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ABSTRACT

Madkour, Amgad Ph.D., Purdue University, December 2018. Efficient Query Pro-
cessing Over Web-Scale RDF Data. Major Professor: Walid G. Aref.

The Semantic Web, or the Web of Data, promotes common data formats for rep-

resenting structured data and their links over the web. RDF is the defacto standard

for semantic data where it provides a flexible semi-structured model for describing

concepts and relationships. RDF datasets consist of entries (i.e., triples) that range

from thousands to Billions. The astronomical growth of RDF data calls for scalable

RDF management and query processing strategies. This dissertation addresses effi-

cient query processing over web-scale RDF data. The first contribution is WORQ, an

online, workload-driven, RDF query processing technique. Based on the query work-

load, reduced sets of intermediate results (or reductions, for short) that are common

for specific join pattern(s) are computed in an online fashion. Also, we introduce an

efficient solution for RDF queries with unbound properties. The second contribution

is SPARTI, a scalable technique for computing the reductions offline. SPARTI uti-

lizes a partitioning schema, termed SemVP, that enables efficient management of the

reductions. SPARTI uses a budgeting mechanism with a cost model to determine the

worthiness of partitioning. The third contribution is KC, an efficient RDF data man-

agement system for the cloud. KC uses generalized filtering that encompasses both

exact and approximate set membership structures that are used for filtering irrelevant

data. KC defines a set of common operations and introduces an efficient method for

managing and constructing filters. The final contribution is semantic filtering where

data can be reduced based on the spatial, temporal, or ontological aspects of a query.

We present a set of encoding techniques and demonstrate how to use semantic filters

to reduce irrelevant data in a distributed setting.
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1. INTRODUCTION

The Semantic promotes common data formats for representing structured data and

their links over the web. It consists of a set of components including the Resource

Description Framework (RDF) and the Ontology Web Language (OWL) that both

provide an ecosystem where applications can query and draw inferences from the data.

RDF is an integral component in many areas, e.g., Semantic Search, e.g., Google

Knowledge Vault [1], Microsoft Satori, Smart governments (e.g., Data.gov 1), and

medical systems (e.g., BioDASH [2]). RDF datasets consist of entries (i.e., triples)

that range from thousands to billions. For example, the Linked Open Data cloud

(LOD) community 2 provides more than 300 interlinked RDF datasets consisting of

32 billion triples. LOD covers a wide range of different topical domains including

life sciences, geographic, linguistics, media, government, social networking, and user-

generated content.

Distributed and cloud platforms, e.g., Hadoop 3 and Amazon EC2 4, provide a

shared storage layer and advanced data processing components that help manage

large-scale RDF data. However, these platforms introduce several performance chal-

lenges, e.g., disk I/O and network shuffling overhead, and hence efficient RDF query

processing and data partitioning techniques can significantly improve the query per-

formance over these platforms.

RDF systems are classified into either centralized or cloud-based systems. Cen-

tralized RDF systems can provide efficient solutions for managing RDF data (e.g.,

RDF-3x [3], TripleBit [4], gStore [5]). However, studies have shown that centralized

systems cannot scale to web-scale datasets or answer complex RDF queries [6–9].

1www.data.gov
2www.lod-cloud.net/state
3hadoop.apache.org
4aws.amazon.com/ec2
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In contrast, cloud-based systems encompass variously distributed storage backends

and query processing architectures that are capable of operating over web-scale RDF

data [10].

1.1 RDF Data Model

RDF provides a flexible semi-structured model for describing concepts and rela-

tionships. Data represented as RDF requires no schema to be defined in advance.

Each RDF entry (i.e., triple) consists of a subject, property (i.e., predicate), and an

object. An RDF dataset is composed of RDF triples and can be described in multiple

formats (e.g., RDF/XML, N-Triples, Turtle, OWL). A set of triples form a directed

graph where the property connects a subject to an object. An RDF dataset can also

be perceived as a relational table with three columns (i.e., subject, property, object).

Table 1.1 illustrates an example RDF dataset.

Table 1.1.
RDF Dataset consisting of seven triples with two properties.

Subject Property Object
:John :mention :Mary
:John :mention :Mike
:Alex :mention :Mary
:John :tweet “T1”
:Mike :tweet “T2”
:Mike :tweet “T3”
:Alex :tweet “T4”

Each entry in an RDF dataset is either a resource (e.g., :Alex) prefixed with ":"

for simplicity, or a constant literal (e.g., "T1"). RDF data triples can be split into a

set of relational tables. For example, the triples can be split by Vertically Partitioning

(VP) the data [11]. VP partitions the RDF data triples by the property name. VP

achieves good performance when compared to other RDF data-partitioning strategies,

e.g., property tables [12, 13] when using tables to store RDF triples. However, VP is
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inefficient when the predicate is unbound (i.e.not specified) in a query pattern as all

VP need to be scanned to find a match for that pattern.

SPARQL is a standardized query language for RDF that harnesses the simplicity

of the RDF model to describe both simple and complex queries. A SPARQL query

consists of one or more Basic Graph Patterns (BGP). Each BGP consists of one or

more triples that describe a query.

Example 1:

SELECT ?x ?y WHERE {

?x :mention :John .

?x :tweet ?y . }

Example 1 illustrates a query that consists of one BGP with two triple patterns.

The query finds a set of people and tweets that include the resource :John. The ?x

and ?y symbols are termed unbounded variables. SPARQL attempts to match the

dataset entries (i.e., graph) that satisfy the unbounded variables in a query. Un-

bounded variables are also used to indicate a join between two or more triple patterns.

This join type is termed a BGP join as it exists within a BGP pattern. For example,

Variable ?x joins the first and second triple patterns in the BGP, indicating that a

resource (i.e., subject, property, or object) needs to match both triples to qualify.

BGP queries exhibit specific shapes based on the position of the unbounded vari-

able in the triple (i.e., subject, property, or object). The most common query patterns

resemble shapes, e.g., a star (i.e., subject-subject), linear path (i.e., subject-object

or object-subject), snowflake (i.e., star-shaped with linear), or a more complex struc-

ture consisting of multiple shapes. The number of triples defines the diameter of a

BGP joined consecutively. Joins that exhibit a star-shaped pattern have a diameter

of one. On the other hand, Linear paths have a diameter equal to the number of

triples included in its chain. BGP join patterns have a crucial performance impact

on any RDF system. For this reason, some systems are biased towards specific query



4

shapes. The most common query shape is the star-shaped pattern. On the other

hand, linear-shaped queries are more challenging as they involve a higher number of

intermediate results compared to the different query shapes.

1.2 Research Contributions

This dissertation addresses the challenges associated with efficient query process-

ing over web-scale RDF data. The research contributions of this dissertation are as

follows:

• To support efficient online query processing of RDF data, we introduce Workload-

driven RDF Query Processing (WORQ, for short), a set of techniques that

enhance the performance of RDF queries. Based on the query workload, re-

duced sets of intermediate results (or reductions, for short) that are common

for specific join pattern(s) are computed. Furthermore, these reductions are

not computed beforehand but are instead computed only for the frequent join

patterns in an online fashion using Bloom filters. Rather than caching the final

results of each query, we show that caching the reductions allows reusing inter-

mediate results across multiple queries that share the same join patterns. Also,

we introduce an efficient solution for RDF queries with unbound properties.

Extensive experimentation using two synthetic benchmarks and a real dataset

demonstrates how these optimizations lead to an order of magnitude enhance-

ment in terms of preprocessing, storage, and query performance compared to

the state-of-the-art solutions.

• To support efficient query processing using offline-processed RDF data, we in-

troduce Semantic Partitioning (SPARTI, for short), a data management ap-

proach that is agnostic to the query shape. In SPARTI, the partitioning of

the data evolves based on the join patterns found in the query-workload. Ini-

tially, SPARTI vertically partitions the RDF data, and then incrementally up-

dates the partitioning according to the workload, which improves the query
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performance of frequent join patterns. SPARTI introduces a novel partitioning

schema, termed SemVP, that enables the system to read a reduced set of rows

instead of an entire partition, and also skip entire data blocks. SPARTI pro-

poses a budgeting mechanism with a cost model to determine the worthiness of

partitioning. Using real and synthetic datasets, SPARTI is shown to be more

efficient than the state-of-the-art system by up to an order of magnitude.

• To improve the scalability of RDF query processing over the cloud, we introduce

KC, an RDF system that filters non-matching join entries as early as possible to

reduce the communication and computation overhead. KC uses a filter-based

approach to generate reduced sets of triples (or reductions, for short) to repre-

sent join pattern(s) of query workloads. KC can materialize the reductions on

disk or in memory and reuses the reductions that share the same join pattern(s)

to answer RDF queries. These reductions are not computed beforehand but are

instead computed in an online fashion. Furthermore, KC can efficiently answer

complex analytical queries that involve unbound properties. Based on a real-

ization of KC on top of Spark, extensive experimentation using the WatDiv,

LUBM, YAGO, and Bio2RDF benchmarks demonstrates an order of magni-

tude enhancement in terms of preprocessing, storage, and query performance

compared to the state-of-the-art cloud-based solutions.

• To further reduce irrelevant data, we introduce distributed RDF query process-

ing using semantic filters. RDF queries can include multiple aspects such as

Spatial (e.g., Regions, Points), Temporal (e.g., Dates), and Ontological (e.g.,

RDFS). We create set membership structures that represent different aspects of

RDF resources. A resource is added to a semantic filter if it contains triples that

correspond to that aspect. Semantic filters utilize set membership structures to

filter resources (subjects or objects) that do not match the corresponding as-

pect of the query. Furthermore, semantic filters can be deployed in a distributed

setting to reduce irrelevant data locally at every machine.
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1.3 Dissertation Outline

This dissertation is organized as follows. Chapter 2 introduces workload-driven

RDF query processing. Chapter 3 introduces semantic partitioning of RDF data.

Chapter 4 introduces KC RDF query processing system. Chapter 5 introduces se-

mantic filtering. Finally, Chapter 6 presents concluding remarks for the dissertation.
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2. WORQ: WORKLOAD-DRIVEN RDF QUERY

PROCESSING

RDF datasets consist of entries (i.e., triples) that range from thousands to Billions,

e.g., the Linked Open Data cloud (LOD) community has more than 300 interlinked

RDF datasets consisting of 32 Billion triples. LOD spans a wide range of topical

domains including life sciences, geographic, linguistics, media, government, and social

networking.

Processing RDF queries involve multiple scans of the same data, e.g., when spe-

cific join patterns are frequent and are repeated across multiple queries. This calls

for workload-driven mechanisms that cache only the data that is required by the

query workload. Network shuffling overhead also degrades query performance in a

distributed environment. It occurs when the processing nodes exchange data to an-

swer queries. Reducing the network shuffling overhead highly relies on how the data

is partitioned across the nodes.

This chapter presents Workload-driven RDF Query Processing (WORQ, for short),

a system that encapsulates several optimizations that significantly enhance the per-

formance of RDF queries. In particular, WORQ addresses three main issues: 1) how

to efficiently partition the RDF data in an online fashion, 2) how to reduce the in-

termediate join results of an RDF query in an online fashion, and 3) how to cache

reusable intermediate join results instead of the final results of an RDF query.

2.1 Problem Statement

Workload-Driven Partitioning: Data partitioning is common in distributed

data management systems. The RDF data is typically divided into several partitions

and then is distributed across the cluster machines. The objective of partitioning
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is to reduce the query execution time by leveraging parallelism. Data partitioning

incurs a preprocessing overhead as it needs to be performed over the whole data.

However, for a real workload, only a small fraction of the data is accessed (e.g.,

see [14]). WORQ adopts a workload-driven approach when partitioning the data. For

each query, WORQ identifies each query triple (i.e., an entry consisting of bound and

unbound subject, property, and an object) as a subquery. Then, WORQ partitions the

data triples by the join attribute of each subquery. The join attribute represents the

variable that connects two or more query triples. The join can be between subjects,

properties, objects, or a combination of the three attributes. WORQ partitions the

data only once for every new query join pattern that is identified.

Join Reductions: Tables are one way of storing RDF data triples. When a

single query involves joins between multiple tables that correspond to different query

patterns, every binary join operation generates intermediate join results (or interme-

diate results, for short). The intermediate results represent the data that satisfies the

binary join and eventually contributes to the final result of the query. However, inter-

mediate results may contain redundant data triples that do not match all the query

joins. WORQ minimizes the intermediate results by precomputing join reductions

through Bloom-joins [15,16].

Caching: To boost query performance, caching can be employed to improve query

response time and increase the throughput of execution. One caching approach is to

cache the results of each query. However, caching the unique query results incurs

significant memory storage overhead. In contrast, WORQ caches (in main memory)

the join reductions that correspond to the frequent join patterns. These reductions

can be reused by other queries that share the same query patterns.

Queries with Unbound Properties: Some query workloads may have query

triples with unbound (i.e., unspecified) properties. For example, the query triple

:John ?x :Mary queries all data triples that have a subject :John and an object

:Mary, where ?x specifies an unbound property. Answering unbound property queries

is challenging for RDF systems that adopt a specific RDF partitioning scheme. As-
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suming that the data is vertically partitioned [10,11] (VP, for short), the data triples

are split into separate files denoted by the property (i.e., predicate) name, where each

file contains the subject and object representing the property. Using VP, answering

unbound property is challenging because all property files need to be accessed or an

index needs to be built on top of each file. In contrast, WORQ utilizes Bloom filters

as indexes to efficiently answer unbound property queries.

WORQ is implemented as part of the Knowledge Cubes (KC) proposal [17]. The

source code 1 for a Spark-based implementation of WORQ is publicly available for

download. Our experimental setup includes two synthetic benchmarks, namely Wat-

Div [18] and LUBM [19], and a real dataset, namely YAGO2s [20,21]. The purpose of

the experiments is to demonstrate three aspects of WORQ : 1) the preprocessing time

required given an RDF dataset, 2) the storage overhead incurred to create the RDF

database, and 3) the query processing time when answering RDF queries with respect

to partitioning and caching. The results illustrate how the presented optimizations

provide at least an order of magnitude better results on the three aspects mentioned

above when compared to the Hadoop-based state-of-the-art solution.

The contributions of this chapter can be summarized as follows:

• We present workload-driven partitioning of RDF triples that can join together

to minimize the network shuffling overhead based on the query workload.

• We present the use of Bloom filters for computing RDF join reductions online.

• Rather than caching the results of an RDF query, we show that caching the

RDF join reductions can boost the query performance while keeping the cache

size minimal.

• We study an efficient technique for answering RDF queries with unbound prop-

erties using Bloom filters.

The rest of this chapter proceeds as follows. Section 2.2 presents the related work.

Section 2.3 presents the online reduction of RDF data. Section 2.4 presents workload-

1http://github.com/purduedb/knowledgecubes
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driven partitioning in WORQ . Section 2.5 presents how WORQ answers unbound-

property queries. Section 2.6 presents the experiments performed over the WatDiv,

LUBM, and YAGO datasets. Finally, section 2.7 presents concluding remarks.

2.2 Related Work

Graph-based partitioning is an NP-complete problem [22], and hence hash parti-

tioning heuristics [7,23] are employed instead of graph-based partitioning to partition

RDF data efficiently. However, sophisticated partitioning techniques [24–27] cannot

guarantee that no data will be shuffled when processing complex queries with multiple

joins. Several techniques [28,29] utilize the query workload to enhance the partition-

ing of RDF data. Also, one study [18] demonstrates the need to adapt to workloads

to guarantee consistent performance continuously. Characteristic sets [30, 31] cap-

ture the set of properties that occur together for a given subject. Castilo et al. [32]

perform evaluation using (offline) materialized results. In contrast to materialized

views, WORQ does not materialize results but instead identifies reductions that can

be reused across queries that share the same join patterns. H2RDF+ [33] provides

a result-based workload-aware RDF caching engine that manages to index frequent

workload subgraphs in real time dynamically. However, caching the final results of

RDF queries incurs significant storage overhead and cannot generalize to broader

query workloads. Yang et al. [34] propose caching the intermediate results of basic

graph patterns in SPARQL queries. However, the proposed approach is tied to the join

orders that would result in different intermediate results. Alvarez-Garcia et al. [35] in-

troduce a compressed index called k2-triples for answering unbound-property queries.

However, the proposed index is not applicable in a distributed setting. Ravindra et

al. [36] uses a non-relational algebra based on a TripleGroup data model to answer

unbound-property queries.
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2.3 Online Reduction of RDF Data

WORQ employs Bloom-join [15, 16] to compute the reductions between vertical

partitions. Many cloud-based systems [10] use vertical partitioning (VP) [11] includ-

ing the state-of-the-art [8]. VPs can be realized over any relational database system

and stored in cloud data sources (e.g., Parquet, ORC2). Bloom-join determines if an

entry in one partition qualifies a join condition with another partition. The reduc-

tions can be computed in an online fashion using Bloom-join instead of precomputing

all possible reductions in an offline fashion (i.e., during the preprocessing phase [8]).

Bloom-join utilizes a probabilistic data structure, termed Bloom filter [16]. A Bloom

filter does not store items but rather hashes the input against different hash func-

tions. The main functionality of a Bloom filter is to determine the existence of an

item. Bloom filters can have false-positives, but no false-negatives. Bloom filters are

fast to create, fast to probe, and small to store. Also, the false-positives introduce

a small percentage of irrelevant rows that eventually are not joined in a Bloom-join.

During the evaluation of a join, WORQ uses Bloom filters to probe the join attributes

of the query join-patterns. The Bloom filters representing the join attributes filter

the rows in both partitions involved in the join, and the results are materialized as a

reduction for a specific join pattern, or reductions, for short.

Figure 2.1 gives an example of using Bloom filters to compute a join reduction.

The query has a BGP join between :mention and :tweet on the Subject attribute.

WORQ uses the Bloom filter of BloomFiltersub(:tweet) to compute a reduction

for the :mention property on the subject column. :tweet’s Bloom filter consists of

the elements :John, :Mike, and :Alex. Each element in the subject column of the

:mention partition is probed against the :tweet Bloom filter. The reduction for

:mention represents all the rows that qualify a join between the vertical partitions

:mention and :tweet on the subject attribute. Figure 2.1 illustrates the entries

that qualify the join between :mention and :tweet, where the vertical partition of

:mention is reduced from five entries to only three qualifying entries. Similarly, the
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Subject Object

:John :T1

:Mike :T2

:Mike :T3

:Alex :T4

:John 
:Alex
:Sally
:Mary

:John 
:Mike 
:Alex

SELECT ?x ?y  
WHERE

?x  :mention :Mary .    
?x  :tweet ?y    .

joinx(:mentionsub,:tweetsub)

SUB OBJ

:John :Mary

:John :Mike

:Alex :Mary
BloomFiltersub(tweet)

BloomFiltersub(mention)

SUB OBJ

:John :T1

:Alex :T4

BGP
Join

mention tweet

Reduced Triples

Probe

Probe

Subject Object

:John :Mary

:John :Mike

:Alex :Mary

:Sally :Mike

:Mary :John

Selection(:Mary)

?x ?y

:John :T1

:Alex :T4

Result

JoinSPARQL Query

Determine join patterns

mention tweet

Fig. 2.1. Evaluating a SPARQL query using Bloom-join between :mention
and :tweet.

vertical partition of :tweet is reduced from four entries to only two qualifying entries.

The reductions for both properties are cached by WORQ to be reused by other queries

that share the same join patterns. In other words, the :mention reduction can be

reused by the :mention property if it joins with :tweet on the subject attribute.

Also, the :tweet reduction can be reused by the :tweet property if :tweet joins

with the :mention property on the subject attribute.

WORQ does not apply selection (i.e., filtering) operations on the original data

triples (i.e., VP). Instead, selections are applied to the reductions after the reductions

are computed. For example, the reduction for :mention contains a selection on the

object, namely :Mary. However, the selection has been delayed until the reductions

have been computed from the original data triples. The advantage of delaying the

selection is that the reductions can be reused by other queries that share the same join

patterns. However, if selections are pushed early on the original data triples, then the

reductions will not be representative of the join operation between the query triples.

Finally, the resulting reductions (including the ones that have been filtered) are joined
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together based on the join attribute indicated by the query triples. WORQ does

not require a specific join algorithm to be used. Distributed join algorithms, e.g.,

broadcast hash join or sort-merge join that are employed by distributed computational

frameworks, e.g., Spark, can be used [37]. Figure 2.1 illustrates the final result of the

query after joining both the query triples representing :mention (after the selection)

and :tweet properties, where two entries qualify the join result.

2.3.1 N-ary Join Reductions

WORQ computes the reductions online instead of pre-computing the reductions

offline [8]. Also, WORQ computes the reductions between all the possible (n-ary)

query-triples instead of computing the reductions in binary form [8].

SELECT ?x ?y ?z ?w 
WHERE 
?x :mention ?y
?x :tweet ?z
?x :like ?w

Subject Object

:John :Mary

:John :Mike

:Alex :Mary

:Sally :Mike

:Mary :John

Subject Object

:John :T1

:Mike :T2

:Mike :T3

:Alex :T4

Subject Object

:John :Alex

:Sally :Mike

mention tweet like

:John 
:Alex
:Sally
:Mary

:John 
:Mike
:Alex

:John
:Sally

Subject Object

:John :Mary

:John :Mike

Subject Object

:John :T1

Subject Object

:John :Alex

?y ?y ?z ?w

:John :Mary :T1 :Alex

:John :Mike :T1 :Alex

R
eduction

R
eduction

R
eduction

Result

Query

Computed from

Fig. 2.2. N-ary join between the reductions of three query triples involving
the :mention, :tweet, and :like VPs.
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Figure 2.2 illustrates a SPARQL query with three query-triples that share the same

join attribute (i.e., variable ?x). When the join is computed between the :mention,

:tweet, and :like VPs, only the data triples that are common amongst the three

VPs will qualify as a result. WORQ utilizes Bloom join to reduce the number of data

triples in every VP involved in the join operation, and hence reduces the intermediate

results between the three join operations. WORQ uses the Bloom filters representing

the join columns of the three query triples (the subject Bloom filters, in this instance)

to reduce the VP entries to the ones that would qualify the join operation. For

example, the :mention VP is reduced from five data triples to two triples that have

:John as the subject because :John is the only resource that qualifies the :tweet

Bloom filter on the subject attribute and the :like Bloom filter on the subject

attribute. The same applies to the :tweet VP, where :John is the only resource

that qualifies the :mention Bloom filter on the subject and the :like Bloom filter

on the subject. Finally, WORQ uses the computed reductions instead of the VPs

to evaluate the query. The result of the query includes two rows corresponding to

the only resource common across the three property-VPs. The computed reductions

are cached to be reused by any other query that contains a join between the three

properties on the subject attribute.

2.3.2 Caching of Reductions

Rather than caching portions of the original RDF data or the final query re-

sults, WORQ caches (in main-memory) the reductions that correspond to the join

patterns that are discovered during query processing. Caching intermediate results

(i.e., reductions) is suitable in situations where the query workload consists of a high

number of unique queries that share similar patterns. In contrast, caching the results

is suitable when the query workload consists of frequent queries that do not neces-

sarily share the same query pattern. WORQ is suitable for the former case where

many different queries can utilize the reductions without the need to cache all their
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results. WORQ does not assume a specific cache-eviction policy, i.e., any eviction

policy. WORQ employs least recently used (LRU) strategy where evicted reductions

can be saved to disk and be reused if the pattern they represent reoccurs. Also, the

advantage of saving to disk is that filtering will not be performed again.

2.4 Workload-Driven Partitioning

Rather than relying on a predefined partitioning criteria (e.g., using the subject

only), WORQ partitions the RDF data according to the join patterns in the queries

received so far. WORQ aims at placing the partitions of the reductions that share the

same join attribute on the same machine, which minimizes the shuffling overhead, and

more importantly, reduces the query response time. Instead of partitioning the VP,

WORQ partitions the reduction rows across the machines. After a query is parsed,

WORQ identifies the join attributes in the query. Based on the join attributes, the

reductions that need to be partitioned are determined. Reduction partitioning is

performed only once, and the resulting partitions are reused by any query that has

the join pattern that corresponds to the reduction.

Figure 2.3 illustrates a set of query join patterns and their corresponding reduc-

tions. The join pattern representing the :tweet property uses the reduction denoted

by R1 on the subject. The join pattern representing the :like property uses the

reduction denoted by R3 on the subject as well. WORQ partitions the rows of every

reduction based on the join attribute (i.e., the subject or object). In Figure 2.3, the

reductions representing R1, R2, R3 are partitioned using the subject (as the reduc-

tions are based on the subject attribute). The reduction rows are hash-distributed

across the machines using the join attribute (i.e., subject or object). This partitioning

scheme guarantees that all the data triples that are related to the join attributes of

the query are co-located on the same machine, and thus allowing the reductions to

be computed locally.
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SELECT ?x ?y ?w
WHERE
?x  :tweet :T1 .
?x  :mention ?y  .
?y  :like ?w  .

Reductions RID

R1(tweet sub ,	 mention sub ) R1

R2(mention sub,	tweet sub ) R2

R3(like sub , 	mention obj ) R3

SUB OBJ

:John :T1

:Alex :T4

Reduction 1 (R1)

SUB OBJ

:John :Mary

:John :Mike

:Alex :Mary

Reduction 2 (R2)

SUB OBJ

:John :Alex

Reduction 3 (R3)

Machine 1 [Hash: John]

Machine 2 [Hash: Alex]

:John   :T1

:Alex   :T4

:John.  :Alex

:John.  :Mary
:John.  :Mike

Partitioning

R1

R1

R3

R2

Possible Reductions

Reductions

:Alex.  :Mary R2

Fig. 2.3. Workflow for workload-driven partitioning.

2.5 Queries with Unbound Properties

The performance of unbound-property queries depends on the adopted RDF par-

titioning scheme. If the data is vertically partitioned, answering unbound-property

queries becomes challenging because all the VPs need to be iterated. A straightfor-

ward approach to query the unbound properties in a distributed setting is to store

the RDF data triples in a single file (i.e., triples file). Distributed file systems, e.g.,

HDFS, split the files into a set of blocks and distribute the blocks across machines.

In this case, RDF query processors can evaluate unbound-property RDF queries in

parallel [38], where each machine processes a set of blocks. We refer to this baseline

approach as RDF-Table. We implement this baseline for evaluation purposes.

WORQ utilizes Bloom filters as cheap indexes to efficiently answer unbound-

property queries over data that has been vertically partitioned. WORQ performs

two steps to determine the matching properties. The first step is called the identi-

fication step, where a set of candidate properties are identified. The second step is

called the verification step, where the candidate properties are verified to eliminate
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the possibility of false-positives. Given a query, WORQ uses the existing Bloom fil-

ters to discover the unbound property. WORQ relies on the bound attributes (i.e.,

subject, and object) to discover the matching properties.

SELECT ?x
WHERE {
:Mary        ?x      ?y . }

:John 
:Alex
:Sally
:Mary

:John 
:Mike 
:Alex

BloomFilter sub (:tweet)

BloomFilter sub (:mention)

:John 
:Sally

BloomFilter sub (:like)

[MATCH]

[DOES NOT MATCH]

[FALSE POSITIVE MATCH]

Probe all exiting Bloom Filters 

IDENTIFICATION VERIFICATION

:mention :like

Filter sub 

(:Mary)
Filter sub 

(:Mary)

1 Entry 0 Entry

?x

:mention

Result

Fig. 2.4. The identification and verification steps to answer unbound-
property queries.

Figure 2.4 illustrates the identification step for answering unbound-property queries.

First, the unbound and bound attributes are identified. Then, the bound attributes

are used to probe the Bloom filters to determine if the bound values exist for a spe-

cific property. If a value exists, the corresponding property is added as a candidate

for answering the query. For instance, in Figure 2.4, :Mary exists in the :mention

property, and is found using a MATCH in the corresponding Bloom filter. However,

:Mary does not exist in the :tweet property, and hence the Bloom filter returns DOES

NOT MATCH. Although :Mary does not exist in :like, the Bloom filter returns a

MATCH, which is a false positive.

Given that Bloom filters can incur false positives, a verification step is needed to

ensure the correctness of query evaluation. WORQ verifies the candidate properties
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by issuing a filter based on the bound attributes with the value indicated in the

query triple (i.e., the value that made the candidate property match). If the result-

set includes at least one match, then WORQ determines that the candidate property

was identified correctly. Otherwise, the candidate property is discarded. Disqualifying

data will not happen frequently based on the false-positive rate of the constructed

Bloom filters.

2.6 Experimental Evaluation

WORQ is compared against S2RDF [8], a Spark-based system that runs over

Hadoop. S2RDF [8] proposes an extension to VP, namely ExtVP, where reductions

of entries are computed for every vertical partition. S2RDF utilizes semi-join re-

ductions [39] to reduce the number of rows in a partition. The reductions represent

all RDF query combinations that appear in SPARQL queries (i.e., Subject-Subject,

Subject-Object, Object-Object). However, S2RDF exhibits a substantial preprocess-

ing overhead. Semi-joins are expensive to compute and generate large network-

traffic. Also, S2RDF generates a large number of files to represent the reductions

of the original data. S2RDF translates SPARQL queries to SQL and runs them

on Spark SQL. S2RDF has outperformed Hadoop-based systems such as H2RDF+,

Sempala, PigSPARQL, SHARD, and other systems such as Virtuoso, where S2RDF

has achieved (on average) the best query execution performance [8]. Accordingly, this

chapter presents a comparison with S2RDF only as S2RDF represents the state-of-the-

art Hadoop-based RDF query processing system. WORQ is implemented over Spark

(v2.1) where it utilizes Spark DataFrames to represent the reductions. WORQ does

not translate the query to SQL. Instead, WORQ implements joins as a series of Spark

DataFrame joins. To guarantee a fair setup, all Spark-related parameters are unified

for both WORQ and S2RDF. The data for both systems is stored using Parquet 2

columnar-store format. Vertical partitioning has been implemented as a baseline.

2parquet.apache.org
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2.6.1 Experimental Setup

The experimental setup datasets and queries proposed by Abdelaziz et al. [9] are

used. Our experiments are conducted using a real dataset (YAGO2s [20,21]) as well as

two synthetic benchmarks (WatDiv [18] and LUBM [19]) that provide widely-adopted

query workload generators:

1. WatDiv provides a stress-test query workload that allows generating several

queries per-pattern. One Billion triples have been generated to demonstrate the

query execution performance and preprocessing performance (i.e., the number of files

generated, disk space utilization, and loading time). A pre-generated workload pro-

vided by WatDiv [18] contains 5000 queries that cover 100 diverse SPARQL patterns,

each having 50 variations. A variation represents different bound values for the same

query pattern. The variations allow measuring the performance of specific patterns

under different selectivities. For the unbound-property queries, we use the query

workload provided by Alvarez-Garcia et al. [35] that represents 500 queries covering

three combinations namely, an unbound subject with bound object, unbound object

with a bound subject, and bound subject and object.

2. LUBM provides a query-workload generator, where 1000 queries are generated.

Unlike WatDiv, LUBM does not specify the number of patterns.

3. YAGO2s consists of 245 million real RDF triples. YAGO2s benchmark queries

are used to compare the query execution time [3, 8]. There is no publicly available

real query workload for YAGO. Generating synthetic queries for YAGO is similar to

what WatDiv and LUBM provide while they guarantee to generate all possible query

shapes.

Our experiments are conducted using an HP DL360G9 cluster with Intel Xeon

E5-2660 realized over five nodes. The cluster uses Cloudera 5.9 consisting of Spark

as a computational framework and Hadoop HDFS as a distributed file-system. Each

node consists of 32 GB of RAM and 52 cores. The total HDFS size is 1 Terabyte. The

experiments measure various aspects of WORQ including (1) the number of generated
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files, (2) the filesystem size, (3) the loading time, (4) the workload query execution

performance, (5) the overhead of caching results instead of caching reductions, and

(6) the execution performance of unbound properties queries. The data for the three

benchmarks is loaded into memory before execution.

2.6.2 Experimental Results

Preprocessing Performance
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St
or
ag
e	
Si
ze
	(G

B)

Datasets

VP WORQ S2RDF

Fig. 2.5. Disk space utilization.

Figure 2.5 gives the disk storage overhead incurred by the three systems over

the LUBM, WatDiv, and YAGO2s datasets. VP introduces minimal space overhead

across all three systems. The reason is that VP only needs to partition the original

triple file based on the property name. Storage in WORQ is composed of the VP

and the Bloom filters. S2RDF precomputes all the possible reductions for binary

joins (O(n2), where n is the number of VPs), and stores them on disk along with the

original data. Thus, S2RDF introduces the highest disk storage overhead.

Figure 2.6 gives the preprocessing time for all three systems over the LUBM,

WatDiv, and YAGO2s datasets. VP has the smallest loading time due to its simplicity,

followed by WORQ, and then S2RDF. The majority of time spent by S2RDF in

the preprocessing time involves creating the proposed partitions called ExtVP. The

computation involves performing semi-joins between binary partitions in a distributed
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Fig. 2.6. Preprocessing time.

fashion causing high network shuffling overhead. WORQ incurs a minor overhead

compared to VP due to the computation of the Bloom filters.

Query Workload Awareness

For the remaining experiments, the results of VP are omitted due to its low

performance. The following experiments demonstrate the query performance of both

WORQ and S2RDF across different aspects, e.g., the total execution time, the mean

execution time per query pattern, and the mean execution time given the number

of join-triples in a query. WatDiv and LUBM are used due to the availability of

workload generators while YAGO2s is omitted as a real query workload is unavailable.

However, a set of benchmark queries [8] are used to measure the performance against

the YAGO2s dataset. In S2RDF, the partitioning is done for every query and takes

place while the queries are being evaluated. S2RDF reports the overall execution time

which includes both the partitioning and the actual execution time. WORQ follows

the same procedure when reporting the overall execution time.

Figure 2.7 and Figure 2.8 give the mean and total execution times based on

executing 5000 queries over WatDiv (1 Billion triples) and 1000 queries over LUBM

(1 Billion triples). WORQ is consistently better across the two benchmarks. The

difference in performance is attributed to the combination of efficient partitioning

and the caching of reduction employed by WORQ as illustrated in later experiments.
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Fig. 2.8. Total query execution time.

WORQ reduces the relations to be joined by computing light-weight reductions that

can fully represent the original data in answering the RDF queries. Rather than

scanning the original (large) data for each query, the light-weight reductions are used

instead.

The difference in performance between LUBM and WatDiv is attributed to the

characteristics of both benchmarks in terms of the number of properties and the query

workload representing each dataset. LUBM consists of 18 properties while WatDiv

consists of 86 properties. The 1 Billion triples for LUBM and WatDiv are distributed

across 18 and 86 properties, respectively. WORQ performs well with the increase

in the number of properties. In real datasets, e.g., YAGO2s [20, 21], the number of

properties are in hundreds, making WORQ more appropriate to use than S2RDF.
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Fig. 2.9. Mean execution time per query pattern over WatDiv 1 Billion
dataset.

Figure 2.9 gives a break-down of the query execution of 5000 queries over WatDiv

(1 Billion triples) per query pattern. The x-axis represents the query numbers, and the

y-axis represents the execution time. A query pattern represents a set of one or more

query triples (i.e., BGP triples) that vary based on the bound and unbound attributes,

e.g., one pattern can have two query triples joined by the subject attribute while

another pattern would be based on two query triples joined on the object attribute.

For every pattern, the mean execution time is recorded for the two systems. Figure 2.9

shows that WORQ executes each pattern nearly an order of magnitude faster than

S2RDF.
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Fig. 2.10. Mean execution time per query pattern over LUBM 1 Billion
dataset.
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Figure 2.10 gives a break-down of executing 1000 queries over LUBM (1 Billion

triples per query pattern). Similar to WatDiv, the mean execution time is recorded

per pattern for the two systems. The number of patterns included in the LUBM

query workload is 20. Figure 2.10 shows that all the patterns are executed faster by

WORQ than S2RDF.
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Fig. 2.11. Execution timeline for two query pattern over WatDiv 1 Billion
dataset.

Figure 2.11 gives the performance when executing only two patterns over the

WatDiv benchmark. The x-axis represents the timeline, where we execute one query

pattern first, and then execute another pattern. There are two significant spikes in the

performance of WORQ that reflect the first time each query pattern was executed.

For each pattern, a high query execution overhead is exhibited at the beginning,

followed by a near-linear performance for the rest of the queries that share the same

join pattern.

Figure 2.12 repeats the same experiment for two patterns over the LUBM bench-

mark. Similar to Figure 2.11, the first time a join pattern is executed, a spike in

execution time is exhibited followed by a near-linear performance for the remaining

queries. Unlike WatDiv, the computation of the query patterns for the first time

over LUBM consumes more time than S2RDF. However, the overall execution time

of WORQ outperforms S2RDF as Figure 2.8 illustrates.

We analyze the effect of query triples on the query execution. The WatDiv query

workload contains a set of 100 representative patterns and is used for the analysis.
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Fig. 2.12. Execution timeline for two query pattern over LUBM 1 Billion
dataset.

LUBM benchmark is discarded for this experiment as WatDiv provides a workload

with more diverse shapes than LUBM.
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Fig. 2.13. Mean execution time - Number of triples per query over WatDiv
1 Billion.

Figure 2.13 gives a break-down of executing 5000 queries over WatDiv (1 Billion

triples) given the number of triples per query. From the figure, the number of triples

affects the overall query performance, where the query execution time increases as

more triples are processed.

Figure 2.14 gives a break-down of the mean query execution time for 5000 queries

over WatDiv (1 Billion triples) based on the number of joins between query triples.

This is different from the number of query triples experiment, where the number of

joins experiment measures the maximum number of joins identified per query, e.g., a
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Fig. 2.14. Mean execution time for joins per pattern over WatDiv 1 Billion.

query may contain five query triples, but contains a join between two query triples

only. To create the experimental setup, every query is first placed in a join group

based on the maximum number of joins that it has. Then, the mean execution time

is measured for queries within a join group. WORQ achieves nearly an order of

magnitude better performance than S2RDF.
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Fig. 2.15. Mean query execution time using workload-driven and static
partitioning.

Figure 2.15 gives a break-down of the mean execution time using workload-

driven partitioning and static partitioning of WORQ to illustrate the effect of us-

ing the workload-driven component only. Static partitioning is based on subject. In

workload-driven partitioning, every query is partitioned based on the join patterns

of the query. In contrast, static partitioning is performed based on pre-specified cri-

teria, e.g., partitioning by subject. Static partitioning was performed on the subject
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column. Figure 2.15 demonstrates that workload-driven partitioning contributes pos-

itively towards the overall query execution performance over the two datasets. The

partitioning time is dependent on where data is stored initially on the cluster and gen-

erally incurs a minor cost. The query evaluation time given where data is partitioned

dominates the execution time.
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Fig. 2.16. Execution time of 14 query patterns over YAGO2s dataset.

Figure 2.16 gives a break-down of the query execution over 14 benchmark YAGO2s

queries [8]. The x-axis represents the query numbers, and the y-axis represents the

execution time. The queries were designed to take into consideration various query

shapes, e.g., star-shaped, and resources selectivities. Each query was executed five

times using different selective predicates and the average time was reported. For

every query, the corresponding reductions for both WORQ and S2RDF were loaded

into memory in advance. WORQ achieves better query execution performance over

all queries.

Caching of Reductions

Figure 2.17 demonstrates the effect of caching on the query performance. Cold

queries are those with patterns that have not been executed before, i.e., that have no

corresponding reductions in the cache. Warm queries are those that share the same

pattern as queries that executed before, i.e., that have corresponding reductions in
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WORQ over WatDiv and LUBM.

the cache. The figure gives the mean execution time of 5000 queries from the WatDiv

benchmark and 1000 queries from the LUBM benchmark. The figure demonstrates

how utilizing cached patterns (i.e., reductions) achieves better query execution per-

formance. The reason LUBM cold cache is worse is that while both datasets are of

the same overall size (1B triples), one contains 18 files/predicates (LUBM) in contrast

to 87 files/predicates in WatDiv, so the filtering time is higher for LUBM queries.

Also, WORQ pays the price only once when a query pattern is seen for the first time.

However, the cold-start cost is minor.
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Fig. 2.18. Memory usage based on caching results and caching reductions.

Figure 2.18 gives a break-down of the memory usage over 5000 unique queries

covering 100 patterns. Using a workload of 5000 different queries, the figure demon-

strates how the size of the cached queries grows over time and surpasses the size of
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cached reductions. The memory usage for caching the query results can reach more

than 10 GB over 5000 queries while caching reductions exhibits a slower memory

usage curve. The conclusion is that caching the reductions is more suitable than

caching the query results in situations where many different queries share common

patterns.

Performance of Unbound-Property Queries

Schatzle et al. [8] do not evaluate the performance of S2RDF for unbound-property

queries as it is out of the scope of their current work. Also, S2RDF adopts a VP

structure to answer queries, leading to degraded query performance over unbound-

property queries. Therefore, we use the RDF-Table approach described in section 2.5

as a baseline. We evaluate three query patterns based on the attributes of an RDF

triple, namely a bound subject and object, a bound subject, and a bound object.

Table 2.1.
Unbound property results - (BSO) Bound Subject and Object, (BS)
Bound Subject, (BO) Bound Object.

System BSO-Mean BSO-Sum BS-Mean BS-Sum BO-Mean BO-Sum
WORQ 1.25 ms 10.49 min 4.18 ms 34.84 min 3.52 ms 29.34 min

RDF-Table 5.3 ms 44.44 min 3.80 ms 31.67 min 4.35 ms 36.26 min

Table 2.1 gives the result of processing 500 queries with bound subject and object

(BSO), bound subject (BS), and bound object (BO) over WatDiv (1 Billion triples).

For bound subject and object (BSO), the mean execution time per query is nearly

five times better than the baseline. The performance is attributed to the Bloom filter

usage, where the number of false-positives is reduced by evaluating the properties

against two bound values instead of one bound value, e.g., queries with bound subject

only or a bound object only. For bound subject (BS), the mean execution time

of WORQ is comparable to that of RDF-Table. This performance is due to two

main reasons. The first is the efficiency of RDF-Table within Spark as RDF-Table
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performs predicate pushdown filtering in parallel and the result is aggregated back to

the driver (i.e., the master node). The second is that the data of the RDF-Table is

sorted by the subject, allowing the predicate-pushdown to work efficiently. For bound

object, the mean execution time is also comparable to that of RDF-Table. The overall

execution time of WORQ is better than RDF-Table. The reason for the better result

is attributed to the lack of sorting on the object column for the RDF dataset. This

gives WORQ performance advantage when executing bound object queries.

2.7 Concluding Remarks

This chapter presents several optimizations for RDF query processing over verti-

cally partitioned triples. First, we show how to use Bloom join to compute reduced

sets of (or reductions, for short) for specific join pattern(s) in an online fashion. Sec-

ond, we study the effect of caching these reductions instead of caching the final results

of each query. Third, we present how to partition the RDF data triples using the join

attributes of the query instead of using predefined partitioning criteria. Fourth, we

show how to answer queries with unbound properties using Bloom filters efficiently.

Extensive experimentation using the WatDiv, LUBM, and YAGO2s demonstrate how

a realization of these optimizations can lead to an order of magnitude enhancement

in terms of preprocessing time, storage, and query performance. Bloom filters/join is

one case study. N-ary filtering can utilize any set membership structure (e.g., Bloom,

Cuckoo, Roaring Bitmaps) so long as we can add and check elements in a set. The

novelty is in how membership structures (e.g., Bloom Filter) are used to filter data

and answer unbound property queries efficiently in a distributed setting.
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3. SPARTI: SCALABLE RDF DATA MANAGEMENT

USING QUERY-CENTRIC SEMANTIC PARTITIONING

3.1 Problem Statement

Several techniques, e.g., Vertical Partitioning (VP) [11], split the RDF data by

property name. VP achieves good performance when compared to other RDF data-

partitioning strategies, e.g., property tables [12, 13]. However, due to the skewness

in the data, where only a few properties constitute the majority of the data, VP

introduces two coupled problems in a cloud-based setting. The first is that small

partitions (i.e., properties that have few entries) are problematic for a distributed

file-system, e.g., HDFS, where many small files will be generated, and a 64 MB block

is allocated for every file/partition regardless of the number of entries in the partition.

The second is that few partitions can contain the majority of the data and hence may

cause significant disk I/O and network shuffling overhead when being processed. An

important observation is that not all entries of a partition are part of the final result of

a query. Also, only a small fraction of partitions are accessed in a real query-workload

setting [14].

This chapter addresses three main issues, namely:

• How RDF data can be efficiently stored in the cloud ?

• How irrelevant data that does not contribute to the result of a query can be

skipped ?

• How storage and query performance can be optimized based on the query work-

load ?
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This chapter introduces Semantic Partitioning (SPARTI, for short), a platform-

independent RDF system for the cloud. SPARTI includes three phases (1) property-

based partitioning, (2) partition reduction, and (3) query compilation.

In the property-based partitioning phase, SPARTI employs a new relational parti-

tioning schema, namely SemVP (Short for Semantic Vertical Partitioning). SPARTI

partitions an RDF dataset based on the property name and stores the subject and

object of a property name in a SemVP (i.e., every entry is composed of a subject,

property, and object). SemVP extends each entry with row-level semantics, namely

join filters. The join filters indicate whether an entry in a partition is part of a query

join result or not.

In the partition reduction phase, the join filters are computed. First, SPARTI

uses the query-workload to identify the related (i.e.co-occurring) properties for every

RDF property. Then, a set of join filters are created between every property and all

its related properties. The join filters are computed using Bloom-join [15]. The join

result represents the reduced set of rows that qualify a join pattern and is materialized

as a join filter. In the query compilation phase, SPARTI identifies the properties and

join patterns in queries, and matches every property and query join pattern with a

SemVP partition and a join filter, respectively. In case a match is found, a join filter

(representing the reduced set of rows) is read to answer a query instead of reading

the entire partition for a property. Also, using join filters allows skipping data at the

block level when reading a property partition. This reduces the overall disk I/O when

answering queries.

Example 1 gives an example where all people and their tweets that mention

John are retrieved. The query consists of two entries (i.e., triples) joined through

a variable ?x. SPARTI identifies x={mention_S,tweet_S} as a join pattern and cre-

ates a set of join filters for the properties included in the query, namely :mention

and :tweet.
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Example 1:

SELECT ?x ?y WHERE {

?x :mention :John .

?x :tweet ?y . }

Join filter (1): mention_S_JN_tweet_S

Join filter (2): tweet_S_JN_mention_S

where S denotes subject, JN denotes a join, and ?x is a variable that joins both

the :mention and :tweet entries. To illustrate, assume that SPARTI indicates

that :mention and :tweet are related. Then, SPARTI computes the Bloom-join

between :mention and :tweet, and creates a set of join filters representing the join

pattern result. For example, SPARTI computes the Bloom-join for one of the filters,

e.g., Joinfilter(1), between :mention and :tweet on the subject column. The join

results for this filter are stored in a SemVP schema as part of the filters list of the

:mention property.

SemVP(mention) = Filters[mention_S_JN_tweet_S]

SemVP(tweet) = Filters[tweet_S_JN_mention_S]

The resulting join filters represent the reduced set of rows to read given a specific

query join pattern. For example, the join pattern for :mention matches the name of

Filter(1) and the reduced set of rows is read instead of the entire :mention partition.

The same applies to the :tweet property.

The contributions of this chapter are as follows: (1) SPARTI is introduced as

a platform-independent RDF management system for the cloud, (2) SemVP is in-

troduced as a new relational partitioning schema in SPARTI that provides row-level

semantics for RDF data, (3) A new algorithm for discovering co-occurring properties

in the query-workload is presented, (4) A cost-model is developed for managing join
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filters, and (5) A comprehensive study is conducted that compares SPARTI with the

state-of-the-art cloud-based RDF system using synthetic and real datasets.

Results demonstrate that SPARTI executes queries around half the time overall

query shapes compared to the state-of-the-art while maintaining around an order of

magnitude lower space-overhead.

The rest of this chapter proceeds as follows. Section 3.2 presents the related work.

Section 3.3 presents the SemVP schema. Section 3.4 presents how related properties

are identified. Section 3.5 presents how SPARTI evolves given a query-workload and

defines a cost model for managing join filters. Section 3.6 presents the experimental

setup and results. Finally, Section 3.7 contains concluding remarks.

3.2 Related Work

Cloud-based platforms introduce many challenges for RDF systems [10]. First,

distributed file systems, e.g., HDFS, do not provide fine-grained data access to file

blocks, and thus requires a full scan of all blocks in order to read a file. Second, some

of the blocks do not contribute to the query result. This generates two important

issues (1) disk I/O overhead as all blocks are being read, and (2) network shuffling

overhead when a join operation involving a table in a remote cluster node is required.

Also, cloud-based RDF systems need to achieve a level of performance that is within

the same order of magnitude as that of specialized systems in order to be useful.

There has been a recent surge of RDF stores over a variety of platforms. Recent

surveys [40, 41] present various classifications of RDF-based systems ranging from

relational [42], No-SQL [43] , to cloud-based systems [10]. RDF is accompanied by

SPARQL 1, a standardized semantic query language that can express queries over

RDF databases.

RDF stores can be broadly classified as distributed (i.e., ones that involve mul-

tiple machines, e.g., a cluster) or centralized (i.e., involves a single machine). The

1w3.org/TR/rdf-sparql-query
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distributed approaches can be further classified by storage into (1) distributed file

systems, (2) key-value stores, and (3) federated centralized stores.

Distributed File Systems: Distributed file systems (DFS) provide a scalable

and reliable storage mechanism over commodity machines. A DFS is suitable for

storing large files modeled as RDF. DFS systems, e.g., Hadoop Distributed file system

(HDFS) splits large files into blocks and distributes them across the cluster nodes.

The blocks are automatically replicated to achieve consistency and fault-tolerance.

By default, the DFS does not provide fine-grained access to the data and hence has to

read all blocks. Hadoop-based solutions that rely on indexing [44, 45] are not widely

adopted as a tangible solution for fine-grained access to disk blocks. In the following

sections, various methods for storing RDF data over DFSs are discussed.

A straightforward method is to store RDF data as one file, and retain it’s na-

tive triple form. The DFS is responsible for splitting the file into a set of blocks and

distributing the blocks among the cluster nodes. SHARD [38] runs over HDFS and ex-

tends how DFS handles triples by grouping the same subject onto one line. However,

SHARD scans the entire file, possibly multiple times as it relies on the MapReduce

framework [46], leading to degraded query performance. PigSPARQL [47] also relies

on HDFS for storing RDF data. PigSPARQL utilizes two layers: (1) MapReduce for

compiling the SPARQL queries, and (2) Pig [48] for optimizing the execution of the

query. Rapid+ [49] extends Pig with nested triple group algebra to avoid the MapRe-

duce iterative processing. However, both PigSPARQL and Rapid+ suffer from high

query latency as they rely on the batch-oriented model of MapReduce.

Another popular method for storing RDF data is to split it into a more fine-

granular set of files. RDF triples can be split based on the property (recall that a triple

is composed of a subject, property, and object). In other words, each file represents a

property, with the file name being the property name. The file content includes two

columns representing the subject and object of the property. An alternative method is

to split based on the subject or object. However, splitting horizontally on the subject

or object can generate a large number of small files. Additionally, most SPARQL
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queries specify the property rather than the subject or object. Unbounded property

queries (i.e., the property in a query triple is specified as a variable) are considered

analytical queries and represent a small fraction in SPARQL query-workloads [11].

HadoopRDF [50,51] extends vertical partitioning by splitting based on the RDFS class

(e.g., person, country). All entries belonging to a specific class can be determined

using the :type property. However, HadoopRDF join processing is performed in the

reduce phase that incurs a high network-shuffling cost. HadoopRDF also suffers a

query processing overhead due to the batch-oriented processing of MapReduce.

An emerging set of proposals suggests storing RDF data in a relational model over

cloud-based platforms. These proposals include SQL systems, e.g., Hive, Impala [52],

and Spark-SQL [53] for querying large-scale data. These proposals harness the ex-

tensive research conducted by the relational database community and can be used to

help address semantic data challenges. Among these systems is DB2RDF [54] that

proposes the creation of an entity-oriented schema from the RDF data. The entity-

oriented schema stores objects that belong to the same property in the same column,

thus optimizing the query execution performance over star-shaped queries. DB2RDF

utilizes a direct secondary hash (DSH), for handling multi-valued properties. Also,

DB2RDF can run over various back-ends, e.g., Spark, DB2, and PostreSQL. How-

ever, performance in DB2RDF is biased towards one query shape. Sempala [55] uses

Impala to process SPARQL queries. Sempala stores RDF data as one large property

table [12]. This allows star-shaped queries to be answered efficiently as answering

queries requires no joins. The proposals mentioned above share one common pat-

tern, namely having a predefined schema. S2RDF [8] proposes an extension to VP,

namely ExtVP, where reduced sets of entries are computed for every vertical parti-

tion. S2RDF created reductions using semi-joins [39]. The reduced sets represent

all possible join combinations that appear in SPARQL queries (i.e., Subject-Subject,

Subject-Object, Object-Object). First, S2RDF computes the semi-join reductions

between all the pair of properties in a dataset. Then, S2RDF uses the reduced par-

titions to answer the SPARQL queries. S2RDF is not tied to a specific query shape.
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S2RDF performance is compared against other cloud-based and centralized RDF sys-

tems where it achieves better query execution performance. However, S2RDF exhibits

a substantial preprocessing overhead that is performed only once. Semi-joins are ex-

pensive to compute and generate large network-traffic. S2RDF generates a reduction

for every possible vertical partition combination. On the other hand, SPARTI is sim-

ilar to S2RDF with respect to employing reductions to achieve better query execution

performance but without generating all possible combinations in advance.

Key-value stores: Key-value stores provide good performance for storage and

retrieval of RDF data. In order to store RDF data, key-value stores create indexes

that cover all the data and hence eliminate the need to store the data itself. Unlike

centralized stores, key-value stores create fewer indexes. Hexastore [56] uses 3! in-

dexes (denoting all RDF triple correlations) that cover all possible join combinations

of a triple. This provides efficient data access and join performance for queries at

the price of increased storage overhead, especially in a distributed setting. Most dis-

tributed RDF key-value stores utilize only three types of six indexes. Rya [57] utilizes

Accumulo 2 and uses three clustered indexes to store the triples in the Row ID sec-

tion of the key. Rya executes queries using an index nested-loops join at the server

side. This generates a scalability issue because join processing is not distributed.

H2RDF+ [58] utilizes HBase 3 and creates six clustered indexes to aggregate indexes

for statistics. The statistics allow H2RDF+ to decide if a query should run in a local

or distributed mode. H2RDF+ is best suited for selective queries while being able to

run in a distributed fashion for non-selective queries. However, H2RDF+ distributed

execution is much slower than its centralized counterpart.

Federated Centralized Stores: Federated stores utilize existing centralized

stores that exhibit good query performance, e.g., RDF-3x [59], to execute in parallel.

Federated stores follow a master/slave architecture, where the master node partitions

the data while the slave nodes store and index the data in a centralized store. The

2accumulo.apache.org
3hbase.apache.org
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challenge becomes how to efficiently partition the RDF data in a way that minimizes

query execution time and network communication cost.

Federated stores highly rely on the efficient partitioning of RDF data. It be-

comes hard to determine a good partitioning scheme without knowledge of the query

workload. As a result, many techniques utilize the query-workload to enhance the

partitioning and replication, e.g., WARP [60], PARTOUT [61], and DREAM [62].

WARP [60] relies on efficient partitioning and replication techniques to minimize

query execution time. WARP considers the query-workload to determine the triples

that need to be replicated. PARTOUT [61] uses the query-workload to determine

how to partition and replicate the data efficiently. Partitioning in PARTOUT in-

cludes two phases, namely fragmentation, and allocation. In the fragmentation phase,

query-workload-based constants (i.e., constant literal or URI) direct the horizontal

partitioning of the data. In the fragment allocation phase, PARTOUT determines

an allocation that maximizes locality when answering queries. The partitioning al-

gorithm considers network and space constraints when assigning partitions to the

available nodes. DREAM [62] partitions the queries instead of the data. DREAM

relies on replicating all the data on every node and hence avoids shuffling interme-

diate results over the network. However, in a distributed setting, duplication of big

data becomes an issue. DREAM uses RDF-3x as the centralized store and partitions

SPARQL queries across nodes using a cost model.

3.3 SemVP

SemVP is a new relational partitioning schema that extends RDF vertical par-

titioning (VP) with row-level semantics. Similar to VP, SemVP partitions an RDF

dataset based on the property name. For example, SPARTI generates two SemVP

partitions for Table 1.1, namely :mention and :tweet. Each SemVP partition con-

sists of two columns that represent the subject and object of an RDF triple while the

property denotes the partition name. The SemVP schema is not tied to a specific
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query shape. There are several advantages to property-based partitioning. First, it

eliminates the NULL issue introduced in property tables [12], where a subject may

not have an entry corresponding to a property enclosed in the same table. Also, it

simplifies query processing of SPARQL queries. The subject and object of a property

are queried directly based on the property file name.

SDATA

[1]

[1,2]

[1]

Key Count

mention_S_JN_tweet_S 3

mention_O_JN_tweet_S 1

SEMANTIC DATA 
LAYER

SemVP

Statistics
Bloom

 Filters

Key ID

mention_S_JN_tweet_S 1

mention_O_JN_tweet_S 2

Join  Filters

Dictionary

Key Filter

mention_S [B1]

mention_O [B2]

Subject Object

:John :Mary

:John :Mike

:Alex :Mary

Fig. 3.1. SemVP Structure for :mention.

Figure 3.1 illustrates an example of a SemVP partition structure. SemVP extends

RDF entries with a data structure, termed the semantic data layer, or SDATA, for

short. SDATA is responsible for storing a set of row-level semantics, represented by

join filters. Join filters allow SPARTI to determine the rows that contribute to the

final result of specific query join patterns. Join filters are scalable, where reductions

across n number of joined partitions (i.e., properties) can be represented. Reductions

represent a set of rows of a partition that satisfy a specific query join pattern. The

value of n represents the maximum number of properties that appear alongside a

particular property in the query-workload.
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Regarding the physical storage, SemVP is best described using a column-store

format [63]. Column stores are ideal for handling large-scale data due to their en-

coding and compression capabilities. The column store format provides efficient data

encoding, where row repetitions of subject or object are recorded only once. For

example, Table 1.1 introduces two entries for entity : John that get stored only once

in a column store format.

3.3.1 Semantic Data Layer

The semantic data layer consists of three main sections. The first section is a

dictionary representing the join filters. The join filters are defined as key-value pairs,

where the key represents the join filter identifier, and the value represents whether

a row qualifies a join pattern or not. Figure 3.1 lists a set of join filters. SDATA

associates a join filter to a matching row in a partition. For example, the second

join filter is associated with the second row only. In contrast, the first join filter is

associated with all rows. The second section represents the statistics for every join

filter. The statistics indicate the number of rows matching a join filter. SPARTI

utilizes the statistics to determine the execution order of BGP triples. The statistics

also allow SPARTI to decide the best filter to use given a specific query join pattern.

The third section contains references to the Bloom filters created for the subject and

object columns of a SemVP.

3.3.2 Join filters

Join filters consist of two components. The first component is the join filter

name that represents a query join pattern. The second component is the association

between a row and a value, where the row represents an entry in a partition and the

value that indicates whether the entry matches the join pattern represented by the

name. A join filter format is described as follows:

PROPERTY(1)_COLUMN-NAME_JN...PROPERTY(N)_COLUMN-NAME
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The join filter name describes a join pattern between n number of properties

where each property is joined by a specific column name (i.e., subject or object). The

convention defined by SPARTI is that the first property name included in the join

filter name denotes the SemVP name.

For example, the join filter name mention_S_JN_tweet_S starts with mention as

the property name followed by the join column name (i.e., S). The remaining part of

the join filter name represents the joined property name :tweet and the join column

name (i.e., S).

Join filters have several advantages. First, join filters can join n number of prop-

erties. This makes join filters highly scalable and able to provide reductions for long

or short query join patterns. In contrast, a similar system, e.g., S2RDF, represents

reductions between pairs of properties. Second, join filters are created between prop-

erties that do not need to be physically stored together in order to compute a join

filter. Third, join filters evolve based on the query-workload, where filters are created,

deleted without affecting the integrity of the partition data. Fourth, join filters are

elastic, where it is possible to compute a subset of a join filter rather than computing

all n properties. This allows SPARTI to consider smaller subsets of long join patterns

observed in the query-workload to answer other smaller patterns.

Join Correlations

The BGP in a SPARQL query consists of triples that query subjects, properties,

and objects. Joins between the subjects, properties, and objects represent the possible

join correlations between triples. BGP allows defining a finite set of join correlations

between BGP triple patterns. Given a pair of BGP-based triples, the possible join

correlations for a subject and object are subject-subject (SS), subject-object (SO),

object-subject(OS), and object-object (OO). It is possible to identify and precompute

a set of BGP join correlations in advance [8]. Unbounded properties are considered
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analytic queries and represent a small fraction of SPARQL query-workloads [11].

Similar to other work [8, 11,64], SPARTI does not query unbounded properties.

SPARTI creates join filters using the BGP join correlations in the query-workload.

For example, the join filter name mention_S_JN_tweet_S represents the join correla-

tion for the query in Example 1 between :mention and :tweet on the variable ?x. In

contrast, systems, e.g., S2RDF, precompute all possible join correlations between all

property pairs. Systems that use the RDF query-workload can provide good query

performance [18]. Using the query-workload allows SPARTI to (1) identify the join

patterns, and (2) limit the total number of join filters that need to be computed. Also,

SPARTI creates join filters for both directions of the correlation. Computing both

directions of the correlation has been proposed in distributed database systems [65].

It is also utilized in RDF systems, e.g., S2RDF. Consider the following example.

The set of reduced rows for the :mention property representing the join fil-

ter mention_S_JN_tweet_S is different from the set of reduced rows for tweet_S_JN_mention_S.

The former represents the Bloom-join results for :mention with respect to the :tweet

property while the later represents Bloom-join result for the :tweet property w.r.t.

the :mention property.

Example 2:

SELECT ?x ?y WHERE {

?x :mention :John .

?x :tweet ?y .

?y :latitude ?a .

?y :longitude ?b . }

Example 2 gives an example SPARQL query with four triple patterns. The BGP

joins are as follows:

x={mention_S, tweet_S}, y={tweet_O,latitude_S,longitude_S}
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where S denotes a subject and O denotes an object. SPARTI generates a unique list

of join filter names representing all permutations of every BGP join.

Note that both join filters are the same as they begin with the same property

name and contain the same properties to join (in different order only). This is dif-

ferent from tweet_S_JN_mention_S and mention_S_JN_tweet_S as both start with

different property names.

The maximum number of join filters for a combination of n properties is given by:

f(n) = n× (2n−1 − 1) (3.1)

The complete list of join filters for the query in Example 2 representing two BGP join

combinations is as follows:

mention_S_JN_tweet_S

tweet_S_JN_mention_S

tweet_O_JN_latitude_S

tweet_O_JN_longitude_S

latitude_S_JN_tweet_O

latitude_S_JN_longitude_S

longitude_S_JN_tweet_O

longitude_S_JN_latitude_S

tweet_O_JN_latitude_S_JN_longitude_S

latitude_S_JN_longitude_S_JN_tweet_O

longitude_S_JN_latitude_S_JN_tweet_O

where the total number of join filters for the first combination (i.e., x where n=2) is

two and the total number for the second combination (i.e., y where n=3) is nine with

a total of 11 join filter names.
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Computing Join Filters

SPARTI employs Bloom-join [15, 16] to compute reductions between partitions.

Bloom-join determines if an attribute such as a subject or an object in one partition

qualifies a join condition when attempting to join with another partition. Bloom-

join utilizes a probabilistic data structure termed a Bloom filter [16]. A Bloom filter

uses hash functions to store the input against n different hash functions. The main

functionality of a Bloom filter is to check the existence of an item. Bloom filters

can have false-positives but no false-negatives. Bloom filters are fast to create, fast

to probe, and small to store. Also, the false-positives introduce a small percent of

irrelevant rows that eventually are not joined in a Bloom-join.

SPARTI uses Bloom filters to probe the column entries of the query join patterns.

SPARTI builds two Bloom filters corresponding to the two columns of a SemVP

partition (i.e., the subject and object columns) during the property-based partitioning

phase. The Bloom filters are applied on the join columns attribute to filter the rows

that do not qualify a join in both partitions. Furthermore, the results are materialized

as join filters. Figure 3.2 illustrates an example of a Bloom-join and Bloom filters.

In Figure 3.2, the first step is to create a set of Bloom filters representing the

subject and object of the SemVP partitions. SPARTI creates the Bloom filters during

the property-based partitioning phase. In Figure 3.2, the Bloom filters: mention_S,

mention_O,tweet_S, and tweet_O are created for the two SemVP partitions mention

and tweet.

The second step is to identify the join filters. For now, assume that a relation

between :mention and :tweet has been identified. The query consists of a BGP

join between :mention and :tweet on the subject column. SPARTI utilizes the

Bloom filter of tweet_S to compute a join reduction for the :mention property on

the subject column (i.e., mention_S). The tweet_S Bloom filter consists of three

elements, namely :John, :Mike, and :Alex. Every element in the subject column of

the :mention is checked against the tweet_S column.
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SUB OBJ

:John :Mary

:Alex :Mary

:John :Mike

SUB OBJ

:John :T1

:Mike :T2

:Mike :T3

:Alex :T4
:John, 
:Alex :Mary, 

:Mike

:John, 
:Mike, 
:Alex

:T1,
:T2,
T:3,
T:4BF: mention_O

BF: tweet_O

SELECT ?x ?y  WHERE {
?x  :mention :John .    
?x  :tweet   ?y    . }

x=[:mention_S, :tweet_S]

SUB OBJ

:John :Mary

:Alex :Mary

:John :Mike
BF: tweet_S

BF: mention_S

SUB OBJ

:John :T1

:Alex :T4

JF (ID:    2) :  tweet_S_JN_mention_S
JF (ID:   1) :  mention_S_JN_tweet_S

BGP
Join

:mention :tweet
SDATA

[2]

[2]

SDATA

[1]

[1]

[1]

Resulting Partitions

Original Partitions

Fig. 3.2. Computing Bloom-join between :mention and :tweet - Bloom
Filters (BF), Join Filters (JF).

The final reduced set for :mention indicates all the rows that qualify a join be-

tween the :mention and :tweet partitions. The reduced set is similar to the original

partition, i.e., there are no reductions possible. On the other hand, applying the same

procedure in the opposite direction generates a reduced set for the :tweet partition,

where the second and third rows of the original partition will not qualify a join be-

tween the :mention and :tweet partitions. The final reduced sets for both partitions

are stored as join filters (marked as 1 and 2) and are saved in the semantic data layer

(i.e., the SDATA layer) of their corresponding SemVP.

3.3.3 Data Block Skipping

Several query engines, e.g., [52, 53] utilize hints provided by specific cloud-based

file formats (e.g., Parquet, ORC) over the stored data to speed-up query execution

time. More recent work supports predicate-pushdown that allows data skipping at the

block level [53,66,67]. A block is a horizontal partition that represents a set of entries
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ranging from thousands to tens of thousands. Each block consists of meta-data, e.g.,

the maximum/minimum values of a block or a NULL value if a block contains no

entries in a specific column. This meta-data assists the query engine in determining

if a data block can be skipped.

The SDATA representation in a SemVP allows a query engine to skip data blocks.

Figure 3.3 illustrates how data block skipping is realized using the SemVP schema.

SDATA

[1]

[1,2]

[1]

SemVP

Subject Object

:John :Mary

:John :Mike

:Alex :Mary

Block  1

Block 2

Block 3

Fig. 3.3. Skipping blocks using SDATA.

For illustration, assume that every block consists of one entry. In Figure 3.3, a

partition has three blocks. The query engine evaluates the meta-data of each block

to determine the blocks to be skipped. For example, if a query pattern matches a

join filter with ID 2, then the query engine skips scanning Blocks 1 and 3 as they do

not contain the value 2.

3.4 Property Relatedness

SPARTI learns the relations among the properties from the query-workload. This

section presents an algorithm for discovering then relations using BGP join patterns.

3.4.1 Co-occurrence Algorithm

SPARTI uses a co-occurrence algorithm that utilizes the BGP join patterns oc-

curring in SPARQL queries to discover relationships among properties. A relation
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between a property and all other properties is established based on the BGP join

pattern. The co-occurrence algorithm does not require the query frequency (i.e.,

support) to identify an important pattern. The advantage of not requiring the fre-

quency is that any co-occurrence observed among properties is considered during the

identification of the join filters.

Algorithm 1 lists the co-occurrence algorithm:

Algorithm 1 Identify co-occurring properties

Output: Related properties for every property
1: function CoccurrenceApproach
2: Rel← ∅ . Empty proposal
3: Joins← getQueryJoinPatterns()
4: for Join in Joins do
5: JoinProps← getProperties(Join)
6: for Prop in JoinProps do
7: if Prop in Rel then
8: Rel[Prop]← Rel[Prop] ∪ JoinProps
9: else
10: Rel[Prop]← JoinProps
11: end if
12: end for
13: end forreturn Rel
14: end function

In Line 3, all the query-workload BGP join patterns are identified. A property is

identified as co-occurring only if it is joined by a variable (i.e., in the join condition)

to another property. In Line 5, a list of all the identified properties in a BGP-join

is created. Finally, for every BGP join, all properties that co-occur with a specific

property in the Rel list are added as related (i.e., co-occurring) properties.

3.5 Evolution Over Time

The query execution performance evolves when join filters are created for the

frequent join patterns observed in the query-workload. Initially, SPARTI employs

VP to answer queries using entire partitions. Then, SPARTI monitors queries in
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order to identify the join patterns that do not invoke any join filter. Specifically, any

property of a query that is part of a join pattern and does not invoke a join filter has

its join pattern marked as a candidate for join filter creation. SPARTI initiates the

partition reduction phase every k queries, where k is a user-specified parameter (e.g.,

every 100 queries).

The rest of this section introduces a cost-model for creating and deleting join filters

in a cloud-based setting.

3.5.1 Selecting Join Filters

Equation 3.1 illustrates the total number of join filters proposed for a given set of

properties. There is a cost associated with creating and computing join filters, espe-

cially over cloud-based platforms. SPARTI provides a budgeting mechanism to decide

on the maximum number of filters to compute. The cost and benefit of computing join

filters are derived from the query-workload and the SemVP-based statistics. SPARTI

adopts the following utility function to measure the importance of a join filter:

Utility = α(S) + β(R)− δ(P ) (3.2)

Equation 3.2 introduces three parameters, namely S,R, P 4. Parameter S rep-

resents the support (i.e., frequency) of a join pattern within a query-workload. S

indicates the importance of a join pattern. Parameter R represents the partition size

of the SemVP partition (i.e., property) that the join filter belongs to (i.e., the first

property in the join filter name). Bigger partitions are more important to reduce than

smaller ones. Parameter P represents the number of properties that the join filter

has. A join filter is more valuable if it contains a smaller number of properties as it

can be a sub-pattern for more join patterns. The objective of the utility function is to

maximize the overall value of a join filter. The parameters α, β, and δ are smoothing

parameters [68], where α + β + δ = 1 with 0 < α, β, δ < 1.

4Parameters S,R, P are normalized between 0 and 1
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A typical scenario in a cloud-based platform is to be constrained by a computa-

tional budget. SPARTI fits naturally in a cloud-based platform where the proposed

cost model can be used to prioritize the computation of essential join filters. For

example, the result of Equation 3.2 can be used to determine the importance of a

join filter by adding its utility value to a priority queue. The join filter with the

highest priority (i.e., highest value) will be computed first. The number of join filters

to compute is the size of the queue.

3.5.2 Eliminating Join Filters

Join filters incur a minimal storage overhead. Each join filter entry indicates

whether a specific value of a join attribute has a matching value (joining tuple) in a

partition or not. The match is represented by a 1 bit. However, as the query-work-

load patterns evolve, it becomes necessary to have criteria for deleting join filters.

SPARTI uses Equation 3.3 to calculate when to delete a join filter.

Texp = T0 + [δ(1 + (k − 1)(1− e−λ(Utility))] (3.3)

where Texp is the expiration time of a join filter. T0 is the most recent time-stamp

a join pattern has been observed. δ is the default expiration time of a join filter

(e.g., one week). k is the maximum life-span of a join filter (e.g., one month). λ is a

smoothing parameter that sets the intensity of the cost (e.g., the higher the lambda

value, the longer the expiration time for low-cost filters). The intuition behind the

equation is that the join filters that are expensive to create (taking into consideration

the total number of scans and the support value of a join pattern) should have a

longer time-span than the cheaper ones. In other words, the equation extends the

expiration time of a join filter if it is expensive to compute.
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3.6 Experimental Evaluation

SPARTI is compared to S2RDF [8]; a state-of-the-art cloud-based RDF system

that runs over Spark. Previously, S2RDF has outperformed H2RDF+, Sempala,

PigSPARQL, SHARD, and Virtuoso [8] where it has achieved on average the best

query execution performance. S2RDF is built on top of Apache Spark [69]; an in-

memory computational framework. It translates SPARQL queries to SQL and runs

them on Spark SQL. To guarantee a fair setup, a Spark store and executor drivers are

implemented for SPARTI. All Spark-related parameters are unified for both systems.

Data is stored using Parquet 5 columnar-store format. We use a modified version of

S2RDF query translator so that both systems would have the same query optimization

algorithm. Vertical partitioning has been implemented as a baseline.

The semantic data layer (SDATA) can be implemented in multiple ways. One

way is to create a column corresponding to every join filter of a SemVP partition. In

each row, the value for a join filter column is set to true if the row qualifies a join

filter or null, otherwise. This implementation is simple. Also, block-level skipping

is achieved through predict push-down that is supported by most query systems. For

example, a block is skipped if the meta-data indicates a null value for an entire

block (i.e., no rows in a block qualify a specific filter). Another implementation is to

add SDATA as part of the meta-data of an existing file format (e.g., Parquet). The

SDATA layer can be realized similar to the maximum/minimum/NULL meta-data

provided by most query engines [52,53]. Also, the query engine needs to be modified

to understand the meta-data provided by the SDATA layer. SPARTI currently adopts

the first implementation and utilizes the NULL semantic for block-level skipping.

3.6.1 Experimental Setup

Experiments are conducted using four different datasets that represent three differ-

ent sizes of a synthetic benchmark and a real dataset. The synthetic benchmark used

5parquet.apache.org



51

is WatDiv diversified stress testing [18]. WatDiv provides a benchmark dataset, test

queries, and a stress-test query-workload. Three dataset sizes have been generated,

namely 10 million, 100 million and 1 billion. For the query-workload experiments, the

10 million dataset is used. YAGO2s 2.5.3 [21] is the real dataset used. It contains 245

million triples. YAGO2s benchmark queries are used to compare the query execution

time [8, 59].

An HP DL360G9 cluster with Intel Xeon E5-2660 was used, and five nodes were

created. The cluster uses Cloudera 5.9 consisting of Spark 1.6 as a computational

framework and Hadoop HDF as a distributed file-system. Each node consists of 32GB

of RAM and 52 cores. The total HDFS size is one terabyte. All SPARTI phases are

implemented in Java 8 as one package.

The experiments measure various aspects of SPARTI including (1) the number of

generated rows, (2) the number of generated files, (3) the filesystem size, (4) the load-

ing time, (5) the reduction size, (6) the caching time, (7) the workload performance,

and (8) the query execution performance.

3.6.2 Experimental Results

We group the results based on three aspects: (1) storage requirements, (2) query

processing performance, and (3) query-workload. For the synthetic dataset WatDiv,

the query processing experiments are conducted on the largest WatDiv version, con-

taining 1 billion entries.

Storage Requirements

Figure 3.4 gives the number of rows generated by the three systems (VP, S2RDF,

and SPARTI). SPARTI does not introduce new rows, and thus maintains the same

number of rows as those of VP. In contrast, S2RDF introduces new rows representing

all the reductions that S2RDF computes.
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Fig. 3.5. Number of files across all partitions.

Figure 3.5 gives the number of files generated by the three systems. The original

file is partitioned on the property name across all three systems. However, S2RDF

stores the computed reductions in separate files, and thus stores more files than

SPARTI and VP. The number of files can grow even further given a dataset with

more properties, e.g., DBpedia [70].

Figure 3.6 gives the storage overhead incurred by the three systems. VP introduces

minimal space overhead across all three datasets as it only needs to partition the

original triple file based on the property name. SPARTI storage is composed of the

original data, the bloom filters, and the join filters created per partition. S2RDF

introduces the highest overhead due to the computed reductions in addition to the

original data.
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Figure 3.7 gives SPARTI loading time based on the first two phases. SPARTI

property-based partitioning constitutes 10% of the time over a well-structured dataset,

e.g., WatDiv. In contrast, SPARTI property-based partitioning phase constitutes 40%

over a less-structured dataset, e.g., YAGO2s.

Figure 3.8 gives the overall loading time for all three systems. The time taken

by SPARTI includes both the property-based partitioning and partition reduction

phases. VP has the smallest loading time due to its simplicity, followed by SPARTI,

and then S2RDF. SPARTI’s loading time for Dataset YAGO2s is almost an order of

magnitude faster. This is attributed to the efficiency of Bloom-join reductions versus

semi-join reductions employed by S2RDF.
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Query Processing Performance

Figures 3.9 and 3.10 give the number of records read across the three systems.

The results represent the average number of records exhibited across all queries of the
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same shape. The reduction rates for both SPARTI and S2RDF are compared with

VP (i.e., representing the original partition).

In Figure 3.9, the reduction rates across all query shapes are better than that

of S2RDF. The best reduction rate for SPARTI is exhibited with complex-shaped

queries. This is attributed to two factors, namely the properties included in the

query and the length of the join filters in terms of the number of properties included

in the join filter.

In Figure 3.10, the reduction rates overall queries are better than those of S2RDF

on average except for Q15. The performance of SPARTI with Q15 is similar to that

of VP. The reason is that one of the properties exhibited a high false-positive rate

(i.e., one or more repeating elements are wrongfully identified as qualifying for a join)

that undermines the reduction effort over the entire query. In turn, this affected

the query execution performance of Q15 (see Figure 3.12). This result amplifies the

impact of the reduction rate on the query execution performance. Decreasing the

false-positive rate of the Bloom filters can mitigate this issue. However, space of the

Bloom filter would increase. Thus, there is a trade-off between space and the rate of

false-positives.
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Fig. 3.11. Query Execution Performance (Milliseconds) over WatDiv(1B).

Figures 3.11 and 3.12 give the query execution performance of all three systems.

Every query is executed five times and the average time is reported. In Figure 3.11,

SPARTI executes queries around half the time of S2RDF over most WatDiv query

shapes. The reason is due to the higher reduction rate that SPARTI exhibits when

compared to S2RDF. Star-shaped queries, the most-common query pattern in RDF,
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Fig. 3.12. Query Execution Performance (Milliseconds) over YAGO2s.

exhibits the highest query execution performance in SPARTI. This illustrates how

star-shaped queries can benefit the most from input reductions, compared to other

shapes. In contrast, complex-shaped queries exhibit competitive performance. This

is attributed to the short join combinations. Both SPARTI and S2RDF provide

reductions for short join combinations. SPARTI excels over queries with longer join

patterns (i.e., more properties) as they provide a higher reduction rate than that of

S2RDF. Similarly, Figure 3.12 illustrates how SPARTI exhibits better query execution

time than the other two systems with the exception of Q15. As mentioned earlier, the

main issue is the low reduction rate that SPARTI exhibits when compared to S2RDF

for Q15.

To illustrate the disk-block skipping capability over Spark, the query input par-

titions are cached entirely into memory and the total time for reading the entire

partition is recorded. Spark SQL predicate-pushdown parameter is activated to take

advantage of the block-level semantics of SPARTI. Similarly, S2RDF utilizes block-

level skipping but only on the data level (i.e., when reading a specific subject or

object).

Figures 3.13 and 3.14 give the total amount of time needed to cache the partitions

for the properties included in the queries. Both VP and S2RDF exhibit similar

performance given the smaller sizes of their tables. SPARTI row-level semantics

introduce an overhead when reading in the reductions as the overall size of a partition

in SPARTI is larger than those of VP and S2RDF. However, using the block-level
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skipping semantics alleviates the overhead to an acceptable level across all query

shapes.

Workload

The WatDiv benchmark provides a stress-testing workload [18] consisting of 125

structurally diverse query templates. The stress-test workload contains a total of

12400 queries that are divided into five parts (i.e.,(P1-P5)), where each part contains

2480 query. Each part represents an incremental query-workload. For example, P2

consists of P1+P2 while P3 consists of P1+P2+P3. The WatDiv benchmark queries are

executed and the average execution time across the queries of the same shape are

computed.
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Figure 3.15 gives the query execution performance for the WatDiv queries across

five-time snapshots of the stress-test workload. The complex-shaped queries exhibit

a temporary enhancement then an increase in the query execution performance. The

reason is due to the same issue noted in Figure 3.10 where, for some properties,

the rate of false-positives is higher for specific join patterns. In turn, this generates

a temporary enhancement in point P2, then a degradation in performance between

points P3-P5. As indicated earlier, one way to mitigate this issue is to decrease

the false-positive rate of the Bloom filters. On the other hand, the star, linear, and

snowflake shapes positively utilize the newly discovered patterns. These query shapes

achieve an incremental query execution enhancement over time.

3.7 Conclusion

SPARTI is a platform-independent RDF management system for the cloud. SPARTI

introduces SemVP as a new relational partitioning scheme that provides row-level se-

mantics for RDF data. The row-level semantics, represented as join filters, provide

SPARTI with a mechanism to read a reduced set of rows when answering specific query
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join-patterns. An algorithm for discovering co-occurring properties in the query-

workload has been introduced to compute reduced partitions between a set of related

properties. The cost-model for managing join filters prioritizes the creation of the

essential join filters to compute. Finally, the experimental study compares SPARTI

against the state-of-the-art cloud-based RDF system where SPARTI achieves robust

performance over synthetic and real datasets.
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4. KC: EFFICIENT QUERY PROCESSING OVER

WEB-SCALE RDF DATA

Join reductions can replace the original data in satisfying a wide range of RDF query

shapes, e.g., star, linear, and snowflake queries. Semi-joins can be used to precom-

pute reductions between every pair of properties over all possible attribute combina-

tions [8]. However, precomputing semi-join reductions incurs significant preprocessing

time and storage overhead when employed over all the data [9]. Instead of precomput-

ing all the possible reductions over all the data, KC uses set membership structures

to compute the join reductions in an online fashion. Also, given a query, KC identi-

fies the new join patterns (if any), e.g., if :mention joins with :like on the object

attribute, then a join reduction for :mention is identified when joining with :like on

the object attribute, and another reduction for :like when joining with :mention on

the subject attribute. Unlike [8], KC computes reductions between n-ary relations,

called n-ary joins, instead of binary joins, resulting in smaller data sizes for each

reduction given a specific join pattern.

4.1 Problem Statement

Generalized Filtering: The filtering approaches employed in various RDF sys-

tems can be classified into ones that use exact structures (e.g., Bitsets [4], Bitmaps

etc.) or approximate structures (e.g., Bloom filters [71] etc.). However, no general-

ized filtering approach encompasses the operations (e.g., add, delete, contains, union)

of both exact and approximate structures. System designers have then to choose

between exact and approximate structures and integrate either structure across the

whole system. A generalized interface that encompasses the common operations un-



61

der a unified filtering interface would be desirable because it can provide flexibility

to choose the appropriate structure given the characteristics of the datasets.

Approximate set membership structures are used to determine the existence of an

item within a set. For example, Bloom filters [16] do not physically store items, but

instead hashes the input against different hash functions. Bloom filters are used to

determine the existence of an item in a set. Bloom filters can have false-positives, but

no false-negatives. Bloom filters are efficient in creation and probing time. Bloom

join [15] is an example of how an approximate set membership structure can be used

to reduce non-matching results during join evaluation.

Exact set membership structures can also be used to determine the existence of an

item. For example, a Bitset structure can be used to determine the existence of an

integer item within a set. Bitsets do not suffer from false positives and can accurately

determine elements that exist in a set. However, Bitsets suffer from high storage

overhead. In contrast, compressed bitmaps offer significant storage saving for sets.

For example, Roaring bitmaps [72] provide superior compression performance when

compared to an uncompressed bitmap while retaining fast lookup performance.

KC introduces generalized filters that can operate under both exact and approxi-

mate structures. For example, a generalized filter requires that the underlying struc-

ture (exact or approximate) support an add, contains, delete, and union operation.

KC adopts a logarithmic approach for hierarchical construction of filters across cluster

nodes instead of linearly collecting all filter elements on one node.

Generalized filters are constructed for the subjects and objects per property (i.e.,

predicate) of an RDF dataset. Each generalized filter represents the unique subjects or

objects associated with an RDF property. The filters are broadcasted to all machines

before answering any query. The broadcasted filters are used to push down the

filtering of non-matching join entries on every machine in an online fashion thus

reducing the overall computation and communication overhead of RDF queries.

Based on a realization of KC on top of Spark, our experiments have been performed

using two synthetic benchmarks, namely WatDiv [18] and LUBM [19], and two real
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datasets, namely YAGO2s [20,21], and Bio2RDF [73]. The purpose of the experiments

is to study four performance aspects of KC : 1) the preprocessing time, 2) the storage

overhead, 3) the effect of using exact and approximate set membership structures for

reducing non-matching join entries, and 4) the query processing performance. The

results illustrate how KC provides at least an order of magnitude better results in

terms of preprocessing and storage and double the query execution performance when

compared to the other Spark-based state-of-the-art solution [8].

The contributions of this chapter are as follows:

• We introduce KC, an RDF system for managing RDF data.

• We introduce generalized filtering that encompasses both exact and approx-

imate set membership structures and define a set of common operations for

both exact and approximate set membership structures.

• Based on evaluation over synthetic and real benchmarks, we experimentally

demonstrate how KC achieves an order of magnitude enhancement in prepro-

cessing performance and storage saving, and executes on average in less than

half the time of the state-of-the-art distributed RDF systems.

Generalized filtering introduces a unified interface over set membership structures

and a relational filter operator that can be implemented by RDF systems. Also, this

chapter introduces a scalable approach for constructing filters in a distributed setting

using the union operation. The experimental setup includes two real datasets instead

of one. Also, all experiments were repeated over a larger cluster with more memory

and processing power.

The rest of this chapter proceeds as follows. Section 4.2 presents an overview of

KC . Section 4.3 presents generalized filtering. Section 4.4 presents the experiments

performed over the WatDiv, LUBM, YAGO2s, and Bio2RDF benchmarks. Finally,

section 4.5 presents concluding remarks.
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4.2 Overview of KC
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Fig. 4.1. An overview of KC .

Figure 4.1 gives an overview of KC . First, KC consists of a preprocessing step

where the RDF triples are partitioned into smaller subsets. Second, KC consists of a

query processor that identifies recurring join patterns in an online fashion.

The query processor contains a cache manager and catalog manager to optimize

the execution. The cache manager is responsible for probing, adding, and removing

reductions. The catalog manager is responsible for maintaining statistics about the

PBS’s and reductions in the system. The query processor utilizes the information

provided by the catalog manager to infer join ordering (e.g., smallest first strategy).

4.2.1 Preprocessing

In the preprocessing step, the RDF data triples are split on the property (i.e.,

predicate name) name. Unlike Vertical partitioning [11], the column name is retained.

For example in Figure 4.1, the RDF triples are split into three tables, one repre-

senting each predicate (i.e., P1, P2, P3). A set of filters is also created and stored

on disk to represent each column (except for the predicate column) of every property-

based file (PBF). For example, two filters are created for the first table with predicate
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P1. The first filter for the subject column contains elements S1, S2 and the second

filter for the object column contains elements O1, O2. The filters store RDF resource

names as they are used to check whether a particular resource exists during a join op-

eration. The filters are used to compute a reduced set of rows for every PBF involved

in the query evaluation.

When the tables are updated, the filter corresponding to a column that was up-

dated will be recreated or updated, depending on the type of the filter (i.e., exact set

membership structure filter or approximate set membership structure filter). When

a new table is added, then two filters will be created corresponding to the subject

and the object columns of the new table. If a table is deleted, then both filters are

deleted as well.

4.2.2 Query Processing

SELECT ?x ?y  WHERE {
:Mary :mention ?x .    
?x :like ?y .}

Join Reductions

Join(mentionobj,	likesub) Join(likesub, mentionobj)

SUB PRED OBJ

:John likes :Alex

:Sally likes :Mike

SUB PRED OBJ

:Mary mention :John

SUB PRED OBJ

:John like :Alex

SUB PRED OBJ

:John mention :Mary

:John mention :Mike

:Alex mention :Mary

:Sally mention :Mike

:Mary mention :John

John Mary
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Sally Alex

mention

mention

m
en

tio
n

m
ention

mention like

like

Graph Representation Relational Representation

mention like

Fig. 4.2. KC adopts a relational approach for representing RDF graphs
and uses reduced data triples instead of the original data triples to evaluate
SPARQL queries.
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KC processes SPARQL queries in an online fashion, where it requires no prior

knowledge of the query workload. Given a query, the first step is to identify the

attributes of the join patterns. In Figure 4.2, KC identifies ?x as the join attribute

between the query triples representing the :mention and :like properties. Next, the

cache manager is probed to determine whether a specific join pattern reduction exists

in the cache. The cache manager is used to return the reductions that match the join

patterns. For example, the cache manager returns two reductions corresponding to

the :mention and :like properties given that they are joined together. Then, the

query executor uses the identified reductions to evaluate the query. If no reductions

that match the join patterns exist, KC computes all the possible reductions for the

identified join pattern. KC utilizes the filters during the join evaluation to eliminate

the non-matching entries. In Figure 4.2, KC utilizes filters created for the :like PBF

on the subject column to reduce the :mention PBF, and also uses the filter created

for the :mention PBF on the object column to reduce the :like PBF. Once the

reductions are created, KC caches these reductions in main memory so that they can

be reused by other queries that share the same join patterns.

The KC query processor consists of a query optimizer, partitioner, and executor.

The query optimizer determines the join ordering between the candidate tables (either

property-based files or reductions). The query optimizer utilizes two types of statis-

tics, namely PBF statistics, that are collected during the store creation process, and

reduction statistics that represent reductions of PBFs given specific join patterns. The

reduction statistics are used whenever a reduction of a join pattern is computed. The

PBF statistics are used whenever a reduction does not exist for a specific join pattern.

The query executor coordinates the query evaluation between all the query processing

components. For every query triple, the query executor loads the corresponding data

either from cache (through the cache manager) or from disk if no reductions exist

for a specific join pattern. During the computation of the reductions, row counts

representing statistics are collected. The counts are used by the query optimizer to

determine an appropriate join ordering. KC employs a smallest-first strategy when
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evaluating queries, where for every join pattern, the smallest reductions are joined

together before the larger ones. Next, the query executor uses a data partitioner to

partition (i.e., split) the data triples of the reductions across the available nodes.

KC adopts a query-workload-driven approach when partitioning data [74]. In par-

ticular, every PBF or reduction is partitioned based on the query join column. For

example in Figure 4.2, data corresponding to :mention is partitioned based on object

while :like is partitioned based on subject. Finally, the query executor passes the

optimized SPARQL query to the computational framework, e.g., Spark and the result

is returned to the user.

4.3 Generalized Filtering

Generalized filtering encapsulates two classes of set membership structures, namely

exact, e.g., bitsets, and approximate, e.g., Bloom filters, set membership structures.

Generalized filters are used to remove non-matching entries from PBFs during join

evaluation. Generalized filtering consists of two main components. The first compo-

nent is a unified operations interface that is used to define the types of operations over

the filters. Figure 4.3 illustrates the expected inputs and the four main operations

proposed for generalized filtering.

Generalized Filtering

False Positive Rate Dictionary Encoded Data

Approximate (fp: 0-1) Exact (fp: 0)
e.g. Bloom Filter e.g. Roaring Bitmap

OPERATIONS
1. add(int)
2. contains(int)
3. delete(int)
4. union(filter)

INPUTS:

Fig. 4.3. KC Generalized filtering provides a unified interface for con-
structing filters.
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First, generalized filtering operates over dictionary-encoded data (i.e., data con-

verted from string to integers). This is a standard operation performed by many RDF

systems during preprocessing of RDF data. Second, KC uses the false positive (fp)

input value when instantiating the approximate set membership filters. The false

positive value is used to define the false positive rate of the created filter. If the

false-positive value is zero, then exact set membership structures are used.

4.3.1 Operations

Generalized filtering proposes a set of operations that can be performed over the

two set membership structures classes:

• add(int): Add an element of type integer (returns: True if it succeeds/False if

it fails)

• delete(int): Delete an element of type integer (returns: True if it succeeds/-

False if it fails)

• contains(int): Check whether a specific integer is contained in the structure

(returns: True/False)

• union(filter): Concatenate two filters together (returns: concatenated Filter)

The union operation is used during in the construction of the filters. In a dis-

tributed setting, the typical scenario is to send all elements that will be added to the

filter using an iterator approach where elements are sent to a central driver. However,

KC uses a hierarchical approach when constructing filters where filters are merged

on the machine level across cores before merging them across machines. Adopting a

hierarchical approach reduces the overall size of elements being sent over the network

when constructing filters. Also, using the union operation allows sending filters across

the network instead of the actual elements where filters exhibit compression/hashing

opportunities resulting in smaller network overhead, e.g., when using roaring bitmaps

or bloom filters.
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Fig. 4.4. KC uses a hierarchical approach instead of an iterator approach
when constructing set membership structures in a distributed setting.

4.3.2 Filter Operator

The second component represents a relational filter operator (called GenOp) that

is pushed down to the data sources (i.e., PBF) to eliminate non-matching entries

during join evaluation.

Filter(tweet)
like

Filter(like)

Filter(mention)

Filter(like)

GenOp
Filter(mention)

Filter(tweet)

Join

SELECT ?x ?y ?z WHERE {
?x :mention ?y .
?x :tweet   ?z .
?x :like   ?w . }

tweetmention

GenOpGenOp

Join

Fig. 4.5. GenOp is used by KC for filtering property-based files (PBF).
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Figure 4.5 illustrates how GenOp is used for filtering PBFs in a relational query

plan. The input to GenOp is a set of filters that correspond to the PBFs mentioned in

the query. For example, the query includes three query triple patterns corresponding

to three PBSs, namely :mention, :tweet, and :like. The first GenOp operates on the

:mention PBF and reduces non-matching entries based on the filters corresponding

to :tweet and :like PBFs. The output of GenOp is a reduction of :mention that

represents the join between the :mention, :tweet, and :like on the subject column.

4.4 Experimental Evaluation

We realize KC using Spark [69]; a distributed in-memory framework that runs

over Hadoop [75]. Hadoop-based systems are widely adopted both in academia and

in industry. Also, realizing KC on top of a Hadoop-based system demonstrates the ap-

plicability of the proposed techniques over widely adopted components, e.g., Hadoop

HDFS for storing the data, and Apache Spark as an in-memory computational frame-

work. KC can also be implemented in other specialized RDF query processing systems

that utilize the message passing interface (MPI), e.g., Adpart [76], but implementing

KC inside AdPart is beyond the scope of this work.

KC is compared against S2RDF [8], a Spark-based system that outperformed

other Hadoop-based RDF systems.

4.4.1 Experimental Setup

Our experiments are conducted using two synthetic benchmarks that provide

widely-adopted query workload generators and two real datasets:

1. WatDiv diversified stress testing [18]. WatDiv provides a stress-test query work-

load that allows generating several queries per-pattern.

The largest WatDiv benchmark consisting of one billion triple was used to demon-

strate the query execution performance and preprocessing performance (i.e., the num-

ber of files generated, disk space utilization, and loading time). The workload pro-



70

vided by WatDiv [18] consists of 5000 queries that cover 100 SPARQL patterns where

each pattern represents 50 variations. A variation represents different bound values

for the same query pattern. The variations allow measuring the performance of spe-

cific patterns under different selectivity.

2. LUBM [19]. LUBM provides a query-workload generator, where 1000 queries are

generated. A total of 1 billion triples were generated. Unlike WatDiv, LUBM does

not specify the number of patterns.

3. YAGO2s YAGO2s 2.5.3 [20,21] contains 245 million triples. YAGO2s benchmark

queries are used to compare the query execution time [9].

4. Bio2RDF [73] is a biological database for interlinked life science data. A dataset

consisting of 1 billion triples were used. Benchmark queries were used to compare the

query execution time [9].

Our experiments are conducted using a cluster consisting of 12 nodes. The cluster

uses Cloudera 5.9. We use Spark 2 as a computational framework and Hadoop HDFS

as a distributed file-system. Each node consists of 168 GB of RAM and eight cores.

The total HDFS size is 10 Terabyte.

4.4.2 Experimental Results

The experiments measure various aspects of KC and S2RDF including (1) stor-

age overhead, (2) preprocessing time, (3) query execution performance. KC repre-

sents the baseline where PBFs are utilized. KC-Roaring indicates using KC with

exact set membership structure filters such as roaring bitmaps. KC-Bloom(0.01) and

KC-Bloom(0.1) indicate using KC with approximate set membership structure filters

such as Bloom filter given a false positive probability of 0.1 and 0.001.

Preprocessing Performance

Figure 4.6 gives the disk storage overhead incurred by the four approaches over

the LUBM, WatDiv, Bio2RDF, and YAGO2s datasets. PBF introduces minimal
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Fig. 4.6. Disk space utilization - (exact/approximate) setting, S2RDF,
and the original data.

space overhead across all four systems. PBF partitions the original triple file based

on the property name only. Storage using KC approaches (i.e.roaring and Bloom

filters) is composed of the PBF and the filters. S2RDF introduces the highest disk

storage overhead as it precomputes all the possible reductions and stores along with

the original data.
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Fig. 4.7. Preprocessing time across the 4 benchmarks using KC (exac-
t/approximate) setting, S2RDF, and the original data.

Figure 4.7 gives the preprocessing time over the YAGO, WatDiv, LUBM, and

Bio2RDF datasets. S2RDF exhibits the highest preprocessing overhead as semi-joins

need to be precomputed over all possible VP combinations. On the other hand,

KC requires minimal preprocessing overhead as only the PBFs need to be created.

KC-Roaring and KC-Bloom require additional computation to create the filters.
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Figure 4.8 gives a size comparison between two approximate set membership struc-

tures, namely Cuckoo filters and Bloom filters. The comparison illustrates the size of

the filters with respect to the false positive rate. Also, the size of an exact set mem-

bership structure, namely roaring bitmaps is presented. The results demonstrate how

the false positive probability affects the size of the generated filters. In specific, the

higher the false positive rate, the larger the filters sizes. The results for the approx-

imate set membership structures demonstrates how Cuckoo filters exhibit a larger

size than Bloom filters. In contrast, roaring bitmaps utilize compression that allows

it to exhibit a smaller size than Bloom filters at a false positive rate of 0.01. The

conclusion from this result is that exact membership structures can be utilized in

situations where the false positive probability needs to be low (i.e.lower than 0.01) as

it achieves low storage overhead. Otherwise, approximate set membership structures

will outperform compressed set membership structures in terms of size. The size of

the filter is an essential aspect as the filters are broadcasted to all machines before

answering queries.

Query Execution Performance

The following experiments demonstrate the query performance of both KC and

S2RDF across different benchmarks. S2RDF partitions every query during query
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evaluation. We investigate the query execution performance under three experimental

setups. The first is KC-Filter where filtering is performed in an online fashion when

a new query join pattern is used. The first setup demonstrates the overhead generated

by the filtering when answering specific query patterns for the first time. The second

setup is KC-Reduction where reductions already exist for specific query join patterns

and are directly used to answer the query. The third setup is KC-NoStat where no

join ordering is enforced based on statistics. Instead, KC-NoStat ensures reordering

is done to avoid cross products and reduce the number of joins, if possible.
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Fig. 4.9. Query processing performance (YAGO).

Figure 4.9 gives the total execution time over YAGO for 4 benchmark queries [9].

Query 1 consists of 5 unique patterns (i.e., the predicate is not repeated) while Query

2 consists of 7 query patterns. On the other hand, Query 3 and 4 consists of 4 and

five non-unique patterns respectively. KC-Reduction is consistently better across all

queries. KC-Filter achieves better performance than S2RDF for Query 1 and Query

2 while it performs worse for Query 3 and Query 4. The reason is that the reduction

sizes corresponding to the query join patterns for Query 1 and two are much smaller

than those of S2RDF given the number of unique join patterns. The results between

KC-NoStat and KC-Reduction is not significantly different as the original PBF and

the reduction sizes do not generate a high query processing overhead.

Figure 4.10 gives the total execution time over Bio2RDF for five benchmark

queries. The results show how the use of reductions allows achieving better query

execution performance over a real and large dataset. KC-Reduction is consistently
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Fig. 4.10. Query processing performance (Bio2RDF).

better across all queries and KC-Filter achieves better performance than S2RDF for

most queries. KC-NoStat generates a higher query processing overhead compared to

KC-Reduction. This is attributed to not taking join ordering based on statistics into

consideration leading to a worse query execution plan. The effect of KC-NoStat is

more evident over Bio2RDF compared to YAGO due to the larger size of Bio2RDF.
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Fig. 4.11. Query processing performance (LUBM).

Figure 4.11 gives the total execution time over LUBM for 7 benchmark queries [9].

KC-Reduction is consistently better than S2RDF over the seven queries. Also,

KC-Reduction is nearly an order of magnitude better than S2RDF for Query 1, 2,

and 3. LUBM is larger than YAGO, so the advantage of utilizing reductions becomes

more prominent, reaching nearly an order of magnitude better query execution per-

formance at some instances. In Query 3, KC-NoStat generates double the overhead

compared to KC-Reduction.
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Fig. 4.12. Query processing performance (WatDiv).

Figure 4.12 gives the total execution time over WatDiv for 4 query shapes, namely

complex, linear, star, and snowflake [9, 18]. For example, star-shaped queries have a

common subject as a join attribute across a set of query triple patterns. For each

shape, a set of 20 queries where used. The mean query execution time is reported for

the 20 queries per shape. KC-Reduction consistently achieves the best performance

across all query shapes. Also, KC-Filter achieves better performance across com-

plex, linear, and star query shapes. KC-NoStat generates nearly double the query

processing overhead compared to KC-Reduction for star-shaped queries.
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Fig. 4.13. Reduction rate (YAGO).

Figure 4.13 and Figure 4.14 give the reduction rate that both KC and S2RDF

achieve compared to using no reductions. The reduction rate is calculated by counting

the total number of rows involved in the join operation. The results demonstrate the

main difference in the technique used by KC and S2RDF. In specific, KC employs a
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Fig. 4.14. Reduction rate (WatDiv).

more aggressive filtering strategy where N-ary joins are used to reduce every property

based file involved in the query join pattern.
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Fig. 4.15. Mean execution time per query pattern over WatDiv 1 Billion
dataset.

Figure 4.15 illustrates the query execution performance over WatDiv (1 Billion

triples) per query pattern. A query pattern represents a set of triples that vary based

on the bound and unbound attributes. The mean execution time is recorded for the

two systems for every triple pattern. Figure 4.15 shows that KC executes each pattern

nearly an order of magnitude faster than S2RDF.

Figure 4.16 gives a break-down of executing 1000 queries over LUBM (1 Billion

triples per query pattern). The mean execution time is also recorded on a pattern basis

for the two systems. The number of patterns included in the LUBM query workload

is 20. Figure 4.16 shows that all the patterns are executed faster by KC than S2RDF.
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Fig. 4.16. Mean execution time per query pattern over LUBM 1 Billion
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Fig. 4.17. Mean execution time based on the number of triples per query
over WatDiv 1 Billion dataset.

4.5 Concluding Remarks

This chapter presented KC , an RDF query processing system for cloud-based

platforms. First, we introduce the main components of KC . Second, we intro-

duce generalized filtering where exact and approximate set membership structures

are unified by defining a set of common operations. Third, we introduce a method

for reducing non-matching join entries in an online fashion using the generalized fil-

ters. Extensive experimentation using the WatDiv, LUBM, Bio2RDF, and YAGO2s

demonstrate how a realization of KC on top of Spark achieves an order of magni-

tude improvement in terms of preprocessing time, storage, and query performance

compared to the state-of-the-art system.
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5. DISTRIBUTED RDF QUERY PROCESSING USING

SEMANTIC FILTERING

One of the main goals of semantic data is to allow computers to understand in-

formation with minimum human intervention. This includes providing informative

answers to complex queries beyond what keyword-based queries can provide. One

way of representing semantic data is RDF. Linked Data 1 allows RDF datasets to

be interlinked to form an invaluable knowledge source. Projects such as the Linked

Open Data Cloud (LOD)2 provides access to more than a thousand web-scale RDF

datasets spanning multiple domains including geography, government, life sciences,

linguistics, media, and social networking. Businesses and Organizations (e.g., Mi-

crosoft, Google, Wolfram Alpha) also utilize web-scale closed source semantic datasets

for their business needs. Cloud-based ecosystems provide the necessary components

for managing web-scale RDF datasets. The Hadoop Distributed Filesystem (HDFS)

provides scalable, faulttolerant, and costefficient storage over commodity hardware.

Computational frameworks (e.g., MapReduce, Spark, Flink) provide efficient meth-

ods for analyzing and processing data. SQL-over-Hadoop systems (e.g., Impala, Hive,

Drill, Spark SQL) provide query capabilities over conceptually relational (e.g., Spark

Dataframe, Flink Distributed Dataframe) and graph data (e.g., Graph-X).

A plethora of semantic datasets exist that can provide answers to complex queries

beyond keyword-based results. However, the sheer size of semantic datasets raises

scalability and performance challenges. Organizations are adopting the Resource De-

scription Framework (RDF) for representing semantic data due to the simplicity of the

RDF data model, and the expressiveness of the RDF query language. Existing cloud-

based systems (e.g., Hadoop) provide an efficient and scalable ecosystem for managing

1http://linkeddata.org/
2lod-cloud.net
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RDF data. Also, distributed in-memory frameworks (e.g., Spark, Ignite, and Impala)

that run over Hadoop provide interactive performance for query-workloads. We in-

troduce the concept of semantic filters that reduce the number of irrelevant entries

that do not contribute to the final results of specific queries. The semantics associ-

ated with RDF data that does not match the semantics of specific RDF queries are

skipped from processing. The reduction of the evaluated entries allows systems to

process queries in around half the time.

In this chapter, we introduce how to efficiently filter data based on the semantic

aspects of the query? These challenges include (1) encoding of a query’s seman-

tic aspects, (b) filtering based on the query’s semantic aspects, and (c) distributed

evaluation of the semantic aspects.

5.1 Problem Statement

RDF queries can include multiple aspects such as Spatial (e.g., Regions, Points),

Temporal (e.g., Dates), and Ontological (e.g., RDF Schema (RDFS)). Utilizing the

semantic aspects of both the query and the data provides opportunities to infer what

resources can be identified as irrelevant with respect to the query. For example, if

the query requires only resources that are within France, then it is safe to discard

any other resource across all tables that are not within the spatial region of France.

While this seems a straightforward and logical optimization, the challenge is in how

to devise a generic approach that not only seamlessly applies to the spatial aspects

but also the temporal and the ontological aspects.

Set membership structures can be utilized to store the encoded information rather

than to store the encoding instead of the original data. However, the challenge be-

comes how to store the spatial, temporal, and ontological encoding inside a set mem-

bership structure. Also, how can set membership structures be used to filter resources

in tables that do not possess any of three aspects.
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Encoding: Each RDF triple can be represented using a string or a numeric

representation (i.e., dictionary encoding). However, the numeric representation of an

RDF resource has no associated semantic meaning. Encoding mechanisms are used

to associate semantics to numeric values that represent RDF resources. For example,

a numeric value representing a Hilbert curve can be used to represent the spatial

aspect of a particular resource [77]. However, the encoding needs to be applied to

the original data rather than having a secondary representation for every resource.

Another challenge is: How can more than one semantic aspect be associated with

resources without modifying the original value of a resource?

Filtering: Encoding enables query processors to identify irrelevant data that

do not match the query semantics. For example, the query in Figure 5.1 searches for

Sculptures in a specific spatial region, e.g., Egypt. Figure 5.1 illustrates the redundant

data that do not contribute to the final result in three different tables. The challenge

is: How to utilize the semantic aspects encoding, e.g.spatial information, to reduce

redundant RDF triples when answering spatial queries in a distributed setting?

SELECT ?r ?b

WHERE

?r   :type :Sculpture .

?r :InCountry ?b .

?r :hasGeometry ?g.

FILTER(Within(?g,"POLYGON(40,40,10,10)

Subject Object

Sphinx :Sculpture

Tut :Sculpture

Ra :Sculpture

Statue of L. :Sculpture

Subject Object

Sphinx :Egypt

Tut :Egypt

Ra :Egypt

Statue of L. :USA

Subject Object

Sphinx 10,10,10,10

Tut 20,20,10,10

Ra 30,30,10,10

Statue of L. 40,40,10,10

:type :InCountry :hasGeometry

Redundant Data

Fig. 5.1. Query processing of a SPARQL query with a spatial semantic
aspect.

Similarly, the temporal aspect can be used to filter all Egyptian sculptures if the

query is to find the sculptures created in the year 1875. The ontological aspect can
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be used to filter the resources of the sculptures type, e.g., if the query is to find the

resources that have Type Scientists.

Distributed Evaluation of the Semantic Aspects : Using a shared-nothing

cloud-based approach to process queries is challenging due to the absence of indexes in

many systems, e.g., Hadoop. Systems that provide indexes still suffer from network

shuffling overhead when locality of the indexed data is not enforced, especially if

the index size is large. Another challenge is: How to efficiently perform specific

operations, e.g., spatial operations (spatial joins, knn), in a distributed fashion?

The contributions of this chapter can be summarized as follows:

• We present a set of encoding techniques for different semantic aspects including

spatial, temporal, and ontological.

• We introduce semantic filtering of RDF resources that represent different as-

pects of the RDF data.

• We present an indexing mechanism for semantic filters for efficient RDF query

processing.

The rest of this chapter proceeds as follows. Section 5.2 presents the related

work. Section 5.3 presents semantic filters. Section 5.4 presents encoding techniques

for semantic filters. Section 5.5 presents an indexing technique for semantic filters.

Section 5.7 presents the experiments performed over the YAGO dataset. Finally,

section 5.8 presents concluding remarks.

5.2 Related Work

Most systems [78–80] focus on providing semantic aspect support, e.g., spatial,

rather than focus on the performance aspect [77]. Parliment [80] implements the

GeoSPARQL features in order to support spatial queries. Strabon [78, 81] is used to

manage and query spatiotemporal data but proposes its own set of query constructs

to achieve its target. Additionally, Strabon extends the query optimizer of existing
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RDF toolkits such as Sesame [82] to supports the efficient execution of spatial predi-

cates. However, both Strabon and Parliment rely on centralized stores, so they only

support primitive query optimization. Broadt et al. [83] extends the RDF-3x store

to support range queries. The system follows a spatial-first or non-spatial-first query

evaluation method. Additionally, the query evaluation method does not tackle order-

level optimization, e.g.interesting order, given the use of a spatial index. GeoStore [79]

uses Hilbert space-filling curves for encoding geometry literals by the Hilbert order.

S-Store [79] extends gStore [84] to support spatial querying.

Distributed spatial and spatiotemporal processing systems [85–88] have been pro-

posed. However, they only focus on a limited set of semantics. Also, they are not

tailored for handling RDF pattern matching queries that lead to query processing

performance degradation.

Up to our knowledge, there does not exist a system that considers multiple seman-

tic aspects of RDF data and queries to reduce irrelevant data during query processing.

Also, there is no work on distributed processing of semantic aspects at scale.

5.3 Semantic Filters

In order to filter irrelevant data around specific semantic aspects, one approach

is to create filters, termed semantic filters, around the semantic aspects of a query.

Every semantic filter consists of resources that encompass a spatial, temporal, or an

ontological aspect. The process of encoding maps the semantic aspect of a resource

into a single dimension. The temporal aspect can be represented by a full timestamp

(year, month, day, hour, minute, and seconds). Similarly, every ontological aspect

can be represented using a single numeric value. Then, the semantic filters can be

used to remove irrelevant resources from the query processing pipeline.
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5.4 Encoding

The objective of encoding data is to translate a specific semantic aspect from

higher dimensional form, e.g., latitude, and longitude, into sortable one-dimensional

data. The advantage of this approach is that it would be possible to encode specific

query information and determine if it overlaps or matches the encoded data.

Once the code is generated, the points are split based on predefined criteria. One

criteria for splitting the points is by count. This criteria has several advantages in-

cluding simplicity and scalability. The scalability aspect relates to the set membership

structure capacity. For example, using a probabilistic data structure such as Bloom

filters puts restrictions on the size of the filter. In other words, the more elements a

Bloom filter includes, the higher the false positive rate. The same applies to exact

set membership structures such as Bitmaps where there can be instances where a

maximum size is defined.

Finally, the encoded data is added to a set membership structure. The resource

name is added as an element, and the range of encoded values is recorded. Adding

the resource name allows us to determine if a specific resource is contained within

a specific encoding range. This approach allows using the filter as an indicator of

whether specific resources exist in a specific query range or not.

5.4.1 Spatial Encoding

Properties such as hasGeomety represent triples describing the latitude and lon-

gitude of RDF resources. The latitude and longitude of every RDF resource can be

mapped to a single dimension using a Hilbert space-filling-curve (HSFC) [77] or Geo-

hashing. For example, HSFC allows generating an ordered code that represents the

spatial aspect of an RDF resource. Geohashing uses a short alphanumeric string to

represent spatial coordinates. Such techniques can be utilized to determine if an RDF

resource qualifies a spatial filtering operation specified in a query (e.g., WITHIN()

filter function). This is possible by verifying if the coordinates of a spatial RDF
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resource falls within the boundaries of the query coordinates encoded values. The

encoded data can determine if specific resources could be skipped during query eval-

uation. For example, if the HSFC encoding of a query range is between 15 and 19,

then any entry below 15 or above 19 can be safely discarded from the computation.

0 1005 10 15 20 23 30 37 38 40 41 43 44 50 52 58

SUB OBJ

Eiffel Tower POINT(48.85, 2.29)

Great Wall POLYGON(30.1,31.2,32.3,33.4)

... ...

hasGeometry

Encoder

Filter 1 Filter 2 Filter 3

Threshold: 
5 Elements per filter

Fig. 5.2. Spatial encoding of RDF resources.

Figure 5.2 illustrates how RDF spatial data is encoded. The RDF triples objects

of spatial predicates, e.g.hasGeometry, have literal objects containing spatial coor-

dinates. The spatial coordinates represent e.g., points or polygons. Each point is

encoded using an encoder such as HSFC or Geohash. Finally, the encoded data is

added to the appropriate filter using the triple subject (i.e., resource name).

5.4.2 Temporal Encoding

Similar to spatial properties, temporal encoding allows describing time-related

information for temporal predicates (e.g., hDate, bornIn, and diedIn). Temporal

encoding is used to represent the temporal dimension of RDF resources. The temporal

encoding consists of 6 parts representing the year, month, day, hour, minute, and
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seconds. The temporal data of any RDF object is cast to this encoding format to

guarantee consistency of the encoded data.

2019 12 30 10 15 00
Year Month Day Hour Min. Seconds

Filter 1 Filter 2 Filter 3

-13000000000000 -10000000000000 19111211000000 19801212000000 20001010000000 20181012000000

100 Elements 100 Elements 100 Elements

Fig. 5.3. Temporal encoding of RDF resources.

Figure 5.3 illustrates 300 encoded resource. The encoded data can be negative,

e.g.prehistoric age, or positive, e.g.Gregorian calendar. The encoded data is then

sorted based on its value. This generates a continuous timeline representing all the

temporal resources. Finally, the range is split based on the count of resources, e.g.,

every 100 elements. Every encoded element in a split is added to a single temporal

filter by the resource name (i.e., the subject of the triple).

5.4.3 Ontological Encoding

Similar to the spatial and temporal encoding, the objective of developing an on-

tological encoding scheme is to allow semantic filtering to be done on the ontological

aspect of RDF resources. Unlike spatial and temporal encoding, there exists no di-

rect method of reducing multiple ontological aspects of an RDF resource to a single,

sortable dimension.

The first step in creating an ontological encoding is to build a hierarchical tree

based on the subClassOf triples. Figure 5.4 illustrates a hierarchical tree that is

built based on subClassOf triples that exist in a dataset. For example, the triples

describing the subClassOf relations of a resource Thing can be seen as Person,

Animal, and Vehicle.
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Thing

Person Animal Vehicle

Male Female Car Boat

Ferrari Jeep

Thing.    à 1
Person   à 2
Male à 3
Female  à 4
Animal  à 5
Vehicle  à 6
Car à 7
Ferrari  à 8
Jeep     à 9
Boat     à 10

Dictionary

Person à 3, 4
Animal à
Vehicle à 7, 8, 9, 10 

Hierarchical List/filter

Mohamed Salah
Mohamed Ali
Mesut Ozil
...

Person
Tiger
Cheetah
Elephant
...

Animal
Cherokee
Land Cruiser
Mustang
...

Vehicle

Semantic Filters

?x rdf:type :Male
?x age      ?y

Person

SUB PRED OBJ

Mohamed Ali age 87

Eiffel Tower age 125

Mohamed Salah age 28

Age

Fig. 5.4. Ontological encoding of RDF resources.

The second step is to encode every element in the hierarchy into a numeric rep-

resentation. For example, the resource Thing is assigned the value 1. The numeric

encoding allows adding resources to set membership structures, e.g.Roaring bitmaps,

efficiently.

The third step is to represent the hierarchical structure at a specific level as a set

of list structures. For example, if level 2 is chosen as the encoding level, then Person,

Animal, and Vehicle will be defined as lists. Every list includes all the children of

a resource. For example, Vehicle includes the encoding of every subclass element

such as Car, Boat, Ferrari, and Jeep corresponding to numeric values 7, 8, 9 and

10 respectively.

The fourth step is to create a filter corresponding to every list created. The filters

include all resources that have a triple pattern belonging to a specific ontological class.

For example, all resources that have a subClassOf triple with an object being Person,

Male or Female will be added to a filter corresponding to Person. The number of

filters created corresponds to the number of ontological elements at the selected level

in the hierarchy.
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5.5 Indexing Semantic Filters

Once the semantic aspects of a query are determined, an encoding phase of every

semantic aspect is performed to identify what filter to use. The filter is the indicator

of whether specific resources exist given the query semantic aspects. However, this

requires scanning all filters to determine which filter to probe. Having an index

that represents the ranges covered by each filter can break the linear scan of filters,

especially if the number and sizes of filters are large.

[10,29]
val: Filter 2

[5,9]
val: Filter 1

[30,49]
val: Filter 3

[50,60]
val: Filter 4

Query: [5-20]  
Matches:  
Filter 1
Filter 2

Query: [5-6]  
Matches:  
Filter 1

Fig. 5.5. An interval tree is used to index semantic filters.

Given an encoding of a query semantic aspect, the index is required to identify

which semantic filters need to be used. An interval tree is one structure that satisfies

this objective. Figure 5.5 illustrates an interval tree built for a set of filters where

each node in the tree represents the range that the node covers and the filter that

covers that range. For example, given a query where the encoded value ranges from

5 to 20, the interval tree presents Filter 1 and two as the ones that match that query

range. Similarly, if the query range was 5 to 6 then Filter 1 will be the only match.
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5.6 Query Processing using Semantic Filters

The objective of creating semantic filters is to allow reducing irrelevant resources

from query processing as early as possible. This includes reducing the size of inter-

mediate results in a distributed setting. Reducing irrelevant results in a distributed

setting involves pushing down the filtering process to the node level. This requires

that each node be aware of what the query semantic aspects are in order to determine

which filters to use.

SELECT ?r ?b  
WHERE {
?r
?r
?r

:type
:InCountry
:hasGeometry

:Monument .
?b .
?g .

FILTER(WITHIN(?g,"POLYGON(24.7,22.0,37.06,31.81)
}

Subject Object

Pyramids POINT(29.97, 31.13)

Great Wall POINT(40.43, 116.57)

Eiffel Tower POINT(48.85, 2.29)

Statue of Liberty POINT(40.68, 74.04)

Subject Object

Pyramids :Egypt

Great Wall :China

Eiffel Tower :France

Statue of Liberty :USA

:InCountry

Subject Object

Pyramids :Monument

Great Wall :Monument

Eiffel Tower :Monument

Statue of Liberty :Monument

:type :hasGeometry

Machine/Thread 3

Filter(Monument) & Filter(15)Filter(Monument) & Filter(15)

Subject Object

Pyramids :Monument

Machine/Thread 1

Filter(Monument) & Filter(15)

Subject Object

Pyramids :Egypt

Machine/Thread 2

Subject Object

Pyramids POINT(29.97, 31.13)

Fig. 5.6. Semantic filters applied in a distributed setting.

Figure 5.6 illustrates a query that has an ontological and spatial aspect. In specific,

the query requires finding resources of type Monument within a specific spatial range.

The first step required to determine which semantic filters to use is to encode all the

semantic aspects of the query. For example, assuming that the ontological aspect

had filters created at the same level as Monument then a filter with the same name

will be used. For the spatial aspect, encoding the range query values specified in the

query using the Geohash or HSFC techniques, e.g., Filter(15) representing Egypt.
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For both the spatial and ontological aspects, the interval tree can be used to find the

matching filters to use, e.g., Filter(Monument) and Filter(15).

5.7 Experimental Evaluation

We implemented the semantic filtering over Knowledge Cubes or KC for short 3.

KC is an RDF query processing system that runs over Spark [69]. Realizing semantic

filters on top of a Hadoop-based system demonstrates the applicability of the proposed

techniques over widely adopted components, e.g., HDFS, and Spark. Semantic filters

can also be implemented in other specialized RDF query processing systems. Semantic

filtering is compared against the baseline implementation of KC where no filtering is

performed.

5.7.1 Experimental Setup

Our experiments are conducted using a real dataset, namely YAGO2s 2.5.3 [20,

21]. YAGO2s contains 245 million triples. YAGO2s benchmark queries are used to

compare the query execution time [77]. The queries are defined by a semantic aspect

or an RDF aspect. The RDF aspect refers to a SPARQL triple pattern while the

semantic aspect refers to a query having a spatial, temporal, or ontological aspect.

For each benchmark query, the first letter of the query name refers to the semantic

aspect while the second letter refers to the RDF aspect. The (S) symbol refers to

the aspect being selective (i.e., Small) while the (L) refers to the aspect as being

non-selective (i.e.Large).

All experiments are performed using a cluster consisting of 12 nodes. The cluster

uses Cloudera 5.9. Spark 2 is used as a computational framework and Hadoop HDFS

as a distributed file-system. Each node consists of 168 GB of RAM and eight cores.

The total HDFS size is 10 Terabyte.

3http://github.com/purduedb/knowledgecubes
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5.7.2 Experimental Results

The experiments measure various aspects of semantic filters including (1) number

of generated filter per aspect, (2) storage overhead, (3) query execution performance,

(4) reduction rate. KC is used as a baseline.

Spatial Aspect

The first set of experiments measure the performance of the spatial aspect. The

spatial filters are created from the hasLatitiude and hasLongitude properties. The

objects for triples having these two properties describe the spatial aspects of the

corresponding subjects. For example, a resource such as Egypt will have spatial

aspect triples, one describing the latitude and longitude.

Table 5.1.
Number of filters generated for 10K, 100K, 1M element per spatial aspect
filter.

Count Number of filters
10K 673
100K 68
1M 7

Table 5.1 illustrates the number of filters created given 10K, 100K, and 1M ele-

ments per filter. The number of triples representing the hasLatitiude and hasLongitude

properties is 7 million triples. Using a filter size of 10K, the number of generated fil-

ters reaches 673. However, if the filter size is 1 million, then the total number of

filters is 7.

Table 5.2 illustrates the number of sizes of filters generated given different sized

filters. The smallest sizes are generated when the largest filters are used. The reason

is that each generated filter can use hashing, e.g.Bloom filter, or bits, e.g.Roaring

bitmaps, to represent the elements. This implies that adding elements to an existing
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Table 5.2.
Sizes of filters generated for 10K, 100K, 1M element per spatial aspect
filter.

Count Size (MB)
10K 18
100K 15
1M 11

structure is less expensive than creating a new structure with a smaller size. However,

this is not always true if the used structure is probabilistic in which the false positive

rate will increase.

0.E+00

5.E+03

1.E+04

2.E+04

2.E+04

3.E+04

LL1 LL2 LS1 LS2 SL1 SL2 SS1 SS2
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s)

Query Number

Semantic Baseline

Fig. 5.7. Query processing performance using the spatial aspect.

Figure 5.7 illustrates the query processing performance when using filters of size

1 million to process the benchmark queries. The results for queries LL1, LL2, and

SS2 achieve less than half the query processing overhead compared to the baseline.

Figure 5.8 illustrates the reduction rate achieved when considering the spatial

aspect of the query. The spatial aspect provides an opportunity to remove almost an

order of magnitude of irrelevant RDF resources for non-selective queries. Also, the

reduction rate is also significant when the spatial aspect is non-selective while the

RDF aspect is selective.
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Fig. 5.8. Reduction rate using the spatial aspect.

Table 5.3.
Number of filters generated per query for 10K, 100K, 1M element per
spatial aspect filter.

Query 10K 100K 1M
LL1 59 7 1
LL2 156 17 2
LS1 1 1 1
LS2 93 10 2
SL1 203 21 3
SL2 184 19 3
SS1 6 2 1
SS2 12 2 1

Table 5.3 illustrates the number of filters used when processing every benchmark

query based on different filter sizes. The results illustrate how using smaller filters

forces the query processor to use more filters during the filtering process. This also

translates to lower efficiency in terms of query processing performance.

Figure 5.9 illustrates the query processing performance given different-sized spatial

aspect filters. The results illustrate the degradation of query processing performance

when the filters are small. This leads to a larger number of filters to be used as shown

in Table 5.3.
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Fig. 5.9. Query processing performance using 10K, 100K, and 1M ele-
ments per spatial aspect filter.
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Fig. 5.10. Reduction rate using using 10K, 100K, and 1M elements per
spatial aspect filter.

Figure 5.10 illustrates the advantage of having smaller filters with respect to the

reduction rate. In contrast to the advantage of having fewer filters used during query

processing, having a more comprehensive coverage of resources when using smaller

filters has a small advantage with respect to the reduction rate.

Temporal Aspect

The second set of experiments measure the performance of the temporal aspect.

The temporal filters are created for wasBornOnDate and wasCreatedOnDate proper-
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ties. The objects for triples having these two properties describe the temporal aspects

of the corresponding subjects. For example, a resource such as Mohamed Ali will have

temporal aspect triples using the property wasBornOnDate while a resource such as

Pyramids will have temporal aspect triples using the property wasCreatedOnDate.

Table 5.4.
Number of filters generated for 1K, 5K, 50K element per temporal aspect
filter.

Count Number of filters
1K 31
5K 7
50K 3

Table 5.4 illustrates the number of temporal filters created when creating filters

of sizes 1K, 5K, and 50K. The temporal coverage for the selected predicates (i.e.,

wasBornOnDate and wasCreatedOnDate) is smaller than the spatial coverage in the

YAGO dataset where wasBornOnDate contains 686,072 triples while wasCreatedOnDate

contains 507,733 triples. Similar to the spatial aspect filters, the smaller the size of

the filter, the larger number of filters are created.

Table 5.5.
Sizes of filters generated for 1K, 5K, 50K element per temporal aspect
filter.

Count Size (MB)
1K 1.2
5K 1.1
50K 1

Table 5.5 illustrates the sizes of generated filters. Given the smaller number

of resources contained within each filter, the overall sizes for the generated filters

corresponding to wasBornOnDate and wasCreatedOnDate does not surpass 2MB in

size.
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Fig. 5.11. Query processing performance using the temporal aspect.

Figure 5.11 illustrates the query processing performance when using the temporal

aspect filters. The results illustrate how the benchmarks queries having a dominant

RDF result set achieve almost an order of magnitude better results than the baseline.

This demonstrates how selective the temporal dimension is and how effective it is as

a criteria for filtering irrelevant resources from query processing.
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Fig. 5.12. Reduction rate using the temporal aspect.

Figure 5.12 illustrates the reduction rate achieved when using the temporal aspect

filters. The results illustrate how the temporal dimension is effective in reducing

irrelevant RDF resources. The reduction rate appears higher than the spatial aspect

as less number of resources possess a temporal dimension, and thus the filtering

process is more aggressive.
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Table 5.6.
Number of filters generated per query for 1K, 5K, 50K element per tem-
poral aspect filter.

Query 1K 5K 50K
LL1 25 6 1
LL2 25 6 1
LS1 15 4 2
LS2 25 6 1
SL1 24 6 2
SL2 25 6 2
SS1 8 3 1
SS2 12 3 2

Table 5.6 illustrates the number of filters used when answering every benchmark

query. The number of filters used is less as the number of resources available per filter

increases. In the worst case the total number of filters used if the filter size is 1K can

reach 25 filters. This affects the overall query processing performance as shown in

Figure 5.13 compared to using larger-sized filters.
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Fig. 5.13. Query processing performance using 1K, 5K, and 50K elements
per temporal aspect filter.

Figure 5.13 illustrates the query processing performance across multiple filter sizes.

The results illustrate how filters of size 1K significantly affect query processing per-

formance when compared with the 50K sized filters. On the other hand, query LL2
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exhibits better performance, unlike the other benchmark queries. The reason can be

attributed to Spark as it handles smaller sized data efficiently. This is also evident

in Figure 5.14 where the smallest sized relations among all benchmark queries is also

LL2.
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Fig. 5.14. Reduction rate using using 1K, 5K, and 50K elements per
temporal aspect filter.

Figure 5.14 illustrates the reduction rate achieved for the temporal aspect using

filters of 1K, 5K, 50K in size. The reduction rate is comparable across the three sizes.

Ontological Aspect

The third set of experiments measure the performance of the ontological aspect.

The ontological filters are created at the first subclass level after Thing resource.

The number of subclasses of Thing for the YAGO dataset is seven. Each resource

belonging to a subclass of the seven top-level resources is added to the corresponding

filter of the top-level resources. For this set of experiments, we used the benchmark

queries proposed by [9] and added an additional triple that corresponds to an onto-

logical aspect, namely rdf:type where we filter based on resources belonging to the

wordnet_person_100007846 class.
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Table 5.7.
Number of filters generated per query for 1K, 5K, 50K element per tem-
poral aspect filter.

Query 1K
wordnet person 100007846 8997551

wordnet organization 108008335 2137041
wordnet building 102913152 2394753

yagoGeoEntity 38096604
wordnet artifact 100021939 6836860

wordnet abstraction 100002137 6575470
wordnet physical entity 100001930 27944652

Table 5.7 summarizes the number of resources that maps to each direct subclass

of Thing. Each resource is recursively added to the appropriate filter based on the

subclass relation with the top-level seven resources.
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Fig. 5.15. Query processing performance using the ontological aspect.

Figure 5.15 illustrates the query processing performance when using the ontologi-

cal aspect filters. The results illustrate how Q1 and Q3 achieve more than an order of

magnitude better performance when utilizing the ontological aspect for filtering the

base tables. On the other hand, Q2 and Q3 achieve comparable performance. This is

attributed to Spark where smaller-sized relations are executed more efficiently.
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Fig. 5.16. Reduction rate using the ontological aspect.

Figure 5.16 illustrates the reduction rate achieved when using the ontological

aspect filters. The results illustrate how the ontological aspect achieves nearly an

order-of-magnitude reduction rate when compared to the base relations.

5.8 Concluding Remarks

In this chapter, we introduce semantic filtering. First, we introduce how semantic

filtering can be used to efficiently filter data based on the semantic aspects of the

query. Second, we introduce a set of encoding schemes for queries possessing a spatial,

temporal, and ontological aspect. Finally, we introduce a method for using semantic

filters to perform efficient distributed query processing of queries by filtering irrelevant

RDF resources. The results demonstrate how semantic filters on top of Spark achieves

an order of magnitude improvement in terms of query performance compared to a

baseline implementation.
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6. CONCLUSIONS

In this dissertation, we study efficient query processing over web-scale RDF data.

In Chapter 1, we show how semantic data is becoming an integral component for

nowadays demanding and sophisticated user applications and search engines that

provide answers beyond keyword-based matches in support of the Semantic Web. We

showcase how RDF is becoming the defacto standard for semantic data representation

in the Semantic Web. We discuss how the astronomical growth of RDF data calls for

scalable RDF management and query processing strategies.

Chapter 2 presents RDF query optimization techniques over vertically partitioned

(VP) data. Bloom join is presented as a technique or computing a reduced sets of

RDF triples that satisfy specific join pattern(s). We study the effect of caching

reductions rather than caching the final results. Also, we study partitioning of RDF

data triples using the join attributes of the query instead of using a static criteria.

Also, we present how to efficiently answer unbound property queries using Bloom

filters. Extensive experimentation using synthetic and real datasets demonstrate an

order of magnitude enhancement in terms of preprocessing time, storage, and query

performance.

Chapter 3 presents SPARTI, a semantic partitioning technique for RDF data. We

introduce SemVP as a relational partitioning scheme that provides row-level semantics

for RDF data. The row-level semantics allow reading a reduced set of rows when

answering specific query join-patterns. We introduce an algorithm for discovering

co-occurring properties in the query-workload and use the co-occurring properties to

compute join filters. A cost-model for managing join filters is proposed and is used to

prioritizes the creation of the important join filters. The experimental study shows

how SPARTI achieves robust performance over synthetic and real datasets compared

to state-of-the-art cloud-based solutions.
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Chapter 4 presents KC, an RDF query processing system for cloud-based plat-

forms. KC adopts a generalized filtering approach where exact or approximate set

membership structures can be used by defining a set of common operations that both

support. Generalized filtering is used for reducing non-matching join entries in an on-

line fashion. Extensive experimentation using synthetic and real datasets demonstrate

how KC achieves an order of magnitude improvement in terms of preprocessing time,

storage, and query performance compared to a cloud-based state-of-the-art system.

Finally, Chapter 5 presents semantic filtering, a technique for efficiently filtering

data based on the semantic aspects of the query. The semantic aspects can be spa-

tial, temporal, or ontological. We introduce a set of encoding schemes that targets

each semantic aspect. Also, we introduce a method for utilizing semantic filters in

a distributed fashion. The results demonstrate how semantic filters allow query pro-

cessing systems to achieve an order of magnitude improvement compared to a baseline

implementation.
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