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School of Material Science Engineering

Dr. Scott Sudhoff

School of Electrical and Computer Engineering

Approved by:

Dr. Jay Gore

Head of the School Graduate Program



iii

To my parents and my brother,

I am because you are.



iv

ACKNOWLEDGMENTS

I am highly indebted to my advisor, Dr. Greg Shaver, who gave me the opportu-

nity to learn and grow under his guidance. He introduced me to HEV research, and

patiently guided me through the process of performing research and sharing my work.

I am also thankful to him for allowing me to continue the research as a Ph.D. student.

I have learned a lot from his hardworking nature, and protective, encouraging and

productivity-building approach towards his students. I am also incredibly thankful

to Dr. Oleg Wasynczuk and Dr. Edwin Garćıa, for their guidance and insights dur-
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ABSTRACT

Hoshing, Vaidehi Y. Ph.D., Purdue University, December 2018. Augmented Frame-
work for Economic Viability-Based Powertrain Design and Emissions Analysis of
Medium/ Heavy-Duty Plug-in Hybrid Electric Vehicles. Major Professor: Dr. Gre-
gory M. Shaver, School of Mechanical Engineering.

Plug-in hybrid electric vehicles (PHEVs) are being considered as an alternative

to conventional medium-duty (MD) and heavy-duty (HD) commercial vehicles to re-

duce fuel consumption and tailpipe emissions. Lithium ion batteries, which are used

in PHEVs due to their high energy density, are expensive. The battery contributes

significantly towards the life-cycle cost of MD/HD PHEVs, as these vehicles, due to

high mass and aggressive battery usage, require multiple battery replacements over

their lifetime. Smaller batteries increase the fuel consumption and need more replace-

ments, while bigger batteries increase the initial system cost. Powertrain design from

a life-cycle cost perspective is required to explore this trade-off and maximize the

economic gains obtained from PHEVs.

Powertrain design entails component sizing, control strategy selection as well as

architecture selection. Different powertrain designs yield different lifetime economic

gains. A variety of applications exist for MD/HD vehicles, which differ in their ways

of powertrain usage, due to variations in required acceleration, available braking, and

average and maximum speeds. Therefore, different powertrain designs are needed

depending on the application and usage scenario. The powertrain design space needs

to be explored, and solutions that maximize the economic gains within the specified

constraints need to be chosen.

This dissertation compares the economic viability of two PHEV applications (MD

Truck and HD Transit Bus), with options of series and parallel hybrid architectures,

over multiple drivecycles, for four economic scenarios (years 2015, 2020, 2025 and
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2030). It is shown that hybridizing the transit bus achieves payback sooner than

hybridizing the truck. Further, the results for the transit bus application, over the

Manhattan drivecycle, show that implementation of the parallel architecture is eco-

nomically viable in the 2015(present) scenario, while the series architecture becomes

viable in 2020, due to significantly lower initial costs involved in the parallel archi-

tecture.

A methodology to select a solution out of the explored design space that maxi-

mizes the economic gains is demonstrated. Variations in the economic and vehicle

usage conditions for which this solution is designed, can be expected. It is therefore

necessary to check the robustness of this solution to change in external factors such

as vehicle mass, annual vehicle miles travelled (AVMT), component and fuel costs. It

is shown that the economic gains are affected by the battery cost, fuel cost, AVMT

and vehicle mass, while the number of battery replacements are affected by AVMT

and vehicle mass.

A probability-based approach is demonstrated to obtain confidence in the eco-

nomic and battery life predictions. Specifically, probability-based variations are pro-

vided to variables such as miles traveled between recharge, recharge C-rate and bat-

tery temperature. It is shown that battery life is affected the most by battery tem-

perature.

A battery heating/cooling system is required to maintain constant battery temper-

ature of operation during all seasons, but these systems incur additional fuel costs.

A framework that utilizes just the Coefficient of Performance (COP) of the heat-

ing/cooling system to calculate the excess fuel cost is proposed and demonstrated.

An increase of 0.9-1.8% in fuel consumption is shown, depending on the drivecycle

and ambient temperature.

Further, the well-to-wheel (WTW) fuel-cycle emissions from conventional and

PHEV transit buses operating in Indiana and California are assessed using the “Green-

house Gases, Regulated Emissions, and Energy Use in Transportation” (GREET)

Model 2017, developed by Argonne National Labs. It is shown that 59% and 63%
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greenhouse gas (GHG) reductions can be achieved in Indiana and California respec-

tively, along with reduction in carbon monoxide (CO), nitrogen oxides (NOx), par-

ticulate matter with diameter less than 2.5 microns (PM2.5) and volatile organic

compounds (VOC) emissions for both the states. However, an increase in sulfur ox-

ides (SOx) emissions for both the states, and particulate matter with diameter less

than 10 microns (PM10) increase for Indiana, are observed.
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1. INTRODUCTION

1.1 Motivation

Earth surface temperatures have been rising at a very high rate, and have risen

by approximately 1.5◦F since the late 1970s (Figure 1.1 [1]). This report [1] also lists

the significant risks that this rate of increase in temperature poses to the weather

changes, ecosystems and human health. The transportation sector is a significant

contributor to green house gas emissions (27%), with the medium and heavy duty

vehicles contributing significantly(Figure 1.2 [2]). With the energy consumption by

buses and trucks set to increase by close to 20% by 2050 (Figure 1.3 [3]), it is necessary

to devise and implement technologies that can minimize the overall carbon footprint.

Figure 1.1. Global annual average surface temperatures [1].
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Figure 1.2. Total U.S. greenhouse gas contributions by economic sector in 2015 [2].

Figure 1.3. Projections of percent increase (indexed to 2015) in energy consumption
by mode in the reference case [3].
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The EPA and the NHTSA have proposed a national program to reduce the carbon

dioxide emissions by about 1.1 billion metric tonnes and reduce oil consumption by

about 2 billion barrels over the lifetime of the vehicle, helping the vehicle owners

save $170 billion in fuel costs [4]. This calls for the usage of alternate fuel sources

that have high energy densities and energy conversion that is more efficient. Hybrid

electrification is one such promising opportunity.

Hybrid electric vehicles and plug-in hybrid electric vehicles use a battery as an

Energy Storage System (ESS) along with an Internal Combustion Engine (ICE) to

provide tractive power to the wheels. The ESS allows energy recovery during braking

(called regenerative braking), because the ESS allows opportunity charging, and also

downsizing of the engine and flexibility in it’s region of operation, because the ESS

is now able to assist the engine when required. Therefore, significant reduction in

fuel consumption and tailpipe-out emissions can be achieved. The goal of the efforts

outlined in this report is to use a previously developed framework [5] to understand the

economic gains vs system cost trade-off to enable optimal component sizing, control

and architecture selection for medium- and heavy-duty applications. Additionally, for

a selected architecture and powertrain configuration, the goal is to develop methods

to understand the uncertainty in battery life prediction due to variations in vehicle

and battery usage.

1.2 Background

Powertrain optimization and component sizing for a hybrid electric vehicle have

been studied previously by many. Reference [6] proposes a simulation design envi-

ronment for alternative powertrains and demonstrates it for design of a hybrid diesel-

electric powertrain by optimizing for fuel economy and further provides a robustness

analysis for this design. Reference [7] proposed a design optimization algorithm us-

ing DIRECT (DIviding RECTangles) to minimize fuel consumption over a composite

drivecycle, and also compared the results with optimization using Simulated Anneal-
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ing and Genetic Algorithm. Reference [8] performs a multi-objective optimization

for the performance requirements specified by PNGV, using genetic algorithms to

find the Pareto-optimal solution set for sizing and control parameters. Certain other

studies also perform concurrent optimization of sizing and controls of series or paral-

lel HEVs to minimize fuel consumption, emissions, and/or drivability and gradabil-

ity [9] [10] [11] [12]. [13] optimize battery size, charging and power management of

PHEV to reduce carbon dioxide emissions from the ICE and grid generation plants.

Reference [14] propose a novel approach for engine and motor sizing using Degree

of Hybridization as a metric and further also explains and implements a fuzzy logic

controller to maximize the fuel economy on a full-sized parallel HEV.

Many others focus on optimizing control strategies to minimize fuel economy

and/or emissions for hybrid electric vehicles, typically using variations of genetic algo-

rithms, ECMS, DP or supervisory control [15] [16] [17] [18] [19]. Battery degradation

and cost minimization are not considered in these studies.

Minimization of fuel and electricity cost for uncertain driving conditions also has

been considered [20] [21] [22]. A total cost of ownership analysis for light-duty gasoline

series PHEV for Germany is also performed [23]. These studies do not consider

battery degradation or replacement.

Battery degradation, or loss of battery energy and/or power capacity over use,

is a major concern for powertrain design considering life-cycle costs. Since battery

life is often times lesser than the vehicle life, especially for medium- and heavy-duty

applications, where the battery can be used more aggressively due to higher vehicle

mass, leading to atleast one battery replacement over the life of the vehicle. This

can significantly impact the gains obtained due to fuel consumption consumption

reduction, and can decide the fate of a powertrain design. Therefore, battery degra-

dation should be considered in order to design robust hybrid electric powertrains.

The authors of [24], studied the component sizing optimization for a PHEV using

parallel chaos optimization algorithm (PCOA), to minimize component and battery

replacement costs with drivability as a constraint, for 2 types of batteries. This is
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performed for a mid-size sedan and battery replacement is assumed to occur every

100,000 miles. Causes for battery degradation and it’s dependence on usage are not

considered.

A method is proposed in [25] to optimize the energy management in a light duty

PHEV by minimizing the daily costs associated with gasoline consumption, in-route

charging and reduction in state of health of the battery. There are other studies

that optimize the trade-off between energy consumption and battery health [26] [27].

The authors of [28] and [29] studied the effect of charging patterns to minimize the

energy costs and daily battery health degradation. These studies did not consider

optimization from a vehicle life-cycle cost perspective. A methodology to design

for cost optimization, for minimization of powertrain costs of the vehicle life, has

been proposed in [30], but for a light-duty non-plug in parallel hybrid diesel-electric

vehicle with a planetary gear set and a single speed gear box, using a DP based energy

management strategy.

There have been articles that review the hybrid electric architectures and their

energy management strategies [31] [32] [33] [24]. Few also compare the architectures

from a fuel economy, component efficiency and/or emissions standpoint ( [34], [35],

and [36] light-duty HEV, [37], and [38] light-duty PHEV). A control method to min-

imize fuel and energy consumption for light-duty PHEVs has been presented in [39]

and has been compared on series and parallel PHEVs with EV and blended modes on

standard and customized driving cycles. The series architecture is shown to achieve

better fuel economy but with higher battery utilization, concluding that battery life,

energy cost etc need to be considered to completely analyze PHEV performance. A

comparison of the fuel economy and component efficiency of series, parallel (with and

without integrated starter-alternator) architectures for a transit bus application on

multiple drivecycles has been presented in [40], the fuel cost savings of the paral-

lel architectures with respect to the series architecture for year 2006 and 2008 have

been estimated. These studies either do not optimize the powertrain design and/or

consider life-cycle costs and/or battery replacement.
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It is necessary to understand, from a life-cycle perspective, the economic gains that

a powertrain design and control strategy can achieve, considering battery degradation,

for different hybrid electric architectures, for different application. This will help

us understand if, when and under what usage conditions, an application should be

electric hybridized.

Furthermore, as will be shown later, the battery temperature of operation con-

tributes significantly to battery degradation and battery life. Hence, it is necessary to

maintain the battery at a desired temperature, thus motivating the need for efficient

battery thermal management systems. Although there have been detailed studies

reviewing the types of cooling systems for HEV/EV batteries [41] [42] [43] [44], their

numerical models and simulations [45], proposing new heating/cooling system for

batteries [46] [47] [48] [49], there are very few that look at the fuel penalty of this

system. The authors of [50] presented a numerical model and sizing of a vehicle cool-

ing system for a HD Series HEV tracked vehicle, simulated it over a combined urban

and cross-country drivecycle and estimated 8-12% cooling system power consumption

relative to the power supplied by the engine with heat generated by all the powertrain

components as the cooling system load. Modeling, experimental validation and sim-

ulation of a cabin, battery and motor integrated AC/heating system for a light-duty

electric vehicle was performed in [51]. The effect of the heating/cooling system on the

driving range was also investigated. With the availability of various types of heating

and cooling systems, it becomes imperative to be able to evaluate the energy cost of

operating these systems to maintain the battery at a desired temperature.

Furthermore, two biggest motivators for exploring alternative vehicle technologies

as well as for improving the existing technology are limited availability of crude oil

and rising of the Earth’s surface temperature. While the fuel efficiency improvement

achievable using variable degrees of hybridization has been established, there is signif-

icant curiosity and skepticism pertaining to the reduction of greenhouse gas (GHG)

emissions for higher degrees of electric hybridization, which require charging from

the electricity grid, due to the sources and processes used to generate electricity and
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the resulting emissions. A number of studies have been conducted to understand the

well-to-wheel emissions resulting from the usage of PHEVs that require charging from

the grid, which include the emissions resulting from the production, distribution and

usage of these vehicles. These emissions have been contrasted with those resulting

from the production, distribution and usage of conventional diesel or gasoline vehicles

of the same type. The authors in [52] analyzed the total and urban share of WTP

emission contributions from different fuel pathways, PTW and WTW emissions from

9 vehicle types using fuel from these pathways. They concluded that the WTW emis-

sions of criteria pollutants vary significantly in amounts as well as in locations for

different vehicle and fuel systems.

Multiple studies have compared emissions from alternative fuel technologies, not

just HEVs, [40] for mid-size SUVs, [53] for Class 8 trucks, concluding that HEVs

are more efficient as compared to FCV or CNG vehicles from a WTW efficiency

perspective. HEVs with varying degrees of hybridization have been found to produce

less WTW GHG emissions across borders ( [54] [55] [56] in China, [57] in UK and

California, [58] in Switzerland, [59] [60] in the US, [61] for non-OECD Americas, US

and Asia).

There have also been multiple studies that evaluate the emissions reduction poten-

tial of medium/heavy-duty trucks and buses, where all the studies have highlighted

the potential benefits of hybridization for these vehicles in different driving and op-

eration scenarios. The authors of [55] used the Tsinghua CA3EM and GREET to

estimate the GHG emissions of AF buses currently in use/demonstrated in China to

conclude that only the electric, LPG, and CNG buses are better in fuel economy and

emissions as compared to the conventional buses and then provide technological and

policy suggestions to improve the present GHG emissions scenario in China. Life-

cycle assessment of CO2 emissions was performed in [56] for three battery electric

buses (BEBs) that were tested on-road in China, considering the fuel-cycle, they dis-

cuss the energy consumption with the AC on and off under multiple passenger load

conditions to conclude that the fuel saving potential increased in heavy traffic, AC
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operations and full passenger load, and that the AC contributes more to the EC than

passenger load, and that the BEBs can reduce WTW petroleum consumption by over

85%, fossil fuel by 32% and CO2 emissions by 19-35%. The authors of [62] analyzed

CO2 emissions from series and parallel MD truck PHEVs (on two drivecycles and

with different control strategies) for four CO2 intensities of electricity production it

was shown that as compared to passenger cars MD trucks have a lower potential for

CO2 emissions reduction due to the higher engine efficiencies in general and that us-

ing a blended CD mode can lower the CO2 emissions even further. A comprehensive

holistic comparison of the life cycle costs was performed in [53], emissions and air

pollution externalities costs of Class 8 trucks with different vehicle technologies to

conclude that BE class 8 trucks outperform all other fuel techs including CNG.

Some studies have also performed powertrain optimization [63] and vehicle usage

based technology allocation [64] to minimize GHG emissions and cost. Further, the

authors of [65] analyzed the global historic road freight activity data and projected

it to 2050 using IEAs Mobility Model, concluding that with the current INDCs the

global GHG emissions would increase by 56% by 2050, but there is a potential to

reduce them by 60%, and the policy improvements necessary to achieve it are also

suggested.

Few studies have further assessed the uncertainties regarding the emissions reduc-

tion potential of PHEVs. Life-cycle assessment of air emissions and oil consumption

from ICEVs, HEVs and PHEVs was performed in [66] to conclude that GHG emis-

sions reduction/increase potentials of PHEVs are uncertain as compared to HEVs,

due to the emissions from battery charging and manufacturing and that HEVs and

PHEVs with smaller battery packs reduce the externality damages, offering more

benefits per dollar and hence should be promoted. A vehicle life cycle assessment

of GHG emissions from BEVs and gasoline vehicles in UK and California was per-

formed in [57], to conclude that under urban driving schedules, mid-size BEVs in

the UK reduced GHG emissions significantly but not for highway driving schedules,

and the SUV class EVs in California reduced GHG emissions in both the cases thus
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emphasizing that a general conclusion cannot be made about the relative GHG per-

formance of BEVs rather life-cycle emissions including those from manufacturing as

well as variations due to different grid intensities need to be considered. The authors

of [61] performed a cost of ownership analysis and WTW GHG emissions analysis for

various alternative technologies for light-duty vehicles, and also performed a sensi-

tivity analysis with respect to changing component, fuel, electricity, natural gas and

hydrogen costs for non-OECD Americas, US and Asia. They concluded that there are

higher uncertainties for new technologies than ICEVs, although they reduce the GHG

emissions as compared to ICEVs and that robust refueling infrastructure and policy

initiatives required to achieve it are necessary for enabling the common customer to

adapt these technologies.

Given the speculation around the potential of emissions reduction for hybrid elec-

tric vehicles, it becomes necessary to evaluate the well-to-wheel emissions along with

the cost-of ownership assessment of these vehicles.

The efforts outlined in this thesis compare the economic gains of electric hybridiz-

ing two applications - medium-duty truck and transit bus for series and parallel hybrid

electric architectures over a set of drivecycles. A methodology to select the optimal

powertrain design and control strategy is demonstrated, and a sensitivity analysis

of the economic gains and battery replacements is performed. Further, probabilistic

variability in battery life depending on the variation of vehicle usage is assessed. A

simple method is proposed and demonstrated to evaluate the excess fuel consumption

due to the battery heating/cooling system. The WTW criteria pollutant emissions

caused by operating a PHEV transit bus in Indiana and California are calculated and

compared with those from a conventional diesel transit bus.

1.3 Contributions

In this thesis, a methodology to understand what economic and vehicle usage

scenarios, as well as electricity generation scenarios that make medium/heavy-duty
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PHEVs practicable, is presented. Contributions are made in: 1. Understanding the

impact of variation in vehicle usage and economic scenarios on the economic gains

and number of battery replacements. 2. Understanding the probabilistic variation in

battery life depending on a probabilistic variation in vehicle usage. 3. Understand-

ing the excess energy consumption required by the battery heating/cooling systems.

4. Understanding the well-to-wheel emissions from the operation of the heavy-duty

PHEVs. These are described in detail in the following paragraphs.

1.3.1 Design-space Exploration of Series and Parallel PHEVs for Medium

- duty Trucks and Heavy - duty Transit Buses

A framework for powertrain design including component sizing and control strat-

egy optimization based on the total-cost-of-ownership of the PHEV was proposed and

demonstrated. This framework forms the basis for the other analyses performed in

this thesis and has been described in Chapter 3.

This effort was led by Ashish Vora, with help from Xing Jin, Tridib Saha and the

author.

1.3.2 Selection of a Winning Solution and Sensitivity Analysis

A method to select a single customized powertrain configuration from the 800-

1300 configurations explored, is presented. The sensitivity of the number of ESS

replacements, fuel consumption reduction, Net Present Value and Payback Period to

change in economic and vehicle parameters is analyzed. The framework, assumption

and results have been outlined in Chapter 4.

This effort was led by the author with significant help from Ashish Vora, Xing Jin

and Tridib Saha.
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1.3.3 Uncertainty in Battery Life

Number of battery replacements significantly impact the life-cycle cost of the

vehicle and depend upon the vehicle usage. Potential frameworks, with and without

Markov Chain Monte Carlo, are discussed to understand the probabilistic variation in

battery life depending on battery usage. Results are demonstrated using a framework

to determine the probabilistic variation in battery life depending on the probabilistic

variation of battery recharge C-rate, time between recharges, battery temperature

of operation, without MCMC, for 2 drivecycles. The framework, assumptions and

results have been outlined in Chapter 5 .

The development of the MCMC algorithm and code was led by Aniruddha Jana, while

the validation of the algorithm was led by the author. The framework development

and demonstration of results was led by the author with help from Xing Jin, Tridib

Saha and Aniruddha Jana.

1.3.4 Effect of Heating/Cooling System on Fuel Consumption

Although multiple studies exist that propose different heating/cooling systems

for batteries, a computationally efficient method to compare the fuel consumption

impacts of these methods is required. A method to determine the excess fuel con-

sumption caused by the battery heating/cooling system, when operated in different

ambient temperatures is presented. The framework, assumptions, and results have

been outlined in Chapter 6 .

This effort was led by the author.

1.3.5 WTW Emission Impacts of Series PHEV Transit Buses in Indiana

and California

Apart from the life-cycle costs of the PHEVs, it is necessary to consider the well-

to-wheel emissions caused by the PHEVs to get a more holistic understanding of
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the advantages, disadvantages of these vehicles and an understanding of under what

electricity generation scenarios do PHEV Transit Buses make sense. A framework

utilizing GREET 2017 is discussed and demonstrated to calculate the WTW emis-

sions of criteria pollutants from PHEV Transit Buses to be operated in Indiana and

California and compared to those from conventional Transit Buses. This is discussed

in Chapter 7.

This effort was led by the author with assistance from Nachiket Vatkar.

1.4 Outline

• CHAPTER 2: Simulation Models - In this chapter, the vehicle, battery perfor-

mance, battery degradation and the economic models considered, are summa-

rized.

• CHAPTER 3: Evaluating Economic Validity of MD Truck and Transit Bus -

In this chapter, the economic validity of the medium-duty truck and transit

bus over different drivecycles is compared, and architecture selection from the

life-cycle cost perspective is explored.

• CHAPTER 4: Selection of Winning Solution and Robustness Analysis- In this

chapter, a methodology to select an optimal powertrain design and control strat-

egy, is proposed. A sensitivity analysis of battery replacements and economic

gains to economic scenarios and vehicle parameters, is performed.

• CHAPTER 5: Determining Variability in Battery Life - In this chapter, a

framework to understand the impact of variability of battery usage conditions on

battery life and hence on the economic validity, is proposed and demonstrated.

• CHAPTER 6: Impact of battery heating/cooling system on fuel consumption

and economic validity: In this chapter, a method to calculate the excess fuel

consumption required to maintain the battery at desired temperatures for dif-

ferent ambient temperatures, is proposed.
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• CHAPTER 7: Understanding WTW emission impacts of PHEV Transit Buses:

In this chapter, the WTW emissions of criteria pollutants resulting from the

operation of a PHEV transit bus in Indiana and California, are calculated and

compared with the WTW emissions resulting from the operation of conventional

diesel buses.

• CHAPTER 8: Conclusions: In this chapter, the findings from all the chapters

are summarized.

• CHAPTER 9: Recommendations: In this chapter, possible directions for future

work are recommended.



14

2. METHODS AND MODELS

2.1 Vehicle Simulation Model

A commercially available vehicle simulation tool, Autonomie, developed by Ar-

gonne National Labs, is used here. This is a MATLAB/Simulink based simulation tool

that has component-level models of all components in the powertrain, driver, environ-

ment and vehicle controller. The models are flexible enough to allow modifications in

each component. Two hybrid powertrain architectures have been considered in this

study, as shown in Figure 2.1 and Figure 2.2. In the parallel architecture, the battery

and motor are connected in parallel with the engine such that the motor and engine

can independently provide torque to the wheels. In the series architecture, the engine

is mechanically disconnected from the wheels. The tractive power required at the

wheels comes from the motor only, thus requiring the motor to be large enough to

source all the tractive power.

The driver is modeled with look-ahead, hence knows the drivecycle in advance as

well as the current speed of the vehicle, from which it generates acceleration and brake

Figure 2.1. Series architecture.
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Figure 2.2. Parallel pre-transmission architecture.
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pedal demands for the vehicle controller. The vehicle controller, while knowing the

driver demands, also knows the instantaneous propulsion power limits of the engine,

and motor (and generator for the series architecture) as well as the discharge and

charging power limits for the battery. The vehicle controller implements a rule based

power management strategy to determine the power split between the engine and the

battery.

The acceleration pedal demand from the driver contains harsh transients, which

can propagate to the engine or battery, affecting their life. Hence, it is first smoothed

using a low pass filter (as described in (2.1), by KAccP and T1). This gives the power

required at the wheels, Pwhl. The combined engine and battery power needs to meet

Pwhl.

Low Pass Filter Transfer Function: F (s) =
KAccP

T1s+ 1
(2.1)

Pwhl =
KAccP

T1
∗ exp (−t/T1) ∗ AccPedal (2.2)

The engine is modeled as torque and speed based efficiency, fuel rate and maximum

torque maps for a CI engine, which can be scaled to meet the maximum power required

from the engine, in any simulation. The motor is also modeled as a torque and speed

based efficiency, continuous and peak torque maps for a permanent magnet motor,

which are scaled as per the peak power required. This scaling for the motor can be

further improved using FEA or other computationally efficient strategies such as the

one suggested in [67].

2.1.1 Battery Performance Model

The battery performance model predicts the instantaneous values of battery ter-

minal voltage and state of charge, depending on the current supplied by the battery.

Classified in a broad sense, there are two types of battery performance models: elec-

trochemical models [68] [69] [70] [71] and equivalent-circuit models [72] [73] [74].

Electrochemical models use differential equations to model the mass balance, charge
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balance in the solid and and solution phases, and charge transport across the cell,

which need to be solved simultaneously to determine the battery voltage. These

are more physics based and require a knowledge of specific parameters related to

the chemistry of the battery. Also, they typically require more computational time

but can be applied during varying operating scenarios with minimal loss of accuracy.

Equivalent-circuit models, on the other hand, represent the battery using a voltage

source, a resistance and zero or more resistance-capacitance (RC) branches connected

in series. The resistance-capacitance and voltage source values are typically a function

of the state of charge (SOC) of the cell and temperature, and are obtained by fitting

the voltage across the loop to the experimental charge-discharge characterization cy-

cles of the cell. These models, although fitted to limited data, are computationally

fast and accurate for the operating conditions over which the data was obtained. The

equivalent-circuit models have been used for all sections of this study. Furthermore,

depending on the number of RC branches used to model the cell, these models can

be classified as 0th order, 1st order, etc. In either case, the ESS pack is considered to

consist of 2 modules in parallel where each module consists of multiple cells in series.

The voltage equations for each of these are discussed next. For both the cases the

SOC is determined using Coulomb counting, as shown in (2.3), where SOCinit is the

initial SOC of the cell, I is the current sourced/sunk by the cell and AhCap is the

ampere-hour capacity of the cell. The cells are assumed to be balanced, i.e. all cells

in the battery pack are assumed to have the same SOC.

SOC = SOCinit −
∫
Idt

AhCap
(2.3)

0th Order Equivalent-Circuit Model

The cell is modeled using a 0th order equivalent-circuit model, as shown in Figure 2.3,

using an open-circuit voltage (VOC(SOC)) that battery exhibits at it’s terminals when

there is no load attached to it, an internal resistance (Rint(SOC)) that emulates the

resistance of the current collectors, the SEI layer etc. and the terminal voltage (Vterm)
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Figure 2.3. 0th order equivalent-circuit model.

that emulates the voltage at the terminal of the battery when a load is attached to

it and is calculated as shown in (2.4).

Vterm = VOC − I ∗R0 (2.4)

1st Order Equivalent-Circuit Model

The cell is represented using the 1st order equivalent-circuit model shown in Figure 2.4,

where VOC is the open-circuit voltage, Vterm is the terminal voltage, V0 and V1 are

voltages across the resistance and resistance-capacitance pair respectively. The cell

is represented using R0, which emulates the ohmic resistance of the current collectors

and the separator and the R1C1 pair emulates the diffusion of Li ions from the anode

to the cathode.

Vterm = VOC − V0 − V1 (2.5)

V0 = I0 ∗R0 (2.6)

IC = C ∗ dV1
dt

;V1 = (I0 − IC) ∗R1 = I1 ∗R1 (2.7)
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Figure 2.4. 1st order equivalent-circuit model.
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The terminal voltage of the battery is maintained within the manufacturer spec-

ified voltage limits (Vmax and Vmin) by the battery management strategy to prevent

failures and fires. (2.8) and (2.9) define the maximum discharge and charge powers

for the entire SOC range, which ensure that the maximum terminal voltage does not

increase beyond Vmax during charge, and that it does in reduce lower than Vmin during

discharge.

PV dis max = (VOC − Vmin) ∗ Vmin

Rint

(2.8)

PV chg max = −(Vmax − VOC) ∗ Vmax

Rint

(2.9)

In addition to the voltage limits, current limits have been imposed to ensure no

exposure to high C-rates that can aggravate battery degradation, as given by (2.10)

where C-ratemax is the maximum allowed C-rate and AhCap is the Ah capacity of

the battery.

IC-rate max = C-ratemax ∗ AhCap (2.10)

The current limits are implemented as maximum charge and discharge powers using

(2.11) and (2.12).

PC-rate dis max = (VOC − IC-rate max ∗Rint) ∗ IC-rate max (2.11)

PC-rate chg max = −(VOC + IC-rate max ∗Rint) ∗ IC-rate max (2.12)

Figure 2.5 is a representation of the variation of voltage based and C-rate based power

limits with SOC. The final “physical” limit of the battery is the stricter of the voltage

and C-rate based power limits during charge and discharge, as given in (2.13) and

(2.14).

Pbatt dis max = min(PV dis max, PC-rate dis max) (2.13)

Pbatt chg max = min(PV chg max, PC-rate chg max) (2.14)



21

Figure 2.5. Voltage and C-rate based cell power limits.
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Figure 2.6. Vehicle modes of operation.

2.1.2 Modes of Operation

The vehicle operation is divided into two modes viz. charge depleting (CD) and

charge sustaining (CS), as shown in Figure 2.6. Assuming that the battery is fully

charged overnight, the first mode of operation for the day is the charge depleting

mode in which the battery is used as the dominant source of power and is allowed

to absorb the regenerative energy. The engine helps provide any excess power, if

required, during this mode. Assuming that the SOC of the battery is 100 % at the

beginning of this mode, it is allowed to deplete to 30 %, hence ‘charge depleting’.

Once the battery reaches 30 % SOC it is not allowed to deplete any further. The

engine becomes the dominant source of tractive power. The battery is allowed to

absorb energy due to regenerative braking and release this energy to assist the engine

such that an average SOC of 30 % is maintained, hence ‘charge sustaining’.

2.1.3 Control Strategy

Battery Power Demand

The battery power limits defined in the battery management strategy define the

“physical” limits of the battery that shouldn’t be exceeded to prevent aggravating

battery degradation as well as failures. The battery region of operation, which dictates
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the power provided by the battery in the CD and CS modes, is governed by the

“control” power demand, which is different in both the modes. The area on the

Power vs SOC plot allowed by the physical limits is sectioned to define the battery

region of operation for both the modes. In the charge depleting mode, since the

battery is required to be the dominant source of power, the maximum power demand

is the same as maximum “physical” limit while the minimum power demand is zero,

until the battery reaches the target SOC, as shown in (2.15) and Figure 2.7a.

Pbatt min = 0;Pbatt max = Pbatt dis max (2.15)

In the charge sustaining mode, the battery needs to maintain the target SOC. If the

SOC shifts away from the target SOC, due to the battery assisting the engine or due to

absorption of regenerative braking energy, the battery is made to discharge/recharge

the excess energy. Therefore for SOC > SOCtarget, the minimum power demand

linearly increases as the SOC is further away from the target SOC, and the maximum

power demand is equal to the maximum physical limits, as given in (2.16), and shown

in Figure 2.7b. When SOC < SOCtarget, the minimum power demand is equal to

the charging power limit and the maximum power demand linearly becomes more

negative further away from the target SOC, as shown in (2.17) and Figure 2.7b. The

linear increase/decrease of the power demand is defined using tan(θSOC reg). With

higher θSOC reg, the target SOC will be maintained more aggressively.

Pbatt min = tan(θSOC reg) ∗ (SOC − SOCtarget);Pbatt max = Pbatt dis max (2.16)

Pbatt min = Pbatt chg max;Pbatt max = tan(θSOC reg) ∗ (SOC − SOCtarget) (2.17)

The determination of battery physical limits and control limits to maintain the region

of operation is the same for both the series and parallel architectures. But since the

engine and motor are connected differently to the wheels in both the architectures,
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their respective power shares are determined differently.

Engine and Motor Power Demand

The strategy for calculating the power demands for the engine and motor, given the

battery power demand, is the same for the CS mode and CD mode after the engine

has turned ON. In the CD mode, the engine is allowed to turn ON to assist the battery

only when the wheel power demand exceeds a fraction (FEngON) of the instantaneous

maximum discharge power limit of the battery, as shown in (2.18).

In the CD mode the engine turns ON if Pwhl > FEngON ∗ Pbatt max (2.18)

In the series architecture, since the engine is mechanically disconnected from the

wheels, the engine has the flexibility to operate at it’s most efficient point (Peng opt),

irrespective of the speed. The power demanded from the engine is then adjusted

around this point of operation so as to complement the power provided by the battery.

It is shown in Figure 2.8 and (2.19) how the battery SOC and mode dependant engine

power limits are determined. These limits are then applied to the optimal point of

engine operation, as shown in Figure 2.9 and (2.20), to provide the battery power

dependant adjustment of engine power demand, followed by the physical maximum

engine power limit to give the power demanded from the engine. Since the motor is

connected in series with the wheels, it needs to provide all the power required at the

wheels as given in (2.21).

Peng hi = Pwhl − Pbatt min;Peng lo = Pwhl − Pbatt max (2.19)

Peng = min(Peng max,min(Peng hi,max(Peng lo, Peng opt))) (2.20)

Pmot = Pwhl (2.21)

For the parallel architecture, although the engine is not mechanically disconnected

from the wheels, a maximum efficiency operating point can be obtained for each en-
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(a)

(b)

Figure 2.7. Cell limits in the (a) Charge Depleting mode and (b) Charge Sustaining
mode.
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Figure 2.8. Battery SOC and vehicle mode based engine power limits.

gine speed. These points define the optimal curve for engine operation (Peng opt(weng)).

Therefore, the determination of engine power demand is similar to the series archi-

tecture, except that Peng opt is now dependant on the engine speed, as shown in Fig-

ure 2.10a. Peng hi and Peng lo are defined in Figure 2.8. In the parallel architecture, the

required power at the wheels is provided by a combination of the motor and engine

powers. Therefore, the motor power demand is calculated from the engine and wheel

power demands as given by (2.23). This motor power demand is further subjected to

motor and battery power limits and the final engine power demand is recalculated as

shown in Figure 2.10b to ensure that the required wheel power is met by the engine

and the motor.

Peng = minPeng max,min[Peng hi,max(Peng lo, Peng opt(weng)] (2.22)

Pmot = Pwhl − Peng (2.23)

2.2 Battery Degradation Models

While the battery performance models estimate the instantaneous battery termi-

nal voltage and SOC, the battery degradation models are used to predict the change
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Figure 2.9. Engine power demand calculation based on a single optimal operating
point for the series architecture.

(a)

(b)

Figure 2.10. (a) Engine power demand and (b) motor power demand calculation for
the parallel architecture.
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in the energy capacity, power sourcing and sinking capability, losses associated with

the battery over time and use. A battery consists of two electrodes - the anode and

the cathode separated by a separator that is non-permeable to electrons, and elec-

trolyte. The electrodes are made up of a matrix like structure that can be thought

of as garages that house the Li-ions and electrons. During discharge, the Li-ion and

electron pair separates at the anode, the electrons travel to the cathode from the

external circuit while the LI-ions travel to the cathode from within the battery by

crossing the separator, and both unite at the cathode. Reverse process happens dur-

ing charging. Over usage, following dominant phenomena occur with graphite anodes

in Li-ion batteries:

• The loss of cyclable Li-ions in the battery due irreversible side reactions con-

suming those ions to form other products (such as the Solid Electrolyte Interface

(SEI) layer), thus rendering those Li-ions incapable of carrying charge. These

products deposit on the active particle, making it difficult for the Li-ion to enter

or exit and hence can also increase the internal resistance of the battery.

• The loss of the electrode active material (“garages”) that house the Li-ion,

which happens due to the continuous stresses due to insertion and de-insertion

of Li-ions from the particle, which fracture the particle thereby losing the Li-

ions already contained in it as well as not providing that space for the successive

Li-ions. These fractured particles can also isolate other “good” active particles

thereby further reducing the Li-ion holding capability of the electrode.

Other degradation mechanisms like dendrite growth, manganese poisoning, cathode

active material loss also occur in batteries in varying proportions according to the

cathode used along with the graphite anode and according to the operating conditions

of the battery. But the mechanisms mentioned above are considered to be dominant

for the purpose of this thesis.

Loss of energy capacity occurs due to the loss of cyclable Li-ions, or electrode

active material in the battery, and is manifested as reduction in the CD mode range
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for the PHEV. Loss of power capacity occurs due to an increase in the internal resis-

tance of the battery, which results in the battery physical limits becoming stricter,

thereby reducing the regenerative absorbing potential as well as power assist capa-

bility of the battery. Both of these reduce the contribution of the battery to tractive

power, thereby increasing the fuel consumption of the vehicle. The impact of battery

degradation on the fuel consumption of a parallel HEV transit bus was demonstrated

by in [5] where about the fuel consumption was shown to increase by about 10% over

the battery life. It is therefore necessary to capture battery degradation as accurately

as possible.

The battery degradation models available in the literature can be broadly classified

as empirical and phenomenological models. The empirical models rely on experimen-

tal battery degradation data to fit the capacity and/or power loss curves as functions

of operating parameters such as temperature, DOD, Ah-throughput etc. These mod-

els are fast but reliably accurate only in the operating condition range they were

tuned in [75] [76]. As long as their usage is limited to the operating conditions they

were defined on, they can be used for large parametric simulations studies because of

the minimal time penalty.

Phenomenological models, on the other hand, are based upon physics based com-

plex mathematical expressions of the degradation phenomena that occur in the bat-

tery. While these expressions can be used across all operating conditions, these models

are not very computationally efficient [68]. Also, to be able to mathematically model

every new individual degradation phenomenon requires enough experimental data ex-

plaining the occurrence of the phenomenon, which is expensive. Realizing this gap

in the literature, as further explained in [77], a reduced order physics based capacity

loss model for graphite anodes was proposed that captures the phenomena explained

previously and validates the model with experimental data for the Lithium ferrous

phosphate/graphite (LFP/Graphite) cell [78].

Two of these models have been used for two different battery chemistries in this

thesis. The empirical model for Nickel cobalt manganese + lithium manganese oxide
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cathodes and graphite anodes (NCM+LMO/Graphite) as proposed in [75] has been

used in Chapter 3 for the large parametric simulation study conducted for powertrain

design of series and parallel PHEVs. The reduced order capacity loss model proposed

in [78] is used in Chapter 5 for the LFP/Graphite batteries because of it’s physics

based nature that allows it to be used over a broader range of operating conditions.

2.3 Economic Calculations

The vehicle simulation model gives the energy (fuel and electricity) consumption of

the vehicle. The battery degradation model provides the capacity loss of the battery.

This capacity loss can then be used to determine the battery life and hence the number

of battery replacements over vehicle life. The cost of battery replacements and the

fuel and electricity charging costs define the operating cost of the PHEV. While the

fuel and electricity costs occur each year, the battery replacement costs occur in the

year the battery capacity reaches end-of-life. For the conventional vehicle, the fuel

costs are considered as the operating costs. Also, since the PHEV powertrain consists

of components like the battery and the motor that are not part of the conventional

vehicle powertrain, the costs of these components is considered as the excess initial

cost of the PHEV, considered to occur at day 0 of the vehicle life. The cost savings

due to downsizing of the engine are not considered here. These three costs, viz.

the operating cost of the PHEV, the operating cost of the conventional vehicle and

the excess initial cost of the PHEV are used to compare the powertrain designs by

calculating the following metrics:

• Net Present Value (NPV): This is the time-discounted value of the future costs

of the powertrain design (battery replacement and energy costs) that gives it’s

worth in the present value, as shown in (2.24), where ISC is the initial system

cost ($) that occurs on day 0, CFi is the total cash flow ($) that occurs in year

i, and r is the social discount rate. The ISC is defined as shown in (2.25), where

IntPrem is the manufacturer integration premium or markup, A0($), A1($/kW)
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are the constant and per kW motor costs, and A2 is the $/kWh cost of the

battery, MPP is the motor peak power and ESSCap is the kWh capacity of

the battery. The Net Present Value considered in this thesis is the difference

between the NPV of the PHEV and that of the conventional vehicle. Higher

NPV is better.

NPV($) = ISC +
n∑

i=1

CFi

(1 + r)i
(2.24)

ISC($) = IntPrem ∗ (A0 + MPP ∗ A1 + ESSCap ∗ A2) (2.25)

• Payback Period (PBP): This is the time taken in years by a PHEV powertrain

design to recover the initial system cost through the operating cost savings

over the conventional vehicle, as shown in (2.26). The costs considered for the

payback period calculation are not time discounted. Lower payback period is

better.

PBP = n∗such thatNPV = 0, considering non-discounted cash flow (2.26)

• Annual Cost Savings per Mile (AnnCS/mile): This is difference in the annual

operating costs of the PHEV and the conventional vehicle, not including the

battery replacement costs, divided by the miles traveled annually to get a $/mile

number, as shown in (2.27), where CFconv fuel is the annual fuel cost for the con-

ventional vehicle, CFPHEV fuel and CFPHEV elec are the annual fuel and electricity

costs for the PHEV respectively. Note that this value is calculated using the

non-discounted cash flows, the annualized cost savings per mile can be calcu-

lated by annualizing the NPV and then dividing it by the AVMT, thus taking

the discounted value of the battery replacement costs and other future cost

savings into account. For the purpose of this thesis, the simpler definition of
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annual cost savings per mile as defined in (2.27) has been used. Higher annual

cost savings per mile is better.

AnnCS/mile =
CFconv fuel − (CFPHEV fuel + CFPHEV elec)

AVMT
(2.27)

2.4 Conclusions

In this chapter, an overview of the models and methods used in the thesis is

presented. In particular, the vehicle simulation models for the series and parallel

architectures are discussed. The battery performance models which estimate battery

terminal voltage and SOC are shown. The battery needs to be maintained within

the manufacturer specified voltage limits, the battery management strategy used to

ensure this as well as limit the C-rate during charge and discharge is discussed. The

control strategy that determines the power split between the battery, engine and

motor is also discussed for both the architectures. Finally, the economic model used

to calculate the Net Present Value, payback period, and annual cost savings/mile is

discussed.
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3. EVALUATING ECONOMIC VALIDITY OF MD TRUCK AND TRANSIT BUS

3.1 Simulation Setup

The simulation setup, as shown in Figure 3.1, consists of a vehicle simulation

tool to predict the fuel consumption and battery duty cycle, battery degradation

model to predict the capacity loss depending on the battery duty cycle, and economic

post-processing to understand the number of battery replacements and total cost of

ownership depending on the fuel consumption and battery capacity loss. The inputs to

the vehicle simulation model is a deterministic drive cycle (e.g. Manhattan, Pickup

and Delivery Class 6 etc.), vehicle parameters (e.g. coefficient of drag and rolling

resistance, vehicle mass), control parameters for the power split, sizing parameters

for the engine, motor and battery.

3.1.1 Vehicle Simulation Model

A commercially available vehicle simulation tool called Autonomie, developed by

Argonne National Labs, is used here. This is a Simulink based forward simulation

tool that has component level models of all components in the powertrain, driver,

environment and vehicle controller that is flexible enough to allow modifications in

Figure 3.1. Simulation framework.
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each component. Two hybrid powertrain architectures have been considered in this

study, as shown in Figure 2.2 and Figure 2.1.

3.1.2 Modes of Operation

The vehicle operation is divided into two modes viz. charge depleting (CD) and

charge sustaining (CS), as shown in Figure 3.2. Assuming that the battery is fully

charged overnight, the first mode of operation for the day is the charge depleting

mode where the battery is used as the dominant source of power. The engine helps

provide any excess power if required during this mode. Assuming that the SOC of

the battery is 100 % at the beginning of this mode, it is allowed to deplete to 30 %,

hence ‘charge depleting’. The battery is allowed to absorb power from regenerative

braking. Once the battery reaches 30 % SOC it is not allowed to deplete any further.

The engine becomes the dominant source of tractive power. Additionally, the battery

is allowed to absorb energy due to regenerative braking and release this energy to

assist the engine such that an average SOC of 30 % is maintained, hence ‘charge

sustaining’.

3.1.3 Powertrain Sizing and Control Strategy Parameters

The important parameters in powertrain sizing and control strategy considered in

this study are:

• Sizing parameters: The energy sources and converters- engine, ESS, and motor

-are considered for sizing in this study.

– The engine and the motor are modeled as static maps which are scaled to

match the peak power requested by the design of experiments.

– The ESS performance model shown in Figure 3.1 is modeled by a cell-level

0th order equivalent-circuit model, where the internal resistance of the

battery is modeled by a single resistor. The cell-level voltage and current
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(a)

(b) (c)

Figure 3.2. (a) Vehicle modes of operation (b) Operation in charge depleting mode
(c) Operation in charge sustaining mode.
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are then scaled to the pack level voltage and current. The pack consists

of two battery modules in parallel where each module consists of the same

number of cells in series. This number of cells in series is varied in the

design of experiments. The cell-to-cell variations have not been considered

here.

• Vehicle Parameters: These are the parameters that the powertrain is designed

for but vary over a day and also over the life of the vehicle.

– Vehicle Mass: The mass of the truck or bus at any time is dependent

on the mass of the chassis, which can be designed, and the mass of the

cargo/passengers in the vehicle at any point of time. Though there are

limits for the overall mass of cargo/passengers that can go into the vehicle,

the actual vehicle mass varies throughout the day.

– Coefficient of drag: This factor depends on the design and can change

during manufacturing as well. It also changes due to wind directions, and

the presence of other vehicles around our vehicle of interest.

– Coefficient of rolling resistance: This factor depends on the conditions of

the tires and can vary over the life of the tire.

• Control Parameters: These are knobs in the rule based control strategy that

the energy management for the engine and the battery.

– The maximum charge/discharge C-rate: This affects how fast the battery

is allowed to charge/discharge, and hence maximum power that the battery

can source or sink at any time.

– Power filter time constant: This is the time constant of the first-order filter

which is used to reduce the transients in the driver power demand.

– ESS SOC regulation slope: This parameter is active only in the charge sus-

taining mode and regulates how aggressively the ESS SOC is maintained.
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Table 3.1. Regression parameters for the battery degradation model [75].

a 8.61E-6, 1/Ah-K2 Irate Crate

b -5.13E-3, 1/Ah-K t Days

c 7.63E-1, 1/Ah Ea 24.5, kJ/mol

d -6.7E-3, 1/K-Crate R 8.314, J/(mol-K)

e 2.35, 1/Crate T K

f 14,876, 1/day1/2

– Fraction of power for the engine to turn ON: This parameter is active

in charge depleting mode. When the wheel power demand exceeds this

fraction of the maximum battery power, the engine is requested to turn

ON.

3.1.4 Battery Degradation Model

The NMC+LMO/Graphite chemistry is considered here. An Ah throughput and

temperature based capacity loss model proposed by [75], shown in (3.1), has been

used. In this equation, a,b,c,d,e,f are regression coefficients. The model consists of

two terms - calendar aging, which is proportional to the square root of time and

has an Arrhenius relation with temperature, and cyclic aging, which is exponentially

dependent on the C-rate and linearly dependent on Ah throughput. This model has

been generated using experimental data up to a C-rate of 6.5C and 46◦C, while the C-

rate is limited to 4C in our simulation, hence the degradation predictions are assumed

to be accurate enough for our use.

Qloss,% = (aT 2
batt + bTbatt + c)exp[(dTbatt + e)C rate]Ahthroughput + ft0.5exp[

−Ea

RTbatt
]

(3.1)



38

3.1.5 Economic Calculations

The results obtained from each of the modes are weighted by the utility factor.

This weighting is elaborated by (3.2) and (3.3).

UF =
CD Range

Daily VMT
(3.2)

ResultUF = UF ∗ ResultCD + (1− UF) ∗ ResultCS (3.3)

The utility factor weighted results give the per day values for fuel consumption, energy

consumption and capacity loss. These results are extrapolated to a year and used to

estimate the number of battery replacements over the vehicle life (defined to be 12

years, here).

Additionally, four cost scenarios have been defined as shown in Table 3.2. The fuel

prices are estimated from the predictions published by the U.S. Energy Information

Administration in [79]. The battery and motor costs are estimated from the literature

[80] and [81]. The battery and motor costs drop with time owing to better and

cheaper technology and increase in demand. The fuel price increases due to depletion

of resources. For a vehicle manufactured in 2015, for example, the fuel price over it’s

life is assumed to remain constant at $2/gal to get a conservative estimate of costs.

ESS replacement costs are treated similarly. A social discount rate of 10% on all cash

flows and an OEM integration premium is assumed.

Furthermore, a constant electricity cost of $0.1/kWh assuming negligible variation

in electricity price from 2015 to 2030, and an AC charging efficiency of 90% is assumed

[82] [83] [84]. The battery end-of-life is defined to be 70% of the original capacity i.e.

a 30% loss of energy capacity.

The initial system cost of the plug-in HEV along with the operating costs which

include the fuel cost, electrical energy costs and battery replacement cost are com-

pared with those of the conventional vehicle to obtain comparison metrics like Payback

Period, Net Present Value, Internal Rate of Return and Annualized cost savings/mile.
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• Initial System Cost (ISC): This includes the cost of the motor, battery and an

integration premium, as shown in (2.25).

• Net Present Value (NPV): This is the time discounted sum of cash flows, in-

cluding the initial and operating costs, over the vehicle life. The NPV referred

to in this document, is the difference between the NPV of the PHEV and the

NPV of the conventional vehicle, as shown in (2.24).

• Payback Period (PBP): This is the time required to recover the additional initial

cost of the PHEV with the fuel cost savings. The payback period calculations

consider non-discounted cash flow, as shown in (2.26).

• Annualized cost savings per mile: This is the difference between the annual fuel

and electricity costs for the PHEV and the conventional vehicle further divided

by the AVMT, to get a $/mile number, as shown in (2.27).

Table 3.2. Economic assumptions - scenarios.

Parameter Unit 2015 2020 2025 2030

Fuel Cost $/gal 2 3.33 4.66 6

ESS Cost $/kWh 500 300 200 150

Motor Cost - Slope $/kW 33.3 27.4 21.5 15.6

Motor Cost - Intercept $ 503.5 455 406.5 358

Table 3.3. Vehicle usage assumptions.

Parameter MD Truck
Transit

Bus

Days used/year 300 300

Annual Vehicle Miles Traveled 25000 30000
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3.1.6 Example Design of Experiments

An example of the variables considered and ranges used is shown in Table 3.4.

The above framework is exercised for two vehicle applications, a Medium-duty truck

and a Transit bus with series hybrid and parallel hybrid architectures. Three different

drivecycles that cover the range of speeds and power demands that a medium-duty

truck would be used on, and those that are available in literature, have been consid-

ered. They are Pickup and Delivery Class 6, Refuse Truck and New York Composite

drivecycles. Similarly, the Manhattan, Orange County and two variations of the

China drivecycle have been used for the transit bus. This is shown in Table 3.5.

Table 3.4. Example DOE.

Parameter Unit Min. Value Max. Value

Vehicle Parameters

Coefficient of drag - 0.58 0.94

Coefficient of rolling resistance - 0.006 0.008

Vehicle mass kg 8850 15000

Powertrain Sizing Parameters

M/G peak power kW 150 300

Engine peak power kW 75 200

ESS energy capacity kWh 24.8 372.4

Control Strategy Parameters

Maximum charge/discharge C-rate - 1 4

Power filter time constant - 0 0.5

ESS SOC regulation slope W/SOC 200 20000

Fraction of power for the engine to turn on - 0.3 0.9
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Table 3.5. Scope of the present work.

Application
PD

Class 6
Refuse
Truck

NY
Comp.

Man-
hattan

Orange
County

China
Normal

China
Aggres-

sive

Truck

Series
T=1300

Parallel
T=800

Bus

Series
T=1000

Parallel
T=1300
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3.2 Results and Discussion

800-1300 combinations of input parameters shown in Table 3.4 were simulated for

each vehicle type, architecture and drivecycle combination shown in Table 3.5. Out-

put of each simulation was evaluated for each of the four scenarios discussed above.

Following were defined as the constraints for viability of any output and the outputs

were filtered based on these constraints:

1. Drivecycle: The percentage of time for which the output speed of the simulation

was more than 2 mph less than or greater than the desired speed (given by the drive-

cycle) should be less than 2%.

2. Gradability: The powertrain should be able to power the vehicle at a 7% grade

and maintain 20mph.

3. Payback Period: The time required to recover the excess initial cost due to hy-

bridization from the fuel savings as compared to the conventional vehicle should be

less than 2 years.

4. ESS Replacements: The number of ESS replacements over the lifetime of the

vehicle(12 years) are limited to 3.

The earliest scenario for which even one simulation passes all of the above criteria

is the first scenario of economic viability, as shown in Table 3.6. This helps give an

idea of when (under what fuel cost, motor cost and ESS cost) can an OEM hybridize

a vehicle application, with which architecture, on what kinds of use cases (drive-

cycles). As the economic scenario becomes more favorable (higher fuel cost, lower

motor and ESS costs), more solutions become viable as they pass the payback period

constraint. Whether a solution passes the drivecycle, gradability and ESS replace-

ment constraints for a given architecture, vehicle type and drivecycle combination

depends only on the powertrain size, control strategy and vehicle parameters. It is

shown in Table 3.6 that the Transit bus application becomes favorable for hybridiza-

tion before the medium duty truck application. This can be primarily attributed to

the vehicle mass differences between applications and the drivecycles of use. These
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Table 3.6. First scenario of economic viability for MD truck and transit bus PHEV
applications with series and parallel architectures.

Application
PD

Class 6
Refuse
Truck

NY
Comp.

Man-
hattan

Orange
County

China
Normal

China
Aggres-

sive

Truck

Series
T=1300

2030 2030 2025

Parallel
T=800

2025 2025 2025

Bus

Series
T=1000

2020 2025 2020 2020

Parallel
T=1300

2015 2020 2020 2015
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two factors govern the tractive power requirement and hence the battery usage and

hence battery replacements, and also the amount of regenerative energy that can be

recovered. These effects can be more prominently observed in the cost savings that

can be achieved by both the applications.

Annual cost savings/mile, which are savings with respect to the corresponding

conventional vehicle on a drivecycle, vs. initial system cost for every application,

architecture and drivecycle combination, are shown in Figure 3.3. All solutions having

positive NPV, for the 2020 economic scenario, have been plotted in this figure. All

points lying above the red dotted line have a payback period of less than two years,

while those lying above the blue dotted line have a payback period of less than one

year. As is shown in the figure, the transit bus application shows higher annual cost

savings/mile than the MD truck. The transit bus has a greater mass as compared

to the truck. The conventional bus thereby has a higher fuel consumption that the

PHEV thereby leading to higher fuel savings.

Furthermore, the parallel architecture has lower initial system costs as compared

to the series architecture. This is a result of the sizing requirement for the motor and

the ESS. The series architecture requires all the tractive power to be sourced through

the motor, thereby requiring bigger motors than the parallel architecture. This also

results in earlier economic viability of the parallel architecture as compared to the

series architectures, as shown in Table 3.6.

Similarly, the annual cost savings/mile vs initial system cost for the 2030 economic

scenario are shown in Figure 3.4. The number of solutions having a positive NPV

are greater, because of a favorable economic scenario. The annual cost savings/mile

are also higher because the fuel cost is higher, causing the conventional vehicles to

be more expensive to operate as compared to the PHEVs. The initial system costs

are lower as well. More solutions have a payback period less than 2 years. Also, for

a transit bus, highest savings are obtained for the Manhattan drivecycle, followed by

the aggressive variant of the China drivecycle. For the MD truck on the other hand,

the NY Composite drivecycle provides highest cost savings. This is due to the higher
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braking energy available, leading to higher regenerative braking, for these drivecycles

as compared to the others. This is reflected in the first scenario of economic viability

in Table 3.6, where these drivecycles become favorable for hybridization earlier than

the others in their group.

ESS replacements and the corresponding payback period obtained for the solu-

tions having positive NPV for applications with a series architecture across the four

scenarios are shown in Figures 3.5 and 3.6. Our region of interest is payback pe-

riod less than two and ESS replacements less than three. As the economic scenario

becomes more favorable, the payback period of the solutions drops, the points come

closer together and more solutions lie in the desired space. Minimum one ESS replace-

ment is obtained in all cases which implies maximum ESS life is approximately six

years. Even with no ESS usage, considering it as a limiting case, ESS still undergoes

capacity fade (referred to as calendar aging), which limits the ESS life. Furthermore,

solutions with minimum ESS replacements have a higher payback period, implying

that those solutions had a bigger battery, leading to lesser degradation but higher

cost.

Furthermore, the higher favorability of more urban drivecycles for hybridization

is seen in these figures as well. The NY Composite drivecycle for MD truck and

the Manhattan drivecycle for the transit bus application show lower payback periods

than the others.

3.3 Conclusions

In this chapter, a comparison of economic viability for two architectures - Series

and Pre-transmission Parallel, over two applications - a MD Truck and a Transit Bus,

was presented. The simulation framework proposed previously by the team was used.

The underlying control strategies for both the architectures were discussed and the

architectures and applications were compared from a life-cycle cost perspective. Both

the architectures are compared from an annual cost savings perspective. The transit
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bus with the parallel architecture was shown to become economically viable earlier

for hybridization.

Although fuel economy or cost savings is usually the point of comparison for the

hybrid architectures, leading to selection of an architecture with the best fuel economy,

it only partly paints the picture especially for the early economic scenarios when the

component prices are high and the fuel prices are low. In this chapter, the parallel

architecture was shown to have lesser initial system cost and hence had early payback

although the series architecture showed slightly higher annual cost savings. This

lays further stress on the need for a life-cycle cost based analysis of hybrid vehicles.

Additionally, between the MD Truck and the Transit bus, the transit bus was shown

to provide higher cost savings leading to quicker payback with similar initial system

costs, making it viable for hybridization earlier. The urban-use cases were shown

to be more favorable for hybridization where the Series Transit Bus achieves earliest

payback the Manhattan drivecycle and the MD Truck achieves earliest payback on the

NY Composite drivecycle. The actual cost-based metrics obtained here are dependant

on the battery degradation as well as economic assumptions made, and hence should

be considered representative.

The impact of opportunity charging on the electricity and fuel consumption, bat-

tery utilization, and hence on the economic metrics and number of battery replace-

ments can be considered as part of the future work.
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4. SELECTION OF WINNING SOLUTION AND ROBUSTNESS ANALYSIS

4.1 Introduction

As shown in Figures 3.5 and 3.6, there can be more than one powertrain and

control strategy solution that satisfies the drivability, gradability, payback period

and ESS replacement constraint. Which of these solutions is the best and the most

robust? The effort outlined in this chapter aims to answer this question. The focus

is on the series architecture for a transit bus application, and the solutions obtained

for the Manhattan drivecycle have been considered.

4.2 Choosing a Winning Solution

To select one solution from amongst all the feasible solutions, ones that pass the

viability constraints, the Net Benefit Investment Ratio (NBIR), as defined in (4.1),

has been used.

NBIR =
PV(Benefits)− PV(Operating Costs)

PV(Investment Cost)
(4.1)

where, PV denotes the present value of the benefit or cost, benefits are the fuel con-

sumption savings, operating costs include the ESS replacement and electrical energy

costs and investment cost is the initial system cost. Higher the NBIR for a solution,

more are the benefits per dollar of investment. This metric helps select a solution with

optimum ESS replacement and energy consumption costs, without having to buy a

big battery, which leads to higher initial system cost and larger payback period. This

is one approach to select the optimal solution on the ‘Pareto optimal curve’ shown

in Figures 3.5 and 3.6. The solution with the highest NBIR, for a series architecture

transit bus operating on the Manhattan drivecycle is shown in Table 4.1.



52

Figure 4.1. Winning solution.

Table 4.1. Example winning solution.

Parameter Unit Value

Powertrain Sizing Parameters

M/G peak power kW 174

Engine peak power kW 104

ESS energy capacity kWh 44.4

Control Strategy Parameters

Maximum charge/discharge C-rate - 2.6

Power filter time constant - 0.31

ESS SOC regulation slope W/SOC 19966

Fraction of power for the engine to turn on - 0.34
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4.3 Sensitivity Analysis DOE

After obtaining the winning solution, it needs to be tested for its robustness. The

winning solution fixes the powertrain and control strategy, which guarantees that

the drivability and gradability criteria for feasibility are met. The feasibility criteria

that are dependent on other parameters that may be uncertain are the number of

ESS replacements and the payback period. The parameters that are uncertain and

those that would affect the number of ESS replacements and payback period include

the vehicle parameters (Cd, Crr, Vehicle Mass), the economic assumptions (Fuel cost,

component costs) and vehicle usage (e.g. vehicle miles traveled).

In order to understand the robustness of the selected solution, a (5x5x5)x(5x5x5x5)

DoE over the parameters shown in Table 4.2 was performed, with 5 equally spaced

sample points taken for each parameter. Additionally, the selected winning solution

was simulated over the other drivecycles to understand their effects.

Table 4.2. Example sensitivity analysis design of experiments.

Parameter Unit Min. Value Nom. Value Max. Value

Vehicle Parameters

Coefficient of drag * Frontal Area - 4.12 5.18 6.25

Coefficient of rolling resistance - 0.005 0.006 0.007

Vehicle Mass kg 12000 15000 18000

Vehicle Usage Parameter

Annual vehicle miles traveled miles 25000 35000 45000

Economic Assumptions

Fuel cost $/gal 2 4 6

ESS cost $/kWh 150 300 700

M/G and PE cost (slope,intercept) ($/kWh,$) (15.6,358) (27.4,455) (39.2,552)
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4.4 Results and Discussion

The tornado plots for the metrics of interest are shown in Figures 4.2 to 4.5.

The tables on the left define the minimum, maximum and nominal values of the

parameters considered. One parameter is varied at a time while the other parameters

assume their nominal values. The blue bars indicate the effect of reducing the value of

the parameter below its nominal value. The red bars indicate the effect of increasing

the value of the parameter above its nominal value. The parameters have been sorted

in the descending order of magnitude of their impact. In order to foresee the impact

of the worst case scenario on the metrics of interest, the parameters are made to

assume the extreme values in a direction that is undesirable for the metric of interest,

to obtain the worst case value of the metric. These values have been marked in

red. For example, it is desirable to minimize the number of ESS replacements, but

increasing AVMT increases this number, hence the worst case value of AVMT is its

maximum value (45000 miles), when the number of ESS replacements is concerned.

Additionally, the impact of changing the drivecycle is shown here as well. Manhattan

is the nominal drivecycle, it is also the drivecycle for the worst case scenario.

The tornado plot for the number of ESS replacements is shown in Figure 4.2.

Operation over the non-urban drivecycles leads to lesser number of ESS replacements,

possibly because of lesser aggressive usage of the battery. AVMT and vehicle mass

have a significant impact on the number of ESS replacements as well. The absolute

difference in the number of ESS replacements obtained when the AVMT increases

from 35000 miles to 45000 miles is approximately the same as the difference obtained

when it is reduced from 35000 miles to 25000 miles. This suggests a linear relationship

between AVMT and ESS replacements over this range. The worst case number of ESS

replacements is lesser than the maximum number of ESS replacements for feasibility

(i.e. 3).

The tornado plot for Net Present Value is shown in Figure 4.3. Higher NPV is

desirable. Fuel price has the highest impact on the NPV. Higher the fuel price, more
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Figure 4.2. Tornado plot for number of ESS replacements.

Figure 4.3. Tornado plot for net present value.
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Figure 4.4. Tornado plot for payback period.

are the fuel savings ($) of a PHEV with respect to a conventional vehicle. Similarly,

for AVMT, higher the number of miles more are the fuel savings and hence higher

is the NPV. The urban drivecycles use the battery more due to more start-stop

conditions leading to higher NPV. ESS Price has a significant impact on the NPV

as well, lesser the ESS price higher NPV will be obtained. Motor price, coefficient of

drag and coefficient of rolling resistance and vehicle mass do not have a big impact

on the NPV. NPV, in the worst case scenario, is negative. This implies that there

are more losses than gains from hybridizing the transit bus to a PHEV, under this

scenario on the Manhattan drivecycle.

The tornado plot for payback period is shown in Figure 4.4. Lower value of

Payback Period is desirable. Fuel price and ESS price have the highest impact on

payback period. Higher the fuel price, higher are the fuel savings ($) with respect

to a conventional vehicle, and the incremental initial system cost can be recovered

earlier. Higher the ESS price, more is the operational cost, leading to higher payback

period. The NPV on the non-urban drivecycles is lower suggesting that time taken to
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Figure 4.5. Tornado plot for fuel consumption reduction.

recover the incremental initial cost will be more. Higher AVMT and lower motor price

are required to minimize the payback period. Since the worst case NPV is negative

(Figure 4.3), the worst case payback period does not exist. It is interesting to note

that to minimize number of ESS replacements AVMT needs to be minimized, whereas

to minimize the payback period, the AVMT needs to be increased, hence there is a

trade-off.

The tornado plot for fuel consumption reduction is shown in Figure 4.5. Here the

fuel consumption (Wh/km) of the PHEV is compared with that of an equivalent con-

ventional vehicle, and the percentage reduction is plotted. Higher fuel consumption

reduction is desirable. Higher fuel consumption reduction is obtained over the China

normal drivecycle than the Manhattan drivecycle. Vehicle mass has a significant im-

pact on fuel consumption reduction. Lesser the vehicle mass, higher is the reduction

in fuel consumption. The coefficient of rolling resistance (hence the condition of tires)

has some impact on the fuel consumption reduction as well, though the coefficient of

drag does not. The worst case fuel consumption reduction is way above 50%.
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4.5 Conclusions

A method to select one solution out of the multiple solutions that were found to

be viable in Chapter 3 was presented in this chapter. The Net Benefits to Investment

Ratio was used for this purpose, and the powertrain configuration with the highest

NBIR was selected. A sensitivity analysis was performed to understand the impact of

variation in the drivecycle, vehicle usage parameters and economic parameters that

were a part of the DOE in Chapter 3, on the fuel consumption reduction, Net Present

Value, payback period, and ESS replacements. It was found that the fuel price, ESS

price, AVMT and vehicle mass affect these metrics the most.

For the worst-case operating parameters considered, the fuel consumption reduc-

tion drops from 64% to about 55%, showing that even for the worst vehicle mass,

AVMT, coefficient of drag and rolling resistance, the PHEV saves significant fuel as

compared to the conventional vehicle, and also results in less than three ESS replace-

ments. However, when combined with the worst case component costs and fuel price,

the PHEV configuration considered here is no longer viable due to the resulting neg-

ative Net Present Value, showing that even though the performance of the vehicle

is better than the conventional vehicle, high initial costs combined with high fuel

price makes the vehicle economically impractical. This lays further stress on the re-

quirement for performing a total cost-of-ownership analysis, and not just performance

optimization, for powertrain design.
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5. DETERMINING VARIABILITY IN BATTERY LIFE

5.1 Introduction

The efforts explained in the previous chapters are aimed at determining the fea-

sibility of hybridization, optimizing the powertrain design for a use case and under-

standing the robustness of the feasibility of the design to economic, vehicle and usage

parameters. One point has been clear through these chapters that battery degra-

dation and therefore the number of battery replacements contribute significantly to

the total cost of ownership. In order to reduce the number of battery replacements

over a vehicle’s lifetime it is inevitable to understand the factors that impact battery

degradation significantly. This understanding will help us determine the “rules” for

battery operation in a battery conscious manner.

Until now, the drivecycles and hence the battery duty cycles (battery current vs

time) were deterministic, so were the operating conditions. These led us to deter-

ministic values of battery life. In reality, the operating conditions, including battery

duty cycles, battery charging, temperature of operation are not constant values, they

vary even over operation on a single day. This implies that given a powertrain and

control strategy, even a drivecycle, the battery life is no more a single value but set of

values with a probability associated with each value. This chapter outlines a frame-

work to understand the variability in battery life due to the variability in operating

conditions.

5.2 Battery Degradation Model

In order to understand the key factors for battery degradation from a system level,

it is necessary to have a sufficiently accurate and fast battery degradation model. The

degradation model used in the previous chapters (for NMC+LMO/Graphite chem-
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istry) was a regression based model. Such types of models can be fast and accurate

only over the use cases over which it has been developed. A detailed comparison of

accuracy and computational efficiency for the battery degradation models, available

in literature, for Li-ion batteries, is performed in [77]. This reference also motivates

the need for a physics-based computationally efficient battery degradation model for

Li-ion batteries. In reference [78], the authors have developed one such model for

Li-ion batteries with graphite anodes and further validated it for the LFP/Graphite

battery. This model considers that there are two dominant anode-side degradation

mechanisms viz., Solid-Electrolyte Interface (SEI) layer growth and Active Material

(AM) loss, that contribute to capacity loss in a Li-ion battery with graphite anodes.

The mathematical equations for the loss model are shown in Equations (5.1) to (5.3),

where QSEI, QAM are the capacity losses due to SEI layer growth and active material

loss, Qloss is the total capacity loss, kSEI, kAM are the pre-exponential factor for SEI

and AM loss, ESEI, EAM are the activation energies for SEI formation and AM loss,

R is the ideal gas constant, T is the temperature, λ, θ are fitting parameters, I is the

current, SOC is the state of charge and t is time. This is a cell-level model and has

been used in the effort outlined in this chapter, assuming a LFP/Graphite battery

chemistry.

The empirical battery degradation model used previously (for NMC+LMO/Graphite

chemistry) can also be used provided the operating conditions such as the charge and

discharge C-rates and temperature are maintained within the ranges defined in the

experimental data used to tune the model.

QSEI =

∫ t

0

−kSEI exp (
−ESEI

RTbatt
)

dt

2(1 + λθ)
√
t

(5.1)

QAM =

∫ t

0

kAM. exp (
−EAM

RTbatt
)|I|.SOC.dt (5.2)

Qloss = QSEI +QAM (5.3)
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(a) Approach 1 - Parametric analysis.

(b) Approach 2 - Simulation framework for estimating variability in battery life and economic viability

Figure 5.1. Approaches for determining variability in battery degradation.

5.3 Framework

One approach to understanding the variability in battery degradation due to vari-

ation in operating conditions is to start with the baseline framework discussed earlier,

fix the powertrain and control, but vary the vehicle and usage parameters, as shown

in Figure 5.1a. The battery degradation model is run until the battery reaches end-

of-life, thus giving the variation in capacity loss and end-of-life. A probability density

of end-of-life is also expected at the output. In this approach, three additional pa-

rameters that describe the battery usage, further, have been considered. These are

number of charges a day (time between consecutive charges), C-rate at which the bat-

tery is charged and the temperature at which the battery is operated. Note that the

temperature at which the battery is operated is different from the ambient temper-
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ature, and relates more to the battery thermal management strategy. It is assumed

here that the battery heating/cooling system operates in a way such that the desired

battery temperature is maintained.

In Figure 5.1a, the time between recharges modifies the input drivecycle and the

recharge C-rate would also plug into the simulation model. This approach requires

the vehicle simulation model to be run every combination of vehicle parameters,

drivecycle, time between recharges and recharge C-rate. The vehicle simulation model

takes approximately 20 min to simulate a day long drivecycle, which includes both the

charge depleting and charge sustaining modes discussed earlier. If high resolution in

input sampling (more number of combinations for given ranges of input parameters)

is desired, a significant amount of time would be required for all the simulations.

Hence, for the purpose of this study, a variant of Approach 1, as shown in Fig-

ure 5.1b has been used. This framework captures the effect of variation in drivecycle,

time between recharges, recharge C-rate and battery temperature. It does not cap-

ture the effect of change in vehicle parameters here, but that is considered acceptable,

since this effect was captured in the previous Chapter, without associating probability

to the vehicle parameters.

Practically, battery degradation also leads to change in battery performance, in-

cluding drop in open circuit voltage and increase in internal resistance ( [85]). This

would change the battery duty cycle with battery age. This effect of battery degra-

dation on battery performance has not been considered in this study and can be a

topic of future study.

5.4 Validation of the Framework

The focus of this section is to validate the framework defined in Figure 5.1b.

Given a battery duty cycle, the idea is to be able to correctly modify it for in-route

charging and understand the effect of variation in any of the inputs (excluding the

battery duty cycle) on the capacity loss and end-of-life. Three more inputs come



63

into picture after the vehicle simulation model. They are number of charges in a day

(miles between charges), charging C-rate and battery temperature of operation. The

battery chemistry considered here is LFP/Graphite and the physics based reduced

order model developed in [78] is used. An example battery duty cycle generated in

the previous study has been used as the input. The daily vehicle miles traveled are

considered to be constant at 100 miles, and the battery end-of-life is defined to be

at 20% loss in energy capacity. The battery degradation model used here does not

capture the loss in power capacity. One thing to remember here is that the change

in battery performance due to degradation has not been considered.

The variation in SOC, capacity loss and end-of-life with temperature is shown in

Figure 5.2. The miles between charges is assumed to be 50 miles, and the charging C-

rate is assumed to be 1C. As expected, there is no variation in SOC, and the capacity

loss increases with increase in temperature. The battery life drops exponentially with

increase in battery temperature of operation. This is representative of the Arrhenius

relationship between capacity loss and temperature.

The variation in SOC, capacity loss and end-of-life with the charging C-rate is

shown in Figure 5.3. The battery temperature of operation is assumed to be 30 ◦C,

while the miles between charges is assumed to be 50 miles. Higher the C-rate of

charging, higher is the average SOC, which results in higher capacity loss, but the

increase in capacity loss is not very significant. Battery life drops almost linearly with

increase in charging C-rate.

The variation with change in miles between consecutive charges is shown in Fig-

ure 5.4. The battery temperature of operation is assumed to be 30 ◦C, while the

charging C-rate is assumed to be 1C. If the miles between charges is lesser than the

vehicle CD mode range, the capacity loss is significantly high. Whereas, if the miles

between charges is greater than the vehicle CD mode range, the capacity loss and

hence the battery life does not vary as much with a change in miles between charges.
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(a) (b)

(c)

Figure 5.2. Validation for different temperatures (a) Variation in SOC (b) Variation
in capacity loss (c) Variation in end-of-life.
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(a) (b)

(c)

Figure 5.3. Validation for different charging C-rates (a) Variation in SOC (b) Vari-
ation in capacity loss (c) Variation in end-of-life.
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(a) (b)

(c)

Figure 5.4. Validation for different miles between consecutive charges (a) Variation
in SOC (b) Variation in capacity loss (c) Variation in end-of-life.
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Table 5.1. PDF of C-rate of charging.

Charger type kW
Charging Outlets

C-rate
# %

Level1 1.9 2351 4.6 0.05

Level2 19.2 41815 81.93 0.5

DC Fast 50 6814 13.35 1

5.5 Defining Inputs

The time between charges has been assumed to be uniformly distributed between

2.5 to 5 hrs. It is assumed that the battery is used with a cooling system which

maintains the battery at a desired battery temperature. Battery cooling systems are

slow, in that they typically take an hour to cool the battery by 10◦C and so the

temperatures seen by the battery are normally distributed with the mean at 35◦C,

desired battery temperature [86], and with a deviation of 7◦C considering that the

battery operates at non-desired temperatures until the cooling system cools it to the

desired temperature. A larger deviation can also be considered if battery exposure

to higher temperature ranges is expected. The information about different types of

chargers, their numbers and locations is available at [87], additionally, the kW rating

of such chargers has been mentioned in [88]. This information is used to calculate

the probability distribution of chargers and hence the PDF of C-rate for charging, as

shown in Table 5.1.

5.6 Results

The powertrain configuration and control strategy is the Series Bus Winning So-

lution, the same one used for the previous sensitivity study. This configuration is

simulated over the Manhattan drive cycle. It is assumed that the bus drives 100

miles in a day.
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The effect of varying the inputs one at a time is shown in Figures 5.6 to 5.8.

The other two inputs are kept fixed at their nominal values shown in Table 5.2. The

PDFs were defined as discussed previously and each PDF was sampled 200 times. In

Figure 5.6, it is shown that in the present scenario of charger availability and with one

in-route recharge a day, there is little variation in the capacity loss and the battery

end-of-life is always 4.5 years. This is because even with varying C-rate, a single

charge a day results in less than 365 days variation in battery life. When the VMT

between recharges is varied, there is little variation in capacity loss and battery end-

of-life, as shown in Figure 5.7. This is because, varying the VMT between recharges

from 20 to 35 results in two to five recharges on-route, resulting in the average SOC

varying between 0.43 and 0.45. This small variation in average SOC results in the

battery life varying between 3.7 and 4.1 years. Unless if the VMT between recharge is

small enough to cause a significant change in the average SOC, the battery life would

not be affected as much. Although C-rate of charging and VMT between recharges

do not affect battery life, they do change the time spent in CD mode thereby affecting

the utility factor. This effect is shown in Figure 5.5, where a step variation in the

utility factor with VMT between charges is shown in Figure 5.5a. This is because,

not all VMTs show increase in the number of charges per day, as is also illustrated in

Figure 5.4. Figure 5.5b shows a linear increase of the utility factor with the recharge

C-rate.

On the other hand, varying battery temperature affects capacity loss and end-of-

life significantly. There are a couple “secluded” curves on the top, in the capacity

loss plot in Figure 5.8. These are due to no samples of temperature between 49◦C

and 56◦C. Higher temperature of operation of the battery leads to higher capacity

loss and lesser battery life. It is shown that, for the given PDF of battery tempera-

ture, a battery life of 2.5-3.5 years is most probable, but can go as low as 1.5 years

which is highly undesirable. Battery end-of-life is an exponential function of battery

temperature, as shown in Figure 5.9. This is because capacity loss is an exponential

function of temperature as is shown from the Arrhenius dependence shown in (5.4)
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(a)

(b)

(c)

Figure 5.5. Variation of utility factor with VMT between charges, charging C-rate
and battery temperature.



70

Table 5.2. Nominal value of all inputs.

C-rate VMT Between Charges Temperature

0.5 50 miles 35◦C

Figure 5.6. Effect of variation in C-rate on battery end-of-life.

Figure 5.7. Effect of variation in VMT between recharges on battery end-of-life.

where a and b have been derived from the fit and have values 59.69 and -0.07592

respectively. The fit has R2 = 1 and RMSE = 0.0112. The exponential variation of

battery life with temperature results in the non-symmetric nature of the battery life

PDF. Battery temperature itself is assumed to not affect the time spent in CD mode

and hence not affect the utility factor, as shown in Figure 5.5c.

EOL = a ∗ exp(b ∗ Temperature(in◦C)) (5.4)

When all the inputs are varied, in Figure 5.10, a significant variation in capacity

loss and battery life is observed. A total of 200 combinations of C-rate, VMT between

charges and temperature are evaluated. The variation is similar to what is obtained
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Figure 5.8. Effect of variation in battery temperature of operation on battery end-
of-life.

Figure 5.9. End-of-life as a function of temperature (in ◦C).
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Figure 5.10. Total variation in battery capacity loss and end-of-life due to variation
in C-rate, VMT between recharges and battery temperature of operation.

when only temperature is varied. It is observed that from among recharge C-rate,

number of recharges in a day and battery temperature of operation, the temperature

has the most impact on capacity loss and battery end-of-life. This also strongly

motivates the need for a good battery cooling system.

The framework is then exercised over the Orange County drivecycle, with the same

powertrain configuration for the Series Transit Bus, and results are compared with

those over the Manhattan drivecycle in Figure 5.11. This happens because, Orange

County is a faster drivecycle as compared to the Manhattan drivecycle, therefore a

bus traveling on Orange County completes the 100 miles target faster and charges

to 100% spending a greater amount of time at 100% SOC thereby leading to faster

battery degradation and smaller life. Here again, battery temperature has a significant

impact on battery life.

Baseline framework had predicted that this configuration would become viable

in 2020 on the Manhattan drivecycle, and in 2025 on Orange County. The battery

life was also deterministic in that case. Associating PDFs to usage scenarios has

allowed us to bring in the uncertainty in battery life. The economic assumptions

used here are same as those defined in Chapter 2. When the conditions for economic

viability, as discussed in Chapter 2, are applied only some of the 200 simulations pass

this criteria. Since the drivability, gradeability are only dependant on the powertrain
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Figure 5.11. Effect of change in drivecycle on battery end-of-life.
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Figure 5.12. Effect of change in drivecycle on economic viability of the transit bus.

configuration, which is the same as the winning solution, these criteria do not affect

the 200 solutions. The solutions need to have a payback period less than two years.

To pass the battery replacement less than 3 criterion, a battery life of four or more

years is required. As shown from Figure 5.11, not all solutions satisfy this criterion.

The effect is shown in Figure 5.12, 71% of the solutions pass the viability criteria for

Manhattan, and 62.5% of the solutions pass for Orange County.

Similar to the PDF obtained for battery life, a statistical distribution of the net

present value, payback period, internal rate of return and the annualized cost savings

can be obtained, as shown in Figure 5.13. The plot considers only those solutions

that have a positive NPV for the 2025 economic scenario. The variation observed in

annualized cost savings per mile is due to the variation in utility factor calculation.

The calculation of this metric considers the fuel and electricity costs but does not

consider the battery replacement cost. The simple payback period (PBPS) does

not consider time discounted values for future battery replacement costs. But some



75

variation is observed in payback period due to a battery replacement occurring in the

first 2 years for some solutions which delays the payback. NPV and IRR show some

variation, due to the non-zero probability of having a small battery life that results

in more battery replacements over the vehicle life. Longer battery life results in lower

variation in NPV and IRR due to fewer battery replacements over the vehicle lifetime.

Fewer samples of lower battery temperatures lead to fewer solutions with the highest

NPV, leading to the one-sided nature if the NPV and IRR PDFs.

For temperature variation only, when an ellipse is fitted to the simulated data,

as shown in (5.5) where a is 46, b is 127000, an RMSE of 1479$ and an R2 value of

0.991 is obtained. Also interesting to see is the relation between NPV and battery

life, as shown in Section 5.6, where the relationship looks like the time response of a

first order system. The simulated data can be fitted using (5.6), where a is 147000, b

is 1.6, c is 220000 yielding a root mean square error of $2847 and R2 value of 0.967.

Temperature2

a2
+

NPV2

b2 = 1 (5.5)

NPV = −a ∗ exp(−EOL/b) + c (5.6)

5.7 Conclusions

Impact of temperature and importance of cooling system: One key take-

away from this analysis is that battery temperature of operation has significant impact

on battery life. It is therefore key to design a battery cooling system that can maintain

the temperature at a desired value at all times. At the same time, the cooling system

needs to be fast enough to cool the battery to the desired temperature quickly and

minimize the exposure of the battery to undesired temperatures. Also, the battery

needs to be stored in cool places when the cooling system is not operational.

Stochastic aspect of battery life, and economic viability: The framework

also helps us associate probability to expected battery life and scenario of economic



76

Figure 5.13. Total variation in battery capacity loss and end-of-life due to variation
in C-rate, VMT between recharges and battery temperature of operation (solutions
with positive NPV for the 2025 economic scenario have been considered).

Figure 5.14. Variation of net present value with respect to temperature and battery
life.
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viability, thereby taking this simulation based analysis a step closer to realistic sce-

narios of usage. The stochastic estimations can be improved further by associating

PDFs to economic predictions to get more confidence in the economic calculations.

Further, empirical relations can also be obtained for dependence of NPV on temper-

ature, C-rate and VMT between recharges.
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6. IMPACT OF BATTERY HEATING/COOLING SYSTEM ON FUEL

CONSUMPTION AND ECONOMIC VALIDITY

6.1 Introduction

The framework until now has assumed that the battery is maintained at the

desired temperature at all times. But in practice, this is not the case. Batteries

used in all hybrid electric vehicles, with all degrees of hybridization, are accompanied

by either an passive or an active cooling system. There have been multiple studies

( [41], [42], [43], [44]) that compare the kind of cooling systems that can be used by

HEV/PHEV batteries.

In this section the heating/cooling system is approximated by a Coefficient of

Performance (COP) map which links the ambient temperature to the work required

to maintain the battery at a desired temperature. The required work is then used to

calculate the excess fuel required to run the heating/cooling system at a given ambient

temperature. This excess fuel can then be used to re-estimate the economic metrics

and the effect of ambient temperature and the heating/cooling system on parameters

such as fuel consumption reduction, NPV, payback period etc. can be estimated. It

is assumed that the excess energy required by the heating/cooling system is provided

by the engine. It is also assumed that the change in weight of the truck/bus due to

the heating/cooling system is negligible.

6.2 Framework

The framework used in this section to estimate the effect of ambient temperature

and a heating/cooling system on the economic metrics is shown in Figure 6.1. The

vehicle simulation model considered here is the Autonomie model discussed previously.

For the purpose of analysis in this chapter, no new simulation was run, rather the
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Figure 6.1. Framework for estimating effect of battery heating/cooling system on
fuel consumption and economic viability.
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Autonomie results from the pre-existing simulations were reused. The CD and CS

mode battery current profiles (I(t)) and battery internal resistance profiles (Rint(t))

are used from the set of results. The framework described here can be used as

“post-processing” to estimate the excess fuel required by the heating/cooling system.

Although this approach allows us to estimate the excess fuel consumption due to

the heating/cooling system and it’s impact on the economic parameters and compare

with the previous results in a fast manner, the effect of battery temperature variation

on battery performance is not captured. It is assumed that during the time when the

battery temperature is not equal to the desired temperature, the change in battery

performance and hence it’s impact on engine operation, battery degradation and

hence fuel consumption and battery replacements is negligible.

To calculate the excess energy required to maintain battery temperature, the heat

generated by the battery needs to be estimated first. The heat generated by the

battery is given by, (6.1), where I is the current sourced/sunk by the battery and R

is the effective internal resistance of the battery. The validation of this equation is

discussed in the next section. Using First Law of Thermodynamics the temperature

of the battery can be estimated. The first law energy balance for the battery is

shown in (6.2), where mbatt is the mass of the battery, cbatt is the specific heat of the

battery, Tbatt is the instantaneous battery temperature, qgen is the heat generated by

the battery as given by (6.1) and qabs is the heat absorbed by the heating/cooling

system. When the heating/cooling system is in the heating mode, qabs is negative,

and qgen and qabs together help raise the temperature of the battery to the desired

value. When in the cooling mode, qabs is positive, when it’s value is higher than qgen

the battery temperature falls, and when the value of qabs is equal to qgen the battery

temperature is maintained. The rate of heat absorbed by the heating/cooling system,

qabs, is limited by the total capacity of the heating/cooling system. Typically, this

value ranges between 1kW−10kW . For the purpose of this study, the heating/cooling

system is assumed to be rated at 5kW . Therefore, qabs is limited to 5kW . When the

heating/cooling system is started, it operates at it’s rated capacity, qabs = ±5kW ,
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until the battery reaches the desired temperature, after which the system is assumed

to operate so as to ensure qabs = qgen, i.e. all the generated heat is absorbed. This

gives us the profile for rate of heat absorbed by the heating/cooling system over the

CD and CS modes.

q̇gen = I2Rint (6.1)

mbatt ∗ cbatt ∗
dTbatt
dt

= q̇gen − q̇abs (6.2)

The heating/cooling system is described by a map of variation of the coefficient

of performance with respect to the ambient temperature as shown in Figure 6.2.

Coefficient of performance of a refrigeration system is defined as the ratio of the

refrigeration effect to the net work input to achieve that effect [89], as shown in (6.3),

where q̇abs is the rate of heat absorption by the heating/cooling system and Ẇ is

the rate of work or power required to operate the heating/cooling system. COP of a

vapor compression refrigeration system depends on ambient temperature, evaporator

temperature, compressor speed, structure and design of the system etc. The system

assumed here is shown in Figure 6.3. The primary loop consists of the compressor,

evaporator, expansion valve and the condenser and uses a refrigerant such as R134a.

The evaporator is connected to the primary loop where a coolant such as Ethylene

Glycol + Water mixture is used as the heat transfer fluid, and consists of a pump

that maintains the coolant mass flow rate. This coolant is circulated in small tubes

around the battery so as to ensure effective heat absorption [90].

There is very limited literature on the experimental variation of cooling system

COP with respect to ambient temperature. Fixing the heating/cooling system ar-

chitecture further limits the availability of data. Studies [90] [91] [92] have either

simulated or performed experimental studies relating to the use of heating and cool-

ing systems for electric/hybrid electric vehicle applications using a heating/cooling

set-up similar to the one defined in this section. Based on the coefficient of perfor-

mance obtained by these studies, the variation of COP with ambient temperature

for heating and cooling has been assumed as shown in Figure 6.2. Considering COP
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variation with respect to the ambient temperature allows us to link climatic variations

in temperature to efficiency of operation of the heating/cooling system and hence to

fuel consumption. The closer the ambient temperature is to 15◦ C, more efficient

the system is. In extreme hot/cold conditions, the system is less efficient. Using the

map shown in Figure 6.2 and the relation shown in (6.3), the rate of change of work

required to operate the heating/cooling system can be calculated. From the rate of

change of work, the fuel rate can be calculated using (6.4), where ṁfuel is the fuel

rate in kg/s, LHVdiesel is the lower heating value of diesel in J/kg, and ηengandηgen

are the engine and generator (when present) efficiencies respectively. The instanta-

neous efficiencies can be obtained from the vehicle simulation results, else average

efficiencies can be assumed for each. The fuel rate (ṁfuel) can be integrated to get

the total excess fuel (kg) required to operate the heating/cooling system over CD and

CS modes, which can then be used to calculate the economic metrics.

COP =
q̇abs

Ẇ
(6.3)

Ẇ = ṁfuel ∗ LHVdiesel ∗ ηeng ∗ ηgen (6.4)

FC =

∫
mfueldt

ρdiesel ∗ distance
(6.5)

6.3 Validation of q̇gen = I2 ∗Rint

In reference [69], the authors performed electrochemical and thermal modeling

of commercial 1.2 Ah 18650 cells with the nickel-manganese-cobalt oxide (NMC)

cathode, graphite anode and 1.2M LiPF6 in EC/DMC electrolyte. They have also

validated this model against experimental data. In their experiments, they cy-

cled the NMC/Graphite cells at 1C, 2C, 3C, 5C, and 10C using constant current

charge/discharge cycles with 100% DOD. The cell was kept in an environment cham-

ber maintained at 25◦C. The voltage and temperature profiles seen by the cell during

cycling have been used in this section to validate our rate of heat generation model.
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Figure 6.2. Assumed variation of COP with ambient temperature.
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Figure 6.3. Assumed refrigeration system.
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Table 6.1. R0(Ω) variation with temperature, SOC and charge/discharge.

Charge 0◦C 25◦C Discharge 0◦C 25◦C

40% SOC 0.078 0.031 40% SOC 0.083 0.037

60% SOC 0.073 0.029 60% SOC 0.075 0.034

The current and resistance of the battery are required to validate the heat gener-

ation model. While the current is known from the cycle specifications, the internal

resistance of the specific cell used during experimentation needs to be estimated. The

voltage response of the cell to pulse tests, as given in [69], along with Equations (2.5)

to (2.7) are used, to fit values to R0, R1. The cell was subjected to 10s charge and

discharge pulses at rates of 1C, 2C, 5C and 10C with 10s open circuit relaxation

between each discharge and charge pulse of the same C-rate and 30s relaxation be-

tween discharge and charge pulses of other C-rates. This was performed for two initial

SOCs, viz. 40% and 60%, and for two chamber temperatures, viz. 0◦C and 25◦C.

Battery internal resistance is different during charge and discharge [73], hence R0, R1

were fitted separately for these events. The first sudden change in voltage after ap-

plying the current pulse is due to R0, while the slower change in voltage seen after

the sudden drop is due to the R1C1 time constant. This logic was used along with

the equations to ensure a good fit. The fitted values of R0, R1 are shown in Tables 6.1

to 6.2. C1 is kept fixed at 6000F, since good match to the curved portion of the pulse

was obtained at this value. The result of the fit is shown in Figure 6.4, where less

than 2% error is observed for the 25◦C data-set across all C-rates, whereas less than

7% error is shown for the 0◦C data-set because of voltage under-prediction at 10C.

This suggests using higher order equivalent-circuit models at low temperatures.

Once the resistance values are known, the model for rate of heat generation can

be validated. The resistance at all temperatures and SOCs has been linearly inter-

polated/extrapolated from the previously obtained values. The authors of [69] also

measured the cell temperature during CC-CV charge and CC-CV discharge. For



86

Table 6.2. R1(Ω) variation with temperature, SOC and charge/discharge. C1 is
assumed to be 6000F always.

Charge 0◦C 25◦C Discharge 0◦C 25◦C

40% SOC 0.011 0.009 40% SOC 0.014 0.011

60% SOC 0.01 0.007 60% SOC 0.013 0.007

Figure 6.4. Validation of voltage response at 0◦C (left) and 25◦C (right).



87

Table 6.3. Cell specific parameters.

Parameter Value

h [69] (W/m2K) 20

A (m2) 0.0037

cbatt (J/kg-K) 1000

Cell Capacity (Ah) 1.2

mbatt (g) 50

Tamb (K) 298.15

simplicity, only the constant current (CC) part for charge and discharge has been

simulated here, i.e. the battery is subjected to 1C/2C/5C/10C current until the SOC

reaches 100% during charge and until the SOC reaches 0% during discharge. Since

the cell was kept in an environment chamber during the experiment, the heat loss

to the ambient can be assumed to occur only through convective heat transfer. En-

ergy balance of the cell yields (6.6). The cell specific parameters used here are given

in Table 6.3. The resulting comparison between the experiment and simulated cell

temperature is shown in Figure 6.5. It is shown that there is very little temperature

rise for 1C, and the rate of temperature rise is higher for higher C-rates, since the

current is higher. For both the charge and discharge conditions, the error percentage

between the simulated and experimental data at all C-rates is less than 10%, where

the simulated results over-predict the temperature. The difference between simulated

and experimental data could be a result of inaccurate resistance estimation and/or

difference in actual cell specific parameters listed in Table 6.3.

mbattcbatt
dT

dt
= −hA(Tbatt − Tamb) + I20R0 + I21R1 (6.6)
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Figure 6.5. Validation of temperature during discharge (left) and charge (right).
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6.4 Results

This section describes the results obtained for battery temperature, heating/cooling

system COP, resulting increase in fuel consumption and change in the economic met-

rics. For the purpose of this study, the vehicle simulation results for the Series Transit

Bus winning solution (Table 4.1) over the Manhattan cycle have been re-used. The

cell chemistry used in those simulations was NMC+LMO/Graphite with 33.1Ah ca-

pacity/cell. The battery performance model in the vehicle simulations was a 0th

order model, without the R1C1 branch, hence only R0 is considered in the rate of

heat generation model.

6.4.1 Temperature Estimation

The rate of heat generation seen when cooling the Series Transit Bus winning

solution battery from a constant ambient temperature of 45◦C to the desired tem-

perature of 20◦C, at the beginning of the day is shown in Figure 6.6a. The pow-

ertrain is operating in the CD mode and only the first 5000s (83 mins) of the day

are shown. The cooling system operates at the maximum cooling capacity (5kW)

until the battery reaches the desired temperature, which takes 2200s (36 mins), as

shown in Figure 6.6d, hence the rate of heat absorption is 5kW during that time, after

which the rate of heat absorption is equal to the rate of heat generation, as shown

in Figure 6.6b. Practically, since the coolant temperature cannot change with the

same rate as variation of heat generation, the rate of heat absorption after the first

2200s (36 mins) will settle to the average rate of heat generation and would not show

such high transients. Also, some of the generated heat will be lost to other battery

surroundings, it is assumed here that this heat is negligible. The COP of the cooling

system, as shown in Figure 6.6c, stays constant because the ambient temperature is

constant.

Figure 6.7 shows that when the battery is heated from a constant ambient tem-

perature of −5◦C to a desired temperature of 20◦C, the rate of heat absorption (Fig-
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(a) (b)

(c) (d)

Figure 6.6. Temperature estimation results for cooling system.
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(a) (b)

(c) (d)

Figure 6.7. Temperature estimation results for heating system.

ure 6.7a) is negative initially because heat is provided to the system. The heat

generated by the battery is helping the heating system in raising the battery temper-

ature. Once the battery reaches the desired temperature, the cooling system is used

to absorb the heat generated by the battery so as to maintain temperature. Since the

COP for heating and cooling are different for the same ambient temperature, a step

change in COP is observed when the battery reaches the desired temperature.
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6.4.2 Change in Fuel Savings and Economic Parameters

The excess fuel consumption is calculated using (6.4) and (6.5) for the CD and

CS modes, and combined using the utility factor. Since there is no change in the CD

mode range, in this study, the winning solution utility factor remains unchanged. The

percentage change in fuel consumption as compared to that of the winning solution

is plotted for all the bus drivecycles for the heating and cooling cases in Figure 6.8.

Across all drivecycles, for the considered ambient and desired temperatures, and COP

assumptions, the fuel consumption increase is between 0.8% and 1.9% only. More

increase in fuel consumption is observed for the cooling case because of the lower

overall COP, as compared to the heating case. It is important to note that the current

sourced/sunk by the battery is different for all drivecycles as is the baseline winning

solution fuel consumption. Therefore, the percentage increase in fuel consumption in

the heating and cooling cases is different for all drivecycles.

When the percentage fuel savings with respect to the conventional vehicle are

compared for the winning solution with and without the heating/cooling system, as

shown in Figure 6.9a, compared to the original fuel savings between 60%-70%, the

0.8%-1.9% change is very small. With the increased fuel consumption, the Net Present

Value is expected to reduce, as it does in Figure 6.9b, but by a very small value (0.7%

- 3%). Due to the reduction in fuel savings, it will take longer to recover the initial

system cost, as shown in Figure 6.9c, but the change is small (0.4% - 1.5%).

6.5 Conclusions

The study performed in the previous chapters assumed that there exists a heat-

ing/cooling that always maintains the battery at a desired temperature of 20◦C, and

the battery performance and number of replacements were calculated accordingly. In

practice, such a heating/cooling system would require excess energy for operation,

which would be supplied by the engine or the battery.
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Figure 6.8. Percentage increase in fuel consumption due to power required by the
heating/cooling system.
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(a)

(b) (c)

Figure 6.9. Comparing change in economic metrics due to heating and cooling with
the winning solution results (a) Change in percentage fuel savings (b) Change in NPV
(c) Change in payback period.
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Assuming all the energy required for the operation of the heating/cooling system

was supplied by the engine, a framework for estimating the excess fuel consump-

tion required to operate the heating/cooling system was proposed which is run as a

post-process step after the vehicle simulation. A COP based heating/cooling system

was evaluated for excess fuel consumption resulting from operation in two ambient

temperature conditions (45◦C and −5◦C) and with 20◦C desired temperature. It is

shown that for the Series Transit Bus winning solution, the percentage increase in

fuel consumption lies between 0.8%-1.9% across all drivecycles.

The resulting reduction in fuel savings with respect to the conventional vehicle,

reduction in Net Present Value and increase in Payback Period as compared to the

base case is very small.

The battery takes about 35 mins to heat/cool to 20◦C from −5◦C/45◦C. It is

assumed that exposure to these temperatures for only 35 mins out of the 10 hr work

day does not affect the number of battery replacement or battery performance.

Additionally, the model of rate of heat generation (q̇ = I2R) was validated for a

18650 NMC/graphite 1.2 Ah cell. The error percentage between temperature predic-

tions using this model with the experiment data was found to be less than 10% during

charge and discharge for currents with C-rates upto 10C. This accuracy of tempera-

ture prediction depends on the accuracy of estimation of the cell internal resistance,

as well as the estimation of the heat transfer coefficient and other cell specifications.

If the energy required for heating/cooling system is assumed to come from the

battery, the effect of the system on the CD mode range can be evaluated in the

future. Additionally, existing physics based models of heating/cooling system, can be

used as a part of the vehicle simulation model, to evaluate the effect of time taken to

reach the desired battery temperature on battery performance and number of battery

replacements. Further, the impact of storage temperature of the battery, especially

winter temperatures, on battery degradation and strategies to store the battery at

the desired temperature need to be evaluated.
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7. UNDERSTANDING WTW EMISSION IMPACTS OF PHEV TRANSIT BUSES

7.1 Introduction

Previous chapters have demonstrated, in simulation, the fuel saving potential of

PHEV medium-duty trucks and PHEV heavy-duty transit buses using powertrain

sizing, controls optimization and architecture selection and the resulting cost savings

achieved with respect to conventional medium-duty trucks and heavy-duty transit

buses, respectively. This analysis was done considering battery degradation and re-

placement and under variable usage conditions. The importance of maintaining the

battery temperature was emphasized and the fuel penalty of using a heating/cooling

system was calculated, using a series transit bus on Manhattan as an example case.

Under all usage conditions, the benefits of plug-in hybridization for medium and

heavy duty vehicles are clear, subject to the economic time frame. But cost implica-

tions, although of significant importance, are not the only aspects to be considered

with hybridization. Since PHEVs require battery charging from the grid, there is

significant concern about the resulting greenhouse gas emissions. This chapter aims

at throwing some light on the greenhouse gas emission reductions possible via plug-

in electric hybridization taking the series transit bus as the base case. The WTW

greenhouse gas emissions have been calculated for two use cases of the series tran-

sit bus winning solution, when used in Indiana and California. These states differ

significantly in their electricity sources, where Indiana derives most of its electricity

from coal, Californias electricity comes majorly from natural gas along with signifi-

cant contributions from renewable resources. Therefore, well to pump greenhouse gas

emissions from these states are very different. As such they pose as good examples

to evaluate and compare greenhouse emission reductions, if any, achievable through

plug-in electric hybridization of medium/heavy-duty vehicles.
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This chapter looks at the well to wheel emissions resulting from usage of PHEV

series transit bus over a city drivecycle (Manhattan drivecycle) and compares that

with the emissions resulting from operating a conventional vehicle on the same route.

The emissions resulting from component manufacturing processes have not been con-

sidered here. The GREET well to wheel emissions analysis tool (GREET2017) have

been used for this purpose.

About GREET: GREET [93] is a vehicle emission calculator developed by Argonne

National Labs that calculates CO2,CH4,N2O,PM,NOx and other criteria pollutants

resulting from transportation life cycles. It also combines the CO2,CH4,N2O emis-

sions with their global warming potentials (1, 25 and 298 respectively) to give the

greenhouse gas emissions for 100 years (IPCC 2008) [60]. Emission calculations are

performed in 2 parts: well to pump (WTP) and pump to wheel (PTW). Multiple

fuels are defined for transportation technologies, for each fuel different fuel paths

are defined, which include fuel sources, production stage and distribution stage, and

emissions are calculated for each fuel path. This constitutes the WTP emissions.

Additionally, the software also defines different vehicle types and technologies and

specifies the emissions per MJ of fuel combustion for these vehicle types and tech-

nologies. This constitutes the PTW emissions. For the purpose of this analysis a

heavy-duty CIDI Transit Bus, and it’s PTW emissions/MJ of Low-sulfur diesel as

defined in the software, is used as the base scenario.

7.2 Framework

In order to understand the well to wheel (WTW) emissions resulting from PHEV

heavy-duty Transit Bus, the amount of electricity and fuel used per day need to be

known. Although GREET2017 already has pre-existing WTW emissions for a variety

of vehicles and fuels, in this study, the vehicle has been modeled and simulated

in Autonomie, since Autonomie allows greater flexibility in modifying the vehicle

powertrain and control, as well as in defining vehicle use cases. Pre-existing vehicle
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simulation results for the PHEV heavy-duty Transit Bus winning solution have been

reused in the following sections.

As mentioned earlier, GREET provides emissions/MJ of fuel used for WTP as well

as PTW for the chosen vehicle. A flexibility to choose the fuel pathway for the WTP

emissions exists. A subset database of WTP and PTW emissions for electricity and

diesel sources was created to interface well with the Autonomie results. The interface

is used to user select the desired source of fuel, and combine the WTW emissons/MJ

for that fuel with the estimated fuel energy from Autonomie to yield the daily WTW

emissions from the vehicle. Since, the emissions are considered per MJ of fuel used

by the end-user, the WTP and PTW values can be simply added to give the WTW

emissions per MJ of fuel used, as shown in (7.1).

WTW emissions [g/(MJ of fuel used)] = WTP + PTW (7.1)

Diesel is used in both the CD and CS modes, since this is the blended CD mode.

The diesel energy used in both the modes is calculated on a per mile basis (MJ/mi),

and then combined using the utility factor, as shown in (7.2) where Ediesel, Ediesel CD

and Ediesel CS are the total, CD mode and CS mode diesel energy consumption per

mile (MJ/mi). This is input to the interface to get emissions/mile (g/mi), which can

then be scaled depending on the daily VMT to give the daily emissions, as given

in (7.3) where WTWdiesel is the WTW emissions per mile due to the diesel energy

used per mile ad Daily VMT is the vehicle miles traveled in a day. Electricity is

assumed to be used once daily, to recharge the battery from 30% SOC to 100% SOC.

Multiple grid charges during the day have not been considered in this study. The

MJ of energy required to recharge the battery from the grid is input to the interface

to get the daily emissions due to battery charging, where the energy is calculated as

given in (7.4), AhCap being the battery capacity in Ampere-hrs and ηcharging being the

charging efficiency assumed to be 90% as in Chapter 3. The daily emissions from diesel

and electricity can then be added to get the overall daily WTW emissions from the
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Figure 7.1. Framework for estimating WTW emissions from PHEV transit bus.

PHEV heavy-duty Transit Bus with the winning solution powertrain configuration,

as given in (7.5) where WTWdaily total,WTWdaily diesel and WTWdaily electricity are the

daily total, diesel, and electricity WTW emissions respectively .

Ediesel[MJ/mi] = Ediesel CD ∗ UF + Ediesel CS ∗ (1− UF) (7.2)

WTWdaily diesel[g] = WTWdiesel[g/mi] ∗Daily VMT [mi] (7.3)

Edaily electricity =
0.7 ∗ AhCap

ηcharging
(7.4)

WTWdaily total = WTWdaily diesel + WTWdaily electricity (7.5)

7.3 Results

The major sources of electricity in the US are

1. Coal

2. Natural Gas

3. Nuclear
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4. Biomass

5. Hydroelectric, Solar, Wind, Geothermal, and other renewables

The WTP emissions arising during the generation of electricity from these sources are

shown in Figure 7.2 [93]. There are no PTW emissions when a battery and electric

machine are used to provide tractive power to a vehicle. For the purpose of com-

parison, these PTW emission values are obtained at the generation stage and do not

include the emissions or losses during the transmission and distribution stages. It is

observed that most CO2 is produced because of electricity generation from coal, nat-

ural gas fired plants emit 55% less CO2 than coal-fired plants, followed by geothermal

(90% less), biomass (97% less) and nuclear (99% less). Although electricity genera-

tion through biomass produces 97% less CO2 than coal-fired power plants, CO,NOx,

and PM emissions from biomass-based power plants are significantly higher. Hence,

it is known that more percentage of coal-fired power plants in a state would result in

significant CO2 emissions per MJ of electricity produced.

Indiana gets 81% of it’s electricity form coal-fired power plants, followed by 13%

from natural gas fired power plants, and the rest is obtained mostly from renewable

resources [94]. So, the individual emissions/MJ from coal-fired power plants, natural

gas fired power plants, etc. can be weighted by these percentage contribution of

each of these power plants to obtain average emissions/MJ of electricity generated in

Indiana. California, on the other hand, gets majority (55%) of it’s electricity from

natural gas fired power plants and only 6% form coal-fired power plants. The mix of

resources for electricity generation in California also includes a significant contribution

by renewable resources such as geothermal, hydro-electric, wind power etc as well as

from cleaner nuclear power plants [95]. This mix of less CO2 producing power plants

inherently makes electricity usage in California cleaner. thus it is expected to see lesser

greenhouse gas emissions resulting from a PHEV heavy-duty transit bus operating in

California than the one operating in Indiana, assuming the same powertrain, same
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Figure 7.2. Emissions according to source of electricity (in g/MJ of electricity used).
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diesel fuel, it’s production and distribution. The sources of electricity in both the

states have been compared in Figure 7.3.

For a battery powered transit bus, the PTW emissions are zero, hence the WTP

emissions can be treated as WTW emissions. For a diesel powered transit bus, the

WTW calculations need to consider the emissions resulting from diesel production,

transmission and usage. The emissions/MJ of electricity or diesel used by a only

battery operated or only diesel operated transit bus respectively can be compared, as

shown in Figure 7.4. The WTW emissions/MJ of diesel used have been taken from

GREET for a heavy duty transit bus operating on low-sulfur diesel obtained from

crude oil. For every MJ of electricity used by the vehicle more greenhouse gases,

CO,NOx, SOx,VOC and PM are produced as compared to those produced due to

1MJ of low-sulfur diesel fuel usage. Additionally, if that electricity was generated in

Indiana, significantly more greenhouse gases(2.5 times), NOx (1.75 times) and PM

(2.3-3 times) would be produced than if it was generated in California.

But the total emissions also depend on the MJ of energy used in both the cases,

where the MJ of energy not only depends on the drivecycle requirements but also on

the efficiency of the fuel converter (engine or electric machine) itself. This is taken

into account when the total diesel fuel used or the total grid electricity required for

charging is considered. Therefore, when a PHEV transit bus is considered, the battery

capacity as well as the fuel consumption reduction plays a significant role in reducing

the overall emissions. As shown in Figure 7.5, for a PHEV transit bus the electrical

energy required from the grid (70% of battery capacity, with 90% charging efficiency)

is only 125 MJ, and the diesel energy required in CD and CS modes is 1811 MJ,

as compared to the 5370 MJ of diesel energy required by a conventional transit bus

on Manhattan drivecycle. This energy use is calculated for 1 day, where 100 miles

are driven by the bus in a day, considering a single overnight battery re-charge from

30% - 100% SOC. If multiple recharges are considered during the day, the electrical

energy component would increase, and the diesel energy component would reduce.

This figure also shows the significant reduction in energy consumption by the vehicle,
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Figure 7.4. Comparison of WTW emissions from buses operated on electricity in
California and Indiana with those from buses operated on low-sulfur diesel.
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Figure 7.5. Fuel energy used per day (100 miles) by conventional and PHEV transit
bus (winning solution).

due to regenerative braking, engine downsizing as well as efficient engine operation.

Specifically, for this powertrain configuration, component size and control, the fuel

consumption reduction was 63% on the Manhattan drivecycle.

These values of electrical and diesel energy usage can then be multiplied by the

corresponding emissions/MJ of fuel to obtain the daily emissions as shown in Fig-

ure 7.6. There is 59% to 63% reduction in the greenhouse gas emissions for the

PHEV transit bus as compared to the conventional vehicle. The emission reductions

are more for California than Indiana. There is a 54% to 61% reduction in both

CO and NOx. PM2.5 reduces by35% in Indiana and 52% in California, while, VOC

emisisons reduce by 16% in Indiana and 33% in California. There are more PM10

emissions for a PHEV transit bus used in Indiana as compared to the conventional

vehicle due to the significant PM emissions from electricity generated in Indiana, as

shown in Figure 7.4, which is because majority of the electricity produced in Indiana
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comes from coal-fired power plants. Also, the SOx emissions are significantly higher

for both Indiana and California due to a significant difference in the SOx emissions

resulting from electricity and diesel usage as shown in Figure 7.4

7.4 Emissions due to Battery Manufacturing

Apart from the difference in daily energy consumption and the corresponding en-

ergy sources that set the PHEVs apart from the conventional vehicles, the PHEVs also

undergo battery replacements over their lifetime. The emissions caused during battery

manufacturing and recycling is also a point of comparison between these two types of

vehicles. GREET 2017 does include the emissions caused during battery production

and assembling for a few battery chemistries like LMO/Graphite, NMC/Graphite

and LFP/Graphite. The emissions, specifically CO2 emissions, resulting from the

production and assembling of these batteries differ, due to the different materials and

their preparation processes involved [96]. But some back of the envelope calculations,

about emissions from battery production and assembling, can be made for reference

by assuming a chemistry close to the type of application being considered here.

The NMC/Graphite battery weight can be assumed to be 20 kg/kWh [96], along-

with a battery capacity of 44kWh and with 2 battery replacements (3 total batteries

used) over the vehicle lifetime, as calculated for the Series PHEV Transit Bus win-

ning solution. These assumptions can be used to calculate the emissions resulting

from battery production and assembling. These when divided by the total number

of days give the ”non-discounted” daily emissions due to battery production and as-

sembling for this transit bus. On comparison of the resulting no-discounted daily

emissions with the WTW emissions due to electricity and fuel consumption, the CO2

and GHG-100 emissions are shown to increase by only 3% (4-4.5 kg), the CO, NOx

and SOx emissions increase by 3 g, 8g, and 126 g, respectively while the PM10, PM2.5

and VOC emissions increase by 2.7g, 1.4g and 1g respectively. Therefore, the CO2,

GHG-100, CO, NOx, PM2.5 and VOC emissions are still lower than those of the con-
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Figure 7.6. Daily emissions from a PHEV transit bus used in California or Indiana
compared to those from a conventional transit bus.
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ventional bus for both Indiana and California. SOx and PM10 emissions are more

than the conventional bus for both the states. The emissions due to battery recycling

have not been considered here due to lack of those numbers for the NMC/Graphite

chemistry, although studies regarding battery recycling have been conducted for other

chemistries [97]. To perform a more holistic comparison of the emissions from these

two types of vehicles, the entire vehicle cycle emissions including those from manu-

facturing and recycling of other vehicle components as well as recycling of batteries

needs to be performed.

7.5 Conclusions

A simple framework using Autonomie and GREET, is proposed in this chapter, to

calculate and compare the WTW emissions for the PHEV and conventional vehicles.

The emissions of a pre-designed PHEV transit bus, operating in Indiana and Califor-

nia, are compared to the conventional transit bus using low-sulfur diesel as the fuel.

It is shown that although more greenhouse gases are produced when 1 MJ of elec-

trical energy is used as compared to using 1 MJ of low-sulfur diesel energy, because

there is significant energy consumption reduction for PHEVs, the overall emissions

are also low. Specifically, with 63% fuel consumption reduction and 44 kWh battery,

with a single battery recharge a day, 57% reduction is obtained in the greenhouse gas

emissions in Indiana and 63% reduction in greenhouse gases is obtained in Califor-

nia. There is a slight increase in the PM emissions in Indiana, due to the significant

portion of electricity being generated in the coal-fired plants. In the future, as more

electricity is expected to be generated from cleaner energy sources like, hydroelectric,

geothermal sources, the PM emissions per PHEV transit bus would reduce. PHEV

transit buses recharging with the California electricity generation mix produce lower

greenhouse gas, CO,NOx as well as PM emissions, but higher SOx emissions.

This analysis did not include the emissions resulting from battery manufacturing

or other component manufacturing. These factors affect the life-long emissions of the
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vehicle, more than just the daily emissions. Life-long emission calculations, including

vehicle-cycle and recycling emissions, can be performed and then can be used to

understand the per mile emission reduction/increase of PHEV transit buses over

conventional transit buses.

These emission values can further be assigned a carbon cost/emission cost which,

along with the initial component costs and fuel costs, can be used to perform a more

holistic powertrain design. Additionally, the impact of change in electricity sources

with time, like the economic scenarios, can be used to understand when a application

becomes viable to be implemented in a state and with what powertrain configuration.

Further, the impact of multiple recharges during a day on the emissions can be

used to optimize vehicle operation to minimize cost and emissions.
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8. SUMMARY AND CONCLUSIONS

This dissertation presents frameworks and methodologies to enable battery conscious

powertrain design of medium-duty (MD) and heavy-duty (HD) plug-in hybrid elec-

tric vehicles (PHEVs) and understand the operating conditions necessary for them

to be advantageous over the conventional vehicles. In Chapter 3, the framework

used for performing a total-cost-of-ownership based powertrain design is discussed.

A comparison of economic viability for the series and parallel architectures over two

PHEV applications - a MD Truck and a HD Transit Bus, is presented. The parallel

architecture requires significantly lower initial system cost as compared to the series

architecture, and therefore shows earlier payback, becoming economically viable ear-

lier for both the applications. The transit bus, due to the higher fuel cost savings, is

seen to become economically viable earlier for hybridization. Also, urban driveycles

are seen to be more favorable for plug-in hybridization of both the MD Truck and

HD Transit Bus.

Of the multiple viable powertrain configurations proposed by the framework in

Chapter 3, one solution needs to be selected. In Chapter 4, a method to select the

one component sizing and control strategy solution, based on maximizing the net

benefits using the Net Benefit to Investment Ratio (NBIR), is proposed. Further, the

effect of deterministic variation in economic and vehicle parameters on the Net Present

Value (NPV), payback period, fuel consumption reduction, and energy storage system

(ESS) replacements, is assessed. It is seen the that the Fuel Price, ESS Price, annual

vehicle miles traveled (AVMT), vehicle mass and the nature of the drivecycle are the

key parameters that impact ESS replacements, payback period and fuel consumption

reduction. This analysis also helps understand the usage cases that would lead to

the solution becoming impractical, i.e. have payback period greater than two years

and/or more than three ESS replacements.
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Battery usage can further vary depending on other operating factors such as time

between recharges, recharge C-rate and battery temperature. In Chapter 5, a frame-

work to understand the impact of probabilistic variation of these parameters on bat-

tery life is proposed and demonstrated. The results show that, among the variables

considered, the temperature of battery operation has the most impact on battery life.

Further, for the variation of inputs considered, it is shown that the winning solu-

tion selected in Chapter 4 has a 70% chance of becoming viable for hybridization at

all, owing to high battery temperatures. This motivates the necessity of an efficient

battery thermal management system to maximize battery life.

Heating/cooling required to maintain the battery at the desired temperature re-

quires excess energy consumption. The powertrain analysis in the previous chapters

had assumed that the battery was maintained at 20◦C by the battery thermal man-

agement system. In Chapter 6, the fuel consumption required to maintain the battery

at this temperature for two ambient temperatures, 45◦C and −5◦C, is calculated using

a coefficient of performance (COP) based definition of the battery heating/cooling

system. For the assumed heating/cooling system architecture and variation of Coeffi-

cient of Performance (COP) with ambient temperature, the fuel consumption is seen

to increase by 0.8%-1.9% depending upon the drivecycle and ambient temperature.

This method can be extended to compare the relative increase in energy consumption

for different heating/cooling system architectures and materials. In this Chapter,

the validation of the rate of heat generation model for batteries is also presented

for an 18650 NMC/Graphite cell. It is shown that the model is able to predict the

temperature within 10% error for C-rates 10C.

The emissions associated with the operation of the PHEV are calculated in Chap-

ter 7 using the Greenhouse Gases, Regulated Emissions, and Energy Use in Trans-

portation (GREET) model. The well-to-wheel emissions resulting from operation of a

PHEV Transit Bus in Indiana and California are compared to the emissions resulting

from operation of the conventional diesel bus. The greenhouse gas (GHG) emissions

are shown to reduce by 59% and 63% when a PHEV is operated in Indiana and
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California, along with reductions in carbon monoxide (CO), nitrogen oxides (NOx),

particulate matter with diameter less than 2.5 microns (PM2.5) and volatile organic

compounds (VOC). But an increase in the sulfur oxides (SOx) emissions for both the

states and emissions of particulate matter with diameter less than 10 microns (PM10)

for Indiana, are observed.
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9. RECOMMENDATIONS

While only the fuel-cycle related emissions have been considered in this study, the

vehicle-cycle related emissions can further be considered. These can then be com-

bined with the life-cycle cost-based powertrain design framework to perform a more

holistic life-cycle cost- and emissions-based powertrain design-space exploration and

best solution selection.

Further, a physics based battery heating/cooling system model can be combined

with the vehicle simulation model and employed to understand the effect of the am-

bient temperature on battery performance and hence battery degradation.

Additionally, it has been shown for the light-duty vehicles that vehicle usage

would increase with increase in cost benefits through the usage of alternative vehicle

technologies. Whether such an effect will also be seen in the heavy-duty market is a

point of study for many. The global emission impacts of the heavy-duty vehicle usage

can also be studied.

Another possible direction of study would be to understand the impact of battery

degradation on fuel consumption and CD mode range of the PHEV. This will further

affect battery power management, number of battery replacements and life-cycle cost.

Further, a sensitivity analysis considering variation of the control parameters con-

sidered in Chapter 3 can be performed to understand which of these parameters finally

have a significant impact on battery degradation and the economic metrics. Those

parameters that do not have a significant impact can then be fixed to a constant

value.

It is shown in Chapter 4 that variation in drivecycle has a significant impact on the

economic metrics and battery degradation. The impact of drivecycle variation on the

desired metrics can be used to improve the methodology for selecting one candidate

powertrain configuration for implementation.
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