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ABSTRACT

Shen, Zhou PhD, Purdue University, December 2018. Two Component Semiparamet-
ric Density Mixture Models with A Known Component. Major Professor: Michael
Levine.

Finite mixture models have been successfully used in many applications, such as

classification, clustering, and many others. As opposed to classical parametric mix-

ture models, nonparametric and semiparametric mixture models often provide more

flexible approaches to the description of inhomogeneous populations. As an exam-

ple, in the last decade a particular two-component semiparametric density mixture

model with a known component has attracted substantial research interest. Our the-

sis provides an innovative way of estimation for this model based on minimization

of a smoothed objective functional, conceptually similar to the log-likelihood. The

minimization is performed with the help of an EM-like algorithm. We show that

the algorithm is convergent and the minimizers of the objective functional, viewed as

estimators of the model parameters, are consistent.

More specifically, in our thesis, a semiparametric mixture of two density functions

is considered where one of them is known while the weight and the other function are

unknown. For the first part, a new sufficient identifiability condition for this model

is derived, and a specific class of distributions describing the unknown component

is given for which this condition is mostly satisfied. A novel approach to estimation

of this model is derived. That approach is based on an idea of using a smoothed

likelihood-like functional as an objective functional in order to avoid ill-posedness of

the original problem. Minimization of this functional is performed using an iterative

Majorization-Minimization (MM) algorithm that estimates all of the unknown parts

of the model. The algorithm possesses a descent property with respect to the ob-

jective functional. Moreover, we show that the algorithm converges even when the
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unknown density is not defined on a compact interval. Later, we also study proper-

ties of the minimizers of this functional viewed as estimators of the mixture model

parameters. Their convergence to the true solution with respect to a bandwidth pa-

rameter is justified by reconsidering in the framework of Tikhonov-type functional.

They also turn out to be large-sample consistent; this is justified using empirical

minimization approach. The third part of the thesis contains a series of simulation

studies, comparison with another method and a real data example. All of them show

the good performance of the proposed algorithm in recovering unknown components

from data.
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1. INTRODUCTION

1.1 Finite Parametric Mixture Models

In statistics, mixtures of distributions have successfully provided mathematical-

based approaches to represent the presence of component populations from the overall

population. Given an observed data set, finite mixture models can derive the prob-

ability distributions of finite sub-populations from the pooled population without

knowing the identity information of an individual observation. Under valid assump-

tions and criteria, mixture models can reveal the underlying structure of the overall

population, which is meaningful from both a practical and theoretical point of view.

We let X1, ..., Xn denote an observed i.i.d. random sample of size n from the

overall population with mixture density function g(x), where Xi ∈ R. In a typical

finite mixture model, the overall population is assumed to consist of K components

or sub-populations, each of which has a probability density function fi(x) called

component density. A typical finite mixture model assumes that target density g(x)

can be represented as

g(x) =
K∑
i=1

θifi(x), (1.1)

where the θi’s are mixture proportions (also called weights), that is,

0 ≤ θi ≤ 1, i = 1, ..., K (1.2)

and
K∑
i=1

θi = 1. (1.3)

Because of its practical usefulness and extreme flexibility in modeling, mixture

models (1.1) have been widely applied in many fields such as biology, genetics, ma-

chine learning, economics, engineering, social sciences, etc. A variety of techniques
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in areas of cluster analysis, discriminant analysis, image analysis and so on are based

on applications of mixture models. For example, Gaussian mixture models are suc-

cessfully used to model the heterogeneity in cluster analysis as an industry standard.

And Hidden Markov models relax the independence assumption of observations in

mixture models to model the time-dependent.

The simplest case of a density mixture model is the parametric one where each

density component is viewed as belonging to a parametric family of distributions with

an unknown parameter. Theory of parametric mixture models is fairly well developed

by now. For example, Poisson distributed components with different means can be

used to model the counts from a mixture of sources. And mixtures of Gaussian

distributions with different means and covariance matrices are probably the best

studied type of parametric density mixtures. These mixtures can approximate any

continuous distribution arbitrarily well. A parametric density mixture distribution

can be written in the form

g(x) =
K∑
i=1

θif(x|γi), (1.4)

where γi is the parameter vector corresponding to the i-th component, and f(x|γi)

is the corresponding density function in the parametric family of distributions. K is

also a parameter which determines the number of components in the mixture model.

To estimate the parameters θ = (θ1, ..., θK) and γ = (γ1, ..., γK) in (1.4), given a

sample, we can write down and maximize the log-likelihood function, that is

`(θ,γ) =
n∑
i=1

log g(xi|θ,γ)

=
n∑
i=1

log
K∑
j=1

θjfj(xi|γj).

Due to the complexity of the functional form, direct maximum likelihood estimation is

unavailable, which can be successfully solved by the EM algorithms. We let Y1, ...,Yn

denote the corresponding K-dimensional component label vectors with Yij = 0 or 1
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which are unobserved. The complete data is therefore X1,Y1, ..., Xn,Yn, and the

complete data log-likelihood function is given by

`c(θ,γ) =
n∑
i=1

K∑
j=1

yij(log θj + log fj(xi|γj)).

Let γ(k) and θ(k) be the current fit of the parameter γ and θ. In the expectation

step (E-step), we take the conditional expectation of the complete data log-likelihood

function given the observed data by

Q(θ,γ;θ(k),γ(k)) = Eθ(k),γ(k) [`c(θ,γ)|X1, ..., Xn]

=
n∑
i=1

K∑
j=1

θ
(k)
j fj(xi|γ(k)

j )∑K
h=1 θ

(k)
h fh(xi|γ(k)

h )
[log θj + log fj(xi|γj)].

In the maximization step (M-step), the estimate of θ and γ is updated by maximizing

the conditional expectation above. We can derive

θ
(k+1)
j =

1

n

n∑
i=1

θ
(k)
j fj(xi|γ(k)

j )∑K
h=1 θ

(k)
h fh(xi|γ(k)

h )
,

and γ(k+1) is obtained by solving

n∑
i=1

K∑
j=1

θ
(k)
j fj(xi|γ(k)

j )∑K
h=1 θ

(k)
h fh(xi|γ(k)

h )
∂ log fj(xi|γj)/∂γ = 0.

θ and γ are thus estimated by alternating between an E-step and an M-step in an

iterative way. More details can be found in [1].

However, strong assumptions in parametric mixture models still bring difficulties

in realistic application. First, one needs to recognize the proper distribution families

to unveil the reasonable hidden structure under the mixture distribution. Sometimes,

there exist components which can not be perfectly modeled by any parametric dis-

tribution families. Second, the number of components K has to be predefined. But

usually, it is unknown and inferred from sample. As an extreme example, a kernel

density estimator using Gaussian kernel will approximate the mixture distribution

very well, which can also be regarded as a mixture model with n Gaussian compo-

nents. This provides no useful generalization of the mixture structure. Some work

like cross validation has been attempted to these problems.
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1.2 Recent Work in Semiparametric Mixture Models

A parametric density mixture (1.4) is not always the best choice for data analysis.

A nonparametric extension can be easily introduced if we do not specify a partic-

ular parametric family(ies) for individual density components. This implies that a

component density is not defined all the way down to finite-dimensional (Euclidean)

parameter. Of course, such a setting is much more flexible than a parametric setting;

moreover, even if there is a reason to believe that a particular distribution family

should be used, nonparametric modeling provides us with a tool for checking such a

hypothesis. The first nonparametric mixtures of density functions appearing in the

literature were probably those of [2] and [3]. However, this new setting can be rather

problematic on some occasions because of accompanying identifiability issues. It is

easy to see that different nonparametric component distributions may generate the

same mixture density distribution, so it is usually non-identifiable without strong re-

strictions. In practice, when the dimensionality is large, fitting general density curves

becomes difficult and a simplifying assumption must be made. One such assumption

that is commonly used is the assumption of conditional independence, i.e., the overall

conditional density can be written in the product of marginal density functions from

each dimension. It is conceptually similar to assumptions in dimension reduction

like principal component analysis (PCA) where principle components are orthogonal

directions. In this situation, it has been established, in order for such a model to be

identifiable, first, the marginal density functions must be linearly independent across

components and, second, the dimensionality is greater than 3. This powerful result

has been established in [4] who focused proved it using algebraic arguments.

Sometimes, instead of just assuming that all of the components are general density

functions, we may assume that some belong to a specific algebraic, e.g. location-scale

family. In this case, location or scale parameters are additional scalar (Euclidean)

parameters that have to be estimated. These models are commonly called semi-

parametric mixture models. Sometimes, a component or a subset of components in
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these models are assumed to be known. For example, two-component semiparamet-

ric density mixtures with a known component attracted certain attention in the last

10-12 years, partly due to their usefulness in modelling differential gene expression

in microarray data. From the practical viewpoint, it can be related to the multi-

ple testing problem where p-values are uniformly distributed on [0, 1] under the null

hypothesis but their distribution under the alternative is unknown. In the setting

of two-component semiparametric density mixtures, this means that the known dis-

tribution is uniform while the goal is to estimate the proportion of the false null

hypothesis p and the distribution of the p-values under the alternative. More detailed

descriptions in statistical literature can be found in e.g. [5] and [6].

Historically, whenever a two-component mixture model with a known component

was considered, some assumptions were imposed on the unknown density function

f(x). Most commonly, it would be assumed that an unknown distribution belongs

to a particular parametric family. In such a situation, [7] and [8] used the maximum

likelihood-based method to fit it; [9] used the minimum χ2 method, while [10] used the

method of moments. [11] and [12] used empirical characteristic functions to estimate

the unknown cumulative density function under a semiparametric normal mixture

model. A less stringent assumption would be to assume that the unknown density

function belongs to a location family with an unknown location parameter µ. An

example of this approach is the paper [13] that served as a motivation for our work. It

considered a particular two-component semiparametric density mixture model defined

as

g(x) = (1− p)f0(x|γ) + pf(x− µ), x ∈ R, (1.5)

where f0(x|γ) is fully known, while the unknown parameters are the mixture propor-

tion p ∈ (0, 1), and the non-null location parameter µ. The nonparametric component

f(x) is an even density function and has to be estimated as well. The model (1.5)

was motivated by the problem of detection of differentially expressed genes under

two or more conditions in microarray data. [13] established some sufficient condi-

tions to achieve identifiability for model (1.5). They also suggested two methods,
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i.e. symmetrization method and the method of moments, to estimate the unknown

parameters. Moreover, they also showed that the resulting estimators are consistent

if sufficient identifiability conditions are satisfied. A sequel paper [14] further estab-

lished a joint central limit theorem for these estimators, showing weak convergence

to a multivariate Gaussian process, and proposed methods to test various hypotheses

about parameters. [15] considered a setting similar to (1.5) but with f0 only known

down to some Euclidean parameter. They discussed the corresponding identifiability

issues, proposed a family of explicit estimators and explained how to achieve the opti-

mal semiparametric efficiency in estimation. However, methods proposed by both [13]

and [15] depend heavily on the fact that the density function of the unknown com-

ponent is symmetric. Actually in many applications, there is no particular practical

reason to make the unknown component symmetric. In particular, [13] noted that

“In our opinion, a challenging problem would be to consider model (1.5) without the

symmetry assumption on the unknown component”. That is why we decided to con-

sider a more general version of (1.5) with the function f(x) now being a completely

arbitrary density function. While working on this problem, we found out that [16]

were considering an almost identical problem at the same time. More specifically,

they assumed that f0(x|γ) is known and f(x) is an arbitrary density function. A

tuning-parameter-free heuristic estimator of p was given along with a finite sample

lower confidence bound. Then, they provided a methodology to estimate the non-

parametric f(x) without assuming any constraint on its form. They also derived the

rate of convergence and asymptotic limit for one of their estimators, and proposed

some general identifiability criteria. However, their approach is based on the ideas of

shape constrained estimation, which is very hard to generalize to multivariate density

components.



7

1.3 Our Contribution

We consider a general case of a two-component univariate mixture model where

one component distribution is known while the mixing proportion and the other

component distribution are unknown, i.e., g(x) = (1−p)f0(x)+pf(x) where f0 is the

only known component. The mixture proportion p ∈ (0, 1) and the other component

density function f(x) are both unknown. We would like to provide a nonparametric

estimation to f(x) by imposing some kernel functions. Part of this work is published

in our paper [17].

In Chapter 2, we provide a sufficient condition of identifiability when modeling

the mixture density, and propose an iterative algorithm based on minimizing a log-

likelihood type objective functional. Descent property and algorithmic convergence

are also discussed. In Chapter 3, we generalize a class of estimators which are the

minimizers in our proposed minimization problem and can not be written in closed

forms. The consistency of these estimators are derived by using empirical minimiza-

tion. And the convergence with respect to a parameter of bandwidth in the problem

is also discussed in the framework of Tikhonov-type regularization. In Chapter 4,

various numerical studies are implemented including simulation in different settings,

bandwidth selection, comparison with a symmetrization method in [13], and appli-

cation in a real data example. In Chapter 5, some further issues are discussed and

proposed as our future work.
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2. AN MM ALGORITHM FOR ESTIMATION OF A TWO

COMPONENT SEMIPARAMETRIC MIXTURE MODEL

2.1 Introduction

We consider a general case of a two-component univariate mixture model where

one component distribution is known while the mixing proportion and the other

component distribution are unknown. Such a model can be defined at its most general

as

g(x) = (1− p)f0(x) + pf(x), (2.1)

where f0 is a known density component, while p ∈ (0, 1) and f(x) are the unknown

weight and the unknown density component, respectively.

[18] proposed a nonlinear smoothing operator which are important to our mod-

eling. Let h be a positive bandwidth and K a symmetric positive-valued kernel

function that is also a true density; as a technical assumption, we will assume that K

is continuously differentiable. The rescaled version of this kernel function is denoted

Kh(x) = K(x/h)/h for any x ∈ R. We will also need a linear smoothing operator

Sf(x) =

∫
Kh(x− u)f(u)du (2.2)

and a nonlinear smoothing operator

Nhf(x) = exp(S log f(x)) (2.3)

for any generic density function f . More properties of Nhf(x) can be reviewed in

[18]. For simplicity, let us assume that our densities are defined on a closed interval,

e.g. [0, 1]. This assumption is here for technical convenience only when proving

algorithmic convergence related results. In the future, we will omit these integration

limits whenever doing so doesn’t cause confusion.
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Our estimation approach is based on selecting p and f that minimize the following

log-likelihood type objective functional

`(p, f) =

∫
g(x) log

g(x)

(1− p)f0(x) + pNhf(x)
dx. (2.4)

The reason the functional (2.4) is of interest as an objective functional is as follows.

First, recall that

KL(a(x), b(x)) =

∫ [
a(x) log

a(x)

b(x)
+ b(x)− a(x)

]
dx (2.5)

is a Kullback-Leibler distance between the two arbitrary positive integrable functions

a(x) and b(x) which are not necessarily distribution densities; as usual, KL(a, b) ≥ 0.

This version of the Kullback-Leibler distance is a special case of the so-called Bregman

divergence; one can find its definition in e.g. [19] p. 16. Note that the functional (2.4)

can be represented as a penalized Kullback-Leibler distance between the target density

g(x) and the smoothed version of the mixture (1−p)f0(x) +pNhf(x); indeed, we can

represent `(p, f) as

`(p, f) = KL(g(x), (1− p)f0(x) + pNhf(x)) + p

{
1−

∫
Nhf(x) dx

}
. (2.6)

The quantity 1−
∫
Nhf(x) dx =

∫
[f(x)−Nhf(x)] dx is effectively the penalty on the

smoothness of the unknown density. Thus, the functional (2.4) can be interpreted as

a penalized smoothed likelihood functional.

Our method to solve the minimization problem of (2.4) belongs to a family of

algorithms called MM algorithms. MM algorithms represent a generalization of the

classical EM framework. In minimization problems, MM stands for majorization

minimization, while in maximization problems, MM stands for minorization maxi-

mization. They are commonly used whenever optimization of a difficult objective

function is best avoided and a series of simpler objective functions is optimized in-

stead. The concept underlying MM algorithms was stated originally in [20] in the

context of line search methods. Suppose θ(m) is the current estimate of some param-
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eter θ, and let g(θ|θ(m)) denote a real-valued function of θ depending on θ(m). Given

a function f(θ), if for all θ the following is true,

g(θ|θ(m)) ≥ f(θ),

g(θ(m)|θ(m)) = f(θ(m)),

we say that the function g(θ|θ(m)) majorize f(θ). Let θ(m+1) denote the minimizer of

g(θ|θ(m)). The decent property

f(θ(m+1)) ≤ f(θ(m))

will follow directly from the fact

g(θ(m+1)|θ(m)) ≤ g(θ(m)|θ(m)),

which brings numerical stability to this MM algorithm. A general introduction to

MM algorithms from the statistical viewpoint is available in, for example, [21].

In Section 2.2, we present sufficient conditions and discuss identifiability issues.

In Section 2.3, we derive an an algorithm to solve the minimization problem of (2.4)

in an iterative way, an show that it is an MM algorithm. In Section 2.4, we prove the

descent property of the estimator sequence with respect to the objective functional

(2.4) and algorithmic convergence of estimators of unknown parameters. We will see

that (2.4) converges to its stationary point under some mild conditions. In Section 2.5,

we propose an empirical version of the algorithm for real applications and generalize

it to multivariate cases.

2.2 Identifiability

In general, the model (2.1) is not identifiable. In what follows, we investigate some

special cases. For an unknown density function f , let us denote its mean by µf and

its variance by σ2
f . To state a sufficient identifiability result, we consider a general

equation

(1− p)f0(x) + pf(x) = (1− p1)f0(x) + p1f1(x). (2.7)
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We also denote variance of the distribution f(x) as a function of its mean µf , i.e.,

V (µf ).

Theorem 2.2.1 Consider the model (2.1) with the unknown density function f .

Without loss of generality, assume that the first moment of f0 is zero while its second

moment is finite. We assume that the function f belongs to a set of density functions

whose first two moments are finite, whose means are not equal to zero and that are all

of the same sign; that is, f ∈ F = {f :
∫
x2f(x) dx < +∞;µf > 0 or µf < 0}. More-

over, we assume that for any f ∈ F the function G(µf ) =
V (µf )

µf
is strictly increasing.

Then, the equation (2.7) has the unique solution p1 = p and f1 = f .

Proof First, let us assume that the mean µf > 0. Then, the assumption of Theorem

(2.2.1) implies that the function V : (0,∞) 7→ (0,∞) is strictly increasing. Let us

use the notation θ0 for the second moment of f0. If we assume that there are distinct

p1 6= p and f1 6= f such that

(1− p)f0(x) + pf(x) = (1− p1)f0(x) + p1f1(x),

the following two moment equations are easily obtained:

ζ = p1µf1 = pµf (2.8)

and

(p1 − p)θ0 = ζ(µf1 − µf ) + p1V (µf1)− pV (µf ), (2.9)

where ζ > 0. Our task is now to show that if (2.8) and (2.9) are true, then p = p1 and

f = f1. To see this, let us assume p1 > p (the case p1 < p can be treated in exactly

the same way). Then from the first equation we have immediately that µf1 < µf ;

moreover, since the function G(µf ) is a strictly increasing one, then so is the function

µf +G(µf ). With this in mind, we have

µf1 +
V (µf1)

µf1
< µf +

V (µf )

µf
. (2.10)
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On the other hand, (p1 − p)θ0 ≥ 0 which implies

0 ≤ ζ(µf1 − µf ) + p1V (µf1)− pV (µf )

= ζ(µf1 − µf ) + ζ

(
V (µf1)

µf1
− V (µf )

µf

)
.

Therefore, this implies that

µf1 +
V (µf1)

µf1
≥ µf +

V (µf )

µf
, (2.11)

and we end up with a contradiction. Therefore, we must have p = p1. This, in turn,

implies immediately that f = f1.

The case where µf < 0 proceeds similarly. Let us now consider the case where the

variance function V : (−∞, 0)→ (0,∞) and is strictly monotonically increasing. As

a first step, again take p1 > p. Clearly, the first moment equation is yet again (2.8)

where now ζ < 0. If p1 > p, we now have µf1 > µf and, due to the strict monotonicity

of G(µ), we have µf1 +
V (µf1 )

µf1
> µf +

V (µf )

µf
. On the other hand, since (p1 − p)θ0 ≥ 0,

we have

0 ≤ ζ(µf1 − µf ) + p1V (µf1)− pV (µf ) (2.12)

= ζ

({
µf1 +

V (µf1)

µf1

}
−
{
µf +

V (µf )

µf

})
.

Because ζ < 0, the above implies that
{
µf1 +

V (µf1 )

µf1

}
−
{
µf +

V (µf )

µf

}
< 0 which

contradicts the assumption that the function G(µ) is strictly increasing.

To understand better what is going on here, it is helpful if we can suggest a more

specific density class which satisfies the sufficient condition in Theorem 2.2.1. The

form of Theorem 2.2.1 suggests one such possibility - a family of natural exponential

families with power variance functions (NEF-PVF). For convenience, we give the

definition due to [22].

Definition 2.2.1 A natural exponential family (NEF for short) is said to have a

power variance function if its variance function is of the form V (µ) = αµγ, µ ∈ Ω,

for some constants α 6= 0 and γ, called the scale and power parameters, respectively.
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This family of distributions is discussed in detail in [23] and [22]. In particular,

they establish that the parameter space Ω can only be R, R+ and R−; moreover,

we can only have γ = 0 if and only if Ω = R. The most interesting property is

that (see Theorem 2.1 from [22] for details) for any NEF-PVF, it is necessary that

γ /∈ (−∞, 0) ∪ (0, 1); in other words, possible values of γ are 0, corresponding to the

normal distribution, 1, corresponding to Poisson, and any positive real numbers that

are greater than 1. In particular, the case γ = 2 corresponds to gamma distribution.

Out of these choices, the only one that does not result in a monotonically increasing

function G(µ) is γ = 0 that corresponds to the normal distribution; thus, we have to

exclude it from consideration. With this exception gone, the NEF-PVF framework

includes only density families with either strictly positive or strictly negative means;

due to this, it seems a rather good fit for the description of the family of density

functions f in the Theorem 2.2.1.

Note that the exclusion of the normal distribution is also rather sensible from the

practical viewpoint because it belongs to a location family; therefore, it can be treated

in the framework of [13]. More specifically, Proposition 1 of [13] suggests that, when

f(x) is normal, the equation (2.7) has at most two solutions if f0 is an even pdf and

at most three solutions if f0 is not an even pdf.

It is also of interest to compare our Theorem 2.2.1 with the Lemma 4 of [16]

that also establishes an identifiability result for the model (2.1). The notions of

identifiability that are considered in the two results differ: whereas we discuss the

identifiability based on the first two moments, Lemma 4 of [16] looks at a somewhat

different definition of identifiability. At the same time, the interpretation given in the

previous Remark, suggests an interesting connection. For example, the case where

the unknown density function f is gamma corresponds to the power parameter of the

NEF-PVF family being equal to 2. According to our identifiability result Theorem

2.2.1, the mixture model (2.1) is, then, identifiable with respect to the first two

moments. On the other hand, let us assume that the known density function f0 is

the standard normal. Since its support fully contains the support of any density from
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the gamma family, identifiability in the sense of [16] now follows from their Lemma

4.

We only assumed that the first moment of f0 is equal to zero for simplicity. It

is not hard to reformulate the Theorem 2.2.1 if this is not the case. The proof is

analogous.

Corollary 2.2.2 Consider the model (2.1) with the unknown density function f .

We assume that the known density f0 has finite first two moments and denote its first

moment µf0. We also assume that the function f belongs to a set of density functions

whose first two moments are finite, and whose means are all either greater than µf0

or less than µf0:

f ∈ F = {f :

∫
x2f(x) dx < +∞;µf > µf0 or µf < µf0}. (2.13)

Let us assume that G(µf ) =
V (µf )

µf−µf0
is a strictly increasing function in µf for a fixed,

known f0. Then, the equation (2.7) has the unique solution p1 = p and f1 = f .

2.3 Algorithm

Now we are going to introduce our algorithm that would search for unknown p

and f(x) in (2.1). The first result that we need is the following technical Lemma.

Lemma 2.3.1 For any pdf f̃ and any real number p̃ ∈ (0, 1),

`(p̃, f̃)− `(p, f) (2.14)

≤ −
∫
g(x)

[
(1− w(x)) log

(
1− p̃
1− p

)
+ w(x) log

(
p̃Nhf̃(x)

pNhf(x)

)]
dx,

where

w(x) =
pNhf(x)

(1− p)f0(x) + pNhf(x)
. (2.15)
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Proof The result follows by the following straightforward calculations:

`(p̃, f̃)− `(p, f) = −
∫
g(x) log

(
(1− p̃)f0(x) + p̃Nhf̃(x)

(1− p)f0(x) + pNhf(x)

)
dx (2.16)

= −
∫
g(x) log

(
(1− w(x))

1− p̃
1− p

+ w(x)
p̃Nhf̃(x)

pNhf(x)

)
dx

≤ −
∫
g(x)

[
(1− w(x)) log

(
1− p̃
1− p

)
+ w(x) log

(
p̃Nhf̃(x)

pNhf(x)

)]
,

where the last inequality follows by convexity of the negative logarithm function.

Suppose at iteration t, we get the updated pdf f t and the updated mixing pro-

portion pt. Let wt(x) = ptNhf t(x)
(1−pt)f0(x)+ptNhf t(x)

, and define

pt+1 =

∫
g(x)wt(x)dx,

f t+1(x) = αt+1

∫
Kh(x− u)g(u)wt(u)du,

where αt+1 is a normalizing constant needed to ensure that f t+1 integrates to one.

Then the following result holds.

Theorem 2.3.1 For any t ≥ 0, `(pt+1, f t+1) ≤ `(pt, f t).

Proof By Lemma 2.3.1, for an arbitrary density function f̃ and an arbitrary number

0 < p̃ < 1,

`(p̃, f̃)− `(pt, f t) (2.17)

≤ −
∫
g(x)

[
(1− wt(x)) log

(
1− p̃
1− pt

)
+ wt(x) log

(
p̃Nhf̃(x)

ptNhf t(x)

)]
dx.

Let (p̂, f̂) be the minimizer of the right hand side of (2.17) with respect to p̃ and f̃ .

Note that the right-hand side becomes zero when p̃ = pt and f̃ = f t; therefore, the

minimum value of the functional on the right hand side must be less then or equal to

0. Therefore, it is clear that `(p̂, f̂) ≤ `(pt, f t). To verify that the statement of the

Theorem 2.3.1 is true, it remains only to show that (p̂, f̂) = (pt+1, f t+1).
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Note that the right hand side of (2.17) can be rewritten as

−
∫
g(x)[(1− wt(x)) log(1− p̃) + wt(x) log p̃]dx

−
∫
g(x)wt(x) logNhf̃(x)dx+ T,

where the term T only depends on (pt, f t). The first integral in the above only

depends on p̃ but not on f̃ . It is easy to see that the minimizer of this first integral

with respect to p̃ is p̂ =
∫
g(x)wt(x)dx. The second integral, on the contrary, depends

only on f̃ but not on p̃. It can be rewritten as

−
∫
g(x)wt(x) logNhf̃(x)dx

= −
∫ ∫

g(x)wt(x)Kh(x− u) log f̃(u)dudx

= −
∫ (∫

Kh(u− x)g(x)wt(x)dx

)
log f̃(u)du

= − 1

αt+1

∫
f t+1(u) log f̃(u)du

=
1

αt+1

∫
f t+1(u) log

f t+1(u)

f̃(u)
du− 1

αt+1

∫
f t+1(u) log f t+1(u)du.

The first term in the above is the Kullback-Leibler divergence between f t+1 and f̃

scaled by αt+1, which is minimized at f t+1, i.e., for f̂ = f t+1. Since the second term

does not depend on f̃ at all, we arrive at the needed conclusion.

The above suggests that the following algorithm can be used to estimate the

parameters of the model (2.1). First, we start with initial values p0, f
0 at the step

t = 0. Then, for any t = 1, 2, . . .

• Define the weight

wt(x) =
ptNhf t(x)

(1− pt)f0(x) + ptNhf t(x)
. (2.18)

• Define the updated probability

pt+1 =

∫
g(x)wt(x)dx. (2.19)
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• Define

f t+1(u) = αt+1

∫
Kh(u− x)g(x)wt(x)dx. (2.20)

Note that the proposed algorithm is an MM (majorization minimization) algo-

rithm. As a first step, let (pt, f t) denote the current parameter values in our iterative

algorithm. The main goal is to obtain a new functional bt(p, f) such that, when shifted

by a constant, it majorizes `(p, f). In other words, there must exist a constant Ct

such that, for any (p, f),

bt(p, f) + Ct ≥ `(p, f), (2.21)

where the equality holds if and only if (p, f) = (pt, f t). The use of t as a superscript

in this context indicates that the definition of the new functional bt(p, f) depends

on the parameter values (pt, f t); these change from one iteration to the other. The

benefit of using a functional bt instead of the original one is that it separates p̃ and

f̃ .

In our case, we define a functional

bt(p̃, f̃) =−
∫
g(x)[(1− ωt(x)) log(1− p̃) + ωt(x) log p̃] dx (2.22)

−
∫
g(x)ωt(x) logNhf̃(x) dx.

Note that the dependence on f t is through weights ωt. From the proof of the Theorem

2.3.1, it follows that, for any argument (p̃, f̃) we have

`(p̃, f̃)− `(pt, f t) ≤ bt(p̃, f̃)− bt(pt, f t). (2.23)

This means, that bt(p̃, f̃) is a majorizing functional; indeed, it is enough to select the

constant Ct such that Ct = `(pt, f t)−bt(pt, f t). In the proof of the Theorem 2.3.1 it is

the series of functionals bt(p̃, f̃) (note that they are different at each step of iteration)

that is being minimized with respect to (p̃, f̃), and not the original functional `(p̃, f̃).

This, indeed, establishes that our algorithm is an MM algorithm.
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2.4 Convergence of Algorithm

The following lemma shows that the sequence ξt = `(pt, f t), defined by our algo-

rithm, also has a non-negative limit (which is not necessarily a global minimum of

`(p, f)).

Lemma 2.4.1 There exists a finite limit of the sequence ξt = `(pt, f t) as t→∞:

L := lim
t→∞

ξt (2.24)

for some L ≥ 0.

Proof First, note that ξt is a non-increasing sequence for any integer t due to the

Theorem 2.3.1. Thus, if we can show that it is bounded from below by zero, the proof

will be finished. Then, the functional `(pt, f t) can be represented as

`(pt, f t) =KL(g(x), (1− pt)f0(x) + ptNhf t(x)) +

∫
g(x) dx (2.25)

−
∫

[(1− pt)f0(x) + ptNhf t(x)] dx

=KL(g(x), (1− pt)f0(x) + ptNhf t(x)) + 1

− (1− pt)− pt
∫
Nhf t(x) dx

=KL(g(x), (1− pt)f0(x) + ptNhf t(x)) + pt
[
1−

∫
Nhf t(x) dx

]
.

Now, since K is a proper density function, by Jensen’s inequality,

Nhf t(x) = exp

{∫
Kh(x− u) log f t(u) du

}
(2.26)

≤
∫
Kh(x− u)ft(u) du ≡ Sf t(x).

Moreover, using Fubini’s theorem, one can easily show that
∫
Sf t(x) dx = 1 since f t

is a proper density function. Therefore, one concludes easily that∫
Nhf t(x) dx ≤

∫
Sf t(x) dx = 1. (2.27)

Thus, `(pt, f t) ≥ 0 is non-negative due to non-negativity of the Kullback-Leibler

distance.
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It is, of course, not clear directly from the Lemma 2.4.1 if the sequence (pt, f t),

generated by this algorithm, also converges. Being able to answer this question re-

quires establishing a lower semicontinuity property of the functional `(p, f). Some

additional requirements have to be imposed on the kernel function K in order to

obtain the needed result that is given below. First, we denote a compact set ∆ the

domain of the kernel function K, and consider all density functions with a compact

support.

Theorem 2.4.1 Let the kernel K : ∆ → R be bounded from below and Lipschitz

continuous with the Lipschitz constant CK. Then, the minimizing sequence (pt, f t)

converges to (p∗h, f
∗
h) that depends on the bandwidth h such that L = `(p∗h, f

∗
h).

Proof We prove this result in two parts. First, let us introduce a subset of functions

B = {Sφ : 0 ≤ φ ∈ L+
1 (∆),

∫
φ = 1} where L+

1 (∆) denotes a subset of all non-

negative functions from L1(∆). Such a subset represents all densities on a closed

compact interval that can be represented as linearly smoothed integrable functions.

Every function ft generated in our algorithm except, perhaps, the initial one, can

clearly be represented in this form. This is because, at every step of iteration,

f t+1(x) = αt+1

∫
Kh(x− u)g(u)wt(u) du =

∫
Kh(x− u)φ(u) du, (2.28)

where φ(u) = αt+1g(u)wt(u). Moreover, we observe that∫
φ(u) du = αt+1

∫
g(u)wt(u) du = αt+1pt+1. (2.29)

Next, one concludes, by using Fubini theorem that, for any t = 1, 2, . . .∫
f t+1(x) dx = αt+1

∫
g(u)wt(u)

[∫
Kh(x− u) dx

]
du = 1. (2.30)

Since the iteration step t in the above is arbitrary, we established that αtpt = 1 and,

therefore,
∫
φ(u) du = 1.

By definition of set B, it is clear that, as long as the kernel function is a proper

density function (and so is non-negative), any f ∈ B is non-negative and so every
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function in the set B is bounded from below. If the kernel function is Lipschitz

continuous on ∆ it is clearly bounded from above by some positive constant M :

supx∈∆ K(x) < M . Thus, every function f ∈ B satisfies f(x) ≤ M < ∞. This

implies that the set B is uniformly bounded. Also, by definition of set B, for any two

points x, y ∈ ∆ we have

|f(x)− f(y)| ≤
∫
|Kh(x− u)−Kh(y − u)|φ(u) du (2.31)

≤ CK |x− y|,

where the constant CK depends on the choice of kernel K but not on the function f .

This establishes the equicontinuity of the set B. Therefore, by Arzela-Ascoli theorem

the set of functions B is a compact subset of C(∆) with a sup metric.

Since for every t = 2, 3, . . . f t ∈ B, by Arzela-Ascoli theorem we have a subse-

quence f tk → f ∗h as k → ∞ uniformly over Ω. Since for every t = 1, 2, . . . pt is

bounded between 0 and 1, there exists, by Bolzano-Weierstrass theorem, a subse-

quence ptk → p∗h as k → ∞ in the usual Euclidean metric. Consider a Cartesian

product space {(p, f)} where every p ∈ [0, 1] and f ∈ C(∆). To define a metric on

such a space we introduce an m-product of individual metrics for some non-negative

m. This means that, if the first component space has a metric d1 and the second d2,

the metric on the Cartesian product is (|d1|m + |d2|m)1/m for some non-negative m.

For example, the specific case m = 0 corresponds to |d1| + |d2| and m = ∞ corre-

sponds to max(d1, d2). For such an m-product metric, clearly, we have a subsequence

(ptk , f tk)→ (p∗h, f
∗
h) that converges to (p∗h, f

∗
h) in the m-product metric. Without loss

of generality, assume that the subsequence coincides with the whole sequence (pt, f t).

Of course, such a sequence (pt, f t) ∈ [0, 1]× C(∆) for any t.

Now, that we know that there is always a converging sequence (pt, f t), we can

proceed further. Since each f t is bounded away from zero and from above, then

so is the limit function f ∗h(x) in the limit (p∗h, f
∗
h). This implies that (pt, log f t) →

(p∗h, log f ∗h) uniformly in the m-product topology as well and the same is true also
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for (pt,S log f t). Analogously, the uniform convergence follows also in (pt,Nhf t) →

(p∗h,Nhf ∗h); moreover,

(1− pt)f0 + ptNhf t → (1− p∗h)f0 + p∗hNhf ∗h (2.32)

uniformly in the m-product topology. Since we have the function

ψ(t) = − log t+ t− 1 ≥ 0,

Fatou Lemma implies that∫
g(x)ψ((1− p∗h)f0(x) + p∗hNhf ∗h(x)) dx (2.33)

≤ lim inf

∫
g(x)ψ((1− pt)f0(x) + ptNhf t(x)) dx.

The lower semicontinuity of the functional `(p, f) follows immediately and with it the

conclusion of the Theorem 2.4.1.

The above result can also be proved in the case where the densities involved have

their support on the entire real line. To do so, it is necessary to impose constraints

on the tails of these densities. The following result from the functional analysis forms

the cornerstone of this analysis.

Lemma 2.4.2 (Fréchet-Kolmogorov theorem) Let B be a bounded subset in Lp(R)

with p ∈ [1,∞). The subset B is relatively compact if and only if the following

properties hold for any function f ∈ B:

1. limr→∞
∫
|x|>r |f |

p = 0 uniformly on B,

2. lima→0 ||τaf − f ||p = 0 uniformly on B.

where τaf denotes the translation of f by a, that is, τaf(x) = f(x− a).

A very nice proof of this result can be found in e.g. an expository paper [24]. Now

we can formulate the following result.
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Corollary 2.4.2 Let all of the conditions of Theorem 2.4.1 be true but assume that

the unknown density f(x) and the known density f0(x) are now defined on the entire

real line R. Also, assume that f0(x) is bounded everywhere from above. Then, the

convergence result of Theorem 2.4.1 remains correct.

Proof The only part of the proof of Theorem 2.4.1 that needs updating is that of

establishing compactness of the subset B. Now, we need to establish its compactness

as a subset of L1(R). To get this done, we will use Lemma 2.4.2. Fist, recall that our

algorithm updates the density estimate at each step as

f t+1(x) = αt+1

∫
Kh(x− u)g(u)wt(u) du

=

∫
Kh(x− u)φ(u) du,

where φ(u) = αt+1g(u)wt(u) is a density function belonging to L+
1 (R), and as a

result,
∫
φ(u) du = 1. Earlier, we showed that there exists a subsequence ptk → p∗h

by Bolzano-Weierstrass theorem. In order to use Lemma 2.4.2, we first show that at

any step of iteration pt+1 is bounded away from zero. Indeed, from our algorithm we

can see that pt+1 =
∫
g(x)wt(x) dx; thus, if we show that the weight wt(x) is always

bounded away from zero for any t, the probability pt+1 is bounded away from zero as

well. Since the kernel function K is bounded from below, we can easily claim that

for any f ∈ B,

f =

∫
Kh(x− u)φ(u) du (2.34)

≥ inf
x∈Ω

Kh(x− u)

∫
φ(u) du

= K∗ > 0.
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Next, by definition of the smoothing operator Nhf t(x), and since f t ∈ B for any step

of iteration t, we have

Nhf t(x) = exp{
∫
Kh(x− u) log ft(u) du} (2.35)

≥ exp{logK∗
∫
Kh(x− u) du}

= K∗ > 0,

since the kernel function is a proper density function. Now, recall that at each step t

the weight is

wt(x) =
ptNhf t(x)

(1− pt)f0(x) + ptNhf t(x)
.

If we assume that f0(x) is bounded from above, and since Nhf t(x) is always bounded

from above by M , we can conclude that the denominator of the integrand in the

definition of wt(x) is bounded from above and, therefore, wt(x) is always bounded

from below as long as pt is bounded from below. Using the above argument, it is easy

to see that as long as we start with p0 > 0, pt will stay bounded away from zero at

every step of iteration. Thus, we can claim that the limit p∗h > 0. Since akpk = 1 for

all k, there must be atk → a∗h and atk is bounded from above by some Ma > 0.

Now, we can check the first condition in Lemma 2.4.2 for functions that belong to

the set B. For any fixed mixture density g(x), limr→∞
∫
|x|>r g(x) dx = 0; therefore,

for any εg > 0, there exists r′ > 0 such that
∫
|x|>r′ g(x) dx < εg. Since the kernel

function K is a proper density function defined on a finite interval support ∆, for any
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εK > 0 there exists r > r′ such that
∫
|x|>rKh(x − u) dx < εK for any |u| ≤ r′. This

implies that∫
|x|>r
|f tk | dx (2.36)

=

∫
|x|>r

αtk dx

∫ ∞
−∞

Kh(x− u)g(u)wtk−1(u) du

≤αtk
∫
|x|>r

dx

∫ ∞
−∞

Kh(x− u)g(u) du

=αtk
∫
|x|>r

dx

(∫
|u|≤r′

Kh(x− u)g(u) du+

∫
|u|>r′

Kh(x− u)g(u) du

)
=αtk

∫
|u|≤r′

g(u) du

∫
|x|>r

Kh(x− u) dx

+ αtk
∫
|u|>r′

g(u) du

∫
|x|>r

Kh(x− u) dx

≤αtk
(∫
|u|≤r′

εK g(u) du+

∫
|u|>r′

g(u) du

)
≤Ma (εK + εg) ,

and so the first condition of the Lemma 2.4.2 has been verified. To verify the second

condition we note first that, due to Lipschitz continuity of the kernel function and

the fact that it is defined on a finite interval, we have∫ ∞
−∞
|f tk(x− a)− f tk(x)| dx (2.37)

=

∫ ∞
−∞

∣∣∣∣∫ ∞
−∞

(Kh(x− a− u)−Kh(x− u)φ(u)) du

∣∣∣∣ dx
≤
∫ ∞
−∞

dx

∫ ∞
−∞
|(Kh(x− a− u)−Kh(x− u)|φ(u)) du

=

∫ ∞
−∞

φ(u) du

∫ ∞
−∞
|(Kh(x− a− u)−Kh(x− u)| dx

≤
∫ ∞
−∞
|a|CK |∆|φ(u) du = |a|CK |∆|,

and so for any |a| < ρ we have the integral bounded from above by CKρ|∆| that does

not depend on the function f ∈ B.

Theorem 2.4.3 If (pt, f t) is a minimizer of `(p, f), then it is a fixed point of our

algorithm (pt+1, f t+1) = G(pt, f t).
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Proof By Lemma (2.3.1),

`(pt, f t)− `(p̃, f̃) (2.38)

≥
∫
g(x)

[
(1− wt(x)) log

(
1− p̃
1− pt

)
+ wt(x) log

(
p̃

pt

)
+ wt(x) log

(
Nhf̃(x)

Nhf t(x)

)]
dx

:= I(pt, f t, p̃, f̃)

First, we would like to prove that I(pt, f t, p̃, f̃) = 0 if and only if (p̃, f̃) = (pt, f t).

Let’s apply the iteration step (pt+1, f t+1) = G(pt, f t) = (p̃, f̃ according to our algo-

rithm, and consider the first two terms in I(pt, f t, pt+1, f t+1),∫
g(x)

[
(1− wt(x)) log

(
1− p̃
1− pt

)
+ wt(x) log

(
p̃

pt

)]
dx (2.39)

=(1− pt+1) log

(
1− pt+1

1− pt

)
+ pt+1 log

(
pt+1

pt

)
=KL(pt+1|| pt)

This is the Kullback-Leibler divergence from the discrete probability distributions

pt+1 to pt. Therefore, it is non-negative but disappears when pt+1 = pt. For the third

term in I(pt, f t, pt+1, f t+1),∫
g(x)wt(x) log

(
Nhf̃(x)

Nhf t(x)

)
dx (2.40)

=

∫
g(x)wt(x)

[∫
Kh(x− u) log

(
f t+1(u)

f t(u)

)
du

]
dx

=

∫
log

(
f t+1(u)

f t(u)

)[∫
g(x)Kh(x− u)wt(x)dx

]
du

=

∫
f t+1(u) log

(
f t+1(u)

f t(u)

)
du

=KL(f t+1|| f t)

This is the Kullback-Leibler divergence from f t+1 to f t, which is also non-negative

but disappears when f t+1 = f t.

We have seen that

`(pt, f t)− `(pt+1, f t+1) ≥ I(pt, f t, pt+1, f t+1) ≥ 0, (2.41)
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where I(pt, f t, pt+1, f t+1) = 0 if and only if (pt, f t) = (pt+1, f t+1). Since (pt, f t) is a

minimizer of `(p, f), there must be

`(pt, f t)− `(pt+1, f t+1) ≤ 0. (2.42)

Therefore, I(pt, f t, pt+1, f t+1) = 0 and it follows (pt+1, f t+1) = G(pt, f t) = (pt, f t).

Before stating the convergence property of `(pt, f t), we need to introduce the

following definition and lemma, as referenced in the proof of convergence properties

of EM algorithms by [25].

Definition 2.4.1 A map G from points of X to a subset of X is called a point-to-set

map on X. The map G is said to be closed at x if xk → x, xk ∈ X and yk → y,

yk ∈ G(xk), imply y ∈ G(x). Moreover, if a point-to-point map is continuous, then it

is closed.

Lemma 2.4.3 Zangwill’s Global Convergence Theorem (GCT)

Let the sequence {xk}∞k=0 be generated by xk+1 ∈ G(xk), where G is a point-to-set map

on X. Let a solution set Γ ⊂ X be given, and suppose that:

1. The sequence {xk}∞k=0 are contained in a compact subset S ⊂ X.

2. G is closed on X\Γ.

3. There is a continuous function ` on X such that (a) if x /∈ Γ, then `(y) < `(x)

for all y ∈ G(x), and (b) if x ∈ Γ, `(y) ≤ `(x) for all y ∈ G(x).

Then all the limit points of {xk}∞k=0 are in the solution set Γ and `(xk) converges

monotonically to `(x) for some x ∈ Γ.

By following the similar logic, we can have the following conjecture for the con-

vergence of our algorithm.

Conjecture 2.4.4 Consider algorithm defined in equations (2.18), (2.19) and (2.20).

We assume that Kh(u) used in the definition of the smoothing operators S and Nh is
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a kernel function bounded away from zero on a compact interval ∆: infu∈∆ Kh(u) > 0,

and Kh(u) is Lipschitz continuous on ∆. Moreover, the unknown density function f

is assumed to belong to C1(Ω), and both of f0(x) and f(x) are bounded away from zero

and from above on Ω. Then, this algorithm always converges to a set of stationary

points of (2.4).

Proof Let us denote Γ a set of all stationary points of `(p, f). As a first step, we

show that the sequence (pt, f t), generated by our algorithm, belongs to a compact

set of the parameter space. Indeed, let us introduce a subset of functions B = {Sφ :

0 ≤ φ ∈ L1(Ω),
∫
φ = 1}. Such a subset represents all densities on a closed compact

interval that can be represented as linearly smoothed integrable functions. Every

function ft generated in our algorithm except, perhaps, the initial one, can clearly

be represented in this form. This is because, at every step of iteration, f t+1(x) =

αt+1
∫
Kh(x − u)g(u)wt(u) du =

∫
Kh(x − u)φ(u) du where φ(u) = αt+1g(u)wt(u).

Moreover, we observe that
∫
φ(u) du = αt+1

∫
g(u)wt(u) du = αt+1pt+1. Next, one

concludes, by using Fubini theorem that, for any t = 1, 2, . . . ,∫
f t+1(x) dx = αt+1

∫
g(u)wt(u)

[∫
Kh(x− u) dx

]
du = 1. (2.43)

Since the iteration step t in the above is arbitrary, we established that αtpt = 1 and,

therefore,
∫
φ(u) du = 1. Next, since the kernel function K is bounded from below,

we can easily claim that for every f ∈ B, f =
∫
Kh(x − u)φ(u) du ≥ infx∈Ω Kh(x −

u)
∫
φ(u) du = infx∈Ω Kh(x − u) > 0 and, therefore, every function in the set B is

bounded from below. If the kernel function is Lipschitz continuous on Ω it is clearly

bounded from above by some positive constant M : supx∈Ω K(x) < M . Thus, every

function f ∈ B satisfies f(x) ≤ M < ∞. This implies that the set B is uniformly

bounded. Also, by definition of set B, for any two points x, y ∈ Ω, we have

|f(x)− f(y)| ≤
∫
|Kh(x− u)−Kh(y − u)|φ(u) du (2.44)

≤ CK |x− y|,
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where the constant CK depends on the choice of kernel K but not on the function f .

This establishes the equicontinuity of the set B. Therefore, by Arzela-Ascoli theorem

the set of functions B is a compact subset of C(Ω) with a sup metric. Clearly, at each

step t of our algorithm, 0 ≤ pt ≤ 1 and so all of pt’s belong to the compact subset of

[0, 1] with the standard Euclidean metric. The last step is to define the m-product of

the sup metric for functions and the usual Euclidean metric in R1, for example, the

maximum of the two metrics. Let us denote d1 the sup metric in C(Ω) and d2 the

Euclidean metric in R1. Then, the maximum metric is d = max(d1, d2). Thus, all

points (pt, f t) form a compact subset of R1 × C[Ω] with respect to metric d.

As a next step, it is necessary to verify that the map G : (pt, f t) 7→ (pt+1, f t+1) is

a continuous one, thus closed as well. Looking at the definitions in (2.19) and (2.20),

it is clear that it will follow from the continuity of the functional `(p, f) with respect

to both of its arguments. The continuity with respect to p in the standard Euclidean

metric is clear; as for the continuity with respect to the functional argument f , it is

clear if we note that

|`(p, f̃)− `(p, f)| (2.45)

=

∫
g(x) log

(1− p)f0(x) + pNhf(x)

(1− p)f0(x) + pNhf̃
dx

=

∫
g(x) log

(1− p)f0(x) + pNhf̃ + pNhf(x)− pNhf̃
(1− p)f0(x) + pNhf̃

dx

=

∫
g(x) log

{
1 +

pNhf(x)− pNhf̃
(1− p)f0(x) + pNhf̃

}
dx

≤
∫
g(x)

2pM sup |f − f̃ |
(1− p)f0(x) + pNhf̃

dx

≤C||f − f̃ ||C1 ,

where M is the upper bound of the kernel Kh utilized above and C is some positive

constant according to the integral.

Finally, it is necessary to show that the functional `(p, f) exhibits only strict

descent for any points (p, f) /∈ Γ. In other words, we would like to show that, if

(pt, f t) /∈ Γ, then `(pt+1, f t+1) < `(pt, f t). Note that `(p, f) consists of a Euclidean
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parameter p and a functional parameter f(x). If (pt, f t) is not a stationary point of

`(p, f), we may assume that it follows ∂`
∂p
6= 0. The dependence on f(x) is not clear

for now, which makes this result a conjecture, rather than a theorem (A little more

discussion will be made in Chapter 5). Suppose

∂`(pt, f t)

∂pt
=

∫
g(x)

f0(x)−Nhf t(x)

(1− pt)f0(x) + ptNhf t(x)
dx 6= 0. (2.46)

It is trivial to see that∫
g(x)

(1− pt)f0(x) + ptNhf t(x)

(1− pt)f0(x) + ptNhf t(x)
dx = 1. (2.47)

If pt = pt+1, it follows by our algorithm that

pt = pt+1 =

∫
g(x)

ptNhf t(x)

(1− pt)f0(x) + ptNhf t(x)
dx. (2.48)

(2.47) and (2.48) imply that∫
g(x)

f0(x)−Nhf t(x)

(1− pt)f0(x) + ptNhf t(x)
dx (2.49)

=
1

1− pt

∫
g(x)

(1− pt)f0(x) + ptNhf t(x)

(1− pt)f0(x) + ptNhf t(x)
dx

− 1

pt(1− pt)

∫
g(x)

ptNhf t(x)

(1− pt)f0(x) + ptNhf t(x)
dx

=
1

1− pt
− pt

pt(1− pt)
= 0

which contradicts (2.46). So there must be pt+1 6= pt. We have seen in the proof

of Theorem 2.4.3 that I(pt, f t, pt+1, f t+1) = 0 if and only if (pt, f t) = (pt+1, f t+1).

Now we can confirm that `(pt+1, f t+1) − `(pt, f t) < 0 for any (pt, f t) /∈ Γ. Then the

theorem is clear by GCT as in Lemma (2.4.3).

2.5 Empirical Version

In practice, the number of observations n sampled from the target density function

g is finite. This necessitates the development of the empirical version of our algorithm

that can be implemented in practice. Many proof details here are similar to proofs
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of properties of the algorithm we introduced in the previous chapter. Therefore, we

will be brief in our explanations. Denote the empirical cdf of the observations Xi,

i = 1, . . . , n Gn(x) where Gn(x) = 1
n

∑n
i=1 IXi≤x. Then, we define a functional

ln(f, p) = −
∫

log((1− p)f0(x) + pNhf(x)) dGn(x) (2.50)

≡ −
n∑
i=1

log((1− p)f0(Xi) + pNhf(Xi)).

The following analogue of the Lemma 2.3.1 can be easily established.

Lemma 2.5.1 For any pdf f̃ and p̃ ∈ (0, 1),

ln(f̃ , p̃)− ln(f, p) (2.51)

≤ −
∫ [

(1− w(x)) log

(
1− p̃
1− p

)
+ w(x) log

(
p̃Nhf̃(x)

pNhf(x)

)]
dGn(x),

where the weight w(x) = pNhf(x)
(1−p)f0(x)+pNhf(x)

.

Proof By convexity of negative logarithm function we get that

ln(p̃, f̃)− ln(p, f) (2.52)

= −
∫

log

(
(1− p̃)f0(x) + p̃Nhf̃(x)

(1− p)f0(x) + pNhf(x)

)
dGn(x)

= −
∫

log

(
(1− w(x))

1− p̃
1− p

+ w(x)
p̃Nhf̃(x)

pNhf(x)

)
dGn(x)

≤ −
∫ [

(1− w(x)) log

(
1− p̃
1− p

)
+ w(x) log

(
p̃Nhf̃(x)

pNhf(x)

)]
dGn(x).

Now we can define the empirical version of our algorithm. Denote (ptn, f
t
n) values

of the density f and probability p at the iteration step t. Define the weights as

wtn(x) = ptnNhf tn(x)
(1−ptn)f0(x)+ptnNhf tn(x)

. We use the subscript n everywhere intentionally to
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stress that these quantities depend on the sample size n. For the next step, define

(pt+1
n , f t+1

n ) as

pt+1
n =

∫
wtn(x)dGn(x) =

1

n

n∑
i=1

wtn(Xi) (2.53)

f t+1
n (x) = αt+1

n

∫
Kh(x− u)wtn(u)dGn(u) (2.54)

=
αt+1
n

n

n∑
i=1

Kh(x−Xi)w
t
n(Xi),

where αt+1
n is a normalizing constant such that f t+1

n is a valid pdf. Since
∫
Kh(Xi −

u)du = 1 for i = 1, . . . , n, we get

1 =

∫
f t+1
n (u)du =

αt+1
n

n

n∑
i=1

wtn(Xi), (2.55)

and hence,

αt+1
n =

n∑n
i=1w

t
n(Xi)

. (2.56)

The following result establishes the descent property of the empirical version of our

algorithm.

Theorem 2.5.1 For any t ≥ 0, `n(pt+1
n , f t+1

n ) ≤ `n(ptn, f
t
n).

Proof It follows by Lemma 2.5.1 that

ln(p̃, f̃)− ln(ptn, f
t
n) (2.57)

≤ −
∫ [

(1− wtn(x)) log

(
1− p̃
1− ptn

)
+ wtn(x) log

(
p̃Nhf̃(x)

ptnNhf tn(x)

)]
dGn(x).

Let (p̂, f̂) be the minimizer of the right hand side; note that the right hand side is

equal to zero when p̃ = ptn and f̃ = f tn, so the smallest possible value of the right

hand side will be less than or equal to zero. Next, we show that the minimizer is

(p̂, f̂) = (pt+1
n , f t+1

n ).

The right hand side of (2.57) equals

− log

(
1− p̃
1− ptn

)∫
(1− wtn(x))dGn(x)− log

(
p̃

ptn

)∫
wtn(x)dGn(x) (2.58)

−
∫
wtn(x) log

(
Nhf̃(x)

Nhf tn(x)

)
dGn(x).
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Note that the last term does not depend on p̃. Minimizing the sum of the first two

terms with respect to p̃, we get that the minimizer is p̂ =
∫
wtn(x)dGn(x) which is

equal to pt+1
n . To minimize the last term with respect to f̃ , note that

−
∫
wtn(x) logNhf̃(x)dGn(x) (2.59)

= −
∫
wtn(x)

(∫
Kh(x− u) log f̃(u)du

)
dGn(x)

= −
∫ (∫

wtn(x)Kh(x− u)dGn(x)

)
log f̃(u)du

= − 1

αt+1
n

∫
f t+1
n (u) log f̃(u)du

=
1

αt+1
n

∫
f t+1
n (u) log

(
f t+1
n (u)

f̃(u)

)
du− 1

αt+1
n

∫
f t+1
n (u) log f t+1

n (u)du,

The second term above does not depend on f̃ ; by definition of Kullback-Leibler

distance, we find that f̂(·) = f t+1
n (·) is the minimizer of −

∫
wtn(x) logNhf̃(x)dGn(x).

As before, the empirical version of the proposed algorithm is an MM (majorization

- minimization) algorithm that represents a generalization of the classical EM setting.

More specifically, we can show that there exists another functional btn(p, f) such that,

when shifted by a constant, it majorizes ln(p, f). It is easy to check that such a

functional is

btn(p̃, f̃) =−
∫

[(1− ωtn(x)) log(1− p̃) + ωtn(x) log p̃] dGn(x) (2.60)

−
∫
ωtn(x) logNhf̃(x) dGn(x).

Note that in the proof of the Theorem 2.5.1 it is the series of functionals btn(p̃, f̃) that

is being minimized with respect to (p̃, f̃), and not the original functional ln(p̃, f̃).

Note also that this algorithm can be easily generalized to the multivariate case.

Let f : Rd → R be the unknown density function and f0 : Rd → R be the unknown

one. We assume that the target density g : Rd → R is a two-component mixture of the

unknown component f and the known component f0 with the weight 0 < p < 1. Our
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data consist of sample ~X1, . . . , ~Xn generated by g. Since Lemma 2.5.1 and Theorem

2.5.1 of our manuscript only depend on some fairly basic tools, such as Jensen’s

inequality and convexity of the negative logarithm function, both of them remain

true in the multivariate case and the following algorithm can be defined.

Denote (ptn, f
t
n) values of the density f and probability p at the iteration step t.

We use the subscript n everywhere intentionally to stress that these quantities depend

on the sample size n. For the next step, define (pt+1
n , f t+1

n ) as

pt+1
n =

1

n

n∑
i=1

wtn(Xi) (2.61)

f t+1
n (x) =

αt+1
n

n

n∑
i=1

Kh(x−Xi)w
t
n(Xi), (2.62)

where wtn(x) = ptnNhf tn(x)
(1−ptn)f0(x)+ptnNhf tn(x)

is the weight (probability) that an observation

x has been generated by an unknown component density, and αt+1
n is a normalizing

constant such that f t+1
n is a valid density function. Since

∫
Kh(Xi − u)du = 1 for

i = 1, . . . , n, and we assume that K is a symmetric density function, we find that

1 =

∫
f t+1
n (u)du =

αt+1
n

n

n∑
i=1

wtn(Xi), (2.63)

and hence,

αt+1
n =

n∑n
i=1w

t
n(Xi)

. (2.64)

It can be verified immediately that the resulting algorithm possesses the descent

property and is an MM algorithm, as before.

As before, we can also show that the sequence `n(ptn, f
t
n) generated by our algo-

rithm does not only possess the descent property but is also bounded from below.

Lemma 2.5.2 There exists a finite limit of the sequence ξtn = `n(ptn, f
t
n) as t→∞:

Ln = lim
t→∞

ξtn (2.65)

for some Ln ≥ 0.
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The proof is almost exactly the same as the proof of the Lemma 2.4.1 and is

omitted in the interest of brevity. Finally, one can also show that the sequence (ptn, f
t
n)

generated by our algorithm converges to (p∗n, f
∗
n) such that Ln = ln(p∗n, f

∗
n). The proof

is almost the same as that of the Theorem 2.4.1 and is omitted for conciseness.
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3. MINIMIZATION OF THE PENALIZED SMOOTHED

LIKELIHOOD FUNCTIONAL

3.1 Introduction

We have seen an estimate sequence (pt, f t) to minimize the log-likelihood type

objective functional `(p, f) in Chapter 2. It may not be the unique iterative algorithm

which solves the minimization problem. In fact, one can definitely propose different

algorithms which converge to the estimator of the minimizer iteratively, based on a

set of observations. We consider a class of estimators which are minimizers of `(p, f).

It is impossible for them to be written in a closed form. We would like to see if this

class of estimators are good solutions of modeling the target mixture density (2.1).

These estimators are based on kernel functionsK(x) and the bandwidth h, because

we introduce a nonlinear smoothing operator Nh in the objective functional. One

question is the consistency of these estimators, i.e., their behavior when the number

of observations increases infinitely. The second question is how the dependence of

h influences the estimation of the unknown parameters. Obviously, these estimators

can only be safe to use if they converge to the underlying structure of the target

mixture density (2.1) when the bandwidth h approaches some values like 0. These

are not trivial discussion, because we can not know the closed forms of this class of

iterative estimators.

The first question regarding to the consistency of estimators can be answered

through the empirical risk minimization. [26] investigated the behavior of the empir-

ical minimization algorithm. They compared the empirical, random, structure and

the original one on the class via the uniform law of large numbers and isomorphic

coordinate projections. They also provided a bound for the estimates by a direct

analysis of the empirical minimization algorithm which is essentially sharp.
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Our work for the second question regarding convergence of estimators with respect

to the bandwidth h is based on Tikhonov-type regularization. Consider to solve for x in

an equation F (x) = y where F is an operator and y is given. If no x can exactly satisfy

the equation or the solution x is not unique or not stable, the inverse problem is said

to be ill-posed, e.g., [27]. Ill-posed inverse problems requires regularization techniques

for obtaining a stable approximate solution. Classical Tikhonov regularization can be

extended to very general settings to avoid overfitting issues. [28] and [29] described and

analyzed a general framework for solving ill-posed operator equations by minimizing

Tikhonov-like functionals.

In Section 3.2, we show the consistency of estimators without closed forms which

minimize `(p, f) by using empirical minimization. In Section 3.3, we modify the

framework of Tikhonov-type regularization and establish the stability of these esti-

mators and its convergence depending on bandwidth h.

3.2 Consistency

Consider the log-likelihood type objective functional we would like to minimize,

and rewrite it as

`(p, f) =

∫
g(x) log

g(x)

(1− p)f0(x) + pNhf(x)
dx (3.1)

=

∫
g(x) log g(x)dx−

∫
g(x) log[(1− p)f0(x) + pNhf(x)]dx

= EL(x|p, f) + C(g),

where L(x|p, f) = − log[(1 − p)f0(x) + pNhf(x)] and C(g) is constant to a given

mixture density g[0, 1] → R+. L(x|p, f) is a loss function which are to be optimized

in the sense of expectation. Similarly, the empirical version of the log-likelihood type

objective functional can be rewritten as

`n(p, f) = − 1

n

n∑
i=1

log[(1− p)f0(xi) + pNhf(xi)] (3.2)

= EnL(x|p, f),
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which is the average of the loss given a sample from the mixture distribution g.

Suppose the minimizer of EL(x|p, f) is (p∗, f ∗) ∈ X defined in previous sections,

satisfying

EL(x|p∗, f ∗) = inf
(p,f)∈X

EL(x|p, f). (3.3)

Now we define an excess loss function r : [0, 1]→ R by

r(x) = L(x|p, f)− L(x|p∗, f ∗), (3.4)

and the class F of such excess loss functions is defined by

F = {x 7→ L(x|p, f)− L(x|p∗, f ∗) : (p, f) ∈ X}. (3.5)

Since (p∗, f ∗) ∈ X are fixed, choosing (p, f) ∈ X to minimize EL(x|p, f) or EnL(x|p, f)

corresponds to choosing r ∈ F to minimize Er(x) or Enr(x). Note that both of Er(x)

and Enr(x) are non-negative by definition, while r(x) can take negative values.

Suppose we have n observations {x1, ..., xn} sampled from the target mixture

density g. An empirical minimizer r̂ is defined by

r̂ = argmin
r∈F

Enr(x), (3.6)

corresponding to an empirical minimizer (p̂, f̂) ∈ X. We would like to study the

consistency of r̂ from the conditional expectation of the empirical minimizer

E [r̂(x)|x1, ..., xn] , (3.7)

and for brevity, we write this conditional expectation as Er̂.

To get the upper bound on Er̂, some concentration inequalities are required and

presented below. The first is Bernstein’s inequality.

Lemma 3.2.1 Let P be a probability measure and g : (0, 1)→ R+ be the correspond-

ing probability density and X1, ..., Xn be independent random variables generated by

g. Given a function r : [0, 1]→ R, set Z =
∑n

i=1 r(Xi). Then for any t > 0,

Pr{|Z − EZ| ≥ t} ≤ 2 exp

(
− t2

2(σ2 + bt/3)

)
,

where b = ||r||∞ and σ2 = nEr2.
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The second concentration result is a functional version of Bernstein’s inequality.

Lemma 3.2.2 Let g : (0, 1) → R+ be a probability density and X1, ..., Xn be inde-

pendent random variables generated by g. Suppose F be a class of functions defined

on [0, 1]. For every r ∈ F and Er = 0, there exists a constant b such that ||r||∞ ≤ b.

Define

Z = sup
r∈F

n∑
i=1

r(Xi),

Z̄ = sup
r∈F
|

n∑
i=1

r(Xi)|.

Then for any t > 0,

Pr{|Z − EZ| ≥ t} ≤ C exp

(
− t

Kb
log

(
1 +

bt

σ2 + bEZ̄)

))
,

where C and K are absolute constants, and σ2 = n supr∈F var(r).

The consistency of r̂ to be derived is based on the uniform law of large numbers.

Recall that a class of functions F satisfies the uniform law of large numbers with

respect to a probability measure P , if for every ε > 0,

lim
n→∞

Pr{||P − Pn||F ≥ ε} = 0,

where

||P − Pn||F = sup
r∈F
|Er − Enr|.

This leads to the following notion of similarity between the empirical and actual

structures.

Definition 3.2.1 Given a probability measure P , the empirical and actual structures

on F are (λ, ε)-close if

Pr{||P − Pn||F ≥ λ} ≤ ε.
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If the empirical and actual structures are (λ, ε)-close and r̂ is an empirical minimizer,

it will follow Er̂ ≤ λ with probability at least 1− ε. Actually, Enr̂ = infr∈F Enr ≤ 0

since r∗(x) = L(x|p∗, f ∗)− L(x|p∗, f ∗) = 0, and the result follows.

Lemma 3.2.3 There exists an absolute constant C for which the following holds. For

any class of functions F and every 0 < ε < 1, the empirical and actual structures are

(λn, ε)-close, provided that

λn ≥ C max
{
E||P − Pn||F , σF

√
log(1/ε)

n
,
b log(1/ε)

n

}
,

where σ2
F = supr∈F var(r) and b = supr∈F ||r||∞.

The following lemma provides bounds to the first component of the right-hand

side. It shows that the estimate above cannot be improved by more than a constant

factor when n is sufficiently large.

Lemma 3.2.4 There are absolute constants c, c′ and C for which the following holds.

Let F be a class of functions satisfying supr∈F ||r||∞ ≤ 1 and set σ2
F = supr∈F var(r).

Then

E||P − Pn||F ≥ c
σF√
n
.

Furthermore, for every integer n ≥ 1/σ2
F , with probability at least c′,

||P − Pn||F ≥ CE||P − Pn||F

Proof of these two lemmas can be found in the appendix of [26], thus omitted

here. They show that it would be impossible to use this notion of similarity to obtain

an asymptotic result stronger than Er̂ ≤ 1/
√
n with high probability. However, it

is enough to derive the consistency property of the empirical minimizer in the next

theorem.

Theorem 3.2.1 Suppose (p∗, f ∗) ∈ X is a unique minimizer of the log-likelihood

type functional `(p, f), and (p̂n, f̂n) is the corresponding empirical minimizer given a

sample of size n. Then (p̂n, f̂n)→ (p∗, f ∗) in probability as n→∞.
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Proof By Lemma 3.2.3 and Lemma 3.2.4, for any λ, σ > 0, there is a constant

integer N > 0 such that for any n > N , the empirical and actual structures are

(λn, ε)-close and λn < λ. Thus the empirical and actual structures are (λ, ε)-close

as well. Let r̂n ∈ F be the empirical minimizer given a sample of size n and let

(p̂n, f̂n) ∈ X correspond to it, then

Pr{|Er̂n| ≤ λ} = Pr{Er̂n ≤ λ} ≥ 1− ε (3.8)

according to the discussion above. Therefore, Er̂n → 0 in probability which is equiv-

alent to EL(x|p̂n, f̂n) − EL(x|p∗, f ∗) → 0 in probability. By the assumption of the

uniqueness of the minimizer (p∗, f ∗) = argmin(p,f)∈X EL(x|p, f) and the continuity of

EL(x|p, f) with respect to p and f , it follows that (p̂n, f̂n) → (p∗, f ∗) in probability.

3.3 Convergence

We begin with the general setting of the type of inverse problem we consider.

The setting is similar, but distinct from that recently introduced in a number of

publications on the use of Tikhonov-type regularization to solve inverse problems

with Poisson data; see e.g. [28], [30], and [31]. In their work, they begin with three

Banach spaces with properly chosen topologies: (X, τX), (Y, τY ), and (Z, τZ). The

first two topologies τX and τY are weak topologies in X and Y , respectively while τZ

is the strong (norm-based) topology on Z. They also let F : X → Y be a mapping

defined on X and taking values in Y . The three Banach spaces can be interpreted

in this way, i.e. X is a solution space, Y is the space of the right-hand sides as the

underlying structure, and Z is the data space we can observe. For simplicity and the

current task, we will not distinguish the data space from the pace of the right-hand

sides, i.e. Z = Y . Our goal is approximation of a solution of the ill-posed equation

F (x) = y, (3.9)
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with x ∈ X which is the space of the pair (p, f), and the given right-hand side

y ∈ Y which is the space of the mixture density g. For us, ill-posedness means that

the solutions do not depend continuously on the right-hand side. This definition is

considerably narrower than the classical definition of ill-posedness due to Hadamard

that is also tied up with existence and uniqueness of solutions. In using a narrow

definition of ill-posedness, we follow some of the modern research on inverse problems

as in e.g. [29].

Typically, to produce numerical solutions one needs to overcome ill-posedness first.

Direct numerical solution of ill-posed equations is impossible, because the slightest

difference like rounding errors in y can lead to arbitrarily large deviations of the

calculated solution from the exact solution in X. The first step in overcoming ill-

posedness will be the switch from the original mapping F to the slightly “perturbed”

mapping Fh that depends on the parameter (bandwidth) h ∈ (0,∞). With the new

operator Fh in mind, we define an updated problem

Fh(x) = y. (3.10)

instead of the original problem (3.9). Typically, when handling inverse problems, the

distance between Fh(x) and y is quantified using some fitting functional S : Y ×Y →

[0,∞). The choice of the functional must be such that, for two elements y1, y2 of

Banach space Y , S(y1, y2) = 0 if and only if y1 = y2. However, this is typically

not enough to avoid ill-posedness. We also introduce an appropriate regularizing or

stabilizing functional Ω : X → (−∞,∞]. In out case, this functional also depends

on the bandwidth parameter h, which is thus denoted Ωh(x). It is assumed that

Ωh(x) → Ω(x) in the appropriate operator norm as h → 0. With this in mind, a

minimization problem

Th(x) := S(y, Fh(x)) + Ωh(x)→ min
x∈X

(3.11)

is considered. The functional Th(x) is referred to as Tikhonov-type functional.
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The reason this framework is of interest is as follows. Consider a two-component

univariate nonparametric density mixture with one known component. Such a prob-

lem can be formulated as

(1− p)f0(v) + pf(v) = g(v), (3.12)

where f0(v) is a known density component, g(v) is a known target density while

0 < p < 1 is an unknown weight and f(v) is an unknown density function. For the

most part, we will be viewing functions f and g as elements of a functional space.

Because of this, their arguments will, in general, be omitted to make the notation

less cluttered. Several assumptions have to be imposed on the unknown function f

to ensure solution convergence in the sense soon to be defined. First, for ease of

handling, we assume that the function f is defined on a compact set that can be

assumed without loss of generality to be [0, 1]. Some smoothness assumptions on f

will also be necessary; in particular, we will assume that f ∈ C1[0, 1] where C1[0, 1] is

a Banach space of continuously differentiable functions on [0, 1]. In the future, we will

omit [0, 1] in this notation and write simply C1 unless specified to the contrary. It is

also convenient to define the Banach space X = R × C1 to which pairs of unknown

probability p and unknown density function f will belong. Finally, we also assume

that a kernel function K used in the definition of the nonlinear smoother Nh is once

continuously differentiable as well. With this in mind, we can now define a linear

forward operator F as

F (p, f) := (1− p)f0 + pf. (3.13)

This implies that the problem (3.12) can be thought of as a special case of (3.9).

Now we can consider our minimization problem with respect to the log-likelihood

like functional `(p, f) in a similar framework. Define another nonlinear smoothing

forward operator Fh : D(F ) ⊆ {[0, 1]× C1} → C1 as

Fh(p, f) := (1− p)f0 + pNhf (3.14)
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where Nh is the nonlinear smoothing operator and where D(F ) = [0, 1] × {f(v) :

f ∈ C1,∃A ∈ R : |f ′′
(v)| ≤ A ∀v ∈ [0, 1], f(v) ≥ η > 0 a.e. ,

∫ 1

0
f(v) dv = 1}. Note

that the functions included in this domain are not just continuously differentiable but

their second derivatives are also uniformly bounded (but not necessarily continuous).

Instead of the original problem (3.12), we consider the approximation of another

ill-posed equation

Fh(p, f) = g (3.15)

Now, we define a stabilizing functional Ωh(x) := p
{

1−
∫
Nh(f)

}
and the Kullback-

Leibler divergence (KL) as the fitting functional S. Then, the minimization problem

of functional `(p, f) becomes exactly a minimization problem of Tikhonov-type func-

tional

`(p, f) = Th(g, Fh(x)) = S(g, Fh(p, f)) + p

{
1−

∫
Nh(f)

}
→ min

x∈X
. (3.16)

Depending on the context, we will use either notation Th(g, x) or, if we need to stress

the role of the forward operator Fh, Th(g, Fh(x)).

The resulting framework is similar to that of [28] and [29] if Z = Y is assumed,

i.e.

Tα(x) := S(F (x), y) + αΩ(x)→ min
x∈X

, (3.17)

except for two aspects. First, the fitting functional Ωh(x) depends on the regular-

ization parameter h and converges to zero as h → 0 for any x ∈ X. In the earlier

framework [28] and [29], the fitting functional takes the form Ω(x) which does not

depend on the regularization parameter; instead, the second term of the functional

T that they minimize is defined as αΩ(x) for some stabilizing functional Ω(x) that

does not depend on the regularization parameter α. Second, in our case,the forward

operator Fh depends on our regularization parameter h which is not the case in the

original framework.

To establish practically important results of existence and stability, we need to

impose a set of assumptions on the fitting functional, forward operator, and sta-
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bilizing functional. In our problem, the following properties meet those necessary

assumptions.

Assumption 1 Assumptions imposed on Fh: D(F ) ⊆ X → C1

1. Fh is sequentially continuous with respect to the weak topology of the space X,

i.e. if xk ⇀ x for x, xk ∈ D(F ), then we have Fh(xk) ⇀ Fh(x)

2. D(F ) is sequentially closed with respect to the weak topology on X, that is

xk ⇀ x for {xk} ∈ D(F ) implies that x ∈ D(F ).

Assumption 2 Assumptions imposed on the fitting functional S : C1×C1 → [0,∞):

3. S(g, v) is sequentially lower semi-continuous with respect to the weak topology

on C1 × C1, that is if gk ⇀ g and vk ⇀ v, then S(g, v) ≤ lim infk→∞ S(gk, vk).

4. If S(g, vk)→ 0 then there exists some v ∈ C1 such that vk ⇀ v.

5. If vk ⇀ v and S(g, v) <∞, then S(g, vk)→ S(g, v).

Assumption 3 Assumptions imposed on Ωh : D(F )× (0,∞)→ [0, 1]:

6. Ωh(x) is sequentially lower semicontinuous with respect to the weak topology in

X, that is, if fk ⇀ f for f, fk ∈ C1, pk → p, we have Ωh(x) ≤ lim infk→∞Ωh(xk)

for any positive h.

7. The sets

MΩh(c) := {x ∈ D(F ) : Ωh(x) ≤ c}

are sequentially compact with respect to the weak topology on X for all c ∈ R,

that is each sequence in MΩh(c) has a subsequence that is convergent in the weak

topology on X.

Note that in the case of our optimization problem (3.16) the domain of the forward

operator is not the same as the Banach space X = R × C1(D). The reason larger
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space X has to be considered is that it is a Banach space, unlike D(F ) itself. This,

however, makes it necessary that assumptions concerning the operator F and the

functional Ωh be satisfied on D(F ). To verify this, we set first X̃ = D(F ) and τX̃

as the topology induced on X̃ by τX . Then, the restriction F̃ := F |X̃ is clearly

sequentially continuous. Next, let us define the restriction Ω̃h := Ωh,X̃ and note

that its sublevel set MΩ̃h
(c) = MΩh(c) ∩ D(F ) and so is closed as an intersection of

closed sets. Since MΩ̃h
(c) ⊆ MΩh(c), it is a closed subset of a compact set, and is

thus a compact set. With this discussion in mind, in the future we will conduct the

exposition of ideas as if the domain D(F ) coincided with the Banach space X.

Lemma 3.3.1 Assume that the kernel function K is once continuously differentiable.

Then, the optimization problem (3.16) satisfies all of the three assumptions listed

above.

Proof We start with the Assumption 1(i). Note that since the operator Fh de-

pends linearly on p and the weak convergence for a sequence {pk} ∈ R is just an

ordinary convergence of a sequence, it is enough to prove that fk ⇀ f implies

Fh(p, fk) ⇀ Fh(p, f) for a fixed p, or Nhfk ⇀ Nhf equivalently. Recall that the

weak convergence for a sequence of functions {fk} ∈ C1 implies that f
′

k(v) → f
′
(v)

for any v ∈ [0, 1], fk(0) → f(0) and supk supv∈[0,1] |f
′

k(v)| < ∞. These prop-

erties also imply pointwise convergence of {fk}. With these in mind, it is easy

to show for any v ∈ [0, 1], Nhfk(v) = exp{
∫
Kh(v − u) log fk(u)du} converges to

(Nhf)(v) = exp{
∫
Kh(v − u) log f(u)du}, since {fk} and f are bounded away from

zero. It follows that (Nhfk)
′
(v) = (Nhfk)(v)

∫
K

′

h(v − u) log fk(u)du converges to

(Nhf)′(v) = (Nhf)(v)
∫
K ′h(v − u) log f(u)du for any v ∈ [0, 1]. Next, note that

supk supv∈[0,1] |(Nhfk)′(v)| is clearly bounded. Finally, (Nhfk)(0) → (Nhf)(0) by the

dominated convergence theorem for any f ∈ D(Fh). All of the above imply weak

convergence of {Nhfk} to Nhf .

To prove the Assumption 1(ii), we first note that if fk(v) ≥ η > 0 for any k

and v ∈ [0, 1], we have immediately that f(v) = limk→∞ fk(v) ≥ η > 0 for any
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f that is a pointwise limit of {fk}. Moreover, if |f ′

k(v)| ≤ L for some L > 0 and

any k, it implies that |f ′
(v)| ≤ L as well due to continuity of the absolute value

function. Finally, if a sequence fk converges to f weakly, the integral
∫ 1

0
f(v) dv =∫ 1

0
limk→∞ fk(v) dv = limk→∞

∫ 1

0
fk(v) dv = 1 by the dominated convergence theorem

(because density functions belonging to D(Fh) are bounded on [0, 1]).

The fitting functional S is a Kullback-Leibler functional; the fact that it satisfies

Assumption 2(iii)(iv)(v) has been demonstrated several times in optimization liter-

ature concerned with variational regularization with non-metric fitting functionals.

The details can be found in e.g. [28] and [29].

The sequential lower semi-continuity of the stabilizing functional Ωh in Assump-

tion 3(vi) is guaranteed by Fatou’s Lemma. Indeed, let us define

φk(v) = pk [Sfk(v)−Nhfk(v)] . (3.18)

Then, due to Jensen’s inequality, {φk} is a sequence of non-negative measurable

functions. Let fk converge weakly to f in C1[0, 1] and recall that this implies pointwise

convergence. Define the function φ(v) = lim infk→∞ φk(v), and observe that

Ωh(x) = p

∫ 1

0

(Shf −Nhf)(v) dv (3.19)

=

∫ 1

0

lim inf
k→∞

pk[Shfk −Nhfk](v) dv

≤ lim inf
k→∞

∫ 1

0

φk(v) dv = lim inf
k→∞

Ωh(xk)

Therefore, Ωh : D(F ) × (0,∞) → [0, 1] is lower semi-continuous with respect to the

weak topology on X.

Last, we will justify the Assumption 3(vii). Consider a sequence {pk, fk} ∈MΩh(c)

for any c > 0. By definition of MΩh(c), {pk, fk} ∈ D(F ) implies that {fk} are uni-

formly bounded and equicontinuous respectively. Since all fk ∈ D(Fh), all of them

have a uniformly bounded second derivative and so the sequence {f ′k} is also equicon-

tinuous as well. By Arzelà-Ascoli theorem, there is a subsequence of {fk} convergent

in the norm topology of C, and there is also a subsequence of the subsequence which
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has a convergent first derivative in the norm topology of C. This implies that the last

subsequence, if indexed by kl and written as {fkl}, is convergent in the norm topol-

ogy of C1. And by Bolzano-Weierstrass theorem, {pkl} has a convergent subsequence

{pklm}. This, of course, means that {pklm , fklm} converges in the weak topology on

X as well.

Fh and Ωh are also continuous with respect to the bandwidth h. Note that both Fh

and Ωh have the nonlinearly smoothing operator Nhf as a component. If the kernel

function is chosen with good properties like Lipschitz continuity, for any f ∈ C1, it

is easy to see Nhf(v) = exp(
∫
Kh(v − u) log(f(u)) du) is continuous with respect to

h by Taylor’s expansion, so is Fh. And Ωh has the integration of Nhf on a compact

set, thus being continuous with respect to h, too.

The first result we want to prove is that of existence.

Theorem 3.3.1 (Existence) For any choice of h, the minimization problem of

(3.16) has a solution. A minimizer x∗ = (p∗, f ∗) ∈ X satisfies Th(g, x
∗) < ∞ if

and only if there exists an element x̄ = (p̄, f̄) ∈ X such that S(g, Fh(x̄)) <∞.

Proof First, define c := infx∈X Th(x). The trivial case c =∞ can only occur if there

is no x such that S(g, F (x̄)) < ∞. Excluding that case, we can choose a sequence

{xk} ∈ X such that Th(g, xk)→ c. By definition of the functional Th(g, x), we have

Ωh(xk) ≤ Th(g, xk) ≤ c+ 1

for sufficiently large k. By compactness of sublevel sets of Ωh there is a subsequence

xkl that converges to some x̃ ∈ X. The continuity of Fh implies that Fh(xkl) →

Fh(x̃). Since the fitting functional S and the stabilizing functional Ωh are lower

semicontinuous, we have

Th(g, x̃) ≤ lim inf
l→∞

Th(g, xkl) = c.

Thus, x̃ is a minimizer of Th(g, x).
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As a next step, we need to check if the problem can be solved numerically in a

meaningful way. In other words, it is necessary to establish that small changes in

the “input” g and the amount of regularization used (that is characterized by the

bandwidth h) cannot result in arbitrarily large changes in minimizers of the problem

(3.16). The following result suggests that it is true.

Theorem 3.3.2 (Stability) Let g ∈ Y and h ∈ (0,∞) be fixed. Assume that {gk}

is a sequence in Y such that gk → g and {hk} is a sequence of bandwidths in (0,∞)

converging to h. Also, let {εk} be a sequence in [0,∞) converging to zero. Finally,

assume that there exists an element x̄ ∈ X with S(g, Fh(x̄)) <∞.

Then, each sequence {xk} with Thk(gk, xk) ≤ infx∈X Thk(gk, x) + εk has a τX-

convergent subsequence, and for sufficiently large k the elements xk are such that

Thk(gk, xk) < ∞. Each limit x̃ ∈ X of a τX-convergent subsequence {xkl} is a mini-

mizer of Th(g, x) and we have Thkl (gkl , xkl) → Th(g, x̃), Ωhkl
(xkl) → Ωh(x̃) and thus

also S(gkl , Fhkl (xkl))→ S(g, Fh(x̃)).

Proof First, since gk → g and S(g, Fh(x̄)) <∞, we have S(gk, Fh(x̄))→ S(g, Fh(x̄)).

Thus, S(gk, Fh(x̄)) < ∞ for all sufficiently large k. Therefore, without loss of gener-

ality, we can assume that S(gk, Fh(x̄)) < ∞ for all k. By Theorem 3.3.1, there exist

minimizers x∗k ∈ argminx∈XThk(gk, x) and that Thk(gk, x
∗
k) <∞.

Note that we imposed rather strong assumptions on the domain of the forward op-

erator D(F ). Because of these assumptions, a sequence {xk} defined in the statement

of the Theorem has a τX-convergent subsequence. Now, let {xkl} be such a convergent

subsequence with the limit x̃ ∈ X. We know that for all xh,g ∈ argminx∈XTh(g, x)

we have, by Theorem 3.3.1, S(g, Fh(xh,g)) <∞; therefore, using lower semicontinuity

of the functional T , we have

Th(g, x̃) ≤ lim inf
l→∞

Th(gkl , xkl) (3.20)

≤ lim sup
l→∞

Th(gkl , xkl)

= lim sup
l→∞

Thkl (gkl , xkl) +
(

Ωh(xkl)− Ωhkl
(xkl)

)
.
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As Ωh(x) is continuous with respect to h for any fixed value of x, the last differ-

ence term in the above inequality can be bounded by an arbitrarily small δkl as hkl

converges to h. Using the already developed argument, we continue to obtain

Th(g, x̃) ≤ lim sup
l→∞

[Thkl (gkl , xkl) + δkl ] (3.21)

≤ lim sup
l→∞

[Thkl (gkl , x
∗
kl

) + εkl + δkl ]

≤ lim sup
l→∞

[Thkl (gkl , xh,g) + εkl + δkl ]

= lim
l→∞

S(gkl , Fhkl (xh,g)) + Ωhkl
(xh,g) + εkl + δkl ] = Th(g, xh,g)

and so x̃ minimizes Th(g, x).

Assume Ωhkl
(xkl) 9 Ωh(x̃). Then the sequentially lower semicontinuity of Ωh(x)

implies

c := lim sup
l→∞

Ωhkl
(xkl) > lim inf

l→∞
Ωhkl

(xkl) ≥ Ωh(x̃). (3.22)

If {xklm} is a subsequence of {xkl} with the limit of c, there must be

lim
m→∞

S(gklm , Fhklm
(xklm )) (3.23)

= lim
m→∞

(Thklm
(gklm , xklm )− Ωhklm

(xklm ))

= Th(g, x̃)− c

= S(g, Fh(x̃)) + Ωh(x̃)− c

< S(g, Fh(x̃)),

which contradicts the lower semicontinuity of S.

As the last step, we expect the minimizers of the problem (3.16) converges to

the true solution as the bandwidth h → 0. This is the rationale of considering to

minimize the penalized smoothed likelihood functional and one of the main purpose

in this chapter.

Theorem 3.3.3 (Convergence) Let {hk} be a sequence of bandwidths converging

to zero. Further, let {xk} be a sequence in X with xk ∈ argminx∈XThk(g, x). If
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S(g, Fhk(xk)) → 0, then {xk} has a τX-convergent subsequence and each limit of a

τX-convergent subsequence is a solution to (3.9).

Proof It is necessary to check if {hk} and {xk} can guarantee S(g, Fhk(xk)) → 0

as k → ∞. Suppose there exists a solution x̄ ∈ X of (3.12), i.e. S(g, F (x̄)) = 0

( so x̄ is an S-generalized solution) and x̄ = argminx∈X T (g, x). Then, since xk ∈

argminx∈X Thk(g, x), we have

S(g, Fhk(xk)) = Thk(g, Fhk(xk))− Ωhk(xk) (3.24)

≤ Thk(g, Fhk(x̄))− Ωhk(xk)

= S(g, Fhk(x̄)) + Ωhk(x̄)− Ωhk(xk)→ 0.

Next, we can show directly that, since limh→0Nhf(v) = f(v) for any f ∈ C, we

automatically obtain Ωhk(x̄)→ 0. The convergence of Ωhk(xk) to zero will be shown

separately.

The existence of τX-convergent subsequence of {xk} is again guaranteed by defini-

tion of the domain of D(F ). Let {xkl} be an arbitrary subsequence of {xk} converging

to some element x̃ ∈ X. Since S(g, v) is continuous with respect to the second com-

ponent v, and Fh(x) is continuous with respect to x and h, it implies

S(g, F (x̃)) = lim
l→∞

S(g, Fhkl (xkl)) = 0, (3.25)

that is S(g, F (x̃)) = 0. Thus x̃ ∈ X is a solution of (3.9).

In the proof of Theorem 3.3.3, we need to show that Ωhk(xk) goes to zero as

hk → 0. First of all, by definition,

Ωhk(xk) = pk

{
1−

∫ 1

0

Nhkfk(v)dv

}
(3.26)

= pk

{∫ 1

0

[fk(v)−Nhkfk(v)] dv

}
.
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Now, represent the difference fk(v)−Nhkfk(v) as

exp

{∫
Khk(v − u) log fk(v) du

}
− exp

{∫
Khk(v − u) log fk(u) du

}
(3.27)

:= exp(A)− exp(B)

and apply Taylor’s formula for the exponent function at A or B. If the first deriva-

tive is bounded everywhere for the densities we consider, the first term can be

bounded away from zero. The difference will be
∫
Khk(v−u) log fk(v) du−

∫
Khk(v−

u) log fk(u) du. To make it easier, recall that Khk(v − u) = 1
hk
K
(
v−u
hk

)
and so∫

Khk(v − u) log fk(u) du =
1

hk

∫
K(u

′
) log fk(x− hku

′
)(−hk) du (3.28)

=

∫
K(u

′
) log fk(x− hku

′
) du

′

using the substitution x−u
hk

= u
′
. For simplicity, from now on u is used instead of u

′
.

Using the same substitution in the first integral of the difference, we get∫
K(u) log fk(x) du−

∫
K(u) log fk(x− hku) du (3.29)

=

∫
K(u)

[
log fk(x)− log fk(x) +

hku

fk(θ)
f

′

k(θ)

]
du

=

∫
K(u)

hku

fk(θ)
f

′

k(θ) du

for some 0 < θ < hk. For densities in D(F ) and
∫
uK(u) du chosen to be finite, the

last term will go to zero as hk → 0 for any reasonable sequence.
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4. NUMERICAL STUDY

4.1 Introduction

In this chapter, we focus on the performance of our algorithm. In Section 4.2, we

apply our algorithm on simulated data from different settings. In Section 4.3, we talk

about method of selecting bandwidth h to improve the estimation. In Section 4.4, we

show the advantages of our algorithm by the comparison of our algorithm with the

symmetrization method of [13]. In Section 4.5, we present an application on a real

dataset.

4.2 Simulation Examples

For our first experiment, we generate n independent and identically distributed

observations from a two component normal-gamma mixture with the density g(x)

supported on the positive half real line. We will use the notation I[x>0] for the

indicator function of the positive half of the real line and φ(x) for the standard

Gaussian distribution. Thus, the known component is

f0(x) =
2

σ
φ

(
x− µ
σ

)
I[x>0], (4.1)

while the unknown component is Gamma(α, β) , i.e.,

f(x) =
βα

Γ(α)
xα−1e−βxI[x>0]. (4.2)

Note that we truncate the normal distribution so that it stays on the positive half

of the real line. We choose the sample size n = 500, the probability p = 0.6, µ = 6,

σ = 1, α = 2 and β = 1. The initial weight is p0 = 0.2 and the initial assumption
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for the unknown component distribution is Gamma(4, 2). The rescaled triangular

function

Kh(x) =
1

h

(
1− |x|

h

)
I(|x| ≤ h) (4.3)

is used as the kernel function. We use a fixed bandwidth throughout the sequence of

iterations and this fixed bandwidth is selected according to the classical Silverman’s

rule of thumb that we describe here briefly for completeness; for more details, see [32].

Let SD and IQR be the standard deviation and interquartile range of the data,

respectively. Then, the bandwidth is determined as h = 0.9 min
{
SD, IQR

1.34

}
n−1/5.

We use the absolute difference |pt+1
n − ptn| as a stopping criterion; at every iteration

step, we check if this difference is below a small threshold value d that depends on

required precision. If it is, the algorithm is stopped. The analogous rule has been

described for classical parametric mixtures in [1]. In our setting, we use the value

d = 10−5. The computation ends after 259 iterations, with an estimate p̂ = 0.6661;

the Figure 4.2 shows the true and estimated mixture density function g(x) while the

Figure 4.2 shows both true and estimated second component density f . Both figures

show a histogram of the observed target distribution g(x) in the background. Both

the fitted mixture density ĝ(x) and the fitted unknown component density function

f̂(x) are quite close to their corresponding true density functions everywhere.

In the second experiment, we generate n i.i.d. observations from a two component

beta-beta mixture with the density g(x) supported on the compact interval (0, 1).

The known component is f0(x) = Beta(0.5, 0.5), while the unknown component is

f(x) = Beta(2, 2). The sample size is set as n = 1000 and the probability weight p =

0.6. We assume that the starting value of the probability weight is p0 = 0.3 and the

initial assumption for the unknown component distribution is Beta(4, 4). The rescaled

triangular kernel Kh(x) = 1
h

(
1− |x|

h

)
I(|x| ≤ h) is used with a fixed bandwidth

h = 0.9 min
{
SD, IQR

1.34

}
n−1/5. The algorithm is stopped when the absolute difference

|pt+1
n −ptn| < 10−5. The computation ends after around 80 iterations, with an estimate

p̂ = 0.601; the Figure 4.2 shows the true and estimated mixture density function g(x)

while the Figure 4.2 shows both true and estimated second component density f . Both
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Figure 4.1. Fitted mixture density for a mixture of Gaussian(6,1) and Gamma(2,1)

Figure 4.2. Fitted unknown component density for a mixture of Gaus-
sian(6,1) and Gamma(2,1)

figures show a histogram of the observed target distribution g(x) in the background.

Note that both the fitted mixture density ĝ(x) and the fitted unknown component

density function f̂(x) are quite close to corresponding true density functions.
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Figure 4.3. Fitted mixture density for a mixture of Beta(0.5,0.5) and Beta(2,2)

In the third experiment, we would like to see how well our algorithm can recover

the unknown component which is not unimodal. We generate n i.i.d. observations

from a two component Gaussian-bimodal mixture with the density g(x) defined as

g(x) = (1− p)f0(x) + pf(x). The known component is f0(x) = Gaussian(0, 1), while

the unknown component is bimodal distribution, i.e. a mixture of Gaussian(5, 1)

and Gaussian(8, 0.5) with equal proportion. Thus both of the known and unknown

components having a support on the real line. The sample size is set as n = 1000

and the mixture proportion is p = 0.5. We assume that the starting value of

the mixture proportion is p0 = 0.4 and the initial assumption for the unknown

component distribution is a unimodal distribution Gaussian(4, 2). The rescaled

triangular kernel Kh(x) = 1
h

(
1− |x|

h

)
I(|x| ≤ h) is used with a fixed bandwidth

h = 0.9 min
{
SD, IQR

1.34

}
n−1/5. The algorithm is stopped when the absolute differ-

ence |pt+1
n − ptn| < 10−5. The computation ends after around 120 iterations, with an

estimate p̂ = 0.5059; the Figure 4.2 shows the true and estimated mixture density
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Figure 4.4. Fitted unknown component density for a mixture of
Beta(0.5,0.5) and Beta(2,2)

function g(x) while the Figure 4.2 shows both true and estimated second component

density f . Both figures show a histogram of the observed target distribution g(x) in

the background. Note that both the fitted mixture density ĝ(x) and the fitted un-

known component density function f̂(x) are quite close to corresponding true density

functions.

In the forth experiment, we apply our algorithm on the multivariate cases. We first

consider the multivariate kernel function of Kh(x) = Kh(|x|), where |x| = (
∑d

j=1 x
2
j)

1
2

is the L2-norm. We generate n independent and identically distributed observations

from a two component two-dimensional Gaussian-Gaussian mixture with the density

g(x) defined as g(x) = (1− p)f0(x) + pf(x). Thus, the known component is f0(x) =

φ2 (x;µ0,Σ0) while the unknown component is f(x) = φ2 (x;µ,Σ), both of which

are two-dimensional Gaussian distributions. We choose the sample size n = 500, the

mixture proportion p = 0.5, µ0 =
(

0
0

)
, Σ0 =

(
1 0
0 1

)
, µ =

(
2
2

)
and Σ =

(
1 0.5

0.5 1

)
.

The initial weight is p0 = 0.4 and the initial assumption for the unknown component
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Figure 4.5. Fitted mixture density for a mixture of unimodal and
bimodal distributions

Figure 4.6. Fitted unknown component density for a mixture of uni-
modal and bimodal distributions

distribution is Gaussian with mean µ =
(

3
1

)
and Σ =

(
0.5 0
0 2

)
. The rescaled Gaussian

kernel Kh(x) = 1
h
φ (|x|/h; 0, 1) is used as the kernel function. The bandwidth we fixed
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is h = 0.85. In the two-dimensional case, the computation converges after around 40

iterations, much faster than the one-dimensional cases. The estimate is p̂ = 0.5164,

very close to the setting.

We also analyze performance of our algorithm in terms of the mean squared error

(MSE) of estimated weight p̂ and the mean integrated squared error (MISE) of f̂ .

We will use two models for this purpose. The first model is the normal exponential

model where the (known) normal component is the same as before while the second

(unknown) component is an exponential density function f(x) = λe−λxI[x>0] with

λ = 0.5; the value of p used is p = 0.6. The second model is the same normal-gamma

model as before. For each of the two models, we plot MSE of p̂ and MISE of f̂ against

the true p for sample sizes n = 500 and n = 1000. Here, we use 30 replications. The

algorithm appears to show rather good performance even for the sample size n = 500.

Note that MISE of the unknown component f seems to decrease with the increase in

p. Possible reason for this is the fact that, the larger p is, the more likely it is that we

are sampling from the unknown component and so the number of observations that

are actually generated by f grows; this seems to explain better precision in estimation

of f when p is large.

Figure 4.7. MISE of f̂ and MSE of p̂ in Normal-Exponential mixture model
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Figure 4.8. MISE of f̂ and MSE of p̂ in Normal-Exponential mixture model

4.3 Bandwidth Selection

Another important issue in practice is, of course, the bandwidth selection. Earlier,

we simply used a fixed bandwidth selected using the classical Silverman’s rule of

thumb [32]. In general, when the unknown density is not likely to be normal, the use

of Silverman’s rule may be a somewhat rough approach. Moreover, in an iterative

algorithm, every successive step of iteration brings a refined estimate of the unknown

density component; therefore, it seems a good idea to put this knowledge to use. Such

an idea was suggested earlier in [33].

Here we suggest using a version of the K-fold cross validation method specifically

adopted for use in an iterative algorithm. First, let us suppose we have a sample

X1, . . . , Xn of size n; we begin with randomly partitioning it into K approximately

equal subsamples. For ease of notation, we denote each of these subsamples Xk,

k = 1, . . . , K. Randomly selecting one of the K subsamples, it is possible to treat

the remaining K − 1 subsamples as a training dataset and the selected subsample

as the validation dataset. We also need to select a grid of possible bandwidths. To
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do so, we compute the preliminary bandwidth hs first according to the Silverman’s

rule of thumb; the bandwidth grid is defined as lying in an interval [hs − l, hs + l]

where 2 ∗ l is the range of bandwidths we plan to consider. Within this interval,

each element of the bandwidth grid is computed as hi = hs ± i
M
l, i = 0, 1, . . . ,M for

some positive integer M . At this point, we have to decide whether a fully iterative

bandwidth selection procedure is necessary. It is worth noting that a fully iterative

bandwidth selection algorithm leads to the situation where the bandwidth changes

at each step of iteration. This, in turn, implies that the monotonicity property of

our algorithm derived in Theorem 2.5.1 is no longer true. To reconcile these two

paradigms, we implement the following scheme. As in earlier simulations, we use the

triangular smoothing kernel. First, we iterate a certain number of times T to obtain

a reasonably stable estimate of the unknown f ; if we do it using the full range of the

data, we denote the resulting estimate

f̂Tnh(x) =
αTn
n

n∑
i=1

Kh(x−Xi)w
T−1
n (Xi). (4.4)

Integrating the resulting expression, we can obtain the squared L2-norm of f̂Tnh(x) as

||f̂Tnh||22 =

∫ [
αTn
n

n∑
i=1

wT−1
n (Xi)Kh(x−Xi)

]2

dx. (4.5)

For each of K subsamples of the original sample, we can also define a “leave-kth

subsample out” estimator of the unknown component f as f̂Tnh,−Xk(x), k = 1, . . . , K

obtained after T steps of iteration. At this point, we can define the CV optimization

criterion as (see, for example, [19]) as

CV (h) = ||f̂Tnh||22 −
2

n

K∑
k=1

∑
xi∈Xk

f̂Tnh,−Xk(xi). (4.6)

Finally, we select

h∗ = argminCV (h) (4.7)

as a proper bandwidth. Now, we fix the bandwidth h∗ and keep it constant beginning

with the iteration step T+1 until the convergence criterion is achieved and the process
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is stopped. An example of a cross validation curve of CV (h) is given in Figure 4.9.

Here, we took a sample of size 500 from a mixture model with a known component of

N(6, 1), an unknown component of Gamma(2, 1) and a mixing proportion p = 0.5;

we also chose K = 50, l = 0.4, M = 10, and T = 5. We tested the possibility of

using larger number of iterations before selecting the optimal bandwidth h; however,

already T = 10 results in the selection of h∗ close to zero. We believe that the

likeliest reason for that is the overfitting of the estimate of the unknown component

f . The minimum of CV (h) is achieved at around h = 0.68. Using this bandwidth and

running the algorithm until the stopping criterion is satisfied, gives us the estimated

mixing proportion p̂ = 0.497. As a side remark, in this particular case the Silverman’s

rule of thumb gives a very similar estimated bandwidth ĥ = 0.72.

Figure 4.9. A plot of CV (h) used for bandwidth selection

4.4 Comparison

As a last step, we want to compare our method with the symmetrization method

of [13]. To do this, we will use a normal-normal model since the method of [13] is
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only applicable when an unknown component belongs to a location family. Although

such a model does not satisfy the sufficient criterion of the Lemma 2.2.1, it satisfies

the necessary and sufficient identifiability criterion given in Lemma 4 of [16] (see also

Remark 3 from the Supplement to [16] for even clearer statement about identifiability

for normal-normal models in our context); therefore, we can use it for testing pur-

poses. The known component has Gaussian distribution with mean 0 and standard

deviation 1, the unknown has mean 6 and standard deviation 1, and we also consider

two possible choices of mixture weight, p = 0.3 and p = 0.5. The results for two

different sample sizes, n = 500, and n = 1000, and 200 replications, are given below

in Tables 4.1 and 4.2. Each estimate is accompanied by its standard deviation in

parentheses. Note that the proper expectation here is that our method should per-

form similarly to the method of [13] but not beat it, for several reasons. First, the

mean of the unknown Gaussian distribution is directly estimated as a parameter in

the symmetrization method, while it is the nonparametric probability density func-

tion that is directly estimated by our method. Thus, in order to calculate the mean

of the second component, we have to take an extra step when using our method and

employ numerical integration. This is effectively equivalent to estimating a functional

of an unknown (and so estimated beforehand) density function; therefore, somewhat

lower precision of our method when estimating the mean, compared to symmetriza-

tion method, where the mean is just a Euclidean parameter, should be expected.

Second, when using symmetrization method, we followed an acceptance/rejection

procedure exactly as in [13]. That procedure amounts to dropping certain “bad”

samples whereas our method keeps all the samples. Third, the method of [13], when

estimating an unknown component, uses the fact that this component belongs to a

location family - something that our method, more general in its assumptions, does

not do. Keeping all of the above in mind, we can see from Tables 4.1 and 4.2 that both

methods produce comparable results, especially when the sample size is n = 1000.

Also, as explained above, it does turn out that our method is practically as good as

the method of [13] when it comes to estimating probability p and slightly worse when
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Table 4.1.
Mean(SD) of estimated p/µ obtained by the symmetrization method

K = 200 n = 500 n = 1000

p = 0.3/µ = 6 0.302(0.022)/5.989(0.095) 0.302(0.016)/5.998( 0.064)

p = 0.5/µ = 6 0.502(0.024)/5.999(0.067) 0.502(0.017)/6.003(0.050)

Table 4.2.
Mean(SD) of estimated p/µ obtained by our algorithm

K = 200 n = 500 n = 1000

p = 0.3/µ = 6 0.315(0.024)/5.772(0.238) 0.312(0.018)/5.818(0.178)

p = 0.5/µ = 6 0.516(0.026)/5.855(0.155) 0.512(0.018)/5.883(0.117)

estimating the mean of the unknown component. However, even when estimating the

mean of the unknown component, increase in sample size from 500 to 1000 reduces

the difference in performance substantially.

4.5 A real data example

The acidification of lakes in parts of North America and Europe is a serious con-

cern. In 1983, the US Environmental Protection Agency (EPA) began the EPA

National Surface Water Survey (NSWS) to study acidification as well as other char-

acteristics of US lakes. The first stage of NSWS was the Eastern Lake Survey, focusing

on particular regions in Midwestern and Eastern US. Variables measured include acid

neutralizing capacity (ANC), pH, dissolved organic carbon, and concentrations of

various chemicals such as iron and calcium. The sampled lakes were selected system-

atically from an ordered list of all lakes appearing on 1 : 250, 000 scale US Geological

Survey topographic maps. Only surface lakes with the surface area of at least 4

hectares were chosen.
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Out of all these variables, ANC is often the one of greatest interest. It describes

the capability of the lake to neutralize acid; more specifically, low (negative) values of

ANC can lead to a loss of biological resources. We use a dataset containing, among

others, ANC data for a group of 155 lakes in north-central Wisconsin. This dataset

has been first published in [34] in Table 1 and analyzed in the same manuscript. [34]

argue that this dataset is rather heterogeneous due to the presence of lakes that are

very different in their ANC within the same sample. In particular, seepage lakes, that

have neither inlets nor outlets tend to be very low in ANC whereas drainage lakes that

include flow paths into and out of the lake tend to be higher in ANC. Based on this

heterogeneity, [34] suggested using an empirical mixture of two lognormal densities

to fit this dataset. [35] also considered that same dataset; they suggested using a

modification of Laplace method to estimate posterior component density functions in

the Bayesian analysis of a finite lognormal mixture. Note that [35] viewed the number

of components in the mixture model as a parameter to be estimated; their analysis

suggests a mixture of either two or three components.

The sample histogram for the ANC dataset is given on Figure 1 of [35]. The

histogram is given for a log transformation of the original data log(ANC + 50). [35]

selected this transformation to avoid numerical problems arising from maximization

involving a truncation; the choice of 50 as an additive constant is explained in more

detail in [35]. The empirical distribution is clearly bimodal; moreover, it exhibits

a heavy upper tail. This is suggestive of a two-component mixture where the first

component may be Gaussian while the other is defined on the positive half of the real

line and has a heavy upper tail. We estimate a two-component density mixture model

for this empirical distribution using two approaches. First, we follow the Bayesian

approach of [35] using the prior settings of Table 4 in that manuscript. Switching

to our framework next, we assume that the normal component is a known one while

the other one is unknown. For the known normal component, we assume the mean

µ1 = 4.375 and σ1 = 0.416; these are the estimated values obtained in [35] under the

assumption of two component Gaussian mixture for the original (not log transformed)
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data and given in their Table 4. Next, we apply our algorithm in order to obtain an

estimate of the mixture proportion and a non-parametric estimate of the unknown

component to compare with respective estimates in [35]. We set the initial value of the

mixture proportion as p0 = 0.3 and the initial value of the unknown component as a

normal distribution with mean µ0
2 = 8 and standard deviation σ0

2 = 1. The iterations

stop when |pt+1 − pt| < 10−4. After 171 iterations, the algorithm terminates with an

estimate of mixture proportion p̂ = 0.4875; for comparison purposes, [35] produces an

estimate p̂Bayesian = 1− 0.533 = 0.4667. The Figure 4.10 shows the resulting density

mixtures fitted using the method of [35] and our method against the background

histogram of the log-transformed data. The Figure 4.11 illustrates the fitted first

component of the mixture according to the method of [35] as well as the second

component fitted according to both methods. Once again, the histogram of the log-

transformed data is used in the background.

Figure 4.10. Fitted mixture densities

Note that the mixture density curves based on both methods are rather similar in

Figure 4.10. One notable difference is that the method of [35] suggests mixture with

a peak at the value of transformed ANC of about 6.4 whereas our method produces
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Figure 4.11. Fitted component densities

a curve that seems to be following the histogram more closely in that location. The

Figure 4.11 also seems to show that our method describes the data more faithfully

than that of [35]. Indeed, the second parametric component fitted by the method of

[35] is unable to reproduce the first peak around 4.2 at all. By doing so, the method of

[35] suggests that the first peak is there only due to the first component. Our method,

on the contrary, suggests that the first peak is at least partly due to the second

component as well. Note that [35] discusses the possibility of a three component

mixture for this dataset; results of our analysis suggest a possible presence of the

third component as well based on a bimodal pattern of our fitted second component

density curve. Finally, note that the method of [35] produces an estimated second

component that implies a much higher second peak than the data really suggests

whereas our method gives a more realistic estimate.
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5. DISCUSSION AND FUTURE WORK

In this chapter, we will discuss some issues to be solved in each of previous chapters.

5.1 Convergence to Stationary Points

In Conjecture 2.4.4, we states that our iterative MM algorithm converges to a set

of stationary points. The proof stands on the GCT where the satisfaction of condition

3 is the key to the point. However, it can only be proved partially for now. Usually

for stationary points of an arbitrary function g(p, f) which consists of an integral of

a Euclidean parameter p and a functional parameter f , there are two requirements.

Firstly, the partial derivative of g(p, f) with respect to p should be equal to 0; this has

been done in proof of the conjecture. Secondly, the functional derivative of g(p, f)

with respect to f should be 0 as well, which may not be obvious to everyone.

In the calculus of variations, functionals are usually expressed in terms of an

integral of functions and corresponding derivatives. Consider such an example,

J(f) =

∫
L(x, f(x), f ′(x)) dx. (5.1)

If f is varied by adding to itself a tiny function δf , and the resulting integrand

L(x, f + δf, f ′ + δf ′) is expanded in powers of δf , then the change in the value of

J(f) to first order in δf can be expressed as

δJ =

∫
δJ

δf(x)
δf(x) dx. (5.2)

δJ
δf(x)

is the functional derivative of J(f) with respect to f at point x. According to

Euler-Lagrange equation, if f is a stationary point of J(f), then there must be

δJ

δf
=
∂L

∂f
− d

dx

∂L

∂f ′
= 0. (5.3)
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However, in our functional `(p, f), f appears as the convolutional and transformed

version Nhf . Thus it contains the global information of f(x) on its domain. This

property prohibits us to partition the interval of integration in `(p, f), and therefore

the properties of functional derivative in this case is unknown.

One way to conquer it is to discuss the functional derivative of `(p, f) with respect

to Nhf instead. Note that the functional derivative of Nhf with respect to f can

also be derived. However, the chain rule for the functional derivatives is to question.

Another way is to assume that the bandwidth h is close to 0 enough and approximate

Nhf(x) by the following

Nhf(x) = exp

{∫
Kh(x− u) log f(u) du

}
(5.4)

= exp

{
1

h

∫
K(

x− u
h

) log f(u) du

}
= exp

{∫
K(u) log f(x− hu) du

}
≈ exp

{∫
K(u) log {f(x)− huf ′(x)} du

}
≈ exp

{∫
K(u) log {f(x)}

{
−huf

′(x)

f(x)

}
du

}
= f(x) exp

{
−hRK

f ′(x)

f(x)

}
,

where RK =
∫

∆/h
K(u)u du is a non-zero constant according to the selected kernel

function K(u). However, this approximation changes the nature of `(p, f).

5.2 Convergence Rates

This is discussion follows the Section 3.3. The framework is similar to [29]. Con-

vergence rate describes the relationship between the accuracy of solution and the

deviation from the true mixture density to the noisy data. Note that the solution

xh of (3.10) with non-zero bandwidth h is an approximation to the true solution x̄

of (3.9). Also, when we only have access to a finite sample X1, . . . , Xn ∼ g, we can

assume that a smooth estimate of the density g is available. Such an estimate can
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be, for example, a kernel density estimate of g based on the kernel function of an

appropriate smoothness. Let us denote this estimate of the function g by gz. The

difference between the estimated gz and the true g will be described by the data

error functional Dg(gz) : Z → [0,∞). The solution that corresponds to gz (which

is the minimizer of the Tikhonov-type functional Th(gz, x)) is denoted by xgzh while

the solution corresponding to the original g is denoted xh. It is important to keep

in mind that this latter one is a solution of (3.10). Now, we can also introduce the

solution error functional Exh : X → [0,∞). We would like to obtain the bounds for

the solution error Exh(xgzh ) with respect to the data error Dg(gz).

The exact data error Dg(gz) is often replaced by some upper bound in the con-

vergence rate results, which is the so called noise level δ ∈ [0,∞). All data elements

bounded by a noise level δ constitute the set Zδ
g := {gz ∈ Z : Dg(gz) ≤ δ}. If we

assume that Dg(g) = 0, then, since gz ∈ Z as well as g, we can assume that Zδ
g is

non-empty. In other words, one can always choose gz = g and obtain Dg(g) = 0

equivalently.

It is also necessary to assume a connection between the data error functional Dg

and the fitting functional S to discuss convergence rate.

Assumption 4 There exists a monotonically increasing function ψ : [0,∞)→ [0,∞)

satisfying limδ→0 ψ(δ)→ 0, ψ(δ) = 0 if and only if δ = 0, and

S(gz, g) ≤ ψ(Dg(gz)) (5.5)

for all gz ∈ Z with Dg(gz) <∞. Therefore, for all solutions x of (3.10) and gzδ ∈ Zδ
g ,

this assumption implies

S(gzδ , Fh(x)) ≤ ψ(Dg(gzδ)) ≤ ψ(δ) (5.6)

The rationality of Assumption 4 can be justified by the following specific example.
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Example 1 Suppose the data error is quantified by the Kolmogorov Distance, i.e.

Dg(gz) = supx |gz(x) − g(x)|. In our case, we only consider densities on a compact

set and bounded away from zero by some positive constant η. Then it is easy to see

S(gz, g) =

∫ 1

0

gz(v)(log gz(v)− log g(v)) dv ≤
∫ 1

0

gz(v)
Dg(gz)

η
dv =

Dg(gz)

η
. (5.7)

Let ψ(x) := x
η

and Assumption 4 is satisfied.

Corollary 5.2.1 Let {δk} be a sequence in [0,∞) converging to zero and {gzk} be a

sequence with gzk ∈ Zδk
g . Choose a sequence of bandwidths {hk} converging to zero.

Further, let {xk} be a sequence in X with xk ∈ argminx∈XThk(gzk , x). Then {xk}

has a τX-convergent subsequence and each limit of a τX-convergent subsequence is a

solution to (3.9).

Proof By Assumption 4, S(gzk , g) ≤ ψ(δk) → 0. Further, Fh(x) → F (x) as h → 0

implies S(gzk , Fhk(x̄))→ 0 as k →∞. Then similar to proof of Theorem (3.3.3),

S(gzk , Fhk(xk)) = Thk(gzk , Fhk(xk))− Ω(xk, hk) (5.8)

≤ Thk(gzk , Fhk(x̄))− Ω(xk, hk)

= S(gzk , Fhk(x̄)) + Ω(x̄, hk)− Ω(xk, hk)→ 0.

Again, let {xkl} be an arbitrary subsequence of {xk} converging to some element

x̃ ∈ X. The lower semi-continuity of S and the continuity of Fh imply

S(g, F (x̃)) ≤ lim inf
l→∞

S(gzkl , Fhkl (xkl)) = 0, (5.9)

that is S(g, F (x̃)) = 0. Thus x̃ ∈ X is a solution of (3.9).

We need the following definition and lemma to connect solution error and data

error.
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Definition 5.2.1 We define the distance SY : Y × Y → [0,∞] as

SY (y1, y2) = inf
y∈Y

(S(y, y1) + S(y, y2)) . (5.10)

Then we have the following triangle-type inequality

SY (y1, y2) ≤ S(y, y1) + S(y, y2) (5.11)

for all y1, y2, y ∈ Y .

Lemma 5.2.1 Let δ ∈ [0,∞), gzδ ∈ Zδ
g and xδh ∈ argminx∈XTh(gzδ , x). For a

monotonically increasing function φ : [0,∞)→ [0,∞),

Ω(xδh, h)− Ω(xh, h) + φ
(
SY (Fh(x

δ
h), Fh(xh))

)
(5.12)

≤ ψ(δ)− S(gzδ , Fh(x
δ
h) + φ

(
ψ(δ) + S(gzδ , Fh(x

δ
h)
)

Proof The definition of xδh, Assumption 4 and Definition 5.2.1 immediately imply

Ω(xδh, h)− Ω(xh, h) + φ
(
SY (Fh(x

δ
h), Fh(xh))

)
(5.13)

= Th(gzδ , x
δ
h)− Ω(xh, h)− S(gzδ , Fh(x

δ
h)) + φ

(
SY (Fh(x

δ
h), Fh(xh))

)
≤ Th(gzδ , xh)− Ω(xh, h)− S(gzδ , Fh(x

δ
h)) + φ

(
S(gzδ , Fh(x

δ
h)) + S(gzδ , Fh(xh))

)
= S(gzδ , Fh(xh))− S(gzδ , Fh(x

δ
h)) + φ

(
S(gzδ , Fh(x

δ
h)) + S(gzδ , Fh(xh))

)
≤ ψ(δ)− S(gzδ , Fh(x

δ
h)) + φ

(
S(gzδ , Fh(x

δ
h)) + ψ(δ)

)
.

The most important step is to build the connection between the solution error

Exh and the Tikhonov-type functional. The following assumption is such a key.

Assumption 5 Assume that there exist a constant β ∈ (0,∞) and a monotonically

increasing function φ such that

βExh(x) ≤ Ω(x, h)− Ω(xh, h) + φ (SY (Fh(x), Fh(xh))) (5.14)
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5.14 is a type of variational inequalities. [29] gives a comprehensive review on this

topic. In our work, finding the format of a variational inequality corresponding to

our stabilizing functional is still open to question. In standard situations, Ω is convex

and the usual choice of Exh is the Bregman distance with respect to some subgradient

of Ω. However, our Ωh is not convex, and so the Bregman distance with respect to it

is out of the question (such a Bregman distance is not positive).

Assumption 6 The function φ : [0,∞) satisfies:

1. φ is monotoniically increasing, φ(0) = 0, and φ(t)→ 0 if t→ 0;

2. there exists a constant γ > 0 such that φ is concave, strictly monotonically

increasing and φ(t) ≤ t on [0, γ];

3. the inequality

φ(t) ≤ φ(γ) +

(
inf

τ∈[0,γ)

φ(γ)− φ(τ)

γ − τ

)
(t− γ) (5.15)

is satisfied for all t > γ.

Definition 5.2.2 Let f : X → (−∞,∞) be a functional on X which is finite at least

at one point. For ξ ∈ X∗, the functional f ∗ : X∗ → (−∞,∞) defined by

f ∗(ξ) := sup
x∈X

(< ξ, x > −f(x)) (5.16)

is the conjugate function of f .

Lemma 5.2.2 Let xh satisfy Assumption 5. Then

βExh(xδh) ≤ 2ψ(δ) + (−φ)∗(−1) (5.17)

where α > 0, δ ≥ 0

Proof By Lemma 5.2.1 and inequality (5.14), we have

βExh(xδh) ≤ Ω(xδh, h)− Ω(xh, h) + φ
(
SY (Fh(x

δ
h), Fh(xh))

)
(5.18)

≤ ψ(δ)− S(gzδ , Fh(x
δ
h) + φ

(
ψ(δ) + S(gzδ , Fh(x

δ
h)
)

= 2ψ(δ) + φ
(
ψ(δ) + S(gzδ , Fh(x

δ
h))
)
− (ψ(δ) + S(gzδ , Fh(x

δ
h)))

= 2ψ(δ) + sup
t≥0

(φ(t)− t) .
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Then the results follows from the Definition 5.2.2

sup
t≥0

(φ(t)− t) = sup
t≥0

(−t− (−φ)(t)) = (−φ)∗(−1). (5.19)

Conjecture 5.2.2 Let xh satisfy Assumption 5, and find a δ → k(δ) satisfying

inf
τ∈[0,ψ(δ))

φ(ψ(δ))− φ(τ)

ψ(δ)− τ
≥ k(δ) ≥ sup

τ∈(ψ(δ),γ]

φ(τ)− φ(ψ(δ))

τ − ψ(δ)
(5.20)

for all δ > 0 with ψ(δ) < γ. Then there is some Cδ such that

Exh(xδh) ≤
2

βk(δ)
φ(ψ(δ)) (5.21)

for all δ ∈ (0, Cδ].

Proof First, it is necessary to assert that for proposed δ and k(δ) in the theorem,

k(δ) ≤ 1 and

φ(τ)− k(δ)τ ≤ φ(ψ(δ))− k(δ)ψ(δ) (5.22)

for all τ ≥ 0.

To see this, concave property in item 2 of Assumption 6 implies

1 ≥ inf
τ∈[0,t)

φ(t)− φ(τ)

t− τ
≥ sup

τ∈(t,γ]

φ(τ)− φ(t)

τ − t
> 0. (5.23)

for all t ∈ (0, γ), which guarantees the existence of k(δ) ≤ 1. And for fixed t ∈ (0, γ)

and all τ > γ, item 3 of Assumption 6 implies

φ(τ)− φ(t)

τ − t
≤ 1

τ − t

(
φ(γ) +

(
inf

ε∈[0,γ)

φ(γ)− φ(ε)

γ − ε

)
(τ − γ)− φ(t)

)
(5.24)

≤ 1

τ − t

(
φ(γ) +

φ(γ)− φ(t)

γ − t
(τ − γ)− φ(t)

)
=
φ(γ)− φ(t)

γ − t
.

Set t = ψ(δ) and extend the supremum in the lower bound in (5.20) from τ ∈ (ψ(δ), γ]

to τ ∈ (ψ(δ),∞), namely

inf
τ∈[0,ψ(δ))

φ(ψ(δ))− φ(τ)

ψ(δ)− τ
≥ k(δ) ≥ sup

τ∈(ψ(δ),∞)

φ(τ)− φ(ψ(δ))

τ − ψ(δ)
. (5.25)
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which is equivalent to φ(ψ(δ))−φ(τ)
ψ(δ)−τ ≥ k(δ) for all τ ∈ [0, ψ(δ)) and φ(τ)−φ(ψ(δ))

τ−ψ(δ)
≤ k(δ)

for all τ ∈ (ψ(δ),∞). Then the assertion follows.

Then from Lemma 5.2.2, we obtain

βExh(xδh) ≤ 2ψ(δ) + sup
t≥0

(φ(t)− t) ≤ 2ψ(δ) + sup
t≥0

(φ(t)− k(δ)t) (5.26)

≤ (2− k(δ))ψ(δ) + φ(ψ(δ))

≤ 2− k(δ)

k(δ)
ψ(δ) inf

τ∈[0,ψ(δ))

φ(ψ(δ))− φ(τ)

ψ(δ)− τ
+ φ(ψ(δ))

≤ 2− k(δ)

k(δ)
ψ(δ)

φ(ψ(δ))− φ(0)

ψ(δ)− 0
+ φ(ψ(δ))

=
2

k(δ)
φ(ψ(δ))

5.3 Efficiency of Algorithm

This discussion are inspired from the application of empirical version of our itera-

tive MM algorithm. In the simulation, when the sample size it kept in thousands, each

single iteration takes up to seconds. Since the algorithm usually converges around

100 or 200 iterations, this is acceptable. However, it will become very slow for larger

sample.

The reason is the computation of convolution in our algorithm coming from the

non-smoothing operator Nh. The convolution is calculated over and over again in

each iteration for all sample points and slows down the speed. One way to speed

up the computation is to choose kernel functions on counting measure. Then the

convolution by integration will be replaced by summation as an rough estimation.
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The second way is to apply gradient descent algorithm. From the MM algorithm

we derived, we know the iterative updating rule of (p, f(x)) as following:

pt+1
n =

∫
wtn(x)dGn(x) =

1

n

n∑
i=1

wtn(Xi)

f t+1
n (x) = αt+1

n

∫
Kh(x− u)wtn(u)dGn(u)

=
αt+1
n

n

n∑
i=1

Kh(x−Xi)w
t
n(Xi)

Since we get the format of the iterative estimator which is the weighted sum of kernel

functions, it is reasonable to look for a family of estimations of (p, f), where

f(x) =
n∑
i=1

wiKh(x−Xi) (5.27)

It may minimize the empirical functional of (p,w)

ln(f, p) = ln(w, p) = −
n∑
i=1

log ((1− p)f0(Xi) + pN f(Xi)) .

Now, the new task is to estimate n + 1 parameters, i.e. p and wi’s for i from 1

to n, given a target function which would like to be minimized. Gradient descent

algorithms can be applied here. The gradients w.r.t. parameters are

∂ln
∂p

= −
n∑
i=1

N f(Xi)− f0(Xi)

(1− p)f0(Xi) + pN f(Xi)
(5.28)

∂ln
∂wj

= −
n∑
i=1

pN f(Xi)

(1− p)f0(Xi) + pN f(Xi)

∫
Kh(Xi − u)

Kh(u−Xj)

f(u)
du (5.29)

Suppose a learning rate of α. Therefore, the update rules will be

pt+1
n = ptn − α

∂ln
∂p

(pt,wn
t) (5.30)

wt+1
n,j = wtn,j − α

∂ln
∂wj

(pt,wn
t) (5.31)
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