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ABSTRACT

DeVault, Clayton T. PhD, Purdue University, December 2018. Transparent Con-
ducting Oxides for Epsilon-Near-Zero Nanophotonics. Major Professor: Vladimir
M. Shalaev.

Epsilon-near-zero materials are an emerging class of nanophotonic materials which
engender electromagnetic field enhancement and small phase variation due to their
approximate zero permittivity. These quasi-static fields facilitate a number of unique
optical properties such as supercoupling, subwavelength confinement, and enhanced
light-matter interactions, which has made epsilon-near-zero media a rapidly expand-
ing field of optical physics. Contemporary methods of realizing a system with zero
permittivity rely on microwave cavities/waveguides or complex metal-dielectric meta-
materials; however, both techniques require advanced fabrication and their oper-
ational wavelength is fixed relative to their geometric and optical parameters. It
remains an open and substantial challenge to realize an epsilon-near-zero material
at pertinent wavelengths, particularly near- and mid-infrared, with tunable/dynamic
properties. The focus of this thesis is the exploration of transparent conducting oxides
for the development of epsilon-near-zero nanophotonic phenomena and applications.
Transparent conducting oxides have an inherent low permittivity, in addition to sim-
ple fabrication and tunable optical properties, making them exceptionally promising.
Application of transparent conducting oxide films for highly confined modes, nonlin-

ear/ultrafast optics, and strongly coupled systems are discussed.
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1. INTRODUCTION

The permittivity of a material captures the complex nature of light-matter interac-
tions in a single number. Universally denoted with the Greek symbol epsilon (¢), the
permittivity dictates the propagation of electromagnetic radiation throughout Nature,
manifested as our visual perception of color, refraction, reflection, and transmission,
in addition to fundamental physical properties transcending our eye’s tiny spectrum.
Control of light, from simple lenses to complex laser systems, is mediated by the
ability to incorporate the appropriate permittivity into an optical technology, which
is directly facilitated by the judicious choice of an appropriate optical material [1-4].
Therefore, there exists an intimate connection between optical physics and materials
sciences, bridged together by the desire to advance discovery and control of light’s
most fascinating properties.

Before the advent of modern materials and optical sciences, selecting the appro-
priate permittivity was largely accomplished with trial and error (an early version of
the scientific method). Today, armed with Maxwell’s equations, quantum mechan-
ics, and advanced material fabrication techniques, we can now control materials at
sub-wavelength and even atomic scales to provide an extended range of permittivity
values beyond those that occur "naturally” [5-9]. Engineered/artificial optical ma-
terials can now exhibit permittivities from extraordinarily large (¢ > 5) [10,11] to
exceptionally small (e ~ 0). Materials which exhibit this latter feature (i.e. e = 0 )
are named—rather appropriately—as Epsilon-Near-Zero Materials and are the focus
of this thesis.

Interest in epsilon-near-zero materials has grown at a prolific rate in the last
decade, largely driven by numerous theoretical demonstrations of exceptional—if not
somewhat confrontational—electromagnetic phenomena and applications, including

super-coupling, sub-wavelength tunneling, wavefront engineering, field confinement,



and enhanced nonlinearities [12-20]. These studies were largely pioneered by the
scientists Richard Ziolkowski, Adrea Ald, and Nader Engheta, who continue to lead
the front of epsilon-near-zero research.

Experimental observation of epsilon-near-zero phenomena has largely concentrated
within the microwave spectrum where the permittivity can be easily manipulated
[21,22]. Although these experiment have confirmed many fascinating properties of
epsilon-near-zero materials, the desired spectral window of application is across the
ultraviolet, visible, near- and mid-infrared. Unfortunately, achieving epsilon-near-
zero conditions at these wavelengths is challenging and remains the prominent focus
of experimentalist in the field. The two common approaches focus on (1) engineer-
ing an artificial material (i.e. metamaterial) to exhibit a zero permittivity [23-27],
or (2) synthesizing materials which have an inherent zero or near-zero permittiv-
ity [28-31]. Both approaches have advantages/disadvantages, and the particular
strategy to achieve a zero permittivity is absolutely dependent on what particular
phenomena is to be observed and the wavelength of interest. Particularly, there
is a growing interest in applying epsilon-near-zero phenomena for the near-infrared
wavelengths where a large density of optical technologies exist including telecommu-

nication, biological imaging, and quantum sciences.

1.1 Outline

The contents of this thesis are the major results of my doctoral research and
pertain to the development of transparent conducting oxides for near-infrared epsilon-
near-zero materials and their application for nanophotonic applications. It is divided
into two parts, which focus, respectively, on epsilon-near-zero ultrafast, nonlinear
optics and plasmonic coupling. For brevity, I outline each chapter below:

CHAPTER 2: Fundamentals of Transparent Conducting Oxides Dis-
cusses the development of transparent conducting oxides for alternative plasmonics,

their fabrication, optical properties, and ellipsometry techniques.



CHAPTER 3: Epsilon-Near-Zero Physics Provides a background of epsilon-
near-zero phenomena relevant to the contents of this thesis. It details the epsilon-
near-zero modes of ultrathin TCO films, the benefits of ENZ materials for nonlinear
optics, and discusses alternative material platforms for realization of ENZ media.

CHAPTER 4: Ultrafast, Nonlinear Optics with Epsilon-Near-Zero Films
Contains an introduction to ultrafast processes in semiconductors and metals; a dis-
cussion of the modulation performance of ENZ flims; the ultrafast and nonlinear
response, as measured by pump-probe, of aluminum-doped zinc oxide to interband,
intraband, and simultaneous excitation; and, finally, the use of these processes for the
design of a dynamic, ultrafast nanocavity.

CHAPTER 5: Single and Dimer Nanoantennas on Epsilon-Near-Zero
Films Details the response of single and dimer plasmonic antennas on an aluminum-
doped zinc oxide substrate with an ENZ wavelength close to the resonance of the
antennas. An analytic model, numerical simulations, and experimental observations
demonstrate two phenomena of plasmonic antennas on ENZ films: resonance-pinning
and suppression of near-field coupling.

CHAPTER 6: Coupling between Epsilon-Near-Zero Films and Plas-
monic Antennas Here, the interaction of a plasmonic antenna and a thin film of
aluminum-doped zinc oxide supporting an ENZ mode are shown to exhibit strong
coupling. ENZ modal anaylsis and a coupled oscillator model is developed to retrieve
the Rabi splitting energies of the system, verifying the system is within the strong

coupling regime.






2. TRANSPARENT CONDUCTING OXIDES

Any user of a modern touch-screen smart phone has a tangible familiarity with trans-
parent conducting oxides. A touch-screen consists of two conducting layers separated
by a spacer [32,33]. A weak voltage is applied to the bottom conductor and a capaci-
tance is formed. When a finger or pen contacts the top layer, the capacitance at that
point changes and is resolvable with sensors inside the screen. TCOs are essential
to this technology exactly because they are both conductive and transparent, unlike
most conductors which are opaque. Popular TCOs for touchscreen devices include
indium tin oxide (ITO) and amorphous indium gallium zinc oxide (a-IGZO), although
several other types exist and offer comparative performance but at lower cost and/or
toxicity [34,35].

The origin of TCOs unique optical and electrical properties is their material com-
position. Oxides such as zinc oxide, indium oxide, and cadmium oxide have large
bandgaps (> 4 eV) and do not absorb visible light. When doped with metal in-
terstitials (e.g. aluminum, gallium, indium, dysprosium), these oxides can support
free electron carrier concentration as large as 10?2 ecm3. Furthermore, these TCOs
have small effective masses and low-resistivity, which make them excellent conduc-
tors [29, 36, 37].

TCOs have gained considerable attention from the nanophotonics community in
the past decade precisely because of their unique physical properties. Particularly,
TCOs are being developed as alternative materials for plasmonics [28,29,31,38]. Plas-
monics is a sub-field of nanophotonics and is concerned with leveraging the oscillations
of free electrons in a metal to concentrate and/or enhance optical fields [39-41]. No-
ble metals are the most common choice of plasmonic material because of their large
carrier concentration, low optical losses, and mature fabrication techniques; however,

several inherent disadvantages of noble metals prohibit the realization of real-world



plasmonic technologies, such as fabrication limitations, CMOS incompatibility, and
lack of tunability [42]. This last detrimental feature—the lack of tunability—is one of
the most prominent advantages of TCOs over noble metals. For instance, TCOs have
a widely tunable carrier concentration via both static methods such as thermal an-
nealing or defect/dopant chemistry and dynamic control including electrical biasing
and photoinduced carriers. This property is exceptionally beneficial for the design of

active nanophotonics and plasmonics [43-45].

2.1 Fabrication

TCOs can be grown as films and nanoparticles through a variety of methods
including sputtering, laser ablation, evaporation, solution processing, chemical va-
por deposition, and vapor-liquid-solid techniques [34,46]. Their optical properties
are largely dependent on the deposition technique and have made direct comparison
between various TCOs difficult. We have chosen pulsed laser deposition (PLD) to
fabricate all TCO films because this method provides consistent stoichiometric prop-
erties. PLD is the ablation of a target material (typically a high purity TCO) using
an intense ultraviolet laser beam [47]. Film thickness is controlled via deposition
time and carrier concentration is dependent on the partial pressure and temperature
of the chamber. For example, oxygen defects contribute additional free carriers in
addition to those from the metal dopant. By depositing the TCO with a partial pres-
sure of oxygen, interstitials and vacancies bring the carrier concentration to larger
values [48,49]. PLD is also a convenient method because nearly any substrate is

suitable, although the crystallinity of the TCO can be dependent on the substrate.

2.2 Linear Optical Properties: Drude-Sommerfeld and Lorentz Models

The optical properties of TCOs can be described by a simple complex dielectric

function. The dielectric function captures the response of the TCO subject to an



external electromagnetic field. To calculate this response, we look to establish a

relation between an applied electric field and the induced polarization field, i.e.
P(w) = e;x(w)E(w). (2.1)
From this, we can calculate the displacement field
D(w) = €ye(w)E(w) = ¢, E(w) + P(w) (2.2)
and finally the frequency-dependent dielectric function

e(w) =14 x(w)). (2.3)

At first, we only consider the contribution from the conduction electrons and apply
the Drude-Sommerfeld model [50]. This model assumes the electrons in a material
are delocalized and free to move throughout a static ionic background. Additionally,
all electron-electron and electron-ion interactions are ignored; the only interaction is
the instantaneous collisions with ions which occur, on average, every 7 seconds. If we

assume a time-harmonic driving field, the displacement of a free electron will obey

*dZw * diB —iwt
my +m FE =eE,e ™", (2.4)

where e and m* are the charge and effective mass of the free charge and FE, and w
are the frequency of the applied electric field. The damping term I' is proportional
to 77! = l/vy, where vy and [ are the Fermi velocity and electron mean free path.

Assuming a time harmonic displacement x(t) = x,e~“*, we can solve for the dielectric

function by inserting P = nex into Eq. 2.1 and 2.3; the results yield

2
wp

_ 2.
w? +ilw (2.5)

ED(CL)> =1-

where w, = y/ne?/(m*e,) is the plasma frequency and n is the electron density. For
DC-fields (w = 0) Eq. 2.5 diverges to infinity, which is the condition of a perfect
conductor, i.e. Drude metals behave as perfect semiconductors for frequencies much

larger than the plasma frequency.



In Fig.2.1a the real portion of the Drude-Sommerfeld is plotted as a function of
wavelength for several different carrier concentration and a fixed damping term. For
increasing carrier concentrations, the cross-over frequency (defined as the transition
wavelength when € = 0) shifts to higher energies. Note that the real portion of the
permittivity exhibits a transition from positive to negative values near the plasma
frequency w,. For w < w, a TCO will behave as a metal, since the electrons move
approximately 7w-radians out-of-phase with respect to the driving field. For w >
wp the electrons are over-driven and the TCO starts to behave as a dielectric and
transmits incoming light. The carrier concentration values are typical of standard
TCOs. Fig.2.1b shows the change of the imaginary portion of the permittivity for a
fixed plasma frequency (i.e carrier concentration), but with varying damping rates.
The simplified Drude-Sommerfeld model of permittivity is extremely accurate and
useful at frequencies far from the bandgap; however, for higher energies, the dielectric
response becomes influenced by interband transitions. For low energy photons, the
predominant interactions involve intraband transitions, i.e. electronic interactions
near the Fermi surface. However, as the photon frequency increases, larger intraband
transitions occur in the conduction band and eventually interband transitions begin
to contribute.

To account for the interband transitions, we use the Lorentz model which assumes
that valence band electrons can be treated as localized or bound electrons. The

equation of motion then becomes

meffcf;Tf + mefﬂcfi—f +ax = eE,e ™" (2.6)

Here, m. s is the effective mass of the valence band electron, v is the damping constant

predominately associated with radiate recombination, and « is a phonological spring

constant associated with the restoring force of the atom. Proceeding in an analogous

fashion as in the Drude-Sommerfeld derivation, the Lorentz dielectric constant is
found to be )
@

EL(CU) = 1—|— )

(w7 =

—— (2.7)
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Figure 2.1. Drude-Sommerfeld Model of the Dielectric Permittivity.
(a) Real portion of the permittivity for a fixed damping constant of
I' = 0.00lw, and carrier concentrations (in unites of cm™2) of n =
5 x 10*' (Red), n = 1 x 10?2, (Magenta), and n = 2 x 10?? (Blue).
Larger values of n blue-shifts the cross-over wavelength and makes
the TCO behave as a metal at smaller wavelengths. (b) Imaginary
portion of the permittivity for a fixed plasma frequency hw, = 0.8
eV and varying values of damping rates, I' = 0.001w, (Red), 0.01w,,
(Magenta), and 0.5w, (Blue). Larger damping constants increase the
imaginary portion of the permittivity.

In this case, the plasma frequency is defined in terms of the bound electron density

n, ie. @, = /ne?/(mesre,), and w, = y/a/m. The nomenclature at this point

should be evident: the dielectric function of interband transitions is a Lorentzian
curve centered at the interband transition frequency with a line width dictated by
the damping coefficient. Fig.2.2 shows the real (a) and imaginary (b) portions of
the Lorentz dielectric function for varying central resonance frequencies and damping
coefficients. The full dielectric function of a material is the sum of both interband and
intraband transitions. In general, there are multiple interband transitions occurring

throughout the entire electromagnetic spectrum, including non-electronic transitions
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Figure 2.2. Lorentz Model of the Dielectric Permittivity. (a) Real
and imaginary (b) portion of the permittivity for different pairs of
central resonance frequencies and damping coefficients: hw, = 4.5
eV, hy = 0.01 eV (Red); hw, = 3.5 eV, by = 0.05 ¢V (Blue); and
hw, = 2.5 eV, by = 0.1 eV (Magenta). In general, the larger the
damping term, the broader the resonance.

such as optical phonons. The general expression for the dielectric function is given

by [51] )
W)

e(w) =1- w2 —i—sz €,m* Zfz W _w _@71 ) (28)

where each resonance has an associated oscillator strength f; and damping term -,

and N is the number of molecules per unit volume. When considering a particular
frequency window, it is typically necessary to keep the terms which have central
resonances near or within the region of interest. This means the remaining Lorentz
resonances are far away from resonance and, in total, only contribute a background
term to the dielectric function; this term is referred to as the background permittivity
and is denoted by €,,. Although this derivation is purely classical, it can be shown
that the by considering quantum effects the dielectric function is nearly identical to

Eq. 2.8.
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Unlike metals, TCOs have Lorentz absorption terms which are deep in the ultra-
violet and far from the Drude-Sommerfeld plasma frequency. In this way, the large
imaginary portion contribution from the interband absorption does not contribute
additional losses to the Drude term. Therefore, TCO can behave as near-perfect

Drude metals.

2.2.1 Ellipsometry Parameter Retrieval

To access the dielectric functions experimentally, we perform spectroscopic ellip-
sometry on films of TCOs. Ellipsometry is a linear optical characterization technique
for measuring the dielectric constants of films [52,53]. In ellipsometry, the ratio of
the reflection coefficient of s- and p-polarized light is measured, rs/r,, and both the
amplitude ratio, tan(¥), and phase difference, A, is experimentally collected. These
measured values are directly related to the film thicknesses and their respective dielec-
tric permittivities via Fresnel’s equations [1,3]. Although it is at this point possible to
use the experimental values to back-calculate the permittivities and thickness of each
film using regression analysis or similar numerical techniques, the permittivities can
be more accurately determined if they are constrained using a numerical model. For
TCO films, an ideal model is Drude+Lorentz (Eq.2.8). Throughout this work, we fit
all ellipsometry measurements to a Drude+Lorentz function since the ellipsometer’s
spectral window ranges from 300-2500 nm and only one interband transition occurs
for the TCOs under consideration. Once we have specified the permittivity model,
regression analysis is used to minimize the mean squared error (MSE) between the
experimental data and the permittivity /thickness parameters of the model. An MSE
> 10 is considered a good fit. Generally, better MSE values are obtained when the
film thicknesses are known, which can be accomplished using SEM cross-sectional

analysis of film structures.
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3. EPSILON-NEAR-ZERO PROPERTIES OF TCOS

Somewhat surprisingly, there is not a consistent or clear definition of what constitutes
an epsilon-near-zero material. The ambiguity arises because various authors have fol-
lowed, for the most part, two different conventions: the first asserts that a material is
ENZ provided the real portion of the permittivity is approximately zero, ¢ = 0, while
the second claim the absolute value of both the real and imaginary portions must be
approximately zero, |¢'| + |€”| ~ 0. Although the distinction appear minute, the im-
plications can be drastic. For example, the former definition implies that metals have
an ENZ wavelength at visible or ultraviolet wavelengths, even though the imaginary
portion is extremely large [54]; however, certain processes—as we analyze later in this
chapter—are dependent on the both the real and imaginary portions of permittivity,
and the effect becomes insignificant when losses are large. On the other hand, losses
do not always play a large role and ENZ effects have been observed in systems with
a zero real permittivity, but very large imaginary [55]. Therefore, there is not a clear
definition of ENZ since particular physical phenomena may depend on only the real
permittivity, the imaginary portion, or a combination of both. For instance, in the
context of low-index (LI) materials, the refractive index is dependent on both real
and imaginary portions of the permittivity [1] via n = Re[\/e] = \/]¢' + €| + ¢/ //2
which has a minimal value which is distinct from the ENZ wavelength [56]. Although
both definitions are arguably accurate, I define epsilon-near-zero materials as having
the sum of the absolute real and imaginary permittivity which is approximately zero
(i.e. the latter definition, |¢'| 4+ |€”’| ~ 0). This choice reflects my experimental and
numerical studies of materials with low permittivity values, as the most prominent
effects occur for materials within this definition. Furthermore, I choose to distinguish
between ENZ and low-index materials. My research has focused entirely on non-

magnetic materials where the permeability is unity (1 = 1). Therefore, the complex
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refractive index is directly calculated with n = /€, so any phenomena dependent can
be succinctly interpreted in the context of the permittivity without convolving the
problem.

Near the bulk plasma frequency, w, = wy//€x, of a TCO film, the real portion of
the dielectric permittivity is approximately zero, while the imaginary portion remains
small because of the low damping constant, v < w,. Therefore, TCOs are inherent
ENZ materials at this spectral range. Since these materials have relatively simple
fabrication and synthesis methods, TCOs represent a convenient material platform
for realizing ENZ systems in contrast to complicated artificial structures which re-
quire advanced fabrication [23-25]. Furthermore, their tunable carrier concentrations
allow for ENZ wavelengths which can extend throughout the near- and mid-infrared
wavelengths. Beyond these properties, TCOs have demonstrated remarkable poten-
tial for two emerging applications and fields of study: ENZ modes and Enhanced
Nonlinear Optics. The following two sections discuss these properties in detail and

provide fundamental background relevant to the remaining chapters of this thesis.

3.1 ENZ Modes

Ultrathin films of TCOs support unique types of modes which occur near the
ENZ wavelength in addition to surface plasmon polaritons existing in the metallic
Re{e} < 0 region [57,58]. Modes of a film are defined as solutions to Maxwells
equations in the absence of source excitations. Considering a film of permittivity e,
and thickness d, surrounded by two regions with permittivity €; (superstrate) and e
(substrate), a solution of Maxwells equations exists provided the following dispersion
relation is satisfied [58]

f(B,w) = 1+%—itan(nd) (%—Fﬁ) = 0. (3.1)

€371 €3k €N
Here, v13 = &/€13k2 — B2 and k = /B2 — €1 3k2 are the transverse wave numbers,
w is the angular frequency, k, = w/c is the free-space wave number, and f is the

longitudinal wave number. The dispersion relation is derived by applying Maxwells
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boundary conditions to a three-layer system with the assumption of TM polarization.
Eq. 3.1 is a complex valued transcendental equation and must be solved numerically by
either selecting a complex w and solving for a real-valued § or vice versa, by selecting
a complex 3 and solving for a real-valued w. A complex-frequency, real-wave vector
description represents waves which decay temporally, where a complex-wave vector,
real-frequency describes waves with a spatial decay. To a degree, both representations
are equivalent and capture pertinent physics of the modes; however, certain scenarios
benefit from choosing one representation over the other, such as calculating the local
density of states [59-62]

Both bound and leaky modes exist depending on the sign of the transverse wave
numbers ;3 in the superstrate and substrate. Consider the case of bound modes
where the out-of-plane exponentially decays into the top and bottom semi-infinite
layers; this is done by selecting negative values of the superstrate and substrate’s
transverse wavenumber, i.e. (—7v;,—73). We assume the permittivity of the film is

2
given by Drudes formula e, = 1— w(—" where w), is the plasma frequency and + is the

wti7)
damping constant (see Eq. 2.5). Furthermore, for simplicity, we let the superstrate
and substrate be vacuum (e;3 = 1). To solve Eq. 3.1, we will choose a complex
frequency (& = w +17y), real wavenumber (Img [5] = 0) representation to avoid back-
bending and set w, /v = 100. The sign convention of the complex frequency is selected
such that exp (—iwt) = exp (—iwt + ~t), which imlies negative values of v correspond
to temporal decay instead of gain.

Solving complex transcendental equations can be tricky, since many root-finding
methods fail in the complex plane. Newton’s method is one such method which will
work for complex equations, but this method requires an initial guess which is close
to the true zero [63]. The other disadvantage of this method and others methods
which rely on initial guess parameters is that there may be a large number of zeros.

A more general approach is the argument principle method (APM) which allows for

the determination of every complex root in a particular complex domain [64,65]. This
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approach consists of calculating the contour integrals of an analytic complex function

about some closed region C|

1 [ nf' )
2 Jo© () d_z o 32

for m = 1,2,3...,5,, where S, is the number of zeros in the region C', and z; are
the roots of f(z) inside C. Eq. 3.2 leads to a system of equations that can be used
to construct a polynomial of degree S,, which has the same roots as f(z). The
constructed polynomial can be more easily solved numerically [66]. The convenience
of this method is that, within a chosen region C', the initial number of zeros can be
calculated S, and, depending on if this number is greater (less) than one, the region
can be expanded (divided). Care must be taken when choosing the contour as to avoid
both singularities and branch cuts. We use the APM method to solve Eq. 3.1 in order
to find all modal solutions within a domain which is consistent with Re[w] > 0 and
Img [w] < 0 (no gain).

Fig. 3.1 shows the solutions to the dispersion equation for several film thicknesses.
Here, the inset shows the schematic of the three layered structure, with air on either
side of a variable-thick Drude film. For very thick films (d — oo), we find Eq. 3.1
reduces to the dispersion of a semi-infinite metal-dielectric interface and exhibits a
surface plasmon branch (Fig. 3.1, solid red line). As the films thickness is decreased
past the skin depth, the surface plasmons at each interface begin to interact and form
two branches. These two surface plasmons are referred to as long-range (LR) and
short-range (SR) surface plasmon polaritons. The blue and magenta lines in Fig. 3.1
show the dispersion of both LR (solid) and SR (dashed) branches for film thicknesses
of d = 150 nm and 2 nm. For the d = 2 nm film, the LR mode becomes nearly
flat and asymptotically approaches the dispersion of the plasma frequency within a
range of wavenumbers. Thus, this mode occurs at exactly the frequency where its
permittivity is approximately zero and is referred to as the Epsilon-Near-Zero mode.
This mode lies on the right side of the light line, so it will not couple to free space

and requires excitation via Kretchmann configuration, grating coupling, or scattering
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element; furthermore, this mode will only couple to TM polarized light. The electric
field within the film is highly confined due to the discontinuity of the displacement
field and enhances the transverse electric field component inversely proportional to
the film thickness i.e. E, ~ 1/d [58]. Although we have considered a simplified
system, the ENZ mode exists for a large range of both superstrates and substrates,

including both dielectrics and metals. We can solve for the leaky modes of the system
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Figure 3.1. Dispersion Relation of a Thin Drude Film. Mode solutions
of Eq. 3.1 are plotted for film thicknesses of d = o0, 150, and 2 nm to
demonstrate the splitting of the two plasma branches. For very thin
films, the long range plasmon exhibits a very flat dispersion at the
plasma frequency, and the mode is referred as the ENZ mode. Inset
shows a schematic of the three-layered system.
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by choosing positive signs of the vacuum’s transverse wavenumber i.e. (+71,+73).
Above the plasma frequency, this branch also exhibits a flat dispersion near the plasma
frequency for extremely thin films. Here, the branch lies to the left of the light line
and can couple directly to free space. In literature, this mode is denoted as either the
Berreman or the Brewster mode. The distinction appears to be nomenclature only,
based on the difference in which materials were being studiedBerreman modes were
associated with polaritonic material (e.g. SiC) and Brewster modes with metals and
doped semiconductors (e.g. GaAs) [62].

An extremely pertinent feature of these modes is the strong polarization- and
directional-dependent absorption at ENZ frequencies. Remarkably, near-perfect ab-
sorption is achievable in deeply subwavelength films of ITO coated on metallic sub-
strates [67]. This perfect absorption coincides with the transition from bound to
leaky modes and correspond to a mode profile of a totally absorbed incoming plane
wave. These results are general and perfect absorption is achievable in many materi-
als which exhibit an ENZ point; several examples of materials with perfect absorption
features are shown in Fig. 3.2. Several works have utilized this unique property of
ENZ films for the design of selective thermal and mid-infrared emitters consisting of
either ultrathin films of doped semiconductors or phononic materials [68,69]. More
recently, there has been a growing interest to develop dynamic perfect absorbing
films by taking advantage of phase-change materials such as vanadium dioxide or
the ultrafast nonlinearities of the ENZ metal oxide films themselves [70]. Ultrafast
polarizers have been realized by pumping a film of indium-doped cadmium oxide
and inducing a red-shift in the high-quality factor Berreman perfect absorption dip.
The s-to-p polarization extinction ratio was demonstrated to be 91 with an overall
switching speed of 800 fs [71]. Most recently, perfect light absorption was demon-
strated in an ultrathin ITO film which could be tuned via doping concentration and
electrical bias with a shift of 20% the perfect absorption wavelength [72]. ENZ and
Berreman modes have also been studied in the context of coupled light-matter interac-

tions. Initial investigations focused on the coupling between planar metamaterials and
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Figure 3.2. Perfect Absoprtion in ENZ Films. Absorption spectrum
of transverse magnetic light incident at the perfect absoprtion angle
of various TCO films. The TCO films have ENZ points which vary
from 1100 to 2300 nm.

doped semiconductor nanolayers at near- and mid-infrared wavelengths [58, 73, 74].
Large Rabi splitting was observed in these systems because of the strong coupling
between the metamaterial resonators and the ENZ mode of the nanolayers. Strong
coupling between a single surface phonon polariton at a SiC/AIN interface with an
ENZ phonon polariton in the ultrathin AIN film was very recently demonstrated and
shown to exhibit hybrid features of the constituent modes, namely long propagation
and ultrahigh field confinement [75]. The ability to enhance the light-matter inter-

actions in this strong-coupling regime has also engendered promising applications in
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nonlinear optics. Experimental demonstrations of optically induced refractive index
changes +2.5 was recently accomplished using optical dipole antennas deposited on
an ultrathin (23 nm) film of I'TO which supported a near-infrared ENZ region [76,77].
The extremely large nonlinearity is attributed to the coupling between the antenna
resonance and the ENZ mode of the film. The following section discusses the origin

of these nonlinearities in further detail.

3.2 Enhancing Nonlinear Optics with ENZ Materials

Solutions of Maxwell’s equations in a material require a specific relation between
the displacement and electric field D(E) or, equivalently, the polarization and the
electric field P(E) [51]. These are the constitutive relations and capture the response
of a material’s atoms and molecules to an applied electric field. In reality, the response
is never exactly proportional to the input, or in other words, that is the response
is nonlinear. The subject of nonlinear optics is concerned with understanding the
nonlinear response of an optical material and utilizing the emergent phenomena to
control light in novel ways [78-80].

The standard tool-kit of nonlinear optics is perturbation theory. Here, the re-
sponse of the material is assumed to be equivalent to a series expansion in terms of
an applied electrif field. In the frequency-domain, the polarization density compo-

nents P; is expanded about the electric field components Ej =0

P = o (\ By + XCuBy Bt X BB+ ) (3.3)

J 4,5,k
In Eq. 3.3, the response of the atoms and molecules are hidden inside the nonlinear
coefficients (™, which are assumed to follow standard series convergence properties,
i.e. ™Y > y(_ Physically, this condition is satisfied provided the applied electric
fields are weak compared to those within the material, which is generally true for the
atomic response of electrons [79]. However, there are many situations in which the
series expansion of Eq. 3.3 fails, such as resonant interactions or electron ionization.,

and therefore, caution should be applied when analyzing novel materials and systems.
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Epsilon-near-zero materials are materials which have not only shown promising po-
tential for enhancing nonlinear interactions, but also brought to question the validity
of the perturbative expansion (Eq. 3.3) [81,82]. Consider, the third-order nonlinear
Kerr effect which occurs when the intensity of a single beam is strong enough to
modify the refractive index of a material. For the case of linear polarized light, the
nonlinear polarization is subject to a third-order perturbation term,

P(w) = 2ex V| Eiw) PEi(w) (3.4

which implies an intensity-dependent refractive index

3x®
dngRe (n,) ce,

n(I) :no+< )I:no+n21 (3.5)

where n, = /€ is the complex refractive index of the material in terms of the permit-
tivity €, cis the speed of light, I is the intensity of the electric field, ¢, is the permittiv-

ity of free space, y®

is the third-order material response, and ns is the Kerr refractive
index. Eq. 3.5 is derived using the power series approximation v/1+x ~ 1 + x/2,
where z oc ¥ /(1 4 x™); however, for an epsilon-near-zero material, (1 + ) = 0
and this series expansion is no longer valid. Therefore, we conclude that Eq.3.5 is
unusable for the case of an ideal epsilon-near-zero material. However, for our consid-
erations of TCOs, the imaginary portion of permittivity remains large enough at the
epsilon-near-zero point that we will consider Eq. 3.5 valid. In fact, even for material
platforms which have shown to have extremely small losses (SiC), the ratio of the
linear and third order responses remains considerably small. It is an open question
as to whether or not there exists a system with an absolute permittivity which would
cause significant divergence in the nonlinear terms. It may even be possible that
such a system does not exist in Nature, since simultaneous zero real and imaginary
permittivity may not be consistent with Kramers Kronig relations [79,83].

Under the assumption that Eq.3.5 is valid, the experimental value of typical third-

order response of TCOs has been found to be y® ~ 10720 m? V2, equivalent to a

Kerr refractive index of ny ~ 107 ¢cm? W~!. These values are not exceptional and
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are similar to values reported for silicon. Indeed, an enhancement of the Kerr in-
dex has been observed to follow the inverse relationship with linear refractive index
(Eq.3.5), but these values are relatively modest, providing a factor of 4-times enhance-
ment (following directly from calculating 1/|n,(Agnz)|). Although this would seem
to imply that TCOs are somewhat mediocre nonlinear materials, the total refrac-
tive index modulation is found to be consistently large and approaching unity-order
modulation, dn ~ n,. Why the large modulation? Simply put, TCOs are capable of
surviving under large field intensities (i.e high damage thresholds) [77,81,82]. There-
fore, the best strategy for utilizing these materials for nonlinear optics is to couple
light efficiently inside. Fortunately, TCOs at their ENZ wavelength have the natural

property of electric field enhancement. This is discussed in the following section.

3.2.1 Field Intensity Enhancement

Maxwell’s boundary conditions imply an inherent field-enhancement property in
ENZ materials. Continuity of the normal displacement field n - (D; — Dg) = 0 across

the interface of two materials with permittivity ey and €, respectively, gives

OB =B (3.6)

€1
Thus, if ¢, — 0, then E, — oo. This effect is observable by calculating the field

intensity enhancement, which we define consistent with literature [84] as,
FIE = |E.,*/|Eo|? (3.7)

where E,; is the z-component of the electric field amplitude on the z = 0 plane
(inside the TCO), and Ej is the total electric field incident on the z = 0~ plane
(outside the TCO). To illustrate the field enhancement, we calculate the fields of
a unity-amplitude p-polarized electric field incident on a thin film (23 nm) TCO
surrounded by air using the transfer matrix method. The incident field propagates
from z = —oo to the air-TCO interface situated at the z = 0 plane. The fields inside

(z = 0% plane) and outside (z = 0~ plane) the interface are evaluated at a value
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of z = +£0.5 nm. Fig. 3.3 shows the F'/F amplitude for a TCO with a damping
constant of v = 0.01 (a), v = 0.1 (b), and v = 0.13 (c) with all plasma frequencies set
such that Agnz = 1440 nm; the final values (Fig. 3.3c) are taken from experimental

ellipsometry of a 23-nm Al:ZnO film. All films exhibit a strong enhancement of the
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Figure 3.3. Field Intensity Enhancement. Amplitdue color-maps of
the ratio between the normal electric field inside a TCO and the total
incident field for different wavelengths and incident angles. The TCO
is a 23-nm film with ENZ wavelength of 1440 nm, and a damping
constant of v = 0.01 (a), v = 0.1 (b), and v = 0.1259 (c). The ENZ
wavelength is indicated by the dotted white line. The magnitude of
the enhancement and the line width are observed to be invsersely and
directly, respectively, proportional to the damping constant

normal field component at the ENZ wavelength of the film and for a particular angle
of incidence, but the magnitude and line width of the F'IFE is largest and narrowest
for low-damping films. This follows directly from Eq. 3.6 since the normal electric
field is inversely proportional to the complex value of €; and not soley the real portion.

The electric field enhancement of the normal electric field correlates well with
observations of enhanced nonlinearities in simple TCO films, including the angular
dependence [77]. Although TCOs are isotropic materials and do not exhibit a x>
response, second harmonic generation is possible at an interface [79] due to the an-
harmonic normal field components. Therefore, it may be possible to observe a strong

second harmonic (SHG) enhancement of TCO films near their ENZ wavelength and
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particular incident angle. Some inital studies and theoretical results have pointed to
this effect, although the exact mechanism for the enhancement is still under ques-

tion [85-87].

3.2.2 Static and Slow Light

Two additional effects of ENZ materials could be relevant for enhancing nonlin-
ear optical interactions. The first is wavelength extension which occurs due to the
reduced permittivity whereby Agnz = A,/+/€ such that when the permittivity e is
small, the wavelength increases drastically. The consequence of this is a negligible
phase advance kL = 2nL/Agnz — 0 of the wave for films with thickness (L) much
larger than the free-space wavelength. This has been used to achieve phase-matching
free nonlinear optics [88-90], super-coupling [15, 16, 22], and antenna resonance pin-
ning [91-94]. Fig. 3.4a visual demonstrates this effect for several, purely-real per-
mittivity values. All fields have been normalized to unity for illustrative purposes;
otherwise, the transmitted field inside the ENZ media would be significantly smaller
due to the large impedance mismatch. Fig. 3.4a and b show the possibility of in-
creasing a nonlinear interaction which is dependent on phase-matching. The uniform
phase accumulation across the ENZ media increases the coherence of the nonlinear
emitter. This effect has particular relevance to four-wave mixing experiments since
the phase conjugate beam automatically satisfies the momentum relation since the
pump wavevectors are zero in a ENZ material, i.e. 2k,+k,, = k,, = k., where k, =0
is the pump wavevector, k,, is the probe wavevector, and k. is the phase-conjugate
wavevector [89,95].

The second effect is the reduction of group velocity i.e. slow light. As the per-
mittivity approaches zero from the positive side, transverse electromagnetic modes
experience a cutoff at the crossover wavelength as k& — 0 while from the negative side
k — oo. At this wavelength, the phase velocity v, = ¢/1/e becomes large, while the
group velocity v, = Ow/Jk becomes small [96-99]. As a result, energy propagating in
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Figure 3.4. ENZ for Boosting Phase-Dependent Nonlinear Interac-
tions. a) Normalized electric field amplitude of a normal-incident wave
on an ENZ material with a permittivity of e = 0.1,0.01, and, 0.001
demonstrating the wavelength scaling 1/4/e. Schematic of phase-
matching in a non-epsilon-near-zero (ENZ) media (top,b) and an ENZ
media (bottom,c). Phase variation is constant across the ENZ media
and contributes to both forward and backward signal generation.

the structure experiences a much stronger light-matter interactions due to the slow
group velocity [100,101]. Fig. 3.5 contains calculated values of the group velocity of
a Drude ENZ material (Agyz = 1420 nm) with various damping coefficients. For the
theoretical, loss-less ENZ material, the group velocity is exactly zero for wavelengths
greater than the ENZ wavelength. This is consistent with the picture that light inside
of an ideal ENZ material will have zero phase propagation and is essentially a static
field. For realistic values of v, the group velocity remains small but finite.

It should be noted that ENZ in homogeneous materials is not the only meth-
ods to achieve such effects [100, 101]. Additional approaches such as resonant cavi-
ties [102-104], photonic crystals [5,105,106], and waveguide modes near cutoff [23,107]
can achieve similar enhancements to the light-matter-interaction by slowing the group

velocity of light and/or confining light to small volumes. Moreover, it has recently
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Figure 3.5. Group Velocity in an ENZ Material of v = 0,0.3,0.8,
and 0.13 with Agxz = 1420 nm. For all but the ideal ENZ material
(v = 0), the group velocity is small but finite for wavelengths greater
than the ENZ wavelength.

been shown that random photonic structures can also produce strong light-matter-
interactions [108,109]. Although light does not physically slow down inside the ran-
dom material, the multiple scattering events can be viewed as an effective reduc-
tion in the group velocity of the light passing through the material, thereby leading
to stronger light-matter-interactions. From this perspective, ENZ materials can be
viewed as a subset of a more general class of enhancement effects which achieve their
impact through slow-light, and the optimal approach therefore depends upon the

application and desired outcomes.
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4. ULTRAFAST AND NONLINEAR OPTICS WITH
TRANSPARENT CONDUCTING OXIDES

A portion of this chapter has been published in the journal Optica, Optica 2.7 (2015):
616-622., DOI: 10.1364/OPTICA.2.000616; the journal Nature Communications, Na-
ture Communications 8 (2017): 15829., DOI: 10.1038/ncomms15829; and the journal
Nano Letters, Nano Letters 18.2 (2018): 740-746., DOI: 10.1021/acs.nanolett.7b03919.

u

The ideal nanophotonic switch has a large ratio of modulation amplitude to en-
ergy consumption (efficiency), which is sustainable at high frequencies (speed). In
all-optical modulation platforms, these two pertinent features are difficult to achieve
simultaneously because relaxation dynamics are slow in materials with large modula-
tion, while materials with fast relaxation dynamics typically have inefficient modula-
tion amplitudes. In this chapter, the performance of aluminum-doped zinc oxide near
its epsilon-near-zero wavelength is evaluated for ultrafast modulation of nanopho-
tonic and plasmonic applications. Due to the particular nature of this material’s elec-
tronic bandstructure, we observe ultrafast (sub-picosecond) recombination for both
interband and intraband pump wavelengths. Furthermore, we find the modulation
amplitude of aluminum-doped zinc oxide is enhanced at the epsilon-near-zero wave-
length. This enhancement occurs from an inherent inverse dependence of nonlinear
interactions on the base refractive index and the static electric field properties for low
refractive indices. Together, these two features make aluminum-doped zinc oxide and—

in general-epsilon-near-zero transparent conducting oxides strong potential materials
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for efficient and ultrafast nanophotonic switches and, additionally, the exploration of

novel nonlinear optics.

4.1 Ultrafast Optical Dynamics in Semiconductors and Metals

Carrier dynamics in semiconductors and metals are goverened by a plethora of
processes including interband transitions, electron-electron and electron-phonon scat-
tering, and nonradiative recombination [53,110]. These processes occur together, but
the individual contribution to the overall transient optical modulation is dependent
on the electronic and phononic bandstructure and the particular type of optical exci-
tation and measurement energy. This dependence on optical " pump” excitation and
"probe” measurement energies allows ultrafast optical characterization experiments
to isolate particular processes and study their separate effects. In general, the pump
energies are categorized as either interband or intraband. Interband refers to pump
energies large enough to drive electrons across distinct bands, while intraband pumps
only excite electrons within an individual band. The probe energy is selected in order
to monitor particular electronic transitions.

For intrinsic, crystalline semiconductors (Si, GaAs, etc), the electronic structure
is typically treated with either a direct or indirect parabolic band approximation, and
the Fermi level is assumed to reside within the bandgap of the material so there is
only a sufficient density of electrons inside the valence band. In this case, the electron
transitions will only occur via interband (direct or indirect) transitions, meaning the
pump energy is chosen to be greater than the semiconductor bandgap. Following
optical pump excitation, the probe is selected to either probe electron population
changes in the conduction band (low, intraband energies) or the valence band (large,
interband energies). In either case, the recombination or relaxation of the electrons
back to equilibrium will occur on the order of hundreds of picoseconds to several
nanoseconds [111,112], which limits the all-optical switching frequencies to well-below

conventional electronic switches.
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An approach for increasing the recombination rates in semiconductors is the in-
troduction of defect/trap/surface states [113-115]. For highly confined devices such
as quantum wells and dots, interband and intersubband recombination can also result
in extremely fast recombination times on the order of hundreds of femtoseconds to
a few picoseconds [116-118]. An example of such methodologies is low-temperature
grown GaAs, where various defect states are introduced into the crystalline struc-
ture. The presence of defects drastically decreases the recombination times due to
the introduction of midgap states according to 7 = (Nyovgy,) ™!, where Ny is the trap
density, o is the capture cross-section, and vy, is the thermal velocity of carriers [112].
Recombination times on the order of 2 picoseconds have routinely been achieved with
such materials [114,115,119]. Additional methods of introducing defects are possible,
such as deep-level defects (7 ~ 50 — 100 ps) [120], and ion bombardment (7 ~ 0.5 —4
ps) [121,122]; however, these methods result in deterioration of optical (i.e. higher
loss) and/or electronic (e.g. carrier mobility) properties, which is typically a detri-
ment for nanophotonic applications.

Another example of reducing the recombination time is Auger processes [110].
which occurs in semiconductors under extreme free-carrier concentrations (> 107
cm™3). Recombination times as small as 100 fs have been achieved in silicon for a
carrier density of 1072! em™3, although the recombination rate was dependent on
pump intensity and the nonradiative nature of the effects can lead to a significant
thermal buildup, potentially limiting the speed of a device [123].

Ultrafast processes in metals are distinct from semiconductors since the carrier
concentrations are much larger and changes in their optical properties arises from
transitions near the Fermi surface [53,124,125]. After the excitation of an ultrafast
optical pulse, metal electrons decay via either electron-electron or electron-phonon

collisions. Electron-electron scattering is responsible for the formation of an incoher-
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ent population of highly nonthermal electrons and holes. The lifetime of these hot

electrons is on the order of 1-100 fs, as can be calculated with Fermi liquid theory [126]

128 Er \’
To—e = 4.1
72y/3w, (E - Ef> (4.1

where Fy is the Fermi energy and w), is the plasma frequency. Because these time

scales are less than or equal to the time resolution of most femtosecond laser sources,
we will assume that their effect is unresolvable in experiments. Therefore, observed
recombination rate is primarily due to the electron-phonon scattering. Given these
assumptions, the electron-phonon thermalization can be accurately captured using a
two-temperature model [127,128]. This model (see Eq. 4.5 below) treats the elec-
trons and the lattice as two thermal bodies which are allowed to exchange heat via
a coupling factor, g, referred to as the electron-phonon coupling constant. Using this
model, the electron-phonon coupling constant can be determined, which for small
change in temperature, can be used to directly calculate the electron-phonon recom-
bination rates. For noble metals such as gold, silver, and copper, these recombination
rates are typically very fast (~ 1 — 10 ps), but the total modulation amplitude is very
small (~ 1072 — 1073) [125,129,130]

4.2 Refractive Index Modulation at Epsilon-Near-Zero

Modulation amplitude is equally important as ultrafast transient times for dy-
namic materials. However, a material’s inherent refractive index change is often very
weak and direct optical modulation is inefficient. To circumnavigate this problem, the
dynamic material is often incorporated within a resonant system, such as an antenna
or cavity, where the change in the system’s transmission, reflection, or absorption is
extremely sensitive to the dynamic material’s optical properties. In this way, even a
small change in the refractive index of the material will result in a large modulation of
the total system’s electromagnetic response. Here, we discuss the ability to enhance
the modulation performance of aluminum-doped zinc oxide (Al:ZnO) films by oper-

ating near the film’s ENZ wavelength where small changes to the Al:ZnQO’s refractive
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index results in large modulation amplitudes. As shown in Fig. 4.1, operating in the
ENZ regime (i.e. n <1) produces larger absolute changes in the reflection for a fixed
change in the refractive index (én = —0.1 in a purely real ENZ media). This can be
understood by considering the change in magnitude with respect to the initial index,
e.g. a change of -0.1 for an initial index of 0.2 is 50%, while for an initial index of 2,
the change is 2%. Consequently, this makes the ENZ regime an attractive region for

maximizing the performance of modulators.

4.3 Pump Probe Experiments

To measure the ultrafast dynamics of Al:Zn0O, we designed and constructed a fem-
tosecond pump-probe spectroscopy [53] setup to provide both interband and intra-
band pumps and a variable near-infrared probe to measure the femtosecond changes
in reflection AR(AT, Ay )/ R, and transmission AT'(A7, A,,.) /T, (See Fig. 4.2a). Fem-
tosecond pump and probe beams were produced using a chirped pulse amplifier seeded
with a Ti:saphhire laser (Amplitude Technologies) which delivered up to 10 mJ en-
ergy pulses at a 787 nm central wavelength and 100 fs pulse duration. A fraction
of the laser power was routed to a commercial optical parametric amplifier (OPA)
(Topas, Light Conversion Ltd), which produced short (<120 fs) probe pulses tunable
between 1100 and 2600 nm. The s-polarized probe beam was spatially filtered, re-
duced in energy with a neutral density filter, and focused by a 250 mm focal length
lens onto the sample surface at a small angle of incidence (< 10°). The probe beam
waist on the sample was measured using a knife-edge technique and was found to
be 65 um. The probe intensity in the focus was found to be 200 MW /cm?, deter-
mined by measuring the pulse energy and duration at the sample plane. The probe
pulse delay from the pump pulses was set by a computer-controlled linear transla-
tion stage (M-VP-25XA, Newport), equipped with a gold-coated hollow retroreflector
(PLX Inc.). Interband pulses of wavelength (262 nm) were generated by pumping a
third-harmonic generation set-up (Femtokit, Eskma Optics) with &1 mJ of the 787
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Figure 4.1. Modulation of an Epsilon-Near-Zero Material. Absolute
change in the reflection of a purley real (Img [n] = 0) material versus
base refractive index provided an index change of on = —0.1. The
magnitude of the reflection coefficients are calculated using Fresnel’s
equations at a single interface between air (ng = 1) and the mate-
rial assuming normal incidence. Note that operating in the epsilon-
near-zero regime (i.e. n < 1) provides larger absolute changes in the
reflection for the same change in refractive index.

nm beam. The 200 uJ, ~65 fs, 262 nm ultraviolet pump was spectrally filtered from
the 787 nm beam using four dichroic mirrors (HR at 266 nm, HT at 400 and 800 nm,
Layertec GmbH). The s-polarized ultraviolet pulse was focused at normal incidence
with a 250 mm focal length CaFy lens. The beam size measured with knife-edge

was 400 pm. The ultraviolet energy was controlled by rotating the half-waveplate
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at the input of the third-harmonic generation setup. The near-infrared pump was
obtained by splitting a portion of the laser beam and delaying it from the ultraviolet
pulse using a computer-controlled linear translation stage (M-VP-25XA, Newport),
equipped with a silver-coated hollow retroreflector (PLX Inc.). The s-polarized near-
infrared pump was focused at normal incidence onto the sample plane. A dichroic
mirror (HR at 266 nm, HT at 800 nm, Layertec GmbH) was employed for combining
the two pump pulses. The beam waist of the near-infrared pump was measured to
be 210 pum using the knife-edge technique. The pulse energy was controlled with a
waveplate in front of a thin-film polarizer (Altechna). The ultraviolet, near-infrared,
and probe energies were measured with a thermopile detector (XPL12, Gentec-EO).
The reflected and transmitted signals were recorded with amplified Germanium pho-
todetectors (PDA50B-EC, Thorlabs).

Our sample consisted of a 900 nm of Al:ZnO deposited onto a 1-mm-thick silica
substrate. The films were deposited using pulsed laser deposition (PVD Products
Inc.) operating at a wavelength of 248 nm for source material ablation. A 2wt%
doped Al:ZnO target was purchased from the Kurt J. Lesker Corp. with a purity
of 99.99% or higher. The energy density of the 248 nm ablation laser at the target
surface was maintained at 1.5 J cm™2 and the deposition temperature was 75 °C. We
maintained the oxygen pressure under 0.01 mTorr to achieve additional free carrier
concentrations due to the oxygen defects. The prepared thin films were character-
ized by spectroscopic ellipsometry (J.A. Woollam Co. Inc.) in the spectral range of
200 to 2500 nm. The dielectric permittivity of the Al:ZnO was retrieved by fitting
a Drude+Lorentz oscillator model to the ellipsometry data. The optical properties
of at 262 nm were estimated from a spline extrapolation of the measured properties
combined with bounds provided by data from similar films [131]. To probe the electri-
cal properties of thin films, such as mobility and carrier concentration, we carried out
Hall measurements (MMR Technologies) at room temperature. From ellipsometry

data, we found our film to have an ENZ wavelength of Agnz = 1300 nm. To probe
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the ultrafast response of the Al:ZnO film at this wavelength, we tuned our OPA to

generate A\, ~ 1300 nm laser pulses.

4.3.1 Interband Dynamics

To elucidate the interband (conduction to valence) recombination in Al:ZnO, we
blocked the near-infrared 787 nm pump and set the ultraviolet \,, = 262 nm pump
to a fluence of Flpravioet =~ 5 mJ cm™2 at the Al:ZnO surface. We then measure
the transient change of transmission AT(A7)/T, and reflection AR(AT)/R, as a
function of the pump-probe delay time A7. The normalized and percent change in
the transmission are shown in Fig. 4.2b. Using a single exponential fit, we find the
recombination time is approximately 600 fs and the modulation amplitude is nearly
45%. The inset of Fig. 4.2b is a schematic illustration of the interband dynamics:
ultraviolet light of energy Eitravioter generates electrons and holes (9, d,, respectively)
above the Fermi level (Ey) in addition to the initial conduction electron population
()N;), which then recombine to either valence states or trap states (IV;).

We model the interband dynamics and relaxation by considering the total change
in transmission as a linearized function of the change in real (A¢’) and imaginary

(A€”) portions of the film’s permittivity [53,130,132],

AT _ 8IH(T)A6/ N aln(T)AE,, (4.2)

T, O¢' Oe"

. In Eq. 4.2, we define the derivatives to be taken at the unperturbed permittivity of
the film (¢; = €, 4 i€/') and assume a small, linear change in the dielectric permittivity
€ = ¢ + A¢, which valid within our experimental conditions [132]. Although we
have only considered changes in transmission, Eq. 4.2 is equally valid for changes in
reflection. The linear change in the real and imaginary permittivity is related to the

photoexcited electron 9,, and hole ¢, density by,

e (N;+6,) N e (P+96,)
MEMe€o W2 + 1YW MEMHEQ W + iYpw

Ae(6,,6,) = (4.3)
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Figure 4.2. Two-color Pump Probe Experiment. (a) Schematic of
the two-color pumpprobe experimental set-up where the two pump
wavelengths, 787 nm (NIR) and 262 nm (ultraviolet), are illustrated
along with the probe wavelength of 1,300 nm. The delay between the
two pump pulses is denoted At while the delay between the probe
and ultraviolet signal is denoted A7. For intraband excitation using
only the NIR pump, At is defined as the delay between the probe
and NIR pump pulse arrival time. The black arcs indicate the arrival
time of the pulses. (b) Change in transmission at 1300 nm versus the
pumpprobe delay A7 under 262 nm excitation fitted with simulation.
The inset illustrates the process diagram for interband excitation: ul-
traviolet light (Eyuraviotet) generates electron-hole pairs (8, ,) above
the Fermi level (E) in addition to the intinsic concentration (XV;),
which recombine through mid-gap trap states (IV¢, 7). (¢) Change in
transmission at 1300 nm versus the pumpprobe delay A7 under 787
nm excitation fitted with simulation. The inset illustrates the pro-
cess diagram for intraband excitation: NIR light (Ensg) raises the
temperature of conduction band electrons (Tepor — Thot), Which relax
through scattering processes (7._,), heating the lattice.
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where N, and P, are the electron and hole initial densities, respectively, m;(p) is
the effective mass of the electrons(holes) obtained with Hall measurements, vy =
e(m;(p)moun(p))_l is the loss factor of electrons(holes) with p,(, being the mobilities,
e is the electron charge, m, the electron mass, and ¢, the permittivity of free space.
Due to the high intrinsic carrier concentration of the Al:ZnO, we take P, = 0. The
effective mass and mobility of holes were taken from literature as mj; = 0.59 [133] and
tp =30 cm? V=1 g7t [134].

To find the photoinduced electron and hole population dynamics, we use a stan-
dard Transfer Matrix Method (TMM) to calculate the local absorption «a(z) of the
pump as a function of sample thickness z [135,136]. This value is then used to calcu-
late the initial spatial distribution of electrons and holes, which can then be multiplied

by temporal convolution of the temporal response of the pump pulse with the single

exponential relaxation function of the material [53],

5up(:1) = (1= R)Fya(2) {1 —erf (2% + i)] etim (4.4)

w
The terms in Eq. 4.4 are the reflectivity of the unpumped Al:ZnO R, the laser fluence
F,, the recombination time extracted from our exponential fit 7y, and the cross-
correlation width of the pump and probe pulses w = Tpy gar (210 2)71/2; here, erf()
is the error function. Our model is exact in the sense that there are no fitting param-
eters. We then numerically calculate the linear change in transmission by inserting
Eqgs. 4.3-4.4 into Eq. 4.2 and calculating the derivatives numerically. The red line in
Fig. 4.2b shows the results of our model, which shows excellent agreement with the

experimental values (blue circles).

4.3.2 Intraband Dynamics

Having measured the interband relaxation dynamics of our Al:ZnO film and de-
veloped an accurate numerical model of the photoexcited carriers, we now focus on
the intraband dynamics. Proceeding in a similar fashion as interband pumping, we

block the ultraviolet pump and set the near-infrared A, = 787 nm pump to a fluence
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of Fyip ~ 16 mJ cm™?2 at the Al:ZnO surface. The differential reflection and trans-
mission are then measured as a function of the near-infrared pump and probe delay
AT (see Fig. 4.2a). We find a relaxation time of approximately 100 fs from single
exponential decay fits of the transient signal, which is significantly faster compared
with interband pumping. Again, the inset of Fig. 4.2c shows a pictorial depiction of
the intraband dynamics: (1) near-infrared light of energy F g raises the conduction
electron temperature (T — T"!) via free-electron absorption; for experimental
time scales longer than the electron-electron scattering time (7., ~ 1 — 10 fs), the
thermalized excited electron population is accurately described using a Fermi-Dirac
distribution; (2) the electrons then relax through electron-phonon scattering processes
(7.—p) and heat the lattice to temperature 7;.
We model the relaxation of the thermal conduction electrons with a two-temperature

model (TTM), whereby the change in the electron temperature and lattice temper-

ature are captured as a function of time for the material. Generally, the response is

described by

aT, 9 T,

Oe(Te)W - &(H az )_G(Te_ﬂ)+H (45)
oT;

Oe(ma—tl — G(T, - Ty) (4.6)

where C, is the volumetric heat capacity of electrons, Cj is the volumetric heat ca-
pacity of the lattice (C; = 2.8 x 106 J m™ K~!) [137], & is the thermal conductivity
(k=100 W m~! K™1) [137], and G is the electron-phonon couling constant; H is the

source term, given by

| — R |55 - 277 (£7)]

H(z,t) = 0.94J]
W8 1 e[ ]

(4.7)

wher R is the reflectivity of the sample, T is the transmissivity of the sample, .J is
the excitation intensity, J is the skin depth of the pump, §, is the ballistic range of
electrons, w is the pump-probe cross-correlation width, and d is the sample thickness

[138]. This coupled set of equations is solved numerically using the pdepe() built-in
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function of MATLAB assuming a ballistic range of hot electrons of 1 nm. For metals
such as gold, this value is &~ 100 nm, however, our films have a large density of defects
and grain boundaries so we expect a significantly smaller value for Al:ZnO.

The electron heat capacity relates the resulting linear change of the electron tem-
perature with the increase in electron energy density (AU,), i.e. AT, = C.(T.) AU,
and was calculated as [139]

1 T

Ce(T) = §7T2Nik‘bT—F (48)

where N; is the intrinsic electron density (N = 1 x 102! em™3), k; is Boltzmann’s
constant, 7" is the equilibrium temperature, and T is the Fermi temperature (1.16 x
10* K) [140]. We calculate a value of C, = 3500 J m~3 K~!. This value is two orders of
magnitude less than elemental metals such as Al, Cu, Ag, Au, Ni, Pt, W, and Ti [141].
The small heat capacity of Al:ZnO compared with standard metals is the result of
the low carrier concentration of free electrons and small Fermi temperature. The low
heat capacity is one reason why we observe such large changes in the probe signal
compared with metals and metal-like materials [77,142]; the electron temperature
change per change in electron energy density (due to pump absorption) is large for
small heat capacities, which results in a large modification of the optical constant.
The resulting change in optical properties was modeled using an effective thermal
dependent complex index, ny,, such that Ana.z,o = (AT, + AT)) ny,. The TMM
was used to determine the change in optical properties of the graded index materials
(as described above). The reflection and transmission of the sample were normalized
and the rate was fitted to extract the electron-phonon coupling constant and found
to be G ~ 14 x 101> W m=3 K~1. After the normalization procedure, only the sign of
the complex effective thermal index is relevant, and it was found that the extinction
coefficient decreased while the index increased (i.e. ny, > 0 and ny, < 0) matching
the effect observed in experiments. The fit of the transient intraband signal is shown

in Fig. 4.2c as the solid red line.
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4.3.3 Controlling Hybrid Nonlinearities

The observed co-existence of both intraband and interband nonlinearities suggests
the possibility of achieving new dynamic functionalities through their combined effect
and if these two excitation regimes are independent, the corresponding effects can
be algebraically combined. We therefore performed a thorough investigation of the
AZO optical response under combined ultraviolet and NIR excitation as a function
of the relative delay At between the two pumps and A7 between the pumps and the
probe (the ultraviolet pump signal is used as the time reference). From the recorded
probe reflection and transmission as a function of the two delays, R,(At,At) and
T,(At, AT), respectively, we retrieve the real and imaginary refractive index of the
film using a transfer matrix approach, as described in [143]. The extracted values are
shown in Fig. 4.3, where the time-dependent relative change in the real (Fig. 4.3a-¢)
and imaginary (Fig. 4.3f-j) refractive index of the AZO film at 1300 nm is shown,
for five values of the NIRultraviolet pump pulse delay, between At = —1.7 ps and
At = 1.8 ps. The results in Fig. 4.3 are achieved with optical pump fluences of
Fuiraviolet = 5 mJ ecm™2 and Fyrg = 14 mJ cm ™2,

Our measurements demonstrate that the temporal dynamics of AZO film proper-
ties, such as reflection and transmission, or equivalently the real and imaginary part
of the refractive index, can be optically controlled via a two-color excitation scheme.
This is enabled by the independence of the two nonlinear processes responsible for
the modulation of the material properties. This independence is demonstrated by
the good match of the red and the black dashed curves in Fig. 4.3. The former are
obtained from the measurements with simultaneous ultraviolet and NIR excitation
while the latter are generated by the algebraic addition of the time-dependent refrac-
tive index changes induced by the ultraviolet and NIR pumps independently. It is
worth mentioning that all the experiments are performed in a condition of balanced
excitation, meaning that the adopted fluences for ultraviolet and NIR pumping were

set in such a way to produce similar alterations (in amplitude but not in sign) on



Real refractive index Imaginary refractive index
— e T T T T T ey T . 20 T T T T T T
¥ 30| g : ’ S i ; 3
= 20 ; - B 5 :
S o [At=1780fs : L. At=1,7801s /! ;
— : t_ H
S 0f 4
;é\ 30 Ibl T T T ! T 48—..:.
< 20F Ar-38510s | = 10 =385t
~ 10 E_ 0
S 0 <
3 &
2 s
S =

An./ n, (%)
Any/ n (%)

An,/ n, (%)
An;/ n. (%)

Figure 4.3. Dynamic Change in the Optical Response of AZO Thin
Films Triggered by Two-Color Excitation. Percent change of the real
(a-e) and imaginary (f-j) part of the refractive index as a function of
the delay A7 between the ultraviolet pump and the infrared probe
pulses. Multiple vertical plots are shown, for different delay At be-
tween the ultraviolet and the NIR pump pulses. Shaded areas indi-
cate whether the ultraviolet pump, which is used as time reference,
precedes (light blue) or follows (light red) the NIR pump. Overlap-
ping the results obtained by simultaneous two-colour pumping (red
curves), we plot the computed change in refractive index calculated
by the algebraic summation of the results obtained from experiments
with separate ultraviolet and NIR pump pulses (black dashed curves).
The probe, the NIR, and the ultraviolet pump wavelengths were set to
1300 nm, 787 nm, and 262 nm, respectively. The probe intesntiy was
low: I, =~ 5 mJ cm 2, while the pump fluences were Firaviolet = D
mJ cm™? and Fyrr = 14 mJ cm™2
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the transmitted power. Operatively speaking, we first arbitrarily choose a fluence
for the ultraviolet beam while the NIR pump fluence is set afterwards, to induce a
change on the transmitted power of the same magnitude as that obtained with the
ultraviolet pump. Such a change saturates for both ultraviolet (AT/T, ~ 75% at
Fuiravioiet = 15mJ cm~2) and NIR (AT/T, =~ 100% at Fyrr ~ 60mJ cm—?).

While cross-coupling between interband and intraband effects is negligible at the
pump fluences used in these experiments, we observed that it becomes appreciable
for higher fluences. To evaluate the impact of crosstalk, we calculate the relative
difference between the measured (me) and ideal (id) change in the real and imagi-
nary refractive index D,; = [n]’¢ —ni%|/ni% for increasing pump fluences. In the case,
‘measured’ refers to the refractive index with the simultaneous pumping scheme while
ideal refers to the algebraic sum of the refractive indices retrieved with independent
ultraviolet and NIR excitations. In the experimental conditions of Fig. 4.3, we esti-

mate D, < 6% and D; < 3%, whereas at higher pump fluences F i avioier = 24mJ

cm~? we observe stronger crosstalk: D, < 22% and D; < 7%.

4.3.4 Modulation Bandwidth and Wavelength Control

The ability to optically control the AZO properties with nonlinear effects of similar
amplitude yet opposite sign paves the way to intriguing applications. In Fig. 4.4,
we show two new effects enabled by the two-color AZO modulation. The first, in
Fig. 4.4a.b, is the dynamic control of the optical modulation bandwidth of the AZO
film, while the second, in Fig. 4.4c,d, is the dynamic control of the transmitted probe
wavelength.

All-optical modulation of infrared radiation is relevant to the development of fu-
ture telecommunications and data networks technologies [144-146]. Fig. 4.4a shows
the change in T' of the AZO film pumped by both ultraviolet and NIR light, resolved
as a function of the inter-pump delay At and the pumpprobe delay A7. The effect

of the ultraviolet pump is to reduce the transmission (the horizontal blue and purple
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band), while the effect of the NIR pump is to increase the transmission (the diagonal,
green-to-red band). Performing the Fourier transform along the vertical direction
provides the modulation bandwidth of the optically excited film as a function of the
inter-pump delay At and is shown in Fig. 4.4b. The blue and red dashed lines indicate
the bandwidth (rms) obtained by only ultraviolet and only NIR pump, respectively.
The faster dynamic of the intraband (=1.7 THz) compared to the interband (~1.55
THz) nonlinearity is clear. The proposed two-color pump configuration remarkably
allows one to modify the modulation bandwidth of the film via the delay of the two
pump fields, as shown by the black curve in Fig. 4.4b. This enables the observation
of a fast oscillation between a reduction (=0.75 THz at At = 0) and an increase
(=2 THz at At~130 fs) of the bandwidth, although with a fourfold reduction in
the modulation depth compared to larger delays. Further, we show how the probe
wavelength can be dynamically modified by a combination of the two ultraviolet and
NIR pump pulses. In Fig. 4.4c, we show the change in the central wavelength of the
Apr = 1300 nm probe pulse, recorded with an InGaAs spectrometer, as a function
of both At and A7 and for pump fluences Firavioier = 22 mJ cm™2 and Fyp = 42

mJ cm™2.

We note that the wavelength shift induced by the ultraviolet pump is
negative, while the NIR pump gives both a positive and negative shift, depending on
the delay with the probe. Fig. 4.4d shows the maximum positive (A, ) and negative
(AX_) frequency shift induced by the ultraviolet and NIR pumps alone (blue and
red curves, respectively) and combined (black curves). Interestingly, the wavelength
shift induced by the two independent excitation mechanisms can also be algebraically
added. Therefore, for a specific choice of the pump fluences, the wavelength shift is
almost canceled when the two pump pulses are temporally overlapped. We note that,

for higher pump fluences, wavelength shifts exceeding the pulse bandwidth can be

achieved.
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Figure 4.4. Two-Color Pumping Effects. (a) Change in the probe
pulse transmission as a function of the pumpprobe delay (A7) and
the inter pumpdelay (At). The ultraviolet (UV) pump decreases the
transmission, whereas the NIR increases it. The combined effect pro-
duces a At-dependent modulation. The modulation bandwidth is
evaluated by performing a Fourier transform along A7, and is shown
by the black curve in (b). For delays close to At = 0, the modulation
bandwidth can be decreased or increased by the two-colour combined
effect. The blue and red dashed lines show the bandwidth of the
ultraviolet-only and NIR-only driven modulation. (c) Measured cen-
tral wavelength shift of the transmitted probe pulse (=~ 15 nm band-
width) in a zoomed At — A7 region (square box in a). The ultraviolet
pump blue shifts the probe wavelength, whereas the NIR pump does
the opposite. At At =~ 0, the opposite effects almost entirely cancel
the wavelength shift. (d) Summary of the findings in ¢, showing the
maximum positive (A) ) and negative (AX_) wavelength shift for the
NIR-only (red-dashed/dotted), ultraviolet only (blue-dashed/dotted)
and two-color (solid black) Al:ZnO excitation.
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4.4 Dynamic Control of Nanocavities with Transparent Conducting Ox-

ides

We have shown that all-optical modulation of TCO films near their ENZ wave-
length provides ultrafast control and large modulation performance, making them
promising material platforms for dynamic control of nanophotonic devices. Indeed,
optical tuning of TCOs triggered by photoexcitations has been successfully demon-
strated with various geometries and material and incorporated in plasmonic sys-
tems [77,81,142,147].However, a practical approach to design actively tunable de-
vices by adopting metal oxides into conventional nanophotonic devices has not been
reported yet.

Here, we demonstrate all-optical tuning of a metal nanocavity embedded with
a TCO thin film (thickness < A\/17) to achieve the ultrafast spectral tuning of a
Fabry-Pérot (FP) resonance in the NIR excited near the ENZ wavelength. Metal-
insulatormetal(MIM) configurations have been extensively studied in photonics and
plasmonics due to their strong light-matter interaction within subwavelength dimen-
sions [148,149]. Simple design and ease of fabrication make MIM structures common
in nanophotonics, yet dynamic tuning of MIM-based devices has not been demon-
strated. Although electrically driven active absorption tuning in the mid-infrared has
been accomplished with ITO embedded MIM metafilms, the demonstrated switching
speed was limited by the device capacitance [150]. As we have shown, intraband
pumping of TCOs offers large (>2.5 THz) switching speeds and efficient optical mod-
ulation compared with electrical control. We observe that Fabry—Pérot resonance in
an optical cavity can be transiently red-shifted to enable ON/OFF modulation of the
transmitted signal up to 80%. Our work could enable actively controllable devices for
beam steering, adaptive color filtering, and dynamic polarization rotation by using a

set of diverse resonance modes in MIM configurations at subwavelength scales.
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4.4.1 Nanocavity Fabrication and Design

A schematic of the TCO-based cavity is shown in Fig. 4.5a. Samples were fab-
ricated as follows: 1) we deposited 25 nm of silver, followed by 25 nm of Al,O3 on
a glass substrate by electron beam evaporation; 2) a 70-nm-thick Ga:ZnO film was
then deposited using pulsed laser deposition followed by 205 nm of Al;Os; finally, we
deposited a 24 nm silver film as a top layer with a protective 30-nm-thick alumina
cap. Optical properties of the Ga:ZnO layer were obtained using spectroscopic ellip-

sometry as described earlier for Al:ZnO. The choice of Al;O3 and Ga:ZnO thicknesses
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Figure 4.5. Active Nanocavity Design. (a) Cross-sectional schematic
of the Ga:ZnO embedded nanocavity. The thickness of both top
and botom silver mirror is 24 nm; the total thickness of alumina
is 230 nm; and the thickness of Ga:ZnO is 70 nm. The reflection
phase-shift from the metal mirrors (¢,,) and the phase accumulated
throughout the cavity (47nL/)\) is indicated. (b) Analytic transmit-
tance of the nanocavity for several Ga:ZnO filling fractions (FF =
Léa:zno/ (LGa:zno + Lao,)). The first-order resonance of the cavity
occurs at a wavelength of 1200 nm for all FF, but the total transmit-
tance decreases for larger FF due to the Ga:ZnO losses. The red line
indicates the optimal FF choice considering both total transmittance
and modulation performance.

was guided by FP calculations and numerical transmission simulations (COMSOL)

of the nanocavity. In general, a static nanocavity composed of two reflecting surfaces
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separated by a dielectric spacer of thickness L and refractive index n will support FP

resonances under the condition
drnL/\ + 2¢ =~ 2mn (4.9)

where ¢ is the reflection phase shift of the silver-AlyO3 interface (calculated from
Fresnel equations), A is the effective wavelength in Al,Os, and m is the resonance
order. To enhance the modulation of the nanocavity, we want our resonances close
to the ENZ wavelength of the Ga:ZnO film (/ 1200 nm), so we solve Eq. 4.9 for the
thickness of the cavity to find L = 300 nm. Incorporating the active Ga:ZnO material
into the nanocavity is a careful balance of loss to modulations: thick Ga:ZnO films
provide larger modulation, but at the detriment of total transmission. Fig. 4.5b
is a transmission plot of the nanocavity for several Ga:ZnO filling fractions (FF =
Léa:zno/ (LGa:zno + Lao,)). The introduction of the Ga:ZnO layer slightly shifts the
FP resonance to 1.16 um, and for larger thickness, we observe a decrease in the total
transmission amplitude. We estimate the total resonance shift of the active cavity
with Ange.zn0 Lca:zno, Where Angq.zn0 is an induced change in the refractive index
of Ga:ZnO and Lgg.zno is the Ga:ZnO thickness. Based on our previous calculations
of the total refractive index shifts in Al:ZnO, we find the optimal modulation of the
nanocavity occurs for a Lge.zno = 70 nm, as highlighted with a solid red line in

Fig. 4.5b.

4.4.2 Dynamic Modulation with Intraband Pump

We investigate the tunability of our devices using a pump-probe setup as depicted
in Fig. 4.6a. The setup is the same as in the previous experiments, except both pump
and probe were generated using the OPA and had a spectral range of 1160-1600 nm.
Initially, the setup was calibrated against the acquired ellipsometry data for the linear
case (no pump). For calibration purposes, transmission spectra were recorded for
different pulse wavelengths using a Czerny-Turner spectrograph (Andor Shamrock 163
Imaging Spectrograph coupled with an iDus InGaAs detector array). All the acquired
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curves were then fit with Lorentzian functions whose peaks were finally used to draw
the device resonances which were approximated by a Gaussian curve as depicted in
the Fig. 4.5b. The characteristic resonances recorded via the two described processes
(i.e., ellipsometry and direct transmission of the tuned probe) were the same in within
the experimental error. Fig. 4.5¢ reports the transmission spectra with (dashed blue
line) and without (solid orange line) optical pumping for the cavity inclusive of the
Ga:ZnO layer. As it is evident from Fig. 4.5¢ an appreciable spectral shift of the
cavity resonance was apparent for the device with the Ga:ZnO layer. Similar pump-
probe studies were conducted on a nanocavity without a Ga:ZnO layer, but spectral
shift was observed. This indicates that the photoinduced carrier effects in the Ag
mirrors and/or alumina spacer were not enough to induce the resonance shift under
the same condition of intraband excitation of Ga:ZnO; hence, the induced red shift
in resonance of the nanocavity results from the carrier dynamics of the Ga:ZnO film
and not from the Ag nor alumina components. Even though the absolute value of
the induced frequency shift is not large if compared to the resonance line width, it is
still enough for enabling a remarkable signal modulation when operating in the linear
region (see A, point in Fig. 4.5¢). At this operational wavelength (A, = 1200 nm) even
a small frequency shift can produce a substantial change in transmitted power (see
green arrows in Fig. 4.5¢). To record such a modulation and acquire more insights
about its nature, we performed a standard degenerate pump and probe experiment
at \,= 1200 nm. The signal transmitted through the sample was recorded as a
function of the time delay A7 between pump and probe. The normalized transient
transmission is plotted as a function of A7 in Fig. 4.6a, where three regions can be
identified. The first two regions (labeled as ”excitation” and ”"modulation” regions)
are equally short and account for an overall ON/OFF time of approximately 400 fs.
A third range, named ”thermal” region, is also identified. As shown by the solid pink
curves in Fig. 4.6a, the intraband material responses can be successfully modeled
using the TTM (Eq. 4.5) as described earlier. The decay rate AT/T, was fitted

with a single exponential decay to extract the electron-phonon relaxation rate (7._,)
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Figure 4.6. Ultrafast Modulation of the Nanocavity. (a) Pump-probe
setup. (b) Normalized Gaussian fit (orange line) of the Lorentzian
maxima representing the probe pulse is compared to the resonance
(green dashed line) measured by ellipsometry on the nanocavity with
Ga:ZnO and without a metasurface. For the sake of clarity only few
spectra are shown. (c¢) Normalized resonance shift of about A\ =
15 nm of the nanocavity with 70 nm Ga:ZnO film and under pump

excitation of intensity I, = 9 mJ cm™2.

which was found to be 7._, = 212 fs. This relaxation rate is similar to what we
have measured in Al:ZnO films, which a low photon lifetime or, alternatively, a small
cavity Q-factor [102]. Excluding the slow thermal effects, which account for a limited
fraction of the change in transmission, we find that our nanocavity has approximately

an 80% amplitude modulation with a switching period of < 400 fs.
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4.4.3 Numerical Model

The transient change in the optical properties of Ga:ZnO was estimated by fitting
the shifted spectral response of the nanocavity with numerical simulation using a
commercially available software based on the finite element method (COMSOL). Be-
cause the optical response of Ga:ZnO is dominated by the Drude response in the NIR
range, we fit the Drude plasma frequency (wp =,/ %) and damping coefficient

(’yp = _he ) to match the resonance shift observed in pump-probe measurements,

mEmofle

where N, is the carrier concentration, m, is the mass of electron, m} is the effective
mass of electron, and . is the electron mobility. From the w, and ~, extracted by nu-
merical fits, we are able to calculate the temperature-dependent Drude parameters at
the elevated electron temperature found using the TTM with experimental laser and

material parameters (see Table 4.1). Here, we are describing the chemical potential

Table 4.1.
Summary of the Extracted Properties of Ga:ZnO Film

Te(K) wp(eV) ypleV) p(eV)  mg  pe

e

300 1.850  0.0895 3.6803 0.1911 6.770
1891 1.700  0.0929 3.5056 0.2263 5.507

as a function of temperature [137],

W(T) = 1(0) [1 - (%)

We plot the resulting change in optical constants for the two temperatures in

. (4.10)

Fig. 4.6b,c assuming a single Drude term. We observe that intraband excitation
on Ga:ZnO film with 8% light absorption at pump level 9 mJ cm ™2 induces a 130 nm
shift of the ENZ wavelength with a small variation (6.5%) in the damping coefficient.
At X\, = 1200 nm, the absolute estimated change in refractive index (Angq.zno) is

modest (0.24), while the relative variation (Anga.zno/Nca.zno) 18 26%. As we have
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seen, operating within the ENZ spectral window gives rise to largely enhanced non-

linearities which are directly responsible for the optical modulation we recorded in

our devices [81,142].

4.5 Discussion and Conclusions

We have shown that TCOs near their ENZ wavlength exhibit two essential fea-
tures of an ideal photonic switch: large and ultrafast modulation. This makes TCOs
very promising materials for realizing high-performance dynamic devices with all-
optical excitations. Although similar modulation performance has been achieved via
electrical modulation [145,150], the inherent RC delay limits the operating speed of
these devices to sub-terahertz. Here, we have demonstrated not only large modula-
tion in simple thin films of A:ZnO (AR/Ry, AT /Ty ~ 100%), but also ultrafast (< 1
ps) responses. Furthremore, we have shown that this response occurs for a broad
range of pump frequencies and, furthermore, that inter- and intraband nonlinearities
are independent, allowing for simultaneous excitations. This feature has allowed us
to realize optical modulation with > 2 THz frequencies, well above what is possible
using electronic systems.

We have also demonstrated the exciting potential of TCOs for real-world nanopho-
tonic devices. By incorporating a film of Ga:ZnO inside a metal-insulator-metal
nanocavity, we observe improved modulation efficiencies while retaining the ultrafast
properties of the TCO. We note that our strategy for improving efficiency relies on
modulating a resonator, which could be generally applied to other systems including
dielectric/metallic particles and waveguides. The optimal dynamic system will bal-
ance modulation amplitude and loss, since the inherent loss of a TCO near their ENZ
wavelengths deteriorates the quality factor of the resonantor. Under these considera-
tions, we expect the development of TCO materials will pave the road for improved

and novel plasmonics and nanophotonics applications.
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5. SINGLE AND DIMER NANOANTENNAS ON ENZ
SUBSTRATES

Antennas operating at radiofrequency (RF) obey relatively simple design principles
for finding their resonant wavelength. For example, the resonance of a monopole
antenna occurs when the length of the antenna is integer multiples of one quarter
the incident radiation’s wavelength (Lg, = %; n = 1,2,3,...). Using this prin-
ciple, it is straightforward to design a monopole antenna for any given wavelength
by simply scaling the antenna’s length proportionally. This property follows from
the scale-invariance of Maxwell’s equation in free-space [51]: given fields E(x,t) and
B(x,t) satisfy Maxwell’s equations, then fields E(ax, at) and B(ax, at) do as well.
Remarkably, scale-invariance holds for Maxwell’s equations in the presence of ma-
terials, provided the material parameters are not dispersive. For RF antennas, this
caveat is fulfilled because the antenna is treated as a perfect conductor; the electrons
are assumed to oscillate m-radians out-of-phase with respect to the driving field [151].

The scaling law is very useful for RF antenna design; however, when applied
to metal nano antennas at optical frequencies, the scaling law fails. The reason is
material dispersion. As discussed earlier, the electrons in metals are free to move
throughout the material and are effectively treated as a non-interacting gas (i.e. a
plasma). Owing to the finite electron density and effective mass, the response of the
electron plasma is frequency dependent and exhibits a phase lag. The incident field
can then significantly penetrate into the antenna and the scaling law is no longer
valid.

Although optical antennas do not obey the RF scaling law, there is a modified
linear scaling rule which was derived by considering the plasmon modes propagating

down the length of the antenna [152]:
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A
>\eff =Ny +nNo—. (51)
)\P

In equation (4.1), n; and ny are factors which depend on geometry and static dielectric
properties and A, is the plasma wavelength. Accordingly, for a metal nanoantenna
of length L, the half-wavelength resonance is not A\/2 but A.sf/2. This effective
wavelength scaling has been confirmed both numerically and experimentally [153]
and allows for the design of antennas at optical frequencies.

Recently, a growing body of research is investigating the effects of ENZ TCO films
on plasmonic systems. Prior plasmon-ENZ work include studies of single nanorods
for resonance wavelength and radiation engineering [91,93], metamaterial split-ring-
resonators for polariton splitting [73,154], and plasmon enhanced quantum wells for
active terahertz control [155]. These studies demonstrate the great potential for
plasmon-ENZ systems, but do not provide a thorough analysis or direct observation
of the plasmon-ENZ coupling. Here, we investigate the plasmon-ENZ coupling in
both single and dimer gold nanowire antennas with an aluminum-doped zinc oxide
(Al:ZnO) TCO substrate exhibiting an epsilon-near-zero permittivity at telecommu-
nication wavelengths. We characterize the plasmonic response of single nanorods with
far-field spectroscopy and directly observe the electric field maps of single nanorods
at the ENZ wavelength using scattering near-field optical microscopy (SNOM). Nu-
merical calculations using finite element simulations of the correspondent nanorod
waveguide coupled with an analytic 1D Fabry-Pérot model show excellent agreement
with both far- and near-field measurements. We show that the plasmonic mode is
highly dispersive and exhibits an effective mode index which is less than unity for
wavelengths greather than the ENZ wavelength, resulting in the waveguide’s wave-
length being greater than the free-space excitation wavelength. Additionally, we
demonstrate a strong suppression of near-field coupling between dimer nanorods on
an ENZ substrate, which we attribute to the mode characteristics observed in single

nanorod antennas.
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5.1 Fabry-Pérot Model for Single Nanorod

To explain and analyze both the near- and far-field response of nanorod antennas
on ENZ substrates, we develop a Fabry-Pérot (FP) model [153,156] of the plasmon
modes upon normal plane-wave illumination. In this model, the nanorod is treated
as a truncated waveguide and incident light excites counter-propagating modes which
reflect off either end of the nanorod’s edges and form a standing-wave interference.
The interference is either constructive or destructive depending on parameters such
as free-space wavelength or nanorod length. Here, we consider gold nanorods with
a thickness of 40 nm and a width of 70 nm, deposited onto a 315-nm-thick layer
of either ALl:ZnO or ZnO on top of a glass substrate. The length of the nanorods
varies from 100 to 2000 nm. It is obvious that the normal plane-wave illumination
with electric field along the nanorod length will excite modes only from the short
faces of the nanorod, as illustrated in Fig. 1(a). A modal analysis of the nanorod
cross-section using numerical simulations ensures only one supported quasi-bound
mode. Simulations were done in COMSOL software using 2D [for mode analysis,
Figs. 5.1(b-d)] and 3D finite element method (FEM) calculations. Permittivity values
of gold were taken from Palik handbook [157], while values of Al:ZnO and ZnO were
extracted from spectroscopic ellipsometry from 315-nm-thick Al:ZnO and ZnO films
deposited via pulsed laser deposition (PLD) onto glass slides. The glass substrate
was assumed to have a constant refractive index of 1.45. All edges of gold bricks
were rounded with 10 nm radius of curvature. Simulation domains were squares (2D
FEM) or cubes (3D FEM) with edge size of 4 m, surrounded with perfectly matching
layers. We found the ENZ wavelength of the Al:ZnO film to be 1475 nm with a
concomitant dielectric permittivity of egnz = 0 4 70.35. The spectroscopic data was
fitted using a Drude-+Lorentz oscillator model to obtain permittivity values across
the 400-2500 nm spectral range. The electric-field mode profiles for the free-space
wavelength of 1475 nm are shown in Figs. 5.1(b,c). As reported previously, the mode

field is concentrated in air for the ENZ substrate compared with the ZnO dielectric
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substrate [156]. The mode propagation properties are demonstrated in Fig. 5.1(d) in
terms of the effective mode index /N and propagation length L, for both Al:ZnO and
ZnO substrates. We find that the effective mode index for the nanorod waveguide on
the Al:ZnO has a strong negative dispersion and, furthermore, that it is less than unity
for wavelengths past the ENZ wavelength of 1475 nm. On the contrary, the effective
mode index for the nanorod waveguide on the ZnO is weakly dispersive with a value
of approximately 2. Another simulation of the mode propagation in a terminated
nanorod provides the complex reflection coefficient r = |r|expli¢], where |r| and ¢
are the amplitude and phase, respectively, of the reflection coefficient [Fig. 5.1(e)]. We
find that both reflection amplitude and phase are nearly constant, both for Al:ZnO
and ZnO substrates.

We can now derive the complete near-field of a nanoantenna on an ENZ substrate
and the equations which govern resonance by considering the modes of a nanorod sub-
ject to a plane wave excitation polarized along the length of the nanorod (along x-axis,
see Fig. 5.1). The origin is set to the center of the nanorod. As mentioned, the inci-
dent field will predominantly scatter from each end of the nanorod and will generate
counter propagating plasmonic modes ut and u~. Because of the fixed cross-section of
our nanorods, we can safely assume the propagation of plasmonic modes along z-axis
as exp(+ik[r+ L/2]). Here, L is the length of the nanorod, k = 27N/, + i/ Lyyep 18
the propagation constant of the plasmonic mode, L,,,, is a propagation length, and
the + factor is associated with plasmonic modes propagation along (+) or opposite
(—) to the z-axis. If the transverse field distribution of one plasmonic mode u™ is de-
scribed as [E,(y, 2), Ey(y, 2), E.(y, z)]T, then the counter-propagating mode u~ should
have electric field components [—E,(—y, 2), — E,(—y, 2), E.(—y, 2)]" since the right-
hand system {E,, E,, E,} rotates together with the propagation wave-vector. Due to
the symmetry of the plasmonic mode E,(—vy,2) = E,(y, 2), E,(—y,2) = —E,(y, 2),
and E,(—y,z) = FE.(y,z), therefore the traverse distribution of the u~ mode is

[_Eﬂv(y7 Z)? EZ/(Z/? 2)7 Ez(y7 Z)]T'
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Figure 5.1. Semi-analytical Fabry-Pérot model for single nanorod.
(a) Sketch of a nanorod upon normal illumination, exciting two
counter-propagating nanorod modes. (b,c) Electric field distribution
of nanorod waveguiding mode at the free-space wavelength of 1475
nm, deposited on (b) a Al:ZnO and (c) a ZnO substrate. Magenta ar-
rows represent transverse electric field. (d,e) Numerically calculated
effective mode index, propagation length, and reflection coefficient
for a gold nanorod on the Al:ZnO (solid lines) and a ZnO substrate
(dashed lines). Insets show the approximate configurations of the
finite-element solver.
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Each plasmonic mode will traverse the length of the nanorod, reflect from the

opposite end, and begin to propagate in the opposite direction; this process then

continues ad infinitum. If we let the 5 = exp(ikL) denote the accumulated evolution

after traversing a single length of the nanorod, and let » be the complex reflection
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coefficient from each end of the nanorod, then the mode u™ excited at one end will

evolve as:
AT (rB)" [0* + (rB)u”] (5.2)
— A+ [u+ + (rﬁ)u_] (5.3)

1+ (rp)?
where A™ is the excitation coefficient of mode u™ by the incident plane wave. Simi-

larly, the mode u™ excited at the other end with a coefficient A~ will evolve as:

ATY (B [u” + (rB)u’] (5.4)
=0
_[u” + (rp)u’]

=A 5.5
1+ (rp)? (55)

The total field E(x) is then simply a sum of Eq. 5.3 and Eq. 5.5:

AT+ (rp)A~ A+ (rp)AT]

E(x)= |—————|u" _ 5.6
) { NI A TR >0
Due to the symmetry of the incident fields polarization A~ = —A"T = —A, meaning

the excitation on one end is out-of-phase relatively to the excitation on the other end
(however, it results in the same sign of the E, component of each mode at both ends,
since this is the polarization of the driving field). Thus, the total field electric field
distribution for a nanorod upon normal illumination is

A

E(x) = AllJ:((:ﬁﬁ))Q [ut —u] = T [t — ) (5.7)
A E;v(y7 Z) —Ex(y, Z)
= 03 Ey(y, z) cik(z+L/2) _ Ey(% z) o~ ik(z—L/2) (5.8)
|\ E:(y,2) E.(y,2)
E.(y, z) cos(kzx)
A
= % iE,(y, z) sin(kx) (5.9)

iF.(y, z) sin(kz)
The beauty of the above semi-analytical Fabry-Prot model is that it allows finding
full three-dimensional (3D) near-field distribution without doing complicated 3D sim-

ulations, but instead it uses simple 2D simulations (modal analysis) and relatively
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simple 3D simulation of mode reflection (the last takes much less computational time
compared to the full 3D simulation of nanorod excitation, since the simulation domain
is smaller, and the effect is non-resonant, as can be seen in Fig. 5.1). Using a sin-
gle value A for normalization, we managed to accurately predict with our FP model
distributions Ey(z,y) and E,(z,y) at any alititude z and for any antenna length.
Fig. 5.2 shows a side-by-side comparison of near-field maps obtained using full 3D
FEM simulations (left column) and our semi-analytical FP model (right column) for
a 600 nm antenna. The top and bottom rows show the maps obtained at different
heights above the nanoantenna. As can be seen, there is a strong agreement between
FP model and FEM simulations for F, and E,. A disagreement in F, is caused by
the presence of relatively strong exciting plane-wave and far-field antenna radiation in
full 3D FEM simulations, while FP model predicts only evanescent field distribution.
This model also predicts the position of resonances, since there the near-field will be
at maximum. It is obvious that only the denominator in Eq. 5.6 is responsible for
the resonance behavior. Neglecting weak amplitude variation of  and 3, we find the

resonance condition as arg {rg} = n(1+m);m = 0,2,4, ... This simplifies to

2rN
Ao

L+o=n(1+m);m=0,24,.. (5.10)

where L is the nanorod length, and )\ is the free-space wavelength. Physically, this
implies that, at resonance condition, excitations from one end of the nanorod should
constructively interfere with the out-of-phase excitation from the opposite end after
accumulating a single propagation and reflection phase. We note that Eq. (5.10)
describes bright-modes only. Generalized FP model do not incorporate the excitation
source and implies that, at resonance condition, the round-trip should be in-phase
with initial excitation. Therefore, generalized FP models predict both bright- (even
m) and dark-modes (odd m), the latter being inaccessible using normally incident
plane wave source.

Equation 5.10 specifies the relation between nanorod length and resonance wave-

length; consequentially, the rate of change in resonance wavelength as a function
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Figure 5.2. Comparison of the field produced by full 3D FEM simu-
lations and semi-analytical Fabry-Pérot model. Simulations are done
for gold antennas on Al:ZnO substrate at 1500 nm excitation from
the bottom, polarized along the antenna length. The field was calcu-
lated at z = 20 nm (i.e., through the middle of the antenna, top) and
z =90 nm (i.e., 50 nm above the antenna, bottom) for two antenna
lengths: 600 (left) and 1800 nm (right). The fields were normalized to
the amplitude of the transmitted plane wave (note different colormap
scales).

of antenna length can be calculated by differentiating Eq. 5.10 with respect to the

free-space wavelength, \,. First, we re-write Eq. 5.10 as

2 L(\,) = N?OO) [T+ 7m — ¢] (5.11)

>
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and then differentiate to find

27

dL_(l A, AN

W ) [T+ 7m — ¢] (5.12)

N NZd),
This expression can then be inverted to find the change in resonance wavelength as

a function of antenna length.

d\, 27 1 A dNNT (5.13)
AL~ m+mm—¢ \N NZd), '
2m N?
- 5.14
7r+7rm—gz§<N—)\O%—]X> (5.14)

This result follows from our assumption that the reflection phase ¢ is wavelength
independent, which is justified from our FEM analysis [Fig. 5.1(e)]. Equation (5.14)
shows that for modes with largely dispersive effective index, the scaling law between
resonant wavelength and antenna length is non-linear. Furthermore, in the ideal limit
N — 0 the resonant wavelength becomes independent of antenna length, an effect
referred to as a resonance pinning [91]. On the contrary, for non-dispersive and non-
zero effective mode index the resonant wavelength should be simply proportional to
the antenna length: A\ = 2nNL/ (7 + mm — ¢).

In addition to the dispersive behavior of the resonance, we also use our model to
accurately predict the near-field phase and magnitude of the single antennas. Fig. 5.2
shows a side-by-side comparison of near-field maps obtained using full 3D FEM sim-
ulations (left column) and our semi-analytical FP model (right column) for a 600 nm
antenna. The top and bottom rows show the maps obtained at different heights above

the nanoantenna. As can be seen, there is a strong agreement between FP model and

FEM simulations for £, and £,.

5.2 Single Nanorod Far-Field Characterization

In order to verify the non-linear scaling law and resonance pinning for antennas
on an ENZ substrate, as followed from the above semi-analytic FP model, we fabri-

cated and characterized nanorod antenna arrays on Al:ZnO substrate. We deposited
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Figure 5.3. Far-field characterization of nanorod arrays. (a) Cross-
polarized configuration of our ellipsometer used for measuring the far-
field scattering of the single antenna arrays. The input polarization
is rotated —45° with respect to the nanorod’s long axis and incident
at 18°. The reflected light is passed through an analyzer set at the
45°. (b) Resonant wavelength as a function of antenna length for
the Al:ZnO (black) and ZnO (red) substrates. The solid lines are
calculated using the Fabry-Pérot model; square and circular markers
are results of scattering cross-section numerical calculations; and cross
markers indicate experimental values obtained from cross-polarization
spectroscopy. The dashed line indicates the ENZ wavelength of 1475
nm.

Al:ZnO films via pulsed laser deposition (PVD Products, Inc.) onto glass substrates
using a KrF excimer laser (Lambda Physik GmbH) operating at 248 nm. A 2wt%
doped Al:ZnO target (>99.99% purity) from Kurt J. Lesker Corp. was used as the
ablation source. The energy density of the laser at the target surface was maintained
at 1.5 J/cm? and the deposition temperature was fixed at 95°C. The optical proper-
ties of Al:ZnO films were characterized by spectroscopic ellipsometry (V-VASE, J.A.
Woollam) over the spectral region from 400 to 2500 nm (see Fig. 5.4). The dielectric
function of the film was retrieved by fitting a Drude + Lorentz oscillator model to

the data. The model and the fitted parameters are shown in Eq. 5.1 and Table 5.1,
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respectively.  To fabricate gold nanorods, positive electron beam resist (ZEP 520

Table 5.1.
Ellipsometry Model and Fits

€ wy(eV) Tp(eV) 11 wi(eV) I
2.5 2.32 0.089 15.02 4.53 0.001

2
Wp f lwl2

w+ily)  wP—w? 4wl

(5.15)

e(w) zeoo—w(

A) was spin coated at 4000 rpm and then exposed by electron lithography (Vistec
VB6). The beam energy was 100 kV and the beam current was 1.012 nA. We de-
posited a 40-nm-thick gold film on the resist using an electron beam evaporator. The
sample was developed in ZED-N50 (n-amyl acetate) for 1 min, and then dipped in
isopropyl alcohol for 30s to remove the ZED-N50. By setting the period along and
perpendicular to the length of the antennas to P = 1200 nm and P, = 600 nm,
respectively, we minimized antenna interaction while maintaining a significant an-
tenna density. Each array consisted of antennas of lengths L = 400, 600, and 800
nm. Representative scanning electron microscope images are shown in Fig. 5.5. We
measured the far-field response of the single nanorod arrays using the cross-polarized
reflection configuration of our spectroscopic ellipsometer shown in Fig. 5.3(a). The
sample was mounted such that the long axis of the nanorods was oriented vertically.
We set the input polarizer at 45° and the output analyzer at —45° and collected the
reflected light over a 900-2500 nm spectrum. The angle of incidence was set at 18°
— the minimum physical angle of the ellipsometer. Using this setup, we were able to
collect the field radiated by the nanorod array while suppressing the strong reflected
signal of the substrate. We fitted the reflection spectra with Lorentzian curves to
extract the resonant wavelength. In Fig. 5.3(b) we plot the experimentally observed
resonance wavelengths for antennas of lengths L = 400, 600, and 800 nm (crosses). In

addition, we plot the resonant wavelengths predicted using our Fabry-Pérot model,
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Figure 5.4. Permittivity values of the Al:ZnO film extracted using
spectroscopic ellipsometry. The ENZ wavelength,Agyz, is defined
when real part ¢ = 0.

Eq. (5.1) (solid line), along with resonances for the scattering cross-sections obtained
using full-wave FEM simulations of isolated antennas (circles). For comparison, we
included corresponding values for a ZnO substrate of similar thickness (red lines and
dots). As can be seen, there is a good agreement between measurements and simula-
tions, supporting the assumption of the negligible antenna interaction. Additionally,
the resonance position predicted by our semi-analytical FP model is in good corre-
spondence with results of full 3D simulations and measurements, even though the

ellipsometer excitation angle in the experiment was slightly different than normal
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Figure 5.5. Representative SEM image of (a) single and (b) dimer
nanoantenna arrays deposited on Al:ZnO substrates.

incidence. Finally, we verify that the resonance wavelength is largely non-linear and
becomes nearly independent of antenna length beyond the ENZ wavelength, an effect

referred to as resonance pinning [91].

5.3 Single Nanorod Near-Field Characterization

To directly image the modes of the nanorods, we perform near-field character-
ization using Scanning Near-field Optical Microscopy (SNOM). This was done us-
ing a commercial scattering-type SNOM (Neaspec GmbH). For the experiments, we
used Platinum-coated standard Si atomic force microscope tips (Arrow™ NCPt from
NanoWorld) operated in a tapping-mode. The tip radius of curvature of less than
25 nm is specified by the manufacturer. The tapping frequency and amplitude were
~280 kHz and ~50 nm, correspondingly. We illuminated all samples normally from
beneath using a tunable telecom diode laser (TLB-6500-H-ES from New Focus) and
a parabolic mirror. The spot size on the sample was approximately ~50 pym and
the incident total power was maintained at ~1 mW. Scattered light was collected
using a second parabolic mirror. A Mach-Zehnder interferometer with an oscillating

mirror (f ~ 300 Hz) in the reference arm is incorporated in our SNOM in order to
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Figure 5.6. Near-field optical microscopy of individual nanorods. (a)
Schematic of the SNOM setup. (b) First column contains the mea-
sured topography, the magnitude, and the phase of the near-field for
gold antennas on Al:ZnO substrate at 1475 nm excitation, polarized
along the antenna length (the polarization is shown with a white ar-
row). Second and third column are the corresponding z-component
of the electric field (E,) calculated at 50 nm above nanorods with full
3D finite-element simulations and semi-analytical Fabry-Pérot model,
respectively. Recorded topography and designed antenna parameters
were used for masks in phase maps.

resolve both amplitude and phase using a pseudo-heterodyne detection scheme [158].
To remove background signals, the collected output was demodulated at the third
harmonic of the tip’s tapping frequency. This technique allows us to simultaneously
map both magnitude and phase of the near-field, in addition to the sample topogra-
phy. Due to the tip elongation along z-axis, the recorded near-field signal corresponds
well to the normal z-component of the electric field approximately 50 nm above the
structure [159-161]. A schematic of our setup is shown in Fig. 5.6(a). The sample
contains a column of individual nanorods of lengths varied in 100 nm steps from
100 nm to 2000 nm; the spacing between antennas was 1000 nm. Fig. 5.6(b) shows
the topography and near-field maps of the gold antennas on the underlying Al:ZnO
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substrate, along with the near-field magnitude and phase, calculated with full FEM

simulations and predicted from our semi-analytic Fabry-Pérot model as:

2r N )
E.(x) x sin < et — a:> (5.16)
>\0 Lprop

We find the antennas of length less than 1000 nm support dipolar near-field distribu-
tion, as clearly seen by the phase profile; furthermore, we confirm the 600 nm antenna
is at resonance with the 1475 nm excitation. The strong agreement between all near-
field maps confirms the low effective mode index of the nanorod plasmonic mode for
ENZ substrate. Additionally, the correspondence between near-field measurements
and simulations verifies the optical properties of fabricated Al:ZnO substrate on the
subwavelength scale, which makes it unique compared to the engineered ENZ meta-

materials composed of stacked finite-size structures [25,27,105].

5.4 Suppression of Near-Field Coupling in Plasmonic Dimer Antennas

Having shown the ability for ENZ materials to significantly alter plasmonic res-
onances in single nanorods, we now turn our focus to dimer nanorods deposited on
an ENZ substrate. In general, the resonance of a dimer pair will depend on the sep-
aration between rods due to the interparticle coupling [162,163]. For nanorod pairs
oriented along their longitudinal axis, the resonant wavelength red-shifts away from
the isolated resonant wavelength as the separation decreases. To characterize the
shift in resonance for dimer antennas on an ENZ substrate, we fabricated arrays of
dimer nanorods, consisted of two L = 400 nm nanorods and separated by a gap of 30,
50, 100, and 200 nm. We chose the period of all arrays to be P = 1300 nm and P, =
500 nm to maintain a constant and significant dimer density. We employed FEM sim-
ulations to calculate the scattering, absorption, and extinction cross sections of gold
dimer antennas on an Al:ZnO substrate; for comparison, we performed similar simu-
lations for dimer nanorods on a glass substrate [Fig. 5.7(a)]. We chose the antenna
length for dimers on glass to be 320 nm so that the resonance positions coincide for

gap distances of 200 nm. For dimers on ENZ, we find the spectral red-shift is reduced
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in comparison to antennas on glass and, furthermore, that the red-shift decreases
monotonically for increasing individual antenna length. Additionally, we find that
the extinction cross section’s spectral width is narrow as a result of the asymmetric
scattering and absorption cross-sections. In contrast, the red-shift for dimer antennas
on glass substrate is independent of antenna length, which agrees well with previous
observations and analysis [162-164]. We measured the far-field scattering from our
arrays of gold dimers using the same ellipsometry setup used to characterize arrays of
single antennas. Fig. 5.7(b) shows the experimentally obtained shift in resonance of
L = 400 nm nanorod dimers (black squares), normalized to the resonant wavelength
of dimers with G = 200 nm, as a function of gap size. Gap sizes were verified us-
ing scanning electron microscopy and all resonant wavelengths were found by fitting
the scattering spectrum with Lorentzian peaks [see inset of Fig. 5.7(b)]. Included
in this figure are the shift in the resonance wavelength for L = 400 nm dimers on
Al:ZnO (black line) and for L = 320 nm dimers on a glass substrate (red line). The
antenna length of 320 nm for dimers on glass substrates was chosen such that the
resonance shift occurred at the same spectral range as our ENZ wavelength. Our
experimental results show a reduced red-shift for antennas on the Al:ZnO substrate
and corroborate our numerical simulations. The reduced shift in resonance corre-
sponds to a suppression of near-field coupling between the two nanoantennas of the
dimer. In general, the normalized red-shift of two plasmonic antennas as a function
of gap size is proportional to the ratio of the interparticle near-field interaction to
the single intraparticle Coulombic restoring force [163]. As we have shown from our
single particle analysis and previous work [91], the near-field distribution of a sin-
gle particle antenna is significantly altered at the ENZ regime of the substrate. In
particular, we find that the field is primarily concentrated outside of the substrate
past the ENZ wavelength since the air becomes the more optically dense media. The
experimentally observed and numerically calculated strong reduction in the red-shift,
as compared to dimers on glass substrates, implies that the near-field interaction is

thus suppressed. We do note that a reduction in the red-shift will also follow from an
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Figure 5.7. Suppression of near-field coupling in dimer antennas. (a)
Scattering, extinction, and absorption cross-sections of dimer anten-
nas on both Al:ZnO (left column) and glass (right column) substrates
calculated with FEM. Gap distances of 10 and 200 nm are shown in
the top and bottom rows, respectively. The antenna lengths are cho-
sen such that the maximum cross-sections coincide at a gap distance of
200 nm to clearly illustrate the distinction in total red-shift. (b) Res-
onance wavelength red-shift of dimer nanoantennas as a function of
gap size, normalized to a gap of 200 nm. Black squares and line mark
the experimentally measured and simulated, respectively, red-shift of
dimers on Al:ZnO as a function of gap size. Red line marks simulated
red-shift for dimers on glass. Inset shows the collected cross-polarized
reflection spectra.

increase in the individual antenna length of the dimer pair because the intraparticle
Coulombic restoring force goes as a 1/(particle size)® dependence and the normalized
red-shift, in the quasi-static dipole approximation, is given by AX/ Ao = (G/L + 1)_3
where G is the gap size and L is the antenna length [163]. Indeed, we do observe a
slight decrease in red-shift for antennas on a glass substrate for increasing antenna
lengths (See Fig. 5.8). However, this contribution to the red-shift reduction is small,
even for large changes in antenna lengths, and cannot account fully for our obser-
vations. We thus conclude that the predominant mechanism is the suppression of

near-field interactions due to the ENZ substrate. We note that the suppression of the
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near-field coupling is directly related to the ENZ nature of the substrate and is inde-
pendent of the physical origin of the ENZ response; therefore, near-field suppression
is a general feature of an ENZ substrate. Furthermore, we anticipate that an ENZ
substrate will also result in similar suppression of near-field coupling between dimer

antennas aligned along their transverse axis.

5.5 Discussion and Conclusions

Maxwell’s equations dictate that the fields in an ENZ material exhibit anomalous
phase variation and the wavelength approaches infinity, i.e., A = oo as ¢ — 0. This
reasoning provides an intuitive picture for understanding and interpreting our results.
As mentioned earlier, usually the scaling between the resonance wavelength and the
physical length of the nanorod is approximately linear; however, as we have shown
using Eq. (5.14), a non-linear scaling occurs when the effective mode index is largely
dispersive. Although the refractive index of the metal nanorod is itself dispersive, the
electric fields of the plasmon mode are primarily located outside of the nanorod, and,
accordingly, the mode’s effective index is predominately determined by the surround-
ing material’s index. This implies that the incident radiation’s wavelength )\ and
the nanorod’s plasmon wavelength Agpp are proportional via Aspp = Ag/neg and that
the nanorod’s resonance wavelength changes linearly to an increase in antenna length
for a non-dispersive dielectric environment. However, for an antenna located near an
ENZ material, the plasmon modes of the nanorod will have a strong negative dis-
persion and exhibit a near-zero effective index, as we have observed [see Fig. 5.1(d)].
Consequentially, when the free-space wavelength of incident light is increased near
the ENZ point, the effective mode index decreases and the plasmon wavelength will
increase dependent on the magnitude of the dispersion; as such, the nanorod will only
resonate at a longer length.

In summary, we have demonstrated dispersive, less than unity index plasmon

modes with gold antennas on an Al:ZnO substrate with a near-infrared ENZ point.
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Furthermore, we demonstrated a reduced red-shift in the resonance of dimer anten-

nas on a ENZ substrate as a function of diminishing gap sizes because of suppressed

near-field interactions. We have also developed a robust and accurate semi-analytic
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Fabry-Pérot model for calculating electromagnetic near-fields, dispersion, and res-
onances of single nanorod antennas on arbitrary substrates. Our observations and
analysis open new directions for engineering the resonance of both single and coupled
plasmonic antennas. For instance, the established reduction in near-field coupling
allows one to design arrays of independently operating antennas with higher densities
and thereby significantly improve the array characteristics, especially when targeting
gradient metasurface implementations. Moreover, by utilizing the suppressed near-
field coupling, it may be possible to induce large modulation amplitudes by tuning
the permittivity of the substrate around the ENZ point through either electrical or
optical control. Additionally, it may be possible to utilize the near-zero index plas-
mon mode for increasing coherence between quantum emitters coupled to a plasmon

system.
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6. STRONG COUPLING BETWEEN ENZ FILMS AND
PLASMONIC ANTENNAS

Coupled systems are prevalent and quintessential physical phenomena. The electro-
magnetic transitions of atoms and molecules are modified by coupling with the local
environment or other emitters. Typically, these interactions are weak and treated
with perturbation theory, such as the alteration of spontaneous decay rate (Pur-
cell Effect) [165] or Forster energy transfer between donor and acceptor atoms and
molecules [166]. Within this weak coupling regime, the emitter’s energy levels re-
main unperturbed by the coupling; however, if the coupling is sufficiently strong
enough such that energy exchange between the two systems exceeds the individ-
ual dissipation rates and decoherence, then the system enters the strong coupling
regime [79, 136, 167, 168]. Here, it is no longer possible to describe the emitter as
separate from the environment since the excitation becomes delocalized, and the cou-
pled system must be treated as a new, hybrid system. The hybrid nature of strongly
coupled systems introduces a breadth of new physical phenomena, including effects
in quantum information processing, quantum-cavity electromagnetics, and ultrafast
single-photon switches.

Photonic strong coupling is typically discussed in the context of an optical micro-
cavities and a collection of molecules, such as in exciton polaritons [169-171], Van der
Waal structures [172], and quantum dots [173,174]. These systems exhibit both inter-
esting and potentially applicable features such as low-threshold switching [175, 176]
and semiconductor lasing [177]. Typically, the coupling strength, g, between an op-
tical cavity and a polariton is well below the thermal energy at room-temperatures
(kgT =~ 1/40 eV), so experiments are done at cryogenic temperatures to resolve the

polariton energy from thermal decoherence. This limits the range of applications to
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nitrogen-cooled systems. The ideal strong coupling device or application would op-
erate at room-temperature, which has led researchers to devote a large research front
on finding novel systems which exhibit large coupling strengths.

One stategy for increasing the coupling strength, g, beyond room-temperature
energies is by decreasing the optical cavity mode. The coupling strength in a system
is inversely proportional to the square of the optical mode volume, V (g o 1/3/V).
Plasmonic offers extremely compact modes on the order of ten’s of nanometers [39,
178] and even sub-nanometer [179]. Recent demonstrations of room-temperature
strong coupling in plasmonic systems include plasmonic antennas and J-aggregates
[180,181], 2-D materials [182], and single molecules [183]. This does not preclude the
possibility of plasmonic strong coupling in systems which are not molecular. Strong
coupling is a general feature of any coupled systems where energy is exchanged faster
than the dissipation.

Here, we present a novel strongly coupled plasmonic systems by coupling the
plasmon resonances of gold nanoantennas with the ENZ mode of an ultrathin film of
Al:ZnO. At room-temperatures, we demonstrate a Rabi splitting 72z ~ 300 meV.
We show that for increasing antenna lengths, the antenna resonance exhibits a clear
anti crossing behavior at the ENZ wavelength, which we numerically validate and
match with a coupled harmonic oscillator model. Furthermore, we verify that strong
coupling is sensitive to both the Al:ZnO film thickness and the Fourier components of
the antenna’s scattered field. Our results validate the existence of coupling between
the non-radiative ENZ mode and provide a route to couple large fields into the TCO

film, which could help to greatly enhance nonlinear interactions.

6.1 Coupled Harmonic Oscillators

Although many strongly coupled systems are inherently quantum, the underlying
physics is accurately captured using the paradigm model of two coupled harmonic os-

cillators [184]. Remarkably, this system not only captures strong coupling effects such
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as energy splitting and level crossing, but can be applied to a large class of coupled
systems. Examples include electromagnetic induced transparencies, Fano resonances,
Borrman effects, and Kerker effects [185]. Let us consider two coupled harmonic oscil-
lators and write the system of equation for the harmonic mode amplitude of oscillator

one x1(w) and two zo(w) as [186],

wp —w—1m g 71 (w) g fi(w) (6.1)

9 wy —w — Y2 ) \z2(w) fo(w)
where w is the frequency, w; 2 and 7y, 5 are the resonance frequency and damping rates
of oscillator one and two, respectively, fia(w) are the harmonic driving forces on
oscillator one and two, respectively, and ¢ is the coupling constant between the two
oscillators. The eigenvalues of the system are solved by setting the determinant of the

2x2 matrix to zero and solving the resulting quadratic equation. The two complex

eigenvalues are then given by,

wi = % [wi + w2 —i(y +72)] £ %\/(wl —wy —i(n —72))* +4¢°  (6.2)
The real portion of w,,, gives the dispersion of the eigenvalues, while the imaginary
portion dictates the line width.

To illustrate the distinct coupling regimes, we can fix the resonance frequency
of oscillator one, w; = const., and assume the resonance frequency of oscillator two
is equal to wy = w; 4+ dw, where dw is a variable parameter so we can tune the
frequency of oscillator two. Furthermore, we will assume the resonance amplitudes

of the coupled modes are Lorentzian, i.e.

1

(w—ws)*+ 712,2

(6.3)

22 (w)] o

with the choice of 71 5 = w /5. Figure 6.2a shows the real portion of Eq. 6.2 for both
the uncoupled (dashed lines) and coupled oscillators (solid lines). For the uncoupled
and coupled case, we have selected g = 0 and g = 1.5 (), respectively, where () =
(71 + 72)/2 i.e. the average value of the dissipation rates. When no coupling is

present, the two resonances intersect at dw = 0, but when coupling is introduced, we
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see the curves no longer intersect, a phenomena known as anti crossing. The degree of
separation between each curve is found by calculating the difference in the two eigen
frequencies at zero detuning, which is equal exactly to g i.e. |[(wy — w_)|sw=0 = ¢-
Therefore, we can determine the degree of anti crossing by the value of the coupling

constant. The dispersion curves of wi do not reveal if we are in the strong or weak

Absorption Min
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Figure 6.1. Coupled Harmonic Oscillators. (a) Real portion of the
complex eigenvalues of two coupled harmonic oscillators as a function
of the variable frequency parameter dw for a coupling constant of g =
0(7y), 0.5(7), 1{y), 1,5(), and 2(y). Resonance amplitude of each
oscillator in the (b) weak coupling regime, with a coupling parame-
ter ¢ = 0.5(7), and (c) the strong coupling regime, with a coupling
parameter g = 2.0 ()

coupling regime. To determine this, we need to look at how the magnitude of the
dissipation terms compares to the coupling strength. Dissipation terms 7, o will smear
out the resonance curves, and if the damping is strong enough, then the anti crossing
behavior will not be discernable—this is the weak coupling regime (see Fig. 6.1b). To

observe strong coupling, the frequency split (or alternatively, the coupling strength)
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needs to be greater than the average dissipation rates of the individual oscillators.

Quantitatively, this is given by

29> (v) = (n +172)/2. (6.4)

Qualitatively, this implies that the exchange of energy between the two systems is
faster than the average decay rate and implies the system is strongly coupled. The
frequency at which energy is changed between the two systems is known as the Rabi
Frequency (2g) and is twice the coupling constant, i.e. (Qp = 2g), Figure 6.1c
shows the field amplitude of the oscillators in the strong coupling regime; here, it is
evident that the splitting is much greater than the dissipation or spectral widths of
the oscillators, as compared to Fig. 6.1(b) where the gap is unresolvable.

Although our analysis has been purely classical, we note that a fully quantum
mechanical derivation ends in the same results and observable physics [168, 187].
Furthermore, the general consideration of driving forces in Eq. 6.1 leads to a wealth
of resonant phenomena. Thus, the classical coupled harmonic oscillator model is
extremely robust and applicable to for analyzing ENZ thin films coupled to plasmonic

antennas.

6.2 ENZ Mode in Aluminum-doped Zinc Oxide Thin Films

As shown in Fig. 6.2a, the sample consists of gold nanorod antenna arrays de-
posited onto a 23-nm-thick aluminum-doped zinc oxide (Al:ZnO) film. Al:ZnO films
were deposited onto glass substrates using pulsed laser deposition (PVD Products,
Inc.). Briefly, a 2wt% doped Al:ZnO target (99.99% purity) target was ablated using
a KrF excimer laser (Lambda Phsik, GmbH) operating at a wavelength of 248 nm,
an at target fluence of 1.5 J/cm?, and a repetition rate of 5 Hz. The deposition tem-
perature was fixed at 90° C to set the ENZ wavelength near 1400 nm. Gold antennas
were then fabricated on the Al:ZnO film by spin coating positive electron beam resist
(ZEP 520 A) at 4000 rpm and then exposed by electron lithography (Vistec VB6).
The beam energy and current was 100 kV and 1.012 nA, respectively. We deposited
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a 30-nm-thick gold film on the resist using electron beam evaporation. The entire
sample was then developed in ZED-N50 for 1 minute and then dipped in isopropyl
alcohol for 30s to remove remaining ZED-N50. Antenna arrays consisted of nanorods
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Figure 6.2. Plasmonic-ENZ System. (a) Schematic of the plasmonic
antenna on an ENZ film, along with pictorial depiction of the an-
tenna and ENZ film as two coupled harmonic oscillators. (b) SEM
image of the gold nanoantennas deposited on a 23-nm-thick Al:ZnO
film. (c) Real (black line, left axis) and imaginary (red line, right
axis) dielectric constants of the Al:ZnO flim retrieved with spectro-
scopic ellipsometry, where the ENZ wavelength of 1440 nm is indicated
with a dashed black line. (d) Dispersion relation of the air-ENZ-glass
three-layered system (see inset). The long (short) range plasmon is in-
dicated with a blue(red) line. The long range plasmon approaches the
screened plasma frequency (i.e. ENZ wavelength) for large wavevec-
tors 3, as indicated by the nearly flat dispersion. The solid blue line
indicates the mode bound to the film, while the dashed blue line is a
wave which leaks into the substrate.
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of 30 nm thickness, 110 nm widths, and varying lengths of 300, 350, ..., 650 nm; the
period of the antenna arrays were set to 800 nm and 1200 nm in the parallel and
perpendicular direction, respectively, of the antenna’s long axis. Fig. 6.2b shows an
exemplary scanning electron microscope image of an array of 600 nm nanorods.

The optical properties of the Al:ZnO film was characterized by spectroscopic el-
lipsometry (V-Vase, J.A. Woollam) over a spectral range of 800 to 2500 nm. The
dielectric constants were retrieved by fitting a Drude oscillator model to the mea-
sured ellipsometer parameters (see Fig. 6.2c). We find the bare Al:ZnO film has a
ENZ permittivity of egyz = 0.0 + 0.3¢ at Agyz = 1440 nm. To find the dispersion
of the ENZ mode of our bare Al:ZnO film, we solve the following dispersion equation

for modes of a three layer structure

F(B,w) =1+ 5 _jtan(kd) (% + ﬂ) ~0. (6.5)

€371 €3R €271

In Eq. 6.5, w is the angular frequency, 3 is the transverse wavenumber, k2 = w?/c? is
the free space wavenumber, v, 3 = +4/€13k2 — 5% are the longitudinal wavenumber
in the superstrate (i = 1) and superstrate (i = 3), and k = /8% — €k2 is the
longitudinal wavenumber in the Al:ZnO layer. Here, we choose to solve Eq. 6.5
using a real [, complex w approach in order to capture the transient radiative decay
behavior of the ENZ mode. Solutions of Eq. 6.5 reside on a four-sheet Reimann
surface, where each sheet is characterized by a particular choice of ~; 3 sign. Fig. 6.2d
shows solutions of Eq. 6.5 (i.e. dispersion curves) for both modes bound to the Al:ZnO
film—(—~1,—73), solid lines—and modes which couple to free-space radiation in the
glass substrate—(—~1,+73), dashed lines—in addition to the long (blue lines) and
short (red line) range surface plasmons. It is evident that the bound long range mode
is an ENZ mode since the dispersion is nearly flat for a large range of transverse
wavevectors (§ near the screened plasma frequency (i.e. plasma wavelength). Note
that the transition from ”substrate-leaky” to bound modes occur at wavevectors close
to the dispersion curve of the glass substrate (Fig. 6.2a, solid black line). Although
the film thickness satisfies the necessary condition of an ENZ mode (¢ < A\y/50) [58],

the long range mode does not lie exactly at the ENZ frequency as observed for the
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2-nm Drude film in Fig. 3.1. Therefore, we expect the resonance of the film to be
slightly red-shifted from the exact ENZ wavelength. To investigate the coupling of

FDTD Simulations Experimental Transmission
a) ' ' T - - - b)

20 \ 20

— 300
— 350
———400
450
500
550
~———600
—— 650

0.8

0.4

1000 1200 1400 1600 1800 2000 2200 2400 1000 1200 1400 1600 1800 2000 2200 2400
Wavelength (nm) Wavelength (nm)
C) 0.9000 d)
2400
0.8000 X
2200
E 2000 0.7000 E
£ £
£ 1800 06000 £
c c
K] K]
[ [
5 1600 05000 z
= =
1400
0.4000
1200 —
0.3000
1000
3 8 2 ] 2 ] 8 B 8 8 8 8 8 8
™ < - w w ©o - © - - w w © o

Antenna Length (nm) Antenna Length (nm)

Figure 6.3. Transmission spectra of antennas on ultrathin ENZ film.
(a) FDTD and (b) experimental transmission spectra of gold plas-
monic antennas on 23 nm-thick Al:ZnO film. Transmission curves
correspond to different antenna lengths and are separated for clar-
ity. Triangles and diamonds correspond to the minimum transmission
wavelength for the antenna and ENZ mode, respectively. (¢) FDTD
and (d) experimental color maps of the transmission as a function of
antenna length and wavelength. Anti crossing behavior is observed
near the ENZ wavelength of 1440 nm.

the plasmonic antenna and the ENZ modes, transmission spectra were collected for
antenna arrays of varying lengths using normal incident light polarized along the

long axis of the antennas. In addition, 3D finite difference time domain (FDTD)
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simulations were performed to calculate the theoretical transmission spectrum of the
antenna array. Fig. 6.3 shows the numerical (a) and experimental (b) transmission
curves for different antenna lengths, separated by a constant offset for clarity. Two
resonance dips are observed. The first, shorter wavelength dip corresponds to the
antenna resonance, as verified with numerical simulations of antennas on bare glass;
the second, longer wavelength dip is the ENZ mode. The transmission minima are
marked with triangles (antenna) and diamonds (ENZ) and their shifts are tracked
with dotted lines to highlight the splitting behavior of the two modes. Color maps of
the resonances for FDTD and experimental transmission measurements are shown in
Fig. 6.3(c) and (d), respectively. Here, we can see a strong anti-crossing behavior of
the resonance near the ENZ wavelength of 1440 nm with a gap which appears well
resolvable from the line widths of the two resonances. Using the coupled harmonic
oscillator model, we fit the experimental resonance minimas of both the antenna
mode (lower branch) and the ENZ mode (upper branch) to real portion of Eq. 6.2
where the value of g is our variable parameter. The results of our fit are displayed in
Fig. 6.4, and we extract a coupling constant of g = 143.55 meV (178 nm). Indeed,
this coupling constant value satisfies the strong coupling condition (Eq. 6.4) and
corresponds to a Rabi frequency of Q0 = 218.39 THz. The Rabi frequency is the rate
at which energy is transfered between the antenna and ENZ mode and, within the
strong coupling regime, should be observable as a beating pattern in the electric field
in either single oscillator before damping suppresses the resonances. As an estimate,
we calculate the ratio of the couping constant and the average decay rate and find
Qr/ (v) = 2.636. Therefore, the mode at the strong coupling wavelength should
oscillate between the antenna and the ENZ mode roughly three times before the
fields dissipate. Experimentally, this feature could be resolved via ultrafast pump-
probe studies provided that the probe was short enough to resolve the Rabi oscillations
in either the antenna or ENZ mode. We can estimate the pulse width by calculating

the period of Rabi oscillations as Tg = 27/Q g = 28.7 fs. Sub-20-fs pulses are easily
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Figure 6.4. Wavelengths of the transmission minimum as a function
of antenna length. Blue (Red) dots: minimum experimental transmis-
sion of ENZ (antenna) mode . Blue (Red) line: theoretical fit of the
coupled harmonic oscillator model to the ENZ (antenna) mode. Black
horizontal dashed (dashed dot) line: uncoupled resonance wavelength
of the ENZ (antenna) mode. Extracted g value (in wavelengths) in-
dicated by the purple arrow at the anti crossing point. Inset shows
the pictorial description of the coupled harmonic oscillator model.

achieved using highly compressed broadband sources, so it is conceivable to measure
these Rabi oscillations directly.

The coupling mechanism between the antenna and ENZ film is the overlap of the
film with the antenna’s electric field z-component (E.). The dispersion of the ENZ

mode (Fig. 6.3d) indicates a large spectrum of transverse momentum components



83

0 by Transmission .., Reflection <.

( Ant(inna )
. Gapn (9)

Gap (nm)

3

1000
1250

8
3

2250
2500

8
8
8

2

Wavelength (nm)

d)

Antenna

3 2 S 2
8 8
8 38 5

3
2 8
S g
8 &

g
Wavelength (nm) Wavelength (nm)

Figure 6.5. FDTD transmission and reflection spectra of ENZ-
nanorod array. (a) Illustration of FDTD simulation for varying gap
sizes. (b) Transmission and (c) reflection of ENZ-nanorod array as a
function of the distance (d) between the antenna and the ENZ film.
(d) Hlustration of FDTD simulations for varying ENZ film thickness.
(e) Transmission and (f) reflection of ENZ-nanorod array as a function
of varying ENZ film thickness.

(B) are supported at the ENZ frequency beyond the light-line of both air and glass.
These momentum correspond to strong gradients and highly confined z-components
of the electric field. In the near-field vicinity of a plasmonic antennas, the scattered
field is primary radial and the fields support large wave vectors. Therefore, we ex-
pect the coupling to be strongly dependent on the antenna-to-ENZ film distance (d).
We numerically investigate this feature by performing FDTD simulations of L = 400
nm antennas (anti crossing length) with a varying antenna-ENZ film gap distance
(schematic shown in Fig. 6.5(a)). In Fig. 6.5, we plot color maps of both the trans-
mission (a) and reflection (b) of the antenna array for increasing gap distance. For

distances greater than 15 nm, the strong coupling condition is no longer satisfied and



84

the two resonances are no longer resolvable. As a second numerical test, we vary the
thickness of the ENZ layer (schematic shown in Fig. 6.5d). For larger film thickness,
the ENZ mode no longer supports a broad range of transverse momentum at the ENZ
frequency, so the antenna will not couple effectively. An alternative picture is based on
field penetration. For larger thickness, the electric field of the antenna will no longer
penetrate to the opposite interface and the resulting surface charge density will be
insufficient to provide a strong restoring force to support the oscillations. Fig. 6.5
shows transmission (e) and reflection(f) color maps of the L = 400 nm antenna array
for varying film thickness. In contrast to variation of gap distance, the separation
between the resonances grows with film thickness; however, the ENZ mode exhibits
a strong decay in amplitude for larger thickness. The latter of these effects agrees, at
least qualitatively, well with our understanding of field penetration decay for thicker
films. What is interesting is both the observation of a linear increase in the mode
splitting and the periodic beating pattern of the ENZ resonance. The origin of these

effects remain to be understood and will be studied in future experiments.

6.3 Conclusions

In summary, we have demonstrated strong coupling between plasmonic antennas
and ENZ modes supported by an ultrathin film of Al:ZnO. The system has a Rabi
frequency of Qg = 218.39 THz, which is 2.636 times larger than the systems aver-
age dissipation rates. Therefore, we expect these oscillations should be observable
with ultrafast pump-probe experiments, provided the probe width is less than 20 fs.
We have shown that sufficient electric field z-components are necessary for efficient
coupling into the ENZ mode. Our results are general, and we expect similar strong
coupling phenomena are present in any near-field scattering element and an ENZ
film. Improved coupling is possible by either engineering the scatterer to provide
large momentum components, or alternatively, by reducing the loss in either the ENZ

film or scattering element. The former possibility could be achieved by moving into
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the mid-infrared wavelengths where losses in materials such as SiC are considerably
smaller than TCOs; alternatively, TCOs such as dysprosium-doped cadmium oxide
have been shown to have losses smaller than either Al:ZnO, Ga:ZnO or ITO. Losses in
the scattering element could also be reduced with dielectric antennas, which have ex-
tremely narrow line widths but lower electric field amplitudes. This trade off between
loss and field amplitude in dielectric resonators is the direction of future studies.

A further direction for consideration is utilizing this system for enhancing nonlin-
ear interactions in the TCO. As we have already seen, the nonlinear enhancement is
directly related to the strength of the optical field inside the TCO layer. However,
coupling into this layer is difficult unless operating at the angle corresponding to the
FIE maximum. Plasmon antennas which are strongly coupled to the ENZ mode
provide a direct method for cycling large fields into the TCO layer though the Rabi
oscillations. Evidence for this effect has already been suggested in a study of similar
antennas on a thin ITO layer [76]. However, it remains a substantial challenge to not
only understand theoretically if the nonlinear enhancement is possible, but to opti-
mize the antenna coupling. Antennas which generate strong near-field components
could potentially maximize the coupling. Alternatively, TCOs with lower loss factors
would sustain the Rabi oscillations for longer periods of time, thereby increasing the

interaction time.
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7. OUTLOOK AND CONCLUSIONS

This thesis has focused on the study of epsilon-near-zero ultrafast, nonlinear, and
strongly coupled physics utilizing transparent conducting oxide platforms. Its content
provides a comprehensive discourse of my primary PhD research and reflects my
attempt at a coherent illustration of ENZ phenomena and applications. At this
point, I wish to depart from a standard summary—the information is found at each
chapter’s end—and focus on future directions for TCO-based ENZ research.

A central theme of epsilon-near-zero effects in transparent conducting oxides is
their optical loss. The physical origin of loss in a TCO is electron scattering, predom-
inately from crystal defects present in the lattice. Unfortunately, as we have discussed,
defects are a necessary evil to induce a sufficient carrier density and achieve plasma
frequencies at the high-energy spectrum of the infrared [29,31]. Careful balance of
crystallinity and dopant concentrations is a promising route for achieving low-loss
TCOs, as recenly shown in crystalline Ga:ZnO on sapphire [188-190] and doped cad-
mium oxides [71,191]. Unfortunately, these materials still can not achieve ENZ wave-
lengths less than 2000 nm, (i.e. carrier concentrations greater than 10?2 cm=3). To
date, the concentrations achieved in crystalline oxides are only achievable in heavily-
doped, poly-crystalline metal oxide films which have defect states (e.g. oxygen and
hydrogen) which contribute additional free carriers—along with loss. However, novel
conducting oxides continue to develope at a prolific rate, and with modern advance-
ments in both fabrication and theoretical modeling of complex material, it is possible
that a low-loss, visibile/near-infrared ENZ platform is achievable.

An alternatively approach to mitigating loss is to accept the low carrier concen-
trations and develop TCOs for ENZ applications at mid-infrared wavelengths. Here,
optical loss is bound by Landau damping, which is modest at low carrier concentra-

tions [192,193]. Although near-infrared wavelengths are the predominant choice for
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telecommunication applications, the mid-infrared spectrum pertains to phenomena
such as blackbody radiation. Here, TCOs with a mid-infrared ENZ wavelength could
be used for controlling and manipulating thermal radiation. Indeed, recent work has
demonstrated the potential to tailor the spectral emission of a hot ENZ material [69].
It may even be possible to control this response on an ultrafast scale utilizing the
femtosecond recombination rates of conducting oxides.

Beyond materials, we have emphasized the application of ENZ for enhancing a
broad range of nonlinear interactions. It should be noted that one key reason for the
enhancement of the nonlinear phenomena should be the reduction in group-velocity
as we have discussed in Chapter 3. Essentially, a near-zero permittivity material will
efficiently capture the optical field energy, allowing for an increased light-matter in-
teraction [96]. Slow-light nonlinear enhancement is largely unexplored experimentally
and is, therefore, a pertinent feature of future nonlinear ENZ research.

From an experimentalist’s point of view and as a closing comment, a thorough
theoretical description of the nonlinear enhancement in various ENZ materials would
greatly benefit future research. Namely, it remains an open question as to whether
perturbation theory applies when the nonlinear corrections are comparable to the
linear terms [77,81,82]. In addition, there is likely a significant non-local contribution,
especially in ultrathin films supporting ENZ/Berrreman modes, near the crossover
wavelength which has yet to be investigated. Hydrodynamic models which account
for both nonlinear and non-local contributions in dilute plasma could possibly provide
deeper insight into these questions [86,194-196].

From an application point of view, ENZ-enhanced nonlinearities represent a very
exciting research direction. The large nonlinearities which have been observed in
TCO films could potentially enable extremely fast and efficient modulators for on-
chip nanophotonic applications where ultra-small propagation lengths mitigate the
inherent loss factor [77]. Combining ENZ materials with resonant structures may
provide avenues for the exploration of strong coupling, which may be useful for con-

trolling emission and for further enhancing the tunability of devices. Particularly, it
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would be interesting to explore LI strong coupling in the context of Fano Resonances,
Embedded Eigenstates, and Bound States in the Continuum for photonic and plas-
monic systems where loss versus coupling strength can be controlled [185,197,198].
ENZ can be seen as a unique platform to couple materials development with optical

science to advance both fundamental and application-driven research.
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