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PREFACE

In each chapter and in each section of this work, I will justify my motivation for

each reasoning and each hypothesis. It seems only fitting that I should justify here

what brought me to this subject, this work, and this field in the first place. When I

was ten years old, my parents bought me a small refractor telescope for Christmas.

For months, maybe even years, my use of the telescope was purely terrestrial. Living

in the expansive cornfields of the country, a telescope was the only way to see what

your neighbors were up to.

One day while rummaging through my telescope case I discovered a disk to the

Starry Night software suite. Loading it onto my computer I found that I could locate

thousands of objects in the night sky with a few simple clicks. Dialing in my location,

date, and time, I noticed one intriguing object that would be in the sky that night:

Saturn.

That evening under the deeply dark, light-pollution-free sky I set up my small,

modest refractor. Within minutes I had quickly located the bright planet and wiggled

it into focus. On that first attempt, with that small scope, I saw the rings of Saturn

with my own eyes. My jaw dropped and I was transfixed. From that day I was hooked,

and my fascination motivated me into studying astronomy, physics, astrophysics, and

planetary science. While this dissertation may seem to most like a work on satellites,

rings, numerical models, and other related topics, for me it is an apt and fitting

continuance of my childhood curiosity.
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ABSTRACT

Hesselbrock, Andrew J. PhD, Purdue University, December 2018. The Evolution of
Rings and Satellites. Major Professor: David Minton.

Planetary rings are, and have been, a common feature throughout the solar system.

Rings have been observed orbiting each of the giant planets, several Trans-Neptunian

Objects, and debris rings are thought to have orbited both Earth and Mars. The

bright, massive planetary rings orbiting Saturn have been observed for centuries, and

the Cassini Mission has given researchers a recent and extensive closeup view of these

rings. The Saturn ring system has served as a natural laboratory for scientists to

understand the dynamics of planetary ring systems, as well as their influence on

satellites orbiting nearby. Researchers have shown that planetary ring systems and

nearby satellites can be tightly-coupled systems.

In this work, I discuss the physics which dominate the dynamical evolution of

planetary ring systems, as well as the interactions with any nearby satellites. Many

of these dynamics have been incorporated into a one-dimensional mixed Eulerian-

Lagrangian numerical model that I call “RING-MOONS,” to simulate the long-term

evolution of tightly coupled satellite-ring systems. In developing RING-MOONS, I

have discovered that there are three evolution regimes for tightly-coupled satellite-ring

systems which I designate as the “Boomerang,” “Torque-Dependent,” and “Slingshot”

regimes. Each regime may be defined using the rotation period of the primary body

and the bulk density of the ring material.

The slow rotation period of Mars places it in the Boomerang regime. I hypothesize

that a giant impact with Mars ejected material into orbit, forming a debris ring

around the planet. Using RING-MOONS, I demonstrate how Lindblad torques cause

satellites which form at the edge of the ring to initially migrate away from the ring, but
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over time as the mass of the ring decreases, tidal torques always cause the satellites

to migrate inwards. Assuming the satellites rapidly tidally disrupt upon migrating to

the rigid Roche limit, a new ring is formed. I show that debris material cycles between

orbiting Mars as a planetary ring, or as discrete satellites, and that Phobos may be

a product of a repeated satellite-ring cycle. Uranus, which has a faster rotation rate

falls within the Torque-Dependent regime. Hypothesizing that a massive ring once

orbited Uranus, I use RING-MOONS to demonstrate how the satellite Miranda may

have formed from such a ring, and migrated outwards to its current orbit, but that

any other satellites would have migrated inwards overtime.

Lastly, I examine Trans-Neptunian Objects (TNOs) in binary systems. Tidal

torques exerted on each body can decrease the mutual semi-major axis of the system. I

outline the conditions for which a fully synchronous system may experience a complete

decay of the mutual orbit due to tidal torques. As the semi-major axis decreases, it is

possible for the smaller of the two bodies to shed mass before coming into contact with

the more massive to form a contact binary. I hypothesize that Chariklo and Chiron

are contact binaries that formed via the tidal collapse of a binary TNOs system, and

demonstrate how mass shedding may have occurred to form the rings observed today.
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1. INTRODUCTION

Portions of this chapter have been accepted into The Astronomical Journal as A. J.

Hesselbrock and D. A. Minton, “Three Dynamical Evolution Regimes for Coupled

Ring-Satellite Systems and Implications for the Formation of the Uranian Satellite

Miranda,” The Astronomical Journal, 2018.

Planetary rings are disks of solid particles in orbit around a primary body, and

are common throughout our solar system today. While Saturn was the first object in

the solar system known to have rings [Huygens, 1659], later observations of Jupiter

[Smith et al., 1979], Uranus [Elliot et al., 1977], and Neptune [Hubbard et al., 1986]

revealed that all of the giant planets are orbited by planetary rings. The giant planets

were long thought to be the only objects in the solar system to have rings, however

recent discoveries have shown that rings orbit small bodies as well. Stellar occultation

observations suggest that there are rings in orbit around the centaurs 10199 Chariklo

and 2060 Chiron [Braga-Ribas et al., 2014, Ortiz et al., 2015], as well as the dwarf

planet Haumea [Ortiz et al., 2017]. These discoveries indicate that rings may be a

common feature of many bodies in the solar system.

Satellite surface processes, giant impacts, tidal disruptions, and impact-generated

dust and fragments are a few of the processes that create rings around solar system

bodies. While rings take many forms, I will distinguish between “ephemeral” and

“massive” rings. Ephemeral rings are optically thin and are strongly influenced by

non-gravitational forces. For instance, ice crystals ejected from active geysers on

Saturn’s ice satellite Enceladus have collected to form Saturn’s E ring [Hamilton and

Burns, 1994]. Heliocentric impacts may catastrophically disrupt satellites [Colwell

and Esposito, 1992], or create dust and fragments that subsequently form rings [Miner

et al., 2007].
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In contrast, massive rings are optically thick and their dynamics are dominated

by gravitational, collisional, and tidal processes, such as Saturn’s main rings. Massive

rings can potentially be generated by a variety of processes. Close encounters between

scattered Kuiper belt objects with the giant planets may have tidally disrupted pass-

ing objects into forming rings [Hyodo et al., 2017]. Material ejected from a primary’s

surface during a giant impact may be placed into orbit, forming a ring [Cameron and

Ward, 1976]. Satellites orbiting close to their primary may also be tidally disrupted

to form a ring of material [Black and Mittal, 2015, Canup, 2010, Hesselbrock and

Minton, 2017, Leinhardt et al., 2012]. Massive rings are the focus of this work.

In addition to the rings known to exist today, massive rings may have once orbited

both the Earth and Mars. A giant impact has been implicated for the formation of

Earth’s satellite [Cameron and Ward, 1976]. This impact may have ejected a large

amount of material into orbit around Earth, forming a ring around the planet. Before

the ring collapsed onto the Earth, some of its material would have accreted to form

our Moon.

Recent work has hypothesized that Mars may have had a ring system in the past as

well. Large impacts, such as that proposed to have formed the Borealis Basin, could

have ejected material into orbit to form a ring [Citron et al., 2015, Marinova et al.,

2008]. As this ring evolved over time, it may have produced the satellites Phobos

and Deimos [Canup and Salmon, 2018, Hesselbrock and Minton, 2017, Hyodo et al.,

2017, Rosenblatt and Charnoz, 2012, Rosenblatt et al., 2016].

The massive main ring system of Saturn provides a natural laboratory to study

the dynamics of planetary rings and how they evolve over time. Analysis of Saturn’s

rings has demonstrated that although planetary rings are composed of solid particles,

collectively the ring particles behave similar to a fluid. As the ring particles orbit

the primary they continuously collide with other nearby particles. Inelastic collisions

between ring particles deplete the orbital energy of the ring system. The intra-ring

collisions causes the ring material to “flow” from one location to another through a

process known as “viscous spreading” [Goldreich and Tremaine, 1978, Lynden-Bell
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and Pringle, 1974]. Intra-ring interactions also cause some particles to clump together,

however for massive rings in orbit close to the primary, tidal fores disrupt these clumps

before they can accrete into satellites.

The farther the ring particles orbit the primary, the less likely they are to be

disrupted by tidal forces. Ring particles far enough from the primary are able to

accrete into satellites [Chandrasekhar, 1969]. Once accreted, these “ring satellites”

gravitationally interact with the material in the ring, perturbing the orbits of the

ring particles. Observations of Saturn’s rings reveal that ring satellite perturbations

create a wide variety of ring structures [Miner et al., 2007]. Ring satellites may

exchange angular momentum with the ring particles, which can influence the orbits

of the ring particles [Goldreich and Tremaine, 1979]. Perturbations between the ring

particles and ring satellites are particularly strong for locations within the ring that

are in resonance with the orbiting satellite [Goldreich and Tremaine, 1979]. Resonance

interactions between ring particles and ring satellites create density waves in the ring

which in turn give rise to torques on the satellite’s orbit. For satellites in orbits

exterior to the ring, these resonant “Lindblad” torques cause the satellite to migrate

away from the ring [Goldreich and Tremaine, 1982].

In addition to interacting with ring particles, ring satellites gravitationally interact

with both other ring satellites and with the primary body. Close encounters between

satellites result in gravitational scattering, and collisions can result in a variety of

outcomes, including hit-and-run collisions, merging, or fragmentation [Charnoz et al.,

2010, 2011, Crida and Charnoz, 2012, Leinhardt and Stewart, 2012]. A variety of

resonant interactions may occur as well, including resonant capture [Murray and

Dermott, 1999, Salmon and Canup, 2017]. Tidal interactions between ring satellites

and the primary body give rise to additional torques [Murray and Dermott, 1999].

While inner Lindblad torques always cause outward satellite migration, the direc-

tion of the tidal torques depends on the relationship between the satellites’ semi-major

axes and the synchronous (or corotation) orbit, which is the location where the orbital

period of the satellite is the same as the rotation period of the primary. If a satellite
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orbits beyond the synchronous orbit, tides will increase the satellite’s semi-major axis,

causing it to migrate away from the primary and the ring. Tides cause the orbits

of satellites that orbit within the synchronous orbit to decay, causing the satellite to

migrate inward, towards the primary [Murray and Dermott, 1999].

The formation of ring satellites from planetary rings, and the subsequent inter-

actions within the ring-satellite environment indicate that these are strongly cou-

pled systems. Numerical simulations modeling the dynamics of ring-satellite sys-

tems demonstrate how coupled ring-satellite systems evolve over time. Models of the

spreading of a viscous ring that forms satellites which exchange angular momentum

with the ring and the primary body have been applied to the formation of the in-

ner satellites of the giant planets [Charnoz et al., 2010, 2011, Crida and Charnoz,

2012, Salmon and Canup, 2017]. Numerical models have also explored the long-term

evolution of a ring-satellite system in orbit around Mars and revealed it is strikingly

different than for a similar system in orbit around Saturn [Charnoz et al., 2010, 2011,

Hesselbrock and Minton, 2017, Rosenblatt and Charnoz, 2012, Rosenblatt et al., 2016].

While Saturn’s ring satellites always migrate away from the rings, ring satellites gen-

erated by a Martian ring can migrate inward where they can be tidally disrupted to

form new rings.

In this work I investigate the major factors that control the long term evolution of

coupled ring-satellite systems, including the location of the synchronous orbit relative

to the location where ring satellites form. In Chapter 2 I analyze the physics and

dynamics of coupled ring-satellite systems and discuss how various parameters affect

the evolution of these systems. I show that the dynamics of coupled ring-satellite

systems gives rise to three regimes of dynamical evolution, which I term “Boomerang,”

“Slingshot,” and “Torque-Dependent.” The long-term evolution of ring-satellites is

markedly different across each regime. For example, left undisturbed, satellites in

the Slingshot regime exist in perpetuity, while satellites in the Boomerang regime

never survive. Identifying in which regime a satellite-ring system exists provides

an understanding of the likely history of a particular ring-satellite system. I will
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explain how the rotation period and density of the primary body, and the density

of the satellites constrain the formation regime of a satellite-ring system. I will then

identify what regime several of our solar system’s observed and hypothetical ring

systems belong. The satellite-ring evolution regimes of Mars, Uranus, Chariklo, and

Chiron will prove to be particularly interesting cases of study.

In Chapter 3 I describe a numerical model I developed to analyze the evolution of

ring-satellite systems. My model, which I’ve named “RING-MOONS,” incorporates

all of the physics reviewed in Chapter 2. RING-MOONS is a 1-D mixed Eulerian-

Lagrangian numerical code. A planetary ring is modeled as a series of Eulerian

bins, with each bin representing an annulus of the ring. At the ring edge, ring

material is able to form discrete Lagrangian satellites that interact with the ring,

and with each other. I will describe how RING-MOONS was designed, the detailed

numerical approaches I took to analyze the dynamics of ring-satellite systems, and

tests performed against “HYDRORINGS,” a similar model in the literature [Charnoz

et al., 2011].

In Chapter 4, I review my motivation for studying the Martian system. For many

years the Martian moons, Phobos and Deimos, were thought to be asteroids captured

by Mars’s gravity. While this hypothesis may explain the physical characteristics

of the satellites, it fails to explain the satellite’s orbits. Both satellites have close,

circular orbits aligned with the Martian equator, and are very similar to the orbits

expected for ring-satellites. Marinova et al. [2008] argued that Mars likely experienced

a giant impact roughly ∼ 4.4 By ago that would have ejected a significant mass of

material into orbit. Following this hypothesis, many scientists have analyzed the

possible dynamics and evolution of a ring in orbit around Mars, and whether it may

be possible to form the satellites Phobos and Deimos. Using my analysis in Chapter

2, I realize that an impact-generated ring in orbit around Mars may exist in the

Boomerang regime. The dynamics of satellites in the Boomerang regime are unique,

motivating me to investigate the formation of Phobos and Deimos. I then implement
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RING-MOONS to model the evolution of an impact-generated ring in orbit around

Mars and posit a new formation hypothesis for Phobos.

In Chapter 2 I realize that the ring-satellite system of Uranus likely lies in the

Torque-Dependent regime. In Chapter 5 I describe the Uranian system as it is under-

stood today. I then investigate a formation hypothesis for the Uranian satellite Mi-

randa. I hypothesize that a giant impact, sufficient to cause Uranus’s large obliquity

may have produced a massive debris ring around the planet [Morbidelli et al., 2012,

Slattery, 1992] . Using RING-MOONS, I model the evolution of an impact generated

Uranian ring. I will demonstrate how the dynamics of the Torque-Dependent regime

may have caused the ring-satellite system of Uranus to transition from a Slingshot-

type evolution, producing Miranda, to a Boomerang-type evolution, producing the

inner satellite system observed today.

My final project is described in Chapter 6. Many of the dynamics described in

Chapter 2 have been specifically applied to problems where the primary’s mass is

orders of magnitude larger than the satellites’. In Chapter 6 I analyze how systems

with more similar masses evolve over time. I focus on binary systems in the population

of Trans-Neptunian Objects (BTNOs). For binary systems, the tidal interaction

between the two bodies can result in large-scale changes to the mutual semi-major

axis of the system, as well as the rotation rates of both bodies. For some systems,

tides can cause the semi-major axis to decrease rapidly. I will outline conditions in

which tidal interactions would cause the orbit of a nearly synchronous binary system

to completely decay, and show how this could cause mass to shed from the satellite’s

surface before the two bodies collide to form a contact binary. I compare these

conditions to the currently observed population of BTNOs. I focus on TNOs as there

is expected be both a significant number of binary and contact binary systems (in

which two bodies are attached together) within the population.

The ability of a tidal collapse to cause mass shedding could serve as a source of

material for producing rings. Indeed, rings have been observed around the TNOs

Chariklo, Chiron, and Haumea, providing additional motivation for my focus on
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studying BTNOs. Observations of Chariklo and Chiron have provided rough es-

timates to their overall body size, revealed their rotation rates, and indicated the

existence of planetary rings. I hypothesize that Chariklo and Chiron are actually

contact binaries that formed after a nearly synchronous binary system experienced

a tidal collapse. With this hypothesis I determine characteristics of the near syn-

chronous binary systems that could have formed Chariklo and Chiron. I then provide

results showing the evolution of the tidal collapse, during which the satellite sheds

mass. The end result is the formation of a contact binary orbited by a ring. The tidal

collapse of BTNOs systems provides a mechanism for TNO rings to form, and the

comparison of collapse conditions against the known population of BTNOs indicates

how common TNO ring systems may be.
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2. THREE SATELLITE-RING FORMATION REGIMES

A version of this chapter has been accepted into The Astronomical Journal as A.

J. Hesselbrock and D. A. Minton, “Three Dynamical Evolution Regimes for Coupled

Ring-Satellite Systems and Implications for the Formation of the Uranian Satellite

Miranda,” The Astronomical Journal, 2018.

2.1 The Dynamics of Coupled ring-satellite Systems

In this section I describe the various dynamical processes that affect the evolution

of ring-satellite systems over time. My goal is to identify parameters which strongly

affect the long-term evolution of coupled ring-satellite systems. The major processes

in my model that affect the formation and orbital migration of rings and satellites

includes the locations of the Roche limits, Lindblad torques, and tidal torques. I define

the Roche limits in Section 2.1.1, the effect of Lindblad torques in Section 2.1.2, and

the effect of tidal torques in Section 2.1.3. I define three regimes for the evolution

of coupled ring-satellite systems that depend on the rotational period of the primary

and the bulk densities of the satellites and the primary. The implications of these

regimes on the dynamical evolution of satellites produced by the ring are discussed

in Section 2.2.

2.1.1 The Roche Limits

The Roche Limit is the semi-major axis at which the tensional forces acting on

a cohesionless satellite due to tides are greater than the compressional forces from

self-gravity [Murray and Dermott, 1999]. It can be calculated by solving for the semi-

major axis at which a particle on the equator of a synchronously rotating satellite has
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zero acceleration. For orbits outside the Roche limit, the self-gravity of the satellite

dominates and the particle remains on the body’s surface. Conversely, for orbits

interior to the Roche limit, the gravitational attraction of the primary dominates and

the particle is accelerated away from the satellite’s surface.

The shape of the satellite plays a role in the definition of the Roche limit. Two

common definitions for the Roche limit are the “rigid Roche limit” (RRL) and the

“fluid Roche limit” (FRL). The assumption that the satellite can maintain a rigid

spherical shape gives rise to the RRL. The semi-major axis of the RRL is [Murray

and Dermott, 1999]:

aRRL = Rp

(
3ρp
ρs

)1/3

≈ 1.442Rp

(
ρp
ρs

)1/3

. (2.1)

Here Rp and ρp are the radius and bulk density of the primary, while ρs is the bulk

density of the satellite.

Most satellites are not rigid spheres, and therefore the RRL is a lower limit for

a “cohesionless” satellite. At the opposite extreme, the satellite behaves as a fluid

that can flow into a hydrostatic equilibrium shape. The resulting ellipsoidal figure of

equilibrium for a fluid satellite is a prolate spheroid [Chandrasekhar, 1969]. Because

the particles on the equator of a prolate body are located a greater distance from the

body center as compared to a spherical body, the self-gravity component of the accel-

eration is reduced when calculating the “fluid Roche limit” (FRL) [Chandrasekhar,

1969]. Thus, the FRL is farther from the primary than the RRL. The semi-major

axis of the FRL is [Murray and Dermott, 1999]:

aFRL ≈ 2.456Rp

(
ρp
ρs

)1/3

. (2.2)

Although the material in planetary rings is solid, the interactions between ring

particles can be approximated as a fluid. This means that ring material orbiting inside

the FRL is continually tidally disrupted, and is unable to accrete into satellites. If

ring material is transported beyond the FRL, where tidal forces are weaker, it can

accrete into satellites. Thus, the FRL marks the approximate outside boundary of a

massive ring.
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Once formed, interparticle forces within the satellite may prevent it from attaining

a hydrostatic equilibrium shape. Internal friction can allow even strengthless aggre-

gates of particles to maintain non-hydrostatic shapes. Therefore, the location where

a fully formed satellite can be disrupted into a ring may be inward of where it formed.

The RRL is approximately the innermost boundary where such a strengthless satellite

could hold together [Hesselbrock and Minton, 2017].

For a given primary body, calculating the Roche limits allows us to estimate where

rings and satellites may orbit the body. Ring material is confined to orbit inside the

FRL. While satellites may only accrete outside the FRL, if they have internal cohesion

they may exist anywhere outside the RRL. Assuming the satellites have no strength,

but only cohesion sufficient to hold themselves together, no satellites should orbit

inside the RRL, as they would be tidally disrupted [Black and Mittal, 2015]

As the particles within rings collide and exchange energy and angular momentum,

any ring in orbit around a primary will spread out overtime due to a process called

“viscous spreading” [Goldreich and Tremaine, 1982, Lynden-Bell and Pringle, 1974].

This spreading process causes material to be transported both inwards, towards the

primary, and outwards toward the FRL. Thus, as the ring spreads out, some ma-

terial is transported beyond the FRL where it may accrete into satellites [Charnoz

et al., 2010, Crida and Charnoz, 2012, Hesselbrock and Minton, 2017, Rosenblatt and

Charnoz, 2012, Salmon and Canup, 2017].

2.1.2 Lindblad Torques

Once a satellite has formed, it begins to gravitationally interact with material in

the ring. The orbital speed of the interior ring material is greater than that of the

exterior orbiting satellite. Ring material is gravitationally attracted to the perturbing

satellite, causing a density perturbation that is carried ahead of the satellite. The

interactions between the ring material and the satellite are strongest for material in

a first order resonance with the satellite. The resonant perturbations cause the ring
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material and the exterior satellite to exchange angular momentum through a series of

torques called “Lindblad torques” [Goldreich and Tremaine, 1979, Lynden-Bell and

Pringle, 1974]. Lindblad torques concentrate the ring material into spiral density

waves [Goldreich and Tremaine, 1979] which in turn perturb the orbit of the exterior

satellite. The resonant interaction transfers angular momentum from the ring to the

exterior satellite, increasing the satellite’s semi-major axis. While the satellite and

the ring are gravitationally attracted, Lindblad torques work to repel the satellite

from the ring [Esposito, 2006].

I may determine the locations within a ring that are in resonance with a satellite.

For a satellite in a first order resonance of order M(> 1), the Lindblad resonance

locations in a Keplerian ring interior to the satellite rM can be found as [Takeuchi

et al., 1996]:

rM =

(
1− 1

M

)2/3

a, (2.3)

where a is the semi-major axis of the exterior satellite.

The magnitude of the Lindblad torques are a function of the distance to the

satellite and the surface-mass density of the ring near the resonance. The Lindblad

torque exerted by the ring material at a specific resonance of order M onto the

satellite can be calculated as [Esposito, 2006]:

ΓM = ±σ(rM)

(
GaM2

s

Mp

)[
M2 (M− 1)

]2/3
, (2.4)

where G is Newton’s gravitational constant, Mp and Ms are the mass of the primary

and the satellite, and σ(rM) is the surface-mass density of the ring at the location

of the Lindblad resonance. For a satellite exterior to a ring the sign of the torque is

positive, while for a satellite interior to a ring the sign of the torque is negative. I will

only consider the case of satellites exterior to rings here. The total torque Γ exerted

onto the satellite by the ring is the sum of the individual resonant torques, or:

Γ =
∞∑
M=2

ΓM. (2.5)

Lindblad torques transfer angular momentum from the ring particles to the satellite’s

orbital angular momentum, which causes the satellite to migrate away from the ring.
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The change in an exterior satellite’s semi-major axis due to an inner Lindblad torque

is [Takeuchi et al., 1996]:

da

dt
=

2Γ

Ms

(
a

GMp

)1/2

. (2.6)

The ring can exert a Lindblad torque on the satellite as long as some ring material

is in a first-order resonance with the satellite. Therefore, there is a maximum distance

a satellite can be perturbed to via Lindblad torques, as eventually the satellite will

orbit too far away to be in resonance with any material in the ring. The farthest

the satellite may be perturbed to via Lindblad torques is when the satellite is in

resonance with the material at the edge of the ring, at the FRL. To find the satellite

semi-major axes that may be in resonance with the ring edge, I substitute aFRL for

rM and rearrange Equation 2.3 to yield:

aM = aFRL

(
1− 1

M

)−2/3

. (2.7)

The greatest satellite semi-major axis that the ring edge may be in resonance with

occurs when M = 2, which corresponds to the 2 : 1 mean motion resonance. There-

fore, I find that the maximum orbit a satellite may migrate to via Lindblad torques

is:

aLind = 41/3aFRL ≈ 2.456Rp

(
4ρp
ρs

)1/3

. (2.8)

2.1.3 Tidal Torques

In addition to accelerating the material in the ring, the satellite also exerts an

acceleration on the surface of the primary [Murray and Dermott, 1999]. The accel-

eration from the orbiting satellite varies in magnitude across the primary’s surface

and is greatest for the surface closest to the satellite. The gradient tidal potential

across the primary’s surface distorts the primary’s shape, creating a tidal bulge. The

internal structure of the primary determines the response of the surface to the tidal

potential. Internal friction dissipates the tidal acceleration and results in a lag be-

tween the tidal disturbance and the tidal response. The effect of tidal dissipation can

lead to dramatic physical and orbital consequences for the primary and the satellite.
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Although the satellite creates the tidal bulge on the primary, the acceleration of

the bulge on the satellite exerts a torque on the satellite. The consequence of the

tidal torque is dependent upon the semi-major axis of the satellite relative to the

synchronous orbit. For a satellite in a Keplerian orbit, the synchronous orbit can be

calculated as:

asynch =

[
G(Mp +Ms)T

2
p

4π2

]1/3

, (2.9)

where Tp is the rotational period of the primary. If the satellite is in a synchronous

orbit with the primary, it completes one orbit for every full revolution of the primary,

and therefore is always aligned with the tidal bulge. The gravitational attraction

between the tidal bulge and the satellite is perpendicular to the satellite’s motion,

and no torque results.

However, if the satellite orbits interior to the synchronous orbit, its orbital pe-

riod is shorter than the rotational period of the primary. As the satellite orbits, it

passes over the surface of the primary. Due to the lag in the formation of the tidal

bulge, the satellite is always “ahead” of the tidal bulge on the primary surface. The

gravitational attraction between the tidal bulge and the satellite is no longer strictly

perpendicular to the satellite’s motion, and the tidal bulge exerts a torque on the

satellite. For satellites orbiting interior to the synchronous orbit this torque transfers

angular momentum from the satellite’s orbit to the spin angular momentum of the

primary, causing the satellite to migrate towards the primary.

Alternatively, if the satellite orbits exterior to the synchronous orbit, its orbital

period is longer than the rotational period of the primary. As the satellite orbits, the

surface of the primary rotates past the satellite. Due to the lag in the formation of the

tidal bulge, the satellite is always “behind” the tidal bulge on the primary surface. The

bulge again exerts a torque on the satellite. However, for satellites orbiting exterior

to the synchronous orbit the tidal torque transfers spin angular momentum from the

primary to the satellite’s orbital angular momentum, causing the satellite to migrate

away from the primary. Thus, satellites which lie interior to the synchronous orbit

migrate inwards by tides, whereas satellites which orbit exterior migrate outwards.
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For satellites that are not located at asynch, the transfer between the satellite’s

orbital angular momentum and the spin angular momentum of the primary causes

the satellite to migrate in its orbit. The torque exerted by the tidal bulge changes

the semi-major axis of the satellite. The change in the satellite’s semi-major axis due

to the tidal interaction is calculated as [Murray and Dermott, 1999]:

da

dt
= sign(ωp − n)

3nMsR
5
p

a4Mp

(
k2

Q

)[
1 +

51e2

4

]
. (2.10)

Here the mean motion n = [G(Mp + Ms)/a
3]1/2, e is the eccentricity of the satellite,

while ωp, k2 and Q are the rotation rate, tidal potential love number, and tidal quality

factor of the primary. In general, sign(ωp−n) > 0 for a satellite with a > asynch, and

sign(ωp − n) < 0 for a satellite with a < asynch.

2.1.4 Satellite Migration

The tidal interaction with the primary, as well as the Lindblad torques combine

to drive the orbital migration of the satellite. To determine the change in the semi-

major axis of a satellite orbiting exterior to a ring I may combine Equations 2.6 and

2.10. The total change in the semi-major axis of a satellite in time due to Lindblad

and tidal torques is given as [Rosenblatt and Charnoz, 2012]:

da

dt
= sign(ωp − n)

3nMsR
5
p

a4Mp

(
k2

Q

)[
1 +

51e2

4

]
+

2Γ

Ms

(
a

GMp

)1/2

. (2.11)

As shown in Equation 2.11, if a > asynch for a satellite exterior to the ring, both

terms are positive, da/dt is positive, and the semi-major axis of the satellite increases.

However, if a < asynch, the two terms are opposite in sign, and a competition exists:

the tidal torques work to evolve the satellite inwards while the Lindblad torques work

to drive the satellite away. da/dt is no longer strictly positive because the relative

magnitude of these two torques determines the sign of Equation 2.11. The location

of the synchronous orbit relative to the FRL determines whether tidal torques cause

newly formed ring satellites to migrate towards or away from the ring, thus playing

a key role in understanding the migration of satellites accreting at the ring edge.
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The locations of the RRL, FRL, and aLind are all functions of the bulk density

of the primary body and the satellites. Independently, the synchronous orbit is only

a function of the rotational period of the primary. From Equation 2.9 we see that

the rotation period of the primary and the location of the synchronous orbit are

directly related. In Figure 2.1 I display three identical ring-satellite systems, however

in each panel the rotation period of the primary has been varied. In each panel,

ρs/ρp = 1. Using Equations 2.1, 2.2, and 2.8 we may determine the locations of

the RRL, FRL, and aLind in terms of primary radii. For a given primary rotation

period, we may determine the location of asynch. In Figure 2.1a I have marked the

location of asynch for a primary with Tp such that asynch > aLind. In Figure 2.1b I

have displayed a similar system, however the primary rotates with a shorter Tp such

that aFRL < asynch < aLind. Finally, in Figure 2.1c, I display an identical system, but

with a rapidly rotating primary such that asynch < aFRL.

I define a function f , which I use to determine the location of asynch relative to

aFRL and aLind. The value of f for a coupled ring-satellite system determines the

regimes shown in Figure 2.1. To define f , I derive the conditions for asynch = aLind.

I set asynch = aLind using Equations 2.9 and 2.8:

1

2.4563

GρsT
2
p

3π

(
1 +

Ms

Mp

)
= 4. (2.12)

I define the left hand side of Equation 2.12 to be the function f , such that:

f(Tp, ρs) =
1

2.4563

GρsT
2
p

3π

(
1 +

Ms

Mp

)
. (2.13)

Thus, the right hand side of Equation 2.12 yields the condition when asynch = aLind. In

this scenario f(Tp, ρs) = 4. Therefore, for ring-satellite systems where f(Tp, ρs) > 4,

the synchronous orbit lies beyond the maximum orbit to which a ring-accreted satellite

could migrate via Lindblad torques.

In order to determine the location of asynch relative to aFRL I may derive the

conditions for when asynch = aFRL. Using Equations 2.9 and 2.2:

1

2.4563

GρsT
2
p

3π

(
1 +

Ms

Mp

)
= 1. (2.14)
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(a) Boomerang

(b) Torque-Dependent

(c) Slingshot

Figure 2.1. Diagram showing the relationships that define the three
evolution regimes for coupled ring-satellites. The large grey circle
represents a primary body of radius Rp orbited by a ring (shaded
region), and a small satellite (small circle) that has formed at the
ring edge. The rigid Roche limit (RRL), fluid Roche limit (FRL),
the maximum orbit Lindblad torques may migrate a satellite (aLind),
and the synchronous orbit (asynch) are all marked with vertical lines.
Distances are shown in units of primary radii. The primary and satel-
lite are assumed to have the same density. (a) Boomerang regime:
For a slowly rotating primary, asynch lies beyond aLind. (b) Torque-
Dependent regime: For a moderate rotation period, asynch lies be-
tween the FRL and aLind. (c) Slingshot regime: For rapidly rotating
primaries asynch lies inside the FRL.
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During this derivation I recover the function f and the conditions for when asynch = aFRL.

In this scenario f(Tp, ρs) = 1.

The function f(Tp, ρs) may be applied to any planetary ring system to determine

in which formation regime the system exists. In ring systems where f(Tp, ρs) > 4,

the synchronous orbit lies beyond the maximum orbit a satellite could migrate via

Lindblad torques (i.e. Figure 2.1a). For ring systems where 1 < f(Tp, ρs) < 4,

the synchronous orbit lies between the FRL and aLind (i.e. Figure 2.1b). Finally,

in ring systems where f(Tp, ρs) < 1, the synchronous orbit lies inside the FRL (i.e.

Figure 2.1c). In each scenario depicted in Figure 2.1, and further defined by Equa-

tion 2.13, the orbital migration of the satellite that has accreted at the ring edge,

as determined by Equation 2.11, is different. In Section 2.2, I explore the long-term

evolution of ring-satellite systems in each of the three formation regimes.

2.2 Evolution of Ring Accreted Satellites

The scenarios depicted in Figure 2.1 represent three distinct formation regimes

for satellites accreting from planetary rings. In the “Boomerang” regime the syn-

chronous orbit lies beyond the maximum orbit a satellite may be perturbed via Lind-

blad torques, as shown for the system in Figure 2.1a. In the “Slingshot” regime the

synchronous orbit lies inside the ring edge, as displayed in Figure 2.1c. And finally,

in the “Torque-Dependent” regime the synchronous orbit lies between the edge of the

ring and aLind, as in Figure 2.1b, creating a competition between the tidal and Lind-

blad torques exerted on a newly formed satellite. Depending upon the magnitudes

of the ring and tidal torques satellites in this regime either migrate away from the

primary and survive, similar to satellites in a Slingshot regime, or migrate towards

the RRL, similar to satellites in a Boomerang regime.

In Section 2.1 I defined the function f(Tp, ρs), which I use to determine the location

of asynch relative to aLind and the FRL. This relation can be applied to any known

or hypothesized planetary ring system in order to predict the long term evolution of
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satellites that may accrete at the FRL. In the following section I will use this relation

to characterize and analyze each of the regimes for satellite evolution.

2.2.1 The “Boomerang” Regime: aLind < asynch

For slowly rotating primaries, the synchronous orbit lies far from the primary’s

surface. For planetary ring systems where f(Tp, ρs) > 4, asynch lies beyond aLind,

as in Figure 2.1a. I may examine Equation 2.11 to determine the orbital migration

of a satellite that accretes from a planetary ring in the Boomerang regime. In the

Boomerang regime da/dt for a newly accreted satellite at the FRL is not necessarily

positive. The ring may have sufficient mass for Lindblad torques to temporarily drive

a satellite away from the primary. However, planetary tides always work to migrate

the satellite inwards.

As the satellite is driven away from the ring, eventually an equilibrium between

the Lindblad and tidal torques is reached, and da/dt = 0. Over time the ring is

depleted of material as mass is deposited onto the primary through the ring’s inner

edge, and mass is lost to satellite formation at the ring’s outer edge [Hesselbrock and

Minton, 2017, Rosenblatt and Charnoz, 2012, Rosenblatt et al., 2016]. As the ring

loses mass, the effect of Lindblad torques on the satellites’ evolution is diminished

until tidal torques with the primary dominate. Similar to a boomerang, satellites

in this regime may initially be driven away from the ring, but eventually are driven

inwards as Equation 2.11 becomes negative. Regardless of how massive the ring is, the

orbit of a satellite accreting at the FRL in this “boomerang” regime will eventually

decay. Therefore, I define the Boomerang regime as any planetary ring system with

f(Tp, ρs) > 4.

Furthermore, as the satellite approaches the RRL, the magnitude of the tidal

stress increases and material begins to leave the surface of the satellite. This removed

material creates a collisional cascade that quickly disrupts the body. The disrupted

satellite material then forms a new ring of material that would begin to deposit its
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material onto the primary’s surface [Black and Mittal, 2015]. As the new ring begins

to spread out through viscous spreading, it may transport material beyond the FRL to

form a new generation of satellites [Hesselbrock and Minton, 2017]. However, as these

satellites accrete in the Boomerang regime they will follow a similar migration path.

I recently showed that the innermost satellite of Mars, Phobos, may have formed in

the Boomerang regime [Hesselbrock and Minton, 2017]. Therefore, slowly rotating

primaries where asynch lies beyond aLind serve as desirable candidates for ring-satellite

cycles, as proposed in HM17.

2.2.2 The “Slingshot” Regime: asynch < aFRL

As shown in Section 2.1, for ring systems where f(Tp, ρs) < 1 the edge of the ring

lies beyond the synchronous orbit. For a satellite accreting at the edge of the ring

in Figure 2.1c, both the tidal torques and the Lindblad torques work to increase the

semi-major axis of the satellite. da/dt in Equation 2.11 is strictly positive and any

satellites that form at the ring edge are driven away from the primary. Similar to

a projectile fired from a slingshot, in these systems satellites that form at the FRL

are forever driven away from the primary. I define the “Slingshot” regime as any

planetary ring system where f(Tp, ρs) < 1.

2.2.3 The “Torque-Dependent” Regime: aFRL < asynch < aLind

Similar to the Boomerang regime, for a ring-satellite system where asynch lies be-

tween the FRL and aLind, satellites that accrete at the FRL experience a competition

between Lindblad and tidal torques. As the satellites are pulled inwards by planetary

tides, da/dt in Equation 2.11 is not strictly positive. However, if the magnitude of

the total Lindblad torque is greater than the inward tidal torque, it may be possible

for Equation 2.11 to remain positive for a sufficient amount of time for a satellite

to migrate beyond asynch. At this point in the satellite’s migration Equation 2.11

becomes strictly positive, regardless of the magnitude of the Lindblad torque, and
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the satellite survives to migrate away from the primary, similar to the evolution of a

satellite in the Slingshot regime.

Alternatively, if the magnitude of the tidal torque is greater than the total Lind-

blad torque for a satellite orbiting inside asynch, Equation 2.11 is negative and the

satellite would be unable to migrate beyond asynch. As da/dt < 0, the satellite’s orbit

migrates inwards towards the RRL. Depending on the magnitude of the Lindblad

torques, satellites that accrete in this regime may undergo an identical evolution to

satellites that accrete in the Boomerang regime. As the outcome of the satellites’

orbital migration is dependent upon the competition between the tidal and Lind-

blad torques, I refer to this regime as the “Torque-Dependent” regime and define the

regime as any ring system where 1 < f(Tp, ρs) < 4.

In order to predict the migration of satellites accreting in the Torque-Dependent

regime we must closely examine the contribution of the Lindblad and tidal torques

to the satellite’s migration. The magnitude of the total Lindblad torque in Equa-

tion 2.5 compared to the tidal torque with the primary is a determining factor to the

migration of a satellite interior to asynch. Examining Equations 2.11 and 2.5, we see

that depending on the tidal parameters of the bodies and the surface-mass density

of the ring, it is possible for the total Lindblad torque exerted on the satellite to be

greater in magnitude than the tidal torque. In this case, da/dt in Equation 2.11 is

positive and the satellite is driven away from the ring edge. I define this as a scenario

in which the Lindblad torques are able to overcome the tidal interactions that work

to drive the satellite inwards.

We may also examine when the magnitude of the total Lindblad torque is less

than that of the tidal torque for a satellite interior to asynch. In these cases, da/dt

in Equation 2.11 is negative, and the Lindblad torques are unable to overcome the

tidal interactions. Thus, if the surface-mass density of the ring is small, and/or the

satellite is strongly affected by tidal interactions with the primary, the satellite will

migrate inwards.
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It is possible to determine whether the Lindblad torques dominate over tides or

not by setting Equation 2.11 equal to zero. This allows me to determine the conditions

for which the Lindblad and tidal torques are equal in magnitude. If the magnitude

of the tidal term in Equation 2.11 is less than the magnitude of the Lindblad term,

the satellite will be driven outwards. By substituting the total Lindblad torque in

Equation 2.5 into the Lindblad term in Equation 2.11, I find that the satellite will be

driven away from the ring so long as the following statement is true:

∞∑
M=2

σ(rL)
[
M2 (M− 1)

]2/3
>

3k2MpR
5
p

2Qa7
. (2.15)

Here I have assumed that the satellite eccentricity is zero. Equation 2.15 is similar

to Equation A.2 in Rosenblatt and Charnoz [2012].

If Equation 2.15 is true for the entirety of the satellite’s evolution to the syn-

chronous orbit, the satellite will be driven away from the primary until it reaches an

orbit beyond asynch. At this point da/dt becomes strictly positive and the satellite

will be forever driven away from the primary. If the ring is sufficiently massive the

satellite will follow an evolution similar to satellites in a Slingshot regime. However,

as discussed in Section 2.2.1, material is constantly removed from the ring over time,

diminishing the magnitude of the Lindblad torques. If Equation 2.15 becomes false

before the satellite has evolved to asynch, the satellite will be pulled inwards towards

the primary. Similar to satellites in the Boomerang regime, the satellite’s orbit will

decay until either the satellite is tidally disrupted, forming a new ring, or the satellite

is deposited onto the primary.

2.3 A Look at Our Solar System

In Section 2.2, I identified three regimes for the evolution of coupled ring-satellite

systems. I defined these regimes with the function f in Equation 2.13, which is

dependent upon the bulk density of the satellite and the rotation period of the pri-

mary. Figure 2.2 plots the boundaries of the three regimes defined by Equation 2.13

assuming the satellite mass is small relative to the primary (Ms/Mp << 1).
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The dark gray region in Figure 2.2 corresponds to the Boomerang regime (see

Figure 2.1). For slowly rotating primaries (Tp ∼ 25 hrs) I find that the synchronous

orbit lies beyond the maximum orbit for a wide-range of satellite densities. The light

gray region in Figure 2.2 corresponds to the Slingshot regime. For rapidly rotating

primaries (Tp ∼ 10 hrs) I find that the synchronous orbit lies inside the ring edge for a

wide range of satellite densities. Lastly, the white region in Figure 2.2 corresponds to

the Torque-Dependent regime. For primaries with moderate rotation rates (Tp ∼ 15

hrs), satellites with a wide range of densities accreting at the ring edge will undergo

a competition between Lindblad and tidal torques. If the magnitude of the Lindblad

torque is greater than the tidal torques, the system will evolve similar to a Slingshot

system. Otherwise, the system will exhibit an evolution similar to a Boomerang

system.

In Figure 2.2 I use the current rotation period of primary bodies in the Solar

System with estimates for the density of their secondaries to determine the evolution

regime for real and hypothetical ring systems in the Solar System. We see that the

hypothetical Mars system, modeled in HM17, with its slow rotation rate and satellites

with relatively high bulk densities is located within the Boomerang regime. Addi-

tionally, we see that the Saturn system, with its rapid rotation rate and low-density

satellites is located within the Slingshot regime. This is in agreement with observa-

tions of the architecture of the inner ring satellites of Saturn and recent simulation

results [Charnoz et al., 2010, 2011, Salmon and Canup, 2017].

Recently stellar occultations have revealed rings in orbit around small bodies.

These observations have shown that the centaurs 10199 Chariklo and 2060 Chiron

are both orbited by ring systems [Braga-Ribas et al., 2014, Ortiz et al., 2015]. Fur-

thermore, Ortiz et al. [2017] also reports that a planetary ring orbits Haumea, a dwarf

planet in the Kuiper belt with two known satellites. All of these bodies are rapid

rotators, with Haumea approaching a Jacobi ellipsoid in hydrostatic equilibrium. As

shown in Figure 2.2, the short spin period of these three bodies place them in the

Slingshot regime for a wide range of satellite densities. Satellites generated from these
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rings would migrate away from the primary body. Therefore, it is unlikely the tidal

disruption of an inwardly migrating satellite would have produced the ring systems

observed today.

Uranus and Neptune both fall into the Torque-Dependent regime, as shown in

Figure 2.2. Both of these giant planets have rings and inner satellites that orbit near

the rings’ edges and may be products of tidal disruption [Leinhardt et al., 2012].

Furthermore, both Uranus and Neptune are orbited by satellites on either side of the

synchronous orbit. It may be possible that these planets had primordial rings that

were sufficiently massive to cause satellites to migrate far from the FRL and beyond

asynch, similar to a system in the Slingshot regime.

2.4 Conclusion

In this chapter I have developed a framework to investigate the evolution of cou-

pled ring-satellite systems. Satellites in orbits near massive planetary rings may ex-

change angular momentum with both the ring and the primary body. The dynamics

of how angular momentum is exchanged with the satellite creates three distinct evo-

lution regimes for satellites accreting from massive planetary rings. I term these the

Boomerang, Slingshot, and Torque-Dependent regimes. The three formation regimes,

outlined in Section 2.2, provide a method to analyze the dominant dynamics of mas-

sive ring systems interacting with nearby satellites. Identifying in which regime a

ring-satellite system exists enables us to hypothesize the past and future evolution

of the system. Furthermore, my model makes predictions of the behavior of many

systems and motivates future searches for potential rings and/or satellites.

In the Slingshot regime, the synchronous orbit lies inside the location of the FRL.

If a ring in the Slingshot regime is able to viscously spread material to the FRL, the

system should produce at least one satellite that would likely be observable today as

both the ring and tidal torques would cause the satellite to migrate away from the

primary. In the Boomerang regime the synchronous orbit lies outside the maximum
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orbit Lindblad torques could perturb a satellite. Satellites that form out of massive

rings in the Boomerang regime may migrate away from the primary via Lindblad

torques, however over time tidal torques cause the satellite to migrate inwards. As a

satellite’s semi-major axis decreases, tidal stresses across the body increase and may

disrupt the satellite into forming a new ring. As shown in HM17, it is possible for

a planetary body in the Boomerang regime to have a cycle of ring formation and

satellite accretion that persists for billions of years. The dynamics of the coupled

ring-satellite systems in the Boomerang regime provide a mechanism to repeatedly

generate satellites, and rings, provided satellites disrupt interior to the FRL [Black

and Mittal, 2015, Hesselbrock and Minton, 2017]. An observation of a system that

is in the Boomerang regime with a satellite inside asynch is an indication that a ring

may have existed, or currently exists, at the system. Satellites in Boomerang regime

systems (such as at Eris, see Figure 2.2) could motivate a search for rings.

In the Torque-Dependent regime the synchronous orbit lies between the FRL

and the maximum orbit Lindblad torques could perturb a satellite. Planetary sys-

tems with rings in the Torque-Dependent regime may exhibit characteristics of both

Boomerang and Slingshot systems. Much like satellites that accrete from a ring in

the Boomerang regime, satellites in the Torque-Dependent regime experience a com-

petition between Lindblad and tidal torques. As Torque-Dependent systems evolve

over time, they may transition from having rings that are sufficiently massive to cause

satellites to migrate beyond the synchronous orbit (Slingshot), to systems in which

tidal interactions dominate the migration of ring-accreted satellites (Boomerang).

Rings in the Torque-Dependent regime may initially be massive enough to cause a

satellite that accretes at the FRL to migrate beyond the synchronous orbit, how-

ever over time the mass of the ring may deplete such that tidal torques dominate a

satellite’s migration.

Torque-Dependent regime systems like Uranus and Neptune may repeatedly gen-

erate satellites and rings, similar to systems in the Boomerang regime. As the mass of

a ring is depleted, any satellites interior to the synchronous orbit could migrate back
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toward the primary, possibly going through complex phases of scattering, disrup-

tion, and reaccretion. Thus, satellites identified in Torque-Dependent regime systems

(such as at Quaoar, see Figure 2.2) would also motivate a search for potential rings

or interior satellites.
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Figure 2.2. The boundaries of the three ring-satellite evolution
regimes defined by Equation 2.13 (assuming Ms/Mp << 1). The dark
gray regime marks the Boomerang regime (systems where asynch >
aLind), while the light gray regime marks the Slingshot regime (sys-
tems where asynch < aFRL). The middle zone in white marks the
Torque-Dependent regime (systems where aFRL < asynch < aLind).
Additionally, I display the expected regime for Roche-interior rings
orbiting various bodies in the solar system given their rotation rates
today and estimated satellite densities. In this figure, Ms/Mp << 1.
Fast rotating primaries with low satellite densities fall within the
Slingshot regime (e.g. Jupiter, Saturn), while slowly rotating pri-
maries with high density satellites exist within the boomerang regime
(e.g. Mars). The evolution of satellites accreting from a Roche-
interior ring orbiting Uranus and Neptune is dependent upon the
magnitude of the Lindblad and tidal torques.
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3. DESCRIPTION OF “RING-MOONS” MODEL

A version of this chapter has been published in A. J. Hesselbrock and D. A. Minton,

“An ongoing satellite-ring cycle of Mars and the origins of Phobos and Deimos,”

Nature Geoscience, 10:266269, Mar. 2017. doi:10.1038/ngeo2916.

I have developed a model to study the evolution of debris disk and satellite sys-

tems. My model contains a 1-D Eulerian treatment for the disk and a simple La-

grangian treatment for the satellites. The disk is represented as a finite series of bins

that extend radially from the planet. Each bin in my Eulerian disk model represents

an annulus of the disk with a given surface mass density. Each bin is identified via the

identifying location, i. The midpoint location of each bin is ri = rInit + ∆r(i + 1/2)

where ∆r = rFin−rInit

N
, and N is the number of bins. The quantities rInit and rFin are

the interior and exterior limits of the disk. The horizontal area of each bin can then

be calculated: ∆Ai = π
[(
ri + ∆r

2

)2 −
(
ri − ∆r

2

)2
]

= 2∆r
[
rInit + ∆r

(
i+ 1

2

)]
π.

From that the surface mass density of each bin is assigned with a power law,

Σi = c
(

ri
rInit

)−p
, with c and p variables to set the mass of the disk. Then the mass

for each bin is solved by integrating:

mi =

∫ 2π

0

∫ ri+∆r/2

ri−∆r/2

Σ(r)rdrdθ. (3.1)

The moment of inertia of each ring annulus, which, in my coordinate system, is

defined as:

Ii = mi

(
r2
i +

∆r2

4

)
= miR

∗
i , (3.2)
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where R∗i ≡ r2
i + ∆r2

4
. Additionally, ωi is the orbital speed of bin i, which is simply

the orbital speed for an object in a circular orbit with semi-major axis ri:

ωi =

√
GMp

r3
i

. (3.3)

In many ways my disk model is very similar to those described in both Rosenblatt

and Charnoz [2012] and Salmon et al. [2010b]. The results published in those studies

serve as useful calibrations of my disk model. With the framework of a disk in place

I am able to implement relevant disk and satellite dynamics.

3.1 Disk Viscosity

The disk is composed of particles which collide, transferring energy and momen-

tum to each other. As these particles collide, their momentum is conserved but their

energy is not. This loss of energy causes some particles to fall inwards toward the

central region of the disk and lose angular momentum. Thus, to conserve the mo-

mentum of the system, their angular momentum is transferred outwards away from

the central region of the disk by moving some material outwards. The net effect is

to flatten the disk and to cause it to spread. Some material flows inwards, and some

flows outwards (see Figure 3.1). Disks are typically described in terms of their surface

mass density. Therefore, by combining mass conservation with angular momentum

conservation, the change in surface mass density over time for a region of the disk

may be calculated. The change to the surface mass density of a location depends

upon its current surface mass density, semi-major axis, and viscosity.

The evolution of the surface mass density of the disk at location r can be found

by solving the following equation (Bath and Pringle [1981b]):

∂Σ

∂t
=

3

r

∂

∂r

[√
r
∂

∂r

(
νΣ
√
r
)]
, (3.4)
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where ν is the viscosity at r. As shown in Bath and Pringle [1981a], this equation can

be solved after performing the following variable change: Xi = 2
√
ri, Si = XiΣi =

2Σi
√
ri. Then the above equation can be recast as:

∂S

∂t
=

12

X2
i

[
∂2

∂X2
(Siνi)

]
(3.5)

Finite difference solutions of this equation may go unstable. Therefore, a stability

analysis shows that the necessary timestep for a solution is found as (Anderson [1995]):

∆t ≤ 1

2

[
X2
i (∆r)2

12νi

]
,

≤ (∆r)2

6

(
ri
νi

)
.

(3.6)

∆t is calculated for all bins, then the minimum one is chosen to be the next timestep.

The surface mass density is then solved using a second order central difference method

for a second derivative.

Sn+1
i = Sni +

12∆t

X2
i (∆r)2

(
Sni−1ν

n
i−1 + Sni+1ν

n
i+1 − 2Sni ν

n
i

)
(3.7)

Here n refers to the current state of the system, with n + 1 the value at the next

timestep. Thus, Σn+1
i = Sn+1

i /Xi, and mi = Σi∆Ai.

I follow the viscosity prescription described in Salmon et al. [2010a] where the

total viscosity is calculated as the sum of three separate components. First is the

“translational viscosity” which is related to the transport of angular momentum due

to the random motion of the disk particles. Second is the “collisional viscosity”

describing the transport of angular momentum via sound waves passing between the

centers of colliding particles. The final component, which Salmon et al. [2010a] refer

to as the “gravitational component” describes how angular momentum is transported

due to the scattering of particles from gravitational wakes.

If a disk is gravitationally unstable, which can be found by calculating the Toomre

Parameter (Toomre [1964]), it will produce gravitational wakes which affect the trans-

port of angular momentum. Particles move randomly outside of a wake, but within a
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wake they move coherently. This effectively increases the viscosity of the disk in the

region of the wake. If the disk is gravitationally stable, the gravitational component

to the viscosity is zero (Salmon et al. [2010a]). The Toomre Q parameter (Salmon

et al. [2010a], Toomre [1964]), adapted to my model can be calculated for each bin

as:

Qi =
ωiσr

3.36GΣi

(3.8)

σr is the velocity dispersion.

Salmon et al. [2010a] thus defines the kinematic viscosity as the sum of the

translational, collisional, and gravitational viscosities. Therefore, νi = νtransi + νcolli +

νgravi . These viscosities, applied in accordance with Salmon et al. [2010a], are shown

below:

νtransi =


σ2
r

2ωi

(
0.46τi
1+τ2i

)
if Qi > 2,

13r∗h

(
G2Σ2

i

ω3
i

)
if Qi < 2,

(3.9a)

νcolli = r2
pdiskωiτi, (3.9b)

νgravi =

0 if Qi > 2,

νtransi if Qi < 2.

(3.9c)

Here r∗h ≡
rHill

2rpdisk
= ri

2rpdisk
3

√
mpdisk

Mp
where rHill is the radius of the Hill Sphere (Carroll

and Ostlie [2007]), and mpdisk and rpdisk are the mass and radius of the disk particles.

τi is the optical depth of the ring and is calculated as:

τi =
πr2

pdiskΣi

mpdisk

(3.10)

Following Salmon et al. [2010a], the velocity dispersion is set by r∗h.

σr =

2rpdiskωi if r∗h ≤ 0.5,√
Gmpdisk

rpdisk
if r∗h > 0.5,

(3.11)
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The stability of the disk is set by the Toomre Parameter, and in the model de-

scribed by Salmon et al. [2010a], the value of Q marks the switch between a gravita-

tionally stable disk, and one that is not. This is most obviously seen in the treatment

of νgravi which is either zero if Qi > 0, or non-zero if Qi < 2. In an effort to avoid

any stability issues solving these equations, I have included a function to model the

viscosity of the disk as a gradual transition, rather than a step function, for regions

where Qi ≈ 2. κ(y) is the function I use to transition a value from zero to one, while

η(y) transitions a value from one to zero:

κ(y) =
1

2

[
1 + tanh

(
2y − 1

y(1− y)

)]
(3.12a)

η(y) =
1

2

[
1− tanh

(
2y − 1

y(1− y)

)]
(3.12b)

This essentially allows me to gradually “turn off” the viscosity treatment for one case,

while simultaneously “turning on” the other. Here y marks the location the transition

occurs, which for a transition between values of 0 and 1 would be 0.5. Therefore, I

model the viscosity of the disk as:

νtransi = νtransi (Q > 2)× κ(y) + νtransi (Q < 2)× η(y) (3.13a)

νgravi = νtransi × η(y) (3.13b)

Setting y = Q/4 centers this transition to occur at Q = 2. (The νcolli term is not

dependent on the value of Qi and is thus unaffected.) A similar treatment is applied

to the velocity dispersion of the disk (Equation 3.11).

3.2 Satellite Accretion

Overlapping the region of the disk is a separate series of bins to track any accreting

satellites. Given a minimum satellite mass, these satellite bins extend radially and

are spaced one hill radius apart: ∆aj = RHill = aj
(
mmin

3M

) 1
3 , where ∆aj is the satellite

bin spacing, aj is the semi-major axis of the satellite bin, and mmin is the minimum

satellite mass. As disk material viscously spreads across the FRL a satellite is created
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at any locations that have a mass greater than or equal to the minimum satellite mass.

Once a satellite exists it may begin to accrete material from the disk.

Canup and Esposito [1995] and Kokubo et al. [2000] have studied satellite forma-

tion out of a debris disk using N-body models. These models predict a fast accretion

rate of material, where satellites would accrete in < 500 orbits. However, these stud-

ies were examining a scenario for the formation of the Earth’s moon which has a

greater planet to disk mass ratio than considered here. Additionally, due to compu-

tational constraints, these models included disk particle sizes that were much larger

than is considered in my work. I conducted N-body simulations using the SyMBA

integrator [Duncan et al., 1998] for a martian system with disks of various mass and

surface mass density. While preliminary, the results from these simulations indicate

that satellite accretion for such a system would follow a mass growth law similar to

dmj

dt
∝ m

3/2
j , producing a Phobos-mass satellite on the order of 103 years. Therefore,

once a satellite has been created, I use a Runge-Kutta integrator to solve the satel-

lite’s mass in time following this power law, provided there is disk material within its

hill sphere available for the satellite to accrete.

3.3 Satellite Orbital Evolution

Once formed, satellites will begin to exchange angular momentum with the pri-

mary via tidal interactions. As discussed in Section 2.1.3, this angular momentum

exchange either increases or decreases the semi-major axis of the satellite, depending

on whether it is located inside or outside the synchronous limit. The change to the

satellite semi-major axis due to the tidal interaction is given by Equation 2.10

In addition to exchanging angular momentum with the planet, satellites will also

exchange angular momentum with material in the disk located at the Lindblad reso-

nance locations. As discussed in Section 2.1.2, the Lindblad resonance locations can

be found via Equation 2.3. To find the total torque exerted on a satellite I implement

Equation 2.4 to calculate the torque exerted by each mode and sum over all modes via
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Equation 2.5. As M increases, the distance between successive resonance locations

decreases. I carry the sum out until the distance between successive resonances for

satellite j is smaller than the bin width:

rM(j,M+ 1)− rM(j,M) ≤ ∆r. (3.14)

The complete orbital evolution of a satellite depends upon both the planet-tidal

torques and the satellite-disk torques. In Section 2.1.4 I sum Equations 2.10 and 2.6

to yield Equation 2.11. Thus, the satellite orbits are evolved by solving Equation 2.11

at each timestep.

It is possible for one satellite to catch up with another. When satellite j is within

2 RHill of satellite k, the two are merged with the location being weighted between

the two to conserve angular momentum via:

aj =

√
mja2

j +mka2
k

mjmk

. (3.15)

Currently, this is handled instantaneously.

3.4 Disk-Satellite Torques

While the ring material exerts a torque on the satellite, the satellite exerts an equal

and opposite torque on the ring material. This torque acts on material very near the

resonance, causing it to move inwards, away from the resonance location. Therefore,

at the resonance location, the ring loses angular momentum by transporting material

towards the primary. I approximate the effect of this torque by calculating the mass

loss of the ring at a resonance location as:

∆mL = ∆t

(
Γj

ωLR∗L

)
, (3.16)

where ∆t is the simulation timestep. For a resonance at bin i, this mass is deposited

into bin i− 1.
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3.5 Tidal Disruption of Satellites

Planetary tides are capable of causing the orbit of a satellite to decay. Further-

more, these tides can tidally disrupt the satellite. As explained in Chapter 1, the

RRL marks the location where planetary tides are strong enough to remove a par-

ticle from the satellite’s equator. As particles are loosed from the satellite, they

enter orbit around primary and a collisional cascade quickly results. These particles

rapidly collide with the satellite, eroding its surface. Within a few orbits the satellite

rapidly disrupts and forms a new ring. I typically set the location of tidal breakup

at the RRL. If a satellite evolves to this orbit, its mass is distributed to the ring

bins in the immediate vicinity of the RRL following mi = 0.4mj, mi±1 = 0.2mj, and

mi±2 = 0.1mj.

3.6 Validation of Model

Here I demonstrate the validity of my model by comparing it to others published

in the literature, as well as with systems we may observe today.

My treatment of the Lindblad Torques and the effect of the satellites torque onto

the ring is not explicitly rigorous, however as the torque exerted on the ring by

the satellites has no long-term effect on the ring [Charnoz et al., 2010], I feel this

treatment is sufficient for the scenarios I wish to study. A thorough treatment of this

angular momentum exchange would most likely affect the rate at which material is

deposited onto the primary. Lindblad Torques between the satellites and the ring

may open up gaps within the ring, which would be reflected in the deposits onto the

primary. Additionally, very massive rings are capable of producing satellites that may

be massive enough to depart from the linear treatment I have implemented here. A

departure from this linearity would result in material at the outer edge of the ring

becoming confined to an extremely narrow region of space, but the orbital migration

of the satellites should remain accurate.
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Figure 3.1. Here I compare the results from the model, RING-
MOONS (black line) for a sharply peaked ring viscously spreading
in the Saturn system to others in the literature. To solve the viscous
spreading of the rings, I follow the viscous spreading model described
in Salmon et al. [2010a]. Despite my implementation of a different in-
tegration scheme, my results convincingly match the results displayed
in Figure 3 of Salmon et al. [2010a] (red line).

As described in Section 3.1, I use the work of Salmon et al. [2010a] to describe the

physics of how the ring viscously spreads. In order to test my solution of Equation

3.4, I replicated their results for the spreading of a variably viscous ring orbiting

Saturn. I chose initial conditions that were nearly identical to those of Salmon et al.

[2010a]. The initial surface mass density of the ring is a steeply peaked Gaussian

function, centered at a semi-major axis of 110,000 km. The mass of the ring is equal
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Figure 3.2. Here I display the results of the model, RING-MOONS
(black dots) for the accretion of satellites from Saturns rings, and
their orbital evolution over ∼ 4 Gy, assuming no tidal dissipation
in the satellites and the tidal quality factor of Saturn Q = 1680. I
perform this simulation to benchmark my model against the actual
Saturn system (blue squares) and other models in the literature (red
diamonds). RING-MOONS is similar in many ways to the HYDROR-
INGS model described in Charnoz et al. [2011], and presents similar
results.

to a Mimas mass, and the particles in the ring have a radius of 1 m and a density

of 1000 kg/m3. In Figure 3.1 I display these results at various points in time for 105

years of evolution, achieving good agreement with the results of Salmon et al. [2010a].

In addition to validating my description of the spreading of the ring, I also compare

my RING-MOONS code to HYDRORINGS, a code used in Charnoz et al. [2011]
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to model the accretion of satellites out of Saturns rings. The viscous spreading of

Saturns rings and the accretion of small satellites is directly analogous to my model

for the evolution of ring/satellite systems. Fig. 3 of Charnoz et al. [2011] displays

results for a viscously spreading ring accreting material into satellites over 4 Gy,

assuming various tidal parameters between the satellites and Saturn. Panel d of this

figure includes HYDRORINGS results for a system in which satellites undergo tidal

interactions with the planet, but not other satellites. This scenario is very similar to

cases I wish to investigate. Because of the observational evidence for small satellite

accretion from the saturnian rings and the observed mass-distance relationship of the

accreted satellites, the results of Charnoz et al. [2011] are an ideal test case to check

the validity of my model against reality and other models established in the literature.

The HYDRORINGS code is not publicly available, however the results displayed

in Charnoz et al. [2011] are fairly well described, and should be reproducible by my

model. In Fig. 3, panel d of that work are displayed the results of satellites accreting

out of a ring after ∼ 4 Gy, given no tidal dissipation between the satellites. In these

results the mass of the initial ring is set at 4 Rhea masses (∼ 9.2× 1021 kg) and the

density of particles within the ring is set at 900 kg/m3. The tidal dissipation factors

for Saturn are set to be k2 = 0.341 and Q = 1680. I use these same conditions

to test whether the output of my model matches the results of HYDRORINGS,

4.1308 Gy after the simulation has progressed, and the current satellite mass-distance

relationship of Saturns satellites.

The results of Charnoz et al. [2011] do not include a description of the initial

profile of the surface mass density of the ring, the size of the ring particles, nor the

radial extent of the ring. In comparing my model to this work, I model the surface

mass density profile of the ring as Σ(r) ∝ r−3, and the ring extends from the surface

of Saturn to 90% of Saturns FRL. For computational efficiency I set the particles in

the ring to have a radius of 1 km. In Figure 3.2 I compare the results of my model,

RING-MOONS against the results of HYDRORINGS (Charnoz et al. [2011]), and

the current Saturn system. In the described scenario, after 4 Gy HYDRORINGS
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produces at least 16 satellites, while RING-MOONS produces 7. As displayed in

Charnoz et al. [2011], the current Saturn system contains 10 satellites that may have

accreted from Saturns rings. Additionally, I find the general trend of Saturn satellites

to have greater masses at greater semi-major axis as reproduced by HYDRORINGS

is also reproduced with my model. The initial conditions selected here may differ

than those selected in Charnoz et al. [2011], and may explain discrepancies between

the results of the two models. However, dependent upon further work, both models

may be able to reproduce the actual Saturn system.

RING-MOONS and HYDRORINGS model much of the same physics, but differ

in the manner in which these dynamics are solved. Thus, Figures 3.1 3.2 give me

confidence that my model is solving the dynamics of satellites and rings at an appro-

priate level. The fact that RING-MOONS does not perfectly reproduce the Saturn

ring-satellite system indicates that further improvements could continue to be made,

as with all models.
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4. THE CYCLIC NATURE OF MARTIAN SATELLITES

A version of this chapter has been published in A. J. Hesselbrock and D. A. Minton.

An ongoing satellite-ring cycle of Mars andthe origins of Phobos and Deimos. Nature

Geoscience, 10:266269, Mar. 2017. doi:10.1038/ngeo2916.

4.1 Background

The origin of the martian satellites, Phobos and Deimos, is not well understood.

The spectra of the two satellites closely resemble carbonaceous asteroids [Burns, 1992,

Rivkin et al., 2002], indicating that they could be captured. However, Phobos and

Deimos have orbits that are circular (with eccentricities ≤ 0.015), aligned to Mars’s

equator (with inclinations ≤ 1.8◦), prograde, and deep inside the Hill Sphere of Mars.

These orbits are indicative of satellites that have accreted from a debris ring [Cameron

and Ward, 1976, Charnoz et al., 2010, Crida and Charnoz, 2012], leading many re-

searchers to favor a giant impact origin for Phobos and Deimos over capture [Canup

and Salmon, 2016, Citron et al., 2015, Craddock, 2011, Rosenblatt and Charnoz,

2012].

A giant impact by a ∼ 2000 km diameter body > 4.3 Gy ago has been implicated

for the formation of the hemispherical dichotomy seen on Mars [Andrews-Hanna et al.,

2008, Leone et al., 2014, Marinova et al., 2008, Nimmo et al., 2008]. Numerical models

of giant impacts that could form the dichotomy show that the collision could have

ejected as much as 1023 g of debris into martian orbit [Citron et al., 2015, Marinova

et al., 2011], of which some portion should form a debris ring of mixed composition

orbiting the planet. A debris ring composed of a mixture of impactor and martian

material that proceeds to accrete satellites may explain both the physical and orbital
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characteristics of the martian satellites [Craddock, 2011]. However, a number of

unresolved difficulties remain.

As shown in Figure 2.2, a debris ring in orbit around Mars exists within the

Boomerang regime. It is therefore unlikely that Deimos formed from an FRL-interior

debris ring and subsequently migrated to its current orbit beyond the synchronous

orbit of Mars, located at ∼ 6 Mars radii. Phobos, lying inside the synchronous orbit is

gradually evolving inwards, towards Mars [Murray and Dermott, 1999], and may have

formed from an FRL-interior ring. In fact, Black and Mittal [2015] suggest that in less

than 70 My, the orbit of Phobos will have decayed such that the satellite will either

collide with Mars, or be tidally torn apart. The orbital migration of the satellites has

remained a major challenge, resulting in many studies which attempt to form both

satellites far from Mars [Canup and Salmon, 2016, Rosenblatt and Charnoz, 2012,

Rosenblatt et al., 2016], near the synchronous orbit. Tidal evolution of Phobos from

such an orbit would place the satellite in its current location after ∼ 4 Gy, however

would likely result in resonance interactions with Deimos that would raise the outer

satellite’s eccentricity to a value too great to be satisfactorily explained [Murray and

Dermott, 1999, Yoder, 1979].

Previous studies have succeeded at forming Phobos analogs from a giant impact,

but either result in the satellite’s orbit decaying completely [Rosenblatt and Charnoz,

2012], result in an eccentricity for the outer moon Deimos that is too large [Yoder,

1979], or requires different tidal dissipation rates between the two satellites [Rosen-

blatt et al., 2016]. Recent work suggests that a giant-impact debris ring accreted

a very massive satellite which subsequently prompted the accretion of Phobos and

Deimos before crashing onto the planet [Rosenblatt et al., 2016]. While Deimos may

have formed in this manner, I argue that any primordial massive satellites would exist

in the Boomerang Regime and would have been tidally disrupted into a ring upon

reaching the Rigid Roche Limit (RRL) [Black and Mittal, 2015, Murray and Dermott,

1999]. This ring could evolve to accrete new satellites. I propose that a ring-satellite-

ring cycle is a natural consequence of satellite formation in the Boomerang Regime
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and is a compelling alternate formation hypothesis that overcomes the timing, orbital

constraint, and tidal dissipation difficulties faced by Rosenblatt and Charnoz [2012]

and Rosenblatt et al. [2016].

4.2 Using RING-MOONS to Investigate the Mars Satellite System

I have used “RING-MOONS,” a satellite-ring dynamical model to simulate the

evolution of a massive Martian debris ring and accreting satellites formed after a giant

impact. The gridspace of the ring extends from the surface of Mars to beyond the

FRL at ∼ 3.2 Mars radii (RM). Ring material viscously spreading beyond the FRL

accretes into Lagrangian satellites. These satellites accrete mass and undergo orbital

evolution via torques exerted by Mars and the ring (Equation 2.11). Any satellites

that evolve to the RRL at ∼ 1.6RM are disrupted and their mass is redistributed to

the ring at the RRL. Computational constraints require me to model the ring material

as relatively large, single-sized particles. However, I have developed a method that

uses my studies to calculate how the system will behave with any realistic particle

size.

For a preliminary investigation I confined the initial ring to exist inside the FRL.

While testing the model I conducted numerous simulations modeling the initial surface

mass density of the ring as a steeply peaked gaussian centered at the RRL. During

these tests I varied the initial mass of the ring, as well as the radius of the ring

particles. During these initial investigations I found that ∼ 80% of the initial mass

of the ring (MDisk
Init ) viscously spread through the inner boundary and was deposited

onto Mars, while the remaining ∼ 20% spread beyond the FRL, and accreted into

satellites. Therefore the total mass of all satellites produced from an FRL-interior

ring, MSat
F in, could be found via:

MSat
F in ≈ 0.2MDisk

Init . (4.1)

This relation remained true independent of the initial ring mass or radius of the ring

particles.
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Once satellites formed, resonant ring interactions (Lindblad torques) perturbed

the satellites outwards from the ring while the ring was still sufficiently massive. After

the ring had depleted, with the bulk of its mass deposited onto Mars, tidal torques

eventually always overcame the Lindblad torques and the satellites evolved inwards.

During this process, these satellites typically accreted into one single satellite before

evolving to the RRL to create a new ring.

Therefore, given a satellite mass I may use Equation 4.1 to estimate the mass of

the ring that must have produced it. Furthermore, assuming that a ring was produced

by the disruption of an ancient satellite, I may determine the mass of the ring that

formed the ancient satellite as well. Knowing the mass of a satellite (e.g. Phobos) I

may calculate the mass of the ring that produced it. This result is a consequence of

selecting tidal breakup to occur at the RRL. For instance, the satellite/ring system

that preceded Phobos was ∼ 5× as massive as Phobos, and the satellite/ring system

that preceded it was ∼ 5× larger still (see Figure 4.1).

The dichotomy-forming impact event sets two constraints: the upper limit to

the mass of the initial ring created by the impact, and the starting time for the

ring/satellite cycle. From a study of the formation of the martian hemispherical

dichotomy from an impact using a large suite of smoothed particle hydrodynamics

(SPH) simulations, the maximum mass of a ring created by the best case scenario is

∼ 3× 1023 g [Marinova et al., 2011]. My preliminary results indicate that a satellite

that is disrupted at the RRL will eventually accrete a new satellite with a mass

∼ 20% of the primordial satellite’s mass (see Equation 4.1). Based upon this result, I

calculate the mass of the ring that must have formed Phobos and call this “Cycle 1.”

Assuming this ring formed as a result of the tidal breakup of a primordial satellite

that also evolved to the RRL, I calculate the mass in the previous cycle and call this

“Cycle 2,” and so on. Beginning with Phobos, in Table A.1 I use Equation 4.1 to

calculate the system mass for each previous cycle until I reach an initial ring mass

that is greater than what would be expected to form out of the dichotomy forming
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Figure 4.1. a. The ring, shaded corresponding to its surface mass
density, has viscously spread to Mars (orange) and to the fluid Roche
limit (FRL). b. Ring material has accreted into a satellite (blue,
size exaggerated) that is perturbed outwards via Lindblad torques.
c. Being inside the synchronous orbit (Synch.), the ring has depleted
and tidal torques evolve the satellite inwards. d. The satellite has
reached the rigid Roche limit (RRL), disrupting into a new ring. e.,f.
The cycle repeats, producing Phobos.
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impact ejecta. I find that a ring with any of the initial masses listed in Table A.1 will

eventually form Phobos.

For the initial conditions I modeled the ring following a surface mass density of a

narrow Gaussian centered at the RRL, with a total mass of 1.2 × 1023 g. Although

the exact conditions of the martian system immediately after the dichotomy forming

impact are not strictly known, my choice of initial conditions is unlikely to be realistic.

It is more likely that the dichotomy forming impact would disperse material from the

planet, with a mass distribution that would decrease as some function of distance.

This would result in a ring contained within the FRL with a surface mass density

Σ(r) ∝ r−p, and a population of satellites extending beyond the FRL. Deimos likely

marks the very outside edge of this initial impact debris system. However, as the

mass distribution of the initial ring is erased after the first cycle, my choice of initial

conditions does not strongly affect my results, and thus how I observe the martian

system today. If the dichotomy forming impact is able to produce a satellite with a

mass of 2.6× 1022 g interior to the synchronous orbit, this satellite will likely scatter

any exterior satellites, possibly leaving the lone survivor Deimos. Assuming tidal

breakup of satellites occurs at the RRL, I find that if the dichotomy-forming impact

produced a satellite with a mass of ∼ 2.6×1022 g, this system would eventually evolve

over 5 cycles to produce a single satellite with the mass of Phobos.

4.2.1 Uncertainty in Tidal Breakup

The above mass estimates are determined by the location where satellite breakup

occurs, which I took to be at the RRL, located at ∼ 1.6RM . The greatest uncertainty

in my estimation of the total number of cycles is the location where tidal breakup

of each satellite occurs. Severe tidal deformation of a satellite may occur when the

satellite is only a few Mars radii away, yet Phobos orbits Mars at ∼ 2.76RM as a

coherent body and is not believed to be losing material due to tidal torques. Therefore,

I know tidal breakup should only occur when the satellite’s semi-major axis is less
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than that of Phobos, which is currently orbiting inside the FRL. The Rigid Roche

Limit (RRL) is defined as the orbital location where a particle on the equator of

a spherical satellite is no longer bound to the surface of the satellite. Assuming

the satellite is a gravitational aggregate with no cohesion forces between particles,

this occurs when the outward centrifugal forces of the satellite’s rotation and tidal

shear are stronger than the attractive gravitational forces of the satellite [Murray and

Dermott, 1999].

However, real satellites may have some internal cohesive strength, and it has been

found that for a satellites with a plausible range of internal strength tidal breakup

should occur somewhere within 1.2− 1.7RM [Black and Mittal, 2015]. In Figure 4.2 I

ran simulations for a ring composed of particles with a 1 km radius and with a total

ring mass of ∼ 1.2 × 1023 g until the cycle mechanism resulted in a satellite with a

mass less than or equal to Phobos. However, in these simulations I varied the location

where tidal breakup of the satellite occurred. I then compared the mass of the ring

at the beginning of a cycle to the final satellite mass produced by the cycle.

These results show that if tidal breakup of the satellites occurs at 1.2RM , each

cycle will produce a satellite with ∼ 6% the mass of the ring at the beginning of the

cycle. On the other hand, if satellite breakup were to occur at 1.7RM , I find that if

the dichotomy forming impact produced either a ring or a satellite with a mass of

∼ 1.7×1023 g, Phobos would form after 7 cycles. Because this breakup location is the

largest source of uncertainty in the per-cycle mass loss estimates in my model, I define

the “nominal case” as the one where breakup occurs at the RRL at ∼ 1.6RM , and use

the estimated limits of the satellite breakup location to determine the uncertainty in

my results.

4.2.2 Ring Particle Size

As the impact event that formed the dichotomy likely occurred 4.3− 4.5 Gy ago,

the entire process, from the initial impact debris ring which cycles to produce a Phobos
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Figure 4.2. Here I compare the final satellite mass to the initial ring
mass for a Martian satellite-ring cycle. I plot the ratio of the final
satellite mass to the initial ring mass for each cycle while varying
the location of total satellite breakup. Satellite breakup may occur
anywhere within 1.2 − 1.7RM (Black and Mittal [2015]). I find that
if a satellite disrupts at a location closer to Mars, the resulting ring
will produce a final satellite with a mass smaller than if the breakup
was to occur farther away from the planet.

sized satellite that evolves into the orbit I observe today, must take at least ∼ 4.3 Gy.

There are several factors that affect the timescale of an individual cycle including:

the mass of the ring, the tidal parameters chosen for Mars and the satellites, and the

size of the particles within the ring. The mass of the ring is determined via Equation

4.1, and I find it unlikely that the tidal parameters of the satellites are much different

than previously found [Black and Mittal, 2015, Rosenblatt and Charnoz, 2012].
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Because the ring particle size is unconstrained, I use this as a free parameter in

the model and choose a value that allows the complete evolution to occur over the

time since the dichotomy-forming impact 4.3 Gy ago. Between my results for different

size ring particles I compare four timescales: the time for the ring to evolve from the

RRL to the FRL, the time for satellites to accrete from the ring and evolve outwards

due to ring torques, the time for the ring to deplete such that Lindblad torques no

longer dominate the orbital evolution of the satellites, and the time for satellites to

evolve inwards to the RRL due to planetary tides.

The time for the ring to evolve from the RRL to the FRL scales directly with

particle radius, and is confirmed by my results for all cycles and all particle sizes.

The time for the particles to accrete and evolve outwards has some dependency on

particle size. This is confirmed by my results for rings composed of particles with

a radius of 1 km and 100 m for all cycles, and for my results for rings composed

of particles with a radius of 10 m for cycles 6, 5, and 4. The time for the ring to

deplete has a strong dependence on particle size being largely set by the spreading

timescale of the ring, similar to the evolution of ring material from the RRL to the

FRL. The time for the satellites to evolve to the RRL after the ring has depleted is

largely independent from the radius of the ring particles, as it is mainly driven by the

orbital evolution of the satellite due to planetary tides.

To determine the necessary ring particle size needed to fit the giant impact age

constraint I compare the timescales in my results for rings composed of different sized

particles. For the early cycles, the time required for the ring to spread to the FRL

is short compared to the time required to eventually evolve accreted satellites to the

RRL. Thus, the mass of the ring, and not the particle size, is the primary factor

determining the time it takes for the early cycles to complete. However, in the later

cycles the mass of the ring is never sufficient for Lindblad torques to greatly perturb

the satellites’ orbits [Rosenblatt and Charnoz, 2012], and the satellites orbit near the

edge of the ring. In these later cycles the time it takes for the ring to spread to the

FRL, where it may begin to accrete into satellites, is much longer than the satellites’
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orbital evolution. Therefore, the time it takes for later cycles to complete is driven

by the dynamics of the ring and shows a much greater dependency on particle size.

Because the evolution of the ring scales with the size of the ring particles, for

cycles 3, 2, and 1 I assume that the ratio between these timescales for rings composed

of particles which differ by an order of magnitude in radius remains constant. I am

then able to extrapolate the amount of time a ring composed of any size particle will

take to complete a given cycle. With this methodology, I estimate that modeling

the ring particles as 0.18 m bodies would take the system roughly ∼ 4.3 Gy to form

Phobos and place it in its current orbit. This result is in agreement with Saturn’s

rings today, which are estimated to be composed of particles with a radius between

few centimeters to several meters [Salmon et al., 2010a].

I used the most massive cycle in Table A.1 to set the initial conditions for RING-

MOONS. I assume that the dichotomy-forming impact formed both Deimos and a

ring with a mass of 1.2+0.5
−0.7 × 1023 g. Although I find that rings composed of smaller

particles take longer to complete a cycle than rings composed of larger particles, the

mass ratio between the initial ring mass and the total mass of the satellites produced

remained constant, independent of ring particle size. I conducted multiple simula-

tions of all cycles, varying the radius of the particles in the ring to determine the

duration of each cycle. I then estimate the necessary particle size for the entire pro-

cess to complete in 4.3 Gy, which is the latest that the dichotomy-forming impact is

expected to have occurred [Marinova et al., 2008].

For each cycle I compare the time it takes for the ring to spread material from the

RRL to the FRL, the time to accrete satellites, the time for the ring to deplete, and

the time to evolve satellites to the RRL. I then analyze how these timescales vary

between rings composed of different sized particles, and different locations of satellite

breakup. In my “nominal case” I find a ring with an initial mass of 1.2× 1023 g that

is composed of particles with a radius of 0.18 m will evolve over 6 cycles to produce

Phobos. If satellite breakup occurs at 1.2RM the initial ring is less massive, fewer

cycles occur, and the required particle radius is smaller. If satellite breakup occurs at
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1.7RM , the initial ring is more massive, more cycles occur, and the required particle

radius is larger. Therefore, I find that an initial ring with a mass of 1.2+0.5
−0.7 × 1023 g

that is composed of particles with a radius of 0.18+0.14
−0.03 m would complete 6+1

−3 cycles

to place Phobos in its current orbit after ∼ 4.3 Gy.
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Figure 4.3. Here I show snapshots of satellites produced in my nom-
inal case with time estimated for a ring composed of 0.18 m radius
particles. Satellites are represented as dots with radius scaled to the
satellites mass. Each cycle begins by spreading ring material to the
FRL to accrete into satellites that evolve away from the ring via Lind-
blad torques. Tidal torques eventually move the satellites inwards
until they disrupt at the RRL, and the cycle repeats. Satellites in
Cycle 6 approach the 2:1 mean motion resonance with Deimos (2:1
MMR).

Beginning with Cycle 6, in Figure 4.3 I display a history of satellites produced via

the martian ring-satellite cycles through 4.3 Gy of evolution, as modeled by RING-

MOONS. In Cycles 6, 5, and 4, ring torques are sufficient to evolve satellites away

from the ring, producing multiple satellites with the most exterior being the most

massive. After the ring depletes, tidal torques overcome the Lindblad torques and
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perturb these satellites inwards. The most exterior satellite rapidly evolves inwards

and accretes any inner satellites. For Cycles 3, 2, and 1, the ring is not sufficiently

massive to perturb satellites away from the ring and only one satellite is produced.
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Figure 4.4. Results for the mass evolution for Martian satellites over
time, assuming all particles in the ring have a radius of 1 km (red
circles), or a radius of 100 m (black diamonds). The y-axis represents
the mass of the satellites. The x-axis displays the time each satellite
crossed the Rigid Roche Limit, save for the final Phobos analogs (bot-
tom right). Time is represented as a fraction of the total time (tTot)
from the initial conditions to placing a Phobos analog in the current
orbit of Phobos. In rings with 1 km radius particles, each cycle pro-
duces one massive satellite. In rings with 100 m radius particles, early
cycles may create several satellites which reach the RRL at different
times.
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4.3 Deposition of “Astro-Sediments” onto the Martian Surface

In the “nominal” case, roughly 80% of the ring mass is deposited onto Mars.

Initially the ring evolves very rapidly, depositing the bulk of this material in a fraction

of the total cycle time. As the mass of the ring decreases, so does the rate of its

evolution. Using my estimates of the timescales for a ring composed of 0.18 m particles

(our “best case” scenario), in Table A.2 I estimate the amount of time it would take

for the ring to deposit ∼ 80% of the total cycle’s deposit, as well as at what time the

deposit would have occurred in Mars geologic history. I may also estimate the total

volume and possible depths of these deposits onto the Martian surface.

For each cycle I am able to calculate the total amount of material that passes

through the interior ring boundary and falls onto the planet. I estimate the depth

of each deposit by approximating Mars as a perfect sphere and performing a simple

volume integral. Given the mass and density of the deposited material, m and ρ,

and the maximum latitude at which the deposit is expected to fall in degrees, x,

performing a volume integral yields the depth of the deposit, ∆R, via:

∆R =

[
R3
M −

3m

4πρ cos
(
π
2

+ xπ
180◦

)]1/3

−RM (4.2)

The values in Table 2 were calculated setting ρ = 1.876 g/cm3, the bulk density of

Phobos, x = 90◦ to find the depth of a global deposit, and x = 10◦ to find the depth

of a 20◦ band across the equator.

The mass of the ring in the early cycles is sufficient for Lindblad torques to effi-

ciently evolve multiple massive satellites far from the ring [Rosenblatt et al., 2016].

After the ring has been depleted, it is possible that inner satellites could quickly

evolve to the RRL before they could be accreted by distant exterior satellites. There-

fore, the simple progression of discrete cycles may be more complicated in reality (see

Figure 4.4). Deposits would still occur throughout Martian history, but if satellites

reach the RRL at different times, a single cycle would yield multiple smaller deposits

than the individual deposits displayed in Table A.2.
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As these “astro-sediment” deposits would occur during different geologic epochs

and would thus be subject to different types of weathering and cementation processes

making speculation of their composition or exact contribution to the martian geologic

record difficult. In addition to not knowing the interior and bulk composition of Pho-

bos, there are a multitude of factors affecting the composition of the astro-sediments

including their interaction as they enter the atmosphere, the Martian geologic period

at which the deposit occurs, and any weathering that would occur on the planet after

the deposit, among others. However, there is evidence for numerous equatorial “enig-

matic sedimentary deposits” on Mars whose origins are not currently understood,

including the Medusa Fossae Formation Kite et al. [2013] Thus, the deposition of

these astro-sediments during the ring cycle process may be an additional hypothesis

for the origin of these sedimentary packages.

4.4 Orbital Resonances with Deimos

Deimos’s orbit is very nearly circular, with an eccentricity less than 3 × 10−4,

and as of yet no model has been able to form the Martian satellite system with the

eccentricity of Deimos observed today. Furthermore, all models that evolve Phobos

from a location near the synchronous orbit face the greater difficulty of Phobos en-

tering into a resonance Deimos, which should excite the eccentricity of Deimos to an

order of magnitude greater than its current value [Murray and Dermott, 1999, Yoder,

1979]. While it is possible for the satellites to relax from these excited orbits into

their orbits observed today, this would require the satellites to have different tidal

dissipation rates [Rosenblatt et al., 2016]. In my model Phobos does not evolve from

the synchronous orbit to its current location, but rather near the ring’s edge located

at the FRL, avoiding the Deimos eccentricity boosting 2:1 resonance. Furthermore,

my model results in a different age between the two satellites and permits each of the

gravitational aggregate bodies to dissipate tides at the same rate.
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The orbital evolution of the satellites is very sensitive to the competition between

the Lindblad and tidal torques. Using tidal dissipation parameters for Mars today, I

find that cycle 6 could possibly evolve massive satellites beyond the 2:1 resonance (see

Table A.3). Primordial massive satellites orbiting beyond the 2:1 resonance would

cause Deimos, accreting from an outer disk of debris, to have either a semi-major axis

or eccentricity that is too great. This may constrain Cycle 5 to be the first cycle to

occur, rather than Cycle 6. Cycle 5 has low enough mass that Lindblad toques will

not evolve massive satellites beyond the 2:1 resonance with Deimos.

These results do seem to reconcile the mystery of why I have the convenient

opportunity to observe Phobos only a few tens of millions of years before its demise,

as the system I observe today is only a snapshot of a process that has likely been

repeating for billions of years. Phobos may be in the last stage of a given cycle, finally

completing its accretion phase in perhaps only the last ∼ 200 My. I hypothesize that

while the body was accreting, impacts with ring material and smaller ring-generated

satellites would have saturated the surface of Phobos with craters. This more recent

estimate of the satellite’s age makes our observation of it slightly less fortuitous.

Further analysis allows me to conclude that as Phobos enters the RRL in less than

70 My, it too will be ripped apart and turned into a ring [Hurford et al., 2015]. This

ring would take ∼ 8 Gy to spread material beyond the FRL, and would accrete a

satellite with a final mass of ∼ 2.3 × 1018 g, roughly the same mass as present day

Deimos.

4.5 Existence of a Ring Today

At the completion of Cycle 1, the simulation results in a Phobos-mass satellite

orbiting Mars at its current semi-major axis. However, my simulations also result

in the existence of a low-mass ring orbiting Mars. As there is no evidence that a

ring exists today, this remains as a caveat to my work. The surface mass density of

the remnant ring is on the order of ∼ 1 g/cm2 (see Figure 4.5). I estimate that the
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radius of the ring particles would be 0.18+0.14
−0.03 m and therefore this ring would have an

optical depth τ << 1 (see Equation 3.10). Although I have modeled the ring to have

particles of identical size, a more realistic ring may have a distribution of particle

sizes. For an optically thin ring, the effects of solar radiation may work to deplete

the material, with the smallest particles experiencing Poynting-Robertson drag and

the larger particles affected by the Yarkovsky Effect. Both these processes may work

to remove material from the low mass remnant ring, explaining why I do not see it

in the present day. Modeling of the effects of solar radiation on the remnant ring is

beyond the scope of the present work.
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Figure 4.5. Here I display the surface mass density (Σ) of the ring
during Cycle 1, the ring that produces Phobos, for the “nominal case”
at different times during the cycle. Although a ring still exists at the
completion of the simulation, there is likely not a ring visible today.
My results indicate the ring at the completion of Cycle 1 is optically
thin, with τ ≤ 0.03. I hypothesize that this low mass remnant ring
may be depleted due to solar radiation effects, which I do not model
currently.
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5. FORMATION OF MIRANDA FROM A MASSIVE

URANIAN RING

Before I begin, in Chapter 2 I described an approximation of the Lindblad torque

exerted onto satellites via gravitational interactions as given in Esposito [2006]. The

satellite-ring system of Uranus, the focus of this chapter, is very tightly coupled. In

order to hypothesize the type of rings that may have produced the satellites observed

today, in this chapter any Lindblad torques exerted onto satellites are explicitly cal-

culated, not approximated. This includes corrections to Equations 2.4 and 2.15.

To first-order, the Lindblad torque exerted onto a satellite with semi-major axis

a by the ring at resonance location rM is given as [Tajeddine et al., 2017]:

ΓM = ∓4π2

3

(
M
M− 1

)
σ(rM)

(
r2
Mβn

Ms

Mp

AM

)2

. (5.1)

β = rM/a and AM is a dimensionless quantity that depends upon Laplace coefficients

and their derivatives. The latter is calculated as:

AM =
1

2

[
2MbM1/2(β) + βDbM1/2(β)

]
. (5.2)

bM1/2(β) is the Laplace coefficient and D is its derivative. Murray and Dermott [1999]

provides an algorithm to calculate the Laplace coefficients and their derivatives. The

derivative, D is simply a function of Laplace coefficients.

DbM1/2(β) =
1

2

[
bM−1

3/2 (β)− 2βbM3/2(β) + bM+1
3/2 (β)

]
. (5.3)

Equation 2.15 may now be corrected to include the explicit calculation of Lindblad

torques:
∞∑
M=2

(
M
M− 1

)
σ(rM)r3

MA
2
M >

9

8π2

(
k2

Q

)
MpR

5
p

a4
. (5.4)

Motivation for this correction was a result of the peer review process in publishing

this work. While a direct calculation of the Lindblad torque is of clear benefit, the
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difference between the approximated torque given in Equation 2.4 and the direct

calculation in Equation 5.1 is not major. Both results agree within the same order of

magnitude. While I proceed with the direct calculation in this Chapter, the impact

to the results of Chapter 4 are likely to be minimal.

A version of this chapter has been accepted into The Astronomical Journal as A.

J. Hesselbrock and D. A. Minton, “Three Dynamical Evolution Regimes for Coupled

Ring-Satellite Systems and Implications for the Formation of the Uranian Satellite

Miranda,” The Astronomical Journal, 2018.

Perhaps the most interesting feature of Figure 2.2 is the location of the satellite-

ring systems of Uranus and Neptune. Both of these giant planets have rings and

inner satellites that orbit near the rings’ edges. Leinhardt et al. [2012] proposed a

tidal disruption origin of the inner satellites of Uranus and Neptune. Furthermore,

some of these satellites lie within the synchronous orbit, but some lie beyond. It may

be possible that these planets had primordial rings that were sufficiently massive to

cause satellites to migrate far from the FRL and beyond asynch, similar to a system in

the Slingshot regime. However, as the primordial ring decayed over time the evolution

of satellites may have transitioned to follow an orbital migration similar to a system

in the Boomerang regime [Charnoz et al., 2018].

Unfortunately, the dynamics of the Neptune-Triton capture event makes it diffi-

cult to compare the locations of the satellites today to a primordial ring system. Such

a dynamic capture event is not thought to have occurred at Uranus, making a com-

parison between its present day satellite system to a primordial ring more straight-

forward. As the ring-satellite system at Uranus lies within the Torque-Dependent

regime, it serves as a candidate for special scrutiny [Charnoz et al., 2018]. By exam-

ining Equation 2.15, I may hypothesize the type of massive primordial ring that may

have produced the Uranian satellites and migrated them to their current orbits. In

the following sections I will further examine the dynamics of the Uranian ring-satellite

system in order to examine whether a massive primordial ring may have produced

the system we observe today.
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Figure 5.1. Orbital architecture of the Ice Giant systems. The
dark circles show the present-day orbits of known satellites (abbre-
viated names adjacent) while the gray lines mark the locations of
known rings. The location of the Rigid Roche Limits (RRL), Fluid
Roche Limits (FRL), synchronous orbits (asynch), and maximum or-
bits (amax) for satellites perturbed by Lindblad Torques are also
shown. Uranus (panel a) has 13 satellites with orbits within amax,
indicating they may have accreted from an ancient Uranian ring. The
satellite Miranda, orbiting just beyond asynch may have also accreted
from this ring. Neptune (panel b) has 5 satellites with orbits within
amax, indicating they may have accreted from an ancient Neptunian
ring, however the Triton capture event complicates the ability to test
this hypothesis. It is possible the satellites S/2004 N 1 and Proteus,
orbiting beyond aLind may also have accreted from such a ring.
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5.1 Motivation

Examination of Figure 2.2 reveals that Uranus falls within the Torque-Dependent

regime for a wide range of satellite densities. The planet is orbited by several rings

and has multiple satellites, with 13 known to orbit within aLind (see Figure 5.1). The

masses and densities of 11 of these inner satellites are not well constrained. Each

of these satellites are assumed to have a bulk density of ∼ 1.3 g cm−3. However,

Jacobson et al. [1992] used Voyager radar and image observations to determine the

bulk density of Miranda to be ∼ 1.2 g cm−3. Additionally, Chancia et al. [2017] used

perturbations in Uranus’s η ring to determine the bulk density of Cressida to be

∼ 0.86 g cm−3. Therefore, the other 11 inner satellites of Uranus may have a bulk

density less than typically assumed.

In this chapter I implement RING-MOONS to examine whether Miranda may have

formed from an ancient primordial ring in orbit around Uranus. Uranus has a mass

of 8.68×1028 g, an average radius RU ∼ 2.54×109 cm, a bulk density of 1.27 g cm−3,

and an obliquity of 97.8◦. A giant impact has been proposed to explain the large

tilt of Uranus’s rotation axis [Slattery, 1992]. Such an impact may have occurred

soon after the planet formed and may have placed a large amount of material into

orbit. This material would have collapsed into a Roche-interior ring around Uranus

[Morbidelli et al., 2012]. The current inner satellite system may have accreted from

this Roche-interior ring [Charnoz et al., 2018]. Furthermore, such an impact event

may have produced Uranus’s current rotation period of 17.24 hours [Slattery, 1992].

Miranda is a massive satellite that currently orbits Uranus beyond aLind. It has

a radius of 2.36 × 107 cm, an estimated mass of 6.6 × 1022 g, and a bulk density of

1.2 g cm−3 [Jacobson et al., 1992]. Miranda has a semi-major axis of 1.30×1010 cm ∼

5.13RU , and an eccentricity of 0.0013. The low eccentricity of Miranda’s orbit is

indicative of formation from a planetary ring [Charnoz et al., 2010]. Yet, Miranda

orbits Uranus with an inclination of 4.3◦, which is unexpected for satellites accreting

from a planetary ring. Miranda does not exhibit any mean motion resonances today,
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and the relatively high inclination of its orbit (as compared to the satellites which orbit

interior to Miranda) is not currently understood. However, it may be possible that

after accreting from a planetary ring, Miranda at some point crossed the 3 : 1 MMR

with Umbriel [Moons and Henrard, 1994].

Tiscareno et al. [2013] determined that the location of transition from ring material

to satellites at Uranus implies a critical Roche density of 1.2 g cm−3. Satellites with

a bulk density of ∼ 1.2 g cm−3 accreting from a Roche-interior ring in orbit around

Uranus fall within the Torque-Dependent regime (see Figure 2.2). Examination of

Equation 2.11 shows that the evolution of a satellite depends upon the tidal love

number k2, and the tidal dissipation factor Q. However these values are not well

constrained for the Uraninan satellites. For Uranus, k2 is thought to be ∼ 0.104

[Murray and Dermott, 1999], while Q could be as small as 500 or as large as 10, 000

[Lainey, 2016].

5.2 Methods

I hypothesize that Miranda accreted from an ancient ring orbiting Uranus 4 Gy

ago that was sufficiently massive for Lindblad torques to migrate the satellite from

the FRL to an orbit beyond asynch. I further hypothesize that after migrating to

an orbit beyond asynch, tidal torques caused the satellite to migrate to its current

orbit. With this hypothesis in mind, I use the current semi-major axis of Miranda

as a constraint in calculating the tidal ratio k2/Q. If I assume Miranda evolved to

its current orbit from asynch over 4 Gy from tidal torques alone, I may place a lower

bound on the value of k2/Q. With these constraints I may integrate Equation 2.11

to determine k2/Q.

Ignoring Lindblad torques, integration of Equation 2.11 for a satellite in a circular

orbit yields:

a
13/2
F − a13/2

I =
39MsR

5
p

2

√
G

Mp

(
k2

Q

)
∆t. (5.5)
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Here ∆t is the amount of time tidal torques will cause a satellite to migrate from an

initial semi-major axis aI to a final semi-major axis aF . If I assume that tidal torques

caused Miranda to migrate from asynch to its current orbit in 4 Gy, I may determine

the required tidal ratio k2/Q for this to occur by rearranging Equation 5.5 to yield:

k2

Q
=

2

39MsR5
p∆t

√
Mp

G

[
a

13/2
F − a13/2

I

]
. (5.6)

I set aF equal to Miranda’s current semi-major axis, aI = asynch ∼ 3.26Rp, and

∆t = 4×109 years. By substituting the mass and radius of Uranus into Equation 5.6,

as well as the current mass of Miranda, I find k2/Q ≈ 3.3 × 10−5. If k2 = 0.104

[Murray and Dermott, 1999], this corresponds to a tidal dissipation factor of ∼ 3150,

and is well within the expected range for Q [Lainey, 2016].

By definition, a satellite that accretes within the “Torque-Dependent” regime

would be in a 2:1 resonance (M = 2) with a location interior to the FRL when the

satellite is located at the synchronous orbit. Examining Equation 5.4, I calculate the

necessary surface-mass density of the ring for Lindblad torques to overcome the tidal

torques. I find that a Uranian ring with a surface-mass density of ≥ 18 g cm−2 in a

2:1 resonance with a satellite located at asynch would be able to perturb the satellite

to beyond asynch. At this point tidal torques would continue to migrate the satellite

away from the planet. This surface-mass density is on the order of the estimated

surface-mass density of the Uranian rings today [Esposito, 2006].

In order to simulate the Uranian system in “RING-MOONS” I need to define

the initial conditions of the system [Hesselbrock and Minton, 2017]. The physical

characteristics of the particles in the ring and the accreted satellites, as well as the

surface mass density profile of the ring all affect the outcome of the system. As I am

testing a hypothesis on the formation of Miranda, I assume the bulk density of the ring

material, and any accreting satellites, to be identical to the bulk density of Miranda,

ρs = 1.2 g cm−3 [Tiscareno et al., 2013]. Furthermore, I set the initial surface-mass

density of the ring to follow a power law, such that σ(r) = σ0r
−3, where σ0 is a

constant determined by the initial mass of the ring. The ring extends from the upper
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atmosphere of Uranus to the FRL. Lastly, I assume k2 = 0.104 [Murray and Dermott,

1999] and set Q = 3000. This corresponds to a tidal ratio of k2/Q = 3.5 × 10−5,

which is slightly more than the calculated lower bound of k2/Q = 3.3× 10−5.

5.3 Results

In Figure 5.2 I display the results from a RING-MOONS simulation. The initial

surface-mass density of a ring with a total mass of 3.0× 1023 g, as well as the current

mass and location of the inner Uranian satellites is shown in Figure 5.2a. Additionally,

I have marked the semi-major axes of the RRL, FRL, and asynch. For a satellite to

migrate beyond asynch, the locations in the ring that are in resonance with the satellite

must have a sufficient surface mass density to satisfy Equation 5.4. A satellite orbiting

Uranus at asynch could be in resonance with both theM = 2 andM = 3 modes in the

ring. This permits multiple surface-mass density profiles for Equation 5.4 to remain

true. However, in Figure 5.2a I have marked the surface-mass density for theM = 2

resonance mode to alone satisfy Equation 5.4 for a satellite at asynch.

I find that the ring quickly transports ring material beyond the FRL where it

is able to accrete into satellites [Crida and Charnoz, 2012, Hesselbrock and Minton,

2017]. Additionally, the surface mass density of the ring is initially sufficient for

Lindblad torques to overcome the tidal torques, migrating the satellites away from

the ring edge. As displayed in Figure 5.2b, we see that after 17 My the surface-mass

density of the ring has decreased, yet remains sufficient to satisfy Equation 5.4. In

17 My the ring has produced a collection of 25 satellites, including two satellites which

have migrated beyond asynch. Furthermore, Figure 5.2b shows that the surface mass

density of the ring at theM = 2 resonance location is sufficient for Lindblad torques

to migrate the Miranda-mass satellite beyond asynch.

The results of the simulation after 183 My are displayed in Figure 5.2c. At

this point we see that the two exterior satellites have migrated beyond asynch. Once

beyond the synchronous orbit, Equation 2.11 is positive as the tidal torques cause
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Figure 5.2. Evolution of the surface mass density of a Uranian ring
with an initial mass of 3.0×1023 g. The horizontal axis marks the dis-
tance from Uranus, the left vertical axis marks the surface-mass den-
sity of the ring (black line), and the right vertical axis marks the mass
of the satellites. Solid black circles represent RING-MOONS satellites
while the current satellite population is shown as gray squares. The
locations of the RRL, FRL, and the synchronous orbit are marked
with vertical lines. The open circle marks the required surface-mass
density at theM = 2 mode for Equation 2.15 to be true for a satellite
at asynch, ignoring all other modes. (a) Initial conditions. (b) Two
satellites have evolved beyond asynch and the surface-mass density is
above the threshold value. (c) The surface-mass density of the ring has
fallen such that Equation 2.15 is no longer true. (d) The surface-mass
density of the ring has declined. The two satellites orbiting beyond
asynch have merged into a Miranda-mass satellite. The 18 satellites
interior to asynch have merged into one massive satellite that has mi-
grated to the RRL. (e) The massive satellite has been disrupted at
the RRL, generating a new ring which has begun to viscously spread.
(f) The ring generated by the destruction of the massive satellite has
accreted a new generation of 14 satellites. However, the surface-mass
density of the ring has fallen below the threshold value. Overtime
these satellites may gravitationally scatter to produce a system simi-
lar to the one observed today.
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the two satellites to migrate away from the primary. After ∼ 183 My the ring has

generated a total of 20 satellites. However, at this point the surface-mass density of

the ring at the M = 2 mode has fallen such that Equation 5.4 is no longer valid

for a satellite located at asynch. We see that the surface-mass density of the ring has

fallen such that Lindblad torques are unable to cause any other satellites to migrate

beyond asynch. As the ring loses mass overtime, tidal torques cause the remaining 18

satellites orbiting inside asynch to migrate inwards.

At ∼ 215 My these two satellites merge to form a single Miranda-mass satellite.

The Miranda mass satellite continues to be migrated away from the primary, and

reaches Miranda’s current semi-major axis at ∼ 4.2 × 109 years. As the simulation

continues, the most massive satellite interior to asynch migrates inwards. The tidal

torque exerted on the massive satellite causes its semi-major axis to decrease more

rapidly than any other satellites interior to asynch. Thus, as the massive satellite

migrates inwards it accretes all the satellites interior to asynch. After ∼ 675 My all

satellites interior to asynch have merged into one massive body that has migrated to

the RRL (see Figure 5.2d).

Upon reaching the RRL, the massive satellite has rapidly disrupted, with its mate-

rial generating a new ring of material, in agreement with Leinhardt et al. [2012]. The

ring begins to viscously spread as displayed in Figure 5.2e. This ring deposits much

of its mass onto Uranus, however it does spread material towards the FRL. After

∼ 720 My, the ring has spread material beyond the FRL forming a new generation of

14 satellites interior to asynch, which I show in Figure 5.2f. The most massive satellite

generated by the new ring is roughly half the mass of the satellite Puck. However, as

the mass of the ring decreases over time, the surface mass density of the new ring is

insufficient to evolve any of these satellites beyond asynch.

It is important to note that the value of k2/Q has a strong effect on the results

of the simulation. In Equation 5.4, Q and σ(r) are inversely related. If Q ∼ 10, 000,

in contrast to the value I derived, the magnitude of the tidal torques is reduced.

In such a scenario, the surface-mass density of the ring for the Lindblad torques to
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overcome the tidal torques would be substantially less. Thus, for the same mass ring,

satellites would be more easily evolved to orbits beyond asynch. However, once the

satellite has been migrated beyond aLind tidal torques alone drive the migration of

the satellite. In this scenario, a Miranda-mass satellite would be unlikely to reach its

current orbit within 4 Gy due to the reduced tidal torque. Conversely, if Q ∼ 500,

the necessary surface-mass density for Equation 5.4 to be true would be substantially

greater. Although such a ring would be able to evolve a satellite to the orbit of

Miranda, the greater mass of the ring would result in a satellite much more massive

than Miranda.

5.4 Discussion

While the results displayed in Figure 5.2 show that it is possible to evolve a

Miranda-mass satellite to its current orbit from a Roche-interior ring, these results

do not fully reproduce the system as we see it today. There are 13 Uranian satellites

interior to aLind, and the RING-MOONS results do not reproduce all of the inner

Uranian satellites. The most difficult satellites to model with RING-MOONS are the

satellites Mab and Puck. I find that rings that are massive enough to perturb two

bodies beyond asynch typically produce satellites much more massive than Miranda

and/or Puck.

There are several dynamical processes that are not modeled in RING-MOONS,

but which may be important for reproducing the architecture of the inner Uranian

satellite system. RING-MOONS treats all satellite-satellite interactions as direct

mergers, whereas in reality close encounters could also cause satellites to disrupt,

or scatter [Hesselbrock and Minton, 2017, Leinhardt and Stewart, 2012, Salmon and

Canup, 2017]. This causes RING-MOONS to produce systems where satellite mass

generally increases with semi-major axis, and prevents the model from producing

small satellites that could be scattered into distant orbits. This may explain why the

architecture of the inner satellite system in Figure 5.2f does not match the observed
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system, especially for the satellites Perdita and Cupid (Figure 5.1). Furthermore,

satellites accreting from a Roche-interior ring are often in near resonance with each

other. A satellite orbiting beyond aLind will no longer directly exchange angular

momentum with the ring. However, if an interior satellite that is still in resonance

with the ring enters into resonance with the exterior satellite, the Lindblad torque

exerted onto the interior satellite will be passed on to the exterior satellite. Thus,

Lindblad torques may evolve a satellite to an orbit beyond aLind through a Laplace

resonance chain [Salmon and Canup, 2017].

The limitations to satellite-satellite dynamics as modeled in RING-MOONS presents

an additional difficulty when considering the major Uranian satellites, Ariel, Umbriel,

Titania, and Oberon. The orbital migration of these bodies can have strong effects on

each other, and also potentially an inner satellite system as well. In this work, I as-

sume the major Uranian satellites formed soon after Uranus itself and are primordial.

Thus, the orbital migration of the inner satellites which form in the Torque-Dependent

regime differs from the orbital migration of the major satellites. However, the gravita-

tional influence of the major satellites on the architecture of the inner satellite system

as displayed in Figure 5.2 needs to be investigated further. I find that Miranda, in

its outward migration, would encounter several mean-motion resonances with Ariel

and Umbriel. Indeed these interactions may have left Miranda with the inclination

observed today [Moons and Henrard, 1994, Tittemore and Wisdom, 1990].

Reproducing the Uranian system as it is observed today is a significant challenge

due to a number of factors. The inner Uranian satellites are currently tightly packed,

leading to a highly dynamic, chaotic system [French and Showalter, 2012]. Many

of these satellites experience a combination of mean-motion eccentricity and inclina-

tion resonances, making long term orbital integrations of the system difficult [French

et al., 2015]. Furthermore, the satellites themselves are expected to have experienced

multiple disruptive impacts with heliocentric material. Many of these collisions would

likely be catastrophic to the inner satellites. It is thought that the system observed

today has been collisionally evolved on a timescale of 108 years [Colwell and Esposito,
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1992]. Colwell and Esposito [1992] argue that the ring-satellite system we observe

today are leftover collision fragments from some older population of satellites. This

makes it extremely challenging to even hypothesize which satellites existed millions

to billions of years ago.

Lastly, the assumption that any satellite that has been migrated to the RRL would

be tidally disrupted may be an oversimplification. The RRL marks the location where

a cohesionless, strengthless object would be tidally disrupted, and is dependent upon

the satellite bulk density. As discussed in Section 5.1, the bulk density of the inner

Uranian satellites is indirectly constrained from the rings [Tiscareno et al., 2013], but

my estimate to the location of the RRL may not be correct for every inner satellite.

Furthermore, the inner Uranian satellites likely have some form of internal cohesion,

which would prevent them from being tidally disrupted at the RRL [Black and Mittal,

2015]. The uncertainty in the location of tidal breakup does not affect my result for

the formation of Miranda, but it does affect any results for satellites which accrete

from rings created by tidally disrupted satellites (Figure 5.2f). If the location of

tidal breakup is inward of the RRL, the subsequently formed ring would transport a

smaller mass of material beyond the FRL to form satellites [Hesselbrock and Minton,

2017]. Thus, the mass of the satellite system shown in Figure 5.2f serves as an upper

bound on the mass of the inner satellite system.

Due to these complications, connecting the results of RING-MOONS depicted

in Figure 5.2 to the system observed today is not straightforward. The popula-

tion of satellites interior to Miranda as produced by RING-MOONS and depicted in

Figure 5.2f has a total mass of ∼ 6.6 × 1021 g. This agrees with the current popu-

lation of satellites interior to Miranda, which are estimated to have a total mass of

∼ 6.5× 1021 g. I expect that heliocentric impacts with the inner satellites generated

by RING-MOONS would collisionally evolve the system to produce the ring-satellite

system of Uranus observed today [Colwell and Esposito, 1992, 1993]. Nevertheless, my

results do give some constrains on the origin of Miranda, and are in broad agreement
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with the total mass of satellites interior to Miranda, even if they do not reproduce

the details of their orbital architecture.
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6. THE TIDAL EVOLUTION OF BINARY SYSTEMS

6.1 Motivation

Binary systems are common throughout the solar system and are typically com-

prised of two similar mass bodies orbiting their mutual barycenter. Binary systems

are so numerous that it is possible that even all Trans Neptunian Objects (TNOs)

formed as binary systems [Nesvorný et al., 2010]. Binary systems can form in a vari-

ety of ways, including the mutual capture of two bodies during a close encounter, or

the catastrophic disruption of a single body into two. Additionally, rapidly spinning

objects may experience rotational disruption as the centrifugal force overcomes the

cohesive forces of the object, dividing the object to create a binary system.

Once a binary system has formed, the two objects exchange angular momentum

via tidal torques. The total angular momentum of a binary system includes the spin

angular momentum of each body, and the orbital angular momentum of the system.

Tidal interactions allow spin angular momentum to be transferred to the mutual

orbital angular momentum, or vice-versa. How angular momentum is transferred

between bodies is dependent upon the location of the synchronous orbit relative to

the semi-major axis of the system. The synchronous orbit is the location where

the orbital period of the system is equal to the rotation period of the most massive

body. I refer to the most massive body of the system as the “primary” and the

less massive body as the “satellite.” If the semi-major axis of the system is inside

the synchronous orbit, tidal interactions will transfer the orbital angular momentum

of the system into the spin angular momentum of the bodies. This causes the two

bodies to spin more rapidly and decreases the semi-major axis. If the semi-major axis

of the system is outside the synchronous orbit, tidal interactions will transfer the spin
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angular momentum of the bodies into the orbital angular momentum of the system.

This causes the two bodies to spin more slowly and increases the semi-major axis.

There are two possible end states for the tidal evolution of binary systems. The

first possibility is that angular momentum is transferred until the system reaches a

fully synchronous state. A fully synchronous system is where the orbital period and

the rotation periods of each body are all equal. If a binary system evolves to be fully

synchronous, the tidal torque reduces to zero and angular momentum is no longer

exchanged.

The second possibility is that the system experiences a runaway depletion of or-

bital angular momentum. The semi-major axis of the system will decrease until the

satellite is either tidally disrupted, or the two bodies come into contact to form a

contact binary. At the end stage of the tidal collapse of a binary orbit, material may

potentially be shed from the surface of either body, either due to the tidal disrup-

tion of the satellite or during the impact of the two bodies as they make contact.

If material is shed from the bodies’ surface and is placed into orbit, a ring system

could result. Recent observations indicate that several TNOs (Chariklo, Chiron, and

Eris) are orbited by ring systems. While Binary TNOs (BTNOs) may potentially be

common, it is not known how often ring systems orbit these objects. Examining the

dynamics of the tidal collapse of a binary system, as well as the population of BTNOs

that are likely to undergo such a collapse may indicate how often rings are produced

in the outer solar system. Additionally, as contact binaries may have formed via a

tidal collapse, they too may serve as good candidates for future ring studies.

Many TNOs may actually be contact binaries. These objects indicate that two

separate similar mass bodies became attached after coming into contact with one

another. It has been shown that 10− 30% of TNOs in the solar system are actually

contact binaries [Lacerda, 2011, Sheppard and Jewitt, 2004]. Some of these objects

may have formed via low-velocity impacts during close encounters. However, I hy-

pothesize that some contact binaries may have initially been a binary system that
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subsequently experienced a mutual decay of the body orbits. The tidal decay of

binary bodies is the focus of this work.

For binary systems that undergo a runaway depletion of orbital angular momen-

tum the semi-major axis is continuously decreased. In planetary systems where the

primary is significantly more massive than the satellite, the semi-major axis may

decrease until the satellite reaches the Rigid Roche Limit (RRL). For cohesionless

bodies, at this location the satellite begins to shed mass from its equator as material

is rapidly removed from the surface of the satellite and placed into orbit. Much of

the orbiting material impacts the satellite, creating a collisional cascade that quickly

disrupts the satellite, forming a ring around the primary body.

In planetary systems where the bodies are of similar mass the semi-major axis

may decrease until the two bodies come into contact. Depending upon the angular

momentum of the system, the relative velocity between the two body surfaces at the

moment of contact may be non-zero. During the moment of contact, friction between

the two body surfaces will transfer spin momentum from the primary to the satellite

until the relative velocity between the surfaces is reduced to zero. An increase to the

satellite’s rotation rate may reduce the acceleration of a particle on the equator until

it is no longer bound to the body. The shedding of mass during the formation of a

contact binary may evolve to form a ring around the contact binary as well.

Given the expected population of BTNOs and contact TNOs, as well as the dis-

covery of ring systems in orbit around TNOs, the ability of a binary tidal collapse

to produce rings is of particular interest. In this work I will examine the dynam-

ics of binary systems to determine which systems undergo a complete tidal decay

of their mutual orbit. After determining which types of systems undergo collapse, I

will produce statistics that show the likelihood of tidal decay. Finally, I will exam-

ine the recently discovered ring systems around the centaurs Chariklo and Chiron.

Chariklo and Chiron are both rapidly rotating bodies orbited by rings. I will investi-

gate whether the existence of rings and their rapid rotation rates are both explained

by a binary tidal collapse.
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6.2 Methods

In this section I describe the tidal dynamics of binary systems, the conditions for

tidal collapse, and review the possible end stages of collapse. In Section 6.2.1 I review

the tidal dynamics of a binary system and determine the conditions necessary for a

binary system to collapse. In section 6.2.2 I examine the likelihood that the satellite

remains intact during the tidal collapse. As the mutual orbit decays, the gravitational

force exerted on each body by the other increases, as does the rotation rate of each

body. I will examine the possible end stages of a binary collapse and how the collapse

dynamics may cause material to be removed from the satellite’s surface. Finally, in

Section 6.2.3, I will demonstrate how observations of a collapsed contact TNO binary

can reveal the initial orbit of the binary system before the collapse occurred.

6.2.1 Tidal Evolution of Binary Systems

The dynamics of a binary system in which a primary with mass Mp, and a satellite

with mass Ms, share a mutual orbit about their center of mass may be simplified

into an equivalent system. The simplified system is described as a body of mass

MpMs/(Mp + Ms) which orbits a stationary body of mass Mp + Ms [Taylor and

Margot, 2010]. The mass ratio of the system is defined as q = Ms/Mp.

The total angular momentum of the binary system is the sum of the orbital angular

momentum, and the spin angular momentum of the primary and the satellite. The

total orbital angular momentum is given as [Taylor and Margot, 2011]:

L =
q

1 + q
Mpa

2n(1− e2)1/2. (6.1)

Here n =
√
G(Mp +Ms)/a3 is the mean motion of the system and a and e are

the semi-major axis and eccentricity of the mutual orbit. The total spin angular

momentum of a binary system is given as [Taylor and Margot, 2011]:

S = αpMpR
2
pωp

[
1 +

αs
αp

(
ρp
ρs
q5/3

)
ωs
ωp

]
. (6.2)
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Here Rp is the radius of the primary, ρp,s, ωp,s, and αp,s are the bulk densities, rotation

rates, and moment of inertia coefficients for the primary and the satellite, respectively.

For spherical bodies, αp = αs = 2/5.

The satellite exerts an acceleration on the surface of the primary [Murray and

Dermott, 1999]. The acceleration from the orbiting satellite varies in magnitude

across the primary’s surface and is greatest for the surface closest to the satellite.

The gradient tidal potential across the primary’s surface distorts the primary’s shape,

creating a tidal bulge. The internal structure of the primary determines the response

of the surface to the tidal potential. Internal friction dissipates the tidal acceleration

and results in a lag between the tidal disturbance and the tidal response. The effect

of tidal dissipation can lead to dramatic physical and orbital consequences for the

primary and the satellite.

Although the satellite creates the tidal bulge on the primary, the acceleration of

the bulge on the satellite exerts a torque on the satellite. The consequence of the

tidal torque is dependent upon the semi-major axis of the satellite relative to the

synchronous orbit. For a satellite in a Keplerian orbit, the synchronous orbit can be

calculated via Equation 2.9. If the satellite is in a synchronous orbit with the primary,

it completes one orbit for every full revolution of the primary, and therefore is always

aligned with the tidal bulge. The gravitational attraction between the tidal bulge

and the satellite is perpendicular to the satellite’s motion, and no torque results.

However, if the satellite orbits interior to the synchronous orbit, its orbital pe-

riod is shorter than the rotational period of the primary. As the satellite orbits, it

passes over the surface of the primary. Due to the lag in the formation of the tidal

bulge, the satellite is always “ahead” of the tidal bulge on the primary surface. The

gravitational attraction between the tidal bulge and the satellite is no longer strictly

perpendicular to the satellite’s motion, and the tidal bulge exerts a torque on the

satellite. For satellites orbiting interior to the synchronous orbit this torque transfers

angular momentum from the satellite’s orbit to the spin angular momentum of the

primary, causing the satellite to migrate towards the primary.
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Alternatively, if the satellite orbits exterior to the synchronous orbit, its orbital

period is longer than the rotational period of the primary. As the satellite orbits, the

surface of the primary rotates past the satellite. Due to the lag in the formation of the

tidal bulge, the satellite is always “behind” the tidal bulge on the primary surface. The

bulge again exerts a torque on the satellite. However, for satellites orbiting exterior

to the synchronous orbit the tidal torque transfers spin angular momentum from the

primary to the satellite’s orbital angular momentum, causing the satellite to migrate

away from the primary. Thus, satellites which lie interior to the synchronous orbit

migrate inwards by tides, whereas satellites which orbit exterior migrate outwards.

Similarly, the primary exerts an acceleration on the satellite’s surface. Just as

the satellite creates a tidal bulge on the primary that subsequently leads to the tidal

torque, so too does the primary create a tidal bulge on the satellite. The tidal bulge

on the satellite surfaces perturbs the primary, exerting a tidal torque. Thus, tidal

torques enable angular momentum to be exchanged between both a primary and its

satellite.

Angular momentum is exchanged between the two bodies by changing the rota-

tional speeds of each body, and the semi-major axis of the mutual orbit. The change

in the rotational speed of the primary due to tidal torques is given as [Taylor and

Margot, 2010]:

ω̇p = −
8ρ3

p(πGRpq)
2

19αpµpQp
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Rp
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Here µp and Qp are the rigidity and the tidal dissipation factor of the primary, re-

spectively. Similarly, the change in the rotational speed of the satellite due to tidal

torques is given as [Taylor and Margot, 2010]:

ω̇s = −
8π2G2ρ3
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pq
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µs and Qs are the rigidity and the tidal dissipation factor of the satellite.

As ωp and ωs change, the spin momentum of the system changes. To conserve the

angular momentum of the system the torque causes the semi-major axis to change,

transferring momentum between the spin and orbital momenta. Thus, the change in

the semi-major axis is [Taylor and Margot, 2010]:

ȧ =
8R3
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(6.5)

Equation 6.5 is an expansion that includes higher order terms, and is more appropriate

than Equation 2.10 for similar mass bodies with a semi-major axis ≤ 5Rp.

Given enough time and left undisturbed, the tidal interaction between the satellite

and the primary will result in one of two possible outcomes: a fully synchronous

system, or a collapsed system [Taylor and Margot, 2011]. A fully synchronous system

will result if ȧ > 0 (generally if a > asynch). The semi-major axis of the system will

increase while the rotation rate of both bodies changes, until n = ωp = ωs. At this

point the system has become fully synchronous and ȧ = 0.

However, even systems where ȧ < 0 can become fully synchronous. As the semi-

major axis of the system decreases, the rotation rate of both bodies increases as

momentum is transferred from the orbit into the rotation rates of both bodies. asynch

is a function of ωp and therefore changes as the rotation rate of the primary changes.

As the primary speeds up, asynch decreases. Depending on the angular momentum of

the system, it is possible for the location of the semi-major axis to change more quickly
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than the semi-major axis of the system [Taylor and Margot, 2011]. In these systems

the synchronous orbit “catches up” to the satellite’s semi-major axis. Eventually,

a = asynch and the system has become fully synchronous.

The second possible outcome can only occur for systems where ȧ < 0. For a

specific population of binary systems, the semi-major axis changes more quickly than

the location of the synchronous orbit. In these systems the semi-major axis continues

to decrease until the semi-major axis of the system has completely collapsed. The

tidal interaction collapses the orbit until the two bodies come into contact, or the

satellite reaches the RRL and is tidally disrupted.

In this work I examine the tidal interaction of binary systems in order to determine

the dynamics which cause specific binary systems to collapse. I assume that tidal

interactions have caused all binary systems to evolve such that they have relaxed

into fully synchronous states. If a system is disturbed from a fully synchronous state

(whether from an impact or a close encounter), I define which systems will evolve to

a collapsed state.

For any binary system, there are either one, or two possible fully synchronous

states [Taylor and Margot, 2011]. Binary systems with two possible synchronous

states have a solution with fast rotation rates and a small semi-major axis, and a

solution with a greater semi-major axis and slower rotation rates. Given the mass-

ratio of a system, there exists a fully synchronous “critical orbit.” A disturbance

from this orbit can result in the system collapsing. The critical orbit is calculated as

[Taylor and Margot, 2011]:

acrit =

[
6

5

(
1 + q

q

)(
1 +

(
ρp
ρs

)2/3

q5/3

)]1/2

. (6.6)

If a system is fully synchronous at this orbit and the system is disturbed such that

ȧ < 0, the semi-major axis will decrease until the bodies come into contact or the

satellite is tidally disrupted.
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6.2.2 Mass Shedding

Whether a collapsing system results in contact between the two bodies or the tidal

disruption of the satellite depends upon the location of the contact point as compared

to the RRL. The contact location is simply when the semi-major axis is equal to the

mutual radii of the two bodies:

aC = Rp +Rs = Rp

[
1 +

( q
R

)1/3
]
. (6.7)

HereR ≡ ρs/ρp is the ratio between the bulk densities of the satellite and the primary.

The RRL is the semi-major axis where the acceleration of material on the equator

of a strengthless body is perpendicular to the body’s surface. A satellite located at

the RRL will shed material from its equator, which can set up a collisional cascade

that rapidly disrupts the satellite [Black and Mittal, 2015, Hesselbrock and Minton,

2017]. The net force acting on a particle with mass δ located on the equator of the

satellite is the sum of gravitational and centrifugal forces:

Fnet = − GδMp

(a−Rs)
2 + n2δ (a−Rs) +

GMsδ

R2
s

(6.8)

The RRL is the semi-major axis where Fnet = 0. Performing a Taylor expansion and

solving for a we retrieve Equation 2.1.

By setting Equation 6.7 equal to Equation 2.1, I may determine qshed, the mass

ratio for which mass shedding will occur at the point of contact.

qshed = R

[(
3

R

)1/3

− 1

]3

. (6.9)

I plot qshed in Figure 6.1. The solid line shows the necessary mass ratio for when aC

is equal to aRRL. If q ≤ qshed, during a tidal collapse the satellite will begin to shed

mass from its equator at or before the moment of contact. For bodies of uniform

density (R = 1), the contact point is outside the RRL for all q & 0.1. However, for

bodies with different densities, for example R = 0.5, the contact point is outside the

RRL for q & 0.25. Figure 6.1 shows that cohesionless bodies in any collapsing binary

system with q . 0.1 will begin to shed mass before the two bodies come into contact.
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Figure 6.1. If the RRL is located at the point of contact between
two objects, the satellite will begin to shed mass at its equator during
contact. Given the ratio between the satellite and primary bulk den-
sities, I show the required mass ratio for this to occur. The solid line
marks the mass ratio where aRRL = aC and the dashed line represents
the semi-major axis of the contact point/RRL. If the mass ratio of
the system is greater than qshed, the system will not shed mass during
contact. For systems with q ≤ qshed the satellite will shed material
from its equator during contact.

While qshed is the maximum mass ratio a collapsing binary system may have

for mass shedding to occur just as the two bodies reach the contact point, as the

two bodies come into contact systems with q > qshed may still shed mass. In general,

during the collapse the lower mass satellite is tidally locked and has a greater rotation
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rate than the primary (n = ωs > ωp). As the two bodies approach one another, the

surface of the primary spins parallel to the approaching satellite surface. While the

two surfaces come into contact, friction will cause the slower rotating primary to

transfer spin momentum to the satellite in the direction of the satellite’s rotation

until the surfaces rotate with the same velocity. Assuming no slippage occurs, the

spin rate of the two bodies after contact is:

ω′s = ωp

[
(ρs/qρp)

2/3 + qωs/ωp

(ρs/qρp)
1/3 + q

]
, (6.10a)

ω′p = ωp

(
qρp
ρs

)1/3
[

(ρs/qρp)
2/3 + qωs/ωp

(ρs/qρp)
1/3 + q

]
. (6.10b)

The end result is the satellite “rolling along” the surface of the primary.

While Equation 6.10 depends upon the mass and density ratios, as well as the

rotation rate of each body, ω′s > ωs and ω′p < ωp. During contact, the transfer of spin

momentum from the primary to the satellite increases the satellite’s rotation rate.

As the satellite spins faster, a particle on the surface of the satellite will experience

a greater centrifugal force. Similar to the derivation of the rigid Roche limit from

Equation 6.8, I may determine the net force exerted on a particle at the surface of

the satellite after contact has been made:

Fnet = −GδMp

R2
p

+ n2δRp +
GMsδ

R2
s

− ω′2s δRp (6.11)

If Fnet ≤ 0, the particle will be removed from the satellite’s surface. Therefore,

friction between the two bodies during contact may cause systems with q > qshed to

shed mass. For example, a collapsing BTNO system with Rp = 50 km, ρp = 1 g/cm3

orbited by a satellite with R = 1 and q = 0.08 will shed mass just as the two bodies

come into contact, but friction will cause a similar collapsing system with q = 0.431

to shed mass after contact. Friction between the two bodies during contact can cause

systems with mass ratios greater than qshed to shed mass after contact.
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6.2.3 Formation of Contact Binaries from Collapse

While contact binaries likely comprise 10−30% of the TNO population, resolving

these bodies is exceptionally difficult [Lacerda, 2011, Sheppard and Jewitt, 2004]. For

a particular hypothesized contact TNO, occultations may reveal the overall size of

the object, and lightcurve analyses may indicate the object’s rotation period, but

direct imaging of each hypothesized lobe remains difficult. Here I provide a general

description of contact TNOs, provided their overall size and rotation rate. This

description will permit me to hypothesize how an observed TNO may actually be a

contact binary that experienced a tidal collapse. Furthermore, I will use the dynamics

outlined in Section 6.2.1 to determine the conditions of the system before collapse,

and whether any mass may have been shed from the satellite surface.

For a given TNO contact binary, I assume the total observed body radius R to be

half the total body diameter. I assume a contact binary is composed of two spheres

in contact with radius Rp and Rs. The mass ratio and the total body radius of the

system today, R = Rp +Rs, are used to determine the radius of the primary and the

satellite spheres:

Rp =
R

1 + (qρp/ρs)1/3

Rs =
R

1 + (qρp/ρs)1/3

(
qρp
ρs

)1/3 (6.12)

I assume that these objects were once binary systems with each sphere orbiting the

other. Therefore αp = 2/5 and αp/αs = 1. From Equation 6.2, the spin momentum

of the system at any point is then given by:

S =
8πρp
15

 R

1 +
(
qρp
ρs

)1/3


5

ωp

[
1 +

(
ρp
ρs

)2/3

q5/3ωs
ωp

]
. (6.13)

Assuming the bodies are on Keplerian orbits, from Equation 6.1 the orbital momen-

tum of the two spheres at any point can be calculated as:

L =
q

(1 + q)1/2

(
4πρp

3

)3/2

 R

1 +
(
qρp
ρs

)1/3


9/2

[Ga]1/2 . (6.14)
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The total momentum of the system at any moment is the sum of Equations 6.13

and 6.14; J = L + S. For a given isolated system, J is a constant as momentum is

conserved throughout the tidal interaction.

If I assume that these spheres experienced a complete collapse of their mutual orbit

to form the system observed today, I may use the angular momentum of the system

today as a constraint. The momentum of the system today is equal to the momentum

of the two spheres in contact. In my simplified description, this corresponds to a semi-

major axis equal to the total body radius, a = R. While the two bodies do not have

any orbital momentum while in contact, in the reference frame of the reduced mass of

the system there remains an “orbital momentum” component even at contact. This

is calculated as:

LC =
qG1/2R5

(1 + q)1/2

(
4πρp

3

)3/2

 1

1 +
(
qρp
ρs

)1/3


9/2

. (6.15)

During contact the rotation rate of the primary is equal to the rotation rate of the

satellite. Thus, the total momentum of a system at contact is given by Equations

6.13 and 6.15, with ωs/ωp = 1. Provided the radius of the object observed today, its

rotation rate, and estimates for the densities of each sphere I can estimate Jt, the

total momentum in the hypothesized contact binary today, as a function of q.

With the hypothesis that a contact binary with total radius R was once two

separate bodies with radii Rp and Rs, I can calculate the total momentum of the

system before contact. Assuming the system was initially fully synchronous (n =

ωp = ωs) with semi-major axis a = acrit, I may calculate Jcrit, the total momentum

of the system at the critical orbit. If the system was disturbed in such a way that

the satellite lost spin momentum, the primary gained spin momentum, or the orbital

momentum decreased, the system will collapse. Having calculated Jt and Jcrit, I may

determine the “critical mass ratio” qC for which Jt = Jcrit.
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6.3 Results

I hypothesize that binary systems are common in the solar system, and that

over time the tidal interaction between the two bodies drives the system into a fully

synchronous state. I expect close encounters and impacts to disturb these systems

from their fully synchronous state. Many systems may return to a fully synchronous

state, but for systems with a < acrit, tidal interactions between the two bodies will

cause their mutual semi-major axis to decrease. I propose this as a possible formation

mechanism for contact binaries. Furthermore, during the collapse process, the satellite

may shed mass from its equator, which could serve as a possible source for ring

material.

In Section 6.3.1 I compare the conditions for collapse derived in Section 6.2.1 with

the currently known population of Binary Trans Neptunian Objects. This comparison

will reveal any BTNO systems that are likely to experience a tidal collapse, as well

as which systems may shed mass during the collapse process.

In Section 6.3.2 I apply my analysis in Section 6.2.3 to examine whether the

centaurs Chariklo and Chiron were binary systems that underwent a tidal collapse,

and whether this process could explain the existence of their ring systems.

6.3.1 Binary Trans-Neptunian Objects

There are currently 2810 known TNOs. Of this population, there are 59 observed

BTNOs, with an additional 28 likely [Johnston, 2018]. While BTNOs currently make

up ∼ 3% of observed TNOs, it is possible that the entire TNO population formed as

binary systems [Nesvorný et al., 2010]. Furthermore, 10 − 30% of the current TNO

population may be contact binaries [Lacerda, 2011, Sheppard and Jewitt, 2004].

In Figure 6.2 I display the current known and likely population of BTNOs as a

function of their mass ratio and the semi-major axis of their mutual orbit. From

Figure 6.2 I observe that the majority of BTNOs have q > 0.1 and a < 103Rp. Due

to observational constraints, widely separated binary systems are more likely to be
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discovered than systems in close tight orbits. Numerical models of TNOs have found

that the majority of binary systems may be in tight orbits [Porter and Grundy, 2012].

I assume that all BTNOs are in fully synchronous orbits. In addition to the

observed population of BTNOs, Figure 6.2 displays the location of acrit. For BTNO

systems with a < acrit in fully synchronous orbits, any disturbance that removes

momentum from the primary, or adds momentum to the satellite, will cause the

BTNO system to collape. In Figure 6.2 I find that there are three systems with orbits

and mass ratios in which a fully synchronous system could collapse if disturbed, or

∼ 3.5% of the known BTNO population. From Figure 6.1 I find that a satellite in a

system with q . 0.08 will begin to shed mass during the collapse process, or ∼ 17%

of the known BTNO population.

In addition to comparing the required semi-major axis and mass ratio for a fully

synchronous system to collapse against the known BTNO population, I may examine

how long such an evolution may take. I define a tidal timescale, τtide, as the ratio of

a system’s semi-major axis to the rate of change of the semi-major axis as calculated

in Equation 6.5:

τtide = ȧ/a (6.16)

While a fully synchronous system with a < acrit would collapse, only those with

q & 0.001 do so within the age of the solar system.

6.3.2 Chariklo and Chiron

Planetary rings have recently been discovered around the centaurs Chariklo and

Chiron and the TNO Haumea. Before these discoveries rings had only been observed

in orbit around the outer giant planets, raising the question of how common these

features may be in our solar system. Hypotheses for their origin have included tidal

disruption during close planetary encounters, debris ejected into orbit by impact

events, or three-body interactions between the primary object and two smaller ones.
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Figure 6.2. Here I plot the current population of observed known
and likely Binary Trans-Neptunian Objects (BTNOs) as a function
of their mass ratio (q), and the semi-major axis of their mutual orbit
(a). The grey line marks the location of the critical orbit. BTNOs
below the curve in fully synchronous orbits will likely experience a
complete tidal collapse of their mutual orbit if they are disturbed. The
nearly horizontal lines mark the evolution timescale, τtide, in years as
a function of q and a for a system with Rp = 50 km and ρp = 1 g/cm3.

Unfortunately, none of these mechanisms has a high likelihood of producing a ring

system.
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The radius of Chariklo and Chiron is not well known, but they appear to be

∼ 200−300 km in size. They are vary rapid rotators with Chariklo having a rotation

period of ∼ 7 hours and Chiron having a rotation period of ∼ 5.9 hours. Their

masses are poorly constrained, and they are estimated to have a bulk density of

0.5− 1.5 g/cm3. Haumea is much larger and is orbited by two small satellites which

constrains its mass to be ∼ 4 × 1024 g. Haumea rotates more rapidly with a period

of ∼ 3.9 hours and is expected be in hydrostatic equilibrium.

Of the three, Haumea is the only object to have a collisional family, which strongly

indicates its rings may have formed during this collision. Chariklo and Chiron are not

expected to have experienced collisions significant enough to produce rings, indicating

a different mechanism for ring formation occurred. I propose that Chariklo and Chiron

were fully synchronous binary systems that were disturbed from their relaxed state.

This may have occurred via a close-encounter with Neptune [Wood et al., 2018], or via

an impact. I hypothesize the system experienced a complete collapse of the mutual

orbit. As the semi-major axis decreased, the satellite was either tidally disrupted to

form a ring, or the two objects came into contact with the satellite spun up to the

point that some mass was shed from its equator. The tidal collapse of the mutual

orbit naturally produces the high spin rate of the objects observed today, and provides

a ring formation hypothesis.

I hypothesize Chariklo and Chiron are both contact binaries consisting of two

spheres in contact. I estimate Chariklo to have a total body radius of 1.6 × 107 cm

and Chiron to have a total body radius of 1.35× 107 cm [Groussin et al., 2004, Leiva

et al., 2017]. In Figures 6.3 and 6.4 I plot Jt and Jcrit as a function of q for Chariklo

and Chiron, respectively. In both figures I have varied the density of the primary and

the satellite.

Figures 6.3 and 6.4 show how the momenta of a binary system at the critical and

a contact binary vary as a function of q. As momentum is conserved for an isolated

system during the collapse process, there is only one mass ratio where the momentum

of a fully synchronous binary system at the critical orbit is equal to the momentum
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Figure 6.3. Here I display the total momentum of a Chariklo system
as a function of the mass ratio q with ρp = ρs. Blue lines designate
the momentum of the Chariklo system today (Jt) assuming it is two
spheres in contact. Red lines designate the momentum of a fully
synchronous system with semi-major axis acrit (Jcrit). The critical
mass ratio qc is the mass ratio at the intersection of the two curves.
The line type corresponds to varying the density of the bodies from
0.9 − 1.5 g/cm3. As the density of the bodies increases, the value of
qc decreases.

of the hypothesized contact binary observed today. As shown in Figures 6.3 and 6.4,

qcrit is a function of the bodies’ assumed bulk density. As the bulk density decreases,

the critical mass ratio increases. It is important to note that if the bulk density of

the bodies is too low, the curves do not intersect and there is no solution for qcrit,

indicating that at least one of my assumptions is wrong.
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Figure 6.4. Here I display the total momentum of a binary system as
a function of the mass ratio q. Blue lines designate the momentum of
the Chiron system today (Jt) assuming it is two spheres in contact.
Red lines designate the momentum of a fully synchronous system with
semi-major axis acrit (Jcrit). The critical mass ratio qc is the mass ratio
at the intersection of the two curves. The line type corresponds to
varying the density of the bodies from 1.3− 1.6 g/cm3.

To investigate the Chariklo system, I examine Figures 6.1 and 6.3. I am interested

in solutions where a binary system will collapse to form a contact binary with the

radius and spin rate of the system observed today. Additionally, solutions where the

collapse results in the shedding of material from the bodies will indicate possible ring

formation. From Figure 6.1 I find that binary systems with R = 0.5 and qcrit ∼ 0.25

that experience an orbital collapse will begin shedding mass just as the two bodies

come into contact. Figure 6.3 indicates that if qcrit ∼ 0.25, then ρp is likely greater
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than 1 g/cm3. The intersection of Jcrit and Jt is dependent upon ρs. I find that a

system with ρp = 1.4 g/cm3, R = 0.5 will have qcrit = 0.25.

I use a numerical integration to calculate ȧ, ω̇p, and ω̇s for a given system to

determine its forward evolution. Provided R, Tp, ρp,R and qcrit for Chariklo I am able

to model the evolution of a binary system that is fully synchronous with a = acrit.

I assume µpQp = µsQs ∼ 1011 Nm−2 [Taylor and Margot, 2011]. If the system is

disturbed ȧ, ω̇p, and ω̇s are non-zero. Typically, a disturbance such that ω′p = 0.95ωp

is enough to cause the system to fully collapse. In Figure 6.5 I show the change in

the semi-major axis of a binary system with qcrit ∼ 0.25 that is fully synchronous

with a semi-major axis acrit and a period of ∼ 10 hours. The system is disturbed in

a manner such that the primary’s rotation rate is reduced by 5%, causing the tidal

collapse of the mutual orbit. In less than 103 years the semi-major axis has been

completely reduced, forming a contact binary with a total radius and spin period

equal to the Chariklo system observed today.

As shown in Figure 6.5, the semi-major axis of the satellite decreases until the

satellite reaches the RRL. Upon reaching the RRL, the satellite will begin to shed

mass, however I can also calculate the relative velocity (vrel of the two surfaces at

this point.

vrel = ωpRp −
(
a−Rp

n

)
− ωsRs +

(
a−Rs

n

)
. (6.17)

In my Chariklo analog results, as the satellite reaches the RRL, vrel ≈ 580 cm/s.

To investigate the Chiron system, I follow the same procedure I implemented

for Chariklo. Figure 6.3 indicates that if qcrit . 0.25, then ρp for Chiron is likely

greater than 1.5 g/cm3. I find that a system with ρp = 2.0 g/cm3, R = 0.5 will have

qcrit ∼ 0.25. Provided R, Tp, ρp,R, µQ, and qcrit for Chiron I model the evolution

of a binary system that is fully synchronous with a = acrit. In Figure 6.5 I show

the change in the semi-major axis of a binary system with qcrit ∼ 0.25 that is fully

synchronous with a semi-major axis acrit and a period of ∼ 8.5 hours. The system is

disturbed in a manner such that the primary’s rotation rate is reduced by 5%, causing

the tidal collapse of the mutual orbit. In less than 103 years the semi-major axis has
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been completely reduced, forming a contact binary with a total radius and spin period

equal to the Chiron system observed today. Similarly to my analysis for Chariklo, I

may calculate the relative velocity between the two body surfaces when the satellite

reaches the RRL. Following Equation 6.17, for Chiron I find vrel ≈ 580 cm/s.
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Figure 6.5. Here I display the collapse of the mutual orbit of a
Chariklo analog binary system. The system has a critical mass ratio
qc ∼ 0.25 and the initial semi-major axis is the critical orbit (acrit)
with a period of ∼ 10 hours. ρp = 1.4 g/cm3 and ρs = 0.5ρp. In black
I display the mutual orbit, in purple the location of the synchronous
orbit, green the location of the FRL, blue the location of the RRL,
orange the location of the maximum orbit allowed by the system’s
angular momentum, and in red the contact point. In < 103 years
the mutual tidal interaction has caused the orbit to collapse until the
bodies have come into contact. Assuming no slippage at contact, the
final rotation period matches the currently observed 7 hours.
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Figure 6.6. Here I display the collapse of the mutual orbit of a Chiron
analog binary system. The system has a critical mass ratio qc ∼ 0.25
and the initial semi-major axis is the critical orbit (acrit) with a period
of ∼ 8.5 hours. ρp = 2 g/cm3 and ρs = 0.5ρp. In black I display
the mutual orbit, in purple the location of the synchronous orbit,
green the location of the FRL, blue the location of the RRL, orange
the location of the maximum orbit allowed by the system’s angular
momentum, and in red the contact point. In < 103 years the mutual
tidal interaction has caused the orbit to collapse until the bodies have
come into contact. Assuming no slippage at contact, the final rotation
period matches the currently observed 5.9 hours.

6.4 Discussion

In this work I have analyzed how tidal interactions between bodies in a binary

system may cause the mutual semi-major axis of the system to decrease. I have

outlined the conditions for when this occurs, and have realized that some systems

may undergo a complete decay of the mutual orbit. Fully synchronous systems with
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a semi-major axis less than a “critical orbit” exist in an unstable configuration and

may experience a “tidal collapse” if disturbed. As the semi-major axis of the system

decreases, gravitational and rotational forces may remove material from the surface of

the satellite. A cohesionless satellite in a collapsing binary system with a mass ratio

q ≤ 0.1 will begin to shed mass as it reaches the rigid Roche limit. The fact that

a tidal collapse of a binary system may result in mass shedding serves as a possible

formation hypothesis for ring systems in orbit around Trans-Neptunian Objects.

I have shown that as contact between the two bodies is made, mass shedding may

occur for cohesionless satellites even when the mass ratio q is ≥ 0.1. In deriving

Equation 6.7 I assumed that the friction force between the two bodies coming into

contact was sufficient to completely transfer momentum to the satellite such that

no slippage occurs. This scenario demonstrates the most extreme possibility for the

satellite to be spun up. At the point of contact, a small mass ratio system would

have a large difference between the speeds of the two surfaces. But in this scenario,

the inertia of the satellite is small and the necessary frictional force to spin up the

satellite would be small. For a high mass ratio system, the satellite is larger and so is

its inertia. However in this scenario, the difference in speed between the two surfaces

just before contact is much smaller, causing only a small change to the spin of both

bodies. Thus, while the derivation in Equation 6.7 is the most extreme scenario, I

expect the change in rotation of the satellite during contact to be sufficient for systems

with q > qshed to shed material.

I have compared the conditions for a binary tidal collapse to the known population

of binary TNOs. This comparison has revealed that three known systems, or ∼ 3.5%

of the known BTNO population, have mass ratios and semi-major axes in which

a fully synchronous system would likely experience a tidal collapse. Additionally,

I find that ∼ 17% of the known BTNO population have mass ratios such that if

some mechanism drove the system to a collapsing orbit, the satellite would shed mass

during the collapse.
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A binary tidal collapse can result in a contact binary, which are expected to

comprise 10−30% of the TNO population. I demonstrate how the angular momentum

and known size of a hypothesized contact binary system can be used to resolve details

of the system before a tidal collapse would have occurred. I apply this analysis

to the centaurs Chariklo and Chiron. I assume both bodies are actually contact

binaries, each composed of two spheres in contact. I use my analysis to show how a

tidal collapse could and mass shedding could produce the systems we observe today.

Additional work is needed to determine the likelihood that contact binaries are formed

via a tidal collapse, or some other mechanism.

Due to observational constraints, it is challenging to resolve whether a TNO is a

contact binary. For this reason, it is difficult to determine whether Chariklo and Chi-

ron specifically are contact binaries that experience a tidal collapse. I have attempted

to generalize my analysis of collapsing systems to include any hypothesized contact

binary system. If a contact BTNO is resolved as a bilobate body, I may hypothesize

an orbit that could produce the observed system.

Finally, I have drawn comparisons against my analysis with the population of

BTNOs included in Figure 6.2. The typical member of this population has q > 0.1

and 101 < a/Rp < 103, which is unlikely to result in a tidal collapse. It is important to

note that multiple mechanisms exist to perturb a BTNO into a semi-major axis with

a collapsing orbit, such as a close planetary encounter, or tidal-kozai cycles[Brunini,

2014, Porter and Grundy, 2012]. Perhaps of most importance, is that this is the

known population of BTNOs. Observational constraints bias the known population

to be systems with high mass ratios and wide separations. Therefore, while the known

population may not indicate many binary systems today will undergo a tidal collapse,

it is likely many systems have yet-to-be discovered and may have characteristics which

favor a tidal collapse.
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7. CONCLUSION

My dissertation work has examined the tightly coupled dynamics between primary

bodies, rings, and satellites. In order to study these systems I found it necessary to

develop my own numerical model. Included here is a short summary of my work, my

conclusions, and any areas I find to be deserving of future study.

7.1 Boomerangs

Planetary rings are governed by a complex set of dynamics which may give rise

to intricate structures. The state of a ring at any moment in time is a sum of per-

turbations from many sources. In my work, I have identified which factors dominate

the long-term evolution of a planetary ring. These may be summed up as follows:

1. A ring in orbit around a primary will spread out through inter-particle collisions,

which can be approximated as a “viscosity.”

2. The graviational acceleration of the primary prevents ring particles interior to

the fluid Roche limit from accreting into discrete satellites.

3. Ring particles may enter into resonance with an exterior orbiting satellite and

exchange momentum via Lindblad torques.

Discrete satellites are also subject to many perturbing forces in their lifetimes.

Satellite orbits may be unstable, or even chaotic. In my work, I have worked to

identify the dominant factors in the formation and migration history of satellites in

orbit near planetary rings. I summarize these factors to be:

1. Satellites orbiting near the edge of a planetary ring accrete mass from the ring.

2. The tidal interaction between the satellite and the primary.
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3. The exchange of angular momentum between the satellite and ring material

located at Lindblad resonances.

4. The rapid disruption of a satellite as it approaches the rigid Roche limit.

There are caveats to the dynamics of planetary rings and nearby satellites, which

I have worked to elucidate throughout this work. I have found that the rotation

rate of the primary body and the bulk density of orbiting ring material permit three

satellite-ring evolution regimes. Slowly rotating primaries and high density ring par-

ticles fall within the “Boomerang” regime. In this regime, any satellites that accrete

from ring material may initially migrate away from the ring, however eventually

they will migrate inwards towards the primary as the surface mass density of the

ring decreases over time. Fast rotating primaries with low density ring particles fall

within the “Slingshot” regime. In this regime, Lindblad and tidal torques both work

to migrate satellites accreting out of ring material away from the primary and the

ring, in perpetuity. And finally, ring systems in the “Torque-Dependent” regime fall

somewhere in the middle. Ring satellites in Torque-Dependent systems may initially

exhibit Slingshot-like migration, but eventually all systems will transition to exhibit

Boomerang-like migration as the ring mass decreases.

I derived Equation 2.13 to elucidate possible evolution histories for real and the-

oretical planetary ring systems. The three regimes defined by Equation 2.13 are

plotted in Figure 2.2, which may be used to hypothesize about possible satellite-ring

systems that may have existed in the solar system throughout its history. Planetary

systems that exist in the Boomerang regime serve as strong candidates for possible

ring systems. The dynamics of Boomerang systems allows orbiting material to cycle

between ring material and discrete satellites for long time periods. Observations of

boomerang systems serve as good candidates for the discovery of rings and interior

satellites.

Examining Figure 2.2, we see that 50000 Quaoar, a TNO and possible dwarf

planet, lies deep within the Boomerang regime. Quaoar, which is orbited by a
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small satellite named “Weywot,” has a mass of 1.4× 1021 g and a rotation period of

∼ 17.7 hrs. With a bulk density of 2.7−5.0 g/cm3 Quaoar is one of the densest known

KBOs [Fraser et al., 2013]. Weywot has a semi-major axis > 1.3 × 104 km ≥ 28Rp

and orbits well beyond asynch, but the slow rotation period of Quaoar indicates that a

satellite-ring cycle may exist inside asynch. Future observations of 50000 Quaoar may

reveal a satellite-ring system.

In Figure 2.2 we see that the dwarf planet Eris lies on the boundary of the

Boomerang and Torque-Dependent regimes. Ring-satellite systems in the Torque-

Dependent regime may perturb a satellite to an orbit beyond asynch, however even-

tually all of these systems transition to exhibit a Boomerang-like evolution. Eris

is orbited by a small, distant satellite, named “Dysnomia.” Perhaps Eris was once

orbited by a planetary ring with a sufficient surface mass density to perturb Dysno-

mia beyond asynch. As the ring was depleted of mass, interior satellites would have

followed a Boomerang-like evolution. Future observations may reveal that Eris is

orbited by a ring-satellite system as well.

7.2 RING-MOONS

There are a number of simulation packages that model many of the dynamics of

tightly coupled satellite-ring systems (e.g. HYDRORINGS), however none of these

models are publicly available [Charnoz et al., 2010, 2011, Crida and Charnoz, 2012,

Rosenblatt et al., 2016, Salmon and Canup, 2017]. While researching these models I

found each of them either did not necessarily include all of the physics that I expected

to be important, or made approximations that were not entirely robust. In Chapter

3 I outlined my own model in which I attempt to simulate the dynamical evolution

of coupled ring-satellite systems. RING-MOONS is a numerical tool that models a

planetary ring as a 1D series of Eulerian bins, with each bin representing a 2D annulus

of the ring. Satellites form a the ring edge and are treated as Lagrangian particles.
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RING-MOONS is robust compared to similar models in the literature, yet in light

of the assertion that “all models are wrong, but some are useful,” RING-MOONS

could perpetually be improved. In regards to the dynamics and evolution of a plan-

etary ring, RING-MOONS is accurate and well founded. The viscosity model imple-

mented into RING-MOONS is thorough, and includes several numerical techniques to

avoid numerical instabilities. The model explicitly calculates the exchange of angular

momentum with exterior satellites. RING-MOONS also tracks the transfer of mass

through the interior boundary at the primary’s surface, something that had not been

calculated in other models. Lastly, RING-MOONS can reveal gaps and buildups of

ring material at Lindblad resonances, a feature often observed in real systems.

Yet, where RING-MOONS suceeds in modeling ring dynamics, it is lacking in

its treatment of satellite dynamics. Satellites in RING-MOONS experience no direct

gravitational perturbations against each other. The only influence one satellite exert

on another is when one satellite enters the Hill Sphere of another. At that point, the

two satellites are merged together. Real satellites strongly influence the dynamics

of others. Real satellite-satellite interactions can result in collisions, disruptions,

ejections, migration, and resonance interactions. None of these dyanmics are currently

present in RING-MOONS. A vast improvement to the model would be to implement

an N-body treatment for satellite-satellite interactions.

Rebound is an N-body integrator that has been well tested and contains a python

wrapper. I have written RING-MOONS in Python and have examined the ability to

implement the N-body dynamics of Rebound into RING-MOONS. While the imple-

mentation is straightforward, it is also thorough and would require extensive testing

to ensure the ring-satellite dynamics are appropriately handled.

7.3 Mars

Phobos and Deimos were two objects long ignored. Their orbits and physical

characteristics make them difficult objects to observe and complicates theories to their
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origins. For decades the two satellites were thought be captured asteroids, despite

their orbits serving as evidence to the contrary [Szeto, 1983, Yoder, 1979]. Marinova

et al. [2008] provided the first strong evidence that a giant impact may have placed

a massive amount of debris into orbit around Mars. With evidence that a debris ring

may have orbited Mars, Phobos and Deimos were studied in greater detail as scientists

worked to test whether the satellites may have formed from a massive Martian debris

disk [Citron et al., 2015, Craddock, 2011, Rosenblatt and Charnoz, 2012]. Rosenblatt

et al. [2016] was the first work to successfully model the formation of both satellites,

however issues remained in the tidal evolution of Phobos.

The formation hypothesis put forth in Rosenblatt et al. [2016] leaves little room

for error. Planetary tides are causing Phobos to migrate inwards at a rapid rate. In

< 70 My the satellite will no longer exist [Black and Mittal, 2015]. Not only are we

extremely fortunate to observe the satellite today, but Phobos’s current orbit presents

only a small window for any formation hypothesis to place the satellite into its current

orbit. This window is pervasive and must be addressed in any formation hypothesis.

In Rosenblatt et al. [2016], and many other similar works, if any parameters are off

by only a small fraction, the opportunity for Earthlings to observe Phobos would be

missed.

In Chapter 4 I put forth the hypothesis that a giant impact ejected massive

amounts of material into orbit around Mars. This material coalesced to form a mas-

sive ring interior to the FRL, and the smaller satellite Deimos near the synchronous

orbit. Hesselbrock and Minton [2017] demonstrated that the massive ring would form

massive satellites, however this system would have existed in the Boomerang regime.

Any satellites that accreted from the roche-interior ring eventually were disrupted

into ring material. I showed how this process would eventually produce Phobos in

the orbit we observe today.

Hesselbrock and Minton [2017] presented a formation hypothesis for Phobos and

Deimos that may explain the current system, but more importantly, the discovery

of the Boomerang regime presented a new set of dynamics, making the hypothesis
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that much more resilient. In Chapter 4 I showed how a very specific set of parameters

would produce the Phobos and Deimos system observed today, but more importantly,

I demonstrated how the dynamics of the Boomerang regime ensures that even if those

parameters are not exact, a wide range of parameters could yield similar results to

place Phobos in its current orbit.

Work continues on Phobos and Deimos, but a very exciting and unexpected re-

sult from Hesselbrock and Minton [2017] was the possibility of ring material being

deposited onto the Martian surface. The amount of material placed into orbit fol-

lowing the impact described by Marinova et al. [2008] is significant. The subsequent

ring-satellite cycle delays this material from falling back onto the Martian surface.

Whenever a massive satellite reaches the RRL and is tidally disrupted, the majority

of its mass rapidly enters the Martian atmosphere [Hesselbrock and Minton, 2017].

Further work should investigate what happens as this occurs. Do the ring particles

impact the surface? Should we expect to see a disproportionate amount of craters

near the Martian equator? Or rather, does the ring material disrupt in the atmo-

sphere to slowly drift and deposit onto the Martian equator? The mass of these

deposits would be significant. What should we expect to see in the Martian geologic

record? Or lastly, are the ring particles disrupted into microscopic particles, becom-

ing suspended in the atmosphere for long-periods of time? How would this affect the

Martian climate?

These questions provide exciting possibilities for future studies. I would argue

that the first step in answering these questions is to examine how the ring particles

interact with the atmosphere. The ring particles modeled in RING-MOONS are

uniform in size, whereas in reality there would be a size-distribution to these particles.

Examining how a satellite is tidally disrupted upon reaching the RRL could yield

information about the population of particles following this disruption, and therefore

the characteristics of particles entering the martian atmosphere. From there one could

examine how such particles would interact with the atmosphere as they fall towards

the surface.
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7.4 Miranda

In Chapter 4, I used RING-MOONS to study a satellite-ring system in the Boomerang

regime. That work motivated me to then study a system in the Torque-Dependent

regime. In Chapter 5, I discussed how examination of Figure 2.2 revealed that Uranus

exists in the Torque-Dependent regime. In addition to numerous inner and “irregu-

lar” satellites, Uranus is orbited by five massive “regular” satellites. These regular

satellites, Miranda, Ariel, Umbriel, Titania, and Oberon, were thought to have formed

shortly after Uranus itself. Of these five satellites, Miranda is less massive by more

than two orders of magnitude, and is the most interior. Realizing that Miranda’s

semi-major axis was not too distant from the synchronous orbit of Uranus, I decided

to investigate whether Miranda may have formed from a massive ring interior to the

FRL and subsequently migrated to its current orbit.

Using RING-MOONS, I found that a ring mass of ∼ 3 × 1023 g had a surface mass

density sufficient to perturb satellites beyond asynch, and would produce a Miranda-

like satellite in a few hundred million years. This ring existed in the Torque-Dependent

regime and as it was depleted of mass over time, tidal torques eventually dominated

any Lindblad torques. Any satellites interior to asynch during this transition began to

migrate inwards. These satellites merged into a massive satellite that disrupted upon

reaching the RRL. A new cycle began and produced a collection of 14 satellites.

The results in Figure 5.2f do not perfectly match the system observed today. I

expect that the inclusion of an N-body integration for satellite dynamics would pro-

vide a much better match to the current Uranian system. Furthermore, the Uranian

system is subject to impacts with heliocentric objects and it is thought that these

impactors have heavily disrupted the current system [Colwell and Esposito, 1992]. In

addition to including an N-body integration, a future numerical study should estimate

the rate at which small satellites are disrupted by heliocentric impacts. These two

factors, along with the parameters given in Chapter 5, may provide a strong match

to the Uranian system observed today.
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7.5 Small Bodies

The Boomerang, Torque-Dependent, and Slingshot regimes are each determined in

part by the location of the synchronous orbit, which is dependent upon the rotational

period of the primary. The rotation period of a primary body is not a fixed value.

The problems I have been interested in have all dealt with tides, which cause an

exchange between spin and orbital momenta for both the primary and the satellite.

Examining Figure 2.2, I was motivated to investigate how a change in Tp would affect

the evolution regime of a satellite-ring system as defined by Equation 2.13.

The satellites produced in the Mars and Uranus systems of which I had investi-

gated were several orders of magnitude less massive than their primaries. The change

to the rotation period, and thus the synchronous orbit, for Mars and Uranus was neg-

ligible. However, the tidal interaction between a satellite that was nearly as massive

as its primary would have a significant change to the rotation period of both bodies. I

found that this change could be enough for a system to transition from one evolution

regime into another, and quickly began to investigate binary systems.

Binary systems are common throughout the solar system, and in fact the entirety

of the TNO population may have formed as binary systems [Nesvorný et al., 2010].

The discovery of planetary rings in orbit around the TNOs Chariklo, Chiron, and

Haumea motivated me to investigate not only how tidal interactions may affect the

satellite-ring regime of a binary system, but whether tidal interactions could produce

the systems observed today. I discovered a set of conditions that would determine

whether a fully synchronous system may undergo a complete tidal collapse of the

mutual orbit. Furthermore, I was able to determine whether the satellite would shed

mass at any point during the collapse.

For systems where the satellite is not completely disrupted, a contact binary

would result. It is estimated that as much as 30% of the current TNO population are

contact binaries. In Chapter 6, I hypothesized that Chariklo and Chiron were both

contact binary systems, which we are currently unable to resolve due to observational
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constraints. Using the rotation rate of each body, as well as their physical size,

I estimated the angular momentum of each system today to hypothesize the binary

system that may have existed. In Figures 6.5 and 6.6 I show how these binary systems,

if disturbed, would have experienced a complete tidal collapse and mass shedding to

produce the systems we observe today.

While Chariklo and Chiron may not be contact binaries, the analysis I put forth

in Chapter 6 is generalized such that it may be applied to any contact BTNO. The

population of contact binaries is expected to be high, and some may have been ob-

served [Lacerda, 2011, Sheppard and Jewitt, 2004]. Due to the dynamics of tidal

collapse and possible mass shedding, I find that contact BTNOs are good candidates

for future searches of planetary rings.

7.6 Denouement

This work was a story of origins and outcomes. The outcome of tidal stresses

disrupting a satellite may be the origin of a planetary ring. The origin of a satellite

may be the outcome of a viscously spreading ring. The outcome of a tidal collapse

may be the origin of a contact binary. Through efforts both great and small, I have

worked to explain the origins and outcomes of satellite-ring systems orbiting bodies

both great and small.

I have constructed RING-MOONS, a numerical model to simulate the dynamics

of tightly coupled satellite-ring systems. I have used this model to argue that Phobos

is a natural result of an ongoing satellite-ring cycle. I have shown that Miranda may

be the only long-term surviving satellite that formed from an ancient Uranian ring

system. And finally, I have shown that the tidal interactions in a binary TNO system

could result in the formation of a contact binary orbited by a planetary ring, which

may explain the Chariklo and Chiron systems.

While developing RING-MOONS I have understood much of the physics that

dominates these systems, and have worked to incorporate as many physical processes
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into the model as is practical. Motivated by the utility of RING-MOONS to produce

significant results for systems of interest across the solar system, I have placed the

model into the public domain. Therefore, any future studies utilizing the RING-

MOONS model are left as an exercise to the reader.
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Guirado, V. Peris, and R. Iglesias-Marzoa. The size, shape, density and ring of
the dwarf planet Haumea from a stellar occultation. Nature, 550:219–223, Oct.
2017. doi: 10.1038/nature24051.

S. B. Porter and W. M. Grundy. KCTF evolution of trans-neptunian
binaries: Connecting formation to observation. Icarus, 220(2):947–
957, 2012. ISSN 00191035. doi: 10.1016/j.icarus.2012.06.034. URL
http://dx.doi.org/10.1016/j.icarus.2012.06.034.

A. Rivkin, R. Brown, D. Trilling, J. Bell III, and J. Plassmann. Icarus, 156:64–75,
2002.

P. Rosenblatt and S. Charnoz. On the Formation of the Martian Moons from a
Circum-Martian Accretion Disk. Icarus, 221(2):806–815, Nov. 2012.

P. Rosenblatt, S. Charnoz, K. M. Dunseath, M. Terao-Dunseath, A. Trinh,
R. Hyodo, H. Genda, and S. Toupin. Accretion of Phobos and Deimos
in an extended debris disc stirred by transient moons. Nature Geoscience,
9(August):4–8, 2016. ISSN 1752-0894. doi: 10.1038/ngeo2742. URL
http://www.nature.com/doifinder/10.1038/ngeo2742.

J. Salmon and R. M. Canup. Accretion of Saturn’s Inner Mid-sized Moons from a
Massive Primordial Ice Ring. The Astrophysical Journal, 836:109, Feb. 2017. doi:
10.3847/1538-4357/836/1/109.

J. Salmon, S. Charnoz, a. Crida, and a. Brahic. Long-term and Large-scale Viscous
Evolution of Dense Planetary Rings. Icarus, 209(2):771–785, 2010a.



108

J. Salmon, S. Charnoz, A. Crida, and A. Brahic. Long-term and large-scale viscous
evolution of dense planetary rings. Icarus, 209(2):771–785, Oct. 2010b.

S. S. Sheppard and D. Jewitt. Extreme Kuiper Belt Object 2001 QG298 and the
Fraction of Contact Binaries. AJ, 127:3023–3033, May 2004. doi: 10.1086/383558.

W. L. Slattery. Giant impacts on a primitive Uranus. Icarus, 99:167–174, Sept.
1992. doi: 10.1016/0019-1035(92)90180-F.

B. A. Smith, L. A. Soderblom, T. V. Johnson, A. P. Ingersoll, S. A. Collins, E. M.
Shoemaker, G. E. Hunt, H. Masursky, M. H. Carr, M. E. Davies, A. F. Cook, J. M.
Boyce, T. Owen, G. E. Danielson, C. Sagan, R. F. Beebe, J. Veverka, J. F. McCauley,
R. G. Strom, D. Morrison, G. A. Briggs, and V. E. Suomi. The Jupiter system
through the eyes of Voyager 1. Science, 204:951–957, June 1979. doi: 10.1126/sci-
ence.204.4396.951.

A. M. K. Szeto. Orbital evolution and origin of the Martian satellites. Icarus, 55:
133–168, July 1983. doi: 10.1016/0019-1035(83)90056-8.

R. Tajeddine, P. D. Nicholson, P.-Y. Longaretti, M. E. Moutamid, and J. A.
Burns. What Confines the Rings of Saturn? The Astrophysical Journal Supple-
ment Series, 232(2):28, 2017. ISSN 1538-4365. doi: 10.3847/1538-4365/aa8c09. URL
http://stacks.iop.org/0067-0049/232/i=2/a=28?key=crossref.61846fc3632be3fbcd1e186ec86b43a1.

T. Takeuchi, S. M. Miyama, and D. N. C. Lin. Gap Formation in Protoplanetary
Disks. The Astrophysical Journal, 460:832, Apr. 1996. doi: 10.1086/177013.

P. A. Taylor and J. L. Margot. Tidal evolution of close binary asteroid systems. Ce-
lestial Mechanics and Dynamical Astronomy, 108(4):315–338, 2010. ISSN 09232958.
doi: 10.1007/s10569-010-9308-0.

P. A. Taylor and J.-L. Margot. Binary asteroid systems: Tidal
end states and estimates of material properties. Icarus, 212(2):661–
676, 2011. ISSN 00191035. doi: 10.1016/j.icarus.2011.01.030. URL
http://linkinghub.elsevier.com/retrieve/pii/S0019103511000418.

M. S. Tiscareno, M. M. Hedman, J. A. Burns, and J. Castillo-Rogez. Compositions
and Origins of Outer Planet Systems: Insights from the Roche Critical Density. ,
765:L28, Mar. 2013. doi: 10.1088/2041-8205/765/2/L28.

W. C. Tittemore and J. Wisdom. Tidal evolution of the Uranian satellites. III -
Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel
2:1 mean-motion commensurabilities. , 85:394–443, June 1990. doi: 10.1016/0019-
1035(90)90125-S.

A. Toomre. On the gravitational stability of a disk of stars. The Astrophysical
Journal, 139:1217–1238, 1964.

S. C. Werner and K. L. Tanaka. Redefinition of the crater-density and absolute-age
boundaries for the chronostratigraphic system of Mars. Icarus, 215:603–607, Oct.
2011. doi: 10.1016/j.icarus.2011.07.024.

J. Wood, J. Horner, T. C. Hinse, and S. C. Marsden. Measuring the severity of close
encounters between ringed small bodies and planets. MNRAS, 480:4183–4198, Nov.
2018. doi: 10.1093/mnras/sty2047.



109

C. F. Yoder. Notes on the origin of the Trojan asteroids. Icarus, 40:341–344, Dec.
1979.



APPENDICES



110

A. TABLES



111

T
ab

le
A

.1
.

M
as

se
s

an
d

T
im

es
ca

le
s

fo
r

M
ar

s
R

in
g/

S
at

el
li
te

C
y
cl

es

C
y
cl

e
n
o.

In
it

ia
l

R
in

g
F

in
al

S
at

el
li
te

C
y
cl

e
T

im
e:

E
st

im
at

ed
C

y
cl

e
T

im
e:

M
as

s
(g

)
M

as
s

(g
)

1
k
m

p
ar

ti
cl

es
(M

y
r)

0.
18

m
P

ar
ti

cl
es

(M
y
r)

6
1.

2
×

10
2
3

2.
6
×

10
2
2

0.
46

19
0

5
2.

6
×

10
2
2

5.
4
×

10
2
1

1.
1

29
0

4
5.

4
×

10
2
1

1.
1
×

10
2
1

2.
8

27
0

3
1.

1
×

10
2
1

2.
4
×

10
2
0

5.
3

35
0

2
2.

4
×

10
2
0

5.
0
×

10
1
9

22
75

0

1
5.

0
×

10
1
9

1.
0
×

10
1
9

61
25

00

H
er

e
I

sh
ow

th
e

in
it

ia
l

m
as

s
fo

r
ea

ch
cy

cl
e,

th
e

m
a
ss

o
f

th
e

sa
te

ll
it

e
p

ro
d

u
ce

d
a
t

th
e

en
d

o
f

th
e

cy
cl

e,
a
n

d
h

ow
lo

n
g

th
e

cy
cl

e
ta

ke
s

to
co

m
p

le
te

fo
r

th
e

n
om

in
al

6-
cy

cl
e

ca
se

.
A

ls
o

in
cl

u
d

ed
a
re

es
ti

m
a
te

d
co

m
p

le
ti

o
n

ti
m

es
fo

r
a

ri
n

g
co

m
p

o
se

d
o
f

0
.1

8
m

ra
d

iu
s

p
a
rt

ic
le

s.
T

h
e

re
la

ti
ve

ly
lo

n
g

co
m

p
le

ti
on

ti
m

e
fo

r
th

e
fi

rs
t

tw
o

cy
cl

es
of

a
ri

n
g

co
m

p
o
se

d
o
f

0
.1

8
m

p
a
rt

ic
le

s
is

d
u

e
to

b
o
th

th
e

lo
n

g
er

sp
re

a
d

in
g

ti
m

e
fo

r
ri

n
g
s

w
it

h
sm

a
ll

er

p
ar

ti
cl

es
,

an
d

th
e

fa
ct

th
at

th
e

m
as

se
s

of
th

e
fi

rs
t

cy
cl

es
a
re

su
ffi

ci
en

t
fo

r
L

in
d

b
la

d
to

rq
u

es
to

d
ri

ve
sa

te
ll

it
es

fa
r

fr
o
m

th
e

F
R

L
,

in
cr

ea
si

n
g

th
e

or
b

it
al

ev
ol

u
ti

on
ti

m
e.

T
h

e
ti

m
e

sh
ow

n
fo

r
C

y
cl

e
1

is
w

h
en

th
e

sa
te

ll
it

e
re

a
ch

es
th

e
cu

rr
en

t
o
rb

it
o
f

P
h

o
b

o
s,

a
n

d
n

o
t

th
e

R
R

L
(a

s
it

is
fo

r
th

e

p
re

v
io

u
s

cy
cl

es
).



112

T
ab

le
A

.2
.

G
lo

b
al

an
d

E
q
u
at

or
ia

l
D

ep
th

s
of

E
st

im
at

ed
R

in
g

D
ep

os
it

s
O

n
to

M
ar

s

C
y
cl

e
n

o.
T

ot
al

V
ol

u
m

e
of

D
ep

th
of

D
ep

o
si

t
D

ep
th

o
f

D
ep

o
si

t
E

st
im

a
te

d
T

im
e

E
st

im
a
te

d
T

im
e

in
G

eo
lo

g
ic

E
ra

D
ep

os
it

(k
m

3
)

(g
lo

b
al

)
(m

)
(2

0
◦

B
a
n

d
a
t

E
q
u

a
to

r)
(m

)
to

D
ep

o
si

t
(M

y
r)

G
eo

lo
g
ic

R
ec

o
rd

(G
y
r)

6
5
.3
×

10
7

37
0

2
1
2
0

0
.3

(4
.4
−

4.
5
)

N
o
a
ch

ia
n

5
1
.1
×

10
7

77
4
4
0

0
.4

(4
.2
−

4.
5
)

N
o
a
ch

ia
n

4
2
.3
×

10
6

16
9
3

0
.4

(3
.8
−

4.
5
)

N
o
a
ch

ia
n

3
4
.9
×

10
5

3.
4

1
9

0
.5

3
.6

H
es

p
er

ia
n

2
1
.0
×

10
5

0.
71

4
.1

1
.1

3
.3

H
es

p
er

ia
n

1
2
.2
×

10
4

0.
15

0
.8

8
3
.8

2
.5

A
m

a
zo

n
ia

n

H
er

e
I

re
p

or
t

th
e

es
ti

m
at

ed
vo

lu
m

e
of

d
ep

o
si

ts
fo

r
ea

ch
cy

cl
e,

g
lo

b
a
l

d
ep

th
s

a
n

d
eq

u
a
to

ri
a
l

d
ep

th
s,

th
e

ti
m

e
to

d
ep

o
si

t
8
0
%

o
f

th
e

m
a
te

ri
a
l,

a
n

d

w
h

at
ti

m
e

I
w

ou
ld

ex
p

ec
t

th
e

d
ep

os
it

to
o
cc

u
r

in
M

a
rt

ia
n

g
eo

lo
g
ic

h
is

to
ry

fo
r

th
e

n
o
m

in
a
l

6
-c

y
cl

e
ca

se
[W

er
n

er
a
n

d
T

a
n

a
ka

,
2
0
1
1
].

A
ll

d
ep

o
si

t

d
ep

th
s

ar
e

ca
lc

u
la

te
d

u
si

n
g

re
su

lt
s

fo
r

ri
n

g
s

co
m

p
o
se

d
o
f

p
a
rt

ic
le

s
w

it
h

a
1

k
m

ra
d

iu
s.

U
n

ce
rt

a
in

ti
es

in
th

e
ex

a
ct

ti
m

e
a
t

w
h

ic
h

th
e

d
ic

h
ot

om
y
-f

or
m

in
g

im
p

ac
t

o
cc

u
rr

ed
,

as
w

el
l

a
s

w
h

ic
h

cy
cl

e
b

es
t

re
p

re
se

n
ts

th
e

in
it

ia
l

ri
n

g
,

a
n

d
th

e
d

y
n
a
m

ic
s

o
f

sa
te

ll
it

es
in

th
e

ea
rl

y
cy

cl
es

(s
ee

F
ig

u
re

4.
3)

p
re

ve
n
t

u
s

fr
om

p
re

ci
se

ly
d

a
ti

n
g

th
e

d
ep

o
si

ts
fo

r
th

e
fi

rs
t

fe
w

cy
cl

es
in

th
e

M
a
rt

ia
n

g
eo

lo
g
ic

re
co

rd
.



113

Table A.3.
Maximum Semi-Major Axis of Satellites

Cycle no. Maximum Satellite Orbit

RM

6 4.9

5 3.9

4 3.5

3 3.3

2 3.1

1 3.1

Here I report the maximum semi-major axis for the “nominal” case (where satellite breakup occurs

at the RRL) that Lindblad torques could possibly evolve any accreted satellites for each cycle. In

cycles 6 and 5 the mass of the ring is massive enough for Lindblad torques to overcome tidal

torques and drive the satellites far away from the ring. However, by cycle 4 the mass of the ring

has been depleted enough that satellites are not driven far from the ring. In the most recent cycles

the Lindblad torques are not sufficient to drive the satellite away from the ring, with their

maximum semi-major axis existing near the ring edge.



VITA



114

VITA

Andrew J. Hesselbrock

Education

Purdue University Physics and Astronomy Ph.D. 2018

Advisor: Prof. David A. Minton

Miami University Physics M.S. 2012

Advisor: Prof. Stephen G. Alexander

Miami University Physics B.S. 2010

Publications

• Hesselbrock, A.J.; Minton, D.A., “An Ongoing Satellite-Ring Cycle of Mars

and the Origins of Phobos and Deimos.” Nature Geoscience, 10:266-269, 2016.

• Hesselbrock, A.J.; Alexander, S.G.; Harp, T.W.; Abel, N.P., “An

Investigation of the Relationship Between Shape and Rotation to Explain the

Light Curve of Nereid.” The Astronomical Journal, 145:144, 2013.

• Alexander, S.G.; Hesselbrock, A.J.; Wu, T.; Abel, N.P., “On the Rotational

Behavior of Nereid.” The Astronomical Journal, 142:1, 2011.

Publications Under Review

Hesselbrock, A.J.; Minton, D.A., “Three Dynamical Evolution Regimes for

Coupled Ring-Satellite Systems and Implications for the Formation of the

Uranian Satellite Miranda.” Submitted to The Astronomical Journal.



115

Conference Proceedings

• Hesselbrock, A.J.; Minton, D. “Boomerang Satellites.” 49th AAS Meeting for

the Division of Planetary Sciences, Provo, UT. October 2017.

• Hesselbrock, A.J. “Planetary Rings that Crash onto Planets, and Crash Your

Computer.” Numerical Integration Methods in Planetary Science, Toronto, CA.

August 2017.

• Hesselbrock, A.J.; Minton, D. “The Cyclic Nature of Martian Satellites.” 48th

AAS Meeting for the Division of Planetary Sciences, Pasadena, CA. October

2016.

• Hesselbrock, A.J.; Larson, J.; Minton, D. “Development of a Circum-Embryo

Disk Model Subject to Collisions from the Heliocentric Swarm.” 46th AAS

Meeting for the Division of Planetary Sciences, Tucson, AZ. November 2014.

• Hesselbrock, A.J.; Larson, J.; Minton, D. “Development of a Circum-Embryo

Disk Model Subject to Collisions from the Heliocentric Swarm.” Michigan

Institute for Research in Astrophysics Conference, Ann Arbor, MI. October 2014.

• Hesselbrock, A.J.; Alexander, S.G. “The Effects of a Variable Torque on

Neptunes Satellite Nereid.” Ohio Section APS Meeting, Marietta, OH. October

2010.

Honors and Awards

NASA Earth and Space Sciences Fellowship to pursue Ph.D., 2016.

Graduate Teaching Award, Purdue University Teaching Academy, 2016.

Summer Grant, Purdue Research Foundation, 2014.

Outstanding Graduate Researcher, Miami University, 2012.

Induction into Sigma Pi Sigma National Honors Society, 2011.

George and Carolyn Arfken Scholarship, Miami University, 2009.



116

Raymond M. Hughes Scholarship, Miami University, 2008.

R.L. Edwards Scholarship, Miami University, 2007.

Professional Service & Outreach

• Science on Tap, Emcee/Promoter, Lafayette, IN (2015-2017).

• Physics Graduate Student Association, President, Vice President, Social Chair,

Purdue University (2013-2017).

• Strategic Planning Committee, Graduate Representative, Purdue University

(2016).

• Imagination Station, Summer Camp Presenter, Planetary Science Day Chair,

Lafayette, IN (2016).

• Department of Physics and Astronomy, Graduate Student Mentor, Purdue

University (2014-2016).

• STEM Day - INDY Women in Tech, Demonstration Participant, Purdue

University (2015).

• Cumberland Elementary School Fair, Presenter, West Lafayette, IN (2014).

• Lafaytte Central Catholic Junior/Senior High School Science Fair Judge,

Lafayette, IN (2013).

• Nano Days - Cincinnati Museum Center, Demonstration Participant, Miami

University (2012).

• Science and Engineering Expo - Southwest Ohio District, Judge, Cincinnati, OH

(2011).

• Department of Physics Chair Search, Graduate Representative, Miami University

(2011).

• Department of Physics, Graduate Representative, Miami University (2011).


