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ABSTRACT

Sarangapani, Prasad Ph.D., Purdue University, December 2018. Quantitative Prediction of
Non-Local Material and Transport Properties Through Quantum Scattering Models. Major
Professors: Gerhard Klimeck, Tillmann Kubis.

Challenges in the semiconductor industry have resulted in the discovery of a plethora of

promising materials and devices such as the III-Vs (InGaAs, GaSb, GaN/InGaN) and 2D

materials (Transition-metal dichalcogenides [TMDs]) with wide-ranging applications from

logic devices, optoelectronics to biomedical devices. Performance of these devices suffer

significantly from scattering processes such as polar-optical phonons (POP), charged im-

purities and remote phonon scattering. These scattering mechanisms are long-ranged, and

a quantitative description of such devices require non-local scattering calculations that are

computationally expensive. Though there have been extensive studies on coherent trans-

port in these materials, simulations are scarce with scattering and virtually non-existent

with non-local scattering.

In this work, these scattering mechanisms with full non-locality are treated rigorously

within the Non-Equilibrium Green’s function (NEGF) formalism. Impact of non-locality

on charge transport is assessed for GaSb/InAs nanowire TFETs highlighting the underesti-

mation of scattering with local approximations. Phonon, impurity scattering, and structural

disorders lead to exponentially decaying density of states known as Urbach tails/band tails.

Impact of such scattering mechanisms on the band tail is studied in detail for several bulk

and confined III-V devices (GaAs, InAs, GaSb and GaN) showing good agreement with

existing experimental data. A systematic study of the dependence of Urbach tails with di-

electric environment (oxides, charged impurities) is performed for single and multilayered

2D TMDs (MoS2, WS2 and WSe2) providing guideline values for researchers.
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Often, empirical local approximations (ELA) are used in the literature to capture these

non-local scattering processes. A comparison against ELA highlight the need for non-

local scattering. A physics-based local approximation model is developed that captures the

essential physics and is computationally feasible.
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1. INTRODUCTION

This decade has been one of the exciting and challenging ones for the semiconductor indus-

try. Transistor field has moved from the planar Metal-semiconductor field-effect transistors

(MOSFETs), workhorse of microprocessors for the past 40 years to three-dimensional fin-

FETs and has been able to push the boundaries of Moore’s law predictions [1].

The Economist recently came up with an opinion and review article on the transistor

count and power consumption trend for the past 45 years [2]. While the semiconductor

industry has reaped benefits from Moore’s law for over 5 decades, power consumption and

clock speed have tanked in the past 10 years. The economics of producing a transistor is

increasing as well resulting in delay of next generation ICs into the market. Despite the

trend, Moore’s law has not hit a brick wall. Chipmakers are spending billions on new de-

signs and materials that may make transistors amenable to a bit more shrinkage and allow

another few turns of the exponential crank. This has led to the discovery of a plethora of

promising materials and devices such as the nanowires [3], [4], III-V MOSFETs and tun-

nel FETs [5], [6], two dimensional materials such as the transition metal dichalcogenides

(MoS2, WSe2) [7].

In the context of FET scaling, metal-semiconductor contact resistance poses a criti-

cal challenge for continued MOSFET scaling. With shrinking device area, the parasitic

source/drain resistance increases unless the metal-semiconductor contact resistivity, ρc is

designed to decrease proportionately [8]. The International Technology Roadmap for Semi-

conductor (ITRS) has set a target on achievable values for ρc by 2023 to meet both scaling

and performance requirements for logic devices and with each additional node, this has

become an uphill. Unless possible mitigation schemes are proposed, power consumption

of a transistor will be dominated by the contact resistance and interconnects.

Another possible way to reduce the power consumption is to reduce voltage to achieve

the same current levels as current FETs. Conventional FETs are limited by the thermal
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Fig. 1.1.: Over the past few years, power consumption and clock speed of transistors have

tanked due to the limitations imposed by scaling of transistors. Source: Economist [2]

Fig. 1.2.: With aggressive scaling of transistors, contact resistance is a major source of

bottleneck in transistor performance. Source: Lam Research [9]
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Boltzmann limit of 60mV/decade. Also, known as subthreshold slope, it is amount of volt-

age required to bring about a decade increase in current. TFETs overcome this barrier by

harnessing quantum mechanical tunneling to generate electric current. They offer a pos-

sible solution to sustain the Moore’s law scaling. Their ability to provide sub-60 mV/dec

subthreshold slope offers possibilities to operate transistors at low voltages and perform

low-power computation. A plethora of materials such as InGaAs, GaSb and InAs are con-

sidered as potential candidates as TFETs due to their direct band gap and lower effective

masses which is important in the context of tunneling [10–14]. Tunneling transistors pro-

vide sub-thermal switching by filtering out the high energy states in the Fermi distribution

and by clever band engineering. Steep switching is achieved by a sudden onset of density

of states through band alignment. Despite the ongoing research in TFETs, only a handful

devices have managed to achieve sub-60 mV/dec SS [10, 15–17]. This is mainly due to

imperfections in the device contributing to higher OFF current and SS. These imperfec-

tions include phonon scattering, alloy disorder, roughness, heavy doping induced band tail

states and interface trap states which prevent sub-60 mV/dec SS performance. On the other

hand, simulation results have shown extremely positive results for several TFETs. Since

these materials are in the nanoscale regime, atomistic modeling approaches are needed

to capture the essential physics and a quantum mechanical transport is definitely needed to

capture the complex scattering processes that the electrons undergoes with the surrounding.

Among the scattering mechanisms present in tunneling junctions, polar optical phonons,

impurities play an important role in determining the performance of these devices. They

not only result in scattering of electronic states but also result in broadening and shift of

energy levels affecting tunneling considerably. Tailing of band edge states (known as Ur-

bach tails) and band gap narrowing can alter the behaviour of such device. Switching

behaviour of TFET is drastically affected by such tailing states [19, 20]. Such band tail

and narrowing phenomenon is not only restricted to tunnel junctions such as TFETs and

Esaki diodes but is also of significant importance in optical devices such as GaN/InGaN

light-emitting diodes [21–23] and high-performance solar cells [24–26]. Currently, there

are analytical descriptions of these phenomenons and even the simulations that exist cor-
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Fig. 1.3.: Illustration of tunneling transistor. TFET provides sub-60 mV/dec subthrehsold

slope by creating a band pass filter excluding high energy electron/hole contribution.

Source: Penn State [18]
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respond to the bulk regime. It is not clear how these scattering parameters scale down to

ultra-scaled devices such as thin films and nanowires. This requires a rigorous treatment

of scattering mechanisms in the quantum transport regime to provide a physical intuition

and a guideline. One of the interesting features of these scattering mechanisms is that they

are non-local in nature. By non-local, we mean that the electron scattering is not restricted

to just a single atomic or impurity site but is smeared out over a characteristic distance

dependent on the electrostatic screening of the system. This adds additional complexity in

solving such scattering interactions.

2D FETs provide an avenue to push the scaling to the ultimate limit where the devices

are only few atomic layers thick. Two dimensional materials have attracted considerable

attention recently due to their unique electronic, optical and mechanical properties [27].

Unlike graphene, transition metal dichalcogenide (TMDs) have a finite band gap which

provides for applications in electronics as a replacement for Si transistors [28], in opto-

electronics as possible materials in light emitting diodes [29], [30] and solar cells [31]

applications. TMD layers have weak van der Waals coupling which enables low cost fab-

rication (through mechanical cleavage) and have electronic/optical properties that show

strong dependence as a function of layers. Ability to stack multiple TMD materials on

top of another significantly widens the design space available resulting in a plethora of

devices such as MoS2 −WSe2 p-n junctions [32], MoS2 − Ge based tunnel field-effect

transistor (TFET). 2D layered semiconductors have the ability to alleviate several of the

scattering problems mention earlier due to their pristine surface and weak inter layer cou-

pling. However, being an atomically thin material, their behaviour is highly dependent on

the nature of the dielectric environment such as nature of oxide layer on which it is ex-

foliated, on the number of layers as dielectric constant of TMD materials varies sharply

with layers and is anisotropic [33]. Charge scattering and mobility is shown to depend

heavily on the interplay between impurity concentration and native oxides due to dielectric

screening [34, 35]. This requires a rigorous treatment of both the material and associated

dielectric environment to get a good understanding on the behaviour of Urbach parameters

for TMD materials.
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Fig. 1.4.: Successful synthesis of several 2D materials has led to demonstration of single

and multilayer FETs. Source: Nature Nanotechnology [7]
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This work has been split into 8 different chapters. Chapter 2 tries to address the prob-

lem of scaling of contacts and investigates contact resistance in pMOS Schottky contacts

for Si and SiGe systems. This chapter specifically tries to answer the question of achievable

contact resistances in pMOS devices through quantum transport approach. At the end of

this chapter, guideline values for contact resistances are provided for several material and

device parameters. Chapter 3 introduces modeling methodology for non-local scattering

mechanisms, specifically focusing on three different scattering mechanisms - polar optical

phonons, charged impurities and remote oxide phonons. Self-consistent Born approach to

treat scattering is introduced with self-energy expressions being rigorously derived for bulk

and confined devices. These scattering models are compared to analytical Fermi’s golden

rule which serves as a benchmark. This chapter sets the tone for discussions for other sub-

sequent chapters. Chapter 4 is an extension of Chapter 3 and provides a numerical scheme

to estimate non-locality in a system and ease the computational burden of such non-local

scattering calculations. Chapter 5 tries to investigate the current-voltage characteristics of

III-V GaSb/InAs nanowire TFET in the presence of such scattering mechanisms. Clear

deviation from ideal simulation is observed and the observations are explained with high

resolution results which resolve several degrees of freedom in the system such as energy,

momentum, position and scattering orders. Chapter 6 provides a detailed discussion on

one of the artifacts of non-local scattering - band tails and band gap narrowing. Both

these parameters significantly affect performance of tunneling and optical devices. Several

candidate materials are chosen and band tail/band gap narrowing parameters are extracted

from rigorous non-local scattering calculations. For several simulation cases, results are

compared against experimental data and are shown to be in good agreement. Finally, a

parameter list based on a fitting function is generated to provide guideline values to re-

searchers. Chapter 7 describes modeling band tails in 2D TMD materials and investigates

the role of dielectric environment on band tail enhancement. 2D TMDs being atomically

thin, have their performance affected significantly by several environmental effects such as

oxides, phonons and impurities. This chapter tries to look into 3 candidate TMD materials
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and the impact of band tails on these external parameters such as nature of oxide material,

number of layers, doping and temperature dependence.
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2. ATOMISTIC TIGHT-BINDING STUDY OF CONTACT
RESISTIVITY IN SI/SIGE PMOS SCHOTTKY CONTACTS

2.1 Summary

The metal-semiconductor contact resistivity has started to play a critical role for the

overall device performance as Si is reaching 10nm size ranges. The ITRS target predicts a

requirement of 10−9Ω.cm2 by 2023 which has been a challenging target to achieve. This

work explores the impact of doping concentration, Schottky barrier height, strain and SiGe

mole fraction on the resistivity of Si/SiGe PMOS contacts with 20-band atomistic tight

binding quantum transport simulations. Commonly used simple effective mass approxi-

mation models are shown to overestimate the resistivity values. The predicted model re-

sults are compared with experimental data and the device parameters needed to achieve

10−9Ω.cm2 are identified.

2.2 Motivation

The metal-semiconductor contact resistance poses a critical challenge for continued

MOSFET scaling. With shrinking device area, the parasitic source/drain resistance in-

creases unless the metal-semiconductor contact resistivity, ρc is designed to decrease pro-

portionately [8]. The ITRS has set a target for ρc as 10−9 Ω.cm2 to meet both the scaling

and performance requirements for logic devices by 2023 [36]. To meet that scaling require-

ment, it is imperative to evaluate the effect of different device parameters such as doping

concentration (Nd), Schottky barrier height (φB), semiconductor material and strain on ρc.

This problem of metal-semiconductor interfaces is typically studied using the Wentzel-

Kramers-Brillouin (WKB) approximation which is fundamentally only valid for barrier

potentials that vary slowly compared to the electron wavelength [37]. As device scales



10

approach a few nanometers, material and electronic properties vary on an atomistic level

rather than a mesoscopic length-scale. Hence, this work employs a quantum transport ap-

proach to investigate metal-semiconductor junctions.

There have been studies based on quantum transport and mode counting approaches.

For instance, in Ref. [38] an intrinsic lower limit of the contact resistivity was found using

full band tight binding (TB) and density functional theory (DFT) calculations. Transport

studies using the non-equilibrium Green’s function (NEGF) method have been performed

by [39] with an effective mass (EM) model. Refs. [40] and [41] use NEGF along with DFT

on realistic silicide-silicon contacts and show an increase in contact resistance due to valley

filtering in metals. The published results available so far discuss electron transport across a

metal-semiconductor interface but have, to our best knowledge, not considered a rigorous

treatment of hole transport.

Since the CMOS process depends both on electron and hole transport, it is critical

but very challenging to study the hole transport as well. The hole bandstructure is non-

parabolic and highly anisotropic such that EM approaches are even less applicable in gen-

eral. A 20-band tight binding approach is taken here to represent the hole bandstructure

accurately. SiGe/Ge based finfets and nanowires have been demonstrated and considered

to be possible options for continued scaling of transistors (see refs. [42], [3] and [43]).

Hence, the focus of this work is to identify with atomistic tight binding simulations for

Si/SiGe PMOS metal-semiconductor contacts device parameters that can either meet or

even supersede the ITRS requirements.

This work is composed of 3 sections. Section II describes the simulation approach

used to model these metal-semiconductor junctions. Section III describes the simulation

results as a function of different device parameters and Section III provides a summary and

conclusion.
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2.3 Simulation Approach

Ballistic quantum transport across Schottky contacts is modeled with the Quantum

Transmitting Boundary Method (QTBM) of the nanoelectronic modeling tool, NEMO5

[44]. A 20 band sp3d5s* empirical tight binding basis (TB) with spin-orbit coupling is

chosen to represent the hole bandstructure [45]. Figure 2.1 shows the bandstructure of Si

plotted along high symmetry points. The metal is modeled by extrapolating the semicon-

ductor structure into the leads and by shifting the valence bands up by a potential offset to

mimic the density of states (DoS) of the corresponding metal around the Fermi level [46].

NiSi is chosen as the corresponding metal and the potential offset of 0.5eV is applied to

the semiconductor by matching the DoS of NiSi at Fermi level obtained from [47]. Fig-

ure 2.2 illustrates a schematic of the typical device valence bandedge profiles along with

the atomic structure of the device considered in this work. The device is periodic in y

and z directions and is treated with open boundary conditions in the x direction. φSBH

corresponds to the Schottky barrier height set in the simulation and φoffset corresponds to

the valence band offset of 0.5eV mentioned above. This approach does not capture valley

filtering effects due to the metal-semiconductor contacts but does provide us with a best

estimate of resistivity values [41]. Convergence with respect to the momentum resolution

was achieved with a 20 × 20 momentum-grid in the two periodic directions. For charge

self-consistency, the QTBM equations are solved iteratively with the Poisson equation until

convergence is achieved. The Si1−xGex alloy is modeled within the Virtual Crystal Ap-

proximation (VCA) [48]. Strain effects in TB are captured with the model of [49]. The

resistivity is computed by simulating transport at low bias (10mV) and extracting it from

Landauer’s expression [50]

1

ρc
=

2q2

h

∫ ∞
−∞

T (E)

(
− ∂f
∂E

)
dE (2.1)

For the parameter space assessments, first a center parameter point that represents a

conventional p-type Si Schottky contact is chosen. Then, the respective parameter is varied

around that center point. Table I shows these parameter centers and the respective variation
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Fig. 2.1.: Plot of Si bandstructure along high symmetry points obtained from 20 band

sp3d5s* tight- binding approach with spin-orbit coupling.

Fig. 2.2.: Schematic of a atomic structure of device with typical valence band edge profile.

φSBH corresponds to the Schottky barrier height at the metal-semiconductor interface and

φoffset represents the valence band offset that is added to mimic the metal density of states

around the Fermi level.
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Parameter Center Point Value Parameter Variation

ND 2× 1020cm−3 0.5− 4× 1020cm−3

φSBH 0.35 eV 0.2 eV - 0.8 eV

Crystal direction [100] [110] and [111]

Si(1−x)Gex x = 0 x = 0 to x = 0.5

Strain No strain −1.5% to 1.5%

Table 2.1.: Considered device parameters along with their center point values and variation

ranges.

ranges. For the Ge mole fraction calculations, barrier heights are correspondingly lowered

with increasing Ge mole fraction values according to [51]. The comparison against effec-

tive mass simulations are done by simulating multi-valley effective mass tunneling model

as prescribed by [52]. Transport is in the X direction with Y and Z being transverse peri-

odic directions. Table 2.1 shows the center case parameters and the range over which each

one of them is varied.

2.4 Simulation Results

2.4.1 Variation with Schottky barrier height and doping concentration

Figures 2.3 and 2.4 show the valence band edge variation and hole density as a func-

tion of transport direction. For Schottky barrier height variations, doping is kept constant

at 2 × 1020cm−3 and for doping concentration variations, barrier height is kept fixed at

0.35eV. Since the doping concentations are above 1020cm−3 for most of the simulations,

hole transport happens in the degenerate situation (about 0.1eV below the band edge) and

deep valence states start contributing to the transport process. To benchmark the simu-



14

lations, contact resistivities are plotted against barrier heights and doping concentrations

as shown in Fig. 2.5 and compared against experimental data obtained from [53]. The

comparison against two sets of experimental curves for NiSi-Si and PtSi-Si contacts shows

excellent agreement with the expected resistivity values over a wide doping range provid-

ing confidence in the approach. Variations with barrier height and doping suggest that

barrier heights lower than 0.2eV and doping values higher than 3× 1020cm−3 are required

to achieve the ITRS target of 10−9Ω.cm2 limit.

A similar comparison is performed with an effective mass approximation model. The

tunneling current and resistivity are calculated following [52] with a multi-band effective

mass model. For effective mass calculations, the tunneling and transverse effective masses

of 0.22mo are used in the calculations [54]. As shown in Fig. 2.6, contact resistivity values

predicted with the effective mass model are consistently higher than those resulting from

tight binding simulations. This is expected since the effective mass approach is based on the

parabolic approximation and neglects non-parabolic effects inherently present in valence

bands. This leads to underestimation of conducting modes across the interface and a higher

resistivity. The difference is particularly evident for higher doping concentrations where

deep lying valence states with significant non-parabolicity start contributing to tunneling

through the barrier.

2.4.2 Variation with crystal orientation

Transport along the crystal directions [100], [110] and [111] are the experimentally

most relevant situations. Note that tight binding based simulations automatically capture

changes in the hole effective masses with direction variation. Figure 2.7 shows the contact

resistivity values for these 3 different directions as a function of the doping concentration.

Transport along [111] and [110] consistently shows lower contact resistivity compared to

transport in [100] direction.

In effective mass approximation, tunneling current is given by the expression
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Fig. 2.3.: Position resolved valence band edges (left) and hole densities (right) as a function

of the Schottky barrier height.

Fig. 2.4.: Position resolved valence band edges (left) and hole densities (right) as a function

of doping concentration.
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(a) (b)

Fig. 2.5.: (a) Resistivity as a function of Schottky barrier height for a doping concentration

of 2×1020cm−3. The ITRS limit (dashed line) is attained for barrier heights less than 0.2eV.

(b) Resistivity as a function of doping concentration for φSBH = 0.35eV (NiSi-Si) and φSBH

= 0.23eV (PtSi-Si). The ITRS limit (dashed line) is attained for doping values higher than

3 × 1020cm−3. Tight binding simulation results are compared against experimental data

(symbols) [53] for NiSi-Si and PtSi-Si contacts.
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(a) (b)

Fig. 2.6.: (a) Comparison of contact resistivity predicted with effective mass and 10-band

tight binding calculations for (a) a doping concentration of 2× 1020cm−3 and (b) a barrier

height of 0.35eV. The effective mass calculations overestimate the resistivity significantly.

Deviations increase for higher doping values where the parabolic band assumption increas-

ingly fails.
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ρc ∝
1

√
mymz

exp

(
2φSBH

~

√
εsm

∗
x

ND

)
(2.2)

The smaller the transport effective mass and larger the transverse effective masses, the

smaller will be the resistivity. However, hole transport cannot be analyzed with such a

simplified model due to the non-parabolicity of the bands. Variation with crystal orientation

can be better understood by looking at contour plots of velocities of heavy hole and light

hole bands for each direction. Figure 2.8 shows the velocity contour plot for heavy and light

hole bands in [001], [110] and [111] directions along the transverse momentum directions.

These plots are obtained by taking a constant energy surface for the heavy/light hole band

and finding set of transverse ky and kz points corresponding to that particular energy. For

each of the transverse ky and kz points, velocity in the transport direction is obtained by

evaluating

vx =
1

~
∂E

∂kx
(2.3)

Contours plots of velocity are obtained over an energy range Ef −3kBT to Ef +3kBT .

These plots provide two-fold information - number of current carrying modes and velocity

of each of those modes. The extent of spread of ky and kz points determine the number

of current carrying modes at a particular energy and the contour determines the velocity at

which the modes travel. The faster the velocity, the lower the effective mass and hence,

higher the transmission.

In Fig. 2.8, [001] and [110] directions have most of the velocity contributions coming

from light hole bands. Heavy hole bands have velocities which are twice as small as the

light hole bands for all energies within the Fermi window. However, in the [111] case,

velocities of heavy hole band are comparable to that of the light hole band and also con-

tribute significant number of modes which results in smaller resistivity values compared to

the other two directions.

Figure 2.9 shows the energy resolved current density as a function of energy. At the

Fermi energy, [111] and [110] transport offer higher current densities than the [100] case.
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Fig. 2.7.: Contact resistivity as a function of doping for transport along [100], [110] and

[111] crystal direction. Transport along [111] offers the lowest resistivity due to the smaller

light hole effective mass and higher transverse density of states.
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Fig. 2.8.: Contour plots of velocities of the heavy hole band and light hole band in the

transport direction plotted as a function of transverse momentum points for [001], [110]

and [111] transport directions over the energy range [Ef − 3kbT,Ef + 3kbT ]
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Fig. 2.9.: Energy resolved current density for transport along [100], [110] and [111] crystal

direction. The [111] direction yields a larger current for the same applied bias voltage

due to smaller light hole effective mass and larger spread of transmission across in-plane

momentum space.
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2.4.3 Variation with Ge mole fraction

The silicide contact technology based on NiSiGe/SiGe, PtSiGe/SiGe for SiGe devices

have demonstrated lower contact resistivity compared to typical values for the Si technol-

ogy [55], [56], [51]. Due to the decreasing band gap of Si1−xGex alloys with increasing

mole fraction, the barrier height reduces leading to a decrease in contact resistivity. Lower

effective masses of Si1−xGex lower the resistivity values further. To model Si1−xGex de-

vices, the virtual crystal approximation (VCA) is used where a virtual atom is constructed

that carries properties of both Si and Ge weighed by the mole fraction. The Hamiltonian

elements of Si1−xGex read as follows

HSi(1−x)Gex = (1− x)Hsi + xHGe (2.4)

Based on this approach, Si1−xGex is simulated with mole fractions varying from x = 0

to x = 0.5. Figure 2.10 shows the contact resistivity as a function of the Ge mole fraction

for different doping concentrations. Due to the combined effect of lower barrier heights and

tunneling effective masses, the contact resistivity is well below the 10−9Ω.cm2 limit even

with nominal doping values 2− 3× 1020cm−3. These doping values are readily achievable

in modern semiconductor processing [57], [58]. However, the above simulations neglect

scattering processes such as alloy scattering and interface mismatch that can elevate the

achievable resistivity values. The presented ballistic simulations yield the best possible

resistivity values.

2.4.4 Variation with strain

The impact of tensile and compressive strain is considered by explicitly changing atom

positions and by including the effect of strain into the electronic Hamiltonian follow-

ing [49]. Conduction band effective masses (longitudinal and transverse) show a mono-

tonic behaviour with compressive and tensile strain leading to an decrease in resistivity

with compressive strain and increase with tensile strain [54]. In contrast, due to the in-

herent non-parabolicity of bands, behaviour of heavy, light and split-off bands are non-
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Fig. 2.10.: Contact resistivity as a function of Ge mole fraction for doping concentrations

from 1× 1020cm−3 to 4× 1020cm−3
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Fig. 2.11.: Contact resistivity as a function of uniaxial and biaxial strain.

monotonic with strain. Out-of-plane LH effective mass increases with compressive strain

and decreases with tensile strain. SO effective mass, on the other hand, decreases with

compressive strain and decreases with tensile strain. This results in a cumulative behavior

where resistivity decreases in both compressive and tensile strain directions [54]. A similar

effect of a non-monotonic behaviour is observed with contact resistivity that decreases both

with compressive and tensile strain as shown in Fig. 2.11. Overall, the resistivity is minimal

with tensile strain. The resistivity can decrease by a factor of 2 within the experimentally

available strain range.

The simulation results can be summarized into a guideline for optimal barrier heights

and doping concentrations to achieve particular resistivity targets. Figure 2.12 shows sev-

eral constant resistivity contours as a function of barrier height and doping concentration.

Resistivity contour plots are provided from ρ = 1× 10−8Ω.cm2 to ρ = 1× 10−10Ω.cm2.

2.5 Conclusion

In this work, the impact of Si/SiGe PMOS metal-semiconductor contact parameters on

the contact resistivity is calculated within the atomistic tight binding quantum transport
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Fig. 2.12.: Constant resistivity contour lines as a function of doping concentration and

barrier height offer a guideline on optimal barrier heights and doping values for specific

resistivity values.
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model of NEMO5. Doping concentrations and barrier heights are identified as two key de-

sign parameters for the contact resistivity. Comparisons against multi-band effective mass

approaches show that effective mass resistivities are higher than the tight binding counter-

parts due to the parabolic approximation. Effective mass approaches increasingly deviate

from atomistic ones with higher doping concentrations. Transport along the [111] crystal

direction offers lower resistivity in comparison to [100] and [110] directions. This is due

to comparable velocities of heavy and light hole bands and larger number of current carry-

ing modes in [111] direciton. SiGe contact resistivities are significantly lower than the Si

counterpart and can sustain future resistivity scaling challenges. Tensile strain offers max-

imum benefit in resistivity reduction. Constant resistivity contours are extracted from the

simulations. These are meant as design guidelines for optimal barrier heights and doping

concentrations for specific target resistivity values.
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3. MODELING NON-LOCAL SCATTERING MECHANISMS

3.1 Summary

In this chapter, modeling and simulation approaches for three non-local scattering mech-

anisms, namely - polar optical phonon scattering, charged impurity scattering and remote

phonon scattering are discussed in detail. Important aspects of each scattering mecha-

nism are highlighted and expressions for scattering self-energies derived within the Non-

equilibrium Green’s function (NEGF) and self-consistent Born approximation approach.

Scattering self-energies are validated by comparing them either with scattering rates ob-

tained through Fermi’s golden rule approach or by comparing experimental mobility values.

These scattering self-energies will later form an important part of discussion for subsequent

chapters where they will applied to relevant problems.

3.2 Non-equilibrium Green’s function and self-consistent Born approximation

Non-equilibrium Green’s function (NEGF) approach is widely accepted as the most

consistent approach to treat electronic, thermal and optoelectronic transport in nanoscale

devices [59], [60], [61], [62], [63] and [64]. It has been widely applied in modeling transis-

tors [65], [66], [67], resonant-tunneling devices [68], metal-semiconductor contacts [69],

[41], phonon transport across interfaces [70], GaN

InGaN light-emitting diodes [21] with quantitative agreements with experimental data.

This is attributed to the ability of NEGF to consistently treat quantum mechanical ef-

fects such as confinement, tunneling, interference effects and incoherent scattering on an

equal footing. NEGF approach involves solving the retarded and lesser Green’s function

that correspond to the density of states and density in the device respectively. Injection and

extraction of carriers are modeled with self-energies which account for the open boundary
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nature of the problem. One of the important aspects of NEGF is the clear distinction be-

tween the active device and the reservoirs. Both physical (source and drain regions) and

conceptual (scattering mechanisms) reservoirs are modeled through self-energies.

The ballistic retarded and lesser Green’s function are solved as follows.

(
E −H − ΣR

source − ΣR
drain

)
GR = I (3.1)

G< = GR (Σ<
source + Σ<

drain)GR† (3.2)

where E is the energy of the incoming particle, H is the device Hamiltonian, GR and

G< are the retarded and lesser Green’s function, ΣR and Σ< are retarded and lesser self-

energies. Ballistic NEGF approach corresponds to the ideal transport situation where par-

ticles are transported from source to drain coherently. There is no energy or momentum

relaxation during the transport process. In reality, particles encounter various scattering

mechanisms during the transport process such as interaction with phonons, neutral and

charged impurities, alloy disorder, surface roughness, remote phonons and photons and

such scattering effects need to be captured consistently to provide a quantitative prediction

of device/material properties.

There are several approaches to treat scattering in NEGF. The simplest approach in-

volves adding a constant, energy independent dephasing/damping factor iη to the Green’s

function. This approach assumes that there is a constant background scattering breaking

the coherent mechanism. However, special care needs to be taken in calibrating the iη

value to the corresponding scattering mechanisms expected in the device and ensuring that

the current throughout the device is conserved which is not guaranteed. Current conser-

vation needs to be enforced by coupling NEGF to a semi-classical models such as drift-

diffusion/recombination where experimentally known values for mobility/recombination

rates are used. There have been several works in literature that employ this approach to

treat scattering [67], [71], [21]. However, this approach cannot consistently include inelas-

tic scattering mechanisms such as phonon scattering and as mentioned before needs careful

calibration for each specific device under consideration.



29

Other approaches include Büttiker probes where artificial probes/scattering centers are

setup in the device that act as reservoirs for energy and momentum relaxation [72]. Each

reservoir is characterized by a iη which provides dephasing to the incoming and outgoing

electrons. Current throughout the device is conserved by ensuring that the sum of current

entering/exiting a probe is always zero. This allows for different flavours of scattering

where one can have momentum relaxation, energy relaxation or elastic scattering. It has

been successfully applied to transistors and phonon transport problems [73], [74]. How-

ever, the constraint again is the fact that the iη needs calibration against existing scattering

rate values which are usually equilibrium values. For confined devices such as ultra-thin

body and nanowires where scattering can be dimension dependent, an additional calibration

might have to be undertaken for specific geometries.

This brings us to the Self-consistent Born approximation (SCBA) approach to study

scattering that will form a major portion of subsequent discussions. SCBA approach is

based on representing interactions/scattering through scattering self-energies which are ex-

pansions of the Green’s function. Since the SCBA is inherently a Green’s function ap-

proach, it allows one to easily take into account and calculate nonequilibrium distribution

functions of electrons and the surrounding environment. Inelastic scattering, appropriate

energy and momentum relaxation rates and dependence of scattering on confinement is au-

tomatically included. SCBA involves defining a scattering self-energy (representative of

corresponding scattering mechanism) that can be represented, in the most general manner

as

ΣR
scatt = GRDR +GRD< +G<DR (3.3)

Σ<
scatt = G<D< (3.4)

where DR and D< correspond to the scattering propagators. For phonons, it corre-

sponds to the phonon Green’s function. The Green’s function, on the other hand depend on

the scattering self-energies through the expressions below
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(
E −H − ΣR

source − ΣR
drain − ΣR

scatt

)
GR = I (3.5)

G< = GR (Σ<
source + Σ<

drain + Σ<
scatt)G

R† (3.6)

Since the Green’s function depends on the scattering self-energies and the self-energies

on the Green’s function, it requires a self-consistent loop that needs to be solved until the

corresponding density, density of states and current converge upto the numerical tolerance

criterion. Since it involves self-consistent iterations of matrices, there is an additional bur-

den on compute time and memory.

Description of SCBA described above is for a fixed potential profile and once the SCBA

approach has converged, the NEGF equations need to be coupled back to Poisson to solve

charged density and electrostatic potential self-consistently. Fig.3.1 shows the flowchart of

the simulation methodology. Physical quantities such as density of states, density, current

density are extracted as follows.

DOS(ri) = − i

(2π)N

∫
dk||

∫
dE

2π
GR
ri,ri

(E, k||) (3.7)

n(ri) = − i

(2π)N

∫
dk||

∫
dE

2π
G<
ri,ri

(E, k||) (3.8)

JN→N+1 = − e
~

1

(2π)N

∫
dk||

∫
dE

2π
tr
(
tN+1,NG

<
N,N+1 −G<

N+1,N tN,N+1

)
(3.9)

where DOS(ri) and n(ri) are the density of states and density at position ri, JN→N+1

from one transporting semiconductor layer to another and tN+1,N is the interlayer coupling

hamiltonian.

Next few sections will cover self-energy expressions and results for different scattering

mechanisms.
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Fig. 3.1.: Flowchart showing the simulation procedure. NEGF equations are coupled with

the Poisson solver and relevant physical quantities such as density, density of states, current,

scattering rate are extracted when convergence is achieved.
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3.3 Self-energies for scattering with polar optical phonons

In polar semiconductors, the electron-longitudinal optical (LO) phonon scattering is

the dominant scattering mechanism [75], [76], [77]. This scattering is mediated by dipoles

induced by optical vibration modes that interact with electrons. Due to the Coulombic

nature of scattering, it is a long-ranged interaction. Starting from the general formula for

the phonon scattering self-energy (assuming bulk equilibrium phonons)

Σ< (~x1, ~x2, E) =
1

(2π)3

∫
d~q |Uq|2 ei~q.( ~x1−~x2)[nqG< (~x1, ~x2, E − ~ωq)

+ (1 + nq)G
< (~x1, ~x2, E + ~ωq)]

(3.10)

The interaction potential for an electron that scatters optical phonon mediated dipoles

is given by the ubiquitous Frohlich coupling

|Uq|2 = e2
~ωq
2εo

(
1

ε∞
− 1

εs

)
q2

(q2 + ζ−2)2
(3.11)

The static and dynamic dielectric constant are represented by εs and ε∞ respectively.

The phonon frequency and momentum are represented by ~ωq and q respectively. Since

maximal interaction is with longitudinal-optical (LO) phonons, the phonon frequency is

assumed to be dispersionless and the frequency corresponds to the value at the Gamma

point. Total screening is assumed to be the sum of screening from valence band electrons

(ε0), electronic (ζ) and phononic (1/ε∞−1/εs). Electrostatic screening is calculated within

the Lindhard formalism. Estimation of screening length will be discussed in detail at the

end of this chapter.

Using Eqns.3.10 and 6.1, we can write the lesser self-energy as

Σ< (~x1, ~x2, E) =
e2

(2π)3

(
1

ε∞
− 1

εs

)∫
d~q

~ωq
2ε0

q2ei~q.(~x1−~x2)

(q2 + ζ−2)2

× [nqG
< (~x1, ~x2, E − ~ωq) + (1 + nq)G

< (~x1, ~x2, E + ~ωq)]
(3.12)

Based on the above assumptions, scattering self-energies are derived specifically for

each degree of confinement (bulk/quasi1D system (1D), ultra-thin body system (2D) and

nanowire (3D) system). Principal value integrals presented in the equations below are



33

neglected as they are computationally intensive to calculate and their contribution towards

scattering is negligible [78].

3.3.1 Self-energy expressions for bulk/quasi1D system

Deriving self-energy from above expressions requires splitting the scattering potential

into momentum components that are parallel and perpendicular to the transport direction

as follows

|Uq|2 = e2
~ωq
2εo

(
1

ε∞
− 1

εs

)
q2|| + q2z(

q2|| + q2z + ζ−2
)2 (3.13)

Self-energy for bulk can be expressed as

Σ<
(
z1, z2, ~k||, , E

)
=

e2

(2π)3
~ωq
2ε0

(
1

ε∞
− 1

εs

)∫
dqz

∫
d~l||

q2|| + q2z(
q2|| + q2z + ζ−2

)2 eiqz .(z1−z2)
×
[
nqG

<
(
z1, z2,~l||, E − ~ωq

)
+ (1 + nq)G

<
(
z1, z2,~l||, E + ~ωq

)]
(3.14)

where k|| is the momentum for which scattering self-energy is calculated. l|| is the set

of all momentums that is integrated with respect to the scattering potential and Green’s

function and q|| =
∣∣∣~k|| −~l||∣∣∣ =

√
k2|| + l2|| − 2k||l||cosθ is the transfered momentum.

The scattering integral can be solved separately by performing the integration over qz.

We should note that the actual integration range of qz goes only from−π/a to−π/a which

is extent of the electron’s Brillouin zone. However, by extending the integration range from

−∞ to +∞, the integral can be solved analytically and it simplifies much of the numerical

complications. Furthermore, such an approximation is justified due to the fact that the

scattering potential decays with larger qz values. Scattering integral can be written as

I(q||, z1, z2) =

∫ ∞
−∞

dqz
q2|| + q2z(

q2|| + q2z + ζ−2
)2 eiqz(z1−z2) (3.15)
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Fig. 3.2.: Contour plot of scattering kernel as a function of distance for different values of

qz. Value of scattering kernel decreases drastically with qz justifying the integration (0,∞).

The above integral can be solved using complex contour technique (elaborated in Ap-

pendix) to get

I(q||, z1, z2) =
πexp

(
−
√
q2|| + ζ−2 |z1 − z2|

)
√
q2|| + ζ−2

1− ζ−2 |z1 − z2|
2
√
q2|| + ζ−2

− ζ−2

2
(
q2|| + ζ−2

)


(3.16)

Scattering kernel is plotted as a function of distance for different values of qz as shown

in Fig 3.2. Also, the integrated scattering kernel is plotted as a function of initial and fi-

nal momentum values for local and non-local cases as shown in Figs 3.3 and 3.4. Both

these figures highlight the anisotropic nature of scattering process where scattering is non-

uniform across the momentum values unlike local scattering where it is equally distributed.

Scattering strength is maximal at lower momentum values and decays with higher mo-

mentum values. With increasing non-locality, the strength of total scattering decreases as

well.

This gives us following expressions for the lesser and retarded self-energies.
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Fig. 3.3.: Contour plot of integrated scattering kernel as a function of momentum values

k|| and l|| for screening length of 3 nm and non-local distance set to zero. Scattering is

anisotropic and favours small momentum scattering.

Fig. 3.4.: Contour plot of integrated scattering kernel as a function of momentum values k||

and l|| for screening length of 3 nm and non-local distance of 2 nm. Scattering in general

decreases with increasing non-local distance.
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Σ<
(
z1, z2, k||, E

)
=

e2π

(2π)3

(
1

ε∞
− 1

εs

)
~ωo
2εo

∫
d~l||

e
−
√
q2||+ζ

−2|z1−z2|√
q2|| + ζ−2

1− ζ−2 |z1 − z2|
2
√
q2|| + ζ−2

− ζ−2

2 (q2 + ζ−2)


[
noG

<
(
z1, z2, l||, E − Eo

)
+ (no + 1)G<

(
z1, z2, l||, E + Eo

)]
(3.17)

ΣR
(
z1, z2, k||, E

)
=

e2π

(2π)3

(
1

ε∞
− 1

εs

)
~ωo
2εo

∫
d~l||

e
−
√
q2||+ζ

−2|z1−z2|√
q2|| + ζ−2

1− ζ−2 |z1 − z2|
2
√
q2|| + ζ−2

− ζ−2

2 (q2 + ζ−2)


×
[
(no + 1)GR

(
z1, z2, l||, E − Eo

)
+ noG

R
(
z1, z2, l||, E + Eo

)
+

1

2
G<
(
z1, z2, l||, E − Eo

)
−1

2
G<
(
z1, z2, l||, E − Eo

)
+ i

∫
dẼ

2π
G<(z1, z2, l||, Ẽ)

(
Pr

1

E − Ẽ − Eo
− Pr 1

E − Ẽ + Eo

)]
(3.18)

3.3.2 Self-energy expressions for ultra-thin body system

We start the derivation with the general self-energy expression

Σ< (~x1, ~x2, E) =
e2

(2π)3

(
1

ε∞
− 1

εs

)∫
d~q

~ωq
2ε0

q2ei~q.(~x1−~x2)

(q2 + ζ−2)2

× [nqG
< (~x1, ~x2, E − ~ωq) + (1 + nq)G

< (~x1, ~x2, E + ~ωq)]
(3.19)

By transforming the self-energy and Green’s function to a one-dimensional k-space, we

get

Σ<
(
~x1, ~x2, k||, E

)
=

e2

(2π)3

(
1

ε∞
− 1

εs

)
~ωq
2εo

∫
d~q

∫
dl||

(
q2 + l2||

)
ei~q.(~x1−~x2)(

q2 + l2|| + ζ−2
)2

×
[
nqG

<
(
~x1, ~x2, k|| − l||, E − ~ωq

)
+ (1 + nq)G

<
(
~x1, ~x2, k|| − l||, E + ~ωq

)] (3.20)

where k|| is the transverse momentum of self-energy term, l|| is the set of all transverse mo-

mentum points of Green’s function. Since the inner integral is a convolution of scattering
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potential with Green’s function, we can substitute l|| with k|| − l|| and convert the integral

over ~q to cylindrical coordinates to give

Σ<
(
~x1, ~x2, k||, E

)
=

e2

(2π)3

(
1

ε∞
− 1

εs

)
~ωq
2εo

∫ ∞
0

dq

∫ 2π

0

dθ

∫
dl||

q
(
q2 + (k|| − l||)2

)
exp(iq |~x1 − ~x2| cosθ)

(q2 + (k − l)2 + ζ−2)2

×
[
nqG

<
(
~x1, ~x2, l||, E − ~ωq

)
+ (1 + nq)G

<
(
~x1, ~x2, l||, E + ~ωq

)]
(3.21)

The angular integral can be integrated to give∫ 2π

0

dθexp(iq |~x1 − ~x2| cosθ) = 2πJo (q |~x1 − ~x2|) (3.22)

where Jo(x) is the J-Bessel function of 0th order. The momentum integral over q can now

be written as

I(k||, l||, ~x1, ~x2) =

∫ ∞
0

dq
q
(
q2 + (k|| − l||)2

)
.2πJo (q |~x1 − ~x2|)(

q2 + (k|| − l||)2 + ζ−2
)2

The above integral can be solved analytically by using the following relation from Ref.∫ ∞
0

Jν(bx)xν+1

(x2 + a2)µ+1 =
aν−µbµ

2µΓ(µ+ 1)
Kν−µ(ab)

for a > 0, b > 0, −1 < Re(ν) < Re

(
2µ+

3

2

)
where Kν−µ(x) is the K-Bessel function of order ν − µ. This gives us

I(k||, l||, ~x1, ~x2) =

π

√(k|| − l||)2 + ζ−2 |~x1 − ~x2|+
(
k|| − l||

)2 |~x1 − ~x2|√(
k|| − l||

)2
+ ζ−2

K1

(√(
k|| − l||

)2
+ ζ−2 |~x1 − ~x2|

)
,

|~x1 − ~x2| 6= 0

π

[
1 +

(
k|| − l||

)2(
k|| − l||

)2
+ ζ−2

]
, |~x1 − ~x2| = 0

(3.23)

Scattering kernel is plotted as a function of distance for several momentum points as

shown in Fig. 3.5. Scattering is quite non-local for small momentum points and becomes

sharper and sharper as one moves to larger momentum points.
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Fig. 3.5.: Plot of non-locality of scattering kernel for ultra-thin body polar optical phonon

scattering for qz = 0nm−1, 0.5nm−1, 2nm−1 and screening length of 3nm. Scattering

kernel becomes more and more local with increasing momentum values.
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The lesser and retarded self-energy expressions for ultra-thin body polar optical phonon

scattering can now be written as

Σ<
(
~x1, ~x2, k||, E

)
=

e2

(2π)3

(
1

ε∞
− 1

εs

)
~ωo
2εo

∫
dl||I(k||, l||, ~x1, ~x2)

×
[
noG

<
(
~x1, ~x2, l||, E − Eo

)
+ (1 + nq)G

<
(
~x1, ~x2, l||, E + Eo

)] (3.24)

ΣR
(
~x1, ~x2, k||, E

)
=

e2

(2π)3

(
1

ε∞
− 1

εs

)
~ωo
2εo

∫
dl||I(k||, l||, ~x1, ~x2)

×
[
(1 + no)G

R
(
~x1, ~x2, l||, E − Eo

)
+ noG

R
(
~x1, ~x2, l||, E + Eo

)
+

1

2
G<(~x1, ~x2, l||, E − Eo)

−1

2
G<(~x1, ~x2, l||, E + Eo) + i

∫
dẼ

2π
G<
(
~x1, ~x2, l||, Ẽ

)(
Pr

1

E − Ẽ − Eo
− Pr 1

E − Ẽ + Eo

)]
(3.25)

3.3.3 Self-energy expressions for nanowire system

Due to the lack of momentum space in a nanowire, the scattering potential needs to be

integrated completely to get the scattering kernel. By transforming the scattering integral

to spherical coordinates we get ∫
d~q
q2ei~q.(~x1−~x2)

(q2 + ζ−2)2

=

∫ 2π

0

dφ

∫ π/2

−π/2
dθsinθ

∫ ∞
0

dq
q4exp(iq |~x1 − ~x2| cosθ)

(q2 + ζ−2)2

= 2π

∫ ∞
0

dq

∫ 1

−1
dcosθ

q4exp(iq |~x1 − ~x2| cosθ)
(q2 + ζ−2)2

= 4π

∫ ∞
0

dq
q3

(q2 + ζ−2)2
sin (q |~x1 − ~x2|)
|~x1 − ~x2|

Now, we have two conditions for which we need to solve (|~x1 − ~x2| = 0 and |~x1 − ~x2| 6=

0). Taking the case, |~x1 − ~x2| = 0, we get

I(~x1, ~x2) = 4π

∫ ∞
0

dq
q4

(q2 + ζ−2)2
lim

|~x1−~x2|→0

sin (q |~x1 − ~x2|)
q |~x1 − ~x2|
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= 4π

∫ ∞
0

dq
q4

(q2 + ζ−2)2

However, the integral from 0 to ∞ diverges and we are only interested in momentum

values that are within the Brillouin zone. By changing the integration range to (0, π/a) we

get

I(~x1, ~x2) = 4π

∫ π/a

0

dq
q4

(q2 + ζ−2)2

=
4π2

a

 1

2

(
ζ2
(π
a

)2
+ 1

) − 3a

2ζπ
tan−1

(
ζπ

a

)
+ 1

 (3.26)

For |~x1 − ~x2| 6= 0, we take the integration range upto ∞ since the integration can be

solved analytically

I(~x1, ~x2) = 4π

∫ ∞
0

dq
q3

(q2 + ζ−2)2
sin (q |~x1 − ~x2|)
|~x1 − ~x2|

= − ζ−2π2

|~x1 − ~x2|
[2ζ (sinh (|~x1 − ~x2| /ζ)− cosh(|~x1 − ~x2| /ζ))

+ |~x1 − ~x2| (cosh(|~x1 − ~x2| /ζ)− sinh(|~x1 − ~x2| /ζ))]

(3.27)

The above integrals can be summarized as follows.

I(~x1, ~x2) =


4π2

a

 1

2

(
ζ2
(π
a

)2
+ 1

) − 3a

2ζπ
tan−1

(
ζπ

a

)
+ 1

 , |~x1 − ~x2| = 0

π2

ζ

(
2ζ

|~x1 − ~x2|
− 1

)
e−|~x1−~x2|/ζ |~x1 − ~x2| 6= 0

(3.28)

Scattering kernel is plotted as a function of distance for lattice constant of 0.5nm and

different screening lengths as shown in Fig. 3.6. Non-locality of scattering increases with

increasing screening length values. The kernel has a discontinuity at for local case due to

the choice of different integration ranges for local and non-local cases.

The lesser and retarded self-energies expressions for nanowire polar optical phonon

scattering can now be written as
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Fig. 3.6.: Plot of non-locality of scattering kernel for a wire as a function of distance

for different values of screening lengths. Scattering becomes more and more local with

decreasing values of screening length. Discontinuity at the origin is due to the choice of

integration range.
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Fig. 3.7.: Scattering kernel of POP scattering for bulk GaAs. POP scattering favours small

momentum changes and is anisotropic in nature.

Σ< (~x1, ~x2, E) =
e2

(2π)3

(
1

ε∞
− 1

εs

)
~ωo
2εo

I(~x1, ~x2)

× [noG
< (~x1, ~x2, E − Eo) + (1 + nq)G

< (~x1, ~x2, E + Eo)]

(3.29)

ΣR (~x1, ~x2, E) =
e2

(2π)3

(
1

ε∞
− 1

εs

)
~ωo
2εo

I(~x1, ~x2)

×
[
(1 + no)G

R (~x1, ~x2, E − Eo) + noG
R (~x1, ~x2, E + Eo) +

1

2
G<(~x1, ~x2, E − Eo)

−1

2
G<(~x1, ~x2, E + Eo) + i

∫
dẼ

2π
G<
(
~x1, ~x2, Ẽ

)(
Pr

1

E − Ẽ − Eo
− Pr 1

E − Ẽ + Eo

)]
(3.30)

3.3.4 Important features of polar optical phonon scattering

Unlike, deformation potential acoustic and optical phonon scattering, POP scattering is

anisotropic and favours small momentum scattering. Shown below is the scattering kernel

for bulk GaAs against initial and final momentum values of electron for a screening length

of ζ = 10nm.
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Fig. 3.8.: Scattering kernel versus screening length for bulk GaAs. Increasing screening

length results in lesser shielding increasing the scattering strength.

Fig.3.8 shows the scattering kernel as a function of screening length for scattering at the

gamma point. With increasing screening length, effective shielding for electrons against the

optical-mode dipoles reduces increasing the scattering rate. This shows up as an increase

in the scattering kernel with increasing screening length.

POP scattering is a non-local scattering process resulting in dense self-energy terms.

The self-energy terms are strongest along the diagonal of the matrix and decay exponen-

tially with increasing number of off-diagonal terms. The decay rate of the off-diagonal

terms depends on the extent of screening. Fig.3.9 shows a contour plot of self-energy ex-

tracted from a nanowire calculation where the non-locality extends upto few nanometers.

Fig.3.10 shows the anti-diagonal or the cross diagonal of self energy showing the decay

rate for different values of screening lengths.

3.4 Self-energies for scattering with charged impurities

Semiconductors offer variations in resistivity in orders of magnitude which is one of

the important reasons for their widespread application in electronics. This has been pos-

sible mainly due to the fact that they can be doped either N-type or P-type. Electrons and
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Fig. 3.9.: Contour plot of self energy from a GaAs nanowire simulation highlighting the

extent of non-locality

Fig. 3.10.: Anti-diagonal of POP self energy for different values of screening length. With

decreasing screening length, non-local contribution decays faster.
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holes carry current in the presence of a large background ionized dopant concentration (it is

the ionization of dopants that gives rise to additional free carrier concentration). Thus, with

each dopant there is an associated Coulomb potential and the incoming electrons/holes scat-

ter with positively/negatively charged impurity atoms. This scattering process is dominant

especially in heavily doped source/drain regions of any conventional electronic device such

as transistors, LEDs, p-n diodes. This process is referred to as charged impurity scattering.

Since it is a Coulombic interaction, it is inherently a non-local process as well.

There have been several approaches to model impurity scattering. Brooks-Herring (BH)

[79] and Conwell-Weisskopf (CW) [80] are two well-known approaches with each one

of them having their own validity range. A brief description of both the approaches is

presented below.

The bare impurity potential is of the form

eV (r) =
Ze2

4πεor

where Z is the ionization of the impurity (usually Z = 1) and εo is the static dielectric

constant of the material. The Fourier component can be represented as

eV (q) =
Ze2

εoq2

It is a long range potential interacting with electrons right from the origin to infinite

distance and it diverges at small momentum values. Brooks-Herring model makes the

assumption that potential is not long ranged but short-ranged due to electrostatic screening

of impurity charge by electrons. The impurity potential is screened by the static-dielectric

function with a screening wavevector ζ−2 to cast the bare impurity potential into

eV (q) =
Ze2

εo (q2 + ζ−2)
(3.31)

This assumes that not all electrons feel the Coulombic potential and electrons that are

at a distance greater than the screening length do not scatter with the impurity atom.

However, there is an inconsistency in the way screening is handled in the Brooks-

Herring model. All electrons are assumed to be pure plane waves and also equally par-
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ticipate in the screening process. This leads to double-counting of electrons. Mahan [81]

has done extensive calculations of actual electron wavefunctions in the presence of ionized

impurities. It is observed at low impurity concentrations, electrons indeed pile up near the

impurity atoms screening the potential but at high impurity concentrations electron density

is pretty homogeneous across the device. This is mainly due to the fact that the inter-dopant

distance is lesser than the electron wavelength.

Thus, at large densities, scattering is better represented by the model of Conwell and

Weisskopf. In this model, the Coulomb potential is unscreened but the electrons interact

only with their nearest impurity atoms or collisions are independent. The average dopant

separation is defined by

nD =
1

4πr3o/3
=⇒ ro =

(
3

4πnD

)1/3

(3.32)

Conwell-Weisskopf Coulomb potential can now be represented as

eV (q) =
Ze2

εoq2
(1− cos(qro)) (3.33)

Fig 3.11 shows a comparison of impurity potential between Brooks-Herring and Conwell-

Weisskopf model against the bare unscreened potential.

Ridley has developed an intermediate scattering model that provides a seamless shift

from one model to another depending on the doping concentration [82]. According to this

approach, the choice of model depends on the screening regime, which is determined by

the dimensionless parameter η

η =
16Z2N

2/3
imp

q2scr

13.605m∗k
εkmeε2

(3.34)

where m∗k is the effective mass of electrons at wavevector k in the Brillouin zone [83].

Brooks-Herring is valid when η < 1 (screening dominated regime). Conwell-Weisskopf is

valid when η > 1 (scattering center dominated regime). For all the materials and devices

under consideration in this study, η < 1 and Brooks-Herring model will be used in further

discussions.
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Fig. 3.11.: Comparison of scattering potential versus momentum between Brooks-Herring

and Conwell-Weisskopf approaches along with bare unscreened potential for two doping

concentrations for GaAs electrons.
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For self-energy derivations, ionized impurities are assumed to be distributed homoge-

neously across the device. Hence, the derivation is not specific to any particular impurity

configuration but is an ensemble average. Self-energy for scattering at homogeneously

distributed ionized impurity is given by

Σ<,R (~x1, ~x2, E) =
< ND >x1,x2

(2π)3

∫
d~q |Vimp(q)|2 ei~q.(~x1−~x2)G<,R (~x1, ~x2, E) (3.35)

where < ND >x1,x2 is the average doping concentration between two coordinates in

the device. One important difference in comparison with phonon scattering is that impurity

is an elastic scattering process. The impurity potential merely acts as a scattering center to

mix different momentum components of electrons and as such the impurity does not absorb

or emit energy into the electron bath. This simplifies both the formulation and numerical

implementation as well.

3.4.1 Self-energy expressions for bulk/quasi1D system

Starting with the self-energy definition as mentioned above, we can express the self-

energy for a bulk system with 2 transverse momentum components as

Σ<
(
z1, z2, ~k||, E

)
=

ND

(2π)3

(
e2

εoεr

)2 ∫
dqz

∫
d~l||

1(
q2|| + q2z + ζ−2

)2 eiqz .(z1−z2)G<
(
z1, z2,~l||, E

)
(3.36)

where q|| =
∣∣∣~k|| −~l||∣∣∣ =

√
k2|| + l2|| − 2k||l||cosθ . The above expression can be simpli-

fied by integrating over qz

I(q||, z1, z2) =

∫
dqz

eiqZ(z1−z2)(
q2|| + q2z + ζ−2

)2
The above integral can be solved on the complex contour (elaborated in the Appendix)

to give
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Fig. 3.12.: Contour plot of integrated scattering kernel as a function of momentum values

k|| and l|| for screening length of 3 nm and non-local distance set to zero. Scattering is

anisotropic and favours small momentum shifts.

I(q||, z1, z2) =
π

2

 |z1 − z2|+ 1/
√
q2|| + ζ−2

q2|| + ζ−2
e
−
√
q2||+ζ

−2|z1−z2|

 (3.37)

where I(q||, z1, z2) is the scattering kernel. Figs 3.12 and 3.13 show a contour plot

of the scattering kernel for different non-local range. Scattering kernel looks pretty much

diagonal highlighting the fact that the impurity potential changes the electron momentum

only slightly . Contour plot for different non-local range shows that the scattering decreases

drastically with increasing non-local range.

This gives us the following expressions for lesser and retarded self-energies for bulk

impurity scattering.

Σ<
(
z1, z2, ~k||, E

)
=

ND

4. (2π)2

(
e2

εoεr

)2∫
d~l||I

(
~k||,~l||, z1, z2

)
G<
(
z1, z2,~l||, E

)
(3.38)

ΣR
(
z1, z2, ~k||, E

)
=

ND

4. (2π)2

(
e2

εoεr

)2∫
d~l||I

(
~k||,~l||, z1, z2

)
GR
(
z1, z2,~l||, E

)
(3.39)
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Fig. 3.13.: Contour plot of integrated scattering kernel as a function of momentum values

k|| and l|| for screening length of 3 nm and non-local distance of 5 nm. Scattering in general

decreases with increasing non-local distance.
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3.4.2 Self-energy expressions for ultra-thin body system

Self-energy for an ultra-thin body system with a transverse momentum components can

be written as

Σ<
(
~x1, ~x2, k||, E

)
=

ND

(2π)3

(
e2

εoεr

)2 ∫
dq||

∫
d~q

1(
q2|| + q2 + ζ−2

)2 ei~q.(~x1−~x2)G<
(
~x1, ~x2, l||, E

)
(3.40)

where q|| = k|| − l||. The inner integral over d~q can be simplified by converting it to

cylindrical coordinates as follows∫
d~q

1(
q2|| + q2 + ζ−2

)2 ei~q.(~x1−~x2) =

∫
qdq

∫ 2π

0

dθ
eiq|~x1−~x2|cosθ(
q2|| + q2 + ζ−2

)2
The angular integral can be integrated to give

∫ 2π

0

dθexp(iq |~x1 − ~x2| cosθ) = 2πJo (q |~x1 − ~x2|) (3.41)

where Jo(x) is the J-Bessel function of 0th order. The momentum integral over q can

now be written as

I(k||, l||, ~x1, ~x2) =

∫ ∞
0

dq
q.2πJo (q |~x1 − ~x2|)(
q2 + (k|| − l||)2 + ζ−2

)2 (3.42)

The above integral can be solved analytically by using the following relation from Ref.

∫ ∞
0

Jν(bx)xν+1

(x2 + a2)µ+1 =
aν−µbµ

2µΓ(µ+ 1)
Kν−µ(ab)

for a > 0, b > 0, −1 < Re(ν) < Re

(
2µ+

3

2

) (3.43)

where Kν−µ(x) is the K-Bessel function of order ν − µ. This gives us

I(k||, l||, ~x1, ~x2) =

π

[
|~x1 − ~x2|(

k|| − l||
)2

+ ζ−2

]
K1

(√(
k|| − l||

)2
+ ζ−2 |~x1 − ~x2|

)
,

|~x1 − ~x2| 6= 0

π

[
1(

k|| − l||
)2

+ ζ−2

]
, |~x1 − ~x2| = 0

(3.44)
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Fig. 3.14.: Plot of non-locality of scattering kernel for impurity scattering for q|| = 0nm−1,

0.5nm−1, 2nm−1 and screening length of 3nm. Scattering kernel decreases exponentially

with increasing momentum values implying that small momentum changes are preferred.

Scattering kernel is plotted as a function of distance for several momentum points as

shown in Fig. 3.14. Scattering is quite non-local for small momentum points and decays

sharply for larger momentum points.

The lesser and retarded self energies for ultra-thin body impurity scattering can now be

written as

Σ<
(
~x1, ~x2, k||, E

)
=

ND

(8π)2

(
e2

εoεr

)2 ∫
dl||I(k||, l||, ~x1, ~x2)G

<
(
~x1, ~x2, l||, E

)
(3.45)

ΣR
(
~x1, ~x2, k||, E

)
=

ND

(8π)2

(
e2

εoεr

)2 ∫
dl||I(k||, l||, ~x1, ~x2)G

R
(
~x1, ~x2, l||, E

)
(3.46)
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3.4.3 Self-energy expressions for nanowire system

Due to the lack of momentum space in a nanowire, the scattering potential needs to be

integrated completely to get the scattering kernel. By transforming the scattering integral

to spherical coordinates we get ∫
d~q

ei~q.(~x1−~x2)

(q2 + ζ−2)2

=

∫ 2π

0

dφ

∫ π/2

−π/2
dθsinθ

∫ ∞
0

dq
q2exp(iq |~x1 − ~x2| cosθ)

(q2 + ζ−2)2

= 2π

∫ ∞
0

dq

∫ 1

−1
dcosθ

q2exp(iq |~x1 − ~x2| cosθ)
(q2 + ζ−2)2

= 4π

∫ ∞
0

dq
q

(q2 + ζ−2)2
sin (q |~x1 − ~x2|)
|~x1 − ~x2|

Now, we have two conditions for which we need to solve (|~x1 − ~x2| = 0 and |~x1 − ~x2| 6=

0). Taking the case, |~x1 − ~x2| = 0 , we get

I(~x1, ~x2) = 4π

∫ ∞
0

dq
q2

(q2 + ζ−2)2
lim

|~x1−~x2|→0

sin (q |~x1 − ~x2|)
q |~x1 − ~x2|

= 4π

∫ ∞
0

dq
q2

(q2 + ζ−2)2

I(~x1, ~x2) = π2ζ

For |~x1 − ~x2| 6= 0 , we get

I(~x1, ~x2) = π2ζe−|~x1−~x2|/ζ (3.47)

which holds good for the local case as well.

Scattering kernel is plotted as a function of distance and different screening lengths as

shown in Fig. 3.15. Non-locality of scattering increases with increasing screening length

values.

The lesser and retarded self-energies expressions for nanowire impurity scattering can

now be written as

Σ< (~x1, ~x2, E) =
ND

8π

(
e2

εoεr

)2

I(~x1, ~x2)G
< (~x1, ~x2, E) (3.48)
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Fig. 3.15.: Plot of non-locality of scattering kernel for a wire as a function of distance

for different values of screening lengths. Scattering becomes more and more local with

decreasing values of screening length.
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Fig. 3.16.: Impurity scattering kernel as a function of screening length

ΣR (~x1, ~x2, E) =
ND

8π

(
e2

εoεr

)2

I(~x1, ~x2)G
R (~x1, ~x2, E) (3.49)

3.4.4 Important features of impurity scattering

Similar to POP, Impurity is a non-local scattering process and favours small momentum

scattering. One distinguishing feature between impurity and POP is that impurity is an

elastic scattering process. Fig.3.16 illustrates the scattering kernel for impurity scattering.

3.5 Self-energies for scattering with remote oxide phonons

Remote oxide phonon/Remote-phonon scattering, as the name suggests, corresponds

to scattering of electrons with phonons originating in the dielectric material of the active

device. This is a dominant scattering mechanism in ultra-scaled transistors where High-

κ dielectrics are used as gate oxide materials to provide good electrostatic control and

suppress gate leakage. They are also an important scattering mechanism in most of the
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2D materials such as graphene [84], transition-metal dichalcogenides such as MoS2 [85],

WSe2 [86].

High-κ dielectrics owe their large dielectric constants to the large ionic polarization

resulting from highly polarizable metal-oxygen bonds. It is the polarization of these soft

bonds which screens the external electric field resulting in a large κ. Associated with these

soft bonds are the low-energy optical phonons. Wang and Mahan [87] showed that electrons

in the inversion layer can couple to the surface optical (SO) modes of the insulator resulting

in electron-phonon scattering. Later, the effect of High-κ on mobility of transistors was first

demonstrated by [88]. Since then, there have been extensive studies of High-κ on inversion

layer of Si MOSFETs and graphene [89], [90].

Remote-phonon scattering potential has been derived in detail in seminal work by [88].

Electron-phonon coupling Hamiltonian is given by

He−ph = Fν
∑
q

e−q||z
√
q||

(
aqe

iq||.r|| + a†qe
−iq||.r||

)
(3.50)

where q is the surface 2D phonon momentum, aq and a†q are particle annihilation and cre-

ation operators and coupling constant Fν is described as

Fν =

[
e2~ωνSO

2εo

(
1

ε∞ox + ε∞s
− 1

εoox + ε∞s

)]1/2
(3.51)

where ~ωνSO is νth oxide SO optical phonon frequency, εoox is static oxide dielectric

constant,ε∞ox is oxide high frequency dielectric constant and ε∞s is semiconductor high fre-

quency dielectric constant.

Using the electron-phonon coupling Hamiltonian, the generic self-energy expression

can be written as

Σ< (~x1, ~x2, E) =
e2

(2π)2
~ωνSO
2ε0

(
1

ε∞ox + ε∞s
− 1

εsox + ε∞s

)∫
d~q||

ei~q||.(~x1,||−~x2,||)

q||
.e−q||(z1+z2−2t)

× [nqG
< (~x1, ~x2, E − Eo) + (1 + nq)G

< (~x1, ~x2, E + Eo)]

(3.52)

where z = t is the oxide-semiconductor interface.
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3.5.1 Self-energy expressions for ultra-thin body system

Converting the above expression to an ultra-thin body case with a single transverse

momentum, we get

Σ< (~x1, ~x2, k, E) =
e2

(2π)2
~ωνSO
2ε0

(
1

ε∞ox + ε∞s
− 1

εsox + ε∞s

)
∫
dl

∫
dq
ei
√
q2+(k−l)2.|~x1,||−~x2,|||cosθ√

q2 + (k − l)2
.e−
√
q2+(k−l)2(z1+z2−2t)

× [nqG
< (~x1, ~x2, l, E − Eo) + (1 + nq)G

< (~x1, ~x2, l, E + Eo)]

(3.53)

The above integral as such does not have a well-defined analytical expression. However,

if we make the approximation that the magnitude of two dimensional momentum q|| is

equivalent to the momentum range of Green’s function, then we can rewrite the self-energy

as

Σ< (~x1, ~x2, k, E) =
e2

(2π)2
~ωνSO
2ε0

(
1

ε∞ox + ε∞s
− 1

εsox + ε∞s

)
∫
dl

∫ 2π

0

dθ
|k − l| ei|k−l||~x1,||−~x2,|||cosθ

|k − l|
.e−|k−l|(z1+z2−2t)

× [nqG
< (~x1, ~x2, l, E − Eo) + (1 + nq)G

< (~x1, ~x2, l, E + Eo)]

(3.54)

then the solution becomes tractable immediately. However, due to the approximation,

the whole range of two-dimensional q|| is not covered and it’s magnitude is restricted only

to the range of one-dimensional momentum and the whole scattering space is not covered.

The scattering potential, however decays exponentially with q|| and the contribution by the

phase space left out by this approximation is only going to be minimal. The scattering

integral can now be solved by integrating over θ to give

I(k, l, ~x1, ~x2, z1, z2) =

∫ 2π

0

dθei|k−l||~x1,||−~x2,|||cosθ.e−|k−l|(z1+z2−2t)

= 2πJo
(
|k − l|

∣∣~x1,|| − ~x2,||∣∣) e−|k−l|(z1+z2−2t) (3.55)

where Jo(x) is the J-Bessel function of 0th order. Unlike the scattering kernels in polar

optical phonon and impurity scattering, here it not only depends on the non-local distance

but also on distance from the oxide-semiconductor interface. The scattering potential is

maximal at the interface and decays exponentially as one moves away from the interface.
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Fig. 3.17.: Plot of non-locality of scattering kernel for a ultra-thin body as a function of

distance for different values of oxide-semiconductor interface distance. Scattering becomes

more and more local as one moves away from the interface.

Scattering kernel is plotted as a function of non-local distance for different values of

interface distance as shown in Fig. 3.17. Non-locality of the scattering process depends

both on the momentum value and the distance from interface.

The lesser and retarded self energies for ultra-thin body remote phonon scattering can

now be written as

Σ< (~x1, ~x2, k, E) =
e2

(2π)

~ωνSO
2ε0

(
1

ε∞ox + ε∞s
− 1

εsox + ε∞s

)∫
dlI(k, l, ~x1, ~x2, z1, z2)

× [nqG
< (~x1, ~x2, l, E − Eo) + (1 + nq)G

< (~x1, ~x2, l, E + Eo)]

(3.56)
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ΣR (~x1, ~x2, k, E) =
e2

(2π)

~ωνSO
2ε0

(
1

ε∞ox + ε∞s
− 1

εsox + ε∞s

)∫
dlI(k, l, ~x1, ~x2, z1, z2)

×
[
(1 + no)G

R (~x1, ~x2, l, E − Eo) + noG
R (~x1, ~x2, l, E + Eo) +

1

2
G<(~x1, ~x2, l, E − Eo)

−1

2
G<(~x1, ~x2, l, E + Eo) + i

∫
dẼ

2π
G<
(
~x1, ~x2, l, Ẽ

)(
Pr

1

E − Ẽ − Eo
− Pr 1

E − Ẽ + Eo

)]
(3.57)

3.5.2 Important features of remote phonon scattering

3.6 Estimation of screening

Estimation of screening length is crucial to the determination of scattering rates. Com-

monly used approximations include the Thomas-Fermi and the Debye approximation. Figs. 3.18

and 3.19 show the comparison of these two approaches against the Lindhard formalism.

For mild doping concentrations of 1× 1016cm−3, Debye and Lindhard methods agree well

with each other. However for higher doping concentrations, 1 × 1019cm−3, Debye under-

estimates the screening (thereby scattering). For both these cases, Thomas-Fermi approxi-

mation completely underestimates the screening and works well only if temperature is too

low or if doping concentrations are well beyond 1× 1021cm−3. For devices relevant to the

discussion of this report, Lindhard formalism works well.

ζLindhard =

(
e2

εoεr

−2

(2π)3

∫
d~q

∂f

∂ε

∣∣∣∣
ε(~q)

)−1/2
(3.58)

3.7 Conclusion

In summary, modeling and simulation procedure for several non-local scattering mech-

anisms within the NEGF formalism is discussed. Features of POP and impurity scattering

are discussed in detail with self-energy expressions derived for 1D/2D and 3D systems.

Self-energy calculations are verified by comparing them against Fermi’s golden rule.
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Fig. 3.18.: Comparison of screening length calculated from three different approaches:

Lindhard, Debye and Thomas-Fermi model for bulk GaAs at a doping concentration of

1× 1016cm−3

Fig. 3.19.: Comparison of screening length calculated from three different approaches:

Lindhard, Debye and Thomas-Fermi model for bulk GaAs at a doping concentration of

1× 1019cm−3
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4. LOCAL SCATTERING APPROXIMATION MODEL FOR
NON-LOCAL SCATTERING

4.1 Summary

In the previous chapter, different non-local scattering mechanisms were introduced and

their respective self-energies were derived and compared with Fermi’s golden rule. Despite

the straightforward representation of the self-energies, it is computationally demanding to

solve them for any realistic device. Computation of many off-diagonal blocks required

for the self-energy calculation, makes the calculation atleast 10x more prohibitive both in

terms of computation time and memory. It is common in literature to approximate it as a

local/diagonal scattering approach. In this section, validity of this approximation will be

discussed and a possible approach to treat the non-local scattering as an equivalent local

scattering with a scaling factor will be presented.

4.2 Local scattering approximations

Recursive Green’s function approach is among the widely used numerical technique

to solve NEGF for realistic devices [60], [91]. This approach makes use of the fact that

observables such as density, density of states depend only on the diagonal of the Green’s

function. This allows one to solve only required diagonal blocks (along with few off-

diagonal blocks required for current density calculation) and is completely equivalent to

computing the Green’s function by inverting the matrix. However, this places a restriction

on the nature of self-energies. They can only be diagonal/block diagonal as only diago-

nal entries of Green’s function as calculated. Hence, there is limited study of non-local

scattering with NEGF in the literature [65], [60], [64], [92]. Among the studies done with

non-local scattering, either local approximations are made where non-local entries in self
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energy are truncated or are simulated for the effective mass approach with full inversion,

which restricts the types of devices that can be investigated. [93] have tried to use a diago-

nal approximation with a scaling factor to treat POP scattering. However, it turns out that

the scaling factor used in the study needs to be fit to specific device geometries and bias

condition which makes the scaling factor highly device specific.

Recently, a non-local recursive Green’s function (NL-RGF) technique has been de-

veloped by [94] that extends the computation of Green’s function to any number of off-

diagonal elements. This approach can now be employed to study any long-ranged scat-

tering process. However, as shown in Figs 4.1 and 4.2 it does take considerable time and

memory even for small non-locality range of 2 nm. This definitely augments the capability

to study non-local scattering and is better than a simple local approximation but numer-

ical limitations limit us to study ony small non-locality ranges and a study of complete

non-locality is not possible for a reasonable device in a multiband basis.

This brings us to the question of how good a local approximation is and whether an

equivalent local approximation can be achieved with a compensating scaling factor. Im-

pact of local approximations to scattering is analyzed by performing an exact scattering

calculation (including all non-local elements) and comparing it with diagonal approxima-

tion where other off-diagonal terms are truncated. Scattering rates for bulk and nanowire

GaAs is presented and behaviour of Urbach tails/band tails are calculated with both ap-

proaches to check the validity of local approximation.

It is evident from Figs.4.3 and 4.5 that local approximation underestimates both the

scattering rate and also the Urbach parameter. It completely misses the temperature de-

pendence of Urbach parameter. Upon closer look, the non-local/local prefactor is 1.5x

and depends both on temperature and the energy of incoming electrons. The situation is

worse for nanowire where the non-local case is almost 70x larger than the local counterpart.

Similar to bulk, nanowire scaling factor has a strong energy dependence and the energy de-

pendence is different from that of the bulk highlighting strong dimensional dependence on

the scaling factor.
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Fig. 4.1.: Ratio of time taken for computation with non-local RGF approach for different

non-locality range for a 10-band sp3d5s* basis. Non-local RGF is 150x more computation-

ally expensive in comparison with ballistic calculation. Plots provided by James Charles.
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Fig. 4.2.: Ratio of time taken for memory with non-local RGF approach for different non-

locality range for a 10-band sp3d5s* basis. Non-local RGF is 8x more memory expensive

in comparison with ballistic calculation. Plots provided by James Charles.

Fig. 4.3.: Comparison of scattering rate for bulk GaAs with and without the local approxi-

mation.
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Fig. 4.4.: Nonlocal/local scattering prefactor plotted on top of both scattering rates. The

prefactor is about 1.5x and is dependent on the incoming electron energy.

Fig. 4.5.: Comparison of Urbach parameter variation for bulk GaAs with and without the

local approximation.
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Fig. 4.6.: Nonlocal/local scattering prefactor plotted on top of both Urbach parameters.

The prefactor is about 2x and is dependent on the temperature.

Fig. 4.7.: Comparison of scattering rate for GaAs nanowire with and without the local

approximation. Non-local scattering is almost 70x larger than the local case and is highly

energy dependent.
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Based on the results above, a physics based local approximation is developed based on

the Fermi’s golden rule. The local approximation takes into account dimensionality of the

device, size dependence, screening and energy dependence.

4.3 Local approximation model for non-local scattering

Local approximation model is based on the fact that the Fermi’s golden rule for each

scattering process has an associated form factor calculation which depends on the spatial

scattering kernel. The current formalism is based on effective mass approach and assumes

a parabolic dispersion but in principle, this approach can be applied to a general dispersion

relation (which will be need for hole transport). Due to the dependence of scaling factor on

spatial dependence, it has a well-defined expression only for the confined devices such as

ultra-thin body and nanowire devices. Lack of a spatial dependence in bulk device prevents

one from deriving such a similar expression within the Fermi’s golden rule formalism.

However, one can get the equivalent bulk result by having a large enough 2D device with

requisite modes. This approach in it’s strictest form is only applicable at equilibrium or

near-equilibrium situation where Fermi’s golden rule holds good. Deriving such a scaling

factor for non-equilibrium cases, would involve solving the propagating modes in the de-

vice. However, even with the equilibrium approximation, agreement with non-equilibrium

simulation cases are not that far off as it will be shown in the subsequent chapter.

Taking the case of polar optical scattering, Fermi’s golden rule expression (absorption

branch) for ultra-thin body for polar optical phonon scattering can be written as

1

τij,a(E)
=

4πe2m∗~ωLO
~3

(
1

ε∞
− 1

εs

)[
Nph

∫ 2π

0

dθFa(
∣∣∣~k|| − ~k′||∣∣∣ , θ)] (4.1)

where F (q||) =

∫ Lz

0

∫ Lz

0

dzdz
′
ρij(z)ρij(z

′)I(q||, z, z
′) and

|k̃|| − k̃′||| =

[
2k2 ± 2 (~ωLO ± (Ei − Ej))

~2
− 2k

[
k2 ± 2 (~ωLO ± (Ei − Ej))

~2

]1/2
cosθ

]1/2
(4.2)
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I(q||, z, z
′) =

e
−
√
q2||+ζ

−2|z−z′|√
q2|| + ζ−2

1− |z − z
′| ζ−2

2
√
q2|| + ζ−2

− ζ−2

2
(
q2|| + ζ−2

)
 (4.3)

and ρij(z) = ψ∗i (z)ψj(z)

and for nanowires can be written as

1

τij,a(E)
=
e2~ωLONph

~2

(
1

ε∞
− 1

εs

)
.

2

(2π)2
.
√

2m∗

(
Fa(kx − k

′
x) + Fa(kx + k

′
x)√

E − Ej + ~ωLO

)
(4.4)

where F (qx) =

∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′

||ρ
∗
ij(r||)ρij(r

′
||)I(qx, r||, r

′

||) and

I(qx, r||, r
′

||) =



√q2x + ζ−2
∣∣∣r|| − r

′

||

∣∣∣+
q2x

∣∣∣r|| − r
′

||

∣∣∣√
q2x + ζ−2

 K1

(√
q2x + ζ−2

∣∣∣r|| − r
′

||

∣∣∣)
2

,
∣∣∣r|| − r

′

||

∣∣∣ 6= 0(
1

2
+

q2x
2 (q2x + ζ−2)

)
,
∣∣∣r|| − r

′

||

∣∣∣ = 0

and ρij(r||) = ψ∗i (r||)ψj(r||)

From both the equations for ultra-thin body and nanowires, one can see that the scatter-

ing kernel is dependent on the non-local distance. The scattering kernel, in turn is integrated

along with the squared of the wavefuctions to get the corresponding rate for a particular

momentum and screening length. An equivalent expression for the local case would only

correspond to truncating terms other than the diagonal in the scattering kernel. The local

version of scattering kernels for ultra-thin body and nanowire can be written as follows

ILocal(q||, z, z
′) =


1√

q2|| + ζ−2

1− ζ−2

2
(
q2|| + ζ−2

)
 , |z − z′| = 0

0, |z − z′| 6= 0

(4.5)

ILocal(qx, r||, r
′

||) =


(

1

2
+

q2x
2 (q2x + ζ−2)

)
,
∣∣∣r|| − r

′

||

∣∣∣ = 0

0,
∣∣∣r|| − r

′

||

∣∣∣ 6= 0

(4.6)

The scaling factor is now just a division of form factors for the local case with the non-

local one. In effective mass basis, the factor as such does not have an explicit effective mass
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dependence (implicitly through energy-momentum relation) and depends significantly on

the spatial nature of modes, dimension of the device and screening length. The scaling

factor for both these cases can be represented as

SUTB =

∫ 2π

0

dθ

∫ Lz

0

∫ Lz

0

dzdz
′
ρij(z)ρij(z

′)I(|k̃|| − k̃′|||, z, z′)∫ 2π

0

dθ

∫ Lz

0

∫ Lz

0

dzdz′ρij(z)ρij(z′)ILocal(|k̃|| − k̃′|||, z, z′)
(4.7)

Swire =

∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′

||ρ
∗
ij(r||)ρij(r

′
||)I(qx, r||, r

′

||)∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′
||ρ
∗
ij(r||)ρij(r

′
||)ILocal(qx, r||, r

′
||)

(4.8)

Fig 4.8 shows the scaling factor variation with energy for different confinement thick-

nesses for GaAs ultra-thin body. Scaling factor is non-monotonic and shows a oscillatory

behaviour with increasing confinement thickness. Multiple kinks present in the scaling

factor are associated with higher modes contributing to the scattering rate. With increasing

confinement thickness the scaling factor converges to a shape that is consistent with NEGF

result from Fig. The average scaling factor for 100 nm confinement thickness is 2.2 which

is close to the NEGF result of 1.5. Scaling factor trend with energy is captured correctly

and the device becomes more and more bulk like.

Fig 4.9 shows the scaling trend for GaAs nanowires for dimensions ranging from

2x2nm2 upto 10x10nm2. Scaling factor in general is larger for wires in comparison with

ultra-thin bodies and bulk devices. With increasing wire dimensions, the scaling factor

decreases as expected. In literature, a scaling factor of 10x is often applied to account for

the non-local nature of scattering. However, from this plot it is evident that the factor also

varies sharply with dimensions.

4.4 Conclusion

In summary, diagonal approximations to non-local scattering simulations were dis-

cussed. It was shown that commonly employed crude local approximation underestimates

both the scattering rates and other physical quantities such as the Urbach parameter by a



70

Fig. 4.8.: Variation of local scaling factor with energy for different confinement thicknesses

for GaAs ultra-thin body. With increasing confinement thickness, scaling factor converges

to a bulk like shape.
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Fig. 4.9.: Variation of local scaling factor with energy for different nanowire dimensions.

Scaling factor decreases with increasing dimension and in general has a higher value com-

pared to bulk and ultra-thin body devices.
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factor of 2 for bulk devices. It is shown that the local scaling rule as such is not a sim-

ple constant but depends on energy, temperature, material dimensions and screening. A

physics based model using the Fermi’s golden rule approach is employed to extract scaling

factors for different devices. This approach is based on excluding/truncating terms within

the scattering kernel to mimic local scattering and extract scaling factor from it. It is shown

that the scaling factor is indeed energy dependent and bulk scaling factor resembling the

NEGF result is achieved. Also, with increasing confinement the scaling factor increases

highlighting the need for physics based local approximation model. In the next chapter,

validity of this local approximation model in non-equilibrium regime will be studied by

simulating InAs/GaSb TFET with non-local POP scattering.
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5. ATOMISTIC SIMULATION OF III-V GASB/INAS NANOWIRE
TFET WITH NON-LOCAL POLAR OPTICAL PHONON

SCATTERING

5.1 Summary

In this chapter, impact of non-local polar optical phonon scattering (POP) is investi-

gated through an atomistic simulation of III-V GaSb/InAs nanowire tunneling field effect

transistor (TFET). Comparison of rigorous non-local scattering simulation against a sim-

ple local approximation and the newly developed physics-based scaling factor approach is

performed. Impact of polar optical phonons on tunneling transport is investigated in detail.

5.2 Motivation

Tunnel field-effect transistors (TFETs) are promising candidates to sustain the Moore’s

law scaling. Their ability to provide sub-60 mV/dec subthreshold slope offers possibilities

to operate transistors at low voltages and perform low-power computation. A plethora of

materials such as InGaAs, GaSb and InAs are considered as potential candidates as TFETs

due to their direct band gap and lower effective masses which is important in the context of

tunneling [10–14]. Tunneling transistors provide sub-thermal switching by filtering out the

high energy states in the Fermi distribution and by clever band engineering. Steep switch-

ing is achieved by a sudden onset of density of states through band alignment. Despite

the ongoing research in TFETs, only a handful devices have managed to achieve sub-60

mV/dec SS [10, 15–17]. This is mainly due to imperfections in the device contributing to

higher OFF current and SS. These imperfections include phonon scattering, alloy disorder,

roughness, heavy doping induced band tail states and interface trap states which prevent

sub-60 mV/dec SS performance.
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On the other hand, simulation results have shown extremely positive results for several

TFETs. Available ballistic NEGF approaches provide optimistic results with SS as low

as 20mV/dec being reported [95–98]. Hence, there is a need to address this gap and pro-

vide quantitative and qualitative predictions that come close to experimental observations.

Among the scattering mechanisms, polar optical phonon scattering (POP) is one of the

dominant scattering mechanisms in the polar materials and is responsible for phonon as-

sisted tunneling processes and formation of band tail states which are known to contribute

to current [99]. However, simulating TFETs with polar optical phonons has been a major

challenge due to the non-locality of the scattering process. This non-locality increases the

computational burden and often non-local scattering terms techniques are truncated while

simulating POP scattering [65,100] or an empirical scaling factor is used to account for the

underestimation of scattering [66].

In this work, a physically consistent model to treat POP scattering with non-locality

through self-energies has been developed and applied to a GaSb/InAs nanowire TFET. This

method has been implemented within the multipurpose device simulator, NEMO5 and is

available in multiple electronic models (e.g. effective mass, tight binding, Wannier func-

tion representations) [44] Non-local scattering calculation is achieved through a recently

developed non-local recursive Green’s function approach [94] which enables calculation of

off-diagonal Green’s function elements which is necessary for calculating non-local scat-

tering contributions. A physics based scaling factor approach is developed that provides

appropriate scaling factors to use while truncating the self-energy to usual local approxi-

mations so that the total impact of non-local scattering is captured. Using this approach,

nanowire I-V results are compared against a simple ballistic approach and physical expla-

nation for the behaviour is provided through current density plots which capture essential

phonon assisted and band assisted tunneling process consistently.
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5.3 Simulation approach

Ultrascaled devices such as ultra-thin bodies and nanowires require atomistic resolu-

tion to capture essential physics. The device Hamiltonian is described in the empirical

tight binding representation with a 10-band sp3d5s* tight binding model. Tight binding

parameters for InAs are taken from [101] and for GaSb are taken from [102]. Device is

simulated with NEGF using the non-local recursive Green’s function approach (non-local

RGF) [94]. In the usual recursive Green’s function scheme [91], device is segmented into

layers, and the diagonal blocks of the Green’s functions, GR andG< are solved recursively.

However, now we need to evaluate off-diagonal elements of self-energy as well. Hence, the

non-local recursive Green’s function approach is employed. An adaptive energy mesh is

employed to resolve the band edges and density with finer resolution as described in [103].

Modeling TFETs involves inclusion of both valence and conduction band electron densi-

ties. However, due to the large energy window of the valence band, electrons and holes

are modeled instead. This ensures that the energy range is limited to few kBT above and

below the Fermi window. Wherever there is a tunneling from a valence band state to a con-

duction band state, there is a transition of particles from holes to electrons and vice-versa.

This transition is modeled by linearly interpolating the change in particle type. The spa-

tial dependence of the conduction valence band edge is used to decide whether a particle

is considered an electron or hole. In the transition region near the tunneling gap, a linear

interpolated factor is used to smoothly transition between electrons and hole.

The NEGF equations with scattering self-energies involved solving the retarded and

lesser Green’s function as follows

(
E −H − ΣR

source − ΣR
drain − ΣR

scatt

)
GR = I (5.1)

G< = GR (Σ<
source + Σ<

drain + Σ<
scatt)G

R† (5.2)

Polar optical phonon scattering self-energies for nanowires are expressed as
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Σ< (~x1, ~x2, E) =
e2

(2π)3

(
1

ε∞
− 1

εs

)
~ωo
2εo

I(~x1, ~x2)

× [noG
< (~x1, ~x2, E − Eo) + (1 + no)G

< (~x1, ~x2, E + Eo)]

(5.3)

ΣR (~x1, ~x2, E) =
e2

(2π)3

(
1

ε∞
− 1

εs

)
~ωo
2εo

I(~x1, ~x2)

×
[
(1 + no)G

R (~x1, ~x2, E − Eo) + noG
R (~x1, ~x2, E + Eo) +

1

2
G<(~x1, ~x2, E − Eo)

−1

2
G<(~x1, ~x2, E + Eo) + i

∫
dẼ

2π
G<
(
~x1, ~x2, Ẽ

)(
Pr

1

E − Ẽ − Eo
− Pr 1

E − Ẽ + Eo

)]
(5.4)

where

I(~x1, ~x2) =


4π2

a

 1

2

(
ζ2
(π
a

)2
+ 1

) − 3a

2ζπ
tan−1

(
ζπ

a

)
+ 1

 , |~x1 − ~x2| = 0

π2

ζ

(
2ζ

|~x1 − ~x2|
− 1

)
e−|~x1−~x2|/ζ |~x1 − ~x2| 6= 0

(5.5)

~ωo is the LO phonon frequency, εs and ε∞ correspond to the static and infinite fre-

quency dielectric constants. no is the Bose-Einstein distribution and ζ is the screening

length. Screening length is calculated within the Lindhard formalism [104] as follows

ζLindhard =

(
e2

εoεr

−2

(2π)3

∫
d~q

∂f

∂ε

∣∣∣∣
ε(~q)

)−1/2
(5.6)

where f is the Fermi distribution.

Solving a complete self-consistent simulation between transport involving self-consistent

Born iterations and Poisson is challenging for in a multi-band basis due to the enormous

computational load. To alleviate the problem, self-consistent Born iterations now involve

solving off-diagonal elements of scattering self-energy which increase the computational

load several orders even with the non-local recursive Green’s function approach. Hence, the

device is solved charge self-consistently with Poisson’s equation and ballistic NEGF. The

converged potentials are now imported into the transport solver and solved with non-local
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recursive Green’s function with polar optical phonon scattering until current is uniform

throughout the device. The potentials, in general vary with scattering but due to compu-

tational constraint the ballistic potential is assumed to represent the potential profile for

scattering. Charge density and current are extracted as follows

n(~x) =

∫
n(~x,E)dE

=
1

2π

∫
= (diag (tr (G<(~x, ~x,E))) dE

(5.7)

Ji→i+1(E) =
q

~

∫
dE

2π
× 2<

(
tr
[
Hi,i+1, G

<
i+1,i(E)

])
(5.8)

Despite the ability to simulate off-diagonal elements of self-energy with non-local re-

cursive Green’s function approach, only a couple of off-diagonal elements can be calcu-

lated for a reasonable device in multi-band basis due to the enormous computational load.

A compensation/scaling factor for the self-energies will be extremely useful in this regard

where we can multiply the local self-energies (which are computatiaonally cheap) with the

appropriate scaling factor to account for the effect of non-locality. Major requirement of

the scaling factor should be that it’s physics based and dependent on the confinement po-

tential, bandstructure and energy. In this regard, a physics based scaling factor approach is

developed to capture the effect of non-locality. Scaling factors are calculated based off of

the Fermi’s golden rule for the corresponding device under interest and the respective factor

is multiplied with diagonal self-energy so that it mimics the actual non-local self-energy

which is numerically challenging to solve for a realistic device.

The scaling factor is based on effective mass approach and assumes a parabolic disper-

sion but in principle, this approach can be applied to a general dispersion relation (which

will be need for hole transport). Fermi’s golden rule expression (absorption branch) for

nanowires for polar optical phonon scattering can be written as

1

τij,a(E)
=
e2~ωLONph

~2

(
1

ε∞
− 1

εs

)
.

2

(2π)2
.
√

2m∗

(
Fa(kx − k

′
x) + Fa(kx + k

′
x)√

E − Ej + ~ωLO

)
(5.9)
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where F (qx) =

∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′

||ρ
∗
ij(r||)ρij(r

′
||)I(qx, r||, r

′

||) and

I(qx, r||, r
′

||) =



√q2x + ζ−2
∣∣∣r|| − r

′

||

∣∣∣+
q2x

∣∣∣r|| − r
′

||

∣∣∣√
q2x + ζ−2

 K1

(√
q2x + ζ−2

∣∣∣r|| − r
′

||

∣∣∣)
2

,
∣∣∣r|| − r

′

||

∣∣∣ 6= 0(
1

2
+

q2x
2 (q2x + ζ−2)

)
,
∣∣∣r|| − r

′

||

∣∣∣ = 0

and ρij(r||) = ψ∗i (r||)ψj(r||)

From the equations above, one can observe that the scattering kernel is dependent on

the non-local distance. The scattering kernel, in turn is integrated along with the squared

of the wavefuctions to get the corresponding rate for a particular momentum and screening

length. An equivalent expression for the local case would only correspond to truncating

terms other than the diagonal in the scattering kernel. The local version of scattering kernels

for nanowires can be written as follows

ILocal(qx, r||, r
′

||) =


(

1

2
+

q2x
2 (q2x + ζ−2)

)
,
∣∣∣r|| − r

′

||

∣∣∣ = 0

0,
∣∣∣r|| − r

′

||

∣∣∣ 6= 0

(5.10)

The scaling factor is now just a division of form factors for the local case with the non-

local one. In effective mass basis, the factor as such does not have an explicit effective mass

dependence (implicitly through energy-momentum relation) and depends significantly on

the spatial nature of modes, dimension of the device and screening length. The scaling

factor can now be represented as

Swire =

∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′

||ρ
∗
ij(r||)ρij(r

′
||)I(qx, r||, r

′

||)∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′
||ρ
∗
ij(r||)ρij(r

′
||)ILocal(qx, r||, r

′
||)

(5.11)

Fig. 5.1 shows the GaSb/InAs TFET considered in this study. Device considered is

a 2 × 2nm2 nanowire with a device length of 36 nm. Source region is 12nm long and

is p-doped GaSb with a doping concentration of 5 × 1019cm−3. Channel region is 12nm

long and is taken to be intrinsic InAs. Drain region is 12nm long as well and is n-doped

InAs with a doping concentration of 2 × 1019cm−3. Intrinsic region is surrounded by gate
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Fig. 5.1.: Schematic of the simulated TFET device. Nanowire dimensions are 2nm ×

2nm × 36nm. Source is p-doped GaSb, gate region is intrinsic InAs and drain is n-doped

InAs region each 12nm in the transport direction. Oxide thickness is 1 nm.
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oxide 1nm thick with a dielectric constant of 20. Oxide region is considered only in the

Poisson’s equation and is not part of transport. Phonon scattering parameters are averaged

across InAs and GaSb parameters and remains constant throughout the device. LO phonon

energy is taken to be 30 meV, static and infinite frequency dielectric constants are taken

to be 15.42 and 13.35. These material parameters have been taken from [105]. Screening

length is set to 3nm. POP scattering simulations are performed both with simple local

approximation where the off-diagonal terms are truncated to zero and by actually including

off-diagonal elements upto a non-local range of 0.3 nm (1st offdiagonal) to cover non-local

scattering. Subsequently, the scaling factor procedure described above is used to multiply

the local self-energy with an appropriate scaling factor for the given non-local range to

account for the underestimation of scattering. Based on the calculations, the scaling factor

is estimated to be 5 for a non-local range of 0.3 nm (energy averaged).

5.4 Results

Simulations results with nanowire TFET are discussed in this section. Fig. 5.2 shows

the I-V characteristics of the GaSb/InAs TFET over the voltage range 0-0.35V. There are

several important observations that one can make from this figure. Ballistic simulation

of TFET provides a very good ON-OFF ratio (≈ 103) resulting in a steep switching of

transistor. This happens in a voltage range of about 50 mV which corresponds to the

transition point where the conduction band profile of the channel meets the valence band

edge of the source. However, POP scattering with a simple local approximation where the

off-diagonals are truncated to zero shows an immediate jump in OFF current. Also, the

transition is not as steep as the ballistic case highlighting the impact of phonon scattering

in tunneling process. Non-local POP scattering increases the OFF current floor further due

to additional elements of the self-energy contributing to the scattering process. Local POP

scattering with scaling factor of 5x increases the current as expected due to strong phonon

scattering. It is interesting to note that the predicted scaling factor of 5x from Fermi’s
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Fig. 5.2.: Current-voltage characteristics of the device. Ballistic simulation shows almost 3

orders of range in current with abrupt switching within 50 mV of VGS . POP scattering with

1x scaling factor shows an order of magnitude increase in the OFF current and an increase

in subthreshold slope (SS). Non-local POP scattering and local scattering with 5x scaling

show good agreement with each other and raise the OFF current floor and SS further.

golden rule agrees quite well with the complete non-local simulation providing confidence

in the scaling factor extraction approach.

Fig. 5.3 shows the subthreshold slope as a function of VGS for all the simulation cases

discussed above. Ballistic simulation shows an optimistic SS of 16 mV/dec due to a sharp

transition between the ON-OFF state. However, with the addition of scattering, the SS

is raised above the thermal limit and the device no longer offers subthreshold slope < 60

mV/dec. Increasing the non-locality of scattering further enhances the SS making it a poor

switching device.

A detailed physical picture behind the transport process can be observed by looking at

the energy resolved current density across the device as shown in Figs. 5.4 and 5.5 for the

OFF state and Figs. 5.6 and 5.7 for the ON state of the device. OFF state ballistic profile
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Fig. 5.3.: Comparison of subthreshold slope (SS) for ballistic and scattering cases. Ballistic

case assumes the ideal switching scenario and achieves a low SS of 16 mV/dec. All scat-

tering cases enhance the OFF current and the SS thereby raising it above the thermal limit.

Increasing the scaling factor of POP scattering raises the minimum SS from 80 mV/dec to

90 mV/dec.
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has a low current density due to the large tunneling distance and has a peak only in the

transmission energy window. However, the moment scattering is turned on, the current

density is no longer restricted to the ballistic energy profile and is smeared out throughout

the Fermi window. There are several interesting features in the OFF state. Firstly, the

current density in general is higher than the ballistic case due to phonon assisted tunneling

processes. Secondly, there are several sharp density channels separated by LO phonon

energies. At energy range [-0.2,0.0] eV on the source side, there are several peaks that

correspond to phonon emission processes. There is significant tunneling in the channel

region with electrons tunneling by absorbing LO phonons and propagating to the drain

side. This increases both the OFF current and also results in a higher SS since the device

no longer has a energy barrier window where transmission can be prevented. Transmission

can now occur in this energy barrier window through phonon assisted tunneling processes.

The ON state, on the other hand, does have distinguishing features between the ballistic

and scattered case but is not as dramatic as the OFF state. In the ON state, since the

transmission in general is higher due to the smaller tunneling energy and distance, current

density is high in both ballistic and scattered case. However, some additional channels

are created with phonon abosrption process on the source side which provides tunneling

windows that decays down rapidly with energy ([-0.4,-0.2] eV energy range). The rapid

decay of the LO phonon echoes is due to vanishing Fermi distribution function which

decays rapidly beyond the Fermi energy window. This results in current densities being

similar in the ON state with the phonon scattering current slightly higher than the ballistic

case.

Impact of phonon scattering and it’s non-locality can be observed by taking cross sec-

tion cuts of energy resolved current density J(E) at various points. Figs. 5.8 and 5.9 show

the cross section cuts of the current density at x=5nm (p-doped GaSb region) and x=20nm

(tunneling region). In the p-doped GaSb region, one can clearly observe the narrow region

in which ballistic transmission occurs and the current density drops by 6 orders of mag-

nitude in the region outside the window. However, with phonon scattering, energy values

higher than the window are enhanced due to decreasing tunneling window and phonon as-
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Fig. 5.4.: Ballistic energy resolved current density J(E) at OFF state along with the potential

profile.
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Fig. 5.5.: Energy resolved current density J(E) at OFF state along with the potential profile

in the presence of non-local POP scattering. Phonons aid the tunneling process through

band tail states and additional phonon echo peaks flooding the tunneling region with cur-

rent thereby raising the OFF current. LO phonon echoes spaced at 30meV (LO phonon

frequency of InAs) can be observed in the drain side.
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Fig. 5.6.: Ballistic energy resolved current density J(E) at ON state along with the potential

profile.
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Fig. 5.7.: Energy resolved current density J(E) at ON state along with the potential profile

in the presence of non-local POP scattering. Phonon scattering enhances not only the OFF

state current but also the OFF state current by conduction from band tail states and phonon

emission processes. LO phonon echoes spaced apart at 30 meV (LO phonon frequency of

GaSb) can be observed in the source side aiding the tunneling process.
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Fig. 5.8.: Cut section of energy resolved current density at x = 5nm (p-doped GaSb region).

Scattering enhances the tunneling current by orders of magnitude through hole-phonon

emission process. Exponentially decaying current density from band tail states can be

observed above the valence bandedge.
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Fig. 5.9.: Cut section of energy resolved current density at x = 20nm (tunneling region).

Scattering enhances the tunneling current by orders of magnitude through hole-phonon

emission and band tail states conduction. Distinct conduction channels separated by LO

phonon energy can be observed. Exponentially decaying current density from band tail

states can be observed above the valence bandedge.
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sisted tunneling process. Once the bandedge is reached, transport does not stop abruptly

(as one would expect in a ballistic transport situation) but decreases exponentially with

echoes separated apart by LO phonon energy. These echoes are generated by exponen-

tially decaying band tail states present above the valence band edge. These band tail states

are generated by inelastic multi-phonon emission processes that are automatically captured

in the self-consistent Born picture in NEGF. Also, the scaling factor approach captures

not only the non-local scattering current accurately but also the density profile as seen in

Fig. 5.8. There is deviation at higher energies where the scaling rule fails but the important

energies are captured accurately.

In the intrinsic region (Fig. 5.9), one can observe that the current density has very

well defined peak states that are separated by LO phonon energies. This effect can only be

captured by a true inelastic scattering process where these interesting features are exhibited.

These channels of current density correspond to electrons tunneling across the junctions

aided by a phonon emission/absorption process and similar to the current density in the

p-doped region, they decay down gradually due to exponentially decaying band tail states.

The simulation can capture both phonon assisted and band tail assisted tunneling quite well

and provides an intuitive explanation behind the observed I-V profile with scattering.

5.5 Conclusion

An atomistic simulation of III-V GaSb/InAs nanowire TFET is performed with non-

local polar optical phonon scattering and the impact of scattering is assessed. Device is

simulated with NEGF approach with scattering included within the self-consistent Born

iteration scheme. A scaling factor methodology is developed to provide physics based

scaling factors for non-local scattering using Fermi’s golden rule. Scattering self-energy

is solved using 3 different scenarios - local approximation with truncation of non-local

terms, local approximation with scaling factor and non-local scattering with a finite non-

local range. I-V characteristics for all the cases are compared and scattering is shown to

increase both OFF current floor and SS due to enhanced tunneling from phonon assisted
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and band tail assisted tunneling. Detailed tunneling process is analyzed by looking at the

energy resolved current density profile of the device. Scaling factor is shown to capture the

actual non-local scattering quite accurately.
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6. QUANTITATIVE PREDICTION OF URBACH TAILS AND BAND
GAP NARROWING IN BULK AND CONFINED III-V DEVICES

WITH NEGF APPROACH

6.1 Summary

In this chapter, band tails or Urbach tails and band gap narrowing will be discussed

in detail. Physics of band tails/bandgap narrowing will be investigated through POP and

impurity simulations. Extraction of band tail parameter / Urbach parameter and band gap

narrowing parameter will be shown along with comparison with available experimental

data.

6.2 Motivation

The need for ultra-low power applications, efficient lighting and renewable energy

source have resulted in the quest for novel devices such as the tunnel field-effect transistor

(TFET) [11, 106, 107], GaN/InGaN light-emitting diodes [21–23] and high-performance

solar cells [24–26]. Carrier transport and sub-60 mV subthreshold slope (SS) performance

in TFETs, optical recombination and generation is highly dependent on a good description

of conduction/valence band edge properties. Tailing of band edge states (known as Urbach

tails) and band gap narrowing can alter the behaviour of the device. Switching behaviour

of TFET is drastically affected by such tailing states [19, 20]. Urbach tails (band tails) are

exponentially decaying tailing of density-of-states below band edge and is known to place

a fundamental limit on the lowest achievable SS in TFETs [10, 19]. On the other hand,

Band gap narrowing alters the optical frequency at which recombination/generation occurs

and shift the turn-on/threshold voltage of optical devices [21,108] and tunneling current in

TFETs. Band tailing and band gap narrowing effects are mainly attributed to the interac-
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tion of electrons/holes with environmental defects such as phonons, randomly distributed

dopant impurity atoms and native lattice disorders/defects. They exhibit a strong depen-

dence on temperature and doping concentration. [109–112]. Though the effect has been

studied for quite some time, actual values used for a given material are based either on sim-

plified analytical expressions or parameters that are directly extracted from experimental

results. [20, 109, 110, 112, 113]. This presents few challenges. Firstly, the applicability of

the expressions are limited either to the doping range, assumptions in the band dispersion

relation (e.g. parabolic E-k). Secondly, dependence for confined devices such as ultra-thin

body and nanowire is tough to predict due to the lack of available experimental measure-

ments. In this work, the above problem is addressed by calculating band-tailing and band

gap narrowing through scattering self-energies using the non-equilibrium Green’s func-

tion (NEGF) approach with only material dependent parameters. Non-equilibrium Green’s

function (NEGF) approach is widely accepted as the most consistent approach to treat

electronic, thermal and optoelectronic transport in a variety of devices [59–64]. It has been

widely applied in modeling transistors [65–67], resonant-tunneling devices [68], metal-

semiconductor contacts [41,69], phonon transport across interfaces [70], GaN/InGaN light-

emitting diodes [21] with quantitative agreements with experimental data. NEGF approach

enables a consistent treatment of different scattering mechanisms through scattering self-

energies. Scattering is modeled through self-energies within the self-consistent Born ap-

proximation (SCBA) [60]. Amongst the scattering mechanisms present in doped III-V

semiconductor, polar optical phonons (POP) and charged impurity scattering mechanisms

are the dominant mechanisms [75, 114]. Both these scattering mechanisms are considered

with electrostatic screening. Scattering self-energies are derived for both scattering mecha-

nisms for both bulk and confined devices (ultra-thin body and nanowires) and the scattering

rates are verified by comparing them against Fermi’s golden rule validating the approach.

Urbach tails and band gap narrowing parameters are then directly extracted by examin-

ing the converged density of states (DoS) from NEGF simulation for a given material. 4

candidate III-V materials - GaAs, InAs, GaSb and GaN are taken up for detailed study.

Bulk, ultra-thin body of confinement thickness 4nm and ultra-scaled nanowire of 2×2nm2
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dimensions are analyzed. Comparison against available experimental results from photo-

luminescence measurements are performed for bulk devices. Guideline values for Urbach

tail and band gap narrowing are presented for ultra-thin body and nanowire devices.

6.3 Simulation approach

6.3.1 Modeling self-energies

Electron-phonon interaction modeled through the Fröhlich coupling [115]. Scattering

potential is given as

|Uq|2 = e2
~ωq
2εo

(
1

ε∞
− 1

εs

)
q2

(q2 + ζ−2)2
(6.1)

The static and dynamic dielectric constant are represented by εs and ε∞ respectively.

The phonon frequency and momentum are represented by ~ωq and q respectively. Since

maximal interaction is with longitudinal-optical (LO) phonons, the phonon frequency is

assumed to be dispersionless and the frequency corresponds to the value at the Gamma

point. Total screening is assumed to be the sum of screening from valence band electrons

(ε0), electronic (ζ) and phononic (1/ε∞−1/εs). Electrostatic screening is calculated within

the Lindhard formalism [104]. Charged impurity scattering is modeled by assuming an

ensemble average of homogeneous distribution of impurity atoms. In this work, Brooks-

Herring impurity scattering approach [79] is employed due to it’s validity in the doping

range studied for III-V materials. Electrostatic screening is calculated within the Lindhard

formalism. The scattering potential is given by

eV (q) =
Ze2

εs (q2 + ζ−2)
(6.2)

Bulk, ultra-thin body and nanowire devices all are modeled in atomic resolution with

atoms in native lattice. GaSb, InAs and GaSb are treated in the conventional zincblende

cystal structure and GaN is treated in the wurtzite structure. Both POP and impurity scat-

tering mechanisms are long-ranged and the extent of non-locality is determined by the
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screening length. Due to the non-local nature of scattering, self-energy expressions need to

be derived separately for each degree of confinement (bulk, ultra-thin body and nanowires)

for POP and impurity scattering. A 10-band sp3d5s* tight-binding Hamiltonian is used

for both conduction and valence bands [116, 117]. Scattering self-energies are assumed to

be atom block-diagonal. Self-energies are block-diagonal in orbital space and inter-orbital

transitions exist only on the same atom position. Due to the diagonal treatment of non-

local scattering self-energies, scattering will be underestimated. To compensate for this

underestimation, a new scaling factor calculation is proposed where the factors are directly

calculated from Fermi’s golden rule rather than using an empirical scaling factor.

POP scattering bulk self-energies are represented as

Σ<
(
z1, z2, k||, E

)
=

e2π

(2π)3

(
1

ε∞
− 1

εs

)
~ωo
2εo

∫
d~l||

e
−
√
q2||+ζ

−2|z1−z2|√
q2|| + ζ−2

1− ζ−2 |z1 − z2|
2
√
q2|| + ζ−2

− ζ−2

2 (q2 + ζ−2)


[
noG

<
(
z1, z2, l||, E − Eo

)
+ (no + 1)G<

(
z1, z2, l||, E + Eo

)]
(6.3)

ΣR
(
z1, z2, k||, E

)
=

e2π

(2π)3

(
1

ε∞
− 1

εs

)
~ωo
2εo

∫
d~l||

e
−
√
q2||+ζ

−2|z1−z2|√
q2|| + ζ−2

1− ζ−2 |z1 − z2|
2
√
q2|| + ζ−2

− ζ−2

2 (q2 + ζ−2)


×
[
(no + 1)GR

(
z1, z2, l||, E − Eo

)
+ noG

R
(
z1, z2, l||, E + Eo

)
+

1

2
G<
(
z1, z2, l||, E − Eo

)
−1

2
G<
(
z1, z2, l||, E − Eo

)
+ i

∫
dẼ

2π
G<(z1, z2, l||, Ẽ)

(
Pr

1

E − Ẽ − Eo
− Pr 1

E − Ẽ + Eo

)]
(6.4)

Similarly, the POP scattering UTB self-energies can be written as

Σ<
(
~x1, ~x2, k||, E

)
=

e2

(2π)3

(
1

ε∞
− 1

εs

)
~ωo
2εo

∫
dl||I(k||, l||, ~x1, ~x2)

×
[
noG

<
(
~x1, ~x2, l||, E − Eo

)
+ (1 + nq)G

<
(
~x1, ~x2, l||, E + Eo

)] (6.5)
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ΣR
(
~x1, ~x2, k||, E

)
=

e2

(2π)3

(
1

ε∞
− 1

εs

)
~ωo
2εo
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×
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(
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+

1
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−1
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∫
dẼ

2π
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(
~x1, ~x2, l||, Ẽ

)(
Pr

1

E − Ẽ − Eo
− Pr 1

E − Ẽ + Eo
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(6.6)

where

I(k||, l||, ~x1, ~x2) =

π

√(k|| − l||)2 + ζ−2 |~x1 − ~x2|+
(
k|| − l||

)2 |~x1 − ~x2|√(
k|| − l||

)2
+ ζ−2

K1

(√(
k|| − l||

)2
+ ζ−2 |~x1 − ~x2|

)
,

|~x1 − ~x2| 6= 0

π

[
1 +

(
k|| − l||

)2(
k|| − l||

)2
+ ζ−2

]
, |~x1 − ~x2| = 0

(6.7)

Finally, the POP scattering wire self-energies are expressed as

Σ< (~x1, ~x2, E) =
e2

(2π)3

(
1

ε∞
− 1

εs

)
~ωo
2εo

I(~x1, ~x2)

× [noG
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< (~x1, ~x2, E + Eo)]

(6.8)
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1
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(6.9)

where
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I(~x1, ~x2) =


4π2

a

 1
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) − 3a

2ζπ
tan−1
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(6.10)

Impurity scattering bulk, UTB and nanowire self-energies are expressed as

Σ<,R
(
z1, z2, ~k||, E

)
=

ND

4. (2π)2

(
e2

εoεr

)2∫
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)
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)
(6.12)

where

I(k||, l||, ~x1, ~x2) =

π

[
|~x1 − ~x2|(

k|| − l||
)2

+ ζ−2

]
K1

(√(
k|| − l||

)2
+ ζ−2 |~x1 − ~x2|

)
,

|~x1 − ~x2| 6= 0

π

[
1(

k|| − l||
)2

+ ζ−2

]
, |~x1 − ~x2| = 0

(6.13)

Σ<,R (~x1, ~x2, E) =
ND

8π

(
e2

εoεr

)2

ζe−|~x1−~x2|/ζG<,R (~x1, ~x2, E) (6.14)

Note that a major distinction between the polar optical phonons and impurity scattering

is the inelastic nature of scattering for phonons and elastic scattering for electrons with

impurity potential. This is one of the important factors shaping the band tails as will be seen

in subsequent section. For all further discussions, device is assumed to be in equilibrium

with the density corresp onding to the doping concentration. Self-energies derived are

solved consistently with the corresponding Green’s function until particle conservation is
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achieved throughout the device. Following are the corresponding NEGF equations solved

to achieve converged density and density of states.

GR =
(
EI −H − ΣR

pop − ΣR
imp − ΣR

source − ΣR
drain

)
G< = GR

(
Σ<
pop + Σ<

imp + Σ<
source + Σ<

drain

)
GR†

(6.15)

The real and imaginary part of the retarded self-energy are related through the Kramers-

Krönig relation. The real part of scattering self-energy provides the energy shift and the

imaginary part provides the broadening associated with the scattering mechanism. Band

tail is extracted by taking slope of the exponentially decaying density of states below band

edge and the band gap narrowing is determined by running two sets of simulation - one with

real part of self-energy set to zero and other with real part present. The difference in shift is

equivalent to the band gap narrowing. On-shell scattering rates from NEGF are computed

by performing a Fourier transform of the self-energy with respect to the Wigner coordinate

(r − r′) across the cross-diagonal of the matrix. This provides on-shell scattering rates in

the full E-k space. In tight-binding basis, for a given E-k tuple, multiple kx values can exist

and hence they need to be summed up. For ultra-thin body and nanowires, the self-energy

is first transformed into mode-space and then the Fourier transform is performed to get inter

and intra-mode scattering rates.

For bulk,

Γ
(
k||, kx, E

)
= −

∑
kx

2

~a

∫ ∞
−∞

d(r − r′)eikx(r−r′)ΣR

(
k||, r − r′,

r + r′

2

)
For ultra-thin body,

Γij (k, kx, E) = −
∑
kx

2

~a

∫ ∞
−∞

d(r − r′)eikx(r−r′)Σ̃R

(
k, r − r′, r + r′

2

)
For nanowires,

Γij (kx, E) = −
∑
kx

2

~a

∫ ∞
−∞

d(r − r′)eikx(r−r′)Σ̃R

(
r − r′, r + r′

2

)

Σ̃R = V ΣRV †
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where Σ̃R is the mode-space self-energy and V is the eigenmode transformation matrix.

6.3.2 Verification of scattering self-energies

Scattering self-energies are verified by comparing them against the corresponding Fermi’s

golden rule. Due to the non-local nature of scattering, Fermi’s golden rule is separately

derived for each degree of confinement based on the approach taken by [118]. Detailed

derivations of Fermi’s golden rule is provided in Appendix A. Envelope wave functions of

the form

ψ(R) =
ei
~k. ~R

√
V

for bulk,

ψ(R) =
ei
~k.~r

√
A
ζi(z)

for ultra-thin body, and

ψ(R) =
eikx√
L
ζi(y, z)

for nanowires are assumed. Scattering rate is calculated by computing the transition

matrix elements as follows

1

τi,j
=

2π

~
∑
q

|k ± q, jHk, i|2 finitial(1− ffinal)δ(Efinal − Einitial)

where i and j correspond to the initial and final modes (for ultra-thin bodies and

nanowires), q is the phonon momentum/impurity potential wavevector, finitial and ffinal are

the occupancy functions for initial and final scattering states. Transition element |k ± q, jHk, i|2

for bulk, ultra thin body and nanowires can be expressed as

|k ± qHk|2 = U2
q
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|k ± q, jHk, i|2 = U2
q

∫ ∞
−∞

dz

∫ ∞
−∞

dz′ρij(z)ρ∗ij(z
′)eiq(z−z

′)

ρij(z) = ζ∗i (z)ζj(z)

|k ± q, jHk, i|2 = U2
q

∫ ∞
−∞

d~r||

∫ ∞
−∞

d~r′||ρij(~r||)ρ
∗
ij(~r

′
||)e

i ~q||.(~r||−~r′||)

ρij(~r||) = ζ∗i (y, z)ζj(y, z)

where Uq is the scattering potential.

Based on the definition of transition matrix elements and envelope wavefunctions,

Fermi’s golden rule for charged impurity for bulk can be expressed as

1

τ(E)
=

2e4m∗ND

π~3ε2o

√
2m∗E

~2

ζ−2
(
ζ−2 +

8m∗E

~2

) (6.16)

Fermi’s golden rule for charged impurity for ultra-thin body takes the form

1

τij(E)
=

2e4NDm
∗

~3ε2(2π)3

∫ 2π

0

dθF (|k̃|| − k̃′|||, θ) (6.17)

where

|k̃|| − k̃′||| =
[

2m∗

~2
(2E − Ei − Ej)− 2.

2m∗

~2
√
E − Ei.

√
E − Ejcosθ

]1/2
(6.18)

Form factor F is given by Fabs/emi(q||) =

∫ Lz

0

∫ Lz

0

dzdz
′
ρij(z)ρij(z

′)I(q||, z, z
′)

where ρij(z) = ψ∗i (z)ψj(z) (product of mode i and mode j) and

I(q||, z, z
′) =

πe
−|z−z′|

√
q2||+ζ

−2

2
(
q2|| + ζ−2

)
 1√

q2|| + ζ−2
+ |z − z′|

 (6.19)
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The above scattering rate is between two modes i and j. Multi-modal scattering rate can

be calculated by summing up contributions from different inter-mode scattering

Γ(E) =
∑
j

Γij(E) =
∑
j

1

τij(E)
(6.20)

Finally, Fermi’s golden rule for charged impurity for nanowire can be expressed as

1

τij(E)
=
e4ND

√
2m∗

~2ε2(2π)3

(
F (kx − k

′
x) + F (kx + k

′
x)√

E − Ei

)
(6.21)

Form factor F is given by

F (qx) =

∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′

||ρ
∗
ij(r||)ρij(r

′
||)I(qx, r||, r

′

||)

where ρij(r||) = ψ∗i (r||)ψj(r||) (product of mode i and mode j) and

I(qx, r||, r
′

||) =


∣∣∣r|| − r

′

||

∣∣∣
2
√
q2x + ζ−2

K1

(√
q2x + ζ−2

∣∣∣r|| − r
′

||

∣∣∣) , ∣∣∣r|| − r
′

||

∣∣∣ 6= 0

1

2 (q2x + ζ−2)
,
∣∣∣r|| − r

′

||

∣∣∣ = 0

(6.22)

The above scattering rate is between two modes i and j. Multi-modal scattering rate can

be calculated by summing up contributions from different inter-mode scattering

Γ(E) =
∑
j

Γij(E) =
∑
j

1

τij(E)
(6.23)

The corresponding Fermi’s golden rule expressions are compared against self-energy

calculations performed with NEGF approach. From Fig. 6.1 scattering rate obtained from

NEGF shows good agreement with Fermi’s golden rule for 4nm GaAs ultra-thin body. Rate

follows the 2D density of states and at the same time decreases with increasing energy. This

is characteristic of impurity scattering mechanism where the impurity scattering potential

has a q−2 dependence on momentum. NEGF scattering rate exhibits spikes and steps due to

the numerical resolution of transverse k-space. Obtaining a smooth scattering rate requires

prohibitively large computational resources.

Similarly, electron scattering rate obtained from NEGF shows good agreement with

Fermi’s golden rule for 2 × 2nm2 GaAs nanowire as observed in Fig 6.2. Scattering rate
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Fig. 6.1.: a) Conduction band profile of a 4nm GaAs ultra-thin body at Γ point. b) Compar-

ison of conduction band scattering rates obtained from NEGF against Fermi’s golden rule

for charged impurity scattering for 4nm GaAs ultra-thin body in 10-band sp3d5s* tight

binding basis for a doping concentration of 2× 1018cm−3. Screening length is set at 3 nm.

Good agreement is achieved between the NEGF scattering rate and Fermi’s golden rule

over a wide energy range. NEGF simulation has observable spikes in scattering rate due to

limited resolution of periodic k-space.
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Fig. 6.2.: a) Conduction band profile of 2 × 2nm2 GaAs nanowire. Valleys at Γ point and

the zone boundary are labelled as V1 and V2. b) Comparison of conduction band scattering

rates obtained from NEGF against Fermi’s golden rule for charged impurity scattering for

2 × 2nm2 GaAs nanowire in 10-band sp3d5s* tight binding basis for a doping concentra-

tion of 2 × 1018cm−3. Screening length is set at 3 nm. Fermi’s golden rule shows good

agreement with NEGF over a wide energy range. Distinct scattering rates can be observed

for valleys V1 and V2.
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Fig. 6.3.: a) Valence band profile of 2×2nm2 GaAs nanowire. Valleys at Γ point and higher

energies are labelled as V1 and V2 respectively. b) Comparison of valence band scattering

rates obtained from NEGF against Fermi’s golden rule for charged impurity scattering for

2×2nm2 GaAs nanowire in 10-band sp3d5s* tight binding basis for a doping concentration

of 2 × 1018cm−3. Screening length is set at 3 nm. Fermi’s golden rule shows reasonable

agreement with NEGF over the available energy window. Non-parabolicity of valence

bands results in observed deviations from Fermi’s golden rule. Distinct scattering rates can

be observed for valleys V1 and V2.

follows both 1D density of states profile along with characteristic decrease of rate with

increasing energy for impurity scattering. Scattering rate has an abrupt jump at the onset

of valley V2 due to larger effective mass of V2 in comparison with V1.

Comparison of hole scattering rate obtained from NEGF shows agreement with Fermi’s

golden rule for 2 × 2nm2 GaAs nanowire evident from Fig 6.3. Hole bands are parabolic

closer to the Γ point and non-parabolicity increases as one goes deeper into the valence
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bands. Fermi’s golden rule, on the other hand, employs parabolic E-k assumption and this

results in observed deviations in the scattering rate. Scattering rate shows an abrupt jump

at V2 due to a difference in effective masses between valleys V1 and V2.

A similar comparison is done between Fermi’s golden rule obtained for polar optical

phonon scattering with NEGF. Scattering rate results for bulk are expressed below with

absorption and emission branches highlighted separately.

Absorption process

1

τab(k)
=
e2m∗~ωLONph

4π~3k

(
1

ε∞
− 1

εs

)∫ q+

q−

dq
q3

(q2 + ζ−2)2
(6.24)

where the integration limits of q are(
2m∗

~2

)1/2 [√
E + ~ωLO −

√
E
]
≤ q ≤

(
2m∗

~2

)1/2 [√
E + ~ωLO +

√
E
]

Emission process

1

τem(k)
= θ (E − ~ωLO)

e2m∗~ωLO (1 +Nph)

4π~3k

(
1

ε∞
− 1

εs

)∫ q+

q−

dq
q3

(q2 + ζ−2)2
(6.25)

where the integration limits of q are(
2m∗

~2

)1/2 [√
E −

√
E − ~ωLO

]
≤ q ≤

(
2m∗

~2

)1/2 [√
E +

√
E − ~ωLO

]
Total scattering rate is the sum of emission and absorption processes and is given by

1

τ(k)
=

1

τem(k)
+

1

τab(k)

Fermi’s golden rule for polar optical phonons for ultra-thin body can be expressed as

Absorption process

1

τij,abs(E)
=

4πe2m∗~ωLO
~3

(
1

ε∞
− 1

εs

)
Nph

∫ 2π

0

dθFabs(|k̃|| − k̃′|||, θ) (6.26)

where

|k̃|| − k̃′||| =

[
2k2 +

2 (~ωLO + (Ei − Ej))
~2

− 2k

[
k2 +

2 (~ωLO + (Ei − Ej))
~2

]1/2
cosθ

]1/2
(6.27)
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Emission process

1

τij,emi(E)
=

4πe2m∗~ωLO
~3

(
1

ε∞
− 1

εs

)
(Nph + 1)

∫ 2π

0

dθFemi(|k̃|| − k̃′|||, θ) (6.28)

where

|k̃|| − k̃′||| =

[
2k2 − 2 (~ωLO − (Ei − Ej))

~2
− 2k

[
k2 − 2 (~ωLO − (Ei − Ej))

~2

]1/2
cosθ

]1/2
(6.29)

Form factor Fabs/emi is given by Fabs/emi(q||) =

∫ Lz

0

∫ Lz

0

dzdz
′
ρij(z)ρij(z

′)I(q||, z, z
′)

where ρij(z) = ψ∗i (z)ψj(z) (product of mode i and mode j) and

I(q||, z, z
′) =

e
−
√
q2||+ζ

−2|z−z′|√
q2|| + ζ−2

1− |z − z
′| ζ−2

2
√
q2|| + ζ−2

− ζ−2

2
(
q2|| + ζ−2

)


Total scattering is the sum of absorption and emission processes and is given by

1

τij(E)
=

1

τij,emi(E)
+

1

τij,abs(E)

The above scattering rate is between two modes i and j. Multi-modal scattering rate

can be calculated by summing up contributions from different inter-mode scattering

Γ(E) =
∑
j

Γij(E) =
∑
j

1

τij(E)

Finally, Fermi’s golden rule for polar optical phonons for nanowire are expressed as

Absorption process

1

τij,abs(E)
=
e2~ωLONph

~2

(
1

ε∞
− 1

εs

)
.

2

(2π)2
.
√

2m∗

(
F (kx − k

′
x) + F (kx + k

′
x)√

E − Ej + ~ωLO

)
(6.30)

kx =

√
2m∗ (E − Ei)

~2
k
′

x =

√
2m∗ (E − Ej + ~ωLO)

~2
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Emission process

1

τij,emi(E)
=
e2~ωLO (Nph + 1)

~2

(
1

ε∞
− 1

εs

)
.

2

(2π)2
.
√

2m∗

(
F (kx − k

′
x) + F (kx + k

′
x)√

E − Ej − ~ωLO

)
(6.31)

kx =

√
2m∗ (E − Ei)

~2
k
′

x =

√
2m∗ (E − Ej − ~ωLO)

~2

Form factor F is given by

F (qx) =

∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′

||ρ
∗
ij(r||)ρij(r

′
||)I(qx, r||, r

′

||)

where ρij(r||) = ψ∗i (r||)ψj(r||) (product of mode i and mode j)

and

I(qx, r||, r
′

||) =



√q2x + ζ−2
∣∣∣r|| − r

′

||

∣∣∣+
q2x

∣∣∣r|| − r
′

||

∣∣∣√
q2x + ζ−2

 K1

(√
q2x + ζ−2

∣∣∣r|| − r
′

||

∣∣∣)
2

,
∣∣∣r|| − r

′

||

∣∣∣ 6= 0(
1

2
+

q2x
2 (q2x + ζ−2)

)
,
∣∣∣r|| − r

′

||

∣∣∣ = 0

Total scattering is the sum of absorption and emission processes and is given by

1

τij(E)
=

1

τij,emi(E)
+

1

τij,abs(E)

The above scattering rate is between two modes i and j. Multi-modal scattering rate

can be calculated by summing up contributions from different inter-mode scattering

Γ(E) =
∑
j

Γij(E) =
∑
j

1

τij(E)

Electron scattering rate obtained from NEGF shows good agreement with Fermi’s golden

rule for 4nm GaAs ultra-thin body as seen in Fig. 6.4. Clear distinction between phonon

emission and absorption processes can be observed at energy ~ωLO above the band edge.

As expected, the scattering rate, follows the 2D density of states profile but decreases with

increasing energy as expected of a polar-optical phonon scattering process. NEGF scat-

tering rate, similar to the impurity case, exhibits spikes and steps due to the numerical

resolution of transverse k-space due to numerical resolution.
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Fig. 6.4.: a) Conduction band profile of 4nm GaAs ultra-thin body. b) Comparison of

conduction band scattering rates obtained from NEGF against Fermi’s golden rule for po-

lar optical phonons for 4nm GaAs ultra-thin body in 10-band sp3d5s* tight binding basis.

Screening length is set at 3 nm. Good agreement is achieved between the NEGF scatter-

ing rate and Fermi’s golden rule over a wide energy range. Onset of phonon emission is

observed at energy 1 LO phonon above conduction bandedge.
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Fig. 6.5.: a) Conduction band profile of 2 × 2nm2 GaAs nanowire. Valleys at Γ point

and the zone boundary are labelled as V1 and V2. b) Comparison of conduction band

scattering rates obtained from NEGF against Fermi’s golden rule for polar optical phonons

for 2 × 2nm2 GaAs nanowire in 10-band sp3d5s* tight binding basis. Screening length is

set at 3 nm. Fermi’s golden rule shows good agreement with NEGF over a wide energy

range. Onset of absorption and emission processes can be clearly observed for valleys V1

and V2.



110

Similarly, electron scattering rate is obtained for nanowires from NEGF and it shows

good agreement with Fermi’s golden rule for 2×2nm2 GaAs nanowire as shown in Fig. 6.5.

Scattering rate clearly shows absorption and emission processses for valleys V1 and V2.

For energies near the Γ point, scattering rate is governed by phonon absorption and emis-

sion of electrons present in Valley V1. With increasing energy, we reach a point where

electrons present in valley V1 can now absorb a phonon and scatter to valley V2. This

results in a jump at 4~ωLO. At energy, one ~ωLO higher than V2 electrons present at

higher energies start emitting phonons. The self-energy captures both inter and intra-valley

scattering processes quite nicely.

Hole scattering rate obtained from NEGF shows good agreement with Fermi’s golden

rule for 2×2nm2 GaAs nanowire is as shown in Fig. 6.6. With decreasing energy from the

valence band edge, hole absorption process begins and at ~ωLO, hole emission process for

valley V1 begins. Soon, the hole energy is sufficient enough for the absorption of a phonon

energy to scatter onto valley V2. Since valleys V1 and V2 have different effective masses,

this results in a jump in the scattering rate. With further decrease in energy, holes can now

scatter onto valley V3 through a phonon absorption which results in an additional bump

around−1.8~ωLO. Deviations observed from Fermi’s golden rule approximation is mainly

because of it’s assumption of parabolic dispersion. NEGF on the other hand, employs the

tight-binding bandstructure which has significant non-parabolicity away from Γ point.

Overall, comparison of sccattering rates with Fermi’s golden rule show good agreement

over the energy range. NEGF captures both inter and intra-valley scattering process quite

nicely. This provides confidence in the scattering expressions which can now be employed

to study band tails in detail.

6.3.3 Compensation factor for non-local scattering

Self-energies described above are only solved atom-blockdiagonal. In general, both

polar optical phonon and impurity scattering are non-local in nature. To account for the

non-locality omission, a new compensation factor is proposed based on a semi-classical
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Fig. 6.6.: a) Hole band profile of 2 × 2nm2 GaAs nanowire. Valley at Γ point is labeled

V1 and the ones at deeper energy levels are labelled V2 and V3. b) Comparison of valence

band scattering rates obtained from NEGF against Fermi’s golden rule for polar optical

phonons for 2× 2nm2 GaAs nanowire in 10-band tight binding basis. Screening length is

set at 3 nm. Non-parabolicity of valence bands results in observed deviations from Fermi’s

golden rule. Onset of absorption and emission processes can be clearly observed for valleys

V1, V2 and V3.
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approach. The compensation factor is defined as a division of form factors of the scattering

rate from Fermi’s golden rule for the local case with the non-local one. The compensation

factor for UTBs and nanowires can be represented as

SUTB =

∫ 2π

0

dθ

∫ Lz

0

∫ Lz

0

dzdz
′
ρij(z)ρij(z

′)I(|k̃|| − k̃′|||, z, z′)∫ 2π

0

dθ

∫ Lz

0

∫ Lz

0

dzdz′ρij(z)ρij(z′)ILocal(|k̃|| − k̃′|||, z, z′)
(6.32)

Swire =

∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′

||ρ
∗
ij(r||)ρij(r

′
||)I(qx, r||, r

′

||)∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′
||ρ
∗
ij(r||)ρij(r

′
||)ILocal(qx, r||, r

′
||)

(6.33)

where

ILocal(q||, z, z
′) =


1√

q2|| + ζ−2

1− ζ−2

2
(
q2|| + ζ−2

)
 , |z − z′| = 0

0, |z − z′| 6= 0

(6.34)

ILocal(qx, r||, r
′

||) =


(

1

2
+

q2x
2 (q2x + ζ−2)

)
,
∣∣∣r|| − r

′

||

∣∣∣ = 0

0,
∣∣∣r|| − r

′

||

∣∣∣ 6= 0

(6.35)

For bulk, compensation factor for a thick enough UTB with 20 modes (to mimic bulk

like behaviour) is calculated as an equivalent analytical expression does not exist for the

bulk case due to 3D periodicity.

6.4 Urbach tail - Dependence on temperature, doping and confinement

Urbach tails are mainly observed in the context of optical measurements where the ab-

sorption spectrum decays exponentially below the band edges. Since it’s representative of

the available density of states, it will be used for majority of our discussions in extracting

and analysing Urbach parameters. Fig 6.7 shows the density of states of bulk, ultra-thin

body and nanowire GaSb in presence of scattering. Density of states along with polar op-

tical phonon and impurity scattering is distinctly different from the ballistic case where a
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Fig. 6.7.: Density of states of bulk, 4nm ultra-thin body and 2 × 2nm2 wire GaSb in

the presence of polar optical phonon and charged impurity scattering. Density of states

with scattering show exponentially decaying band tail with periodic pattern of LO phonon

echoes mirroring the density of states profile at the bandedge. The shape of the echoes is

determined by the dimensionality of the density of states as indicated by the grey illustra-

tions. Urbach parameter is extracted by taking slope of the exponential decaying tail.
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sharp drop occurs at the defined bandedge. In this case, inelastic phonon scattering pro-

cesses along with impurity enhancement result in an exponential decay of the density of

states. The shape of band tails has two distinct features - shape is determined by the na-

ture of DoS at the bandedge (1D, 2D versus 3D DoS) and formation of periodic patterns

determined by the LO phonon energy. Band tail is extracted by taking the slope of the

exponential decay as follows

EUrbach =
(E1 − E2)

log

(
DoS(E1)

DoS(E2)

) (6.36)

Fig 6.8 shows the variation of Urbach parameter with doping concentration and tem-

perature. With increasing temperature, phonon echoes are gradually washed out due to in-

creasing contribution from the phonon bath. Phonon contribution is ∝ exp(−~ωLO/kBT )

and results in an exponential increase in scattering strength with temperature, thereby in-

creasing the Urbach paramater. Impurity scattering on the other hand, is an elastic process

and does not contribute to formation of band tails. However, due to the elastic nature of

scattering, it enhances every energy in the band tail with it’s enhancement being propor-

tional to the available density of states. Therefore, with increasing doping concentration,

decay of bands get more and more gradual and this results in observed enhancement of

Urbach parameter with doping. The simulation results are now compared with available

experimental data.

Fig 6.9 shows the variation of Urbach parameter as a function of temperature for differ-

ent doping concentrations for bulk n-type GaAs. As observed earlier with energy resolved

DoS, band tails for bulk n-type GaAs increase both with temperature and doping concentra-

tion. At 300K, Urbach parameter for GaAs is around 5 meV and at 7×1018cm−3 increases

to 12 meV. Simulation results are compared against experimental data obtained from [119].

Intrinsic data shows good agreement with experimental data as the major contributor to

band tails in this regime are phonons. At 2×1018cm−3 doping, match is qualitative and ex-

perimental value is slightly higher than simulations. This is expected as the current model
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Fig. 6.8.: a) Variation of density of states of bulk InAs as a function of energy (normal-

ized to LO phonon energy) for different temperature. Increasing temperature results in in-

creasing contribution from phonons (∝ exp(−~ωLO/kBT )) blurring the individual phonon

echoes. b) Variation of density of states of bulk InAs as a function of energy (normalized

to LO phonon energy) for different doping concentration. Increasing the doping concentra-

tion results in increasing impurity scattering contribution resulting in a slower decay below

the band edge.
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Fig. 6.9.: Variation of Urbach parameter as a function of temperature for n-type GaAs for

different doping concentrations. Simulation results show good agreement with experimen-

tal data obtained from [119] for intrinsic case and for ND = 2× 1018cm−3.
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Fig. 6.10.: a) Variation of Urbach parameter as a function of temperature for n-type bulk

InAs for different doping concentrations. Simulation results show good agreement with

experimental data obtained from [120]. b) Variation of Urbach parameter as a function of

temperature for n-type GaN for different doping concentrations. Simulation results show

good agreement with experimental data obtained from [121] for GaN. With increasing

doping concentration, Urbach parameter increases more rapidly with temperature due to

the combined effect of higher phonon and impurity scattering.

only captures the intrinsic scattering processes from phonons and impurity potential and

does not include crystal defects/disorders and neutral impurity scattering.

Urbach parameter is plotted as a function of temperature and doping concentration for

bulk n-type InAs and GaN as shown in Fig 6.10 and compared against experimental data

obtained from [120] for InAs and [121] for GaN. In both the cases, simulation results show

good agreement with experimental results. GaN has a larger LO phonon energy (92 meV)

than InAs (30 meV) and this shows up as larger Urbach parameter values which are atleast

3x higher than InAs. This results in Urbach parameter increasing much more drastically

with respect to temperature for GaN when compared to InAs.
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Fig. 6.11.: Variation of Urbach parameter for bulk GaN, GaAs, InAs and GaSb as a function

of doping concentration. Dots correspond to the simulation results and lines correspond to

the fitting curve. GaN exhibits largest Urbach parameter due to large LO phonon scattering

strength.
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Fig. 6.12.: Variation of Urbach parameter for GaN, GaAs, InAs and GaSb ultra-thin body

as a function of doping concentration. Dots correspond to the simulation results and lines

correspond to the fitting curve. GaN exhibits largest Urbach parameter due to large LO

phonon scattering potential.

Fig 6.11 shows the variation of Urbach parameter of GaN, GaAs, InAs and GaN with

doping concentration is summarized in this plot. In general, all the materials follow similar

variation with doping profile. GaN, in general has a larger Urbach parameter due to large

phonon energy and is 3× larger than GaAs, InAs and GaSb which have similar phonon

energies (36meV, 30meV and 30meV respectively). The variation with doping is fit with

a least-square fitting approach and is fit to UND
= Uintrinsic + A(ND/1E18)u. The curve

captures the trend quite well and the corresponding parameters are summarized in Table I.

A similar dependence on doping concentration is investigated for the confined devices.

Variation of Urbach parameter of GaN, GaAs, InAs and GaN with doping concentration is

summarized in the plots as shown in Figs. 6.12 and 6.13 for UTB and nanowire. Though

the trend is similar to that of bulk, the rate of increase with doping concentration is differ-

ent from bulk. This is due to the fact that impurity scattering self-energies have different

dependence on doping concentration (arising from both doping and screening length de-
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Fig. 6.13.: Variation of Urbach parameter for GaN, GaAs, InAs and GaSb nanowire as

a function of doping concentration. Dots correspond to the simulation results and lines

correspond to the fitting curve. GaN exhibits largest Urbach parameter due to large LO

phonon scattering potential.
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pendence) for UTBs and nanowires in comparison to bulk. The variation with doping is

again fit with a least-square fitting approach and is fit to UND
= Uintrinsic+A(ND/1E18)u.

The curve captures the trend quite well and the corresponding parameters are summarized

in Table 6.1.

GaN GaAs GaSb InAs

Bulk A = 0.38, u = 1 A = 0.20, u = 1 A = 0.20, u = 1 A = 0.25, u = 1

4nm UTB A = 22.21, u = 0.14 A = 2.04, u = 0.10 A = 6.92, u = 0.10 A = 0.18, u = 0.77

2×2 nm2 wire A = 2.70, u = 0.66 A = 0.17, u = 0.66 A = 0.10, u = 0.66 A = 0.11, u = 0.66

Table 6.1.: Parameters for variation of Urbach parameter with doping concentration for dif-

ferent materials for bulk, UTB and wire. Fitting for simulation results has been performed

using the expression U(ND) = A(ND/1E18)u + Uintrinsic

6.5 Band gap narrowing - Dependence on temperature, doping and confinement

Self-energies carry both real and imaginary parts which provide dual information about

the nature of scattering. While the imaginary part of the self-energy provides the scattering

rate that is responsible for band tail creation, real part provides the appropriate shift of en-

ergies which can provide us useful information about band gap narrowing values. The real

and imaginary part of the self-energy are connected through the Kramers-Krönig relation.

Hence, an increase in the imaginary part (larger band tail) automatically should correspond

to a larger band gap narrowing value.

As shown in Fig 6.14, bandgap narrowing is extracted by performing two sets of sim-

ulation - one with real part turned off and one with real part enabled. Difference of band

shift between the two simulations provides information about the band gap narrowing.

EBGN = Ec
(
Re
(
ΣR
)

= 0
)
− Ec

(
Re
(
ΣR
)
6= 0
)

(6.37)

To provide confidence in the values of band gap narrowing values obtained from simu-

lations, the values are compared against corresponding experimental data.
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Fig. 6.14.: Density of states as a function of energy (normalized to LO phonon frequency)

with and without real part of retarded scattering self-energy. Real part shifts the energy

levels moving the band to lower energies. Difference between the density of states with

and without the real part is used to extract band gap narrowing.
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Fig. 6.15.: Variation of band gap narrowing of conduction band as a function of doping

concentration for GaAs. Simulation results have been compared against a set of experi-

mental results (Exp. data [1]) obtained from [122], (Exp .data [2]) obtained from [123] and

(Exp. data [3]) obtained from [124]. Simulation results show very good agreement with

available experimental data.
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Fig. 6.16.: Variation of bandgap narrowing of conduction band as a function of doping

concentration for GaN, GaAs, GaSb, InAs and GaSb. Dots correspond to the simulation

results and lines correspond to the fitting curve. GaN exhibits largest band gap narrowing

due to larger scattering potential.

Variation of bandgap narrowing is plotted against doping concentration for bulk n-

type GaAs and compared against 3 sets of experimental data obtained from [122], [123]

and [124] as shown in Fig. 6.15. As expected, band gap narrowing increases with doping

concentration mainly due to increasing contribution of impurity scattering towards band

shift. Simulation results show good agreement with available experimental data for bulk

n-type GaAs. Note that this approach accounts only for the intrinsic effects from phonon

and impurity scattering and does not take into account secondary effects such as crystal

defects/disorders, exciton effects and exchange interaction of electrons. Despite the ne-

glecting the above effects, match is quite close to experimental results highlighting the

importance of intrinsic electrostatic and phononic effects towards shaping the band gap

narrowing.
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Fig. 6.17.: Variation of bandgap narrowing of conduction band as a function of doping

concentration for GaN, GaAs, GaSb, InAs and GaSb. Dots correspond to the simulation

results and lines correspond to the fitting curve. GaN exhibits largest band gap narrowing

due to larger scattering potential.

Similar to the Urbach tail investigation, variation of band gap narrowing of GaN, GaAs,

InAs and GaN with doping concentration is summarized in Fig. 6.16. In general, all the

materials follow similar variation with doping profile. GaN, in general has a larger band gap

parameter due to large phonon energy and is 3× larger than GaAs, InAs and GaSb. Band

gap narrowing values are quite large in comparison to corresponding Urbach parameter

values and are of the order of few 100 meVs for high doping concentrations. The variation

with doping is fit with a least-square fitting approach and is fit toBGNND
= BGNintrinsic+

A(ND/1E18)u. The curve captures the trend quite well and the corresponding parameters

are summarized in Table 6.2.

Finally, to look at the effect of confinement on band gap narrowing, variation of band

gap narrowing parameter for GaN, GaAs, InAs and GaN with doping concentration is sum-

marized in Figs. 6.17 and 6.18 for UTB and nanowire. Though the trend is similar to that

of bulk, the rate of increase with doping concentration is different from bulk. This is
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Fig. 6.18.: Variation of bandgap narrowing of conduction band as a function of doping

concentration for GaN, GaAs, GaSb, InAs and GaSb. Dots correspond to the simulation

results and lines correspond to the fitting curve. GaN exhibits largest band gap narrowing

due to larger scattering potential.
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due to the fact that impurity scattering self-energies have different dependence on dop-

ing concentration (arising from both doping and screening length dependence) for UTBs

and nanowires in comparison to bulk (similar to Urbach tail dependence). The varia-

tion with doping is again fit with a least-square fitting approach and is fit to BGNND
=

BGNintrinsic + A(ND/1E18)u. The curve captures the trend quite well and the corre-

sponding parameters are summarized in Table 6.2.

GaN GaAs GaSb InAs

Bulk A = 73.47, u = 0.33 A = 53.80, u = 0.33 A = 42.93, u = 0.33 A = 39.57, u = 0.33

4nm UTB A = 22.21, u = 0.14 A = 2.04, u = 0.10 A = 6.92, u = 0.10 A = 0.18, u = 0.77

2×2 nm2 wire A = 0.26, u = 1 A = 2.13, u = 0.8 A = 2.32, u = 0.66 A = 0.31, u = 0.87

Table 6.2.: Parameters for variation of band gap narrowing parameter with doping concen-

tration for different materials for bulk, UTB and wire. Fitting for simulation results has

been performed using the expression BGN(ND) = A(ND/1E18)u +BGNintrinsic

6.6 Conclusion

In summary, existence of band tail and band gap narrowing in polar materials is cap-

tured with NEGF + self-consistent Born approach. These values are extracted for 4 differ-

ent polar materials - GaAs, InAs, GaSb and GaN for bulk, ultra-thin body and nanowire

devices. Band tails are calculated based on POP and Impurity scattering, Urbach param-

eter is extracted and is shown to agree well with available experimental data for several

materials. Increasing the doping concentration increases the Urbach parameter due to the

increasing effect of impurity scattering, consistent with experimental observations. Real

part of self energy is used to extract band gap narrowing parameter and the corresponding

values are shown to agree well with experimental data. Finally, a fit function is used to

provide fit parameters to capture variation of Urbach and band gap narrowing parameters

for these materials and devices.
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7. ROLE OF DIELECTRIC ENVIRONMENT ON BAND TAIL
ENHANCEMENT IN 2D TRANSITION METAL

DICHALCOGENIDES

7.1 Summary

In this chapter, role of dielectric environment on band tail enhancement is analyzed for

2D transition metal dichalcogenides (TMDs). 3 TMD materials, namely MoS2, WS2 and

WSe2 are taken up for investigation. Three important scattering mechanisms in TMDs -

polar optical phonons, charged impurities and remote oxide phonons are taken into account.

Variation of band tails with TMD layers, temperature and doping dependence and oxide

dependence is studied in detail.

7.2 Motivation

Two dimensional materials have attracted considerable attention recently due to their

unique electronic, optical and mechanical properties [27]. Unlike graphene, transition

metal dichalcogenide (TMDs) have a finite band gap which provides for applications in

electronics as a replacement for Si transistors [28], in optoelectronics as possible materials

in light emitting diodes [29], [30] and solar cells [31] applications. TMD layers have weak

van der Waals coupling which enables low cost fabrication (through mechanical cleavage)

and have electronic/optical properties that show strong dependence as a function of layers.

Ability to stack multiple TMD materials on top of another significantly widens the design

space available resulting in a plethora of devices such asMoS2−WSe2 p-n junctions [32],

MoS2 −Ge based tunnel field-effect transistor (TFET).

Thermal and doping induced disorders lead to associated Urbach tails which are expo-

nentially decaying density of states below band edge. Urbach tails can significantly alter
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the behaviour of the device. Switching behaviour of TFET is drastically affected by such

tailing states. They are known to place a fundamental limit on the lowest achievable SS

in TFETs and also affect the optical behaviour such as absorption spectrum and absorp-

tion/recombination coefficient in optoelectronic devices [10, 19, 20]. 2D layered semicon-

ductors have the ability to alleviate these problems due to their pristine surface and weak

inter layer coupling. However, being an atomically thin material, their behaviour is highly

dependent on the nature of the dielectric environment such as nature of oxide layer on

which it is exfoliated, on the number of layers as dielectric constant of TMD materials

varies sharply with layers and is anisotropic [33]. Charge scattering and mobility is shown

to depend heavily on the interplay between impurity concentration and native oxides due

to dielectric screening [34, 35].

This requires a rigorous treatment of both the material and associated dielectric en-

vironment to get a good understanding on the behaviour of Urbach parameters for TMD

materials. Despite the immense volume of research happening in TMD area and the im-

portance of Urbach parameters in the associated devices, there has been very little progress

with regards to calculating Urbach parameters for TMD materials. Analytical work in eval-

uating Urbach parameters have been carried out by [113] where the Urbach parameters for

TMD materials have been modeled using an analytical approach with material parame-

ters such as deformation potentials obtained from density-functional theory. Variation of

Urbach parameters have been provided against doping concentration, temperature and dif-

ferent dielectrics. However this work is based on bulk based analytical expressions for

Urbach parameters and does not take into effect the detailed nature of TMD bandstructure

and interplay between different scattering mechanisms. Experimental values for Urbach

parameters of monolayer MoS2 and WSe2 have been characterized by [125] and [126] in

the context of optical measurements.

In this work, we try to evaluate Urbach parameters for three candidate TMD materials,

MoS2, WS2 and WSe2 using NEGF and self-consistent Born approximation to treat scat-

tering self-energies. Variation of Urbach parameter against several important parameters
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such as temperature, doping concentration, TMD layers and oxide is presented. Wherever

possible, simulation results are compared against experimental values.

7.3 Simulation approach

The atomic structures of all TMD layers are subatomically resolved with maximally lo-

calized Wannier functions (MLWFs). This treatment provides a balance between physical

accuracy and computational efficiency. MLWF Hamiltonians are created by first perform-

ing electronic structure calculation in the DFT tool VASP [127] with the self-consistent

electronic model and with a convergence criterion of 10−8 eV. A momentum mesh of

5×5×5 Monkhorst-Pack grids and an energy cutoff of 520 eV are used along with van der

Waals force included according to [128]. The applied DFT model is based on the general-

ized gradient approximation (GGA) employing the Perdew-Burke-Ernzerhof functionals.

The electronic DFT Hamiltonian is transformed into an MLWF representation using the

Wannier90 software [129–131] with d orbitals for the metal electrons and sp3 orbitals for

the chalcogenide electrons as the initial projection. The spreading of the Wannier functions

is reduced iteratively until it converges to around 2A2. The atom positions and their corre-

sponding electronic Hamiltonian of finite TMD structures are then created in NEMO5 [44].

All devices are simulated using NEGF with self-consistent Born approach to account

for scattering. Device is assumed to be periodic in the transverse direction and is repre-

sented by a corresponding k space. Three major scattering mechanisms are taken into ac-

count - polar optical phonons, charged impurity and remote phonon scattering. A detailed

derivation of the scattering self-energies has been discussed earlier in Section 3. Only

representative equations are highlighed below. Scattering self-energies with polar optical

phonons take the form

Σ<
(
~x1, ~x2, k||, E

)
=

e2

(2π)3

(
1

ε∞
− 1

εs

)
~ωo
2εo

∫
dl||I(k||, l||, ~x1, ~x2)

×
[
noG

<
(
~x1, ~x2, l||, E − Eo

)
+ (1 + nq)G

<
(
~x1, ~x2, l||, E + Eo

)] (7.1)
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ΣR
(
~x1, ~x2, k||, E
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=

e2

(2π)3
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+
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∫
dẼ

2π
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)(
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1

E − Ẽ − Eo
− Pr 1
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(7.2)

where

I(k||, l||, ~x1, ~x2) =

π

√(k|| − l||)2 + ζ−2 |~x1 − ~x2|+
(
k|| − l||

)2 |~x1 − ~x2|√(
k|| − l||

)2
+ ζ−2

K1

(√(
k|| − l||

)2
+ ζ−2 |~x1 − ~x2|

)
,

|~x1 − ~x2| 6= 0

π

[
1 +

(
k|| − l||

)2(
k|| − l||

)2
+ ζ−2

]
, |~x1 − ~x2| = 0

(7.3)

~ωo is the optical phonon frequency, εs and ε∞ are the static and infinity frequency

dielectric constants, no is the Bose-Einstein distribution and ζ is the screening length.

Scattering self-energies with charged impurities are given by

Σ<,R
(
~x1, ~x2, k||, E

)
=

ND

(8π)2

(
e2

εoεr

)2 ∫
dl||I(k||, l||, ~x1, ~x2)G

<,R
(
~x1, ~x2, l||, E

)
(7.4)

where

I(k||, l||, ~x1, ~x2) =

π

[
|~x1 − ~x2|(

k|| − l||
)2

+ ζ−2

]
K1

(√(
k|| − l||

)2
+ ζ−2 |~x1 − ~x2|

)
,

|~x1 − ~x2| 6= 0

π

[
1(

k|| − l||
)2

+ ζ−2

]
, |~x1 − ~x2| = 0

(7.5)

where ND is the doping concentration, εr is the static dielectric constant and ζ is the

screening length.
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Scattering with remote oxide phonons is given by

Σ< (~x1, ~x2, k, E) =
e2

(2π)

~ωνSO
2ε0

(
1

ε∞ox + ε∞s
− 1

εsox + ε∞s

)∫
dlI(k, l, ~x1, ~x2, z1, z2)

× [nqG
< (~x1, ~x2, l, E − Eo) + (1 + nq)G

< (~x1, ~x2, l, E + Eo)]

(7.6)

ΣR (~x1, ~x2, k, E) =
e2

(2π)

~ωνSO
2ε0
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− 1

εsox + ε∞s
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dlI(k, l, ~x1, ~x2, z1, z2)

×
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R (~x1, ~x2, l, E − Eo) + noG
R (~x1, ~x2, l, E + Eo) +

1

2
G<(~x1, ~x2, l, E − Eo)
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∫
dẼ

2π
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(
~x1, ~x2, l, Ẽ
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1

E − Ẽ − Eo
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E − Ẽ + Eo
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(7.7)

where

I(k, l, ~x1, ~x2, z1, z2) =

∫ 2π

0

dθei|k−l||~x1,||−~x2,|||cosθ.e−|k−l|(z1+z2−2t)

= 2πJo
(
|k − l|

∣∣~x1,|| − ~x2,||∣∣) e−|k−l|(z1+z2−2t) (7.8)

~ωνSO is the νth optical phonon frequency of oxide, εsox and ε∞ox are the static and infinite

frequency dielectric constants of oxide, ε∞s is the infinite frequency dielectric constant of

semiconductor underneath the oxide, nq is the Bose distribution. z1, z2 are the spatial

coordinates in the direction of interface and t is the thickness of semiconductor.

The scattering self-energies are assumed to be diagonal in both orbital and atom po-

sition. However, a simple truncation of non-local elements underestimates the scattering.

This is overcome by multiplying the scattering self-energies with a compensation factor

which accounts for non-locality. The compensation factor is defined as a division of form

factors of the scattering rate from Fermi’s golden rule for the local case with the non-local

one. The compensation factor for 2D material can be represented as

SUTB =

∫ 2π

0

dθ

∫ Lz

0

∫ Lz

0

dzdz
′
ρij(z)ρij(z

′)I(|k̃|| − k̃′|||, z, z′)∫ 2π

0

dθ

∫ Lz

0

∫ Lz

0

dzdz′ρij(z)ρij(z′)ILocal(|k̃|| − k̃′|||, z, z′)
(7.9)
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where

ILocal(q||, z, z
′) =


1√

q2|| + ζ−2

1− ζ−2

2
(
q2|| + ζ−2

)
 , |z − z′| = 0

0, |z − z′| 6= 0

(7.10)

For all the discussions in the subsequent sections, device is assumed to be in equilib-

rium with the density corresponding to the doping concentration. Self-energies derived are

solved consistently with the corresponding Green’s function until particle conservation is

achieved throughout the device. Following are the corresponding NEGF equations solved

to achieve converged density and density of states.

GR =
(
EI −H − ΣR

pop − ΣR
imp − ΣR

remote − ΣR
source − ΣR

drain

)−1
G< = GR

(
Σ<
pop + Σ<

imp + Σ<
remote + Σ<

source + Σ<
drain

)
GR†

(7.11)

Urbach parameter is extracted by plotting the density of states versus energy and by

taking the slope of the exponential decay as follows

EUrbach =
(E1 − E2)

log

(
DoS(E1)

DoS(E2)

) (7.12)

where E1 and E2 are two energy points present below Ec or above Ev. DoS(E1) and

DoS(E2) correspond to the density of states at energy E1 and E2. Material parameters

used for TMDs and oxides are tabulated below taken from [33], [132] and [35].
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εs ε∞ ~ωLO

1 layer 3.8 3.2

MoS2 2 layer 5.65 4.8 48 meV

3 layer 6.47 5.5

4 layer 7.3 6.2

1 layer 3.65 3.1

WS2 2 layer 5.15 4.37 33 meV

3 layer 5.92 5.03

4 layer 6.7 5.69

1 layer 3.7 3.145

WSe2 2 layer 5.3 4.5 30 meV

3 layer 6.1 5.18

4 layer 6.9 5.86

Table 7.1.: Dielectric constants and phonon frequency of MoS2, WS2 and WSe2 for 1-4

layers used in the simulation. Parameters have been taken from [33] and [132].

SiO2 BN Al2O3 HfO2

εs 3.9 5.09 12.53 23

ε∞ 2.5 4.1 3.2 5.03

ω1
SO 55.6 93.07 48.18 12.4

ω2
SO 138.1 179.1 71.41 48.35

Table 7.2.: Static and infinite dielectric constant of oxides used in the simulation along with

their SO phonon frequencies. Taken from [35]
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7.4 Layer dependence

Urbach parameter dependence as a function of layer is analyzed for the TMD materi-

als. Phonon scattering potential is dependent on the product of optical phonon frequency

and inverse of difference between the static and infinite frequency dielectric constant of the

material. Based on the parameters used in Table 7.1, both the static and infinite dielectric

constants increase from monolayer to bulk. Hence, the scattering potential is expected to

be strongest for the monolayer and get weaker with increasing number of layers. Doping

concentration, on the other hand, enhances the band tail through elastic scattering pro-

cesses. With increasing doping concentration, the Urbach tail increases further. Fig. 7.1

shows the dependence of Urbach parameter of MoS2 as a function of layers for different

doping concentrations. As expected, Urbach parameter decreases with increasing number

of layers with the value of 25 meV for monolayer and 12 meV for 4 layer device. With

increasing doping concentration from 3 × 1010cm−2 to 6 × 1013cm−2, Urbach parameter

increases with the rate of increase getting steeper with increasing doping. It is as high

as 210 meV for monolayer for 6 × 1013cm−2 doping concentration highlighting the im-

pact of doping. Comparison against experimental data obtained from photoluminescence

measurements taken from [125] show good agreement for monolayer case.

Fig. 7.2 and 7.3 show the variation of Urbach parameter versus layers for WS2 and

WSe2 where a similar profile is observed. In terms of the strength of phonon scattering

potential, WS2 has the weakest among the 3 TMDs and it shows up as a lower Urbach

parameter in comparison to the other two materials. Comparison against experimental data

shows good agreement for monolayer WS2 providing confidence in the approach.

7.5 Temperature and doping dependence

Urbach parameter as a function of temperature is plotted for the TMD materials. With

increasing temperature, phonon contribution increases exponentially. In this approach,

electrons are assumed to be interacting with bulk phonons in equilibrium. Temperature de-

pendence of phonons is given by the Bose distribution n = 1/(exp(~ωLO/kbT )− 1). Due
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Fig. 7.1.: Variation of Urbach parameter of MoS2 as a function of layers for doping con-

centration ranging from ND = 3× 1010cm−2 to ND = 6× 1013cm−2. Comparison against

experimental data obtained from [125] shows good agreement.

Fig. 7.2.: Variation of Urbach parameter of WS2 as a function of layers for doping concen-

tration ranging from ND = 3× 1010cm−2 to ND = 6× 1013cm−2.
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Fig. 7.3.: Variation of Urbach parameter of WSe2 as a function of layers for doping con-

centration ranging from ND = 3× 1010cm−2 to ND = 6× 1013cm−2. Comparison against

experimental data obtained from [125] shows good agreement.
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Fig. 7.4.: Variation of Urbach parameter with temperature for MoS2 for different layers.

Urbach parameter increases linearly with temperature. Monolayer MoS2 has the largest

scattering potential and has the highest rate of increase. With increasing layers, the slope

decreases gradually due to decreasing scattering potential.

to exponential contribution of phonons with increasing temperature, Urbach parameter is

expected to increase with temperature. Fig. 7.4 shows the variation of Urbach parameter

of MoS2 as a function of temperature for different layers. As discussed in the previous

section, monolayer has the largest scattering potential and this results in both a larger value

of Urbach parameter and a larger slope for dependence with temperature. With increasing

number of layers, the value decreases gradually. A similar result is observed for WS2 as

shown in Fig. 7.2 but with smaller Urbach parameters due to the smaller value of scattering

potentials of monolayer and multilayer WS2 in comparison to MoS2.

WSe2 shows a similar profile as well (as shown in Fig. 7.6) but there is a marked dif-

ference in the slope between monolayer and multilayer cases. This can be explained by ob-

serving that Urbach parameter in general depends on the amount of scattering rate present

close to the band edges. Larger the scattering rate, more gradual will be the exponentially
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Fig. 7.5.: Variation of Urbach parameter with temperature for WS2 for different layers.

Urbach parameter increases linearly with temperature. Monolayer WS2 has the largest

scattering potential and has the highest rate of increase. With increasing layers, the slope

decreases gradually due to decreasing scattering potential.
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Fig. 7.6.: Variation of Urbach parameter with temperature for WSe2 for different layers.

rbach parameter increases linearly with temperature. Monolayer WSe2 shows a stronger

increase due to degenerate K and Q conduction band valleys which provides additional

density of states to scatter to in comparison with 2 and 3 layers where the degeneracy is

broken.
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(a) (b)

Fig. 7.7.: (a) Bandstructure of 1 layer WSe2. Conduction band has a degeneracy at K and

Q valley resulting in a large conduction band density of states. (b) Bandstructure of 2 layer

WSe2. Band degeneracy at K and Q valley is lifted with only Q valley contributing to the

density of states at the bandedge

decaying band tails resulting in a larger Urbach parameter. Scattering rate, depends on the

product of scattering potential and available density of states. Looking at the conduction

band structure of WSe2 (Fig. 7.7) one can see that the conduction band edge has a de-

generacy at K and Q valley for monolayer WSe2. However, moving to 2-layer and higher

number of layers breaks the K/Q valley degeneracy. Hence, at the bandedge, monolayer

has contribution from both K and Q valleys resulting in a larger density of states whereas

multilayer WSe2 has contribution only from Q valley resulting in a reduction of the avail-

able density of states. This results in an abrupt jump in the Urbach parameter which is

captured well in the temperature dependence.

7.6 Impact of remote oxide phonons

Urbach parameter is plotted against several oxides and the impact of remote phonon

scattering is analyzed. Remote phonon scattering plays an important role in atomically thin

semiconductors such as graphene and TMD materials. Usually, these materials are exfoli-
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ated and hosted on a native oxide (such as SiO2,Al2O3) and might also have a gate oxide to

control charge transport in the device. These oxides, being polar in nature have strong LO

phonon modes that can couple to the electrons in semiconductor. Such a electron-phonon

interaction is termed remote phonon scattering, the name "remote" attributed to their origin

not in the semiconductor but in oxides. Remote phonon scattering has a similar scatter-

ing formulation as polar optical phonon scattering with the phonon energy and dielectric

constants now corresponding to the oxide and oxide/semiconductor respectively. Based on

the values of parameters from Table 7.2, one can observe that oxides in general have two

phonon modes contributing to the scattering process. Dielectrics that have a strong bond,

such as SiO2 and BN have smaller change between the static and infinite frequency di-

electric constants and have phonon frequencies that are quite large. These large phonon

frequencies do not contribute much to the scattering process since it’s tough for electrons

to emit and absorb such high frequencies as the phonon distribution decays exponentially

with increasing energy. Al2O3 andHfO2 on the other hand, have a large variation between

the static and infinite frequency dielectric constants and have phonon frequencies that are

reasonably placed in energy. Hence, the expectation, based on the parameters is that Al2O3

and HfO2 will contribute strongly to the remote phonon scattering process and SiO2 and

BN will have negligible contribution to the scattering process.

Figs. 7.8, 7.9 and 7.10 show the behaviour of Urbach parameter as a function of lay-

ers for different oxide materials for doping concentration of ND = 3 × 1012cm−2. As

expected, both Al2O3 and HfO2 increase the Urbach parameter through remote phonon

scattering process for monolayer TMDs. SiO2 and BN show negligible enhancement

from intrinsic values. With increasing number of layers, the Urbach parameter decreases

significantly. This happens due to two reasons - decreasing polar optical phonon scattering

strength with increasing number of layers and decreasing contribution of remote phonon

scattering strength. Note that remote phonon scattering strength decays sharply as one

moves away from the oxide-semiconductor interface due to decaying phonon modes. With

increasing number of layers, the net contribution from remote phonon scattering decreases

resulting in a significant decrease with increasing number of layers.
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Fig. 7.8.: Variation of Urbach parameter for MoS2 in the presence of phonons, impurity

and corresponding enhancement from remote phonon scattering. Al2O3 andHfO2 provide

maximal enhancement raising the Urbach parameter by 10 meV. Contribution of remote

phonons decreases gradually with increasing layers and Al2O3 is the main contributor to

remote phonon process at higher layers.
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Fig. 7.9.: Variation of Urbach parameter for WS2 in the presence of phonons, impurity and

corresponding enhancement from remote phonon scattering. Al2O3 and HfO2 provide

only mild enhancement raising the Urbach parameter by 2 meV. Contribution of remote

phonons decreases gradually with increasing layers.
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Fig. 7.10.: Variation of Urbach parameter for WSe2 in the presence of phonons, impurity

and corresponding enhancement from remote phonon scattering. Al2O3 andHfO2 provide

maximum enhancement raising the Urbach parameter by 20 meV. Contribution of remote

phonons decreases as expected with increasing layers. WSe2 monolayer has much higher

Urbach parameter which gets further enhanced with remote phonon scattering.
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7.7 Conclusion

Role of dielectric environment in enhancing band tails in transition metal dichalco-

genides is discussed. Three important scattering mechanisms - polar optical phonons,

charged impurity and remote phonon scattering processes are considered. Urbach param-

eter is shown to have strong temperature, doping and layer dependence. Strong layer de-

pendence is shown to be dependent both on layer-dependent scattering potential and band

degeneracy. Role of oxides in enhancing band tails is investigated. Among the oxide ma-

terials considered, Al2O3 and HfO2 are shown to be strongest contributor to the remote

phonon scattering enhancing band tails by as much as 30%.



REFERENCES



147

REFERENCES

[1] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson,
T.-J. King, J. Bokor, and C. Hu, “Finfet-a self-aligned double-gate mosfet scalable
to 20 nm,” IEEE Transactions on Electron Devices, vol. 47, no. 12, pp. 2320–2325,
2000.

[2] Economist. (2016) After moore’s law. [Online]. Available: https://www.economist.
com/technology-quarterly/2016-03-12/after-moores-law

[3] J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, “Ge/si nanowire het-
erostructures as high-performance field-effect transistors,” Nature, vol. 441, no.
7092, pp. 489–493, 2006.

[4] A. I. Hochbaum, R. Fan, R. He, and P. Yang, “Controlled growth of si nanowire
arrays for device integration,” Nano letters, vol. 5, no. 3, pp. 457–460, 2005.

[5] K. Boucart and A. M. Ionescu, “Double-gate tunnel fet with high-kappa gate dielec-
tric,” IEEE Transactions on Electron Devices, vol. 54, no. 7, pp. 1725–1733, 2007.

[6] J. A. Del Alamo, “Nanometre-scale electronics with iii-v compound semiconduc-
tors,” Nature, vol. 479, no. 7373, pp. 317–323, 2011.

[7] B. Radisavljevic, A. Radenovic, J. Brivio, i. V. Giacometti, and A. Kis, “Single-layer
mos2 transistors,” Nature nanotechnology, vol. 6, no. 3, pp. 147–150, 2011.

[8] S.-D. Kim, “Optimum location of silicide/si interface in ultra-thin body soi mos-
fets with recessed and elevated silicide source/drain contact structure,” Solid-State
Electronics, vol. 53, no. 10, pp. 1112–1115, 2009.

[9] L. Research. (2017) Tech brief: An introduction to interconnects. [Online]. Avail-
able: https://blog.lamresearch.com/tech-brief-an-introduction-to-interconnects/

[10] H. Lu and A. Seabaugh, “Tunnel field-effect transistors: State-of-the-art,” IEEE
Journal of the Electron Devices Society, vol. 2, no. 4, pp. 44–49, 2014.

[11] A. C. Seabaugh and Q. Zhang, “Low-voltage tunnel transistors for beyond cmos
logic,” Proceedings of the IEEE, vol. 98, no. 12, pp. 2095–2110, 2010.

[12] A. Alian, J. Franco, A. Vandooren, Y. Mols, A. Verhulst, S. El Kazzi, R. Rooyackers,
D. Verreck, Q. Smets, A. Mocuta et al., “Record performance ingaas homo-junction
tfet with superior ss reliability over mosfet,” in Electron Devices Meeting (IEDM),
2015 IEEE International. IEEE, 2015, pp. 31–7.

[13] G. Zhou, R. Li, T. Vasen, M. Qi, S. Chae, Y. Lu, Q. Zhang, H. Zhu, J.-M. Kuo,
T. Kosel et al., “Novel gate-recessed vertical inas/gasb tfets with record high i on
of 180 µa/µm at v ds= 0.5 v,” in Electron Devices Meeting (IEDM), 2012 IEEE
International. IEEE, 2012, pp. 32–6.

https://www.economist.com/technology-quarterly/2016-03-12/after-moores-law
https://www.economist.com/technology-quarterly/2016-03-12/after-moores-law
https://blog.lamresearch.com/tech-brief-an-introduction-to-interconnects/


148

[14] U. E. Avci and I. A. Young, “Heterojunction tfet scaling and resonant-tfet for steep
subthreshold slope at sub-9nm gate-length,” in Electron Devices Meeting (IEDM),
2013 IEEE International. IEEE, 2013, pp. 4–3.

[15] D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, P. M. Ajayan, and
K. Banerjee, “A subthermionic tunnel field-effect transistor with an atomically thin
channel,” Nature, vol. 526, no. 7571, p. 91, 2015.

[16] J. Appenzeller, Y.-M. Lin, J. Knoch, and P. Avouris, “Band-to-band tunneling in
carbon nanotube field-effect transistors,” Physical review letters, vol. 93, no. 19, p.
196805, 2004.

[17] B. M. Borg, K. A. Dick, B. Ganjipour, M.-E. Pistol, L.-E. Wernersson, and
C. Thelander, “Inas/gasb heterostructure nanowires for tunnel field-effect transis-
tors,” Nano letters, vol. 10, no. 10, pp. 4080–4085, 2010.

[18] P. S. University. (2011) Quantum tunneling results in record transistor per-
formance. [Online]. Available: https://news.psu.edu/story/150641/2011/12/09/
research/quantum-tunneling-results-record-transistor-performance

[19] S. Agarwal and E. Yablonovitch, “Band-edge steepness obtained from
esaki/backward diode current–voltage characteristics,” IEEE Transactions on
Electron Devices, vol. 61, no. 5, pp. 1488–1493, 2014.

[20] J. Bizindavyi, A. S. Verhulst, Q. Smets, D. Verreck, B. Sorée, and G. Groeseneken,
“Band-tails tunneling resolving the theory-experiment discrepancy in esaki diodes,”
IEEE Journal of the Electron Devices Society, vol. 6, pp. 633–641, 2018.

[21] J. Geng, P. Sarangapani, K.-C. Wang, E. Nelson, B. Browne, C. Wordelman,
J. Charles, Y. Chu, T. Kubis, and G. Klimeck, “Quantitative multi-scale, multi-
physics quantum transport modeling of gan-based light emitting diodes,” physica
status solidi (a), vol. 215, no. 9, p. 1700662, 2018.

[22] A. Laubsch, M. Sabathil, J. Baur, M. Peter, and B. Hahn, “High-power and
high-efficiency ingan-based light emitters,” IEEE transactions on electron devices,
vol. 57, no. 1, pp. 79–87, 2010.

[23] W. Guo, M. Zhang, A. Banerjee, and P. Bhattacharya, “Catalyst-free ingan/gan
nanowire light emitting diodes grown on (001) silicon by molecular beam epitaxy,”
Nano letters, vol. 10, no. 9, pp. 3355–3359, 2010.

[24] P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen,
J. Nygard, and A. F. i Morral, “Single-nanowire solar cells beyond the shockley–
queisser limit,” Nature Photonics, vol. 7, no. 4, p. 306, 2013.

[25] C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, “Near 1 v open circuit
voltage inas/gaas quantum dot solar cells,” Applied Physics Letters, vol. 98, no. 16,
p. 163105, 2011.

[26] J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer,
P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann et al., “Inp nanowire array solar cells
achieving 13.8% efficiency by exceeding the ray optics limit,” Science, p. 1230969,
2013.

https://news.psu.edu/story/150641/2011/12/09/research/quantum-tunneling-results-record-transistor-performance
https://news.psu.edu/story/150641/2011/12/09/research/quantum-tunneling-results-record-transistor-performance


149

[27] K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, and
A. Geim, “Two-dimensional atomic crystals,” Proceedings of the National Academy
of Sciences, vol. 102, no. 30, pp. 10 451–10 453, 2005.

[28] S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q. Wang, G. H. Ahn,
G. Pitner, M. J. Kim, J. Bokor, C. Hu et al., “Mos2 transistors with 1-nanometer
gate lengths,” Science, vol. 354, no. 6308, pp. 99–102, 2016.

[29] R. Cheng, D. Li, H. Zhou, C. Wang, A. Yin, S. Jiang, Y. Liu, Y. Chen, Y. Huang, and
X. Duan, “Electroluminescence and photocurrent generation from atomically sharp
wse2/mos2 heterojunction p–n diodes,” Nano letters, vol. 14, no. 10, pp. 5590–5597,
2014.

[30] B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic
devices based on electrically tunable p–n diodes in a monolayer dichalcogenide,”
Nature nanotechnology, vol. 9, no. 4, p. 262, 2014.

[31] M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen, C.-I. Wu, L.-J. Li, L.-J.
Chen, and J.-H. He, “Monolayer mos2 heterojunction solar cells,” ACS nano, vol. 8,
no. 8, pp. 8317–8322, 2014.

[32] C.-H. Lee, G.-H. Lee, A. M. Van Der Zande, W. Chen, Y. Li, M. Han, X. Cui,
G. Arefe, C. Nuckolls, T. F. Heinz et al., “Atomically thin p–n junctions with van
der waals heterointerfaces,” Nature nanotechnology, vol. 9, no. 9, p. 676, 2014.

[33] A. Kumar and P. Ahluwalia, “Tunable dielectric response of transition metals
dichalcogenides mx2 (m= mo, w; x= s, se, te): Effect of quantum confinement,”
Physica B: Condensed Matter, vol. 407, no. 24, pp. 4627–4634, 2012.

[34] D. Jena and A. Konar, “Enhancement of carrier mobility in semiconductor nanos-
tructures by dielectric engineering,” Physical review letters, vol. 98, no. 13, p.
136805, 2007.

[35] N. Ma and D. Jena, “Charge scattering and mobility in atomically thin semiconduc-
tors,” Physical Review X, vol. 4, no. 1, p. 011043, 2014.

[36] L. Wilson, “International technology roadmap for semiconductors (itrs),” Semicon-
ductor Industry Association, 2013.

[37] D. J. Griffiths, Introduction to quantum mechanics. Cambridge University Press,
2016.

[38] J. Maassen, C. Jeong, A. Baraskar, M. Rodwell, and M. Lundstrom, “Full band cal-
culations of the intrinsic lower limit of contact resistivity,” Applied Physics Letters,
vol. 102, no. 11, p. 111605, 2013.

[39] C. Weber, “The importance of metal transverse momentum for silicon contact resis-
tivity,” Applied Physics Letters, vol. 103, no. 19, p. 193505, 2013.

[40] Q. Gao and J. Guo, “Ab initio quantum transport simulation of silicide-silicon con-
tacts,” Journal of Applied Physics, vol. 111, no. 1, p. 014305, 2012.

[41] G. Hegde and R. Chris Bowen, “Effect of realistic metal electronic structure on the
lower limit of contact resistivity of epitaxial metal-semiconductor contacts,” Applied
Physics Letters, vol. 105, no. 5, p. 053511, 2014.



150

[42] W.-W. Fang, N. Singh, L. K. Bera, H. S. Nguyen, S. C. Rustagi, G. Lo, N. Balasub-
ramanian, and D.-L. Kwong, “Vertically stacked sige nanowire array channel cmos
transistors,” IEEE electron device letters, vol. 28, no. 3, pp. 211–213, 2007.

[43] H.-J. Cho, H. Oh, K. Nam, Y. Kim, K. Yeo, W. Kim, Y. Chung, Y. Nam, S. Kim,
W. Kwon et al., “Si finfet based 10nm technology with multi vt gate stack for low
power and high performance applications,” in VLSI Technology, 2016 IEEE Sympo-
sium on. IEEE, 2016, pp. 1–2.

[44] S. Steiger, M. Povolotskyi, H.-H. Park, T. Kubis, and G. Klimeck, “Nemo5: A paral-
lel multiscale nanoelectronics modeling tool,” IEEE Transactions on Nanotechnol-
ogy, vol. 10, no. 6, pp. 1464–1474, 2011.

[45] T. B. Boykin, G. Klimeck, and F. Oyafuso, “Valence band effective-mass expressions
in the sp 3 d 5 s* empirical tight-binding model applied to a si and ge parametriza-
tion,” Physical Review B, vol. 69, no. 11, p. 115201, 2004.

[46] S.-H. Park, N. Kharche, D. Basu, Z. Jiang, S. Nayak, C. Weber, G. Hegde, K. Haume,
T. Kubis, M. Povolotskyi et al., “Scaling effect on specific contact resistivity in nano-
scale metal-semiconductor contacts,” in Device Research Conference (DRC), 2013
71st Annual. IEEE, 2013, pp. 125–126.

[47] I. Jarrige, N. Capron, and P. Jonnard, “Electronic structure of ni and mo silicides
investigated by x-ray emission spectroscopy and density functional theory,” Physical
Review B, vol. 79, no. 3, p. 035117, 2009.

[48] J. Callaway, Quantum theory of the solid state. Academic Press, 2013.

[49] T. B. Boykin, G. Klimeck, R. C. Bowen, and F. Oyafuso, “Diagonal parameter shifts
due to nearest-neighbor displacements in empirical tight-binding theory,” Physical
Review B, vol. 66, no. 12, p. 125207, 2002.

[50] S. Datta, Quantum transport: atom to transistor. Cambridge University Press,
2005.

[51] H. Kanaya, F. Hasegawa, E. Yamaka, T. Moriyama, and M. Nakajima, “Reduction of
the barrier height of silicide/p-si1-xgex contact for application in an infrared image
sensor,” Japanese Journal of Applied Physics, vol. 28, no. 4A, p. L544, 1989.

[52] K. Varahramyan and E. Verret, “A model for specific contact resistance applicable
for titanium silicide-silicon contacts,” Solid-State Electronics, vol. 39, no. 11, pp.
1601–1607, 1996.

[53] N. Stavitski, M. Van Dal, A. Lauwers, C. Vrancken, A. Y. Kovalgin, and R. A.
Wolters, “Systematic tlm measurements of nisi and ptsi specific contact resistance
to n-and p-type si in a broad doping range,” IEEE electron device letters, vol. 29,
no. 4, pp. 378–381, 2008.

[54] D. Yu, Y. Zhang, and F. Liu, “First-principles study of electronic properties of biaxi-
ally strained silicon: Effects on charge carrier mobility,” Physical Review B, vol. 78,
no. 24, p. 245204, 2008.

[55] K. Ikeda, Y. Yamashita, A. Endoh, T. Fukano, K. Hikosaka, and T. Mimura, “50-nm
gate schottky source/drain p-mosfets with a sige channel,” IEEE Electron Device
Letters, vol. 23, no. 11, pp. 670–672, 2002.



151

[56] S.-L. Zhang, “Nickel-based contact metallization for sige mosfets: progress and
challenges,” Microelectronic Engineering, vol. 70, no. 2, pp. 174–185, 2003.

[57] C. I. Liao, C. Y. Chen, S. Yu, C. C. Chien, C. L. Yang, J. Wu, and B. Ramachandran,
“High quality sige: B of high ge layer for 14nm and beyond finfet processes,” ECS
Transactions, vol. 58, no. 7, pp. 159–162, 2013.

[58] A. Nainani, S. Gupta, V. Moroz, M. Choi, Y. Kim, Y. Cho, J. Gelatos, T. Mandekar,
A. Brand, E.-X. Ping et al., “Is strain engineering scalable in finfet era?: Teaching
the old dog some new tricks,” in Electron Devices Meeting (IEDM), 2012 IEEE
International. IEEE, 2012, pp. 18–3.

[59] S. Datta, “Nanoscale device modeling: the greenâĂŹs function method,” Superlat-
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A. FERMI’S GOLDEN RULE FOR POLAR OPTICAL PHONON
SCATTERING

Subsequent derivation of Fermi’s golden rule for polar optical phonons assumes Frohlich

coupling with bulk optical phonons. Optical phonon energy is taken to be at a single av-

erage LO phonon energy and is assumed to have flat dispersion. Screening is taken into

account through a constant screening length (following either the Debye approximation or

Lindhard formalism). Calculated rate accounts for multiple modes and takes both inter and

intra mode scattering into account.

A.1 Bulk/quasi1D device

According to Fermi’s golden rule, scattering rate for an electron with an optical phonon

in an initial momentum state ~k to a final momentum state ~k′ is given by

P (k,k + q) =
2π

~
|〈k + q|Himp |k〉|2 δ (E(k + q)− E(k)± ~ωLO) (A.1)

Polar optical LO phonon scattering potential is of the form

Hph(q) =
q

q2 + ζ−2

[
e2~ωLO

(
1

ε∞
− 1

εs

)]1/2 (
aqe

iq.r − a†qe−iq.r
)

where a†q and aq are the creation and annihilation operators, ~ωLO is the LO optical

phonon frequency, ζ is the screening length, εs is the static dielectric constant and ε∞ is the

high frequency dielectric constant. Scattering rate for emission process can be written as

1

τem(k)
=

2π

~
e2~ωLO

2

(
1

ε∞
− 1

εs

)
(1 +Nph)

∫
dq

(2π)3
q2

(q2 + ζ−2)2
δ (E(k)− E(k + q)− ~ωLO)
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Converting the momentum integral to polar coordinates and by using the parabolic dis-

persion relation, we get

E(k)− E(k + q) = −~2q2

2m∗
− ~2kq

m∗
cosθ

1

τem(k)
=
e2~ωLO(1 +Nph)

4π~

(
1

ε∞
− 1

εs

)∫ ∞
0

dq
q4

(q2 + ζ−2)2

∫ π

0

dθδ

(
~2q2

2m∗
+

~2kqcosθ
m∗

+ ~ωLO
)

(A.2)

Performing a change of variables for the polar integral, the integral becomes∫ π

0

dθδ

[
~2q2

2m∗
+

~2kqcosθ
m∗

+ ~ωLO
]

=
1

a

∫ a

−a
dxδ(x+ b)

where a =
~2kq
m∗

and b =
~2q2

2m∗
+ ~ωLO. For the delta function to have a non-vanishing

value within the integration range, |a| > |b| which gives us limits for range of q(
2m∗

~2

)1/2 [√
E −

√
E − ~ωLO

]
≤ q ≤

(
2m∗

~2

)1/2 [√
E +

√
E − ~ωLO

]
Hence, the emission scattering rate can be written as

1

τem(k)
= θ (E − ~ωLO)

e2m∗~ωLO (1 +Nph)

4π~3k

(
1

ε∞
− 1

εs

)∫ q+

q−

dq
q3

(q2 + ζ−2)2
(A.3)

A similar procedure for the absorption rate gives us

1

τab(k)
=
e2m∗~ωLONph

4π~3k

(
1

ε∞
− 1

εs

)∫ q+

q−

dq
q3

(q2 + ζ−2)2
(A.4)

where the integration limits of q are(
2m∗

~2

)1/2 [√
E + ~ωLO −

√
E
]
≤ q ≤

(
2m∗

~2

)1/2 [√
E + ~ωLO +

√
E
]

Total scattering rate is the sum of emission and absorption scattering rates.

1

τ(k)
=

1

τem(k)
+

1

τab(k)

Dimension check

1

τ(E)
=

C2.kg.kg.m2.s−2

(kg.m2.s−1)3m−1. (C2.kg−1.m−3.s2)
=

1

s
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A.2 Ultra-thin body (UTB) device

For discussion below, x and y directions will be assumed periodic and z will be the

confinement direction. According to Fermi’s golden rule, scattering rate for an electron

with an optical phonon in an initial momentum state k to a final momentum state k′ is

given by

P (k,k′) =
2π

~
|〈k|Himp |k′〉|2 δ (E(k)− E(k′)± ~ωLO) (A.5)

Electron-phonon coupling Hamiltonian is given by

He−ph =
Cq

q2 + ζ−2
(
aqe

iq.r − a†qe−iq.r
)

(A.6)

where q is the phonon momentum, ζ is the screening length, aq and a†q are particle annihi-

lation and creation operators and coupling constant C is described by Frohlich interaction

C = i

[
2π

V
e2~ωLO

(
1

ε∞
− 1

εs

)]1/2
(A.7)

where ~ωLO is the LO optical phonon frequency, εs is the static dielectric constant and

ε∞ is the high frequency dielectric constant. The electronic wavefunction is of the form

|k〉 =
1√
A
eikxxψi(r||) (A.8)

where ψi(r||) corresponds to the ith mode wavefunction in the confinement direction.

〈k|Himp |k′〉 =
∑
q

〈k| Cq

q2 + ζ−2
(
aqe

iq.r − a†qe−iq.r
)
|k′〉

=
∑
q

±
√
Nph +

1

2
∓ 1

2

Cq

q2 + ζ−2
〈k| e±iq.r |k′〉

where the first sign corresponds to phonon absorption process and the second sign cor-

responds to phonon emission process. Converting the summation over phonon momentum

to an integral, we get

〈k|Himp |k′〉 = ±
√
Nph +

1

2
∓ 1

2

C

(2π)3A

∫ ∞
−∞

dq∫∞
−∞ dr||

∫ Lz

0
dz.e−ik

′
||.r||ψ∗i (z)H(q)e±iq||r||eiqzzeik||r||ψj(z)
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= ±
√
Nph +

1

2
∓ 1

2

C

(2π)3

∫ ∞
−∞

dq

∫ ∞
−∞

dr||e
i
(
k||−k

′
||±q||

)
.r||

∫ Lz

0

dzψ∗i (z)ψj(z)H(q)e±iqzz

= ±
√
Nph +

1

2
∓ 1

2

C

(2π)
√
A

∫ ∞
−∞

dqδ
(
k|| − k

′

|| ± q||

)∫ Lz

0

dzρij(z)H(q)e±iqzz

= ±
√
Nph +

1

2
∓ 1

2

C

(2π)
√
A

∫ ∞
−∞

dq||δ
(
k|| − k

′

|| ± q||

)∫ ∞
−∞

dqz

∫ Lz

0

dzρij(z)H(q)e±iqzz

(A.9)

|〈k|Himp |k′〉|2 =

(
Nph +

1

2
∓ 1

2

)
C2V

(2π)2A

∫∞
−∞ d~q||δ

(
k|| − k

′

|| ± q||

) ∫∞
−∞ dqz∫ LZ

0

∫ Lz

0

dzdz
′
ρij(z)ρij(z

′)H(q)2e±iqz(z−z
′)

(A.10)

The above expression can be simplified by interchanging the integration order between qz

and z, z′ and integrating H(q)2eiqz(z−z
′) with respect to qz

∫ ∞
−∞

dqzH(q)2e±iqz(z−z
′) =

∫ ∞
−∞

dqz

(
q2|| + q2z

)
(
q2|| + q2z + ζ−2

)2 eiqz(z−z′)
Scattering kernel integral that needs to be solved

∫ ∞
−∞

dqz

(
q2|| + q2z

)
(
q2|| + q2z + ζ−2

)2 e±iqz(z−z′)
Let a = z − z′, b =

√
q2|| + ζ−2 and c = q||. Converting the above integral into a

complex function integral, we get∫ ∞
−∞

dz
e±iaz (c2 + z2)

(z2 + b2)2

The function has residues at z = ±ib. Since we are performing a real integral, only the

residues in upper half-plane matter. Using Cauchy’s residue theorem, we get

I(q||, z, z
′) =

e
−
√
q2||+ζ

−2|z−z′|√
q2|| + ζ−2

1− |z − z
′| ζ−2

2
√
q2|| + ζ−2

− ζ−2

2
(
q2|| + ζ−2

)
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The above integrand carries information about the non-locality of scattering and is re-

ferred to as the scattering kernel.

|〈k|Himp |k′〉|2 =

(
Nph +

1

2
∓ 1

2

)
C2V

(2π)2A

∫∞
−∞ dq||δ

(
k|| − k

′

|| ± q||

)
∫ Lz

0

∫ Lz

0
dzdz

′
ρij(z)ρij(z

′)I(q||, z, z
′)

=

(
Nph +

1

2
∓ 1

2

)
C2V

(2π)2A

∫ ∞
−∞

dq||δ
(
k|| − k

′

|| ± q
)
F (q||)

where F (q||) =

∫ Lz

0

∫ Lz

0

dzdz
′
ρij(z)ρij(z

′)I(q||, z, z
′) is the form factor. Scattering

rate can now be derived by summing over all possible final momentum states.

1

τ(k||)
=
∑
k′

P (k||,k
′

||) =
∑
k′

2π

~

(
Nph +

1

2
∓ 1

2

)
C2V

(2π)2A∫ ∞
−∞

dq||δ
(
k|| − k

′

|| ± q||

)
F (q||)δ (E(k)− E(k′)± ~ωLO)

(A.11)

Converting the summation to integration and multiplying by 2 for spin degeneracy, we get

1

τ(k||)
=

2

~

(
Nph +

1

2
∓ 1

2

)
C2V

(2π)3

∫
dk
′

||δ (E(k)− E(k′)± ~ωLO)∫∞
−∞ dq||δ

(
k|| − k

′

|| ± q||

)
F (q||)∫

dk
′

||
∫∞
−∞ dq||δ (E(k)− E(k′)± ~ωLO) δ

(
k|| − k

′

|| ± q||

)
F (q||) =∫ ∫

k′dk′dθδ (E(k)− E(k′)± ~ωLO)F (|k|| − k
′

|||)∫ ∫
k′dk′dθδ (E(k)− E(k′)± ~ωLO)F (|k|| − k

′

|||) =
m∗

~2

∫ ∫
dE(k′)dθδ (E(k)− E(k′)± ~ωLO)F (|k̃|| − k̃′|||)

=
m∗

~2

∫ 2π

0

dθF (E(k||), θ)

where

|k̃|| − k̃′||| =

[
2k2 ± 2 (~ωLO ± (Ei − Ej))

~2
− 2k

[
k2 ± 2 (~ωLO ± (Ei − Ej))

~2

]1/2
cosθ

]1/2
(A.12)
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where k =
2m∗E

~2
,Ei andEj are the energies corresponding to modes i and j and +symbol

refers to the absorption process and − symbol refers to the emission process. Finally, the

scattering rate can be expressed as

1

τij(E)
=

4πe2m∗~ωLO
~3

(
1

ε∞
− 1

εs

)[
Nph

∫ 2π

0

dθFa(E, θ) + (Nph + 1)

∫ 2π

0

dθFe(E, θ)

]
Dimension check

1

τij(E)
=

C2.kg.kg.m2.s−2

(kg.m2.s−1)3.(C2.kg−1.m−3.s2)
.m =

1

s

The above scattering rate is between two modes i and j. Multi-modal scattering rate

can be calculated by summing up contributions from different inter-mode scattering

Γ(E) =
∑
j

Γij(E) =
∑
j

1

τij(E)

A.3 Nanowire device

For discussion below, x will be the periodic direction along the length of wire and y, z

will be the periodic directions.

According to Fermi’s golden rule, scattering rate for an electron with an optical phonon

in an initial momentum state k to a final momentum state k′ is given by

P (k,k′) =
2π

~
|〈k|Himp |k′〉|2 δ (E(k)− E(k′)± ~ωLO) (A.13)

Electron-phonon coupling Hamiltonian is given by

He−ph =
Cq

q2 + ζ−2
(
aqe

iq.r − a†qe−iq.r
)

(A.14)

where q is the phonon momentum, ζ is the screening length, aq and a†q are particle annihi-

lation and creation operators and coupling constant C is described by Frohlich interaction

C = i

[
2π

V
e2~ωLO

(
1

ε∞
− 1

εs

)]1/2
(A.15)

where ~ωLO is the LO optical phonon frequency, εs is the static dielectric constant and

ε∞ is the high frequency dielectric constant. The electronic wavefunction is of the form

|k〉 =
1√
L
eikxxψi(r||) (A.16)
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where ψi(r||) corresponds to the ith mode wavefunction in the confinement direction.

〈k|Himp |k′〉 =
∑
q

〈k| Cq

q2 + ζ−2
(
aqe

iq.r − a†qe−iq.r
)
|k′〉

=
∑
q

±
√
Nph +

1

2
∓ 1

2

Cq

q2 + ζ−2
〈k| e±iq.r |k′〉

where the first sign corresponds to phonon absorption process and the second sign cor-

responds to phonon emission process. Converting the summation over phonon momentum

to an integral, we get

〈k|Himp |k′〉 = ±
√
Nph +

1

2
∓ 1

2

C

(2π)3L

∫ ∞
−∞

dq

∫ ∞
−∞

dx∫ Ly

0

∫ Lz

0

dr||.e
−ik′xxψ∗i (r||)

q

q2 + ζ−2
e±iq||r||e±iqxxeikxxψj(r||)

= ±
√
Nph +

1

2
∓ 1

2

C

(2π)3L

∫ ∞
−∞

dq

∫ ∞
−∞

dx.ei(kx−k
′
x±qx)

∫ Ly

0

∫ Lz

0

dr||.ψ
∗
i (r||)

q

q2 + ζ−2
e±iq||r||ψj(r||)

= ±
√
Nph +

1

2
∓ 1

2

C

(2π)2
√
L

∫ ∞
−∞

dqδ
(
kx − k

′

x ± qx
)∫ Ly

0

∫ Lz

0

dr||ψ
∗
i (r||)ψj(r||)

q

q2 + ζ−2
e±iq||r||

= ±
√
Nph +

1

2
∓ 1

2

C

(2π)2
√
L

∫ ∞
−∞

dqxδ
(
kx − k

′

x ± qx
)∫ ∞
−∞

dq||

∫ Ly

0

∫ Lz

0

dr||ρij(r||)
q

q2 + ζ−2
e±iq||r||

(A.17)

|〈k|Himp |k′〉|2 =

(
Nph +

1

2
∓ 1

2

)
C2V

(2π)4L

∫∞
−∞ dqxδ

(
kx − k

′
x ± qx

) ∫∞
−∞ dq||∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′

||ρ
∗
ij(r||)ρij(r

′
||)

q2

(q2 + ζ−2)2
e±iq||(r||−r

′
||)

(A.18)

The above expression can be simplified by interchanging the integration order between q||

and r||, r
′

|| and integrating
q2

(q2 + ζ−2)2
e±iq||(r||−r

′
||) with respect to q||

∫ ∞
−∞

dq||
q2

(q2 + ζ−2)2
e±iq||(r||−r

′
||) =

∫ ∞
0

q||dq||

∫ 2π

0

dθ

(
q2|| + q2x

)
(
q2|| + q2x + ζ−2

)2 e±iq||(r||−r′||)
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=

∫ ∞
0

q||dq||.
(
q2|| + q2x

)
2πJ0

(
q||

∣∣∣r|| − r′||∣∣∣)(
q2|| + q2x + ζ−2

)2
where J0(x) is the Bessel-J function of 0th order. The above function integral can be

solved by using the relation

∫ ∞
0

dx
Jν(bx)xν+1

(x2 + a2)µ+1 =
aν−µbµ

2µΓ(µ+ 1)
Kν−µ(ab)

for − 1 < Re(ν) < Re

(
2µ+

3

2

)
, a > 0, b > 0

where Kν−µ(x) is the Bessel-K function. Using the relation and by transfering 2π in

the integral to prefactor, we get

I(qx, r||, r
′

||) =

∫ ∞
−∞

dq||H(q)2eiq||(r||−r
′
||)

=



√q2x + ζ−2
∣∣∣r|| − r

′

||

∣∣∣+
q2x

∣∣∣r|| − r
′

||

∣∣∣√
q2x + ζ−2

 K1

(√
q2x + ζ−2

∣∣∣r|| − r
′

||

∣∣∣)
2

,
∣∣∣r|| − r

′

||

∣∣∣ 6= 0(
1

2
+

q2x
2 (q2x + ζ−2)

)
,
∣∣∣r|| − r

′

||

∣∣∣ = 0

The above integrand carries information about the non-locality of scattering and is re-

ferred to as the scattering kernel.

|〈k|Himp |k′〉|2 =

(
Nph +

1

2
∓ 1

2

)
C2V

(2π)3L

∫∞
−∞ dqxδ

(
kx − k

′
x ± qx

)
∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′

||ρ
∗
ij(r||)ρij(r

′
||)I(qx, r||, r

′

||)

(A.19)

=

(
Nph +

1

2
∓ 1

2

)
C2V

(2π)3L

∫ ∞
−∞

dqxδ
(
kx − k

′

x ± qx
)
F (qx)

where F (qx) =

∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′

||ρ
∗
ij(r||)ρij(r

′
||)I(qx, r||, r

′

||) is the form factor.

Scattering rate can now be derived by summing over all possible final momentum states.
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1

τ(kx)
=
∑
k′

P (kx, k
′

x) =
∑
k′

2π

~

(
Nph +

1

2
∓ 1

2

)
C2V

(2π)3L∫∞
−∞ dqxδ

(
kx − k

′
x ± qx

)
F (qx)δ (E(k)− E(k′)± ~ωLO)

(A.20)

Converting the summation to integration and multiplying by 2 for spin degeneracy, we get

1

τ(kx)
=

2

~

(
Nph +

1

2
∓ 1

2

)
C2V

(2π)2

∫
dkxδ (E(k)− E(k′)± ~ωLO)

∫ ∞
−∞

dqxδ
(
kx − k

′

x + qx

)
F (qx)

(A.21)

Assuming a parabolic dispersion relation, we have

kx =

√
2m∗ (E − Ei)

~2
k
′

x =

√
2m∗ (E − Ej + ~ωLO)

~2

for absorption process and

kx =

√
2m∗ (E − Ei)

~2
k
′

x =

√
2m∗ (E − Ej − ~ωLO)

~2

for emission process. Ei and Ej are the energies corresponding the modes i and j. This

gives two choices for scattering from kx state to k;x state with qx = ±(kx ± k
′
x). This gives

us

1

τa/e(kx)
=

2

~

(
Nph +

1

2
∓ 1

2

)
C2V

(2π)2∫
dkxδ (E(k)− E(k′)∓ ~ωLO)

[
Fa/e(kx − k

′
x) + Fa/e(kx + k

′
x)
]

By changing the coordinates from kx to E, we get

1

τij,a(E)
=
e2~ωLONph

~2

(
1

ε∞
− 1

εs

)
.

2

(2π)2
.
√

2m∗

(
Fa(kx − k

′
x) + Fa(kx + k

′
x)√

E − Ej + ~ωLO

)

for the absorption process (expression changes to
1√

E − Ej
for the lowest subband)

and

1

τij,e(E)
=
e2~ωLO (Nph + 1)

~2

(
1

ε∞
− 1

εs

)
.

2

(2π)2
.
√

2m∗

(
Fe(kx − k

′
x) + Fe(kx + k

′
x)√

E − Ej − ~ωLO

)
for the emission process (E > Ej + ~ωLO). Total scattering rate is a sum of both the

absorption and emission processes.
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Dimension check

1

τij(E)
=

C2.kg.m2.s−2kg1/2

(kg.m2.s−1)2.(C2.kg−1.m−3.s2)
.

1

kg1/2ms−1
=

1

s

The above scattering rate is between two modes i and j. Multi-modal scattering rate

can be calculated by summing up contributions from different inter-mode scattering

Γ(E) =
∑
j

Γij(E) =
∑
j

1

τij(E)



167

B. FERMI’S GOLDEN RULE FOR CHARGED IMPURITY
SCATTERING

Subsequent Fermi’s Golden rule derivation for charged impurity scattering follows the

Brooks-Herring scattering approach where the charged impurity centers are screened by

electrons (other approaches include Conwell-Weisskopf formalism [82] and Ridley formal-

ism [80]). Screening is taken into account through a density dependent screening length

(following either the Debye approximation of the Lindhard formalism).

B.1 Bulk/quasi1D device

According to Fermi’s golden rule, scattering rate for an electron in an initial momentum

state k to a final momentum state k + q is given by

P (k,k + q) =
2π

~
|〈k + q|Himp |k〉|2 δ (E(k + q)− E(k)) (B.1)

Impurity potential is given by

Himp(r) =
Ze2

4πεr
exp (−r/ζ)

where ζ is the screening length. Ze corresponds to the charge density present on the

impurity atom. Since most of the impurity atoms under consideration of this study have

Z = 1 , Z will be set to 1 in further discussions. For mathematical convenience, the

Hamiltonian will be represented in the momentum space

Himp(q) =
Ze2

ε

1

q2 + ζ−2

Scattering rate can now be written as

1

τ(k)
=
Ze2nD
ε

2π

~
∑
q

|〈k + q| |Himp| |k〉|2 δ (E(k + q)− E(k)) (B.2)
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where nD is the average doping density per unit volume.

1

τ(k)
=

e4nD
4π2ε2~

∫
dq

q2

(q2 + ζ−2)2
δ (E(k + q)− E(k)) (B.3)

Assuming a parabolic dispersion relation E(k) =
~2k2

2m∗
and by converting the momen-

tum integral to spherical coordinates, we get

1

τ(k)
=

e4nD
2πε2~

∫ ∞
0

dq
q2

(q2 + ζ−2)2

∫ π

0

dθsinθδ

(
~2q2

2m∗
+

~2kqcosθ
m∗

)
With change of variables x =

~2kqcosθ
m∗

, the scattering rate turns out to be (integration

limit is upto 2k due to constraint on cosθ ≤ 1 inside the delta function)

1

τ(k)
=
e4nD
2πε2

m∗

~2k

∫ 2k

0

dq
q

(q2 + ζ−2)2
=

2e4m∗nD
π~3ε2o

k

ζ−2 (ζ−2 + 4k2)
(B.4)

Representing the scattering rate in energy space, we get

1

τ(E)
=

2e4m∗nD
π~3ε2

√
2m∗E

~2

ζ−2
(
ζ−2 +

8m∗E

~2

)
Dimension check

1

τ(E)
=

C4.kg.

(kg.m2.s−1)3.(C2.kg−1m−3.s2)2.nm3
.

nm−1

nm−2.nm−2
=

1

s
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B.2 Ultra-thin body (UTB) device

For discussion below, x and y directions will be assumed periodic and z will be the

confinement direction.

According to Fermi’s golden rule, scattering rate for an electron scattering with a LO

phonon in an initial momentum state k to a final momentum state k′ is given by

P (k,k′) =
2π

~
|〈k|Himp |k′〉|2 δ (E(k)− E(k′)± ~ωLO) (B.5)

Impurity potential is given by

Himp(r) =
Ze2

4πεr
exp (−r/ζ)

where ζ is the screening length. Ze corresponds to the charge present on the impurity atom.

Since most of the impurity atoms have Z = 1, Z will be neglected in further discussions.

For mathematical convenience (which shall become clear later), the Hamiltonian will be

represented in terms of it’s Fourier transform. Hence Himp(r) will be represented as

Himp(r) =
1

(2π)3

∫ ∞
−∞

H(q)eiq.rdq

where

H(q) =
e2

ε

1

q2 + ζ−2

The electronic wavefunctions correspond to the Bloch wavefunctions

|k〉 =
1√
A
ei
~k||.~r||ψi(z) (B.6)

where ψi(z) corresponds to the ith mode wavefunction in the confinement direction.

〈k|Himp |k′〉 =
e2

ε (2π)3A

∫ ∞
−∞

dq

∫ ∞
−∞

dr||

∫ Lz

0

dz.e−ik
′
||.r||ψ∗i (z)H(q)eiq||r||eiqzzeik||r||ψj(z)

=
e2

ε (2π)3A

∫ ∞
−∞

dq

∫ ∞
−∞

dr||e
i
(
k||−k

′
||+q||

)
.r||

∫ Lz

0

dzψ∗i (z)ψj(z)H(q)eiqzz

=
e2

ε (2π)
√
A

∫ ∞
−∞

dqδ
(
k|| − k

′

|| + q||

)∫ Lz

0

dzρij(z)H(q)eiqzz
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=
e2

ε (2π)
√
A

∫ ∞
−∞

dq||δ
(
k|| − k

′

|| + q||

)∫ ∞
−∞

dqz

∫ Lz

0

dzρij(z)H(q)eiqzz (B.7)

|〈k|Himp |k′〉|2 =
e4

ε2(2π)2A

∫ ∞
−∞

d~q||δ
(
k|| − k

′

|| + q||

)∫ ∞
−∞

dqz∫ LZ

0

∫ Lz

0

dzdz
′
ρij(z)ρij(z

′)H(q)2eiqz(z−z
′)

(B.8)

The above expression can be simplified by interchanging the integration order between qz

and z, z′ and integrating H(q)2eiqz(z−z
′) with respect to qz∫ ∞

−∞
dqzH(q)2eiqz(z−z

′) =

∫ ∞
−∞

dqz
1(

q2|| + q2z + ζ−2
)2 eiqz(z−z′)

Scattering kernel integral that needs to be solved∫ ∞
−∞

dqz
1(

q2|| + q2z + ζ−2
)2 eiqz(z−z′)

Let a = z − z′ and b =
√
q2|| + ζ−2. Converting the above integral into a complex

function integral, we get ∫ ∞
−∞

dz
eiaz

(z2 + b2)2

The function has residues at z = ±ib. Since we are performing a real integral, only the

residues in upper half-plane matter. Using Cauchy’s residue theorem, we get

I = 2πi

[
d

dz
(z − ib)2 f(z)

]
z=ib

= 2πi

[
iaeiaz(z + ib)2 − 2eiaz(z + ib)

(z + ib)4

]
z=ib

=
πe−ab

2b2

[
a+

1

b

]
=
πe
−|z−z′|

√
q2||+ζ

−2

2
(
q2|| + ζ−2

)
 1√

q2|| + ζ−2
+ |z − z′|

 (B.9)

The above integrand carries information about the non-locality of scattering and is re-

ferred to as the scattering kernel.

|〈k|Himp |k′〉|2 =
e4

ε2(2π)2A

∫ ∞
−∞

dq||δ
(
k|| − k

′

|| + q||

)∫ Lz

0

∫ Lz

0

dzdz
′
ρij(z)ρij(z

′)I(q||, z, z
′)

=
e4

ε2(2π)2A

∫ ∞
−∞

dq||δ
(
k|| − k

′

|| + q||

)
F (q||)
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where F (q||) =

∫ Lz

0

∫ Lz

0

dzdz
′
ρij(z)ρij(z

′)I(q||, z, z
′) is the form factor. Scattering

rate can now be derived by summing over all possible final momentum states.

1

τm(k||)
=
∑
k′

P (k||,k
′

||) =
∑
k′

2π

~
e4ND

ε2(2π)2A

∫ ∞
−∞

dq||δ
(
k|| − k

′

|| + q||

)
F (q||)δ (E(k)− E(k′))

(B.10)

Note the prefactor ND in the expression above. The above derivation holds good for each

of the scattering centers. If there are ND such scattering centers per unit length along

confinement direction, then the prefactor gets multiplied byND. Converting the summation

to integration and multiplying by 2 for spin degeneracy, we get

1

τm(k||)
= 2.

e4ND

~ε2
1

(2π)3

∫
dk
′

||δ (E(k)− E(k′))

∫ ∞
−∞

dq||δ
(
k|| − k

′

|| + q||

)
F (q||)∫

dk
′

||
∫∞
−∞ dq||δ (E(k)− E(k′)) δ

(
k|| − k

′

|| + q||

)
F (q||) =∫ ∫

k′dk′dθδ (E(k)− E(k′))F (|k|| − k
′

|||)∫ ∫
k′dk′dθδ (E(k)− E(k′))F (|k||−k

′

|||) =
m∗

~2

∫ ∫
dE(k′)dθδ (E(k)− E(k′))F (|k̃|| − k̃′|||)

=
m∗

~2

∫ 2π

0

dθF (E(k||), θ)

where

|k̃|| − k̃′||| =
[

2m∗

~2
(2E − Ei − Ej)− 2.

2m∗

~2
√
E − Ei.

√
E − Ejcosθ

]1/2
(B.11)

Ei and Ej are the energies corresponding the modes i and j. Finally, the scattering rate can

be expressed as
1

τij(E)
=

2e4NDm
∗

~3ε2(2π)3

∫ 2π

0

dθF (E, θ)

Dimension check

1

τij(E)
=

C4.nm−3.kg

(kg.m2.s−1)3.(C2.kg−1.m−3.s2)2
.nm3 =

1

s

The above scattering rate is between two modes i and j. Multi-modal scattering rate

can be calculated by summing up contributions from different inter-mode scattering

Γ(E) =
∑
j

Γij(E) =
∑
j

1

τij(E)
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B.3 Nanowire device

For discussion below, x will be the periodic direction along the length of wire and y, z

will be the periodic directions.

According to Fermi’s golden rule, scattering rate for an electron in an initial momentum

state k to a final momentum state k′ is given by

P (k,k′) =
2π

~
|〈k|Himp |k′〉|2 δ (E(k)− E(k′)) (B.12)

Impurity potential is given by

Himp(r) =
Ze2

4πεr
exp (−r/ζ)

where ζ is the screening length. Ze corresponds to the charge present on the impurity atom.

Since most of the impurity atoms have Z = 1, Z will be neglected in further discussions.

For mathematical convenience (which shall become clear later), the Hamiltonian will be

represented in terms of it’s Fourier transform. Hence Himp(r) will be represented as

Himp(r) =
1

(2π)3

∫ ∞
−∞

H(q)eiq.rdq

where

H(q) =
e2

ε

1

q2 + ζ−2

The electronic wavefunctions correspond to the Bloch wavefunctions

|k〉 =
1√
L
eikxxψi(r||) (B.13)

where ψi(r||) corresponds to the ith mode wavefunction in the confinement direction.

〈k|Himp |k′〉 =
e2

ε (2π)3 L

∫ ∞
−∞

dq

∫ ∞
−∞

dx

∫ Ly

0

∫ Lz

0

dr||.e
−ik′xxψ∗i (r||)H(q)eiq||r||eiqxxeikxxψj(r||)

=
e2

ε (2π)3 L

∫ ∞
−∞

dq

∫ ∞
−∞

dx.ei(kx−k
′
x+qx)

∫ Ly

0

∫ Lz

0

dr||.ψ
∗
i (r||)H(q)eiq||r||ψj(r||)

=
e2

ε (2π)2
√
L

∫ ∞
−∞

dqδ
(
kx − k

′

x + qx

)∫ Ly

0

∫ Lz

0

dr||ψ
∗
i (r||)ψj(r||)H(q)eiq||r||
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=
e2

ε (2π)2
√
L

∫ ∞
−∞

dqxδ
(
kx − k

′

x + qx

)∫ ∞
−∞

dq||

∫ Ly

0

∫ Lz

0

dr||ρij(r||)H(q)eiq||r||

(B.14)

|〈k|Himp |k′〉|2 =
e4

ε2(2π)4L

∫∞
−∞ dqxδ

(
kx − k

′
x + qx

) ∫∞
−∞ dq||∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′

||ρ
∗
ij(r||)ρij(r

′
||)H(q)2eiq||(r||−r

′
||)

(B.15)

The above expression can be simplified by interchanging the integration order between q||

and r||, r
′

|| and integrating H(q)2eiq||(r||−r
′
||) with respect to q||∫ ∞

−∞
dq||H(q)2eiq||(r||−r

′
||) =

∫ ∞
0

q||dq||

∫ 2π

0

dθ
1(

q2|| + q2x + ζ−2
)2 eiq||(r||−r′||)

=

∫ ∞
0

q||dq||.2πJ0

(
q||

∣∣∣r|| − r′||∣∣∣)(
q2|| + q2x + ζ−2

)2
where J0(x) is the Bessel-J function of 0th order. The above function integral can be

solved by using the relation

∫ ∞
0

dx
Jν(bx)xν+1

(x2 + a2)µ+1 =
aν−µbµ

2µΓ(µ+ 1)
Kν−µ(ab)

for − 1 < Re(ν) < Re

(
2µ+

3

2

)
, a > 0, b > 0

where Kν−µ(x) is the Bessel-K function. Using the relation and by transfering 2π in

the integral to prefactor, we get

I(qx, r||, r
′

||) =

∫ ∞
−∞

dq||H(q)2eiq||(r||−r
′
||)

=


∣∣∣r|| − r

′

||

∣∣∣
2
√
q2x + ζ−2

K1

(√
q2x + ζ−2

∣∣∣r|| − r
′

||

∣∣∣) , ∣∣∣r|| − r
′

||

∣∣∣ 6= 0

1

2 (q2x + ζ−2)
,
∣∣∣r|| − r

′

||

∣∣∣ = 0

The above integrand carries information about the non-locality of scattering and is re-

ferred to as the scattering kernel.
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|〈k|Himp |k′〉|2 =
e4

ε2(2π)3L

∫∞
−∞ dqxδ

(
kx − k

′
x + qx

)
∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′

||ρ
∗
ij(r||)ρij(r

′
||)I(qx, r||, r

′

||)

(B.16)

=
e4

ε2(2π)3L

∫ ∞
−∞

dqxδ
(
kx − k

′

x + qx

)
F (qx)

where F (qx) =

∫ Ly

0

∫ Lz

0

∫ Ly

0

∫ Lz

0

dr||dr
′

||ρ
∗
ij(r||)ρij(r

′
||)I(qx, r||, r

′

||) is the form factor.

Scattering rate can now be derived by summing over all possible final momentum states.

1

τm(kx)
=
∑
k′

P (kx, k
′

x) =
∑
k′

2π

~
e4ND

ε2(2π)3L

∫ ∞
−∞

dqxδ
(
kx − k

′

x + qx

)
F (qx)F (q||)δ (E(k)− E(k′))

(B.17)

ND is the number of scattering centers present per unit area along the confinement direc-

tion. Converting the summation to integration and multiplying by 2 for spin degeneracy,

we get

1

τm(kx)
= 2.

e4ND

~ε2L2

1

(2π)3

∫
dkxδ (E(k)− E(k′))

∫ ∞
−∞

dqxδ
(
kx − k

′

x + qx

)
F (qx)

(B.18)

Assuming a parabolic dispersion relation, we have

kx =

√
2m∗ (E − Ei)

~2
k
′

x =

√
2m∗ (E − Ej)

~2

where Ei and Ej are the energies corresponding the modes i and j. This gives two

choices for scattering from kx state to k;x state with qx = kx ± k
′
x. This gives us

1

τm(kx)
= 2.

e4ND

~ε2
1

(2π)3

∫
dkxδ (E(k)− E(k′))

[
F (kx − k

′

x) + F (kx + k
′

x)
]

By changing the coordinates from kx to E, we get

1

τij(E)
=
e4ND

√
2m∗

~2ε2(2π)3

(
F (kx − k

′
x) + F (kx + k

′
x)√

E − Ei

)
Dimension check

1

τij(E)
=

C4.nm−3.kg1/2nm2

(kg.m2.s−1)2.(C2.kg−1.m−3.s2)2
.

1

kg1/2ms−1
=

1

s
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The above scattering rate is between two modes i and j. Multi-modal scattering rate

can be calculated by summing up contributions from different inter-mode scattering

Γ(E) =
∑
j

Γij(E) =
∑
j

1

τij(E)
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C. FERMI’S GOLDEN RULE FOR REMOTE PHONON
SCATTERING

C.1 Ultra-thin body (UTB) device

Remote phonon scattering is mediated by surface oxide (SO) phonons which interact

with electrons right under the oxide. Oxides have multiple SO modes that contribute to

scattering. Calculated rate accounts for multiple modes and takes both inter and intra mode

scattering into account. For discussion below, x and y directions will be assumed periodic

and z will be the confinement direction.

According to Fermi’s golden rule, scattering rate for an electron in an initial momentum

state k to a final momentum state k′ is given by

P (k,k′) =
2π

~
|〈k|Himp |k′〉|2 δ (E(k)− E(k′)± ~ωSO) (C.1)

According to Fermi’s golden rule, scattering rate for an electron with an optical phonon in

an initial momentum state k to a final momentum state k′ is given by

P (k,k′) =
2π

~
|〈k|Himp |k′〉|2 δ (E(k)− E(k′)± ~ωSO) (C.2)

Electron-phonon coupling Hamiltonian is given by

He−ph = Fν
∑
q

e−q||z
√
q||

(
aqe

iq||.r|| + a†qe
−iq||.r||

)
(C.3)

where q is the surface 2D phonon momentum, aq and a†q are particle annihilation and cre-

ation operators and coupling constant Fν is described as

Fν =

[
e~ωνSO
2Sεo

(
1

ε∞ox + ε∞s
− 1

εoox + ε∞s

)]1/2
(C.4)
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where ~ωνSO is νth oxide SO optical phonon frequency, εoox is static oxide dielectric

constant,ε∞ox is oxide high frequency dielectric constant and ε∞s is semiconducotor high

frequency dielectric constant. The electronic wavefunction is of the form

|k〉 =
1√
A
eikxxψi(r||) (C.5)

where ψi(r||) corresponds to the ith mode wavefunction in the confinement direction.

〈k|Himp |k′〉 =
∑
q

〈k| e
−q||z

√
q||
Fν
(
aqe

iq||.r|| + a†qe
−iq||.r||

)
|k′〉

=
∑
q||

√
Nph +

1

2
∓ 1

2

e−q||z
√
q||
Fν 〈k| e±iq||.r|| |k′〉

where the first sign corresponds to phonon absorption process and the second sign cor-

responds to phonon emission process. Converting the summation over phonon momentum

to an integral, we get

〈k|Himp |k′〉 =

√
Nph +

1

2
∓ 1

2

Fν
A(2π)2

∫ ∞
−∞

dq||∫∞
−∞ dr||

∫ Lz

0
dz.e−ik

′
||.r||ψ∗i (z)H(q||, z)e

±iq||r||eiqzzeik||r||ψj(z)

=

√
Nph +

1

2
∓ 1

2

Fν
A(2π)2

∫ ∞
−∞

dq||

∫ ∞
−∞

dr||e
i
(
k||−k

′
||±q||

)
.r||

∫ Lz

0

dzψ∗i (z)ψj(z)H(q||, z)

=

√
Nph +

1

2
∓ 1

2

Fν√
A

∫ ∞
−∞

dq||δ
(
k|| − k

′

|| ± q||

)∫ Lz

0

dzρij(z)H(q||, z)

=

√
Nph +

1

2
∓ 1

2

Fν√
A

∫ ∞
−∞

dq||δ
(
k|| − k

′

|| ± q||

)∫
dzρij(z)H(q||, z) (C.6)

|〈k|Himp |k′〉|2 =

(
Nph +

1

2
± 1

2

)
F 2
ν

∫∞
−∞ d~q||δ

(
k|| − k

′

|| ± q||

)
∫ LZ

0

∫ Lz

0

dzdz
′
ρij(z)ρij(z

′)H(q||, z)H(q||, z
′)

(C.7)

Scattering kernel of this system can be defined as

I(q||, z, z
′) = H(q||, z)H(q||, z

′) =
e−q||(z+z

′)

√
q||
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The above integrand carries information about the non-locality of scattering and is re-

ferred to as the scattering kernel.

|〈k|Himp |k′〉|2 =

(
Nph +

1

2
± 1

2

)
F 2
ν

∫∞
−∞ dq||δ

(
k|| − k

′

|| ± q||

)
∫ Lz

0

∫ Lz

0
dzdz

′
ρij(z)ρij(z

′)I(q||, z, z
′)

=

(
Nph +

1

2
± 1

2

)
F 2
ν

∫ ∞
−∞

dq||δ
(
k|| − k

′

|| ± q
)
F (q||)

where F (q||) =

∫ Lz

0

∫ Lz

0

dzdz
′
ρij(z)ρij(z

′)I(q||, z, z
′) is the form factor. Scattering

rate can now be derived by summing over all possible final momentum states.

1

τ(k||)
=
∑
k′

P (k||,k
′

||) =
∑
k′

2π

~

(
Nph +

1

2
± 1

2

)
F 2
ν∫∞

−∞ dq||δ
(
k|| − k

′

|| ± q||

)
F (q||)δ (E(k)− E(k′)± ~ωνSO)

(C.8)

Converting the summation to integration and multiplying by 2 for spin degeneracy, we get

1

τ(k||)
=

2

~

(
Nph +

1

2
∓ 1

2

)
F 2
νA

(2π)

∫
dk
′

||δ (E(k)− E(k′)± ~ωνSO)∫∞
−∞ dq||δ

(
k|| − k

′

|| ± q||

)
F (q||)∫

dk
′

||
∫∞
−∞ dq||δ (E(k)− E(k′)± ~ωνSO) δ

(
k|| − k

′

|| ± q||

)
F (q||) =∫ ∫

k′dk′dθδ (E(k)− E(k′)± ~ωνSO)F (|k|| − k
′

|||)∫ ∫
k′dk′dθδ (E(k)− E(k′)± ~ωνSO)F (|k|| − k

′

|||) =
m∗

~2

∫ ∫
dE(k′)dθδ (E(k)− E(k′)± ~ωνSO)F (|k̃|| − k̃′|||)

=
m∗

~2

∫ 2π

0

dθF (E(k||), θ)

where

|k̃|| − k̃′||| =

[
2k2 ± 2 (~ωνSO ± (Ei − Ej))

~2
− 2k

[
k2 ± 2 (~ωνSO ± (Ei − Ej))

~2

]1/2
cosθ

]1/2
(C.9)
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where k =
2m∗E

~2
,Ei andEj are the energies corresponding to modes i and j and +symbol

refers to the absorption process and − symbol refers to the emission process. Finally, the

scattering rate can be expressed as

1

τij(E)
=

2e2m∗

(2π)~3
~ωνSO
2εo

(
1

ε∞ox + ε∞s
− 1

εoox + ε∞s

)
[
Nph

∫ 2π

0

dθFa(E, θ) + (Nph + 1)

∫ 2π

0

dθFe(E, θ)

]
Dimension check

1

τij(E)
=

C2.kg.kg.m2.s−2

(kg.m2.s−1)3.(C2.kg−1.m−3.s2)
.m =

1

s

The above scattering rate is between two modes i and j. Multi-modal scattering rate

can be calculated by summing up contributions from different inter-mode scattering

Γ(E) =
∑
j

Γij(E) =
∑
j

1

τij(E)

For multiple oxide SO phonon modes, scattering rate is summed up over all possible

modes.

Γtotal(E) =
∑
ν

Γν(E)


