𝑞(𝑥, 𝑡)

∂𝑥
= 0 (3.24) 

𝑞(𝑥, 𝑡) = 𝐹(𝑘, 𝑥, 𝑡) (3.25) 

where 𝑘(𝑥, 𝑡) is the traffic flow density at location 𝑥 at time 𝑡, 𝑞(𝑥, 𝑡) is the instantaneous flow, 

and 𝐹(𝑘, 𝑥, 𝑡)  is the fundamental diagram in which the flow and density are related by a 

continuous and piecewise differentiable equation.   

3.4 Analytical and numerical solutions of the two-layer model 

This section discusses the analytical and numerical solutions for the two-layer model under 

homogeneous and heterogeneous traffic conditions, respectively. Homogeneous traffic 

conditions refer to unidirectional traffic flow with uniform traffic flow density and the 

heterogeneous traffic conditions refer to the other traffic flow situations (e.g., bi-directional 

flow). Under homogeneous traffic conditions, the traffic flow dynamics only shift the IFPW 

towards the direction of traffic flow and do not change the densities of vehicles of different 

classes. Thereby, the impacts of traffic flow dynamics on the IFPW speed are uniform in space 

and time. The asymptotic density of informed vehicles and the condition for existence of IFPW 

can be derived analytically using only the upper-layer SHRE model.  

Under heterogeneous traffic flow conditions, the traffic flow dynamics change the densities 

of vehicles of different classes spatiotemporally. Thereby, the impacts of the traffic flow 

dynamics on the IFPW speed are non-uniform in space and time. To obtain the solutions of the 

two-layer model under heterogeneous conditions, the change in density of vehicles of each 

vehicle class due to V2V communications (in the upper layer) and the traffic flow dynamics (in 

the lower layer) need to be tracked simultaneously. To do so, a numerical solution method is 

proposed here to capture the interactions between the upper and lower layers sequentially under 

discrete time and space settings. 

3.4.1 Analytical solutions of the two-layer model under homogeneous traffic flow conditions  

The proposed SHRE model conceptually adapts the idea of susceptible-exposed-infected-

recovered (SEIR) model that is extensively studied in epidemiology (see e.g., McCluskey, 2012; 

Li and Muldowney., 1995; Li et al., 1999; Smith et al., 2001). The equilibrium solution and 

conditions for local stability of the SEIR model are analyzed in these studies. However, the 



76 

 

 

 

classical SEIR only address the temporal spreading of a disease among the population at one 

location. By comparison, the designed SHRE model is a spatial model that seeks to find how a 

specific information packet of interest will be propagated in both space and time. Thereby, the 

solutions of SEIR model in previous studies cannot be applied for the SHRE model. To the best 

of our knowledge, the solution of the IDE system analogy to the SHRE model has not been 

studied before. In the following, we will derive the analytical solutions for asymptotical density 

of vehicles by vehicle class of the proposed SHRE model and study the conditions for existence 

of IFPW.  

Let 𝜎 be the density of equipped vehicles. Suppose at time 0, all the equipped vehicles are 

susceptible vehicles in the highway. Thereby, the initial conditions for the SHRE model are 

𝑆𝑗(𝑥, 0) = 𝜎 , 𝐻𝑗(𝑥, 0) = 𝑅𝑗(𝑥, 0) = 𝐸𝑗(𝑥, 0) = 0 . Assume the specific information packet of 

interest in information class 𝑗 is generated and is propagated by an equipped vehicle at location 0 

and time 0. Similar to Kim et al. (2017) and Wang et al., (2017), under homogeneous conditions, 

the information under the designed queueing strategy will quickly form a wave (if it exists) to 

propagate backward and forward with a uniform speed. The asymptotical density of vehicles of 

each vehicle class is the same beyond the location where the wave speed is stable. However, we 

cannot derive the analytical solutions for asymptotical speed of the IFPW. The IFPW speed will 

be solved using the numerical method introduced in section 4.2.  

As discussed in Section 3.1, the communication kernel 𝐾(𝑥, 𝑦) characterizes the one-hop 

success rate of V2V communication. It significantly impacts the traveling wave solutions. By 

factoring communication constraints (e.g. communication frequency, channel capacity, 

communication range), Kim et al. (2017) show that the communication is subject to attenuation 

over distance. In this study, the Gaussian communication kernel proposed by Kim et al. (2017) 

will be used to characterize the one-hop success rate of V2V communication formulated in Eq. 

(3.26), in which the parameter 𝑎  and 𝑏  will be calibrated using V2V communication data 

obtained through NS-3 simulation. It is worth mentioning that the communication kernel satisfies 

∫ 𝐾(𝑥, 𝑦)𝑑𝑦
Ω

= ∫ 𝐾(𝑥, 𝑦)𝑑𝑦
+∞

−∞
= 𝑏.  

𝐾(𝑥, 𝑦) =
𝑏

𝑎√𝜋
𝑒
−(𝑥−𝑦)2

𝑎2  , 𝑎 > 0,  0 < 𝑏 ≤ 1,                    (3.26) 

The asymptotic density of vehicles by vehicle class and asymptotic density of informed 

vehicles are defined as follows.  
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Definition 3.1 (asymptotic density of vehicles by vehicle class): the asymptotic density of 

vehicles of vehicle class 𝑧𝑗
∗(𝑥), z𝑗 ∈ {𝑆𝑗 , 𝐻𝑗 , 𝑅𝑗 , 𝐸𝑗} at location 𝑥 is defined as 𝑧𝑗

∗(𝑥) = lim
𝑡→∞

z(𝑥, 𝑡). 

Definition 3.2 (asymptotic density of informed vehicles): let 𝐼𝑗
∗(𝑥) be the asymptotic density of 

informed vehicles at location 𝑥, it is defined as 𝐼𝑗
∗(𝑥) = lim

𝑡→∞
𝐼𝑗(𝑥, 𝑡). 

The following two theorems will be useful to analyze the asymptotic density of informed 

vehicles.  

Theorem 3.1 (asymptotic density of information-holding vehicles): if 𝑛𝑗𝑢𝑗 > 𝜆𝑗, then 𝐻𝑗
∗(𝑥) =

lim
𝑡→+∞

𝐻𝑗(𝑥, 𝑡) = 0 

Proof: let 𝜔𝑗 = 𝑛𝑗𝑢𝑗 − 𝜆𝑗, multiply both sides of Eq. (3.23b) by 𝑒𝜔𝑗𝑡,  we have  

 𝑒𝜔𝑗𝑡
𝜕𝐻𝑗(𝑥, 𝑡)

𝜕𝑡
+  𝑒𝜔𝑗𝑡 ∙ 𝐻𝑗(𝑥, 𝑡) =  𝑒

𝜔𝑗𝑡𝛽 ∙ 𝜉𝑗 ∙ 𝑆𝑗(𝑥, 𝑡)∫ 𝑅𝑗(𝑦, 𝑡) ∙ 𝐾(𝑥, 𝑦)𝑑𝑦
Ω

 (3.27) 

This implies  

𝜕 ( 𝑒𝜔𝑗𝑡𝐻𝑗(𝑥, 𝑡))

𝜕𝑡
=  𝑒𝜔𝑗𝑡𝛽 ∙ 𝜉𝑗 ∙ 𝑆𝑗(𝑥, 𝑡)∫ 𝑅𝑗(𝑦, 𝑡) ∙ 𝐾(𝑥, 𝑦)𝑑𝑦

Ω

 (3.28) 

Then  

 𝑒𝜔𝑗𝑡𝐻𝑗(𝑥, 𝑡) −  𝑒
𝜔𝑗𝑡𝐻𝑗(𝑥, 0)

= ∫  𝑒𝜔𝑗𝜏𝛽 ∙ 𝜉𝑗 ∙ 𝑆𝑗(𝑥, 𝜏)∫ 𝑅𝑗(𝑦, 𝜏) ∙ 𝐾(𝑥, 𝑦)𝑑𝑦
Ω

∙ 𝑑𝜏
𝑡

0

 
(3.29) 

Note 𝐻𝑗(𝑥, 0) ≡ 0. According to Eq. (3.23d), Eq. (3.29) can be written as  

𝐻𝑗(𝑥, 𝑡) =  𝑒
−𝜔𝑗𝑡𝛽 ∙ 𝜉𝑗 ∙ ∫  𝑒𝜔𝑗𝜏𝑆𝑗(𝑥, 𝜏)∫

1

𝑢𝑗

𝜕𝐸𝑗(𝑦, 𝜏)

𝜕𝜏
∙ 𝐾(𝑥, 𝑦)𝑑𝑦

Ω

∙ 𝑑𝜏
𝑡

0

 

=
 𝑒−𝜔𝑗𝑡𝛽 ∙ 𝜉𝑗

𝑢𝑗
∫ 𝐾(𝑥, 𝑦)∫ 𝑆𝑗(𝑥, 𝜏) 𝑒

𝜔𝑗𝜏
𝜕𝐸𝑗(𝑦, 𝜏)

𝜕𝜏
𝑑𝜏

𝑡

0

∙ 𝑑𝑦
Ω

 

(3.30) 

Note that as 𝑡 → +∞, the densities of vehicles of different vehicle classes at each location 𝑦 

become stable. Thereby, lim
𝑡→+∞

𝜕𝐸𝑗(𝑦, 𝜏) 𝜕𝑡⁄ → 0. For an arbitrarily small positive value 휀 , let 

𝑔(𝑔 < +∞) be the value such that 𝜕𝐸𝑗(𝑦, 𝜏) 𝜕𝜏⁄ < 휀 for 𝜏 > 𝑔. Then  

lim
𝑡→+∞

𝐻𝑗(𝑥, 𝑡) = lim
𝑡→+∞

 𝑒−𝜔𝑗𝑡𝛽 ∙ 𝜉𝑗
𝑢𝑗

∫ 𝐾(𝑥, 𝑦)∫ 𝑆𝑗(𝑥, 𝜏) 𝑒
𝜔𝑗𝜏

𝜕𝐸𝑗(𝑦, 𝜏)

𝜕𝜏
𝑑𝜏

𝑡

0

∙ 𝑑𝑦
Ω

 (3.31) 
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= lim
𝑡→+∞

 𝑒−𝜔𝑗𝑡𝛽 ∙ 𝜉𝑗
𝑢𝑗

∫ 𝐾(𝑥, 𝑦)∫ 𝑆𝑗(𝑥, 𝜏) 𝑒
𝜔𝑗𝜏

𝜕𝐸𝑗(𝑦, 𝜏)

𝜕𝜏
𝑑𝜏

𝑔

0

∙ 𝑑𝑦
Ω

 

+ lim
𝑡→+∞

 𝑒−𝜔𝑗𝑡𝛽 ∙ 𝜉𝑗

𝑢𝑗
∫ 𝐾(𝑥, 𝑦)∫ 𝑆𝑗(𝑥, 𝜏) 𝑒

𝜔𝑗𝜏
𝜕𝐸𝑗(𝑦, 𝜏)

𝜕𝜏
𝑑𝜏

+∞

𝑔

∙ 𝑑𝑦
Ω

 

Note 𝑆𝑗(𝑥, 𝜏) 𝑒
𝜔𝑗𝜏

𝜕𝐸𝑗(𝑦,𝜏)

𝜕𝜏
 is bounded when 𝜏 ∈ [0, 𝑔] . Thereby, ∫ 𝑆𝑗(𝑥, 𝜏) 𝑒

𝜔𝑗𝜏
𝜕𝐸𝑗(𝑦,𝜏)

𝜕𝜏
𝑑𝜏

𝑔

0
 is 

bounded. This implies  

lim
𝑡→+∞

 𝑒−𝜔𝑗𝑡𝛽 ∙ 𝜉𝑗
𝑢𝑗

∫ 𝐾(𝑥, 𝑦)∫ 𝑆𝑗(𝑥, 𝜏) 𝑒
𝜔𝑗𝜏

𝜕𝐸𝑗(𝑦, 𝜏)

𝜕𝜏
𝑑𝜏

𝑔

0

∙ 𝑑𝑦
Ω

→ 0 (3.32) 

As 𝜕𝐸𝑗(𝑦, 𝜏) 𝜕𝜏⁄ < 휀 for 𝜏 > 𝑔. Then  

lim
𝑡→+∞

 𝑒−𝜔𝑗𝑡𝛽 ∙ 𝜉𝑗
𝑢𝑗

∫ 𝐾(𝑥, 𝑦)∫ 𝑆𝑗(𝑥, 𝜏) 𝑒
𝜔𝑗𝜏

𝜕𝐸𝑗(𝑦, 𝜏)

𝜕𝜏
𝑑𝜏

+∞

𝑔

∙ 𝑑𝑦
Ω

 

≤ lim
𝑡→+∞

 𝑒−𝜔𝑗𝑡𝛽 ∙ 𝜉𝑗
𝑢𝑗

𝜎 𝑒𝜔𝑗𝑡 ∙ 휀 

=
𝛽 ∙ 𝜉𝑗
𝑢𝑗

𝜎 ∙ 휀 

(3.33) 

Note 휀 is an arbitrarily small positive value.  Thereby,  

𝐻𝑗
∗(𝑥) = lim

𝑡→+∞

𝐻𝑗(𝑥, 𝑡) = 0 
(3.34) 

Theorem 3.2 (asymptotic density of information-relaying vehicles): if 𝑛𝑗𝑢𝑗 > 𝜆𝑗, then 𝑅𝑗
∗(𝑥) =

lim
𝑡→+∞

𝑅𝑗(𝑥, 𝑡) = 0. 

Theorem 3.2 can be proved using the same method used to prove Theorem 3.1; it is omitted 

here to avoid duplication.  

Theorems 3.1 and 3.2 indicate that if 𝑛𝑗𝑢𝑗 > 𝜆𝑗, there would be no information-holding and 

information-relaying vehicles at each location eventually. This is because when 𝑛𝑗𝑢𝑗 > 𝜆𝑗, the 

specific information packet of interest waiting in the queue for information class 𝑗 will have 

finite waiting time and finite communication service time. It will enter into the communication 

server for propagation and is removed from it eventually.  

Let 𝛾𝑗 = 𝛽𝑏𝜎 𝑢𝑗⁄ , the following theorem discusses the asymptotic density of information-

excluded vehicles.  
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Theorem 3.3 (asymptotic density of information-excluded vehicles): if 𝑛𝑗𝑢𝑗 > 𝜆𝑗, and  𝛾𝑗 > 1, 

then 𝑅𝑗
∗(𝑥) = lim

𝑡→+∞

𝑅𝑗(𝑥, 𝑡) = 𝜎 ∙ 𝛼𝑗
∗, where 𝛼𝑗

∗ ∈ (0,1)  is the unique solution of the following 

nonlinear equation 

𝑒− 𝛾𝑗𝛼𝑗 + 𝛼𝑗 − 1 = 0 (3.35) 

Proof: Note under homogeneous conditions, the traffic flow density is uniform. Thereby, for 

arbitrary time 𝑡 and location 𝑥, we have  

𝑆𝑗(𝑥, 𝑡) + 𝐻𝑗(𝑥, 𝑡) + 𝑅𝑗(𝑥, 𝑡) + 𝐸𝑗(𝑥, 𝑡) = 𝜎 (3.36) 

Note that 𝐸𝑗(𝑥, 0) = 0, according to Eq. (3.23d) 

𝐸𝑗(𝑥, 𝑡) = ∫ 𝑢𝑗 ∙ 𝑅𝑗(𝑦, 𝑡)𝑑𝑡
𝑡

0

 (3.37) 

Eq. (3.23a) implies that  

∂ (𝑙𝑛 (𝑆𝑗(𝑥, 𝑡)))

∂𝑡
= −𝛽∫ 𝑅𝑗(𝑦, 𝑡) ∙ 𝐾(𝑥, 𝑦)𝑑𝑦

Ω

 
(3.38) 

Integrating both side of Eq. (3.38) from 0 to 𝑡 

𝑙𝑛 (𝑆𝑗(𝑥, 𝑡)) − 𝑙𝑛(𝜎) = −𝛽∫ [∫ 𝑅𝑗(𝑦, 𝜏)
𝑡

0

𝑑𝜏] ∙ 𝐾(𝑥, 𝑦)𝑑𝑦
Ω

 (3.39) 

Substituting Eq. (3.37) into Eq. (3.39), yields  

𝑙𝑛 (𝑆𝑗(𝑥, 𝑡)) − 𝑙𝑛(𝜎) = −
𝛽

𝑢𝑗
∫ [∫ 𝑢𝑗𝑅𝑗(𝑦, 𝜏)

𝑡

0

𝑑𝜏] ∙ 𝐾(𝑥, 𝑦)𝑑𝑦
Ω

 

= −
𝛽

𝑢𝑗
∫ 𝐸𝑗(𝑥, 𝑡) ∙ 𝐾(𝑥, 𝑦)𝑑𝑦
Ω

 

(3.40) 

Thereby,  

𝑆𝑗(𝑥, 𝑡) = 𝜎 ∙ 𝑒
−
𝛽
𝑢𝑗
∫ 𝐸𝑗(𝑥,𝑡)∙𝐾(𝑥,𝑦)𝑑𝑦Ω

 (3.41) 

Substituting Eq. (3.41) into Eq. (3.36), we have  

𝜎 ∙ 𝑒
−
𝛽
𝑢𝑗
∫ 𝐸𝑗(𝑥,𝑡)∙𝐾(𝑥,𝑦)𝑑𝑦Ω + 𝐻𝑗(𝑥, 𝑡) + 𝑅𝑗(𝑥, 𝑡) + 𝐸𝑗(𝑥, 𝑡) = 𝜎 (3.42) 

Let 𝑡 → +∞, then  

𝜎 ∙ 𝑒
−
𝛽
𝑢𝑗
∫ 𝐸𝑗

∗(𝑥)∙𝐾(𝑥,𝑦)𝑑𝑦Ω + 𝐻𝑗
∗(𝑥) + 𝑅𝑗

∗(𝑥) + 𝐸𝑗
∗(𝑥) = 𝜎 (3.43) 

Note that ∫ 𝐸𝑗
∗(𝑥) ∙ 𝐾(𝑥, 𝑦)𝑑𝑦

Ω
= 𝑏 ∙ 𝐸𝑗

∗(𝑥), and according to Theorems 3.1 and 3.2, 𝐻𝑗
∗(𝑥) =

𝑅𝑗
∗(𝑥) = 0, then  

𝜎 ∙ 𝑒
−
𝛽𝑏
𝑢𝑗
𝐸𝑗
∗(𝑥)

+ 𝐸𝑗
∗(𝑥) = 𝜎 (3.44) 
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Let 𝛼𝑗 = (1 𝜎⁄ ) ∙ 𝐸𝑗
∗(𝑥). As 𝐸𝑗

∗(𝑥) ∈ [0, 𝜎], 𝛼𝑗 ∈ (0,1). Eq. (3.44) can be rewritten as  

𝑒− 𝛾𝑗𝛼𝑗 + 𝛼𝑗 = 1 (3.45) 

For simplicity, denote the function 𝜑(𝛼𝑗) as 

 𝜑(𝛼𝑗) = 𝑒
− 𝛾𝑗𝛼𝑗 + 𝛼𝑗 − 1 (3.46) 

Note that 

𝜑′(𝛼𝑗) = 𝑑𝜑(𝛼𝑗) 𝑑𝛼𝑗⁄ = − 𝛾𝑗𝑒
− 𝛾𝑗𝛼𝑗 + 1 (3.47) 

According to Eq. (3.47), 𝑑𝜑(𝛼𝑗) 𝑑𝛼𝑗⁄ |
𝛼𝑗=0

= − 𝛾𝑗 + 1 < 0  for  𝛾𝑗 > 1 . As 𝜑(0) = 0 , this 

implies that 𝜑(𝛼𝑗) < 0 for 𝛼𝑗 sufficiently close to 0. Note that 𝜑(1) = 𝑒− 𝛾𝑗 > 0. Hence, there 

must exist a solution to Eq. (3.45) for 𝛼𝑗 ∈ (0,1). The second-order derivative of 𝜑(𝛼𝑗) with 

respect to 𝛼𝑗  is 𝜑′′(𝛼𝑗) = 𝑑
2𝜑(𝛼𝑗) 𝑑𝛼𝑗

2⁄ = ( 𝛾𝑗)
2
𝑒− 𝛾𝑗𝛼𝑗 > 0 . Thereby, 𝜑(𝛼𝑗)  is a convex 

function. There exists at most two solutions for 𝜑(𝛼𝑗) = 0. 𝛼𝑗 = 0 is a solution to 𝜑(𝛼𝑗) = 0. 

This implies that there exists a unique solution to 𝜑(𝛼𝑗) = 0  for 𝛼𝑗 ∈ (0,1) . Let 𝛼𝑗
∗  be the 

corresponding solution. We have 𝐸𝑗
∗(𝑥) = 𝜎 ∙ 𝛼𝑗

∗. Theorem 3.3 is proved.  

Recall 𝐼𝑗
∗(𝑥) = 𝐻𝑗

∗(𝑥) + 𝑅𝑗
∗(𝑥) + 𝐸𝑗

∗(𝑥), and 𝐻𝑗
∗(𝑥) = 𝑅𝑗

∗(𝑥) = 0 . We have the following 

corollary. 

Corollary 3.1: The asymptotic density of informed vehicles is 𝐼𝑗
∗(𝑥) = 𝐸𝑗

∗(𝑥) = 𝜎 ∙ 𝛼𝑗
∗.  

According to Eq. (3.34), 𝛼𝑗
∗ is determined only by the value of  𝛾𝑗  which equals 𝛽𝑏𝜎 𝑢𝑗⁄ . 

Thereby, when the communication frequency (𝛽), the parameter 𝑏 in the communication kernel 

and the initial density of equipped vehicles (𝜎) are fixed, the service rate 𝑢𝑗 can be leveraged by 

transportation operators to propagate the specific information in information class 𝑗 to control the 

proportion of vehicles that can receive the specific information. Let 𝑃𝐼𝑗
∗  be the information spread 

(i.e., proportion of informed vehicles) for the specific information packet of interest in 

information class 𝑗; we have 𝑃𝐼𝑗
∗ = 𝜎 ∙ 𝛼𝑗

∗ 𝜎⁄ = 𝛼𝑗
∗. 

The following theorem discusses the existence of the IFPW.  

Theorem 3.4 (conditions for existence of IFPW): The IFPW does not exist when 𝛾𝑗 < 1. 

Proof: Note for 𝛼 ∈ [0,1],  

𝜑′(𝛼𝑗) = 𝑑𝜑(𝛼𝑗) 𝑑𝛼𝑗⁄ = − 𝛾𝑗𝑒
− 𝛾𝑗𝛼𝑗 + 1 > − 𝛾𝑗 + 1 > 0 (3.48) 

Thereby, 𝜑(𝛼𝑗) increases monotonically with respect to 𝛼𝑗  for 𝛼𝑗 ∈ (0,1). As 𝜑(0) = 0, there 
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exists no solution to 𝜑(𝛼𝑗) = 0 for 𝛼𝑗 ∈ (0,1). This implies that the vehicles are far from the 

location (location is labeled as 𝑥) where the information packet is generated, and the asymptotic 

solution of 𝐸𝑗(𝑥, 𝑡) is 0. As all informed vehicles will become information-excluded vehicles, 

this result indicates that no vehicle can receive the specific information packet of interest of 

information class 𝑗 if they are far from the location where the information is generated in this 

case. Thereby, the IFPW does not exist for 𝛾𝑗 < 1.  

Theorem 3.4 shows that if the initial density of equipped vehicles and the service rate are 

high, the specific information packet of interest can only be propagated locally. Vehicles that are 

far from the location where the specific information is generated cannot receive it. This property 

can be used by transportation operators to design effective control strategies to propagate 

information within a small vicinity (e.g., sudden braking information, lane merge information). It 

should be noted that 𝑢𝑗  will impact the propagation distance of the specific information of 

interest when the IFPW does not exist. Through a numerical example, we will show that if 𝑢𝑗 is 

set such that 𝛾𝑗 is closer to 1 (𝛾𝑗 < 1), the specific information of interest will be propagated 

further away. If 𝛾𝑗 > 1, the specific information packet will form a wave to be propagated in the 

network.  

As discussed earlier, we cannot derive an analytical solution for the asymptotic IFPW speed 

even if it exists. The IFPW speed will be computed using the numerical method introduced in the 

next section. Note that the asymptotic IFPW speed is significantly impacted by the queuing delay 

which is determined by the two control parameters (i.e., 𝑛𝑗 and 𝑢𝑗) simultaneously. To meet the 

application needs of information in an arbitrary information class 𝑗 related to information spread, 

time delay to reach a target location and spatial coverage, the values for the two control 

parameters 𝑛𝑗 and 𝑢𝑗  can be determined as follows: first, choose 𝑢𝑗  appropriately according to 

Theorem 3.4 if the information needs to be only propagated locally. If the information needs to 

be propagated in the network, then determine 𝑢𝑗  appropriately according to Theorem 3.4 and 

corollary 3.1 so that information spread can be satisfied. Third, determine 𝑛𝑗 appropriately to 

control the IFPW speed so that it can reach the target location in the desired time.  

3.4.2 Numerical solution method 

The analytical solutions for the various information classes introduced in previous section only 
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apply to homogeneous traffic conditions. Under heterogeneous conditions, the IFPW may not be 

stable due to the non-uniform impact of traffic flow dynamics on information dissemination. To 

analyze how information is spread in space and time under heterogeneous conditions, this section 

proposes a numerical solution method based on Kim et al. (2017) to solve the two-layer model. 

The numerical solution method helps to: (1) estimate the IFPW speed under both homogeneous 

and heterogeneous traffic conditions, and (2) estimate the distance the specific information can 

be propagated when the IFPW does not exist, under both homogeneous and heterogeneous traffic 

conditions, and (3) estimate the density of informed vehicles under heterogeneous conditions.  

The numerical solution method discretizes space and time into cells of length ∆𝑥 and time 

interval ∆𝑡, respectively. Let 1,2,3⋯ denote the cells in the highway sequentially. The fourth-

order Runge-Kutta method will be used to approximate the densities of vehicles by vehicle class 

(i.e., 𝑆𝑗(𝑥, 𝑡), 𝐻𝑗(𝑥, 𝑡), 𝑅𝑗(𝑥, 𝑡) and 𝑋𝑗(𝑥, 𝑡)) changed according to the SHRE model in the upper 

layer. To solve the LWR model in the lower layer, the generalized cell transmission finite 

difference method proposed by Daganzo (1995) is used to approximate Eq. (3.24) and Eq. (3.25) 

as follows 

[𝑘(𝑥, 𝑡 + ∆𝑡) − 𝑘(𝑥, 𝑡)] ∆𝑡⁄ = [𝑞(𝑥 − ∆𝑥, 𝑡) − 𝑞(𝑥, 𝑡)] ∆𝑥⁄     (3.49) 

𝑞(𝑥, 𝑡) = min {𝑇(𝑘(𝑥, 𝑡)), 𝑄 (𝑘𝑗𝑎𝑚 − 𝑘(𝑥 + ∆𝑥, 𝑡))},    (3.50) 

where T specifies the maximum flow that can be sent by the upstream cell and Q specifies the 

maximum flow that can be received by the downstream cell. 𝑘𝑗𝑎𝑚 is the jam traffic density. Let 

𝑈 denote the unequipped vehicles. The steps to solve the two-layer model numerically are as 

follows: 

Step 1: At time 0 ( 𝑡 = 0 ), obtain the initial number of vehicles of each class 𝑧, 𝑧 ∈

{𝑆𝑗 , 𝐻𝑗 , 𝑅𝑗 , 𝐸𝑗 , 𝑈} and corresponding density of vehicles of each vehicle class in each cell. 

Let 𝑡 = 𝑡 + ∆𝑡. 

Step 2: Solve the lower-layer model to determine the flow in each cell 𝑥  (i.e., 𝑞(𝑥, 𝑡)) that 

advances to the downstream cell according to Eq. (3.49) and Eq. (3.50). Update the 

number of vehicles in each cell.  

Step 3: Calculate the number of vehicles of each class 𝑧 ∈ {𝑆𝑗 , 𝐻𝑗 , 𝑅𝑗 , 𝐸𝑗 , 𝑈} that advance to the 

downstream as follows:  

𝑞𝑧(𝑥, 𝑡) =
𝑘𝑧(𝑥,𝑡−∆𝑡)

𝑘(𝑥,𝑡−∆𝑡)
∙ 𝑞(𝑥, 𝑡),     𝑧 ∈ {𝑆𝑗 , 𝐻𝑗 , 𝑅𝑗 , 𝐸𝑗 , 𝑈},     (3.51) 
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where 𝑞𝑧(𝑥, 𝑡) is the traffic flow of class 𝑧 leaving cell 𝑥 at time interval 𝑡 and 𝑘𝑧(𝑥, 𝑡 −

∆𝑡) is the density of class 𝑧 in cell 𝑥 and time 𝑡 − ∆𝑡.  

Step 4: Update the density of vehicles by vehicle class in each cell of the upper layer using the 

discrete multiclass flow conservation law, as follows: 

[𝑘𝑧(𝑥, 𝑡) − 𝑘𝑧(𝑥, 𝑡 − ∆𝑡)] ∆𝑡⁄ = [𝑞𝑧(𝑥 − ∆𝑥, 𝑡) − 𝑞𝑧(𝑥, 𝑡)] ∆𝑥⁄ ,   

𝑧 ∈ {𝑆𝑗 , 𝐻𝑗 , 𝑅𝑗 , 𝐸𝑗 , 𝑈}. 
(3.52) 

where  𝑘𝑠𝑗(𝑥, 𝑡),  𝑘𝐻𝑗(𝑥, 𝑡),  𝑘𝑅𝑗(𝑥, 𝑡)  and  𝑘𝐸𝑗(𝑥, 𝑡)  represents 𝑆𝑗(𝑥, 𝑡) , 

𝐻𝑗(𝑥, 𝑡),𝑅𝑗(𝑥, 𝑡) and 𝐸𝑗(𝑥, 𝑡), respectively that describe the density of vehicles of each 

class in the upper layer.  

Step 5: Approximate the density of vehicles by vehicle class (i.e., 𝑆𝑗(𝑥, 𝑡), 𝐻𝑗(𝑥, 𝑡), 𝑅𝑗(𝑥, 𝑡) and 

𝐸𝑗(𝑥, 𝑡)) that are changed according to the SHRE model in the upper layer. 

Step 6: If the predetermined time length is reached, then stop. Otherwise, let 𝑡 = 𝑡 + ∆𝑡, and go 

to Step 2. 

The numerical method solves the discretized LWR model and the SHRE model sequentially 

to capture the effects of traffic flow dynamics on information dissemination. It is worth noting 

that to reduce computational load, the convolution term (∫ 𝑅𝑗(𝑦, 𝑡) ∙  𝐾(𝑥, 𝑦)𝑑𝑦Ω
) in Eq. (3.23) 

can be approximated using the Fast Fourier Transform (FFT) method. More details of the 

numerical method and the FFT method can be found in Kim et al. (2017). The numerical method 

can provide the density of vehicles by vehicle class at each cell and time interval.  

The numerical method can also be used to verify the analytical solutions of density of 

informed vehicles and to approximate the IFPW speed under both homogeneous and 

heterogeneous traffic conditions. Note that IFPW consists of two waves: the forward wave which 

travels in the direction of vehicular traversal and the backward wave which travels opposite to 

the direction of vehicular traversal. Correspondingly, there exist two IFPW speeds, the forward 

and backward IFPW speeds. The method to estimate the two IFPW speeds is as follows. Let 𝑡1 

and 𝑡2  be two arbitrary time intervals. Without loss of generality, let 𝑡1 > 𝑡2 . Let 𝑧𝑗,0  be the 

density of vehicles in an arbitrary vehicle class 𝑧𝑗 . 𝑧𝑗,0  is set between the minimum and 

maximum density of vehicle class 𝑧𝑗. Then, at the two time intervals 𝑡ℎ, ℎ = 1,2, there exist two 

cells on the two wave fronts, respectively, for which the density of vehicle class 𝑧𝑗 is most close 

to 𝑧𝑗,0. Denote the two cells as 𝑙𝐵,𝑡ℎ and 𝑙𝐹,𝑡ℎ (ℎ = 1,2), respectively. Without loss of generality, 



84 

 

 

 

let 𝑙𝐵,𝑡ℎ be the cell in the backward IFPW and the 𝑙𝐹,𝑡ℎ be the cell in the forward IFPW. Then, the 

forward IFPW (labeled as 𝑐𝐹)  and the backward IFPW (labeled as 𝑐𝐵) can be approximated as  

𝑐𝐹 =
(𝑙𝐹,𝑡2 − 𝑙𝐹,𝑡1)∆𝑥

𝑡1 − 𝑡2
 (3.53) 

𝑐𝐵 =
|(𝑙𝐵,𝑡2 − 𝑙𝐵,𝑡1)∆𝑥|

𝑡1 − 𝑡2
 (3.54) 

3.5 Numerical example 

This section discusses several numerical experiments to illustrate the application of the 

proposed method to control multiclass information flow propagation. Consider a highway with 

30 km length. Discretize the highway uniformly into 2000 cells. Table 1 shows other inputs in 

the experiment.     

Table 3.1 Experiment parameters 

Traffic flow parameters Value 

Free flow speed (𝑢𝑓) 108 km/h 

Time interval (∆𝑡) 0.5 seconds 

Cell length (∆𝑥) 15 meters 

Number of lanes 1 

Market penetration rate (W) 50% 

3.5.1 Calibrate the communication kernel 

To calibrate the communication kernel function in Eq. (3.26), NS-3 will be used to simulate 

the success rate of one-hop V2V communications under different traffic flow densities. NS-3 is a 

discrete network simulator that can simulate and test a spectrum of communication protocols 

efficiently. Recently, NS-3 has been used to simulate V2V communications and evaluate the 

performance of communication protocols for vehicular ad hoc networks (see e.g., Dey et al., 

2016; Noori and Olyaei., 2013; Talebpour et al., 2016). The inputs for the V2V communication 

related parameters in NS-3 are shown in Table 2. The simulation is operated based on IEEE 

802.11p protocol in 5.9 GHz band with channel capacity 3 Mbps and communication power 

500 m. In V2V communications, whether a receiver vehicle can successfully receive an 

information packet from a sender vehicle is primarily decided by two factors: the reception 

signal power, and the noise and interference. The reception signal power determines whether the 

receiver vehicle can receive the signals from the sender vehicles, and the level of noise and 
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interference determines the probability of reception error. In this simulation, the Friis 

propagation loss model (Benin et al., 2012) is used in NS-3 to calculate the reception signal 

power. It characterizes the impacts of transmission power, distance between receiver and sender, 

transmission gain, and reception gain on reception signal power. The receiver vehicle receives 

the information packet only if the reception signal power is larger than the energy detection 

threshold  −96 dBm. To estimate the noise and interference, the signal to (interference and) 

noise ratio (SINR) model is used in NS-3 simulation. The SINR is the ratio of the power of a 

certain signal of interest over the sum of the interference power (from all the other interfering 

signals) and the power of some background noise (for details, see Wang et al. 2018). The 

threshold of SINR is set as 5 dB (Hisham et al., 2016; Hisham et al., 2017), indicating that the 

V2V communication is considered to be successful if SINR is larger than 5 dB; otherwise, it will 

be considered as a communication failure.  

Table 3.2 Inputs for NS-3 parameters 

Parameters Value 

IEEE 802.11p channel capacity  3 Mbps 

Band 5.9 GHz 

Communication frequency  2 Hz 

Communication power/distance 500 m 

Minimum contention window 15 slots 

Energy detection threshold -96 dBm 

Noise floor -99 dBm 

SINR threshold  5 dB 

 

Figure 3.3 Calibrated communication kernel for 𝑘 = 40 veh/h and 𝑘 = 60 veh/h 
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Table 3.3 Maximum number of communication servers, and calibrated parameters in 

communication kernel using NS-3 simulation 

Density 

(veh./km) 
10 20 30 40 50 60 70 80 90 100 

a 0.362 0.351 0.313 0.292 0.267 0.258 0.216 0.199 0.176 0.153 

b 0.621 0.576 0.531 0.499 0.434 0.392 0.357 0.291 0.268 0.243 

𝑁𝑚𝑎𝑥 125 62 41 31 25 21 18 15 14 12 

Recall that all equipped vehicles within communication range are assumed to share the 

bandwidth equally. Suppose the single unit of an information packet is 500 bytes. To prevent 

information congestion effects that would occur if the channel capacity is full, the maximum 

number of communication servers can be calculated as follows  

  𝑁𝑚𝑎𝑥 = [
𝐶

2 ∙ 𝑘 ∙ 𝛽 ∙ 𝑅 ∙ 𝑊 ∙ 𝜒
]. 

where 𝑅  is the communication range, 𝐶  is the channel capacity (3 Mbps), 𝑊  is the market 

penetration rate of V2V-equipped vehicles (50% in this study). 𝜒 is the information packet size 

(500 bytes), and 𝑘 is the traffic flow density. The operator [ℎ] means the largest integer less than 

ℎ. The calculated 𝑁𝑚𝑎𝑥 values for different traffic flow densities are shown in Table 3. They will 

be used as the total number of communication servers under the corresponding traffic flow 

densities. To account for the impacts of positions of vehicles on success rate of V2V 

communications, vehicles are assumed to be randomly distributed along the 30 km highway. The 

simulation is conducted for 30 minutes, and is repeated 100 times. The calibrated parameters in 

the communication kernel are presented in Table 2. Figure 3.3 illustrates the simulated success 

rate of one-hop propagation and calibrated communication kernels at 𝑘 = 40 veh/h and 𝑘 = 60 

veh/h. The R-squared values of the calibrated communication kernel at 𝑘 = 40 veh/h and 𝑘 =

60 veh/h are 0.96 and 0.94, respectively, indicating that the calibrated communication kernel 

robustly captures the relationship between success rate of one-hop propagation and the distance 

of the sender vehicle to the receiver vehicle. In addition, for the same distance, the success rate 

of one-hop propagation at 𝑘 = 60 veh/h is less than it is at 𝑘 = 40 veh/h. This because the 

communication interference increases if more vehicles are located within the communication 

range of a sender vehicle, causing greater communication failure.  
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3.5.2 IFPW under homogeneous conditions 

3.5.2.1 Asymptotic density of informed vehicles and IFPW speed  

The following example shows how to calculate the asymptotic density of informed vehicles 

analytically under homogeneous conditions. Suppose the traffic flow density is 40 veh/h, and the 

market penetration rate of equipped vehicles is 50%. Then, for each cell, the number of equipped 

vehicles is 0.3 veh/cell (𝜎). According to Table 3.3, the parameters 𝑎 and 𝑏 in Eq. (3.26) are 

0.292 and 0.499, respectively. Suppose the specific information of interest is from information 

class 𝑗. Assume the number of communication servers (𝑛𝑗) assigned to send the information 

packets in information class 𝑗 is 11 and the corresponding mean communication service rate 𝑢𝑗 is 

0.05 packet/seconds (i.e., mean service time is 20 seconds). Note 𝑛𝑗𝑢𝑗 − 𝜆𝑗 = 11 × 0.05 − 0.5 =

0.05 > 0 and  𝛾𝑗 = 𝛽𝑏𝜎 𝑢𝑗⁄ = 2 × 0.499 × 0.5 ∗
0.6

0.05
= 2.994 > 1. According to Theorem 3.4 

and Corollary 3.1, the asymptotic density of informed vehicles exists. Corollary 3.1 indicates that 

𝐼𝑗
∗(𝑥) = 0.3 ∙ 𝛼𝑗

∗, where 𝛼𝑗
∗is the unique solution of the nonlinear solution 𝑒−3.384𝛼𝑗 + 𝛼𝑗 − 1 =

0 for 𝛼𝑗 ∈ [0,1]. Using Newton method to solve the nonlinear equation, we have 𝛼𝑗
∗ = 0.9613. 

Thereby, the asymptotic density of informed vehicles is 𝐼𝑗
∗(𝑥) = 0.3 ∙ 0.9613 = 0.288 vehicel/

cell =  19.2 𝑣𝑒ℎ/𝑘𝑚. The information spread (proportion of informed vehicles) is 𝑃𝐼𝑗
∗ = 𝛼𝑗

∗ =

0.9613.  

 

Figure 3.4 Asymptotic proportions of informed vehicles at 𝑛𝑗 = 11 and 𝑢𝑗 = 0.05 under 

different traffic densities 
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Figure 3.4 compares the information spread of the specific information packet of information 

class 𝑗 under different traffic flow densities at 𝑛𝑗 = 11 and 𝑢𝑗 = 0.05 packets/second. It shows 

that the numerical solutions overlap with the analytical solutions, implying that the numerical 

algorithm proposed in Section 3.4.2 can effectively solve the two-layer model. Figure 3.4 also 

demonstrates that when traffic flow density increases, the information spread also increases as 

more vehicles will propagate it in an unit of time. This indicates that under higher traffic flow 

density scenarios, the mean communication service rate of information packets of class 𝑗 can be 

reduced for the same information spread.  

 

Figure 3.5 Density of vehicles by vehicle class at 𝑡 = 150 seconds and 𝑡 = 230 seconds 

Suppose the traffic flow density is 40 veh/h and the specific information packet of interest in 

information class 𝑗  is generated by a vehicle at time 0 and location 0. Let 𝜆𝑗 = 0.5 

packets/second, 𝑛𝑗 = 20 and 𝑢𝑗 = 0.03 packets/second. Figure 3.5 shows the spatial distribution 

of density of vehicles by vehicle classes at 𝑡 = 150 seconds and 𝑡 = 230 seconds. It indicates 

that the IFPW can form the same shape to move forward and backward. Most of the information-

holding and information-relaying vehicles are located close to the wave front. This is because 

when 𝜆𝑗 < 𝑛𝑗𝑢𝑗 and  𝑢𝑗 > 0, the information packet in information class 𝑗 will experience finite 

queuing delay and communication service time. Thereby, the vehicles that receive the specific 
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information packet of interest a long time ago will exclude it from the system. The information-

holding and information-relaying vehicles will become information-excluded vehicles eventually.  

 

Figure 3.6 Density of information-relaying vehicles in space and time at 𝑘 = 40 𝑣𝑒ℎ/𝑘𝑚 

 

Figure 3.7 Density of information-excluded vehicles at 𝑡 = 150 seconds and 𝑡 = 230 seconds 
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According to Figure 3.7, the cells whose densities of information-relaying vehicles in the 

backward and forward IFPWs are most close to 𝑅0 at 𝑡 = 150 seconds are located at −2.085 km 

and 11.055 km, respectively. The cells whose densities of information-relaying vehicles in the 

backward and forward IFPWs are most close to 𝑅0 at 𝑡 = 230 seconds are located at −4.875 km 

and 18.645 km, respectively. According to Eq. (3.53) and Eq. (3.54), the forward and backward 

IFPW speeds can be estimated as:  

𝑐𝐹 =
(𝑙𝐹,𝑡2 − 𝑙𝐹,𝑡1)∆𝑥

𝑡1 − 𝑡2
=
−2.085 + 4.875

150 − 230
= 0.09488𝑘𝑚/𝑠 = 341𝑘𝑚/ℎ  

𝑐𝐵 =
|(𝑙𝐵,𝑡2 − 𝑙𝐵,𝑡1)∆𝑥|

𝑡1 − 𝑡2
=
|−2.085 + 4.875|

150 − 230
= 0.03487𝑘𝑚/𝑠 = 125𝑘𝑚/ℎ  

3.5.2.2 Scenarios where the information packet can be propagated only locally  

 

(a) Density of information-relaying vehicle in space and time for  𝑛𝑗 = 20 and 𝑢𝑗 = 0.323 

 

(b) Density of information-relaying vehicle in space and time for  𝑛𝑗 = 20 and 𝑢𝑗 = 0.9. 

Figure 3.8 Scenarios for which the information packets are propagated only locally 
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As Theorem 3.4 indicates, the IFPW does not exist when the mean communication service 

rate is high enough such that 𝛾𝑗 < 1. In this case, the specific information packet in information 

class 𝑗  can be propagated only locally. This property can be leveraged to send information 

packets in a small vicinity of where they are generated. The following example seeks to 

demonstrate how to control the propagation distance by leveraging communication service rate 

when information is propagated locally. Suppose the traffic flow density is 40 veh/h, the average 

arrival rate of information packets of information class 𝑗 is 2 packets/second, and the number of 

assigned communication servers for information class 𝑗 is 20. Let the density of information-

relaying vehicles at location 0 and time 0 be 11 veh/km and 0 elsewhere. Figure 3.8(a) and 

Figure 3.8(b) show the spatiotemporal distribution of density of information-relaying vehicles at 

𝑢 = 0.323 and 𝑢 = 0.9, respectively. Note 𝛾𝑗 < 1 in both cases. Figure 3.8 illustrates that the 

density of information-relaying vehicles decreases to 0 in space and time. Recall only 

information-relaying vehicles can propagate the specific information packets of interest. This 

implies that the specific information packet can only be propagated locally. Vehicles far away 

from location 0 where the specific information packet is generated will not receive it. It can be 

noted that the density of information-relaying vehicles decreases to 0 at 350 meters and 150 

meters downstream of location 0 at 𝑢 = 0.323  and 𝑢 = 0.9 , respectively. This implies the 

information packets can be propagated further away under a lower communication service rate. 

Thereby, the mean communication service rate can also be leveraged to propagate information to 

different distances.  

3.5.2.3 Integrated impacts of 𝑛𝑗  and 𝑢𝑗  on asymptotic IFPW speed and density of informed 

vehicles              

Suppose the traffic flow density is 50 veh/km, and the arrival rate of the information packets 

in information class 𝑗 is 1 packet/second. To analyze the impacts of 𝑛𝑗 and 𝑢𝑗 on IFPW speed 

and density of informed vehicles, 𝑢𝑗 is varied from 0.05 packets/second to 0.25 packets/second. 

According to M/M/𝑛𝑗 queuing theory, to enable propagation of the specific information packet of 

information class 𝑗 , 𝜆𝑗 (𝑛𝑗𝑢𝑗)⁄  must be less than 1. Thereby, the minimum number of 

communication servers assigned to send information packets of information class 𝑗 are 21, 11, 7, 

6, 5 for 𝑢𝑗 = 0.05, 0.1, 0.15, 0.2 ,0.25, respectively. Figure 3.9 shows the asymptotic forward 

IFPW speed for various values of 𝑛𝑗  and 𝑢𝑗 . It shows that when 𝑢𝑗  is fixed, the asymptotic 
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forward IFPW speed increases monotonically with respect to 𝑛𝑗 . This is because as more 

communication servers are assigned to information class 𝑗, the mean waiting time of the specific 

information packet in the queue will reduce (see Figure 3.10). Thereby, it can be transmitted 

faster by the informed vehicles. Figure 3.9 also shows that for a fixed 𝑛𝑗 , the IFPW speed 

decreases monotonically with respect to mean communication service rate 𝑢𝑗  in most cases 

because an increase in mean communication service rate will reduce the transmission duration of 

the packet. However, in some cases (e.g., 𝑛𝑗 = 22, 23, etc.), increase in 𝑢𝑗  may decrease the 

forward IFPW speed. This is because for a fixed 𝑛𝑗, increase in 𝑢𝑗 will increase the mean waiting 

time in the queue (see Figure 3.10). Thereby, unlike that of the number of communication 

servers, the effect of mean communication service rate on the IFPW speed is more intricate. The 

proposed method in this study aids in determining the appropriate mean communication service 

rate for each information class to satisfy its application needs in terms of propagation 

performance.  

 

Figure 3.9 Impacts of 𝑛𝑗 and 𝑢𝑗 on asymptotic forward IFPW speed of an information packets of 

information class 𝑗   

Figure 3.11 shows the information spread of the specific information of interest under 

different communication service rates. As the value of 𝑢𝑗 increases, information spread decreases 

monotonically, implying that less number of vehicles will receive the specific information of 

interest. This is because an informed vehicle will exclude the specific information packet of 

interest from the communication servers faster under higher mean communication service rate. It 

is worth mentioning that the number of communication servers has no effect on information 

spread. Thereby, to design effective control strategies for propagating information packets in 
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different classes, the mean communication service rate can be determined first to obtain the 

desired information spread. Then, the appropriate number of communication servers can be 

determined to be assigned to different information classes to control their propagation speed. 

Further, Figure 3.11 shows that the numerical solutions are almost identical to the analytical 

solutions. 

 

Figure 3.10 Mean waiting time of information packets in the queue for various values of 𝑛𝑗 and 

𝑢𝑗 

                                   

Figure 3.11 Comparison of numerical and analytical solutions of information spread for 

different values of 𝑢𝑗 
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3.5.3 Control of multiclass information flow propagation under homogeneous and 

heterogeneous traffic conditions  

3.5.3.1 Control of multiclass information flow propagation under homogeneous traffic 

conditions 

 

Figure 3.12 Comparison of forward and backward propagation speeds of information classes 

1 and 2 

This section analyzes the control of multiclass information propagation to meet application 

needs of various classes simultaneously. Recall that the queuing system for each information 

class is independent. Thereby, the number of communication servers and the mean 

communication service rate can be controlled for each information class to achieve desired 

propagation performance related to information spread (related to density of informed vehicles), 

time delay bounds (related to IFPW speed) and spatial coverage (related to existence of IFPW). 

Suppose traffic flow density is 50 veh/km and information from three information classes 

(labeled information class 1, 2 and 3) is propagated over the traffic stream. Let information class 

1 contain “urgent” information (e.g., traffic accident blocks the freeway link fully). It is desirable 

for this information to reach all upstream and downstream vehicles with low latency. Information 

class 2 is constituted by less urgent information; for example, routing information. It is delay-

tolerant and is expected to reach a lower proportion of equipped vehicles compared to 

information class 1 to avoid congestion in other routes. Information class 3 contains information 

with limited impact area, which needs to be propagated locally, for example, information of 

sudden braking of a vehicle, lane merge information, etc. Suppose the mean arrival rate of 

information packets of information class 1, 2 and 3 are 0.3, 0.8 and 1.2 packets/second, 

respectively. According to Table 3.3, the total number of communication servers that can be 
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assigned under traffic flow density 50 veh/km is 25. Let the number of communication servers 

assigned to information classes 1, 2 and 3 be 12, 8 and 5, respectively. The mean communication 

service rates are set correspondingly as 𝑢1 = 0.05 packets/second, 𝑢2 = 0.2 packets/second, and 

𝑢3 = 0.4 packets/second. Note that 𝛾1 > 1, 𝛾2 > 1, and 𝛾3 < 1. According to Theorem 3.4, the 

IFPW exists for propagation of information packets of information classes 1 and 2 while it does 

not exist for information packets of class 3. 

 

Figure 3.13 Contour of density of information-relaying vehicles of information class 3 

Figure 3.12 compares the forward and backward IFPW speed of information classes 1 and 2. 

It shows that both forward and backward IFPW speeds of information class 1 are greater than 

those of information class 2. In addition, the proportion of vehicles (information spread) 

informed with the packets of information class 1 and information class 2 are 99.8% and 65.6%, 

respectively. Thereby, under the designed control strategy, packets from information class 1 can 

reach more number of vehicles with lower time delay compared to packets from information 

class 2. Figure 3.13 shows the contour of the density of information-relaying vehicles. It 

indicates that vehicles relaying the specific information packet of information class 3 decreases 

dramatically with space and time. The specific information packet is almost excluded by all 

vehicles beyond the locations 480 meters downstream and 200 meters upstream of its point of 

origin (i.e., location 0). Thereby, the information packets of class 3 are only propagated to a 

small area.  
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3.5.3.2 Control of multiclass information flow propagation under heterogeneous conditions  

 

Figure 3.14 Contour of traffic density 

This section address the control of information flow propagation under heterogeneous 

conditions. Similar to Kim et al. (2017), consider that a traffic accident happens at time 0 on a 

unidirectional highway with a traffic flow density of 50 veh./km. As illustrated by Figure 3.14, 

the incident occurs at location A. It reduces the link capacity by one third for 4 minutes before it 

is cleared. The congested traffic and the free flow traffic departing from the incident occurrence 

location are separated by Line AB. The occurrence and clearance of the incident induce two 

forward propagating traffic waves denoted by lines AD and BF, respectively. After the incident 

occurs, vehicles are jammed at the incident location, leading to a traffic wave propagating 

backward.  

Suppose information packets of three different information classes are generated at location 

C, and their arrival rates are identical. We label them information classes 1, 2, and 3. Information 

classes 1 and 2 contain routing information and are expected to reach the same number of 

equipped vehicles. However, information packet of class 2 is expected to be propagated faster 

than information packet of class 1 as it contains information related to the traffic accident, which 

requires more imminent response from the vehicles. Information class 3 contains information 

related to the level of traffic congestion induced by the traffic accident. Hence, information 

packets of class 3 are expected to be received by all vehicles in the impacted area.  

To achieve these objectives, let the number of communication servers assigned for 

information classes 1, 2 and 3 be 5, 10 and 10, respectively. The mean communication service 

rates for the three information classes are 𝑢1 = 0.15 packets/second, 𝑢2 = 0.15 packets/second, 
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and 𝑢3 = 0.06  packets/second. The numerical solution method will be used to calculate the 

information propagation speed and the proportion of informed vehicles (information spread) for 

the three information classes.  

 
(a) information class 1 

 
 (b) information class 2 

 
(c) information class 3 

Figure 3.15 Contour of proportion of information-excluded vehicles of information packets 

of classes 1, 2 and 3 
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Figures 3.15(a) and 3.15(b) compare the backward and forward IFPW speeds of information 

classes 1 and 2, respectively. They illustrate that information packets in both classes are 

propagated very fast in the uncongested area which is not impacted by the traffic accident (see 

stages 𝑎 and 𝑎′ in Figures 3.15(a) and 3.15(b), respectively). The propagation speed decreases 

significantly when the information packets arrive at the congested area induced by the traffic 

accident (stages 𝑏 and 𝑏′ in Figures 3.15(a) and 3.15(b), respectively). This is because higher 

traffic density of vehicles can increase communication interference, causing significant 

communication failures. The IFPW speed is recovered to the original value when the congested 

area is passed to catch up with the normal traffic (stages 𝑐 and 𝑐′ in Figures 3.15(a) and 3.15(b), 

respectively). It is important to note that information packets in information class 2 are 

propagated faster than those in information class 1. For example, the information packets of 

information class 1 take about 4 minutes and 5 minutes to reach the points G and H located at 9 

km and 30 km, respectively. In comparison, it only takes 2 minutes 40 seconds and 4 minutes for 

information packets of information class 2 to reach the two locations, respectively. These results 

indicate that under heterogeneous conditions, controlling the number of communication servers 

assigned to each information class can significantly impact the time delay of the information 

packets to reach the targeted locations. Figures 3.15(a) and 3.15(b) also reveal that the 

information spread (i.e., 𝑃𝐼𝑗
∗ ) is the same in space and time. This implies that the number of 

communication servers only impacts the propagation speed, but not the asymptotic proportion of 

informed vehicles.  

Figure 3.15(c) shows that 𝑃𝐼3∗ = 0.996 , implying that almost all equipped vehicles can 

receive information packets of class 3. Note that the number of assigned communication servers 

for information classes 2 and 3 are identical. Figures 3.15(b) and Figure 3.15(c) indicate that 

smaller mean communication service rate will enable more number of vehicles to receive the 

specific information packet in corresponding information class. However, it may reduce the 

forward and backward propagation speeds. Figure 3.15(c) shows that it takes longer time for 

information packets in information class 3 to be delivered at locations G and H, compared to 

those of information class 2. This is because reducing the mean communication service rate will 

increase the mean waiting time of information packets in the queue. Thereby, under the designed 

scenarios, the information propagation speed is reduced due to increased mean waiting time. The 

proposed method in this study can aid transportation operators to determine the mean 
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communication service rate and the number of communication servers assigned to each 

information class to control the information propagation performance under both homogeneous 

and heterogeneous traffic conditions.  

3.6 Conclusions  

The traffic information propagated in a V2V-based traffic system can be grouped into different 

classes based on application needs related to information spread, time delay bounds, and spatial 

coverage. To meet these needs of multiclass information under different traffic flow and 

communication environments, this study proposes a queuing strategy for equipped vehicles to 

propagate the received information packets. The queuing strategy enables control for multiclass 

information propagation by leveraging two control parameters, the number of communication 

servers and the mean communication service rate. The spatiotemporal propagation of 

information in different information classes under the designed queuing strategy is characterized 

by a two-layer analytical model. The upper layer is an IDE system derived to model the 

information dissemination under the designed queuing strategy, and a LWR model is used in the 

lower layer to describe the traffic flow dynamics. An analytical solution of asymptotic density of 

informed vehicles is developed under homogeneous traffic conditions. It helps to analyze the 

relationship between the density of informed vehicles and the two control parameters in the 

queuing strategy. In addition, the necessary conditions for existence of IFPW are derived. It 

describes the conditions under which the specific information packets will be propagated only 

locally. A numerical solution is proposed to solve the two-layer model to estimate the IFPW 

speed, which helps to estimate the time delay for an information packet to reach the target 

location.  

Numerical experiments using the proposed model suggest that the mean communication 

service rate significantly impacts the asymptotic density of informed vehicles. Also, all else 

being equal, an increase the number of communication servers assigned to an information class 

will increase the IFPW speed of the information packets in this information class. In addition, 

information will be propagated only locally under a high communication service rate because 

each information packet has little transmission duration. These findings provide valuable insights 

for controlling the propagation of multiclass information to achieve desired operational 

performance in a V2V-based traffic system. Hence, this study can be leveraged to develop a new 
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generation of information dissemination strategies focused on enabling specific V2V-based 

applications.  

This study can be extended in a few directions. First, analytical solutions of the IFPW speed 

can be derived to provide insights on the relationship between the two control parameters in the 

queuing strategy and the resulting IFPW speed of information packets in each information class. 

Second, this study only considers control of information flow propagation in a corridor. The 

performance of the proposed method on control of network-level information flow propagation 

needs to be investigated. Third, this study assigns the received information packets into different 

queues according to the information classes they belong to. It assumes that the number of 

available communication servers is larger than the number of information classes. This 

assumption may not hold in scenarios of high traffic density, where the maximum number of 

information packets (i.e., 𝑁𝑚𝑎𝑥) an equipped vehicle can be transmit in one-hop propagation is 

small due to information congestion (Wang et al., 2018). To address this, other queuing 

strategies such as preemptive priority and non-preemptive priority queuing systems will be 

developed to control the propagation of information of different information classes. 

  

https://pubsonline.informs.org/doi/abs/10.1287/opre.9.5.732
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 A REAL-TIME DEPLOYABLE MODEL PREDICTIVE 

CONTROL-BASED COOPERATIVE PLATOONING APPROACH FOR 

CONNECTED AND AUTONOMOUS VEHICLES 

4.1 Introduction  

Connected and autonomous vehicle (CAV) technologies provide disruptive and 

transformational opportunities for innovations toward intelligent transportation systems. Unlike 

human-driven vehicles, CAVs have shorter reaction times, better knowledge of ambient traffic 

(in terms of speed, position, acceleration, etc.), and faster information processing speeds. These 

characteristics enable CAVs to form platoons to drive cooperatively on the road, in which a 

vehicle maintains a small and nearly constant headway with its preceding vehicle. Past studies 

suggest that vehicle platooning of CAVs can benefit transportation systems in many ways (Jia et 

al., 2015). It can increase road capacity, reduce energy consumption and tailpipe emissions, and 

facilitate vehicle-to-vehicle based applications (involving data sharing and dissemination) due to 

the relatively fixed positions of vehicles within a platoon.  

In the literature, many adaptive cruise control (ACC) models (e.g., VanderWerf et al., 2001; 

Hasebe et al., 2003; Kesting et al., 2008; Darbha and Rajagopal, 1999) and cooperative ACC 

(CACC) models (e.g., Ploeg et al., 2014; Zheng et al., 2014; Li et al., 2011; Jia and Ngoduy, 

2016; Jin and Orosz., 2014) have been proposed to control longitudinal car-following behavior 

of vehicles to enable efficient vehicle platooning. The ACC uses information from a preceding 

vehicle while CACC uses information from a group of preceding vehicles by leveraging 

connectivity technologies to make decisions to optimize each individual vehicle’s performance. 

It is important to note here that CACC only follows the cooperative sensing concept (Wang et al, 

2014b), and the behaviors of vehicles controlled by both ACC and CACC are non-cooperative. 

That is, the control is not based on viewing a group of vehicles as an integrated system, which 

can deteriorate system (platoon) performance in terms of safety, mobility, energy consumption, 

etc. To bridge this gap, recently, model predictive control (MPC)-based cooperative control 

strategies have been proposed to coordinate the behaviors (accelerations or decelerations) of all 

of the following vehicles in a CAV platoon (e.g., Wang et al., 2014; Gong and Du, 2018; Zhou et 

al., 2017). The MPC strategy incorporates an optimal control problem to optimize the control 

decisions of the following vehicles in the platoon for some future period (labeled prediction 
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horizon) to maximize the platoon performance based on the vehicles’ state information at the 

current time. Thereby, MPC-based cooperative control strategies enable CAVs in a platoon to 

collaborate with each other and maneuver under a common goal. Prior studies suggest that these 

strategies can lead to smoother deceleration behavior and more responsive and agile acceleration 

behavior compared to non-cooperative controllers (Wang et al., 2014b, Gong and Du, 2018).  

While the aforementioned MPC-based cooperative control strategies can coordinate the car-

following behaviors of CAVs in a platoon effectively, their real-time deployability requires that 

at each sampling time instant, the group of CAVs solve the embedded optimal control problem 

instantaneously (i.e., in much less than 0.1 seconds) to obtain the vehicles’ control decisions 

based on their detected states (e.g., speed and positions) at that instant. These decisions then 

needs to be executed to control the CAV platoon at the sampling time instant with no delay. 

However, this requirement cannot be satisfied in practice due to the computational time required 

by the CAVs to solve the optimal control problem. As pointed by Zhou et al. (2017), the 

computational time for solving the optimal control problem increases monotonically with the 

number of vehicles in the platoon and the prediction horizon. It can become intractable in real 

traffic systems due to the expansion of the dimensionality of state and control input spaces 

(Wang et al., 2016). Thereby, based on platoon size and prediction horizon length, the 

computational time of the optimal control problem can cause significant delay (labeled control 

delay) in the execution of the optimal control decisions for the CAV platoon. As the CAVs’ 

states change dynamically, the control delay can significantly deteriorate performance and even 

induce vehicle collisions. This precludes these MPC-based cooperative control strategies for a 

CAV platoon from being applied in real-time.  

Some recent studies have sought to reduce the control delay induced by the computational 

time for solving the optimal control problem embedded in MPC-based cooperative control 

strategies. Wang et al. (2016) propose a decentralized MPC strategy which considers cooperation 

among only two vehicles in a decoupled platoon system. It can reduce the computational time 

substantially by optimizing only two vehicles’ control decisions simultaneously. However, the 

performance of the CAV platoon cannot be enhanced to the fullest under this strategy as only 

two vehicles’ behaviors are coordinated at the same time under a common objective. Further, the 

computational time for solving the optimal control problem can increase with the prediction 

horizon for even the decoupled platoon system. Gong and Du (2018) propose a distributed 
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solution algorithm to reduce computational time by distributing the computational tasks among 

all CAVs in the platoon. However, the computational time of this algorithm can increase 

dramatically with platoon size and prediction horizon. Hence, these methods (e.g., Wang et al., 

2016; Gong and Du, 2018) alleviate the issue of control delay of MPC-based cooperative control 

strategies to only a certain extent, but are still limited by platoon size and/or prediction horizon.   

This study develops two real-time deployable MPC-based approaches that address the issue 

of the control delay at a fundamental level. To do so, first, an idealized MPC-based cooperative 

control strategy is proposed by modifying the strategies proposed by Wang et al. (2014b) and 

Zhou et al. (2017). It can coordinate the behavior of all of the following CAVs in the platoon to 

maneuver them efficiently and safely on the idealized assumption that the embedded optimal 

control problem can be solved instantaneously. To relax this assumption, two deployable 

approaches, labeled the deployable MPC (DMPC) approach and the DMPC with first-order 

approximation (DMPC-FOA) approach, are proposed to address the issue of computational delay 

associated with solving the optimal control problem in the idealized MPC-based strategy. It 

should be noted that to enable efficient coordination of the car-following behaviors of all CAVs 

in the platoon, such approaches need to accurately characterize the optimal control decisions of 

the idealized MPC-based strategy.  

The DMPC approach reserves sufficient time before each sampling time instant to solve the 

optimal control problem so that the optimal control decisions can be obtained in advance to be 

executed at the corresponding sampling time instant with no delay. However, as the leading 

vehicle of a platoon needs to respond to the dynamics of the vehicles downstream of it, its 

behavior cannot be controlled and coordinated with those of the following vehicles in the platoon. 

Thereby, its position and speed at each sampling time instant need to be predicted ahead of that 

time, which is determined by the time reserved for computing. Hence, the optimal control 

decisions of the DMPC approach can deviate from that of the idealized MPC strategy due to 

error in predicting the leading vehicle’s position and speed in advance. To address this problem, 

the DMPC-FOA approach is proposed to more accurately characterize the optimal control 

decisions of the idealized MPC strategy. Before each sampling instant, the DMPC-FOA 

approach reserves sufficient time to determine not only the optimal control decisions using the 

leading vehicle’s predicted position and speed at the sampling time instant, but also the 

derivatives of the estimated optimal control decisions with respect to the leading vehicle’s 
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position and speed. Thereby, at the sampling time instant when the leading vehicle’s actual 

position and speed are detected, the first-order Taylor approximation method can be applied to 

correct the estimated optimal control decisions for the following vehicles. Numerical 

experiments illustrate that the DMPC-FOA approach can address the issue of control delay while 

accurately estimating the optimal control decisions of the idealized MPC strategy.  

The contributions of this study are fourfold. First, an idealized MPC strategy is proposed to 

coordinate the behaviors of the following vehicles in the platoon by modifying the control 

strategies proposed by Wang et al. (2014b) and Zhou et al. (2017).  Further, a solution algorithm 

is proposed to solve the optimal control problem with both control constraints and pure state 

constraints in the idealized MPC strategy. A two-point boundary value problem is derived based 

on the necessary conditions for optimality to obtain the optimal control decisions to coordinate 

the behaviors of all vehicles in the platoon to maximize the platoon performance. Second, the 

study develops the DMPC-FOA approach that simultaneously addresses the control delay issue 

while accurately characterizing the optimal control decisions of the idealized MPC strategy. 

Thereby, it can be applied in real-time to efficiently coordinate the car-following behaviors of all 

CAVs in a platoon. Third, the method for sensitive analysis of the optimal control problem is 

analytically formulated. It can quantitatively measure the impact of parametric perturbations (e.g., 

perturbations of initial state of the leading vehicle) on the optimal control decisions and the 

platoon performance. Fourth, an analytical method is provided for stability analysis of the 

idealized MPC strategy. It helps to identify the inputs of the parameters in the idealized MPC 

strategy to better dampen the oscillations in the platoon.   

The remainder of this paper is organized as follows. The next section provides the analytical 

formulation of the idealized MPC cooperative control strategy for a CAV platoon and discusses 

the framework for the DMPC and DMPC-FOA approaches. Section 3 introduces the solution 

algorithm to solve the optimal control problem in the idealized MPC strategy. The method for 

the sensitivity analysis of the optimal control problem is presented in Section 4. Section 5 

discusses the conditions for the stability of the idealized MPC strategy without inequality 

constraints. Section 6 discusses results of numerical experiments to compare the control 

performance of the idealized MPC strategy and the DMPC and DMPC-FOA approaches. The 

last section provides some concluding comments. 
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4.2 MPC approaches for longitudinal control of CAV platoon 

4.2.1 An idealized MPC cooperative control strategy for a CAV platoon 

This section presents an idealized MPC strategy to control the CAVs in a platoon 

cooperatively by modifying the control strategies developed by Wang et al. (2014b) and Zhou et 

al. (2017). It seeks to coordinate the behavior of all following vehicles to: (1) maintain a desired 

safe spacing (labeled equilibrium spacing) between two consecutive vehicles in a platoon, and 

reduce traffic flow oscillations in terms of spacing and speed changes, and (2) maximize the 

comfort of travelers in these vehicles by minimizing deceleration and acceleration. The details of 

the idealized MPC strategy are as follows.  

Consider a stream of CAVs in a single highway lane as shown in Figure 4.1. Let 0,1,2⋯ , 𝑛 

represent the CAVs in the platoon sequentially with 0 being the leading CAV and 𝑛 being the tail 

CAV. The following assumptions will be used to design the longitudinal control of the CAV 

platoon: 

1. All vehicles in the platoon are CAVs. 

2. Two-way V2V communications exist between the leading vehicle and each of the 

following vehicles in the platoon.  

3. All CAVs can sense their kinematic states (speed, position, etc.) accurately and can send 

that information to the leading vehicle of their platoon instantaneously. 

4. The leading CAV computes and sends the optimal control decisions (i.e., accelerations 

and decelerations) to all of the following CAVs which implement these decisions. 

5. The actuator delay is negligible; that is, vehicles can implement the control instantly. 

6. The pavement of the highway lane is in good condition and longitudinal slope is 

negligible. 

 

Figure 4.1 A CAV platoon stream. 

In this study, we treat a platoon of CAVs as an integrated system, in which vehicles within 

the platoon are controlled in a coordinated manner. Define the state of a follower vehicle 𝑖 as 

(𝑠𝑖(𝑡) − 𝑠𝑖
∗(𝑡), 𝑣𝑖(𝑡) − 𝑣𝑖−1(𝑡)) , where 𝑠𝑖(𝑡)  is the spacing of vehicle 𝑖  with its predecessor 

vehicle at time 𝑡, 𝑣𝑖(𝑡) is the speed of vehicle 𝑖 at time 𝑡, and 𝑠𝑖
∗(𝑡) is the equilibrium spacing at 

Traffic flow direction
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time 𝑡. This study uses the constant time headway policy to determine the equilibrium spacing. 

Thereby, 𝑠𝑖
∗(𝑡) = 𝑟𝑖

∗ ∙ 𝑣𝑖(𝑡) + 𝑠𝑓, where 𝑟𝑖
∗ is the constant time headway for vehicle 𝑖 and 𝑠𝑓 is 

the safe distance to the predecessor vehicle. For simplicity, the constant time headway for each 

follower vehicle in the platoon is assumed to be the same, i.e., 𝑟𝑖
∗ = 𝑟∗, ∀𝑖 = 1,2,⋯𝑛 . Let 

𝑥𝑖(𝑡) = 𝑠𝑖(𝑡) − 𝑠𝑖
∗(𝑡), ∀𝑖 be the position error between the desired spacing and actual spacing of 

vehicle 𝑖 from its predecessor vehicle at time 𝑡. Denote 𝑦𝑖(𝑡) as the speed difference of vehicle 𝑖 

from its predecessor vehicle at time 𝑡 , i.e., 𝑦𝑖(𝑡) = 𝑣𝑖(𝑡) − 𝑣𝑖−1(𝑡) . Denote 𝑑𝑖(𝑡)  as the 

longitudinal position of CAV 𝑖 in the platoon at time 𝑡. Then, 

𝑥𝑖(𝑡) = 𝑑𝑖−1(𝑡) − 𝑑𝑖(𝑡) − 𝑟
∗ ∙ 𝑣𝑖(𝑡) − 𝑠𝑓     (4.1) 

and  

�̇�𝑖(𝑡) = 𝑣𝑖−1(𝑡) − 𝑣𝑖(𝑡) − 𝑟
∗ ∙ 𝑢𝑖(𝑡)   (4.2a) 

�̇�𝑖(𝑡) = 𝑢𝑖(𝑡) − 𝑢𝑖−1(𝑡)   (4.2b) 

where �̇�𝑖(𝑡) is the first-order derivative of position error of vehicle 𝑖 from its predecessor vehicle 

with respect to time 𝑡. �̇�𝑖(𝑡) is the first-order derivative of speed difference of vehicle 𝑖 from its 

predecessor vehicle with respect to time 𝑡. 𝑢𝑖(𝑡) is the acceleration of CAV 𝑖 at time 𝑡.  

The spacing of vehicle 𝑖, ∀𝑖 = 1,2,⋯ , 𝑛 from its predecessor vehicle can then be expressed 

as:  

𝑠𝑖(𝑡) = 𝑥𝑖(𝑡) + 𝑟
∗ ∙ (𝑣0(𝑡) +∑ 𝑦𝑗(𝑡)

𝑖

𝑗=1
) + 𝑠𝑓, ∀𝑖 = 1,2,⋯ , 𝑛     (4.3) 

Denote 𝐱(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)]
𝑇 , 𝐲(𝑡) = [𝑦1(𝑡), 𝑦2(𝑡),⋯ , 𝑦𝑛(𝑡)]

𝑇 , and 𝒖(𝑡) =

[𝑢1(𝑡), 𝑢2(𝑡),⋯ , 𝑢𝑛(𝑡)]
𝑇.  𝐱(𝑡) and 𝐲(𝑡) are vectors of state variables. Assume that the leading 

vehicle 0 travels at a constant speed. Then, the dynamics of the states (i.e., 𝐱 and 𝐲) are as 

follows: 

⌈
�̇�(𝑡)

�̇�(𝑡)
⌉ = [

𝟎𝑛 −𝑬𝑛
𝟎𝑛 𝟎𝑛

]
⏟      

𝑨

⌈
𝐱(𝑡)

𝐲(𝑡)
⌉ + [

𝚲
𝑺
]

⏟
𝑩

∙ 𝒖(𝑡) 
    (4.4) 

where �̇�(𝑡) and �̇�(𝑡) are first-order derivatives of 𝐱(𝑡) and 𝐲(𝑡) with respect to time 𝑡, 𝟎𝑛 is the 

𝑛-dimensional zero square matrix, and 𝚲 = −𝑟∗ ∙ 𝑬𝑛, 𝑬𝑛 is the 𝑛-dimensional identity matrix. 

Matrices 𝑨 and 𝑩 are defined in Eq. (4.4). The matrix 𝑺 is: 
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𝑺 =

[
 
 
 
 
1
−1 1

−1 1
⋱ ⋱

−1 1 ]
 
 
 
 
𝑛×𝑛

  

 

(a) Implementation framework 

 

(b) Computational procedure 

Figure 4.2 The idealized MPC strategy 

Following the elucidation of the state variables, the next step in developing the idealized 

MPC strategy is the conceptual illustration of its implementation framework and computational 

procedure, as shown in Figures 4.2(a) and 4.2(b), respectively. In Figure 4.2(a), let 𝑡𝑘(𝑘 =

1,2,3⋯ )  be the sampling time instant at which new optimal control decisions should be 

executed to control vehicles in the platoon, 𝑇𝑃 be the prediction horizon for which the optimal 

control decisions are determined, and  ∆𝑡 (∆𝑡 ≤ 𝑇𝑃) be the roll period for which these decisions 

are implemented. Such a rolling horizon framework enables the practical implementation of the 

control strategy by trading off (solution) computational time with solution accuracy by limiting 

the prediction horizon size while being responsive to unfolding traffic conditions. Thereby, for a 

Prediction horizon ( seconds)

Roll period ( seconds)

Time

Problem 

(5)

Platoon 

control

At time 

At time

Solved instantaneously
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sampling time instant 𝑡𝑘 , the new optimal control decisions are calculated for the prediction 

horizon [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃], but only implemented for the roll period [𝑡𝑘, 𝑡𝑘 + ∆𝑡] by the following 

vehicles in the platoon to control their behavior. Then, at the next sampling time instant 𝑡𝑘+1 

(where 𝑡𝑘+1 = 𝑡𝑘 + ∆𝑡) , the procedure is repeated to determine and implement the optimal 

control decisions for all following CAVs in the platoon for roll period [𝑡𝑘+1, 𝑡𝑘+1 + ∆𝑡]. This 

procedure is repeated until the platoon dissipates. 

Next, the idealized MPC strategy to determine the optimal control decisions and its 

computational procedure are exposited. Let 𝐳(𝑡) = [𝐱(𝑡)𝑇, 𝐲(𝑡)𝑇]𝑇 . Following Wang et al. 

(2014b) and Zhou et al. (2017), at each sampling time instant 𝑡𝑘 , ∀𝑘 = 0,1,2⋯, the optimal 

control decisions of all of the following vehicles in the platoon can be obtained by solving the 

following optimal control problem: 

min
𝒖
∫

1

2
𝑒−𝛽𝑡𝐿(𝒛(𝑡), 𝒖(𝑡))

𝑇𝑃

0

𝑑𝑡 +
1

2
𝑒−𝛽𝑇𝑃𝜙(𝐳(𝑇𝑃)) (4.5a) 

�̇�(𝑡) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝒖(𝑡) (4.5b) 

𝑠𝑖(𝑡) = 𝑥𝑖(𝑡) + 𝑟
∗ ∙ (𝑣0(0) +∑ 𝑦𝑗(𝑡)

𝑖

𝑗=1
) + 𝑠𝑓 ≥ s𝑚𝑖𝑛; 𝑖 = 1,2,⋯ , 𝑛 (4.5c) 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥; 𝑖 = 1,2,⋯ , 𝑛 (4.5d) 

𝐳(0) = [𝐱0
𝑇 𝐲0

𝑇]𝑇 (4.5e) 

where  

𝐿(𝒛(𝑡), 𝒖(𝑡)) = 𝐳(𝑡)𝑇 [
𝑹1

𝑹2
] 𝐳(𝑡) + 𝒖(𝑡)𝑇𝑹3𝒖(𝑡) (4.5f) 

𝜙(𝐳(𝑇𝑃)) = 𝐳(𝑇𝑃)
𝑇 [
𝑹4

𝑹5
] 𝐳(𝑇𝑃) (4.5g) 

In problem (4.5), for expository convenience, we consider a generic prediction horizon and 

ignore the sampling time instant 𝑡𝑘. So, 𝑡 ∈ [0, 𝑇𝑃] without loss of generality in (5). Here, 𝑹1, 

𝑹2 , 𝑹3  𝑹4 , and 𝑹5  are weight matrices; 𝑹1 , 𝑹2 ,  𝑹4 , and 𝑹5  are symmetric positive definite 

matrices; and 𝑹3 is a positive definite diagonal matrix (Zhou et al., 2017).  𝐿(𝒛(𝑡), 𝒂(𝑡)) is the 

running cost which is the cost incurred during an infinitesimal period (Wang et al. 2014b). It 

consists of two terms. The first term 𝐳(𝑡)𝑇 [
𝑹1

𝑹2
] 𝐳(𝑡) seeks to minimize the position errors 

and the relative speed of all adjacent vehicle pairs. The second component (i.e., 𝒖(𝑡)𝑇𝑹3𝒖(𝑡)) is 

to maximize comfort by reducing hard braking and acceleration. 𝑒−𝛽𝑡 is a term to weight the 
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running cost at different times and 𝛽 is the discount coefficient. This term provides higher weight 

for the running cost for the near-term future than for the longer-term future as the uncertainty in 

running cost increases with time (Wang et al., 2014b). 𝜙(𝐳(𝑇𝑃)) is the terminal cost which is 

used to penalize the value of objective function if the values of the state variables at the end of 

the prediction horizon deviate from the equilibrium point (i.e., 0). Eq. (4.5b) describes the 

dynamics of the state variables (i.e., position errors and relative speeds of all adjacent vehicle 

pairs in the platoon). Eq. (4.5c) is a safety constraint to ensure that the spacing between two 

consecutive CAVs in the platoon is always larger than a positive lower bound s𝑚𝑖𝑛, s𝑚𝑖𝑛 > 0. 

Note 𝑣0(𝑡) ≡ 𝑣0(0)  under the assumption 𝑢0(𝑡) ≡ 0  for 𝑡 ∈ [0, 𝑇𝑃] . Eq. (4.5d) specifies the 

upper bound (𝑢𝑚𝑎𝑥) and lower bound (𝑢𝑚𝑖𝑛) of the acceleration. Eq. (4.5e) specifies the initial 

inputs for the state variables. Hence, for example, for any sampling time instant 𝑡𝑘 , 𝐱𝑘 =

[𝑥1(𝑡𝑘), 𝑥2(𝑡𝑘),⋯ , 𝑥𝑛(𝑡𝑘)]  and 𝐲𝑘 = [𝑦1(𝑡𝑘), 𝑦2(𝑡𝑘),⋯ , 𝑦𝑛(𝑡𝑘)]  are values of 𝐱0
𝑇  and 𝐲0

𝑇 , 

respectively.  

There are primarily two differences between optimal control problem (4.5) and the ones 

developed by Wang et al. (2014b) and Zhou et al. (2017). First, a term 𝑒−𝛽𝑡  is added to the 

objective function to weight the running costs at different times. Second, a terminal cost 

𝜙(𝐳(𝑇𝑃)) is added to penalize the objective function if the state variables deviate from the 

equilibrium point 0 at the end of the prediction horizon. These two terms will be useful to 

analyze the stability of the idealized MPC strategy. In addition, for convenience of stability 

analysis, the weight matrices 𝑹𝑖(𝑖 = 1,2,4,5) are assumed to have the following forms: 

𝑹1 = 𝜦
𝑻𝑫𝑎𝜦, 𝑹2 = 𝜦

𝑻𝑫𝑏𝜦, 𝑹4 = 𝜦
𝑻𝑫𝑐𝜦, and 𝑹5 = 𝜦

𝑻𝑫𝑒𝜦  (4.6) 

where 𝜦  is an orthogonal matrix,  𝜦𝑇𝜦 = 𝜦𝜦𝑇 = 𝑬𝑛 , and  𝑫𝑎 , 𝑫𝑏 , 𝑫𝑐  and 𝑫𝑒  are positive 

definite diagonal matrices. The inputs of these weight matrices will be determined by the 

stability analysis in Section 5. Eq. (4.6) shows that if 𝜦 = 𝑬𝑛 , then 𝑹1 , 𝑹2 , 𝑹4 , and 𝑹5  are 

positive definite diagonal matrices.  

Let 𝐳(𝑡𝑘) be the actual values of the state variables at the sampling time instant 𝑡𝑘, (𝑘 =

1,2,⋯ ), 𝐳(𝑡𝑘) = [𝐱𝑘
𝑇 𝐲𝑘

𝑇]𝑇 . The computational procedure of the idealized MPC strategy is 

summarized in Figure 4.2(b). At each sampling time instant 𝑡𝑘(𝑘 = 1,2,⋯ ), the leading vehicle 

obtains the value of 𝐳(𝑡𝑘) through V2V communications. It solves the optimal control problem 

(4.5) to determine the optimal control decisions (i.e.,𝒖∗(𝑡) ) during the prediction horizon 

[𝑡𝑘, 𝑡𝑘 + 𝑇𝑃] by inputting the value of  𝐳(𝑡𝑘) into Eq. (4.5e). The optimal control decisions are 
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sent by the leading vehicle to the following vehicles to control their behaviors only for the roll 

period [𝑡𝑘, 𝑡𝑘 + ∆𝑡], (i.e., [𝑡𝑘, 𝑡𝑘+1]). Then, at the sampling time instant 𝑡𝑘+1, the optimal control 

problem (4.5) is solved again to obtain the optimal control decisions 𝒖∗(𝑡) for the prediction 

horizon [𝑡𝑘+1, 𝑡𝑘+1 + 𝑇𝑃], and is implemented to control the CAV platoon for the roll period 

[𝑡𝑘+1, 𝑡𝑘+1 + ∆𝑡]. These steps are repeated at each sampling time instant.  

As can be noted, the idealized MPC strategy computes the optimal control decisions by 

solving the optimal control problem (4.5) at each sampling time instant and implements it to 

control the CAVs for the roll period starting at that instant. To achieve this, it is assumed that the 

leading vehicle can solve the optimal control problem (4.5) of the idealized MPC strategy 

instantaneously at each sampling time instant 𝑡𝑘. However, in practice, the computational time 

for solving the optimal control problem (4.5) increases with platoon size and prediction horizon 

size. It can cause significant delays in executing the control decisions, which can deteriorate the 

performance and even lead to vehicle collisions. Thereby, while the idealized MPC strategy can 

coordinate the behavior of the following vehicles in the platoon to maneuver them efficiently and 

safely, it cannot be deployed to control the CAV platoon in real-time.  

4.2.2 DMPC approach framework 

The leading vehicle of a CAV platoon needs to respond to the dynamics of the vehicles 

downstream of it. Thereby, its behavior is not known in advance. However, the behavior of all 

following vehicles in the platoon for each roll period can be estimated at the corresponding 

sampling time instant through the known optimal control decisions of the previous roll period 

(i.e., 𝒖∗(𝑡), 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘−1 + ∆𝑡]). To account for this difference, we divide 𝐳(𝑡) into two parts, 

𝒛1(𝑡) and 𝒛2(𝑡). We denote the vector of position error and speed difference of vehicle 1 from 

that of the leading vehicle 0 as 𝒛1(𝑡) = [𝑥1(𝑡), 𝑦1(𝑡)]
𝑇, and the vector of state variables for the 

other following vehicles as 𝒛2(𝑡) = [𝑥2(𝑡), 𝑥3(𝑡),⋯ , 𝑥𝑛(𝑡), 𝑦2(𝑡), 𝑦3(𝑡),⋯ , 𝑦𝑛(𝑡)]
𝑇 . At each 

sampling time instant 𝑡𝑘, the value of 𝒛1(𝑡𝑘) cannot be computed in advance due to the unknown 

position and speed of the leading vehicle at that instant. However, 𝐳2(𝑡𝑘) can be estimated in 

advance at a short time before the sampling time instant 𝑡𝑘.  

We propose the DMPC approach to address the strong assumption of the idealized MPC 

strategy that the optimal control problem (4.5) can be solved instantaneously. The 

implementation framework for the DMPC approach is shown in Figure 4.3(a). Unlike the 
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idealized MPC strategy, the DMPC approach reserves a sufficient amount of time, labeled 

reserved time (denoted as 𝜏1), before each sampling time instant 𝑡𝑘 (𝑘 = 1,2,⋯ ) to solve the 

optimal control problem (4.5) so that the optimal control decisions are available at 𝑡𝑘 for the 

corresponding roll period. It is important to note that the roll period ∆𝑡 should be larger than 𝜏1 

to enable the real-time implementation of the DMPC approach.  

 

(a) Implementation framework 

 

(b) Computational procedure. 

Figure 4.3 The DMPC approach 

The DMPC computational procedure is illustrated in Figure 4.3(b). The DMPC approach 

starts to solve the optimal control problem at time 𝑡𝑘 − 𝜏1  to predict the values of all state 

variables at time 𝑡𝑘 (i.e., 𝐳(𝑡𝑘)). As stated in the assumptions, the leading vehicle can obtain the 

actual states of all following vehicles at time instant 𝑡𝑘 − 𝜏1 through V2V communications. Also, 

as discussed earlier in this section, it knows the control decisions of all following vehicles in the 

time period [𝑡𝑘 − 𝜏1, 𝑡𝑘] as they are determined at the beginning of the previous roll period. The 

DMPC approach leverages these two sets of inputs to predict 𝐳2(𝑡𝑘) with low error. This is 

because in the context of the CAV platooning application, 𝜏1 is much smaller than the roll period, 
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in the order of a fraction of a second. Hence, as the actual states are available close to 𝑡𝑘, and 

prior control decisions are known, we assume that the error in estimating 𝐳2(𝑡𝑘) is negligible. 

As discussed earlier, the leading vehicle’s behavior is not known in advance. Thereby, 𝐳1(𝑡𝑘) 

cannot be estimated with low error unlike 𝐳2(𝑡𝑘) . Hence, the value of 𝐳1(𝑡𝑘)  needs to be 

predicted at time instant 𝑡𝑘 − 𝜏1 . To do so, the leading vehicle’s behavior at 𝑡𝑘  needs to be 

predicted at 𝑡𝑘 − 𝜏1. As 𝜏1 is much smaller than the roll period, we assume the acceleration of 

the leading vehicle 0 during the small time interval [𝑡𝑘 − 𝜏1, 𝑡𝑘] remains the same as at time 

instant 𝑡𝑘 − 𝜏1. Then, 

�̂�0(𝑡𝑘) = 𝑣0(𝑡𝑘 − 𝜏1) + 𝑢0(𝑡𝑘 − 𝜏1) ∙ 𝜏1 (4.7a) 

�̂�0(𝑡𝑘) = 𝑑0(𝑡𝑘 − 𝜏1) + 𝑣0(𝑡𝑘 − 𝜏1) ∙ 𝜏1 + 0.5 ∙ 𝑢0(𝑡𝑘 − 𝜏1) ∙ (𝜏1)
2 (4.7b) 

where �̂�0(𝑡𝑘) and �̂�0(𝑡𝑘) are the predicted speed and predicted position of the leading vehicle at 

time instant 𝑡𝑘 , respectively. Here, 𝑣0(𝑡𝑘 − 𝜏1) ,  𝑑0(𝑡𝑘 − 𝜏1)  and 𝑢0(𝑡𝑘 − 𝜏1)  are the actual 

speed, position and acceleration of the leading vehicle at 𝑡𝑘 − 𝜏1, respectively, that are detected 

through onboard sensors. The position error and relative speed of vehicle 1 from that of the 

leading vehicle 0 at time instant 𝑡𝑘 can then be predicted as: 

�̂�1(𝑡𝑘) = �̂�0(𝑡𝑘) − 𝑑1(𝑡𝑘) − 𝑟
∗ ∙ 𝑣1(𝑡𝑘) − 𝑠𝑓 (4.8a) 

�̂�1(𝑡𝑘) = 𝑣1(𝑡𝑘) − �̂�0(𝑡𝑘) (4.8b) 

where �̂�1(𝑡𝑘) and �̂�1(𝑡𝑘) are the predicted position error and speed difference of vehicle 1 with 

respect to the leading vehicle 0 at time 𝑡𝑘 , respectively. Note that the speed and position of 

vehicle 1 at time instant 𝑡𝑘 − 𝜏1 are detected through the onboard sensors, and the corresponding 

control decision 𝑢1(𝑡), 𝑡 ∈ [𝑡𝑘 − 𝜏1, 𝑡𝑘] is known. Then, 𝑑1(𝑡𝑘) and 𝑣1(𝑡𝑘) can be computed as:  

𝑣1(𝑡𝑘) = 𝑣1(𝑡𝑘 − 𝜏1) + ∫ 𝑢1(𝑡)
𝑡𝑘

𝑡𝑘−𝜏1

𝑑𝑡 (4.9a) 

𝑑1(𝑡𝑘) = 𝑑1(𝑡𝑘 − 𝜏1) + ∫ 𝑣1(𝑡)
𝑡𝑘

𝑡𝑘−𝜏1

𝑑𝑡 

= 𝑑1(𝑡𝑘 − 𝜏1) + ∫ [𝑣1(𝑡𝑘 − 𝜏1) + (∫ 𝑢1(𝜍)𝑑𝜍
𝑡

𝑡𝑘−𝜏1

)]
𝑡𝑘

𝑡𝑘−𝜏1

𝑑𝑡 

(4.9b) 

Note that the predicted value �̂�1(𝑡𝑘) (�̂�1(𝑡𝑘) = [�̂�1(𝑡𝑘), �̂�1(𝑡𝑘)]) is different from the actual 

value 𝒛1(𝑡𝑘) due to the error in predicting the leading vehicle’s position and speed. Thereby, the 

estimated control decisions of the DMPC approach (i.e., �̂�(𝑡)) are different from the optimal 

control decisions computed by the idealized MPC strategy (i.e., 𝒖∗(𝑡) ). In the numerical 
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experiments, we will show that the estimated control decisions of the DMPC approach will 

deviate significantly from those of the idealized MPC strategy when the error in predicting 

𝒛1(𝑡𝑘) is large. This will deteriorate the efficiency of the CAV platoon and can cause vehicular 

collisions. 

4.2.3 DMPC-FOA approach framework 

The DMPC approach circumvents the strong assumption of the idealized MPC strategy at the 

cost that the estimated control decisions may deviate significantly from those of the idealized 

MPC strategy due to the error in predicting 𝒛1(𝑡𝑘). To address this problem, we propose the 

DMPC-FOA approach which simultaneously addresses the control delay issue of the idealized 

MPC strategy while more accurately characterizing the optimal control decisions. 

Let 𝜏2 be the reserved time for computing the optimal control decisions for the DMPC-FOA 

approach. Also, let �̃�1(𝑡𝑘) = [�̃�1(𝑡𝑘) �̃�1(𝑡𝑘)] be the predicted value of 𝒛1(𝑡𝑘) for the DMPC-

FOA approach at time instant 𝑡𝑘 − 𝜏2 by replacing  𝜏1  with 𝜏2  in Eqs. (4.7) and (4.8). Here, 

�̃�1(𝑡𝑘) and �̃�1(𝑡𝑘) are the predicted position error and speed difference of vehicle 1 with respect 

to the leading vehicle at time instant 𝑡𝑘, respectively. Similar to the DMPC approach, we assume 

the error in estimating 𝐳2(𝑡𝑘) is negligible as the actual states (i.e., 𝐳2(𝑡𝑘 − 𝜏2)) are available 

close to 𝑡𝑘, and prior control decisions are known.  

Denote 𝜸(𝑡) as the vector of costate variables associated with the state equations (5b). The 

costate variables indicate the change in the objective function value for a unit change in the 

corresponding state variable at the optimal state (Gaimon, 2002). The computational procedure 

for the DMPC-FOA approach is illustrated in Figure 4.4, where �̃�∗(𝑡) and �̃�∗(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃] 

are the solutions for the state and costate variables obtained by solving optimal control problem 

(4.5) with initial inputs [�̃�1(𝑡𝑘), 𝒛2(𝑡𝑘)]). The optimal control decisions for the idealized MPC 

strategy, 𝜑( 𝒛∗(𝑡),  𝜸∗(𝑡))  (denoted as 𝒖∗(𝑡)), are analytically derived in Section 3 (see Eq. 

(4.23)) which discusses the solution algorithm. Then, 𝒖∗(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃]  can be 

approximated by 𝜑( �̃�∗(𝑡),  �̃�∗(𝑡))  (denoted as �̃�∗(𝑡) ). Note that the difference between 

[ �̃�∗(𝑡),  �̃�∗(𝑡)] and [ 𝒛∗(𝑡),  𝜸∗(𝑡)] significantly impacts the accuracy of the estimated control 

decisions �̃�∗(𝑡). To reduce the difference between �̃�∗(𝑡) and 𝒖∗(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃], sensitivity 

analysis of the optimal control problem (4.5) is performed to determine the derivatives of 
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𝜕�̃�∗(𝑡) 𝜕⁄ �̃�1(𝑡𝑘) (i.e., [
𝜕 �̃�∗(𝑡)

𝜕�̃�1(𝑡𝑘)
,
𝜕 �̃�∗(𝑡)

𝜕�̃�1(𝑡𝑘)
]) and 𝜕�̃�∗(𝑡) 𝜕⁄ �̃�1(𝑡𝑘) (i.e., [

𝜕 �̃�∗(𝑡)

𝜕�̃�1(𝑡𝑘)
,
𝜕 �̃�∗(𝑡)

𝜕�̃�1(𝑡𝑘)
]). These two 

terms can quantitatively measure the changes in the optimal solutions for  �̃�∗(𝑡) and �̃�∗(𝑡) for a 

unit increase in �̃�1(𝑡𝑘). Thereby, at sampling time instant 𝑡𝑘 when the actual value of 𝑥1(𝑡𝑘) and 

𝑦1(𝑡𝑘) are detected through onboard sensors, the first-order Taylor’s approximation is applied to 

better estimate the solutions of  𝒛∗(𝑡) and 𝜸∗(𝑡), as follows:  

 �̅�∗(𝑡) =  �̃�∗(𝑡) +
𝜕 �̃�∗(𝑡)

𝜕�̃�1(𝑡𝑘)
(𝑥1(𝑡𝑘) − �̃�1(𝑡𝑘)) +

𝜕 �̃�∗(𝑡)

𝜕�̃�1(𝑡𝑘)
(𝑦1(𝑡𝑘) − �̃�1(𝑡𝑘)), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃] (4.10a) 

 �̅�∗(𝑡) =  �̃�∗(𝑡) +
𝜕 �̃�∗(𝑡)

𝜕�̃�1(𝑡𝑘)
(𝑥1(𝑡𝑘) − �̃�1(𝑡𝑘)) +

𝜕 �̃�∗(𝑡)

𝜕�̃�1(𝑡𝑘)
(𝑦1(𝑡𝑘) − �̃�1(𝑡𝑘)), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃] (4.10b) 

where �̅�∗(𝑡) and �̅�∗(𝑡) are the values of  𝒛∗(𝑡) and  𝜸∗(𝑡) estimated by the DMPC-FOA approach, 

respectively. 

 

Figure 4.4 Computational procedure of the DMPC-FOA approach. 

When compared to [ �̃�∗(𝑡),  �̃�∗(𝑡)], [ �̅�∗(𝑡),  �̅�∗(𝑡)] are closer to [ 𝒛∗(𝑡),  𝜸∗(𝑡) ]. Thereby, in 

Figure 4.4, the estimated control decisions �̅�∗(𝑡) = 𝜑( �̅�∗(𝑡),  �̅�∗(𝑡))  are closer to 𝒖∗(𝑡) 

compared to  �̃�∗(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃] , . It is important to note here that Eq. (4.10) can be 

calculated instantaneously if the derivatives are obtained before the sampling time instant 𝑡𝑘. In 

addition, 𝜑( �̅�∗(𝑡),  �̅�∗(𝑡))  can also be calculated instantaneously due to the closed-form 

formulation (Eq. (4.23)).  Thereby, the DMPC-FOA approach can be applied for real-time 

control of the CAV platoon with no control delay.  

As can be noted, before each sampling time instant 𝑡𝑘,  the DMPC-FOA approach needs to 

solve the optimal control problem (4.5) and conduct sensitivity analysis. Hence, the reserved 

time 𝜏2 ≥ 𝜏1. Nevertheless, we will show using numerical examples that the gap between �̅�∗(𝑡) 

and 𝒖∗(𝑡) is negligible even for large prediction errors of 𝒛1(𝑡𝑘) at every sampling time instant 

Sensitivity 

analysis
FOA

At time 

At time

At time 

Solved during time 

Problem 

(5)
Platoon 

control



115 

 

 

 

𝑡𝑘.  

4.3 Solution algorithm for optimal control problem (4.5)  

To solve optimal control problem (4.5), a two-point boundary value problem is developed in this 

section based on the necessary conditions for optimality, the solution of which determines the 

optimal control decisions for all following CAVs. The two-point boundary value problem can be 

solved efficiently using methods such as the shooting method (Keller, 1976), method of steepest 

descent (Kirk, 2012), and iterative algorithm (Wang et al., 2014a).  

Optimal control problem (4.5) contains control constraints (Eq. (4.5d)) and pure state 

variable inequality constraints (4.5c). The presence of pure state variable inequality constraints 

increases the difficulty in designing an effective solution algorithm as these constraints depend 

on the control history. To address this problem, optimal control problem (4.5) is converted to an 

equivalent optimal control problem without pure state variable inequality constraints. To do so, 

we define a variable 𝑧 that has the following functional relationship 

�̇�(𝑡) =∑{[𝑠𝑖(𝑡) − s𝑚𝑖𝑛]
2𝐼(𝑠𝑖(𝑡) − s𝑚𝑖𝑛)}

𝑛

𝑖=1

 (4.11) 

where 

𝐼(𝑠𝑖(𝑡) − s𝑚𝑖𝑛) = {
0, 𝑖𝑓  𝑠𝑖(𝑡) − s𝑚𝑖𝑛 ≥ 0 
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 

According to Eq. (4.11), �̇�(𝑡) ≥ 0 . Thereby, 𝑧(𝑡)  is a non-decreasing function of time 𝑡 . If 

𝑧(0) = 𝑧(𝑇𝑃) = 0, then z(𝑡) ≡ 0, 𝑡 ∈ [0, 𝑇𝑃], implying  𝑠𝑖(𝑡) − s𝑚𝑖𝑛 ≥ 0 for 𝑡 ∈ [0, 𝑇𝑃]. Then, 

optimal control problem (4.5) can be rewritten as the following equivalent problem: 

min
𝒖
∫

1

2
𝑒−𝛽𝑡[𝐳(𝑡)𝑇𝑸1𝐳(𝑡) + 𝒖(𝑡)

𝑇𝑹3𝒖(𝑡)]
𝑇𝑃

0

𝑑𝑡 +
1

2
𝑒−𝛽𝑇𝑃𝐳(𝑇𝑃)

𝑇𝑸2𝐳(𝑇𝑃) (4.12a) 

�̇�(𝑡) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝒖(𝑡) (4.12b) 

�̇�(𝑡) =∑{[𝑠𝑖(𝑡) − s𝑚𝑖𝑛]
2𝐼(𝑠𝑖(𝑡) − s𝑚𝑖𝑛)}

𝑛

𝑖=1

 (4.12c) 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥; 𝑖 = 1,2,⋯𝑛 (4.12d) 

𝐳(0) = [𝐱0
𝑇 𝐲0

𝑇]𝑇; 𝑧(0) = 𝑧(𝑇𝑃) = 0 (4.12e) 

where  
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𝑸1 = [
𝑹1

𝑹2
]; 𝑸2 = [

𝑹4
𝑹5
]  

To develop a two-point boundary value problem based on the necessary conditions for 

optimality of optimal control problem (4.5), the terminal condition 𝑧(𝑇𝑃) = 0 is removed from 

Eq. (4.12e). To ensure 𝑧(𝑇𝑃) → 0, the term M ∙ (𝑧(𝑇𝑃))
2

 is added to the objective function, 

where M is a sufficiently large number. If 𝑧(𝑇𝑃) ≠ 0, the objective function is penalized. The 

optimal control problem (4.12) can then be re-written as: 

min
𝒖
∫

1

2
𝑒−𝛽𝑡[𝐳(𝑡)𝑇𝑸1𝐳(𝑡) + 𝒖(𝑡)

𝑇𝑹3𝒖(𝑡)]
𝑇𝑃

0

𝑑𝑡 +
1

2
𝑒−𝛽𝑇𝑃𝐳(𝑇𝑃)

𝑇𝑸2𝐳(𝑇𝑃) + M ∙ (𝑧(𝑇𝑃))
2
 (4.13a) 

�̇�(𝑡) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝒖(𝑡) (4.13b) 

�̇�(𝑡) =∑{[𝑠𝑖(𝑡) − s𝑚𝑖𝑛]
2𝐼(𝑠𝑖(𝑡) − s𝑚𝑖𝑛)}

𝑛

𝑖=1

 (4.13c) 

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥; 𝑖 = 1,2,⋯𝑛 (4.13d) 

𝐳(0) = [𝐱0
𝑇 𝐲0

𝑇]𝑇; 𝑧(0) = 0 (4.13e) 

Optimal control problem (4.13) is equivalent to problem (4.5). It contains only control 

constraints. Define the vector of functions 𝐟1(𝒛(𝑡), 𝒖(𝑡))  and the function  f2(𝒛(𝑡), 𝒖(𝑡))  as 

follows: 

�̇�(𝑡) = ⌈
�̇�(𝑡)

�̇�(𝑡)
⌉ = 𝐟1(𝒛(𝑡), 𝒖(𝑡)) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝒖(𝑡) (4.14a) 

�̇�(𝑡) = f2(𝒛(𝑡), 𝒖(𝑡)) =∑{[𝑠𝑖(𝑡) − s𝑚𝑖𝑛]
2𝐼(𝑠𝑖(𝑡) − s𝑚𝑖𝑛)}

𝑛

𝑖=1

 (4.14b) 

Then, the Hermitian function for optimal control problem (4.13) is written as: 

𝑯(𝒛(𝑡), 𝝀𝐴(𝑡), 𝒖(𝑡)) 

= 𝑒−𝛽𝑡𝐿(𝒛(𝑡), 𝒖(𝑡)) + 𝝀(𝑡)𝑇
𝑇
∙ 𝐟1(𝒛(𝑡), 𝒖(𝑡)) + 𝜆(𝑡) ∙ f2(𝒛(𝑡), 𝒖(𝑡)). 

(4.15) 

where 𝝀(𝑡) = [𝜆1(𝑡) ⋯ 𝜆2𝑛(𝑡)]
𝑇  and 𝜆(𝑡)  are the costate variables associated with 

𝐟1(𝒛(𝑡), 𝒖(𝑡))  and f2(𝒛(𝑡), 𝒖(𝑡)) , respectively. Let 𝝀𝐴(𝑡) = [𝝀(𝑡)
𝑇, 𝜆(𝑡)]𝑇 , and 𝒛𝐴(𝑡) =

[𝒛(𝑡)𝑇 , 𝑧(𝑡)]𝑇. According to Pontryagin's minimum principle, the necessary conditions for 𝒖∗(𝑡) 

to be an optimal solution for problem (4.13) are  

𝝀�̇�(𝑡) = −(
𝜕𝑯

𝜕𝒛𝐴(𝑡)
) (4.16a) 

⌈
�̇�(𝑡)

�̇�(𝑡)
⌉ = [

𝐟1(𝒛(𝑡),𝒖(𝑡))

f2(𝒛(𝑡),𝒖(𝑡))
] (4.16b) 

with the initial conditions given in Eq. (4.13e) and the terminal conditions as: 



117 

 

 

 

𝝀(𝑇𝑃) = 𝜕 (
1

2
𝑒−𝛽𝑇𝑃𝐳(𝑡)𝑇𝑸2𝐳(𝑡)) 𝜕𝐳(𝑡)⁄ |

𝑡=𝑇𝑃

 

= 𝑒−𝛽𝑇𝑃 ∙ 𝑸2 ∙ 𝐳(𝑇𝑃); 

(4.16c) 

𝜆(𝑇𝑃) = 𝜕(M ∙ 𝑧(𝑡)
2) 𝜕𝑧(𝑡)⁄ |𝑡=𝑇𝑃  

= 2 M ∙ 𝑧(𝑇𝑃). 
(4.16d) 

In addition, the optimal state trajectory 𝒛∗(𝑡) , the optimal costate trajectory 𝝀𝐴
∗(𝑡)  and the 

optimal control decisions 𝒖∗(𝑡) should satisfy 

𝑯(𝒛∗(𝑡), 𝝀𝐴
∗(𝑡), 𝒖∗(𝑡)) ≤  𝑯(𝒛∗(𝑡), 𝝀𝐴

∗(𝑡), 𝒖(𝑡));   𝒖(𝑡), 𝒖∗(𝑡) ∈ 𝓤 (4.16e) 

where 𝓤 = {𝒖|𝑢𝑚𝑖𝑛 ≤ 𝑢𝑖 ≤ 𝑢𝑚𝑎𝑥;  𝑖 = 1,2, ⋯ 𝑛} . To convert these necessary conditions for 

optimality into a two-point boundary value problem, we define the current-value Hamiltonian 

function as follows: 

𝑯𝒄 = 𝑒
𝛽𝑡𝑯 = 𝐿(𝒛(𝑡), 𝒖(𝑡)) + 𝜸(𝑡)𝑇𝐟1(𝒛(𝑡), 𝒖(𝑡)) + 𝛾(𝑡)f2(𝒛(𝑡), 𝒖(𝑡)).  (4.17) 

where 𝜸(𝑡) = 𝝀(𝑡)𝑒𝛽𝑡 , 𝛾 = 𝜆(𝑡)𝑒𝛽𝑡 are the costate variables for the current-value Hamiltonian 

function. Since the discount factor 𝑒−𝛽𝑡 does not depend on the control variables, the optimal 

control 𝒖∗  that minimizes the Hamiltonian function 𝑯  must also minimize the current-value 

Hamiltonian function (Eq. (4.17)). Let 𝜸𝐴 = [𝜸(𝑡)
𝑇 , 𝛾(𝑡)]𝑇. Then,  

�̇�𝐴(𝑡) = −𝛽𝑒
−𝛽𝑡𝜸𝐴(𝑡) + 𝑒

−𝛽𝑡�̇�𝐴(𝑡).   (4.18a) 

𝜕𝑯

𝜕𝒛𝐴(𝑡)
=

𝜕𝑯𝑐
𝜕𝒛𝐴(𝑡)

𝑒−𝛽∙𝑡 (4.18b) 

Eqs. 4.18(a) and 4.18(b) imply  

�̇�𝐴(𝑡) = 𝝀�̇�(𝑡) + 𝛽𝜸𝑨(𝑡) (4.19) 

Thereby, 

�̇�(𝑡) = −
𝜕𝑯𝑐
𝜕𝒛

+ 𝛽𝜸(𝑡) 

= −
𝜕 𝐟1(𝒛,𝒖)

𝜕𝒛
𝜸(𝑡) −

𝜕f2(𝒛,𝒖)

𝜕𝒛
𝛾(𝑡) −

𝜕 𝐿(𝒛,𝒖)

𝜕𝒛
+ 𝛽𝜸(𝑡) 

= −𝑨 ∙ 𝜸(𝑡) − [
𝑪𝑥
𝑪𝑦
] 𝛾(𝑡) − 𝑸1𝐳(𝑡) + 𝛽𝜸(𝑡). 

(4.20a) 

�̇�(𝑡) − 𝛽 ∙ 𝛾(𝑡) = −𝜕𝑯𝑐 𝜕𝑧(𝑡)⁄ = 0 (4.20b) 

where  
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𝑪𝑥 =
𝜕f2(𝒛(𝑡), 𝒖(𝑡))

𝜕𝐱(𝑡)
= [

2 ∙ [𝑠1(𝑡) − 𝑠𝑚𝑖𝑛] ∙ 𝐼(𝑠1(𝑡) − 𝑠𝑚𝑖𝑛)

2 ∙ [𝑠2(𝑡) − 𝑠𝑚𝑖𝑛] ∙ 𝐼(𝑠2(𝑡) − 𝑠𝑚𝑖𝑛)
⋮

2 ∙ [𝑠𝑛(𝑡) − 𝑠𝑚𝑖𝑛] ∙ 𝐼(𝑠𝑛(𝑡) − 𝑠𝑚𝑖𝑛)

]  

𝑪𝑦 =
𝜕f2(𝒛(𝑡), 𝒖(𝑡))

𝜕𝐲(𝑡)
= [𝐶1,𝑦 𝐶2,𝑦 ⋯ 𝐶𝑛,𝑦]  

𝐶𝑖,𝑦 =∑ 2 ∙ [𝑠𝑗(𝑡) − 𝑠𝑚𝑖𝑛] ∙ 𝐼(𝑠𝑗(𝑡) − 𝑠𝑚𝑖𝑛)
𝑖

𝑗=1
, ∀𝑖 = 1,2,⋯𝑛.  

The terminal conditions in Eq. (4.16c) and Eq. (4.16d) imply that 

𝜸(𝑇𝑃) = 𝑸2 ∙ 𝐳(𝑇𝑃)
𝑇, 𝛾(𝑇𝑃) = 𝑒

𝛽𝑇𝑃 ∙ M ∙ 2 ∙ 𝑧(𝑇𝑃) (4.21) 

Let 𝜸𝐴
∗ (𝑡) = 𝝀𝐴

∗(𝑡)𝑒𝛽𝑡  . Since 𝑒𝛽𝑡 > 0 , according to Eq. (4.17), at time 𝑡 , minimizing 

𝑯(𝒛∗(𝑡), 𝝀𝐴
∗(𝑡), 𝒖(𝑡)) with respect to 𝒖(𝑡) is equivalent to minimizing 𝑯𝒄(𝒛

∗(𝑡), 𝜸𝐴
∗ (𝑡), 𝒖(𝑡)) 

with respect to 𝒖(𝑡) . This indicates that if the optimal control 𝒖∗  minimizes 

𝑯𝒄(𝒛
∗(𝑡), 𝝀𝐴

∗(𝑡), 𝒖(𝑡)), it is the solution to inequality (4.16e). Thereby, 𝒖∗(𝑡) can be found by 

solving the following minimization problem  

𝑚𝑖𝑛𝒖(𝑡)𝑯𝒄(𝒛
∗(𝑡), 𝜸𝐴

∗ (𝑡), 𝒖(𝑡));    𝒖(𝑡), 𝒖∗(𝑡) ∈ 𝓤 (4.22) 

Proposition 4.1. Let [𝑝1(𝑡) 𝑝2(𝑡) ⋯ 𝑝𝑛(𝑡)]
𝑇 = −(𝑹3)

−1(𝑩𝑇𝜸∗(𝑡)); if 𝑹3  is a diagonal 

positive definite matrix, then the optimal control decisions 𝒖∗ = [𝑢1
∗ 𝑢2

∗ ⋯ 𝑢𝑛
∗ ]  that 

minimizes 𝑯𝒄(𝒛
∗, 𝜸𝐴

∗ , 𝒖) is unique and can be formulated as 

𝑢𝑖
∗(𝑡) = 𝜑(𝒛∗(𝑡), 𝜸∗(𝑡)) = {

𝑢𝑚𝑖𝑛, 𝑖𝑓 𝑝𝑖(𝑡) < 𝑢𝑚𝑖𝑛            
𝑢𝑚𝑎𝑥, 𝑖𝑓 𝑝𝑖(𝑡) > 𝑢𝑚𝑎𝑥          
𝑝𝑖(𝑡), 𝑖𝑓𝑢𝑚𝑖𝑛 ≤ 𝑝𝑖(𝑡) ≤ 𝑢𝑚𝑎𝑥

 (4.23) 

Proof. If 𝒖∗ = [𝑢1
∗ 𝑢2

∗ ⋯ 𝑢𝑛
∗ ] minimizes 𝑯𝒄(𝒛

∗(𝑡), 𝜸𝐴
∗ (𝑡), 𝒖(𝑡)), then we have  

𝐿(𝒛∗(𝑡), 𝒖∗(𝑡)) + 𝜸∗(𝑡)𝐟1(𝒛
∗(𝑡), 𝒖∗(𝑡)) + 𝛾∗(𝑡)f2(𝒛

∗(𝑡), 𝒖∗(𝑡)) 

≤ 𝐿(𝒛∗(𝑡), 𝒖(𝑡)) + 𝜸∗(𝑡)𝐟1(𝒛
∗(𝑡), 𝒖(𝑡)) + 𝛾∗(𝑡)f2(𝒛

∗(𝑡), 𝒖(𝑡)) 
(4.24) 

Eq. (4.24) indicates 

0.5 ∙ 𝒖∗(𝑡)𝑇𝑹3𝒖
∗(𝑡)+ (𝜸∗(𝑡))

𝑇
∙ 𝑩 ∙ 𝒖∗(𝑡) 

≤ 0.5 ∙ 𝒖(𝑡)𝑇𝑹3𝒖(𝑡) + (𝜸
∗(𝑡))

𝑇
∙ 𝑩 ∙ 𝒖(𝑡) 

(4.25) 

Let 𝒑∗(𝑡) = (𝑹3)
−1(𝑩𝑇𝜸∗(𝑡)) = −[𝑝1 𝑝2 ⋯ 𝑝𝑛]𝑇. Then 

(𝜸∗(𝑡))
𝑇
∙ 𝑩 ∙ 𝒖∗(𝑡) = (𝒖∗(𝑡))

𝑇
𝑩𝑇𝜸∗(𝑡) = (𝒖∗(𝑡))

𝑇
𝑹3𝒑

∗(𝑡) (4.26a) 

(𝜸∗(𝑡))
𝑇
∙ 𝑩 ∙ 𝒖(𝑡) = (𝒖(𝑡))𝑇𝑩𝑇𝜸∗(𝑡) = (𝒖(𝑡))

𝑇
𝑹3𝒑

∗(𝑡) (4.26b) 
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Substituting Eq. (4.26) into Eq. (4.25), we have  

0.5 ∙ 𝒖∗(𝑡)𝑇𝑹3𝒖
∗(𝑡) + (𝒖∗(𝑡))

𝑇
𝑹3𝒑

∗(𝑡) 

≤ 0.5 ∙ 𝒖(𝑡)𝑇𝑹3𝒖(𝑡) + (𝒖(𝑡))
𝑇𝑹3𝒑

∗(𝑡) 
(4.27) 

Adding 0.5 ∙ 𝒑∗(𝑡)𝑇𝑹3𝒑
∗(𝑡) = 0.5(𝜸∗(𝑡))

𝑇
∙ 𝑩(𝑹3)

−1𝑩𝑇𝜸∗(𝑡) to both sides of inequality (4.27), 

we have  

0.5[𝒖∗(𝑡)+𝒑∗(𝑡)]𝑇𝑹3[𝒖
∗(𝑡)+𝒑∗(𝑡)] ≤ 0.5[𝒖(𝑡) + 𝒑∗(𝑡)]𝑇𝑹3[𝒖(𝑡) + 𝒑

∗(𝑡)] (4.28) 

Inequality (4.28) implies that if 𝒖∗  minimizes 𝑯𝒄(𝒛
∗(𝑡), 𝜸𝐴

∗ (𝑡), 𝒖(𝑡)) , it must minimize 

inequality (4.27) and vice versa. Thereby  

𝒖∗(𝑡) = 𝑚𝑖𝑛𝒖∈𝓤[𝒖(𝑡) + 𝒑
∗(𝑡)]𝑇𝑹3[𝒖(𝑡) + 𝒑

∗(𝑡)] (4.29) 

Note 𝑹3  is a diagonal positive definite matrix; without loss of generosity, let 𝑹3 =

𝑑𝑖𝑎𝑔([𝓌1,𝓌2⋯ ,𝓌𝑛]), 𝑟𝑖 > 0, ∀𝑖 = 1,2,⋯ , 𝑛. Then, inequality (4.29) can be written as  

𝒖∗(𝑡) = 𝑚𝑖𝑛𝒖∈𝓤∑𝓌𝑖[𝑢𝑖(𝑡) − 𝑝𝑖]
2

𝑛

𝑖=1

 

=∑ 𝑚𝑖𝑛𝑢𝑚𝑖𝑛≤𝑢𝑖≤𝑢𝑚𝑎𝑥𝓌𝑖[𝑢𝑖(𝑡) − 𝑝𝑖]
2

𝑛

𝑖=1
 

(4.30) 

The only solution to the above inequality is  

𝑢𝑖
∗(𝑡) = {

𝑢𝑚𝑖𝑛, 𝑖𝑓 𝑝𝑖(𝑡) < 𝑢𝑚𝑖𝑛            
𝑢𝑚𝑎𝑥, 𝑖𝑓 𝑝𝑖(𝑡) > 𝑢𝑚𝑎𝑥          
𝑝𝑖(𝑡), 𝑖𝑓𝑢𝑚𝑖𝑛 ≤ 𝑝𝑖(𝑡) ≤ 𝑢𝑚𝑎𝑥

; ∀𝑖 = 1,2,⋯ , 𝑛 (4.31) 

This completes the proof. ∎ 

Eq. (4.13b), Eq. (4.13c), Eq. (4.20a), Eq. (4.20b) and Eq. (4.23) form a two-point boundary 

value problem as follows with initial conditions and terminal conditions provided by Eq.(4.12e) 

and Eq. (4.21), respectively.  

�̇�(𝑡) = 𝑨 ∙ 𝐳(𝑡) + 𝑩 ∙ 𝜑(𝒛(𝑡), 𝜸(𝑡)) (4.32a) 

�̇�(𝑡) =∑{[𝑠𝑖(𝑡) − s𝑚𝑖𝑛]
2𝐼(𝑠𝑖(𝑡) − s𝑚𝑖𝑛)}

𝑛

𝑖=1

 (4.32c) 

�̇�(𝑡) = −𝑨 ∙ 𝜸(𝑡) − [
𝑪𝑥
𝑪𝑦
] 𝛾(𝑡) − 𝑸1𝐳(𝑡) + 𝛽𝜸(𝑡) (4.32d) 

�̇�(𝑡) = 𝛽 ∙ 𝛾(𝑡) (4.32e) 

𝐳(0) = [𝐱0
𝑇 𝐲0

𝑇]𝑇; 𝑧(0) = 0; (4.32f) 

𝜸(𝑇𝑃) = 𝑸2𝐳(𝑇𝑃), 𝛾(𝑇𝑃) = 𝑒
𝛽𝑇𝑃 ∙ M ∙ 2 ∙ 𝑧(𝑇𝑃) (4.32g) 

The two-point boundary value problem can be solved using many existing solution 



120 

 

 

 

algorithms. A review of these algorithms is provided in Kirk (2012). In this study, the shooting 

method is used to solve the two-point boundary value problem (4.32). The details of 

implementing the shooting method can be found in Keller (1976). The main advantage of the 

shooting method is that it converges very fast if the algorithm starts to converge (Keller, 1976). 

Note, 𝜕2𝑯𝒄 𝜕(𝒖(𝑡))
2⁄ = 𝑹3  is a positive definite matrix. Thereby, the solution 

(𝒛∗(𝑡), 𝑧∗(𝑡), 𝜸∗(𝑡), 𝛾∗(𝑡))  of the two-point boundary value problem (4.32) is a minimum 

solution of optimal control problem (4.5). The optimal control 𝒖∗(𝑡)  can be obtained by 

inputting 𝜸∗(𝑡) into Eq. (4.23). 

4.4 Sensitivity analysis of the optimal control problem 

For the DMPC approach, at each sampling time instant 𝑡𝑘 , the control decisions are 

determined by solving the two-point boundary value problem (4.32) with the predicted spacing 

error and relative speed of vehicle 1 with respect to the leading vehicle (i.e., �̂�1(𝑡𝑘) and �̂�1(𝑡𝑘)). 

The resulting control decisions may deviate significantly from those of the idealized MPC 

strategy due to errors in predicting f 𝑥1(𝑡𝑘)  and 𝑦1(𝑡𝑘) , which can decrease the platoon 

performance and cause collisions. To address this issue, the DMPC-FOA approach corrects the 

estimated control decisions of the DMPC approach using first-order Taylor approximation. To 

do so, the main step is to obtain the derivatives of the optimal solution of the state and costate 

variables with respect to �̃�1(𝑡𝑘) and �̃�1(𝑡𝑘) in the DMPC-FOA approach, respectively. 

The sensitivity analysis of an optimal control problem quantitatively measures the change in 

the optimal solution of the state and costate variables induced by a unit change in the perturbed 

parameters (i.e., �̃�1(𝑡𝑘) and �̃�1(𝑡𝑘) in this study). Parametric sensitivity of optimal problem has 

been extensively studied. Dorato (1963) developed an analytical model to study the variation of 

the objective function with respect to parametric perturbations. Malanowski (1984, 1987) 

discussed the conditions for directional differentiability of the solutions for an optimal control 

problem with nonlinear ordinary dynamics. Maurer and Pesch (1984) developed an analytical 

method for sensitivity analysis of optimal control problems with no constraints. This method is 

further extended to study the sensitivity analysis of optimal control problems with control 

constraints (Maurer and Pesch, 1995; Malanowski and Maurer, 1996), and pure state variable 

constraints (Augustin and Maurer, 2001; Malanowski, 2011). Here, the analytical method for 

sensitivity analysis of the optimal control decisions with respect to �̃�1(𝑡𝑘) and �̃�1(𝑡𝑘) will be 
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derived by modifying the method developed by Maurer and Pesch (1995) for a general optimal 

control problem.  

Denote �̃�∗(𝑡) = [�̃�1
∗(𝑡),⋯ , �̃�𝑛

∗ (𝑡)] as the control decisions obtained by solving Eq. (4.32) 

using �̃�1(𝑡𝑘) and �̃�1(𝑡𝑘) predicted by the DMPC-FOA approach. The corresponding solutions for 

the state variables (i.e., 𝐳(𝑡), 𝑧(𝑡)) and costate variables (i.e., 𝜸(𝑡), 𝛾(𝑡)) are denoted as �̃�∗(𝑡), 

�̃�∗(𝑡), �̃�∗(𝑡) and �̃�∗(𝑡), respectively. Let the derivatives of the optimal solutions for the state and 

costate variables with respect to �̃�1(𝑡𝑘) be defined as follows: 

 𝐡�̃�1(𝑡) =
𝜕�̃�∗(𝑡)

𝜕�̃�1(𝑡𝑘)
; ℎ�̃�1(𝑡) =

𝜕�̃�∗(𝑡)

𝜕�̃�1(𝑡𝑘)
  

 𝛈�̃�1(𝑡) =
𝜕�̃�∗(𝑡)

𝜕�̃�1(𝑡𝑘)
; 휂�̃�1(𝑡) =

𝜕�̃�∗(𝑡)

𝜕�̃�1(𝑡𝑘)
.  

According to �̃�𝑖
∗(𝑡), we can obtain the set of time intervals Ω𝑖,1 , Ω𝑖,2, and Ω𝑖,2  (Ω𝑖,1 ∪ Ω𝑖,2 ∪

Ω𝑖,2 = [0, 𝑇𝑃]) for each vehicle 𝑖, 𝑖 = 1,2,⋯ , 𝑛 such that 

�̃�𝑖
∗(𝑡) = {

𝑢𝑚𝑖𝑛, 𝑡 ∈ Ω𝑖,1       

𝑢𝑚𝑎𝑥, 𝑡 ∈ Ω𝑖,2      

�̃�𝑖, 𝑡 ∈ Ω𝑖,3

 (4.33) 

where [�̃�1(𝑡) �̃�2(𝑡) ⋯ �̃�𝑛(𝑡)]
𝑇 = −(𝑹3)

−1(𝑩𝑇�̃�∗(𝑡)).  

Then, according to Eq. (4.33), we have   

𝑑�̃�𝑖
∗(𝑡)

𝑑�̃�1(𝑡𝑘)
= {

0, 𝑡 ∈ (Ω𝑖,1 ∪ Ω𝑖,2)  

𝑚�̃�1,𝑖(𝑡), 𝑡 ∈ Ω𝑖,3         
 (4.34a) 

where  

[𝑚�̃�1,1(𝑡) 𝑚�̃�1,2(𝑡) ⋯ 𝑚�̃�1,𝑛(𝑡)]
𝑇 = −(𝑹3)

−1 (𝑩𝑇 𝛈�̃�1(𝑡)). (4.34b) 

Let Ψ( 𝛈�̃�1(𝑡)) = [
𝑑�̃�1

∗(𝑡)

𝑑�̃�1(𝑡𝑘)

𝑑�̃�2
∗(𝑡)

𝑑�̃�1(𝑡𝑘)
⋯

𝑑�̃�𝑛
∗ (𝑡)

𝑑�̃�1(𝑡𝑘)
]
𝑇

.  Differentiating both sides of Eqs. 

(4.32a)-(4.32g) with respect to �̃�1(𝑡𝑘), we have  

�̇��̃�1(𝑡) = 𝑨 ∙ 𝐡�̃�1 + 𝑩 ∙ Ψ( 𝛈�̃�1(𝑡)) (4.35a) 

ℎ̇�̃�11 = [𝑪𝑥
𝑇 𝑪𝑦

𝑇] ∙ 𝐡�̃�1 (4.35c) 

�̇��̃�1 = −𝑨 ∙ 𝛈�̃�1(𝑡) − [
𝑪𝑥
𝑪𝑦
] 휂�̃�1(𝑡) − 𝑸1𝐡�̃�1 + 𝛽𝛈�̃�1(𝑡) (4.35d) 

휂̇�̃�1,(𝑡) = 𝛽 ∙ 휂�̃�1(𝑡) (4.35e) 

with initial and terminal conditions as: 

𝐡�̃�1(0) =
𝜕�̃�(0)

𝜕�̃�1(𝑡𝑘)
=
𝜕�̃�(𝑡𝑘)

𝜕�̃�1(𝑡𝑘)
= [1, 𝟎1×2𝑛−1]

𝑇 (4.35f) 
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ℎ�̃�1(0) =
𝜕�̃�(0)

𝜕�̃�1(𝑡𝑘)
=

𝜕(0)

𝜕�̃�1(𝑡𝑘)
= 0 (4.35g) 

𝛈�̃�1(𝑇𝑃) =
𝜕�̃�1(𝑇𝑃)

𝜕�̃�1(𝑡𝑘)
=
𝜕(𝑸2�̃�(𝑇𝑃))

𝜕�̃�1(𝑡𝑘)
= 𝑸2 ∙ 𝐡�̃�1(𝑇𝑃) (4.35h) 

휂�̅�1(𝑇𝑃) =
𝜕�̃�(𝑇𝑃)

𝜕�̃�1(𝑡𝑘)
=
𝜕(𝑒𝛽𝑇𝑃 ∙ M ∙ 2 ∙ �̃�(𝑇𝑃))

𝜕�̃�1(𝑡𝑘)
= 𝑒𝛽𝑇𝑃 ∙ M ∙ 2 ∙ ℎ�̃�1(𝑇𝑃) (4.35i) 

where 𝟎1×2𝑛−1 is a (2𝑛 − 1)-dimensional zero vector. Eqs. (4.35a)-(4.35i) also form a two-point 

boundary value problem which can be solved using the shooting method.  

To obtain the derivatives of the optimal state and costate variables with respect to �̃�1(𝑡𝑘), 

similarly, let 

𝐡�̃�1(𝑡) =
𝜕�̃�∗(𝑡)

𝑑�̃�1(𝑡𝑘)
;   ℎ�̃�1(𝑡) =

𝜕�̃�∗(𝑡)

𝑑�̃�1(𝑡𝑘)
 (4.36a) 

𝛈�̃�1(𝑡) =
𝜕�̃�∗(𝑡)

𝜕�̃�1(𝑡𝑘)
;  휂�̃�1(𝑡) =

𝜕�̃�∗(𝑡)

𝜕�̃�1(𝑡𝑘)
. (4.36b) 

Differentiating both sides of Eqs. (4.32a)-(4.32f) with respect to �̃�1(𝑡𝑘), we can obtain a 

similar two-point boundary value problem, as follows: 

�̇��̃�1(𝑡) = 𝑨 ∙ 𝐡�̃�1 + 𝑩 ∙ Ψ( 𝛈�̃�1(𝑡)) (4.37a) 

ℎ̇�̃�1 = [𝑪𝑥
𝑇 𝑪𝑦

𝑇]𝐡�̃�1 (4.37c) 

�̇��̃�1 = −𝑨 ∙ 𝛈�̃�1(𝑡) − [
𝑪𝑥
𝑪𝑦
] 휂�̃�1(𝑡) − 𝑸1𝐡�̃�1 + 𝛽𝛈�̃�1(𝑡) (4.37d) 

휂̇�̃�1(𝑡) = 𝛽 ∙ 휂�̃�1(𝑡) (4.37e) 

with initial and terminal conditions as: 

𝐡�̃�1(0) =
𝜕�̃�(0)

𝜕�̃�1(𝑡𝑘)
=
𝜕�̃�(𝑡𝑘)

𝜕�̃�1(𝑡𝑘)
= [𝟎1×𝑛, 1, 𝟎1×𝑛−1]

𝑇 (4.37f) 

ℎ�̃�1(0) =
𝜕�̃�(0)

𝜕�̃�1(𝑡𝑘)
=

𝜕(0)

𝜕�̃�1(𝑡𝑘)
= 0 (4.37g) 

𝛈�̃�1(𝑇𝑃) =
𝜕�̃�1(𝑇𝑃)

𝜕�̃�1(𝑡𝑘)
=
𝑑(𝑸2�̃�(𝑇𝑃))

𝜕�̃�1(𝑡𝑘)
= 𝑸2 ∙ 𝐡�̃�1(𝑇𝑃) (4.37h) 

휂�̅�1(𝑇𝑃) =
𝜕�̃�(𝑇𝑃)

𝜕�̃�1(𝑡𝑘)
=
𝜕(𝑒𝛽𝑇𝑃 ∙ M ∙ 2 ∙ 𝑧(𝑇𝑃))

𝜕�̃�1(𝑡𝑘)
= 𝑒𝛽𝑇𝑃 ∙ M ∙ 2 ∙ ℎ�̃�1(𝑇𝑃) (4.37i) 

where 𝟎1×𝑛−1  is a (𝑛 − 1) -dimensional zero vector. The vector of functions Ψ( 𝛈�̃�1(𝑡))  is 

similar to Ψ( 𝛈�̃�1(𝑡)). It is formulated by replacing the subscript “�̃�1” in Eq. (4.34) with “�̃�1”.  
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The derivatives of the optimal solutions for the state and costate variables with respect to 

�̃�1(𝑡𝑘) and �̃�1(𝑡𝑘) can be obtained by solving the two-point boundary value problems (35) and 

(37), respectively. Then, when the actual value of 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘) are detected at the sampling 

time instant 𝑡𝑘 , the optimal solution of the state and costate variables of the idealized MPC 

strategy can be estimated using first-order Taylor approximation, as follows 

�̅�∗(𝑡) = �̃�∗(𝑡)+𝐡�̃�1(𝑡)(𝑥1(𝑡𝑘)− �̃�1(𝑡𝑘))+𝐡�̃�1(𝑡) (𝑦1(𝑡𝑘)− �̃�1(𝑡𝑘)) (4.38a) 

�̅�∗(𝑡) = �̃�∗(𝑡)+ 𝛈
�̃�1
(𝑡)(𝑥1(𝑡𝑘)− �̃�1(𝑡𝑘))+𝛈�̃�1

(𝑡) (𝑦
1
(𝑡𝑘)− �̃�1(𝑡𝑘)) (4.38b) 

Eq. (4.38a) and Eq. (4.38b) can be calculated instantaneously at the sampling time instant 𝑡𝑘 as 

𝐡�̃�1(𝑡), 𝐡�̃�1(𝑡), 𝛈�̃�1(𝑡) and 𝛈�̃�1(𝑡) are obtained before 𝑡𝑘. Eq. (4.38) indicates that compared to 

[�̃�∗(𝑡), �̃�∗(𝑡)], [�̅�∗(𝑡), �̅�∗(𝑡)] are closer to [𝒛∗(𝑡), 𝜸∗(𝑡)] calculated for the idealized MPC strategy 

using exact 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘). According to Eq. (4.23), the optimal control decisions of the 

idealized MPC strategy can be estimated as 

�̅�𝑖
∗(𝑡) = 𝜑(�̅�∗(𝑡), �̅�∗(𝑡)) = {

𝑢𝑚𝑖𝑛, 𝑖𝑓 �̅�𝑖(𝑡) < 𝑢𝑚𝑖𝑛            
𝑢𝑚𝑎𝑥, 𝑖𝑓 �̅�𝑖(𝑡) > 𝑢𝑚𝑎𝑥          
�̅�𝑖(𝑡), 𝑖𝑓𝑢𝑚𝑖𝑛 ≤ �̅�𝑖(𝑡) ≤ 𝑢𝑚𝑎𝑥

; ∀𝑖 = 1,2,⋯ , 𝑛 (4.39) 

where [�̅�1(𝑡) �̅�2(𝑡) ⋯ �̅�𝑛(𝑡)]
𝑇 = −(𝑹3)

−1(𝑩𝑇�̅�∗(𝑡)). Compared to �̃�∗(𝑡), the estimated 

�̅�∗(𝑡), (�̅�∗(𝑡) = [�̅�1
∗(𝑡) �̅�2

∗(𝑡) ⋯ �̅�𝑛
∗(𝑡)]𝑇)  is closer to 𝒖∗(𝑡)  calculated using the idealized 

MPC strategy as �̅�∗(𝑡) is closer to 𝜸∗(𝑡) compared to �̃�∗(𝑡). 

Proposition 4.2: If the inequality constraints (4.5c) and (4.5d) are not active along the 

trajectory of the optimal solution (�̃�∗(𝑡), �̃�∗(𝑡), �̃�∗(𝑡), �̃�∗(𝑡)) obtained with the predicted initial 

state �̃�1(𝑡𝑘)  and �̃�1(𝑡𝑘),  then the derivatives of optimal solutions for the state and costate 

variables with respect to �̃�1(𝑡𝑘)  and �̃�1(𝑡𝑘)  are the same for all solutions of 

(�̃�∗(𝑡), �̃�∗(𝑡), �̃�∗(𝑡), �̃�∗(𝑡)) for which the inequality constraints (4.5c) and (4.5d) are not active. 

Proof: If the inequality constraints (4.5c) and (4.5d) are not active along the optimal 

solution, �̃�∗(𝑡) ≡ 0, 𝑡 ∈ [0, 𝑇𝑃]. According to Eq. (4.16d), �̃�∗(𝑇𝑃) = 2 M ∙ �̃�
∗(𝑇𝑃) = 2 M ∙ 0 = 0. 

Based on Eq. (4.32e),  �̃�∗(𝑡) ≡ 0, 𝑡 ∈ [0, 𝑇𝑃] . This indicates that 휂�̃�1(𝑡) = 휂�̃�1(𝑡) ≡ 0, 𝑡 ∈

[0, 𝑇𝑃] .  In addition, Ψ( 𝛈�̃�1(𝑡)) = −(𝑹3)
−1(𝑩𝑇 𝛈�̃�1(𝑡))   and Ψ( 𝛈�̃�1(𝑡)) =

−(𝑹3)
−1 (𝑩𝑇 𝛈�̃�1(𝑡)). Thereby, the two-point boundary value problems (4.35) and (4.37) are 

the same for different optimal solutions under which the inequality constraints (4.5c) and (4.5d) 
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are not active. This indicates that the derivatives of the optimal solutions for the state and costate 

variables with respect to �̃�1(𝑡𝑘) and �̃�1(𝑡𝑘) are the same for all of these solutions. ∎ 

Proposition 4.2 implies that if under the optimal control decisions, the following vehicles in 

the platoon do not brake and accelerate at the maximum values, and the spacing between all 

adjacent vehicle pairs is larger than the minimum spacing during time interval [𝑡𝑘, 𝑡𝑘 + 𝑇𝑃], the 

changes in the optimal control decisions for a unit change in �̃�1(𝑡𝑘) and �̃�1(𝑡𝑘) would be the 

same for all of these optimal control decisions. It is worth noting that the idealized MPC strategy 

can coordinate the behaviors of all following vehicles to minimize the objective function 

efficiently. It can enable smoother deceleration and acceleration behavior of all following 

vehicles even if the leading vehicle decelerates or accelerates at the maximum value. The 

following vehicles accelerate or decelerate at the maximum value only when the spacing 

between two consecutive vehicles is too large or too small. Thereby, according to Proposition 4.2, 

under normal conditions, the derivatives of the optimal solutions for the state and costate 

variables, i.e., (�̃�(𝑡), �̃�(𝑡), �̃�(𝑡), �̃�(𝑡)) with respect to �̃�1(𝑡𝑘) and �̃�1(𝑡𝑘)  are the same and are 

independent of these solutions. Let 𝐡𝑙
∗(𝑡), ℎ𝑙

∗(𝑡), 𝛈𝑙
∗(𝑡), 휂𝑙

∗(𝑡), 𝑙 ∈ {�̃�1, �̃�1}, 𝑡 ∈ [0, 𝑇𝑃]  be the 

corresponding derivatives. These derivatives can be obtained offline to avoid solving the two-

point boundary value problem (4.35) and (37). Thereby, under normal situations when the 

inequality constraints (4.5c) and (4.5d) are not active along the optimal solution, the reserved 

time for computing in DMPC-FOA approach can be the same as that of the DMPC approach. In 

addition,  𝐡𝑙
∗(𝑡), ℎ𝑙

∗(𝑡), 𝛈𝑙
∗(𝑡), 휂𝑙

∗(𝑡), 𝑙 ∈ {�̃�1, �̃�1}, 𝑡 ∈ [0, 𝑇𝑃]  can be used as the initial value to 

solve the two-point boundary value problems (4.35) and (4.37) when one of the inequality 

constraints (4.5c) or (4.5d) is active along the optimal solution. This can significantly reduce the 

computational time for solving the two problems. This property enhances the applicability of the 

proposed DMPC-FOA approach for controlling the CAV platoon in real-time. 

4.5 Stability analysis of the idealized MPC strategy with no inequality constraints 

Stability is an important property for a CAV platoon. It indicates the capability of a platoon to 

recover to a stable state after external disturbances on the platoon formation (e.g., unexpected 

hard acceleration and deceleration of the leading vehicle). In this study, the condition for 

asymptotic stability of the idealized MPC strategy is analyzed to ensure that the CAV platoon 

can dampen traffic oscillations efficiently. This condition also ensures the stability of the DMPC-
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FOA approaches as it is proposed to characterize the control decisions of the idealized MPC 

strategy. Similar to Gong et al., (2016), the stability analysis of the idealized MPC strategy is 

based on optimal control problem (4.5) with no inequality constraints as they are not active in 

most traffic flow scenarios. The conditions for asymptotic stability of the idealized MPC strategy 

with active constraints will be investigated in our future work.  

For convenience of stability analysis, in the following, optimal control problem (4.5) without 

inequality constraints (4.5c) and (4.5d) is transformed into an equivalent form for analyzing 

stability. The conditions for asymptotic stability of the unconstrained idealized MPC strategy are 

analyzed using the stability theorem for continuous MPC problems developed by Mayne et.al. 

(2000). Let  

𝒛𝛽(𝑡) = 𝑒
−
𝛽
2𝑡𝒛(𝑡) (4.40a) 

𝒖𝛽(𝑡) = 𝑒
−
𝛽
2𝑡𝒖(𝑡) (4.40b) 

Then, optimal control problem (4.5) without inequality constraints (4.5c) and (4.5d) can be 

formulated as  

𝑚𝑖𝑛
𝒖𝛽

∫ [𝒛𝛽(𝑡)
𝑇𝑸1𝒛𝛽(𝑡) + 𝒖𝛽(𝑡)

𝑇𝑹3𝒖𝛽(𝑡)]
𝑇𝑃

0

𝑑𝑡 + 𝒛𝛽(𝑇𝑃)
𝑇𝑸2𝒛𝛽(𝑇𝑃) (4.41a) 

s.t �̇�𝛽(𝑡) = (𝑨 −
𝛽

2
𝑬2𝑛) 𝒛𝛽(𝑡) + 𝑩𝒖𝛽(𝑡) (4.41b) 

𝒛𝛽(0) = [𝐱𝑘 𝐲𝑘]𝑇 (4.41c) 

The following theorem is used to analyze the asymptotical stability of the idealized MPC 

strategy with no inequality constraints. 

Theorem 4.1 (Mayne et.al. 2000): Consider the following continuous constrained MPC problem 

 
𝑚𝑖𝑛
𝒂
∫ 𝐿(𝔃(𝑡), 𝓾(𝑡))
𝑇𝑃

0

𝑑𝑡 + 𝐹(𝔃(𝑇𝑃)) 

s.t �̇� = 𝑔(𝔃, 𝓾) 
 𝔃(𝑡) ∈ 𝒵,   for 𝑡𝜖[0, 𝑇𝑃] 
 𝓾(𝑡) ∈ 𝒜,   for 𝑡𝜖[0, 𝑇𝑃] 
 𝔃(𝑇𝑃) ∈ 𝒵𝑓 

where 𝔃 and 𝓾 are vectors of the state variables and control variables, respectively. 𝔃(𝑇𝑃) is the 

value of 𝔃(𝑡) at terminal time 𝑇𝑃.  𝒵, 𝒜, and 𝒵𝑓 are the feasible sets for 𝔃(𝑡), 𝓾(𝑡) and 𝔃(𝑇𝑃), 

respectively. If there exists a nominal controller 𝜅(𝔃) such that the following four conditions 

hold for the above continuous MPC problem, then it is asymptotic stable. 

(1).  0 ∈ 𝒵 

(2).  𝜅(𝔃) ∈ 𝒜, ∀𝔃 ∈ 𝒵𝑓 
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(3).  𝑔(𝔃, 𝜅(𝔃)) ∈ 𝒵𝑓 for ∀𝔃 ∈ 𝒵𝑓 

(4).  [�̇� + 𝐿](𝔃, 𝜅(𝔃)) ≤ 0 for ∀𝔃 ∈ 𝒵𝑓 

To enable application of Theorem 4.1 for stability analysis of the unconstrained idealized MPC 

strategy based on optimal control problem (4.41), let 

𝔃(𝑡) = 𝒛𝛽(𝑡) (4.42a) 

𝓾(𝑡) = 𝒖𝛽(𝑡) (4.42b) 

�̇�(𝑡) = 𝑔(𝔃,𝓾) = (𝑨 −
𝛽

2
𝑬2𝑛) 𝔃(𝒕) + 𝑩𝓾(𝑡) (4.42c) 

𝐿(𝔃(𝑡), 𝓾(𝑡)) = 𝔃(𝒕)𝑇𝑸1𝔃(𝒕) + 𝓾(𝑡)
𝑇𝑹3𝓾(𝑡) (4.42d) 

𝐹(𝔃(𝑡)) = 𝔃(𝑡)𝑇𝑸2𝔃(𝑡) (4.42e) 

�̇�(𝔃(𝑡)) = �̇�(𝑡)𝑇𝑸2𝔃(𝑡) + 𝔃(𝑡)
𝑇𝑸2�̇�(𝑡) (4.42f) 

This study chooses a linear nominal controller (Camacho and Alba, 2013) as follows 

𝜅(𝔃) = 𝓚𝔃 (4.43) 

Let 𝓚 = 𝟎2𝑛×𝑛 . This choice of matrix 𝓚  will simplify the analysis of conditions for 

asymptotic stability of the unconstrained idealized MPC strategy based on optimal control 

problem (41). Next, we illustrate the conditions for which optimal control problem (4.41) can 

satisfy the four conditions in Theorem 4.1.  

For optimal control problem (4.41), the feasible set of state variables, control variables, and 

terminal state variables are 𝒵 = ℝ2𝑛 , 𝒜 = ℝ𝑛 , and 𝒵𝑓 = ℝ
2𝑛 , respectively. Thereby, 0 ∈ 𝒵 ; 

condition 1 is satisfied. According to Eq. (4.43), 𝜅(𝔃) = 𝓚𝔃 = 𝟎1×𝑛 ∈ ℝ
𝑛 = 𝒜.  Hence, 

condition 2 in Theorem 4.1 is also satisfied. From Eq. (4.42c) and Eq. (4.43), 𝑔(𝔃, 𝜅(𝔃)) =

(𝑨 −
𝛽

2
𝑬2𝑛) 𝔃(𝑡) + 𝑩𝓚𝔃(𝑡) = (𝑨 −

𝛽

2
𝑬2𝑛) 𝔃(𝑡) ∈ ℝ

2𝑛 = 𝒵𝑓. Therefore, condition 3 holds for 

optimal control problem (4.41).  

To illustrate that condition 4 is satisfied, for simplicity, the notation for time 𝑡 is removed. 

Substituting Eqs. (4.42c)-(4.42f) into the inequality in condition 4, we have 

[(𝑨 −
𝛽

2
𝑬2𝑛) 𝔃 + 𝑩𝓚𝔃]

𝑇

𝑸2𝔃 + 𝔃
𝑇𝑸2 [(𝑨 −

𝛽

2
𝑬2𝑛) 𝔃 + 𝑩𝓚𝔃] + 𝔃

𝑇𝑸1𝔃

+ (𝓚𝔃)𝑇𝑹3(𝓚𝔃) ≤ 0 

(4.44) 

Note 𝓚 = 𝟎2𝑛×𝑛; hence, inequality (4.44) can be simplified as  

𝔃𝑇 [(𝑨 −
𝛽

2
𝑬2𝑛)

𝑇

𝑸2 +𝑸2 (𝑨 −
𝛽

2
𝑬2𝑛) + 𝑸1] 𝔃 ≤ 0 (4.45) 

Let 𝑾 = (𝑨 −
𝛽

2
𝑬2𝑛)

𝑇
𝑸2 + 𝑸2 (𝑨 −

𝛽

2
𝑬2𝑛) + 𝑸1 . Obviously, inequality (4.45) holds if 
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matrix 𝑾 is negative semidefinite. According to Eq. (4.6), 𝑹1 = 𝜦
𝑻𝑫𝑎𝜦, 𝑹2 = 𝜦

𝑻𝑫𝑏𝜦, 𝑹4 =

𝜦𝑻𝑫𝑐𝜦, and 𝑹5 = 𝜦
𝑻𝑫𝑒𝜦, where 𝜦 is an 𝑛 × 𝑛 orthogonal matrix and 𝜦𝑇𝜦 = 𝜦𝜦𝑇 = 𝑬𝑛 . Let 

the diagonal positive definite matrices 𝑫𝑎 , 𝑫𝑏 , 𝑫𝑐  and 𝑫𝑒  be 𝑫𝑎 = diag(𝑎1, … , 𝑎𝑛) , 𝑫𝑏 =

diag(𝑏1, … , 𝑏𝑛) , 𝑫𝑐 = diag(𝑐1, … , 𝑐𝑛),  and 𝑫𝑒 = diag(𝑒1, … , 𝑒𝑛) , respectively, where 𝑎𝑖 > 0 , 

𝑏𝑖 > 0, 𝑐𝑖 > 0, and 𝑒𝑖 > 0 for 𝑖 = 1,… , 𝑛. The following proposition discusses the sufficient 

conditions for matrix 𝑾 to be negative semidefinite 

Proposition 4.3. 𝑾 (𝑾 ∈ ℝ2𝑛×2𝑛) is a negative semidefinite matrix if matrices 𝑫𝑎, 𝑫𝑏, 𝑫𝑐 and 

𝑫𝑒, and the discount parameter 𝛽 are set such that 

𝑎𝑖 < 𝛽𝑐𝑖 , ∀𝑖 = 1,2,⋯ , 𝑛  (4.46a) 

𝑒𝑖 ≥
−𝑐𝑖

2

𝛽(𝑎𝑖 − 𝛽𝑐𝑖)
, ∀𝑖 = 1,2,⋯ , 𝑛 (4.46b) 

𝑏𝑖 ≤
𝑐𝑖
2 + 𝛽𝑒𝑖(𝑎𝑖 − 𝛽𝑐𝑖)

𝑎𝑖 − 𝛽𝑐𝑖
, ∀𝑖 = 1,2,⋯ , 𝑛 (4.46c) 

for ∀𝑖. 

Proof. Matrix  𝑾 can be expanded as  

𝑾 = (𝑨 −
𝛽

2
𝑬𝑛)

𝑇

𝑸2 + 𝑸2 (𝑨 −
𝛽

2
𝑬𝑛) + 𝑸1 

= [
𝟎𝑛 𝟎𝑛
−𝑬𝑛 𝟎𝑛

] [
𝑹4

𝑹5
] + [

𝑹4
𝑹5
] [
𝟎𝑛 −𝑬𝑛
𝟎𝑛 𝟎𝑛

] − [
𝛽𝑬𝑛𝑹4

𝛽𝑬𝑛𝑹5
]

+ [
𝑹1

𝑹2
] 

= [
𝑹1 − 𝛽𝑹4 −𝑹4
−𝑹4 𝑹2 − 𝛽𝑹5

] 

 

 

 

 

 

(4.47) 

Denote �̃� = [𝜦
𝜦
], then 

�̂� = �̃�𝑾�̃�𝑇 = [𝜦
𝜦
] [
𝑹1 − 𝛽𝑹4 −𝑹4
−𝑹4 𝑹2 − 𝛽𝑹5

] [𝜦
𝑇

𝜦𝑇
] 

= [
𝜦(𝜦𝑇𝑫𝑎𝜦 − 𝛽𝜦

𝑇𝑫𝑐𝜦)𝜦
𝑇 −𝜦𝜦𝑇𝑫𝑐𝜦𝜦

𝑇

−𝜦𝜦𝑇𝑫𝑐𝜦𝜦
𝑇 𝜦(𝜦𝑇𝑫𝑏𝜦 − 𝛽𝜦

𝑇𝑫𝑒𝜦)𝜦
𝑇] 

= [
𝑫𝑏 − 𝛽𝑫𝑐 −𝑫𝑐
−𝑫𝑐 𝑫𝑏 − 𝛽𝑫𝑒

] 

 

 

 

 

 

(4.48) 

According to Eq. (4.47), the eigenvalues of matrix �̂�  and 𝑾  are identical. Let �̌�𝛽 =

(𝑥1,𝛽 , 𝑦1,𝛽 , 𝑥2,𝛽 , 𝑦2,𝛽 , … , 𝑥𝑛,𝛽 , 𝑦𝑛,𝛽)
𝑇
; �̌�𝛽 is a vector of variables obtained by changing the order 

of variables in 𝒛𝛽. Then,  
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(𝒛𝛽)
𝑇
�̂� ∙ 𝒛𝛽 = (�̌�𝛽)

𝑇

[
 
 
 
�̌�1

�̌�2

⋱
�̌�𝑛]

 
 
 

⏟              
�̌�

∙ �̌�𝛽 
(4.49) 

where �̌� is a block diagonal matrix defined above, in which �̌�𝑖 (∀𝑖 = 1,2⋯ , 𝑛) is  

�̌�𝑖 = [
𝑎𝑖 − 𝛽𝑐𝑖 −𝑐𝑖
−𝑐𝑖 𝑏𝑖 − 𝛽𝑒𝑖

] (4.50) 

Note �̌�𝑖 is a symmetric matrix. It is negative semidefinite if 

𝑎𝑖 − 𝛽𝑐𝑖 ≤ 0 (4.51a) 

and  

(𝑎𝑖 − 𝛽𝑐𝑖)(𝑏𝑖 − 𝛽𝑒𝑖) − 𝑐𝑖
2 ≥ 0 (4.51b) 

Obviously, inequality (4.51a) holds if 𝑎𝑖 < 𝛽𝑐𝑖. According to Eq. (4.51b), we have  

(𝑎𝑖 − 𝛽𝑐𝑖)(𝑏 − 𝛽𝑒𝑖) − 𝑐𝑖
2 = (𝑎𝑖 − 𝛽𝑐𝑖)𝑏𝑖 − 𝛽𝑒𝑖(𝑎𝑖 − 𝛽𝑐𝑖) − 𝑐𝑖

2 ≥ 0 (4.52) 

Note 𝑎𝑖 < 𝛽𝑐𝑖, inequality (4.52) implies that  

𝑏𝑖 ≤
𝑐𝑖
2 + 𝛽𝑒𝑖(𝑎𝑖 − 𝛽𝑐𝑖)

𝑎𝑖 − 𝛽𝑐𝑖
 (4.53) 

As 𝑏𝑖 ≥ 0, the right-hand side of inequality (4.53) holds only if  

𝑐𝑖
2 + 𝛽𝑒𝑖(𝑎𝑖 − 𝛽𝑐𝑖) ≤ 0 (4.54) 

This implies  

𝑐𝑖
2 + 𝛽𝑒𝑖(𝑎𝑖 − 𝛽𝑐𝑖) ≤ 0 (4.55) 

Thereby,    

𝑒𝑖 ≥
−𝑐𝑖

2

𝛽(𝑎𝑖 − 𝛽𝑐𝑖)
 (4.56) 

The above discussion shows that if inequalities (4.53), (4.56), and  𝑎𝑖 < 𝛽𝑐𝑖  hold, �̌�𝑖  is a 

negative semidefinite matrix. Similarly, we can infer that the block diagonal matrix  �̌�  is 

negative semidefinite if inequalities (4.46a)-(4.46c) hold. This implies that �̂�  is negative 

semidefinite. Note that matrix �̂� is similar to the symmetric matrix 𝑾. Thereby, 𝑾 is negative 

semidefinite if inequalities (4.46a)-(4.46c) hold. Proposition 4.3 is proved. ∎ 

It is worth mentioning that Proposition 4.3 only provides a sufficient condition to ensure the 

asymptotic stability of the unconstrained idealized MPC strategy. There exist other conditions 

under which the unconstrained idealized MPC strategy is also asymptotically stable. According 

to Proposition 4.3, the method to determine the diagonal positive definite matrices 𝑫𝑎, 𝑫𝑏, 𝑫𝑐 

and 𝑫𝑒 and the discount parameter 𝛽 to ensure asymptotic stable of the unconstrained idealized 

MPC strategy can be summarized as follows. First, set an arbitrary positive value for 𝛽 and a 
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diagonal positive definite matrix 𝑫𝑐. Second, obtain the matrix 𝑫𝑎 such that inequality (4.56a) is 

satisfied. Then, obtain matrices 𝑫𝑒  and 𝑫𝑏  according to inequalities (4.56b) and (4.56c), 

respectively. 

4.6 Numerical experiments 

This section discusses four numerical experiments to demonstrate the motivation for this study 

and to illustrate the effectiveness of the proposed DMPC-FOA approach. The first numerical 

experiment analyzes the computational time required for the leading vehicle to solve optimal 

control problem (4.5) for different initial inputs, prediction horizons, and the number of 

following vehicles. The second numerical experiment illustrates the detailed steps for sensitivity 

analysis of the optimal control problem. The first-order Taylor approximation method is then 

applied to estimate the solution of state variables, costate variables, and the optimal control 

decisions when the leading vehicle’s initial speed and position are changed. The estimated 

solution and the exact solution (computed using the solution algorithm in Section 3) are 

compared. The third numerical experiment compares the control performance of the DMPC-

FOA approach with that of the DMPC approach assuming the movement of the leading vehicle 

is predetermined according to NGSIM field data. The last numerical experiment shows a traffic 

flow scenario where the DMPC approach fails to control the CAV platoon safely due to poor 

estimation of the optimal control decisions of the idealized MPC strategy. However, the DMPC-

FOA approach can control the CAV platoon effectively and is able to characterize the optimal 

control decisions of the idealized MPC strategy accurately in this scenario. 

4.6.1 Computational time for solving optimal control problem (4.5) 

Table 4.1 Input parameters for optimal control problem (4.5) 

Variables Default value 

Minimum acceleration (𝑢𝑚𝑖𝑛) −5 𝑚/𝑠2 

Maximum acceleration (𝑢𝑚𝑎𝑥) 3 𝑚/𝑠2 

Minimum spacing (s𝑚𝑖𝑛) 5 𝑚 

Safety space (s𝑓) 10 𝑚 

Time headway (𝑟∗) 1 𝑠 
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Figure 4.5 Cumulative probability of computational time for solving optimal control problem 

(4.5) with different initial inputs (i.e., 𝐱(0) and 𝐲(0)) at 𝑛 = 8 and 𝑇𝑃 = 4𝑠 and 6𝑠. 

This section analyzes the computational time for solving optimal control problem (4.5). The 

computational time is important to determine the reserved times for computing in the DMPC and 

DMPC-FOA approaches (i.e., 𝜏1 and 𝜏2, respectively). From Section 3, the solutions for the state 

variables and control decisions for optimal control problem (4.5) can be obtained by solving the 

two-point boundary value problem (32) using the shooting method. Table 1 shows the detailed 

inputs of the parameters in the optimal control problem (4.5). These inputs are used for all four 

numerical experiments. The discount parameter 𝛽  and the matrices 𝑹1 , 𝑹2 , 𝑹4 , and 𝑹5  in 

optimal control problem (4.5) are set as follows: 𝛽 = 1, 𝑹1 = 0.5𝑬𝑛, 𝑹2 = 𝑹3 = 𝑬𝑛, 𝑹5 = 3𝑬𝑛. 

These inputs satisfy the inequalities in Proposition 4.3 to ensure that the unconstrained idealized 

MPC strategy is asymptotic stable.  

Without loss of generality, suppose the initial time is 0. To ensure that optimal control 

problem (4.5) can be solved within 𝜏1 seconds under different initial inputs of position errors (i.e., 

𝐱(0)) and speed differences (i.e., 𝐲(0)) of all adjacent vehicles pairs, 𝐱(0) is generated randomly 

in the interval [−10,100] and 𝐲(0) is randomly generated in the interval [0,20]. This study 

generates 1000 different values for 𝐱(0) and 𝐲(0) for which the inequality constraints (Eq. (4.5c)) 

are satisfied.  

The numerical experiments were coded in MATLAB and executed on a computer with an 

Intel Core i7-4790 3.60-GHz CPU with 8.00 GB of RAM. To analyze the impacts of the number 

of following vehicles in the platoon (𝑛) and the prediction horizon (𝑇𝑃) on computational time, 
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optimal control problem (4.5) is solved 1000 times under different feasible initial inputs for each 

combination of 𝑛 and 𝑇𝑃.  

 

Figure 4.6 Computational time corresponding to 0.95 cumulative probability under different 

𝑛 and 𝑇𝑃. 

Figure 4.5 shows the cumulative probability of computational time for solving the optimal 

control problem (4.5) with different initial inputs (i.e., 𝐱(0) and 𝐲(0)) for 𝑛 = 8 and 𝑇𝑃 = 4𝑠 

and 6𝑠. It shows that the computational time significantly depends on the value of 𝐱(0) and 𝐲(0). 

The computational time ranges from 0.08s to 0.4s under 𝑛 = 8 and 𝑇𝑃 = 4𝑠. It is worth noting 

that computational times are large only when the initial position errors of many adjacent vehicle 

pairs deviate remarkably from the equilibrium state (i.e., they are close to 100 𝑚), the likelihood 

of occurrence of which is low in the real world. Hence, this study uses the computational time 

corresponding to 0.95 cumulative probability as the reference point to determine the reserved 

time for the DMPC and DMPC-FOA approaches.  

Figure 4.6 shows the computational time corresponding to 0.95 cumulative probability under 

different 𝑛 and 𝑇𝑃. The computational time corresponding to 0.95 cumulative probability is the 

time within which 95% of the experimental scenarios can be solved. Figure 4.6 illustrates that 

the computational time corresponding to 0.95 cumulative probability increases monotonically 

with the number of following vehicles and the prediction horizon.  
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4.6.2 Sensitivity analysis of optimal control problem (4.5) 

                     

(a)   Solutions of costate variables                  (b) Optimal control decisions. 

Figure 4.7 Solutions of costate variables and optimal control decisions at the unperturbed 

initial state  

This section shows the details of the sensitivity analysis method implementation for the optimal 

control problem (4.5) introduced in section 4. Consider a CAV platoon with 5 following vehicles 

(𝑛 = 5). The leading vehicle and all following vehicles drive at a speed of 20 𝑚/𝑠 at time 0 (i.e., 

𝐲(0) = 0). Suppose the initial position errors of vehicle 2 to vehicle 5 are all 0, and the initial 

position error of vehicle 1 with respect to the leading vehicle is 90 m. This implies that the 

spacing between vehicle 1 and vehicle 0 is 90 + 𝑇 ∙ 20 + 𝑠𝑓 = 120𝑚. It indicates a case where 

the following vehicles seek to catch up with the leading vehicle.  Let 𝑇𝑃 = 5 𝑠. Figure 4.7(a) 

shows the optimal solutions of the costate variables obtained using the solution algorithm 

proposed in Section 3. The optimal control decisions of all following vehicles in the platoon can 

then be determined according to Eq. (4.23). Figure 4.7(b) shows the optimal control decisions of 

vehicles 1, 3 and 5. It indicates that vehicle 1 accelerates at the maximum value (3 𝑚/𝑠2) for the 

first 1.7 seconds. Then, the acceleration decreases monotonically in the time interval [1.7s, 4.3s] 

and then increases.  
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                                                     (a)                                                   (b) 

 

                                              (c)                                                    (d) 

Figure 4.8 Derivatives of the state and costate variables with respect to 𝑥1(0) and 𝑦1(0), 
respectively, at the unperturbed initial state  
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(a) Comparison of estimated and perturbed optimal solutions of position errors 

                    

(b) Comparison of estimated and perturbed optimal solutions of speed difference for adjacent 

vehicle pairs 

                     

(c) Comparison of estimated and perturbed optimal solutions for the costate variables. 

Figure 4.9 Comparison of estimated and perturbed optimal solutions for the state and costate 

variables.  

Suppose the initial position and speed of the leading vehicle at time 0 are perturbed. Then, 

𝑥1(0) and 𝑦1(0) change from the unperturbed values 90 and 0, respectively. Figure 4.8 shows 

the derivatives of solutions for the state and costate variables with respect to 𝑥1(0) and 𝑦1(0), 
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respectively. They are obtained by solving the two-point boundary value problem (4.35) and 

(4.37), respectively. Figure 4.8 shows that at the optimal state, a unit change in 𝑥1(0) and 𝑦1(0) 

will increase the optimal solution of 𝑥1(𝑡) and 𝑦1(𝑡) by 1, respectively, at time interval [0,1.7]. 

The impacts of variations in 𝑥1(0) and 𝑦1(0) on 𝑥1(𝑡) and 𝑦1(𝑡) decrease after 1.7 seconds.  

Suppose both 𝑥1(0) and 𝑦1(0) are increased by 4 units (for example, due to prediction error). 

Using the  first-order Taylor approximation (Eq. (4.38)), Figure 4.9 compares the estimated and 

perturbed optimal solutions for the state variables and costate variables. The perturbed solutions 

are obtained using the solution algorithm at the perturbed states of 𝑥1(0) and 𝑦1(0). Figure 4.9 

shows that the estimated solutions are very close to those of the perturbed solutions, indicating 

that the  first-order Taylor approximation can accurately characterize the variation in the optimal 

solutions induced by changes in 𝑥1(0)  and 𝑦1(0). Based on the estimated solutions for the 

costate variables (i.e., 𝜸), Figure 4.10 compares the optimal control decisions of following 

vehicles estimated by Eq. (4.39) and the perturbed ones obtained using the solution algorithm in 

Section 3. It shows that the estimated solutions are also very close to the perturbed ones obtained 

using the solution algorithm.  

 

Figure 4.10 Comparison of estimated and perturbed optimal control decisions of the 

following vehicles. 

4.6.3 Control performance of the DMPC and DMPC-FOA approaches  

Note that both the DMPC and DMPC-FOA approaches seek to address the issue of control 

delay and estimate the optimal control decisions of the idealized MPC strategy. This section 

compares the control decisions of the DMPC approach, the DMPC-FOA approach and the 

idealized MPC strategy. To do so, we consider a CAV platoon with 8 following vehicles (vehicle 

IDs 1-8). The acceleration of the leading vehicle is shown in Figure 4.11. It contains a 240-
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seconds (with resolution 0.1 second) real-world vehicle control diary collected on eastbound I-80 

in the San Francisco Bay area at Emeryville, California. It can be noted that the vehicle 

decelerated or accelerated mildly most of the time. However, it contains some time slots with 

hard braking and high acceleration (e.g., the time slots around 110s, 140s and 186s).  

 

Figure 4.11 Acceleration of the leading vehicle 

Suppose the prediction horizon and the roll period are 𝑇𝑃 = 5 seconds and ∆𝑡 = 1 second, 

respectively. According to Figure 4.6, the computational time for solving optimal control 

problem (4.5) corresponding to 95% cumulative probability with 8 following vehicles is 0.33 

seconds. To reserve enough time for solving the optimal control problem, 𝜏1 is set as 0.4 seconds 

for the DMPC approach. Note that the DMPC-FOA approach needs to solve optimal control 

problem (4.5) as well as perform sensitivity analysis of the optimal control problem with respect 

to �̃�1(0) and �̃�1(0). Thereby, 𝜏2 ≥ 𝜏1. From 1000 simulations, the total computational time for 

solving the optimal control problem (4.5) and the two-point boundary value problems (problems 

(35) and (37)) corresponding to 95% cumulative probability is around 0.56 seconds. Thereby, 𝜏2 

is set as 0.6 seconds. It should be noted that among the 1000 simulations, there are situations 

where some following vehicles need to brake and accelerate at the maximum rate during the 

prediction horizon. Thereby, 𝜏2 = 0.6𝑠 > 𝜏1 = 0.4𝑠 . According to Proposition 4.2, if these 

situations do not exist and the spacing of each following vehicle is always greater than the 

minimum value (𝑠𝑚𝑖𝑛), 𝜏2 can be set the same as 𝜏1.  

Figure 4.12 shows the difference between the estimated control decisions of  the DMPC 

approach (i.e, ∆𝑢𝑖 = �̂�𝑖
∗(𝑡) − 𝑢𝑖

∗(𝑡), ∀𝑖 = 1,2,⋯𝑛) and the DMPC-FOA approach (i.e, ∆𝑢𝑖 =

�̅�𝑖
∗(𝑡) − 𝑢𝑖

∗(𝑡), ∀𝑖 = 1,2,⋯𝑛) from those of the idealized MPC strategy. Figure 4.12(a) shows 
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that the estimated control decisions of the DMPC approach are close to those of the idealized 

MPC strategy with the maximum difference less than 0.45 𝑚/𝑠2. The estimation errors of the 

control decisions of DMPC approach are induced by the prediction error of 𝑥1(𝑡) and 𝑦1(𝑡) at 

each sampling time instant. However, through first-order Taylor’s approximation, the DMPC-

FOA approach can significantly improve on the estimation performance of the DMPC approach. 

As can be seen from Figure 4.12(b), the maximum difference between the control decisions 

estimated by the DMPC-FOA approach and the idealized MPC strategy is less than 3 ×

10−5 𝑚/𝑠2 , indicating that the DMPC-FOA approach can characterize the decisions of the 

idealized MPC strategy very well.  

 

(a) Difference between control decisions of the DMPC approach and those of the idealized MPC 

strategy 

 

(b) Difference between control decisions of the DMPC-FOA approach and those of the 

idealized MPC strategy. 

Figure 4.12 Differences between the estimated control decisions of the DMPC and DMPC-

FOA approaches from those of the idealized MPC strategy.  
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(a) Difference in optimal spacing 

 

(b) Difference in optimal speed 

Figure 4.13 Differences in optimal spacing and speed between the DMPC approach and the 

idealized MPC strategy. 

Figure 4.13 illustrates the differences in optimal spacing and speed between the DMPC 

approach and the idealized MPC (i. e. , ∆s𝑖  and ∆𝑣𝑖 , respectively, 𝑖 = 1,2,⋯𝑛). It shows that 

while the estimated control decisions of DMPC approach deviate from the idealized MPC 

strategy, the optimal spacing and speed obtained by the DMPC approach are very close to those 

of the idealized MPC strategy. Hence, the DMPC approach is able to control the CAV platoon 

efficiently in this case. To investigate the reason for the good control performance of the DMPC 

approach in this scenario, Figure 4.14 shows the prediction errors of the initial inputs of 𝑥1(𝑡) 

0 40 80 120 160 200 240
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time (s)

D
iff

e
re

n
c
e
 i
n
 s

p
a
c
in

g
 (

m
)

 

 

s
1
 (DMPC)

s
3
 (DMPC)

s
5
 (DMPC)

s
7
 (DMPC)

0 40 80 120 160 200 240
-0.3

-0.2

-0.1

0

0.1

0.2

Time (s)

D
iff

e
re

n
c
e
 i
n
 s

p
e
e

d
 (

m
/s

)

 

 

v
1
 (DMPC)

v
3
 (DMPC)

v
5
 (DMPC)

v
7
 (DMPC)



139 

 

 

 

and 𝑦1(𝑡)  at each sampling time instant 𝑡𝑘, 𝑘 = 1,2,⋯  . Recall ∆𝑡 = 1𝑠 . Hence, 𝑡𝑘 =

1𝑠, 2𝑠,⋯ , 240𝑠. It shows that the predicted values of 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘), 𝑘 = 1,2,⋯ are very 

close to those of the exact ones as the leading vehicle drives with mild acceleration or 

deceleration most of the time (see Figure 4.11). The large prediction error occurs at the moments 

when the leading vehicle has hard acceleration or deceleration (e.g., 𝑡 = 110𝑠, 140𝑠, 186𝑠 etc.). 

Correspondingly, the DMPC approach also has larger estimation errors in terms of the optimal 

solutions relative to those of the idealized MPC strategy (see Figure 4.12(a) and Figure 4.13). 

However, as these “extreme” behaviors of the leading vehicle only last for small time periods, 

their impacts are small. In addition, if 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘) are accurately predicted at a time instant 

𝑡𝑘, the large difference in optimal solutions between the DMPC approach and the idealized MPC 

strategy in the previous roll period will be reduced significantly at the current roll period starting 

from time instant 𝑡𝑘. This can be observed in Figure 4.12(a) and Figure 4.13 where the large 

differences at time instants 𝑡 = 110𝑠, 140𝑠, 186𝑠 are reduced dramatically in the roll periods 

following time instants at which 𝑥1(𝑡)  and 𝑦1(𝑡)  are predicted with low errors at the 

corresponding sampling time instants  (i.e., 𝑡𝑘 = 111𝑠, 141𝑠, 187𝑠, see Figure 4.14).  

 

Figure 4.14 Prediction errors of the initial states of 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘), 𝑡𝑘 = 1𝑠, 2𝑠,⋯ , 240𝑠.  

 

Figure 4.15 shows the control decisions of the following vehicles estimated by the DMPC-

FOA approach. It indicates that when the leading vehicle 0 executes hard 

acceleration/deceleration, vehicle 1 also executes hard acceleration/deceleration with a 

magnitude slightly less than that of the leading vehicle 0. The acceleration or deceleration 
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decreases sequentially in the platoon, indicating that the traffic oscillation is damped sequentially 

from the head of the platoon to its tail. Figure 4.16 shows the optimal spacing and speed 

differences of adjacent vehicle pairs in the platoon computed by the DMPC-FOA approach. 

These results are almost identical to those of the idealized MPC strategy with the maximum 

absolute error less than 8 × 10−8  due to the high accuracy of the estimated optimal control 

decisions (see Figure 4.12(b)). As can be seen in Figure 4.16, the oscillation of the optimal 

spacing and speed difference of adjacent vehicle pairs decreases sequentially in the platoon. 

These results indicate that the DMPC-FOA approach can lead to smooth deceleration and 

acceleration behavior of all following vehicles. In addition, it can coordinate the behavior of all 

following vehicles to dissipate the traffic oscillation to ensure stability of the CAV platoon.  

 

Figure 4.15 Estimated control decisions of the DMPC-FOA approach.   
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(a) Spacing of adjacent vehicle pairs 

 

(b) Speed difference of adjacent vehicle pairs 

Figure 4.16 Optimal spacing and speed difference for some adjacent vehicle pairs in the 

platoon computed by DMPC-FOA approach. 

4.6.4 Scenario where the DMPC approach fails to control the CAV platoon 

The previous section illustrated a scenario in which the estimated control decisions and the 

solutions for the state variables of the DMPC approach are very close to those of the idealized 

MPC strategy. Here, we illustrate a scenario in which when the DMPC approach fails to 

accurately predict the values of 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘) at each sampling time instant 𝑡𝑘, the error of 

the control decisions between the DMPC approach and idealized MPC strategy increases with 
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each roll period. Then, the car-following behavior of the vehicles controlled by the DMPC 

approach significantly deviates from that of the idealized MPC strategy. However, as will be 

illustrated, the DMPC-FOA approach accurately characterizes the optimal control decisions of 

the idealized MPC strategy. 

Consider a CAV platoon with 10 following vehicles. Let 𝑇𝑃 = 5 seconds and ∆𝑡 = 1 second. 

According to Figure 4.6, the computational time corresponding to 95% cumulative probability is 

0.42 seconds. Hence, we set 𝜏1 = 0.5 seconds for the DMPC approach. By conducting 1000 

simulation runs with different initial inputs for 𝑥1(0)  and 𝑦1(0),  the computational time 

corresponding to 95% cumulative probability for the DMPC-FOA approach is determined as 

0.66 seconds. We will set 𝜏2 = 0.7 seconds for the DMPC-FOA approach.  

 

 

(a) Acceleration of the leading vehicle 

 

(b) speed of the leading vehicle. 

Figure 4.17 Acceleration and speed of the leading vehicle. 
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Suppose the leading vehicle drives at 30 𝑚/𝑠  at time 0. Assume the leading vehicle 

accelerates at the maximum value 3 𝑚/𝑠2 for 0.5 seconds and then decelerates at the maximum 

value −5 𝑚/𝑠2  for 0.5 seconds. Such behavior will repeat for 30 seconds until the leading 

vehicle stops. Figure 4.17(a) shows the trajectory of the assumed acceleration of the leading 

vehicle. The corresponding speed of the leading vehicle is shown in Figure 4.17(b).  

As ∆𝑡 = 1 second, the sampling time instant 𝑡𝑘 = 𝑘  seconds for 𝑘 = 1,2,⋯ . Under the 

assumed acceleration behavior of the leading vehicle, the prediction errors of 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘) 

using the DMPC approach are −1 𝑚 and 4 𝑚/𝑠, respectively, at each sampling time instant 𝑡𝑘. 

Note that the prediction errors of 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘)  (𝑘 = 1,2,3⋯ ) for DMPC-FOA are the 

same as that of DMPC approach.   

 

     (a) Comparison of solution for spacing of vehicle 1 

 

      (b) Comparison of control decisions for vehicle 1 

Figure 4.18 Comparison of solutions for spacing and control decisions of vehicle 1 among 

the DMPC approach, the DMPC-FOA approach and the idealized MPC strategy.  
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Figure 4.18 compares the optimal solutions for the DMPC approach, the DMPC-FOA 

approach and the idealized MPC strategy. It illustrates that both spacing and control decisions of 

vehicle 1 computed using the DMPC approach deviate significantly from those of the idealized 

MPC strategy due to the large prediction errors of 𝑥1(𝑡𝑘) and 𝑦1(𝑡𝑘) (𝑘 = 1,2,⋯). In addition, 

the spacing between the leading vehicle 0 and vehicle 1 even reduce to a value less than the 

minimum allowable spacing 𝑠𝑚𝑖𝑛(𝑠𝑚𝑖𝑛 = 5 𝑚). Thereby, a collision will occur between leading 

vehicle 0 and vehicle 1 in the platoon. Note that the DMPC approach stops at 𝑡 = 18𝑠 as the 

safety constraints (inequality (4.5c)) cannot be satisfied thereafter. Hence, no solution can be 

found using the DMPC approach. By contrast, the DMPC-FOA approach provides an optimal 

solution very close to that of the idealized MPC strategy. When the leading vehicle stops at 𝑡 =

30𝑠, the spacing between leading vehicle 0 and vehicle 1 is over 10 𝑚 to ensure safety. These 

results highlight that the DMPC-FOA approach can effectively improve the estimation 

performance significantly beyond that of the DMPC approach even under extreme scenarios.      

4.7 Concluding comments 

This study first proposes an idealized MPC-based cooperative control strategy for CAV 

platooning. Its optimal control decisions can coordinate the behaviors of all following CAVs in 

the platoon to maneuver them effectively and safely. However, as in existing literature, it is 

based on the idealized, but unrealistic, assumption that the embedded optimal control problem 

can be solved instantaneously. To relax this idealized assumption, two deployable strategies, i.e., 

the DMPC approach and the DMPC-FOA approach, are proposed to address the control delay 

issue of the idealized MPC strategy and to accurately characterize its optimal control decisions. 

The DMPC approach addresses the control delay issue by reserving sufficient time before each 

sampling time instant to solve the embedded optimal control problem. However, the estimated 

control decisions of the DMPC approach can deviate significantly from those of the idealized 

MPC strategy due to errors in predicting the leading vehicle’s position and speed. By contrast, 

the DMPC-FOA approach addresses the control delay issue effectively while accurately 

characterizing the optimal control decisions of the idealized MPC strategy by leveraging the 

proposed analytical sensitivity analysis method for the embedded optimal control problem. The 

application of the DMPC-FOA approach for a CAV platoon whose lead vehicle’s trajectory is 

obtained from field data illustrates that it can dampen traffic oscillations efficiently, and can 



145 

 

 

 

enable smooth deceleration and acceleration behaviors for all following vehicles. In addition, it 

can provide control decisions very similar to those of the idealized MPC strategy even under 

extreme situations where the leading vehicle’s speed and position are predicted very poorly at 

each sampling time instant.  

It is important to note that the DMPC-FOA approach concept can also be leveraged to 

address the issue of control delay for other MPC-based cooperative control strategies (e.g., Wang 

et al., 2014b) arising from the computational time required to solve the embedded optimal 

control problem. In addition, the applicability of the DMPC-FOA approach is not constrained by 

the size of the platoon or prediction horizon. It can be applied for real-time control of large CAV 

platoons on the condition that the time reserved for computing (i.e., 𝜏2) is less than the roll 

period (∆𝑡).  

This study can be extended in a few directions. First, the study assumes that the DMPC and 

DMPC-FOA approaches can estimate the states of all following vehicles at each sampling time 

instant with low error (negligible) by leveraging the prior control decisions and the actual states 

at a time close to the corresponding sampling time instant. This assumption is reasonable when 

pavement conditions are homogeneous during the platooning and the vehicle does not falsely 

execute the optimal control decisions. If pavement conditions change significantly over the 

platooning process ( for example, due to potholes or weather conditions), or the well-known false 

execution issue arises occasionally, the control decisions can be suboptimal even for the 

idealized benchmark MPC strategy. To address these aspects, our ongoing work proposes to 

capture them using another real-time deployable approach. Second, the application of the 

DMPC-FOA approach for real-time control of the CAV platoon can be constrained by the 

reserved time 𝜏2. We propose to develop a new solution algorithm and discretization technique 

to solve the two-point boundary value problems faster.  
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 MULTICLASS TRAFFIC ASSIGNMENT MODEL FOR 

MIXED TRAFFIC FLOW OF HUMAN-DRIVEN VEHICLES AND 

CONNECTED AND AUTONOMOUS VEHICLES 

5.1 Introduction 

Communication and automation technologies installed in connected and autonomous 

vehicles (CAVs) will significantly transform people’s travel behavior in the future, mainly due to 

the following advantages. First, CAVs can enhance travel safety, and reduce traffic accidents 

caused by human errors (Assidiq et al., 2008). Second, CAVs can enhance roadway capacity by 

following each other closely. Studies suggest that highway capacity can be doubled if 60% of the 

vehicles are CAVs, and increased by 4 to 5 times if all vehicles are CAVs (Tientrakool et al., 

2011). Third, CAVs require fewer inputs from human beings. Hence, CAV users may have lower 

value of time (VOT) because they can spend the time during travel on other activities (van den 

Berg and Verhoef, 2016). Fourth, CAVs can improve energy efficiency by forming platoons. 

Studies  show that CAVs can save 7%-15% of fuel consumption for light-duty CAVs and 15%-

21% of fuel consumption for heavy truck CAVs by forming a CAV platoon (Shida et al., 2010; 

Shida and Nemoto 2009; Bonnet and Fritz, 2000; Eben et al., 2013). CAVs will also lead to other 

benefits such as fewer parking spaces, reduced vehicle ownership, and reclamation of more 

green space. An overview of some of the advantages can be found in Fagnant and Kockelman 

(2015). 

The aforementioned advantages can lead CAV users to have different route choice behaviors 

compared to human-driven vehicle (HDV) users. Here, HDVs are assumed to be not equipped 

with vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communication technologies 

that can enable seamless connectivity. The differential behaviors result in a mixed traffic flow 

pattern at the network level with the following three characteristics. First, CAV flows can impact 

the route choices of HDV users. The travel time of mixed traffic flow is different from that of the 

single-class HDV flow due to the asymmetry in interactions involving HDVs and CAVs. For 

example, CAVs may follow HDVs using smaller headways, similar to how they would follow 

another CAV. By contrast, the driving behavior of HDVs can be different depending on whether 

they are following an HDV or a CAV. Hence, HDV drivers may perceive different travel times 

based on the CAV market penetration in the ambient traffic stream. Second, travel cost in this 
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mixed flow context includes the monetized travel time based on VOT, and the fuel consumption 

cost. Since VOT can be different for CAV and HDV users, the monetized travel time can also be 

different for them. Also, since route choice behaviors can be different for CAV and HDV users, 

fuel consumption costs can be different for them. Further, as CAVs can receive more accurate 

information on traffic conditions through seamless V2V and V2I connectivity, CAV users are 

more informed about shortest travel cost paths (which are not necessarily the shortest travel time 

paths). Third, unlike HDVs, CAVs can have access to dedicated CAV facilities such as 

autonomous vehicle (AV) dedicated lanes. For example, some previous studies (Chen et al., 

2016; Chen et al., 2017) propose the deployment of AV-dedicated lanes to foster CAV usage 

during the transition period from HDVs to CAVs to better exploit the advantages of CAVs. If 

AV-dedicated lanes exist in a traffic network, CAVs can use both AV-dedicated lanes and non-

AV dedicated lanes (i.e., lanes can be accessed by both CAVs and HDVs) while HDVs can only 

use the non-AV dedicated lanes. Hence, CAVs can have a larger route choice set. Levin and 

Boyles (2016) show that even if a small proportion of HDVs are replaced by CAVs, the 

redistributed network flows can reduce average travel time significantly. In summary, it is 

critical to estimate the network flows for effective transportation planning during the transition 

period when both CAVs and HDVs are in use.  

To model the network flow under HDVs and CAVs, this study characterizes them as a mixed 

traffic flow. In transportation literature, such network flows are often estimated by formulating 

multiclass traffic assignment models, by extending the single-class traffic assignment model 

(such as the static user equilibrium (UE) model). These extensions can improve modeling 

realism by integrating the route choices of the users of different user classes using different 

disutility functions (Dafermos, 1972). Hence, static multiclass traffic assignment has been used 

to capture the heterogeneity in travel mode (Defermos, 1972; Florian, 1977; Chen et al., 2016; 

Levin and Boyles, 2015; Jiang et al., 2016), VOT (Yang and Huang, 1994; Nagurney and Dong, 

2002), knowledge level of network conditions (Huang and Li, 2007; Huang and Lam, 2004), and 

risk-taking behavior (Shao et al., 2006; Lo et al., 2006).  

Existing multiclass traffic assignment models are insufficient to estimate mixed traffic flows 

consisting of CAVs and HDVs for the following reasons. First, these models cannot accurately 

characterize the route choice behavior of HDV users. In particular, most multiclass traffic 

assignment studies adopt the perfect knowledge assumption and the static user equilibrium 
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principle for route choices of HDV users (Chen et al., 2016; Levin and Boyles, 2015; Dafermos, 

1972; Florian, 1977; Yang and Huang, 1994; Jiang et al., 2016). Some other studies (e.g., Huang 

and Lam, 2003; Shao et al., 2006; Huang and Li, 2007) adopt the logit-based stochastic user 

equilibrium (SUE) model to relax the perfect knowledge assumption of UE model for HDV users. 

Nonetheless, the SUE model suffers from the route overlap issue whereby the flows on routes 

with overlapping links are overestimated. This may deteriorate the estimation accuracy of mixed 

traffic flows significantly, raising issues of realism. Since the estimation of HDV flows 

significantly impacts the estimation of CAV flows, there is the need to more accurately 

characterize HDVs’ route choices. Second, existing multiclass models ignore the asymmetry in 

driving interactions involving HDVs and CAVs, resulting in inaccurate travel time estimates 

which could affect flow allocations to routes. CAVs have lower reaction times and can respond 

to perturbations more quickly than HDVs. Further, CAVs can follow the vehicle in front of them 

more closely than HDVs, leading to increased link capacity. Thereby, the impact of one unit 

increase in CAV flow is different from that of a unit of HDV flow. Third, as discussed earlier, 

the route choice criteria of CAV users differ significantly from those of HDV users due to the 

reduced VOT, improved fuel economy, and the dedicated AV lanes. These new dimensions of 

routing criteria have not been considered in the literature, precluding holistic analyses of mixed 

traffic flows and the corresponding network equilibrium.  

To more realistically characterize mixed traffic flows of CAVs and HDVs to support 

effective transportation planning in the emerging future, this study proposes a variational 

inequality-based multiclass traffic assignment model in which CAV users choose routes based on 

the UE principle and HDV users based on the cross nested-logit (CNL) model. The UE model 

characterizes the CAVs’ capability to acquire accurate information on traffic conditions. The 

CNL model relaxes the strong knowledge-level assumption of the UE model and also overcomes 

the route overlap issue of logit-based SUE problem (Kitthamkesorn et al., 2016; Prashker and 

Bekhor, 1999). Remming (2001) illustrates the estimation effectiveness of the CNL model for 

HDV flows using the eastern Massachusetts network. In our proposed model, the link cost 

functions integrate the difference in VOT and the asymmetry in interactions involving HDVs and 

CAVs, and the energy consumption savings through platooning in AV-dedicated lanes. Hence, 

the proposed multiclass traffic assignment model can enhance realism in characterizing mixed 

traffic flows.  
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Due to the complex analytical formulation of the CNL route choice model for HDVs, it is 

difficult to solve the proposed multiclass traffic assignment model efficiently using variational 

inequality-based algorithms such as projection-based algorithms (e.g., Nagurney, 2000; 

Nagurney and Dong, 2002; Jiang et al., 2016) or proximal point methods (e.g., Zhan and 

Ukkusuri, 2017). To address this problem, this study develops a new solution algorithm by 

integrating the self-regulated step size choice technique (Liu et al., 2009) into the concept of 

route swapping strategy (Smith, 1984). One advantage of the proposed algorithm is that, in each 

iteration, it finds the descent direction according to an analytical model to circumvent solving a 

computationally-intensive subproblem in the aforementioned algorithms. Another advantage is 

that the proposed algorithm updates the step size adaptively using information on the descent 

directions of the current iteration and the previous iteration. We provide rigorous analyses of the 

convergence of the solution algorithm. The proposed algorithm also resolves the convergence 

difficulty of the existing route-swapping-based algorithm (Huang and Lam, 2002). 

To enhance applicability, this study further derives the analytical formula for the sensitivity 

analysis of the proposed model. In practice, planned (e.g., road maintenance, construction) or 

unexpected (e.g., accidents, facility failure, natural disasters) events can impact network flows 

significantly. Sensitivity analysis can help transportation decision-makers to estimate the impact 

of these events on network flows, and design better response and recovery strategies to reduce 

their negative effects. Besides, sensitivity analysis of the traffic assignment models can also be 

leveraged to design effective solution algorithms for continuous network design problems. There 

is limited literature for sensitivity analysis for multiclass traffic assignment models although 

extensive studies are available for single-class traffic assignment models (Yang and Bell, 2005; 

Tobin and Friesz, 1988; Clark and Watling, 2000). In particular, this study derives sufficient 

conditions for the existence of derivatives for HDV and CAV equilibrium link flows.  

The contributions of the study are threefold. First, a multiclass traffic assignment model is 

proposed where the routing behaviors of HDVs and CAVs follow the CNL and UE principles, 

respectively. The proposed model provides enhanced behavioral realism by integrating into the 

travel cost functions the impacts of heterogeneous VOT and asymmetry in interactions involving 

HDVs and CAVs. Thereby, this model enables planners to better estimate network flows to 

support effective transportation planning during the transition to a fully CAV future. Second, this 

study develops a new solution algorithm based on the route-swapping concept to solve the 
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proposed multiclass traffic assignment model efficiently. Comparison shows that the proposed 

algorithm has a convergence speed superior to that of the existing route-swapping-based 

algorithm (Huang and Lam, 2002) by adaptively updating the step size in each iteration using a 

modified self-regulated step-size choice technique. Third, an analytical formula is derived for the 

sensitivity analysis of the proposed model, which enables planners to quickly estimate the 

perturbed traffic equilibrium and identify critical elements under planned or unexpected 

disruptive events. It can also be used to solve the continuous network design problem (e.g., to 

find optimal signal timing or tolling strategy to improve the system performance under mixed 

traffic flow). 

The remainder of the paper is organized as follows. Section 2 introduces the CNL model and 

an equivalent variational inequality (VI) problem to characterize the equilibrium state. Section 3 

presents the proposed multiclass traffic assignment model where HDVs and CAVs choose routes 

according to the CNL model and UE principle, respectively. Section 4 develops the solution 

algorithm for the proposed model, and Section 5 provides the sensitivity analysis. Section 6 

discusses the results of numerical experiments for the proposed model and the performance of its 

solution algorithm. Section 7 concludes with the main findings, insights, and potential future 

research directions.  

5.2 Cross-nested logit model and its equivalent VI problem 
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Figure 5.1 Illustration of the hierarchical structure of the CNL model 

This section develops a VI-based traffic assignment model for HDV flows that assumes HDV 

drivers choose routes according to the CNL principle. In this section, all vehicles are assumed to 

be HDVs.  To differentiate from the CAV flows in the multiclass traffic assignment model, this 
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section contains a subscript 𝐻 indicating HDVs. Consider a transportation network G(𝑵𝐻 , 𝜞𝐻), 

where 𝑵𝐻 represents the set of nodes and 𝜞𝐻 represents the set of links that can be accessed by 

HDVs. Let 𝑊𝐻 denote the set of origin-destination (OD) pairs for HDVs, and 𝑅𝐻
𝑤 denote the set 

of paths connecting OD pair 𝑤 ∈ 𝑊𝐻. Denote 𝑣𝑎,𝐻 and 𝑡𝑎,𝐻 as the HDV flow and HDV travel 

cost on link a ∈ 𝜞𝐻 , respectively. Let 𝐭𝐻 be the vector of HDV link travel costs and 𝐯𝐻 be the 

vector of HDV link flows. The HDV flow on path 𝑘 of OD pair 𝑤 is denoted by 𝑓𝑘,𝐻
𝑤 , 𝑘 ∈ 𝑅𝐻

𝑤. 

Let 𝐟𝐻 be the vector of HDV flows of all paths in the network. Denote 𝑞𝐻
𝑤 as the demand of 

HDVs for OD pair 𝑤, and 𝐪𝐻 as the vector of HDV traffic demand for all OD pairs. Let ∆𝐻 and 

Ʌ𝐻 denote the link-path and OD-path incidence matrices, respectively. Additional notation will 

be introduced when necessary. 

Vovsha (1997) derived the CNL model based on McFadden’s (1981) generalized extreme 

value (GEV) function for mode choice split. Prashker and Bekhor (1999) extended it to 

characterize user’s route choices. Figure 5.1 shows a small example to demonstrate how the CNL 

model overcomes the route overlap problem. It contains one OD pair and three routes. Route 2 

overlaps with route 1 and route 3 through shared links B and G, respectively. As shown in Figure 

5.1, the CNL model consists of two layers, where the upper layer contains all links in the 

network and the lower layer consists of all potential path choices. Each path in the CNL model is 

assigned to the upper nests (links) which are used by this path, and each nest in the upper layer 

groups all paths sharing the specific overlapped link. The CNL model introduces an inclusion 

coefficient (𝛼𝑚,𝑘
𝑤 , 𝑚 ∈ 𝜞𝐻) for each path  𝑘 ∈ 𝑅𝐻

𝑤 and link 𝑚 to denote the overlapping degree of 

this path with other paths in nest 𝑚 ∈ 𝜞𝐻 ,  ∑ 𝛼𝑚,𝑘
𝑤

𝑘∈𝑅𝐻
𝑤 = 1  (Prashker and Bekhor, 1999). 

Thereby, the CNL model accounts for the covariance between paths under each nest that 

addresses the route overlap problem. According to the CNL model, the probability of a user 

choosing path 𝑘 of OD pair 𝑤 (labelled as 𝑝𝑤(𝑘)) can be written as the product of the marginal 

probability 𝑝𝑤(𝑚) and conditional probability 𝑝𝑤(𝑘|𝑚): 

𝑝𝑤(𝑘) = ∑ 𝑝𝑤(𝑘|𝑚)𝑝𝑤(𝑚)

𝑚∈𝜞𝐻

 (5.1a) 

where  

𝑝𝑤(𝑘|𝑚) =
[𝛼𝑚,𝑘
𝑤 exp (−휃𝑐𝑘,𝐻

𝑤 )]
1/𝑢

∑ [𝛼𝑚,𝑙
𝑤 exp (−휃𝑐𝑙,𝐻

𝑤 )]
1/𝑢

𝑙∈𝑅𝐻
𝑤

 (5.1b) 
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𝑝𝑤(𝑚) =
(∑ [𝛼𝑚,𝑘

𝑤 exp (−휃𝑐𝑘,𝐻
𝑤 )]

1/𝑢
𝑘∈𝑅𝐻

𝑤 )
𝑢

∑ (∑ [𝛼𝑏,𝑙
𝑤 exp (−휃𝑐𝑙,𝐻

𝑤 )]
1/𝑢

𝑙∈𝑅𝐻
𝑤 )

𝑢

𝑏∈𝜞𝐻

 (5.1c) 

Here,  𝑢 is the degree of nesting, 0 < 𝑢 ≤ 1, 휃 is the dispersion parameter, 𝑎𝑛𝑑 𝑐𝑘,𝐻
𝑤  is the travel 

cost of path 𝑘 of OD pair 𝑤 ∈ 𝑊𝐻. Cascetta et al. (1996) provide the following formulation for 

the inclusion coefficient (𝛼𝑚,𝑘
𝑤 , 𝑚 ∈ 𝜞𝐻): 

𝛼𝑎,𝑘
𝑤 = (

𝑙𝑚
𝑙𝑘
𝑤)

𝛾

𝛿𝑎,𝑘
𝑤  (5.2) 

where 𝑙𝑚 and 𝑙𝑘
𝑤 are the length of link 𝑚 and path 𝑘 of OD pair 𝑤, respectively, and 𝛿𝑎,𝑘

𝑤 = 1 if 

path 𝑘 uses link 𝑎 and 0 otherwise. Eq. (5.1) denotes that, if the degree of nesting is 0, then the 

CNL model becomes the logit model.  

Prashker and Bekhor (1999) developed a CNL equivalent mathematical program to 

characterize users’ route choices. However, it cannot be extended to model the route choices of 

mixed traffic flow due to the asymmetric impacts of HDVs and CAVs on link travel cost. Further, 

beyond path flows, the decision variables in the mathematical program are path flows belonging 

to different nests. Hence, this program contains a large number of decision variables, which 

scales the computational complexity for a large-size network. To model multiclass traffic 

assignment with mixed flow of CAVs and HDVs, this section develops an equivalent VI 

problem which contains only path flow variables.  

In a large network, some paths are less likely to be used. Such paths are excluded from 

analysis in this study. These paths can be found using methods such as the revised K-shortest 

path algorithm (De La Barra et al. 1993), the labeling method (Ben-Akiva et al. 1984), and the 

column generation technique (Ji et al. 2017). Suppose 𝑅𝐻
𝑤 contains only paths that are likely to 

be used. . To characterize the equilibrium condition of the CNL model, let 𝐶𝑘,𝐻
𝑤  be the 

generalized travel cost of path 𝑘 for HDVs for OD pair 𝑤, formulated as: 

𝐶𝑘,𝐻
𝑤 = 𝑐𝑘,𝐻

𝑤 −
𝑢

휃
𝐻𝑘,𝐻
𝑤 +

𝑢

휃
𝑙𝑛 (

𝑓𝑘,𝐻
𝑤

𝑞𝐻
𝑤 ) (5.3) 

where  

𝐻𝑘,𝐻
𝑤 = 𝑙𝑛 [ ∑ (𝛼𝑚,𝑘

𝑤 )
1/𝑢

𝑚∈𝜞𝐻

(∑ [𝛼𝑚,𝑙
𝑤 exp (−휃𝑐𝑙,𝐻

𝑤 )]
1/𝑢

𝑙∈𝑅𝐻
𝑤

)

𝑢−1

] (5.4) 
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The following proposition provides the sufficient and necessary conditions for the 

equilibrium state of the CNL model. This proposition will be used to develop the equivalent VI-

based traffic assignment model which will be embedded in the multiclass traffic assignment 

model in Section 3. 

Proposition 5.1: The CNL path flows  𝐟𝐻
∗ = {𝑓𝑘,𝐻

𝑤∗, ∀𝑤 ∈ 𝑊𝐻 , ∀𝑘 ∈ 𝑅𝐻
𝑤} are at equilibrium if and 

only if the generalized travel cost of all paths for the corresponding OD pair is the same, i.e., 𝐟𝐻
∗  

satisfies  

 𝐶𝑘,𝐻
𝑤 (𝐟𝐻

∗ ) = 𝜏𝐻
𝑤, for ∀𝑤 ∈ 𝑊𝐻 , ∀𝑘 ∈ 𝑅𝐻

𝑤  (5.5) 

where 𝐟𝐻
∗ ∈ 𝛀𝐟𝐻 = {𝐟|Ʌ𝐻𝐟𝐻 = 𝐪𝐻 , 𝐟𝐻 ≥ 0} and 𝜏𝐻

𝑤 is a real value. 

Proof: Based on Eq. (5.3), we have 

𝑝𝑤(𝑘) =
𝑓𝑘,𝐻
𝑤∗

𝑞𝐻
𝑤 = exp (

휃

𝑢
𝐶𝑘,𝐻
𝑤 −

휃

𝑢
𝑐𝑘,𝐻
𝑤 + 𝐻𝑘,𝐻

𝑤 ) (5.6) 

Note  

∑ 𝑝𝑤(𝑗)

𝑗∈𝑅𝐻
𝑤

= 1 (5.7) 

Substituting Eq. (5.6) into Eq. (5.7) yields  

∑ 𝑝𝑤(𝑗)

𝑗∈𝑅𝐻
𝑤 

= ∑ exp(
휃

𝑢
𝐶𝑘,𝐻
𝑤 −

휃

𝑢
𝑐𝑘,𝐻
𝑤 + 𝐻𝑗,𝐻

𝑤 ) = 1

𝑗∈𝑅𝐻
𝑤 

 (5.8) 

Based on Eq. (5.5),  

exp (
휃

𝑢
𝐶𝑘,𝐻
𝑤 ) = exp (

휃

𝑢
𝜏𝐻
𝑤) =

1

∑ exp (−
휃
𝑢
𝑐𝑗,𝐻
𝑤 + 𝐻𝑗,𝐻

𝑤 )𝑗∈𝑅𝐻
𝑤

 (5.9) 

Substituting Eq. (5.9) into Eq. (5.6), we have  

𝑝𝑤(𝑘) =
exp (−

휃
𝑢
𝑐𝑘,𝐻
𝑤 + 𝐻𝑘,𝐻

𝑤 )

∑ exp (−
휃
𝑢
𝑐𝑗,𝐻
𝑤 + 𝐻𝑗,𝐻

𝑤 )𝑗∈𝑅𝐻
𝑤

 

=
exp (−

휃
𝑢
𝑐𝑘,𝐻
𝑤 + 𝑙𝑛 [∑ (𝛼𝑚,𝑘

𝑤 )
1/𝑢

𝑚∈𝜞𝐻 (∑ [𝛼𝑚,𝑙
𝑤 exp (−휃𝑐𝑙,𝐻

𝑤 )]
1/𝑢

𝑙∈𝑅𝐻
𝑤 )

𝑢−1

])

∑ exp (−
휃
𝑢
𝑐𝑗,𝐻
𝑤 + 𝑙𝑛 [∑ (𝛼𝑏,𝑗

𝑤 )
1/𝑢

𝑏∈𝜞𝐻 (∑ [𝛼𝑏,𝑖
𝑤 exp (−휃𝑐𝑖,𝐻

𝑤 )]
1/𝑢

𝑖∈𝑅𝐻
𝑤 )

𝑢−1

])𝑗∈𝑅𝐻
𝑤

 

=
exp (−

휃
𝑢
𝑐𝑘,𝐻
𝑤 + 𝑙𝑛 [∑ (𝛼𝑚,𝑘

𝑤 )
1/𝑢

𝑚∈𝜞𝐻 (∑ [𝛼𝑚,𝑙
𝑤 exp (−휃𝑐𝑙,𝐻

𝑤 )]
1/𝑢

𝑙∈𝑅𝐻
𝑤 )

𝑢−1

])

∑ (∑ (𝛼𝑏,𝑗
𝑤 exp (−휃𝑐𝑗,𝐻

𝑤 ))
1/𝑢

𝑏∈𝜞𝐻 (∑ [𝛼𝑏,𝑖
𝑤 exp (−휃𝑐𝑖,𝐻

𝑤 )]
1/𝑢

𝑖∈𝑅𝐻
𝑤 )

𝑢−1

)𝑗∈𝑅𝐻
𝑤

 

(5.10) 
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=
∑ {[𝛼𝑚,𝑘

𝑤 exp (−휃𝑐𝑘,𝐻
𝑤 )]

1/𝑢
(∑ [𝛼𝑚,𝑙

𝑤 exp (−휃𝑐𝑙,𝐻
𝑤 )]

1/𝑢
𝑙∈𝑅𝐻

𝑤 )
𝑢−1

}𝑚∈𝜞𝐻

∑ (∑ [𝛼𝑏,𝑖
𝑤 exp (−휃𝑐𝑖,𝐻

𝑤 )]
1/𝑢

𝑖∈𝑅𝐻
𝑤 )

𝑢

𝑏∈𝜞𝐻

 

Eq. (5.10) is consistent with the CNL route choice model shown in Eq. (5.1). This completes 

the proof. 

According to Proposition 5.1, the CNL equilibrium state for HDVs can be expressed as 

follows. At equilibrium, no HDV user can unilaterally change his/her path to reduce the 

generalized travel cost. Eq. (5.3) also shows that if 𝑢 = 1, 𝐶𝑘,𝐻
𝑤 = 𝑐𝑘,𝐻

𝑤 +
1

𝜃
𝑙𝑛 (

𝑓𝑘,𝐻
𝑤

𝑞𝐻
𝑤 ), which is the 

generalized travel cost for logit-based SUE model (Guo and Huang, 2016). Thereby, the logit-

based SUE condition is a special case of CNL equilibrium. Following Wei et al. (2015), the 

conditions in proposition 5.1 can further be expressed by a finite-dimensional VI problem as 

follows: 

∑ ∑ 𝐶𝑘,𝐻
𝑤 (𝑓𝑘,𝐻

𝑤 − 𝑓𝑘,𝐻
𝑤∗) ≥ 0

𝑘∈𝑅𝐻
𝑤𝑤∈𝑊𝐻

 (5.11) 

where 𝐟𝐻
∗ , 𝐟𝐻 ∈ 𝛀𝐟𝐻.  

The CNL equilibrium path flow solution can be obtained by solving the VI problem (5.11). 

Note that the path flow solution of the CNL model is unique (Prashker and Bekhor, 1999) under 

the assumption that the link travel cost function is strictly monotonic on traffic flows. Thereby, 

the path flow solution to the VI problem (5.11) is also unique under the same assumption.  

5.3 Multiclass traffic assignment model for mixed traffic flow with HDVs and CAVs 

5.3.1 Link travel cost function of HDVs and CAVs  

The transition period towards full autonomy will consist of mixed traffic of HDVs and CAVs. 

Let  𝜞1 be the set of AV-dedicated lanes in the network if such lanes are deployed. To analyze 

the attractiveness of AV-dedicated lanes and the impact of VOT, we assume that the link travel 

cost of both CAVs and HDVs consists of two parts: travel time and fuel consumption costs. Both 

travel time and fuel consumption are converted into equivalent monetary costs. This assumption 

is also used by Levin and Boyles (2015) to study the effects of AV ownership on trip, mode, and 

route choice. To determine the link travel times of CAVs and HDVs in the mixed flow, the 

Bureau of Public Roads (BPR) function is used. It is a strictly monotone function of traffic flows.  
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𝑡�̅�(𝑣𝑎,𝐻 , 𝑣𝑎,𝐴) =
𝑙𝑎
𝑠𝑎
[1 + (

𝑣𝑎,𝐻 + 𝑣𝑎,𝐴
𝑄𝑎

)]
4

, 𝑎 ∈ 𝜞𝐻 (5.12a) 

𝑡�̅�(𝑣𝑎,𝐴) =
𝑙𝑎
𝑠𝑎
[1 + (

𝑣𝑎,𝐴
𝑄𝑎,𝐴

)]

4

, 𝑎 ∈ 𝜞1 (5.12b) 

where  𝑡�̅�(𝑣𝑎,𝐻 , 𝑣𝑎,𝐴) is the link travel time of either a CAV or a HDV, and 𝜞𝐻  is the set of 

regular links (i.e., links not dedicated to AVs) which can be used by both HDVs and CAVs. 𝑠𝑎 is 

the free-flow speed of link 𝑎,  𝑄𝑎 is the capacity of link 𝑎 with mixed traffic flow, 𝑄𝑎,𝐴 is the 

capacity of a link with pure CAV flow, and 𝑣𝑎,𝐴 is the CAV flow on link 𝑎.  

As discussed in Section 1, CAVs and HDVs have different driving behavior in mixed traffic. 

In this study, we assume that CAVs can follow leading vehicles (either a CAV or HDV) with 

smaller headways than HDVs due to the reduced reaction time. Hence, the capacity of a regular 

link 𝑎 (i.e., 𝑄𝑎) is a function of the proportion of CAVs as the time headway of CAVs is smaller 

(Levin and Boyles, 2016). According to Levin and Boyles (2016), when the distribution of 

CAVs is uniform along the link, the capacity of a regular link with mixed traffic flow can be 

formulated as 

𝑄𝑎  = 𝑠𝑎
1

𝑠𝑎 (
𝑣𝑎,𝐻𝐴𝑉

𝑣𝑎,𝐻𝐴𝑉 + 𝑣𝑎,𝐶𝐴𝑉
𝜔𝐻 +

𝑣𝑎,𝐶𝐴𝑉
𝑣𝑎,𝐻𝐴𝑉 + 𝑣𝑎,𝐶𝐴𝑉

𝜔𝐴) + 𝜍
, 

(5.13) 

where 𝜔𝐻 and 𝜔𝐴 (𝜔𝐴 < 𝜔𝐻) are reaction times of HDVs and CAVs, respectively, and 𝜍 is the 

average vehicle length. According to Eq. (5.13), if all vehicles in a regular link are HDVs, then  

𝑄𝑎,𝐻 = 𝑠𝑎
1

𝑠𝑎𝜔𝐻 + 𝜍
, (5.14) 

where 𝑄𝑎,𝐻 denotes the link capacity for pure HDV flow. According to Eq. (5.14),  

𝜔𝐻 =
1

𝑄𝑎,𝐻
−
𝜍

𝑠𝑎
, (5.15) 

Similarly, 

𝜔𝐴 =
1

𝑄𝑎,𝐴
−
𝜍

𝑠𝑎
, (5.16) 

Substitute Eq. (5.15) and Eq. (5.16) into Eq. (5.13),  

𝑄𝑎  =
1

𝑣𝑎,𝐻
𝑣𝑎,𝐻 + 𝑣𝑎,𝐴

1
𝑄𝑎,𝐻

+
𝑣𝑎,𝐴

𝑣𝑎,𝐻 + 𝑣𝑎,𝐴

1
𝑄𝑎,𝐴

 
(5.17) 
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Note  𝑄𝑎,𝐴 ≥ 𝑄𝑎,𝐻 as the reaction times of CAVs are no larger than those of HDVs. From Eq. 

(12a) and Eq. (5.17), the increase in link travel time through a unit increase in CAV flow is no 

larger than that of a unit increase in HDV flow as link capacity can be improved due to increased 

proportion of CAVs. Thereby, the marginal effects of CAV and HDV flows on link travel time 

are asymmetric.  

To quantify the benefits of energy savings from a CAV platoon on an AV-dedicated lane, the 

fuel consumption of a vehicle on a link will be estimated and incorporated into the link cost 

function. We assume all vehicles (either HDVs or CAVs) are light-duty gasoline vehicles. Based 

on field experiments, Zhang et al. (2014) show that the gasoline consumption rate (per vehicle-

mile) of a vehicle is an exponential function of the average traffic speed. Thereby, the total fuel 

consumption of a vehicle driving on a regular link 𝑎 ∈ 𝜞𝐻 can be estimated as  

𝐸𝑎 = 𝜗1 (
𝐿𝑎

𝑡�̅�(𝑣𝑎,𝐻 , 𝑣𝑎,𝐴)
)

−𝜗2

𝑙𝑎, (5.18) 

where 𝑙𝑎  is the length of link 𝑎, 𝑙𝑎 𝑡�̅�(𝑣𝑎,𝐻 , 𝑣𝑎,𝐴)⁄  is the average travel speed of a vehicle on 

regular link 𝑎, and 𝜗1 > 0 and 0<𝜗2 < 1 are positive coefficients that need to be estimated. 

Compared to a regular link, AV-dedicated lanes not only reduce CAV travel times, but also 

enhance their fuel efficiency by allowing them to form platoons to minimize air resistance. To 

account for the reduced energy consumption due to platooning, a discount factor 𝜎 will be used 

with 𝐸𝑎 to account for energy savings for a CAV on an AV-dedicated lane. Thereby, the link 

travel cost of HDVs and CAVs can be formulated as follows: 

𝑡𝑎,𝐻 = 𝑡𝑎,𝐴 = 𝑡�̅�(𝑣𝑎,𝐻 , 𝑣𝑎,𝐴) ∙ 𝑉𝑂𝑇𝐻 + 휂 ∙ 𝐸𝑎, 𝑎 ∈ 𝜞𝐻 (5.19a) 

𝑡𝑎,𝐴 = 𝑡�̅�(𝑣𝑎,𝐴) ∙ 𝑉𝑂𝑇𝐻 + 𝜎 ∙ 휂 ∙ 𝐸𝑎, 𝑎 ∈ 𝜞1 (5.19b) 

where 𝑉𝑂𝑇𝐻 and 𝑉𝑂𝑇𝐴 are the value of time for HDV users and CAV users, respectively. 휂 is 

the price per unit of gasoline, and 𝜎 is the percentage fuel consumption savings due to platooning. 

Note that the link travel cost functions defined by Eq. (5.19a) and Eq. (5.19b) are strictly 

monotonic with respect to link flow of either HDVs or CAVs.  

5.3.2 Multiclass traffic assignment model 

Let 𝑊𝐴 be the set of OD pairs and 𝑅𝐴
𝑤 be the set of routes connecting OD pair 𝑤 ∈ 𝑊𝐴 for CAVs. 

Denote 𝑐𝑘,𝐴
𝑤  and 𝐶𝑘,𝐴

𝑤  as the travel cost of path 𝑘 and generalized travel cost of path 𝑘 for CAVs 

for OD pair 𝑤, respectively. The vector of CAV travel costs and CAV flows of all links and are 
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denoted by 𝐭𝐴 and 𝐯𝐴, respectively. Denote 𝑓𝑘,𝐴
𝑤  as the CAV flow of path 𝑘 for OD pair 𝑤 and  𝐟𝐴 

as the vector of CAV flows of all paths. Let 𝑞𝐴
𝑤 be the CAV demand for OD pair 𝑤, 𝐪𝐴 be the 

vector of CAV demands of all OD pairs, and ∆𝐴 and Ʌ𝐴 be the link-path and OD-path matrices, 

respectively.  

Unlike HDVs, CAVs can obtain information on traffic conditions through vehicle-to-

infrastructure and vehicle-to-vehicle communications. Thereby, we assume that CAVs have 

perfect knowledge of traffic conditions and can always choose paths with the minimum travel 

cost for the corresponding OD pairs, implying a static UE at equilibrium. In this context, 𝐶𝑘,𝐴
𝑤 =

𝑐𝑘,𝐴
𝑤 , ∀𝑘 ∈ 𝑅𝐴

𝑤 , ∀𝑤 ∈ 𝑊𝐴. Suppose 𝐟𝐴
∗ = [𝑓𝑘,𝐴

𝑤∗, ∀𝑘 ∈ 𝑅𝐴
𝑤 , ∀𝑤 ∈ 𝑊𝐴] is the UE path flow solution 

for CAVs; then, the generalized path travel cost of CAVs must satisfy:  

𝐶𝑘,𝐴
𝑤 = 𝑐𝑘,𝐴

𝑤 = {
𝜏𝐴
𝑤, if 𝑓𝑘,𝐴

𝑤∗ > 0 

≥ 𝜏𝐴
𝑤, if 𝑓𝑘,𝐴

𝑤∗ = 0 
, ∀𝑘 ∈ 𝑅𝐴

𝑤, ∀𝑤 ∈ 𝑊𝐴, (5.20) 

where 𝛀𝐟𝐴 = {𝐟𝑨|Ʌ𝐴𝐟𝐴 = 𝐪𝐴, 𝐟𝐴 ≥ 0}, and 𝜏𝐴
𝑤 is the cost of the shortest routes for CAVs. Note 

that for notational convenience, the generalized route travel cost 𝐶𝑘,𝐴
𝑤  will be used hereafter to 

model the multiclass traffic assignment model instead of 𝑐𝑘,𝐴
𝑤  as they are identical for CAVs.   

According to equilibrium conditions (5.5) and (5.20), it can be shown that the path flows 

(𝐟𝐻
𝑇∗, 𝐟𝐴

𝑇∗) are the equilibrium state of the CNL model and UE model for HDVs and CAVs, 

respectively, if and only if they satisfy the following VI problem: 

∑ ∑ 𝐶𝑘,𝐻
𝑤 (𝐟𝐻

∗ , 𝐟𝐴
∗)(𝑓𝑘,𝐻

𝑤 − 𝑓𝑘,𝐻
𝑤∗)𝑘∈𝑅𝐻

𝑤𝑤∈𝑊𝐻
+∑ ∑ 𝐶𝑘,𝐴

𝑤 (𝐟𝐻
∗ , 𝐟𝐴

∗)(𝑓𝑘,𝐴
𝑤 − 𝑓𝑘,𝐴

𝑤∗)𝑘∈𝑅𝐴
𝑤𝑤∈𝑊𝐴

≥ 0,   (5.21) 

where [𝐟𝐻
𝑇 , 𝐟𝐴

𝑇], [𝐟𝐻
𝑇∗, 𝐟𝐴

𝑇∗] ∈ 𝛀𝐟 = {[𝐟𝐻
𝑇 , 𝐟𝐴

𝑇]|Ʌ𝐻𝐟𝐻 = 𝐪𝐻;  Ʌ𝐴𝐟𝐴 = 𝐪𝐴; 𝐟𝐻 ≥ 0; 𝐟𝐴 ≥ 0} . The 

superscript 𝑇denotes transpose. The VI problem (5.21) is a multiclass traffic assignment model 

that characterizes the equilibrium state of the route flow of HDVs and CAVs. The equivalence 

between VI problem (5.21) and the two equilibrium conditions in Eq. (5.5) and Eq. (5.20) can be 

shown using the method in Nagurney (2000). It is omitted here to avoid duplication. Let 𝐂𝐻 and 

𝐂𝐴 be the vector of generalized costs of all paths for HDVs and CAVs, respectively. Denote 𝐂𝐻
∗  

and 𝐂𝐴
∗  as the generalized costs of all paths for HDVs and CAVs at the equilibrium state 

[𝐟𝐻
𝑇∗, 𝐟𝐴

𝑇∗], respectively. The VI problem (5.21) can be written in vector form:  

𝐂𝐻
∗ (𝐟𝐻 − 𝐟𝐻

∗ )𝑇 + 𝐂𝐴
∗(𝐟𝐴 − 𝐟𝐴

∗)𝑇 ≥ 0,   (5.22) 

where [𝐟𝐻
𝑇 , 𝐟𝐴

𝑇] ∈ 𝛀𝐟 . Note ∑ ∑ 𝐶𝑘,𝐴
𝑤 (𝐟𝐻

∗ , 𝐟𝐴
∗)(𝑓𝑘,𝐴

𝑤 − 𝑓𝑘,𝐴
𝑤∗)𝑘∈𝑅𝐴

𝑤𝑤∈𝑊𝐴
= ∑ 𝑡𝑎,𝐴(𝐟𝐻

∗ , 𝐟𝐴
∗ )(𝑣𝑎,𝐴

𝑤 −𝑎∈𝛤𝐴

𝑣𝑎,𝐴
𝑤∗ ), where 𝜞𝐴 is the set of links for CAVs, 𝑣𝑎,𝐴

𝑤∗  is the equilibrium flow of CAVs on link 𝑎 at 
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the equilibrium state (𝐟𝐻
𝑇∗, 𝐟𝐴

𝑇∗).   The VI problem (5.21) can be reformulated as follows by 

defining it on path flows of HDVs and link flows of CAVs: 

∑ ∑ 𝐶𝑘,𝐻
𝑤 (𝐟𝐻

∗ , 𝐟𝐴
∗)(𝑓𝑘,𝐻

𝑤 − 𝑓𝑘,𝐻
𝑤∗)𝑘∈𝑅𝐻

𝑤𝑤∈𝑊𝐻
+ ∑ 𝑡𝑎,𝐴(𝐟𝐻

∗ , 𝐟𝐴
∗ )(𝑣𝑎,𝐴

𝑤 − 𝑣𝑎,𝐴
𝑤∗ )𝑎∈𝜞𝐴 ≥ 0,   (5.23) 

where [𝐟𝐻
𝑇 , 𝐯𝐴

𝑇] ∈ 𝛀𝛎 = {[𝐟𝐻
𝑇 , 𝐯𝐴

𝑇]|Ʌ𝐻𝐟𝐻 = 𝐪𝐻;  Ʌ𝐴𝐟𝐴 = 𝐪𝐴; ∆𝐴𝐟𝐴 = 𝐯𝐴; 𝐟𝐻 ≥ 0; 𝐟𝐴 ≥ 0} . 

Equivalently, the VI problem (5.23) can be written as  

𝐂𝐻
∗ (𝐟𝐻 − 𝐟𝐻

∗ )𝑇 + 𝐭𝐴
∗(𝐯𝐴 − 𝐯𝐴

∗)𝑇 ≥ 0,   (5.24) 

where [𝐟𝐻
𝑇 , 𝐯𝐴

𝑇] ∈ 𝛀𝛎 . 𝐭𝐴
∗  is the vector of link travel cost of CAVs at the equilibrium state 

[𝐟𝐻
𝑇∗, 𝐟𝐴

𝑇∗]. The following proposition discusses the existence of the path flow solutions of VI 

problem (5.21). 

where [𝐟𝐻
𝑇 , 𝐯𝐴

𝑇] ∈ 𝛀𝛎 . 𝐭𝐴
∗  is the vector of link travel costs of CAVs at the equilibrium state 

[𝐟𝐻
𝑇∗, 𝐟𝐴

𝑇∗] . The following proposition discusses the existence of path flow solutions of VI 

problem (5.21). 

Proposition 5. 2: The VI problem (5.21) has at least one path flow solution.  

Proof: As the link travel cost functions (Eq. (5.19)) for both CAVs and HDVs are continuous 

with respect to link flows of CAVs and HDVs, the generalized path cost for both HDVs 

(𝐶𝑘,𝐻
𝑤 (𝐟𝐻 , 𝐟𝑨), ∀𝑘, 𝑤) and CAVs (𝐶𝑘,𝐴

𝑤 (𝐟𝐻 , 𝐟𝐴), ∀𝑘, 𝑤) are continuous with respect to 𝐟𝐻  and 𝐟𝐴. 

Besides, the constraints in the feasible path flow set 𝛀𝐟 are affine. Thereby, the feasible path 

flow set 𝛀𝐟 is closed and convex. According to Theorem 1.4 in Nagurney (2013), VI problem 

(5.21) has at least one path flow solution. ∎ 

Proposition 5.2 implies that there exists at least one solution to VI problem (5.23) or (5.24). 

Let  𝐟 = [𝐟𝐻
𝑇 , 𝐟𝐴

𝑇]𝑇 , 𝐂 = [𝐂𝐻
𝑇 , 𝐂𝐴

𝑇]𝑇  .  Note that the generalized path travel cost vector 𝐂 in VI 

problem (5.22) is not a monotonic function of path flow 𝐟 as the link travel cost is asymmetric 

between HDVs and CAVs (Nagurney, 2000).  Thereby, both the VI problems (5.21) and (5.23) 

can have multiple local solutions. 

Proposition 5.3: If 𝑉𝑂𝑇𝐻 = 𝑉𝑂𝑇𝐴, then the path travel cost of CAVs for an OD pair is no larger 

than the path travel cost of HDVs for the same OD pair.  

Proof: Note that all HDV paths are also potential CAV paths. Thereby,  𝑅𝐻
𝑤 ⊂ 𝑅𝐴

𝑤, for ∀𝑤 ∈

(𝑊𝐴 ∩𝑊𝐻). As CAVs choose the paths with minimum travel cost for an OD pair, the path travel 

cost of an arbitrary CAV must be no larger than the path travel cost of an arbitrary HDV for the 

same OD pair. ∎ 
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When the level of automation of CAVs is not high, the drivers need to monitor the vehicle 

frequently and be ready to take over when requested to do so. In this scenario, the VOT of CAV 

users is close to that of HDV users. Proposition 5.3 suggests that a large proportion of HDV 

demand and CAV demand will be distributed on the same paths with shortest travel cost in this 

case, which increases traffic congestion and reduces system performance. It will be shown in the 

numerical example that the system performance of HDVs will benefit from the condition 

𝑉𝑂𝑇𝐻 > 𝑉𝑂𝑇𝐴, where a large proportion of HDV demand and CAV demand for the same OD 

pair will be distributed on different paths to reduce the network congestion level.  

5.4 Solution algorithm  

Many VI-based solution algorithms can be used to solve the proposed multiclass traffic 

assignment model, such as the projection method (Nagurney, 2000; Nagurney and Dong, 2002; 

Jiang et al., 2016), Tikhonov regularization method (Tikhonov, 1963), proximal point methods 

(Bauschke, 2004; Zhan and Ukkusuri, 2017), etc., provided that the corresponding convergence 

conditions are satisfied. However, these methods need to solve a subproblem to obtain the 

descent direction at each iteration. This is computationally expensive for the proposed multiclass 

traffic assignment model due to the presence of the complex generalized travel path cost function 

for HDVs (see Eq. (5.3)). To circumvent this issue, a route-swapping-based solution algorithm 

will be developed in this study to solve the multiclass traffic assignment model (21). At each 

iteration, this algorithm calculates the descent direction using a closed-form formulation to 

circumvent solving the subproblem in VI-based solution algorithms.  

Route-swapping models are usually formulated to characterize the evolution of traffic flow 

based on drivers’ knowledge of traffic conditions (Wang et al., 2016). They address whether and 

how the flow pattern evolves from a non-equilibrium state toward an equilibrium state. 

Depending on route choice assumptions, existing route-swapping models can converge to a 

stationary state equivalent to UE (Smith, 1984; Smith and Wisten, 1995; Huang and Lam, 2002; 

Peeta and Yang, 2003, Friesz et al., 1994) or logit-based SUE (Guo, 2013; Smith and Watling, 

2016). This characteristic enables route-swapping models to obtain a feasible solution algorithm 

for network equilibrium problems. Huang and Lam (2002) develop a heuristic algorithm based 

on the projected route-swapping (PRS) dynamic system to solve a VI-based departure time 

choice equilibrium problem. For convenience, we label it PRS algorithm. At each iteration, the 
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descent direction of the PRS algorithm is calculated using an analytical model that assumes flow 

will shift from the more costly paths to the least-cost path at a rate that is proportional to the flow 

on the more costly paths and the cost difference from the least-cost path. This algorithm is used 

to solve other VI-based traffic assignment problems (see e.g., Lam and Huang, 2003; Szeto and 

Lo, 2006). However, many studies report that the algorithm converges slowly (Szeto and Lo, 

2006; Ramadurai and Ukkusuri, 2010). This is partly because the PRS algorithm may fail to find 

a descent direction when it is close to the optimal solution as the flow shifts from all other paths 

to the least-cost path can be overestimated. For comparison, the steps to solve the multiclass 

traffic assignment problem (5.21) using PRS algorithm are presented in Table 5.1. 

Table 5.1 Steps of PRS algorithm proposed by Huang and Lam (2002) to solve the multiclass 

traffic assignment problem (5.21) 

Step 1: Initialization. Choose initial vectors of path flows 𝐟𝑛,𝐻 , 𝐟𝑛,𝐴. Set the iteration index 𝑛 = 1; 

Step 2: Generalized route travel cost update. For both HDVs and CAVs, obtain the minimum 

travel cost between each OD pair and the corresponding path set by 

            𝐶𝑧,𝑚𝑖𝑛
𝑤 = 𝑚𝑖𝑛{𝐶𝑘,𝑧

𝑤 (𝐟𝑛,𝐻 , 𝐟𝑛,𝐴): 𝑘 ∈ 𝑅𝑧
𝑤} , and  

�̃�𝑧
𝑤 = {𝑘|𝐶𝑘,𝑧

𝑤 (𝑛) = 𝐶𝑧,𝑚𝑖𝑛
𝑤 , 𝑘 ∈ 𝑅𝑧

𝑤}, 𝑧 ∈ {𝐻𝐷𝑉, 𝐶𝐴𝑉} 

Step 3: Route flow update. Update path flows for HDVs and CAVs (𝑓𝑘,𝑧
𝑤 (𝑛 + 1), ∀𝑘, 𝑤, 𝑧 ∈

{𝐻𝐷𝑉, 𝐶𝐴𝑉}) by  

     𝑓𝑘,𝑧
𝑤 (𝑛 + 1) = 𝑓𝑘,𝑧

𝑤 (𝑛) + 𝛽𝑛𝑓𝑘,𝑧
𝑤 (𝑛)[𝐶𝑘,𝑧

𝑤 − 𝐶𝑧,𝑚𝑖𝑛
𝑤 ],    𝑘 ∈ 𝑅𝑧

𝑤\�̃�𝑧
𝑤, 𝑧 ∈ {𝐻𝐷𝑉, 𝐶𝐴𝑉}  

𝑓𝑘,𝑧
𝑤 (𝑛 + 1) = 𝑓𝑘,𝑧

𝑟𝑠(𝑛) +
∑ 𝛽𝑛𝑓𝑖,𝑧

𝑤(𝑛)[𝐶𝑖,𝑧
𝑤 − 𝐶𝑧,𝑚𝑖𝑛

𝑤 ]𝑖∈𝑅𝑧
𝑤\�̃�𝑧

𝑤

|�̃�𝑧
𝑤|

, 𝑘 ∈ �̃�𝑧
𝑤, 𝑧 ∈ {𝐻𝐷𝑉, 𝐶𝐴𝑉} 

where |�̃�𝑧
𝑤| is the number of paths in set �̃�𝑧

𝑤; 𝑓𝑖,𝑧
𝑤(𝑛) is the flow of path on OD pair 𝑤 for 

vehicle class 𝑧 on iteration 𝑛, 𝛽𝑛 is the step of iteration 𝑛. 

Step 4. Convergence check. If the convergence criteria is satisfied, then step. Otherwise, let 𝑛 =
𝑛 + 1go to step 2. 

 

This study develops a new route-swapping-based solution algorithm to solve the multiclass 

traffic assignment problem (5.21). We will show that the proposed algorithm can solve (21) 

effectively and can converge much faster than the PRS algorithm. Let 𝑛 denotes the iteration 

number. At iteration 𝑛 + 1, unlike the PRS algorithm, the path flows 𝐟𝑛+1 of both HDVs and 

CAVs will be updated according to the following model, which is a revised version of the route-

swapping model proposed by Smith (1984) to incorporate multi-user classes, 

𝐟𝑛+1 = 𝐟𝑛 + 𝛽𝑛𝚽(𝐟𝑛) = [
𝐟𝑛,𝐻
𝐟𝑛,𝐴

] + 𝛽𝑛 [
𝚽𝐻(𝐟𝑛)
𝚽𝐴(𝐟𝑛)

] (5.25) 
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where 𝛽𝑛 > 0 is a step, 𝐟𝑛,𝐻 and 𝐟𝑛,𝐴 are vectors of path flows for HDVs and CAVs on iteration 

𝑛 , respectively. 𝚽𝐻(𝐟𝑛) = (𝛷𝑘,𝐻
𝑤 (𝐟𝑛), ∀𝑘 ∈ 𝑅𝐻

𝑤, 𝑤 ∈ 𝑊𝐻)  and 𝚽𝐴(𝐟𝑛) = (𝛷𝑘,𝐴
𝑤 (𝐟𝑛), ∀𝑘 ∈

𝑅𝐴
𝑤, 𝑤 ∈ 𝑊𝐴) are updated by: 

𝛷𝑘,𝐻
𝑤 (𝐟𝑛) = ∑ [𝑓𝑔,𝐻

𝑤 (𝑛) (𝐶𝑔,𝐻
𝑤 (𝐟𝑛) − 𝐶𝑘,𝐻

𝑤 (𝐟𝑛))
+

𝑔∈𝑅𝐻
𝑤

− 𝑓𝑘,𝐻
𝑤 (𝑛)(𝐶𝑘,𝐻

𝑤 (𝐟𝑛) − 𝐶𝑔,𝐻
𝑤 (𝐟𝑛))+

] 

(5.26a) 

𝛷𝑘,𝐴
𝑤 (𝐟𝑛) = ∑ [𝑓𝑔,𝐴

𝑤 (𝑛) (𝐶𝑔,𝐴
𝑤 (𝐟𝑛) − 𝐶𝑘,𝐴

𝑤 (𝐟𝑛))
+
− 𝑓𝑘,𝐴

𝑤 (𝑛)(𝐶𝑘,𝐴
𝑤 (𝐟𝑛) − 𝐶𝑔,𝐴

𝑤 (𝐟𝑛))+
]

𝑔∈𝑅𝐴
𝑤

 (5.26b) 

where 𝑓𝑖,𝑧
𝑤(𝑛) is the flow of path 𝑖 for vehicle class 𝑧 ∈ {𝐻𝐷𝑉, 𝐶𝐴𝑉} for OD pair 𝑤 in iteration 𝑛. 

For simplicity, we label Eq. (5.25) as the revised Smith’s route-swapping (RSRS) algorithm. 

This algorithm finds the descent direction based on an analytical formulation 𝚽(𝐟𝑛)  to 

circumvent the subproblem in VI-based algorithms. In each iteration, the descent direction can 

be updated quickly based on the path flow and generalized path travel cost of the previous 

iteration. Different from the PRS algorithm that swaps flow from a path to the least-cost paths 

(see Appendix A), the RSRS algorithm swaps flow from a path to all other paths with a lower 

cost. This prevents the overestimation of flow swaps to the least-cost paths which is likely to 

occur in the PRS algorithm when the solution is close to the optimum. The following proposition 

describes the equivalence between the stationary point of Eq. (5.25) and the solution of the 

multiclass traffic assignment problem (5.21). 

Proposition 5.4: If the path flows 𝐟𝑛 determined by the RSRS algorithm converge, then they 

must converge to the pattern that simultaneously satisfies the CNL equilibrium conditions for 

HDVs and UE conditions for CAVs. 

Proof: Suppose 𝐟𝑛 is a stationary point for Eq. (5.25), 𝐟𝑛 = 𝐟𝑛+1. Then for arbitrary OD pair 

𝑤,𝑤 ∈ 𝑊𝐻 

0 = (𝐂𝐻
𝑤(𝐟𝑛))

𝑇
(𝐟𝑛+1,𝐻
𝑤 − 𝐟𝑛,𝐻

𝑤 ) 

= (𝐂𝐻
𝑤(𝐟𝑛))

𝑇
(𝐟𝑛,𝐻
𝑤 + 𝛽𝑛𝚽𝐻

𝑤(𝐟𝑛) − 𝐟𝑛,𝐻
𝑤 ) 

= 𝛽𝑛 ∑ 𝐶𝑘,𝐻
𝑤 ∑ [𝑓𝑔,𝐻

𝑤 (𝑛)(𝐶𝑔,𝐻
𝑤 (𝐟𝑛) − 𝐶𝑘,𝐻

𝑤 (𝐟𝑛))+
𝑔∈𝑅𝐻

𝑤𝑘∈𝑅𝐻
𝑤

− 𝑓𝑘,𝐻
𝑤 (𝑛)(𝐶𝑘,𝐻

𝑤 (𝐟𝑛) − 𝐶𝑔,𝐻
𝑤 (𝐟𝑛))+

] 

(5.27) 

where 𝐟𝑛,𝐻
𝑤  is the vector of flow of all paths for OD pair 𝑤 ∈ 𝑊𝐻 at iteration 𝑛. 𝐂𝐻

𝑤(𝐟𝑛) is the 

vector of generalized costs of all paths for HDVs for OD pair 𝑤 ∈ 𝑊𝐻 at iteration 𝑛. 𝚽𝐻
𝑤(𝐟𝑛) =

(𝛷𝑘,𝐻
𝑤 (𝐟𝑛), ∀𝑘 ∈ 𝑅𝐻

𝑤). Let |𝑅𝐻
𝑤| denote the number of paths for HDVs for OD pair 𝑤,𝑤 ∈ 𝑊𝐻. 
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Without loss of generality, suppose 𝐶1,𝐻
𝑤 (𝐟𝑛) ≥ 𝐶2,𝐻

𝑤 (𝐟𝑛) ≥ ⋯ ≥ 𝐶|𝑅𝐻𝑤|,𝐻
𝑤 (𝐟𝑛). Then, Eq. (5.27) 

can be simplified as: 

0 = (𝐂𝐻
𝑤(𝐟𝑛))

𝑇
(𝐟𝑛+1
𝑤 − 𝐟𝑛

𝑤) 

= 𝛽
𝑛
∑ ∑ 𝑓𝑘,𝐻

𝑤 (𝑛)(𝐶𝑘,𝐻
𝑤 (𝐟𝑛) − 𝐶𝑔,𝐻

𝑤 (𝐟𝑛))
2

|𝑅𝐻
𝑤|

𝑔=𝑘+1

|𝑅𝐻
𝑤|

𝑘=1

 
(28) 

Eq. (5.28) holds only when it satisfies Eq. (5.5). Using the same method, it can be shown that 

the stationary path flows for HDVs and CAVs for all OD pairs obtained by Eq. (5.25) satisfy the 

CNL equilibrium condition and UE condition in Eq. (5.5) and Eq. (5.20), respectively. 

Proposition 5.4 is proved. ∎ 

Let SOL(𝛀𝐟, 𝐂)  be the solution set of VI problem (5.22). According to Proposition 5.4, 

SOL(𝛀𝐟, 𝐂) = {𝐟|:𝚽(𝐟) = 𝟎} . The following theorem based on Mounce and Carey (2015) 

provides sufficient conditions for the convergence of the RSRS algorithm. 

Theorem 5.1. Suppose the generalized path travel cost 𝐂(𝐟) is monotonic in 𝛀𝐟. Then, the RSRS 

algorithm (42) converges to the CNL equilibrium state and UE state for HDVs and CAVs, 

respectively, if 𝛽𝑛 satisfy lim
𝑛→∞

𝛽𝑛 = 0,∑ 𝛽𝑛 = ∞
∞
𝑛=1 .  

The proof of Theorem 5.1 can follow the same method proposed by Mounce and Carey 

(2015). We omit the proof here to avoid duplication. Note that the monotonicity of 𝐂(𝐟) is not 

guaranteed by the VI problem (5.22). We make the following assumption to analyze the 

convergence of the RSRS algorithm.  

Assumption 5.1: The generalized path travel cost 𝐂(𝐟) is monotonic in a small vicinity around a 

local optimal solution 𝐟∗. 

Assumption 5.1 implies that while the 𝐂(𝐟) may not be monotonic in the feasible set 𝛀𝐟, it  

can be monotonic in a small vicinity around a local optimal solution. Huang and Lam (2002) also 

made the same assumption to ensure the local stability of the PRS algorithm. It is also often used 

for designing solution algorithms for non-convex traffic assignment problems (e.g., Zhan and 

Ukkusuri, 2017; Shao et al., 2006).  

To ensure the convergence of the RSRS algorithm, Mounce and Carey (2015) use 

predetermined step sizes (𝛽𝑛 = 1 𝑛⁄ ) to solve the UE problem. However, the RSRS algorithm 

converges slowly using these predetermined step sizes, especially for large-size network 

problems (Mounce and Carey, 2015). Huang and Lam (2002) propose another predetermined 
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step size choice strategy. It assumes the step sizes are the same for a large number of consecutive 

iterations and non-increasing with respect to iterations. For example, 𝛽𝑛 = 10
−4 ×

(1(1→1000), 1 2⁄
(1001→2000)

, 1 3⁄
(2001→3000)

⋯) where the step size remains the same for every 

1000 iterations. However, the PRS algorithm still converges slowly though it is better than that 

using 𝛽𝑛 = 1 𝑛⁄  (Ramadurai and Ukkusuri, 2010). In summary, it is difficult to determine 

effective step sizes offline as small step sizes make the algorithm converge slowly while large 

step sizes can preclude it from converging.  

To enhance the convergence efficiency of the RSRS algorithm, a modified self-regulated 

average (MSRA) method is proposed in this study to determine the step size in each iteration 

based on the work of Liu et al. (2009). This method adaptively updates the step size in each 

iteration using information from both the current iteration and the previous iteration. Eq. (5.29) 

represents the step size determination rule. If the norm descent direction in iteration 𝑛 is larger 

than that in iteration 𝑛 − 1, implying that the RSRS algorithm tends to diverge, a large value of 

𝛶1 is used to shrink the current step size. The opposite case implies that the RSRS method tends 

to converge, and the MSRA method attempts to apply a large step size at the current iteration by 

setting a small value of 𝛶2. In addition, to ensure the path flow at each iteration is within the 

feasible path flow set, the term 1 ℎ𝑛⁄  is introduced by the MSRA method. It is formulated to 

ensure the total flow swapped from an arbitrary path to other paths by the RSRS algorithm is no 

larger than the flow of this path. It is also an adaptive term determined by the maximum value of 

the summation of differences in the generalized costs of path pairs and the minimum generalized 

path cost for the corresponding OD pair.  

𝛽𝑛 =
1

ℎ𝑛
∙
1

χ𝑛
 (29a) 

χ𝑛 = {
χ𝑛−1 + 𝛶1; 𝑖𝑓 ‖𝚽(𝐟𝑛)‖ ≥ ‖𝚽(𝐟𝑛−1)‖ 

χ𝑛−1 + 𝛶2; 𝑖𝑓 ‖𝚽(𝐟𝑛)‖ < ‖𝚽(𝐟𝑛−1)‖ 
 (29b) 

where ℎ𝑛 = max (ℎ𝑧,𝑖
𝑤 (𝑛)|ℎ𝑧,𝑖

𝑤 (𝑛) = ∑ (𝐶𝑗,𝑧
𝑤 (𝐟𝑛) − 𝐶𝑖,𝑧

𝑤 (𝐟𝑛))+𝑗∈𝑅𝑧
𝑤\𝑖 , 𝑖 ∈ 𝑅𝑧

𝑤; ∀𝑤 ∈ 𝑊𝑧, ∀𝑧 ∈ {𝐻𝐴𝑉, 𝐶𝐴𝑉}); and 

 𝛶1 and 𝛶2 are predetermined values, 𝛶1 > 1; 𝛶2 ∈ (0,1). χ1 = 1. 

Let 𝑑𝑖𝑠𝑡(𝐟, SOL(𝛀𝐟, 𝐂)) denote the Euclidean distance from 𝐟 to the path flow solution set 

SOL(𝛀𝐟, 𝐂). The following proposition discusses the convergence of the RSRS algorithm with 

the step sizes provided by the MSRA method (Eq. (5.29), labeled the “RSRS-MSRA algorithm”.  

Proposition 5.5: For arbitrary positive value 휁, the RSRS-MSRA algorithm converges to the set 

{𝐟 ∈ 𝛀𝐟|𝑑𝑖𝑠𝑡(𝐟, SOL(𝛀𝐟, 𝐂)) < 휁} given Assumption 5.1. 
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Proof: Let 𝐟𝑛, 𝑛 = 1,2,⋯  be the path flow obtained using the RSRS-MSRA algorithm at each 

iteration 𝑛. Suppose the proposition does not hold. Then, we have 𝑑𝑖𝑠𝑡(𝐟𝑛, SOL(𝛀𝐟, 𝐂)) ≥ 휁 for 

𝑛 = 1,2,⋯. This implies that at each iteration, the value of ℎ𝑛is strictly larger than 0. Define the 

function ℎ as follows: 

ℎ = max (ℎ𝑧,𝑖
𝑤 |ℎ𝑧,𝑖

𝑤 = ∑ (𝐶𝑗,𝑧
𝑤 (𝐟) − 𝐶𝑖,𝑧

𝑤 (𝐟))
+𝑗∈𝑅𝑧

𝑤\𝑖 , 𝑖 ∈ 𝑅𝑧
𝑤; ∀𝑤 ∈ 𝑊𝑧 , ∀𝑧 ∈ {𝐻𝐴𝑉, 𝐶𝐴𝑉}; 𝐟 ∈ 𝛀𝐟)  

Without loss of generality, let 𝜗𝑚𝑖𝑛 and 𝜗𝑚𝑎𝑥  be the minimum and maximum values of ℎ , 

respectively, with the constraint 𝑑𝑖𝑠𝑡(𝐟, SOL(𝛀𝐟, 𝐂)) ≥ 휁. Note 𝜗𝑚𝑖𝑛 > 0 under this constraint, 

and 𝜗𝑚𝑎𝑥  is bounded as the generalized travel cost is bounded. By definition, 𝜗𝑚𝑎𝑥 ≥ ℎ𝑛 ≥

𝜗𝑚𝑖𝑛 > 0 , for ∀𝑛 . According to Eq. (5.29b), 𝑛 ∙ 𝛶2 ≤ 𝜗𝑛 ≤ 𝑛 ∙ 𝛶1 . Then  
1

𝜗𝑚𝑎𝑥

1

𝑛∙𝛶2
≤ 𝛽𝑛 ≤

1

𝜗𝑚𝑖𝑛

1

𝑛∙𝛶1
. As both 𝛶1  and 𝛶2  are fixed positive values, lim

𝑛→∞
𝛽𝑛 ≤ lim

𝑛→∞

1

𝜗𝑚𝑖𝑛

1

𝑛∙𝛶1
→ 0, ∑ 𝛽𝑛

∞
𝑛=1 ≥

∑
1

𝜗𝑚𝑎𝑥

1

𝑛∙𝛶2

∞
𝑛=1 → ∞. According to Theorem 5.1, the path flow determined by the RSRS-MSRA 

algorithm must eventually enter into the set {𝐟 ∈ 𝛀𝐟|𝑑𝑖𝑠𝑡(𝐟, SOL(𝛀𝐟, 𝐂)) < 휁} under assumption 

5.1. Proposition 5.5 is proved. ∎ 

According to above discussion, the steps to implement the RSRS-MSRA algorithm are 

summarized as follows: 

Step 1: Initialization. Choose initial vectors of feasible path flows 𝐟𝑛,𝐻 , 𝐟𝑛,𝐴. Set the iteration 

index 𝑛 = 1; 

Step 2: Route flow update. Update path flows for HDVs and CAVs (𝑓𝑘,𝑧
𝑤 (𝑛 + 1), ∀𝑘, 𝑤, 𝑧 ∈

{𝐻𝐷𝑉, 𝐶𝐴𝑉}) according to Eq. (5.25) and Eq. (5.29); 

Step 3. Convergence check. If the convergence criterion is satisfied, then stop. Otherwise, let 

𝑛 = 𝑛 + 1 and go to step 2. 

The RSRS-MSRA solution algorithm is developed upon route flows. To find the routes that 

are likely to be used for each OD pair, the revised K-shortest path method developed by De La 

Barra et al. (1993) is used in this study. Note that only acyclic paths are considered. 

5.5 Sensitivity analysis  

Planned (e.g., road maintenance, construction) or unexpected (e.g., accidents, facility failure, 

nature disasters) events can impact network flows significantly. When an event occurs, it is often 

difficult for planners and decision-makers to evaluate its impact on network performance (e.g., 

congestion, OD travel cost of CAVs) and to design effective strategies to mitigate negative 

effects. To address these issues, this study develops an analytical model for sensitivity analysis 
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of the multiclass traffic assignment model. The sensitivity analysis determines the change in the 

objective function value for a unit change in the value of an explanatory variable. In literature, 

analytical formulations have been explored for sensitivity analysis of single-class traffic 

assignment models, including the UE problem (Tobin and Friesz, 1988; Wang et al., 2016; 

Boyles et al., 2012; Jafari and Boyles, 2016), the logit-based and probit-based SUE models 

(Clark and Watling, 2000), the paired combinatorial logit model (Wang et al., 2018a), and the 

elastic demand model (Yang, 1997). However, there are no studies that develop a sensitivity 

analysis method for multiclass traffic assignment model. The rest of this section derives the 

analytical model for sensitivity analysis of the proposed multiclass traffic assignment model (22) 

to obtain the gradients of equilibrium link flows of HDVs and CAVs with respect to perturbed 

parameters (e.g., link capacity, free-flow travel time, etc.). The analytical model can be used for 

applications such as: (i) constructing approximation methods to quickly estimate the perturbed 

mixed traffic equilibrium, (ii) identifying critical parameters (link capacity, signal splits) 

impacting network performance, (iii) risk analysis to provide insights on network performance 

reliability, (iv) analyzing impacts of traffic control methods on road network equilibrium, and (v) 

constructing solution algorithms for continuous network design problem (e.g., to find optimal 

signal timing or tolling strategy to improve the system performance under mixed traffic flow). 

This study explores the first application. Next, we will show the sufficient conditions for 

uniqueness of a local solution for link flows of HDVs and CAVs. The analytical model to obtain 

the gradients of the optimal link flow solution of HDVs and CAVs with respect to perturbed 

parameters is developed in Section 5.2. 

5.5.1 Uniqueness of local solution of link flows of HDVs and CAVs 

The uniqueness of a local solution of link flows of HDVs and CAVs is a necessary condition for 

the existence of gradients of the equilibrium solution of link flows of HDVs and CAVs with 

respect to the perturbations (Facchinei and Pang, 2007). This section determines sufficient 

conditions for the uniqueness of a local solution of the VI problem (5.24). We will show that 

these sufficient conditions are mild, so that the local solution of path flows for HDVs and link 

flows for CAVs is unique in general.  

Let 𝛎 = [𝐟𝐻 , 𝐯𝐴] , and �̃� = [𝐂𝐻 , 𝒕𝐴] . Denote 𝛎∗ as the solution to VI problem (5.24). Let 

SOL(𝛀𝐟, 𝐂) and SOL(𝛀𝛎, �̃�) be the set of solutions of VI problems (22) and (24), respectively. 
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Denote 𝐟∗ (𝐟∗ ∈ SOL(𝛀𝐟, 𝐂) ) and 𝛎∗ ( 𝛎∗ ∈ SOL(𝛀𝛎, �̃�)) as one of the solutions of VI problems 

(22) and (24), respectively. The following definition will be used to analyze whether 𝐟∗ and 𝛎∗ 

are locally unique.  

Definition 1: Uniqueness of local solution (Facchinei and Pang, 2007). 𝐟∗ is said to be a locally 

unique solution for VI problem (5.22) if there exists a neighborhood ℋ𝐟∗  of 𝐟∗  such that 

SOL(𝛀𝐟, 𝐂) ∩ ℋ𝐟∗ = 𝐟
∗; Similarly,  𝛎∗ is said to be a locally unique solution for VI problem 

(5.24) if there exists a neighborhood ℋ𝛎∗ of 𝛎∗ such that SOL(𝛀𝛎, �̃�) ∩ ℋ𝛎∗ = 𝛎
∗. 

As CAVs choose paths according to the UE principle, any path flow solution 𝐟∗ of the VI 

problem (5.22) may be locally non-unique because there may exist multiple equilibrium path 

flow solutions for CAVs in the neighborhood ℋ𝐟∗ of 𝐟∗. According to Facchinei and Pang (2007), 

if Jacobian matrix of �̃� with respect to 𝛎 at the local optimal solution 𝛎∗ (denoted as 𝜕�̃�(𝛎∗) 𝜕𝛎⁄ ) 

is positive definite, then 𝛎∗ is a locally unique solution for VI problem (5.24). In the following, 

we will analyze the sufficient conditions for 𝜕�̃�(𝛎∗) 𝜕𝛎⁄  being a positive definite matrix. Note 

𝜕�̃�(𝛎∗)

𝜕𝛎
=

[
 
 
 
 
𝜕𝑪𝐻

∗

𝜕𝐟𝐻

𝜕𝑪𝐻
∗

𝜕𝐯𝐴
𝜕𝒕𝐴
∗

𝜕𝐟𝐻

𝜕𝒕𝐴
∗

𝜕𝐯𝐴 ]
 
 
 
 

; (5.30) 

where 

𝜕𝒕𝐴
∗

𝜕𝐟𝐻
= ∇𝐯𝐻𝒕𝐴

∗ ∙ ∆𝐻 (5.31) 

To characterize ∂𝑪𝐻
∗ ∂𝐟𝐻⁄  and ∂𝑪𝐻

∗ ∂𝐯𝐴⁄  analytically. Let 𝑗 be an arbitrary path for HDV between 

an arbitrary OD pair 𝑤1, 𝑤1 ∈ 𝑊𝐻, according to Eq. (5.3)  

𝑑𝐶𝑘,𝐻
𝑤

𝑑𝑓𝑗,𝐻
𝑤1
=
𝑑𝑐𝑘,𝐻

𝑤

𝑑𝑓𝑗,𝐻
𝑤1
−
𝑢

휃

𝑑𝐻𝑘,𝐻
𝑤

𝑑𝑓𝑗,𝐻
𝑤1
+
𝑢

휃

1

𝑓𝑘,𝐻
𝑤

𝑑𝑓𝑘,𝐻
𝑤

𝑑𝑓𝑗,𝐻
𝑤1

 (5.32) 

where 𝑑𝑓𝑘
𝑤 𝑑𝑓𝑗

𝑤1⁄ = 1, if 𝑤1 = 𝑤 and 𝑘 = 𝑗. Otherwise 𝑑𝑓𝑘
𝑤 𝑑𝑓𝑗

𝑤1⁄ = 0. According to Eq. (5.32) 

𝑑𝐻𝑘,𝐻

𝑑𝑓𝑗,𝐻
𝑤1
=

∑ (𝛼𝑚,𝑘
𝑤 )

1
𝑢

𝑚∈𝜞𝐻 (𝑢 − 1) (∑ [𝛼𝑚,𝑙
𝑤 exp (−휃𝑐𝑙,𝐻

𝑤 )]
1
𝑢

𝑙∈𝑅𝐻
𝑤 )

𝑢−2

∑ (𝛼𝑚,𝑘
𝑤 )

1/𝑢
𝑚∈𝜞𝐻 (∑ [𝛼𝑚,𝑙

𝑤 exp (−휃𝑐𝑙,𝐻
𝑤 )]

1/𝑢

𝑙∈𝑅𝐻
𝑤 )

𝑢−1 ∑ (−
휃

𝑢
) (𝛼𝑚,𝑙

𝑤 )
1
𝑢exp ( −

휃

𝑢
𝑐𝑙,𝐻
𝑤 )

𝑑𝑐𝑙,𝐻
𝑤

𝑑𝑓𝑗,𝐻
𝑤1

𝑙∈𝑅𝐻
𝑤

  

Let 

𝜌𝑘,𝑙
𝑤 =

∑ (𝛼𝑚,𝑘
𝑤 )

1
𝑢

𝑚∈𝜞𝐻 (∑ [𝛼𝑚,𝑙
𝑤 exp (−휃𝑐𝑙,𝐻

𝑤 )]
1
𝑢

𝑙∈𝑅𝐻
𝑤 )

𝑢−2

∑ (𝛼𝑚,𝑘
𝑤 )

1/𝑢
𝑚∈𝜞𝐻 (∑ [𝛼𝑚,𝑙

𝑤 exp (−휃𝑐𝑙,𝐻
𝑤 )]

1/𝑢
𝑙∈𝑅𝐻

𝑤 )
𝑢−1 (𝛼𝑚,𝑙

𝑤 )
1
𝑢exp ( −

휃

𝑢
𝑐𝑙,𝐻
𝑤 ) (5.33) 

where 𝑖 ∈ 𝑅𝐻
𝑤. According to Eq. (5.33), 𝜌𝑘,𝑙

𝑤 ≥ 0 and 
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∑𝜌𝑘,𝑙
𝑤

𝑙∈𝑅𝐻
𝑤

= 1 (5.34) 

𝑑𝐻𝑘

𝑑𝑓𝑗
𝑤1
= (−

휃

𝑢
) (𝑢 − 1) [𝜌𝑘,1

𝑤 𝜌𝑘,2
𝑤 ⋯ 𝜌

𝑘,|𝑅𝐻
𝑤
|

𝑤
] [
𝑑𝑐1,𝐻

𝑤

𝑑𝑓𝑗,𝐻
𝑤1

𝑑𝑐2,𝐻
𝑤

𝑑𝑓𝑗,𝐻
𝑤1

⋯
𝑑𝑐

|𝑅𝐻
𝑤
|,𝐻

𝑤

𝑑𝑓𝑗,𝐻
𝑤1

]

𝑇

 (5.35) 

To characterize the matrix ∂𝑪𝐻
∗ ∂𝐟𝐻⁄  analytically, let 𝝆𝑤 be a square matrix with dimension |𝑅𝐻

𝑤|,  

𝝆𝑤 =

[
 
 
 
 
𝜌1,1
𝑤 𝜌1,2

𝑤 ⋯ 𝜌1,|𝑅𝐻𝑤|
𝑤

𝜌2,1
𝑤 𝜌2,2

𝑤 ⋯ 𝜌2,|𝑅𝐻𝑤|
𝑤

⋮ ⋮ ⋮ ⋮
𝜌|𝑅𝐻𝑤|,1
𝑤 𝜌|𝑅𝐻𝑤|,2

𝑤 ⋯ 𝜌|𝑅𝐻𝑤|,|𝑅𝐻𝑤|
𝑤

]
 
 
 
 

 (5.36) 

Let 𝝆 be a diagonal block matrix with dimension equals the number of paths for HDVs in the 

network  

𝝆 =

[
 
 
 
𝝆𝟏 0 0 0

0 𝝆𝟐 0 0
⋮ ⋮ ⋮ ⋮
0 0 0 𝝆|𝑊𝐻|]

 
 
 

 (5.37) 

where |𝑊𝐻| is the number of all OD pairs for HDVs in the network. According to Eq. (5.3), the 

gradient of 𝐂𝐻 with respect to 𝐟𝐻 at 𝐟∗ is  

𝜕𝑪𝐻
∗

𝜕𝐟𝐻
= ∇𝐟𝐻𝐜𝐻

∗ − (1 − 𝑢)𝝆∗∇𝐟𝐻𝐜𝐻
∗ +

𝑢

휃
𝑑𝑖𝑎𝑔 (

𝟏

𝐟𝐻
∗ ) 

                     = ∆𝐻
𝑇 ∙ ∇𝐯𝐻𝒕𝐻

∗ ∙ ∆𝐻 − (1 − 𝑢)𝝆
∗∆𝐻
𝑇 ∙ ∇𝐯𝐻𝒕𝐻

∗ ∙ ∆𝐻 +
𝑢

𝜃
𝑑𝑖𝑎𝑔 (

𝟏

𝐟𝐻
∗ ) 

(5.38) 

where 𝝆∗ denotes the value of matrix 𝝆 at 𝐟∗. Similarly,  

𝜕𝑪𝐻
∗

𝜕𝐯𝐴
= ∇𝐯𝐴𝐜𝐻

∗ − (1 − 𝑢)𝝆∗ ∇𝐯𝐴𝐜𝐻 = ∆𝐻
𝑇 ∙ ∇𝐯𝐴𝒕𝐻

∗ − (1 − 𝑢)𝝆∗∆𝐻
𝑇 ∙ ∇𝐯𝐴𝒕𝐻

∗  (5.39) 

Let 𝐌 be a symmetric matrix defined as follows 

𝐌 =
𝜕�̃�(𝛎∗)

𝜕𝛎
+ [
𝜕�̃�(𝛎∗)

𝜕𝛎
]

𝑇

= [
𝐌1 +

2𝑢

휃
𝑑𝑖𝑎𝑔 (

1

𝐟𝐻
∗) 𝐌2

𝐌3 2∇𝐯𝐴𝒕𝐴
∗

] (5.40) 

where  

𝐌1 = ∇𝐟𝐻𝐜𝐻
∗ + (∇𝐟𝐻𝐜𝐻

∗ )
𝑇
− (1 − 𝑢)𝝆∗ ∇𝐟𝐻𝐜𝐻

∗ − [(1 − 𝑢)𝝆∗ ∇𝐟𝐻𝐜𝐻
∗ ]
𝑇
 (5.41a) 

𝐌2 = ∆𝐻
𝑇 ∙ ∇𝐯𝐴𝒕𝐻

∗ − (1 − 𝑢)𝝆∗∆𝐻
𝑇 ∙ ∇𝐯𝐴𝒕𝐻

∗ + (∇𝐯𝐻𝒕𝐴
∗ ∙ ∆𝐻)

𝑇
 (5.41b) 

𝐌3 = 𝐌2
𝑇 (5.41c) 

The following proposition will be used to show the sufficient conditions for uniqueness of local 

solution of VI problem (5.24). 
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Proposition 6.6: 𝐌1 +
2𝑢

𝜃
𝑑𝑖𝑎𝑔(𝐟𝐻) − 𝐌2(2∇𝐯𝐻𝒕𝐴

∗)
−𝟏
𝐌3 is a non-singular matrix if the matrix 

𝜃

2𝑢
𝑑𝑖𝑎𝑔(𝐟𝐻

∗ ) ∙ (𝐌2(2∇𝐯𝐻𝒕𝐴
∗)
−𝟏
𝐌3 −𝐌1) has no eigenvalue 1.  

Proof: suppose 𝐌1 +
2𝑢

𝜃
𝑑𝑖𝑎𝑔(𝐟𝐻) − 𝐌2(2∇𝐯𝐻𝒕𝐴

∗)
−𝟏
𝐌3 is not a non-singular matrix, then there 

exists a nonzero vector 𝒙 such that  

(𝐌1 +
2𝑢

휃
𝑑𝑖𝑎𝑔 (

1

𝐟𝐻
∗) −𝐌2(2∇𝐯𝐻𝒕𝐴

∗)
−𝟏
𝐌3)𝒙 = 𝟎 (5.42) 

This implies  

2𝑢

휃
𝑑𝑖𝑎𝑔 (

1

𝐟𝐻
∗)𝒙 = (𝐌2(2∇𝐯𝐻𝒕𝐴

∗)
−𝟏
𝐌3 −𝐌1) 𝒙 (5.43) 

Note 
2𝑢

𝜃
𝑑𝑖𝑎𝑔 (

1

𝐟𝐻
∗ ) is invertible, then  

𝒙 =
휃

2𝑢
𝑑𝑖𝑎𝑔(𝐟𝐻

∗ ) (𝐌2(2∇𝐯𝐻𝒕𝐴
∗)
−𝟏
𝐌3 −𝐌1) 𝒙 (5.44) 

As 
𝜃

2𝑢
𝑑𝑖𝑎𝑔(𝐟𝐻

∗ ) (𝐌2(2∇𝐯𝐻𝒕𝐴
∗)
−𝟏
𝐌3 −𝐌1)  has no eigenvalue 1, Eq. (5.44) cannot hold. 

Proposition 5.6 is proved. 

Proposition 5.7: If 𝜕𝐂(𝐟∗) 𝜕𝐟⁄  is positive semidefinite and the matrix 

𝜃

2𝑢
𝑑𝑖𝑎𝑔(𝐟𝐻

∗ ) (𝐌2(2∇𝐯𝐻𝒕𝐴
∗)
−𝟏
𝐌3 −𝐌1) has no eigenvalue 1, then 𝜕�̃�(𝛎∗) 𝜕𝛎⁄  is positive definite.   

Proof: Note  

𝜕𝐂(𝐟∗)

𝜕𝐟
= [
𝐄𝐻

∆𝐴
𝑇]
𝜕�̃�(𝛎∗)

𝜕𝛎
[
𝐄𝐻

∆𝐴
] (5.45) 

where 𝐄𝐻 is an identity matrix with dimension equal to the number of paths for HDVs in the 

network. As 𝜕𝐂(𝐟∗) 𝜕𝐟⁄  is positive semidefinite, both the matrices 𝜕�̃�(𝛎∗) 𝜕𝛎⁄  and 𝐌 are positive 

semidefinite. According to Eq. (5.40), 𝜕�̃�(𝛎∗) 𝜕𝛎⁄  is positive definite if and only if 𝐌 is positive 

definite. Note that 𝐌 is a symmetric matrix and ∇𝐯𝐴𝒕𝐴
∗  is a symmetric positive definite matrix. 

According to Proposition 16.2 in Gallier (2011), 𝐌1 +
2𝑢

𝜃
𝑑𝑖𝑎𝑔 (

1

𝐟𝐻
∗ ) − 𝐌2(2∇𝐯𝐻𝒕𝐴

∗)
−𝟏
𝐌3  is a 

symmetric positive semidefinite matrix, indicating that the eigenvalues of this matrix are 

nonnegative. Proposition 5.6 shows that 𝐌1 +
2𝑢

𝜃
𝑑𝑖𝑎𝑔 (

1

𝐟𝐻
∗ ) − 𝐌2(2∇𝐯𝐻𝒕𝐴

∗)
−𝟏
𝐌3  is a non-

singular matrix. Thereby, 𝐌1 +
2𝑢

𝜃
𝑑𝑖𝑎𝑔 (

1

𝐟𝐻
∗ ) − 𝐌2(2∇𝐯𝐻𝒕𝐴

∗)
−𝟏
𝐌3  is positive definite. This 

implies both the matrices 𝐌 and 𝜕�̃�(𝛎∗) 𝜕𝛎⁄  are positive definite. Proposition 5.7 is proved.  
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The two conditions in Proposition 5.7 are not strong. First, the condition ∂𝐂(𝐟∗) ∂𝐟⁄  is 

positive semidefinite is sufficient to ensure 𝐟∗ is a stationary optimal solution for VI problem 

(5.21), that is, 𝐟∗  is not a saddle point (Facchinei and Pang, 2007). It can be satisfied by 

Assumption 5.1 in Section 4. Second, it can verify that if 𝑉𝑂𝑇𝐴 = 𝑉𝑂𝑇𝐻, and 𝑄𝑎,𝐻 = 𝑄𝑎,𝐴, ∀𝑎 ∈

𝜞𝐻 , 
𝜃

2𝑢
𝑑𝑖𝑎𝑔(𝐟𝐻

∗ ) (𝐌2(2∇𝐯𝐻𝒕𝐴
∗)
−𝟏
𝐌3 −𝐌1) =

𝜃

2𝑢
𝑑𝑖𝑎𝑔(𝐟𝐻

∗ ) ∙  𝟎 = 𝟎 , in which case all 

eigenvalues of this matrix are 0. Note the eigenvalues of this matrix vary continuously with 

respective to 𝑉𝑂𝑇𝐴, and 𝑄𝑎,𝐻 , ∀𝑎 ∈ 𝜞𝐻. Thereby, the matrix 
𝜃

2𝑢
𝑑𝑖𝑎𝑔(𝐟𝐻

∗ ) ∙ (𝐌2(2∇𝐯𝐻𝒕𝐴
∗)
−𝟏
𝐌3 −

𝐌1) having an eigenvalue 1 is a very special case, and the likelihood of its occurrence in a real-

world network is low for given values of 𝑉𝑂𝑇𝐴 , and 𝑄𝑎,𝐻 , ∀𝑎 ∈ 𝜞𝐻 . Thereby, 𝜕�̃�(𝛎∗) 𝜕𝛎⁄  is 

positive definite at the equilibrium state in general. This indicates that while the solution of VI 

problems (5.22) is not locally unique, the solution of VI problem (5.24) is locally unique 

provided the conditions in Proposition 5.7 are satisfied. This property is a necessary condition for 

sensitivity analysis of the multiclass traffic assignment model in the next section. 

5.5.2 Sensitivity analysis of the multiclass traffic assignment problem 

This section presents an analytical model to determine the gradients of the equilibrium link flow 

of both CAVs and HDVs with respect to the perturbed parameters (e.g., signal splits, link 

capacity of pure CAVs and HDVs, value of time for CAVs and HDVs, etc). Let 𝛆 be a vector of 

perturbed parameters in the multiclass traffic assignment problem (5.22), and 𝐟∗ =

[𝐟𝐻
𝑇∗(𝟎), 𝐟𝐴

𝑇∗(𝟎)]  be a local equilibrium path flow solution to the VI problem (5.22) at the 

unperturbed state (i.e., 𝛆 = 𝟎). The KKT conditions at 𝐟∗ are 

𝐂𝐻(𝐟
∗, 𝟎) − 𝝅𝐻

∗ − Ʌ𝐻
𝑇𝛍𝐻

∗ = 𝟎 (5.46a) 

𝐂𝐴(𝐟
∗, 𝟎) − 𝝅𝐴

∗ − Ʌ𝐴𝛍𝐴
∗ = 𝟎 (5.46b) 

[
Ʌ𝐻

Ʌ𝐴
] [
𝐟𝐻
∗

𝐟𝐴
∗] − [

𝐪𝐻(𝟎)
𝐪𝐴(𝟎)

] = 𝟎 (5.46e) 

𝝅𝐻
∗ 𝐟𝐻

∗ = 𝟎 (5.46c) 

𝝅𝐴
∗ 𝐟𝐴
∗ = 𝟎 (5.46d) 

𝐟𝐴
∗ ≥ 𝟎; 𝐟𝐻

∗ > 𝟎 (5.46f) 

𝝅𝐻
∗ ≥ 𝟎;𝝅𝐴

∗ ≥ 𝟎 (5.46g) 



170 

 

 

 

where 𝛍𝐻
∗  and 𝛍𝐴

∗  are vectors of Lagrange multipliers associated with the constraints Ʌ𝐻𝐟𝐻 =

𝐪𝐻 and Ʌ𝐴𝐟𝐴 = 𝐪𝐴, respectively. 𝝅𝐻
∗  and 𝝅𝐴

∗  are vectors of Lagrange multipliers associated with 

the nonnegative path flow constraints for HDVs and CAVs, respectively. 

As discussed in Section 5.1, the path flow solution to VI problem (5.22) may not be locally 

unique. This precludes the existence of gradients for the path flow solution of VI problem (5.22) 

with respect to the perturbed parameters. To address this problem, a linear equation designed by 

Yang and Bell (2005) will be used in this study to obtain the path flow solution of CAVs that has 

the desired uniqueness. The method is developed upon the following assumption. 

Assumption 5.2: The equilibrium path flow solution of CAVs of VI problem (5.22) at 

unperturbed state (𝛆 = 0) is not degenerate. That is, there exists a path flow solution such that 

the flow of equilibrated paths (i.e., paths with minimum travel cost for the corresponding OD 

pair) for CAVs is positive.  

Assumption 5.2 is not strong in the sense that the degenerate points are isolated points when 

𝛆 is nonzero. The likelihood of occurrence is low at the unperturbed state (i.e., 𝛆 = 0) in the real 

network.  

Let �̂�𝐴 be the set of equilibrated paths for CAVs at [𝐟𝐻
∗ , 𝐟𝐴

∗], and 𝐟𝐴
∗ be the flow vector for all 

equilibrated paths in set �̂�𝐴. Note that 𝐟𝐴
∗ is not unique as 𝐟𝐴

∗ is not unique. Let [
∆̂𝐴
Ʌ̂𝐴
] be the link-

path and OD-path matrix for paths in set �̂�𝐴. Denote [
∆̅𝐴
Ʌ̅𝐴
] as a full column matrix constituted by 

column vectors in [
∆̂𝐴
Ʌ̂𝐴
] that has the same rank as [

∆̂𝐴
Ʌ̂𝐴
]. Let �̅�𝐴 be the set of paths with link-path 

and OD-path matrix [
∆̅𝐴
Ʌ̅𝐴
]. The paths in set �̅�𝐴 are labeled equilibrated and linearly independent 

(ELI) paths, and the equilibrated paths for CAVs not in set �̅�𝐴  are labeled equilibrated and 

linearly dependent (ELD) paths. Let 𝐟�̅� and 𝐟𝐴 be the vector of all ELI and ELD path flows for 

CAVs, respectively. According to Assumption 5.2, an equilibrium path flow solution exists for 

CAVs such that flow of all equilibrated paths is positive at 𝛆 = 0.  Let [
𝐟�̅�
∗

𝐟𝐴
∗
] (𝐟�̅�

∗ > 0; 𝐟𝐴
∗ > 0) be 

such a path flow solution for CAVs. Then  

 [
∆̂𝐴
Ʌ̂𝐴
] 𝐟𝐴
∗ = [

∆̅𝐴 ∆̃𝐴
Ʌ̅𝐴 Ʌ̃𝐴

] [
𝐟�̅�
∗(𝟎)

𝐟𝐴
∗(𝟎)

] = [
𝐯𝐴(𝟎)
𝐝𝐴(𝟎)

] (5.47) 
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where [
∆̃𝐴
Ʌ̃𝐴
] is the link-path and OD-path matrix for all paths in 𝐟𝐴. According to Eq. (5.47),  

[
∆̅𝐴
Ʌ̅𝐴
] 𝐟�̅�
∗(휀) = [

𝐯𝐴(휀)

𝐪𝐴(휀)
] − [

∆̅𝐴
Ʌ̅𝐴
] 𝐟𝐴
∗(0) (5.48) 

When 휀 changes, only 𝐟�̅�
∗(휀) changes, and the flow of ELD paths for HDVs are fixed at 𝐟𝐴

∗(0). As 

𝐟�̅�
∗(0) > 0, 𝐟�̅�

∗(휀) > 0 for a small perturbation of 𝛆. Note that as [
∆̅𝐴
Ʌ̅𝐴
] is a full column matrix, 

𝐟�̅�
∗(휀) is unique. Thereby, when 𝛆 varies for a sufficiently small value from 0, a unique path flow 

solution [
𝐟�̅�
∗(휀)

𝐟𝐴
∗(0)

] can be found by Eq. (5.48). According to Assumption 5.2, the non-equilibrated 

paths will remain non-equilibrated for a small perturbation of 𝛆. Since the flows of HDVs are all 

positive, and 𝐟�̅�
∗ > 0, 𝐟𝐴

∗ > 0, all the Lagrange multipliers in vector 𝝅𝐻
∗  and 𝝅𝐴

∗  are nonbinding. 

Thereby, Eq. (5.46) can be simplified as 

𝐂𝐻(𝐟
∗, 0) − Ʌ𝐻

𝑇𝛍𝐻
∗ (0) = 𝟎 (5.49a) 

�̅�𝐴(𝐟
∗, 0) − Ʌ𝐴

𝑇𝛍𝐴
∗ (0) = 𝟎 (5.49b) 

[
Ʌ𝐻

Ʌ̅𝐴
] [
𝐟𝐻
∗ (0)

𝐟�̅�
∗(0)

] + [
0

Ʌ̃𝐴
] [
𝐟𝐻
∗ (0)

𝐟𝐴
∗(0)

] − [
𝐪𝐻(0)
𝐪𝐴(0)

] = 𝟎 (5.49c) 

where �̅�𝐴(𝐟
∗, 0) is the vector of generalized travel cost of all ELI paths for CAVs. As 𝐟𝐴

∗(0) is 

fixed, the gradients of Eq. (5.49) with respect to the perturbed parameter 𝛆 are  

∇𝛆𝐂𝐻(𝐟
∗, 0) + ∇𝐟𝐻𝐂𝐻(𝐟

∗, 0)∇𝛆𝐟𝐻(𝟎) − Ʌ𝐻
𝑇∇𝛆𝛍𝐻

∗ (0) = 𝟎 (5.50a) 

∇𝛆�̅�𝐴(𝐟
∗, 0) + ∇𝐟�̅��̅�𝐴(𝐟

∗, 0)∇𝛆𝐟�̅�(𝟎) − Ʌ̅𝐴
𝑇∇𝛆𝛍𝐴

∗ (0) = 𝟎 (5.50b) 

[
Ʌ𝐻

Ʌ̅𝐴
] [
∇𝛆𝐟𝐻

∗ (0)

∇𝛆𝐟�̅�
∗(0)

] + [
0

Ʌ̃𝐴
] [
∇𝛆𝐟𝐻

∗ (0)

∇𝛆𝐟𝐴
∗(0)

] − [
∇𝛆𝐪𝐻(𝟎)
∇𝛆𝐪𝐴(𝟎)

] = 𝟎 (5.50e) 

Note that ∇𝛆𝐟𝐴
∗(0) ≡ 0 as 𝐟𝐴 is fixed. Thereby 

[
 
 
 
∇𝛆𝐟𝐻

∗ (0)

 ∇𝛆𝐟�̅�
∗(0)

∇𝛆𝛍𝐻
∗ (0)

∇𝛆𝛍𝐴
∗ (0)]

 
 
 

= (𝑱𝐟̅
∗)
−𝟏
(−𝑱𝛆

∗) (5.51) 

where 

𝑱𝐟̅
∗ =

[
 
 
 
 
∇𝐟𝐻𝐂𝐻(𝐟

∗, 𝟎) ∇𝐟�̅�𝐂𝐻(𝐟
∗, 𝟎) Ʌ𝐻

𝑇

∇𝐟𝐻�̅�𝐴(𝐟
∗, 𝟎) ∇𝐟�̅��̅�𝐴(𝐟

∗, 𝟎) Ʌ̅𝐴
𝑇

Ʌ𝐻
Ʌ̅𝐴 ]

 
 
 
 

 (5.52) 
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𝑱𝛆
∗ =

[
 
 
 
∇𝛆𝐂𝐻(𝐟

∗, 𝟎)

∇𝛆�̅�𝐴(𝐟
∗, 𝟎)

∇𝛆𝐪𝐻(𝟎)
∇𝛆𝐪𝐴(𝟎) ]

 
 
 

 (5.53) 

The analytical form of ∇𝐟𝐻𝐂𝐻(𝐟
∗̅, 𝟎) can be found in Eq. (5.38). The analytical forms of 

∇𝐟�̅�𝐂𝐻(𝐟
∗̅, 𝟎), ∇𝐟𝐻�̅�𝐴(𝐟

∗̅, 𝟎) and ∇𝐟�̅��̅�𝐴(𝐟
∗̅, 𝟎) are 

∇𝐟�̅�𝐂𝐻(𝐟
∗, 𝟎) = ∆𝐻

𝑇 ∙ ∇𝐯𝐴𝒕𝐻
∗ ∙ ∆̅𝐴 − (1 − 𝑢)𝝆

∗∆𝐻
𝑇 ∙ ∇𝐯𝐴𝒕𝐻

∗ ∙ ∆̅𝐴 (5.54a) 

∇𝐟𝐻�̅�𝐴(𝐟
∗, 𝟎) = ∆̅𝐴

𝑇 ∙ ∇𝐯𝐻𝒕𝐴
∗ ∙ ∆𝐻 (5.54b) 

∇𝐟�̅��̅�𝐴(𝐟
∗, 𝟎) = ∆̅𝐴

𝑇 ∙ ∇𝐯𝐴𝒕𝐴
∗ ∙ ∆̅𝐴 (5.54e) 

The following theorem constructed based on Corollary 3.2.5 in Fiacco (1983) provides the 

sufficient conditions for existence of gradients ∇𝛆𝐟𝐻
∗ (0), ∇𝛆𝐟�̅�

∗(0), ∇𝛆𝛍𝐻
∗ (0) and ∇𝛆𝛍𝐴

∗ (0) in Eq. 

(5.51). 

Theorem 5.2: The gradients ∇𝛆𝐟𝐻
∗ (0), ∇𝛆𝐟�̅�

∗(0), ∇𝛆𝛍𝐻
∗ (0) and ∇𝛆𝛍𝐴

∗ (0) exist if 𝑱𝐟̅
∗  is invertible 

and the terms 𝐂𝐻(𝐟
∗, 𝟎), 𝐂𝐴(𝐟

∗, 𝟎), 𝐪𝐻(𝟎) and 𝐪𝐴(𝟎) are first-order differentiable with respect to 

𝛆. 

According to the link cost functions (Eq. (5.19)), 𝐂𝐻(𝐟
∗, 𝟎), 𝐂𝐴(𝐟

∗, 𝟎), 𝐪𝐻(𝟎) and 𝐪𝐴(𝟎) are 

first-order differentiable with respect to 𝛆. Thereby the derivatives in the left-hand side of Eq. 

(5.41) exists if 𝑱𝐟̅
∗ is invertible. The following proposition discusses the sufficient conditions for 

invertibility of 𝑱𝐟̅
∗. 

Proposition 5.8: if the matrix 
𝜕�̃�(𝛎∗)

𝜕𝛎
= [

𝜕𝑪𝐻
∗

𝜕𝐟𝐻

𝜕𝑪𝐻
∗

𝜕𝐯𝐴

𝜕𝒕𝐴
∗

𝜕𝐟𝐻

𝜕𝒕𝐴
∗

𝜕𝐯𝐴

] is positive definite. Then 𝑱𝐟̅
∗ is invertible.  

Proof: let 𝒛 = [𝒛1
𝑇 𝒛2

𝑇 𝒛3
𝑇 𝒛4

𝑇]𝑇; The dimension of 𝒛1
𝑇 and 𝒛3

𝑇 equal the number of paths in 𝐟𝐻, 

and  the dimension of 𝒛2
𝑇 and 𝒛4

𝑇 equal the number of paths in 𝐟�̅�. Proposition 5.8 will be proved 

by showing that the solution to the following equation is 𝒛 = 𝟎. 

[
 
 
 
 
∇𝐟𝐻𝐂𝐻(𝐟

∗, 𝟎) ∇𝐟�̅�𝐂𝐻(𝐟
∗, 𝟎) Ʌ𝐻

𝑇

∇𝐟𝐻�̅�𝐴(𝐟
∗, 𝟎) ∇𝐟�̅��̅�𝐴(𝐟

∗, 𝟎) Ʌ̅𝐴
𝑇

Ʌ𝐻
Ʌ̅𝐴 ]

 
 
 
 

[

𝒛1
𝒛2
𝒛3
𝒛4

] = 𝟎 (5.55) 

According to Eq. (5.55) 

∇𝐟𝐻𝐂𝐻(𝐟
∗, 𝟎)𝒛1 + ∇𝐟�̅�𝐂𝐻(𝐟

∗, 𝟎)𝒛2 − Ʌ𝐻
𝑇 𝒛3 = 𝟎 (5.56a) 

∇𝐟𝐻�̅�𝐴(𝐟
∗, 𝟎)𝒛1 + ∇𝐟�̅��̅�𝐴(𝐟

∗, 𝟎)𝒛2 − Ʌ̅𝐴
𝑇𝒛4 = 𝟎 (5.56b) 
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Ʌ𝐻𝒛1 = 0 (5.56c) 

Ʌ̅𝐴𝒛2 = 0 (5.56d) 

Multiply Eq. (5.56a) and Eq. (5.56b) by 𝒛1
𝑇 and 𝒛2

𝑇 from left-hand side, respectively, we have  

𝒛1
𝑇∇𝐟𝐻𝐂𝐻(𝐟

∗, 𝟎)𝒛1 + 𝒛1
𝑇∇𝐟�̅�𝐂𝐻(𝐟

∗, 𝟎)𝒛2 = 𝟎 (5.57a) 

𝒛2
𝑇∇𝐟𝐻�̅�𝐴(𝐟

∗, 𝟎)𝒛1 + 𝒛2
𝑇∇𝐟�̅��̅�𝐴(𝐟

∗, 𝟎)𝒛2 = 𝟎 (5.57b) 

Equivalently, Eq. (5.57a) and Eq. (5.57b) can be written in a vector form 

[𝒛1
𝑇 𝒛2

𝑇] [
∇𝐟𝐻𝐂𝐻(𝐟

∗, 𝟎) ∇𝐟�̅�𝐂𝐻(𝐟
∗, 𝟎)

∇𝐟𝐻�̅�𝐴(𝐟
∗, 𝟎) ∇𝐟�̅��̅�𝐴(𝐟

∗, 𝟎)
] [
𝒛1
𝒛2
] = 0 (5.58) 

Thereby, 

[𝒛1
𝑇 𝒛2

𝑇] [
𝐄𝐻

∆̅𝐴
𝑇]

[
 
 
 
 
𝜕𝑪𝐻

∗

𝜕𝐟𝐻

𝜕𝑪𝐻
∗

𝜕𝐯𝐴
𝜕𝒕𝐴
∗

𝜕𝐟𝐻

𝜕𝒕𝐴
∗

𝜕𝐯𝐴 ]
 
 
 
 

[
𝐄𝐻

∆̅𝐴
] [
𝒛1
𝒛2
] = 0 (5.59) 

Note the matrix [

𝜕𝑪𝐻
∗

𝜕𝐟𝐻

𝜕𝑪𝐻
∗

𝜕𝐯𝐴

𝜕𝒕𝐴
∗

𝜕𝐟𝐻

𝜕𝒕𝐴
∗

𝜕𝐯𝐴

]  is positive definite. Eq. (5.59) holds only when  

[
𝐄𝐻

∆̅𝐴
] [
𝒛1
𝒛2
] = 𝟎. This implies 𝐄𝐻𝒛1 = 0 and ∆̅𝐴𝒛2 = 0. Note 𝐄𝐻𝒛1 = 0 only if 𝒛1 = 0. As 

[
∆̅𝐴
Ʌ̅𝐴
] is a full column matrix, [

∆̅𝐴
Ʌ̅𝐴
] 𝒛2 = 0 only if 𝒛2 = 0. Thereby, Eq. (5.59) holds only if 𝒛1 =

0 and 𝒛2 = 0. As both Ʌ𝐻
𝑇  and Ʌ̅𝐴

𝑇 are full column matrix, 𝒛3 = 0, and 𝒛4 = 0. The solution to Eq. 

(5.55) is [𝒛1
𝑇 𝒛2

𝑇 𝒛3
𝑇 𝒛4

𝑇] = 𝟎. 𝑱𝐟̅
∗ is invertible. Proposition 5.8 is proved. 

𝜕�̃�(𝛎∗) 𝜕𝛎⁄  is positive definite is a sufficient condition to ensure that the solution 𝛎∗ of VI 

problem (5.24) is locally unique. The two conditions for 𝜕�̃�(𝛎∗) 𝜕𝛎⁄   being a positive definite 

matrix are discussed in Proposition 5.7. Note that the two conditions are not strong. Thereby, 𝑱𝐟̅
∗ 

is invertible in general at the equilibrium state. It is important to note that if 𝛎∗ is not locally 

unique, then the gradients in the left-hand side of Eq. (5.51) do not exist (Tobin, 1986). When 

applying the sensitivity analysis method in practice, rather than checking whether 𝜕�̃�(𝛎∗) 𝜕𝛎⁄  is 

positive definite, a simple way to check invertibility of matrix 𝑱𝐟̅
∗ is to determine whether it is a 

full rank matrix at the equilibrium state.  According to Eq. (5.51) 

∇𝛆𝐯𝐻
∗ (0) = ∆𝐻∇𝛆𝐟𝐻

∗ (0) (5.60a) 

∇𝛆𝐯𝐴
∗(0) = ∆̅𝐴∇𝛆𝐟�̅�

∗(0) (5.60b) 



174 

 

 

 

Eq. (5.51) is derived based on the ELI path set �̅�𝐴 and the assumption of fixed flow of ELD 

paths when 𝛆 changes. Following the proof of Yang and Bell (2005), it can be shown that the 

gradients ∇𝛆𝐯𝐻
∗ (0) and ∇𝛆𝐯𝐴

∗(0) are independent with respect to the ELI path set �̅�𝐴  and the 

corresponding flows of ELD paths. Thereby, the gradients ∇𝛆𝐯𝐻
∗ (0) and ∇𝛆𝐯𝐴

∗(0) exist if the 

condition in Proposition 5.8 is satisfied. The perturbed equilibrium link flow for HDVs and 

CAVs can then be estimated using the first-order approximation (FOA) approach as follows: 

  �̂�𝐻
∗ = 𝐯𝐻

∗ (0) + 𝛿𝛆 × ∇𝛆𝐯𝐻
∗ (0) (5.61a) 

  �̂�𝐴
∗ = 𝐯𝐴

∗(0) + 𝛿𝛆 × ∇𝛆𝐯𝐴
∗(0) (5.61b) 

where 𝛿𝛆 is the scale of perturbation. 

5.6 Numerical analysis 

5.6.1 Convergence performance of the solution algorithm 

This section investigates the convergence performance of the proposed RSRS-MSRA 

algorithm using the Nguyen-Dupuis (Figure 5.2) and Sioux Falls networks (Figure 5.3). The 

Nguyen-Dupuis network is a small network with four OD pairs, i.e., W={1-2;1-3;4-2;4-3}. The 

OD demands for the four OD pairs are 1320, 990, 820, and 990, respectively. The other inputs 

for the network can be found in Table 5.2. The Sioux Falls network is a larger network consists 

of 24 nodes, 76 links and 552 O-D pairs. The inputs for the Sioux Falls network can be found in 

Leblanc (1973). 

 

Figure 5.2 Nguyen-Dupuis network 
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Figure 5.3 Sioux Falls network 

The CAV demand for each OD pair for the two networks is assumed to be 50%. The 

dispersion parameter and the nesting degree for both networks are 휃 = 0.5, 𝑢 = 0.5. 𝑄𝑎,𝐴 =

2𝑄𝑎,𝐻 , ∀𝑎 ∈ 𝜞𝐻. The VOT for HDVs and CAVs is set as 10 and 5, respectively. The revised K-

shortest path method (De La Barra et al., 1993) is used to find the paths that are likely to be used 

for each OD pair. It identifies about 3400 such routes in the Sioux Falls network. To estimate the 

gasoline consumption of a vehicle on link 𝑎 ∈ 𝜞𝐻 , the following model (Zhang et al., 2014) 

which is calibrated using field data of 40 gasoline vehicles will be used in this study: 

𝐸𝑎 = 147.92(
𝑙𝑎

𝑡�̅�(𝑣𝑎,𝐻 , 𝑣𝑎,𝐴)
)

−0.689
1.609 ∗ 𝑙𝑎
3.785

= 62.88
(𝑙𝑎)

0.311

𝑡�̅�(𝑣𝑎,𝐻 , 𝑣𝑎,𝐴)
 (5.62) 

where 1.609 is the conversion rate of mile to kilometer, 3.785 is conversion rate of gallon to 

liter. The travel cost for HDVs and CAVs on link 𝑎, 𝑎 ∈ 𝜞𝐻 is  

𝑡𝑎,𝑧 = 𝑡�̅�(𝑣𝑎,𝐴) ∙ 𝑉𝑂𝑇𝑧 + 3 ∙ 53.69
(𝑙𝑎)

0.311

𝑡�̅�(𝑣𝑎,𝐻 , 𝑣𝑎,𝐴)
, 𝑎 ∈ 𝜞𝐻 , 𝑧 ∈ {𝐻𝐴𝑉, 𝐶𝐴𝑉} (5.63) 

where the link travel time 𝑡�̅�(𝑣𝑎,𝐻 , 𝑣𝑎,𝐴) is shown in Eq. (5.12a). 
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Table 5.2 Inputs for Nguyen-Dupuis network 

Link 𝑙𝑎 𝑄𝐻 𝑄𝐴 Link 𝑙𝑎 𝑄𝐻 𝑄𝐴 

1 7 300 600 11 9 500 1000 

2 9 200 400 12 10 550 1100 

3 9 200 400 13 9 200 400 

4 12 200 400 14 6 400 800 

5 3 350 700 15 9 300 600 

6 9 400 800 16 8 300 600 

7 5 500 1000 17 7 200 400 

8 13 250 500 18 14 300 600 

9 5 250 500 19 11 200 400 

10 9 300      

 

 

(a) Convergence results for Nguyen-Dupuis network 

 

(b) Convergence results for Sioux Falls network 

Figure 5.4 Convergence results for the three algorithms  
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To measure the quality of the solutions, the convergence indictor (denoted as 𝐺 ) is 

formulated follows  

𝐺 =
∑ ∑ 𝑓

𝑘,𝐻
𝑤 (𝐶𝑘,𝐻

𝑤 − 𝐶𝑚𝑖𝑛,𝐻
𝑤 )𝑘∈𝑅𝐻

𝑤𝑤∈𝑊𝐻
+ ∑ ∑ 𝑓

𝑘,𝐴
𝑤 (𝐶𝑘,𝐴

𝑤 − 𝐶𝑚𝑖𝑛,𝐴
𝑤 )𝑘∈𝑅𝐴

𝑤𝑤∈𝑊𝐴

∑ ∑ 𝑓
𝑘,𝐻
𝑤 𝐶𝑘,𝐻

𝑤
𝑘∈𝑅𝐻

𝑤𝑤∈𝑊𝐻
+ ∑ ∑ 𝑓

𝑘,𝐴
𝑤 𝐶𝑘,𝐴

𝑤
𝑘∈𝑅𝐴

𝑤𝑤∈𝑊𝐴

 (55) 

where 𝐶𝑚𝑖𝑛,𝐻
𝑤  and 𝐶𝑚𝑖𝑛,𝐴

𝑤  are minimum generalized path costs for HDVs and CAVs, respectively, 

for OD pair 𝑤. For comparison, the PRS and RSRS algorithm with predetermined step sizes 

proposed by Huang and Lam (2002) are also used to solve the multiclass traffic assignment 

model. The predetermined step sizes are set as  0.001 × (1(1→499), 1 2⁄
(500→999)

, 

1 3⁄
(1000→1499)

⋯) . These step sizes are carefully chosen as having the best convergence 

performance. For the RSRS-MSRA method, the two parameters 𝛶1 and 𝛶2 are set as 2 and 0.01, 

respectively. The three algorithms start from the same initial point. The experiments were coded 

in MATLAB and executed on a computer with an Intel Core i7-4790 3.60-GHz CPU with 8GB 

RAM. Figure 5.4 shows that the convergence performance of the RSRS algorithm with 

predetermined step sizes is better than that of the PRS algorithm with the same step sizes for 

both test networks. However, both algorithms performed very poorly in that the stop criterion 

cannot reach 0.001 after even 2000 iterations. The RSRS-MSRA algorithm substantially 

improves the convergence performance by adaptively choosing the step size in each iteration. As 

illustrated in Figure 5.4, the RSRS-MSRA algorithm takes around 1000 iterations for the 

Nguyen-Dupuis and 1400 iterations for the Sioux Falls network, respectively, to achieve a value 

of convergence indicator less than 0.0001. As the RSRS-MSRA algorithm updates the path flow 

in each iteration very efficiently, it only takes about 2.3 seconds and 92.2 seconds to achieve this 

convergence performance for the Nguyen-Dupuis and Sioux Falls networks, respectively.  

5.6.2 Impacts of CAVs on network performance 

The Nguyen-Dupuis network is used to test the impacts of CAVs on network performance. 

Figure 5.6(a) compares the travel costs of all the paths for OD pair 1-3 (see Table 5.3) at the 

equilibrium state when the VOT of HDVs and CAVs is 10 and 5, respectively. It indicates that 

the paths with minimum travel cost for HDVs and CAVs are different (i.e., path 3 for HDVs and 

path 6 for CAVs). Hence, a large proportion of HDVs and CAVs for OD pair 1-4 are distributed 

on different paths, which reduces the network congestion level. However, as indicated by 

proposition 5.3, when the VOT of HDVs and CAVs is equal, the routes with minimum travel 
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cost for HDVs and CAVs are the same. Then, a large number of HDVs and CAVs for an OD 

pair would use the same paths, leading to more traffic congestion. Figure 5.5(b) shows that as the 

VOT of CAVs increases, the total travel cost of HDVs also increases monotonically. 

 

(a) Travel cost of paths between OD pair 1-4 for HDVs and CAVs 

 

(b) Total travel cost of HDVs under different VOT of CAV users 

Figure 5.5 Network performance at the equilibrium state 

To analyze the impacts of the CAV market penetration rate, Figure 5.6 shows the average 

OD travel costs of HDVs and CAVs under different CAV market penetration rates. It suggests 

that even a small percentage of CAVs (e.g., 10%) can significantly reduce the OD travel cost of 

both HDVs and CAVs. In addition, the average OD travel cost of both CAVs and HDVs 
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decreases monotonically as the market penetration rate of CAVs increases, because it can 

increase the link capacity to reduce travel cost. 

 

Table 5.3 Route-link incidence relationship for OD pair 1-3 

Path ID Node sequence 

1 1-12-6-10-11-3 

2 1-12-6-7-11-3 

3 1-5-9-13-3 

4 1-5-9-10-11-3 

5 1-5-6-10-11-3 

6 1-5-6-7-11-3 

 

 (a) Average OD travel cost for HDVs  (b) OD travel cost for CAVs 

Figure 5.6 Average OD travel cost for HDVs and CAVs 

Suppose one of the lanes on link 7 is converted to an AV-dedicated lane. Figure 5.7(a) shows 

the total CAV flow on link 7 before and after the deployment of AV-dedicated lane. It indicates 

that the deployment of the AV-dedicated lane can attract more number of CAVs to link 7, 

especially when the market penetration rate of CAVs is low. To analyze the impact of the AV-

dedicated lane on network performance, Figure 5.7(b) shows the ratio of the total travel costs 

(TTC) (i.e., the summation of travel costs of all CAV and HDV users in the network) after the 

deployment of the AV-dedicated lane and before the deployment. It suggests that the deployment 

of an AV-dedicated lane can reduce the network performance when the market penetration rate 

of CAVs is low as the usage of the AV-dedicated lane is low. Thereby, it is necessary to design 

an effective strategy to deploy an AV-dedicated lane optimally to improve the system 
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performance under different CAV market penetration rates. The multiclass traffic assignment 

model and sensitivity analysis method proposed in this study can help to achieve this goal. 

 

(a) Comparison of total CAV flow on link 7 

 

(b) Ratio of total travel cost (TTC) after the deployment of AV dedicated lane over it is before 

the deployment of AV dedicated lane. 

Figure 5.7 Comparison of total CAV flow and total travel cost before and after deployment 

of the AV dedicated lane  
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5.6.3 Sensitivity analysis 
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Figure 5.8 Network for demonstrating sensitivity analysis 

This section presents two examples to demonstrate the application of sensitivity analysis for 

the multiclass traffic assignment model. We use the first example, constructed on a small 

network shown in Figure 5.8, to illustrate the details of and insights into the sensitivity analysis 

process. It contains one OD pair, 5 regular links (i.e., links 1, 2, 3, 4 and 5) and one AV-

dedicated lane (i.e., link 6). There are three paths for HDVs and four paths for CAVs. The paths 

for HDVs are represented by link chain as: path 1:{1,4}, path 2: {2,5} , path 3: {1,3,5}, and the 

additional path for only CAVs, i.e., path 4: {1,6,5}. The VOT for HDVs and CAVs is set as 10 

and 5, respectively. The OD demand for HDVs and CAVs is 30 and 20, respectively. The 

dispersion parameter and degree of nesting are 휃 = 1, 𝑢 = 0.5, respectively. The other inputs for 

this network can be found in Table 5.4. It is important to note that the capacity of the AV-

dedicated lane (i.e., link 6) for HDVs is set to a very small value to prevent the HDVs from using 

the AV-dedicated lane.   

Table 5.4 Inputs for study network in Figure 5.8 

Links 1 2 3 4 5 6 

Length of links (𝑙𝑎) 4 7 1       5       2       1 

Speed limit (𝑠𝑎)  50 50 50 50 50 50 

Capacity of HDVs (𝑄𝑎,𝐻) 20 20 10 20 20 0.0001 

Capacity of CAVs (𝑄𝑎,𝐴) 40 40 20 20 40 60 

The equilibrium path flow and link flow solutions for HDVs and CAVs are computed as  

𝐟𝐻
∗ = [10.358 11.249 8.392]𝑇; 𝐟𝐴

∗ = [6.304 9.834 0 3.861]𝑇;  

𝐯𝐻
∗ = [18.751 11.249 8.392 10.358 19.642 0]𝑇; 
𝐯𝐴
∗ = [10.166 9.834 0 6.304 13.696 3.861]𝑇 
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Note that path 3 is a non-equilibrated route for CAVs, and the link-path and OD-path 

incidence vector of the other three routes are linearly independent. Then 𝐟�̅�
∗ =

[6.304 9.834 3.861]𝑇, and 

∆̅𝐴=

[
 
 
 
 
 
1 0 1
0 1 0
0 0 0
1 0 0
0 1 1
0 0 1]

 
 
 
 
 

; Ʌ̅𝐴 = [1 1 1]; ∆𝐻=

[
 
 
 
 
 
1 0 1
0 1 0
0 0 1
1 0 0
0 1 1
0 0 0]

 
 
 
 
 

; Ʌ𝐻 = [1 1 1]  

Suppose the OD demand for HDVs increases by 5. Then 휀 = 𝑞𝐻, and  

𝑱𝛆
∗ = [0 0 0 0 0 0 1 0]𝑇 (5.64) 

To calculate 𝑱𝐟̅
∗, the matrix 𝝆∗ is obtained first by Eq. (5.37) as follows 

𝝆∗ = [
0.805 0 0.194
0 0.911 0.089

0.240 0.120 0.641
] (5.65) 

According to Eq. (5.38) and Eq. (5.54), the gradients of generalized path travel cost for CAVs 

and HDVs with respect to path flow of CAVs and HDVs are computed as  

𝜕𝑪𝐻
∗

𝜕𝐟𝐻
= ∆𝐻

𝑇 ∙ ∇𝐯𝐻𝒕𝐻
∗ ∙ ∆𝐻 − (1 − 𝑢)𝝆

∗∆𝐻
𝑇 ∙ ∇𝐯𝐻𝒕𝐻

∗ ∙ ∆𝐻 +
𝑢

휃
𝑑𝑖𝑎𝑔 (

𝟏

𝐟�̅�
∗
) 

                     = [
 0.154 −0.011 0.069
−0.007 0.151 0.047
0.088 0.064 0.242

] 

(5.66) 

𝜕𝑪𝐻
∗

𝜕𝐟�̅�
= ∆𝐻

𝑇 ∙ ∇𝐯𝐴𝒕𝐻
∗ ∙ ∆̅𝐴 − (1 − 𝑢)𝝆

∗∆𝐻
𝑇 ∙ ∇𝐯𝐴𝒕𝐻

∗ ∙ ∆̅𝐴 

                    = [
0.053 −0.005 0.036
−0.004 0.053 0.024
0.044 0.032 0.081

] 

(5.67) 

𝜕𝑪𝐴
∗

𝜕𝐟𝐻
= ∆̅𝐴

𝑇 ∙ ∇𝐯𝐻𝒕𝐴
∗ ∙ ∆𝐻= [

0.121 0 0.097
0 0.121 0.065

0.097 0.065 0.163
] (5.68) 

𝜕𝑪𝐴
∗

𝜕𝐟�̅�
= ∆̅𝐴

𝑇 ∙ ∇𝐯𝐴𝒕𝐴
∗ ∙ ∆̅𝐴= [

0.061 0 0.049
0 0.061 0.033

0.049 0.033 0.081
] (5.69) 

Submit Eq. (5.58) into Eq. (5.51). We can obtain the value of 𝑱𝐟̅
∗. It can verify that the matrix 𝑱𝐟̅

∗ is 

invertible as it is a non-singular square matrix. Thereby, the gradients ∇𝛆𝐟𝐻
∗ (0) , ∇𝛆𝐟�̅�

∗(0) , 

∇𝛆𝛍𝐻(0), ∇𝛆𝛍𝐴(0) exist. According to Eq. (5.51) 

[
 
 
 
∇𝛆𝐟𝐻

∗ (0)

 ∇𝛆𝐟�̅�
∗(0)

∇𝛆𝛍𝐻(0)

∇𝛆𝛍𝐴(0)]
 
 
 

= [0.381 0.407 0.212 0.710 0.456 −1.166 −0.062 −0.053]𝑇 (5.70) 
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If the OD demand for HDVs is increased by 5, the perturbed equilibrium link flows of HDVs 

(denoted as �̂�𝐻
∗ (5)  ) and CAVs (denoted as �̂�𝐴

∗  (5)) can be estimated by the first-order 

approximation (FOA) method as follows: 

  �̂�𝐻
∗ (5) = 𝐯𝐻

∗ (0) + 5 × ∆𝐻 ∙ ∇𝛆𝐟𝐻
∗ (0)

= [20.529 12.471 9.030 11.499 21.501 0]𝑇 
 

�̂�𝐴
∗(5) = 𝐯𝐴

∗(0) + 5 × ∆𝐴 ∙ ∇𝛆𝐟𝐴
∗(0) = [8.798 11.202 0 8.435 11.565 0.363]𝑇  

The calculated equilibrium link flows of HDVs (denoted as 𝐯𝐻
∗ (5) ) and CAVs (denoted as 

𝐯𝐴
∗(5) ) using the solution algorithm are 

𝐯𝐻
∗ (5) = [20.514 12.486 8.996 11.518 21.482 0]𝑇  

𝐯𝐴
∗(5) = [8.964 11.036 0 8.181 11.819 0.784]𝑇  

It can be seen that the estimated equilibrium link flows are very close to the calculated ones. 

Thereby, FOA approach can effectively estimate the perturbed solutions. It should be noted that 

the accuracy of the FOA approach decreases as the perturbation increases.  

 

(a) The distribution of relative errors of the estimated link flow of HDVs  

Figure 5.9 Relative errors of the estimated link flow 
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Figure 5.9 continued 

 

(b) The distribution of relative errors of the estimated link flow of CAVs 

The Sioux Falls network shown in Figure 5.3 is used to demonstrate the estimation 

performance of equilibrium flows of the FOA approach due to parametric perturbations in a 

larger network. Assume the demand for both CAVs and HDVs for OD pairs 10-15,15-10,14-

15,15-14, 19-15 and 15-19 are increased by 100%. Figure 5.9 shows the distribution of relative 

errors of estimated link flows for HDVs and CAVs. It illustrates that the FOA approach 

accurately estimates the HDV and CAV flows for most links with relative errors less than 0.2% 

and 2%, respectively. Further, the maximum relative errors of the estimated link flows for HDVs 

and CAVs are less than 1.2% and 10%, respectively. Thereby, the FOA approach accurately 

captures the flow variation due to the demand increase. Note that the estimation performance of 

CAV link flows is poorer than that of the HDV link flows. This is because CAVs choose routes 

based on the UE principle. They are more informed of traffic conditions than HDVs and are 

more sensitive to the network congestion due to increased demand. Thereby, the variation of link 

flows for CAVs is larger than that for HDVs, which reduces the estimation performance of the 

FOA approach.  

5.7 Concluding comments  

This study proposes a multiclass traffic assignment model in which HDV and CAV users choose 

routes based on the CNL model and UE principle, respectively. The CNL model captures HDV 
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users’ perception uncertainty due to limited knowledge of traffic conditions while overcoming 

the route overlap issue of logit-based SUE. The UE model can characterize the CAV’s capability 

for acquiring traffic information more accurately. In addition, the asymmetry in interactions 

involving HDVs and CAVs is analytically captured by the designed link travel cost functions. 

Thereby, the proposed multiclass traffic assignment model can enhance realism in characterizing 

mixed traffic flows. It can aid planners to quantitatively estimate the impacts of the VOT of 

CAV users, the CAV market penetrate rate, and the deployment of AV-dedicated lanes. A new 

route-swapping-based solution algorithm, RSRS-MSRA, is developed to solve the multiclass 

traffic assignment model effectively. It converges much faster than the existing route-swapping-

based algorithm (Huang and Lam, 2002) by adaptively determining the step size in each iteration. 

This solution algorithm can also be used to solve other path-based VI problems (e.g., Huang and 

Lam, 2004, Szeto and Lo, 2006; Ramadurai and Ukkusuri, 2010). The study also develops an 

analytical model for sensitivity analysis of the multiclass traffic assignment model. 

The study results suggest that when the VOT of CAV users is small, a large proportion of 

HDV and CAV demand will be distributed on different routes, which reduces the total travel cost 

of HDVs. The deployment of AV-dedicated lanes can attract more CAV flow than non-AV 

dedicated lanes. But changing an existing lane into an AV-dedicated lane may decrease system 

performance under a low CAV market penetration rate. In addition, the average OD travel cost 

of HDVs can be reduced significantly even with a relatively low CAV market penetration rate. 

The analytical model for sensitivity analysis of the multiclass traffic assignment model enables 

planners to quickly estimate the perturbed network flows due to expected or unexpected events. 

These insights can assist decision-makers to design effective planning and operational strategies 

that promote the benefits of CAVs and mitigate traffic congestion under mixed traffic flows 

during the transition to a fully autonomous and connected transportation system. 

This study can be extended in a few directions. First, we will leverage the sensitivity analysis 

method to identify critical parameters (link capacity, signal splits) that impact network 

performance, and perform risk analysis to generate insights on network performance reliability. 

Second, a continuous network design problem can be developed upon the multiclass traffic 

assignment model to determine the optimal signal timing and tolling strategies to maximize 

system performance under different CAV market penetration rates. Third, a combined modal 

split and multiclass traffic assignment model can be developed to simultaneously estimate the 
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network flows and OD demand of both HDVs and CAVs by incorporating factors such as travel 

cost, price of vehicles, etc. 
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 CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the contributions of this dissertation, and suggests directions for 

future research. Section 6.1 summarizes the research and discusses associated conclusions. 

Section 6.2 highlights the significance of the research, and Section 6.3 discusses possible 

extensions for future research. 

6.1 Summary and conclusions  

This dissertation systematically addresses modeling needs in three connected topics to 

improve transportation systems by leveraging the advantages of CAVs. The topics are: (1) 

modeling and controlling information flow propagation, (2) designing a deployable cooperative 

control strategy for platoons of CAVs, and (3) modeling network equilibrium under mixed traffic 

flow. This dissertation deepens our understanding of three research questions:  

1. How is traffic information propagated in the network spatiotemporally, and how can 

multiclass information (i.e., routing, safety-related information, work zones, etc.) be 

controlled so that performance in terms of information spread, time delay bounds and 

spatial coverage is satisfied for each information class?  

2. How can a real-time, deployable cooperative control mechanism be designed for CAV 

platoons to maximize platoon performance? 

3. How can the equilibrium network flow be estimated for CAVs and HDVs by incorporating 

the characteristics of travel costs and interactions of route choices? 

Chapter 2 explores the spatiotemporal information flow propagation under information 

congestion effects by introducing a two-layer macroscopic model and an information relay 

control strategy that propagates the received information packets according to the first-in, first-

out queue discipline. It trades off the need to enable the dissemination of every information 

packet as far as possible against the congestion effects that will accrue due to the presence of 

multiple information packets. An IDE system is established in the upper layer to model 

information dissemination in the information flow regime. The LWR model is used in the lower 

layer to capture the impacts of traffic flow dynamics on information propagation. The two-layer 

model is used to derive the analytical solution for asymptotic IFPW speed and density of 
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vehicles informed with the specific information of interest. Numerical experiments show that the 

IFPW speed decreases as the information packet exclusion rate increases, to prevent packet 

collisions under information congestion conditions. A large information packet exclusion rate 

can cause information to be propagated only locally, implying that equipped vehicles far from 

the sender vehicle will not be informed. This study can be leveraged to develop a new generation 

of information dissemination strategies focused on enabling specific V2V information to reach 

target locations at desired times. 

Chapter 3 proposes a queuing strategy to control the spatiotemporal propagation of multiclass 

information. The queuing strategy assigns a certain number of virtual “communication servers” 

for each information class. Two control parameters—the number of assigned communication 

servers and the communication service rate—are determined for each information class to 

achieve the desired propagation performance related to information spread, time delay bounds, 

and spatial coverage. Similarly, a two-layer analytical model is derived to characterize the 

spatiotemporal propagation of multiclass information under the designed queuing strategy. The 

two-layer model captures the impact of communication constraints (communication frequency, 

channel capacity, and communication range, etc.) through a communication kernel which is 

calibrated using NS-3 simulation. Analytical and numerical solutions are also proposed to solve 

the two-layer model, quantifying the effects of the two control parameters on IFPW speed, 

density of informed vehicles, and information propagation distance. The proposed information 

flow propagation control strategy trades the limited communication resources and the different 

application needs of multiclass information. Therein, it can be useful for traffic operators to 

design effective control strategies for delivering multiclass traffic information in the network.  

In Chapter 4, an idealized MPC strategy is proposed to coordinate the behavior of the 

vehicles in a platoon effectively to maneuver them under a common goal on the strong 

assumption that the embedded optimal control problem can be solved instantaneously. To 

address the issue of control delay of the idealized MPC approach, a DMPC approach is proposed, 

which reserves sufficient time to solve the optimal control problem before each sampling time 

instance. To reduce the deviation of control decisions between DMPC approach and the idealized 

MPC strategy, a DMPC-FOA approach is developed to improve the estimation performance of 

the DMPC approach. The DMPC-FOA approach not only addresses the issue of control delay of 

the idealized MPC strategy effectively, but also can accurately characterize the optimal control 



189 

 

 

 

decision of the idealized MPC strategy. Application of the DMPC-FOA approach for CAV 

platoons with real-world  trajectory data for the leading vehicle shows that it can dampen traffic 

oscillations effectively, leading to smooth deceleration and acceleration behavior for the 

following vehicles in the platoon. 

Chapter 5 proposes a multiclass traffic assignment model in which HDV and CAV users 

choose routes that follow the CNL and UE principles, respectively. The CNL model captures 

HDV users perceptual uncertainty associated with limited knowledge of traffic conditions while 

overcoming the route overlap issue of the logit-based SUE problem. The UE model can 

characterize the CAVs’ capability for acquiring accurate information on traffic conditions. In 

addition, the asymmetry in interactions involving HDVs and CAVs is analytically captured by 

the designed link travel cost functions. The study results suggest that when the VOT of CAV 

users is small, a large proportion of HDV and CAV demand will be distributed on different 

routes, which reduces the total travel cost of HDVs. The deployment of AV-dedicated lanes can 

attract more CAV flow than non-AV dedicated lanes. But changing an existing lane into an AV-

dedicated lane may decrease system performance under a low CAV market penetration rate. In 

addition, the average OD travel cost of HDVs can be reduced significantly even with a relatively 

low CAV market penetration rate. The proposed multiclass traffic assignment model provides 

behavioral realism in modeling the mixed traffic flow. The multiclass traffic assignment model 

can be used to help planners to quantitatively estimate the impacts of VOT on CAV users, the 

market penetration rate of CAVs, and the deployment of AV-dedicated lane on network flows.  

6.2 Contributions summary 

The primary contributions of this dissertation are as follows: 

First, this dissertation develops an analytical macroscopic model to characterize the IFPW 

under congested V2V communication environments, and the IFPW under an effective queuing 

strategy for controlling multiclass information flow propagation. Analytical and numerical 

solutions are derived to solve the macroscopic models under different traffic flow conditions. 

These solutions help to analyze the impacts of traffic flow dynamics and the communication 

constraints (e.g., communication frequency, channel capacity, and communication range) on 

information propagation performance related to IFPW speed, density of informed vehicles and 

spatial coverage. Further, it also provides useful information on how to leverage the two 
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parameters in the designed queuing strategy to control the propagation performance of multiclass 

information. The macroscopic models and the queuing strategy for information propagation can 

be used by traffic managers to disseminate traffic information to control and guide traffic to 

improve the system performance under connected and autonomous transportation.  

Second, this dissertation develops a real-time deployable control mechanism for platoons of 

CAVs to coordinate the behaviors of all CAVs effectively to maximize platoon performance.  

Compared to non-cooperative car-following controllers, our proposed control mechanism for 

CAV platoons can enhance its stability, leading to smoother acceleration and deceleration 

behavior for all following CAVs. However, the computational load of the embedded optimal 

control problem can induce significant control delays which can deteriorate platoon performance 

and cause traffic accidents. The proposed real-time deployable control mechanism bridges this 

gap for the first time in the literature by addressing the control delay issue effectively. It can be 

applied in real-time to coordinate the behaviors of CAVs in a platoon effectively to maneuver 

them under a common goal. In addition, the method for sensitivity analysis of the optimal control 

problem is analytically formulated; it can quantitatively measure the impact of parametric 

perturbations (e.g., perturbations of the initial state of the leading vehicle) on the optimal control 

decisions and platoon performance. Further, an analytical method is provided for stability 

analysis of the idealized MPC strategy, helping to identify parameter inputs in the idealized MPC 

strategy to better dampen the oscillations in the platoon.  

Third, this dissertation develops a multiclass traffic assignment model for mixed traffic flow 

of HDVs and CAVs, which can capture the characteristics of mixed traffic flow, such as the 

difference in value-of-time between HDVs and CAVs, the asymmetry in their driving 

interactions, and the impacts of AV-dedicated lanes; thereby enhancing behavioral realism in the 

modeling. The proposed multiclass traffic assignment model can estimate the distribution of 

network flow in the transition period for different market penetration rates of CAVs, which can 

assist transportation decision-makers in designing effective planning and operational strategies to 

leverage the advantages of CAVs to manage traffic congestion under mixed traffic flows. This 

dissertation also develops a new solution algorithm based on the route-swapping concept to solve 

the proposed multiclass traffic assignment model efficiently. It has a convergence speed superior 

to that of the existing route-swapping-based algorithm (Huang and Lam, 2002). Further, an 

analytical formula is derived for sensitivity analysis of the proposed model, which enables 
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planners to quickly estimate the perturbed traffic equilibrium and identify critical elements under 

planned or unexpected disruptive events. It can also be used to solve the continuous network 

design problem (e.g., to find optimal signal timing or tolling strategies to improve system 

performance under mixed traffic flow). 

6.3 Directions for future work 

In this dissertation, we have developed several models to address both operational and 

planning needs for CAVs, including information dissemination through V2V communication, 

cooperative control mechanism for CAV platoons, and network equilibrium modeling for mixed 

traffic flow. Although the topics addressed in this dissertation represent a first step to exploit the 

potential of CAVs, we believe they enhance the understanding and shed light on a wide range of 

related future research directions. Here, we identify some potential directions for future research. 

First, this dissertation models and addresses control of information flow propagation in the 

context of only a corridor. Extensions and new strategies will need to be proposed to control 

network-level multiclass information propagation. In addition, this dissertation assumes that 

information is relayed by vehicles through multi-hop broadcasting V2V communication. The 

modeling framework can be developed for information flow propagation using other 

broadcasting protocols; for example, unicast V2V communications. This dissertation assumes all 

information packets have equal priority to propagate. In real-world applications, different 

information packets may have different priorities. This motivates the exploration of other 

queuing strategies such as preemptive priority and non-preemptive priority strategies to control 

propagation of multiclass information.  

Second, related to cooperative control mechanisms for CAV platoons, this study assumes that 

there are no measurement errors of the vehicles’ states and false executions of optimal control 

decisions. In future work, a noise term can be added to the state dynamics equation to account 

for state uncertainties, and a new deployable robust control approach can be developed to control 

the CAV platoon. Additionally, new solution algorithms and discretization techniques can be 

developed to solve the optimal control problems quickly to enhance the real-time applicability of 

the proposed cooperative control mechanism.  

Third, related to multiclass traffic assignment models for mixed traffic flow, the sensitivity 

analysis method can be leveraged to identify critical parameters (link capacity, signal splits) that 

https://pubsonline.informs.org/doi/abs/10.1287/opre.9.5.732
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impact network performance, while performing risk analysis to generate insights on network 

performance reliability. Also, a continuous network design problem can be developed using the 

multiclass traffic assignment model to determine optimal signal timing and tolling strategies to 

maximize system performance under different CAV market penetration rates. Further, a 

combined modal split and multiclass traffic assignment model can be developed to 

simultaneously estimate the network flows and OD demand of both HDVs and CAVs by 

incorporating factors such as travel cost, vehicle price, and demand elasticity.   
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