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ABSTRACT

Simmons, Shawn W. M.S., Purdue University, December 2018. Intercomparison of
spatiotemporal variability in severe weather environmental proxies and tornado ac-
tivity over the United States. Major Professor: Daniel R. Chavas.

Tornadoes cause numerous deaths and significant property damage each year, yet

how tornado activity varies across climate states, particularly under global warming,

remains poorly understood. Importantly, severe weather events arise during tran-

sient periods of extreme thermodynamic environments whose variability may differ

from that of the environmental mean state. This study analyzes the climatologi-

cal relationships between commonly-used severe weather environmental proxies (the

product of convective available potential energy and bulk vertical wind shear, energy-

helicity index, and the significant tornado parameter) and tornado density on three

dominant timescales of climate forcing: diurnal, seasonal, and interannual. We uti-

lize reanalysis data to calculate the spatial distributions of the mean, median, and a

range of extreme percentiles of these proxies across each timescale as well as for the

full climatology. We then test the extent to which each measure captures the spa-

tiotemporal variability of tornado density over the continental United States. Results

indicate that the mean is a suitable statistic when used with the full climatology of

the energy-helicity index and the significant tornado parameter without using con-

vective inhibition in calculations, the diurnal cycle for convective available potential

energy and the product of convective available potential energy and bulk vertical

wind shear, and the interannual variations for all proxies except convective available

potential energy. The mean is outperformed by extreme percentiles otherwise. This

understanding of climatological relationships between tornadoes and the large scale

environments can improve prediction of tornado frequency and provides a foundation
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for understanding how changes in the statistics of large-scale environments may affect

tornado activity in a future warmer climate state.
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CHAPTER 1. INTRODUCTION

Severe weather is a hazard common to the continental United States. A thunderstorm

is classified as severe if wind speeds exceed 58 miles per hour, hail size exceeds one

inch in diameter, and/or a tornado forms [1]. These storms can cause significant

damage and loss of life. Damage can arise from, but is not limited to, flooding,

wind downing power lines and trees, lightning strikes starting fires, and tornadoes

destroying structures. In 2015, tornadoes caused 320.42 million dollars of damage,

killed 36, and injured 924 people [2]. Between the years 1991 to 2010, the annual

average count of all (EF0+) tornadoes was 1253 [3].

Mesoscale convective storms come in multiple modes of organization. Classifica-

tions are typically broken down by severity, longevity, storm shape, intensity, as well

as other factors [4]. Multiple studies have worked to classify convective storms by

morphology [5,6]. The three general types of storm modes (single-cell, multi-cell, and

supercell) have been broken down further. Smith et al. (2012) [5] used five major

convective types: Quasi-Linear Convective System (QLCS), Linear Hybrid, Supercell,

Marginal, and Disorganized, and these can be further broken down based on level of

organization. Schoen and Ashley 2011 [7] found that deadly convective wind events

can come from multiple storm types, but most fatal tornadoes were caused by super-

cells. The meteorological community has also recognized supercells as the storm type

that most commonly produces tornadoes [8] and supercells also include most of the

strong and violent tornadoes [9]. Forecasting convective modes proves to be difficult.

Weissman and Klemp (1982) [4] showed that vertical wind shear and buoyancy can

determine storm mode. However, the storm mode may change as the storm develops

and evolves. The storm mode can be impacted and altered by the number of storms

initiated, ability of the storms to organize, ability to continually initiate convection,

and the type of boundary at which the storms initiate [10].
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Mesoscale processes are significant to supercell and tornado development, both

for preconditioning of the environment prior to an event as well as during the event

itself [10]. For deep, moist convection to occur, a source of lifting must be present,

whether it is convection from solar heating, orographic convection from mountains,

frontal lifting along either a temperature (cold fronts) or moisture (drylines) gradi-

ent, or convergent flows of air near the surface [11]. These mesoscale processes are

difficult to forecast. Though these boundaries can be easily identified in observations,

convection rarely occurs along the entirety of the boundary, but rather, along seg-

ments of the boundary [11]. Detailed information on the full vertical structure of the

local thermodynamic environment in the area of interest is needed in order to predict

the spatiotemporal evolution of convective storms and their modes of organization.

While nearby radiosondes provide some useful data toward this end, soundings are

at discrete points in space that may not be representative of the full environment.

The environment may also further evolve after a sounding was initially launched, as

Beebe (1958) [12] showed that the vertical structure of the environment can distinctly

change from a sounding that precedes the convective environment by multiple hours

to a proximity sounding.

At the synoptic scale, key environmental ingredients necessary for severe weather

have been identified. Such ingredients are easier to predict than the mesoscale forcings

as they represent the thermodynamic and dynamic environment prior to any storm

initiation. These are convective available potential energy [13] and lower tropospheric

wind shear [11]. Two other key environmental ingredients that can give further insight

into a severe storm are storm relative helicity and the lifting condensation level [14].

Convective available potential energy is the amount of energy that could be released if

an air parcel is lifted to its equilibrium level [15]. Lower tropospheric wind shear is the

magnitude of the vector difference between wind velocity at two atmospheric layers

[11]. Storm relative helicity is a measure of horizontal vorticity in the storm relative

reference frame [11]. The lifting condensation level is the level of the cloudbase [15].

Detailed descriptions of these parameters are provided below in Section 1.1.
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Finally, certain proxies have been developed that combine the fundamental ther-

modynamic and dynamic parameters and are used specifically to define environments

conducive to severe weather activity. These are the product of CAPE and lower-

level tropospheric wind shear (CS from this point forward), Energy-Helicity Index

(EHI), and the Significant Tornado Parameter (STP) [14, 16]. These are formulated

from combinations of thermodynamic and wind shear parameters that favor supercell

and tornado formation. The thermodynamic parameters are CAPE and the Lifting

Condensation Level (LCL). The wind shear parameters are Storm-Relative Helicity

(SRH) and vertical wind shear. CAPE and vertical wind shear are combined to cal-

culate CS. CAPE and SRH are combined to calculate EHI. STP is a combination of

all four of the parameters.

1.1 Parameters and Proxies

1.1.1 Thermodynamic Parameters

Convective available potential energy (CAPE)

CAPE is a measure of the potential for unstable buoyant acceleration of low-level

air parcels displaced upwards within the atmosphere, typically associated with the

combination of warm, moist boundary-layer air and steep lapse rates in the overlying

free troposphere. Such unstable ascent is essential to deep moist convection that

is associated with thunderstorms and lightning [13]. During convection, CAPE is

converted to the kinetic energy of the ascending parcel, the majority of which is

typically derived from the release of latent heat through the condensation of water

vapor [17]. CAPE is defined as

CAPE =

∫ zEL

zLFC

Bdz ≈ −g
∫ zEL

zLFC

T ′v
T v

dz (1.1)

where zLFC is the level of free convection, zEL is the equilibrium level, B is the

buoyancy of the lifted parcel, g is the gravitational constant, T ′v is the virtual temper-
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ature perturbation of the air parcel, and T v is the virtual temperature of the environ-

ment [11]. The value for the gravitational constant is provided in Table 1.1. By this

equation, CAPE is the vertically integrated buoyancy from the level of free convection

to the equilibrium level when the parcel is lifted pseudo-adiabatically. CAPE can be

used to give an estimate for an upper bound of updraft strength by performing a cal-

culation from potential energy into kinetic energy (wmax =
√

2 ∗ CAPE) [11,18,19].

Table 1.1.
Constant values used in equations

Constant Value

g 9.81 ms−2

cpv 1879 J kg−1 K−1

Rv 461 J kg−1 K−1

Ttrip 273.16 K

E0v 2.3740 x 106 J kg−1

cvv 1418 J kg−1 K−1

cvl 4119 J kg−1 K−1

Lifting Condensation Level (LCL)

The LCL is an estimation of the height of the cloud base and occurs at the altitude

where rising air reaches saturation and condensation begins to form clouds [15]. Espy

(1836) [20] gave the first equation that was used to approximate LCL. Espy’s equation

is given by

zLCL = (125m/K)(T − Td) (1.2)

where zLCL is the LCL height in meters, T is the initial temperature of the rising

air parcel, and Td is the environmental dewpoint temperature. Further developments
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to an equation for LCL have been made and Romps (2017) [21] came to an exact

equation of

zLCL =
cpm
g

(T − TLCL) (1.3)

where zLCL is the LCL height in meters, cpm is the specific heat at constant

pressure for the air parcel, g is the gravitational constant, T is the air parcel’s initial

temperature, and TLCL is the temperature at the LCL. TLCL is given by the expression

TLCL = c[W−1(RH
1/a
l cec)]−1T (1.4)

where

a =
cpm
Rm

+
cvl − cpv

Rv

(1.5)

b =
−E0v − (cvv − cvl)Ttrip

RvT
(1.6)

c =
b

a
(1.7)

W−1 is the -1 branch of the Lambert W function, RHl is the air parcel’s initial relative

humidity, cpm is the air parcel’s specific heat at constant pressure, Rm is the air parcel’s

specific gas constant, cvl is the specific heat of liquid water, cpv is the specific heat of

water vapor at constant pressure, Rv is the specific gas constant for water vapor, E0v

is the difference in specific internal energy between water vapor and liquid water at

the triple point, cvv is the specific heat of water vapor at constant volume, and Ttrip

is the temperature at the triple point of water. Values for the constant parameters

are provided in Table 1.1 Lower LCL values allow for less sub-cloud evaporation,

which may reduce the potential for the mesocyclone to be undercut and weakened by

cold outflow [14]. Rasmussen and Blanchard [14] found that the LCL height gave the

most utility to distinguish between significant tornadoes and supercells that produced

either weak tornadoes or non-tornadic supercells.



6

1.1.2 Dynamical Parameters

Vertical Shear

Bulk vertical wind shear (Vshear) is the absolute value of the difference in wind

velocity vectors between the top and the bottom of the layer of interest [11].

Vshear = |~utop − ~ubot| (1.8)

where ~utop is the wind velocity vector at the top of the atmospheric layer and ~ubot is

the wind velocity vector at the bottom of the atmospheric layer [11]. 0-6 kilometer

Vshear is the most commonly used measure due to its ability to predict storm type

and longevity [4]. Vertical wind shear is necessary for supercells as it prolongs the

lifetime of a thunderstorm by tilting the updraft, however too strong of Vshear can

can inhibit convection in areas of weak instability by increasing entrainment [11].

Storm Relative Helicity (SRH)

SRH is a measure of the streamwise horizontal vorticity available to feed into

a storm’s updraft and cause rotation [11]. Here, SRH is defined as the vertically-

integrated dot product of the horizontal vorticity and the mean horizontal flow ve-

locity in a reference frame moving with the storm, integrated from the bottom of an

atmospheric layer to the top of the layer of interest:

SRH =

∫ zt

z0

(v − c) · ωhdz (1.9)

where z0 is the height of the bottom of the atmospheric layer, zt is the height of the

top of the atmospheric layer, v is the environmental wind, c is the storm motion, and

ωh is the horizontal vorticity [11].
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1.1.3 Severe Weather Proxies

Product of CAPE and Vshear (CS)

CS is commonly used as a proxy for severe weather that combines the most es-

sential thermodynamic (CAPE) and dynamic (shear) environmental ingredients for

rotating convection. Weisman and Klemp (1982) [4] showed the dependence of storm

structure on environmental wind shear and buoyancy, where under the same buoyancy

level, low shear environments produced single-cell thunderstorms, moderate shear

produced multi-cell thunderstorms, and high shear environments produced supercell

structured thunderstorms. This has further been shown to be capable of distinguish-

ing between significant and less severe thunderstorms [22, 23]. Here, equal weighting

was given to both CAPE and Vshear.

CS = CAPE ∗ Vshear (1.10)

Observational studies have argued that Vshear may be more important in discriminat-

ing the severity of a storm [19, 24]. However, Seeley and Romps (2015) [25] suggests

that weight given to Vshear is not the dominant source of uncertainty in predictions

of the severity of future weather.

Energy Helicity Index (EHI)

EHI is an alternative severe weather proxy that similarly combines one thermo-

dynamic parameter (CAPE) and one dynamic parameter (SRH). EHI is given by:

EHI = (CAPE ∗ SRH)/160000 (1.11)

, and was first developed by Hart and Korotky (1991) [26]. In forecasting, values

over 1 indicate a potential for supercells and values over 2 show a high probability of

supercell formation [14]. EHI can be used to differentiate between tornadic and non-

tornadic supercells and as values of EHI become larger, the likelihood of tornadoes

increases significantly [14,27,28].
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Significant Tornado Parameter (STP)

STP is a non-dimensional quantity that combines all of the aforementioned envi-

ronmental parameters: CAPE, vertical wind shear, SRH, and LCL. Here, the equation

used for STP follows a fixed-layer approach [28],

STP =

(
CAPE

1500

)
∗
(
Vshear

20

)
∗
(
SRH

150

)
∗
(

2000− LCL

1000

)
(1.12)

STP has been shown to have the ability to differentiate between supercell and non-

supercell storms as well as between significant tornadic supercells and non-tornadic

supercells [16]. STP approaches zero for small values of CAPE, vertical shear, and

SRH along with LCL values higher than 2000 meters. In forecasting, STP values

greater than 1 are associated with supercell storms that are able to produce a tor-

nado, while non-tornadic and non-supercell storms are associated with values less

than 1. STP has several alternative forms. In 2004, Thompson et al [29] released a

modification to the STP equation. This new modification added the alternative of

using the effective layer instead of a fixed layer, and it added a convective inhibition

(CIN) term. Later, limits and caps were put on the STP equation. These bounds

are listed in Thompson et al (2012) [30] and are such that the effective bulk vertical

shear (EBWD) term would cap at 1.5 if EBWD is greater than 30 m/s and would be

set to zero if EBWD is lower than 12.5 m/s, the LCL term is set to 1 if LCL is less

than 1000 m and set to 0 if the LCL is greater than 2000 m, and the CIN term is set

to 1 if CIN is greater than -50 J/kg and set to 0 if CIN lower than -200 J/kg.

1.1.4 Spatiotemporal Variability

Temporal Variability

Tornado activity is known to exhibit significant temporal variability, particularly

on the diurnal and seasonal timescales. Studies have shown that increasing temper-

atures have led to changes in frequency of tornadoes in interannual trends. In the

diurnal cycle, most tornadoes occur in the late afternoon to early evening, local mean
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solar time (LST) [31]. In the seasonal cycle, the spring (March, April, May) and

summer (June, July, August) months have the most tornado occurrences, with the

peak months being May and June [32]. Brooks et al. (2014) [33] and Elsner et al.

(2015) [34] show that there has also been a shift in tornado occurrence in that there

are less days with one tornado, but an increase in the number of days with multiple

tornadoes.

Similarly, the environmental proxies for severe weather potential also exhibit sig-

nificant temporal variability on diurnal, seasonal, and interannual timescales. CAPE

is known to attain peak values during spring and summer [30] as well as during after-

noon and early evening [35]. Vertical wind shear, both directional (SRH) and speed

(Vshear), varies strongly seasonally, with greater values occurring in winter and the

transition seasons of spring and fall [30].

Spatial Variability

The central United States is the peak area of favorable severe weather parameters

in the continental United States [22]. This region is favorable for CAPE build-up as

elevated land to the west (Rocky Mountains and Mexican Plateau) provides elevated

dry air to act as a capping inversion, or ”cap,” to inhibit convection, and this cap

allows for steep lapse rates and for CAPE to build throughout the day [11, 36, 37].

Moisture is supplied to the air below from the Gulf of Mexico, soil evaporation, and

evapotranspiration from crops. Southerly winds from the Gulf in conjunction with

easterly flow over the Rockies result in strong vertical shear [22].

Tornado activity exhibits spatial variability across the continental United States.

Tornado trends vary spatially seasonally and interannually. The most pronounced

spatial variability in tornado activity is its northward progression towards the north-

ern Great Plains during the spring and summer months [32,38]. During the cold sea-

son (Fall and Winter), tornadoes are more common to the southeastern United States

and typically, are accompanied by high vertical shear, low CAPE environments [39].
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The southeast shows a bimodal distribution in tornado activity with elevated tornado

occurrences in the spring and in the fall/early winter while the Great Plains show a

unimodal distribution with elevated tornado occurrences in spring [40].

1.1.5 Long-Term Trends and Future Projections

Several studies have shown trends in tornado activity. Studies have shown that

an eastern shift in tornado frequency has taken place over the past 30 years, where

tornado frequency has decreased in the southern Great Plains and an increase in

the Tennessee/Alabama area [41, 42]. The results of Childs et al. [39] align with the

pattern shown by Agee et al. [41] and Gensini and Brooks [42] for cold season tornado

activity. Tippett et al. [43] has shown that there has been an increase in number of

tornadoes per outbreak.

The effect a future and warmer climate will have on severe weather remains un-

certain [19,25]. There has been a growing consensus that there will be more frequent

extreme values of CS under global warming [25, 44–46]. CAPE and Vshear have been

examined in climate models. CAPE is expected to increase under climate change

while Vshear is expected to decrease, but the increases in CAPE are expected to

outweigh the decreases in Vshear to allow for more favorable combinations of severe

environments [25]. Agard and Emanuel [47] argue that the diurnal cycle of CAPE

increases in amplitude in a warmer climate, however, as temperatures increase, the

time to peak CAPE also increases, so the diurnal cycle may become more of a limiting

factor in the future. Hoogewind et al. [48] showed that the severe weather season may

lengthen and possibly extend by a month. Likewise, several studies have found that

the peak of the tornado season is also shifting to earlier in the year [40,49]. How the

environmental proxies and their modes of temporal variability will vary in response

to these different components change under future climate change is uncertain.

Seeley and Romps [25] suggested that the future degree of severe thunderstorms

could be closely related to humidification of the low-level atmosphere, as the mod-
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els that predicted an aridification of the central United States showed a decrease to

convective instability. Importantly, prediction of changes in severe weather events

themselves in a future climate is particularly difficult since such events, especially

tornadoes, are at a scale too small to be resolved by reanalysis nor climate mod-

els. Recent work has downscaled climate models to a resolution capable of resolving

supercell-like rotating convection and demonstrated significant changes in the realiza-

tion of storms themselves for a given environment under climate change [48]. Despite

such shortcomings, it is still essential to understand the nature of the spatiotemporal

variability of the large-scale environmental ingredients from which storms develop

within the climate system. A better understanding of climate’s control on these pa-

rameters and the parameters’ influence on tornadoes is needed so that we can see

how tornado occurrence may change in a warmer future climate.

This study is, in part, building on the work of Tippett et al. (2012) [32] to

improve the framework for long term prediction of tornado frequency. This could be

used to investigate possible effects of climate change on tornado activity such as when

running reanalysis models under future climate conditions. Climate change may alter

the diurnal and seasonal cycle as well as interannual variations. As these modes of

temporal variability may change we want to use proxies that capture these modes

correctly.

1.1.6 Caveats of Model Data

Reanalysis datasets are a model’s best guess for the environmental conditions

at a specific time. Several studies have examined the output of various reanalysis

datasets [50–52]. Gensini et al (2014) [50] compared North American Regional Re-

analysis (NARR) output to raw radiosonde data for 23 different severe weather vari-

ables. It was found that kinematic variables were best represented by NARR while

thermodynamic variables are hindered by errors in low-level moisture [50]. Allen and

Karoly (2014) [51] compared European Centre for Medium-Range Weather Forecasts
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Interim Re-analysis (ERA-Interim) data to sounding observations for three variables

(MLCAPE, 0-6 kilometer Vshear, and MLCIN). They found that ERA-Interim data

can provide reasonable estimations of MLCAPE, 0-6 kilometer Vshear was well repre-

sented outside of the coastal region by the reanalysis dataset, and that ERA-Interim

tended to do a poor job in representing MLCIN [51]. King and Kennedy (2018) [52]

compared several reanalysis datasets (NARR, ERA-Interim, Modern-Era Retrospec-

tive Analysis for Research and Applications (MERRA 2), Japanese 55-year Reanalysis

(JRA55), 20th Century Reanalysis (20CR), and the Climate Forecast System Reanal-

ysis (CFSR)) to Rapid Update Cycle (RUC-2) proximity soundings. They found that

NARR and JRA55 were the only reanalysis sets for which CAPE fell within the error-

bars of RUC-2, all of the other reanalysis datasets were biased low for thermodynamic

parameters and kinematic parameters that incorporate thermodynamic information,

and all of the reanalysis datasets reasonably captured the kinematic environments [52].

Deficiencies in climate models also exist. Seeley and Romps’ (2015) [25] results

showed disagreement between even the models that performed highly in matching the

radiosonde observations of severe thunderstorm environments. Allen et al (2014) [53]

tested the performance of the Commonwealth Scientific and Industrial Research Or-

ganisation Mark, version 3.6 (CSIRO Mk3.6) and the Cubic-Conformal Atmospheric

Model (CCAM) climate models over Australia by comparing them to ERA-Interim

data. CSIRO MK3.6 significantly overestimated the frequency of severe thunderstorm

environments while CCAM’s distribution was closer to the ERA-Interim’s distribu-

tion, but CCAM was influenced by negative biases in both CAPE and 0-6 kilometer

Vshear. Limitations in knowledge and in model resolution pose significant challenges

to predicting tornado activity [45] and downscaling models to simulate severe storms

is computationally expensive [48]. .

1.2 Research Objectives

This work seeks to:
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1. Compare the performance of common severe weather proxies in reproducing the

climatological spatial variability in tornado activity;

2. Examine this performance across three dominant climate time-scales: diurnal

variation, seasonal variation, and interannual variation;

3. Test the sensitivity of results to the chosen statistic, particularly mean vs. ex-

tremes
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CHAPTER 2. DATA AND METHODS

2.1 Data

2.1.1 North American Regional Reanalysis

North American Regional Reanalysis (NARR) datasets are used for environmental

parameters for the period from January 1979 to December 2015 [54]. NARR datasets

are at a high resolution with a grid spacing of 0.3◦ and at a high temporal frequency

providing 3 hourly data for the entirety of this historical period [55]. CAPE is taken

from the NARR’s internal variable for this parameter. Vshear and SRH are calculated

from NARR’s output of three dimensional wind fields. LCL is calculated using Romp’s

equation (see equation 1.3 in Section 2) from NARR output temperature and pressure

data. CS is calculated with equal weight given to both CAPE and Vshear, while EHI

is calculated using the equation mentioned in Section 2 (equation 1.11 using 0-3

kilometer SRH and STP is calculated using two methods. STP is calculated using

equation 1.12 in Section 2 using 0-3 kilometer SRH and it is also calculated using 0-1

kilometer SRH and with a CIN term:

STP =

(
CAPE

1500

)
∗
(
Vshear

20

)
∗
(
SRH

150

)
∗
(

2000− LCL

1000

)
∗
(

250 + CIN

200

)
(2.1)

. Two limits were also placed on the STP equations. The LCL term was set to 0 if

LCL was greater than 2000 m and the CIN term was set to 0 if CIN was less than

-250 J/kg.

2.1.2 Tornado Database

Tornado observational data are sourced from the National Weather Service (NWS)

Storm Prediction Center (SPC) ”Actual Tornadoes” dataset [56]. This dataset is

used for all calculations involving tornado count and density. Tornado touchdown
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points were used rather than paths or end points. We remove F/EF 0 tornadoes and

hurricane induced tornadoes from the dataset. Hurricane induced tornadoes (HIT)

are removed using methods similar to those described in Schultz and Cecil (2009) [57].

HITs are identified in the NWS data by incorporating NOAA’s HURDAT2 data [58].

HURDAT2 is used to ascertain the date, time, and location of the center of all Atlantic

tropical cyclones that occurred between 1979 and 2015. If a tornado occurred within

750 kilometers of the center of a tropical cyclone and within 3 hours of the cyclone’s

passing, it was considered ”hurricane induced” and omitted from the dataset.

2.2 Methods

2.2.1 Tornado analysis

Datasets of tornado density are created from the NWS tornado database (”Actual

tornadoes”, [56]) for years 1979-2015. We use the NARR 0.3◦ spatial grid to calculate

the tornado datasets. At each point in the grid, a fixed great-circle radius is used

to count tornado and tornado day occurrence. A tornado day is defined as a day

with at least 1 tornado occurring at any point in the day. We perform our analyses

on strictly significant tornado events (EF2 or higher) as well. The radii (R) we use

for counting tornadoes are R = 50 km and R = 120 km. We utilize a 50 kilometer

radius to approximate a 1◦ x 1◦ box, and a 120 kilometer radius to match the spatial

smoother used by [38]. We divide by the total number of years to get our data in

terms of tornadoes per year per 100 km2. For both the seasonal and diurnal modes of

variability, we normalize the time to one year by multiplying the tornado density by

the number of time steps. From this, we calculate the spatial distribution of tornadoes

over the continental United States. Our analysis is focused on the region east of the

Rocky Mountains where the vast majority of tornadoes occur.

Tornado density and tornado day density are calculated for the three temporal

cycles of interest (diurnal, seasonal, and interannual), and for the full climatology.

To match the times of tornadoes (CST) to the NARR data (UTC), we synchronize
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the data to be in terms of Coordinated Universal Time (UTC). The tornado dataset

records explicit times for the tornado events, while NARR uses 8 3-hourly time steps

in a day starting at 00 UTC. Thus, we bin all tornado data into 3-hourly segments in

Coordinated Universal Time (UTC) to align with the NARR temporal frequency. For

the diurnal cycle, tornadoes are binned by the closest preceding NARR timestep, for

example, all tornadoes that occur within 00-03 UTC are assigned to the 00Z NARR

timestep. For the seasonal cycle, we group the tornadoes by month. For interannual

variations, we group the tornadoes by year. Our primary analysis and the examples

used hereafter are done for tornadoes rated EF/F1+ with R = 50 km. We then

examine sensitivities to these results based on using significant tornadoes (EF/F2+)

and tornado days as well as testing the sensitivity to increasing the radius to 120 km.

An example of the time series for tornado density across all three climatological

time scales at Lafayette Indiana is given in Figure 2.1a-c. These show the times of

peak tornado occurrence. The diurnal cycle (Figure 2.1a) displays a maxima at 18Z

with relatively high values at 21Z and 00Z. The seasonal cycle (Figure 2.1b) displays

an absolute maxima in June and two local maxima in April and November. The

interannual variations (Figure 2.1c) displays an absolute maxima in 2013.

2.2.2 Environmental parameter analysis

We next calculate our environmental proxies at each NARR grid point and cal-

culate distributions of these proxies for the full climatology and across climatological

modes of temporal variability. We first calculate the probability distributions for

the full climatology of each severe weather environmental proxy at each point in the

NARR grid. For a given distribution, we extract both standard central tendency

statistics(mean, median) and several extreme percentiles ( 75th, 90th, 95th, 99th, and

99.9th). This method is then identically applied to analyze variability across the di-

urnal cycle, the seasonal cycle, and in interannual variations in the same manner as

for tornadoes as described above.
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Figure 2.1. Time series of tornado density calculated when R =
50 kms for Lafayette, Indiana: a. diurnal tornado counts per year, b.
seasonal tornado counts per year, c. interannual tornadoes. The full
climatology tornado density is 1.29 tornadoes per year.
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An example of this analysis is displayed at Lafayette, IN in Figure 2.2 for each

of the three climatological time scales for each of the proxies. At every grid point,

we calculate our desired metrics from the binned data. This allows us to capture the

spatial distribution of each metric of the different environmental proxies. The full

climatological PDF is given by the black curves in Figures 2.2a-i. From these PDFs,

we calculate our set of statistics in order to generate timeseries of each statistic across

each of the three climatological timescales at each gridpoint in our domain.

Figure 2.3 is an example for Lafayette, Indiana for time series of the 99th percentile

of the three environmental proxies along each of the climatological time scales. For

the diurnal cycle, CS (Figure 2.3a) and EHI (Figure 2.3d) both have their highest

values at 21Z and 00Z. STP (Figure 2.3g) has its highest value at 03Z. For the seasonal

cycle, all three proxies have their highest values in June and July. For interannual

variability, CS (Figure 2.3c) has its absolute maxima in 1980. However, EHI (Figure

2.3f) and STP (Figure 2.3i) have two local maxima in 1980 and 2011. A slight upward

trend can also be seen in the interannual values of the 99th percentile of each of the

three proxies.

2.2.3 Covariability Analyses

Finally, we combine the aforementioned datasets to test how well each statistic for

each proxy captures the spatial distribution of tornado activity. We begin with the

full climatology and end with our three individual modes of climatological temporal

variability.

Full Climatology

We perform spatial correlations between the NARR full climatology proxy datasets

(CS, EHI, STP) and the tornado density datasets. CAPE is used as a baseline com-

parison against the other four proxy calculations. These correlations are performed

for all of the metrics specified for the NARR data. The values of a metric of a proxy
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Figure 2.2. Probability distributions for the three environmental prox-
ies for Lafayette Indiana, across the three dominant time scales: a.
diurnal CS, b. seasonal CS, c. interannual CS, d. diurnal EHI, e.
seasonal EHI, f. interannual EHI, g. diurnal STP without using CIN,
h. seasonal STP without using CIN, i. interannual STP without us-
ing CIN. The black lines represent the full climatology. Bin width for
all three quantities is 0.05.
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Figure 2.3. As in Figure 2.1, but for the 99th percentiles of the three
proxies for Lafayette, Indiana across the three dominant time scales:
a. diurnal CS, b. seasonal CS, c. interannual CS, d. diurnal EHI,
e. seasonal EHI, f. interannual EHI, g. diurnal STP without using
CIN, h. seasonal STP without using CIN, i. interannual STP without
using CIN.
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are plotted against the values for tornado density at the same location, and the cor-

relation coefficient ”R” is calculated between them. To reduce a weighting of the

correlation coefficient toward zero, we require that more than five tornadoes need to

have occurred in the 37 years of our data to be used in the correlation calculation.

We employ bootstrapping to calculate the spatial correlation coefficient and the

correlation coefficient’s 95 percent confidence interval. To accomplish this, we utilize

1000 bootstrapped samples of our spatial distribution of points and calculate corre-

lation coefficients for each sample. From this set of 1000 correlation coefficients, we

take the median, 2.5th percentile, and 97.5th percentile. This process is done for each

metric of all proxies across all of the different methods used for tornado counting. We

consider the proxies to be statistically similar if their respective 95 percent confidence

intervals overlap.

Temporal Variations

Next, we analyze the extent to which our severe weather environmental proxies

capture the spatial distribution of temporal variability in the tornado density on three

dominant time scales of climate forcing: diurnal, seasonal, and interannual. Each

point has its own sets of values for tornado density (example across all three time

scales for Lafayette, Indiana in Figure 2.1a-c) and for a metric of a proxy (example of

the 99th percentile of the three proxies at Lafayette, Indiana in Figure 2.3a-i) across

the time modes of interest. With each set, the datasets will be tested to determine

how each proxy captures variability. The values across the time scales are plotted

against each other, and the correlation coefficient is calculated between each set of

data. Performing this at all points, results in a spatial distribution of correlation

coefficients over our selected area of the United States. This spatial distribution can

then be plotted on a map to show how well each proxy maps the variations in tornado

density.
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The temporal analysis described above is applied to all grid points in our domain

and local correlations are calculated to yield a map of the spatial distribution of co-

variability for a given climatological mode of temporal variability. As a simple means

of measuring the performance across the domain and comparing across metrics, the

correlation coefficients are averaged across the entire domain. Again, we utilize 1000

bootstrapped samples of our spatial distribution of points and calculate correlation

coefficients for each sample. From this set of 1000 correlation coefficients, we take the

median, the 2.5th, and the 97.5th percentiles of the average of the local correlation

coefficients to obtain a median and a 95 percent confidence interval to represent the

domain. We apply the same definition for statistically similar as mentioned prior.

This process is done for all metrics of each of the proxies and all the methods used

for counting tornadoes.
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CHAPTER 3. RESULTS

3.0.1 Analysis: Full Climatology

The spatial distribution of tornado density for R = 50 km for all EF1/F1+

tornadoes is shown in Figure 3.1. This reveals five maxima in tornado occurrence

located in northern Colorado, central Oklahoma, along a northern part of the border

between Texas and Louisiana, central Arkansas, and southern Mississippi.

The spatial distributions of the 99th percentile of each of the three proxies are

shown in Figure 3.2. For example, the 99th percentile of CS (Figure 3.2a) has maxima

over land located in central Texas and in the northern plains in northeastern Kansas,

southeastern Nebraska, southwestern Iowa, and northwestern Missouri. Interestingly,

CS has maxima over the ocean. These over-ocean maxima are in the central Gulf of

Mexico, off the eastern coast of Florida, and off the western coast of Mexico. EHI

(Figure 3.2b) has one peak that occurs in the southern great plains in Northern

Texas, eastern/central Oklahoma, and eastern Kansas. STP (Figure 3.2c) peaks in

the southern great plains in south-central Kansas, central Oklahoma, and Northern

Texas. Interestingly, like CS, EHI and STP both have relatively high values over the

ocean in the Gulf of Mexico.

Figures 3.3 and 3.4 display the spatial relationship between tornado density and

the 99th percentile of each of our proxies for the full climatology. Figures 3.3 and 3.4

display the spatial distribution of both the 99th percentile of a given proxy (Figures

3.3ace) and the statistical relationship between these spatial distributions, including

their linear correlation (Figures 3.3bdf and 3.4bdf); results are displayed for CAPE

(Figures 3.3ab and 3.4ab), CS (Figures 3.3cd), EHI (Figures 3.3ef), our STP formula-

tion without CIN (Figures 3.4cd), and our STP formulation with CIN (Figures 3.4ef.
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Figure 3.1. Tornado density calculated for EF1+ tornadoes at R = 50
km over the continental United States, east of the Rocky Mountains.
White areas are those without applicable tornado data.
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a.

b.

c.

Figure 3.2. The 99th percentiles of a. CS, b. EHI, and c. STP
without using CIN over a large domain that includes the continental
United States.
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For our analysis we exclude grid points with tornado density values less than 0.15

tornadoes per year per 100 km2. These regions are blocked out (white).

Correlation coefficients between tornado activity metrics and our statistics for each

environmental proxy are displayed in Figure 3.5; results are displayed for EF/F1+

tornado density (Figure 3.5a), EF/F2+ tornado density (Figure 3.5b), and tornado

day density (Figure 3.5c). Beginning with EF/F1+ (Figure 3.5a), for CAPE, the

95th, the 99th, and the 99.9th percentiles are the best performers. These three per-

centiles outperform the mean. For CS, the 90th and the 95th percentiles are the best

performers. These two percentiles outperform the mean. For EHI, the mean and

percentiles over the 75th (90th, 95th, 99th, and 99.9th) are all statistically similar to

each other. For STP calculated without CIN, the highest extreme percentiles (99th

and 99.9th) perform best, while the mean is slightly less well correlated but is still

statistically similar to these two extreme percentiles. For STP with CIN included in

calculations, the highest extreme percentiles (99th and 99.9th) perform best. These

two percentiles outperform the mean. The median consistently exhibits the lowest

correlation coefficient values, which is due to the fact that these proxies often take

values near zero, so that the median is also often near or at zero. When restricting

tornadoes to EF/F2+, the correlation coefficients decrease across all statistics except

at the 75th percentile of STP calculated without the CIN term where the number does

not change. All other statistics decrease by 7-77%. The qualitative results remain

largely unchanged. For the analysis using tornado days, the correlation coefficients

increase by 10-40% across all statistics except the median. We disregard the median

for calculating a percent change due to its values’ proximity to zero and that some

values transition from negative to positive. For CS, the mean is now outperformed

by the 90th and 95th percentiles. The qualitative results remain largely unchanged for

both EHI and STP.

Sensitivity of these results to a larger tornado radius is shown in Figure 3.6, which

is analogous to Figure 7 but with R = 120 km. Most correlation coefficients are found

to increase between 2-107% across the different proxies and statistics. The statistics
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Figure 3.3. Parts a, c, and e: Color-filled contour of the 99th per-
centile of the full climatology of a. CAPE, c. CS, and e. EHI with a
contour of EF1+ tornado density calculated at R = 50 km overlayed.
Locations with less than .15 tornadoes per year per 100 km2 and
points over the ocean have been removed. Parts b, d, and f: Scatter
plot of 99th percentile of b. CAPE, d. CS, and f. EHI vs. tornado
density with a line of best fit and the correlation coefficient in the top
right corner.
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Figure 3.4. Parts a, c, and e: Color-filled contour of the 99th per-
centile of the full climatology of a. CAPE, c. STP equation without
CIN, and e. STP equation with CIN included with a contour of EF1+
tornado density calculated at R = 50 km overlayed. Locations with
less than .15 tornadoes per year per 100 km2 and points over the
ocean have been removed. Parts b, d, and f: Scatter plot of 99th
percentile of b. CAPE, d. CS, and f. EHI vs. tornado density with a
line of best fit and the correlation coefficient in the top right corner.
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Figure 3.5. Scatter plots between full climatological proxy metrics and
correlation coefficients using different methods for counting tornadoes
for R = 50km for: a. all tornadoes rated EF/F1+, b. all significant
tornadoes (EF/F2+), and c. all tornado days. Green is CAPE. Blue
is EHI. Black is CS. Red is STP without using CIN. Turquoise is STP
with CIN included. Error bars represent the 95 percent confidence
intervals derived from 1000 bootstrapped re-samplings of the data.
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that do no increase when changing radius are the 75th percentile of STP without the

CIN term for EF/F1+ tornadoes which decreases by 3% , the 75th percentile of STP

without the CIN term for tornado days which stays constant, and the 75th percentile

of STP with the CIN term for tornadoes rated EF/F1+. This result is qualitatively

consistent across the different tornado activity definitions (EF/F1+, EF/F2+, and

tornado days). Overall, the qualitative results remain largely unchanged, with a

slight exception for EHI. For EHI, the highest two percentiles (99th and 99.9th) have

increased relative to the other statistics of EHI when tornadoes rated EF/F 1+ and

tornado days are used. Under these circumstances, the two highest percentiles become

the best performers and the other three statistics (mean, 90th, and 95th) are slightly

less well correlated.

3.0.2 Analysis: Temporal Variations

We next analyze variability across climatological timescales. We begin with an

example demonstration for analyzing the relationship between tornado activity and

environmental proxies over diurnal, seasonal, and interannual timescales for Lafayette,

IN. Figure 9 displays the relationship between the 99th percentile of each environ-

mental proxy and tornado density along the three temporal modes of variation at

Lafayette. For the diurnal timescale, (Figures 3.7a, 3.7d, and 3.7g) CS has the high-

est temporal correlation coefficient and STP has the lowest temporal correlation co-

efficient. For the seasonal timescale (Figures 3.7b, 3.7e, and 3.7h), STP calculated

without the CIN term has the highest correlation coefficient, while CS has the lowest

correlation coefficient. For the interannual timescale, (Figures 3.7c, 3.7f, and 3.7i),

EHI has the highest correlation coefficient and STP has the lowest correlation coeffi-

cient. The outlier year for Lafayette, Indiana that none of the proxies capture well is

2013.
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Figure 3.6. As in Figure 3.5, but for R = 120 km radii. Green is
CAPE. Blue is EHI. Black is CS. Red is STP without using CIN.
Turquoise is STP with CIN included.
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Figure 3.7. Scatter plots between 99th percentile proxies and tornado
densities calculated at R = 50 km: a. Diurnal CS, b. Seasonal CS, c.
Interannual CS, d. Diurnal EHI, e. Seasonal EHI, f. Interannual EHI,
g. Diurnal STP without including CIN, h. Seasonal STP without
including CIN, and i. Interannual STP without including CIN. The
colors of the points in the diurnal and seasonal plots correspond to
the same hours and months as in figure 2.2.
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Seasonal Cycle

Maps of the temporal correlation coefficients between the seasonal variations of

the 99th percentile of the environmental proxies and tornado density are displayed in

Figure 3.8; results are displayed for CAPE (3.8a and 3.9a), CS (3.8b), and EHI (3.8c),

the STP formulation without CIN (3.9b), and the STP formulation with CIN (3.9c).

The areas in white are the same locations as before at which less than .15 tornadoes

per year per 100km2 have occurred. The 99th percentiles of these proxies work well

seasonally in the Great Plains, the Midwest, and the Northeast. However, all proxies

exhibit relatively smaller or negative correlations in the southeast. CAPE shows ex-

tremely poor correlations throughout the entirety of the southeast. CS shows negative

correlations in eastern Florida, northwestern Florida, southeastern Georgia, central

South Carolina, eastern North Carolina, southern Alabama, southern Louisiana, along

the Arkansas/Mississippi border, north-central Arkansas, and south-central Missouri.

EHI shows negative correlations in southeastern Georgia, northwestern Florida, along

the Arkansas/Mississippi border, north-central Arkansas, and south-central Missouri.

Both forms of STP show negative correlations in south-western Florida and north-

western Florida.

Correlation coefficients between seasonal tornado activity metrics and our de-

sired statistics for each environmental proxy are displayed in Figure 3.10. Beginning

with results for EF/F1+ (Figure 3.10a), among all of the proxies, the two highest

percentiles (99th and 99.9th) are the best correlated and the means have lower cor-

relations. The 99th and 99.9th percentiles’ correlations are higher than the mean by

36% and 40% respectively for CAPE, 45% and 53% respectively for CS, 21% and 30%

respectively for EHI, 8% and 10% respectively for STP without CIN, and 8% and 5%

respectively for the STP calculation with CIN. Other than the median, where STP is

comparable to EHI, STP outperforms CS and EHI at every metric. EHI outperforms

CS at every metric. These results are largely insensitive to our different tornado

activity metrics. Using EF/F2+ tornadoes (Figure 3.10b) causes the correlation co-
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Figure 3.8. Maps of correlation coefficients between seasonal 99th
percentile a. CAPE, b. CS, and c. EHI and tornado (EF/F 1+)
density when R = 50 km.
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Figure 3.9. Maps of correlation coefficients between seasonal 99th
percentile a. CAPE, b. STP without including CIN, and c. STP
using CIN and tornado (EF/F 1+) density when R = 50 km.
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efficients to decrease by 18-45% based on the proxy and statistic. Using tornado days

(Figure 3.10c) causes the correlation coefficients to increase by 3-8% depending on

the proxy and statistic. The qualitative results remain the same. Sensitivity of these

results to a larger tornado radius is shown in Figure 3.11. These results are also

largely insensitive to the use of a larger tornado radius, except as the radius increases

from 50 kilometers to 120 kilometers, all mean correlation coefficients increase by

16-52% based on proxy and statistic.

Diurnal Cycle

Figure 3.12 displays maps of the correlation coefficients between the diurnal vari-

ations of 99th percentile of the three proxies and tornado density. CS (Figure 3.12b)

performs well across much of this area of the United States and has the smallest area

of negative correlations and these are in southern Florida, along the southern coast

from western Florida to Louisiana, and in central Texas. For EHI (Figure 3.12c, in

the southeast, negative correlations are found in southern Florida, western Florida,

eastern Georgia, and southern Louisianna. In the Great Plains, negative correlation

coefficients are found in southern Texas, central Texas, western Oklahoma, western

Kansas, western Nebraska, northwestern South Dakota, central North Dakota, and

southeast North Dakota. For STP without CIN (Figure 3.13b), the Great Plains

exhibit almost exclusively negative correlations; the Southeast is variable where most

of Florida, the Piedmont Plateau, southern Alabama, southern Mississippi, central

Tennessee, northern Alabama, and at the border between Arkansas, Missouri, and

Tennessee exhibit negative correlations; in the Midwest, the northern half of Indiana,

most of Ohio, northern Kentucky, central Michigan, and southern Michigan exhibit

negative correlations. For STP with CIN (Figure 3.13c), the central and southern

Great Plains exhibit extremely low correlation coefficients west of −98o latitude and

high correlation values east of −98o latitude, the northern Great Plains exhibit low

correlation values, the Southeast and Mid- Atlantic are variable and follow extremely



39

Figure 3.10. Scatter plots between monthly proxy metrics and corre-
lation coefficients using different methods for counting tornadoes for
R = 50 km for: a. all tornadoes rated EF/F 1 and greater, b. all
significant tornadoes (EF/F2+), and c. all tornado days. Green is
CAPE, EHI is blue, CS is black, STP without including CIN is red,
and STP using CIN is turquoise. Error bars represent the 95 per-
cent confidence intervals derived from bootstrapped re-sampling of
the data.
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Figure 3.11. As in Figure 3.10, but for R = 120 km.
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similar spatial patterns to previously those discussed for the other formula for STP,

and the Midwest shows variability with low correlation values in Ohio, Michigan, In-

diana, and Kentucky, but relatively high values throughout the rest of the Midwest..

Correlation coefficients between diurnal tornado activity metrics and our statistics

for each environmental proxy are displayed in Figure 3.14. Beginning with EF/F1+

(Figure 3.14a), for CAPE, the mean and 75th percentile are the highest correlated

metrics and are statistically similar. The other extremes have lower mean correlation

coefficients by 3-12%. For CS, the mean and 75th percentile are the highest correlated

metrics and statistically similar, while the extreme percentiles have slightly lower

correlations by 3-6%. For EHI, the median and the 75th percentile have the highest

correlation and they outperform the mean by 11% and 14% respectively. For STP

calculations without CIN, the median has the highest correlation coefficient, while

the mean and other statistics have much lower correlation coefficients. For STP

calculations with CIN, the median has the highest correlation coefficient and the

other statistical metrics have much lower mean correlation coefficients. STP percent

differences are not calculated due to the proxy’s coefficients’ proximities to zero. CS

is the highest performing proxy for the diurnal cycle except at the median where CS

and EHI are statistically similar. CAPE outperforms EHI at all metrics except the

median. EHI outperforms both forms of STP at every metric. STP calculations with

CIN outperform STP calculated without CIN at every metric.

When using EF/F2+ to test (Figure 3.14b), the qualitative results remain largely

unchanged but correlation coefficients decrease by 12-21% from when EF/F1+ is

used. When using tornado days (Figure 3.14c), the qualitative results are largely

unchanged, but there is a small increase in correlation values of 3-4%. Sensitivity of

these results to a larger tornado radius is shown in Figure 3.15. Results are largely

insensitive to the use of a larger tornado radius, except as the radius increases from

50 kilometers to 120 kilometers, all correlation coefficients increase by 14-25% based

on proxy and statistic.
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Figure 3.12. As in Figure 3.8, but for the diurnal cycle.
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Figure 3.13. As in Figure 3.9, but for the diurnal cycle.
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Figure 3.14. Scatter plots between diurnal proxy metrics and corre-
lation coefficients using different methods for counting tornadoes for
R = 50 km for: a. all tornadoes rated EF/F 1 and greater, b. all
significant tornadoes (EF/F2+), and c. all tornado days. CAPE is
green, EHI is blue, CS is black, STP without using CIN is red, and
STP using CIN is turquoise. Error bars represent the 95 percent con-
fidence intervals derived from bootstrapped re-sampling of the data.
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Figure 3.15. As in Figure 3.14, but for R = 120 km.
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Interannual Variations

Maps of the correlation coefficients between the interannual variations of 99th

percentile of the three proxies and tornado density are displayed in Figures 3.16 and

3.17. The correlation coefficients are very low across this area of the United States

for all of the proxies and there are sparse locations of highly correlated areas. The

proxies share very similar spacial distributions of correlation coefficients.

Correlation coefficients between interannual tornado activity metrics and our

statistics for each environmental proxy are displayed in Figure 3.18. Beginning with

EF/F1+ (Figure 3.18a), for CAPE, the mean is outperformed by the 99th and the

99.9th percentiles. For CS and EHI, the mean is statistically similar to the high-

est correlated extreme percentiles. For both forms of STP, the mean is the highest

correlated metric, while the extreme percentiles’ correlations are lower by 8-40% de-

pending on statistic. When EF/F2+ tornadoes are used (Figure 3.18b), for CS and

STP, the qualitative results are largely unchanged. For EHI, the 99.9th percentile has

the highest correlation. The correlation coefficients decreased by 21-54% depending

on which proxy and statistic. When tornado days are used (Figure 3.18c), the results

are largely unchanged. Sensitivity of these results to a larger tornado radius is shown

in Figure 3.19. Results are largely insensitive to the use of a larger tornado radius,

except as the radius increases from 50 kilometers to 120 kilometers, all correlation

coefficients also increase.

3.1 Discussion

Correlation values increase when the smoothing radius is increased from 50 kilo-

meters to 120 kilometers. This could be attributed to environmental conditions being

at a much larger scale than a tornado, and a larger counting radius smooths the

tornado to cover a larger fraction of the environment. Interestingly, STP is not the

highest correlated predictor at all time scales. Of the three proxies, STP is the only

proxy specifically designed for tornadoes so one would assume that it should out-
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Figure 3.16. As in Figure 3.8, but for the interannual variations.
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Figure 3.17. As in Figure 3.9, but for the interannual variations.
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Figure 3.18. Scatter plots between interannual proxy metrics and
correlation coefficients using different methods for counting tornadoes
for R = 50 km for: a. all tornadoes rated EF/F 1 and greater, b. all
significant tornadoes (EF/F2+), and c. all tornado days. CAPE
is green, EHI is blue, CS is black, STP without using CIN is red,
and STP including CIN is turquoise. Error bars represent the 95
percent confidence intervals derived from bootstrapped re-sampling
of the data.
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Figure 3.19. As in Figure 3.18, but for R = 120 km.
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perform the other two. STP outperforms the other two proxies at three of our four

timescales: full climatology, the seasonal cycle, and for interannual variations. It is

significantly outperformed by both of the other proxies in the diurnal cycle.

CS and CAPE outperform EHI and both forms of STP at the diurnal cycle. This

could be due to the SRH component of EHI and STP. From the map of correlation

coefficients over the United States (Figure 3.12), both STP and EHI have low and neg-

ative correlation coefficients over the Great Plains. This could be due to the diurnal

cycle of the low level jet producing higher SRH values over night, which could boost

EHI and STP values during any nocturnal convection events. In the seasonal cycle,

the proxies perform comparably worse in the Southeast. This could be explained by

cold season tornadoes being more common to the southeastern United States [39].

Childs et al. [39] also found that these tornadic storms are typically accompanied

by high shear, low CAPE environments. High shear, low CAPE environments tend

to be adverse to calculations of high values of the three proxies used in this study.

The correlation coefficients for interannual variability all fall below a value of 0.25.

This could possibly be explained by the peak areas in yearly proxies staying confined

mainly to the great planes from year-to-year, but tornado spatial distributions show

much more variability on an interannual basis.

The use of significant tornadoes lowered the correlation coefficient in every sensi-

tivity test. This could be caused by the number of significant tornadoes. Significant

tornadoes are much less common. Removing EF/F1s removes 69.5% of tornadoes

from the dataset. In most cases, correlation coefficients increase when using tornado

days. The outlier is in interannual variations where the correlation coefficients are

statistically similar.

3.2 Conclusions

Using 37 years of reanalysis data and tornado data, we calculate spacial distri-

butions of tornado density and of several statistics: two standard central tendency
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statistics (mean and median) and five extreme percentiles (75th, 90th, 95th, 99th, and

99.9th), of the three severe weather environmental proxies (CS, EHI, and STP) for the

full climatology and across three dominant climate timescales: diurnal, seasonal, in-

terannual. We tested each statistical measure of these common environmental proxies

for severe weather favorability to assess their capacity to predict climatological tor-

nado activity over the continental United States by performing spatial correlations

between the different distributions.

We found the following key results:

1. The mean is a suitable statistic when compared to the extreme percentiles when

used with the full climatology for EHI and STP calculated without CIN, the

diurnal cycle for CAPE and CS, and in interannual variations for all proxies

except CAPE.

2. The mean is outperformed by the 99th and 99.9th percentiles in the seasonal

cycle by 36 and 40% for CAPE, 45 and 53% for CS, 21 and 30% for EHI, 8 and

10% for STP calculated without CIN, and 8 and 5% for STP calculated with

CIN.

3. STP is the preferred proxy for the seasonal cycle and interannual variations.

4. STP calculated with 0-1 km SRH and CIN either outperformed or showed

marginal change to using STP calculated with 0-3 km SRH and without CIN.

5. CS is the preferred proxy for the diurnal cycle.

6. Qualitative results are similar when using significant tornadoes or tornado days,

but using significant tornadoes results in lower correlation coefficients and using

tornado days results in higher correlation coefficients.

7. The sensitivity tests showed that the use of tornado days results in higher

correlation coefficients than using EF/F1+ tornadoes for the full climatology

by 10-40%, the seasonal cycle by 3-8%, and the diurnal cycle by 3-4%.
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8. Qualitative results are similar when using a larger tornado radius.

9. These qualitative results are robust to the increased radius value and the only

significant change is that correlation coefficients increase with the increased

radius.

10. Every statistic of each proxy showed very low predictability of the interannual

variations in tornado activity.

3.2.1 Potential Limitations

Our datasets possess important limitations. We use reanalysis data which should

not be taken as ”real” values, but as the model’s best guess for the environmental

conditions. The NARR dataset gives us data with high temporal and spatial reso-

lution [55], as opposed to environmental soundings which would be more accurate.

However, environmental soundings are only available at discreet locations regularly

twice a day: at 0z and 12z [59]. The tornado historical record carries numerous un-

certainties [60] that may themselves vary with time, especially before Doppler tech-

nology in the 1990s. This stems from tornadoes requiring an observer to be present

at the time and location of the event. With increasing population, better technology,

and more awareness, the annual count of tornadoes has increased throughout the

years [61]. We attempt to minimize this aspect by removing tornadoes rated F/EF 0

as Verbout et al. [61] and Agee et al. [62] found that the number of tornadoes rated

greater than F/EF 0 from 1954-2003 was fairly consistent, showing that the increase

in count is, in large part, due to the increased reportings of weak (F/EF 0) tornado

events. We also only work with proxies for environmental favorability, and we do not

account for variability in factors that initiate convection.
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3.2.2 Avenues of Future Work

Possible areas of future study are to break these results down by region (northern

plains, southern plains, midwest, northeast, southeast). Examinations of the interan-

nual variability associated with the climate time scales used in this study could also

be performed, such as how the correlations change based on a year-to-year analysis of

the seasonal cycle. Another area of possible research is to further test the smoothing

radii. Performing similar analyses while grouping the seasons together (DJF, MAM,

JJA, SON) is another possible extension of this research. These results can be used

with climate models to determine areas where tornado activity could potentially in-

crease. Figure 2.3 (c, f, and i) shows slight increases in the extreme percentiles of the

three proxies over the 37 year period for Lafayette, Indiana. Climate models could

be run to investigate how these trends could continue to evolve in the future to see if

the increase continues, if the values level off, or after leveling off, if the values begin

to decrease. This analysis could be extended over the rest of the continental United

States to see if this upward trend applies to more areas. This could be run for dif-

ferent concentrations of CO2 and using different methods of calculating these proxies

as well. These results could be used with global reanalysis data to help improve our

understanding of severe weather in other parts of the world. These analyses could be

done using other forms of reanalysis data to test how robust these results are. This

research could be focused onto smaller areas by applying similar analyses on novel

datasets, such as radar data or environmental sounding data. These results could be

used with global climate models to investigate how global severe weather tendencies

could evolve in a future climate state. Another possible avenue is to apply a gaussian

smoother to the tornado distribution similar to the methods by Gensini et al. [42].

3.2.3 Broader Impacts and Utility

This research could prove invaluable to both researchers and society as a whole.

It can impact how regional and global climate models predict tornado activity in a
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warmer, future climate. Better predictions allow society to be more prepared in the

future if locations of peak tornado activity are to shift. This could lead to better

risk assessment that could protect countless lives and property. One such exam-

ple is in building preparedness. Construction codes could need to be amended and

strengthened in order for buildings to survive an increased threat of severe weather.

Or families, when selecting a new home, would differently weigh the benefits of a

basement and insurance for severe weather. And likewise, insurance companies can

change what policies are offered in areas to match the changing climate.
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