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ABSTRACT

Migliorino, Mario Tindaro PhD, Purdue University, December 2018. Numerical and
Theoretical Modeling of Thermoacoustic Instabilities in Transcritical Fluids . Major
Professor: Carlo Scalo, School of Mechanical Engineering.

Enhancements of gas turbine engines efficiency are critical for the development of

the next generation of clean and efficient aircraft. With the increase in combustion

temperatures, cooling of the turbine blades poses one of the most important thermal

management issues. The current and most adopted solution is to flow cooling air

bled from the compressor through channels inside turbine blades. Fuel preheating,

meant to increase combustion efficiency, could be used to cool such air flow in fuel-air

heat exchangers. However, when fuel thermodynamic states approach supercritical

pressures and temperatures, large amplitude oscillations have been known to occur

with catastrophic hardware failures. For this reason, the use of supercritical fuels in

fuel-air heat exchangers has been avoided, thereby reducing the fuel’s cooling poten-

tial and the overall efficiency of the aircraft. Engine manufacturers desire a model

capable of predicting the onset of such disruptive thermoacoustic oscillations. To this

goal, we study theoretically and numerically transcritical thermoacoustic oscillations,

i.e., thermoacoustic instabilities manifesting themselves when a fluid is heated close

to its critical point, where abrupt changes of thermodynamic properties appear. De-

tails of this work will be on the development of a transcritical thermoacoustic theory

and on numerical results from linear stability analysis and high-fidelity Navier-Stokes

simulations. Meeting the needs of industry and with the intent of pushing technolog-

ical and scientific barriers, we propose to exploit such powerful oscillations for energy

conversion through the use of the first-ever-built transcritical thermoacoustic engine.
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1. INTRODUCTION

This chapter begins, in §1.1, with an introduction on thermoacoustic instabilities

found in heat exchangers, and their relevance to gas turbine applications. Previous

experiments performed by Palumbo [1], described in §1.2, are numerically modeled

in §1.3 (this work led to a U.S. patent application [2]). Finally, §1.4 describes the

objectives and outline of this doctoral work. The assistance of Dr. Steven Hunt in

the writing of §1.1 and §1.2 is deeply appreciated. The reader will find more details

about previous work in thermoacoustic oscillations is his PhD thesis [3].

1.1 Thermoacoustic Instabilities in Heat Exchangers and Relevance to

Gas Turbine Applications

Increased combustion temperatures of modern gas turbine engines pose cooling

issues for turbine blades. Many current engines flow cooling air through channels

inside turbine blades, bled from the engine’s compressor. Cooling air can exit the

compressor in excess of 600-1000◦F, and although it is much colder than the turbine

blades, it could better cool the turbine if its temperature were reduced before en-

tering the turbine. Fuel in aeronautical applications is typically stored in subcritical

temperature conditions (e.g., in the wings of an airplane at cruising conditions where

outside air temperatures reach −50 ℃) under high pressures, due to the pumping

power necessary to allow fuel to be delivered to the engines. Therefore, an aircraft’s

liquid fuel offers a large heat sink potential for turbine cooling air through use of a fuel-

air heat exchanger (Fig. 1.1). In addition to improved turbine cooling, the elevated

fuel temperatures associated with such a design can improve an engine’s combustion

efficiency [4]. However, when fuel temperatures approach the supercritical regime,

large pressure oscillations have been known to occur within fuel flow paths [1, 5–10].
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Figure 1.1. Core section of a Rolls-Royce Turboméca Adour turbofan
displayed at the Musée de l’Air in Paris, France.

Such oscillations can damage heat exchanger components. For this reason, the use of

supercritical fuels in fuel-air heat exchangers has been avoided, thereby reducing the

fuel’s cooling potential. Engine manufacturers desire a model capable of predicting

the onset of pressure oscillations, so that the cooling potential of aircraft fuel may be

exploited to its greatest potential.

Supercritical fuel oscillations are known to occur at different oscillation modes.

Researchers have observed two distinct types of oscillations near the critical point in-

cluding bulk-mode oscillations (also known as Helmholtz or pulsating oscillations) and

acoustic-scale oscillations. Helmholtz oscillations occurred with high amplitude and

low frequency (0.5-3 Hz), whereas acoustic oscillations occurred with low amplitude

and high frequency (75-2,000 Hz). A previous work by Hunt and Heister [11] com-

pares test conditions and corresponding results from several publications. Hines and

Wolf [5] performed early experiments to show thermoacoustic oscillations in supercrit-
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ical fuels. They tested turbulent flows of supercritical RP-1 and diethylcyclohexane

(DECH) through thin-walled tubes designed to replicate flowpaths found in rocket

cooling jackets. Oscillations were often audible in their tests; oscillations of well-

defined frequency with uniform amplitude caused a sound described as a clear and

steady scream, whereas oscillations of varying amplitude caused chugging or pulsing

noises. Dominant frequencies encountered ranged from 1000-7500 Hz, and pressure

amplitudes ranged from 50-380 psi. They unsuccessfully attempted to eliminate these

oscillations by placing the tube in cement to damp the vibrations during a run. Linne

et al. [9] performed a design of experiments to generate a statistical model predicting

the stability of a flow. Their tests involved supercritical JP-7 fuel flowing through

a vertical, resistively-heated tube. Five independent variables were selected for this

study: test section length, test section inside diameter, mass flow rate, inlet fluid

temperature, and heat flux. Buoyancy was originally proposed as a driver of oscil-

lations, but based on the Reynolds and Grashof numbers calculated, buoyancy was

deemed negligible for all tests. Their stability analysis was based on the magnitude

of RMS pressure. RMS waveforms led to probability distributions of fluid pressure

occurring in each test case. The authors arbitrarily selected an RMS pressure of 10

psi as the threshold between a stable and an unstable condition. The model correctly

predicted most, but not all, test points as being stable or unstable. Faith et al. [6]

experimented with supercritical Jet-A fuel, flowing it through one of several types

of resistively-heated tubes. Mean pressure was varied between tests. Heat transfer

power was increased over a 5-10 minute period until oscillations began. Oscillations

manifested in the form of whistling noises. Pressure fluctuations ranged up to 350 psi.

Primary frequencies varied between 1000 and 5000 Hz. Hitch and Karpuk [7] studied

vertical flow of MCH and JP-7 through a tube heated by band heaters. They ob-

served two distinct types of oscillations near the critical point: Helmholtz oscillations

(also known as bulk-mode oscillations) and acoustic-scale oscillations. Helmholtz os-

cillations occurred with high amplitude at frequencies from 1-2 Hz, whereas acoustic

oscillations occurred with low amplitude at frequencies of 75-450 Hz. Flows were
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always stable when the fluid pressure was much higher than the critical pressure.

Aiming to eliminate oscillations and increase heat transfer, Hitch and Karpuk tested

several turbulating inserts: a twisted-tape insert, a louvered-tape insert, and a static

mixer. All three inserts were found to increase the heat transfer coefficient over that

of a basic tube. The static mixer caused the largest heat transfer improvement, and

reduced Helmholtz oscillations substantially. Flow stability could be maintained with

a static mixer until pressure was reduced to less than 1.1 times the critical pressure.

Hitch and Karpuk successfully eliminated oscillations even below the critical pressure

by using a damping valve to cause a flow restriction before the test section.

1.2 Previous Experimental Work at the Zucrow Labs

Herring’s [10] research was aimed at developing a robust and high-performance

fuel-air heat exchanger able to accept fuels near or above the supercritical point. Su-

percritical JP-10 flowed through a single resistively-heated tube in his experimental

tests. Independent variables included inlet temperature, mass flow rate, input power,

heated length, and total pipe length. This study also tested vertical and horizontal

flows to determine the effect of buoyancy, and several types of wire coil inserts in an

attempt to improve heat transfer and suppress oscillations. Similar to the results of

Hitch and Karpuk, Herring observed bulk-mode oscillations for reduced pressures up

to 1.5. Like many other experimenters, Herring only experienced oscillations when

the wall temperature was above the pseudocritical temperature and the fuel inlet

temperature was below. Unlike the results of Hitch and Karpuk, however, the use of

an upstream damping valve did not prevent bulk-mode oscillations. Herring postu-

lated the dissimilarity was due to the different flow systems used: Hitch and Karpuk

used a pump-fed system, so the upstream section could be considered incompressible;

Herring (and Linne et al.) drove flows with high-pressure gaseous nitrogen, which

could apply a restoring force causing Helmholtz oscillations.
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Fig. 1.2 shows the flow path in the facility hardware used by Palumbo [1]. Methanol,

loaded into the run tank and pressurized, flows to a filter and then an electric pre-

heater. The preheated fuel then enters the test section, which consists of a tube un-

dergoing electric resistance heating. The test section is electrically insulated on each

end with isolation flanges. Downstream of the test section, the fluid passes through

a cooling bath, filter, flow control valve, sampling station, and finally a waste drum.
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Figure 1.2. Flow path and mean fluid temperature distribution high-
lighted on Palumbo’s rig [1].

Kulite pressure transducers were placed in the inlet and outlet plenum. Data

recorded during experiments were sampled at 4 KHz. The chosen reduced pressures

of 1.0, 1.2, and 1.4 correspond to pressures of 1175, 1410, and 1645 psi.

Thermoacoustic oscillations were recorded. Those are most prominently displayed

in pressure traces near the test section tube and the mass flow rate measurements.

Throughout the test campaign, similar to previous studies, two modes of oscillations

were detected: the acoustic mode, characterized by frequencies of 100-500 Hz; and

the bulk mode, characterized by frequencies from 1-5 Hz. Bulk mode oscillations
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Figure 1.3. Mean-subtracted mass flow rate and tube inlet pressure
(bottom) for a sample selected case: Q̇ =550W, Din =0.069in, ` =6in,
ṁ =5lb/hr, pr =1.2.

tend to have amplitudes of over one order of magnitude larger than the acoustic

mode. The case illustrated in Fig. 1.3 is representative of the test campaign; both

oscillation modes are present, but the bulk mode dominates. Pressure and mass flow

rate measurements match in bulk-mode frequency, but are offset by a constant phase

lag. This behavior suggests that the instability is a system-wide phenomenon.

1.3 One-Dimensional Thermoacoustic System in Transcritical Conditions

When transcritical fuel is heated through a heat exchanger, destructive high am-

plitude pressure oscillations can be detected. Configurations can be stable or unstable

depending on the particular fluid, the heat released, the geometry of the setup and

other parameters. Fluid dynamic instabilities commonly occurring in these highly

pressurized systems are called thermoacoustic instabilities and typically also occur in

thermoacoustic devices. Thermoacoustic devices are capable of spontaneously gener-
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ating acoustic power in the presence of an external temperature differential imposed

on the walls of a sealed duct. Wave-induced, quasi-isentropic compressions and dilata-

tions work against the background temperature gradient, spontaneously converting

heat into acoustic power and are, thus, self-amplifying. Highly pressurized fluids are

usually employed to increase the thermal to acoustic conversion efficiency.

We claim that steady-state acoustic power generation of thermoacoustically unsta-

ble ducts corresponds to pressure oscillations observed in unstable heat exchangers.

The main driving phenomenon is the large variation of fluid density with temperature

at supercritical pressures and for temperatures close to the critical temperature. In

order to assess the stability region of fuel heat exchangers, a relationship between

dimensionless critical heat release rate and dimensionless mean pressure can be used

(derived from a Buckingham Pi theorem). This is an empirically-based method. A

second, physics-based method, can be derived considering thermoacoustic devices. A

conceptual connection must be performed between dimensionless critical heat and di-

mensionless critical temperature. The latter is the difference in wall temperature that

entails instability for a thermoacoustic device. Furthermore, a conceptual connection

must be performed between dimensionless mean pressure and other parameters of the

latter device.

A sealed duct in figure 1.4 comprises a tube and a stack, a very efficient heat

exchanger.

Figure 1.4. A thermoacoustic device. A linear temperature profile is
imposed inside the stack, between a high temperature Th and a base tem-
perature Ta.
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The temperature profile
T0 = Thot 0 ≤ x ≤ l1

T0 = Thot + Thot−Tcold
l1−l2 (x− l1) l1 < x < l2

T0 = Tcold l2 ≤ x ≤ L

is imposed to the fluid.

Depending on the geometry, the fluid, and ∆T = Th − Ta = Thot − Tcold, the

device can be stable or unstable. In the case of instability, pressure oscillations can

be detected. If the device is unstable, it means that ∆T exceeds ∆Tmin, the minimum

temperature difference for the onset of instability. Here we fix the length of the setup

at L0=0.5m long and the stack is from 0.05m to 0.175m (12.5cm long). All simulations

are considered with uniform pressure p0 ≥ pc.

In the stack, the heat flux between solid and fluid is approximated by a simplified

heat release source term that is in phase with temperature fluctuations. Although this

is not what happens in reality, this is a good approximation in many cases. We use

a linearized version of the Peng-Robinson equation of state together with linearized

Navier-Stokes equations to derive a model that can predict thermoacoustic instability

for real gases. A first order expansion of the variables can be assumed

ρ = ρ0(x)+ρ′(x, t), T = T0(x)+T ′(x, t), p = p0+p′(x, t), u = u0+u′(x, t), (1.1)

in which a mean value only dependent on space is added to a fluctuation time and

space dependent in order to get the full variable. After some derivations, four equa-

tions can be obtained, containing the linearized Navier-Stokes equations and the

equation of state.

We model the thermoacoustic system in figure 1.4 with a one-dimensional geome-

try employing a previously used stack model [12] .The latter consists in source terms

that model the heat exchange happening in the stack of a thermoacoustic engine.

The momentum source term is

F = −(RC +RFu)u, (1.2)
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which linearized is

F = −RCu, (1.3)

with

RC = Csfµ
1− φ
4d2

wφ
, (1.4)

RF =
ρCfd
4dw

, (1.5)

rh =
dwφ

4(1− φ)
, (1.6)

where rh is the hydraulic radius of the pores of the stack, dw is the mesh wire size, φ is

the porosity, Cfd, Csf are dimensionless fitting constants from metal felts correlations.

The energy source term is in phase with temperature fluctuations

Q̇ = −uF − q̃(T − T0), (1.7)

which linearized is

Q̇ = −q̃(T − T0), (1.8)

where the heat release parameter is heuristically how much total energy varies with

temperature at constant volume (ρcv) over a time scale

q̃ =
ρcv
τh
, (1.9)

where the characteristic time scale for heat transfer in the pores is

τh =
r2
h

k/(ρcp)
=
r2
hρPr

µ
, (1.10)

valid for every t > 0. The parameter q̃ is therefore

q̃ =
ρcv
r2h

k/(ρcp)

=
k

r2
hγ
, (1.11)

and it has dimensions of power per unit volume per unit Kelvin (W/m3K). This

model is expected to be accurate within an order of magnitude.

The source terms,

F = −bu3, Q̇ = −α(T − T0), (1.12)
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become, in linearized form,

F = −RC0u
′, Q̇ = − k0

r2
hγ0

T ′, (1.13)

where the heat source is active only in the stack.

If we assume the harmonic dependence

p′ = p̂(x)ejωt, u′ = û(x)ejωt, T ′ = T̂ (x)ejωt, ρ′ = ρ̂(x)ejωt, (1.14)

and consider as given the reference quantities and their spatial gradients, we can

eliminate the time dependence and solve an eigenvalue problem in the matrix form

Av̂ = λBv̂, (1.15)
A11 A12 A13

A21 A22 A23

A31 A32 A33



p̂

û

T̂

 = jω


γ0

ρ0a0
2

0 −αp0
u0γ0

a0
2

ρ0 −u0ρ0αp0

0 0 1/T0



p̂

û

T̂

 , (1.16)



A11 = −u0

ρ0

(
dγ0/a0

2

dx
+

γ0

a0
2
Dp
)

A12 = −Du −
d ln ρ0

dx

A13 =
u0

ρ0

(
ρ0αp0Dp +

dρ0αp0
dx

)
A21 = −u2

0(
dγ0/a0

2

dx
+

γ0

a0
2
Dp)−Dp

A22 = −2ρ0u0Du − 2ρ0u0
d ln ρ0

dx
+

4

3

(
dµ0

dx
Du + µ0D2

u

)
−RC0

A23 = u2
0(ρ0αp0Dp +

dρ0αp0
dx

)

A31 = − γ0u0

ρ0a0
2

d lnT0

dx

A32 = −d lnT0

dx
− γ0 − 1

αp0T0

Du

A33 = −u0

T0

Dp + u0αp0
d lnT0

dx
+

k0

ρ0cv0T0

D2
p +

1

ρ0cv0T0

dk0

dx
Dp −

q

ρ0cv0T0

T̂ ,

(1.17)

which is a generalized eigenvalue problem.
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Figure 1.5. Transcritical stability profile. Volumetric power, needed
to generate instability in a transcritical thermoacoustic device, is plotted
versus mean pressure p0. Six different fluids exhibit stability regions below
approximately straight lines.

The heat exchanger stable region can be alternatively assessed with the analysis of

the aforementioned analogous thermoacoustic system, under fluid dynamic instability,

exhibiting the transcritical stability profile in figure 1.5. The volumetric power Q̇in

(on the y axis in figure 1) is the heat per unit time per unit volume absorbed by the

fluid in the analogous system. It can be calculated, from relevant design/operational

parameters of the fuel heat exchanger, following a heat transfer formula. The heat

transfer formula is as follows:

Q̇in = Nu
4k̄

D2γ̄
∆T, (1.18)

where the temperature difference between inlet and outlet of the heat exchanger is

∆T = Toutlet − Tinlet, (1.19)
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Table 1.1.
Sample values for methanol at pressure p0 = 8.527 MPa.

inlet outlet mean

T (K) 507.514 1141.658 824.586

ρ (kg/m3) 318.326 28.301 173.314

µ (10−5Pa · s) 4.223 2.784 3.504

k (W/(m ·K)) 0.1403 0.114 0.127

cp (J/(kg ·K)) 11760.333 3104.363 7432.348

γ 5.333 1.109 3.221

and where the Nusselt number for forced convection (Dittus-Boelter equation) is

Nu = 0.023 Re0.8 Pr0.4, (1.20)

where the Reynolds number is

Re =
4ṁ

πDµ̄
, (1.21)

and the Prandtl number is

Pr =
c̄pµ̄

k̄
, (1.22)

and µ is the dynamic viscosity, k the thermal conductivity, cp and cv the specific

isobaric and isochoric heat coefficients, respectively, γ = cp/cv, D is the diameter of

the duct, and ṁ is the fuel mass flow rate. A bar over a quantity indicates that it

has been averaged between its values at the inlet and at the outlet of the tube,

ϕ̄ =
ϕoutlet + ϕinlet

2
, (1.23)

where ϕ is a generic variable.
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1.4 Research Objectives and Dissertation Outline

The goal of the present doctoral effort is to develop high-quality theoretical and

numerical simulation tools to investigate, model, and understand thermoacoustic in-

stabilities in transcritical fluids. An outline of the document is as follows.

Chapter 2 provides details regarding transcritical fluids (§2.1), real-fluid models

(§2.2), the governing equations for a fully compressible flow, in their nonlinear (§2.3)

and linearized form (§2.4, §2.5), the acoustic (§2.6) and total energy budgets (§2.7),

and a non-iterative method to obtain temperature from conserved variables (§2.8).

Chapter 3 starts off with §3.1, where the importance of supercritical flow simula-

tions is underlined. Numerical simulations, employing the numerical setup described

in §3.2, are then analyzed in §3.3, where results on traveling entropy wave (1D,

§3.3.1), falling supercritical blob (2D, §3.3.2), and turbulent channel flow (3D, §3.3.3)

are presented.

Chapter 4 is organized as follows. After a an introduction regarding thermoa-

coustic instabilities (§4.1), the problem formulation (§4.2) is proposed, starting with

the selection of thermodynamic conditions employed in the Navier-Stokes simula-

tions (§4.2.1), followed by the description of the computational setup (§4.2.2), and

by a grid sensitivity analysis (§4.2.3). Real-fluid effects are then discussed in §4.3,

namely on the frequencies (§4.3.1), growth rates (§4.3.2), and eigenmodes, in §4.3.3.

Then, the energy budgets are discussed in §4.4, with a first focus on the acoustic

energy budgets (§4.4.1), and then on the total energy budgets (§4.4.2). Finally, high

amplitude pressure oscillations are investigated in §4.5, first by describing the limit

cycle obtained with nonlinear area losses (§4.5.1), and then with the discussion of the

thermodynamic nonlinearities typical of transcritical fluids (§4.5.2).

Chapter 5 is about heat-release-induced waves in supercritical fluids. After an

introduction (§5.1), the chapter shows details regarding the problem formulation

(§5.2), comprising the selection of fluids (§5.2.1) and the computational setup (§5.2.2).

The derivation of a set of reference scaling parameters for all thermo-fluid-dynamic
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fluctuations yielding full collapse of isentropic acoustic (§5.3.1) and quasi-isentropic

heat-release-induced planar waves (§5.3.2, §5.3.3, §5.3.4) is presented in §5.3. A new

modeling strategy (§5.4), valid for a generic compressible fluid, is first derived in

§5.4.1, highlighting real-fluid effects on non-isentropic shock wave generation and

propagation. Finally, the model allows for a quantitative measure of the thermal to

mechanical power conversion efficiency (§5.4.2), and an assessment of its asymptotic

behavior for heat release rate tending to infinity (§5.4.3).

Chapter 6 provides a summary of all the results.
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2. REAL-FLUID THERMODYNAMICS AND FLOW EQUATIONS

2.1 Supercritical and Transcritical States

A supercritical state is reached when the fluid is at temperatures and pressures

exceeding its critical values, T > Tcr and p > pcr, respectively (figure 2.1a). Supercrit-

ical fluids share properties of both gases and liquids, in a seemingly homogeneous yet

ambiguous state of matter. In reality, there is a definable, even if smooth, transition

between pseudoliquid (or liquid-like) and pseudogaseous (or gaseous-like) conditions,

especially in the vicinity of the critical point, identifiable by the pseudoboiling (PB)

line, also termed the Fisher–Widom line [13]. The PB line is an extension of the gas-

liquid coexistence curve above the critical point [14] and is hereafter defined as the

locus of temperature and pressure values (Tpb > Tcr, ppb > pcr) at which the thermal

expansion coefficient of the fluid is maximum. A pseudo phase transition, or simply

pseudotransition, occurs, for example, when temperature changes from T < Tpb to

T > Tpb (or vice versa), for given pressure conditions p = ppb, hence crossing the PB

line in the p − T phase diagram. The goal of the present work is to investigate the

dynamics of thermoacoustics when the instantaneous temperature and density fields

fluctuate about such pseudoboiling conditions, also referred to as transcritical. Unlike

a subcritical phase change, there is no latent heat, intended in its standard definition,

since the pseudotransition takes place over a finite temperature range centered around

pseudoboiling (PB) conditions. While in the liquid- and gas-like supercritical states

molecules are homogeneously distributed in space with a well-defined mean free path,

during pseudotransition, heterogeneously distributed microscopic clusters of tightly

packed molecules are formed [15]. This results in abrupt changes in compressibility

and density (figure 2.2), and an intense increase in the heat capacity (figure 2.2),

with gas-like behavior retained in the voids between molecular clusters. This het-
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Figure 2.1. (a): phase diagram for carbon dioxide showing flooded con-
tours of reduced density ρ/ρcr, the critical point (T = Tcr, p = pcr),
and the supercritical regime (T > Tcr, p > pcr); (b): isobaric ther-
mal expansion coefficient (Eq. (2.11)) versus temperature for CO2 at
p/pcr = 1.02, 1.1, 1.2 modeled with the PR EoS (solid line) and as an
ideal gas (dashed line).

erogeneous microscopic distribution results in optical dispersion effects allowing the

experimental identification of pseudotransition [16,17].
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For a fixed pressure, starting from cold and heavy pseudo-liquid (PL), for in-

creasing temperatures the density dramatically falls trough a pseudo-boiling (PB)

process [13–15], after which the fluid transitions to a pseudo-gaseous (PG) state,

reaching eventually a near-ideal-gas state (IG) (figure 2.1b).

2.2 Real-Fluid Models

The equation of state (EoS) proposed by [18], hereinafter called PR EoS, is chosen

as real-fluid model because of its thermodynamic consistency, simplicity, and accuracy

for the parameter space explored in this study. The PR EoS relates pressure p,

temperature T , and density ρ via

p =
RuT

vm − bm
− αm

vm2 + 2vmbm − bm2 , (2.1)

where vm = Mm/ρ is the molar volume, Mm is the molar mass of the substance,

R = Ru/Mm where Ru = 8.314472 J ·mol−1K−1 is the universal gas constant, bm =

0.07780RuTcr/pcr, and the subscript “cr” indicates thermodynamic quantities at the

critical point. The last coefficient in Eq. (2.1) is

αm = 0.45724
Ru

2Tcr
2

pcr

(
1 +

(
0.37464 + 1.54226ω − 0.26992ω2

) (
1−

√
T/Tc

))2

(2.2)

where ω is the acentric factor of the substance. Real-fluid dynamic viscosity and

thermal conductivity are estimated via the method of [19].

Table 2.1.
Fluid properties relative to carbon dioxide.

fluid Tcr(K) pcr(MPa) ρcr(kg/m3) vmcr(cm3/mol) Mm(g/mol) ω

CO2 304.1282 7.3773 467.6 94.1189 44.01 0.225

All of the thermodynamic derivatives required by the current study, here omitted

for brevity, can be computed directly, retaining full thermodynamic consistency, from
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Figure 2.2. Top row: comparison between the Peng-Robinson equation
of state (solid lines) and data from the NIST database (circles) for CO2

at p = 1.01, 1.10, 1.20 pcr. Density ρ = ρ(T, p) on the left, and isobaric
specific heat cp(T, p) on the right, are shown as a function of temperature.
On the left, density as given by ideal gas law for the same pressure levels
is shown with dashed lines. Bottom row: comparison between Chung’s
method (solid lines) and data from the NIST database (circles) for CO2

at p = 1.01, 1.10, 1.20 pcr. Thermal conductivity, k = k(T, p), on the
left, and dynamic viscosity µ = µ(T, p), on the right, are shown versus
temperature.
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eq. (2.1). In particular, they can be used to compute any generic thermodynamic

quantity with the thermodynamic departure functions [20]. With this approach, a

first contribution at constant volume is given by assuming a thermodynamic trans-

formation, following ideal gas law, from T = 0 to T , reaching the state (T, v0) where

v0 = RT/p0 and p0 = 1 bar [21]. Consequently, a volume integration, departing from

the thus-derived ideal gas reference state, is performed to the final state (T, v). This

strategy can be applied to compute, for example, the specific isochoric, cv(T, v), and

isobaric, cp(T, v), heat capacities by correcting their ideal gas counterparts, obtained

from the polynomial fit given in the appendix of Poling et. al. [20].

The PR EoS is in acceptable agreement with data from the NIST database [22]

(figure 2.2) for CO2 at the three selected pressures of p = 1.01, 1.10, 1.20 pcr and for

temperatures higher than Tcr. Figure 2.2 shows, on the left, the rapid drop in density

approaching the critical point and how, for high temperatures, CO2 behaves like

an ideal gas. On the right, a very high thermal capacity in the near-critical region

is shown. Dynamic viscosity and thermal conductivity are estimated via Chung’s

method [19,20], also in fair agreement with NIST (figure 2.2) for CO2.

In the near-critical region, the PR EoS fails to capture the experimental value

of the critical density, being such equation tuned to the correct values of critical

pressures and temperatures only, more easily measurable than the critical volume [23].

For carbon dioxide, in fact, the critical density predicted by PR EoS is 400 kg/m3,

which differs significantly from the experimental value ρcr = 467.6 kg/m3 (table 2.1).

Even if density corrections are available for cubic equations of state [21], in this

work the original version of the PR EoS is used. In fact the aim of this work is not

to reproduce exactly experimental measurements or quantitatively capture the near-

critical behavior of CO2, but rather to perform theoretical numerical simulations,

inspired by experimental investigations.
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2.3 Fully Compressible Three-Dimensional Flow Equations

In this work, the fluid motion is modeled using the compressible Navier-Stokes

equations, expressed by the conservation laws of mass, momentum, and total energy,

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.3)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+ Ḟi, (2.4)

∂ρE

∂t
+
∂ρEuj
∂xj

= −∂puj
∂xj

+
∂uiτij
∂xj

− ∂qj
∂xj

+ Ḟjuj, (2.5)

where t is time, xj and uj (j = 1, 2, 3) are the components of position and velocity, ρ

and p are the density and pressure, E = e+uiui/2 is the specific total energy, sum of

specific internal energy and kinetic energy, and Ḟ is a source term. The Newtonian

viscous stress tensor τij and the Fourier heat flux read, respectively,

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
, qj = −k ∂T

∂xj
, (2.6)

where δij is the Kronecker delta, µ is the dynamic viscosity, k is the thermal conduc-

tivity, T is the temperature, and Stokes’s hypothesis has been adopted.

Eq. (2.5) can be rewritten as the evolution equation for the specific internal

energy, e, or specific enthalpy, h = e+ p/ρ, or specific entropy, s,

ρ
De

Dt
=− p∂uj

∂xj
+ ρT

Ds

Dt
,

ρ
Dh

Dt
=
Dp

Dt
+ ρT

Ds

Dt
,

ρT
Ds

Dt
=τij

∂ui
∂xj
− ∂qj
∂xj

,

(2.7)

where D/Dt is the material derivative. The equation of state p = p(ρ, T ) can be

differentiated to obtain

γdp/ρa2 = vdρ+ αpdT, (2.8)

where v = 1/ρ is the specific volume. the isobaric thermal expansion coefficient.

The thermodynamic relation dh = cpdT + v(1− αpT )dp, Eq. (2.8), and the relation
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cp − cv = α2
pTv/κT allow to rewrite the enthalpy evolution equation as the pressure

or temperature evolution equations,

Dp

Dt
=− ρa2∂uj

∂xj
+
ρa2αpT

cp

Ds

Dt
,

ρcv
DT

Dt
=− ρcv

αp
(γ − 1)

∂uj
∂xj

+ ρT
Ds

Dt
.

(2.9)

Therefore the first of Eq. (2.10) can be rewritten as the evolution equation for

pressure,
∂p

∂t
+
∂puj
∂xj

= (p− ρa2)
∂uj
∂xj

+
a2αp
cp

(
τij
∂ui
∂xj
− ∂qj
∂xj

)
. (2.10)

where the isobaric thermal expansion coefficient is

αp = −1

ρ

(
∂ρ

∂T

)
p

, (2.11)

a is the sound speed, and cp is the isobaric specific thermal capacity.

2.4 Derivation of Quasi-Planar Wave Equations

The evolution equations for mass, axial momentum, and pressure, in a two-

dimensional domain, with x (j = 1) corresponding to the axial direction and r (j = 2)

to the radial direction, read

∂ρ

∂t
+ uj

∂ρ

∂xj
= −ρ

(
∂u

∂x
+

1

rm
∂rmv

∂r

)
,

ρ

(
∂u

∂t
+ uj

∂u

∂xj

)
= −∂p

∂x
+

µ

rm
∂

∂r

(
rm
∂u

∂r

)
,

∂p

∂t
+ u

∂p

∂x
= a2

(
∂ρ

∂t
+ uj

∂ρ

∂xj

)
+
αpa

2

cp

(
τij
∂ui
∂xj

+
k

rm
∂

∂r

(
rm
∂T

∂r

))
,

(2.12)

where we considered cartesian (m = 0) or cylindrical (m = 1) coordinates, neglected

axial viscous and conduction stresses, assumed that µ = µ(x) and k = k(x), and

disregarded the momentum equation in the r direction (∂p/∂r = 0, v = v(r), and

negligible viscous stresses along r).
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A first order Taylor expansion is assumed, both for thermodynamic and kinematic

variables,

ρ = ρ0(x) + ρ′(x, y, t), T = T0(x) + T ′(x, y, t), p = p0 + p′(x, t),

u = u′(x, y, t), v = v′(y),
(2.13)

where a generic variable is composed of a base quantity, at most varying axially,

and a fluctuation that is time and space dependent, and no mean flow is considered.

Neglecting nonlinear terms, and with the assumptions in Eq. (2.13), Eq. (2.12)

becomes

∂ρ′

∂t
+ u′

dρ0

dx
= −ρ0

(
∂u′

∂x
+

1

rm
∂rmv′

∂r

)
,

ρ0
∂u′

∂t
= −∂p

′

∂x
+
µ0

rm
∂

∂r

(
rm
∂u′

∂r

)
,

∂p′

∂t
= a2

0

(
∂ρ′

∂t
+ u′

dρ0

dx

)
+
γ0 − 1

αp0T0

k0

rm
∂

∂r

(
rm
∂T ′

∂r

)
,

(2.14)

where we used the thermodynamic relation a2Tα2
p/cp = γ − 1.

Introducing the variables

U ′ =

∫ h/2

−δ0mh/2
u′(x, r, t)(2πr)mdr, A =

∫ h/2

−δ0mh/2
(2πr)mdr, (2.15)

which are, respectively, the volumetric flow rate fluctuations and the cross sectional

area for cylindrical coordinates (m = 1), or pore height times 1 m for rectilinear

coordinates (m = 0), and integrating Eq. (2.14) over the cross section, we obtain

ρ0
∂U ′

∂t
= −A∂p

′

∂x
+ τ ′w, A

∂p′

∂t
= −ρ0a

2
0

∂U ′

∂x
+
γ0 − 1

αp0T0

q′, (2.16)

after accounting for impenetrable boundary conditions in r, and assuming symmetry

of the fluctuations around the centerline of the duct in the expressions of the wall

shear stress and the wall heat flux, respectively,

τ ′w = 2µ0

(
πh

2

)m
∂u′

∂r

∣∣∣∣
r=h/2

, q′ = 2k0

(
πh

2

)m
∂T ′

∂r

∣∣∣∣
r=h/2

. (2.17)

Assuming an harmonic dependence of the perturbations (normal mode assump-

tion),

ρ′ = ρ̂(x, r)eσt, T ′ = T̂ (x, r)eσt, p′ = p̂(x)eσt,

u′ = û(x, r)eσt, v′ = v̂(r)eσt,
(2.18)
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where it is intended that the physical solution of all the perturbations is the real part

of the respective expressions, Eq. (2.14) becomes

σρ̂ = −ρ0
∂û

∂x
− ûdρ0

dx
− ρ0

rm
∂rmv̂

∂r
,

σû = − 1

ρ0

dp̂

dx
+
ν0

rm
∂

∂r

(
rm
∂û

∂r

)
,

σ

(
ρ̂− 1

a2
0

p̂

)
= −ûdρ0

dx
+

ν0

Pr0

1

rm
∂

∂r

(
rm
∂ρ̂

∂r

)
,

(2.19)

which are the harmonic mass, momentum, and pressure equations, and the frequency-

domain expression of Eq. (2.16) reads

ρ0σÛ = −Adp̂
dx

+ τ̂w, Aσp̂ = −ρ0a
2
0

∂Û

∂x
+
γ0 − 1

αp0T0

q̂. (2.20)

Despite not having made any assumption on the fluid, Eq. (2.19) coincides with the

equations proposed by [24], who used the ideal gas EoS.

2.5 Extension of Rott’s Theory to Real Fluids

We employ a well known procedure [24–26], rederiving Rott’s theory for a generic

fluid [27], starting from the coordinate transformation

ξ = iη, η =

√
σ

ν0

r =

√
2i+ 2

α

ω

r

δν
, (2.21)

which is a generalization of the case α� ω (σ ≈ iω) [24–27], for which η =
√

2ir/δν =

(i+ 1)r/δν , allows to rewrite the harmonic momentum equation as

ξ2∂
2û∗
∂ξ2

+mξ
∂û∗
∂ξ

+ ξ2 û∗ = 0, (2.22)

where û∗ = −σρ0û/ (dp̂/dx) − 1. Eq. (2.22), in the case of m = 1, is a Bessel’s

differential equation of order 0. Eq. (2.22) has the general solution

(m = 1) : û∗(ξ) = − J0(ξ)

J0(ξb)
, (m = 0) : û∗(η) = − cosh(η)

cosh(ηb)
(2.23)

where J0 is the Bessel function of the first kind of order 0, the subscript b indicates

evaluation at r = h/2, i.e. ηb =
√
σ/ν0h/2, and the no-slip boundary condition
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has been taken into account (û∗(ξb) = û∗(ηb) = −1). Therefore the solution of the

momentum equation and the wall shear stress in frequency domain are

û = − 1

σρ0

dp̂

dx
(û∗ + 1) , τ̂w = A

dp̂

dx
fν , (2.24)

and the first of Eq. (2.20) is

σÛ = −A
ρ0

dp̂

dx
(1− fν) , (2.25)

where

(m = 1) : fν =
2

ξb

J1(ξb)

J0(ξb)
, (m = 0) : fν =

tanh(ηb)

ηb
. (2.26)

The linearized harmonic EoS,

γ0
p̂

ρ0a0
2

=
ρ̂

ρ0

+ αp0T̂ , (2.27)

evaluated at the walls, where isothermal boundary conditions (T̂w = 0) are applied,

becomes

ρ̂w =
γ0

a0
2
p̂, (2.28)

where we used the independency of p̂ from r. Using Eq. (2.21), the harmonic pressure

equation becomes

∂2

∂ξ2
(ρ̂− ρ̂w) +

m

ξ

∂

∂ξ
(ρ̂− ρ̂w) + Pr0(ρ̂− ρ̂w) = −Pr0

γ0 − 1

a0
2
p̂− Pr0

σ
û
dρ0

dx
, (2.29)

that is the inhomogeneous analog of Eq. (2.22). To revert back to an homogeneous

equation, we assume a solution of the form

(ρ̂− ρ̂w) =
ρ0Θ

σ

Pr0

1− Pr0

û (ξ) + (ρ− ρ̂w)2, (2.30)

where we assumed Pr0 6= 1 everywhere axially, obtaining from Eq. (2.29) the equation

ξ̃2∂
2ρ̂∗

∂ξ̃2
+mξ̃

∂ρ̂∗

∂ξ̃
+ ξ̃2ρ̂∗ = 0, ξ̃ = ξ

√
Pr0,

ρ̂∗ = −(ρ̂− ρ̂w)2

(
γ0 − 1

a0
2
p̂+

Θ

(1− Pr0)σ2

dp̂

dx

)−1

− 1,

(2.31)
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which can be solved with a solution of the form of Eq. (2.23) replacing ξ with ξ̃,

taking advantage of the wall boundary conditions:

(m = 1) : ρ̂∗(ξ) = − J0(ξ
√

Pr0)

J0(ξb
√

Pr0)
, (m = 0) : ρ̂∗(η) = − cosh(η

√
Pr0)

cosh(ηb
√

Pr0)
. (2.32)

We can therefore write the harmonic density equation:

ρ̂− ρ̂w = −(R+ p̂(γ0 − 1)/a0
2)(ρ̂∗ + 1) +RPr0(û∗ + 1), (2.33)

where

R =
Θ/σ2

1− Pr0

dp̂

dx
. (2.34)

Here, as noticed before, the derivation of Rott, performed under the assumption of

ideal gases, still holds for a generic fluid, in the case of Pr0 6= 1.

We can now evaluate the wall heat flux in the frequency domain,

q̂ = σA
cp0
αp0

(
− Θ

(1− Pr0)σ2

dp̂

dx
(fk − fν)−

γ0 − 1

a2
0

p̂fk

)
, (2.35)

where notice that the term 1/αp0 reverts back to T0 in the case of ideal gas EoS [26],

and where

(m = 1) : fk =
2

ξb
√

Pr0

J1(ξb
√

Pr0)

J0(ξb
√

Pr0)
, (m = 0) : fk =

tanh(ηb
√

Pr0)

ηb
√

Pr0

. (2.36)

Eq.s (2.26) and (2.36) define the thermoviscous functions.

Finally, the pressure equation in harmonic form can be written as

σp̂ =
ρ0a

2
0/A

1 + (γ0 − 1)fk

(
Θ(fk − fν)

(1− fν)(1− Pr0)
− d

dx

)
Û . (2.37)

In summary, from the governing equations it is possible [24, 27, 28] to obtain, for

a generic duct, the frequency-domain equations for the complex volumetric flow rate

Û and pressure p̂,

σÛ =− A

ρ0Fν

dp̂

dx
, (2.38a)

σp̂ =
ρ0a

2
0

AFk

(
ΘΦP −

d

dx

)
Û , (2.38b)
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where σ = α+iω is the complex eigenvalue with growth rate α and angular frequency

ω, and

ΦP =
1

1− Pr0

fk − fν
1− fν

, Fν =
1

1− fν
, Fk = 1 + (γ0 − 1)fk, (2.39)

where the thermoviscous functions fν and fk depend on σ, the duct geometry, Prandtl

number, and kinematic viscosity (see Eq.s (2.26) and (2.36)). Base state quantities

are a function of the axial coordinate x only and are denoted with a subscript 0; a0

is the isentropic speed of sound, ν0 = µ0/ρ0 is the kinematic viscosity, γ0 = cp0/cv0 is

the ratio of specific heats, and Pr0 = cp0µ0/k0 is the Prandtl number. Furthermore,

A is in general the cross-sectional area of the duct, but is intended per unit depth for

the geometry employed in this study.

Eq.s (2.38a) and (2.38b) are discretized on a staggered uniform grid with second

order numerical operators [25, 26] and solved with a shift-Arnoldi algorithm. For all

the results in this document, we will always refer to the first mode of oscillation of

the system.

2.6 Acoustic Energy Budgets

Multiplying Eq. (2.38a) by Û∗ and (2.38b) by p̂∗, where a superscript ∗ indicates

complex conjugate, yields, after rearranging,

σκFνA =− 1

2

dp̂

dx
Û∗, (2.40a)

σεFkA =
ΘΦP

2
Û p̂∗ − 1

2
p̂∗
dÛ

dx
, (2.40b)

which are the equations for the acoustic kinetic energy density and acoustic potential

energy density, respectively defined by

κ =
ρ0

2

|Û |2
A2

, ε =
1

2

|p̂|2
ρ0a2

0

, (2.41)
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both with units of energy per unit volume. Taking the real part of the addition of Eq.

(2.40a) with Eq. (2.40b), and using the properties <{φψ} = <{φ}<{ψ}−={φ}={ψ},
and <{φ− φ∗} = 0, where φ, ψ are two generic complex numbers, yields

αE +
dẆ

dx
= P −D, (2.42)

where the acoustic energy density is defined as

E = A(<{Fν}κ+ <{Fk} ε), (2.43)

which has dimensions of an energy per unit length, the acoustic power is

Ẇ =
1

2
<{p̂ Û∗}, (2.44)

which has dimensions of an energy per unit time, the production of acoustic energy

density is

P =
Θ

2

[
<{ΦP}<

{
p̂∗Û

}
−={ΦP}=

(
p̂∗Û

}]
, (2.45)

and its dissipation is

D = −ωA(={Fν}κ+ ={Fk} ε), (2.46)

both with dimensions of power per unit length.

ΦT
P = < (ΦP) , ΦS

P = = (ΦP) , (2.47)

where ΦT
P and −ΦS

P weigh the traveling-wave, Re(p̂∗Û), and the standing-wave,

Im(p̂∗ Û), contributions to the thermoacoustic energy production, and

Φq
D = −= (fk) , Φτ

D = = (−fν/(1− fν)) , (2.48)

represent losses due to wall heat and wall shear, respectively. In our derivation, we

absorbed the dependency to (1−Pr0) in Eq. (2.39), included thermoviscous effects in

the acoustic energy density definition in Eq. (2.43), and generalized the expressions

for geometrical configurations where more than one thermoacoustic unit is present, for

an arbitrary duct geometry, and accounting for area change as well, and for a generic
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fluid. It can be shown that the weights of <
{
p̂∗Û

}
and =

{
p̂∗Û

}
in Eq. (2.45) always

contribute positively overall to the thermoacoustic production regardless of the sign

of (1− Pr0).

Integrating Eq. (2.42) axially along the domain yields

α = R/Σ, (2.49)

where the Rayleigh index [26] is

R =

∫ L

0

(
P −D

)
dx, (2.50)

and the total acoustic energy is

Σ =

∫ L

0

Edx, (2.51)

and where hard-wall boundary conditions have been taken into account (the acoustic

power is zero at x = 0 and x = L).

All the thermoviscous functions and the quantities in Eq.s (2.47) and (2.48) vary

with the ratio of regenerator half-width h/2 to the Stokes boundary layer thickness

δν (figures 2.3 and 2.4), where the viscous and thermal boundary layers δν , δk are

defined by

δ2
ν =

2ν0

ω
, δ2

k =
2k0

ωρ0cp0
, δν =

√
Pr0δk. (2.52)

In the case of Pr0 = 1, fk = fν , and for a rectilinear geometry

lim
Pr0→1

ΦP =
1

2

(
−1 +

η2
bf

2
ν

1− fν

)
, (2.53)

If instead Pr0 = 0, fk = 1, and

lim
Pr0→0

ΦP = 1, (2.54)

indicating that ΦT
P = 1 and −ΦS

P = 0, so that the production due to standing waves

is null.

Having a Prandtl number close to 0 entails high thermoacoustic production over a

wide range of h/(2δν), but for Pr0 > 1, ΦT
P tends to Pr0−1 for h/(2δν) = 0, decreasing

much faster than the Pr0 = 0 curve for increasing h/(2δν).
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2.7 Thermoacoustic Total Energy Budgets

The evolution equation for total energy in two dimensions reads

∂ρE

∂t
+
∂ρHu

∂x
+
∂ρHv

∂y
=
∂uiτi1
∂x

+
∂uiτi2
∂y

− ∂q1

∂x
− ∂q2

∂y
, (2.55)

where E = e+ (u2 + v2)/2 is the specific total energy, sum of specific internal energy

and specific kinetic energy, H = E + p/ρ is the specific total enthalpy. Integrating

Eq. (2.55) across the stack pore area, for a 2D rectilinear geometry, yields

∂

∂t

∫ h/2

−h/2
ρEdy+

∂

∂x

∫ h/2

−h/2
ρHudy =

∫ h/2

−h/2

∂uiτi1
∂x

dy− ∂

∂x

∫ h/2

−h/2
q1dy− [q2]

h/2
−h/2, (2.56)

where we accounted for u = v = 0 at y = ±h/2. Introducing the cycle averaging

operator,

(·) =
ω

2π

∫ 2π/ω

0

(·)dt, (2.57)

where time 0 indicates the beginning of an acoustic cycle, Eq. (2.56) becomes∫ h/2

−h/2

[ρE]
2π/ω
0

2π/ω
dy +

∂

∂x

∫ h/2

−h/2

(
ρHu+ q1

)
dy =

∫ h/2

−h/2

∂uiτi1
∂x

dy − [q2]
h/2
−h/2. (2.58)

Scaling arguments provided by [29] allow to neglect the energy change due to viscous

dissipation, first term on the right hand side of Eq. (2.58), which, neglecting terms

of third order, becomes

− [q2]
h/2
−h/2 =

∫ h/2

−h/2

[ρE]
2π/ω
0

2π/ω
dy +

∂Ḣ
∂x

, (2.59)

where

Ḣ =

∫ h/2

−h/2

(
ρhudy − k∂T

∂x

)
dy (2.60)

is the fluid’s time-averaged total energy flux. Integrating Eq. (2.59) axially along the

stack, with 1 indicating the axial coordinate of its beginning and 2 its end, yields

Q̇ =

∫ 2

1

∫ h/2

−h/2

[ρE]
2π/ω
0

2π/ω
dydx+ Ḣ2 − Ḣ1, (2.61)

where the time-averaged heat exchange through the walls is

Q̇ = −
∫ 2

1

[q2]
h/2
−h/2dx = 2

∫ 2

1

(
k
∂T

∂y

)
h/2

dx, (2.62)
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Figure 2.5. Control volume used for the total energy balance inside the
stack pore.

where we assumed a symmetric temperature profile around y = 0. Eq. (2.61) shows

that the boundary heat flux is absorbed by the fluid in the form of time-averaged

total energy flux difference between stack end and beginning.

The frequency domain expression for the time-averaged energy flux (Eq. (2.60))

has been derived by [29,30]:

Ḣ =
1

2
<
{
p̂Û∗

(
1− αp0T0(fk − f ∗ν )

(1 + Pr0)(1− f ∗ν )

)}
+

ρ0a
2
0Θ|Û |2

2AG0ω|1− fν |2
=
{
f ∗νPr0 + fk

1− Pr0
2

}
+Hk,

(2.63)

where

Hk = −Ak0
dT0

dx
(2.64)

is the conduction heat, and where

G =
αpa

2

cp
=
γ − 1

αpT
, (2.65)

is the Grüneisen parameter, which reverts to γ − 1 for ideal gases, and which is used

by [27] as the ratio between the work parameter γ − 1 and the heat parameter αpT .

For our configuration, due to the inviscid hot cavity and resonator, Ḣ is equal to the

acoustic power outside the stack.
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2.8 A non-iterative Method to Get Temperature from Conserved Vari-

ables

Fully conservative Navier-Stokes simulations of real-fluid flows are used widely

in the literature [21, 31–33]. The use of fully conservative simulations with highly

nonlinear equations of state is not recommended for problems involving contact dis-

continuities, because of the well known issue of loss of mechanical equilibrium [34–37],

as we will see in chapter 3, but is mandatory for flows involving shock waves [37]. In

fact, it has been proposed [37] that a hybrid approach solving for primitive variables in

most of the flow field and for conserved variables in regions where shocks are present

would be effective for real-fluid simulations. Nevertheless, for some problems (e.g.

flows of supercritical fluids not too close to the critical point), the loss of mechanical

equilibrium gives rise to spurious pressure oscillations that are either not significant

enough or do not compromise the validity and stability of the calculations [21, 33],

especially if artificial viscosity is included, and are anyways eliminated with grid re-

finement [38]. Therefore, fully conservative Navier-Stokes are and will be used in the

future even if coupled with nonlinear equations of state.

Solving the evolution equations for conserved variables implies the need for tem-

perature and pressure appearing in the fluxes to be computed from them at every

sub-time step. The routine that solves for temperature T from density ρ and internal

energy per unit mass e (T = T (ρ, e)) can be very computationally expensive (if not

the most expensive) because the highly nonlinear nature of e = e(T ) for a fixed ρ

requires the use of iterative methods (e.g. Newton-Raphson, NR) [34]. In fact, it

has been reported [39] that the Peng-Robinson equation of state is 100 times slower

that the ideal gas equation of state. Concerns of performance are hence raised and

attention on how T = T (ρ, e) is handled can potentially ensure great reductions of

computational time.

Here we propose an alternative method to obtain T from ρ and e. The main idea is

to redefine the ideal gas specific caloric coefficients so that the relation T = T (ρ, e) can
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be solved analytically. With the proposed method we obtain temperature from ρ, e

without Newton-Raphson-like iterations (and related user-input parameters) ensuring

considerable computational speed-up and machine precision accuracy of T . We apply

this idea to single-component fluids modeled with the following EoSs: IG (ideal gas),

vdW (van der Waals), SRK (Soave-Redlich-Kwong), PR (Peng-Robinson).

A generic two-parameters cubic EoS can be recast as [40, 41]:

p =
ρRT

1− ρb −
ρ2αcrα

(1− ρc1b)(1− ρc2b)
(2.66)

where R = Ru/Mm, Mm is the molar mass, Ru = 8.314472 J ·mol−1K−1 is the uni-

versal gas constant, c1, c2 are real constants, α is chosen as the one proposed by

Soave [42]:

α =
[
1 + β

(
1−

√
T/Tcr

)]2

= F 2T − 2GF
√
T +G2, (2.67)

where α(Tcr) = 1, F = β/
√
Tcr, G = β+ 1. This paper deals with the EoSs described

by the parameters in table 2.2.

Table 2.2.
EoS-specific parameters for Eq. (2.66).

EoS αcrM
2
mpcr/(R

2
uT

2
cr) bpcr/(RuTcr) c1 c2

IG 0 0 0 0

vdW 27/64 1/8 0 0

SRK 1/(9(21/3 − 1)) (21/3 − 1)/3 0 −1

PR ≈ 0.457236 ≈ 0.0777961 −1−
√

2 −1 +
√

2

EoS β

IG 0

vdW 0

SRK 0.480 + 1.574ω − 0.176ω2

PR 0.37464 + 1.54226ω − 0.26992ω2
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The specific internal energy e can be computed [20] with the following expression:

e = e0−
∫ ρ

0

(
T
∂p

∂T

∣∣∣
ρ
− p
)
T

dρ

ρ2
= e0+αcrY

(
T

dα

dT
− α

)
= e0+αcrY

(
GF
√
T −G2

)
,

(2.68)

where we used Eq. (2.67) and

Y =

∫ ρ

0

dρ

(1− ρc1b)(1− ρc2b)
=


ρ vdW

1

b(c2 − c1)
ln

(
1− ρbc1

1− ρbc2

)
SRK,PR

(2.69)

and the superscript 0 denotes ideal gas quantities. Eq. (2.68) can be a highly non-

linear function of temperature. The reason for this is not the term multiplying αcrY ,

but the reference ideal gas internal energy e0. In fact, Poling et al. [20] and NASA

polynomials [cit] provide a polynomial expression for e0 of degree five in T . Since
√
T is present in Eq. (2.68), the polynomial is in general of order ten and requires

iterative techniques (e.g. Newton-Raphson method) to be solved for
√
T . Notice that

this is true also for thermally perfect IG and for vdW EoSs but not for the calorically

perfect IG EoS.

For a fixed ρ,
√
T can be computed analytically from Eq. (2.68) if the latter is at

maximum a polynomial of order four in
√
T . It is this observation that leads to the

following definitions:

c0
p/R = c0/

√
T + c1 + c2

√
T + c3T, h0 = h0 +h1

√
T +h2T +h3T

3/2 +h4T
2 (2.70)

where the IG enthalpy is h0 = e0 +R(T − Tref ) = href +
∫ T
Tref

c0
pdT , h1 = 2Rc0, h2 =

Rc1, h3 = 2Rc2/3, h4 = Rc3/2, and h0 = href − h1

√
Tref − h2Tref − h3T

3/2
ref − h4T

2
ref .

The first of Eq. (2.70) has been fitted (minimizing the root mean square error)

trough experimental c0
p values [20] in order to obtain the values of ci for i = 0, 1, 2, 3

reported in table 2.3 for some fluids. Figure 2.6 shows that Eq. (2.70) has satisfactory

performance in replicating established experimental values.

The change of the functional dependence of c0
p on T hence does not impact validity

of the pointwise values and, more importantly, allows to write Eq. (2.68) as

e = h0 +RTref +h1

√
T + (h2−R)T +h3T

3/2 +h4T
2 +αcrY

(
GF
√
T −G2

)
, (2.71)
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Table 2.3.
Ideal gas isobaric thermic coefficient c0

p for the first of Eq. (2.70). Validity
range is 50−1000 K for all fluids, a part from R-218 and FC-72, for which
it is 200− 1000 K.

species c0 (K1/2) c1 c2 (K−1/2) c3 (K−1)

N2 −3.42882 4.47527 −8.32912 · 10−2 2.21125 · 10−3

O2 6.35435 2.49365 2.94819 · 10−2 6.14998 · 10−4

CO2 3.07600 · 101 −3.95446 4.94522 · 10−1 −6.22984 · 10−3

Xe 0 2.5 0 0

H2O 5.67997 3.54438 −2.24653 · 10−2 1.89775 · 10−3

Methanol 4.96352 · 101 −5.14533 4.31377 · 10−1 9.01708 · 10−4

R-134a 9.74481 · 101 −2.15547 · 101 1.98495 −2.61853 · 10−2

R-218 1.52131 · 101 −1.70374 · 101 2.65459 −3.96511 · 10−2

FC-72 −2.83300 · 101 −2.16350 · 101 4.38248 −6.48505 · 10−2
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Figure 2.6. Ideal gas isobaric thermic coefficient c0
p from the first of Eq.

(2.70) using values from table 2.3 (solid lines) and reference data (using
polynomial c0

p from Poling [20]) (circles).

which is a polynomial equation of the type e(ρ,
√
T ) = 0 of order four in

√
T :

A(
√
T )4 +B(

√
T )3 + C(

√
T )2 +D

√
T + E = 0, (2.72)
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where the coefficients of the quartic equation are

A = h4, B = h3, C = h2 −R,

D = h1 + αcrY GF, E = h0 +RTref − e− αcrY G2.
(2.73)

Notice that all of the above derivations are clearly dependent on the assumption

made in Eq. (2.67): other expressions of c0
p in Eq. (2.70) will be more useful for

other functional dependences of α on T . In particular, it is the term Tdα/dT − α in

Eq. (2.68) that gives information on a convenient form of c0
p. Most of the coefficients

of Eq. (2.72) can be precomputed ensuring good computational performance. In

the case that Eq. (2.72) is not a quartic because of null hi coefficients, the solution

procedure is greatly simplified. As example, for most noble gases c0
p = c1 = const.

(see table 2.3) and Eq. (2.72) reverts to a quadratic equation also without the method

proposed in this paper.

Eq. (2.72) can be solved with analytical steps for
√
T (isolating only positive

and real solutions), providing the temperature T corresponding to ρ, e with machine

precision error. Notice that in the case of A 6= 0, two real
√
T values will be obtained

during the solution process, and the
√
T inside the validity range indicated in table

2.3 has to be taken as the only correct solution.

In case Eq. (2.70) can not reproduce trends exhibited by experimental data with

high fidelity, the procedure outlined above can be used as an accurate first guess for

iterative methods.
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3. NUMERICAL CHALLENGES WITH HIGH-ORDER SPECTRAL

DIFFERENCE SOLVERS FOR SUPERCRITICAL FLOWS

We have investigated single-component supercritical flows using the spectral difference

(SD) method. We compare the use of a fully conservative approach with the solution

of the pressure evolution equation: the former, violating mechanical equilibrium at

contact discontinuities, can result in unstable computations, while the latter allows for

fast, accurate, and robust computations in absence of shocks. We provide h- and p-

convergence study for 1D entropy wave advection, showing grid refinement difficulties

for the fully conservative method if conditions are too close to the critical point. We

then perform 2D computations of a buoyant supercritical configuration showing the

visibly altered numerical solution (up until blow-up) if a conservative approach is

employed, while the non-conservative method allows to obtain a stable computation.

Finally, we apply the SD discretization with both conservative and non-conservative

methods to the solution of supercritical isothermall-wall channel flow, pointing out

differences in turbulent statistics and flow visualizations. The material in this chapter

has been presented at the AIAA Aviation Conference in 2018 [38].

3.1 Importance of Numerical Simulations of Supercritical Flows

Supercritical fluid flow computations have become essential for the design of the

next generation Diesel and rocket engines, due to the increase in efficiency with their

operating pressure. State of the art simulations include supercritical mixing layers

[21], trans- and supercritical fluid injection [39, 43–45], transcritical non-premixed

counterflows [46], large eddy simulations (LES) of channel flow or jets [33,47,48], and

full LES of fuel-oxidizer injection in a rocket engine [49].
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Fully conservative simulations of supercritical flows suffer from spurious numerical

oscillations due to the well known issue of loss of mechanical equilibrium at contact

and material discontinuities [36, 50]. Nevertheless, it is still possible to couple nu-

merical tools solving explicitly for total energy with highly nonlinear equations of

state [21, 32, 33, 49, 51–54] if sufficient grid resolution is employed and if the thermo-

dynamic conditions are not too close to the critical point. In such cases, the loss of

mechanical equilibrium gives rise to spurious pressure oscillations anyways, but those

are either not significant enough or do not compromise the validity and stability of the

calculations, especially if artificial viscosity is included, and are (slowly) eliminated

with grid refinement.

To solve the problem of spurious pressure oscillations, non-conservative numer-

ical schemes have been employed [34, 35]. In particular, the solution of mass and

momentum equations in conservative form and of the pressure evolution equation

has been shown [35, 55] to be fast, accurate, and robust in the numerical solution of

supercritical flows.

Most of the literature in supercritical flows employs the finite volume method or

the finite differences method [56–60], but scarcity of study on the Spectral Difference

(SD) numerical method is found. A discontinuous Galerkin (DG) formulation has

recently been used for supersonic methane jet computations [39], but no detailed

information on the behavior of the numerics has been explicitly provided. Since

DG and SD methods are gaining increasing attention in the community because of

their ability to provide a high-order of accuracy on unstructured meshes, there is the

need for an accurate comparison of fully conservative scheme with a non-conservative

scheme. Furthermore, since the implementation of the pressure equation in finite

volume codes is not straightforward [34], it is needed to investigate its implementation

with a SD discretization.

A detailed investigation of the SD discretization performance when applied to su-

percritical flows is proposed in this chapter. We compare the use of a fully conservative

approach against the solution of mass and momentum equations in conservative form



39

and of the pressure evolution equation. We provide h- and p-convergence plots for

the advection of an entropy wave showing the differences in using the two methods,

and then apply the numerical strategy to the solution of supercritical buoyant con-

figuration and channel flow. We take into account single-component fluids modeled

with the Peng-Robinson equation of state [18]. Table 3.1 reports critical values for

the two fluids of interest in this work.

Table 3.1.
Critical pressure and temperature for Carbon dioxide and Helium.

fluid Tcr(K) pcr(MPa)

CO2 304.13 7.3773

He 5.19 0.227

3.2 Numerical Setup

The Navier-Stokes equations are solved using the spectral difference (SD) dis-

cretization. We briefly recall here the formulation on conservative variables, which is

typically adopted [61–63], and which will serve as a reference for the implementation of

the pressure evolution approach proposed in the present work. To achieve an efficient

implementation, each element in the physical domain is transformed to a standard

cubic element described by local coordinates ξ ≡ (ξ1, ξ2, ξ3)T, with ξ ∈ [−1 : 1]3.

The governing equations in the physical domain are then transferred into the compu-

tational domain, where they take the form

∂W
∂t

+ ∇ξ ·F = 0, (3.1)

with

W = det(J)w, F = adj(J) · [Fc(w)− Fv(w,∇w)], (3.2)
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where ∇ξ ≡ (∂/∂ξ1, ∂/∂ξ2, ∂/∂ξ3)T, whereas det(J) and adj(J) = det(J)J−1 repre-

sent the determinant and the adjoint of the Jacobian matrix Jij = ∂xi/∂ξj, respec-

tively. w = (ρ, ρu, ρE)T is the vector of conservative variables. Within each standard

element, two sets of points are defined, namely the solution points and the flux points.

In order to construct a degree p (resp. p+1) polynomial for the solution (resp. flux)

along each coordinate direction, the solution (resp. flux) at p+ 1 (resp. p+ 2) points

is required. Unless otherwise stated, the p + 1 solution points in 1D are chosen

to be the Gauss-Legendre quadrature points, whereas the p + 2 flux points are the

Gauss-Legendre quadrature points of order p− 1 plus the two end points −1 and 1.

Accordingly, the p+ 1 solution points are obtained as the roots of the equation

Pp+1(ξ) =
2p+ 1

p+ 1
ξPp(ξ)−

p

p+ 1
Pp−1(ξ) = 0, (3.3)

where Pp+1(ξ) is the Legendre polynomial of order p + 1, P−1(ξ) = 0 and P0(ξ) = 1

and ξ is either ξ1, ξ2 or ξ3. This particular combination of solution and flux points

can be proved to be linearly stable for all orders of accuracy [64].

Using the p+ 1 solution points and the p+ 2 flux points, polynomials of degree p

and p+ 1, respectively, can be built using Lagrange bases defined as

hi(ξ) =

p+1∏
s=1,s 6=i

(
ξ − ξs
ξi − ξs

)
, and li+1/2(ξ) =

p+1∏
s=0,s 6=i

(
ξ − ξs+1/2

ξi+1/2 − ξs+1/2

)
. (3.4)

The first step of the SD discretization is to interpolate the vector of conservative

variables from solution points to flux points using a Lagrange interpolant of degree

p (Eq. (3.4)). The values of convective fluxes are then computed on the flux points

from the interpolated conservative variables. Regarding the end-points contributions,

a Riemann solver is employed to compute a common flux at element interfaces to

ensure conservation and stability. In the current implementation, the Rusanov solver

is used. Once the values of convective fluxes are known on all flux points, another

Lagrange interpolant of degree p+ 1 is constructed using the flux values. The spatial

derivatives of fluxes are then interpolated from flux points to solution points using

the analytical expression of the Lagrange polynomial derivatives. The viscous flux
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polynomial is computed accordingly to Kopriva and Sun [65, 66]. First, polynomials

based on the velocity components are constructed on flux points using average values

at the end points. The velocity gradients are then computed on solution points from

the interpolation and derivation of the flux points velocity polynomials. Finally, the

gradients are interpolated on flux points using averaged values at end points, allowing

the computation of the viscous fluxes.

After the flux derivatives are known on the solution points, a third- or forth-order

explicit time integration is performed via the Runge-Kutta methodology.

Regarding the thermodynamic closure, the EoSs in table 2.2 are used in order to

provide a point-wise evaluation of the pressure, temperature and density. When real

fluids are concerned, the thermodynamic closure given by a highly nonlinear EoS is

known to yield numerical oscillations when the pressure is computed from the conser-

vative variables. In the present work, we consider an alternate formulation for which

the pressure evolution equation is solved instead of the total energy. Despite being

non-conservative regarding the total energy, this approach allows for eliminating the

pressure oscillations yielding stable computations for stiff, real-fluid problems. The

pressure equation is solved as in Eq. (2.10). The velocity gradients and heat flux qj

are solved using the SD derivatives operator, and allow for specifying the boundary

conditions trough numerical fluxes. This particular form of the pressure equation

includes the convective flux puj solved using the Rusanov flux at the element inter-

faces, thus adding an amount of stabilizing numerical dissipation when the pressure

is solved.

3.3 Results

3.3.1 Advection of an Entropy Wave

In this section we consider the numerical simulation of the advection of an en-

tropy wave in supercritical Carbon dioxide by solving the 1D Euler equations. This

tests if the numerical scheme respects the property of mechanical equilibrium at con-
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tact discontinuities, which refers to keeping a uniform pressure and velocity across

non-uniform profiles of density, temperature, and therefore entropy and all other

thermodynamic quantities.

The flow field is initialized with an assigned uniform velocity field u0 = 1000

m/s, a uniform pressure p0 = 8115030 Pa, corresponding to 1.1pcr for CO2, and a

temperature assigned by

T = T0 − 15 exp(1− (10x/L)2), (3.5)

where L = 1 m is the length of the domain. The value of T0 in Eq. (3.5) can either

be T0 = 1.2Tcr or T0 = 1.5Tcr, simulating thermodynamic conditions closer or farther

away from the critical point, respectively.

We employ a uniform grid with Ncv elements and N solution points per element

(corresponding to polynomial order p = N − 1). In this section we use RK4 time-

stepping. The computation is stopped at t = L/u0 and the final solution is compared

to the initial condition, allowing to compute the rms error for a given quantity ϕ as

rms error =

√√√√∫ L0 (ϕ− ϕex)2dx∫ L
0
ϕ2
exdx

, (3.6)

where ϕex is the exact solution.

The behavior of the two different approaches, conservative versus non-conservative,

regarding the pressure oscillations is assessed by plotting the pressure fluctuations at

the end of the computations (figure 3.1). The discretization in this case features 10

mesh elements and a sixth-order of accuracy, for a total of 60 degrees of freedom in

the spatial domain. It is seen that while the conservative approach leads to strong,

point-to-point pressure oscillations, solving the pressure equation instead leads to a

complete elimination of these spurious oscillations.

It is now interesting to investigate if these spurious pressure oscillations vanish

with grid refinement. One way to do this is by increasing the order of accuracy of the

polynomial reconstruction (p-refinement).
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Figure 3.1. Pressure fluctuations for the advection of an entropy wave,
10 mesh elements, p = 5.

P-refinement (figure 3.2) entails exponential order of convergence, as expected,

for the rms error in density for all cases with T0 = 1.5Tcr. With the use of the

pressure evolution equation, both the PR EoS and the non-calorically perfect EoS

exhibit pressure rms errors at machine precision levels. On the other hand, when

a fully conservative approach is used, spurious pressure oscillations are present, but

those, for T0 = 1.5Tcr, decrease in amplitude exponentially, following the theoretical

order of convergence of the numerical scheme. Therefore, it is possible to conduct

fully resolved numerical simulations employing the total energy equation coupled with

a nonlinear EoS, for T0 = 1.5Tcr. On the other hand, if T0 = 1.2Tcr, for which the

thermodynamic conditions are closer to the critical point, the PR EoS, when combined

with a fully conservative approach, leads to the increase of the density rms error

for higher N , leading to unstable computations. This happens because the related

spurious pressure oscillations actually increase in amplitude with grid refinement.

Instead, for the non-calorically perfect IG EoS, the thermodynamic nonlinearities

and gradients are less severe than the PR EoS for T0 = 1.2Tcr, allowing to obtain

grid-converged solution. The pressure evolution equation, coupled with the PR EoS,

yields machine precision error on pressure, and allows to obtain easily and robustly a
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Figure 3.2. Rms density errors (top) and rms pressure errors (bottom)
showing p-refinement for the advection of an entropy wave. Black star:
PR EoS with ρE equation; white star: PR EoS with coupled with pressure
equation; black circle: thermally (but non-calorically) perfect IG EoS with
ρE equation; white circle: thermally (but non-calorically) perfect IG EoS
with pressure equation. Plots on the left are for T0/Tcr = 1.2, while on
the right T0/Tcr = 1.5 (see Eq. (3.5)). Computations are run with a
uniform grid with 20 elements. Dashed line: 100e−2.5N . Cases with errors
at machine precision levels are depicted at the bottom of the figures.

fully resolved computation, even for T0 = 1.2Tcr. However, the overall error level of

the PR EoS increases from T0 = 1.5Tcr to T0 = 1.2Tcr, and it is always higher than

the one entailed by the non-calorically perfect IG EoS. This happens because the

more the conditions approach the critical point, the more the entropy wave becomes

a series of two step functions for the density profiles, for the extreme case of which

errors are expected to be higher, and artificial viscosity is eventually required.

In order to verify if the conclusions made above regarding the PR EoS coupled with

a fully conservative approach are only valid for a p-refinement study, we now refine
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Figure 3.3. Rms density errors (top) and rms pressure errors (bottom)
showing h-refinement for the advection of an entropy wave. Black star:
PR EoS with ρE equation; white star: PR EoS with coupled with pressure
equation; black circle: thermally (but non-calorically) perfect IG EoS with
ρE equation; white circle: thermally (but non-calorically) perfect IG EoS
with pressure equation. Plots on the left are for T0/Tcr = 1.2, while on
the right T0/Tcr = 1.5 (see Eq. (3.5)). Computations are run with with
N = 2 and N = 4. Dashed lines: 0.01N−Ncv (top), 100N−Ncv (bottom).
Cases with errors at machine precision levels are depicted at the bottom
of the figure.

the grid by fixing the polynomial order of accuracy (N = 2, 4), and increasing the

number of control volumes (or elements) Ncv (h-refinement). H-refinement (figure 3.3)

shows that, for T0 = 1.5Tcr, the order of convergence of all cases is the one expected.

However, as the p-refinement suggested already, for T0 = 1.2Tcr the PR EoS coupled

with the total energy equation still results unstable.

Both grid refinement strategies show that using a fully conservative approach

entails pressure errors due to violation of mechanical equilibrium. For a thermally

perfect gas, and for the PR EoS applied far away from the critical point, these dis-
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appear with the order of convergence of the numerical method. Nevertheless, when

approaching the critical point, spurious pressure oscillations do not vanish with mesh

refinement. Computations carried out with the calorically perfect ideal gas EoS (not

shown) show the predicted order of accuracy, for both p- and h- convergence, for the

density rms error and do not present numerical pressure oscillations for neither of the

fully conservative or non-conservative approaches.

3.3.2 Falling Supercritical Blob

In this section we further analyze the differences between conservative and non-

conservative formulations applied to the 2D Euler equations. We consider supercriti-

cal Carbon dioxide in a [−L,L]× [−L,L] box, where L = 5 m, initialized at uniform

pressure equal to p0 = 8115030 Pa = 1.1pcr with the temperature distribution

T = T0 −
1

8

a2
0

cp0
e1−100(x2+y2)/L2

, (3.7)

where T0 = 600 K, x, y are the spatial coordinates from the center of the computa-

tional box, and a0, cp0 are the speed of sound and specific isobaric thermal capacity of

CO2 corresponding to T0, p0. This distribution results in blob of cold and heavy fluid

in the center of the domain, which is pulled down by a gravity force Ḟy = −ρg, where

g = 9.81 m/s2 is the gravitational acceleration, in the momentum equation in the y

direction (Eq. (4.5) for i = 2) and vḞy in the total energy equation for consistency.

Notice that in the pressure evolution equation there is no need to add an additional

term in order to be consistent.

Two computations are performed, considering the total energy transport (case A)

and pressure transport (case B) equations, respectively (figure 3.4). The discretization

features 20 mesh elements in each direction and a 6th order of accuracy for case A,

yielding 120 degrees of freedom in each direction, and a 5th order of accuracy for

case B, yielding 100 degrees of freedom in each direction. Case A starts to shows

numerical oscillations in the flow when the variables gradients start becoming steep,

ultimately leading to a blow-up of the computation. Case B remains stable and
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oscillation-free for long time integration. Figure 3.4 shows the density field for the

two cases at an early time, when the blob is starting to accelerate, at the moment of

blob-up for case A, and at a later time. Case B shows a smooth density profile, as

opposed to the spurious oscillations affecting case A. This computation shows that

it is not possible to use a fully conservative approach coupled with a very nonlinear

EoS without artificial viscosity or explicit filtering, if the Euler equations are solved

and the flow gradients are significant.
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Figure 3.4. Time evolution of density during the fall of a heavy super-
critical blob in a lighter environment. Comparison of solution obtained
with total energy transport (left, case A) and pressure transport (right,
case B).
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3.3.3 Turbulent Channel Flow

In this section we perform 3D Navier-Stokes computations of a supercritical He-

lium periodic channel flow configuration. The computational domain is a box defined

as [0, 2πh]× [−h,+h]× [0, πh], where h is half the height of the channel set to 0.1mm.

Periodic conditions are considered in the streamwise and spanwise directions, while

no-slip boundary conditions are considered in the wall-normal direction at y = ±h.

The wall boundaries are isothermal at temperature Tw. The flow is driven by a source

term Ḟ in the streamwise momentum equation that keeps the volume-averaged mass

flow rate constant in the channel. A source term uḞ is also considered in the total

energy equation for consistency.

We employ a structured mesh of size Nx = 36, Ny = 24, Nz = 36, with uniform

spacing in x and z, and a hyperbolic tangent profile for the grid spacing in y to cluster

more elements near the channel walls.

The flow is initialized with a uniform pressure p0 = 249700 Pa, corresponding to

1.1pcr for Helium, a temperature equal to Tw, and with the following velocity field:

u =1.5u0(1− (y/h)2), (3.8)

v =0.01u0 exp(−(x/Lx − 0.5)2) exp(−(y/2h)2) cos(4πz/Lz), (3.9)

w =0, (3.10)

where u0 = 22 m/s. The velocity profiles in Eq. (3.8) yield transition to turbulence

in the channel and afterwards to a statistically steady turbulent state. The bulk

Reynolds number of the flow configuration is Re0 = ρ0u0h/µ0 = 5095, and the bulk

Mach number is M0 = u0/a0 = 0.131.

Computations with N = 3 and N = 4, corresponding to second and third order

reconstructing polynomials, respectively, are carried out using the pressure transport

(PT) equation. Only N = 3 is analyzed for the fully conservative (FC) approach,

because it is found to yield computational instability when ran for N = 4. Figure 3.5

shows the density contours for the PT and FC cases using N = 3. Strong unphysical

oscillations in density are clearly observed for the FC case, while these are absent
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Figure 3.5. Comparison of density field obtained with the solution of the
total energy equation (left) and of the pressure equation (right) for the
same numerical resolution (3 points inside each element).

from the PT case. This clearly confirms the superiority of using the PT framework

for high-order SD schemes compared to the FC approach when considering low-Mach

number flows.

The main quantity monitored during computations is the wall friction coefficient

in the x direction,

cx =
(
∫
S
τ · ndS) · i
1
2
ρ0u2

0A
(3.11)

where τ is the viscous stress tensor, ρ0 is the density corresponding to p0, Tw (com-

puted with the PR EoS), S is the solid boundary surface, A = 10−8m2. The wall

force peak indicates transition to turbulence, after which a statistical steady state is

reached (figure 3.6a). If the value of cx = 0.325 is multiplied by 0.5A/S = 0.02533,

where S = 2π2h2, the skin friction coefficient 2τw/(ρ0u
2
0) = 0.0076 is obtained.

Turbulent statistics begin to be computed when the statistical steady state is

reached. The mean velocity profile predicted with under resolved fully conservative

computations slightly deviates from the profile obtained with the use of the pressure

evolution equation, at the same numerical resolution (figure 3.6b).

From those profiles, it is observed that the wall friction is enhanced in the PT

case corresponding to higher friction Reynolds number behavior compared to the

FC case. This behavior is also observed for the Reynolds stresses. Indeed, the FC
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Figure 3.6. (a): wall friction coefficient (Eq. (3.11)) time evolution, (b);
mean velocity profile. Dashed line: solution with total energy evolution
equation for N = 3; dashed-dotted line: solution with pressure evolution
equation for N = 3; solid line: solution with pressure evolution equation
for N = 4, restarted from N = 3.

computation displays lower stresses intensity compared to the PT approach, implying

a more intense small-scale activity for the PT case. On the coarse discretization

(N = 3), oscillations are observed on the fluctuating profiles for both the PT and FC

approaches. These oscillations seem to be more pronounced for the FC case, especially

seen on the wall-normal fluctuations (Figure 3.7b). Increasing the polynomial order of

the reconstructing polynomials for the SD discretization provides an efficient way to

obtain grid-refined data. However, it was not possible to obtain a refined computation

from third to fourth order using the total energy equation, probably because of the

pressure oscillations present in the flow, which greatly compromise the stability of

higher order polynomials. With the use of the pressure evolution equation, instead,

the finer computation is stable and smoother profiles for the average velocity and

Reynolds stresses are obtained (solid lines in figure 3.7). Also, the fact that the

profiles are pretty similar, suggests that the N = 4 PT computation is close to grid

convergence. The oscillations and blow-up observed for the N = 3 PT and FC

and N = 4 FC cases, respectively, suggests that subgrid dissipation or regularization
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Figure 3.7. Reynolds stress components (a-d). Lines have same meaning
as in figure 3.6.

Figure 3.8. Visualization of u velocity field (left) and isosurfaces of Q-
criterion (right) at Q = 6 · 1010 1/s2, colored by u, obtained with the
solution of the pressure equation with 4 points inside each element.
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procedures might be needed in order to obtain stable and physically consistent results

on coarse grids when considering gases with complex real gas effects.

To show the ability of the method to display correct flow patterns, the velocity

field contours and iso-surfaces of Q-criterion are plotted in Figure 3.8 for the PT case

with N = 4. We can observe an accurate representation of near-wall streaks as well

as the ejection of worm-like structures at the core of the channel. This shows the

capacity of the present PT methodology to represent accurately turbulent structures

in a supercritical regime at relatively coarse resolution.
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4. REAL-FLUID EFFECTS ON

STANDING-WAVE THERMOACOUSTIC INSTABILITY

We have performed fully resolved high-order unstructured compressible Navier-Stokes

simulations of a thermoacoustically unstable resonator employing CO2 in transcritical

conditions. The parameter space spans the range of base pressures p0 = 1.01 − 1.5

pcr and temperature differences ∆T = Thot − Tcold up to 200 K, with thermodynamic

and transport properties obtained from the Peng-Robinson equation of state and

Chung’s model. The resonator’s geometry has been optimized resulting in a critical

temperature difference of 23 K for p0 = 1.01 pcr. Strong real-fluid effects in the

thermoacoustic response are observed: (i) the growth rate α needs to be included in

the thermoviscous functions dependence in order to replicate Navier-Stokes results

pushed to grid convergence, due to a high growth-rate-to-frequency ratio; (ii) α and

frequency f vary in a nonlinear fashion with respect to p0 and ∆T ; (iii) the pressure

eigenmode amplitude tends to flatten out, and the pressure-velocity phasing smoothly

transitions at the average location of the pressure node; (iv) the sharp change in

acoustic impedance at transcritical conditions changes locally the derivative of the

eigenmodes, akin to an area change. Moreover, the acoustic and total energy budgets

illustrate, for a given ∆T , the increase of the produced acoustic power, but also of the

heat required, if the thermodynamic conditions approach the critical point. The limit

cycle governed by nonlinear minor area losses is finally discussed, with an analysis of

the thermodynamic nonlinearities peculiar of transcritical thermoacoustic oscillations

at high pressure amplitudes.
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4.1 Thermoacoustic Instabilities

Fluid dynamic instabilities featuring acoustic wave amplification due to the two-

way coupling between pressure and heat release fluctuations [67] are known as ther-

moacoustic instabilities. These are intentionally triggered in thermoacoustic engines

(TAEs) [29], where an external temperature differential imposed on a compact region

of the device (thermoacoustic stack or regenerator) results in the spontaneous gen-

eration of acoustic power. TAEs have received much attention from the worldwide

community [68–73] due to the very high energy conversion efficiency potential asso-

ciated with the quasi-isentropic nature of wave energy propagation and the absence

of moving parts. TAE applications span from NASA designs for deep-space energy

generation [74] to small-scale CPU-generated heat control patented by Google [75].

The mechanisms driving thermoacoustic instabilities in TAEs rely on a Brayton-

like thermodynamic cycle occurring inside the thermoacoustic stack [29], comprising

two near-adiabatic transformations, driven by the acoustics, and two near-isobaric

irreversible heat transfer transformations, which combined cause a fluid particle to

experience thermal expansion/contraction at a high/low pressure, powering the in-

stability and spontaneously converting heat into acoustic power. The operating fluid

and the base state conditions, hereinafter indicated by a subscript 0, play a funda-

mental role during the heat-exchange phases of the cycle. Indeed, the theoretical

thermoacoustic production is proportional to the thermoacoustic gain [29],

Θ = − 1

ρ0

dρ0

dx
, (4.1)

where x indicates the coordinate of wave propagation, and ρ0 is the base density. If

the base pressure p0 is uniform, Eq. (4.1) reverts to

Θ = αp0
dT0

dx
, (4.2)

where T0 is the base temperature and

αp = −1

ρ

∂ρ

∂T

∣∣∣
p

(4.3)
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is the isobaric thermal expansion coefficient, which is simply equal to 1/T for perfect

ideal gases, usually employed in thermoacoustic systems.

Fluids in thermodynamic conditions close to their critical point have large ther-

mal expansion coefficients (see figure 4.1), and their use would, theoretically, greatly

increase the thermoacoustic gain in Eq. (4.2). In particular, for fluids in transcritical,

or pseudo-boiling (PB) conditions [13–15], wave-induced compressions and dilatations

could be so large that periodic transitions from liquid-like fluid (pseudo liquid, PL)

to gas-like fluid (or pseudo gas, PG) would occur (see figure 4.1a). Around the PB

region, the highly nonlinear coupling between pressure, temperature, and density has

been proposed [10] as the reason for some undesired effects, such as thermoacoustic

instabilities in high-pressure combustion chambers [76,77] or bulk-mode oscillations in

pressurized fuel heat exchangers [1,5,7,11,78], often leading to catastrophic hardware

failure.

The use of a fluid close to its critical point in a thermoacoustic engine was already

suggested by [29]. In fact, the power energy density is proportional to αp0T0, making

a high thermal expansion coefficient one of the basic requirements in the selection of

the working fluid. However, the high pressures involved in the handling of transcrit-

ical fluids, together with the drop of their thermal diffusivity (requiring very small

pore size), has limited their use in a thermoacoustic engine so far [79]. Moreover,

high-fidelity numerical simulations of transcritical thermoacoustic instabilities have

not been carried out yet. One of the major reasons is the use of fully conservative

schemes [36,37,50], for which spurious numerical oscillations have been shown to pro-

duce unstable computations when transcritical flows are considered [35, 38, 60]. The

most relevant previous work is the development of the linear thermoacoustic theory,

applicable to a generic fluid, by [29], which builds upon classic linear theory [24,80,81].

This theory was applied to the design of a thermoacoustic engine successfully oper-

ated with liquid sodium [69], which was not in a transcritical state. However, [69]

demonstrated that fluids other than ideal gases, and in particular liquids, which had
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Figure 4.1. (a): state diagram for CO2 showing flooded contours of
reduced density ρ/ρcr, with vertical and horizontal black dashed lines
indicating critical temperature and pressure, respectively; the rectangle
drawn with solid black lines determines the parameter space of Thot taken
into account with the linear stability analysis, with Tcold = 293.15 K (see
figure 4.2 and Eq.s (4.9) and (4.10)), fixed for all cases, indicated by a
vertical white dashed line. The conditions for Thot for the Navier-Stokes
computations are indicated with circles, for a total of 10 configurations
(see table 4.1). (b): isobaric thermal expansion coefficient (Eq. (4.3))
versus reduced temperature for CO2, at the pressures indicated in table
4.1, modeled with the PR EoS (solid line) and as a perfect ideal gas
(dashed line, 1/T ); a vertical black dashed-dotted line indicates Tcold =
293.15 K. PG, PB, and PL stand for fluid in pseudo-gaseous, pseudo-
boiling, and pseudo-liquid conditions, respectively.

Table 4.1.
Selected base pressures for the Navier-Stokes simulations.

p0 (MPa) 7.451 7.746 8.853 10.000 11.066

p0/pcr 1.01 1.05 1.2 1.356 1.5

symbol

been employed before in Malone-type Stirling-like engines [82], can be employed in

thermoacoustic systems.
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The objective of this work is to establish a numerical benchmark for high-fidelity

simulations of transcritical thermoacoustic flows, extending previous efforts aimed at

the understanding and description of canonical thermoacoustic instabilities [12, 25,

26]. This goal is accomplished, building upon [28], with an idealized version of the

setup used by [79]: a standing-wave-like thermoacoustically unstable two-dimensional

resonator with transcritical CO2 as the working fluid.

4.2 Problem Formulation

Table 4.2.
Critical temperature, pressure, and density of carbon dioxide.

fluid Tcr pcr ρcr

CO2 304.1282 K 7.3773 MPa 467.6 kg/m3

4.2.1 Selection of Thermodynamic States

In this work we have selected carbon dioxide (see table 4.2 for its critical param-

eters) as the working fluid. Its transcritical, or pseudo-boiling (PB), state is reached

when the fluid is at pressures exceeding its critical value, p > pcr, and the temperature

varies between T < Tcr (pseudo-liquid conditions, PL) and T > Tcr (pseudo-gaseous

conditions, PG), as figure 4.1 shows. The density rapidly drops when transitioning

from PL to PG conditions (figure 4.1a), hence the spike in the isobaric thermal ex-

pansion coefficient (figure 4.1b). However, for increasing pressures, this transition

becomes more gradual, and, for large values of the temperature, αp tends towards

1/T , the value corresponding to a perfect ideal gas.

The equation of state (EoS) of [18] and the model of [19] for viscosity and thermal

conductivity are chosen as real-fluid model due to their simplicity and easiness of
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implementation. Notice that the EoS and transport parameter model degrade in

accuracy for thermodynamic conditions close to the critical point, while still retaining

all the important features of real fluids.

Five base pressures (p0) and five hot temperature Thot (see figure 4.2 and Eq.s (4.9)

and (4.10)) values are considered for the computational setup of the Navier-Stokes

simulations, but only 10 combinations are solved for numerically (symbols in figure

4.1). For all cases, the value of the cold temperature is Tcold = 293.15 K.

4.2.2 Computational Setup

Governing Nonlinear Equations and Numerical Setup

In this work we consider the fully compressible Navier-Stokes equations, expressed

by the conservation laws of mass and momentum,

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (4.4)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

, (4.5)

and the evolution equation for pressure [53],

∂p

∂t
+
∂puj
∂xj

= (p− ρa2)
∂uj
∂xj

+
a2αp
cp

(
τij
∂ui
∂xj
− ∂qj
∂xj

)
, (4.6)

where t is time, xj and uj (j = 1, 2, 3) are the components of position and velocity, ρ

and p are the density and pressure, a is the sound speed, αp is the isobaric thermal

expansion coefficient (Eq. (4.3)), and cp is the isobaric specific thermal capacity. The

Newtonian viscous stress tensor τij, according to Stokes’s hypothesis, and the Fourier

heat flux read, respectively,

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
, qj = −k ∂T

∂xj
, (4.7)

where δij is the Kronecker delta, µ is the dynamic viscosity, k is the thermal conduc-

tivity, T is the absolute temperature.
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Eq.s (4.4), (4.5), and (4.6) are solved with the unstructured spectral difference

(SD) solver sd3DvisP, the same used by [26] in their thermoacoustics simulations.

The solver has been upgraded with real-fluid models and solves for the pressure evolu-

tion equation (Eq. (4.6)) instead of the total energy equation, as tested and validated

in [38]. This numerical approach has been shown to be much more computationally

stable than the fully conservative one, with the SD method, for the correct numerical

solution of transcritical flows. However, the numerical method, being non conserva-

tive, entails a change in time of the integral value of the total energy, which is non

physical. Nevertheless, this error is limited in magnitude by the smallness of the

Mach numbers considered in our numerical simulations [35] and it is not significant

for the conditions we have numerically simulated.

The Navier-Stokes numerical simulations are initialized with the following condi-

tions:

p = p0, T0(x), u =
p0pamp
ρ0a0

sin(πx/L), v = 0, (4.8)

where T0(x) is given by Eq.s (4.9) and (4.10), ρ0 = ρ0(x) and a0 = a0(x) are the

density and sound speed corresponding to p0 and T0(x), respectively, and pamp is

fixed at pamp = 10−7 for all cases, a part from the ones analyzed in §4.5.2, for which

pamp = 5 · 10−3. Eq. (4.8) imposes an initial disturbance in the computational setup

that is thermoacoustically amplified if the system is fluid-dynamically unstable.

Geometry Optimization

The geometrical setup considered in this study (figure 4.2) is a two-dimensional

duct composed by a hot cavity, indicated by the subscript cav, a thermoacoustic

stack, indicated by the subscript stk, and a long resonator. The whole system is

enclosed axially by two adiabatic walls at x = 0 and x = L, respectively. Fluid in
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Figure 4.2. Computational setup (not to scale) with geometrical pa-
rameters for minimal unit numerical simulations. Isothermal boundary
conditions in the stack are imposed following Eq. (4.10). The side walls
are considered adiabatic. PG stands for pseudo-gaseous fluid, PB for
pseudo-boiling fluid, and PL for pseudo-liquid fluid.
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Figure 4.3. Isolevels of thermoacoustic growth rate, α [rad/s], versus
total length, L, and length of the hot cavity, `cav (see figure 4.2), for
p0 = 10 MPa, ∆T = 100 K (a), ∆T = 125 K (b), and ∆T = 150 K (c),
with a black square indicating the selected design point. These results are
obtained with the solution of the linear system of equations composed by
Eq.s (2.38a) and (2.38b).

PL conditions (Tcold) and PG conditions (Thot), according to the base temperature

distribution

T0(x) =

Thot 0 ≤ x ≤ `cav,

Tcold `cav + `stk ≤ x ≤ L,

(4.9)
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bound the stack (`cav < x < `cav + `stk), kept around pseudo-boiling (PB) conditions

by isothermal wall boundary conditions, which impose the following temperature

profile:

T0(x) = Thot −∆T (x− `cav)/`stk, (4.10)

where ∆T = Thot − Tcold. When the linearized equations are solved for, the flow field

is considered at uniform base pressure p0.

A canonical minimal unit [26] is carved out of this geometry, defining the com-

putational setup used in the numerical simulations (both for the linearized equations

and the fully nonlinear ones). The definition of a minimal unit greatly reduces the

computational cost for the Navier-Stokes simulations (which is especially high for

simulations featuring transcritical fluids) and does not hide any of the physics in the

linear regime of the thermoacoustic instability. The nonlinear effects captured by

this setup include thermodynamic ones and losses due to recirculation at the area

changes, which will be analyzed in §4.5. Acoustic streaming, transitional turbulence,

and nonlinear wave steepening are not considered in this study.

This minimal-unit computational setup is optimized, based on the aforementioned

linear theory, for three consecutive values of ∆T (figure 4.3), resulting in the geomet-

rical parameters listed in the table of figure 4.2. The optimization is performed here

visually on the plots of the growth rates and provides a geometry for which ther-

moacoustic instability appears for only about ∆T = 25 K. Other values of p0 or

∆T considered in the optimization would lead to different geometries, which are not

considered in this study.

4.2.3 Grid Sensitivity Analysis

The Navier-Stokes simulations are carried out on an unstructured mesh including

only half of the thermoacoustic pore (figure 4.4), due to the symmetry of the flow field

with respect to the centerline of the domain, which allows for faster computations.

Two different grids are considered (see table 4.3): A (coarse) and B (fine). The order
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Figure 4.4. Zoom of unstructured mesh for Grid B (see table 4.3), close
to area changes, used for the Navier-Stokes simulations. The mesh has
number of elements Nel = 2635.

Table 4.3.
Number of degrees of freedom, Ndof = N2Nel, for the two grids consid-
ered in this study, and for two numbers of solution points N inside each
element.

Grid A (Nel = 1135) Grid B (Nel = 2635)

Ndof Ndof

N = 2 4540 10540

N = 3 10215 23715

of accuracy of the polynomial reconstruction is fixed with N , indicating the number

of points inside each element. For each grid, N = 2 and N = 3 are chosen.

We here perform a grid sensitivity study on the linear growth rate entailed by

the transcritical thermoacoustic instability. In [26], growth rates for their Navier-

Stokes minimal-unit computations were matching with considerable accuracy the re-

sults from the linear theory, while in the simulations by [25], executed with a low-order

finite-volume solver and which were accounting for the complete thermoacoustic ge-

ometry, a mismatch between those was found. In both of these previous works a

perfect ideal gas was employed.

In this work we observe that, even when the fluid inside the stack is transcriti-

cal, the growth rates predicted by linear theory match with excellent agreement the
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Figure 4.5. Growth rate versus reduced base pressure for ∆T = 100
K (a) and ∆T = 200 K (b), for the different grid resolutions in table
4.3. Symbols connected by lines are obtained from the Navier-Stokes
simulations, with arrows indicating increasing resolution (see legend in
(b)). The upper curves are results from linear stability analysis (LSA):
thermoviscous functions only dependent on ω (Eq. (4.12)), thermoviscous
functions dependent on α + iω (Eq. (4.11)).

growths extracted from the minimal-unit Navier-Stokes simulations at the finest res-

olution (grid B and N = 3 in table 4.3), while coarser resolutions show a successive

improvement and converging behavior (figure 4.5). However, an important remark

is that the thermoviscous functions in Eq.s (2.26) and (2.36) have to depend on the

eigenvalue σ, and not only on its imaginary part ω, otherwise the linear theory over-

predicts the growth rate. In fact, in the coordinate transformation of Eq. (2.21), the

variable

η =

√
σ

ν0

r =

√
2i+ 2

α

ω

r

δν
, (4.11)

where δν is defined in Eq. (4.31) and r is the transverse spatial coordinate, includes

also the growth rate α, and is a generalization of the case α � ω (σ ≈ iω, used

in [24–27]), for which

η =

√
iω

ν0

r =
√

2i
r

δν
= (i+ 1)

r

δν
. (4.12)

For both grids, the resolution N = 3 exhibits approximately the same values

of growth rates (especially for ∆T = 200 K, for which the two results are almost
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identical). Furthermore, an almost equal number of degrees of freedom Ndof entails

different results depending on the order of the polynomial reconstruction inside each

element: grid A (coarser) with N = 3 provides a better estimate of the growth rates

than grid B (finer) with N = 2. This justifies the use of high-order numerics in the

simulation of thermoacoustic instabilities.

Hereinafter only results from grid B with N = 2 or N = 3 (finest resolution) will

be considered. Frequencies were found to be not very sensitive to grid resolution.

4.3 Real-fluid Effects on Frequencies, Growths, and Eigenmodes

We start our discussion of the numerical results with the real-fluid effects on the

frequency and growth of oscillations of the fluid in the minimal-unit setup, together

with a closer look at the eigenmodes of the system.

4.3.1 Real-fluid Effects on Frequency

The frequency of oscillation of the system, f , can widely change depending on the

conditions under investigation. Keeping the same ∆T across the stack, for increasing

base pressures, the frequency increases approximately with a linear trend (figure 4.6b),

entailing changes of 15 % from p/pcr = 1.01 to 1.5.

On the other hand, a nonlinear, non-monotonic, and larger effect on frequency is

entailed by the ∆T across the stack (see figure 4.6a) with a given base pressure p0.

The largest values of f are obtained for values of ∆T below 5 K, for which most of

the system is filled with pseudo-liquid (which has a high speed of sound). Then, for

increasing ∆T , the frequency changes at maximum of about 40 %, with a decreasing

trend, the sharper the closer the base pressure is to the critical pressure, due to

the rapid changes in thermodynamic properties which characterize the transcritical

region. For higher values of ∆T , the frequency begins to increase almost linearly, due

to the increasing presence of fluid in near-ideal gas state (for which the speed of sound
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increases with temperature). Thermoacoustic oscillations featuring ideal gases show

much milder changes and dependance on the thermodynamic conditions [25,26].

The data extracted from the Navier-Stokes simulations confirm with excellent

agreement the results obtained from the linear theory. The grid required to capture

the correct frequency of operation of the system is less stringent than the one needed

for numerical convergence of the growth rates (figure 4.5), which are the topic of the

next section.
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Figure 4.6. Frequency versus ∆T for the five base pressures in table
4.1 (a), and frequency versus reduced base pressure p0/pcr for ∆T =
100, 150, 200 K (b). Solid lines indicate results from linear theory, symbols
are data extracted from the Navier-Stokes simulations (with grid B and
resolution N = 2, see table 4.3).

4.3.2 Real-fluid Effects on Growth Rates

The thermoacoustic growth rate strongly depends on the ∆T across the stack (see

figure 4.7a), because ∆T is the parameter that controls the thermoacoustic gain Θ,

which in turn controls the acoustic energy production (which we will discuss more

in detail in section §4.4.1). For all base pressures considered, the minimum ∆T for

the onset of instability (positive growth rate) is only approximately 25 K, much less

than what usually needed in standard thermoacoustic systems employing perfect ideal
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gases [25, 26, 83]. In reality, as the zoom in figure 4.7a shows, configurations where

the base pressure is closer to the critical pressure need the lowest ∆T (= 23 K) to be

thermoacoustically unstable.

A small dip is present right before ∆T = 15 K only for base pressures closer

to the critical pressure (p0 = 1.01pcr and p0 = 1.05pcr). For those pressures, the

trend of the growth rate becomes non-monotonic as soon as transcritical conditions

appear inside the stack, whereas the milder pseudo-boiling states of the higher base

pressures do not entail this effect. From the onset of instability onwards, increasing

∆T always increases the growth rates, with a trend similar among all base pressures.

However, for p0 = 1.01pcr and p0 = 1.05pcr, the growth rate rapidly increases above

all other cases, but then begins to decrease in magnitude, with respect to them, for

∆T higher than about 100 K, eventually being the lowest at the maximum ∆T = 200

K considered. Instead, for the other three base pressures, the highest considered in

this study, the trend of the growth rate with ∆T is monotone, closer to ideal-gas

behavior, and much smoother than the one shown by the lowest p0.

The dependence of the growth rate on the base pressure (figure 4.7b) is not as

strong as the one observed above against ∆T , and is more pronounced for higher

values of ∆T (see also figure 4.5). However, the growth rate shows a decreasing

trend as the base pressure approaches the critical pressure, which is a somewhat

unexpected result. This is because higher base density gradients are expected to

boost thermoacoustic energy production [28] and therefore the growth rate, hence

setting the expectation for a monotonic decrease of the growth rate with p0/pcr. The

results from the linear theory and Navier-Stokes simulations instead show that other

factors come into play, which will be shown and explained in more detail in §4.4.1.

Furthermore, for ∆T = 100 K, the growth rate changes in a non-monotonic manner

with different base pressures, showing a maximum around p0 = 1.25pcr (see also

figure 4.5a). The same behavior is expected to be shown by the other values of ∆T

considered, which would have maxima of growth rates for higher values of p0/pcr. All
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of these effects are usually not present with thermoacoustic systems employing ideal

gases [25, 26,83].
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Figure 4.7. (a): Growth rate versus ∆T for the five base pressures in
table 4.1; (b): growth rate versus reduced base pressure p0/pcr for ∆T =
100, 150, 200 K. Solid lines indicate results from linear theory, symbols are
data extracted from the Navier-Stokes simulations.

Overall, all frequencies and growth rates extracted from the Navier-Stokes sim-

ulations agree well with their respective predictions from the linear theory. This

confirms the validity of the linear stability ansatz despite the large gradients in the

base state. When higher values of pressure oscillations are considered, as we will see

in §4.5.2, thermodynamic nonlinearities, which can potentially decrease the values of

the linear growth rates, arise around the pseudo-boiling region. As an additional step

in verifying the linear theory with the data from the Navier-Stokes simulations, and

to discuss more real-fluid effects, we now take a look at the system’s eigenmodes.

4.3.3 Real-fluid Effects on Eigenmodes

The system exhibits oscillations in all fluid and thermodynamic variables. Pressure

and mass flow rate amplitudes, and their relative phasing, in particular, are the

quantities of primary interest and are analyzed in figure 4.8. The results from the

linear stability theory match well the data extracted from the unstructured Navier-
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Figure 4.8. Axial distribution of pressure (a), mass flow rate (b) dimen-
sionless amplitudes, and phasing between p̂ and Û (c), for ∆T = 200 K
and p0 = 10 MPa: linear theory (solid lines), data extracted from the
Navier-Stokes simulations (circles). Dashed-dotted lines indicate eigen-
modes obtained from the linear theory with the assumption of thermally
perfect ideal gas, still with Chung’s model for transport properties. Verti-
cal dashed lines indicate locations of abrupt area change. The squares in
(c) indicate values of phase difference at the location of minimum pressure
amplitude.

Stokes simulations. Not a significant change in the overall mode spatial distribution,

nor in the matching with Navier-Stokes simulations, is found for ∆T = 200 K for

different base pressures.
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The linearized mass flow rate eigenmode (figure 4.8b) presents two nodes at the

beginning and end of the duct, where the pressure has its antinodes (figure 4.8a), due

to the imposed hard-wall boundary conditions, and a maximum inside the resonator,

where the pressure is minimum. The oscillating mass on the left hand side of the stack

and in the hot cavity, where pseudo-gaseous (PG) fluid exists, exhibits a trend similar

to the ideal gas configuration. On the other hand, the sharp base density gradients

in the stack entails an equally sharp boost in oscillating mass on the right hand side

of the stack, where pseudo-boiling (PB) fluid exists. In the resonator, instead, where

pseudo-liquid fluid (PL) is present, the mass flow rate oscillation is overall the highest.

Moreover, while the ideal gas case shows a mass flow rate eigenmode very similar to

the first harmonic of a standing-wave resonance in the duct, for the real gas case the

eigenmode is significantly more modified, due to the transcritical conditions present

in the stack.

Another quantity of interest is the phasing between p̂ and Û , i.e. Ψp − ΨU (fig-

ure 4.8c). This quantity, for the ideal gas configuration, is consistent with similar

trends reported in [84], where a sharp change from π/2 to approximately −π/2 was

observed. Instead, for the transcritical case, this phasing difference shows a much

milder transition inside the resonator. Moreover, the value of Ψp − ΨU at the point

of minimum |p̂| (indicated by squares in figure 4.8c) is not exactly zero, and it is in

magnitude higher for the transcritical fluid with respect to the the ideal gas case. The

point where |p̂| is minimum is the average node location, indicated with a subscript

n in the following discussion. It can be shown that (appendix 4.3.3)

Ψpn −ΨUn = − arctan
(α
ω

)
. (4.13)

indicating that the pressure-velocity phase difference is significantly different than

zero at the average node location for transcritical flows, being α/ω high. This means

that, at x = xn, pressure and flow rate are generally more out of phase for transcritical

fluids than for ideal gases.

We call x = xn an average node location because, there, the (minimum) pressure

amplitude is not null, hence xn is not a stationary pressure node. Instead, for the
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analogous ideal gas configuration, |p̂|min seems to be 0. However, a more in depth

analysis of this (figure 4.9b) reveals that, for the ideal gas case, |p̂|min/p̂|max is not

exactly zero, but is at maximum 2% for all the values of ∆T considered, which can

not be appreciated from figure 4.8a only. On the other hand, for the real fluid, the

pressure amplitude minimum can be a considerable portion (at maximum 12%) of its

maximum value, therefore its pressure eigenmode tends to be more flat overall than

for ideal gases. As a result of the closure of the acoustic energy budgets, it can be

shown that (appendix 4.3.3, see figure figure 4.9c), regardless of the EoS,

|p̂|min
|p̂|max

∝ |α|
ω
. (4.14)

The average node location inside the duct (figure 4.9a) is approximately at the center

of the domain for ∆T = 0 K, as per standing wave resonance. For increasing ∆T ,

xn shifts rightwards for the ideal gas case, remaining around 0.51L at maximum. On

the other hand, for a real fluid, xn shifts at first leftwards, reaching a minimum of

about 31% of the total length, but eventually also rightwards, for increasing ∆T ,

being overall always in the left hand side of the duct. This trend resembles the one of

frequency versus ∆T (figure 4.6a) because, during the thermoacoustically sustained

oscillation, the wavelength decreases while traversing the fluid’s base state in the hot

cavity, due to its lower speed of sound if compared to the one of the heavier PL in

the resonator. Therefore, the pressure node shifts towards the left of the duct, until

the speed of sound of the PG in the hot cavity increases when ∆T grows.

A final regard on real-fluid effects can be appreciated with the peculiar features

exhibited by the pressure eigenmode towards the end of the stack, which are magnified

in figure 4.10 for ∆T = 200 K and p0 = 1.01pcr. In fact, the abrupt change in duct area

from stack to resonator entails a change in derivative of the pressure eigenmode. This

is because the acoustic impedance Z0, obtained as the ratio of the specific acoustic

impedance and the duct area,

Z0 =
ρ0a0

A
, (4.15)
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Figure 4.9. Data from linear stability theory on pressure mode amplitude:
location (a) and relative magnitude (b) of its minimum. Solid lines are
for real-fluid EoS (for all base pressures in table 4.1), and the dashed line
indicates thermally perfect ideal gas EoS, still with Chung’s model for
transport properties (for p0 = 10 MPa only).

jumps from one duct to the other. From stack to resonator, no discontinuity in base

state quantities exists, hence the jump in Z0 is only due to area change present at

(x− `cav)/`stk = 1.

Inside the stack, instead, the duct area is uniform, but great variations of base

density and speed of sound exist, especially in the vicinity of the pseudo-boiling region,

resulting in rapidly changing specific acoustic impedance around (x − `cav)/`stk =

0.942. Therefore, the acoustic impedance Z0 presents a pseudo-jump which, entailing

a great variation of its derivative, changes gradually the spatial derivative of the

pressure eigenmode (and of the mass flow rate, not shown). This rapid change in Z0

at transcritical conditions effectively acts on the eigenmodes like a continuous change

in geometry. When milder conditions in the stack are present (higher base pressures),

the spike of thermodynamic quantitites is not as pronounced as seen above, and the

eigenmodes look smoother, like their ideal gas counterparts.

The large difference in acoustic impedance between resonator and hot cavity is

also responsible for the presence of the maximum of pressure on the right end side of

the domain, when the real gas configuration is concerned (see figure 4.8a). For ideal
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gases, the acoustic impedance in the hot cavity might be higher than in the resonator,

instead, causing the maximum pressure amplitude to be at x = 0.

Having finished with the real-fluid effects on frequencies, growths, and eigenmodes,

we now shift our discussion on the energetic aspect of the transcritical thermoacoustic

instability, by considering the acoustic and total energy budgets.
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Figure 4.10. Axial distribution of dimensionless pressure amplitudes (left
y axis), and base acoustic impedance (right y axis), for ∆T = 200 K and
p0 = 1.01pcr: linear theory (solid line), data extracted from the Navier-
Stokes simulations (circles), and base acoustic impedance (dashed dotted
line). The vertical dashed line on the left indicates pseudo-boiling (PB)
conditions, while the one on the right denotes the separation between
stack and resonator.

Discussion on Minimum Pressure Amplitude

Expressing p̂ and Û in the conventional complex phasor notation, p̂ = |p̂|eiΨp and

Û = |Û |eiΨU in Eq. (2.38a) yields

Û = − A

σρ0Fν
eiΨp

(
d|p̂|
dx

+ i|p̂|dΨp

dx

)
, (4.16)

hence

|Û | = A

|σ|ρ0|Fν |

√(
d|p̂|
dx

)2

+

(
|p̂|
∣∣∣∣dΨp

dx

∣∣∣∣)2

, (4.17)

ei(ΨU−Ψp) = −|σ||Fν |
σFν

(
d|p̂|
dx

+ i|p̂|dΨp

dx

)
/

√(
d|p̂|
dx

)2

+

(
|p̂|
∣∣∣∣dΨp

dx

∣∣∣∣)2

, (4.18)
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and, from Eq. (2.38b),

σ|p̂|ei(Ψp−Ψu)AFk
ρ0a2

0

= |Û |
(

ΘΦP − i
dΨU

dx

)
− d|Û |

dx
. (4.19)

In the resonator (on the right of the stack) the base state is uniform, hence Θ = 0,

and inviscid walls are assumed (Fν = Fk = 1). There, where the average pressure

node (n) is, if α is not too close to 0, |p̂|n is the minimum value of p̂ and |Û |n can be

assumed as the maximum of Û . Therefore, d|p̂|/dx|n = d|Û |/dx|n = 0 in Eq.s (4.17),

(4.18), and (4.19) yields

|Û |n =
A

|σ|ρ0

|p̂|n
∣∣∣∣dΨp

dx

∣∣∣∣
n

, (4.20)

ei(Ψpn−ΨUn ) = i
σ

|σ|sgn(
dΨp

dx
|n) → Ψpn −ΨUn = − arctan

(α
ω

)
, (4.21)

|σ|2
a2

0

=

∣∣∣∣dΨp

dx

∣∣∣∣
n

∣∣∣∣dΨU

dx

∣∣∣∣
n

. (4.22)

Eq. (4.20) shows that, in order to have maximum |Û |n, |dΨp/dx|n is maximum. Eq.s

(4.20), (4.21), and (4.22) have been verified with the data obtained from the linear

theory (not shown).

In section §4.3.3 it was observed that |p̂|min/|p̂|max (figure 4.9b) is proportional to

|α|/ω (figure 4.11b). This can be explained by noticing that, in the resonator, Eq.

(2.42) becomes

dẆ

dx
= −αE , (4.23)

and by assuming an acoustic energy distribution (Eq. (2.43)) equal to its value at

x = L (|Û |x=L = 0). After integrating Eq. (4.23) from the right end side of the stack

to the right end side of the resonator, the power at the average node location is

Ẇ n = |p̂|n|Û |n(− ω

|σ|)sgn(
dΨp

dx
|n) =

αA

2ρ0a2
0

|p̂|2max(L− xn), (4.24)

where xn is its location. This is consistent with the intuitive reasoning that, if there

is growth, nowhere in the resonator the acoustic power flow can be blocked by a

stationary node, which would instead happen for a perfectly standing wave (zero

acoustic power) with α = 0. Inserting Eq. (4.20) in Eq. (4.24) yields( |p̂|n
|p̂|max

)2

= −|σ|
2α

2a2
0ω

(L− xn)/
dΨp

dx

∣∣∣∣
n

, (4.25)
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Figure 4.11. Data from linear stability theory: (a) product of the absolute
value of the phase derivative at average node location of flow rate and
absolute value of distance of average node location from the right end side
of the duct (in the right hand side of Eq. (4.26)); (b) ratio of the absolute
value of growth rate to pulsation 2πf . Solid lines are for real-fluid EoS
(for all base pressures in table 4.1, and the dashed line indicate ideal gas
EoS (for p0 = 10 MPa only).

which proves that, since the left hand side is always positive, α/dΨp

dx
|n ≤ 0. Using Eq.

(4.22) in Eq. (4.25), after taking the absolute value of its right hand side, yields( |p̂|n
|p̂|max

)2

=
1

2

|α|
ω

∣∣∣∣dΨU

dx

∣∣∣∣
n

|L− xn|. (4.26)

With the data obtainable from the linear theory, it is found that |dΨU/dx|n|L− xn|
(figure 4.11a) is proportional to |α|/ω (figure 4.11b), hence also

|p̂|min
|p̂|max

∝ |α|
ω
, (4.27)

explaining the trend observed in figure 4.9b.
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Effect of stack’s base temperature profile

The different mean temperature profiles in figure 4.12a are considered in order to

investigate the effect of T0 in the stack on the thermoacoustic growth rates. Those

are computed according to

T0 = Thot −∆T

(
(x− `cav)
`stack

)n
, (4.28)

where n = 1 indicates a linear profile. Values of n higher than 1 shift the highest tem-

perature gradients towards the right end side of the stack, and the opposite happens

for n < 1.

As it can be expected, for the same mean pressure, a different temperature distri-

bution will entail a different mean density profile (not shown), therefore changing the

location of PB fluid in the stack. For n� 1, the stack is almost full of pseudo-liquid,

whereas for n� 1 the stack if filled with pseudo-gas for the most part. In the range

of n considered in this study, the growth rate varies from a maximum of 36.36 1/s

for the lowest n considered (n = 1/7), to a minimum of 27.02 1/s, achieved around

n = 1/2, which is approximately a 35 % change. For values of n lower than 1/7,

the growth rate continues to sharply increase due to the continuous raise in temper-

ature gradients close to the left hand of the stack. The same continuous growth rate

increase happens for n higher than 5, but less accentuated than the case of n� 1.

The different temperature profiles in figure 4.12a do not significantly change the

operating frequency of the system, which varies of at maximum 1 % for the range of

n considered. This is expected since in the discussion above Thot and Tcold are fixed

and so are the speed of sound inside resonator and hot cavity, which greatly influence

the value of operating frequency (see discussion in §4.3.1).

4.4 Energy Budgets

The fundamental mechanisms of conversion from thermal to acoustic energy hap-

pen inside the stack, where a fluid parcel experiences a thermodynamic cycle, driven
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Figure 4.12. Profiles of mean temperature T0 in the stack, considering
p/pcr = 1.01 and ∆T = 100 K, for n = 1/5, 1/2, 1, 2, 5 (a, see Eq. (4.28))
and growth rates computed from linear theory versus n (b). The solid line
in (b) is just a guide to the eye.

by the harmonic pressure oscillations, in which expansions and contractions are ac-

companied by heating and cooling. The resulting Lagrangian pressure-volume cycle,

traversed clockwise, indicates mechanical power production (figure 4.13). How much

power is produced is strongly dependent on the fluid’s base state properties, which are

a consequence of the imposed mean temperature distribution (Eq. (4.9)). For base

pressures closer to the critical pressure, the transcritical conditions entail a sharper

base density distribution, therefore entailing larger volume fluctuations for the same

value of maximum pressure oscillations. Therefore, conditions closer to the critical

point entail higher power production, due to the larger area encompassed by the

Lagrangian cycle.

4.4.1 Acoustic Energy Budgets

Once the eigenvalue problem in Eq. (2.38) is solved, it is possible to directly

evaluate all the variables in Eq.s (2.44), (2.45), and (2.46), allowing to compute

the growth rate from Eq. (2.49). This procedure has been carried out for all the

configurations considered in this work and the growth rate hence obtained has resulted
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Figure 4.13. Fluctuating pressure plotted against specific volume fluc-
tuation of a Lagrangian fluid parcel, for all base pressures of table 4.1,
extracted with the aid of the linear theory. Initial position of the La-
grangian parcel is at the centerline of the stack and at pseudo-boiling
conditions (x = 12.21, 12.17, 12.019, 11.88, 11.77 cm for increasing values
of p0). All oscillations are assumed to be at fixed maximum pressure
amplitude, and with zero growth rate. All cycles are traversed clockwise.

to be in excellent agreement with the one from the direct numerical solution of Eq.

(2.38). Indeed, the pointwise acoustic energy budgets (Eq. (2.42)) are closed (figure

4.14e), corroborating the validity of the data extracted from the linear theory.

The acoustic energy production (figure 4.14c) spikes at pseudoboling conditions,

due to the peak in Θ (figure 4.14b). Depending on the base pressure, these peaks

appear at different axial locations inside the stack. In fact, the location of pseudo-

boiling conditions strongly depends on the base pressure: keeping the same ∆T and

Tcold, for a pressure closer to the critical point, transcritical conditions are achieved for

a lower temperature (see figure 4.1b), resulting in PB fluid closer to the cold right end

side of the stack. Furthermore, the highest absolute values of Θ are attained for the

values of p0 closest to pcr. This boost of production is, however, also accompanied by a

similar increase in acoustic dissipation (figure 4.14c), due to the high values of Prandtl

number typical of transcritical conditions (figure 4.14a). In fact, the Prandtl number

shows trends which directly resemble the ones of the thermal expansion coefficient,

which is the main driver of the variable Θ. Therefore, inside the stack, for p0 =
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Figure 4.14. Base state quantities and acoustic energy budgets terms
from linear theory, for ∆T = 100 K and p0/pcr = 1.01, 1.05, 1.2 (see table
4.1), inside the stack and close to the respective PB regions. (a): base
Prandtl number; (b): minus thermoacoustic gain (Eq. (4.1)); (c): acoustic
energy production (Eq. (2.45), positive values), and minus acoustic energy
dissipation (Eq. (2.46), negative values); (d): axial gradient of acoustic

power (Eq. (2.44)); (e): P−D−dẆ/dx (circles), and αE (solid lines, Eq.
(2.43)), see Eq. (2.42). All quantities correspond to maximum pressure
oscillation amplitude of 100 kPa, fixed for all base pressures. Vertical
dashed lines indicate, for each base pressure, locations of minimum Θ,
which are x = 12.21, 12.17, 12.019 cm for increasing values of p0.
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1.01pcr, the sum of production and dissipation of acoustic energy can actually reach a

minimum (figure 4.14c). This instead does not appear for higher values of p0, which

also features a lower spike of Θ, causing the non-monotone behavior observed for

the growth rate as a function of p0/pcr in figure 4.5a. The trends of acoustic energy

production and dissipation directly affect the ones of gradient of acoustic power and

acoustic energy density, which show, when strong transcritical conditions exist, a dip

(figure 4.14d) and a spike (4.14e), respectively. The rapid change in derivative of the

acoustic power at PB conditions is akin to the one observed before for the pressure

eigenmode (§4.3.3).

For all values of p0, the acoustic power flows towards the left in the hot cavity, and

towards the right in the resonator, reaching boundary values of zero due the imposed

hard wall boundary conditions (figure 4.15a), while inside the stack (figure 4.15b)

a positive gradient (also see figure 4.14d) confirms acoustic power production. The

trends of the acoustic power inside the duct confirm the intuitive conclusion, drawn

from figure 4.13, that near-critical base pressures entail higher power production. This

will also be seen when limit cycle oscillations are present (figure 4.16). However, the

heat required for sustaining the pressure oscillations at values of p0 closer to pcr is also

expected to be higher, given the spike of thermal capacities typical of transcritical

conditions. With to objective to assert the validity of this intuition, in the next

section we analyze the total energy budgets.

4.4.2 Total Energy Budgets

The profile of Ḣ inside the stack (figure 4.15b) shows the cumulative time-averaged

heat required from the solid walls of the stack to sustain the steady-state fluid oscil-

lations inside it. The axial derivative of Ḣ represents the pointwise heat injected into

the fluid. The highest heat is required to sustain carbon dioxide oscillating around

its pseudo-boiling (PB) state, followed by fluid in pseudo-liquid and pseudo-gaseous

conditions, on the right and left, respectively, of fluid in PB conditions. This hier-
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Figure 4.15. (a): acoustic power (Eq. (2.44)) in the whole domain; (b):
acoustic power in the stack; (c): total energy flux (Eq. (2.63)) in the
stack. Data are taken from the linear stability theory, for ∆T = 100 K
and all base pressures of table 4.1. The values on the y axis correspond
to a maximum amplitude of pressure oscillations of 100 kPa, fixed for all
base pressures.

archy is consistent with the typical orders of magnitude of the specific heat capacity

of each thermodynamic condition. Furthermore, for near-critical base pressures, the

heat required by the stack increases monotonically. Therefore, for a given ∆T , con-

ditions closer to the critical point do produce more acoustic power, but also required

more energy to be sustained.

The efficiency of the thermal-to-acoustic energy transformation can be computed

by dividing the produced acoustic power to the total energy required by the stack,

η =
Ẇ 2 − Ẇ 1

Q̇
. (4.29)
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This estimate can be more accurately performed if a limit cycle is present (to cancel

the unsteady term in Eq. (2.61)). In order to do so, nonlinear effects need to be

considered. This is the topic of the next section.

4.5 Limit Cycle and Nonlinear Thermodynamic Effects

A limit cycle can be achieved if pressure amplitudes are sufficiently high to trigger

nonlinear losses, which contribute to the acoustic energy budgets (Eq. (2.42)) with

a nonlinear dissipation term, resulting in a zero net energy growth. A source of

nonlinear dissipation is the vortex shedding at locations of sudden area change, such

as the transition from the hot cavity to the stack and from the latter to the resonator

(see figure 4.2). These losses, in our computational setup, can be the governing

mechanism for the achievement of a limit cycle, without letting shock waves form. In

fact, when elevated pressure amplitudes are obtained in a minimal unit setup, shock

waves can arise [26], providing high enough nonlinear losses for a limit cycle with

their distorted waveforms.

However, pressurized liquids are expected to sustain elevated pressure wave am-

plitudes without the generation of higher harmonics or shock waves. The pressure

amplitude level above which acoustic nonlinearities occur, |p|shocks, is approximately

equal to the reference pressure ρ0a
2
0 [53]. Table 4.4 illustrates that considerably high

amplitude pressure amplitudes, of the order of hundreds of MPa, are required for

shocks to form inside the computational setup. This very high pressure amplitude

corresponds to about 15 times the base pressure, a very high value if compared to

the 1-2% needed for ideal gases. Indeed, [83] reported higher harmonics in his experi-

ments with a large-scale ideal gas thermoacoustic engine, with pressure amplitudes of

10% of the base pressure, and [26] showed shock waves at 7% of the base pressure in

their numerical traveling wave setup. On the other hand, [69], in their liquid sodium

thermoacoustic device, at a maximum |p|max/p0 = 55%, did not report any trace of

higher harmonics, and even proposed a future design for which |p|max/p0 = 100%.
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Table 4.4.
Base pressure, base density times square of base speed of sound, equal to
the approximate pressure amplitude limit for nonlinear wave propagation,
|p|shocks, and ratio of |p|shocks over base pressure. In the last row, values
of K (Eq. (4.30)) used for the linearized pressure jump entailed by minor
area losses. Data are for all the base pressures of table 4.1 and for T =
293.15 K.

p0 (MPa) 7.451 7.746 8.853 10.000 11.066

|p|shocks ' ρ0a
2
0 (MPa) 110.36 114.81 130.52 145.69 159.09

|p|shocks/p0 14.81 14.82 14.74 14.57 14.38

K 1.3 1.5 2.1 3.4 9.0

4.5.1 Limit Cycle due to Minor Area Losses

Minor losses entail a pressure drop at area jumps, with A0 the smaller and A1 the

larger area, which can be parametrized as [25]:

∆p̂ml = −K
[(

1− A0

A1

)2

+
1

2

(
1− A0

A1

)3/4
]
ρ0|Û |lc
A2

0

Û , (4.30)

which considers losses in steady flow due to expansions (Borda-Carnot formula) to-

gether with losses from contractions [85], and employs the largest average velocity

|Û |/A0 in the channel. The value of |Û | at limit cycle, |Û |lc, is obtained for each area

jump iteratively until a zero growth rate is obtained from the numerical solution of

Eq.s (2.38a) and (2.38b). In [25], it was shown that the functional dependence of

Eq. (4.30) allows for matching of the acoustic power predicted by the linear theory

with the Navier-Stokes simulations data. However, recommendation was given on the

proper tuning of K to specific numerical or experimental investigations in order to

accurately predict the limit cycle physics. In the present study, different values of K,

reported in the last row of table 4.4, have been selected to match Navier-Stokes limit

cycle pressure amplitude data at low values of ∆T with the linear theory. In addition,

for ∆T = 26 K and p0/pcr = 1.01, the axial profile of pressure obtained with the linear
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theory augmented with linearized minor losses has been validated with the Navier-

Stokes data (not shown). For increasing base pressures, K increases, consistent with

the increase in the cold base density ρ0 (see figure 4.1a): a larger pressure drop is

entailed by heavier pseudo-liquid in correspondence of the area jump between right

end side of the stack and resonator. Notice that a single value of K is chosen for both

the area changes and all values of ∆T , which is an approximation. A more precise

estimate would consider different values of K at each location of pressure drop, and

varying K with Thot between the hot cavity and the stack. We expect the coefficient

K to be lower the more Thot increases, due to the more prevalent presence of ideal

gas inside the duct (for which pressure drops are lower), hence our approximation

underestimates the pressure amplitude at limit cycle shown in figure 4.16, for high

values of ∆T . For those, a more precise estimate, outside the scope of this work,

might be needed.

Transcritical thermoacoustic limit cycle pressure amplitudes strongly depend on

the base pressure (figure 4.16a). For lower values of p0, pressure amplitudes, work

produced, and heat required are always the highest, due to the peculiar thermody-

namic conditions of pseudo-boiling fluids. Thus, as also pointed out by [29], higher

power energy densities are achieved by fluids with high thermal expansion coefficient.

However, their thermal-to-acoustic efficiency is the highest only for low values of ∆T

(up until ∆T = 30 K circa). For increasing ∆T , p0 = 1.5pcr is the one entailing

the most efficient energy conversion, while p0 = 1.01pcr is the least efficient. This

is consistent with the theoretical findings of [29], which showed that higher acoustic

powers are connected with lower efficiencies. The efficiency increases with ∆T until it

reaches a maximum, of 0.87 % for p0/pcr = 1.5 and 120 K, to then decrease for higher

values of ∆T . For the sake of comparison, [69] with their liquid sodium thermoacous-

tic engine obtained 18 W of acoustic power, employing 360 K temperature difference

across the stack with 990 W of required heat, for an efficiency of 1.8%. The compu-

tational setup used in this work was not originally optimized for thermal-to-acoustic

efficiency, but for growth rate instead (see §4.2.2), therefore we expect higher values
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of η with future designs. Such improved geometrical setups could achieve a higher

efficiency for a lower ∆T , for which p0 close to pcr is required. Moreover, in a realistic

setup, composed of more than one thermoacoustic unit, thermoviscous losses would

also be considered for the hot cavity and resonator, reducing the values of limit cycle

quantities in figure 4.16a,c,d.
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Ẇ
(k

W
)

(c)

p0/pcr

0 25 50 75 100 125 150 175 200
∆T (K)

0

200

400

600

800

1000

Q̇
(k

W
)

(d)

p0/pcr

Figure 4.16. Data on limit cycle achieved due to linearized area losses (Eq.
(4.30), solid lines), and data extracted from the Navier-Stokes simulations
at limit cycle (symbols), for all base pressures of table 4.1. (a): maximum
pressure amplitude; (b): thermal-to-acoustic efficiency (Eq. (4.29)); (c):
acoustic power produced by the stack; (d) heat required to sustain ther-
moacoustic oscillations (Eq. (2.61)).

Very high limit pressure amplitudes can trigger also another form of nonlinearity.

In fact, transcritical fluids with p0 ' pcr entail base state thermodynamic conditions

which vary axially in a strongly nonlinear manner. Therefore, if temperature pertur-

bations at a point inside the stack, close to PB conditions, become significantly high,
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strong density variations are expected, hence activating thermodynamic nonlineari-

ties in part of the flow. These nonlinear but concentrated effects at PB conditions

are further discussed in the next section, the last of the chapter.

4.5.2 Thermodynamic Nonlinearities at High Pressure Amplitudes

In this section we analyze more in detail the physics of the thermoacoustic oscil-

lations close to the pseudo-boiling region of the stack. In order to magnify and hence

clearly see flow oscillations in all variables (not only in pressure), results with strength

of the initial dimensionless perturbation of pamp = 5 · 10−3, instead of pamp = 10−7

(see Eq. (4.8)), are considered.

For ∆T = 100 K and p0/pcr = 1.01, color contours of density profiles (figure 4.17)

show rapid and strong fluid oscillations where transcritical conditions are reached

(closer to the right end side of the stack). The fluid in PB state periodically pushes

and pulls large amount of fluid away and towards it, resulting in strong mechan-

ical force exerted on its surroundings. In addition, the density contours are not

symmetric. In fact, at the beginning of the acoustic cycle, the PB density contour

(ρ = 446.671 kg/m3) is skewed towards the left end side of the stack, where fluid in

pseudo-gaseous conditions (lighter) is present. After the standing-wave-like acoustic

oscillations force this profile to move rightwards, halfway through the acoustic cycle,

the pseudo-boiling fluid is pushing the heavier pseudo-liquid on its right, therefore

releasing all its energy much more quickly. Moreover, the phasing between pseudo-

gaseous density oscillations (ρ = 260 kg/m3) and pseudo-liquid ones (ρ = 650 kg/m3)

is similar, whereas the pseudo-boiling fluid lags behind, especially in the center of

the channel, due to the strong thermal inertia of the pseudo-liquid fluid, as we will

discuss below.

On the other hand, for p0/pcr = 1.5, no such effects are detected. In fact, the latter

base pressure, being sufficiently higher than the critical pressure, entails stability

dynamics more akin to the one of ideal gases: away from strong base density gradients,
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Figure 4.17. Time evolution (from top to bottom), during a complete
acoustic period in the transient phase, of color contours of density inside
the stack for ∆T = 100 K, for p0/pcr = 1.5 (left) and p0/pcr = 1.01 (right)
(see table 4.1), employing grid B with N = 3 (see table 4.3). The re-
sults are mirrored about the centerline and strecthed 100 times along the
y axis for plotting purposes. For these cases, the strength of the initial
perturbation is pamp = 5 · 10−3 (see Eq. (4.8)). Solid lines indicate iso-
countours of density for ρ = 200, 240, 300, 450, 521.197, 620 kg/m3 (left)
and ρ = 125, 150, 200, 260, 446.671, 650 kg/m3 (right). The density oscil-
lations shown correspond to pressure oscillations of about 1% of the base
pressure for both left and right columns.
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the fluid in the stack undergoes mild and symmetric density oscillations, all with about

the same relative phasing.

Apart from very high density gradients, transcritical fluids are characterized by

other peculiar thermodynamic properties. These include large Prandtl numbers and

low thermal diffusivity, which affect the axial profiles of the viscous and thermal

boundary layers thicknesses δν , δk, defined by

δ2
ν =

2ν0

ω
, δ2

k =
2k0

ωρ0cp0
=

δ2
ν

Pr0

, (4.31)

which are also a function of the frequency of oscillation. For gases, the Prandtl

number is usually less than unity, while for liquids usually Pr > 1. In the PB region,

the Prandtl number spikes so much that the thermal boundary layer thickness δk can

become significantly low, indicating that most of the fluid inside the stack can not be

heated or cooled by the wall during an acoustic cycle.

The temperature profile (figure 4.18a), in fact, shows a flat distribution in the

center of the pore, mainly due to the high thermal inertia of the oscillating pseudo-

boiling fluid, and a nonlinear time phasing. Indeed, when the temperature reaches Tcr,

the fluid’s oscillation rapidly slows down, indicating an increasing thermal resistance,

and lags behind the acoustic particles in the other parts of the stack, where PB

conditions are not present. When the energy of the oscillation can finally overcome

this inertia, the fluid rapidly oscillates away from critical conditions, around which

actually the fluid spends the least amount of time. In addition, for x = 12.31 cm,

the profiles of temperature in the half-channel are smooth and monotone when the

oscillations are directed towards the left, where lighter PG fluid is present, whereas

they are non-monotone when directed towards the heavier PL fluid on the right.

The profiles of density (figure 4.18c) confirm the nonlinearities observed in figure

4.17. The largest variations in density appear around the critical density ρcr, result-

ing in the strongly asymmetric profiles shown by the x = 12.31 cm (PL fluid) and

x = 12.11 cm (PG fluid), while the x = 12.21 cm profile (PB fluid) shows a strong

nonlinear behavior of the density in the y direction, resembling fast ejection from

fluid accelerated from the transcritical region.
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Figure 4.18. Time evolution, during the transient phase, of cross-sectional
profiles of temperature (a), axial velocity (b), and density (c) inside the
stack, with resulting Lagrangian pressure-volume cycle at the centerline
(d), for ∆T = 100 K and p0/pcr = 1.01 (see table 4.2), for grid B with
N = 3 (see table 4.3). Darker to lighter colored circles indicate increasing
time in (d), which considers a complete acoustic period. The results in
(a), (b), and (c), for plotting purposes, are mirrored about the center-
line, and are considered until 70 % of its completion. Horizontal dashed
lines indicate the distance from the walls equal to δk in (a) and (c), and
δν in (b), and vertical dashed-dotted lines are plotted for T = Tcr in
(a) and ρ = ρcr in (c). (e) shows the base density (dashed-dotted line)
and the base Prandtl number (solid line), and vertical dashed lines at
x = 10.75 cm, 12.11 cm, 12.21 cm, 12.31 cm, which are the axial coordi-
nates from where the y-profiles in (a), (b), (c) are extracted from, and the
initial locations for the acoustic parcel in (d). For this case, the strength
of the initial perturbation is pamp = 5 · 10−3 (see Eq. (4.8)).
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These peculiar features are now shown by the x = 10.75 cm section, where the time

scale of the oscillating fluid (acoustics) matches well the time of thermal diffusion in

the y direction, hence allowing for harmonic temperature and density perturbations.

Furthermore, the cross-sectional velocity profiles resemble their linear counterparts

predicted by the theory of Rott, and do not show significant changes among the

different fluid regions (figure 4.18b). This indicates that real-fluid effects mainly

affect the oscillating thermodynamic variables, such as density and temperature, and

not the velocity. This is because the viscous boundary layer thickness δν covers most

of the fluid inside the stack in all its regions, and does not vary as significantly as the

thermal boundary layer thickness δk.

As a result of the PB thermodynamics, for such high pressure amplitudes, the

linear relation between density and temperature (Eq. (2.27)), which holds for small

amplitude wave amplitudes, is replaced by a fully nonlinear relationship. This causes

the Lagrangian pressure volume cycle in the linear regime (figure 4.13), which is still

reproduced at the x = 10.75 cm section (and by high base pressures, not shown), to

be modified and distorted (figure 4.18d). However, the thermodynamic nonlinearities

investigated in this section are concentrated in a small region of the stack close to

fluid in PB condition. Therefore their effect as nonlinear losses can be negligible

if the value of ∆T is low and the base pressure is away from the critical pressure.

In fact, the limit cycle pressure amplitudes from the Navier-Stokes simulations at

the low values of ∆T analyzed in §4.5.1 are reproducible just with the linear theory

augmented with linearized minor losses. For higher values of ∆T , and hence of

pressure amplitudes, the thermodynamic nonlinearities present around the PB fluid

can in principle propagate further in the stack, and also in the resonator, hence

changing considerably the mechanisms of acoustic energy production and dissipation,

which would make the use of a linear theory obsolete for p0 ' pcr. This analysis,

outside of the scope of this chapter, needs further investigation and will be analyzed

in future work.
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5. HEAT-RELEASE-INDUCED WAVES IN SUPERCRITICAL FLUIDS

We have performed 186 highly resolved fully compressible one-dimensional Navier-

Stokes simulations of freely propagating acoustic and heat-release-induced compres-

sion waves up to Mach 2.95, spanning five orders of magnitude of heat release rate,

in a canonical semi-infinite domain flow problem. Six different fluids, each taken in

four different states ranging from compressible liquid to ideal gas, are considered;

real-fluid thermodynamic properties are modeled via the Peng-Robinson equation of

state. New dimensionless scaling laws valid for a generic homogenous single-phase

compressible fluid, where a uniform and quiescent base state (or initial condition) is

assumed, are able to collapse the whole dataset in the isentropic as well as the non-

isentropic regime, together with one experimental result of Miura et al., Phys. Rev.

E, 2006. The classic isentropic acoustic scaling parameters are revisited, showing

that the reference temperature and heat release rate need to be expressed in terms of

the isobaric thermal expansion coefficient to ensure collapse of thermo-fluid-dynamic

fluctuations across all fluids. The proposed dimensionless scaling strategy formally

removes fluid-dependent parameters from the Rankine-Hugoniot equations, enabling

prediction of wave Mach numbers, heat-release-induced shock wave intensity, and

thermal-to-mechanical power conversion efficiency. Finally, the scaling supports the

derivation of a fully predictive model for heat-release-induced shock intensity, shed-

ding light onto the asymptotic limit of infinite Mach number.

5.1 Introduction

When compressible fluids are thermally perturbed, a mechanical response is gen-

erated in the form of waves [86, 87], from near-isentropic compressions [88] to shock

waves [89]. Heat-release-induced waves appear in a wide variety of artificial and nat-
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ural phenomena, such as the sound produced from asteroids’ impact on Earth’s at-

mosphere [90,91], blast waves from nuclear explosions [92], thermophones [93], shock

waves induced by spark discharge [94], and space manufacturing processes [95]. More-

over, heat-release-induced fluctuations, referred to by some authors as thermoacoustic

waves [96,97] or thermoacoustic sound [93], are the governing mechanism for thermal

relaxation in near-critical fluids in enclosed cavities [98–104], referred to as the piston

effect [100] or thermoacoustic convection [105]. Such theories have been widely veri-

fied via numerical simulations [32,97,102,106–110] and experiments [88,105,109,111].

In spite of such formidable efforts, fully predictive models for heat-release-induced

wave intensity in a generic compressible fluid have been derived only for isentropic

waves [88], or for non-isentropic waves but only propagating in calorically perfect

ideal gases [112]. Furthermore, previously reported scaling relationships for (in gen-

eral non-isentropic) heat-release-induced waves [112] fail to scale appropriately the

thermodynamic jumps, even for perfect ideal gases, as discussed in §5.3.2. While the

latter issue has no direct impact on the ability to formulate a fully predictive model,

it does hinder its development, as shown in §5.4. To the authors’ knowledge, there

have been no prior attempts towards developing a dimensionless scaling strategy able

to provide a unified description of isentropic and non-isentropic heat-release-induced

waves across different fluids in different thermodynamic states.

Limited attention has also been given to scaling of perturbations and/or jumps in

temperature and enthalpy. This has deep roots into the common practice in acoustics

to use, when possible, pressure and velocity fluctuations (or pressure only) as the sole

working variables. This choice is consistent with the fundamental nature of sound

waves, i.e. self-propagating patterns of compressions and dilatations, inducing and

induced by spatial gradients in particle displacements or velocities. No other variables

but pressure and velocity are thus needed to intuitively understand sound propagation

and the mechanical or acoustic power associated with it. As a result, the traditional

approach to deriving a dimensionless set of linearized governing wave equations has

so far been focused on collapsing pressure and velocity fluctuations only.
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In reality, waves in compressible fluids are propagating disturbances affecting all

thermo-fluid-dynamic variables. A secondary role is attributed to fluctuations in

other quantities, such as temperature or enthalpy, used, respectively, by [67] in his

qualitative explanation of viscous and conductive effects on sound waves, and by

[113] as main acoustic field. The temperature and enthalpy of the base state are

typically employed to scale respective fluctuations. However, as demonstrated in

§5.3.1, simply using the fluid’s base temperature to scale temperature fluctuations

does not yield dimensionless collapse of temperature fluctuations, not even among

different calorically perfect ideal gases under isentropic conditions. The departure

from full collapse is worse when various real fluids in multiple states are considered.

This realization led us to the reformulation of the reference temperature in terms

of the isobaric thermal expansion coefficient (§5.3.1), enabling the collapse of thermo-

fluid-dynamic linear acoustic fluctuations across all fluids. This then paved the way

to the redefinition of the dimensionless heat release rate (§5.3.2), enabling to cast

d’Alembert’s analytical solution of the wave equation in dimensionless form, scaling

effectively the predictive isentropic law obtained by [88]. The remarkable finding

is that such isentropic scaling is the necessary stepping stone towards deriving di-

mensionless scaling laws for the prediction of the wave Mach number (§5.3.3) and

modeling of non-isentropic heat-release-induced shock wave dynamics (§5.4), up until

Mach infinity (§5.4.3), for all compressible fluids.

In this chapter, the superscript (∗) denotes dimensional quantities, and is omitted

in their dimensionless counterpart.

5.2 Problem Formulation

5.2.1 Selection of Fluids

Fluids at supercritical pressures exhibit variations in important properties such

as density, speed of sound, and thermal capacity, ranging from liquid-like to gas-like
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Figure 5.1. (a) Phase diagram of CO2 showing flooded contours of reduced
density ρ∗/ρ∗cr; (b) reduced density of CO2 versus reduced temperature
T ∗/T ∗cr for p∗ = p∗cr (dashed line) and p∗ = 1.1p∗cr (solid line). Both plots
are generated with the PR EoS (Eq. (2.1)). PL, PB, PG indicate pseudo-
liquid, pseudo-boiling, and pseudo-gaseous conditions.

depending on their temperature, making them a very attractive choice for the scope

of the present investigation.

A supercritical state is reached when the fluid is at temperatures and pressures

exceeding its critical values (indicated by the subscript “cr”), T ∗ > T ∗cr and p∗ >

p∗cr, respectively (figure 5.1a). For a fixed supercritical pressure (chosen as p∗0 =

1.1p∗cr in this study), starting from cold and heavy pseudo-liquid (PL), the density

rapidly drops for increasing temperatures (figure 5.1b) via a pseudo-boiling (PB), or

pseudo-phase transitioning, process [13–15], after which the fluid reaches a pseudo-

gaseous (PG) state, and then eventually a near-ideal-gas state (IG) for sufficiently

high temperatures. This behavior can be captured by adopting analytically-defined

equations of state for real fluids, which enable a thermodynamically consistent closure

of the governing flow equations.

Table 5.2.1 reports values of the aforementioned fluid model parameters, all taken

from [22] and [20], for the six fluids considered, which are carbon dioxide (CO2), oxy-

gen (O2), nitrogen (N2), methanol (CH3OH), 1,1,1,2-Tetrafluoroethane (CH2FCF3

or R-134a), and octafluoropropane (R-218). All of the thermodynamic derivatives
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Table 5.1.
Marker legend for the selected six fluids, each considered in four different
reference states represented by greyscale levels. Black: dense compressible
fluid, pseudo-liquid (PL); dark grey: pseudo-boiling fluid (PB); light grey:
light supercritical fluid, pseudo-gas (PG); white: supercritical fluid in near
ideal-gas conditions (IG). All cases are considered at p∗0 = 1.1p∗cr. Values
of fluid-specific properties required by the PR EoS are also reported.

fluid PL PB PG IG T ∗cr(K) p∗cr(MPa) M∗
m(g/mol) ω

CO2 304.13 7.3773 44.010 0.22394

O2 154.58 5.043 31.999 0.0222

N2 126.20 3.398 28.014 0.0370

CH3OH 512.64 8.097 32.042 0.565

R-134a 374.26 4.059 102.032 0.326

R-218 345.10 2.68 188.020 0.325

T ∗0 /T
∗
cr 0.89 1.02 1.11 2.20

p∗0/p
∗
cr 1.10 1.10 1.10 1.10
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Figure 5.2. Isobaric thermal expansion coefficient versus the reduced
temperature T ∗0 /T

∗
cr for all fluids and conditions in table 5.2.1. The su-

perscript (∗) denotes dimensional quantities.

required by the following analytical derivations can be computed directly from Eq.

(2.1), retaining full thermodynamic consistency with data from the high-fidelity simu-

lations. The other thermodynamic quantities are computed with the thermodynamic

departure function approach as described in [20]. A Newton-Raphson-based iterative

method is employed to obtain temperature from density and internal energy.

The isobaric thermal expansion coefficient (figure 5.2), is an important thermo-

dynamic variable that will be used herein as scaling parameter (table 5.3) for heat-

release-induced isentropic and non-isentropic fluctuations. The same quantity is used

to select the different base conditions shown in table 5.2.1. Indeed, we here define

the pseudo-boiling state as the region in the immediate vicinity of the maxima of

α∗p (PB, T ∗0 = 1.02T ∗cr), with pseudo-liquid (PL, T ∗0 = 0.89T ∗cr) and pseudo-gas (PG,

T ∗0 = 1.11T ∗cr) being the states for lower and higher temperatures, respectively. For

the ideal gas (IG) state, we choose T ∗0 = 2.2T ∗cr, a state at which α∗p0T
∗
0 ≈ 1 and

that can hence be modeled with the perfect ideal gas EoS, p∗ = ρ∗R∗T ∗, and with a

(constant) ratio of specific heats γ, taken equal to the ratio of c∗p and c∗v given by the

PR EoS at T ∗ = 2.2T ∗cr and p∗ = 1.1p∗cr. Such reference conditions are indicated with
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the subscript “0” and are used as both the acoustic base state in §5.3.1 and initial

conditions in the heat-release cases (§5.3.2, §5.3.3, §5.4)

5.2.2 Computational Setup

The governing equations for a fully compressible one-dimensional viscous flow read

∂ρ∗

∂t∗
+
∂ρ∗u∗

∂x∗
= 0,

∂ρ∗u∗

∂t∗
+
∂(ρ∗u∗2 + p∗)

∂x∗
=
∂τ ∗

∂x∗
, (5.1)

for mass and momentum, respectively, and

∂ρ∗E∗

∂t∗
+
∂ (ρ∗u∗E∗ + p∗u∗)

∂x∗
=
∂u∗τ ∗

∂x∗
− ∂q∗

∂x∗
+ Q̇∗, (5.2)

for total energy, where t∗ is time, x∗ is the spatial coordinate, u∗ is the velocity, ρ∗ is

the density, p∗ is the thermodynamic pressure, and E∗ = e∗ + u∗2/2 is the specific,

i.e. per unit mass, total energy (sum of specific internal energy and specific kinetic

energy). The superscript (∗) denotes dimensional quantities. The Newtonian viscous

stresses, expressed in accordance with Stokes’s hypothesis, and the heat flux, modeled

with Fourier heat conduction, are

τ ∗ =
4

3
µ∗
∂u∗

∂x∗
, q∗ = −k∗∂T

∗

∂x∗
, (5.3)

where µ∗ is the dynamic viscosity, k∗ is the thermal conductivity, and T ∗ the absolute

or thermodynamic temperature. The spatial distribution of the imposed volumetric

heat release rate Q̇∗ is expressed as

Q̇∗(x∗, t∗) = Ω∗g∗(x∗), g∗(x∗) =
1

`∗
√

2π
e−

1
2

(x∗/`∗)2 , (5.4)

respectively, where Ω∗ (W/m2) is the planar heat release rate (table 5.2) and g∗(x∗) (m−1)

is a Gaussian function with unitary (non-dimensional) integral on the real axis,∫ ∞
−∞

g∗(x∗)dx∗ = 1, (5.5)

with characteristic width `∗ = 0.75µm, inspired by the thin foil heater in the experi-

ments of [88].
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Figure 5.3. Computational setup for heat-release-induced wave gener-
ation. The superscript (∗) denotes dimensional quantities. The post-
compression state is denoted with the subscript “1”, while pre-compression
(or initial) states are denoted with the subscript “0”.

Table 5.2.
Planar heat release rates used in numerical simulations of heat-release-

induced waves. Values of the order of 1011 (†) are used only for pseudo-
liquid (PL) conditions (see table 5.2.1).

Ω∗ (W/m2) 105 107 109 1010 3×1010 6×1010 †1011 †3×1011 †6×1011

Simulations are carried out only for x∗ ≥ 0, with symmetry conditions imposed

at x∗ = 0, and halted before perturbations reach the right boundary (located at

x∗ = 40µm). The computational domain is sufficiently long to allow waves to form and

be tracked to measure the propagation Mach number, M (see figure 5.3). The analysis

below focuses solely on the peak wave speed, that is measured upon coalescence of

compression waves, when and if shock formation occurs.

Numerical data is generated for six different fluids at supercritical pressure con-

ditions p∗0 = 1.1 p∗cr, each taken at four different temperatures yielding pseudo-liquid

(PL), pseudo-boiling (PB), pseudo-gaseous (PG), and ideal-gas (IG) conditions, (see

table 5.2.1). This results in a total of 24 distinct thermodynamic base (or ini-

tial) states, spanning an overall pressure, temperature, and density range, respec-

tively, of approximately p∗0,max − p∗0,min = 6 MPa, T ∗0,max − T ∗0,min = 1016 K, and

ρ∗0,max − ρ∗0,min = 1340kg/m3. For each base state, simulations are performed at sev-

eral values of planar heat release spanning 5 orders of magnitude (see table 5.2),
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bounded by the occurrence of complete rarefaction of the fluid (ρ∗ → 0) at the loca-

tion of heat injection.

Fully compressible high-order Navier-Stokes simulations are performed with the

solver Hybrid [114]. A fully conservative discretization is employed to predict the

correct shock speed [37]. The compression wave fronts are resolved with at least

14 grid points (for the highest Mach number reproduced), corresponding to a grid

spacing of ∆x∗ = 0.04µm, and with a time step of at most ∆t∗ = 0.01 ns. While

the shock profile, especially for the higher Mach number cases, is not physically

accurate [115], this strategy avoids the adoption of shock capturing schemes, and

still very accurately predicts the jump of the thermo-fluid-dynamic quantities across

the shock. Moreover, because of the very high numerical resolution employed, the

results were not hindered by spurious pressure oscillations commonly associated with

transcritical flows [36, 50], which are commonly contained by adopting dissipative

and/or non-conservative schemes [34,35].

In the following section, the proposed dimensionless scaling strategy, based on

isentropic flow approximations, is introduced and applied to the whole dataset of 186

simulations at once, even for strongly non-isentropic data, paving the way for the

modeling effort in §5.4, extended to the limit of infinite shock strength.

5.3 Dimensionless Scaling Strategy

The present dimensionless analysis includes fundamental considerations regarding

dimensionless scaling of temperature fluctuations of isentropic acoustic waves (§5.3.1),

which are then extended to the case of heat-release-induced waves (§5.3.2), identifying

a demarcation between isentropic and non-isentropic waves, and are finally used to

scale the Rankine-Hugoniot (RH) equations, leading to a dimensionless predictive law

for the propagation wave speed (§5.3.3). The entire dataset is analyzed, including non-

isentropic data, demonstrating remarkable scaling properties in that regime as well.

As previously stated, seeking a scaling strategy able to collapse data from different
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Figure 5.4. Initial conditions for the waves in a periodic domain [0, `∗],
where the initial fluctuating temperature field is obtained via the equation
of state (Eq. (2.1)) for each fluid.

fluids and in different thermodynamic states is used herein as the first step conducive

to a broader modeling effort valid for a generic compressible fluid.

5.3.1 Freely Propagating Acoustic Waves

We start from the simple case of planar isentropic acoustic waves evolving in a

uniform quiescent base state, hereafter indicated with the subscript “0”. In this case

pressure δp∗ and velocity δu∗ fluctuations are the only quantities needed to completely

characterize the flow; the proper and commonly used normalization choice is

δp =
δp∗

ρ∗0a
∗
0

2 , δu =
δu∗

a∗0
, x =

x∗

`∗
, t =

t∗

`∗/a∗0
, (5.6)

where ρ∗0 and a∗0 =
√
∂p∗/∂ρ∗|s∗,0 are the base density and isentropic speed of sound,

and x∗ and t∗ the independent spatial and temporal coordinates, and `∗ a reference

length scale. Applying the normalization in Eq. (5.6) to the linearized continuity and

momentum equations, assuming isentropic flow, yields

∂

∂t
δu = − ∂

∂x
δp,

∂

∂t
δp = − ∂

∂x
δu, (5.7)

whose solution in an unbounded domain can be expressed without loss of generality

in the self-similar form

δu± = ±δp± = f±(ζ±). (5.8)

The two functions f±(·) of the travelling-wave coordinate ζ± = x ∓ t (assuming

unitary wave Mach number) can be independently and arbitrarily assigned with the
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Figure 5.5. Scaling of temperature fluctuations from inviscid computa-
tions of isentropic right-travelling acoustic waves for f(ζ) = 10−6 sin(2πζ)
(see Eq. (5.8)) for all fluids and conditions in table 5.2.1. (a) Dimen-
sional temperature perturbations; (b) commonly adopted normalization
via base temperature; (c) normalization only collapsing IG data; (d) pro-
posed scaling collapsing all fluids across all states (table 5.3). Same results
are obtained for other variables such as δe, δh, and δρ (not shown). Initial
conditions for this case are shown in figure 5.4.
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caveat that maxζ |f(ζ)| << 1 to respect assumptions of linearity. The dependency

on the base state, and hence also on the specific fluid properties, of the governing

equations (5.7) has been completely absorbed by the normalization (5.6). The steps

leading to Eq. (5.7) and Eq. (5.8) do not require the specification of an equation of

state nor of an explicit normalization for temperature fluctuations δT ∗; however, they

do entail the normalization δρ = δρ∗/ρ∗0. Without loss of generality, the following

analysis will focus on right-travelling waves only, hence f(ζ) = f+(ζ).

Figure 5.6. Reference scaling parameter for temperature fluctuations
(a), δT ∗ref , and reference scaling parameter for heat release rate (b), Ω∗ref ,
both versus reduced temperature for all fluids and conditions in table
5.2.1.

We first observe how the commonly adopted normalization of temperature fluc-

tuations δT ∗, which uses the base state temperature T ∗0 as a reference [116], does not



103

collapse isentropic temperature perturbations, associated to the same dimensionless

waveform f(ζ) (figure 5.5a), across different fluids; surprisingly, not even across dif-

ferent fluids in ideal gas conditions (figure 5.5b). This issue is trivially resolved by

expressing an isentropic fluctuation of a generic quantity δϕ∗ as a sole function of

the fluctuation in a given quantity, for example pressure, via evaluation of the ther-

modynamic derivative δϕ∗/δp∗ = ∂ϕ∗/∂p∗|s∗,0, yielding, for a generic compressible

fluid,

δT ∗ =
α∗p0T

∗
0

ρ∗0c
∗
p0

δp∗, δh∗ =
1

ρ∗0
δp∗, δe∗ =

p∗0
ρ∗0

2a∗0
2 δp

∗, (5.9)

where δh∗ and δe∗ are the specific (per unit mass) enthalpy and internal energy

fluctuations, c∗p0 is the isobaric specific thermal capacity calculated at base state

conditions, indicated with a subscript “0”. Applying the relation a∗0
2T ∗0α

∗
p0

2/c∗p0 =

γ0 − 1, where γ0 = c∗p0/c
∗
v0

is the ratio of specific isobaric and isochoric thermal

capacities, and the normalization in Eq. (5.6), to Eq. (5.9), yields

δT =
α∗p0
γ0 − 1

δT ∗, δh =
1

a∗0
2 δh

∗, δe =
γ̃0

a∗0
2 δe

∗, (5.10)

which achieves the desired collapse for temperature (figure 5.5d), specific enthalpy

(not shown), and specific internal energy fluctuations (not shown), where γ̃0 =

ρ∗0a
∗
0

2/p∗0 is the isentropic exponent [117]. The reference scaling parameter for the spe-

cific enthalpy (δh∗ref = a∗0
2) also holds for the specific total enthalpy H∗ = h∗+ u∗2/2

(used by [113] as the primary working variable to study acoustics) but not for specific

total energy.

Ideal gas temperature perturbations made dimensionless only via T ∗0 (figure 5.5b)

do not collapse unless γ0 − 1 is also taken into consideration (figure 5.5c). The same

result holds for enthalpy fluctuations (not shown). In fact, for a perfect ideal gas, the

proposed scaling parameters revert to δT ∗ref |IG = (γ0 − 1)T ∗0 , δh∗ref |IG = γ0R
∗T ∗0 .

Equations (5.6) and (5.10) define the complete set of scaling parameters, summa-

rized in table 5.3, collapsing all isentropic thermo-fluid-dynamic fluctuations across

different fluids, and, incidentally, also among themselves,

δp = δρ = δT = δh = δe = f(ζ), (5.11)
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which is a direct result of the single degree of thermodynamic freedom. Eq. (5.11)

holds for both left- and right- travelling waves, with respective velocity fluctuations

given by δu = −δp and δu = δp.

Table 5.3.
Set of reference scaling parameters yielding collapse of isentropic acoustic
and heat-release-induced waves (§5.3.2, §5.3.3) propagating in a uniform
generic compressible fluid.

δp∗ref δu∗ref δρ∗ref δT ∗ref δh∗ref δe∗ref Ω∗ref

ρ∗0a
∗
0

2 a∗0 ρ∗0 (γ0 − 1)/α∗p0 a∗0
2 a∗0

2/γ̃0 2ρ∗0a
∗
0c
∗
p0
/α∗p0

5.3.2 Heat-Release-Induced Perturbations

In this section we extend the approach in §5.3.1 to scaling of heat-release-induced

waves, which is the main objective of this chapter as outlined in §5.2.2. Such waves

are originated because of the fluid expansion that, acting like a piston [112], generates

compression waves.

The first step is to recast Eq. (5.7) as the linearized dimensionless wave equation,

∂2

∂t2
δp− ∂2

∂x2
δp = 0, (5.12)

which needs initial conditions on δp,

(δp)t=0 = 0, (5.13)

and on ∂δp/∂t. In order to find the latter, Eq. (5.2) can be rewritten as the evolution

equation for pressure [53],

∂p∗

∂t∗
+ u∗

∂p∗

∂x∗
= −ρ∗a∗2∂u

∗

∂x∗
+
α∗pa

∗2

c∗p

(
τ ∗
∂u∗

∂x∗
− ∂q∗

∂x∗
+ Ω∗g∗(x∗)

)
, (5.14)

which evaluated at the initial time yields(
∂p∗

∂t∗

)
t∗=0

=
α∗p0a

∗
0

2

c∗p0
Ω∗g∗(x∗), (5.15)
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which is, using the normalization in Eq. (5.6),(
∂δp

∂t

)
t=0

=
Ω∗l∗g∗(x∗)

ρ∗0a
∗
0c
∗
p0
/α∗p0

. (5.16)

With the initial conditions imposed by Eq.s (5.13) and (5.16), d’Alembert’s analytical

solution of Eq. (5.12) is given by

δp =
Ω∗

2ρ∗0a
∗
0c
∗
p0
/α∗p0

erf
(√

2(x+ t)/2
)
− erf

(√
2(x− t)/2

)
2

, (5.17)

which is made dimensionless as follows:

δp = Ω
erf
(√

2(x+ t)/2
)
− erf

(√
2(x− t)/2

)
2

, (5.18)

where Ω∗ is normalized with Ω∗ref (table 5.3, figure 5.6b),

Ω =
Ω∗

Ω∗ref
=

Ω∗

2ρ∗0a
∗
0c
∗
p0
/α∗p0

. (5.19)

The dimensionless result in Eq. (5.18) completely removes the dependency from the

base state, allowing to extend results obtained from experiments carried out with ideal

gases to other fluids and real-gas conditions, provided that conditions of isentropicity

are respected.

In fact, analogously to figure 5.5, figure 5.7 shows how previously adopted nor-

malizations of heat-release-induced waves, such as the one by [112] (figure 5.7b) can

be extended to yield partial collapse (figure 5.7c), ultimately only achieved in full by

the proposed scaling (figure 5.7d). The compressions profiles shown in figure 5.7 refer

to heat-release-induced waves in their quasi-isentropic regime, with Ω∗ = 105 W/m2

and with maximum Mach number equal to M = 1.00003. According to [115], the

shock wave structure obtained from the Navier-Stokes equations is physically relevant

for wave Mach numbers significantly below two, which is the case for the data shown

in figure 5.7. For such a low heat release rate, the compression waves satisfy the

hyperbolic problem described by the linearized wave equation (Eq. (5.12)) and their

dimensionless profiles all collapse into the functional law of Eq. (5.18). Thermovis-

cous effects, which are accounted for in the simulations, are responsible for the very

slight mismatch between numerical and analytical results in figure 5.7d.
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Figure 5.7. Scaling of pressure waveforms of quasi-isentropic heat-release-
induced waves for dimensional heat release rate Ω∗ = 105 W/m2. (a)
Dimensional pressure profiles; (b) scaling proposed by [112]; (c) scaling
only collapsing IG data; (d) proposed scaling (Eq. (5.19), table 5.3, figure
5.6b). The solution of the dimensionless wave equation (Eq. (5.18)) is
plotted as a thick dotted line in (d). The maximum wave Mach number
of the data shown herein is M = 1.00003, and the dimensionless heat
release rate Ω ranges from 1.033 · 10−7 to 3.634 · 10−5.

The maximum value of δp in Eq. (5.18) is equal to the dimensionless pressure

jump across the compression wave,

Π =
p∗1 − p∗0
ρ∗0a
∗
0

, (5.20)

where the subscript “1” indicates the post-compression state (figure 5.3). Eq. (5.20)

is the classic definition of shock strength [118], which can be obtained, in the case

of isentropic heat-release-induced waves, with the straightforward dimensionless rela-

tionship

Π = Ω, (5.21)
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adopting the reference scaling parameter for the heat release rate in Eq. (5.19). [88],

assuming low heat release rates and isentropic waves, predicted the amplitude of

heat-release-induced compression waves via

p∗1 − p∗0 =
ρ∗0a
∗
0

T ∗0

(
∂T ∗

∂p∗

)
s∗,0

Ω∗

2
. (5.22)

Using the thermodynamic relation(
∂T ∗

∂p∗

)
s∗,0

=
α∗p0T

∗
0

ρ∗0c
∗
p0

(5.23)

in Eq. (5.22) yields

p∗1 − p∗0 =
a∗0α

∗
p0

c∗p0

Ω∗

2
, (5.24)

which, made dimensionless with Eq.s (5.19) and (5.20), reverts to Eq. (5.21).

Figure 5.8 shows the result of the application of the scaling in Eq. (5.21) to the

pressure jump data from all of the heat-release-induced simulations, including highly

non-isentropic cases. The dimensional or unscaled pressure jumps are plotted in

figure 5.8a. The latter are evaluated right after shock formation (i.e. full coalescence

of compression waves) but before the onset of decay due to thermoviscous losses.

As such, the reported jumps of thermo-fluid-dynamic variables are independent from

viscosity and conductivity.

Scaling of the data performed following [112] (figure 5.8b), or using a scaling

valid for perfect ideal gases only (figure 5.8c) does not collapse all data across all

fluids. In fact, with the former scaling, the reference heat release is a∗0p
∗
0, which

fails to incorporate the dependence on γ in the scaling parameter, resulting in the

correct scaling only of perfect ideal gases with the same value of γ (figure 5.8b).

With the latter scaling, in which the reference heat release is ρ∗0c
∗
p0
a∗0T

∗
0 , data from

all perfect ideal gases is collapsed (figure 5.8c). Only by replacing T ∗0 with 1/α∗p0

in this last reference heat release rate, Eq. (5.21) is obtained, yielding full collapse

of the numerical data across all fluids and conditions (figure 5.8d), confirming the

effectiveness of the proposed scaling.

Experimental data from [88] has also been included (and plotted with a star

in figures 5.8, 5.9, and 5.10) starting from the provided dimensionless value of the
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Figure 5.8. Scaling of pressure jumps across heat-release-induced waves.
(a) Dimensional pressure jump Π∗ versus dimensional heat release rate
Ω∗; (b) scaling proposed by [112]; (c) alternative scaling collapsing only
IG data; (d) proposed scaling (table 5.3). The isentropic prediction of Eq.
(5.21) is shown with the dashed line in (d).

density jump, δρ∗/ρ∗0 = 1.1 · 10−7 and of the dimensional planar heat-release rate

Ω∗ = 1830 W/m2. The dimensionless density jump is converted to a dimensionless

pressure jump assuming isentropicity of the transformation (δρ∗/ρ∗0 = δp∗/(ρ∗0a
∗
0

2)),

and the provided heat release rate is made dimensionless via Eq. (5.19).

The parameters listed in table 5.3 allow for full collapse of the numerical and

experimental data (figure 5.9). While the present derivation is valid for isentropic

waves, it is remarkable that Eq. (5.21) scales approximately well shock jumps up to

Π = 5.09. Such collapse allows the a priori determination, for heat-release-induced

waves, of the shock strength Π from the knowledge of dimensionless heat release

rate Ω only. The scaling in figure 5.9 allows to clearly observe the departure from
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Figure 5.9. Shock strength Π versus dimensionless heat release rate Ω.
Star: T ∗ − T ∗cr = 150 mK case by [88] with reported Π = 1.1 · 10−7 and
estimated Ω = 1.27 · 10−7. All other symbols: numerical simulation data
for all combinations of conditions in tables 5.2.1 and 5.2. The strictly
isentropic prediction from Eq. (5.21) is shown with a dashed line.

the isentropic prediction in Eq. (5.21), and to define quasi-isentropic (Ω ≤ 10−1)

and non-isentropic (Ω ≥ 10−1) heat-release-induced regimes. It is noted that Eq.

(5.11) implies that all the other dimensionless thermo-fluid-dynamic jumps will be

approximately equal to Ω (plots omitted for brevity) in the quasi-isentropic region.

5.3.3 Wave Propagation Mach Number

In this section we derive a suitable normalization to the Rankine-Hugoniot (RH)

equations, where pre-compression (“0”) and post-compression states (“1”) are defined

as in figure 5.3, which is the problem formulation of primary interest of this chapter.
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Relative mass, momentum, and total enthalpy are conserved across a wave moving

at constant speed u∗s, according to the RH jump conditions,

ρ∗1(u∗1 − u∗s) = ρ∗0(u∗0 − u∗s), (5.25a)

p∗1 + ρ∗1(u∗1 − u∗s)2 = p∗0 + ρ∗0(u∗0 − u∗s)2, (5.25b)

h∗1 + (u∗1 − u∗s)2/2 = h∗0 + (u∗0 − u∗s)2/2, (5.25c)

where u∗ is the Eulerian flow velocity and u∗ − u∗s is the flow velocity relative to the

reference frame moving with the compression wave. Adopting the scaling parameters

in table 5.3, we define the five dimensionless jumps

R =
ρ∗1 − ρ∗0
ρ∗0

, U =
u∗1 − u∗0
a∗0

, M =
u∗s − u∗0
a∗0

, H =
h∗1 − h∗0
a∗0

2 , Π =
p∗1 − p∗0
ρ∗0a
∗
0

2 .

(5.26)

Using the variables in Eq. (5.26), the Rankine-Hugoniot conditions in Eq. (5.25) can

be recast in the very concise dimensionless form as:

R = U/(M − U), (5.27a)

Π = UM, (5.27b)

H = Π− U2/2, (5.27c)

which leads, after some algebra, to the dimensionless form of the Rayleigh line and

of the Hugoniot equation,

Π =
M2

1 + 1/R , (5.28a)

H =
Π

2

R+ 2

R+ 1
. (5.28b)

It is important to note that, while in Eq. (5.25) the dimensional downstream variables

are explicitly dependent on the base state “0”, in the dimensionless forms of Eq. (5.27)

and (5.28) the dependency on the state “0”, and therefore on the specific fluid under

consideration, is formally removed. A different choice for the enthalpy normalization,

such as the commonly adopted c∗p0T
∗
0 for ideal gases [112], would have not entailed

such result. This will be useful in the analysis of the behavior of the RH equations

for infinite Mach number (§5.4.3).



111

For strictly isentropic linear waves, Eq. (5.11) gives

Π = R = H, (5.29)

hence Eq. (5.28a) yields

M =
√

1 + Π. (5.30)

Eq. (5.31) indicates that for linear isentropic waves, the wave Mach number departs

from unity by an infinitesimal amount. In the limit of Π→ 0, Eq. (5.28b) is always

verified, and Eq. (5.30) yields M = 1. Inserting Eq. (5.21) in Eq. (5.30) yields

M =
√

1 + Ω. (5.31)

For the experimental result of [88], corresponding to the star in figure 5.10b, the wave

Mach number is estimated as M = 1 + 6.343 · 10−8.
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Figure 5.10. Heat-release-induced dimensional wave speed u∗s versus di-
mensional heat release rate Ω∗ (a); (b) wave Mach number squared minus
one, M2 − 1, versus dimensionless heat release rate, Ω. The dashed line
in (b) is the isentropic prediction of Eq. (5.31). Star: T ∗− T ∗cr = 150 mK
case by [88] with estimated Mach number M = 1 + 6.343 · 10−8.

The dimensional wave speed, u∗s, has been extracted for each of the heat-release-

induced numerical simulations and plotted in figure 5.10a. Each wave speed is ob-

tained with a tracking algorithm that follows in time the location of the maximum
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pressure gradient across the wave. The wave speed is divided by the speed of sound of

the initial condition yielding the Mach number, plotted in figure 5.10b. Firstly, figure

5.10b shows that, for the same dimensionless heat release rate, fluids in pseudo-liquid

conditions manifest the highest wave Mach numbers, followed by pseudo-boiling flu-

ids, pseudo gases and perfect ideal gases. The departure of M2 from one increases

linearly with the dimensionless heat release rate Ω, as also pointed out by Eq. (5.31),

which has the benefit of providing a first order estimate for a generic fluid in a generic

condition. In order to accurately quantify this departure as a function of the heat

release rate, the fully predictive modeling procedure in §5.4 will be employed.

Figures 5.9 and 5.10b contain the entirety of the data set and demonstrate the

effectiveness of a straightforward application of the isentropic dimensionless scaling to

non-isentropic data. Figure 5.9 enables us to pick Π = 10−1 as the boundary between

quasi-isentropic and non-isentropic regimes. In the latter, data still follow a fluid- and

state-specific departure from isentropic predictions (see inset in figure 5.9), creating

the need for a fully predictive model valid for a generic fluid and high-amplitude

waves, derived in §5.4.

5.3.4 Solution of the Rankine-Hugoniot Equations

In the general case of non-isentropic waves, both Eq. (5.25) and Eq. (5.27) provide

three nonlinear relations between the upstream and downstream states of the wave.

In order to obtain additional relationships (e.g. between Π and R, Π and U , or Π

and M), an equation of state (EoS), which adds an additional condition to the three

imposed by the RH relations, has to be used. In the case of the perfect ideal gas, a

relation of the form h∗ = h∗(ρ∗, p∗, γ), can be written explicitly, both for state “0”

and “1” (see figure 5.3), without adding any other unknowns (being γ1 = γ0 = γ).

This allows to write

h∗1 − h∗0 =
γ

γ − 1

(
p∗1
ρ∗1
− p∗0
ρ∗0

)
, (5.32)
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and its dimensionless counterpart, H = H(R,Π, γ) as well,

H =
1

γ − 1

(
γΠ−R
R+ 1

)
, (5.33)

and with it all the other well known relationships between thermo-fluid-dynamic

jumps as a function of (γ,M). Eq. (5.33) shows that, for a perfect ideal gas, the

EoS adds the parameter γ to the RH equations, introducing the dependence on the

fluid. This fact is expected since, for the general case of non-isentropic waves, two

thermodynamic degrees of freedom are present.

If the fluid is modeled with a more complicated EoS, writing explicitly the afore-

mentioned relationships with full predictive power (assign a Mach number M and

obtain Π, for example) is rarely possible or very complicated. Indeed, in the case of

the PR EoS, only explicit expressions of the type p∗ = p∗(ρ∗, T ∗) and h∗ = h∗(ρ∗, T ∗)

are available.

Therefore, Eq. (5.25) with the EoS can be expressed as a system of four equations

in the four independent unknown variables ρ∗1, T
∗
1 , u

∗
1, u
∗
s, which can be solved for

numerically. In particular, we consider the system of equations composed by the EoS

(H = f(R,Π)) and the RH (Eq. (5.27)), and perform an iterative method on the

vector (Π,R,U ,H), for an assigned Mach number M , with a root finding algorithm,

obtaining eventually the solution of the system of equations.

All data from the numerical simulations have been checked against such solution,

showing that both quasi-isentropic and non-isentropic shock strengths and wave Mach

numbers are trustworthy (figure 5.11).

The solution of Eq. (5.27) allows to obtain all dimensionless jumps as a func-

tion of the Mach number M . With the objective to emulate the explicit and pre-

dictive relationships available for perfect ideal gases, we define the dimensionless

thermodynamic functional ψAB, function of two thermodynamic states A and B

(ψAB = ψAB(ρA, ρB, pA, pB)), as follows:

h∗B − h∗A =
γ̃A

γ̃A − ψAB

(
p∗B
ρ∗B
− p∗A
ρ∗A

)
, (5.34)
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Figure 5.11. Fluid-by-fluid verification of heat-release-induced data: nu-
merical computations (symbols) and solution of the Rankine-Hugoniot
jump conditions (solid lines).

where ψAB = 1 for a perfect ideal gas (for any given A and B) and γ̃ = ρ∗a∗2/p∗

is the isentropic exponent. Applying the definition in Eq. (5.34) to the downstream

and upstream states of the compression wave, (“1” and “0”, respectively, see figure

5.3), yields

h∗1 − h∗0 =
γ̃0

γ̃0 − ψ01

(
p∗1
ρ∗1
− p∗0
ρ∗0

)
. (5.35)

Eq. (5.35) allows to retain the structure of the ideal gas relationships (for a perfect

ideal gas ψ01 = 1 and γ̃0 = γ, returning to Eq. (5.32)). Eq. (5.35) can be recast in

dimensionless form as

H =
1

γ̃0 − ψ01

(
γ̃0Π−R
R+ 1

)
, (5.36)
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where we see that ψ01 is akin to a dimensionless jump. Eq. (5.36), if substituted in

Eq. (5.28b), allows to get a relation between Π and R,

R =
2ψ01

2/Π + γ̃0 − ψ01

. (5.37)

Eq. (5.37), inserted in Eq. (5.28a), yields a relation between M and Π,

ψ01M
2 − 1 = Π

γ̃0 + ψ01

2
. (5.38)

Eq. (5.38), combined with Eq. (5.27b), yields a relation between Π and U ,

U =

√
2ψ01Π√

Π(γ̃0 + ψ01) + 2
, (5.39)

where U is assumed positive. Eq. (5.39) reverts to Eq. (38) of [112], valid for a

perfect ideal gas (ψ01 = 1 and γ̃0 = γ).

5.4 Modeling of Heat-Release-Induced Shock Waves

The goal of this section is to gain insight into the structure of the flow field and to

derive a fully predictive model for the non-isentropic regime for a generic compressible

fluid. This is achieved by reformulating and extending the model exploited by [112]

to a generic EoS or fluid.

5.4.1 Global Mass and Energy Balance

We hereafter use the heat-release-induced flow field in R-134a, shown in figure 5.12,

as a representative case to guide our discussions. The shocks, propagating to the right

with speed u∗s (as indicated by the solid lines passing through them), are identifiable

as sharp perturbations of all thermo-fluid-dynamic quantities. By inspecting the

dimensionless density variation profiles (δρ), a smeared contact discontinuity (c.d.)

is found moving at the shock-induced Eulerian velocity u∗1. Across the c.d., pressure

and velocity do not change, but density and total energy present discontinuities from

a post-shock state to a zone at increasingly lower density, where heat is continuously
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Figure 5.12. Rows: dimensionless perturbations of pressure, total energy,
velocity, and density in R-134a plotted versus the dimensionless space
coordinate x = x∗/`∗ and vertically shifted by arbitrary units to show
temporal evolution. IG, PG, PB: Ω∗ = 1 · 1010 W/m2; PL: Ω∗ = 6 · 1010

W/m2. Similar behavior is found for the other fluids and conditions (not
shown). Dashed lines: fireball edge velocity (u∗1 = a∗0Π/M); solid line:
shock velocity (u∗s = a∗0M).
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being injected, referred to as the fireball. Figure 5.13a shows a qualitative schematic

of the flow.

For a perfect ideal gas (IG, first column of figure 5.12), the pressure and total

energy profiles downstream the shock wave, and also inside the fireball, are approxi-

mately flat for all times and their values are set by the shock jump. In fact, for IG,

ρ∗e∗ = p∗/(γ−1), linking pressure and internal energy by a proportionality constant.

This is one of the key assumptions made by [112] in deriving his predictive model for

heat-release-induced waves in ideal gases, which is discussed later in Eq. (5.47).

For a real fluid, instead, the relationship between pressure and internal energy is

highly nonlinear; as such the two variables show different spatiotemporal evolutions.

Moreover, their spatial profiles between the shock wave and the fireball edge are not

flat in space. Finally, in the fireball, total energy varies significantly with time and

space, especially in PL conditions, and pressure is not constant.

To facilitate the following analytical derivations, the (mirrored) infinite extension

of the semi-infinite problem in figure 5.3 is considered. The governing equations of

mass, momentum, and total energy, Eq.s (5.1) and (5.2), are integrated on the real

axis, yielding

∂

∂t∗

(∫ ∞
−∞

ρ∗dx∗
)

+

∫ ∞
−∞

∂ρ∗u∗

∂x∗
dx∗ = 0,

∂

∂t∗

(∫ ∞
−∞

ρ∗u∗dx∗
)

+

∫ ∞
−∞

∂(ρ∗u∗2 + p∗)

∂x∗
dx∗ = 0,

∂

∂t∗

(∫ ∞
−∞

ρ∗E∗dx∗
)

+

∫ ∞
−∞

∂(ρ∗u∗E∗ + p∗u∗ − u∗τ ∗ + q∗)

∂x∗
dx∗ = Ω∗,

(5.40)

where the definition of Q̇∗ in Eq. (5.4) has been used, and the time derivative has

been taken out of the spatial integral. Exploiting the initial state properties (between

±u∗st∗ and ±∞, u∗0 = 0, and T ∗0 , p
∗
0 are constants) yields

∫ u∗st
∗

−u∗st∗
ρ∗dx∗ = 2ρ∗0u

∗
st
∗,∫ u∗st

∗

−u∗st∗
ρ∗u∗dx∗ = 0,∫ u∗st

∗

−u∗st∗
ρ∗E∗dx∗ = 2ρ∗0e

∗
0u
∗
st
∗ + Ω∗t∗,

(5.41)
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where we integrated in time the first terms on the left hand sides. Eq. (5.41) identifies

three integral conservation laws, namely: the total mass between shocks is equal to

the initial value 2ρ∗0u
∗
st
∗; the flow rate induced by one shock is balanced by the other

to zero (initial value, since u∗0 = 0), and the total energy increases linearly with time

because of heat input. If the profiles of density and total energy are assumed to be

symmetric with respect to the plane x∗ = 0, Eq. (5.41) becomes
1

t∗

∫ u∗st
∗

0

ρ∗dx∗ = ρ∗0u
∗
s,

1

t∗

∫ u∗st
∗

0

ρ∗E∗dx∗ = ρ∗0e
∗
0u
∗
s + Ω∗/2,

(5.42)

and only x∗ ≥ 0 is analyzed. With this assumption, the second of Eq. (5.41) simply

states that the profile of ρ∗u∗ is antisymmetric with respect to the plane x∗ = 0, hence

is ignored from Eq. (5.42) on. For any given time, Eq. (5.42) can be written as
∫ M

0

ρ∗dξ = ρ∗0M,∫ M

0

ρ∗E∗dξ = ρ∗0e
∗
0M + Ω∗/(2a∗0),

(5.43)

by using the definition of Mach number in Eq. (5.26) and the dimensionless coordinate

ξ = x∗/(a∗0t
∗). From visual inspection of figure 5.12, the simplified scenario of figure

5.13b is assumed, hence Eq. (5.43) can be further developed as
ρ∗3U +

∫ M

U
ρ∗2dξ = ρ∗0M,

ρ∗3E
∗
3U +

∫ M

U
ρ∗2E

∗
2dξ = ρ∗0e

∗
0M + Ω∗/(2a∗0),

(5.44)

where we used U = (u∗1 − u∗0)/a∗0 (Eq. (5.26)). Only a suitable choice of ρ∗2(ξ) in Eq.

(5.44) is left for the prediction of heat-release-induced wave strength. We choose a

linear functional form for ρ∗2(ξ),

ρ∗2(ξ) = ρ∗3 +
ρ∗1 − ρ∗3
M − U (ξ − U), (5.45)

which inserted in the first of Eq. (5.44) yields the value of the fireball’s density (figure

5.13b),

ρ∗3 = ρ∗1
M − U
M + U , (5.46)
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Figure 5.13. Schematics of heat-release-induced right-travelling shock
wave and contact discontinuity (c.d.). (a) Modeling of the flow fields of
figure 5.12; (b) profiles used in Eq.(5.44). The temperature profile T ∗2 ,
sketched qualitatively, is obtained with the EoS (Eq. (2.1)) as T ∗(ρ∗2, p

∗
1),

where ρ∗2 is obtained from Eq. (5.45).

which essentially provides a jump condition across the contact discontinuity. A dif-

ferent choice for ρ∗2(ξ) in Eq. (5.45) would change Eq. (5.46), but not the overall

mass balance imposed by the first of Eq. (5.44).

The equations in (5.44) are solved with the following procedure: first, for a given

Mach number M , treated as an input, the RH equations are solved (appendix 5.3.4),

providing all the other shock quantities; then, ρ∗3 is computed from Eq. (5.46), and

e∗3 = e∗(ρ∗3, p
∗
1) is computed with the equation of state; finally, the integral in the

second of Eq. (5.44) is computed (with the knowledge of ρ∗2(ξ) in Eq. (5.45) and p∗1),

providing a value for Ω∗.

[112] proposed a predictive model for heat-release-induced shock intensity for

perfect ideal gases, by assuming ρ∗2(ξ) = ρ∗1. With this choice, Eq. (5.44) becomesρ
∗
3 = 0,

p∗1u
∗
1 = (γ − 1)Ω∗/(2γ),

(5.47)

where ρ∗2E
∗
2 = p∗1/(γ − 1) + ρ1u

∗
1

2/2 and the RH equations (Eq. (5.25)) have been

used. Given the fixed pressure of state “2”, its total energy is equal to the one just

downstream the shock wave, consistently with the flow field observed in the IG column
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Figure 5.14. Fluid-by-fluid shock strengths for high heat release rates
showing deviation from the isentropic prediction of Eq. (5.21) (dashed
line): numerical computations (symbols) and results from modeling strat-
egy (solid lines) based on integral mass and energy conservation (Eq.
(5.44), figure 5.13). IG data (white-filled symbols) lay on the curve de-
fined by Eq. (5.48).

of figure 5.12. The second of Eq. (5.47), which coincides with Eq. (34) of [112], can

be made dimensionless using Eq.s (5.26) and (5.39),

Ω =

√
2Π(γΠ + 1)√
Π(γ + 1) + 2

, (5.48)

which is the exact parametrization derived in Eq. (39) of [112], recast following the

normalization and symbology used in this chapter (see Eq.s (5.19) and (5.20)). For

Π � 1, Eq. (5.48) reverts to Eq. (5.21), removing the dependency from the ratio

of specific heats γ, consistently with the single degree of thermodynamic freedom

intrinsic to isentropic waves. While the model proposed by [112] satisfies the conser-

vation laws in differential and integral forms, and allows to obtain a prediction for
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Figure 5.15. Fluid-by-fluid Mach numbers versus dimensionless heat re-
lease rate Ω. Dashed line: isentropic prediction of Eq. (5.31); symbols:
numerical computations; solid lines: results from modeling strategy based
on integral mass and energy conservation (Eq. (5.44), figure 5.13).

heat-release-induced shock strength, it does not apply to a generic fluid: the problem

is in Chu’s assumption of ρ∗3 = 0, which does not allow to obtain a value for ρ∗3e
∗
3,

needed in the evaluation of the second of Eq. (5.44). In fact, for the PR EoS, ρ∗e∗ can

diverge for ρ∗ → 0; instead, for a perfect ideal gas, ρ∗e∗ = p∗/(γ − 1) is independent

of ρ∗. Anyways, for a perfect ideal gas, inserting Eq. (5.46) in the second of Eq.
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(5.44) yields again Eq. (5.47) and Chu’s results become a subset of our more general

modeling procedure.

Applying the proposed predictive model for heat-release-induced waves to all the

initial conditions in table 5.2.1 allows to obtain the solid lines shown in figure 5.14 and

5.15 matching the Navier-Stokes data. The model correctly captures the departure of

heat-release-induced wave amplitudes from the isentropic prediction in Eq. (5.21) for

Ω > 10−1 (figure 5.9). More specifically, the data follows a fluid- and state-specific

law due to the second degree of thermodynamic freedom associated with the non-

reversible entropy generation occurring across the heat-release-induced compression.

Such trend is accurately predicted by the proposed model, which in turn confirms

the validity of the reported heat-release-induced shock strengths. Furthermore, the

modeling strategy is able to correctly capture the departure from unity of the wave

Mach number for quasi-isentropic waves (figure 5.15), in addition to establishing good

matching between data and model results in the non-isentropic region for it as well.

5.4.2 Efficiency of Thermal to Mechanical Power Conversion

Figure 5.14 shows that, for non-isentropic waves, the ratio of the dimensionless

pressure jump to dimensionless heat release rate, Π/Ω, is maximum for perfect ideal

gases and minimum for fluids in pseudo-liquid conditions; in all cases, it is always

upper bounded by the isentropic prediction Π = Ω. This decrease of Π/Ω from IG

to PL conditions can be explained by inspecting figure 5.12. For IG conditions, the

fireball’s total energy does not increase significantly in time, implying that all of the

thermal power is sustaining the shock strength. On the other hand, for real fluids,

the nonlinear relationships between thermodynamic variables allow internal energy

to change if pressure is held constant in the fireball. For PL conditions, in particular,

a significant part of the injected power is retained by the fireball, hence reducing the

amount of mechanical power carried by the shock.
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However, even if the ratio Π/Ω is the highest for fluids in IG conditions, the same

is not strictly true for the efficiency of thermal to mechanical power conversion, which

has a different mathematical expression. In fact, a quantitative metric for the latter

can be obtained by dividing the mechanical power carried by the shocks, 2(p∗1−p∗0)u∗1,

by the total heat power input, Ω∗,

η =
(p∗1 − p∗0)u∗1

Ω∗/2
. (5.49)

The right-hand side of Eq. (5.49) can be recast with the parameters in table 5.3 and

Eq. (5.27b), yielding

η =
Π2

ϕ0ΩM
, (5.50)

where

ϕ =
α∗pT

∗

γ − 1
, (5.51)

which is defined by [27] as the ratio between the “heat parameter” α∗pT
∗ to the “work

parameter” γ − 1 in the context of thermoacoustic energy conversion. With the

currently adopted normalization (see table 5.3), ϕ = T ∗/δT ∗ref = T , and, for a perfect

ideal gas, ϕ = 1/(γ − 1).

The efficiency computed with the data extracted from the numerical simulations is

compared in figure 5.16 to the theoretical efficiency (computed with modeling strategy

outlined in §5.4.1). For quasi-isentropic waves, the efficiency in Eq. (5.50) is approx-

imately given by η = Π/ϕ0, and is the highest for fluids in PL conditions, contrary

to what the ratio Π/Ω may suggest, followed by PB, PG, and then IG conditions.

On the other hand, when the dimensionless heat release rate increases and the waves

are non-isentropic, the efficiency η of perfect ideal gases grows, until it becomes the

highest among all initial conditions.

The next section reveals how the ratio Π/Ω and the efficiency of thermal to me-

chanical power conversion behave for extremely high values of heat release rate.
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Figure 5.16. Fluid-by-fluid shock thermal-to-mechanical energy efficiency
(Eq. (5.50)) for non-isentropic heat-released-induced compression waves:
numerical computations (symbols) and results from the solution of the
Rankine-Hugoniot equations (solid lines).

5.4.3 Asymptotic Limit of Infinite Shock Strength

In the limit of Ω∗ → ∞, both the perfect ideal gas and the PR EoS cease to be

physically representative of a real fluid. Nonetheless, it is of theoretical interest to

investigate the asymptotic behavior of the RH equations and of heat-release-induced

efficiencies.

For very high dimensionless heat release rate Ω � 1 and, thus, shock strength

Π� 1, Eq. (5.48), valid for a perfect ideal gas, reverts to the two-thirds law proposed

in Eq. (40) of [112], which can be recast as

Π =

(
γ + 1

2

)1/3(
Ω

γ

)2/3

. (5.52)
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In order to investigate the asymptotic behavior of a generic fluid, the Rankine-

Hugoniot equations (Eq. (5.27)) and the EoS are solved numerically (see appendix

5.3.4) for high-intensity shock waves, for R134a in PL conditions, and explicitly for

R134a in IG conditions (figure 5.17). For low values of Mach number (quasi-isentropic
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Figure 5.17. Results from the solution of the Rankine-Hugoniot equations
combined with the EoS (see appendix 5.3.4), for high Mach numbers, for
R-134a in IG and PL conditions. Dashed lines represent the prediction of
Eq. (5.53), valid for M →∞.

region), all dimensionless jumps match, consistently with Eq. (5.29). For M → ∞,

instead, the dimensionless density jump R reaches a finite limit value, R∞. All the

other jumps are governed by the RH equations (Eq. (5.27)), which can be written,

for M →∞, as

U∞ =
M

1 + 1/R∞
, Π∞ =

M2

1 + 1/R∞
, H∞ = M2 2/R∞ − 1

2(1 + 1/R∞)2
, (5.53)

which establish the trends of U ,Π,H visible in figure 5.17. For a perfect ideal gas,

Eq. (5.37) for Π� 1 yields R∞ = 2/(γ − 1). Therefore, fluids in IG conditions tend

to an asymptotic thermal to mechanical power conversion efficiency,

η = 1− 1

γ
, (5.54)

where we used the second of Eq. (5.53), Eq. (5.52), and Eq. (5.50), with ϕ0 =

1/(γ − 1).
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The dimensionless temperature jump,

Θ =
T ∗1 − T ∗0

(γ0 − 1)/α∗p0
, (5.55)

where the reference temperature in table 5.3 has been used, is also plotted in figure

5.17. For fluids in IG conditions, Θ = H always holds. For real fluids, instead, the

EoS in Eq. (2.1) sets the value of temperature from the ones of density and pressure,

which are imposed from the RH equations. Since the temperature profile in figure

5.13b governs the global energy balance of Eq. (5.44), this affects the predicted value

of Ω for a certain shock strength Π, resulting in the trends shown in figure 5.18a.

For very high values of dimensionless heat release rates, fluids in IG conditions

reach the two-thirds law predicted by Eq. (5.52), and the constant thermal to me-

chanical power conversion efficiency given by Eq. (5.54). For real fluids, instead,

the ratio Π/Ω tends to a value lower than the upper bound imposed by fluids in IG

conditions, and the efficiency η decreases, eventually reaching values inferior to the

ones obtained in the quasi-isentropic region (figure 5.18b).
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Figure 5.18. Results from the modeling strategy (§5.4.1) for high values
of heat release rates, for R-134a in different thermodynamic states. (a)
Shock strength Π versus dimensionless heat release rate Ω; (b) efficiency
of thermal to mechanical power conversion η (Eq. (5.50)) versus Ω. The
isentropic prediction Π = Ω is plotted with a dashed line in (a), and Eq.
(5.53), valid for M → ∞ and applicable only to perfect ideal gases, is
plotted as a dashed dotted line in (b).
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6. CONCLUSIONS

In chapter 3, we have compared the use of a fully conservative approach against a

non-conservative one for the simulation of real fluids using a high-order spectral dif-

ference method. The first approach consists in solving the compressible Navier-Stokes

equations in conservative form and computing the pressure as a derived quantity us-

ing an ad-hoc equation of state. This approach is found to yield significant pressure

oscillations leading to computational instability when thermodynamic gradients of

the flow are too high (e.g., for conditions close to the critical point). Solving instead

an evolution equation for pressure is found to eliminate completely the spurious os-

cillations and thus significantly improves the stability of computations, at the cost

of losing the total energy conservation. The benefit of solving the pressure equation

instead of total energy in the context of real fluid flows has been demonstrated for a

simple 1D entropy wave advection as well as the more stringent 2D buoyancy prob-

lem and 3D channel flow computation. Future work will feature a more extensive

comparison and validation as well as the assessment of the present methodology for

more complex flow problems.

In chapter 4 we have carried out the first Navier-Stokes simulations of a ther-

moacoustically unstable duct employing carbon dioxide in transcritical conditions

inside the stack. We have performed an analysis over a range of 3.615 MPa in base

pressures p0 and 200 K in temperature differences ∆T , considering fluid in pseudo-

gaseous, pseudo-boiling, and pseudo-liquid conditions in a computational setup opti-

mized thanks to the linear theory. A grid convergence study has firstly been carried

out, showing that the linear theory needs to consider the full eigenvalue α + iω,

rather than just its imaginary part ω, in order to accurately reproduce the growth

rates extracted from the Navier-Stokes simulations. This is due to the high ratio

α/ω exhibitied by transcritical thermoacoustic instabilities. Secondly, strong real-
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fluid effects have been discussed. Indeed, after the fluid inside the stack approaches

pseudo-boiling conditions, for a fixed Tcold, the frequency of oscillation exhibits a

steep drop, while the growth rate, after a small dip for p0/pcr = 1.01, 1.05, increases

to positive values. The growth rates exhibit a non-monotone trend with respect to

p0, showing a decrease for p0 approaching pcr and an optimum at a value of p0 which

increases with the imposed ∆T . Frequencies, instead, show a linear increase with p0

at all values of ∆T . The eigenmodes of the system also show some peculiar real-fluid

effects, for p0 sufficiently close to pcr. The pressure eigenmode presents its maximum

on the right end side of the setup, while the same configuration, if a perfect ideal gas is

considered, shows a higher pressure amplitude on the left hand side. Moreover, pres-

sure fluctuations do not show a stationary node, but rather an unsteady one, due to

the high ratio α/ω, and, because of this, the entire axial profile of pressure amplitude

tends to flatten out. For the same reason, the pressure-velocity phasing smoothly

transitions at the average location of the pressure node, assuming there a non-zero

value. Furthemore, due to the rapid change in acoustic impedance present at pseudo-

boiling conditions, pressure, mass flow rate, and acoustic power change drastically

their derivative, as if there was an area change. The acoustic energy budgets are de-

rived from the frequency-domain linear expressions for pressure and flow rate, and are

closed, allowing to obtain a consistent value of the growth rate. Terms of the energy

budgets indicating production and dissipation are analyzed inside the stack, showing

a boost in thermoacoustic production at pseudo-boiling conditions, due to the spike of

thermal expansion coefficient, also accompanied by a sharp increase in thermoacoustic

dissipation due to the spike of Prandtl number. The acoustic power and total energy

flux inside the stack show an increased slope at pseudo-boiling conditions, therefore

suggesting that conditions closer to the critical point produce additional power, but

also require more heat to be sustained. Data from the linear theory augmented with

minor losses, which are tuned to data extracted from the Navier-Stokes simulations,

allow for computations of heat-to-mechanical power conversion efficiency, which has

a maximum of 0.87 %, obtained for p0/pcr = 1.5 at a ∆T of 120 K. Nevertheless,
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the maximum limit cycle pressure oscillations grow monotonically with ∆T and are

achieved for p0/pcr = 1.01. An in-depth analysis of the physics of the pseudo-boiling

region, for high values of pressure amplitude, reveals concentrated nonlinear effects

around it. Indeed, the drop in thermal boundary layer thickness at PB conditions

causes the fluid inside the stack pore to lag behind other acoustic parcels, resulting

in a nonlinear Lagrangian pressure-volume cycle.

In chapter 5 we have derived the correct set of reference scaling parameters able

to achieve collapse of isentropic acoustic waves and heat-release-induced thermody-

namic jumps and speed across all homogeneous compressible fluids. The reference

temperature and heat release rate are expressed in terms of the isobaric thermal

expansion coefficient. Data from 186 highly resolved one-dimensional Navier-Stokes

numerical simulations of a variety of supercritical fluids has been adopted to verify

the effectiveness of the proposed scaling strategy. The latter has also been success-

fully applied to one of the experimental results of [88], and has allowed to compute

its wave Mach number. Furthermore, the data has been used to aid the extension of

the scaling to the non-isentropic regime, where heat-release-induced shock waves have

been investigated. Scaling of shock pressure jumps and wave Mach numbers provides

their approximate a priori measure with the only knowledge of the dimensionless

heat release rate Ω. In order to satisfy the need for a more accurate determination of

the intensity and speed of heat-release-induced waves, a fully predictive model based

on global mass and energy conservation has been proposed, generalizing the results

of [112]. In the heated zone, a different energy pathway from the one imposed by

perfect ideal gases has been identified as the thermodynamic bottleneck for trans-

formation of heat to shock intensity, when non-isentropic waves are concerned. In

reality, in the quasi-isentropic regime, another measure of heat-to-mechanical energy

efficiency is maximum for fluids in pseudo-liquid conditions. Finally, the asymptotic

behavior of heat-release-induced wave intensity for infinite Mach number has been

shown to differ from the one of perfect ideal gases because of the different trend of

the temperature jump, due to the highly nonlinear equation of state. For infinite
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shock strength, the efficiency of thermal to mechanical power conversion of real fluids

decreases, while the one of perfect ideal gases reaches a constant.

Based on the aforementioned numerical and theoretical knowledge, an experimen-

tal prototype of a transcritical thermoacoustic engine was built [79]. Current and

future work is devoted to the understanding of its operations and to the design and

testing of its second generation.
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[80] G. Kirchhoff. Über den Einfluss der Wärmeleitung in einem Gase auf die Schall-
bewegung. Pogg. Ann., 134:177 – 193, 1868.

[81] H. A. Kramers. Vibrations of a Gas Column. Physica, 15(971):971 – 984, 1949.

[82] J. F. J. Malone. A new prime mover. Journal of the Royal Society of Arts,
79(4099):679–709, 1931.

[83] G. W. Swift. Analysis and performance of a large thermoacoustic engine. J.
Acoust. Soc. Am., 92(3):1551 – 1563, 1992.

[84] T. Yazaki, A. Iwata, T. Maekawa, and A. Tominaga. Traveling Wave Thermoa-
coustic Engine in a Looped Tube. Phys. Rev. Lett., 81(15):3128–3131, October
1998.

[85] I. E. Idelchik. Handbook of Hydraulic Resistance. CRC Press, 3rd edition, 2003.

[86] D. R. Kassoy. The response of a confined gas to a thermal disturbance. i: Slow
transients. SIAM Journal on Applied Mathematics, 36(3):624–634, 1979.

[87] Sutrisno and D. R. Kassoy. Weak shocks initiated by power deposition on a
spherical source boundary. SIAM Journal on Applied Mathematics, 51(3):658–
672, 1991.

[88] Y. Miura, S. Yoshihara, M. Ohnishi, K. Honda, M. Matsumoto, J. Kawai,
M. Ishikawa, H. Kobayashi, and A. Onuki. High-speed observation of the piston
effect near the gas-liquid critical point. Phys. Rev. E, 74:010101, Jul 2006.



137

[89] J. F. Clarke, D. R. Kassoy, and N. Riley. Shocks generated in a confined gas
due to rapid heat addition at the boundary. ii. strong shock waves. Proceedings
of the Royal Society of London A, 393(1805):331–351, 1984.

[90] M.B.E. Boslough and D.A. Crawford. Low-altitude airbursts and the impact
threat. International Journal of Impact Engineering, 35(12):1441 – 1448, 2008.
Hypervelocity Impact Proceedings of the 2007 SymposiumHVIS 2007.

[91] National Research Council. Defending Planet Earth: Near-Earth-Object Sur-
veys and Hazard Mitigation Strategies. The National Academies Press, Wash-
ington, D.C., 2010.

[92] Geoffrey Taylor. The formation of a blast wave by a very intense explosion. i.
theoretical discussion. Proceedings of the Royal Society of London A: Mathe-
matical, Physical and Engineering Sciences, 201(1065):159–174, 1950.

[93] Ji Won Suk, Karen Kirk, Yufeng Hao, Neal A. Hall, and Rodney S. Ruoff.
Thermoacoustic sound generation from monolayer graphene for transparent and
flexible sound sources. Advanced Materials, 24(47):6342–6347, 2012.

[94] Qingming Liu and Yunming Zhang. Shock wave generated by high-energy elec-
tric spark discharge. Journal of Applied Physics, 116(15):153302, 2014.

[95] R. J. Krane and M. Parang. Scaling analysis of thermoacoustic convection in
a zero-gravity environment. Journal of Spacecraft and Rockets, 20(3):316–317,
2017/06/22 1983.

[96] Pierre Carlès. Thermoacoustic waves near the liquid-vapor critical point.
Physics of Fluids, 18(12):126102, 2006.

[97] B. Shen and P. Zhang. Thermoacoustic waves along the critical isochore. Phys.
Rev. E, 83:011115, Jan 2011.

[98] Akira Onuki, Hong Hao, and Richard A. Ferrell. Fast adiabatic equilibration
in a single-component fluid near the liquid-vapor critical point. Phys. Rev. A,
41, 1990.

[99] Hacène Boukari, Matthew E. Briggs, J. N. Shaumeyer, and Robert W. Gam-
mon. Critical speeding up observed. Phys. Rev. Lett., 65:2654–2657, Nov 1990.

[100] B. Zappoli, D. Bailly, Y. Garrabos, B. Le Neindre, P. Guenoun, and D. Beysens.
Anomalous heat transport by the piston effect in supercritical fluids under zero
gravity. Phys. Rev. A, 41:2264–2267, Feb 1990.

[101] Sakir Amiroudine and Bernard Zappoli. Piston-effect-induced thermal oscilla-
tions at the rayleigh-bénard threshold in supercritical 3He. Phys. Rev. Lett.,
90:105303, Mar 2003.

[102] B. Zappoli. Near-critical fluid hydrodynamics. Comptes Rendus Mécanique,
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