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The use of computational approaches to understand kinase substrate preference has 

been a powerful tool in the search to develop artificial peptide probes to monitor kinase 

activity, however, most of these efforts focus on a small portion of the human kinome. The 

use of high throughput techniques to identify known kinase substrates plays an important 

role in development of sensitive protein kinase activity assays. 

The KINATEST-ID pipeline is an example of a computational tool that uses known 

kinase substrate sequence information to identify kinase substrate preference. This 

approach was used to design three artificial substrates for ABL, JAK2 and SRC family 

kinases. These biosensors were used to design ELISA and lanthanide-based assays to 

monitor in vitro kinase activity. The KINATEST-ID pipeline relies on a high number of 

reported kinase substrates to predict artificial substrate sequences, however, not all kinases 

have the sufficient number of known substrates to make an accurate prediction.  

The adaptation of kinase assay linked with phosphoproteomics technique was used 

to increase the number of known FLT3 kinase variant substrate sequences. Subsequently, 

a set of data formatting tools were developed to curate the mass spectrometry data to 

become compatible with a command line version of the KINATEST-ID pipeline modules. 

This approach was used to design seven pan-FLT3 artificial substrate (FAStides) sequences. 

The pair of FAStides that were deemed the most sensitive toward FLT3 kinase 

phosphorylation were assayed in increasing concentrations of clinically relevant tyrosine 

kinase inhibitors.  

To improve the automation of the mass spectrometry data analysis and formatting 

for use with the KINATEST-ID pipeline, a streamlined process was developed within a 

bioinformatic platform, GalaxyP. The data formatting tools used to process the FLT3 mass 

spectrometry data were converted into compatible versions to execute within the GalaxyP 
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framework. This process was used to design four BTK artificial substrates (BAStide) to 

monitor kinase activity. Additionally, one of the BAStide sequences was designed in the 

lanthanide chelating motif to develop an antibody-free activity assay for BTK.  

Lastly, a multicolored time resolved lanthanide assay was designed by labeling 

SYK artificial substrate and a SRC family artificial substrate to measure the activity of 

both kinases in the same kinase reaction. This highlighted the functionality of lanthanide-

based time resolved assays for potential multiplexing assay development.
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 INTRODUCTION 

1.1 Protein Kinases 

Protein kinases regulate a vast number of cellular processes within the cell by playing 

a role in protein phosphorylation at serine, threonine, or tyrosine residues. To date, 538 

genes that encode for 518 protein and 20 lipid kinases have been identified.1,2 These kinases 

are primarily divided into 13 subfamilies characterized by the amino acid sequence and 

catalytic domain structure and consist of receptor or non-receptor kinases. Kinases contain 

additional functional domains to help regulate kinase interactions and activity. Extra- 

and/or intracellular machinery drives structural changes within the kinase molecule for 

protein kinase regulation. Of the 518 known protein kinases, 428 are serine/threonine (S/T) 

kinases while only 90 are tyrosine (Y) kinases. Protein kinases are categorized into 

membrane or non-membrane bound subtypes. Membrane-bound receptor kinases play an 

integral part in cell signaling. Upon ligand binding, the receptor kinases undergo a 

conformational change that exposes the kinase domain to the cytosol and initiates a 

signaling cascade.3,4 Non-receptor kinases are found in the cytosol and act as second 

messengers to external stimuli.5  The next section will overview the structure and substrate 

identification of protein kinases. 

1.2 Kinase structure and substrate identification 

Protein kinase families share structural features that dictate function. The N and C 

lobes and the kinase backbone6 regions play integral roles in kinase activation and 

inactivation. The N-lobe’s five β strands are important for the initial ATP interactions. The 

first three β-strand sequences are highly conserved and imperative for coordinating the 

nucleotide base and the phosphates of ATP for catalysis (p-loop).6,7 The C-lobe’s structure 

is predominantly α-helices and regulates substrate coordination while performing the 

phosphate transfer (activation loop). The β subdomain of the C-lobe contains the aspartic 

acid-phenylalanine-glycine (DFG) motif that is involved in coordinating the Mg2+-ATP 

complex and is responsible for activating or inactivating kinases. Once the tyrosine residue 

within the activation loop is phosphorylated, the loop is stabilized, and the kinase switches 
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into its active state (Figure 1-1B).6,7 The kinase backbone links the N and C lobes through 

a highly conserved motif. Two hydrophobic residues from both the N and C lobes create 

the hydrophobic link that assists in coordinating the ATP adenine ring for its interaction 

with the F-helix of the C-lobe. Though the catalytic domains of S/T and Y kinases are 

structurally similar, the depth of the catalytic domain drives tyrosine kinase specificity, 

which contain a deeper binding pocket to accommodate the bulky phosphor accepting 

tyrosine residue. Kinase specificity toward S/T or Y is also regulated by charge and 

hydrophobicity of the catalytic domain.8 

  

1.2.1 Tyrosine kinases 

Tyrosine kinases are classified into two categories: receptor tyrosine kinases and 

non-receptor tyrosine kinases. The activation of tyrosine kinases depends on their 

localization and their non-catalytic domains. Consequently, kinases within the same 

superfamily will contain structurally and functionally similar non-catalytic domains. The 

following subsections will briefly describe structure and activation of receptor tyrosine 

kinases (RTK) and non-receptor tyrosine kinases (non-RTK). 

Figure 1.1. Overview of non-RTK kinase activation or deactivation. 
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1.2.2 RTK 

The twenty RTK subfamilies, which are activated by growth factors or ligands.3 

RTKs consists of extracellular, transmembrane and cytosolic domains. There are up to 

eighteen extracellular domains that vary between RTK subfamilies. The extracellular 

domain regulates RTK activation and can be activated via four primary modes: RTK-ligand 

crosslinking, RTK-ligand crosslinking with receptor rearrangement, multi-mode 

crosslinking and multi-mode adaptor crosslinking (Figure 1-2). The first mode of activation, 

RTK-ligand crosslinking, occurs when a dimeric ligand complex binds the receptor, 

driving two RTK molecules together to undergo autophosphorylation e.g. TRKA-Nerve 

growth factor complex (Figure1-2A). The KIT-Stem cell factor (SCF) ligand complex is 

an example of the second mode of RTK-ligand crosslinking with receptor rearrangement 

(Figure 1-2B). Under this mode, upon the binding of two SCF ligands, receptor 

homodimerization is initiated. Consequently, two Ig-like (D4 and D5) domains arrange the 

kinase molecule for autophosphorylation. Third, the FGFR-FGF-heparin protein complex 

is an example of multi-mode binding. To activate the FGF receptor (FGFR), the receptor-

receptor, receptor-ligand, receptor-heparin and ligand-heparin must all be in direct contact 

(Figure 1-2C). The final RTK ligand mediated activation mode is the multi-mode adaptor 

crosslinking (Figure 1-2D). The Epidermal Growth Factor Receptor (EGFR) and insulin 

RTK subfamilies are examples. In this mode of activation, the extracellular domains of 

EGFR are folded upon themselves to maintain the receptor an autoinhibited state.  One 

molecule of inhibited receptor dimerizes with another, driving a conformational shift to 

allow for dimeric ligand binding to the extracellular domain and subsequently initiate 

autophosphorylation.3,9 
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1.2.2.1 Non-RTKs 

Unlike RTK, non-RTK contain non-catalytic domains that regulate the interaction 

between the kinase and its substrate. One example of non-catalytic domains controlling 

kinase activity is the SRC family of kinases (SFKs), which are heavily involved in cellular 

signaling. Aside from their kinase domain, the SFKs contain SRC homology 2 (SH2) and 

3 (SH3) domains. SH2 domains bind phosphorylated tyrosine residues, while SH3 domains 

bind specific proline-rich sequences.8 SFKs are often localized to the cell membrane 

through myristoylation and/or palmitoylation of the N-terminus.10 However, not all non-

RTK families contain SH2 or SH3 domains. They can contain other non-catalytic domains 

that regulate lipid binding, calcium signaling, binding partner interactions and/or cellular 

localization. The ABL kinase, which contains F-actin and DNA-binding domains to 

regulate its localization, is one example.10  

Autophosphorylation or phosphorylation by another non-RTK regulate non-RTKs. 

For example, the SRC SH2 domain binds to the phosphorylated Tyr-527 (CSK) to hold the 

kinase in its inactive state.8 Dephosphorylation of Tyr-527 allows the SH2 and SH3 

domains to engage their intended target or specificity sequence (Figure 1-3).8,10 

Subsequently, autophosphorylation of Y416 in the activation loop leads to an active 

Figure 1.2 Tyrosine Kinase Activation 
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kinase.8,10 Phosphorylation at Y527 by CSK is a regulatory mechanism to control SRC 

catalytic activity.   

 

1.2.3 Methods for determining kinase substrate specificity  

Tyrosine kinases play a large role in many cellular processes, and identification of 

their biological substrates elucidates their involvement in specific signaling pathways. The 

influence of the amino acids flanking the phosphorylation site within a substrate was 

identified over four decades ago.8 However, a biological substrate does not always contain 

the optimal sequence flanking the phosphorylation site11 because other processes regulate 

a kinase’s localization and function. Therefore, identifying the determinants of substrate 

specificity for particular kinases has been the subject of intensive research.8 These 

discoveries led to the acceptance of in vitro kinase assays as a tool used to identify and 

validate a kinase’s sequence preference. In vitro high-throughput screens using the 

genomes of simple organisms, such as yeast and mammals, have attempted to identify 

kinase substrates at the protein and peptide level.12 These high-throughput methods for 

rapid identification of kinase substrates include genetically encoded libraries (phage 

display, mRNA-fusion and cDNA display peptide libraries), synthetic peptide libraries 

Figure 1.3 Non-receptor protein kinase regulation 
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(positional scanning, oriented and one bead-one-peptide libraries), computational screens, 

and mass spectrometry assays.13 While these methods have viable applications, they also 

contain caveats that limit their practical application. This section will briefly overview the 

strengths and weaknesses of these techniques.   

1.2.3.1 Genetically-encoded peptide libraries  

A widely used approach for identifying a protein’s binding affinity or substrate 

preference is genetically encoded libraries. This process involves genetically altering a 

simple model system such as worms, flies or yeast to either knockdown or overexpress the 

kinase of interest to identify interacting partners that are then validated in vitro.12,14 Further 

technological advancement led to the use of genetically encoded peptide libraries (Phage 

display, mRNA fusion peptide libraries, cDNA display libraries and DNA/PNA 

programmed synthetic libraries) in an in vitro setting.12,14–16 This approach has been an 

invaluable tool for identifying biologically relevant kinase substrates and kinase 

specificity.14 However, these approaches are time and labor intensive as they require 

further steps such as polymerase chain reaction amplification and DNA/RNA sequencing 

to identify the phosphopeptide sequence. Once the sequence is identified, it undergoes a 

final validation step to determine if the peptide is a kinase substrate. These approaches are 

prone to contain false positive sequence identification that can be induced by support 

(phage) or identifier (DNA/RNA) interaction with the kinase of interest.   

1.2.3.1.1 Phage display libraries 

Phage display libraries have been successful in identifying protein kinase substrates 

and their specificity.12,14,17 This process involves cloning cDNA into phage-expressing 

vectors to create a bacteriophage expressing a random or specific peptide sequence.17 E. 

coli are then infected with the bacteriophage.17 After undergoing multiple rounds of 

selection, the phage library is amplified, and E. coli are infected with phages to create a 

phage library stock. 12,14,17 Subsequently, the phage library is plated on nitrocellulose 

membranes or combined to form a combinatorial mixture of multiple phages.12,14 The 

phages are then assayed in vitro with the kinase of interest and radioactive or non-
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radioactive ATP.12,14 Phosphorylation is detected through radiography or antibody-based 

phosphorylation detection.12,14  

 

The positive hits from the phage library undergo multiple rounds of selection and kinase 

treatment (Figure 1-4).12,14 Finally, the lead sequences are synthesized and assayed in vitro 

in solution to validate them as kinase substrates.12,14 While there has been success using 

phage display peptide libraries, biological and technological limitations constrain them. 

Low copy number of the target peptide displayed on the phage surface limits the process 

to a binary outcome preventing phosphopeptide quantification.13,17 The multiple rounds of 

phage validation needed are time and labor intensive. Finally, the large quantity of 

recombinant kinase required can be a cumbersome process itself.  

1.2.3.1.2 mRNA/cDNA fusion peptide libraries 

mRNA/cDNA fusion peptide libraries have been used in vitro to discover kinase 

substrates. One example is ABL kinase.18–20 Conceptually, the process is similar to phage 

display. The generation of the mRNA-peptide fusions occurs in vitro allowing for a 10,000-

fold higher throughput process than phage display.19 This technique requires an 

mRNA/cDNA-peptide or protein fusion through a puromycin linkage (mRNA/cDNA 

Figure 1.4. Phage display peptide library concept overview  
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sequence of target peptide-puromycin linker-solid support). mRNA-peptide fusion 

libraries have been predominantly used to identify DNA binding or protein-protein 

interacting peptides with length ranges between 10 and 110 amino acids.19 dsDNA is 

transcribed into mRNA and ligated enzymatically to a DNA-puromycin oligonucleotide to 

form a complex encoding for the target peptide sequence.19 Following purification, the 

mRNA/cDNA-peptide fusions are incubated with an anti-phosphotyrosine antibody to 

remove molecules that non-specifically bind to the antibody before incubation with the 

kinase of interest.19 Following kinase incubation, the mRNA/cDNA-peptide fusions are 

incubated with an anti-phosphotyrosine antibody to enrich for phosphorylated sequences.19 

Lastly, the hit mRNA/cDNA-peptide fusion is amplified, and the dsDNA is sequenced to 

identify the phosphopeptide sequence.19 mRNA-peptide fusion libraries are a valuable tool 

for in vitro identification of kinase substrates, but the use of puromycin linker/selection 

marker limits the experimental conditions.21–23 Puromycin mimics the ribosome substrate 

and prevents translation. The mRNA-peptide fusion technique is primarily limited by the 

translational efficiency of the translation process and degradation by ribonucleases.22,23 

 

 

cDNA-fusion libraries are conceptually similar when compared to the mRNA-

fusion technique. Unlike the mRNA approach, the cDNA-fusion approach has been shown 

Figure 1.5. DNA/RNA concept overview  
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to be an experimentally robust and effective way to identify kinase substrates.22,23 The 

results obtained through this technique, however, do not translate effectively into an in vivo 

setting because the sequences identified through this process do not account for additional 

post-translational modifications that might play a role in kinase substrate identification.  

1.2.3.2 Synthetic peptide libraries 

 

 

Synthetic peptide libraries are a powerful tool that have been used to identify kinase 

substrate preference in yeast and human proteomes.12,14,24–26 Unlike genetically encoded 

peptide libraries, which are limited to natural amino acids, synthetic peptide libraries can 

incorporate un-natural amino acids and derivatives. Generally, synthetic libraries are 

divided into positional scanning synthetic peptide combinatorial libraries (PS-SPCL) or 

one bead one compound (OBOC) categories. Original iterations of PS-SPCL were bound 

to membrane solid supports allowing for rapid peptide library synthesis and discovery of a 

kinase’s preferred substrate preference.24,27 Although synthesizing PS-SPCL on membrane 

solid supports enables fast library synthesis, this approach introduced false positive 

identifications by limiting the kinase’s mode of biding to the peptide when compared to in 

solution in vitro assays. Thus, PS-SPCL phosphorylated peptides require a subsequent in-

solution validation step. Technological advancements, however, have developed non-

Figure 1.6. SPCL overview 
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membrane bound PS-SPCL that allow for the libraries to be aliquoted for multiple uses 

decreasing the rate of false positive sequence detection. PS-SPCL are limited by their lack 

of commercial availability and hit sequences require multiple rounds of validation. Similar 

to PS-SPCL, OBOC peptide libraries are not limited to natural amino acids; peptoid 

libraries have been applied to identify protein-protein interactions, and PTMs have been 

incorporated in library design.24 OBOC, although useful, comes with its own set of 

limitations. Peptides are synthesized on beads using chemical linkers that can produce 

steric hindrance and prevent kinase activity.24 Additionally, a single bead can contain up 

to 1013 copies of a single peptide that can increase the local concentration and lead to 

detection of poor peptide sequence.24 Furthermore, the peptide sequence found on each 

bead is not readily identifiable and requires Edman sequencing or mass spectrometry 

sequence identification. 

 

1.2.3.3 DNA/PNA programmed synthetic libraries 

The peptide nucleic acid (PNA) method combines mRNA/cDNA microarrays, 

fluorescently labeled antibodies and mix encoding.15 Each peptide in the microarray is 

engineered in the following scaffold: Fluorescein-PEG spacer-F-Q-X-X-Y-X-X-I-K-PEG 

linker-PNA, where X denotes any amino acid except tyrosine to prevent multiple 

Figure 1.7. One bead one peptide library generation overview  
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phosphorylation sites within the same peptide.15 The PNA microarray is then treated in 

vitro with the kinase of interest.15 Phosphorylation is detected with an anti-phosphotyrosine 

(4G10) antibody followed by an anti-mouse secondary antibody conjugated with Cy3.15 

The ratio of Cy3/Fluorescein is used to normalized varying peptide concentrations.15 

Additionally, the Cy3/Fluorescein ratio can be used for relative phosphopeptide 

quantification and subsequent extrapolation of kinase sequence preference.15 The PNA 

encoded peptide library has successfully recapitulated the preferred substrate motif for 

ABL kinase.15 Additionally, this process has been successfully implemented to elucidate 

the sequence preference for the HER2 and VEGFR2 RTKs.15 This process for interrogating 

a kinase’s preferred substrate sequence does not limit the creation of the peptide library to 

natural amino acids, as a previous study showed that D-amino acids can be incorporated 

into this method.15 Although PNA/DNA-encoded peptide libraries have been used to 

identify kinase substrate preference, they also have limitations. The PNA/DNA-encoded 

library technique does not address other PTMs that might regulate kinase substrate 

interactions. Additionally, as implemented, this process contains fixed amino acids at 

position -4 (F), position (-3), position 3 (I) and at position 4 (K), with respect to the 

phosphotyrosine. This can bias the preferred sequence motif of a kinase of interest. 

Subsequent in vitro validation of the hits is necessary to verify them as actual substrates of 

the target kinase. 
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1.2.3.4 Computational methods for predication of kinase specificity 

The advancement of kinase substrate identification technologies through either 

biological (phage display or DNA encoded) or synthetic (PS-SPCL or OBOC) libraries has 

paved the way to a new approach: deciphering the optimal kinase sequence through 

computational biology. To centralize the information produced using biological or 

synthetic libraries, large proteomic databases have been developed to store sequence 

information for enzyme substrates and protein-protein interactions.28–31 These databases 

allow researchers to filter and retrieve data that are relevant to specific searches such as 

kinase substrates. Moreover, these databases use consensus motif analysis tools to predict 

kinase substrates. 28–31 This approach uses the amino acid sequences found in the database 

and identifies the reoccurring amino acids and their respective positions relative to the 

phosphorylation site. Additionally, machine learning algorithms can be developed using 

this functionality to identify the kinase’s preference for specific amino acids within the 

substrate motif. Algorithm development utilizes sequence similarity-based clustering and 

higher-order machine learning tools such as statistical and mathematical modeling. The 

Figure 1.8. PNA peptide library concept overview 
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sections below provide a brief overview of the strengths and weaknesses of these 

approaches.  

1.2.3.4.1 Position specific scoring matrices (PSSM) 

A computational motif analysis approach centers on pattern-based detection and 

pioneering. Examples include Scansite and Motif-X.32,33 PSSMs are useful tools for 

identifying consensus sequences from the high-throughput screens described previously.33–

35 The “hit” sequences are used as references to identify similar sequences within the 

proteome, which can then be merged to define consensus sequences. This has identified 

substrate sequences for many protein kinases.33–35 These algorithms assign a numeric value 

to each amino acid flanking the phosphosite (S, T or Y) to create a percent scoring 

threshold. The percent scoring threshold is used to make a binary decision of sequence 

similarity and matches within the proteome. The PSSM approach, however, is highly 

dependent on the training dataset from peptide libraries to identify a clear kinase 

preference.  

1.2.3.4.2 Sequence similarity-based clustering  

Sequence similarity-based clustering is a powerful tool to identify sequence 

homology between protein or peptide sequences.36 Sequence clustering uses blocks 

substitution matrices (BLOSUM) derived from protein sequence information. Common 

similarity matrices are BLOSUM62, -80 and -100.36 The matrix name is defined by the 

threshold used to generate the underlying similarity table, or in other words, the proteins 

used to generate the matrix share 62, 80 or 100 percent sequence similarity.36,37 Examples 

of BLOSUM-based clustering are phosphorylation set enrichment analysis (PSEA) and 

PostMOD used to identify consensus kinase substrate motifs. PSEA is a derivative of gene 

set enrichment analysis (GSEA) that was used to identify substrate sequences for individual 

kinases, kinase families or kinase groups.38 The PostMOD creators used the Phospho.ELM 

database as input for their matrix and compared it to competing algorithms. Unlike PSEA, 

the creator of PostMOD developed a new matrix scoring system to reduce background 

noise, improve performance over the BLOSUM62-based matrices and create a simpler 

alternative to high order machine learning methods.39 Algorithm performance metrics were 
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calculated for PostMOD and competing algorithms to validate PostMOD as a viable 

alternative to complex modeling techniques such as machine learning algorithms,39 which 

are discussed in the next section. Although these approaches have proven useful in 

identifying kinase substrates, they depend on known substrate motifs to match an unknown 

peptide sequence as a substrate. In addition, sequence similarity-based approaches are 

limited to binary predictions that determines if a peptide sequence is or is not a peptide 

substrate and does not consider substrate turnover efficiency.  

1.2.3.4.3 High order machine learning (HOML) models  

Machine learning algorithms have been employed to identify enzyme substrates in 

vitro and in vivo. These tools use multiple layers of information between kinase and protein 

interaction, kinase localization and protein function to learn underlying relationships that 

govern kinase activity.14,40 A machine learning algorithm can be developed using artificial 

neural networks (ANN) (NETPHOSK),40,41 hidden markov models (HMM) 

(KINASEPHOS), probabilistic models (Bayesian decision theory, BDT), support vector 

machine (SVM)42 (PredPhospho),43 random forest (Phosphopredict)40,44 and conditional 

random fields (CRF) (CRPhospho).45  

Using ANNs requires the input of known sequence information from 

phosphorylation sites (true positive) and non-phosphorylation sites (true negative).40,41 The 

network is then trained to weigh the positive input over the negative input to produce an 

efficient working model.40,41 However, the multiple layers or dimensions applied to ANNs 

have revealed their struggles with large datasets. 

HMMs work slightly different in where the input database contains both positive 

and negative substrate sequences of a kinase, which the algorithm separates into two 

different lists. HMMs create multiple models based on the data and selects the most 

accurate one using the k-fold cross validation and leave-one-out model.46 HMMs do not 

perform homology reduction and do not account for redundant sequences.46 Additionally, 

HHMs suffer from overfitting the model to the data. Furthermore, HMM models do not 

include structural information when identifying the best performing model.46  

Probabilistic models use high order statistical probability (PhosD)47 or Bayesian 

statistics (BDT)40 to develop algorithms that calculate the probability of the four flanking 
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amino acids with respect to the phosphosite (S, T or Y) for each sequence within the input 

dataset’s (positive and negative) substrates. Additionally, PhosD incorporates kinase 

domain and substrate protein interactions to determine a protein as a biological substrate.47 

However, when incorporating protein-protein interactions between kinase and protein 

substrate from proteomic databases (Phosphosite, Phospho.ELM or UniProt) the model’s 

ability to correctly identify a biological substrate (recall) decreases. 47 Probabilistic models 

are highly dependent on the number of positive substrate datasets to make accurate kinase 

predictions.  

SVM-based models identify kinase substrates at the kinase family level through 

statistical learning theory (PredPhospho).43,44 SVM models treat the input dataset as 

individual points in space to identify a mathematical model that separates the data into two 

or more classifiers. Following construction of the mathematical function, SVM models use 

the data points (support vectors) closest to the mathematical function as reference points to 

identify the appropriate mathematical function. The mathematical function is determined 

when the distance between support vector and the mathematical function are symmetric. 

Once the mathematical function is identified, it can then be used to classify unknown data 

points into a predicted class (Figure 1-9B).  

Conditional random fields-based models focus their algorithms on the positive 

substrate datasets to understand and recognize the properties of the phosphosite flanking 

amino acids to identify a distinct pattern for a positive substrate.45 The algorithm then uses 

the negative dataset to establish a threshold that determines if a sequence is a positive 

kinase substrate.45 

The random forest machine learning algorithm was used to develop the 

Phosphopredict algorithm. This algorithm identifies weak relationships (“trees”) or 

associations to create an overarching strong relationship (“forest”).40 The Phosphopredict 

algorithm uses sequence information, secondary structure, predicted solvent availability 

and biological functions to generate a strong algorithm.40 The developers of 

Phosphopredict used the Phospho.ELM, PhosphoSitePlus and UniProt databases to predict 

new and uncharacterized phosphorylation sites for twelve kinase families.40  

HOML models can account for influential relationships between reoccurring amino 

acids within a substrate sequence, protein-protein interactions and cellular localization to 
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identify known and novel kinase substrates.40,42,43,47 HOML models have been useful tools 

to identify kinase substrate sequences and biological substrates, but they still have their 

limitations. Machine learning algorithms are predominantly used to identify 

phosphorylation sites within biologically relevant kinase substrates. This can be a limiting 

factor when predicting substrates for poorly studied protein kinases. Furthermore, as the 

complexity of the machine learning algorithm increases so does the ability to understand 

and decipher the decision making of the model.41  

 

1.3 The role of protein kinases in diseases 

Protein kinases regulate most of the cellular processes that are essential for cell survival, 

proliferation and programmed cell death. Disturbances in these signaling pathways lead to 

signaling abnormalities that upregulate or suppress vital cellular processes leading to (but 

not limited to) skeletal, immunological, neurological, autoimmune diseases and cancer.48,49 

The original hallmarks of cancer were termed: sustaining proliferative signaling, evading 

growth suppressors, activating invasion and metastasis, limitless replicative potential, 

sustained angiogenesis and evading aptoptosis.50 The hallmarks of cancer have been 

updated to included emerging (deregulating cellular energetics and avoiding immune 

destruction) and enabling characteristics (genome instability/mutations and tumor-

Figure 1.9. High order machine learning concept for artificial neural networks (ANN; 

left) and support vector machines (SVM; right) 
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promoting inflammation).51 Protein kinases contribute to the transformation of a cell 

population and the gain of the cancer hallmarks (ie., evading growth suppressors, limitless 

replicative potential, evading apoptosis, etc.),50,51 allowing cells to circumvent normal 

inhibitory processes and promote disease.  

1.3.1 The involvement of the human kinome in cancer  

1.3.1.1 Specific examples of kinases implicated in cancer  

Protein kinases are critical for sustaining proliferative singling, evading growth 

suppressors, resisting cell death, inducing angiogenesis and deregulating cellular 

metabolism in cancerous cells.48–51 For example, the platelet derived growth factor receptor 

(PDGFR) is overexpressed in cancers to promote sustained proliferative signaling.48,51,52 

The PDGFR signaling pathway is an example of how cancer cells become over reliant on 

unmutated cellular processes in tumorigenesis. Another example of a kinase implicated in 

cancer is epidermal growth factor receptor (EGFR). EGFR plays a role in evading growth 

suppression by regulating the phosphoinositol-3-kinase (PI3K), AKT, and mammalian 

target of rapamycin (mTOR) pathway in cancerous cells.3,51 Cancer cells hijack cellular 

pathways to supplement their environment with nutrients and dispose of waste. The most 

common pathway used to drive angiogenesis is the vasculature endothelial growth factor 

A (VEGF-A) and thrombospondin-1.51,53,54 The VEGF-A ligand is often overexpressed in 

cancer cells. VEGF-A  induces the activity of three members of the VEGF receptor tyrosine 

kinase family to initiate and regulate pro-angiogenesis pathways like ERK, AKT and 

MAPK.53 Further, protein kinases are heavily involved in the regulation of another cancer 

hallmark, alteration of cellular metabolism. Such kinases include but are not limited to 

AMP-activated protein kinase (AMPK), liver kinase B1 (LKB1) and PI3K.55,56 

Upregulation of signaling pathways, however, is not the only driver of tumorigenesis. 

Genetic abnormalities can produce oncogenic mutations in protein kinases resulting in 

hyperactive kinases. 

1.3.1.2 Protein kinase abnormalities in cancer 

The implication of kinases in cancer has led to a sequencing effort to identify 

reoccurring kinase mutations across an array of cancers.57–60 These studies have uncovered 
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many known and unknown mutations.57–60 The most common protein kinase abnormalities 

are chromosomal perturbations and function-altering mutations. Chromosomal 

perturbations occur because of a chromosomal instability leading to translocation of two 

chromosomes. The most well-known example is the translocation of chromosomes 9 and 

22 forming the “Philadelphia chromosome.” In this translocation, the breakpoint cluster 

region (BCR) and the non-RTK Abelson tyrosine kinase (ABL) genes are fused.57–60 This 

encodes for the fusion protein BCR-ABL which has a constitutively active catalytic kinase 

domain that drives chronic myelogenous leukemia progression.18,61,62 Function-altering 

mutations are subdivided into substitution or deletion categories. These alter protein kinase 

activity by introducing an amino acid substitution (gain-of-function) or deletion of 

segments within protein sequence of the protein kinase.60 For example, amino acid 

substitution of the amino acid residue located four C-terminal residues from the glycine of 

the DFG motif (N terminus-XXDFGXXXYXX-C terminus) within the activation loop of 

the kinase domain leads to constitutively active kinase.59,60 Examples of deletion gain-of-

function mutations are observed in BRAF, EGFR and HER2 where a four to nine amino 

acid segment, near the activation loop, is lost and results in a constitutively active 

kinase.59,63  

1.3.1.3 Understudied protein kinases and their role in disease progression 

Oncogenic cells become dependent on signaling pathways regulated by protein 

kinases to drive tumorigenesis and drug resistance. Examining the PhosphoSitePlus kinase 

substrate database, the majority of research efforts have been focused on a small subset of 

the human kinome (Figure 1-10).64 The dataset contained 385 kinases with over 13,701 

combined kinase substrate identifications from over ~340,000 combined “records” or 

studies, which have been identified through mass spectrometry experiments by researchers 

or Cell Signaling Technology.64 Currently, the PhosphoSitePlus database does not have 

any reported substrates for 133 of the 518 protein kinases.64 High-throughput sequencing 

studies are unveiling new insight into the role protein kinases play in cancer and diseases, 

which will clarify if the 133 kinases with no reported substrates are involved in 

tumorigenesis. Identifying the protein substrates for these understudied kinases will 



35 

 

 

provide insight into their biological roles, and enable development of assays that will help 

determine if they are viable drug targets.65 

 

1.3.2 Monitoring kinase activity and drug discovery 

The success of imatinib as a treatment for BCR-ABL positive chronic myeloid 

leukemia has led to an increase in kinase inhibitor development. Since the approval of 

imatinib in 2001, 37 kinase inhibitors have received Food and Drug Administration (FDA) 

approval.66 However, most of the approved kinase inhibitors are not kinase specific and 

contain non-kinase targets, which have contributed to adverse side-effects and/or drug 

resistance.67 Moreover, a large proportion of kinases and their biological roles remain 

understudied, which highlights the potential to discover new drug targets.  

Small molecule inhibitors have been developed to target RTK, however, these 

inhibitors contain off-target activity that ellicit adverse side effects. Additionally, 

Figure 1.10. Number of reported kinase substrates per kinase 
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resistance can be acquired independent of the RTK target by increased expression of the 

receptor or the receptor ligand. The initial success and limitations of targeting RTKs has 

shifted the focus to identifying new pathways that are indirectly involved in tumorigenesis 

but are cellular processes that oncogenic cells are depend upon such as transcription and 

immune system regulation.66 

Examples of current kinase targets that regulate transcription include the cyclin-

dependent kinases (CDK7-9, 12 and 13).66 Immune system regulators include CDK8, 

colony stimulating factor-1 receptor (CSF1R), PI3K (γ and δ) and the TAM kinases family 

(AXL, TYRO3 and MERTK).66 Currently, only CDK 7-9 have a reported substrate peptide 

available to monitor kinase activity while the rest do not. This is a short list of kinases that 

are involved in emerging signaling processes involved in cancer drug resistance.66 

Targeting cancers that are addicted to these kinase driven pathways requires effective ways 

to monitor kinase activity. 

1.3.3 The impact of developing efficient kinase substrates to monitor kinase activity 

Protein kinases are known to give cancerous cells advantages in cellular process 

that aid tumorigenesis and evade chemotherapy-induced death.50,51 This process can be 

mediated through increased copies of the kinase molecule or function-altering mutations. 

As described in prior sections, function-altering mutations can be single amino acid 

substitution, abnormal sequence insertion or deletion of inhibitory protein domains.57–60 

The dependency of cancerous cell on overactive kinase signaling made kinases viable drug 

targets. 

Small molecule inhibitors have been developed to target oncogenic kinases and 

improve chemotherapy outcomes in cancer patients. These inhibitors contain multiple 

modes of action to target kinases.68–70 Small molecules that are efficacious towards wild 

type kinases may not inhibit mutant kinases.66,71 Inhibitor resistance can be mediated by a 

secondary mutational event that prevents the small molecule from binding to the kinase 

molecule. To combat drug resistance and reduce off-target activity, we must understand 

how function-altering mutations affect kinase mechanisms that requires an understanding 

of normal modes of action. 66,71 In addition, kinase inhibitors can be used to target cellular 
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pathways that promote alternative resistance mechanism such as increased cellular 

metabolism or immune response.66  

New kinase inhibitors are needed to target these kinases of interest. Advancements 

in HTS technology have identified a variety of new kinase inhibitors, however, there is a 

need to identify specific and selective kinase inhibitors.72 Determining the preferred 

peptide sequence that a kinase will phosphorylate is beneficial on many fronts. In the 

absence of an ideal substrate sequence, polymer substrate sequences have been used to 

probe kinase activity.72–75 Polymerized substrates are comprised of a phosphor accepting 

amino acid residue surrounded by a series of either basic or acidic amino acids.73 Good 

substrates can help lower the cost of HTS by requiring less recombinant kinase.76,77 To 

identify an efficient kinase substrate, the affinity of a kinase for a substrate (Km) can be 

used.78,79 Km is defined as half the substrate concentration required to saturate the enzyme 

that is acting upon it. A substrate containing a low Km value indicates that a lot less 

substrate is required to saturate the kinase of interest (Vmax), while a substrate containing a 

high Km value requires a larger concentration of substrate to saturate the kinase.  

Polymer substrates have been used successfully in HTS to monitor kinase activity, 

73  however, as discussed in earlier sections, some kinases have preferences for uncharged 

amino acids at specific positions with respect to the phosphorylated residue.76,80–82 Poor 

kinase and substrate compatibility leads to low kinase activity on the substrate that affects 

the dynamic range of assay readout and are discussed in section 1.5. The promiscuity of 

polymer substrates prevents their use in cellular assays.74 Identifying the preferred 

substrate for a kinase of interest can be used to develop efficient kinase substrates for 

sensitive activity assays. Additionally, understanding kinase substrate preference 

information can then be leveraged to develop kinase specific peptide substrates to monitor 

cellular kinase activity.77,83 In turn, specific kinase substrates can be coupled with 

fluorescence applications to monitor kinase activity of function-altering mutations by 

developing kinase specific biosensors, which are discussed in section 1.5.4. Finally, the 

optimal sequence that a kinase phosphorylates can be used to identify potential sequences 

in a biological setting that a kinase might phosphorylate,77 which can be identified using 

machine learning algorithms. Identifying the preferred sequence that a given kinase 

phosphorylates can benefit drug discovery by lowering cost of HTS, improve assay 
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readouts and help elucidate kinase biology through biosensor assays, which can be applied 

to understand abnormal protein kinase signaling in human diseases.  

1.4 Mass spectrometry 

Mass spectrometry is the study of analytes based on their mass to charge (m/z) ratio. 

Mass spectrometry (MS) is an analytical tool that has been used to analyze complex cell 

lysate mixtures from flies, yeast and mammals (shotgun mass spectrometry).84 

Additionally, MS has been an integral technology to study post-translational modifications 

(PTM) of proteins (tandem mass spectrometry).84 In this technique, a liquid 

chromatography (LC) system is coupled to a mass spectrometer, which contains an ion 

source, mass detector and mass analyzer. The LC system retains and fractionates a sample 

mixture for MS analysis. Following sample elution from the LC column the mass 

spectrometer ionizes the sample using electrospray ionization (ESI) that is primarily used 

for complex mixtures. Upon ionization, the sample enters the mass analyzer (Q1) where 

multiple scans a second are performed to determine the most abundant ions in the mixture. 

The rapid scan rates allow for multiple snapshots of the eluting peptide mixture, and 

tandem mass spectrometry is used to obtain peptide sequence information. 

1.4.1 Tandem mass spectrometry 

In a general mass spectrometry experiment, peptides a eluted form the liquid 

chromatography column, converted into a gas phase and injected into the mass 

spectrometer were their mass to charge ratio is detected through a mass analyzer.84,85 

Tandem compatible mass spectrometers (ion trap) couple multiple mass analyzers in line 

to filter, fragment and scan for product ions (Figure 1-11A).86 In a tandem mass 

spectrometry experiment, a survey scan (MS1) is performed to identify the ions (parent 

ions) present in mixture and the information is used to trigger a second scan (MS2) on the 

detected ions. The MS2 scan can be triggered to fragment all the detected ions in the 

mixture (top speed) or only trigger an MS2 scan on the most abundant ions (top-N).86,87 

Following the MS1 scan, the selected MS1 parent ions (top-N or top speed) are captured 

in the ion-trap mass analyzer (Q2) for peptide fragmentation (product ions). The product 

ions are then scanned in the  third mass analyzer (Q3).86,87 Early iterations of ion trap mass 
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analyzers were essential for identification of PTM in complex mixtures but their low mass 

accuracy, scan speed and resolving power limited identifications.86  The introduction of the 

orbitrap mass analyzer increased low mass accuracy, scan speed and resolving power that 

hindered ion trap instruments.86,88 The mass analyzer in an orbitrap mass spectrometer 

consists of four components: a quadrupole (Q) mass analyzer, ion-trap, collision cell (coll. 

cell) and an orbitrap mass analyzer (Figure 1-11B). In a tandem MS experiment performed 

on orbitrap mass analyzers, following the MS1 scan (Q1), selected ions are moved to the 

ion-trap for ion accumulation and are then transferred to the collision cell for peptide 

fragmentation. Subsequently, the fragment ions are returned to the ion trap to be transferred 

to the orbitrap mass analyzer.88 The orbitrap mass analyzer contains an inner electrode that 

provide current that causes the fragment ions to oscillate in the trap, while the outer 

electrodes create the ion trapping field and detect the oscillating frequency of the fragment 

ions (Figure 1-11B).88  The oscillating frequencies are used to identify a fragment ion’s 

m/z values.88  

Development of the orbitrap mass analyzer technology has transformed how PTM 

are identified with higher mass accuracy and resolving power.86,88,89 Although protein 

phosphorylation is the most common PTM in the cell, phosphorylated peptides 

(phosphopeptides) are still in low abundance and the added phosphate residue in the 

phosphopeptides reduces their ability to ionize effectively.90 Affinity enrichment 

techniques have been developed to improve identification of phosphopeptide by mass 

spectrometry and are discussed in the next section. 
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1.4.1.1 Affinity enrichments 

To overcome the low abundance of phosphopeptides in complex cell mixtures, 

affinity enrichment techniques such as antibody-based or immobilized metal affinity 

chromatography (IMAC) and titanium oxide (TiO2) nanopolymer complexes have been 

employed.42,90–92 Fe(III) and Ga(III)-based IMAC technology, which were developed to 

enrich histidine and cysteine-rich peptides, also effectively enrich for phosphopeptides.42 

These techniques are widely used prior to mass spectrometry analysis for phosphopeptide 

enrichment.42,90,92,93 Together, the advancements in mass spectrometry and sample 

preparation have improved identification of phosphorylated peptides (phosphoproteomics) 

and has become a viable tool detecting new kinase substrates and their phosphorylation 

sites.12,90,93–95 The multiple sample handling techniques that are required, however, can 

introduce variation that is mass spectrometer independent. The most recent introduction of 

polymer-based metal ion affinity (PolyMAC) capture further advanced the enrichment 

process for phosphopeptides.90 The PolyMAC enrichment has been shown to double the 

amount of phosphopeptides captured and identified from cellular lysate when compared to 

Figure 1.11. Tandem mass spectrometry overview.  

Traditional LC-MS/MS concept overview (A) and Orbitrap tandem mass spectrometry 

overview (B) 
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TiO2 beads.90 Additionally, the PolyMAC enrichment has demonstrated greater 

reproducibility.90 

1.4.2 Kinase substrate motif identification through mass spectrometry 

Phosphoproteomics is a widely employed technique to identify phosphorylated 

peptides and has been used to identify kinase substrates in a high-throughput manner. 

Several approaches employing phosphorylated peptide libraries analyzed by mass 

spectrometry have been developed to evaluate kinase substrate preference.96–100 These 

approaches successfully identified new biologically relevant kinase substrates97 or specific 

substrate motif for an array of kinases.96–100 These techniques demonstrated that treating 

cell lysates or synthetic peptide libraries with recombinant kinases and enriching for 

phosphopeptides that it was possible to increase the list of known substrates for a kinase of 

interest. 

The KAYAK approach used a focused synthetic peptide library that consisted of 

known artificial kinase substrate sequences or sequences that are known to be 

phosphorylated endogenously by certain kinases (S/T or Y) from the Swiss-Prot (UniProt) 

database. The unphosphorylated peptides were synthesized in a 96-well plate format using 

unlabeled amino acids. The corresponding phosphorylated control peptide library was 

synthesized using an isotope labeled proline residue that was coded into all the sequences 

synthesized.98 To monitor and quantify the kinase activity of the PI3K and MAPK 

signaling pathway, cellular stress (starvation, EGF stimulation/inhibition) was induced in 

vitro and in cancer cell models.98 Following lysate incubation of the unlabeled peptide 

library, the phosphopeptide standards (isotope labeled proline) were spiked into the 

quenched lysate reaction mixture and 45 were pooled for phosphopeptide enrichment and 

mass spectrometry analysis.98 This approach allowed the authors to observe activation of 

the PI3K and MAPK pathways. This approach, however, has its limitations. The focused 

library must contain good substrates for the kinases within the signaling pathway of 

interest, and it requires prior kinase substrate preference knowledge to make an effective 

library.98 Additionally, synthesizing 90 isotope labeled-phosphopeptide control library is 

cost and time extensive.  
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Rapid determination of multiple linear kinase substrate motifs by mass 

spectrometry is another phosphoproteomic approach. In this study, the peptide library was 

derived from cell lysate. The lysate underwent proteolytic cleavage, phosphatase treatment, 

and strong cation exchange purification prior to in vitro kinase treatment. Subsequently, 

phosphopeptides are enriched using techniques described above and subjected to mass 

spectrometry and motif analysis through GrMFPh algorithm.100 This process has been used 

to identify the kinase substrate preference for a small panel of protein kinases that included 

PIM1 and 2, CLK3, DURK1α, HASPIN, CAMKK2β, BMPR2 and the PLK kinase 

family.100 Additionally, Gerber and colleagues interrogated the optimal kinase sequence 

for HASPIN and BMPR2 by mutating the phosphor-accepting residue to either S, T or Y 

to determine chemical affinity of the kinases towards the phosphor-accepting residue.100 

The experimental results demonstrated that HASPIN prefers to phosphorylate threonine 

over serine while not phosphorylating tyrosine.100 BMPR2 phosphorylated all three of the 

BMPR2-tide derivative sequences but demonstrated preference towards S/T.100 Although 

this work successfully elucidated the panel of kinases’ preferred substrate motifs, the 

phosphorylated sequences were not used to identify new biologically relevant kinase 

substrates.  

The serine-oriented human library of peptides (SERIOHL) were generated by using 

known phosphorylated serine (phosphoserine) centered sequences that were encoded into 

bacterial plasmids. The peptides are expressed in Escherichia coli as a cost efficient way 

to generate a large quantity of peptide libraries.99 The SERIOHL-KILR process 

successfully identified the preferred substrate motif for PKA, PKCβ wild type and mutant 

kinases. However, this process does not account for endogenous PTM that are found in 

endogenous cell lysates that could play a role in kinase substrate recognition by non-

catalytic kinase domains. Furthermore, the SERIOHL-KILR method is limited to serine-

centered sequences.  

The KALIP process was designed to identify non-native and native kinase 

substrates for the non-RTK SYK in DG75 and MDA-MB-231 cell models.97 The KALIP 

sample work-up is a two-stage process of identifying non-native and native SYK 

substrates. To identify biologically relevant targets, cells with or without SYK were lysed, 

prepared for MS, and subjected to PolyMAC enrichment.97  
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To identify non-native substrates, cells with or without SYK were lysed, trypsin 

digested, and the digests were subjected to phosphopeptide enrichment (PolyMAC). 

Following alkaline phosphatase treatment,  lysate was treated with recombinant EGFP-

SYK and subjected to a second phosphopeptide enrichment prior to tandem mass 

spectrometry analysis.97 The KALIP technique discovered five new endogenous SYK 

substrates and helped define SYK’s role in multiple non-B cell receptor signaling 

pathways.97 The KALIP process, however, does not account for other endogenous kinases 

that might phosphorylate the identified substrates found using this technique. This would 

require further validation through additional biochemical techniques. Additionally, the 

tryptic digestion creates peptide sequences that do not contain lysine or arginine residues 

close to the phosphorylation site and if they did, they would be too small for mass 

spectrometer detection. The results identified would artifactually show that the kinase of 

interest does not prefer positively charged residues close to the phosphorylation site. The 

tryptic peptide substrate library would benefit kinases that prefer acidic residues close to 

the phosphorylation site such as SYK. 

1.5 Methods for measuring kinase activity 

Monitoring kinase activity in a controlled environment allows for direct 

interpretation of kinase interacting compounds or inhibitors that alter kinase activity. 

Molecular biology and biochemical techniques have previously been used to monitor 

kinase activity using three major approaches: measuring the concentration of the co-

substrate ATP,  the co-product ADP, and phosphorylation state of the peptide 

substrate.101,102 These approaches have their strengths and weaknesses that will be 

highlighted in the next sections below. 
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1.5.1 ATP-dependent kinase activity measurement 

Measuring the concentration of ATP allows for antibody free detection of kinase 

activity. Commercially available ATP measuring kits use a luciferase reporter assay to 

measure ATP concentration, which is reduced following kinase reaction that increases the 

concentration of ADP.101,103 Briefly, following kinase incubation, the unconverted ATP 

concentration is reacted with D-luciferin and treated with luciferase to generate 

oxyluciferin, which can be measured by luminescent measurements.103 ATP-luciferase 

assays are highly compatible with HTS and can be used with protein and lipid kinases. Two 

caveats of these assays are interference by various compounds used with in vitro assays 

such as sodium chloride. Additionally, false negatives induced by luminescent kinase 

inhibitors.101 Additionally, these assays require a substantial amount of substrate turnover 

for adequate decrease in luminescent signal.  Ultimately, these approaches are also limited 

by the rate of substrate turnover and require optimal kinase-substrate compatibility, which 

is a limiting factor for understudied kinases. 

1.5.2 ADP-dependent kinase activity measurement 

Measuring the production of ADP has been used in commercially available 

detection kits to monitor kinase activity (Figure 1-12).102 These kits measure ADP presence 

through enzymatic or antibody-based techniques such as luciferase (ADP-Glo) or 

fluorescence.102 The ADP-Glo assay is a two-step process. The first step introduces an 

enzyme (reagent 1) that quenches the kinase reaction and removes residual ATP.102 The 

Figure 1.12. Three approaches to infer kinase activity.  

Measuring the decrease in ATP concentration following reaction completion 

(green), ADP production (blue) or the phosphorylation state of the substrate 

(orange). 
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second step converts the ADP generated during the kinase reaction to ATP by using a 

second enzyme (reagent 2).102 Subsequently, ATP levels are measured via a 

luciferase/luciferin reaction. The luminescence intensity therefore correlates to ADP 

levels.101,102 The ADP-Glo measurements can be affected by temperature fluctuations, high 

concentrations of kinase co-factors (NaCl, CaCl2, Calmodulin, etc.), chemicals (DTT, 

NaVO3) and detergents (Tergitol-NP-9, Tween-20 and Triton X-100).102  

 The limitations of the luciferase-based assays led to developments of fluorescence-

based assays through conjugated antibodies (labeled with lanthanide or horseradish 

peroxidase) to detect the presence of ADP following the kinase reaction.101 The assay 

requires an initial fluorescence measurement prior to initiating the kinase reaction to obtain 

the positive control (ATP) values that are then compared through endpoint or kinetic 

measurements.101 Quantification is achieved with a calibration curve.101 The ADP 

generated during the kinase reaction will displace the fluorescently-labeled ADP from the 

anti-ADP antibody, reducing the signal. Kinase activity is interpreted as inversely 

proportional to the loss of fluorescent signal. However, the antibody used to detect ADP 

has non-specific activity towards ATP at millimolar concentrations that limits the range of 

ATP concentrations used in the kinase reaction.  

Extrapolating kinase activity from the concentration of ATP and production of ADP 

are promising approaches because they do not completely rely on kinase-substrate 

compatibility. However, these assays contain limitations such as decreased dynamic range 

if not enough substrate is turned over when measuring ATP concentration or interference 

from kinase assay cofactors, reducing agents and detergents when monitoring the 

production of ADP. Thus, the conventional approach of measuring the phosphorylation 

state of the kinase substrate has been the predominant approach to monitor kinase activity. 

The following section is an overview of this approach.  

1.5.3 Phosphopeptide-dependent kinase activity measurement   

The classical methods for detecting kinase activity measure the amount of 

phosphorylated peptide substrate through radiometric, Enzyme-Linked ImmunoSorbent 

Assay (ELISA) and lanthanide chelating assays.80,83,101,104,105 Radiometric assays have the 
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advantage of being antibody-free, which is a disadvantage for ELISA and lanthanide-based 

assays in addition to being sequence dependent and are  discussed below.  

1.5.3.1 Radiometric assays 

Radiometric assays were the earliest technologies developed for monitoring kinase 

activity.101 These assays utilize radiolabeled ATP at the γ-phosphate to determine 

enzymatic parameters.101,104 Radiometric-based assays measure direct kinase activity and 

do not require sequential steps (ATP/ADP reagent addition or antibody incubation). This 

process requires the phosphopeptide to contain a net positive charge of 2 or 3 at pH below 

2 and is achieved by incorporating an N-terminal lysine residue during peptide substrate 

design.104 Following the kinase assay, the peptide substrates are bound to phospho-

cellulose paper and washed thoroughly to remove excess ATP to ensure the measured 

signal comes from the phosphopeptide.  

Although this is the “gold standard,” this technique has logistical and biological 

limitations as radiometric assays require special training, separate regulated work areas and 

costly reagent disposal.104 Moreover, this technique assumes that the positively charged 

lysine residues do not interfere with kinase substrate interactions, however, they might alter 

acidophilic kinase activity. Consequently, these limitations led to the discovery of 

additional methods to measure phosphopeptide quantities.  

1.5.3.2 Antibody-based phosphopeptide detection   

Antibody-based detection method is widely used to measure protein 

phosphorylation in immunoblotting and ELISA-based assays. Following the kinase assay, 

the quenched samples are added to a 96 or 384-well plate allowing the phosphopeptide to 

bind to the bottom of the plate via an enrichment tag within the peptide sequence. One 

common enrichment strategy exploits the high binding affinity between biotin-avidin. 

Once the peptides are bound, they are incubated with an anti-phosphate primary antibody 

for S/T/Y residues and subsequently incubated with an anti-secondary IgG that is 

conjugated with horseradish peroxidase.83 The phosphopeptide-primary-secondary-HRP 

complex is then incubated in the presence of HRP substrate and subjected to fluorescence 
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measurements. The increase in fluorescence signal is directly proportional to the amount 

of phosphopeptide bound through the biotin-avidin complex.  

However, the ELISA-based method contains technical limitations. This technique 

is most useful for detecting phosphotyrosine residues because of the specificity, sensitivity 

and commercial availability of anti-phosphotyrosine antibodies. Although anti-S/T 

antibodies exist, they lack the ability to bind a broad range of phosphorylated 

serine/threonine containing sequences. Phosphoserine/threonine antibodies are more 

specific to the amino acid sequence surrounding the phosphorylation site when compared 

to phosphotyrosine residues.106  

1.5.3.3 Lanthanide chelating phosphopeptide detection 

Proteins in the human proteome are known to coordinate and bind metal ions to 

perform their proteome function.105,107,108 One example is the alpha (α)-synuclein protein 

that binds calcium ions (Ca2+), among others, to aggregate and is involved in the 

progression of Parkinson’s disease.109 Binding of metal ions is mediated by 

phosphorylation of Y125, S129, Y133 and Y136 residues within the c-terminal region of 

α-synuclein. Specifically, the Y125 centered peptide has been shown to bind metal ions 

efficiently.109 Calcium contains similar ionic radii to lanthanide metals, which have been 

shown to displace Ca2+ in tissue to alter bone integrity and block Ca2+pumps.110  

Lanthanides are rare earth metals that are characterized as strong Lewis acids with 

unique chemical properties that have been exploited to become photoluminescent, 

bioimaging and biosensing probes.110–112 One example is the development of terbium-

based  time-resolved luminescence  kinase activity assays (Figure 1-13).80,81,105,108 To this 

effect, a SYK artificial substrate (SAStide) was centrally aligned to the α-synuclein 

calcium binding peptide tyrosine residue (Y125).105 SYK activity was measured in the 

presence of piceatannol, a SYK TKI, using the SAStide peptide.105 The lanthanide binding 

process was then incorporated into the KINATEST-ID pipeline (chapter 2) to design 

artificial peptide substrates for the SRC-kinase family (SFAStide), ABL (ABAStide) and 

JAK2 (JAStide-E) kinase.80  
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Lanthanide-based detection assays require certain considerations during peptide substrate 

design such as requiring acidic residues a position -6, -4, 1, 5 and 6 flanking the tyrosine 

residue, which are required to form the terbium chelating motif. The fixed acidic residues 

at their respective positions might reduce the substrate turnover when assayed against the 

kinase of interest. Lanthanide chelating assays are antibody-free, low cost and high 

throughput screening compatible that makes them an attractive alternative to monitor 

tyrosine kinase activity.  

1.5.4 Kinase substrates as biosensors to monitor cellular kinase activity 

Protein kinase substrates are used on multiple fronts to help elucidate a kinase of 

interest’s biological role. Coupling peptide substrates to fluorescent probes to monitor the 

in cellular kinase activity has been reported for a variety of kinases.113–115 This approach 

can be achieved through two major approaches. Substrates can be genetically encoded or 

exogenously introduced using a cellular penetrating sequence.  Artificial peptide sequences 

can be coupled to fluorescent probes such as fluorescent proteins, organic dyes or 

nanoparticles.111,113–115 

Figure 1.13. Time-resolved luminescence detection of kinase activity through 

terbium chelation.   

Adapted from reference 89. 
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Conjugating kinase substrates to fluorescent probes broadens their use to study 

biologically relevant kinase activity. Fluorescent proteins (FP) are used to study protein in 

a biological setting. Self-reporting biosensors have been employed to study kinase activity. 

This is achieved by genetically encoding a kinase substrate into a reporter scaffold 

consisting of a photon donor, a phosphorylation sensing probe, substrate and photon 

acceptor. Examples of photon donors and acceptor are genetically encoded green 

fluorescent protein and derivatives.115 Upon substrate phosphorylation, the 

phosphorylation sensing probe, such as an SH2 domain, folds upon itself and brings the 

photon donor and acceptor into proximity. Through fluorescence resonance energy transfer 

(FRET), the photon donor is then excited at a specific wavelength and transfers energy to 

the photon acceptor. The photon accept emits at specific wavelength and emission energy 

is measured through fluorescence microscopy.  

One example of FRET-based technologies used for in cell assays to monitor kinase 

activity is A-kinase anchor proteins (AKAR).113 To develop the AKAR assay, a DNA 

plasmid encodes for the PKA kinase substrate within a biosensor scaffold and was used to 

monitor protein kinase A activity. Cyan fluorescent protein was used as the photon donor 

and yellow fluorescent protein as the photon acceptor. Through this approach, PKA activity 

was monitored in real time upon stimulation of the PKA signaling pathway.113 A second 

example of technology using genetically encoded biosensors is the fluorescence fluctuation 

increase by contracts (FLINC).114 Unlike FRET-based approaches, FLINC measures the 

fluorescence emissions per pixel or fluctuations of the FP from cell images.114 FLINC 

biosensors are designed in the AKAR scaffold using FLINC specific fluorescent proteins. 

Upon substrate phosphorylation, the phosphorylated peptide sensor binds to the 

phosphorylated residue and the biosensor folds upon itself bringing the two FPs into 

proximity. This technique was used to monitor activity and identify the localization of PKA 

and ERK kinases.114  

A second approach for monitoring cellular kinase activity is to use artificial peptide 

substrates labeled with organic dyes.115 Following conjugation, the substrate-probe 

complexes are delivered inside of the cell through membrane penetrating sequences. The 

conjugated substrate-probe complexes can be toxic to the cells. In addition, self-reporting 
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biosensors can be localized within the cell using localization tags such as nuclear 

localization or exclusion sequences.115 

Conjugating kinase substrates with fluorescent probes to monitor kinase activity 

contains limitations. One limitation is the lack of substrate specificity within a kinase 

family, which are categorized by their protein structure and sequence similarity. The high 

degree of similarity between catalytic domains within the same family makes generating 

specific substrates a difficult task. Substrate specificity is important when using genetically 

encoded or probe conjugated kinase substrates to monitor cellular kinase activity. A second 

limitation is the lack of reported and efficient kinase substrates for the majority of the 

human kinome.64 The approaches discussed above highlight the importance of identifying 

ideal substrates for understudied kinases. 

1.6 Dissertation objectives 

As described above, experimental and in silico approaches have been used to 

identify kinase substrate preferences, predict and to design peptide substrates to monitor 

protein kinase activity.  However, the high throughput identification of kinase substrates 

required laborious and expensive approaches that required multiple phases of validation. 

Herein, strategies for an automated, high throughput process for tyrosine kinase substrate 

identification, artificial substrate design, and kinase activity monitoring will be discussed.  

Chapter two of this thesis contains a published manuscript on which I was second 

author, describing the KINATEST-ID pipeline and how my work contributed to the 

creation of this method. The KINATEST-ID pipeline is a set of modular steps used to 

identify, generate in silico, and validate a kinase family’s preferred kinase substrate 

through a terbium chelation time resolved assay.  

The work described in chapter three continues the application of the KINATEST-

ID pipeline. In this chapter, we adapted a streamlined phosphoproteomic process to 

increase the number of known FLT3 kinase variant substrates and generated a set of data 

formatting tools to facilitate the use of phosphoproteomic data into an updated version of 

the KINATEST-ID pipeline. FLT3 is a RTK involved in acute myeloid leukemia and it is 

a major role player in drug resistance and disease relapse. Currently, there are many efforts 

to elucidate the FLT3 RTK signaling pathway in AML but with no reported efficient 



51 

 

 

artificial substrate. Through this work, we employ the kinase assay linked with 

phosphoproteomics technique for rapid kinase substrate identification and my efforts 

centered on establishing the KALIP technique as a viable process to identify FLT3 kinase 

variant substrates for incorporation into the KINATEST-ID pipeline. Through this process, 

we identified the FLT3 substrate preference to design a set of FLT3 artificial substrates 

(FAStide), of which two substrates were used in TKI dose response assays to monitor FLT3 

kinase variant activity (Chapter 3). 

The work described in chapter four was a collaboration with a Masters student in 

our group, John Blankenhorn, and focuses on incorporating the data formatting and 

KINATEST-ID tools, developed in chapter three, into the GalaxyP framework that allowed 

for autonomous processing of the phosphoproteomic data to develop a lanthanide-based 

assay to monitor Bruton’s tyrosine kinase (BTK) activity. BTK is a non-receptor tyrosine 

kinase involved in leukemia progression and disease relapse. BTK does not have a reported 

artificial substrate that can be used to monitor kinase activity, limiting drug discovery 

efforts. This work outlines the use the KALIP technique to increase number of BTK 

substrates that are then incorporated into GalaxyP-based KINATEST-ID pipeline. The 

updated KINATEST-ID workflow in GalaxyP also uses the BLOSUM-100 matrix to align 

a BTK artificial substrate (BAStide) with a lanthanide binding motif for antibody free time 

resolved kinase activity detection (chapter four). 

The final chapter of this work is a description of my contributions in the 

development of a multiplexed and antibody free detection method for multiple tyrosine 

kinase activities published in Analytical Chemistry, on which I was second author.
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Figure 1.14. Thesis chapter concept map  
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 KINATEST-ID™: A PIPELINE TO DEVELOP 

PHOSPHORYLATION-DEPENDENT TERBIUM SENSITIZING 

KINASE ASSAYS 

2.1 Contributions to this work 

Chapter two is the KINATEST-ID manuscript in its published form. I have received 

copyright approval to incorporate the manuscript into my dissertation. The manuscript 

describes a series of steps that uses reported kinase substrate information to create a set of 

modules that are used to identify, predict, filter, align and validate artificial peptide 

substrates for a kinase of interest to create an antibody-free activity assay.  

During the first three years of my graduate school career, I worked under the 

guidance of Dr. Laurie L. Parker and a lab alumnus, Dr. Andrew M. Lipchik. They afforded 

me the opportunity to take the lead in the development, synthesis and validation of the SRC 

family kinase artificial substrate (SFAStide-A) reported in the publication of the 

KINATEST-ID pipeline.  

The processed included searching proteomic databases to identify Lyn and other 

SCR family kinases substrates that were used to generate a small library of peptide 

substrates that were used as input for the KINATEST-ID workbooks, which predicted a 

series of candidate peptide sequences. With the support and encouragement from Dr. 

Parker and Dr. Lipchik, I identified and synthesized what eventually became the SFAStide-

A sequence. Subsequently, I carried out the reminder of the KINATEST-ID pipeline steps 

to align the SFAStide into the terbium binding motif to create an in vitro terbium-based 

assay for detection of SRC family kinase activity. 

Reprinted (adapted) with permission from (Lipchik AM, Perez M, Bolton S, et al. 

KINATEST-ID: A pipeline to develop phosphorylation-dependent terbium sensitizing 

kinase assays. J Am Chem Soc. 2015;137(7):2484-2494. doi:10.1021/ja507164a.). 

Copyright (2015) American Chemical Society. 
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2.2 Abstract 

Non-receptor protein tyrosine kinases (NRTKs) are essential for cellular 

homeostasis, and thus are a major focus of current drug discovery efforts. Peptide 

substrates that can enhance lanthanide ion luminescence upon tyrosine phosphorylation 

enable rapid, sensitive screening of kinase activity, however design of suitable substrates 

that can distinguish between tyrosine kinase families is a huge challenge. Despite their 

different substrate preferences, many NRTKs are structurally similar even between 

families. Furthermore, the development of lanthanide-based kinase assays is hampered by 

incomplete understanding of how to integrate sequence selectivity with metal ion binding, 

necessitating laborious iterative substrate optimization. We used curated proteomic data 

from endogenous kinase substrates and known Tb3+-binding sequences to build a 

generalizable in silico pipeline with tools to generate, screen, align and select potential 

phosphorylation-dependent Tb3+-sensitizing substrates that are most likely to be kinase 

specific. We demonstrated the approach by developing several substrates that are selective 

within kinase families and amenable to HTS applications. Overall, this strategy represents 

a pipeline for developing efficient and specific assays for virtually any tyrosine kinase that 

use high throughput screening-compatible lanthanide-based detection. The tools provided 



55 

 

 

in the pipeline also have the potential to be adapted to identify peptides for other purposes, 

including other enzyme assays or protein binding ligands.  

2.3 Introduction 

Protein kinases catalyze the reversible phosphorylation of proteins and play a 

ubiquitous role in the regulation of signal transduction pathways directing cellular 

processes including proliferation, survival and adhesion. Phosphorylation of a protein can 

result in changes in activity, conformation, and stability as well as facilitate protein-protein 

interactions through phospho-recognition domains. The human genome encodes more than 

500 protein kinases, 32 of which are non-receptor tyrosine kinases (NRTKs).4 This group 

of kinases has diverse roles in integrating signaling events initiated at the plasma membrane, 

including regulation of cell shape, motility, proliferation, and survival. NRTK deregulation 

occurs frequently in cancer through a variety of mechanisms including overexpression, 

gain-of-function mutation, or loss of negative regulators.116–118 The association of many 

NRTKs with cancer and inflammatory disease has led to large drug discovery efforts, 

resulting in the development of 24 FDA-approved small molecule NRTK inhibitors since 

2001.119 However, despite their established clinical importance, approved inhibitors target 

only a small subset of NRTKs (5 out of 32). A major factor impeding development of 

kinase inhibitors is the difficulty in producing compounds that are highly specific, and 

several promising kinase inhibitors have failed clinical trials due to unanticipated off-target 

effects. Therefore, the development of broad-based tools that allow for sensitive detection 

of kinase activity has important applications in profiling kinase inhibitor specificity.  

Typical strategies for monitoring kinase activity use radioactive ATP, antibodies, 

or proteomics to detect phosphorylation of native substrates.120–122 While these methods 

have successfully generated a wealth of information about kinase activity, each suffers 

from several disadvantages. For example, redundancy among even otherwise disparate 

kinases can also confound the assignment of endogenous phosphorylation sites to a specific 

enzyme. Artificial peptide substrates offer an attractive strategy for examining kinase 

activity either in vitro or in intact cells, due to their diverse chemistries, compatibility with 

a wide variety of detection platforms, and their ability to directly report the function of a 

particular enzyme. A variety of detection methods have been utilized for assaying artificial 



56 

 

 

substrates, including capillary electrophoresis, voltammetry, mass spectrometry, antibody-

based detection (e.g. ELISA), light scattering based methods using SERS and RLS, and 

fluorescence-based methods such as chelation enhanced fluorescence (CHEF), FRET and 

fluorescence quenching.123,124 (still need one source)In particular, CHEF methods that 

sensitize lanthanide ions such as terbium (Tb3+) in a phosphorylation-dependent manner 

can enable high sensitivity and analytical reproducibility. Previously, we described the 

application of a kinase specific peptide substrate (SAStide) for the sensitive detection of 

spleen tyrosine kinase (Syk) activity in vitro through phosphorylation-dependent enhanced 

sensitization of Tb3+ luminescence.105 The luminescence signal is generated when 

phosphorylation of the tyrosine residue results in exclusion of water and completion of the 

Tb3+ coordination sphere. Phosphorylation also alters the excitation wavelength of the 

aromatic side chain, increases the binding affinity for the peptide, and increases the 

luminescence lifetime, resulting in a large increase in signal to noise (16-fold in the case 

of SAStide). However, other than this example of a serendipitous case, most CHEF 

substrates are designed primarily to achieve optimal metal binding, which often comes at 

the expense of kinase selectivity and enzyme kinetics. Currently there is no general, 

streamlined method to identify and develop novel substrates that are simultaneously 

specific for an individual kinase and strong metal chelators. To develop such an approach, 

both elements (specificity and binding) must be taken into account.  

In this report, we present a pipeline to develop peptide substrates for tyrosine 

kinases (using the NRTKs as a model system) that are compatible with phosphorylation 

dependent sensitization of Tb3+ (Fig. 1). We employed curated collections of known 

endogenous substrate sequences and data from positional scanning peptide library 

microarrays to develop an in silico positional scoring matrix model that enabled the rapid 

identification of selectivity determinants and assessed the relative importance of 

maintaining certain residues at each position. We used this information and Tb3+-binding 

motif alignment as sequence-space-filtering criteria to narrow down the potential substrate 

library generated from the motif for a given kinase. This yielded a manageable handful of 

sequences that could be empirically tested and thoroughly characterized. We applied this 

pipeline to generate biosensors for Abl, Jak2, and Src-Family tyrosine kinases and 
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demonstrated HTS assays using the Abl substrate against a small molecule library to 

identify novel Abl inhibitors. 

 

  

Figure 2.1 Design and development of phosphorylation-dependent enhanced Tb3+ 

luminescence tyrosine kinase peptide biosensors. 
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Figure 2.1 continued 

 

 Design and development of phosphorylation-dependent enhanced Tb3+ luminescence 

tyrosine kinase peptide biosensors. 

 A) General biosensor design strategy for kinase biosensors capable of phosphorylation 

induced enhanced Tb3+ luminescence, where X is any amino acid, Φ is a hydrophobic 

antenna containing residue and [-] is an acidic amino acid. B) The detection strategy using 

the phosphorylation-dependent physical changes in the biosensors that result in enhanced 

Tb3+ luminescence. C) To develop a kinase specific peptide based biosensor, we first obtain 

all known phosphorylated substrates for a given kinase as the foreground as well as all 

unphosphorylated tyrosine centered sequences for the substrates and validated proteins that 

interact with the kinase as the background. Data from positional scanning peptide library 

screens from the Turk laboratory were also included.76 (1) A positional scoring matrix, 

where values represent the preference for each amino acid at every position, and a site-

selectivity matrix (SSM), representing the degree to which a given position “requires” a 

given amino acid, are generated from these data.  SSM values are centered at one; values 

greater than one reflect a strong preference for a particular amino acid at that position and 

values less than one reflect a lack of preference. (2) A library of sequences were generated 

in silico based on substrate preferences at each positions using the site selectivity score 

(using the“GeneratorTM” tool). (3) The library is scored against the kinase of interest as 

well as all other tyrosine kinases and clustered using bidirectional Euclidian distance and 

filtered to remove any nonspecific or nonsubstrate sequences for the kinases based on the 

PSM scores (using the “ScreenerTM” tool). Scores are on a scale from 0 to 100, where 

binary classification (of “Substrate” or “Non-substrate”) was determined based on 

threshold values through cross-validation. (4) The remaining sequences are scored using a 

BLOSUM matrix to assess the similarity to the phosphorylation-dependent Tb3+-binding 

-syn Y125 peptide124, 125 (using the “AlignerTM” tool), which enables filtering out of 

sequences that are predicted to be selective substrates but not to match the Tb3+ motif 

inherent in the target sequence (which in this case was the best-characterized model, the -

syn Y125 peptide, but could be another Tb3+-binding sequence of interest). (5) The 

remaining sequences are validated empirically for kinase specificity and photophysical 

properties associated with Tb3+ luminescence. For each relevant step, the score similarity 

for each kinase (columns) and sequence similarity to one another across kinases (rows) 

were clustered using bidirectional Euclidian distance. 
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2.4 Experimental Section 

2.4.1 Positional Scoring Matrix (PSM) and Site Selectivity Matrix (SSM) generation.  

A blank “substrate informatics sheet” that can be used to perform the functions that 

yield the PSM and SSM, and workbooks for the Generator™, Screener™, and Aligner™ 

tools are provided as supplementary files. The calculations in the workbook were 

implemented as follows: 

2.4.1.1 Positional Scanning Peptide Library 

 To combine the PSPL data from the Turk laboratory with the endogenous substrate 

information in the filtering algorithm, peptide phosphorylation signals for each array were 

quantified based on the median intensity for each spot. The median intensity values were 

then background corrected and signal intensity were then normalized by the following 

equation: 

𝑍𝑖,𝑗 = 𝑚 ↔  
𝑆𝑖,𝑗

∑ 𝑆𝑗,𝑖
 

where Zij stands for the normalized score of amino acid j at position i having a signal score 

Sij and m stand for the total number of amino acids. Sci is the signal score of amino acid j 

at position i where i is defined in the summation of all the m amino acids. 

 

2.4.1.2 Positional Probability (from endogenous substrates) 

 We computed the probability matrix, PM, as follows. It is experimentally known 

that kinase k phosphorylates n substrates (n1, n2, …, nn) consisting of nine amino acids, 

four on each side of the phosphorylation site. The frequency of each amino acid at each 

position in the collection of substrates was computed, fj,i, where j is amino acid (A, C, …, 

W, Y) at position i (-4, -3, …, 1). Due to the limitation of identified substrates for some 

kinases, when j = 0 for those amino acids the value of j = 1/n, where n is the number of 

substrate sequences for kinase k. The matrix values were computed by comparing the 

observed frequency, fi,j, within the substrates to the expected frequency (background 

frequency), bi,j, derived from the frequency of each amino acid in each protein containing 

a substrate sequence as well as non-phosphorylated interacting proteins (obtained from the 
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Protein Information Resource (http://pir.georgetown.edu).125 This allowed for the 

background of amino acids to reflect the proteins with which the kinase naturally interacts. 

We constructed the probability matrix 20 x 9 for each amino acid and position defined as 

si,j = fi,j / bi,j. 

2.4.1.3 Positional Scoring Matrix 

The two individual matrices, PM and PSPLM, were then multiplied together to 

form the positional scoring matrix, PSM. The value for each amino acid can then be used 

to identify favorable and unfavorable residues at each position. Values greater than 0.9 

were considered favorable or permissive for the kinase, while values less than 0.9 were 

consider unfavorable or impermissive. 

For an nonapeptide of a given amino acid sequence the product of all si,j values 

yields the raw probability score, SR. 

𝑆𝑅 =  ∏ 𝑆𝑖,𝑗

8

𝑖=1

 

The raw score was normalized by probability of any nonapeptide being a substrate 

for kinase k, Ps. Ps was determined by the number kinase substrates collected n plus the 

number of significantly favorable amino acid from the PSPL compared to the total number 

tyrosine centered nonapeptides seen in substrate and interacting proteins and the 200 

peptides from the PSPL for kinase k. 

 

 

The site selectivity matrix was determined by the ratio of the number of 

significantly abundant residues found at the subsite, nsig
i,j, to that the expected abundance 

from a random distribution, nsigaa
i,j, multiplied by the ratio of the number of the number of 

significantly abundant at the subsite to the total number of residues, naa
i,j. 

 

 

   

Ps =
n + x

nT + 200

   

S =
SR

SR +
1

PS

http://pir.georgetown.edu/
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𝑆𝑖 =  
∑ 𝑛𝑖,𝑗

𝑠𝑖𝑔
𝑗

∑ 𝑛𝑖,𝑗
𝑠𝑖𝑔𝑎𝑎

𝑗

× 
∑ 𝑛𝑖,𝑗

𝑠𝑖𝑔
𝑗

∑ 𝑛𝑖,𝑗
𝑎𝑎

𝑗
 

An amino acid was defined as being significantly abundant if its frequency was found to 

be greater than two standard deviations above the mean. 

2.4.2 Generation of kinase-focused virtual peptide libraries.  

Kinase focused virtual (i.e. in silico) peptide libraries were generated using the 

Generator™ tool based on the values of the PSM. All si,j > 0.9 were chosen as potential 

residues at each position. Combinatorial peptide sequences were generated from these 

residues and scored against each kinase using the Screener™ tool. Those peptides that 

scored positive for the kinase (or kinase family) of interest and negative for all other kinases 

(or kinase families) were then selected and added to virtual “focused libraries” in the 

Aligner™ Excel spreadsheet for further screening. 

2.4.3 Terbium Binding in silico Screening. 

Following the generation of focused putative kinase substrate libraries, sequences 

were filtered for the potential to bind terbium in a phosphorylation-dependent manner using 

the Aligner tool™. A BLOSUM62 matrix was used to generate a sequence similarity score 

between the focused library of potential kinase substrates and the known terbium 

sensitizing sequence -syn Y125 (DPDNEAYEMPSEEG).126,127 The top several 

sequences (as desired) were chosen for further empirical evaluation. 

2.4.4 Peptide synthesis and purification.  

Peptides were synthesized using a Protein Technologies Prelude parallel peptide 

synthesizer on Rink-amide resin (Peptides International, Louisville, KY). Coupling of 

standard Fmoc-protected amino acids (Peptides International, Louisville, KY) was 

achieved with HCTU (Peptides International, Louisville, KY)(100 mM) in the presence of 

NMM (Sigma-Aldrich, St. Louis, MO) (400 mM) in DMF (EMD Millipore, Billerica, MA) 

for two 10 min couplings. Fmoc deprotection was performed in 20% piperidine (Sigma-

Aldrich, St. Louis, MO) in DMF for two 2.5 min cycles. Peptides were purified to >90% 

purity by preparative C18 reverse-phase HPLC (Agilent 1200 series) using a linear gradient 
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5%-38% acetonitrile/0.1%TFA and water/0.1%TFA and characterized using HPLC-MS 

(ThermoFinnegan Accela-LTQ). 

2.4.5 In vitro kinase assays (Tb3+ luminescence). 

Recombinant kinases; Abl, Src, Lyn, Csk, Jak2 and Hck (Millipore) and Syk, Btk, 

Fyn, Pyk2, and Fgr were expressed as described elsewhere.76 Recombinant kinases were 

incubated with the kinase reaction buffer (100 M ATP, 10mM MgCl2, 125 ng/µL BSA 

and 25 mM HEPES pH 7.5, total volume 180 µL) containing 12.5 M biosensor at 30C. 

Aliquots (20 µL) were taken at designated time points (0.5, 5, 10, 15, 30, 45 and 60 min) 

and quenched in 6 M urea (20 µL). The quenched samples were then treated with the 

luminescence buffer (500 µM Tb3+ and 500 mM NaCl, 10 µL) for a total volume of 50 µL 

(final concentrations of sample components: 2.4 M urea, 40 M ATP, 4 mM MgCl2, 50 

ng/µL BSA and 10 mM HEPES pH 7.5). Time-resolved luminescence emission spectra 

were collected on a Biotek Synergy4 plate reader equipped with a monochromator at room 

temperature in black 384-well plates (Greiner Fluorotrac 200). Spectra were collected 

between 450 and 650 nm in 1 nm increments with 1 ms collection time and 10 reading per 

data point at a sensitivity of 180 after excitation at 266 nm with a Xenon flash lamp 

followed by a delay of 50 μs.  area under each spectrum was integrated using GraphPad 

Prism. An additional aliquot (2 µL) of the kinase reaction mixture was taken at each time 

point for validation of phosphorylation using an ELISA-based chemifluorescent assay as 

previously described.83 

2.4.6 Chemifluorescent detection of phosphorylation.  

Each aliquot was quenched with 0.5 M EDTA and incubated in a 96-well 

Neutravidin coated plate (15 pmol biotin binding capacity per well, Thermo Scientific) in 

Tris-buffered saline (TBS, 25mM Tris-HCl and 150mM NaCl) containing 0.1% BSA and 

0.05% Tween 20 for 1h. Following incubation, each well was washed with the TBS buffer 

and then incubated with mouse anti-phosphotyrosine monoclonal antibody 4G10 

(Millipore, 1:10,000 dilution in TBS buffer) for 1h. Following incubation, each well was 

washed with TBS buffer and incubated with horseradish peroxidase-conjugated goat anti-

mouse immunoglobulin G (IgG) secondary antibody (Abcam) (1:1000 dilution) for 1h. 
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Wells were then washed and treated with Amplex Red reaction buffer (Amplex Red reagent, 

Invitrogen, 20 mM H2O2 and sodium phosphate buffer) for 30 min. Fluorescence was 

measured using a Synergy4 multiwell plate reader (Biotek) with an excitation wavelength 

of 532 nm and emission wavelength of 590 nm. 

2.4.7 Dose-response inhibition assay.  

Kinase (15 nM) was incubated with the kinase reaction buffer described above in 

the presence of DMSO (vehicle) or varying concentrations of kinase inhibitors (nilotinib, 

bosutinib, ruxolitinib) at 30C for 10 min prior to the start of the reaction by adding the 

peptide substrate. The reaction was started with the addition of biosensor (37.5 µM, total 

reaction volume 20 µL). Each reaction was quenched after 30 min in 6 M urea (20 µL). 

The samples were then treated with the luminescence buffer (500 µM Tb3+ and 500 mM 

NaCl, 10 µL) for a total volume of 50 µL. Time-resolved luminescence spectra were 

collected as described above and the area under the emission curve determined. The IC50 

value for each inhibitor was determined by fitting data to equation below where 

inhibitionmax is the bottom plateau of the curve, inhibitionmin is the top plateau of the curve, 

the Hill slope is the steepness of the curve and X is the concentration of the inhibitor. 

𝑦 =
𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛𝑚𝑎𝑥 + (𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛𝑚𝑖𝑛 − 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛𝑚𝑎𝑥)

1 + 10((𝑙𝑜𝑔𝐼𝐶50−𝑋)∗𝐻𝑖𝑙𝑙 𝑆𝑙𝑜𝑝𝑒))
 

2.4.8 High-throughput screening assay.  

Abl kinase (3 nM) was incubated with the kinase reaction buffer described above 

in the presence of DMSO (vehicle), imatinib (positive control) or a single compound from 

the GSK PKIS library (10 M), at 30C for 30 min prior to the start of the reaction by 

adding the peptide substrate. The reaction was started with the addition of the biosensor 

AbAStide (12.5 µM, total reaction volume 20 µL). Each reaction was quenched after 1 h 

in 6 M urea (20 µL). The samples were then treated with the luminescence buffer (500 µM 

Tb3+ and 500 mM NaCl, 10 µL) for a total volume of 50 µL. Time-resolved luminescence 

emission intensities were collected at the maxima of the four emission peaks and summed 

together to give total signaling for each well using the instrument settings described above. 
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Percent inhibition was determined using the positive inhibition control, imatinib, and the 

negative inhibition control, DMSO. 

2.4.9 Growth inhibition curves.  

K562 cells were seeded into 96-well plates at 10,000 cells per well in Iscove’s 

Modified Dulbecco’s Medium supplemented with 10% fetal bovine serum and pen/strep. 

The cells were dosed with the indicated inhibitor at the indicated concentrations (n = 4), 

and allowed to incubate for 3 days at 37° C. Following incubation, XTT reagent (ATCC) 

was added according to manufacturers protocol, and allowed to incubate at 37° C for 3 

hours. Absorbance at 475 nm was measured on a Biotek Synergy4 plate reader. Values 

were calculated as percent of vehicle (0.1% DMSO), plotted in Graphpad Prism 6, and 

IC50 values generated by fitting a variable slope (four parameter) curve. 

2.4.10 High-Throughput Screening Calculations.  

The Z’ factor was calculated according to Eq. 2. 

 

𝑍′ =  
(𝜇𝑝𝑜𝑠−

3𝜎𝑝𝑜𝑠

√𝑛
)−(𝜇𝑛𝑒𝑔−

3𝜎𝑛𝑒𝑔

√𝑛
)

𝜇𝑝𝑜𝑠−𝜇𝑛𝑒𝑔
 [2] 

 

The signal window was calculated according to Eq. 3 

𝑆𝑊 =  
(𝜇𝑝𝑜𝑠−

3𝜎𝑝𝑜𝑠

√𝑛
)−(𝜇𝑛𝑒𝑔−

3𝜎𝑛𝑒𝑔

√𝑛
)

𝜎𝑝𝑜𝑠

√𝑛

  [3] 

 

where n is the number of replicates, µpos and µneg are the average luminescence of the 

positive (phosphorylated peptide or uninhibited) and negative (unphosphorylated peptide 

or control inhibitor-treated) controls respectively; pos and neg are the standard deviation 

of the positive and negative controls. 
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2.5 Results 

2.5.1 KINATEST-ID™: a substrate peptide sequence space filtering pipeline 

Inspired by the general design rules of previous CHEF-based sensors for detection 

of kinase activity (i.e. Sox-Mg2+ and EF-hand-Tb3+ sensors), we aimed at developing a 

general approach to design biosensors for tyrosine kinase activity analysis using 

phosphorylation-dependent enhanced Tb3+ luminescence. Sensors were designed to 

combine nonreceptor tyrosine kinase substrate specificity with the excitation and chelation 

elements governing Tb3+ luminescence. To achieve this, each kinase biosensor was 

developed to contain an optimized substrate sequence with an embedded Tb3+ coordination 

motif, similar to that previously identified from the 14-residue fragment of -synuclein 

surrounding Y125. (Figure 1A) Based on our previous work, we hypothesized that 

phosphorylation-dependent physical changes in the biosensor would enable enhanced Tb3+ 

luminescence of the phosphorylated biosensor compared to the unphosphorylated form 

(Figure 1B).105 

For each kinase, a focused virtual library of peptide biosensors was designed, 

optimized and selected in silico through a bioinformatic pipeline, KINATEST-ID™ 

(Kinase Terbium Emission Sensor Identification) comprised of three data processing tools: 

Generator™, Screener™, and Aligner™, implemented in Microsoft Excel workbooks that 

are available as supplementary files (Fig 1C). This method starts with the generation of a 

positional scoring matrix (PSM) (as described below) for a given kinase, which uses highly 

curated, biologically validated phosphorylation sites for individual kinases as well as 

empirically observed effects of amino acids from positional scanning peptide microarray 

data (unpublished, shared by Turk and co-workers) (Figure 1C Step 1). This matrix 

represents the relative preference the kinase has for each amino acid at each position within 

the sequence, yielding comparable preference motifs to those generated by state-of-the-art 

phosphosite prediction algorithms (e.g. NetPhorest and M3)128,129 (Tables S1-S7). A site 

selectivity matrix (SSM) (evaluating the importance of a particular site in the sequence to 

the preference of the kinase for that substrate) was also generated using the data (Table S8). 

These matrices were used to guide the generation of a focused in silico library of possible 

kinase-specific peptide substrates using the “Generator™” tool, where the motifs derived 

from the set of amino acids that were represented at >2 standard deviations from the mean 
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were used to generate a list of all possible permutations of that set of amino acids at their 

respective positions (Figure 1C Step 2).  

Each sequence in the focused library was given a score based on the PSM (which 

takes into account both the endogenous and positional scanning peptide library data) for 

the given kinase, as well as a score for all other kinases included in the analysis using their 

respective PSMs, using the “Screener™” tool, which effectively cross-references each 

sequence for its predicted selectivity amongst the kinases included in the analysis (Figure 

1C Step 2). The focused library was then filtered using Screener™ based on classifying the 

sequences as predicted “substrates” or “nonsubstrates” for each kinase as well as “specific” 

or “nonspecific” for the given kinase. All nonsubstrate and nonspecific sequences were 

then filtered from the library. (Figure 1C Step 3) Cutoff scores for classifying the sequences 

as substrates or nonsubstrates for each kinase were selected based on the algorithm training 

parameters to give the lowest false discovery rate for the kinase of interest and the highest 

sensitivity for all off target kinases (Table S9). While not necessarily providing hard cutoffs, 

this at least ensured that all remaining sequences in the library would have a maximal 

likelihood to be substrates for the desired kinase and not for the other kinases. The 

remaining sequences were compared to the atypical Tb3+ sensitizing peptide derived from 

the -synuclein Y125 center peptide using BLOSUM sequence alignment scoring using 

the “Aligner™” tool. (Figure 1C Step 4) Sequences with a BLOSUM score below the 

threshold of 25% similarity were considered “non-optimal” binders, however some were 

synthesized for testing to evaluate the predictive capabilities of the alignment score. 

Sequences could also be optimized for Tb3+ binding by changing amino acids at positions 

that are less important for substrate recognition (based on the site selectivity scores). This 

ultimately yielded a compressed library of potential kinase-specific peptide substrate 

sequences that were also likely to sensitize Tb3+ luminescence, from which a handful of 

the top ranked sequences were chosen for studies to demonstrate kinase specificity and 

Tb3+ sensitization. The site selectivity matrix was used when deciding the priority for 

sequences to empirically test, since it enabled more optimal balancing of both Tb3+ binding 

residues and residues the kinase preferred at specific sites (Figure 1C Step 5). Accordingly, 

particular sites that lack selectivity (thus having more flexibility for a given amino acid at 
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that position) but are required for Tb3+ binding could be substituted with the appropriate 

Tb3+ binding residue, as opposed to a residue suggested by the catalytic preference motif.  

2.5.2 Design of Abl, Jak2 and Src-family kinase substrate biosensors.  

To demonstrate its utility, KINATEST-ID™ was applied to generate Tb3+-

sensitizing biosensors predicted to be specific for Abl, Jak2, and Src-family kinases. Initial 

potential substrate sequence libraries were generated by determining each kinase’s 

preference motif using the in silico model and listing all possible permutations of that motif 

in a virtual library using Generator™. These virtual libraries started with ~43,000, 92,000 

and 5,500 sequences for Abl, Jak2 and Src-family kinases, respectively. These libraries 

were then filtered with Screener™ by PSM scores for each kinase in the analysis to remove 

sequences with favorable predictions for other kinases (i.e. nonspecific) and unfavorable 

predictions for the target kinase (i.e. nonsubstrate), which drastically reduced the library 

size by ~99% for each kinase. The Tb3+ binding alignment score filter was then applied 

using Aligner™, which reduced the size of the libraries by a further ~50%, leaving libraries 

ranging in size from 11-250 sequences. The remaining sequences for each of the kinases 

contained the identified kinase substrate motifs as well as the -syn Y125 Tb3+ binding 

motif or slight shifts in that motif.  

From these libraries, several sequences were selected to evaluate empirically for 

each kinase as kinase artificial substrate peptides (KAStides) for Abl (AbAStide), Jak2 

(JAStide), and Src-family (SFAStide) kinases (Fig. 2A). Sequences from the pipeline were 

selected on the basis of highest predicted selectivity for the given kinases, and higher Tb3+ 

binding alignment scores (although a selection with a range of lower binding scores was 

also included, in order to test the relationship between alignment score and binding affinity). 

The specificity of these sensors was assessed by screening the peptides against a panel of 

kinases representing at least one member of each family of nonreceptor tyrosine kinases. 

The ability of the kinases to phosphorylate a given peptide was determined using an 

endpoint in vitro kinase assay. Phosphorylation of each peptide was determined 

quantitatively using chemifluorescent ELISA.83 Relative fluorescence units (representing 

the amount of phosphorylated peptide present) were measured and percent phosphorylation 
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was interpolated from a calibration curve generated from synthetically phosphorylated 

peptide. (Figure 2B, Supporting information Figure S1.) 

 

 

Figure 2.2  Identification, validation, and characterization of kinase specific biosensors 

using KINATEST-IDTM.  
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Figure 2.2 continued 

 Identification, validation, and characterization of kinase specific biosensors using 

KINATEST-IDTM. 

A) The kinase substrate sequences selected for further evaluation and their prediction 

scores for the panel of kinases used in the assay, and Tb3+ alignment score. For kinase 

substrate prediction, scores >90 generally reflect “positive” substrates, whereas scores 

lower than 90 reflect some similarity with that kinase’s preferred motif but were below the 

thresholds defined by the Screener™ tool (i.e. lowest false discovery rate and highest 

sensitivity for the off-target kinases). Tb3+ alignment scores >25 were considered 

“positive” for Tb3+ binding, and generally, higher alignment scores correlated with longer 

luminescence lifetime of the phosphopeptide-Tb3+ complex (and thus higher occupancy of 

the chelated vs. hydrated form of Tb3+ in the equilibrium) (Fig. S4). B) Screening of kinase 

substrates against a panel of purified recombinant kinases (3 nM each, except 250 nM Csk 

which was the amount of recombinant Csk required to phosphorylate the positive control 

Src Y530-centered peptide in characterization experiments, data not shown) using ELISA–

based chemifluorescence detection. Color-coded values represent the mean of experiments 

performed in triplicate (with individual graphs shown in Fig. S1). Substrate 

phosphorylation specificity per kinase (rows) and kinase specificity per substrate 

(columns) were clustered using bidirectional Euclidian distance. C-E) Recombinant, active 

Abl, Jak2 and Lyn (3 nM) were used to carry out the kinase reactions with 100 µM ATP 

and increasing concentrations of AbAStide, JAStide-E and SFAStide-A. Reaction progress 

was monitored using ELISA–based chemifluorescence detection. Initial rates of 

phosphorylation of the kinase specific biosensors (picomoles of phosphorylated product 

per minute) for AbAStide (C) JAStide-E (D) and SFAStide-A using Lyn (E) were 

calculated and fitted to the Michaelis-Menten equation. Values represent the mean SEM 

of experiments performed in triplicate. 
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All sequences were specific substrates of the intended kinases/kinase families (Fig. 

S1). AbAStide did display some nonspecific phosphorylation by Csk; however this was 

only observed at a very high concentration of Csk enzyme (250 nM, 83-fold greater than 

that used for the Abl assay). This suggested that, while not explicitly measured, the kcat and 

catalytic efficiency of AbAStide for Csk are most likely significantly lower than those for 

Abl. Analysis of Jak2 preference amongst the pool of substrates and kinases tested 

demonstrated that JAStide-E was the most efficient, with significantly more 

phosphorylation by JAK2 compared to the other potential JAK substrate sequences 

(P<0.0001 for JAStide-A and D and P<0.001 for JAStide-B and C). This was consistent 

with predicted preferences in Jak2 substrates, for which the -1 position demonstrated the 

greatest preference for acidic residues (JAStide-E) and reduced favorability for arginine 

(JAStide-A, B, C) and phenylalanine (JAStide-D). The SFAStides displayed comparable 

levels of phosphorylation across all Src family kinases, while maintaining selectivity 

against all other families. The variation in residue chemical properties between the 

sequences at the -3 and +2 positions demonstrated that SFKs tolerate substitutions at these 

positions with little effect on phosphorylation (which is in accordance with the positional 

selectivity matrix results). To our knowledge, these sequences are the first reported Jak2 

specific substrates (JAStide-A-E), and the first demonstration of family-spanning specific 

substrates for Src-family kinases (SFAStide A and B). Notably, the core kinase recognition 

sequence (DEDIYEELD) in the substrate we term SFAStide-A has been previously 

identified as an optimal Lyn kinase motif,130 however it has not previously been analyzed 

in the context of the entire Src family. This gave us further confidence in the ability of our 

upstream informatic approach to identify appropriate substrate sequences, and also 

supported the importance of validating peptide substrates across a panel of kinases. 

AbAStide, JAStide-E and SFAStide-A were selected for further characterization 

based on their specificities and efficiency of phosphorylation by their designated kinases. 

These biosensors were characterized using steady-state kinetics to model the kinase-

substrate interaction and subsequent phosphorylation of the substrates. The initial in vitro 

reaction velocities for each kinase-substrate pair were measured and fitted to the Michaelis-

Menten equation to derive Km, Vmax, turnover number (kcat) and catalytic efficiency 

(kcat/Km). (Figure 2C-E, Table S13, Supporting Information Figure S2) Overall, the kinetic 
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parameters fell between those found in previously reported “optimal” substrate and those 

for endogenous substrates (which are often relatively low efficiency as short peptides when 

isolated from their protein context). The Km values for all the peptides were within ~50-

200 µM, lower than is typically observed for endogenous substrates,131 but about ~2-5-fold 

greater than for relevant “optimal” substrates. Several reportedly Src specific peptide 

substrates have been developed using one-bead-one-peptide and oriented peptide libraries 

with Km values between 20-55 µM, similar to SFAStide-A (Km = 62 µM). AbAStide (Km 

= 99 µM) exhibited a substantially increased Km compared to the optimal substrate Abltide 

(Km = 4 µM) but comparable to the endogenous substrate CrkL Y207 (Km = 134 µM). 

Since JAStide-E (Km = 186 µM) represents the first report of an unnatural specific substrate 

for a JAK kinase, we could only compare it to the commonly used endogenous 

phosphorylation site STAT5 Y694 (Km = 306 µM), relative to which JAStide-E’s Km was 

2-fold lower. The catalytic efficiencies for AbAStide, JAStide-E, and SFAStide-A 

sequences were excellent, comparable to those reported for the “optimal” kinase substrates. 

These results demonstrated that KINATEST-ID™ is capable of identifying sequences with 

a high likelihood of being selective substrates that have comparable kinetic parameters to 

the optimal substrates previously identified using traditional, fully empirical methods.  

2.5.3 Tb3+ luminescence characterization of KINATEST-ID™ identified biosensors 

The biosensors that displayed appropriate specificity in the screening panel were 

further evaluated for phosphorylation-dependent enhanced Tb3+ luminescence. 

Phosphorylated and unphosphorylated forms of the peptides were synthesized and Tb3+ 

luminescence emission was analyzed. Steady-state measurements of the biosensors 

revealed a modest range of enhancement (~1-2 fold) in Tb3+ luminescence upon 

phosphorylation. (Table S14) However, as we have previously observed for a Syk-specific 

peptide substrate (SAStide),105 time-resolved measurements significantly improved the 

enhancement of Tb3+ luminescence to the range of ~5-11 fold (approximately 3-5 fold 

improvement over steady-state measurements). As in that previous work, the enhancement 

of Tb3+ luminescence could be attributed to the differences in properties of the sensors 

including excitation wavelength (266 nm for the phosphorylated vs. 275 nm for the 

unphosphorylated), binding affinity, luminescence lifetime and hydration number (Table 
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S14), which validated the phosphorylation-dependent design of the sensors. The 

unphosphorylated sequences exhibited binding constants (Kd) in the range of 9-80 M, 

which were substantially weaker than the range of 1-12 M observed for the 

phosphorylated forms (Table S14). The luminescence lifetimes of the all the biosensors 

were increased by an amount in the range of 100-200 µsec upon phosphorylation, enabling 

high signal to noise through time-resolved detection. Interestingly, these lifetimes appeared 

to be correlated with the Tb3+ binding sequence alignment score (Fig. S4), suggesting that 

the alignment parameter may be useful as a predictive measure for choosing sequences for 

further characterization as phosphorylation sensitive biosensors since longer lifetimes 

tended to result in better signal to noise. Overall, these results showed that this general 

design strategy can be applied to diverse tyrosine kinase substrates, and that these predicted 

substrates exhibit robust Tb3+ luminescence sensitization with photophysical properties 

consistent with the anticipated detection mechanism.  

2.5.4 In vitro time-resolved Tb3+ luminescence-based detection of tyrosine kinase 

activity 

AbAStide, JAStide-E, and SFAStide-A were further characterized for in vitro time-

resolved Tb3+-luminescence-based detection of kinase activity. Conditions for optimal 

detection and calibration curves (using various ratios of phosphorylated and 

unphosphorylated forms of the sensors) were established in the kinase reaction buffer to 

account for potential interference from assay buffer components. All sensors displayed 

linear increases in Tb3+ luminescence with increasing percent phosphorylation allowing for 

quantitative determination of phosphorylation (Supporting Information Figure S3). High-

throughput screening parameters were also derived from the calibration curves, including 

the Z’ factor and signal widow (SW), reflecting assay robustness. All sensors displayed 

appropriate parameters (Z’ factor < 0.5 and SW < 2) for application in HTS screening 

assays (Table S15) 

Quantitative in vitro kinase activity assays were performed using AbAStide, 

JAStide-E, and SFAStide-A and recombinant kinases over a 60-minute time course. 

Percent phosphorylation was interpolated from calibration curves, and followed the trends 

for those obtained using the quantitative ELISA-based read out (Fig. S5). (Figure 3 A-C) 

Dose-response inhibition of Abl, Jak2, and Hck kinase activity by the inhibitors imatinib, 
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ruxolitinib, and dasatinib, respectively, was then assayed in an inhibitor dilution series from 

10 pM to 500 µM. Luminescence emission spectra were collected and normalized to the 

vehicle (DMSO) control and reported as percent control. The observed IC50 values were 

3.9  1.3 nM, 2.9  1.4 nM, and 2.3  1.6 nM for imatinib/c-Abl, ruxolitinib/JAK2, and 

dasatinib/Hck, respectively. These values are in agreement with those reported in the 

literature for each drug/kinase combination.132–134 The Z’ factor and SW for these assays 

were sufficient for HTS at some concentrations of inhibitor, indicating that characterization 

of the behavior at a given degree of inhibition will be necessary for optimizing screening 

assays (Table S16). The AbAStide biosensor was selected for further validation in an in 

vitro HTS for inhibitors of c-Abl. 
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Figure 2.3  Quantitative time-resolved phosphorylation-enhanced Tb3+ luminescence 

detection of nonreceptor tyrosine kinase activity and inhibition.   

Kinase reaction progress curves for Abl (A) Hck (B) and Jak2 (C). Dose-

response inhibition of Abl with imatinib, Hck with dasatinib, and Jak2 

with ruxolitinib (D-F). Kinase reactions were performed with kinase 

reaction buffer containing ATP, MgCl2, HEPES, pH 7.5 and 15 nM 

recombinant kinase. IC50 values were determined values were generated 

by fitting the data to a variable slope (four parameter) curve. Data 

represent the average ± SEM of experiments performed in triplicate. 
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2.5.5 Application of AbAStide to High Throughput Screening for Small Molecule 

Inhibitors  

Replicate in vitro kinase assays were performed in a 384-well plate format in the 

presence (N=96) or absence (N=96) of imatinib to evaluate reproducible detection of Abl 

activity using AbAStide.  To evaluate assay quality, positive and negative controls 

(containing the phosphorylated form and unphosphorylated form of the biosensor, 

respectively, N=96 for each) were also analyzed. Detection of AbAStide phosphorylation 

was robust and reproducible. (Fig. 4A) The Z’ factor and SW for the kinase reaction 

replicates were 0.56 and 84 respectively, comparable to those for control well readings, 

demonstrating sufficient performance for use in high-throughput screening. We leveraged 

this in a high-throughput screen using the GSK PKIS library, which consists of 364 

compounds arrayed in 96-well plates as single compounds at 10 mM in DMSO (available 

to the research community upon request, see cited reference).135 The library was screened 

at a constant 1:1000 dilution, with 10 M final concentration of compound in each well (1% 

DMSO). Compounds were incubated with the kinase for 30 minutes prior to start of the 

kinase reaction, which was initiated by the introduction of the biosensor substrate. The 

kinase reaction was allowed to proceed for one hour before being quenched with the Tb3+ 

luminescence buffer (containing urea and Tb3+). The time-resolved Tb3+ emission 

intensity was measured and the “percent inhibition” was determined compared to the 

biological positive and negative controls (known inhibitor imatinib and no inhibitor, 

respectively) (Fig. 4B). Primary hits were identified as compounds reducing Tb3+ 

luminescence by greater than 3-fold (the top 5% most potent inhibitors, which were the top 

18 compounds). These top 5% primary hits were tested in a secondary screen using the 

same kinase reaction conditions, but employing a chemifluorescent ELISA-based detection 

instead of Tb3+-based detection. (Fig. S6) The secondary screen confirmed that all of the 

hits inhibited Abl kinase activity by at least 50% compared to vehicle (Table S17).   
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Figure 2.4. A high-throughput chemical screen using AbAStide biosensor 

identifies inhibitors of Abl tyrosine kinase.  

A) The AbAStide in vitro kinase assay shows highly reproducible signal upon 

imatinib treatment. Green: synthetically phosphorylated peptide (positive 

control); Black: kinase reaction; Red: kinase reaction + imatinib; Blue: 

unphosphorylated peptide (negative control). B) Distribution of Abl inhibition 

identified in a high-throughput screen performed with the GSK PKIS library 

using AbAStide-sensitized Tb3+ luminescence. Green: synthetically 

phosphorylated peptide (positive control); Black: GSK PKIS compounds; Red: 

kinase reaction + imatinib (positive control); Blue: unphosphorylated peptide 

(negative control); Orange: DMSO (vehicle control). C) Dose-response 

inhibition of Abl kinase activity by selected compounds from the GSK PKIS, 

including the top three hits and two non-hits as negative controls. The extent 

of biosensor phosphorylation was interpolated from an externally generated 

calibration curve (not shown) and normalized to vehicle (DMSO) control. Data 

represent the average ± SEM of experiments performed in triplicate. D) XTT 

cytotoxicity assay for selected compounds (as in 4C), showing potencies in 

K562 cells. IC50 values were generated by fitting the data to a variable slope 

(four parameter) curve. Data represent the average ± SEM of experiments 

performed in triplicate. 
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The three most potent inhibitors from the HTS and validation screens were 

GW693917A, GW711782X and GW513184X, developed to target TIE2/VEGFR2, ALK5 

and GSK3 respectively. These and two negative compounds (SB-358518 and 

GW607049C) were selected for further evaluation in vitro using a dose-response kinase 

assay with AbAStide to demonstrate the selectivity of the assay for identifying compounds 

correctly as inhibitors or noninhibitors. All three hits potently inhibited Abl kinase activity, 

with IC50 values of 0.52 nM, 1.91 nM, and 0.35 nM for GW693917A, GW711782X and 

GW513184X respectively, while the negative compounds gave no inhibition of Abl. (Fig. 

4C) To determine whether the results of the in vitro inhibition studies translate to a CML 

model, the compounds were tested in cellular viability assays against the human CML cell 

line K562. Cellular IC50 for GW693917A was comparable to imatinib, at 81 nM compared 

to 147 nM. GW711782X and GW513184X were less potent in the cell viability assay, at 

20 µM and 3.24 µM respectively. (Fig. 4D) Together these results demonstrate proof-of-

concept that this strategy can produce an effective HTS assay for drug discovery 

applications.   

2.6 Discussion 

Synthetic peptide libraries are commonly used to identify determinants of kinase 

substrate specificity, these methods can be laborious to perform and require substantial 

quantities of purified kinase, which can limit widespread application. Here, we addressed 

these challenges by developing a straightforward computational strategy (KINATEST-

ID™) which combines the identification of kinase specificity determinants with the 

prediction of kinase-substrate phosphorylation and peptide:Tb3+ complex formation, and 

used it to generate NRTK-specific biosensors for phosphorylation-dependent time-

resolved Tb3+ luminescence detection. Traditionally, fluorescence-based kinase sensors 

have been generated through empirical design and iterative optimization, which slows 

down the pipeline for assay development. The design rules applied in KINATEST-ID™ 

facilitate substrate discovery by providing a set of in silico filters for sequence selection. 

The final sequences for AbAStide, SFAStide-A, and JAStide-E reported here demonstrate 

the utility of the design rules, yielding strong family-based selectivity and Tb3+ 

luminescence enhancement. Design of Tb3+ luminescence-based reporters of kinase 
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activity has previously been difficult to streamline since Tb3+ binding motifs are not 

trivially compatible with all kinase preference motifs. Moreover, overall similarity in 

consensus sequences among NRTKs necessitates a tradeoff between optimal activity and 

specificity. By taking into account the importance of each given site in a substrate sequence 

to the recognition and selectivity of the cognate kinase, we successfully achieved a balance 

between the confounding factors involved. These substrates exhibited robust dynamic 

ranges and signal to noise, and their potential for high-throughput assay compatibility was 

demonstrated in an inhibitor screen. As efforts to expand the characterization of kinase-

specific phosphoproteomes increase through the application of recently developed 

methods,97,100 the information available for generating the motifs, PSMs, and Screener™ 

selection for additional kinases will also expand.  In next-generation applications of these 

sequences, incorporating docking motifs that target protein interaction domains could 

further increase the efficiency and potentially the selectivity of phosphorylation. Such 

modular substrates have previously been designed incorporating the D-domain and DEF-

sites of Erk as well as the SH2 and SH3 domains of Abl and Hck.136–138 We are currently 

pursing the application of these substrates in more complex mixtures of proteins, based on 

our previous work developing cell-deliverable substrates for Abl and Syk kinases,83,139 in 

order to exploit their selectivity to measure the activity and inhibition of specific kinases 

in a heterogeneous environment.  

Overall, while we validated the method with well-known kinase drug targets (Abl, 

Src-family, and JAK2) as a model system, the generality of the approach suggests that the 

KINATEST-ID™ strategy should be able to be applied to develop new assays for other 

kinases that are currently underexplored in drug development.  Even though we focused 

here on tyrosine kinases, the in silico focused library generation tools could be used to 

develop new artificial peptide substrates for serine/threonine (S/T) kinases as well. Such 

substrates could be employed in any type of phosphorylation read-out, however the 

BLOSUM alignment component could be used with any detection-related motif desired. 

For example, Tb3+-based S/T kinase detection requires a sensitizing chromophore such as 

tryptophan (W); accordingly, previously reported Tb-sensitizing, W- or unnatural amino 

acid-containing sequences (such as those reported by the Zondlo and Imperiali groups)140–

144 could be used for the BLOSUM matrix to focus and filter the virtual library for empirical 
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evaluation. This generality should make KINATEST-ID™ a useful approach to streamline 

the development of peptide-based kinase assays, as well as for broader applications towards 

other enzyme substrates or binding ligands for which sufficient training data are available. 
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2.8 Associated Content 

2.8.1 Supporting information.  

Additional characterization data for peptides, detailed motif characterization tables 

for the PSM, data from Michaelis-Menten kinetics characterization, and further 

information about HTS experiments is provided as supporting information. This material 

is available free of charge via the internet at http://pubs.acs.org.  
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 HIGH-THROUGHPUT IDENTIFICATION OF 

FLT3 WILD-TYPE AND MUTANT KINASE SUBSTRATE 

PREFERENCES AND APPLICATION TO DESIGN OF SENSITIVE 

IN VITRO KINASE ASSAY SUBSTRATES 

3.1 Abstract 

Acute myeloid leukemia (AML) is an aggressive disease that is characterized by 

abnormal increase of immature myeloblasts in blood and bone marrow. The FLT3 receptor 

tyrosine kinase plays an integral role in haematopoiesis. One third of AML diagnoses 

exhibit gain-of-function mutations in FLT3, with the juxtamembrane domain internal 

tandem duplication (ITD) and the kinase domain D835Y variants observed most frequently. 

Few FLT3 substrates or phosphorylation sites are known, which limits insight into FLT3’s 

substrate preferences and makes assay design particularly challenging. We applied in vitro 

phosphorylation of a cell lysate digest (adaptation of the Kinase Assay Linked with 

Phosphoproteomics (KALIP) technique and similar methods) for high-throughput 

identification of substrates for three FLT3 variants (wild-type, ITD mutant, and D835Y 

mutant). Incorporation of identified substrate sequences as input into the KINATEST-ID 

substrate preference analysis and assay development pipeline facilitated the design of 

several peptide substrates that are phosphorylated efficiently by all three FLT3 kinase 

variants. These substrates could be used in assays to identify new FLT3 inhibitors that 

overcome resistant mutations to improve FLT3-positive AML treatment. 

3.2 Introduction 

Acute myeloid leukemia (AML) is an aggressive cancer with a diverse genetic 

landscape. The FLT3 gene encodes for a receptor tyrosine kinase (FLT3) that regulates 

hematopoiesis and perturbations to its signaling pathways appear to promote AML disease 

progression. In fact, FLT3 is implicated as a major factor in AML relapse.145 Thirty percent 

of AML cases have mutations to FLT3 that lead the kinase to be constitutively active,146,147 

most commonly to the juxtamembrane domain and the kinase domain.146,148,149 Internal 

tandem duplication (FLT3-ITD) in the juxtamembrane or the first tyrosine kinase domain 

(TKD) occurs when a segment is duplicated (head to tail) leading to the loss of repressive 
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regions in the protein.150 A second common mutation is a substitution of aspartic acid 835 

to a tyrosine residue (D835Y) in the TKD. Both ITD and TKD mutants can activate and 

dimerize with the wild type FLT3.151 The effects of these mutations on FLT3 signaling are 

still unclear, but one possibility is that mutant FLT3-TKD and FLT3-ITD activate 

alternative signaling pathways, or activate standard FLT3 pathways aberrantly, compared 

to the WT. Mutations to FLT3 are correlated with poor long-term prognosis152,153 and while 

patients with FLT3 mutations achieve similar initial disease remission to those with wild-

type FLT3, they have an increased risk for relapse.146,152,154 In vitro studies show that 

FLT3-ITD mutant-expressing cell lines are resistant to cytosine arabinoside (the primary 

AML therapeutic).152 These findings prompted the use of a combinatorial approach to 

AML therapies to include FLT3 tyrosine kinase inhibitors (TKIs), which are frequently 

initially successful but often lead to FLT3 inhibitor resistance and subsequent disease 

relapse.  

The current FDA approved TKIs used to inhibit FLT3 were not developed 

specifically to target FLT3.155–157 Sorafenib is a type II pan-TKI which is FDA approved 

for use in combinatorial approaches with AML chemotherapy, but elicits no response in 

FLT3 variants with tyrosine kinase domain mutations.152,158–161 Efforts to develop FLT3 

mutant-specific TKIs lead to the discovery of the type II TKI quizartinib, which can inhibit 

the FLT3-ITD mutant and is currently undergoing phase III clinical trials for AML.162 

Despite quizartinib’s efficacy towards FLT3-ITD, it has no activity against FLT3-TKD 

point mutations and thus these mutations are the primary mode of quizartinib monotherapy 

resistance.162–165 Quizartinib also has potent activity towards Platelet Derived Growth 

Factor receptor  (PDGFR) and c-KIT kinases, and produces side effects that may be related 

to their inhibition in patients undergoing a FLT3 TKI regimen.166,167 Crenolanib, a TKI 

designed to target the α and β isoforms of PDGFR, has demonstrated activity against a 

broad range of FLT3 mutations.145,168 Unlike quizartinib, crenolanib does not inhibit c-KIT 

(the main kinase implicated in undesirable side effects of quizartinib) at safe plasma 

concentrations, and is undergoing phase II clinical trials in relapsed AML patients with a 

driver FLT3 mutation (clinical trial identifier NCT01657682).166,169 Recent reports have 

shown that secondary point mutations within the kinase domain of FLT3 can reduce 
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crenolanib’s clinical efficacy suggesting it is only a matter of time until crenolanib resistant 

mutations are found in a clinical setting.166,169   

The complex abnormality landscape of AML reduces the possibility that a single 

FLT3 TKI would be a viable monotherapy for AML. Although crenolanib is a promising 

TKI, efficient development of new inhibitors will require better assays than those currently 

available, and adaptable strategies that effectively screen inhibitors to target mutant forms 

of FLT3 are especially needed.162 Since very little is known about FLT3 substrate 

preferences, there are few options available when designing FLT3 activity assays. The 

current activity tests are limited by inefficient phosphorylation activity, and/or their 

phosphorylation by the mutant variants has not been characterized. In this manuscript, we 

describe the development of several novel and efficient peptide substrates for FLT3 and 

two clinically-significant mutant variants (the ITD and D835Y mutants). We adapted the 

“Kinase Assay Linked with Phosphoproteomics” (KALIP)90,97 strategy (from the Tao lab) 

to perform high-throughput determination of FLT3’s preferred peptide substrate motif in a 

manner similar to other previously reported methods (e.g. Kettenbach et al from the Gerber 

group).100 In these approaches, a cell lysate digest is stripped of endogenous 

phosphorylation and used in a kinase reaction as a pseudo-“library” of peptides to 

determine kinase substrate preferences by identifying phosphorylated sequences via 

enrichment and mass spectrometry (ideal for high-throughput analysis of many substrates 

simultaneously without requiring radioactivity or other labeling).170,171 We then used the 

identified substrate preferences to rationally design a panel of candidate peptides 

incorporating key sequence features predicted to make them favorable for phosphorylation 

by the FLT3 kinase variants, following our previously reported substrate development 

pipeline KINATEST-ID.80 We demonstrated that these substrates enable efficient inhibitor 

screening for all three forms of FLT3. These peptides could be used in many different types 

of drug discovery settings to more rapidly and efficiently screen for and validate FLT3 

inhibition. 
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3.3 Materials and Methods 

3.3.1 Cell Culture and Endogenous Peptide Sample Preparation 

KG-1 cells (ATCC) were maintained in IMDM media (Gibco) supplemented with 

10% heat inactivated fetal bovine serum (FBS), 1% penicillin/streptomycin in 5% CO2 at 

37 °C.  KG-1 cells were washed with 30 mLs of phosphate buffered saline (PBS) 5 times.  

The cells were then pelleted at 1,500 RPM for 5 minutes and lysed with buffer containing 

8 M urea, 0.1 M ammonium bicarbonate pH 8.5, 20% acetonitrile (ACN), 20 mM 

dithiothreitol (DTT), and 1X Pierce Phosphatase Inhibitor tablet (Roche) pH 8.0. Lysed 

cells were incubated on ice for 15 minutes and then were subjected to probe sonication to 

shear the DNA. Lysates were treated with 40 mM iodoacetamide and incubated at room 

temperature (protected from light) for 60 minutes.  Samples were then centrifuged at 

15,000 RPM for 30 minutes to remove cellular debris.  Urea concentration was diluted to 

1.5 M using 50 mM ammonium bicarbonate buffer (pH 8.0) and the samples were set up 

for trypsin digestion at a 1:50 trypsin (ThermoScientific) ratio and incubated at 37 ˚C 

overnight. Trypsin digestion was quenched by adding 10% trifluoroacetic acid (TFA) in 

water to lower the pH below 3. Subsequently, the tryptic digest was desalted using 

hydrophilic-lipophilic balanced copolymer (HLB) reverse phase cartridges (Waters) and 

vacuum dried. 

3.3.2 Alkaline Phosphatase Treatment 

Samples were reconstituted in alkaline phosphatase dephosphorylation buffer 

containing 50 mM tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCL), 0.1 mM 

Ethylenediaminetetraacetic acid (EDTA) at pH 8.5. Alkaline phosphatase (6 U, Roche) 

were added to each sample followed by incubation for 90 minutes at 37 ˚C.  The reaction 

was quenched by incubating the samples in 75 ˚C for 15 minutes (Figure 3-2). 

3.3.3 KALIP Recombinant FLT3 Kinase Assays 

Recombinant kinases were purchased from EMD Millipore (WT, PN: PV3182; 

FLT3-D835Y, PN: PV3967; FLT3-ITD, PN: PV6190).  The samples were briefly vortexed 

and aliquoted into two equal parts.  Peptide samples were reconstituted in kinase reaction 

buffer containing 50 mM Tris HCL, pH 7.5, 10 mM MgCl₂, 1 mM DTT, 1 mM Na₃VO₄ 
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and 2 mM adenosine 5’-triphosphate (ATP).  The kinase (or water for control) was added 

last to each sample and incubated for 16 hours (16 H) at 37 ˚C. The FLT3-WT treatment 

contained an additional two-hour (2H) time point. The reaction was quenched by bringing 

up the concentration of TFA to 0.5% and desalted using Oasis HLB 1cc cartridge columns 

with 30-micron particle size and 30 milligram sorbent. 

3.3.4 PolyMAC Enrichment 

The phosphopeptide enrichments were carried out according to manufacturer’s 

instructions (Tymora Analytical, West Lafayette, IN).90,97 The enrichment kit is made up 

of four components: 1) loading buffer, 2) PolyMAC magnetic beads, 3) wash buffer 1 and 

2, and 4) elution buffer. In brief, the dried peptides were resuspended in Loading Buffer 

and 100 µL of PolyMAC capture beads were added to the mixture.  The phosphopeptide-

PolyMAC mixture was mixed at 700 RPM for 30 minutes.  Subsequently, the mixture was 

centrifuged briefly and placed on a magnetic rack to remove the un-phosphorylated peptide 

solution.  The beads were washed twice with wash buffer 1 and rocked for 5 minutes at 

700 RPM. The phosphopeptide-PolyMAC complex was placed on the magnetic stand until 

beads were immobilized by the magnet, and the supernatant was discarded. The process 

was repeated using wash buffer 2.  The phosphopeptides were eluted from the capture 

beads using 300 µL of elution buffer and then vacuum dried.  

3.3.5 LC-MS/MS Data Acquisition 

Samples were reconstituted in 25 µL of mass spectrometry loading buffer 

(98/2/0.5%; H₂O/ACN/formic acid (FA)) and centrifuged for 30 minutes at 15,000 RPM. 

A 20 µL aliquot was transferred to a low binding safe-lock microtube (Eppendorf). A 2.5 

µL aliquot was loaded on a ThermoScientific Easy NanoLC LC 1000 system. The reverse-

phased HPLC peptide separation was performed using a 100 µm inner diameter Picotip 

emitter column packed in-house with 1.9 µm C18 ReproSil-Pur sorbent. The mobile phase 

consisted of 0.1% formic acid in ultra-pure water (Solvent A) and 0.1% formic acid in 

acetonitrile (Solvent B). Samples were run over a linear gradient (2-30% solvent B; 60 

minutes) with a flow rate of 200 nL/min into a high resolution Orbitrap Fusion Tribrid 

Mass Spectrometer, operated using data dependent mode at a resolution of 60,000 with a 
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scan range of 300-1500 m/z. After each round of precursor detection, an MS/MS 

experiment was triggered on the top 12 most abundant ions using High Collision 

Dissociation (HCD). The mass analyzer parameters were set between two and seven charge 

states with a dynamic exclusion time of 15 seconds. 

3.3.6 Data Analysis 

3.3.6.1 Phosphopeptide identification 

The Orbitrap Fusion mass spectra files were searched against a merged version of 

the reviewed human Uniprot database downloaded from uniprot.org (2/27/2017; 20,202 

entries) and the cRAP database (common lab contaminants; downloaded from 

(thegpm.org/crap/) on 2/27/2017) using the Paragon algorithm in the ProteinPilot 5.0 

proteomic search engine within the Galaxy-P pipeline to create a Distinct Peptide Report 

(the output report from ProteinPilot 5.0).172–174 Peptide precursor mass tolerance was set at 

0.02 Da and MS/MS tolerance was set to 0.1 Da. Proteomic database search parameters 

included trypsin digestion, urea denaturation, phosphorylation emphasis, iodoacetamide 

fixed modification to cysteine residues, and variable biological modifications. False 

discovery rate (FDR) analysis was activated for each individual search. ProteinPilot 5.0 

used a reverse database as the decoy to calculate the false discovery rate (FDR) for each 

independent search.175 We set the global 1% FDR score as our cutoff threshold. 

3.3.6.2 Data processing and KINATEST-ID substrate candidate prediction.   

3.3.6.2.1 Streamlined data processing of LC-MS data as input for KINATEST-ID 

algorithm substrate design 

A series of novel scripts were developed to prepare and analyze the results from 

KALIP to design potential substrates in the KINATEST-ID platform. To extract and 

reformat the phosphopeptide sequences from the ProteinPilot distinct peptide report, we 

created the KinaMine program and GUI that extracts all sequences from a ProteinPilot 5.0 

(SCIEX) Distinct Peptides Report output file that have phosphorylated tyrosine residues 

identified at a 99% confidence (1% FDR), and creates “Substrate” and “Substrate 

Background Frequency (SBF)” files, which contain the observed substrate sequences and 

the UniProt (uniprot.org) accession numbers and calculated representation of all amino 
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acids for the proteins from which substrate sequences were identified, respectively. We 

created the “commonality and difference finder.r” script to identify the phosphopeptides 

from the “substrates” and SBF files that are shared by all of the FLT3 kinase variants, and 

generated the “SHARED-16H” substrate and SBF files. We extracted the UniProt 

accession numbers from the SBF lists and used them to download a customized FASTA 

file from the UniProt website that contained entries only for those protein sequences, and 

converted that into .csv format using the “FASTAtoCSV” script. We created the “Negative 

Motif Finder.r” script to extract (and in silico trypsin digest) all tyrosine centered sequences 

present in any of the “background” proteins, and compared them to the substrate list 

(KinaMINE output) to return the sequences that were not observed in the 

phosphoproteomics data as a best estimate of “non-substrates.”  

3.3.6.2.2 Extraction and reformatting of phosphopeptide sequences from peptide ID 

results 

The KinaMINE data formatter (Kinamine.jar) uses the Distinct Peptide Report and 

the FASTA file that was used in the proteomics search engine as input, filters the peptides 

from the report with a threshold of 1% FDR, to consolidate the sequences of all peptides 

that were phosphorylated in the experiment. It then outputs a .csv table (the “Positive 

Substrates” file, which is named by the user at the time of running the script) of those 

tyrosine-phosphorylated sequences, with each amino acid separated into an individual 

column and the phosphotyrosine aligned. This table also contains the accession number of 

the protein each peptide was from, which is used to extract the sequences of those proteins 

from the inputted FASTA file and calculate the “Substrate Background Frequency” 

(frequency of the 20 canonical amino acids found in each of the proteins individually; SBF), 

also output as a .csv. This .csv file also reports the total number of tyrosine residues within 

those protein sequences and the number of those tyrosine residues that were observed as 

phosphorylated in the experiment for subsequent use in determining FLT3’s 

“normalization score” in the Screener module of KINATEST-ID (described below). 

3.3.6.2.3 Phosphopeptide list comparison filtering 

To select the sequences that were phosphorylated in common between the WT and 

the two mutant forms of FLT3, we developed a filtering script in R (“Similarity and 
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Difference Finder.R”) to extract sequence lists and generate corresponding Substrate 

Background Frequency tables for the proteins corresponding to the selected peptides. This 

script provides either the intersection or symmetric difference between those sets as two 

new output tables containing only the information relevant to the sequences desired.   

3.3.6.2.4 Approximating most likely “true negative” sequence list from substrate dataset 

The accession numbers for proteins that remain in the Substrate Background 

Frequency list after the previous filter are submitted to the reviewed human 

Uniprot/SwissProt database (http://uniprot.org/uploadlist/) to generate a FASTA file 

containing the sequences of those proteins. The FASTA file is converted separately to .csv 

format using a script obtained from 

(https://www.researchgate.net/post/Converting_a_fasta_file_to_a_tab-delimited_file10). 

This file and the filtered Positive Substrates list file (generated as described in the previous 

section) are used as input for the “NegativeMotifFinder.R” to extract additional tyrosine-

containing sequences from those proteins that could in principle have been phosphorylated 

but were not detected (outputting a “Negative Motifs” .csv file that is named by the user 

upon running the script). “Negative Motifs” files and corresponding “Positive Substrates” 

files are later used by the Kinatestpart1.R script to calculate Matthews Correlation 

Coefficient (MCC) values that give a general threshold for which peptides will or will not 

be phosphorylated by the kinase of interest. 

3.3.6.2.5 KINATEST-ID streamlined processing in R 

Using Substrates, Substrate Background Frequency, Non-substrate Motifs, and 

Screener.csv, the scripts “Kinatestpart1.R” and “Kinatestpart2.R” were written to replicate 

the functionality of the KINATEST-ID workbooks previously described,80 including 

determining over- and under-representation of particular amino acids (the standard 

deviation table/positional scoring matrix) and/or side chain chemical properties (the site 

selectivity matrix) at particular positions relative to the tyrosine to define a preferred 

substrate motif, permutation of that motif into a list of all possible combinations of the 

preferred amino acids at their given positions (Generator), and scoring of those sequences 

against the targeted kinase’s positional scoring matrix model as well as those for a panel 
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of other off-target kinases (Screener). These scripts ultimately create three .csv output files 

named by the user and containing the following information, respectively (all consistent 

with steps and components of the original published KINATEST-ID implementation)80: 1) 

the Standard Deviation and the AA Percent Tables; 2) the Site Selectivity Matrix, the 

Endogenous Probability Matrix (EPM) (which gives the scoring function used to calculate 

scores for a given sequence via the positional scoring matrix model defined by a given 

input dataset), the Normalization Score and the MCC Characterization Table; and 3) the 

list of predicted substrates ranked according to lowest “off-target” kinase scores using the 

Screener comparisons. For more information about these functions see the previously 

published description of KINATEST-ID.80 

3.3.6.3 Peptide Synthesis and Purification 

Peptides were synthesized using a Protein Technologies SymphonyX synthesizer 

using 4-methyl benzhydrylamine resin (Iris Biotech GMBH). Standard Fmoc-protected 

amino acid (AA) coupling occurred in the presence of 95 mM HCTU (Iris Biotech GMBH) 

and 200 mM N-methylmorpholine (Gyros Protein Technologies; S-1L-NMM) over two 

20-minute coupling cycles. Fmoc deprotection occurred in the presence 20% piperidine in 

dimethylformamide (DMF, Iris Biotech GMBH;) over two 5-minute cycles. The peptides 

were purified to >95% purity by preparative C18 reverse phase HPLC (Agilent 1200 series) 

over a 5-25% acetonitrile/0.1% TFA and water/0.1% TFA gradient and characterized using 

HPLC-MS (Agilent 6300 MSD). Peptide substrates were dissolved in a PBS solution 

containing 5% dimethyl sulfoxide (DMSO).  Absorbance measurements at 280 nm 

wavelength were used to determine the peptide concentration using the Beer-Lambert law 

(for which peptide extinction coefficients were calculated using Innovagen’s peptide 

property calculator (https://pepcalc.com/).  

3.3.6.4 In Vitro Kinase Assays 

Recombinant kinases were purchased from SignalChem (FLT3, FLT3-D835Y, 

FLT3-ITD, Mast/stem cell growth factor receptor KIT, platelet derived growth factor 

receptor beta (PDGFRβ), anaplastic leukemia kinase (ALK), proto-oncogene tyrosine-

protein kinase SRC, tyrosine protein kinase LYN and Bruton’s tyrosine kinase (BTK). 
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Kinases were diluted to approximately 120 nM in kinase dilution buffer (20 mM 4-

morpholinepropanesulfonic acid (MOPS) pH 7.5, 1 mM EDTA, 0.01% Brij-35, 5% 

Glycerol, 0.1% beta-mercaptoethanol and 1 mg/mL bovine serum albumin (BSA). 

Recombinant kinases (20 nM) were pre-incubated for 15 minutes in reaction buffer 

containing 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) pH 7.5, 

10 mM MgCl₂, 100 µM ATP, 3 mM DTT, 3 µM NaVO3 at 37 °C and 5% DMSO.  The 

assay reaction was started by adding the peptide substrate to a 37.5 µM reaction 

concentration in a 30 µL volume. Sample aliquots (10 µL) were quenched by combining 

1:1 with 30 mM EDTA at 2 and 60-minute timepoints (or 30-minute timepoint for TKI 

dose response assays). 

3.3.6.5 Chemifluorescence Detection of Phosphorylation 

Quenched aliquots were incubated in a 96-well streptavidin coated plate (125 pmol 

binding capacity, ThermoScientific) in Tris buffered saline (25 mM Tris-HCL and 150 mM 

NaCl) with 0.05% Tween 20 (TBS-T) containing 5% w/v skim milk for 1 h.83 Subsequently, 

each well was washed with TBS-T and incubated with antiphosphotyrosine mouse 

monoclonal antibody 4G10 (MilliporeSigma, 1:10,000 dilution in TBS-T). Following 

incubation, wells were washed with TBS-T and incubated with horseradish peroxidase-

conjugated rabbit anti-mouse immunoglobulin secondary antibody (Abcam, 1:15,000 

dilution in TBS-T) for 1h. The wells were washed (TBS-T and 50 mM sodium phosphate 

buffer) and then treated with Amplex Red (Invitrogen, Carlsbad, CA) reaction buffer (0.5 

mM AR, 20 mM H₂O₂ and sodium phosphate buffer) for 30 minutes.  Fluorescence 

measurements were taken on a Neo2 microplate reader (Biotek, Winooski, VT) with an 

excitation wavelength of 530 nm and emission wavelength of 590 nm.  The IC50 values 

were calculated by fitting the data to the equation below, were the inhibitionmax represents 

the lower plateau of the curve while the inhibitionmin pertains to the upper plateau, X 

represents inhibitor concentration and the steepness of the curve was set to a standard hill 

slope of negative one. 

𝑦 =
𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛max + (𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 min −𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 max )

1 + ( 𝑋 𝐼𝐶50⁄ )
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3.3.6.6 Experimental design and statistical rationale 

 

 

The trypsin digestion “library” preparation was performed for two independent 

replicates, each of which was subjected to an FLT3 kinase variant enzyme in triplicate 

(Figure 3-1). Upon file conversion of raw mass spectrometer files into a MGF format, the 

resulting six kinase treated files per FLT3 variant were combined into one ProteinPilot 5.0 

protein identification search. These proteomic database search results were processed as 

described above (KinaMine and R data formatting scripts) to generate the KINATEST-ID 

input lists (Figure 3-2 step 5 and Figure 3-4).  

A Dixon’s Q test with an α value of 0.05 and a ROUT test with a q value set at 5 

percent were performed to identify experimental outliers in the inhibitor dose response 

assay. Fluorescence measurements per well were normalized to the vehicle-only (DMSO) 

control signal, plotted using Prism software (GraphPad, La Jolla, CA) and fitted to a non-

linear equation described above. An exact sum-of-squares F test with a p value set at 0.05 

Figure 3.1. Schematic representation of raw mass spectrometer file 

combination for ProteinPilot database searches.  

Each KALIP kinase treatment (WT, D835Y and/or ITD) was performed 

with three biological replicates (R1). The KALIP process was then 

repeated later to generate a second independent KALIP technical 

experiment (R2). Replicates were individually analyzed on the mass 

spectrometer and then converted to MGF files, ProteinPilot 5.0 database 

search consisted of six mass spectrometer files for each kinase treatment 

(no kinase or kinase treatment). 
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was performed to identify differences in the reported IC50 curves for each TKI against the 

FLT3 kinase variants.  

 

3.4 Results 

3.4.1 In vitro kinase reaction to identify substrates for input/analysis with the 

KINATEST-ID pipeline 

Similar to the KALIP method97 and others,176 we used trypsin-digested cell lysate 

as a non-randomized peptide “library” to determine FLT3 kinase substrate preferences. 

Briefly, AML KG-1 cells were grown to log phase, lysed with a urea lysis buffer and 

digested with trypsin as described above. Following trypsin digest, peptides were treated 

with alkaline phosphatase to remove endogenous phosphorylation from tyrosines. The 

phosphatase-treated digest was then divided into aliquots that were processed in parallel: 

one treated with kinase reaction mixture but no kinase (“FLT3-“), alongside the kinase 

reaction for each version of the kinase (recombinant FLT3-WT, D835Y or ITD kinase, 

Figure 3.2. In vitro phosphorylation, enrichment and identification of substrate 

peptides from cell lysate.  

To identify a larger number of FLT3 kinase substrates than was previously 

available, we subjected KG-1 cell lysate to trypsin digestion (Step 1). The tryptic 

digest was then treated with alkaline phosphatase (Step 2A). Subsequently, the 

sample was split into two equal parts (Step 2B) prior to in vitro recombinant FLT3 

treatment (FLT3-WT, FLT3-D835Y and FLT3-ITD). The samples were enriched 

with PolyMAC magnetic beads (Step 3) and an aliquot was analyzed on an 

Orbitrap-Fusion mass spectrometer (Step 4). The mass spectrometer files were 

uploaded to the Galaxy-P proteomics pipeline for file conversion and ProteinPilot 

database search (Step 5). 



92 

 

 

respectively, “FLT3+”) (Figure 3-2). The kinase reactions were performed for 16 hours 

(WT, D835Y and ITD) as described in the original KALIP protocol.97 Following kinase 

treatment, phosphopeptides were enriched using the soluble polyMAC dendrimer90,95,97 

and analyzed on an Orbitrap Fusion mass spectrometer.  Sequence and phosphorylation 

site identification was performed using the ProteinPilot 5.0 software on the GalaxyP 

platform (https://galaxyp.msi.umn.edu).  

Overall, we identified more than 10-fold more substrates for FLT3 and the two 

mutant variants than we had curated for most of the kinases we had evaluated in our 

previous publication using KINATEST-ID, in which substrate numbers ranged from ~15 

to ~170.80 Using a relatively strict identification quality cut-off of 1% false discovery rate 

(FDR), we observed 1559 phosphorylated peptides from the kinase reaction with the WT 

FLT3 treatment, 2010 from the FLT3-D835Y mutant, and 344 from the FLT3-ITD mutant. 

Of these, 244 overlapped in common from each reaction (Figure 3-2). The FLT3-D835Y 

mutation stabilizes the activation loop within the kinase domain, leading to a stable, 

constitutively active kinase,149,154 which likely explains the higher number of 

phosphopeptides observed in that reaction. The FLT3-ITD mutant is an in-frame gene 

sequence duplication that encodes for the amino acid segment connecting the 

juxtamembrane and tyrosine kinase domains. While the WT and D835Y versions of the 

kinase used in these KALIP experiments contained only a His tag (as described by the 

vendor), the ITD mutant was also tagged with a GST tag. Due to its larger molecular weight 

relative to the WT and D835Y variants, less of this kinase was used in the KALIP reactions, 

which likely accounts for the lower number of substrates observed for that variant. 

Nevertheless, compared to the manual curation of the literature-reported substrates and 

phosphoproteomic databases that was implemented previously,80 even for the ITD mutant 

our approach identified many more phosphopeptide sequences than before, which could be 

used as input for the KINATEST-ID pipeline.  

We used either the full list of substrate sequences from each kinase reaction (“WT-

16H”, “D835Y-16H” or the “ITD-16H” datasets), or the 244 common substrate sequences 

that had been identified from all three of the FLT3 variants’ reactions (the “SHARED-16H” 

dataset), as separate inputs for initial positional scoring matrix (PSM) analyses in 

KINATEST-ID. The shared substrate sequences were extracted from the 

https://www.msi.umn.edu/login/g?back=https%3a%2f%2fgalaxyp.msi.umn.edu%2f
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phosphoproteomics data outputs using data processing and analysis tools, the KinaMine 

and Commonality and Difference Finder and the Kinatest part 1.r script (Figure 3-3), to 

generate PSMs of amino acid preference motifs from each dataset (Figure 3-4). We 

observed subtle, but likely functionally insignificant, differences in amino acid over- and 

under-representation at the positions -4 to +4 relative to the phosphorylated tyrosine for 

each of the different FLT3 variants. Generally for all variants, acidic amino acids were 

overrepresented and basic amino acids were underrepresented N-terminal to the 

phosphotyrosine, while hydrophobic amino acids and glutamine/asparagine were slightly 

overrepresented C-terminal to the phosphotyrosine. Given the lack of substantial 

differences between the PSMs for the WT and mutant variants, we focused on the 

substrates that were observed in common for all three kinase variants to move forward with 

design of novel peptides that could be used as substrates in FLT3 activity assays. 
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Figure 3.3   Conceptual overview of our KALIP data processing and formatting for KINATEST-ID incorporation to develop FLT3 

artificial substrates. 
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Figure 3.3. Continued 

 Conceptual overview of our KALIP data processing and formatting for 

KINATEST-ID incorporation to develop FLT3 artificial substrates.  

After conversion and peptide/protein ID in the Galaxy-P proteomic pipeline, the 

KinaMine data formatter tool extracted the confidently-identified (1% FDR) 

sequences that contained a phosphorylated tyrosine residue (pY), centrally aligned 

the sequences to the tyrosine of interest (“Aligned substrate lists”) and extracted the 

UniProt accession number with the accompanying proteins’ amino acid 

composition file (“Subs. Background Freq.”). The Negative motif finder script uses 

the Uniprot accession numbers to generate a list of tyrosine-containing potential 

tryptic peptides that were not observed in the phosphopeptide dataset. The scripts 

KinatestID part1.r and -part2.r processed those input files to identify substrate 

preferences and generate a ranked list of candidate sequences as potential FLT3 

substrates. Kinatestid-part2.r then scores the input substrate and non-substrate lists 

and outputs as two additional files. After performing this workflow on 

phosphopeptide data from FLT3 kinase reactions, chosen candidate sequences were 

synthesized and validated in vitro against the FLT3 kinase variants. The candidate 

sequences were then assayed in vitro against a panel of kinases to determine off-

target kinase activity. In silico/predictive steps are illustrated in white/green. 

Empirical steps of synthesizing peptides and characterizing FLT3 activity and 

specificity are depicted in light blue. 

 



 

 

3.4.2 KINATEST-ID-based design of novel FLT3 Artificial Substrate peptides 

(FAStides) 

We then used the “SHARED-16H” dataset and employed the next steps of the 

KINATEST-ID approach to design a set of candidate sequences for synthesis and 

biochemical testing. This process used the KINATEST-ID “Generator” tool (via the 

Kinatest part 2.r script) to create a list of sequences comprising all the permutations of the 

amino acids overrepresented at each position by at least two standard deviations from the 

mean (Figure 3-4A-B). One caveat was that while tyrosine was observed as 

overrepresented at -1 and +1 to the phosphotyrosine, we chose to exclude it from the 

preference motif for this iteration of substrate design, due to the potential ambiguity in 

assay signal that could ultimately be introduced by having more than one phosphorylatable 

residue in the designed substrates. Additionally, F was included as an option at position +1 

(despite having relatively low representation) as a hydrophobic alternative to the more 

highly represented I and V in an attempt to provide better specificity, due to the high 

frequency of those two amino acids at that position in the motifs for other tyrosine kinases. 

Permutation of the motif was then followed by scoring of the resulting 19,201 sequences 

against the PSMs for WT FLT3, the two mutant variants, and a panel of other kinases,80 

using the KINATEST-ID “Screener” tool (Figure 3-3). The sequences and their scores 

against the PSMs are summarized in Figure 3-4C while their “off-target” kinase PSM 

scores are summarized in Figure 3-7G. We chose one set of sequences that scored well for 

FLT3 but scored poorly for other kinases (sequences A, D, G and H). Since the highest 

scoring sequences for FLT3 also scored well for several other off-target kinases in the 

Screener panel, we selected another set of those sequences (sequences B, C, E and F) to 

have a higher likelihood of obtaining an efficient (though potentially not FLT3-specific) 

substrate. Additionally, we synthesized two control sequences that were previously 

reported to be phosphorylated by FLT3 (ABLtide and FLT3tide).177,178 
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Figure 3.4  Positional preferences, motif, and substrate candidate mini-library for FLT3-

WT, FLT3-D835Y and FLT3-ITD 

 (A) Observed representation of each amino acid at each position (-4 to +4 relative to 

phosphotyrosine) in the individual phosphoproteomics datasets for the three FLT3 variants 

(WT, D835Y, and ITD) and for the sequences shared in all three datasets (Shared). Green 

= over-represented, white = neutral, red = under-represented. (B) Table summarizing the 

positional preferences (>1 standard deviation from the mean) used in the “Generator” tool 

portion of Kinatest part 2.r for permutations to rationally design candidate substrate 

sequences. Representation of the given amino acids at respective positions is shown via 

color scale for reference. Sequences of selected, synthesized candidate substrates and 

controls and scores (illustrated with color scale) against the respective scoring models for 

each dataset (shared and individual variants). 

 

3.4.3 In vitro validation of FAStide sequences as FLT3 kinase variant substrates 

We tested the candidate sequences via in vitro kinase assays using anti-

phosphotyrosine antibody 4G10 in a chemifluorescent Enzyme-Linked Immunosorbent 

assay (ELISA) as the readout to detect peptide phosphorylation, with sample aliquots 
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quenched at 2 and 60 minutes. Figure 3-5A shows that the sequences that were most 

efficiently phosphorylated by FLT3-WT, D835Y and ITD contained the DXDXYXNXN 

motif. Figure 3-5A shows that S was well-tolerated at position -3 (while N and H were less 

tolerated), both N and D were tolerated at position -1, and F was the preferred amino acid 

at position +1 while A was not well tolerated. Sequences that contained F, P or T residues 

at position +3 were phosphorylated by all FLT3 kinases. The control peptides (FL-ABLtide 

and FLT3tide) were also scored against the PSMs for all of the datasets (Figure 3-4C) and 

assayed in parallel with the FAStide sequences against the FLT3 kinase variants. The 

previously reported substrate FLT3tide177 scored poorly against our models and was a poor 

FLT3 substrate in our assays (Figure 3-5A). ABLtide, a previously reported FLT3 

substrate,178 scored moderately against the SHARED-16H dataset model, and performed 

moderately as a substrate. 

3.4.4 Evaluating the relationship between substrate input datasets and resulting PSM 

model scores vs. biochemical assays 

FAStide sequences A, B, D, E, F and G generally had higher PSM scores than C 

and H, and were all phosphorylated more efficiently than C and H in the assays. The 

FLT3tide reference peptide scored poorly in all the matrices and was phosphorylated very 

poorly in the assays, and FL-ABLtide scored moderately and was phosphorylated 

moderately relative to the best of the FAStide sequences in the assays. For the longer 

KALIP kinase reactions (16 hours), the strongest correlations were found between each 

variant’s biochemical assay results at 60 min and the WT-16H dataset-derived PSM scores 

(Figure 3-4C). The FAStide sequences scored the lowest with the D835Y-16H PSM model, 

which contained the largest substrate list (2010 substrates), and their scores had lower 

Spearman correlations with assay results from the WT, D835Y, and ITD variants, 

respectively. This is most likely attributable to a combination of the larger size of the input 

dataset for that PSM and that the FAStides were designed based on the selected subset of 

that data shared with the other two variants, rather than the entire dataset used to derive 

this PSM model. The FAStide sequences received higher scores using PSM models with 

the smallest substrate lists (SHARED-16H and ITD-16H), which was also primarily an 

artifact of all or nearly all of the sequences in those smaller datasets being used to design 

the FAStides in the first place. Sequence scores derived from PSM models with the lowest 
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number of input substrates were less correlated with the biochemical assay results, which 

might arise from smaller dataset artifacts or some other, as yet unidentified factor affecting 

the accuracy of the predictive models from those datasets. 

3.4.5 Evaluating the length of time of in vitro kinase treatment on substrate motif 

prediction   

We also examined the effect of reaction time in the kinase treatment step on the 

ability of the KALIP-KINATEST-ID process to identify efficient substrates that can be 

used in enzyme assays. We performed a two-hour kinase reaction using FLT3-WT kinase 

and processed the data (referred to hereafter as WT-2H) as described above to determine 

if the KALIP kinase treatment time affected 1) the characteristics of the preference motif 

arising from a given dataset, and 2) its utility for subsequent substrate design. We identified 

888 phosphopeptides from the 2H KALIP FLT3-WT kinase treatment (relative to 1559 for 

the 16-H treatment as described above). We compared the “WT-2H” to the “WT-16H” 

substrate list and found 559 sequences shared by both. These sequences, referred to as the 

“WT-OVERLAP” substrate and background frequency lists, represented sequences that 

were likely to have been phosphorylated rapidly and robustly (Figure 3-5B). The 

corresponding SDV values were compared to those for each substrate list from the WT-2H 

and WT-16H experiments, as shown in Figure 3-6. 

Overall, the preferences at each position as represented by the SDV tables were 

similar (Figure 3-6), however subtle differences in the WT-2H dataset from the two hour 

incubation resulted in a scoring model that appeared to more accurately reflect the substrate 

phosphorylation efficiency for the WT kinase as observed in the biochemical experiments 

relative to the models derived from the WT-16H dataset. PSM scores derived from the WT-

2H, WT-16H and WT OVERLAP datasets were compared with the assay results for the 

eight FAStides and two control peptides (Figure 3-5A). Spearman correlations are shown 

in Figure 3-5C. Similar to the WT-16H, the assay signal at 60 min and the PSM scores 

generated via the WT-2H and WT-OVERLAP datasets were very highly correlated, 

appearing slightly stronger for WT-2H than for WT-OVERLAP and WT 16H. This may 

indicate that shorter KALIP kinase treatment time is better for determining more efficiently 

(i.e. rapidly) phosphorylated substrates, and that longer treatment may “dilute” the 

substrate preference motif with less efficient sequences.
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Figure 3.5 FLT3 kinase variant activity assays and scoring model correlation.  

 

(A) FLT3 (WT, D835Y and ITD) in vitro kinase assay results for the candidate 

sequences (A, B, C, D, E, F, G and H). Each FLT3 variant (columns WT, D835Y, 

ITD) was reacted with each peptide (rows), with aliquots taken at 2 and 60 min 

(sub-columns). Phosphorylation levels indicated by RFU from ELISA detection, 

illustrated via color scale (green = high phosphorylation, white = low/no 

phosphorylation). (B) Effect of in vitro KALIP kinase assay incubation time on 

KINATEST-ID scores for candidate sequences. Positional scoring model scores for 

each sequence (rows) against the models (columns) derived from all 

phosphopeptides observed in the WT 2H or 16H KALIP kinase reaction, 

respectively, or just those observed in both (WT OVERLAP). Color scale from red 

(low PMS score) to green (high PMS score). (C) Spearman’s non-parametric 

correlation test to measure correlation between the KINATEST-ID’s scoring 

system and the in vitro activity assay results. r values shown in bold, above p-values 

denoted in parenthesis. Color scale indicates low (red) to high (green) Spearman r 

values.  
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Figure 3.6  Heat map representation of FLT3-WT time course KALIP experiment, Site 

Selectivity Matrix and artificial substrate library sequence scoring comparison. 

 

(A) Observed representation of each amino acid at each position (-4 to +4 relative to 

phosphotyrosine) in the individual phosphoproteomics datasets for the kinase treatments at 

two hours (WT-2H) or sixteen hours (WT-16H), or for the sequences shared in the two 

datasets (WT-OVLP). Green = over-represented, white = neutral, red = under-represented. 

To summarize, differences were modest between the two treatment times. (B) We compared 

the three substrate lists’ SSM values to identify positions with a value greater than 1, which 

is the previously reported threshold used to consider a position as “significant.”80 None of 

the KALIP dataset SSMs contained a position with a value greater than one, suggesting that 

all positions exhibited some flexibility for which particular amino acid was present. 
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3.4.6 In vitro characterization of FAStide FLT3 specificity 

While in vitro recombinant kinase assays using the novel peptides identified here 

would not require exquisite specificity since they would typically employ purified kinase, 

we wanted to perform a limited assessment of the “off-target” phosphorylation of these 

peptides using a small panel of other kinases: KIT, PDGFRβ, ALK, SRC, LYN and BTK. 

KIT and PDGFRβ are kinases for which the substrate preference motif has not yet been 

identified, however, they are within the same kinase family as FLT3 and based on 

observations for other kinases,80 were likely to phosphorylate the same FAStides as FLT3. 

Based on the previously published PSM scoring models80 (derived from manual substrate 

list curation and not the KALIP process), SRC was predicted to phosphorylate sequences 

B, C, E and F while LYN is predicted to phosphorylate sequences A and C. BTK was not 

expected to phosphorylate any of the FAStide sequences. Additionally, our panel included 

the receptor tyrosine kinase, ALK, which we previously observed to phosphorylate similar 

sequences to those phosphorylated by SRC.81 To ensure each of those recombinant kinases 

was active, we performed an in vitro kinase assay with several reference peptides that have 

been previously characterized in our laboratory for the kinases in the panel. The “universal” 

tyrosine kinase substrate that we previously reported U5 (DEAIYATVA)34 was the 

reference peptide chosen for KIT, PDGFRβ and BTK, and an ALK substrate we previously 

reported (ALAStide)81,179 was used for ALK (Figure 3-7A-F). SFAStide-A 

(DEDIYEELD)80 was used as the reference peptide for SRC and LYN kinases. Briefly, the 

kinases were preincubated with kinase reaction mixture and the in vitro reaction was 

initiated by the addition of substrate peptide. The samples were quenched at 2 and 60-

minute time points as described above. Phosphorylation was measured using the previously 

described ELISA-based assay,80,83 and results are shown in Figure 3-7.  

Overall, the sequences with the least off-target phosphorylation in this panel were 

FAStide-A, which was phosphorylated moderately by c-KIT and PDGFR (both FLT3 

family members) and LYN after 60 minutes but not the others in the panel, and FAStide-

G, which was phosphorylated to a relatively low degree after 60 minutes only by c-KIT 

and SRC (Figure 3-7A and 3-7E). FAStide-B, -D, -E and -F were phosphorylated by more 

of the off-target kinases by 60 min and FAStide-C was a robust substrate for both SRC and 

LYN. PDGFRβ and BTK, on the other hand, did not phosphorylate any of the artificial 
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sequences over a 60-minute incubation. The off-target in vitro kinase assay results were 

mostly but not entirely consistent with the Screener predictions, which is not surprising 

given that Screener is limited by the PSM models built into its cross-referencing 

algorithm—the main caveat is that the PSM models in Screener all come from the 

previously developed KINATEST-ID package80 that did not have KALIP 

phosphoproteomics data as input. A future goal is to update current kinase PSMs with 

newly generated KALIP data, as well as adding data from more kinases to improve the 

cross-referencing depth. 

  



104 

 

 

 

 

 

 

Figure 3.7  The focused peptide library of kinases predicted to tolerate a given sequence 

as a substrate.   

 

 

 

 

 

 

 

 

 

  

 (A-F) Phosphorylation level for each peptide (rows) at two time points (2 and 60 

min, columns) is shown separately for each kinase, with color scales normalized to 

minimum/maximum RFU values from ELISA detection for that kinase. FAStide 

candidate data shown in rows 1-8, reference peptide data show in row 9 as a positive 

control for kinase activity. (G) PMS scores for each FAStide candidate and two 

reference peptides (rows) for 13 kinases (columns) previously built into the 

KINATEST-ID Screener tool from literature curated substrate input lists. Scores 

are indicated by color scale from low (white) to high (orange). (H) “Off-target” 

activity prediction from Screener tool, indicating the number of kinases predicted 

to tolerate a given sequence as a substrate.   
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3.4.7 Detection of FLT3 kinase variant inhibition through FAStide in vitro 

phosphorylation 

To demonstrate how the FLT3 artificial substrates can be used to monitor TKI 

efficacy, we performed dose-response (DR) assays for FLT3-WT, FLT3-D835Y and 

FLT3-ITD with sorafenib, quizartinib and crenolanib, three TKIs that have been 

characterized against the three FLT3 variants.164,166,169,180 FAStide-E and FAStide–F were 

chosen for the DR assays due to their efficient phosphorylation by all three FLT3 kinase 

variants, and employed in parallel experiments. Each FLT3 kinase variant was pre-

incubated in the kinase reaction mixture (containing ATP) with the respective TKI 

(0.00001 to 100 nM) for 15 minutes at 37˚C without substrate, and the kinase reaction was 

initiated via the addition of the substrate (37.5 µM). Reactions were quenched after 30 min 

and wells analyzed using ELISA, as described above. Fluorescence values (relative 

fluorescence units, RFU) were collected and normalized to values for wells containing 

vehicle control (DMSO). In general, both substrates exhibited dose-response curves and 

IC50 values that were consistent with what was expected for the given inhibitor against each 

FLT3 variant, with one notable exception (further described below) (Figure 3-8, Table 1). 

All three inhibitors potently inhibited WT FLT3 (with IC50 values in the ~1-30 pM range). 

Potency towards the ITD mutant was lower for all three inhibitors (IC50 values between 

~40-800 pM), with crenolanib more potent than the other two. The D835Y mutant’s dose 

response curves were also as expected for sorafenib and crenolanib, with sorafenib being 

significantly less potent than it was against the WT (~200-250-fold higher IC50), while 

crenolanib maintained pM-range IC50. For quizartinib, on the other hand, dose response 

curves were different for the assays performed using FAStide-E compared to FAStide-F. 

Quizartinib is a type II inhibitor, known to bind to the inactive “DFG-out” conformation 

of the kinase. Bulky, hydrophobic mutations at position 835 in FLT3 are thought to confer 

resistance to quizartinib, due to the effects of the side chains on the structure and dynamics 

of the DFG loop in the kinase domain, with the extra steric bulk disrupting the stability of 

the inactive conformation.181,182 The FAStide-E quizartinib dose response results for the 

D835Y mutant were consistent with this model, with essentially no significant inhibition 

even at concentrations as high as 100 nM (>10,000-fold higher than the IC50 for quizartinib 

against the WT FLT3). However using FAStide-F as the substrate, inhibition was observed 
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in the same IC50 range as for sorafenib. This suggests that substrate interactions may affect 

inhibitor binding stability, perhaps by playing a role in DFG-in/-out dynamics.
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Figure 3.8  Monitoring FLT3 kinase activity and inhibition by clinically relevant tyrosine 

kinase inhibitors (TKI). 

Dose-response assays were performed using two substrates, FAStide-E (A, C, E) and 

FAStide-F (B, D, F) in the presence of increasing TKI concentrations (sorafenib, 

quizartinib and crenolanib). Data show RFU values for each inhibitor normalized to vehicle 

control (DMSO; representative of 6 independent reactions) and plotted as percent control. 

IC50 values were calculated from fitting the data to a fixed slope (three parameter) curve 

in GraphPad Prism. Data points/error bars represent mean ±SEM.
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Table 3-1. IC50 values measured by monitoring the phosphorylation of FAStide-E or -F in 

ELISA-based assays. 

3.5 Discussion 

Drug resistance in AML has been a major factor in the poor 5-year survival and 

clinical remission rates. Treatments targeting patients with FLT3-positive AML have seen 

promising results, but inhibitor resistance has been detrimental to clinical efficacy. FLT3 

remains a viable drug target in AML,72,178 however, none of the current TKIs used in 

therapy are FLT3 specific and even once those are developed, rapid emergence of 

mutations that abrogate drug binding will be a continuing challenge.155,156,183,184 This 

highlights the importance of having efficient assays that can be used as tools to identify 

specific and selective TKIs that target FLT3 and mutant variants. In this work, we coupled 

in vitro kinase reactions on cell lysate digests with the KINATEST-ID pipeline to design, 

synthesize and validate a panel of sequences to detect the activity of a kinase that has few 

known substrates. Our process created a novel panel of peptides that can be used in kinase 

assays and provide higher phosphorylation efficiency than previously reported substrates. 

These findings demonstrate how the streamlined combination of KALIP and the 

KINATEST-ID pipeline can be used to identify novel artificial kinase substrates. 

The original KINATEST-ID pipeline80 relied on literature-validated sequences, 

including some from proteomic databases and positional scanning peptide library (PSPL) 

assays, as input for the matrices. Each sequence was manually curated by further literature 

examination (looking for corroboration of upstream kinase evidence via e.g. testing of non-

phosphorylatable A/F mutations). This severely limited the number of substrates that could 

be included in the “true positive” input list, which likely resulted in less accurate 

Table 1: TKI IC50 VALUES (pM) +/-  S E 

TKI 
FLT3-WT FLT3-ITD  FLT3-D835Y 

Seq. E Seq. F Seq. E Seq. F Seq. E Seq. F 

SORAFENIB 8.7±3.5 13±11 780±300 550±81 1,800±300 3,200±940 

QUIZARTINIB 8.6±1.3 32±20 190 ±110 266 ±49 NA 4,700±870 

CRENOLANIB 13±3.8 1.3±0.92 45 ±14 52 ±8.9 15±1.4 32±7.9 
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predictions of optimal substrate sequences. While this was sufficient to develop effective 

substrates for several kinases that showed reasonable degrees of selectivity for their 

targets,80 it was not optimal—and further, if a given kinase did not have sufficient known 

substrates or PSPL assay data available then it was not possible to make any prediction at 

all. Using cell lysate digest as a peptide library for high-throughput identification of FLT3 

kinase variant substrates enabled a large increase in the numbers of bona fide substrate 

sequences that could be used to build positional scoring models.  

The improved positional scoring matrix models developed from these large, 

empirically detected substrate sequence datasets enabled a prediction for FLT3’s preferred 

amino acid motif, which was then used to design several potential novel substrate peptides. 

Scores from the positional scoring matrix models correlated well with the relative 

biochemical behavior of the novel substrates, especially when the input dataset comprised 

sequences that were observed as phosphorylated after a short kinase incubation time (2 h, 

which is closer to the reaction time scale used for biochemical assays in practice). This 

suggests that even though endogenously-derived tryptic peptide libraries are somewhat 

biased relative to randomized/unbiased synthetic libraries170 (given the sequence 

constraints imposed by their genomic origin), they are still able to provide sufficient 

sequence diversity to enable discovery of hundreds to thousands of substrates and 

accurately reveal substrate preferences for a given kinase. It also suggests that although 

performing the reaction at the protein level171 may be better for developing prediction 

models for identifying endogenous protein substrates, performing substrate preference 

analyses at the peptide level in vitro is sufficient for designing peptide probes.  

Intriguingly, we observed substrate-dependent inhibition for the well-characterized 

TKI quizartinib against the FLT3 D835Y mutant. This suggests that the particular substrate 

used in a screening assay might bias the interpretation of whether an inhibitor is or is not 

potent against a given enzyme. This highlights the importance of the substrate in inhibitor 

assays, and suggests that expanding the range of efficient substrates available as drug 

discovery tools would be beneficial. Work is ongoing to determine whether this is specific 

to the FLT3 D835Y mutant or is a more general issue for kinases. Other next steps will be 

to expand the application of this approach to the kinases previously built into the 

KINATEST-ID “Screener” panel,80 in order to improve the accuracy of the positional 
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scoring matrix models for the “off-target” kinases and achieve better predictions of 

selectivity during the substrate design process. While the original, previously published 

Screener panel was accurate enough to offer the practical ability to pre-filter a large list of 

potential sequences down to a more manageable number, clearly the selectivity prediction 

was limited by the same factors (comprehensiveness of the input dataset) as the preference 

prediction. Ongoing efforts to apply the KALIP adaptation approach reported here to more 

kinases should facilitate improvement of this aspect, as well.  

In summary, in this work we demonstrate the utility of generating a large dataset of 

bona fide substrate information, using a relatively cheap and easily produced peptide 

pseudo-“library” derived from cellular proteins via proteolytic digest, for defining 

substrate preference motifs and scoring models that enable design of efficient peptide 

substrates for kinase enzymes. This strategy enabled discovery of multiple substrates, some 

of which may influence inhibitor interactions with the enzyme and affect conclusions about 

inhibitor efficacy. We also anticipate that this process can be applied to orphan kinases for 

which little to nothing is known, to first identify substrate sequences through the in vitro 

proteolytic peptide library kinase reaction followed by prediction of the preference motifs 

from those data. Those motifs could be used to design, synthesize and validate artificial 

substrates, which can assist in chemical biology and drug discovery efforts to identify novel 

and potent inhibitors to study their biology and/or become therapeutic leads. Furthermore, 

this workflow could potentially be generalized to any enzyme-driven disease for which 

substrate preference data can be determined from proteolytically or synthetically prepared 

peptide libraries185 and used to design novel substrates for use in assays. This will greatly 

enhance the generalization of the novel substrate probe design process we initially 

implemented in our first report of KINATEST-ID,80 broadening the scope for drug 

discovery assay development. 
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 DEVELOPMENT OF A GALAXYP WORKFLOW 

FOR HIGH-THROUGHPUT IDENTIFICATION OF BTK KINASE 

SUBSTRATE PREFERENCE AND DESIGN OF ANTIBODY AND 

ANTIBODY-FREE ACTIVITY ASSAYS   

4.1 Abstract 

Protein kinases play an integral role in the addiction of cancer cells to pro-survival 

regulatory mechanisms to drive tumorigenesis. BTK is involved in pro-survival signaling 

pathways in B-cell signaling and malignancies. BTK has been observed to be an important 

kinase that non-B cell malignancies and solid tumors also use to promote survival, which 

has made it viable drug target. The limited information known about BTK’s preferred 

phosphorylation motif sequence limits the ability to develop sensitive activity assays that 

can be used in drug discovery to develop new kinase inhibitors. We applied the 

phosphoproteomic approach described in chapter three to increase the known number of 

BTK substrates. We incorporated the data formatting tools developed in chapter three to 

process and perform the KALIP-KINATEST-ID analysis within the GalaxyP framework. 

This streamlined processed was used to generate sensitive antibody-free assays to monitor 

BTK kinase activity. 

4.2 Introduction 

The BTK gene was identified in the 1980s as a gene encoding for a non-receptor 

tyrosine kinase that is now part of the Tec protein kinase family.186 Under normal 

circumstances, BTK is localized to the cytosol and autoinhibited by intra-domain binding. 

BTK contains a plecksrtin homology and Tec homology (PHTH), Src homology 2 (SH2), 

SH3, and kinase domains.187–189 BTK is activated and recruited to the cell membrane when 

the PH segment, of the PHTH domain, binds to phosphatidylinositol-3,-4,-5-triphosphate 

(PIP3).187–189 Deletion of the PHTH domain does not alter kinase activity, but it is required 

for BTK substrate recognition.187 PHTH binding of PIP3 allows for the SH2 and SH3 

domains to become available to the cytosolic proteins.190 The SH2 domains binds to 

phosphotyrosines while the SH3 binds to proline rich regions. SRC family and spleen 



112 

 

 

tyrosine kinases (SYK) phosphorylate tyrosine 551 in the kinase domain leading to 

autophosphorylation of Y223 within the SH3 domain.189  

BTK is predominantly expressed in B cells and plays a role in B cell receptor (BCR), 

chemokine, and Toll-like receptor (TLR) signaling. Upon ligand binding to the BCR, SRC 

family kinases phosphorylate immunoreceptor tyrosine-based activation motifs (ITAMs) 

leading to SYK cell membrane localization. This signaling cascade recruits PI3K 

increasing PIP3 concentration and phosphorylation enabling the recruitment BTK to the 

cell membrane. Upon recruitment, BTK is phosphorylated by SRC and SYK family 

kinases.186,189 Once activated, BTK phosphorylates PLCγ2 to initiate and regulate 

production of inositol triphosphate and diacylglycerol to regulate intracellular Ca2+ levels 

through RAS signaling.189 Additionally, BTK regulates BCR intracellular localization by 

phosphorylating the actin regulator Wiskott-Aldrich syndrome protein (WASP) and the 

small guanine nucleotide exchange factor, VAV.189  Cellular membrane localization of 

BTK leads to interaction with chemokine receptors CXCR4 and CXCR5. It is hypothesized 

that direct interaction of the chemokine receptors and BTK is mediated by the Gα and Gβ 

subunits by binding to the PHTH domain of BTK. Following chemokine receptor binding, 

Y551 is exposed and susceptible to SYK and SRC family kinase phosphorylation that leads 

to BTK autophosphorylation and initiation of the PLCγ2 and RAS signaling pathways.189 

BTK mediates TLR signaling by directly interacting with the Toll/IL-1 domain of the 

receptor or by interacting with myeloid differentiation primary response 88 (MYD88) that 

is a downstream adaptor protein of most TLRs.189,191 Additionally, BTK has been shown 

to phosphorylate TLR3 at Y759 during antiviral cellular response.192 Since BTK is 

involved in regulating a variety of signaling pathways, it has been shown to play a central 

role in a wide variety of diseases from cancers to autoimmune diseases.189,193,194 

During its discovery in 1993, BTK deficiency was attributed to be the driving force 

of XLA disease progression.186,189 Since then, BTK has been implicated in initiation and 

maintenance of B-cell malignancies, leukemias, solid tumors, and autoimmune disorders. 

Unlike protein kinases in other diseases, there are no gain-of-function mutations that create 

an over-active BTK kinase in BTK-driven diseases. This is attributed to the multiple layers 

of autoinhibition by the PHTH domain binding along with the SH3 domain binding to the 

proline-rich linker region that joins the PHTH and SH3 domains.187,190 Overreliance of 
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cancer cells in B-cell malignancies on the BTK pathway is a classical hallmark of cancer. 

Chronic lymphocytic leukemia cells overexpress BTK, while Mantle cell lymphomas 

overexpress LYN and SYK kinases, a part of the BTK activation mechanism 

(hyperphosphorylation of BTK Y223).186,189 Activated B-cell like diffuse large B cell 

lymphomas (ABC-DLBCL) depend on NF-κB signaling that is regulated by BTK 

mediation of BCR and TLR signaling.189 Additionally, B-cell activation is a classical 

maker in rheumatoid arthritis that has led to the use of TKIs for the treatment of rheumatoid 

arthritis.193 

Although expression of BTK is predominantly observed in B-cells, a truncated 

BTK isoform, where a portion of the PH segment of the PHTH domain is deleted, was 

discovered in colon cancer.194 Deletion of the PHTH regulatory domain has been shown to 

increase BTK kinase activity187 and coincides with the observations seen in colon cancer 

tumors and cells.194 Furthermore, the truncated BTK isoform was shown to play a 

prominent role in survival and proliferation of colon cancer cells.194 Thus, the involvement 

of BTK in a variety of diseases has made it an attractive drug target.  

Kinase inhibitors can be classified by their binding mode.68–70,195 The first mode of 

binding occurs in the kinase domain ATP binding pocket and can be further characterized 

by the DFG motif orientation. Type I inhibitors bind to the DFG-in orientation of active 

kinases, while type II inhibitors bind to the DFG-out orientation of inactive kinases. 

Additionally, type II inhibitors bind to an allosteric hydrophobic binding pocket within the 

kinase domain adding a layer of selectivity. The second binding mode consists of inhibitors 

binding non-competitively to a small allosteric pocket within the ATP binding site and are 

classified as type III inhibitors. In the third binding mode, type IV inhibitors bind 

allosterically to stabilize the inactive kinase conformation. Finally, the fourth and most 

efficacious binding mode of BTK inhibitors consists of covalent inhibitors that render the 

kinase catalytically inactive.189,193,196,197  

Two FDA-approved inhibitors, ibrutinib and acalabrutinib, used to treat BTK-

driven diseases irreversibly bind to cysteine 481 within the catalytic domain to render the 

kinase inactive. During clinical trials, the overall response rate for ibrutinib treatment was 

60% thus leading to FDA approval for treatment of chronic lymphocytic leukemia (CLL) 

and mantle cell lymphoma (MCL).189,196,197 While, ibrutinib is efficacious towards BTK, it 
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contains off-target activity against LYN, epidermal growth factor receptor (EGFR), janus 

kinase 3 (JAK3) and other TEC family kinases (ITK and TEC)189,196,197 leading to severe 

side effects such as bleeding, rash, diarrhea and atrial fibrillation.196 Additionally, the point 

mutation C481S within BTK’s kinase domain prevents ibrutinib binding resulting in drug 

resistance. Due to ibrutinib’s adverse side effects, efforts to develop BTK specific 

inhibitors led to the discovery of acalabrutinib.198Acalabrutinib is structurally similar to 

ibrutinib however it displays higher specificity for BTK.197 Clinical trials with ibrutinib 

resistant CLL and MCL patients are underway to determine acalabrutinib efficacy. 

Additionally, there are current clinical studies underway to determine the efficacy of 

reversible and specific BTK inhibitors to resistant mutants. 196,197  

Unlike B-cell malignances, the role of BTK has not been elucidated in myeloid cell 

signaling. BTK is expressed in over 80% of AML cases and has been identified as a 

downstream substrate of FLT3-ITD.199 High levels of BTK phosphorylation were observed 

in FLT3-ITD positive AML cell lines, and patient samples were disrupted by treating cells 

with quizartinib (FLT3-ITD TKI). Furthermore, FLT3-ITD negative cells stimulated with 

FLT3 ligand did not alter BTK phosphorylation levels, suggesting BTK is not a substrate 

for WT FLT3.  Interestingly, when FLT3-ITD positive cells were treated with quizartinib 

and ibrutinib cell death was amplified. To determine the involvement of BTK in 

chemotherapy resistant AML cell lines and patient primary cell cultures were treated with 

ibrutinib and were susceptible to BTK inhibition, implying that chemotherapy-resistant 

FLT3-ITD negative AML cells rely on BTK to evade cell death. In chemotherapy-resistant 

FLT3-ITD negative AML cells, TLR9 signaling was identified as the primary diver of 

increased BTK activity. Although the role of BTK in B-cell malignancies has been 

identified, the role it plays in other diseases is still being elucidated and highlights the 

importance of potent BTK inhibitors.   

Biochemical tools, such as sensitive assays to measure kinase activity, that can aid 

in the identification of new specific BTK inhibitors would benefit drug discovery efforts. 

Development of reliable high throughput assays to monitor kinase activity requires 

efficient kinase substrates. Unfortunately, none have been reported for BTK. Enzyme 

substrate specificity has been widely studied, but with recent technological advances such 

as high-resolution mass spectrometry, researchers are now able to process large scale 
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datasets to identify and predict enzyme substrate sequences. In this chapter, we present an 

automated process for phosphoproteomic and KINATEST-ID data analysis within the 

GalaxyP environment which resulted in the discovery of four sensitive BTK kinase 

substrates that were used to develop an antibody free activity assay for BTK.  

4.3 Materials and methods 

4.3.1 Cell culture and endogenous peptide sample preparation 

Cell culture and endogenous peptide sample preparation was carried out as 

described in chapter three with slight modification. KG-1 cells (ATCC) were maintained 

in IMDM media (Gibco) supplemented with 20% heat inactivated fetal bovine serum 

(FBS), 1% penicillin/streptomycin in 5% CO2 at 37 °C.   

4.3.2 Alkaline phosphatase 

The alkaline phosphatase treatment was carried out as described in chapter three.  

4.3.3 KALIP recombinant BTK kinase assay 

Recombinant BTK KALIP kinase assay was carried out as described in chapter 

three using a two-hour incubation. 

4.3.4 LC-MS/MS data acquisition 

LC-MS/MS data acquisition was carried out as described in chapter three with a 

modification to the LC elution time interval. The mobile phase consisted of 0.1% formic 

acid in ultra-pure water (Solvent A) and 0.1% formic acid in acetonitrile (Solvent B). 

Samples were run over a linear gradient (5-30% solvent B; 80 minutes). The subsequent 

steps are as described in chapter three.   

4.3.5 Data analysis 

The KinaMINE and scripts in R studio developed in chapter 3 to identify, extract 

and format phosphopeptide sequences to incorporate them into the KINATEST-ID pipeline 

were converted into GalaxyP compatible files described below.  
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4.3.5.1 Script conversion into XML for compatible upload to the GalaxyP environment 

Tools can be incorporated into the GalaxyP environment but require their 

conversion into a command line execution process within the Linux operating system 

interface.172,200 This  required the creation of a set of instructions in the form of an XML 

file, which contains pertinent input file information such as number of inputs and type of 

inputs (text or FASTA, etc.). Additionally, the XML file will contain the tool directory and 

tool initiation instructions (https://galaxyproject.org/admin/tools/add-tool-tutorial/). The 

tools and corresponding XML instructions are “wrapped” together into a GZ file format 

that is used by GalaxyP, which handles tool dependencies dictated by the language the tool 

is written in such as in R studio or in Java. 

4.3.5.2 File conversion workflow  

Msconvert and MGF file formatter tools were used to convert raw mass 

spectrometer files into mzml and MGF files for input into ProteinPilot version 5.  Raw 

mass spectrometer files were combined into a “dataset collection”200 and processed through 

the workflow as described in chapter three.  

4.3.5.3 Proteomic database Workflow 2 

The MGF files were searched against a merged FASTA database (reviewed human 

Uniprot and the cRAP databases) using ProteinPilot version 5 as described in chapter three. 

For each database search, the Group file extractor tool extracted the distinct peptide report 

(DPR) and corresponding search summary excel file. Then, the DPR and the merged 

FASTA database were used as input for the KinaMine -7 to 7 tool within Galaxy-P to 

generate the substrate and substrate background frequency lists. The FDR threshold was 

set at <1% global FDR.   

4.3.5.4 KINATEST-ID Workflow  

The KINATEST-ID workflow was created to recapitulate the processes described 

in chapter 3. In brief, to approximate the list of tyrosine centered peptide sequences that 

could have been potentially phosphorylated but were not, the Negative Motif Finder -7 to 

7 function within Galaxy-P was used. This list was generated by uploading the Positive 

https://galaxyproject.org/admin/tools/add-tool-tutorial/
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Substrates file, Substrate Background Frequency File, and a human proteome reference. 

The human proteome reference was created in Galaxy-P and a file conversion was 

performed using the FASTA to Tabular function in Galaxy-P. Then once the database is in 

tabular format, the updated version of the Negative Motif finder -7 to7 identifies the 

UniProt accession numbers of the proteins that contain the identified BTK substrates and 

then extracts them from the tabular human UniProt database, and then performs an in-silico 

trypsin digest to generate a list of all tyrosine centered sequences possible. The tool then 

compares this list with the sequences found in the positive substrate list and returns the 

sequences that were not in the positive substrate lists.  

4.3.6 Peptide synthesis 

Peptides were synthesized as described in chapter three. 

4.3.7 BAStide in vitro kinase assay 

Assays with recombinant BTK kinase were carried out as described in chapter three. 

In brief, the assay reaction was started by adding the peptide substrate to a 37.5 µM final 

reaction concentration in a 50 µL volume. Sample aliquots (10 µL) were quenched by 

combining 1:1 with 30 mM EDTA at 4, 15, 30, 45 and 60-minute timepoints. 

4.3.8 ELISA-based in vitro kinase assay 

ELISA-based assays were carried out as described in chapter three with slight 

modifications. Peptide phosphorylation was detected by incubation with horseradish 

peroxidase-conjugated antiphosphotyrosine mouse monoclonal antibody 4G10 

(MilliporeSigma, 1: 5,000 dilution in TBS-T). The subsequent steps were carried out as 

described in chapter three.  

4.3.9 Terbium-based in vitro kinase assay 

Recombinant BTK kinase was purchased and diluted as described in chapter three. 

In brief, the kinase was pre-incubated with kinase reaction mixture as described in chapter 

three at room temperature. The kinase reaction was started by adding the BAStide-D 

substrate to a final concentration of 20 µM in a 20 µL volume at room temperature. Sample 
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aliquots were quenched by combining 1:1 with 6M urea at 0.5, 5, 10, 15, 30, 45, 60 and 

90-minute timepoints.  

4.3.10 Terbium-based phosphorylation detection assay 

Terbium luminescence assay data collection was carried out as described in chapter 

two. Time resolved emission spectra were collected on a Biotek Neo2 plate reader with a 

monochromator at room temperature. Spectra was collected as described in chapter two 

with a sensitivity (gain) setting of 230. 

4.4 Results 

4.4.1 In vitro kinase reaction to identify substrates for input/analysis with the 

KINATEST-ID pipeline 

We applied our adapted KALIP strategy to increase the known number of BTK 

kinase substrates. The KALIP workflow was carried out as described in chapter 3 (FLT3) 

with some slight modifications. KG-1 cell lysates were trypsin digested and desalted using 

HLB cartridges. After a speed vacuum drying step, the samples were reconstituted in 

alkaline phosphatase reaction buffer and treated with alkaline phosphatase for 90 minutes. 

The phosphatase reaction was quenched by incubating the reaction mixture at 75˚ Celsius 

(C) over 30 minutes. The samples were divided into two aliquots, one that was treated with 

reaction mixture with no kinase while the other was treated with recombinant BTK. The 

samples were incubated for two hours at 37 degrees C and quenched by acidifying the 

lysate to a pH below 1. The samples were again desalted with HLB cartridges. Then, the 

lysates were subjected to phosphopeptide enrichment (PolyMAC) and subsequently 

analyzed on the mass spectrometer. The mass spectrometer files were then uploaded to 

GalaxyP platform (http://galaxyp.msi.umn.edu/) 

Our aim was to generate an automated data analysis process and to accomplish this 

we created three workflows within Galaxy P. They are the file conversion, proteomic 

database and the KINATEST-ID workflows (Figure 1). Workflows within the Galaxy P 

environment are automated processes that are developed to perform a series of steps in 

chronological order. Workflow outputs are then used as input for downstream workflows 

that are initiated once the input file is created. All three of our workflows were initiated in 

http://galaxyp.msi.umn.edu/
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parallel. The file conversion workflow was developed to automatically convert raw mass 

spectrometer files into the mascot generic format (MGF) intended for use with ProteinPilot 

version 5. The proteomic database workflow was initiated once the corresponding MGF 

files were created by the file conversion workflow. The proteomic database preforms two 

steps. The first step carries out the proteomic database search while the second step extracts 

(group file extractor) the distinct peptide report (DPR) from the search file. The DPR is the 

input required for the KinaMINE data formatter tool that identifies the phosphotyrosines 

at a corresponding confidence score. The KINATEST-ID workflow recapitulates the data 

formatting steps of the scripts developed in chapter 3 with the added functionality of 

working with 7 amino acids N- and C-terminal to the tyrosine of interest. The inputs 

required are the distinct peptide report and the merged human UniProt-cRAP database in a 

tabular format. Upon completion of the KINATEST-ID workflow, three output files (OPF) 

were created. The first OPF contains the amino acid standard deviation values (SDV), the 

second contained the endogenous probability matrix (EPM), and third file contained the 

predicted BTK-specific scored sequences.  

The original KINATEST-ID pipeline relied on literature and proteomic databases 

for substrate identification, of which only 21 were reported (Figure 2A). The literature-

based KINATEST-ID algorithm failed to produce an artificial peptide substrate sequence 

that implied that we did not have sufficient information to identify BTK’s preferred 

substrate sequence. Using the three workflows described above, we identified 101 

sequences phosphorylated by BTK. Additionally, we processed the BTK proteomic search 

results using the command line process (chapter 3), and we identified 95 substrates. The 

SDV and the site selectivity matrices (SSM) are illustrated in figure 2. Overall, there were 

slight differences in the command line and the GalaxyP based KINATEST-ID SDV and 

SSM matrices. The larger differences were observed between the literature-based matrices 

when compared to the Galaxy P or command line process of the KALIP data. Amino acids 

were deemed statistically significant if they were observed two standard deviations above 

or below the mean. Each of the positions analyzed, within the SDV table, we identified 

instances where amino acids observed to be under-represented in the literature algorithm 

was observed to be a favorable or statistically significant amino acid. These observations 

in conjunction with the lack of artificial substrates identified using the literature-based 
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KINATEST-ID algorithms implied that the KALIP derived algorithms identified BTK 

substrate characteristics that could be used to develop artificial substrates.   

 

 

4.4.2 KINATEST-ID based design of novel BTK Artificial Substrate peptides 

(BAStides) 

Using the GalaxyP derived KINATEST-ID output files, we identified statistically 

significant amino acids and their respective positions (Figure 2B and 2C). To generate the 

sequence permutations, the KINATEST-ID workflow identified all the amino acids that 

contains a SDV above 2 at each position and selected the AA with the highest value for 

positions that did not contain a significant AA.  The KINATEST-ID workflow generated 

over 1.4 million sequence permutations (Output file 3) using the information from the SDV 

table (OPF1). To narrow the number of sequence permutations, we focused on the four 

amino acids N- and C-terminal to the phosphotyrosine. In addition to the SDV, we 

considered the SSM that identified positions -4, -3, -2, -1 and 1 as potential significant 

(SSM value greater than 1) positions with SSM values of 0.8, 1.5, 1.2, 2.2 and 0.8 

respectively. Position -4 contained aspartic acid (D) and asparagine (N), while position -3 

contained D, glutamic acid (E), phenylalanine (F) and glutamine (Q). Position -2 contained 

Figure 4.1. Schematic representation of the GalaxyP KINATEST-ID workflows 
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D, N, Q and serine (S), while position -1 contained phenylalanine (F), leucine (L) and 

isoleucine (I). Position 1 contained A and E while threonine (T), valine (V) and lysine (K) 

were fixed at positions 2, 3 and 4 respectively. We used the command line based 

KINATEST-ID (chapter 3) to generate the possible 96 sequence permutations, of which 8 

were predicted to be specific BTK substrates. The top two scoring sequences were selected 

to be BAStide-A (DFQLYATVK) and BAStide-B (NFQLYATVK). Additionally, the 

SSM indicated that BTK required a statistically significant amino acid at position -1 to 

phosphorylate a candidate sequence and to test this hypothesis we made a L to tryptophan 

(W) mutation to BAStide-B to create BAStide-C (NFQWYATVK). W was chosen because 

it contained a -0.95 SDV at position -1. Lastly, we mutated BAStide-A at position 1 (A to 

E) to create BAStide-E (EDDFQLYETVKEE), which was incorporated in the terbium-

binding motif discussed later. 

The BAStide sequences were scored against the literature, command line and the 

GalaxyP based KINATEST-ID models (Figure 2D). Although the literature-based 

KINATEST-ID model analyzed SDV for seven amino acids N- and C-terminal to the 

tyrosine of interest, the scoring function (Endogenous probability matrix and sequence 

scoring in chapter 2) only considered four amino acids. Consequently, we took two 

approaches for scoring the BAStide sequences against the GalaxyP model. We scored the 

sequences by considering four (GalaxyP -4 to 4) or seven (GalaxyP -7 to7) N and C 

terminal amino acids with respect to the tyrosine. BAStide A, B and D scored well in the 

GalaxyP -4 to 4 scoring approach while BAStide-C scored poorly. All the BAStide 

sequences scored poorly in the GalaxyP -7 to 7 approach that can be attributed to the N-

terminal glycine residues at positions -6 and -5, which were observed as underrepresented 

and impacted the sequence score negatively. BAStides A-C did not contain an amino acid 

at position -7 and the blank space was assigned a value of 1, which is considered neutral 

value within the EPM and scoring functions. All the BAStide sequences contained a 

sequence score of zero in the literature-based model, which indicated that we did not have 

sufficient information to make an accurate sequence prediction. The BAStide sequences 

were then synthesized and prepared for biochemical assays discussed in the section below. 
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4.4.3 In vitro validation of BAStide sequences as BTK kinase substrates 

The BAStide candidate sequences were assayed in vitro against recombinant BTK 

over a 60-minute incubation with sample aliquots quenched at 4, 15, 30, 45 and 60 minutes. 

A previously reported BTK substrate, universal peptide-5179 was used as our positive 

Figure 4.2. BTK phosphopeptide identifications, positional preferences and KINATEST-

ID model sequence scoring.  
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activity control. Phosphorylation was detected using an anti-phosphotyrosine 4G-10 

antibody conjugated to horseradish peroxidase in a ELISA-based assay. Overall, BTK 

phosphorylated BAStides-A, -B and -D more efficiently than peptide-5, while BAStide-C 

was observed to be a less efficient substrate (Figure 4-3).  In our GalaxyP -4 to 4 scoring 

model of KINATEST-ID, BAStide-A was the highest scoring sequence followed by 

BAStide-D and -C respectively, while BAStide-C was predicted to be a poor substrate for 

BTK. 

Our results indicate that BTK prefers aspartic acid (SDV 6.85) over asparagine 

(SDV 1.32) at position -4, which was not considered a significant position (SSM value of 

0.8). We observed that BTK activity was reduced over a 60-minute in vitro incubation by 

mutating a statistically significant amino acid for a non-significant one at position -4. A 

similar effect was observed between BAStide-B and -C, which was designed to determine 

the effects of the site selectivity matrix on BTK kinase activity upon its preferred substrate 

motif. The SSM identified position -1 as the most important site that required a statistically 

significant amino acid in a substrate to be phosphorylated by BTK, which was supported 

by our L (5.47 SDV) to W (-0.96 SDV) mutation assay results.  A similar observation was 

seen between BAStide-A and -D because the sequences contained multiple differences to 

draw a robust conclusion between the alanine to glutamic acid at position 1. 
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4.4.4 Evaluating the correlation between activity and scoring model using the universal 

peptide substrates  

To determine statistical correlation between KINATEST-ID scoring models and 

BTK kinase activity against BAStide and universal peptide substrates, we performed a 

Spearman’s non-parametric test as described in chapter three. In our ELISA-based activity 

assays, we used peptide 5 as our reference substrate to determine baseline BTK kinase 

activity (Figure 4-3). BAStides-A, B and D were observed to be more efficient substrates 

than peptide 5 and BAStide-C over a 60-minute incubation.  

To correlate our KINATEST-ID scoring models to BTK biochemical activity, we 

scored the panel of universal substrates reported by Marholz and colleagues179 using our 

KINATEST-ID models (Figure 4-4A). To compare the BTK activity between the universal 

peptide data and our ELISA activity assay, we reprocessed and normalized the 30-minute 

time point data, reported by Marholz and colleagues, to create a ‘peptide 5’ percent activity 

Figure 4.3. BTK phosphorylation of BAStide candidate sequences in vitro.  

Data represents averages ± SEM of experiments performed in triplicate. 
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signal (Figure 4-4B). Subsequently, we normalized the BAStides 30-minute raw data point 

to the signal of peptide 5 (Figure 4-4C). The ‘peptide 5’ percent activity signal was then 

correlated to the KINATEST-ID scoring models using spearman’s non-parametric test as 

described in chapter three. We observed a modest positive correlation between the GalaxyP 

and command line scoring models, which used the four N- and C-terminal amino acids, 

with respect to the tyrosine residue to generate the positional matrix score. These results 

demonstrate that the GalaxyP-based KINATEST-ID algorithm’s positional matrix score is 

moderately correlated to efficient artificial BTK substrates. 

 

 

Figure 4.4. Universal peptide KINATEST-ID model scoring (4-4A).  

Universal peptide (4-4B) and BAStide (4-4C) substrate data were normalized to peptide 5 

signal at a 30-minute timepoint. Universal peptide data reprocessed from Marholz et al.  
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4.4.5 Monitoring BTK kinase activity through a time resolve terbium chelating assay 

To demonstrate how the GalaxyP workflows can be automated for KALIP and 

KINATEST-ID data analysis to develop antibody-free kinase assays, we aligned the 

preferred BTK substrate sequence into the terbium binding motif. During BAStide design, 

we performed sequence alignment using a known terbium binding peptide (α-synuclein 

Y125) to identify sequences that were predicted to be BTK substrates (Figure 4-5A). A 

terbium chelating peptide contains acidic residues at position -6, -4, 1, 5 and 6 with respect 

to the tyrosine residue, which completes the terbium binding motif upon phosphorylation.  

To develop a BTK substrate that can chelate the Tb3+ ion, we incorporated acidic residues 

at the corresponding positions within the sequence of BAStide-D (Figure 4-5A) that was 

validated as a BTK substrate through an ELISA-based assay (Figure 4-3). The 

phosphorylated version of BAStide-D (pBAStide-D) was synthesized to determine if it can 

chelate terbium in a phosphorylation dependent manner. A calibration curve with 

increasing percent (0 to 100%) of pBAStide in the presence of kinase assay reagents (40 

µM ATP, 0.4 µM NaVO4, 10 mM HEPES and 4 mM MgCl2) demonstrated the increase in 

terbium signal with increasing amount of phosphopeptide present (Figure 4-5B).  The 

spectrum measurements were plotted on GraphPad Prism software to calculate the area 

under the curve (AUC) values that were fitted to a liner regression line (Figure 4-5C). 

BAStide-D was assayed against BTK and samples were quenched at 0.5, 5, 10, 15, 30, 45, 

60 and 90-minute timepoints with 6 M urea. The quenched samples were then treated with 

luminescence buffer (10 mM HEPES, 100 mM NaCl and 100 µM Tb3+) and measurements 

were taken with an excitation wavelength of 267 nm, 1000 µsec, 50 µsec delay time with 

10 measurements per data point. Using the calibration curve linear regression line, we 

extrapolated the corresponding percent phosphorylation of BAStide-D (Figure 4-5D and 

4-5E).  Our results demonstrate an antibody-free assay to monitor BTK kinase activity. The 

terbium-based readout can now be used to monitor BTK activity in the presence of kinase-

inhibitors.  
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4.5 Discussion 

BTK was identified as a viable drug target due to the role it plays in disease 

progression of immunological disorders, B-cell malignancies and solid tumors. BTK 

inhibitors are predominantly efficacious, but they contain severe side effects driven by off 

target activity (ibrutinib).189,196,197 Additionally, resistance to ibrutinib and acalabrutinib 

mediated by the C481S mutation that prevents covalent inhibitor binding highlights the 

need to identify next generation TKIs to combat drug resistance. However, efficient assays 

Figure 4.5. BAStide-D terbium assay design, validation and signal detection.  

Comparison of BAStide-D with the alpha synuclein Y125 and required Tb residues (A). 

(B) Smooth of calibration curve terbium binding of phosphorylated BAStide-D and area 

under the curve (AUC) from the raw curves. (D) Smooth of in vitro kinase assay using 

BAStide-D with BTK over a 90-minute incubation (B) and extrapolate percent 

phosphorylated BAStide-D (E). Data represents averages ± SEM of experiments 

performed in triplicate (C). 



128 

 

 

to monitor BTK kinase activity in a dose dependent manner are needed. In this chapter, we 

created an automated process within the GalaxyP framework to analyze experimental 

(KALIP)97 and computational (KINATEST-ID)80 results to identify, extract and format 

kinase peptide substrates. The KALIP technique is a high throughput tool that is used to 

identify large numbers of kinase substrates with experimental uniformity.95,97 We 

converted the KINATEST-ID80 and relevant data formatting scripts in R studio (chapter 3) 

to be compatible with the GalaxyP environment. By using the tools available in the 

GalaxyP environment we created the file conversion, proteomic database and KINATEST-

ID workflows. This process produces three output files that identify the preferred amino 

acids (OPF1) at their respective positions, generates a scoring matrix (OPF2), and returns 

a focused peptide library of potential artificial substrates (OPF3). We applied our Galaxy-

P based KINATEST-ID pipeline to identify BTK’s preferred substrate motif to validate 

four artificial substrates (BAStides).  

To validate our GalaxyP workflow, we manually processed our data using the 

scripts developed in chapter 3 and compared both approaches to the previously reported 

literature-based KINATEST-ID80 results. Additionally, we chose to compare the models 

to identify differences between the phosphoproteomic and literature models that prevented 

the literature model from predicting BTK artificial substrate sequences. In addition, we 

used our models to score the reported universal peptide substrate panel,179 of which five 

sequences were found to be phosphorylated by BTK. We used universal peptide-5 as our 

BTK activity control in our biochemical assays. The phosphorylation signal for our 

reported BAStides and the signal from the universal peptide report179 were normalized 

using the signal from peptide-5 to generate a comparable percent activity signal (Figure 4-

4). We used a non-parametric Spearman correlation test to identify a relationship between 

the substrates’ positional matrices score and normalized data signals. We identified a 

positive correlation between the GalaxyP and the command line data analysis models when 

considering the four amino acids N- and C-terminal to the tyrosine of interest. Our 

phosphoproteomic models successfully identified the BAStide and universal peptide 

substrates that were phosphorylated by BTK. 

 Our goal was to demonstrate that our GalaxyP workflow can analyze 

phosphoproteomic data to produce sensitive substrates that can be used to develop high 
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throughput assays to monitor BTK kinase activity. The original KINATEST-ID pipeline 

contained an aligner module that scored artificial sequences on their ability to chelate 

terbium (Tb) ions, which allowed for antibody free detection of kinase acitivity.80 We 

designed BAStide-D in the corresponding terbium binding motif that allowed for 

phosphorylation-dependent terbium signal detection. Subsequently, we assayed BAStide-

D in the presences of BTK over a ninety-minute incubation and successfully measured 

phosphorylation dependent Tb signal. Currently, the aligner module is not part of the 

GalaxyP KINATEST-ID workflow, but work is being done to convert the aligner module 

into a GalaxyP compatible script. 

In summary, we adapted the phosphoproteomics data formatting and KINATEST-

ID scripts into the GalaxyP framework to create workflows that automate the analysis of 

KALIP derived data to produce the three output files from the KINATEST-ID scripts. The 

creation of workflows within the GalaxyP framework decreases user induced errors and 

the capability for automated analysis of multiple kinase treatment datasets. Although the 

current iteration of the GalaxyP KINATEST-ID workflow is functional, the process 

requires increased functionality updates. Our workflow is only compatible with 

ProteinPilot 5 and needs support for other proteomic search engines available in the 

GalaxyP environment. Furthermore, implementation of the commonality and difference 

finder script would allow users to identify symmetric and non-symmetric sequence 

identifications within multiple datasets and to compare technical replicates. Additionally, 

a comparison feature would allow us to compare the proteomic search results for the same 

dataset to identify sequences seen in more than one proteomic search engine. Development 

of an automated tool that identifies and extracts the confidence level score for each search 

without user input is required for further automation within the GalaxyP environment. The 

processing and functionality of the KINATEST-ID workflow would benefit from user 

input to pre-determine the amino acid selection used to generate the sequence permutations 

of potential kinase substrates. This feature would speed up the processing time to create an 

in-silico peptide library with the desired sequence constraints such as the Tb binding motif.  

Therefore, the GalaxyP KINATEST-ID workflow can be used to identify artificial 

substrates for poorly studied tyrosine kinases with the capability of high throughput Tb 

based assay design, which can be used to identify and develop selective and specific kinase 
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inhibitors. The current format of our GalaxyP workflow can be easily manipulated and 

applied to S/T kinases. The reported process does not depend on defined kinase biology or 

reported substrates, which makes it a valuable tool in drug discovery efforts. Thus, we 

anticipate this process can be altered to identify substrates for orphan kinases or enzymes 

to aid drug discovery efforts.  
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 MULTI-COLORED, TB3+-BASED ANTIBODY-

FREE DETECTION OF MULTIPLE TYROSINE KINASE 

ACTIVITIES 

5.1 Contributions to this work 

Chapter five is the published form of a multicolored terbium-based antibody-free 

detection method for tyrosine kinase activities manuscript in the Analytical Chemistry 

journal. I have obtained copyright permission from the journal to include the published 

form of the manuscript into my dissertation document. 

In continued guidance of Dr. Laurie L. Parker and Dr. Andrew M. Lipchik, I 

resumed my contributions in demonstrating how the SCR kinase family substrate can be 

used in an antibody-free detection assay. My contributions centered on the validation of 

the fluorophore labeled SFAStide-A substrate through terbium and ELISA based detection 

methods. 

Reprinted (adapted) with permission from (Lipchik AM, Perez M, Cui W, Parker 

LL. Multicolored, Tb(3)(+)-Based Antibody-Free Detection of Multiple Tyrosine Kinase  

Activities. Anal Chem. 2015;87(15):7555-7558. doi:10.1021/acs.analchem.5b02233.). 

Copyright (2015) American Chemical Society."  
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5.2 Abstract 

Kinase signaling is a major mechanism driving many cancers. While many 

inhibitors have been developed and are employed in the clinic, resistance due to crosstalk 
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and pathway reprogramming is an emerging problem. High-throughput assays to detect 

multiple pathway kinases simultaneously could better model these complex relationships 

and enable drug development to combat this type of resistance. We developed a strategy to 

take advantage of time-resolved luminescence of Tb3+-chelated phosphotyrosine-

containing peptides, which facilitated efficient energy transfer to small molecule 

fluorophores conjugated to the peptides to produce orthogonally-colored biosensors for 

two different kinases. This enabled multiplexed detection with high signal to noise in a 

high-throughput-compatible format. This proof-of-concept study provides a platform that 

could be applied to other lanthanide metal and fluorophore combinations to achieve even 

greater multiplexing without the need for phosphospecific antibodies. 

5.3 Introduction 

Numerous leukemias and lymphomas have been characterized by the clonal 

expansion of B-lymphocytes due to the deregulation of the B-cell receptor signaling 

pathway.201,202 Tyrosine kinases Lyn, Syk and Btk are the main signal transducers in this 

pathway, making them popular therapeutic targets for small molecule inhibitors.203 Despite 

the identification of this pathway as the cause of disease, effective therapeutic options 

targeting the B-cell receptor pathway and/or these kinases are still relatively limited. Often 

these kinase activities are dependent on each other, which can affect the efficacy of 

inhibitor drugs targeting individual enzymes. There is a need for new detection strategies 

that offer sensitive and specific detection of multiple kinase activities that can enhance the 

depth of information obtained in a screening assay, monitoring more than one signal 

simultaneously and mimicking reconstitution of the relevant pathways. 

Förster resonance energy transfer (FRET) based assays have been developed to 

monitor multiple dynamic cellular processes simultaneously in a single assay.204–208 

However, while useful in some applications, FRET based methods that use organic 

fluorophores or fluorescent proteins as both the donor and acceptor suffer from limitations 

including small dynamic ranges, small Stokes shifts/wide emission peaks resulting in 

spectral bleed through, and the requirement for genetic engineering and expression of 

protein fluorophores. Lanthanides (Ln3+) have been explored as probes in biological assays 
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for the detection of ligand binding, enzyme activity, and protein-protein interactions due to 

their unique optical properties.209–217 

Compared to organic fluorophores and fluorescent proteins, Ln3+ have narrow 

emission bands, large Stokes shifts, and long photoluminescence lifetimes, enabling time-

resolved analysis, high sensitivity and specificity of detection due to reduced interference 

from short-lived background fluorescence. These also allow multiplexed detection via the 

multiple distinct, well-resolved emission bands that can be exploited for luminescence 

resonance energy transfer (LRET) to more than one acceptor fluorophore, chosen such that 

the emission profiles do not overlap (e.g. Fig. 1A). Existing examples of this strategy rely 

on antibodies for detection, with either the substrate or a substrate-specific antibody tagged 

with a small molecule fluorophore for emission, and a phosphospecific antibody labeled 

with a chelated lanthanide for detecting phosphorylation via donation to the small molecule 

fluorophore.218–221 These strategies are therefore limited to the antibodies available for a 

given substrate modification, and subject to the costs and handling issues presented by such 

immunodetection workflows. 
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Previously, we demonstrated development of peptide biosensors capable of detecting 

tyrosine kinase activity through phosphorylation-enhanced terbium (Tb3+) 

luminescence.80,81,105 Here we show extension to a multiplexed detection platform for 

simultaneous monitoring of multiple tyrosine kinase activities (Lyn and Syk) via SFAStide-

A and SAStide substrates (sequences given in Table 1).80,105 Multi-colored detection was 

achieved through time-resolved luminescence energy transfer (TR-LRET) by employing 

the phosphopeptide-Tb3+ complexes as the energy donors and the conjugated fluorophores 

cyanine 5 (Cy5) and 5-carboxyfluorescein (5-FAM) respectively, as the energy acceptors 

(Figure 1A). 

 

Figure 5.1. Multiplexed detection using time-resolved lanthanide-based resonance 

energy transfer (TR-LRET) and fluorophore conjugated peptide biosensors.  

(A) Emission spectrum of phosphopeptide-Tb3+ complex (black), excitation (dashed 

lines) and emission (solid lines) spectra of the two acceptor fluorophores 5-FAM 

(green) and Cy5 (red). Schematic illustrating TR-LRET detection of Lyn (B) and Syk 

(C) tyrosine kinase activities using the 5-FAM-SFAStide-A (5-FAM-Ahx-

GGEEDEDIYEELDEPGGKbiotinGG) and SAStide-Cy5 

(GGDEEDYEEPDEPGGCCy5GG) biosensors respectively. 
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Name Kinase Sequence 

5-FAM-

SFAStide-A 

Src-

family 
5-FAM-Ahx-GGEEDEDIYEELDEPGGKbGG 

SAStide-Cy5 Syk GGDEEDYEEPDEPGGCCy5GG 

 

5-FAM was selected as the acceptor to couple with the pSFAStide-A-Tb3+ complex 

because its broad excitation peak at 495 nm matches well with the 5D4  7F6 emission 

band of Tb3+ centered at 495 nm. Sensitized excitation of the phosphorylated 5-FAM-

SFAStide-A-Tb3+ complex through phosphotyrosine triggers energy transfer to 5-FAM, 

giving emission from 5-FAM at its characteristic wavelength (~520nm), which falls in a 

relatively “empty” region of the Tb3+ emission spectrum (Figure 1B). Similarly, detection 

of pSAStide-Cy5-Tb3+ complex is achieved based on the overlap of the Cy5 excitation 

band with the 5D4  7F4 and 5D4  7F3 emission bands of Tb3+ centered at 595 nm and 620 

nm, giving Cy5 emission at its characteristic wavelength (~670 nm) which is also free of 

interference from Tb3+ emission (Figure 1C). 

Phosphorylated and unphosphorylated forms of SAStide-Cy5 and 5-FAM-

SFAStide-A were synthesized as controls. As we characterized in our previous work, 

phosphorylation of the peptide substrates resulted in physiochemical and photophysical 

changes in the peptide-Tb3+ complex that enable detection of kinase activity. These changes 

include enhancing the Tb3+ binding affinity, reducing the Tb3+ chelate hydration number, 

increasing the Tb3+ luminescence lifetime, and shifting the excitation wavelength of 

tyrosine.80,81,105  

Table 5-1. Peptide biosensor sequences[a][b] 

[a] 5-FAM=5-carboxyfluorescein; Ahx=6-aminohexanoic acid; Kb=biotinyl-L-lysine; 

CCy5=cysteine thiol conjugated with Cy5. [b] Sequence segments represented in bold are 

the core kinase recognition/Tb3+-chelation residues of the biosensor. 
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Time-resolved analysis of each peptide biosensor in the presence of Tb3+ gave the four 

characteristic luminescence emission peaks from Tb3+ as well as the fluorescence emission 

peak from the conjugated fluorophore label (Figure 2A, B). Quantitative comparison of the 

emission spectra between the phosphorylated and unphosphorylated biosensors showed a 

25-fold increase in intensity at the Cy5 emission maximum (670) for pSAStide-Cy5 

(Figure 2A), and a 3.9-fold increase in intensity at the 5-FAM emission maximum (520) 

for 5-FAM-pSFAStide-A (Figure 2B). Control experiments in the presence and absence of 

Tb3+ showed that excitation of pSAStide-Cy5 at 266 nm was Tb3+- and therefore LRET-

dependent rather than arising from direct excitation of the fluorophore. Excitation of 5-

FAM-pSFAStide-A at 266 nm was also Tb3+/LRET-dependent, but also showed some low-

level background excitation at ~330 nm even in the absence of Tb3+ (Supporting 

Information S5), which we speculate can be attributed to delayed fluorescence or 

phosphorescence of the fluorescein, possibly from peptide adsorbed onto the surface of the 

well since such longer lived emission (up to the ms range) has been previously observed 

for fluorescein particularly when adsorbed onto surfaces or in solid state environments.222–

224 However this background excitation of 5-FAM would not substantially affect the LRET 

readout for the assay since excitation is performed at 266 nm, which did not show any 

Figure 5.2. Time-Resolved Lanthanide-based Resonance Energy Transfer (TR-LRET) 

detection of phosphorylation-dependent signals and fluorescence cross-interference.  

(A) Time-resolved luminescence emission spectra for SAStide-Cy5 (dashed line) and 

pSAStide-Cy5 (solid line). (B) 5-FAM-SFAStide-A (dashed line) and 5-FAM-pSFAStide-

A (solid line). Spectra were collected from 15 µM peptide in the presence of 100 µM Tb3+ 

in 10 mM HEPES, 100 mM NaCl, pH 7.5,  ex = 266 nm, in 50 µL total volume, 1 ms 

collection time, 50 µs delay time, and sensitivity 180. Data represent the average of 

experiments performed in triplicate. 
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signal for excitation in the absence of Tb3+. Accordingly, the relevant changes in the 

intensity of the fluorophore signals upon phosphorylation of their respective peptides 

provide sensor-specific spectral features that can be monitored to determine 

phosphorylation of the sensors and consequently kinase activity. 

In order to achieve multiplex detection in the same sample, the reaction and 

detection conditions needed to be optimized to have limited cross-interference between 

sensors. Cross-interference was evaluated by analyzing the fluorophore signal from an 

unphosphorylated sensor in the presence of the other phosphorylated biosensor. To 

accomplish this, the concentrations of the biosensors and Tb3+
, as well as the delay time, 

were varied and TR-LRET spectra collected. Quantification was accomplished by 

Gaussian fitting of the fluorophore emission peaks and integrating the resulting curves for 

each peak  (Supporting Information S6). Under the optimized conditions, the TR-LRET 

spectra for each phosphorylated biosensor displayed minimal signal from cross-interfering 

fluorophore, while giving significantly stronger signal for the desired fluorophore 

(Supporting Information S7). TR-LRET distance parameters were also characterized 

(Supporting Information S8 and Table 1). 

Next, a calibration curve was plotted to show the quantitative relationship between 

sensor phosphorylation and its corresponding TR-LRET signal for each sensor (Supporting 

Information S9). Experiments were performed in the presence of the unphosphorylated 

form of the other biosensor and the kinase reaction buffer (to best mimic the conditions of 

a multiplexed kinase reaction). Proportion of phosphorylated peptide was quantitatively 

determined by integrating the signal centered at 520 nm for 5-FAM and 670 nm for Cy5. 

The high signal to noise ratio observed in the initial control experiments was maintained 

in the presence of the reaction buffer with 7.6:1 for SAStide-Cy5 and 5.8:1 for 5-FAM-

SFAStide-A. Z’-factor and signal window (SW) values were calculated and shown to be 

appropriate for HTS with Z’-factor values of 0.72 and 0.78, and SW of 13.27 and 12.65, 

for SAStide-Cy5 and 5-FAM-SFAStide-A, respectively. Details of these calculations are 

provided in the supporting information. 

After establishing the relationship between sensor phosphorylation and TR-LRET 

signal, we employed the two biosensors in a kinase assay. Analysis of Syk and Lyn 

activities in vitro was accomplished using the purified kinases with the kinase reaction 
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buffer and detection conditions described in the supporting information. Briefly, after pre-

incubation of the kinases with the reaction buffer for 10 minutes, the reaction was initiated 

by the addition of the biosensor(s). Aliquots were removed from the reaction, quenched 

with urea, treated with Tb3+, and brought to a volume of 100 µL. In the presence of only 

one or the other of the kinases, TR-LRET emission spectra for each respective biosensor 

displayed an increase in the conjugated dye’s fluorescence signal (with minimal bleed 

through or background interference from the fluorophore attached to the other biosensor) 

over the time course of the reaction (Figure 3A-D). These results confirmed the relative 

specificity of each biosensor for its individual kinase, in agreement with previously 

reported results from our laboratory for SAStide and a separate assay using ELISA-based 

chemifluorescence detection for SFAStide-A (Supporting Information S10).83 Finally, to 

demonstrate multiplex detection, both biosensors were incubated with both kinases in a 

single reaction. A simultaneous increase in intensity for both fluorophores was seen over 

the time course, indicating an increase in phosphorylation of both peptides (Figure 3E). 
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Figure 5.3  Simultaneous multiplexed in vitro detection of Syk and Lyn kinase activities. 

(A) In vitro Lyn assay luminescence emission spectra in the presence of both 5-FAM-

SFAStide-A and SAStide-Cy5. (C) In vitro Syk assay luminescence emission spectra in 

the presence of both 5-FAM-SFAStide-A and SAStide-Cy5. (E) In vitro Lyn and Syk assay 

luminescence emission spectra the presence of both 5-FAM-SFAStide-A and SAStide-Cy5. 

(B, D, F) Quantification of 5-FAM-SFAStide-A signal and SAStide-Cy5 signal for each 

assay. The green and red boxes represent the approximate spectral regions represented in 

the Gaussian fitted curves used to integrate the signal (see supporting information S6 for 

more detail). Assays were performed in the presence of 2.5 M 5-FAM-SFAStide-A, 12.5 

M SAStide-Cy5, Lyn, Syk or both kinases (15 nM), 100 µM ATP, 10 mM MgCl2 and 

0.2 ng/µL BSA. 
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 In summary, we have presented the development of a platform for detection of 

kinase activity that leverages the overlap of the multiple distinct emission bands of Tb3+ 

with orthogonal fluorescently labeled peptide substrates that are capable of 

phosphorylation-enhanced Tb3+ luminescence. Multiplexed kinase activity detection has 

remained a challenge in the field, with only a few examples of successful 

implementation. The Lawrence group accomplished dual kinase detection using the 

environmentally sensitive fluorophores oxazine and cascade yellow conjugated to peptide 

substrates for the Lyn and Abl kinases, respectively.225 Unfortunately, most 

environmentally-sensitive fluorophores are limited in their application in more complex 

or higher throughput systems by small dynamic ranges and problems with background 

fluorescence.  

A key point is that the approach presented here circumvents some of the limitations 

of antibody-based TR-FRET/LRET approaches and complements the previous strategies, 

enabling direct sensing of phosphate incorporation to the biosensors—avoiding the need 

for antibody labels and giving high signal-to-noise, streamlining the path from enzyme 

reaction to assay read-out. This strategy should be compatible with other kinases and 

fluorophores to increase the number of activities monitored in a single reaction, setting the 

stage for pathway-based drug screening to target signaling pathway reprogramming in 

inhibitor resistance. Future application to real-time activity monitoring would further 

extend the utility of this strategy. 
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 CONCLUSION 

6.1 Concluding remarks 

Protein kinases regulate a variety of cellular functions that help maintain cellular 

homeostasis. Understanding a kinase’s biological role in cellular signaling can aid in 

identifying uncontrolled kinases. Abnormal kinase signaling can lead to a variety of human 

diseases, such as cancer, which become addicted to over active kinases to promote disease 

progression and tumorigenesis. 

Currently, a majority of the human kinome is understudied and the lack of 

knowledge limits drug discovery efforts to identify potent and specific inhibitors. Kinase 

inhibitors are effective tools used to combat kinase driven diseases, however, off-target 

activity can induce undesired side-effects that limit the use of potent kinase inhibitors. 

Understanding how understudied kinases are involved in cellular signaling will help focus 

drug discovery efforts towards kinases that are involved in human diseases.  

Conversely, non-specific kinase inhibitors can be viable tools to help elucidate 

unknown kinase biology. Non-specific kinase inhibitors that have activity towards 

understudied kinases can be used as a starting point to develop specific and selective 

inhibitors to clarify a kinase’s biological role. Tools that can be used to monitor kinase 

activity are needed to determine the efficacy of new kinase inhibitors. Developing sensitive 

kinase activity assays depends on the efficiency of a kinase to phosphorylate a peptide 

substrate. Many approaches are available to identify a kinase’s substrate preference and 

have been used to determine a kinase’s preferred sequences for phosphorylation. The 

advantages and limitations of those approaches are highlighted in chapter one. In brief, 

these experimental approaches are either time intensive or cost prohibitive to perform on 

many kinases. Incorporating computational approaches to predict biological or artificial 

substrates using existing biological data have been attempted, with varying success.     

There is a need for an efficient pipeline that can be used to identify a kinase’s 

preferred substrate sequence. In chapter two, my contributions helped establish and 

validate the KINATEST-ID pipeline as a computational tool to use known kinase 

substrates from proteomic databases to predict artificial peptide sequence for antibody free 
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assay design. One limitation to the original KINATEST-ID pipeline is that it depended on 

known kinase substrates to make an accurate substrate prediction. 

To this end, in chapter three, we adapted an in vitro linear kinase assay approach 

coupled with mass spectrometry for high throughput identification of kinase substrates. We 

used this approach to increase the list of known substrates for FLT3 and two clinically 

relevant kinases. We developed a series of data formatting tools to process the mass 

spectrometry data to make it compatible with the KINATEST-ID algorithms. This 

approach was used to validate seven artificial sequences as pan-FLT3 kinase substrates. 

The focus of chapter four centered on establishing an automated process, within the 

GalaxyP framework, to analyze the mass spectrometry data and identify candidate 

substrate sequences with minimal user feedback. We used this approach to design antibody 

and lanthanide-based activity assays for BTK kinase.  

In chapter five, my contributions led to validating a multicolored lanthanide-based 

multiplexed assay that can be used to monitor kinase specific activity. The reported 

antibody-free assay can benefit drug discovery efforts by having an efficient assay to 

monitor the specificity of a kinase inhibitor in an in vitro system. The results in chapter 

five were a validation of how lanthanide sensitizing peptides can be used in this setting.  

Similar approaches coupling in vitro kinase reactions with mass spectrometry as a 

readout have been used to identify kinase substrates, however, our application couples 

mass spectrometry with the KINATEST-ID algorithms. Coupling phosphoproteomics with 

the KINATEST-ID pipeline creates a stream lined workflow to develop detection assays 

for understudied kinases. In turn, these sensitive activity assays can be used to identify new 

and specific kinase inhibitors to combat drug resistance in human diseases. 
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Kinase assay linked with phosphoproteomic adaptation 

and implementation with the KINATEST-ID Platform. 

 

Graduate Research Assistant, Purdue University 2012-Present 

Purdue University Interdisciplinary Life Sciences Program 

Involved in the development of the KINATEST-ID Platform. 

 

Graduate Assistant, Purdue University 2012-2014 

The Office of Interdisciplinary Graduate Programs 

Purdue University Interdisciplinary Life Sciences Program 

Social media coordinator. 
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Research Assistant/Laboratory Technician, Purdue University 2011-2012 

Parker Lab, Department of Medicinal Chemistry and 

Molecular Pharmacology. 

Exploring substrate selectivity through a bioinformatics 

approach for peptide-based biosensor development. 

 

Undergraduate Research Assistant, Purdue University Summer 2011 

Summer Research Opportunity Program (SROP). 

 

Undergraduate Research Assistant, Benedictine University Spring 2011 

Biochemistry and Molecular Biology Cell Biology 

Laboratory. 

 

TEACHING EXPERIENCE 

Organic Chemistry Laboratory Graduate Teaching Assistant 

Purdue University, College of Pharmacy Spring 2014 

Department of Medicinal Chemistry and Molecular 

Pharmacology  

MEMBERSHIPS 

American Society for Mass Spectrometry (ASMS) 2018-Present 

American Association For The Advancement Of Science (AAAS) 2017-Present 

US Human Proteomics Organization (US HUPO) 2012-Present 

American Chemical Society (ACS) 2012-2013 

 

AWARDS 

US-HUPO Poster Presentation Award 2017 

Travel Award, NCI CRCHD Professional Development Workshop 2016 

US HUPO Travel Stipend, US HUPO 12TH Annual Conference 

Travel Award, NCI CRCHD Professional Development Workshop 2016 

Special Recognition for First-Year Poster Award 

Purdue University 2016 
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WORKSHOPS & CAREER DEVELOPMENT 

NCI Graduate Student Recruitment Program  Spring, 2018 

NCI CRCHD Professional Development Workshop Spring, 2016 

Emerge Bioscience Career Development  Spring, 2016 

CBC Summer workshop in Proteomics and Informatics  Summer, 2012 

 

RESEARCH INTEREST 

Keywords: Proteogenomics, Cancer Detection and Diagnostics, Prostate Cancer, 

Pancreatic Cancer, Leukemia and Enzymes. 

PUBLICATIONS (PUBLISHED) 

Lipchik AM, Perez M, Cui W, Parker LL. Multicolored, Tb³⁺-Based Antibody-Free 

Detection of Multiple Tyrosine Kinase Activities. Anal Chem. 2015 Aug 

4;87(15):7555-8.  

 

Lipchik AM, Perez M, Bolton S, Dumrongprechachan V, Ouellette SB, Cui W, Parker 

LL. KINATEST-ID: a pipeline to develop phosphorylation-dependent terbium 

sensitizing kinase assays. J Am Chem Soc. 2015 Feb 25;137(7):2484-94. 

 

Gui J, Liu B, Cao G, Lipchik AM, Perez M, Dekan Z, Mobli M, Daly NL, Alewood 

PF, Parker LL, King GF, Zhou Y, Jordt SE, Nitabach MN. A tarantula-venom peptide 

antagonizes the TRPA1 nociceptor ion channel by binding to the S1-S4 gating domain. 

Curr Biol. 2014 Mar 3;24(5):473-83. 

PRESENTATIONS 

Perez, M., Blankenhorn, J. Murray, K., Tao, W.A., Parker, LL. US HUPO Annual 

Conference, Minneapolis, “Adaptation of KALIP for the Development and Prediction 

of Artificial Peptide Substrates to Monitor FMS-Like Tyrosine kinase 3 (FLT3) 

Activity.” March 12, 2018. Lighting Talk.  
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Perez, M., Blankenhorn, J. Murray, K., Tao, W.A., Parker, LL. US HUPO Annual 

Conference, Minneapolis, “Adaptation of KALIP for the Development and Prediction 

of Artificial Peptide Substrates to Monitor FMS-Like Tyrosine kinase 3 (FLT3) Activity” 

March 12, 2018. Poster.  

 

Perez, M., Tao, W.A., Parker, LL. Biochemistry, Molecular Biology and Biophysics 

Department Retreat, Lake Itasca, MN, “The Development of FLT3 Artificial Peptide 

Substrates (FAStide) Through Kinase Assay Linked with Phosphoproteomics (KALIP).” 

September 30, 2017. Talk.  

 

Perez, M., Tao, W.A., Parker, LL. Celebrating 21 Years of the CURE Program, 

National Cancer Institute Center to reduce Cancer Heath Disparities (CRCHD), 

Bethesda, MD, “Identification of mutant FMS-like tyrosine kinase 3 substrates using 

KALIP.” June 27, 2017. Poster. 

 

Perez, M., Tao, W.A., Parker, LL. US HUPO 14th Annual Conference, San Diego, 

“Identification of mutant FMS-like tyrosine kinase 3 substrates using KALIP.” March 

21, 2017. Lighting Talk.  

 

Perez, M., Hsu, C., Tao, W.A., Parker, LL. US HUPO 14th Annual Conference, San 

Diego, “Identification of mutant FMS-like tyrosine kinase 3 substrates using KALIP.” 

March 21, 2017. March 21, 2017. Poster.  

 

Perez, M., Hsu, C., Tao, W.A., Parker, LL. National Cancer Institute Center to reduce 

Cancer Heath Disparities (CRCHD) 2016 Professional Development and Mock Review 

Workshop, Bethesda, “Identification of mutant FMS-like tyrosine kinase 3 substrates 

using KALIP.” May 24, 2016. Poster. 

 

Perez, M., Hsu, C., Tao, W.A., Parker, LL. US HUPO Conference, Boston, 

“Identification of mutant FMS-like tyrosine kinase 3 substrates using KALIP.” March 

14, 2016. Poster. 
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Perez, M., Hsu, C., Tao, W.A., Parker, LL. US HUPO Conference, Tempe, 

“Identification of FMS-like tyrosine kinase 3 substrates using KALIP.” March 15, 2015. 

Poster. 

 

Perez, M., Lipchik, AM, Parker LL. “Pursuit of Substrate Specificity.” Purdue 

University Life Science’s (PULSe) Spring Reception, 2013 Apr 1, West Lafayette, IN. 

Poster. 

 

 


