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As pedagogical innovations continue to be developed and adopted in engineering 

education, it is important to understand how these innovations affect the students’ experiences 

and achievements.  A common data analysis practice when evaluating educational innovations is 

to aggregate the data from all of the students together.  However, this data aggregation inherently 

biases the results toward the characteristics of the dominant student group, leaving the 

experiences of minority groups largely unexplored.  In this dissertation, I investigate the 

students’ experiences and achievements in an undergraduate dynamics course, and I intentionally 

use analysis methods that disaggregate the data to better understand the behaviors and 

performance of smaller subgroups of students, not just the majority. 

 This dissertation presents three studies that examine: 1) the validity, reliability, and 

fairness of a standardized set of conceptual questions on the final exam, with a focus on gender 

fairness, 2) how and why the students use the available resources, and 3) how the students’ 

holistic resource usage patterns relate to their academic achievement.  My motivation for 

choosing these studies was that conceptual assessments and customized resources are two key 

components of the learning environment for the dynamics course.  However, the quality of the 

conceptual exam questions used for the course had yet to be evaluated.  Similarly, the learning 

environment for the course incorporates many customized resources, including a custom-written 

“lecturebook” (a hybrid of a textbook and a workbook) and an extensive online library of videos, 

but little was known about how the students used these resources, or how the students’ pattern of 

resource usage related to their performance in the course.   

 The first study in this dissertation used multiple-group confirmatory factor analysis to 

investigate item-level gender bias in a 12-item Abbreviated Dynamics Concept Inventory 

(aDCI), which was a set of standardized conceptual questions included on the final exam.  The 

results suggested that two items were slightly biased against women, with stereotypically-
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masculine contexts and content as possible sources of the bias.  The bias in the aDCI items likely 

unfairly lowered some women’s final exam scores, highlighting the need for engineering 

educators to consider the fairness of their assessments. 

 The second study used a cluster analysis of survey responses to identify nine archetypical 

patterns of resource usage, all of which differed from the average resource-usage pattern of the 

aggregated sample.  An analysis of forty-four student interviews, organized by resource-usage 

cluster, determined that students exhibited their resource-usage behaviors largely because of how 

they perceived the resource’s availability, accessibility, and quality.  The results illustrate that 

there is no “typical” way in which the students used the resources, so it is important for 

instructors to consider a wide array of usage behaviors when designing a course’s learning 

environment and resources. 

 The third study utilized a multiple regression analysis to find that on average a student’s 

resource-usage pattern is not related to their achievement when controlling for many other 

demographic, cognitive, and non-cognitive factors that can affect resource usage and 

performance.  However, two individual resource-usage patterns were significantly related to 

achievement.  Students who primarily used their lecturebook and their peers for support 

performed better than their similar peers in other resource-usage clusters.  Conversely, students 

who rarely used their lecturebook had lower course grades than their peers.  Drawing from the 

results of the second study, general study-habit suggestions for the students in the course were 

extracted from the qualitative themes found in the interviews of the students in these two 

clusters. 

 Overall, the results of these three studies highlight how the experiences and achievements 

of smaller groups of students would go unnoticed if analytical methods that only utilized 

aggregated data were used.  While the setting of this research is specific to the assessments and 

resources of a given dynamics course, the methods used to disaggregate the data to gain insights 

about different subgroups of students are applicable to many engineering education contexts.  

My hope is that this work inspires more researchers to consider the experiences of all students, 

not just those of the majority. 
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CHAPTER 1. DISSERTATION OVERVIEW 

Introduction 

As pedagogical innovations continue to be developed and implemented in engineering 

education, it is important to understand the impact that these innovations have on the students’ 

experiences and learning.  However, when new instructional methods or resources are evaluated, 

researchers often aggregate data from all the students together for analysis.  These analyses of 

aggregated data inherently yield results that primarily reflect the characteristics of the majority 

and can overlook important differences in the data, such as the experiences of students in a 

smaller subgroup of students.  For example, in engineering in the USA, women are outnumbered 

by men by about a factor of four (National Science Board, 2018), so the evaluation of a 

pedagogical innovation in engineering education is dominated by the experiences of men and 

offers very little information about the experiences of women.  Researchers of design have 

argued for years that it is important to consider all users of a product, not just the average or 

stereotypical user (Cooper, Reimann, & Cronin, 2007).  When this argument is applied to 

education, it highlights the need to understand how all of the students (the users) experience an 

educational activity (the product).  Therefore, this dissertation uses analysis methods that 

disaggregate the students’ data to better understand the experiences and achievements of smaller 

subgroups of students in an undergraduate engineering course that utilizes an active, blended, 

and collaborative learning environment called Freeform.  

What is Freeform?   

Active, Blended and Collaborative Learning Environment 

In 2010, two professors in the School of Mechanical Engineering at Purdue University 

formally implemented a new pedagogical environment, called Freeform, in an undergraduate 

course on dynamics and vibrations, which I hereafter refer to as Dynamics, with a capital “D.”  

Freeform incorporates aspects of active, blended, and collaborative learning to increase the 

students’ learning and perceptions of the class.  Active learning refers to times when the student 

is physically active (Chi, 2009; Freeman et al., 2014), blended learning combines in-class and 
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online learning (Bernard, Borokhovski, Schmid, Tamim, & Abrami, 2014; Means, Toyama, 

Murphy, & Baki, 2013), and collaborative learning involves students working together to 

accomplish a shared goal (D. W. Johnson, Johnson, & Smith, 1991; K. A. Smith, Johnson, & 

Johnson, 1981).  Components of the learning environment that facilitate and foster this type of 

learning include a custom-written “lecturebook” that is a combination of a textbook and a 

workbook, an extensive online video library that includes solution videos for all of the 

lecturebook example problems and every homework problem, and peer-to-peer collaboration in 

the classroom and online via a discussion forum where students can ask questions about their 

homework or the course material.  The Freeform environment also leverages the availability of a 

tutorial (or “help”) room that is staffed by teaching assistants (TAs) and available over 40 hours 

per week.   

Conceptual Understanding and Problem-Solving Skills 

One of the educational philosophies that underpins the Freeform learning environment is 

the importance of both conceptual understanding and problem-solving skills, which can be 

considered a combination of procedural and conceptual knowledge (Bohle Carbonell, Stalmeijer, 

Könings, Segers, & van Merriënboer, 2014; Rittle-Johnson & Schneider, 2015).  Conceptual 

knowledge is knowledge of “abstract and general principles”, and procedural knowledge is 

knowledge of “a series of steps, or actions, done to accomplish a goal” (Rittle-Johnson, 

Schneider, & Star, 2015, p. 588).  Research has shown that procedural and conceptual 

knowledge influence a student’s ability to adapt and use existing knowledge in a new and 

unfamiliar application (Bohle Carbonell et al., 2014; Hatano & Inagaki, 1984).  In many 

engineering science courses, conceptual knowledge is not emphasized, but in Dynamics, it is of 

such importance that every Dynamics exam includes problem-solving questions and conceptual 

questions.   

Since Spring 2015, instructors and researchers incorporated an Abbreviated Dynamics 

Concept Inventory (aDCI) into the Dynamics final exam as a replacement for custom-written 

conceptual questions that changed every semester.  The adoption of the aDCI enabled the 

comparison of the students’ conceptual understanding across sections and semesters.  A concept 

inventory (CI) is a multiple-choice assessment that requires little to no calculations.  It is 

intended to measure a student’s conceptual understanding of the material, rather than their ability 
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to solve a complex mathematical problem.  The aDCI is a 12-item subset of the 29-item 

Dynamics Concept Inventory (DCI; Gray et al., 2005) and is similar to popular physics CIs, like 

the Force Concept Inventory (FCI; Hestenes, Wells, & Swackhamer, 1992).  Two versions of the 

aDCI are used in this research, as further explained in Chapter 4, and the first version includes 

two questions that were copied directly from the FCI.  Prior research has identified gender biases 

in the FCI, and this close relationship between the aDCI and the FCI was part of my motivation 

for conducting a gender fairness study of the aDCI, as presented in Chapter 2. 

Success and Adoption of Freeform 

Since the formal inception of Freeform for Dynamics in Fall 2010, the students’ overall 

performance in Dynamics has improved markedly, and the students’ opinion of the course is 

quite positive (Rhoads, Nauman, Holloway, & Krousgrill, 2014).  The rate at which students 

earn a D, F, or withdraw from Dynamics (the DFW rate) has decreased from ~20% in Spring 

2010 to as low as 9% in Spring 2014 (DeBoer et al., 2016).  With over 500 students completing 

dynamics annually, the reduction in DFW rate translates to more than 50 additional students 

passing Dynamics and progressing toward graduation—a known factor in a student’s decision to 

persist in engineering (National Science Board, 2016, p. 43).  The success of this course 

transformation has captured the attention of provosts, deans, and faculty at Purdue University 

and other domestic and international institutions.  The Freeform environment is being used to 

teach undergraduate dynamics courses at Purdue University, Trine University, and McGill 

University (Canada), and a nascent version of Freeform is being used at Purdue University and 

Universidad del Norte (Colombia) to teach Mechanics of Materials.   

Dynamics, with its increased student performance since implementing Freeform, serves 

as a model for transforming engineering classes that suffer from archaic pedagogies and poor 

student performance.  However, prior to expanding Freeform into other courses or institutions, it 

is prudent to better understand the experiences and achievements of all of the students in 

Dynamics, the most mature instantiation of Freeform, rather than solely evaluating the 

implementation of Freeform by DFW rates or other statistics that stem from aggregated data. 
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Purpose of Dissertation 

The overall goal of this dissertation is to illustrate the value and importance of using 

analysis methods that disaggregate the data so that researchers and instructors can better 

understand the unique experiences of smaller subsets of students.  This dissertation focuses on 

two aspects of the students’ experiences in Dynamics: 1) their performance on the aDCI, and 2) 

their holistic resource-usage behaviors and how those behaviors relate to their academic 

achievement in the course.  I chose these two areas of focus because conceptual assessments and 

customized resources are two key components of Dynamics and the Freeform learning 

environment.   

My motivation for investigating the students’ performance on the aDCI is to determine if 

differences in aDCI scores across genders, as identified in previous research (Prebel, Stites, 

Berger, Rhoads, & DeBoer, 2017), could be reflective of bias in the aDCI against women.  Prior 

validation studies identified gender biases in physics concept inventories, including the FCI, 

which by extension means that the aDCI could also be gender biased.  I am also concerned that 

the semester-specific exam questions could be gender-biased because their format and content 

are similar to the aDCI and FCI, but the aDCI was the only set of conceptual (or problem-

solving) exam questions that were used for multiple semesters.  Therefore, the only exam 

questions for which I have enough student responses to conduct a validation study are those from 

the aDCI.  Nonetheless, my expectation is that a validation and gender fairness study of the aDCI 

will expose general suggestions about how to create fair conceptual exam questions that can be 

applied to the development of semester-specific exam questions for Dynamics and other 

engineering courses.   

The students’ resource-usage behaviors interest me because so much effort has gone into 

the development of customized resources for Dynamics and the Freeform environment, but very 

little is known about how the students actually use the resources.  What is known about the 

students’ resource usage is specific to a given resource and stems from aggregated data.  For 

example, from website analytics, it is known that students frequently watch the online solution 

videos for the example problems that are included in the lecturebook (Rhoads et al., 2014).  Also, 

the general level of participation on the discussion forum can be inferred from the number of 

student posts, and the utilization of the tutorial room can be approximated by the TAs who 

staffed the tutorial room.  Very little, however, is known about how the students use multiple 
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resources in combination, or if certain types of students tend to use certain types of resources.  

Overall, my research on the students’ resource-usage behaviors aims to clarify what resources 

students are using, how they are using them, and if their resource-usage pattern relates to their 

performance in the Dynamics.  

Background 

Relating This Research to Other Freeform Research 

This dissertation is part of a larger research endeavor to better understand the experiences 

of students and instructors in the Freeform learning environment.  The larger Freeform project 

has five research questions that ask about 1) how students’ engagement patterns with the 

resources relate to their performance, 2) how background factors influence engagement and 

performance, 3) how students and faculty perceive the Freeform environment, 4) how Freeform 

fosters a sense of community, and 5) how group-level factors (e.g., instructor or institution) 

influence the students’ performance and engagement.  The aDCI validation study in Chapter 2 

provides information on how a student’s background factors influence their performance, and 

Chapters 3 and 4 investigate the students’ resource-usage patterns and their relationship with 

performance.   

The decision to limit the scope of this dissertation to the performance (based on course 

grades and assessment scores) and resource usage of students in Dynamics risks overlooking 

important experiential differences in alternative measures of engagement or academic success.  

The affective, attitudinal, and emotional dimensions of the students’ experiences in Dynamics 

are studied as part of the larger Freeform project, but they are not the focus of this work.   

Why Study Dynamics? 

Dynamics is a sophomore-level, challenging, gateway course for many engineering 

majors.  To be successful in Dynamics, a student must be skilled in algebra, differential 

equations, vector math, physics, and statics.  The incorporation of multiple fundamental subjects 

offers a partial explanation of why exam grades in dynamics are lower than those for statics and 

thermodynamics (Froyd & Ohland, 2005).  Difficult concepts of dynamics include force being 

related to acceleration—not velocity (Clement, 1982; White, 1983), vectors detailing both 
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magnitude and direction, vector-math operating differently than scalar-math, frictionless 

conditions contradicting real-life experiences (White, 1983), and free-body diagrams 

representing complex objects and loadings (R. Streveler, Litzinger, Miller, & Steif, 2008).  

Furthermore, the topics of circular motion and pulleys challenge students (Fang, 2012; Viiri, 

2003).  Most, if not all, of these concepts pertain to knowledge assumed to be garnered from the 

prerequisite courses for Dynamics.  Accordingly, Gray et al. (2005) concluded that “student 

misconceptions [of dynamics] are not random, but are generally the result of a deficiency in their 

understanding of fundamental principles” (p. 1).  Therefore, the development of a student’s 

conceptual understanding of fundamental dynamics principles is an important aspect of being 

successful in Dynamics. 

Overall Research Approach 

Research Methods 

The research designs employed in this dissertation investigate the experiences and 

performance of specific subgroups of students.  A pragmatic worldview undergirds the research.  

Multiple types of data and research methods are employed to better understand the students’ 

performance on the aDCI and their resource-usage behaviors.  Chapter 2 uses many quantitative 

methods (correlation, confirmatory factor analysis, item response theory, multiple-group 

confirmatory factor analysis) but relies on qualitative content analysis to understand why certain 

items on the aDCI may be gender biased.  Chapter 3 utilizes an embedded research design that 

leverages quantitative (cluster analysis) and qualitative (thematic analysis) methods to 

understand how and why the students exhibited certain resource-usage behaviors.  Chapter 4 uses 

quantitative methods (multiple regression analysis) to relate the students’ resource-usage patterns 

to their achievement in Dynamics but contextualizes the statistical findings with the qualitative 

results from Chapter 3.  In all three chapters, the results of the quantitative and qualitative 

analyses are treated equally when making inferences from the data because it is assumed that the 

qualitative and quantitative data complement one another.  The strengths of qualitative data 

offset the weaknesses of quantitative data, and vise-versa.  Overall, the common theme across all 

research designs is the use of analysis techniques that disaggregate the data to investigate the 
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experiences and academic achievements of subgroups of students that would have gone 

unnoticed had I only analyzed the data in aggregate. 

Research Setting and Context   

Dynamics, which is formally known as ME 274: Basic Mechanics II, is a sophomore-

level undergraduate engineering course at Purdue University taught by the School of Mechanical 

Engineering.  Purdue University is a large, Midwestern, research-focused institution, and 

Mechanical Engineering is the largest school (department) within the College of Engineering.  

Dynamics is a three-credit-hour class that normally meets three times a week for 50 minutes at 

each meeting.  It is typically taught during all three academic semesters at Purdue University 

(fall, spring, and summer), with the highest enrollment occurring in the spring semester.  During 

the spring semesters, roughly 400 students are distributed across four sections.  In the fall and 

summer, the number of students enrolled is much smaller—approximately 120 students across 

two sections in the fall and 40 students in one section for the summer.  Instructors for the course 

vary in instructional experience from being first-time instructors to being a developer of 

Freeform.   

The structure of Dynamics is largely uniform across sections.  Instructors choose the 

pedagogical methods of their choice for classroom instruction, but all of the instructors to date 

have devoted the majority of the lecture time to solving example problems.  The homework 

assignments and exams are common across all of the sections.  The students submit two 

homework problems three times a week (for a typical Monday, Wednesday, Friday class), and, 

frequently, only one of those two problems is graded.  The homework assignments consist of 

custom-written questions that change from semester-to-semester to discourage academic 

dishonesty.  Solution videos for each homework problem are posted to the course website shortly 

after the homework due date. 

The course utilizes three midterm exams and a comprehensive final exam.  About two-

thirds of each exam focuses on problem-solving skills and the remaining portion focuses on 

conceptual understanding.  Together, the exams constitute 75% of a student’s grade.  Homework 

performance usually counts as 17% of a student's grade, and scores on quizzes and a 

participation-based fundamentals exam make up the remaining 8% of a student’s grade.   
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Participants  

A range of students from different majors and levels (e.g., sophomore, junior, senior, etc.) 

enroll in Dynamics, but the majority of students are sophomore-level, mechanical engineering 

students for whom Dynamics is a required class.  For illustrative purposes, the demographic 

information from Purdue’s Registrar office for the students who enrolled in Dynamics from 

Spring 2015-Spring 2018 is shown in Table 1.  The demographic categories in Table 1 reflect 

how the Registrar collected the data.  I acknowledge that the binary gender variable (that uses 

sex labels) is a simplification of the gender spectrum, and I recognize that the “ethnicity” 

variable confounds race, ethnicity, and international status.  Approximately 20% of students who 

enrolled in Dynamics were international students, and all of those students chose “international” 

as their ethnicity.  Therefore, the other racial/ethnicity groups listed in Table 1 describe the 

race/ethnicity of domestic students.  The demographic characteristics of the sample used in each 

individual study of this dissertation are presented in their respective chapters.  

The sample for a given study depends on data availability and if a student consented to 

participate in this research.  The Purdue Institutional Review Board has approved post-hoc 

consent for all of the students who took the course prior to Fall 2015, and individualized 

consents have been gathered in all of the semesters since (and including) Fall 2015.  The consent 

forms used for this study are included in Appendices A and B, and the surveys used to collect 

resource-usage and motivational data from the participants are included in Appendices C and D. 
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Table 1.  Demographics of students who enrolled in Dynamics from Spring 2015-Spring 2018 (N 

= 2037). 

Variable % 

Major  
Mechanical Engineering 78% 

Agricultural Engineering 5% 

Nuclear Engineering 5% 

Multidisciplinary Engineering 4% 

Other 7% 

  
Ethnicity (Race/Ethnicity/ 

International Status)  
Domestic, White 58% 

Domestic, Asian 7% 

Domestic, URM 5% 

Domestic, Other 6% 

International 24% 

  
Gender  

Male 82% 

Female 18% 

Note. The sum of the percentages for the major 

category does not equal 100% because of 

numerical rounding.   

 

 

Researcher Positionality   

I am a white man pursuing a doctorate in engineering education who has neither taught 

Dynamics nor experienced (Purdue’s specific version of) Dynamics as a student.  I have a 

bachelor’s and master’s degree in mechanical engineering, professional experience in 

engineering, and teaching experience at the university level.  Therefore, while an outsider to 

Dynamics (although I have been researching it for three years) and women’s experiences in 

engineering, I am an insider to the culture of engineering education.  For my research involving 

gender, I collaborated with many experts in gender studies and validation research to ensure the 

quality of my work. 
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Chapter Organization 

Three interrelated studies comprise this dissertation.  All three studies are linked by their 

use of analysis methods that disaggregate the data to better understand the experiences of unique 

subgroups of students.  Chapter 2 presents a validation study of the aDCI and subdivides the data 

by gender to investigate differential item functioning (DIF) and gender bias.  Chapter 3 describes 

a study that uses quantitative methods to cluster, or group, students by their holistic (overall), 

resource-usage behaviors, and then uses qualitative methods to better understand how and why 

the students in each cluster used the resources as they did.  Chapter 4 uses multiple regression 

analysis to investigate the academic achievement of students in each of the unique resource-

usage clusters and draws from the qualitative work from Chapter 3 to make meaning of the 

regression results.  One of the achievement measures considered in Chapter 4 is the students’ 

performance on conceptual exam questions, including the aDCI questions evaluated in Chapter 

2.  Brief summaries of the three studies that constitute Chapters 2-4 are provided in the following 

sections. 

Chapter 2.  A Validation and DIF Study of the aDCI 

Chapter 2 presents an investigation into the quality of the aDCI.  A high-quality 

assessment must be valid, reliable, and fair (American Educational Research Association, 

American Psychological Association, & National Council on Measurement in Education, 2014).  

I used a variety of statistical methods, including confirmatory factor analysis (CFA) and item-

response theory (IRT), to evaluate the validity and reliability of the aDCI.  To my knowledge, 

this is the extent to which all of the previous validation studies of engineering CIs have been 

completed, representing lost opportunities to disaggregate the data and investigate the fairness of 

the other CIs across subgroups of students.  I used multiple-group confirmatory factor analysis to 

evaluate the gender bias of the aDCI.  The results of these analyses indicated that one problem 

was that the aDCI was measuring an unintended construct and that two other items were slightly 

biased against women.  The gender bias of the two items likely adversely affected women’s 

performance on the Dynamics final exam and, subsequently, their course grade, which highlights 

the practical consequences that unfair biases can have on certain subgroups of students.  In 

Chapter 4, I excluded the scores of the three items with questionable validity or fairness when 
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calculating a student’s overall performance on conceptual exam questions to examine the impact 

of this bias on students’ achievement in Dynamics. 

Chapter 3.  Identifying and Understanding Resource-Usage Patterns 

The studies that are detailed in Chapter 3 and Chapter 4 worked in concert to investigate 

the relationship between the Dynamics students’ resource usage behaviors and their achievement 

in the course.  The cluster analysis of Chapter 3 identified nine archetypical resource-usage 

patterns based on self-reported survey data on how frequently each student used nine help 

resources.  Then, to better understand how and why students enacted their respective resource-

usage patterns, I completed a thematic analysis of student interviews for each cluster.  The 

resulting themes suggested that the reasons students used or did not use a given resource closely 

aligned with the expectations and values they had for the resource, as described in Makara and 

Karabenick’s (2013) expectancy-value model for help source selection.  While this study 

identified that students across all nine resource-usage patterns sought help in order to build 

understanding of the material, not just in an attempt to quickly find the correct answer, the actual 

academic achievements of the students in different clusters were not compared until the 

completion of the study described in Chapter 4. 

Chapter 4.  Relating Resource-Usage Patterns to Academic Achievement 

Extending the work of Chapter 3, Chapter 4 investigated the relationship between a 

student’s resource-usage pattern and their achievement in Dynamics.  Achievement was 

operationalized as a student’s overall course grade, their overall performance on the problem-

solving exam questions, and their overall performance on the conceptual exam questions.  A 

student’s overall grade was an aggregated, weighted-sum of a student’s performance on all of the 

Dynamics assignments, whether they were group or individual assignments.  The exam scores 

were purely individualistic measures of a student’s achievement.  The problem-solving exam 

questions measured a combination of procedural and conceptual knowledge (Rittle-Johnson & 

Schneider, 2015), and the conceptual questions were designed to only assess a student’s 

conceptual knowledge of dynamics.  When calculating a student’s performance on the 

conceptual questions across all of the Dynamics exams, the three aDCI questions identified as 

having validity or gender-bias concerns were excluded. 
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Multiple regression analysis was used to investigate the relationship between a student’s 

resource usage and their achievement while controlling for many demographic, cognitive, and 

non-cognitive factors that can influence resource usage or achievement.  The results suggest that 

on overage a student’s resource-usage pattern was not predictive of achievement, thereby 

indicating that, in general, the students used different combinations of resources in diverse ways 

to earn similar achievements.  However, the regression results also indicated that students who 

primarily relied on their lecturebook and peers for support performed better than their similar 

peers in other clusters, and those who rarely used their lecturebook had lower course grades.  The 

qualitive themes from Chapter 3 regarding the resource-usage behaviors of the students in these 

two clusters were used to inform general suggestions on how all future Dynamics students might 

use the resources to improve their achievement in Dynamics. 

Contribution 

Beyond being three exemplary studies for why it is important to utilize analysis methods 

that disaggregate the data to investigate the experiences and academic achievements of specific 

subgroups of students, this dissertation is impactful to the engineering education research 

community in three respects.  First, to my knowledge, the validation study of the aDCI is the first 

validation study of an engineering CI to consider bias and fairness.  Most CI validations only 

consider construct validity and reliability with aggregated data, which can leave unfair biases 

unnoticed, as Chapter 2 illustrates.  Second, I believe Chapter 2 is the first CI validation study to 

formally implement an argument-based approach.  Thus, Chapter 2 provides a rigorous, yet 

flexible, validation framework for other researchers to adapt to other CIs.  Third, Chapters 3 and 

4 provide a template for a new approach to studying students’ help-seeking behaviors.  Chapter 3 

is the first study of students’ help-seeking behaviors to utilize model-based clustering on data 

(self-reported or observed) of face-to-face and online resources.  Other help-seeking studies that 

have used cluster analysis do so according to the students’ general help-seeking tendencies.  

Thus, Chapter 3 provides a flexible framework for instructors and researchers to identify 

archetypical resource-usage patterns of the students in a specific course that can combat 

stereotypes and misconceptions about the help-seeking behaviors of the average, or typical, 

student.  Chapter 4 is the first study to consider the students’ resource usage holistically when 

correlating it with academic achievement.  Without disaggregating the data and considering 
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holistic resource-usage patterns, the unique achievements of two, smaller subsets of students 

likely would have gone unnoticed.  Overall, the knowledge of how students experience 

assessments and the resources of the course enables instructors to better coach students on how 

to be successful in the course and to modify the curriculum and resources of the course to better 

support the learning of all students.   
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CHAPTER 2. A VALIDATION AND DIF STUDY OF THE ADCI 

Stites, N. A., Douglas, K. A., Evenhouse, D., Berger, E., DeBoer, J., & Rhoads, J. F. (in press). 

A validation and differential item functioning (DIF) study of an Abbreviated Dynamics 

Concept Inventory. International Journal of Engineering Education. 

Abstract 

Concept inventories (CIs) have become popular assessment tools in science, technology, 

engineering, and mathematics education.  Some researchers use CI scores when looking at 

differences in conceptual understanding or learning gains across demographic groups, but very 

few CIs have been evaluated for measurement bias or other aspects that threaten the fair 

assessment of learners.  The most common psychometric evaluation models are shaped primarily 

by the majority demographic group, so these models can hide biases in the assessment against 

minority groups.  The purpose of this study was to evaluate the extent to which the validity, 

reliability, and fairness evidence supports the use of the total score on a 12-item Abbreviated 

Dynamics Concept Inventory (aDCI) as a measure of a student’s overall conceptual 

understanding of dynamics.  Because of the strong relationship between the aDCI and the Force 

Concept Inventory, which has previously been shown to include item-level gender biases, we 

examined threats to fair measurement across gender scores of the aDCI.  We employed an 

argument-based validation approach which tested: 1) the fit of a single-factor latent structure for 

the aDCI scores via a confirmatory factor analysis (CFA), 2) the difficulty and discrimination of 

each item using item response theory, 3) the correlation between the aDCI scores and similar 

measures of conceptual understanding, and 4) the differential item functioning of the aDCI items 

across gender groups via a multiple-group CFA.  We found that one item had face-level 

construct validity concerns and two others were slightly biased against women.  Possible sources 

of gender bias included the question’s content and context.  Our results suggest that the 

interpretation of a student’s total aDCI score should consider the differential item functioning of 

two items across gender and the construct-alignment concerns of a third item.  This work 

highlights the importance and challenge of designing inclusive assessments and validating them 

with fair psychometric models. 
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Keywords: concept inventory, validity, reliability, fairness, gender, engineering education, 

assessment bias 

Introduction 

Research suggests that a student’s conceptual understanding of fundamental engineering 

topics directly relates to their ability to solve problems and apply existing knowledge to new and 

novel situations (Hatano & Inagaki, 1984; McKenna, 2007; Pandy, Petrosino, Austin, & Barr, 

2004; R. Streveler et al., 2008)1.  Concept inventories (CIs) are increasingly-popular instruments 

for assessing students’ conceptual understanding, as well as their misconceptions, within a 

particular domain (such as statics, dynamics, or thermodynamics; Jorion et al., 2015).  The 

interest in CIs in engineering increased significantly in the early 2000s, potentially driven by a 

transition of ABET accreditation guidelines to a focus on program outcomes (Reed-Rhoads & 

Imbrie, 2008).  Currently, the development and assessment of conceptual understanding is still a 

large endeavor; a search of the U.S. National Science Foundation awards found over $7 million 

in active awards with the phrase “concept inventory” in the proposal abstract alone.  CIs are 

commonly used to evaluate pedagogical innovations (Freeman et al., 2014; Hake, 1998; 

Hestenes et al., 1992), and they have also been used to better understand how students develop 

conceptual understanding (Henderson, 2002). Yet, despite the investment in and positive 

outcomes associated with CI use, research on the quality and fair use of these assessment 

instruments is generally incomplete (Jorion et al., 2015).  

Researchers have used many different types of evidence to validate the use of CIs, with 

varying degrees of quality (R. A. Streveler et al., 2011). Because validity pertains to justifying 

specific interpretations and uses of assessment scores, evidence must be collected to test the 

plausibility of the desired claims made from the scores (Messick, 1989).  Generally speaking, 

developers and users of CIs have similar desired inferences from the CI scores–the students’ 

conceptual understanding of a specific topic. Therefore, in response to the need for more 

consistency, researchers have begun to develop guidelines to aid those interested in developing  

 

_______________________ 
1Copyright permission from IJEE included in Appendix E 

or using CIs for their research.  Streveler et al. (2011) demonstrated how the Assessment 

Triangle can be applied to the development and testing of CIs, where evidence to support the  
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interpretation of CI scores was empirically gathered through studies of item difficulty and 

discrimination. The Assessment Triangle provides a framework for assessment development that 

ensures the alignment between cognitive theory, observing the students’ assessment responses, 

and interpreting the responses (National Research Council, 2001). Focusing on the interpretation 

corner, Jorion et al. (2015) suggested a framework to evaluate the plausibility of three common 

claims made from CI results: 1) students’ overall conceptual understanding, 2) students’ 

understanding of specific concepts, and 3) students’ propensity for misconceptions.  While these 

frameworks are helpful for developing and evaluating CIs, the examples do not consider use 

among diverse learners. According to the Standards for Psychological and Educational 

Assessment, high-quality assessments are based on evidence of reliability, validity, and fairness 

(American Educational Research Association et al., 2014). Fair assessment has received 

relatively little attention in engineering education with few examples of what is meant by “fair” 

and how to measure it. This work provides one example of how to operationalize and measure 

fairness and, to our knowledge, represents the first psychometric analysis of an engineering CI to 

consider fairness. 

Psychometric models used in the validation of assessment instruments, such as CIs, are 

based on statistics for which the responses of the demographic majority group will have the most 

power in shaping the model. Given that only approximately 20% of U.S. engineering students 

are women (National Science Board, 2018), any psychometric model from that sample is 

essentially normed on the responses from men. To examine how the items perform for minority 

students, researchers need to purposefully examine measurement models for minority groups. In 

a recent review of assessment development articles published in engineering education journals, 

only one article considered potential bias in the assessment items themselves (Kerrie A. Douglas, 

Rynearson, & Purzer, 2016). Yet, recent research in engineering education assessment validation 

found items that had acceptable fit for the whole student group also contained item-level bias 

against English-language learners (Kerrie A. Douglas, Fernandez, Purzer, Fosmire, & Van Epps, 

2018). An acceptable psychometric model fit for the whole group does not guarantee that those 

same items are fair for all students. The evaluation of test items is a prerequisite to the evaluation 

of the learners who responded to those items. Score differences found between groups cannot be 

justifiably interpreted as true score differences unless bias in the measurement model has been 

ruled out. It is simply unknown whether assessment questions or answer choices are understood 
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in the same way by diverse groups of students, unless the evidence is specifically sought. 

Therefore, the evaluation of CIs in engineering for fairness across all underrepresented groups, 

including those based on gender, is a prerequisite for the fair use of the students’ scores to make 

decisions of personal consequence to the students. 

Purpose of the Study and Research Questions   

The overall purpose of this research is to report the development and initial validation 

studies of a shortened form of the Dynamics Concept Inventory (DCI; Gray et al., 2005), which 

is named the Abbreviated Dynamics Concept Inventory (aDCI; Appendix F includes a full list of 

the abbreviations used in this paper). While the DCI is an established instrument used in 

engineering education research (e.g., Coller, 2015; Self & Widmann, 2017), a shortened version 

would enable instructors and researchers to assess students’ conceptual understanding of 

dynamics in less time (Stites et al., 2016).  The research question that guides this work is: to 

what extent does the validity, reliability, and fairness evidence support the use of aDCI scores as 

a measure of students’ overall conceptual understanding of dynamics?   

Regarding the fairness of the aDCI, we focus on gender fairness in this paper because the 

aDCI is closely related to the Force Concept Inventory (FCI) that is used in physics education, 

and the FCI has been shown to include item-level gender bias (Traxler et al., 2018).  

Additionally, previous research has indicated a statistically-significant gender gap in the 

students’ total scores on the aDCI (Prebel et al., 2017). 

 In accordance with Messick’s (1990) description of validation research as hypothesis 

testing and Kane’s (1992) argument-based approach to validation, we investigate the overarching 

research question by testing the following hypotheses: 

 

If a student’s total score on the aDCI can be interpreted as a measure of their overall 

conceptual understanding of dynamics, then: 

Hypothesis 1. a single-factor latent structure would effectively model the shared variance 

of the aDCI items; 

Hypothesis 2. the aDCI items would be appropriately difficult and able to discriminate 

between students with high and low overall conceptual understanding of 

dynamics; 
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Hypothesis 3. the aDCI total score would be correlated to similar measures of overall 

conceptual understanding of dynamics; 

Hypothesis 4. The aDCI items would function similarly for students of equal ability 

regardless of their background or socialization, including gender. 

 

The purpose of each hypothesis and the analytical methods used to investigate the 

hypotheses are summarized in Table 2.  The structure of this study follows the order of the 

hypotheses.  The results of Hypotheses 1-3 provide information regarding the reliability and 

construct validity of the aDCI scores, and Hypothesis 4 targets fairness.   

 

 

Table 2. An overview of the analytical methods used in this study and the purpose of each of the 

hypotheses. 

Hypothesis 

Analytical 

Method Purpose 

1.  Single Factor 

Latent Structure 

Confirmatory 

Factor Analysis 

(CFA) 

Determine if all items of the aDCI serve as 

indicators of a single latent construct that 

is assumed to be a student’s overall 

conceptual understanding of dynamics 

2. Appropriate 

Difficulty and 

Discrimination 

Item Response 

Theory (IRT) 

Investigate how well the difficulty of the 

aDCI items match the latent abilities of 

the students and how well the items 

differentiate the higher- and lower-

performing students 

3. Correlated to 

Similar Measures 

Correlation Evaluate the relative relationships between 

similar measures of students’ overall 

conceptual understanding of dynamics 

4. Measurement 

Invariance Across 

Groups 

Multiple-Group 

Confirmatory 

Factor Analysis 

(MG-CFA) 

Determine if the aDCI functions the same 

for men and women; i.e., evaluate the 

aDCI for gender bias 
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Literature review 

Reliability, Validity, and Fairness  

The cornerstones of high-quality assessments reside in the evidence of reliability, 

validity, and fairness (American Educational Research Association et al., 2014).  Reliability 

refers to the degree of consistency both internal to the assessment and of the scores for multiple 

administrations of the assessment (Kerrie A. Douglas et al., 2016).  Validation is the process of 

identifying multiple sources of relevant evidence to make a judgement about the appropriateness 

of using a given assessment for a specific purpose (Kerrie A. Douglas & Pellegrino, 2017; Kerrie 

Anna Douglas & Purzer, 2015).  Thus, validity refers to the evidence and rationale for claiming 

an assessment score can be interpreted and used as intended – as a measure of the learners’ 

knowledge, skill, or conceptual understanding (Kerrie A. Douglas & Pellegrino, 2017; Kerrie A. 

Douglas et al., 2016; Messick, 1989).  Of the three cornerstones of high-quality assessments, 

validity is overarching.  Validity depends on the evidence of reliability and fairness; for an 

assessment to have a valid use, it must first demonstrate reliability and fairness in assessing 

learners.   

There is no one set of procedures for validation because the validation process depends 

on the specific interpretation and purpose of the assessment (Mislevy & Haertel, 2006).  In order 

to holistically evaluate the use of an assessment, one would clearly articulate the chain of 

reasoning involved in determining what evidence to test (Mislevy & Haertel, 2006).  In the case 

of concept inventories used in physics or engineering education, after the assessment is 

administered, validity testing would begin with “If this assessment score truly measures the 

students’ conceptual understanding, then what else has to be true so that the reliability, validity, 

and fairness evidence supports this argument?”   

While most engineering education researchers are at least aware of the terms “reliability” 

and “validity” in educational assessment, fairness is less understood. Fairness was recently raised 

to the same level of importance as validity in the Standards for Educational and Psychological 

Testing in order to emphasize how crucial evidence of fairness is for ethical education 

assessment (American Educational Research Association et al., 2014). The term itself, fairness, 

does not have one specific technical meaning, as it has been used in a variety of ways in 

educational assessment (American Educational Research Association et al., 2014). The 
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Standards identify common views of fairness to include equitable treatment during the testing 

process, lack of measurement bias, access to content assessed, and valid interpretations of 

individual test scores.  Fair and valid interpretations of test scores can depend on, among other 

factors, the content assessed and the context of the questions (American Educational Research 

Association et al., 2014; Ding & Caballero, 2014).  Measurement bias and valid interpretation of 

individual test scores are the most pertinent views of fairness for this work because they are 

partially dependent on item-level bias that can cause differential item functioning (DIF) across 

student groups, which is what we investigate in Hypothesis 4.  Researchers have previously 

found item-level gender bias in physics CIs (e.g., Dietz et al., 2012; Osborn Popp, Meltzer, & 

Megowan-Romanowicz, 2001; Traxler et al., 2018) and physics (mechanics) is closely related to 

dynamics.  Therefore, we investigate threats to the gender fairness of the aDCI stemming from 

the psychometric models of evaluation and from the content and context of the questions. 

Sources of Gender Bias in CIs 

Because of the minimal research on the fairness of engineering CIs, we looked to the 

literature from physics education research for information regarding possible sources of gender 

bias in CIs.  Madsen, McKagan, and Sayre (2013) reviewed literature on the gender gap of 

physics concept inventories, and they identified six categories of factors that had evidence of a 

demonstrated impact on the gender gap: background and preparation (e.g., high school 

background), gender gaps on other measures (e.g., average exam scores), differences in personal 

beliefs and the answer a “scientist” would give, teaching method (e.g., level of interactive 

engagement), stereotype threat, and question wording. 

Regarding question wording, the conclusion of Madsen and colleagues was largely based 

on McCullough’s findings (2004, 2011) that students changed how they answered questions on 

the FCI when the question wording was revised to included everyday and stereotypically 

feminine contexts (rather than stereotypically masculine contexts of the traditional FCI).  

However, the way in which the context influenced the students’ performance on individual 

questions was inconsistent, meaning the gender gap for the overall scores remained unchanged 

for McCullough’s revised concept inventory.  Nonetheless, McCullough’s findings showed that 

changing the context of an individual question affects how men and women answer the question.   
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McCullogh’s findings aligned with what Ding and Caballero (2014) called a context 

effect.  A context effect is when one group of students is more familiar with the non-essential 

features of a question (such as wording, language, or images), and this extra familiarity with the 

context causes DIF.  Alternatively, Ding and Caballero posited that DIF could be caused by a 

content effect, which is when groups of students who have been exposed to different 

interventions, instruction, or experiences perform differently on an item.  Unfamiliar content and 

contexts can create extra cognitive load which can affect a student’s performance because the 

student must first infer the situation described in the problem statement before they can attempt 

to solve the problem (Rennie & Parker, 1993). Thus, content and context effects can favor 

certain groups based on their background and socialization, including gender.   

To help instructors identify and eliminate gender bias in physics questions, Rennie and 

Parker (1993) developed a framework, see Table 3, for assessing the gender orientation 

(masculine, feminine, allegedly neutral, or gender inclusive) of physics questions along four 

dimensions (language, portrayal of stereotypes, appeal to background experiences, and context).  

Later, McCullough (2004, 2011) used the same framework to categorize the items of the FCI.  

Leveraging the strong relationship between physics and dynamics, we used this framework to 

qualitatively evaluate the aDCI items for gender bias.  
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Table 3. A gender-orientation framework for evaluating items on the aDCI for gender bias 

(Rennie & Parker, 1993). 

Criteria 

Masculine 

Orientation 

Feminine 

Orientation 

Allegedly Neutral 

Orientation 

Gender-

Inclusive 

Orientation 

Language Uses he, him, his Uses she, her, 

hers 

Uses they, them, 

their 

Uses role (e.g., a 

sprinter…) 

Uses the name 

of a person 

Uses “you” 

Portrayal of 

Stereotypes 

Men in active 

roles, women in 

passive roles 

Women in 

active roles, 

men in passive 

roles 

Genderless 

people in active 

roles (e.g., a 

scientist…) 

Both men and 

women in active 

and passive roles 

Appeal to 

background 

experiences 

Relevant to 

stereotyped 

experiences of 

men 

Relevant to 

stereotyped 

experiences of 

women 

Not relevant to 

human 

experiences 

Relevant to men 

and women 

equally 

Context Decontextualized, 

abstract 

Human, social Concrete setting Human, social, 

environmental 

Note. Rennie and Parker used the terms male and female rather than the terms masculine, 

feminine, men, and women (as shown).  Rennie and Parker included the word “allegedly” to the 

Neutral Orientation category because their research indicated that students assume plural 

pronouns and genderless people refer to men.   

Background 

The sophomore-level dynamics course required by many engineering majors is often 

challenging.  It is a gateway course to the more specialized upper-division engineering courses, 

and, when paired with statics, it creates the problem-solving and conceptual foundation for much 

of the curriculum in many engineering disciplines. To be successful in dynamics, a student must 

understand algebra, differential equations, vector math, physics, and statics. The incorporation of 

so many fundamental subject areas of engineering may be a partial explanation of why students’ 

exam scores for dynamics courses are lower than they are in statics and thermodynamics courses 

(Froyd & Ohland, 2005).  Many researchers have discussed the difficult aspects of dynamics 

(e.g., Clement, 1982; Shryock & Froyd, 2011; R. Streveler et al., 2008; White, 1983), many of 

which involve prerequisite material.  The difficulties that the students have with the prerequisite 
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fundamentals support the conclusion of Gray et al. (2005) that “student misconceptions are not 

random, but are generally the result of a deficiency in their understanding of fundamental 

principles” (p. 1).  Accordingly, Cornwell (2000) noted that when students do not understand the 

fundamentals of dynamics, they struggle to identify when or why to apply a given model or 

solution approach.   

To help instructors assess their students’ conceptual understanding of the fundamental 

topics of dynamics, Gray and colleagues (2005) developed the Dynamics Concept Inventory 

(DCI).  The DCI stemmed from the need to quantitatively assess the efficacy of pedagogical 

innovations in dynamics.  Gray et al. conducted a modified Delphi process, focus groups, student 

interviews, (informal) instructor interviews, and pilot tests to develop the DCI.  The final result 

was a 29-item instrument that targeted 11 of the most important and difficult concepts in 

dynamics (Gray et al., 2005).  Each item included five answer choices.  Psychometric analyses 

have found that the DCI should be used for low-stakes assessment and that the total scores could 

be interpreted as the students’ overall understanding of concepts on the DCI (Gray et al., 2005; 

Jorion et al., 2015).  Thus, it is plausible that a carefully-selected subset of DCI items could 

provide a similar measure of the students’ conceptual understanding. 

aDCI Development 

To streamline the implementation of a dynamics CI and to save class time (Stites et al., 

2016), a shortened version of the DCI (the aDCI) was developed and incorporated into the final 

exam of a dynamics course.  We note that Jorion et al.’s (2015) suggestion of using the DCI in a 

low-stakes environment was not yet published.  The number of conceptual questions on past 

final exams for this dynamics course typically ranged from 5 to 13.  Therefore, the goal for the 

aDCI was to target as many of the important and difficult dynamics concepts as possible with 

fewer than 13 items.  

The DCI developers did not specify which items targeted which concepts, and very 

limited psychometric information was available for the DCI at the time that the aDCI was 

developed (early 2015).  Therefore, two of the co-authors of this paper (both subject-matter 

experts in dynamics) used their best judgement to categorize the DCI items according to 

conceptual content.  They then chose 11 items for inclusion in the aDCI that spanned 10 of the 

11 conceptual categories and a twelfth item that tested pre-requisite physics knowledge.  The 
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questions were selected based on clarity and alignment with the material taught in the dynamics 

course, which reflected the curriculum of most undergraduate dynamics courses and included the 

study of particle and rigid-body kinematics and kinetics in two and three dimensions.  The 

twelve selected items for the aDCI and their targeted concepts are listed in Table 4.  

 

Table 4. Description of the concepts assessed by each item of the aDCI (using verbatim 

descriptions from Gray et al. (2005)). 

aDCI 

Item # 
Concept Description  

Q1 
Newton's third law dictates that the interaction forces between two objects must 

be equal and opposite. 

Q2 
Angular velocities and angular accelerations are properties of the body as a 

whole and can vary with time. 

Q3 
If the net external force on a body is not zero, then the mass center must have 

an acceleration and it must be in the same direction as the force. 

Q4 In general, the total mechanical energy is not conserved during an impact. 

Q5 
An object can have (a) nonzero acceleration and zero velocity or (b) nonzero 

velocity and no acceleration. 

Q6 
The direction of the friction force on a rolling rigid body is not related in a 

fixed way to the direction of rolling. 

Q7 
The angular momentum of a rigid body involves translational and rotational 

components and requires using some point as a reference. 

Q8 
If the net external force on a body is not zero, then the mass center must have 

an acceleration and it must be in the same direction as the force. 

Q9 The inertia of a body affects its acceleration. 

Q10 
A particle has acceleration when it is moving with a relative velocity on a 

rotating object. 

Q11 
Points on an object that is rolling without slip have velocities and acceleration 

that depend on the rolling without slip condition. 

Q12 
Different points on a rigid body have different velocities and accelerations, 

which vary continuously. 

Note.  Q3 and Q8 assess the same concept. 

 

Methods 

Participants and Data Collection 

The aDCI data for this study were collected from students enrolled in a sophomore-level 

dynamics course at a large, public, doctoral university with the highest category of research 

activity (Indiana University Center for Postsecondary Research, n.d.) located in the Midwest 
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region of the United States. The dynamics course was focused on particle and rigid-body 

kinematics and kinetics, as well as mechanical vibration.  Each year, over 500 students enrolled 

in the course, often in class sections of up to 120 students.  The sampling frame for this study 

consisted of all of the students who enrolled in the course from Spring 2015-Spring 2017.  Of the 

1,397 students in the sampling frame, 1,351 students completed the aDCI, and 1,250 of those 

students agreed to participate in the research study. The aDCI was administered as part of the 

course’s final exam, and the items were scored as correct or incorrect (1 or 0, respectively).  If an 

item was unanswered or if multiple answers were selected (which occurred 0.31% of the time), 

the response was considered incorrect.  These scoring methods led to a sample with no missing 

data. 

The demographic characteristics of our sample are shown in Table 1.  The institutional-

research data we used conflated race, ethnicity, and international status into one variable and 

collected gender as a binary variable (which we acknowledge is a simplification of the gender 

spectrum). The proportion of women in this course is representative of many mechanical 

engineering courses at large research universities in the USA, including those at the university of 

this study.   
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Table 5.  Demographics of the sample (N = 1250). 

Variable Value    

Majora 81% Mechanical Engineering 

 4% Nuclear Engineering 

 
5% 

Agricultural 

Engineering 

 
3% 

Multidisciplinary 

Engineering 

 6% Other 

   
Race/Ethnicity/ 

International 

Status 

60% Domestic, White 

 7% Domestic, Asian 

 5% Domestic, URM 

 23% International 

 5% Domestic, Other 

   
Gender 82% Male 

  18% Female 
aThe total percentages of major does not sum to 100% 

because of numeric rounding. 

 

Data Analyses 

Preprocessing Data: Descriptive and Correlation Statistics 

Prior to testing the four psychometric hypotheses, the data were explored via descriptive 

statistics and correlations.  Because of the dichotomous nature of the data (0 = incorrect, 1 = 

correct), the proportions of students who answered an item correctly and inter-item tetrachoric 

correlation coefficients were calculated (Scott, Schumayer, & Gray, 2012).  The proportions 

provided a measure of item difficulty (Tavakol & Dennick, 2011); the tetrachoric correlations 

were measures of internal reliability and how related the items were to one another (Scott et al., 

2012). 
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Hypothesis 1: A Single-Factor Latent Structure 

This analysis used confirmatory factor analysis (CFA) to evaluate the hypothesis that the 

aDCI scores reflect a unidimensional latent-factor structure, i.e., conceptual understanding of 

dynamics.  To identify the model and estimate all the factor loadings, the variance of the latent 

variable was constrained to be unity.  A weighted least squares estimator in the lavaan package 

(version 0.5-23.109) of R (version 3.3.2) used diagonally weighted least squares to estimate the 

model parameters, and it used the full weight matrix to compute robust standard errors and a 

mean- and variance-adjusted chi-squared (χ2) statistic.  The estimator specified the model 

parameters that most accurately reproduced the tetrachoric correlation matrix for the sample 

data. 

We holistically evaluated the model through the goodness of fit statistics of χ2, 

comparative fit index (CFI), and root-mean-square error of approximation (RMSEA) goodness 

of fit statistics.  We gave the statistical significance of the χ2 test statistic minimal consideration 

when determining overall model fit because of its sensitivity to sample size and non-normality 

(Cheung & Rensvold, 2002; Hu & Bentler, 1998).  More weight was given to the CFI and 

RMSEA values.  As suggested by Hu and Bentler (1999), we considered CFI values above 0.950 

and RMSEA values below 0.050 to be indicators of good model fit. 

Hypothesis 2: Items of Appropriate Difficulty and Discrimination 

Item response theory (IRT) models the probability of a student answering an item 

correctly as a function of their ability level (a latent trait) and the properties of the item that are 

independent of the sample.  Similar to CFA, IRT utilizes a single-factor model to estimate each 

student’s latent ability, which we again assumed to represent a student’s overall understanding of 

dynamics.  We used a 3-parameter (3PL; difficulty, discrimination, and guessing) model to 

characterize each item of the aDCI. The proportion of lower-performing students (those with an 

aDCI total score of 3 or less) who answered the item correctly was used as the initial value for 

the guessing parameter in the IRT model.  The M2 test statistic was used to evaluate model fit, 

using p < 0.050 as the significance threshold (Maydeu-Olivares & García-Forero, 2010).  The 

items’ difficulty values were compared to the students’ ability levels with a Wright map (Jorion 

et al., 2015) to determine if questions were too challenging or easy for our sample.  
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Discrimination values indicated how well the item differentiated students who knew the concept 

and those who did not (Tavakol & Dennick, 2011).  

Hypothesis 3: Correlation with Similar Measures of Conceptual Understanding 

Every intermediate exam in the dynamics course in which our participants were enrolled 

included conceptual questions, and in aggregate, the concepts assessed by the intermediate 

exams reflected the concepts assessed by the aDCI.  Strong correlations between a student’s 

performance on the conceptual questions of the three intermediate exams, their total score on the 

aDCI, their latent factor score from the CFA (from Hypothesis 1), and their ability score from the 

IRT analysis (from Hypothesis 2) would support the assumption that these data were all 

measures of the students’ overall conceptual understanding of dynamics.  The exact concepts 

assessed on the intermediate exams varied slightly across semesters.  To be able to compare the 

instructor-written questions across semesters, we standardized the students’ scores for each 

semester individually.  Regarding format, the aDCI consisted of multiple-choice questions only, 

and the intermediate exams incorporated multiple-choice, true/false, and short-answer conceptual 

questions.   

Hypothesis 4: Measurement Invariance Across Genders 

If assessment items are truly measuring the intended construct and not outside factors, 

there should be no group level differences in item performance. Measurement invariance refers 

to the assumption that the measurement model is not significantly different for different 

demographic groups (Schmitt & Kuljanin, 2008).  Conversely, differential item functioning 

(DIF) occurs when an item functions differently for different demographic groups (Bauer, 2017). 

There are multiple methods that can be used to detect DIF including multiple-group confirmatory 

factor analysis (Vandenberg & Lance, 2000), IRT techniques (Stark, Chernyshenko, & Drasgow, 

2006), and non-parametric techniques like the Mantel-Haenszel method (Socha, DeMars, 

Zilberberg, & Phan, 2015).  We used multiple-group confirmatory factor analysis (MG-CFA) for 

this study so that we could test the invariance of the relationships between the items and the 

latent variable (the factor loadings) and the item thresholds (the probability that a student will 

answer the item correctly) independently.  The testing of measurement invariance with MG-CFA 

involves simultaneously fitting separate measurement models (with the same latent structure) to 
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the data from men and women.  Then, differences in the parameter estimates (such as factor 

loadings and thresholds) across the two measurement models are investigated by sequentially 

adding equality constraints to the parameter estimates of both models while testing for 

statistically significant changes in the fit of the overall model (which includes the measurement 

models of both men and women). 

Brown (2015) referred to four levels of increasingly strict measurement invariance as: 

equal form, equal factor loadings, equal thresholds, and equal indicator residuals.  We only tested 

equal form, equal factor loadings, and equal thresholds because the variances of the indicator 

residuals were calculated values, not estimated parameters, for our data type.  For testing equal 

form, we compared the goodness of fit statistics and factor loadings for CFA models that used 

data from men only, women only, and men and women simultaneously but in separate factor 

structures (which we labeled Model 1).  To test for equal factor loadings (Model 2), we 

constrained the unstandardized factor loadings for each item, respectively, to be equal across 

gender groups.  Equal factor loadings indicate that the relationships between the items and the 

latent factor are the same for men and women (Cheung & Rensvold, 2002; Kline, 2016; 

Meredith, 1993).   

The testing of equal thresholds for all of the items in aggregate (Model 3) incorporated 

the CFA assumption that a continuous, normally-distributed variable underlies the dichotomous 

score for each indicator.  The threshold corresponds to the z-score that bisects the distribution 

curve such that the areas under the curve correspond to the proportions of students answering the 

questions as 0 or 1.  Measurement invariance at the equal-thresholds level indicates that, on 

average, the items are not biased against either of the gender groups (Cheung & Rensvold, 2002; 

Kline, 2016; Meredith, 1993).   

Because the fit statistics used to judge measurement invariance indicated how well the 

model reproduced the variances and covariances of the sample data overall (and in aggregate), 

the test of equal thresholds for all of the items simultaneously could hide biased thresholds for 

individual items.  The test for equal thresholds for individual items was a two-phase process.  

First, we iteratively and individually released the equality constraint for each item’s threshold to 

determine the statistical significance (Δχ2 p-value) of the change in the model fit when compared 

to Model 3.  Second, we sequentially incorporated as many of the unequal thresholds as 

necessary into a final MG-CFA model.  The second phase used a sequential model-improvement 
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procedure similar to that used when altering a model based on modification indices  (Tabachnick 

& Fidell, 2013, p. 733); the baseline model was updated whenever a model with a newly-

released threshold constraint fit the data better than the existing baseline model.  Our 

modification indices (values that are used to rank model changes according to how likely the 

changes are to improve the model fit) were the Δχ2 p-values from the first phase.  The thresholds 

for the item with the lowest Δχ2 p-value from the initial phase were freely estimated first, and the 

resulting model fit was compared to that of the baseline MG-CFA model.  Then, the same testing 

process was repeated for the item with the second-lowest Δχ2 p-value, then the third-lowest, and 

so on, identifying a new baseline each time the release of a threshold constraint resulted in a 

statistically significant model-fit improvement. 

The same goodness of fit indices (χ2, CFI, and RMSEA) and their thresholds used in the 

prior CFA were used for the measurement invariance tests.  When nested models were 

compared, we used a χ2 difference (Δχ2) test and the change in CFI to judge if the model fit 

changed significantly.  Because the WLS estimator adjusts the test statistic for mean and 

variance, a scaled Δχ2 test according to Satorra’s method (Satorra, 2000) was utilized.  If the p-

value for a scaled Δχ2 test was lower than 0.050, we rejected the null hypothesis of equivalent 

model fits.  We considered a change in CFI greater than 0.010, as suggested by Cheung and 

Rensvold (2002), indicative of significantly different model fits.     

Results 

Descriptive and Correlation Statistics 

The proportion of students answering each of the 12 items correctly, the inter-item 

tetrachoric correlation coefficients, and the item-test correlation coefficients (a measure of 

discrimination) are shown in Table 6.  The low inter-item correlation coefficients illustrated the 

broad, and in some cases independent, nature of the concepts assessed on the aDCI, but Q7 had 

particularly low inter-item correlations, which was evident in our CFA as well.  The lack of 

groups of items with high correlations suggested that a one-factor latent structure was the most 

probable model. 
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Table 6.  Low correlation coefficients (lower diagonal with standard errors in the upper diagonal) between items of the aDCI 

illustrated the broad nature of the concepts assessed by the aDCI.   

    Correlation Coefficients 

Item #  Proportion Correct Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 

Q1 0.91  0.06 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07  

Q2 0.80 0.40  0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06  

Q3 0.83 0.22 0.35  0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.06  

Q4 0.63 0.18 0.28 0.29  0.04 0.04 0.05 0.04 0.05 0.05 0.04 0.05  

Q5 0.63 0.21 0.38 0.27 0.27  0.04 0.05 0.04 0.05 0.04 0.04 0.05  

Q6 0.45 0.23 0.27 0.38 0.21 0.24  0.05 0.04 0.05 0.04 0.04 0.05  

Q7 0.67 0.07 0.12 0.18 0.06 0.13 0.18  0.05 0.05 0.05 0.05 0.06  

Q8 0.41 0.18 0.19 0.07 0.25 0.26 0.14 0.08  0.04 0.04 0.04 0.05  

Q9 0.36 0.26 0.23 0.07 0.21 0.21 0.12 0.17 0.28  0.04 0.04 0.05  

Q10 0.42 0.13 0.25 0.08 0.13 0.26 0.21 0.19 0.18 0.20  0.04 0.05  

Q11 0.66 0.22 0.36 0.20 0.28 0.22 0.24 0.15 0.26 0.32 0.38  0.05  

Q12 0.84 0.12 0.24 0.22 0.22 0.22 0.18 0.09 0.10 0.15 0.13 0.23  

Total Score 0.63 0.32 0.49 0.40 0.47 0.50 0.47 0.36 0.44 0.45 0.46 0.52 0.34 

Note.  The correlations coefficients greater than 0.30 are bolded.  A correlation coefficient of 0.30 indicates that 

approximately 10% of the variance in one item is explained by the variance in the other item (Cohen, Cohen, 

West, & Aiken, 2015, p. 38).  N = 1250. 
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Table 7.  Goodness of fit and model comparison statistics for testing measurement invariance of the aDCI across men and women. 

Model 

# 
Model Description 

Overall  Model Fit Indices 

Comparison 

Change in Fit Indices 

df χ2 
χ2 p-

value 

RMSEA (90%  

Conf. Interval)a 
CFI 

Scaled 

Δχ2 

Scaled 

 df 

Scaled 

Δχ2 p-

value 

ΔCFI 

CFA for All Participants in Aggregate (12 items)        

- Men and Women 54 90.08 0.002 0.028 (0.021, 0.036) 0.954 -     

Overall Measurement Invariance (11 items, Q7 removed)        

- Men 44 70.37 0.007 0.030 (0.020, 0.039) 0.950 -     

- Women 44 39.52 0.664 0.023 (0.000, 0.052) 0.974 -     

1 Equal Form 88 109.89 0.057 0.028 (0.018, 0.038) 0.954 -     

2 Equal Factor Loadings 99 124.91 0.040 0.023 (0.011, 0.033) 0.965 1 vs. 2 1.80 2.34 0.482 0.011 

3 Equal Thresholds 109 143.74 0.014 0.025 (0.015, 0.034) 0.954 2 vs. 3 4.13 2.40 0.172 -0.011 

Evaluation of Equal-Threshold Invariance for Selected Items        

4 Q3 Thresh. Est. 108 137.16 0.030 0.023 (0.000,0.052) 0.960 4 vs. 3 2.42 0.34 0.032 0.006 

5 Q3, Q6 Thresh. Est. 107 131.58 0.054 0.028 (0.018,0.038) 0.965 5 vs. 4 1.66 0.27 0.044 0.005 

6 
Q3, Q6, Q4 Thresh. 

Est. 
106 130.31 0.055 0.023 (0.011,0.033) 0.966 6 vs. 5 0.47 0.30 0.164 0.001 

Note.  nmen = 1031, nwomen = 219. “Thresh. Est.” indicates that an item’s threshold was freely estimated across gender groups.  χ2 = chi-

squared fit statistic with robust errors; df = degrees of freedom; RMSEA = root mean square error of approximation; CFI = 

comparative fit index.  Chi-squared difference tests for nested model utilized the Satorra 2000 for scaling the chi-squared statistic and 

df. 
aThe p-values for all RMSEA values listed in this table were greater than 0.990, except for the CFA for women only which was 

greater than 0.930. 
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Hypothesis 1: A Single-Factor Latent Structure 

The goodness of fit statistics for the model with a single-factor latent structure are 

included in Table 7 (which includes results from Hypothesis 4 also).  The CFI was above the 

threshold for considering the model a good fit (0.950), and the RMSEA was below its 0.050 

threshold.  The χ2 value had an associated p-value of less than 0.050, but this was not surprising 

given the dependence of the χ2 statistic on sample size (Cheung & Rensvold, 2002).  Therefore, 

the evidence suggests that a single-factor latent model, as shown in Figure 1, fits the data well 

and supports the hypothesis that all items were indicators of a single latent construct—the overall 

conceptual understanding of dynamics.   

Additionally, all of the factor loadings for the model shown in Figure 1 were statistically 

significant (p < 0.001).  The factor loading for Q7, however, was nearly half that of the factor 

loadings for the other items.  This low factor loading indicates that Q7 may be measuring a 

different construct than that measured by the other 11 items, and potential causes of the 

psychometric properties of Q7 are explored in the Discussion section.  

 

 

 

Figure 1.  The single-factor structural model fit the aggregated data from men and women well, 

as tested in Hypothesis 1.  The numbers on the arrows from the latent construct (conceptual 

understanding of dynamics) to the items (Q1-Q12) represent factor loadings, which in this study 

are equivalent to correlation coefficients.  The numbers below the items indicate the proportion 

of unexplained variance in each item. 

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12

Conceptual 

Understanding of 

Dynamics

1.00

0.451
0.628 0.469 0.479

0.532
0.463 0.433

0.445 0.376

0.796 0.605 0.780 0.771 0.717 0.786 0.838 0.812 0.802 0.657 0.859

0.586

Q7

0.927

0.271
0.403
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Hypothesis 2: Items of Appropriate Difficulty and Discrimination 

The M2 test statistic for the 3PL model (M2 = 55.79, df = 42, p = 0.075) indicated that 

there was no statistically significant difference between the observed data and the model-fitted 

data.  Three conclusions can be drawn from the item characteristic curves in Figure 2 and the 

parameter values in Table 8.   

First, all items (except for Q7) had a positive and relatively high discrimination 

(maximum slope steepness) between the ability levels of -2 and 2, which was the ability range of 

the students in our sample.  The lower discrimination value of Q7 (which is represented by the 

shallower slope in Figure 2) means that Q7 did not efficiently differentiate the high- and low-

ability students based on their response.  

Second, Q1 and Q3 had difficulty values near negative two, which were considerably 

lower than most of the other questions.  As shown in Figure 3, Q1 and Q3 were most suited to 

differentiate students at a low ability level (near -2), and our sample had very few students with 

such low ability.  The y-axis of Figure 3 shows the logit transformations of the item difficulties 

and the students’ abilities on the same scale (Wilson, 2005).  It is preferable to have the question 

difficulties in the ability range with the highest density.  While the power to differentiate students 

in our sample would have improved with higher difficulty levels for Q1 and Q3, it was expected 

that the students would perform well on these items because these items assessed less-

challenging, prerequisite content. 

Third, most of the items had non-zero guessing parameters, and many were above what 

would be expected for random guessing (0.20) on items with five possible answers.  Therefore, 

the results likely indicate that students reduced the list of possible correct answers from the full 

set of answer choices (i.e., they eliminated poor distractors), but low-ability students still 

struggled to identify the correct answer from that reduced set of answers. 

For example, Q12 had a guessing parameter that was considerably higher than the other 

items.  Table 8 includes the answer distributions of lower-ability students (aDCI total score of 

three or lower) for all items.  The answer distribution for Q12 suggests that answers A, C, and (to 

a lesser extent) E were poor distractors.  The probability of randomly selecting the correct 

answer out of the two remaining choices is 50% which is close to the guessing parameter for 

Q12.  Therefore, we are not overly concerned with the high guessing parameter of Q12 because 

the lack of effective distractors likely explains its high value. 
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Figure 2. A 3PL IRT model was used to fit each aDCI item to determine the discrimination, 

difficulty, and guessing parameters.  The difficulty (inflection point of the curve and the latent 

ability level that bisects the sample) and discrimination (slope at the inflection point) are 

indicated for Q01, and the guessing parameter is illustrated for Q12.  The random-guessing 

probability is 0.2 because all items have five answer choices.
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Table 8. Summary of the IRT parameters and the answer distributions for lower-ability students who answered three or fewer 

questions correctly on the aDCI.  Correct answers are bolded. 

  IRT (3PL Model)   

Answer Distribution for Lower-Ability 

Students 

Question 

Discrimi- 

nation 
Difficulty Guessing   A B C D E 

Multiple  

Selected 

None 

Selected 

Q1 1.13 -1.94 0.36  15 1 2 1 33 0 0 

Q2 1.49 -1.26 0.00  25 8 17 1 1 0 0 

Q3 1.02 -1.84 0.00  6 16 0 20 9 0 1 

Q4 0.92 -0.69 0.00  17 7 1 20 6 0 1 

Q5 1.72 0.05 0.29  25 6 8 11 2 0 0 

Q6 0.83 0.27 0.00  24 16 4 7 1 0 0 

Q7 0.55 -0.46 0.26  14 13 24 0 1 0 0 

Q8 1.89 1.09 0.25  5 23 7 15 2 0 0 

Q9 1.87 1.20 0.21  1 20 1 0 29 1 0 

Q10 1.48 0.92 0.20  13 10 15 6 8 0 0 

Q11 3.43 0.22 0.42  0 7 30 14 1 0 0 

Q12 1.24 -0.52 0.59   2 15 3 23 8 0 1 

 

3
6
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Overall, these three conclusions from the IRT analysis support Hypothesis 2, except for 

Q7, in that the aDCI items have appropriate difficulty and discrimination for the students in our 

sample. 

 

 

 

Figure 3.  An item-person map (or Wright map) of the ability scores of the participants and the 

difficulty values for the 12 items of the aDCI.  A logit (vertical axis) is the natural log 

transformation of 1) the odds ratio for answering an item correctly, or 2) the ratio of a student’s 

ability divided by one minus their ability (Wilson, 2005).  An item for which a student, in 

general, would have a 50% chance of answering correctly would have a logit of zero, and an 

average-performing student with an ability of zero would have a logit of zero.  

 

Hypothesis 3: Correlation with Similar Measures of Conceptual Understanding 

The correlation coefficients between the students’ overall performance answering 

conceptual questions on the three intermediate exams for the dynamics course, their factor scores 

(from the CFA analysis), their ability scores (from the IRT analysis), and their total aDCI score 

are shown in Table 9.  All of the correlation coefficients were statistically significant (p < 0.050), 

and their magnitudes with the instructor-written questions correspond with a medium effect size 

(Cohen, 1992), suggesting that they measured similar (if not the same) constructs as proposed in 

Hypothesis 3.   

Figure 4 shows that the relationship between the students' total aDCI scores and the CFA 

factor scores (which were highly correlated with the IRT ability levels) was linear and highly 

correlated.  This relationship allows for the aDCI total scores to be used as a proxy measurement 
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of the students’ overall conceptual understanding of dynamics without having to conduct a CFA 

or IRT analysis. 

 

 

Table 9. Strong correlations (coefficients in the lower diagonal with standard errors in the upper 

diagonal) between different measures of the students’ conceptual understanding suggest that they 

all may be measuring the same construct. 

  

Exam 

Questions 

CFA 

Scores 

IRT 

Abilities 

aDCI 

Total 

Score 

Exam Questions  0.03 0.03 0.03 

CFA Scores 0.46  0.03 0.03 

IRT Abilities 0.44 0.99  0.03 

aDCI Total Score 0.46 0.99 0.97   

 

 

 

  

Figure 4.  The students’ total aDCI scores can be used as a measure of conceptual understanding 

because the aDCI scores are linearly related and highly correlated with the latent factor score 

from the CFA. 

 

Hypothesis 4: Measurement Invariance Across Genders 

The tetrachoric correlation coefficients used in the MG-CFA are shown in Table 10 (Q7 

was not included in this analysis because of poor psychometrics in Hypotheses 1-3).  On 

average, the correlation coefficients for women exceeded those for men, foreshadowing that a 
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single-factor latent structure will fit the data from women better than it will for the aggregated or 

men-only data.   

 

 

Table 10.  The correlations coefficients between the aDCI items for men (below the diagonal) 

and women (above the diagonal). 

Item 

# Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12 

Q1  0.54 0.27 0.20 0.03 -0.08 0.15 0.34 -0.08 0.18 0.13 

Q2 0.32  0.34 0.41 0.35 0.26 0.30 0.27 0.16 0.35 0.15 

Q3 0.14 0.32  0.27 0.14 0.27 0.08 0.16 0.10 0.21 0.30 

Q4 0.16 0.24 0.29  0.38 0.26 0.20 0.31 0.03 0.32 0.24 

Q5 0.25 0.37 0.29 0.24  0.12 0.26 0.24 0.11 0.11 0.35 

Q6 0.29 0.25 0.38 0.19 0.24  0.10 0.24 0.14 0.26 0.12 

Q8 0.18 0.15 0.05 0.26 0.24 0.12  0.22 0.03 0.26 0.20 

Q9 0.22 0.21 0.02 0.19 0.19 0.09 0.28  0.32 0.40 0.18 

Q10 0.19 0.27 0.06 0.15 0.28 0.22 0.20 0.18  0.39 0.06 

Q11 0.21 0.35 0.17 0.26 0.24 0.22 0.25 0.29 0.38  0.18 

Q12 0.08 0.25 0.15 0.20 0.17 0.17 0.07 0.13 0.14 0.22  
Note.  The correlations coefficients greater than 0.30 are bolded.  The shaded cells indicate a 

correlation coefficient less than 0.30 for one gender with a corresponding coefficient greater 

than 0.30 for the other gender. nmen = 1031, nwomen = 219. 

 

 

Table 7 shows the results from the MG-CFA that was used to investigate the invariance 

of the measurement models for men and women.  The change in fit statistics for Models 1-3 

indicated that the CFA models for men and women had equal form, equal factor loadings, and 

equal thresholds when considering all of the items in aggregate.  For Model 1 (equal form), the 

significant χ2 p-value was likely an artifact of a large sample size.  For Model 2 (equal factor 

loadings), the positive change in CFI was likely an artifact of the CFI calculation incorporating 

model complexity (Bentler, 1990; Iacobucci, 2010), and Model 2 was less complex than Model 1 

because of the constraints imposed on the factor loadings.  Model 3 (equal thresholds—overall) 

had a scaled Δχ2 p-value that was much higher than the 0.050 criterion and a negative change in 

CFI (indicating a worse fit) that was only slightly outside of the recommended threshold of 0.01.  

Overall, the evidence suggested that the aDCI scores were measurement invariant at the 

threshold level when considering all of the items simultaneously. 
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In the first phase of our testing for equal thresholds for individual items, Q3 was 

identified as the item with the lowest Δχ2 p-value (p = 0.032), followed by Q6 (p = 0.057), Q4 (p 

= 0.091), and the rest of the items.  Accordingly, Model 4 freely estimated the threshold for Q3 

and was compared to Model 3.  The lower χ2 value, a Δχ2 p-value of less than 0.050, and the 

positive change in CFI indicated that Model 4 fit the data better than Model 3.  The change in 

CFI of less than 0.010, however, illustrated only a small improvement in model fit.  When 

considered together, the two model-difference statistics suggested that item Q3 was biased 

against women, but the magnitude of the bias was relatively small.  The comparison of Model 5 

(with the thresholds for Q3 and Q6 freely estimated) to Model 4 yielded a similar conclusion: Q6 

was biased against women, but the bias was small. 

The analysis continued in a similar fashion for Q4 (Models 6) and the rest of the items 

(not shown), but the change in fit indices suggested that none of these models statistically 

improved the goodness of fit when compared to Model 5.  Thus, only Q3 and Q6 exhibited 

statistically-significant measurement bias across genders. 

In summary, the statistical evidence suggested that the aDCI scores were measurement 

invariant at the threshold level when considering all of the items in aggregate.  At the item level, 

two items, Q3 and Q6, exhibited DIF with a slight bias against women.  Figure 5 summarizes the 

final measurement model, and Table 11 lists the thresholds for the eleven indicators.  
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Figure 5.  The test results of Hypothesis 4 showed the aDCI scores to have invariant form, factor 

loadings, and thresholds across men and women.  All of the factor loadings were statistically 

significant with p-values < 0.001. 

 

 

 

 

Table 11.  The thresholds for nine of the eleven items were invariant across gender; Q3 and Q6 

had unequal thresholds (bolded), which suggested that they were potentially biased against 

women.  A lower threshold corresponds to a higher proportion of students in that group 

answering the item correctly. 

  Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12 

Men -1.38 -0.89 -1.05 -0.39 -0.39 0.04 0.19 0.31 0.17 -0.48 -1.05 

Women -1.38 -0.89 -0.76 -0.39 -0.39 0.29 0.19 0.31 0.17 -0.48 -1.05 

 

 

Q1 Q2 Q3 Q4 Q5 Q6 Q8 Q9 Q10 Q11 Q12

Conceptual 

Understanding of 

Dynamics

1.00

0.451
0.627 0.429 0.482

0.527
0.429

0.399
0.421

0.433 0.367

0.796 0.607 0.816 0.768 0.722 0.816 0.841 0.822 0.813 0.665 0.865

0.578
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Gender Bias in the aDCI  

The measurement invariance analysis suggested that Q3 and Q6 may be slightly biased 

against women, but the analysis does not tell why the items may favor men.  To better 

understand the DIF of Q3 and Q6, we qualitatively evaluated Q3 and Q6 for content and context 

bias, as informed by our review of the physics education literature.  We used Rennie and 

Parker’s (1993) gender-orientation framework, see Table 3, to identify possible content and 

context effects (as defined by Ding and Caballero (2014)).  We also consulted three gender-

studies experts to aid in this gender-orientation analysis.   

Description of the Biased Items 

To maintain question security, we do not include the full copies of Q3 or Q6.  Q3 

originates from the FCI and involves a hockey puck sliding at a constant velocity across 

frictionless ice.  The puck is kicked with a force perpendicular to the direction of its current 

motion, and the students are asked to identify the path of the puck after the kick.  Five paths are 

pictorially provided as answer choices.  Q6 describes a rear-wheel-drive car that is accelerating 

forward, and an image of a sports car is used to illustrate the scenario.  The tires do not slip on 

the road, and students are asked to find the magnitude and direction of the friction force acting 

on the front tires.  Five answer choices are provided, each with a symbolic equation for the 

magnitude of the friction force and a direction for the force (“to the left” or “to the right”).   

Bias in Q3 

The categorization of Q3 according to Rennie and Parker’s gender orientation framework 

identified the hockey context of Q3 as potentially appealing to the background experiences of 

men more than women.  Previous FCI researchers have also advised that the hockey context of 

Q3 favors men (Dietz et al., 2012; McCullough, 2004).  However, some of our experts suggested 

that the bias may be more geographical (favoring those from colder and Northern climates) than 

gender related.  Overall, we concluded that the hockey context is a possible source of bias, but 

not a definitive source of bias for Q3. 

Q3 of the aDCI was originally copied from the FCI, #8 in version 95 (Physport, n.d.), and 

research on the gender fairness of the FCI has not identified Q3 as having statistically-significant 
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gender bias (Dietz et al., 2012; Osborn Popp et al., 2001; Traxler et al., 2018).  While it is true 

that some of the FCI studies do not have comparable samples to the engineering students of this 

study, at least two of the FCI studies (Traxler et al. (2018) and McCullough (2011)) have 

samples from university-level, calculus-based physics courses that typically enroll science and 

engineering majors.  We would expect students in these calculus-based physics classes to 

perform similarly on #8 of the FCI as the engineers in our sample do on Q3 of the aDCI.   

Our results regarding the DIF of Q3 could differ from FCI research because of different 

analysis methods.  We utilized MG-CFA to investigate measurement invariance across gender, 

but Traxler and colleagues (2018; who have published one of the most complete studies of 

gender bias in the FCI) used the Mantel-Haenszel and the Lord’s statistic (an IRT-based 

method).  Because our results suggested that Q3 (and Q6) were only slightly biased against 

women, the differences in samples and methods could explain the contradictions between our 

results and those published for the FCI.   

Bias in Q6 

Q6 was categorized by some of our experts as appealing to the background experiences 

stereotypically more common for men than women because it may be more likely that men 

understand the meaning of “rear-wheel-drive,” a phrase used to indicate that the rear tires 

provide the traction force required to accelerate the car forward.  This opinion aligns with Ding 

and Caballero’s (2014) content effect because it reflects the perspective that boys in the USA are 

often socialized to know more about how automobiles work than girls (D. G. Johnson, 2010).  

However, some of our experts argued that this generalization about girls’ relative knowledge of 

automobiles may not hold true for women in engineering because women in engineering have 

self-selected into a masculine-oriented field that centers on understanding how systems and 

machines work.  Even though there was disagreement regarding the gender bias related to the 

phrase “rear-wheel-drive,” all of the experts agreed that the sports-car image used in Q6 would 

be stereotypically associated with men more than women.  This image could be contributing to a 

context effect.   

Q11 and Q12 also involved a rear-wheel-drive sports car, but these two questions did not 

display DIF.  One explanation for this difference is that Q6 requires students to understand how a 

rear-wheel-drive car works, but Q11 and Q12 do not require this specialized knowledge.  Q11 
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and Q12 pertain to the kinematics of a wheel that rolls without slipping, and the question prompt 

only uses a rear-wheel-drive car as the structure to which the wheel is attached.  Furthermore, the 

primary image of Q11 and Q12 is that of a wheel and tire, not the sports car.  Therefore, the 

likelihood of the sports-car image causing a context effect favoring men in Q11 and Q12 may 

have been less than that for Q6 because the students’ focus was on the wheel (a gender-neutral 

image) and not the sports car. 

Discussion 

Review of Purpose and Results 

The purpose of this study was to evaluate the extent to which aDCI scores can be used as 

a reliable, fair, and valid measure of undergraduate students’ overall conceptual understanding of 

dynamics.  We organized our inquiry around four hypotheses that focused on the evidence of the 

aDCI’s latent structure, difficulty, discrimination, correlation with similar measures, and gender 

fairness (in terms of measurement bias).  We review the evidence for each hypothesis below. 

For Hypothesis 1, the results of the CFA suggested that a single-factor latent model fit the 

aDCI scores well.  This unidimensional latent structure reflects the intentionality of the aDCI 

developers to select items from the DCI that assessed a broad range of topics to approximate the 

students’ overall understanding of dynamics.  The fit of the IRT model further supports the 

unidimensionality of the aDCI.  The correlation of the students’ factor scores with their 

performance on instructor-written conceptual questions provides evidence for the argument that 

the single latent factor (of the CFA or IRT models) represents the students’ overall conceptual 

understanding of dynamics.  Therefore, the evidence for Hypothesis 1 suggests that the students’ 

total aDCI score can be interpreted as a measure of their overall conceptual understanding of 

dynamics. 

The results of the IRT analysis used to test Hypothesis 2 indicated that most of the items 

on the aDCI have appropriate difficulty and discrimination values for the sample tested.  Two 

items were identified as especially easy (they had high difficulty values), but high performance 

on these items was expected because the items targeted fundamental, particle-mechanics 

knowledge that the students likely learned in a prerequisite physics class.  All of the items, 
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except Q7, had high discrimination values (maximum slope steepness), meaning they reliably 

differentiated the higher-performing students from the lower-performing students.   

In addition to a low discrimination value, Q7 also had low correlations with other items 

and low factor loading in the CFA, indicating it might be measuring a different construct than the 

other items on the aDCI.  Q7 was one of the DCI items Jorion et al. (2015) identified as having 

poor psychometric characteristics.  Upon closer inspection, we found the wording of Q7 to be 

imprecise with multiple correct answers, depending on how the question was interpreted.  Thus, 

multiple pieces of evidence suggest that the modification or replacement of Q7 could improve 

the utility of the aDCI, and a clarification of the question wording so that only one answer is 

correct may be all that is needed. 

The results of testing Hypothesis 3 indicated that the aDCI total scores positively 

correlated with the students’ performance on similar, instructor-written questions.  The 

relationship between the aDCI total scores and the factor scores (from the CFA which were 

highly correlated to the IRT ability levels) was linear and had a high coefficient of determination.  

These two results provide evidence in support of the aDCI scores measuring one latent factor, 

and the latent factor can be interpreted as the students’ overall conceptual understanding of 

dynamics.  Wang and Bao (2010) made a similar conclusion regarding their students’ conceptual 

understanding of physics based on the linear relationship between the students’ FCI scores and 

their IRT abilities.  

For Hypothesis 4, the analysis of measurement invariance found the aDCI to have equal 

form, equal factor loadings, and equal thresholds for men and women when considering all of the 

items in aggregate.  These results suggest that, on average, the aDCI functions similarly for men 

and women in measuring the students’ overall conceptual understanding of dynamics.  When 

considering all items in aggregate, the aDCI scores of men and women display:  the same single-

factor latent structure, the same relationships between the items and the latent factor, and the 

same probabilities of answering a given question correctly.  However, at the item level, the 

analysis identified two items, Q3 and Q6, that exhibited slight bias against women.  The bias of 

these items indicates that when considering a man and a woman with equal overall understanding 

of dynamics, the man has a higher likelihood of answering Q3 and Q6 correctly than the woman.  

To understand why these items may favor men, we evaluated them for content and context bias. 
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The supporting and contradicting evidence for the possible sources of gender bias in Q3 

and Q6 make it difficult to definitively say why these two items favor men.  For Q3, the hockey 

context may disadvantage women.  For Q6, the need to know how a rear-wheel-drive car works 

and/or the image of a sports car may differentially affect students’ performance based on gender.  

The uncertainty in the sources of bias supports the need for further validation and fairness studies 

of the aDCI, DCI, and concept inventories in engineering more broadly.  

Fairness Implications 

The investigation of DIF identified two items that favored men, but this bias was not 

evident in the psychometric models that used aggregated data.  Based on the lack of research 

regarding the fairness of engineering education assessments (Kerrie A. Douglas et al., 2016), it is 

highly likely that many researchers would have found the psychometric evidence (from 

Hypotheses 1-3) satisfactory for their use of the aDCI scores as measures of the students’ overall 

conceptual understanding.  However, our results suggest that instructors and researchers must 

consider the gender bias in at least two of the aDCI items (Q7 was not tested for DIF) when 

interpreting women’s total scores.  Two additional incorrect responses (corresponding to the two 

biased items) yields an almost 17 percentage-point reduction in a student’s total aDCI score.  

While our results indicate that the bias of Q3 and Q6 is small, it undoubtedly contributes to the 

gender gap in the aDCI scores that has been previously reported (Prebel et al., 2017).  Thus, 

decisions made based on a student’s overall aDCI performance, including the assignment of 

points toward their grade in a course, unfairly disadvantage women. 

Limitations and Future Work 

One limitation of this study is that it was conducted with students from a single 

institution.  As Madsen et al. (2013) determined, many findings from research on the gender gaps 

of physics CIs are not consistent across studies; thus, future research should consider how the 

aDCI functions at other institutions.  Future work should also incorporate fairness studies for 

using the aDCI across other subgroups of students, including race/ethnicity, social economic 

status, academic major, and international status.  Content and context effects could be especially 

relevant to English-as-a-second-language learners (Kerrie A. Douglas et al., 2018) and to 

students who have lived in cultures different than those present in the USA.  An analysis of 
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fairness for some of these subgroups (e.g., subgroups based on race/ethnicity) would especially 

benefit from more data because of their small sample sizes in engineering. 

A second limitation of this study is the small number of women in the sample compared 

to men.  This unbalanced sample could be hiding DIF that the measurement invariance analysis 

cannot detect because the fit of the model for the men’s covariance matrix may have 

overshadowed a lack of fit for the women’s covariance matrix.  The sample sizes of men and 

women could be made equal by randomly subsampling from the pool of men, but the statistical 

power to detect DIF across the groups greatly decreases with this technique because of the small 

number of women in the sample. Given that women students are a small fraction of the overall 

student population in engineering, defining new norms for fair statistical models while 

maintaining sufficient power is a challenge for the engineering education research community.  

A qualitative study of how women in the course experience the gender bias of the aDCI, 

as illustrated here, or other course assignments could help contextualize our findings.  For 

example, do students (women or men) recognize gender bias in the course materials (including 

assessments), and does the content or context of these materials cause students to feel 

disadvantaged or uncomfortable? If so, in what ways do students articulate this discomfort, and 

what suggestions do they have for addressing it? A qualitative study, potentially including 

interviews with both women and men, would inform our understanding of students’ experiences 

and could inspire changes to course materials to make them more inclusive and fair. 

Conclusion 

This study investigates the extent to which a student’s aDCI total score can be interpreted 

as a reliable, valid, and fair measure of their overall conceptual understanding of dynamics.  To 

our knowledge, this study is the first to implement an argument-based approach for the 

validation study of a CI (as proposed by Kerrie A. Douglas & Pellegrino, 2017) and the first to 

investigate the fairness of an engineering CI.  The results of our study suggest that aDCI scores, 

excluding Q7 which should be modified or replaced, for the men in our sample can be 

interpreted as measures of the students’ overall conceptual understanding in dynamics with 

evidence of: 1) broad content coverage and instructional relevancy, 2) appropriate interpretation 

of scores with regard to their underlying, single-factor latent construct, 3) appropriately difficult 

items that discriminate students based on their level of conceptual understanding, and 4) strong 



48 

 

correlations between aDCI total scores and other measures of dynamics conceptual 

understanding.  The total aDCI scores for women, however, incorporate two items with slight 

gender biases against women and, therefore, do not accurately reflect women’s overall 

conceptual understanding of dynamics.  

Unless further research refutes our results and supports the aDCI as a fair assessment tool 

for all students, or until the aDCI is modified to be gender inclusive and fair, we do not support 

its use in high-stakes testing, including its use on a final exam (as was done for our sample).  

Instead, we suggest that the aDCI, in its current form, be used as a low-stakes assessment 

instrument for measuring students’ overall conceptual understanding of dynamics, and 

instructors and researchers should account for the DIF of Q3 and Q6 and the validity concerns of 

Q7 when making inferences from the aDCI scores.  Alternatively, instructors could administer a 

shortened aDCI that excludes Q3, Q6, and Q7, knowing that the number of concepts assessed by 

a shortened aDCI would be less than the 12-item aDCI.   

This work highlights the importance of designing inclusive assessments and validating 

their use with psychometric models that do not unfairly disadvantage certain subgroups of 

students—such as women.  When assessments utilize validation studies that are dominated by 

one group of students, such as men, it is often unknown whether group differences in scores are 

artifacts of the assessment questions themselves, or truly representative of differences in the 

learners’ understanding. Without evidence that the assessments themselves are truly fair for all 

engineering students, there is a very strong risk of educational inequity.  Thus, more fairness 

studies of engineering education assessments are needed to better inform the academic 

community on what factors should be considered when designing an assessment that does not 

unfairly disadvantage students based on their background or socialization. 
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CHAPTER 3. A CLUSTER-BASED APPROACH TO IDENTIFYING AND 

UNDERSTANDING STUDENTS’ ARCHETYPICAL RESOURCE-USAGE 

PATTERNS 

Stites, N. A., Berger, E., DeBoer, J., & Rhoads, J. F. (in review). A cluster-based approach to 

identifying and understanding students’ archetypical resource-usage patterns in an active, 

blended, and collaborative learning environment. 

Abstract 

Engineering educators continue to develop and implement pedagogical innovations.  

However, data on how these innovations impact the students’ experiences and achievement is 

often lacking.  The goal of this study was to identify and understand how and why students 

engaged with the resources available in an active, blended, and collaborative learning 

environment.  We collected survey data from 581 engineering students on how frequently they 

used nine different resources of an undergraduate dynamics course.  A cluster analysis identified 

nine, qualitatively-unique resource-usage patterns.  We then analyzed 44 student interviews and 

found that students exhibited their resource-usage patterns because of personal preference, 

scheduling restrictions, and perceived expectations and values for a given resource.  The 

interview data also suggested that all of the resource-usage patterns supported the students’ 

desires to develop a deep understanding of the course material. The findings of this study provide 

instructors with data-driven information on the archetypical resource-usage and help-seeking 

behaviors of their students.  Instructors can use this information to better coach their students and 

to design curricula and resources that support many different subgroups of students, not just the 

stereotypical or average student. 

 

Keywords: cluster analysis, help seeking behavior, thematic analysis, engineering education 
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Introduction 

Prominent reports have called for the adoption of engineering education innovations 

(Jamieson & Lohmann, 2012; Litzinger, Lattuca, Hadgraft, & Newstetter, 2011), and active, 

blended, and collaborative learning are pedagogical strategies that continue to increase in 

popularity.  Active learning involves physical activity (Chi, 2009), blended learning combines 

in-class instruction with online learning outside of the classroom (Bernard et al., 2014), and 

collaborative learning incorporates students working in groups to attain a shared goal (D. W. 

Johnson et al., 1991).  Studies have shown that active, blended, and collaborative pedagogies 

improve student learning (Bernard et al., 2014; Freeman et al., 2014; Stump, Hilpert, Husman, 

Chung, & Kim, 2011).  However, in learning environments that enable the self-regulated use of 

blended resources for active and collaborative learning, it is often unclear how, and to what 

extent, students engage with the myriad resources available to them.  Without having strong 

evidence for how students engage with the resources, instructors and course designers rely on 

assumptions, perceptions, and stereotypes for designing and improving educational resources and 

learning environments (Minichiello & Jouffray, 2018; Turns, Borgford-Parnell, & Ferro, 2015).  

This work aims to better understand how and why undergraduate engineering students engage 

with a variety of resources within a learning environment specifically designed to encourage 

active, blended, and collaborative learning. 

According to Makara and Karabenick’s (2013) proposed expectancy-value model for 

resource selection, students choose their help sources based on four main factors: 1) the 

perceived availability of the source, 2) the perceived likelihood that the source will provide help 

if asked, 3) the alignment between the type of help provided by the source and the type of help 

desired, and 4) the perceived quality of the help from the source.  Regarding the type of help 

desired in the third factor, researchers usually discuss two types of help-seeking behaviors 

(HSBs): adaptive and expedient (Er & Orey, 2017).  A student’s HSB is considered adaptive—

also referred to as strategic or instrumental, but instrumental HSB should not be confused with 

instrumental motivation (Gardner & Lambert, 1972)—when the goal of the action is to 

understand the material and to become a more-autonomous learner in the future (Horowitz, 

Rabin, & Brodale, 2013; Karabenick, 2003; Karabenick & Berger, 2013; Newman, 2002).  

Conversely, expedient HSBs (also known as non-adaptive or executive) are characterized by a 

student seeking nonspecific help—e.g., when a student asks for help before they even try the 
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problem—or help that leads to the correct completion of the task with as little effort as possible, 

which perpetuates their dependency on others to solve problems (Er & Orey, 2017; Karabenick, 

2003).  The expectancy-value model proposes that students with shared help-seeking goals and 

similar perceptions of the expectations and values for the available help sources may choose to 

utilize similar help resources. 

To date, researchers of academic HSBs have only considered the students’ use of a given 

resource individually, rather than as a part of an overall resource-usage pattern (e.g., Hao, 

Barnes, Branch, & Wright, 2016; Horowitz et al., 2013).  Multiple analyses of individual 

resources can provide information about the average use of a given resource, but they do not 

necessarily depict the holistic resource-usage behaviors of a given student.  Resource-centered 

approaches provide little information about what combinations of resources were most prevalent 

or to what extent the students of a given resource-usage pattern shared common perceptions of 

the expectations and values of the resources they did or did not use.  We posit that most students 

in technical courses, including engineering-sciences courses, utilize a combination of help 

sources, rather than a single resource, and research has shown this to be true for students in the 

course of this study (Evenhouse, Kandakatla, Berger, Rhoads, & DeBoer, in preparation; 

Kandakatla, Berger, Rhoads, & DeBoer, in review).  Therefore, we contend that a student-

centered approach is more appropriate than a resource-centered approach when trying to 

understand the holistic, archetypical resource-usage behaviors of multiple subgroups of students 

in technical, resource-rich courses. 

Some researchers have recognized the value of grouping students together by common 

HSB characteristics (e.g., Karabenick, 2003).  However, these researchers have grouped students 

according to their general help-seeking tendencies, which may not provide detailed enough 

results to inform the design or modification of a specific course’s resources.  Instead, this study 

exemplifies how researchers can group students according to their holistic usage behaviors of the 

specific resources that are available in a given course.  Instructors can use this data-driven, 

resource-usage information—rather than assumptions or stereotypes—to better design and foster 

a learning environment that supports multiple, diverse subgroups of students (Minichiello & 

Jouffray, 2018; Turns et al., 2015). 
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Purpose of Study 

This study aims to understand how and why students use the resources available in an 

undergraduate dynamics class (hereafter referred to as Dynamics, with a capital “D,” whereas the 

field of dynamics will be referred to with a lower-case “d”) taught within an active, blended, and 

collaborative learning environment, called Freeform.   

The following research questions guide this work: 

 

RQ1. When considering all of the resources of Dynamics simultaneously, what are the 

students’ archetypical patterns of resource usage? 

RQ2. How and why do students enact their respective resource-usage pattern, and to what 

extent do the students’ perceived expectations and values for the resources influence 

their resource usage? 

 

This work is part of larger project researching the students’ resource-usage patterns in 

Dynamics and the extent to which the students’ patterns explain their performance in Dynamics.  

We focus on identifying and understanding the students’ resource-usage patterns in this paper, 

and we investigate how the students’ resource usage relates to their performance in Dynamics in 

a companion paper (N. A. Stites, E. Berger, J. DeBoer, & J. F. Rhoads, in review-b).  Knowledge 

of how and why the students use the available Dynamics resources coupled with their 

performance in the class could help instructors better coach students on how to be successful in 

the course, and it could guide the modification or development of resources to better support the 

students’ learning (Turns et al., 2015).   

To our knowledge, this study is the first research on HSBs to employ a model-based 

clustering technique that groups students according to their self-reported usage data.  After 

identifying the “clusters” (groups) of students who exhibit the same resource-usage pattern, we 

utilize student interviews to better understand how and why the students of each cluster used the 

resources as they did.  We view our results through a conceptual framework based on Makara 

and Karabenick’s (2013) expectancy-value (EV) model for resource selection.   

Giblin (2016) also viewed their qualitative results through a framework based on Makara 

and Karabenick’s EV model, and they found evidence that all of the EV factors, except one, 

influenced the resource selection of their upper-level-mathematics interviewees.  It was unclear 
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if the factor regarding the alignment of the type of help provided and the type of help desired 

influenced the students’ source selection because all of Giblin’s interviewees described their 

HSBs as adaptive in nature.  This study uses a similar sample, engineering students, in a 

similarly technical course.  Therefore, we expect to find evidence in the interviews that 

corroborates Makara and Karabenick’s EV model of resource selection, but we may not find 

evidence to support or refute the contention that the alignment of the help type affects the 

students’ decisions. 

Study Context 

In 2010, two engineering instructors implemented a new learning environment, called 

Freeform, for teaching Dynamics (Rhoads et al., 2014).  The Freeform learning environment was 

designed to align with the known benefits of active (Freeman et al., 2014), blended (Bernard et 

al., 2014), and collaborative (Wiggins, Eddy, Grunspan, & Crowe, 2017) learning.  The 

Dynamics instructors are encouraged to incorporate active and collaborative pedagogies in their 

classrooms, and an online discussion forum provides students with a way to asynchronously ask 

each other questions about the materials and their assignments.  Freeform also includes a 

custom-written textbook, called a lecturebook, in which students write their notes and their 

solutions to example problems.  Each section of the lecturebook begins with a short theory 

section and ends with the problem statements of many unsolved examples that have a problem-

solving or conceptual focus.  An online solution video accompanies every example problem in 

the lecturebook (excluding the conceptual problems) and every homework problem.  Finally, the 

learning environment leverages a tutorial room that specifically supports statics and dynamics 

courses, and this “help room” is staffed by student teaching assistants (TAs) about 8-10 hours a 

day, six days a week.  The distributed hours of the help room are essential because the Dynamics 

students have two homework problems due three times per week.  Dynamics also has three 

intermediate exams and one final exam.  The integrated suite of Dynamics resources is designed 

to accommodate a variety of help-seeking preferences as students prepare for, or complete, their 

assessments. 

The general perceptions from Dynamics instructors and a limited amount of aggregated, 

course-level data suggest that students utilize certain Dynamics resources frequently (e.g., online 

videos) and others hardly at all (e.g., instructors’ office hours) (Evenhouse et al., in preparation; 
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Rhoads et al., 2014).  However, the Dynamics resources are purposely designed to be aligned 

and integrated with one another, and the holistic patterns of resource usage that the students 

exhibit is unknown.  Using a combination of cluster analysis, thematic analysis, and a conceptual 

framework based on an expectancy-value model for resource usage, this study seeks to 

understand the Dynamics students’ resource-usage patterns to inform improvements to the 

Dynamics resources and to guide instructors on how to coach their students to be successful in 

the course (Minichiello & Jouffray, 2018; Turns et al., 2015). 

Conceptual Framework 

Importance of Help-Seeking Behaviors 

A student’s help-seeking behaviors (HSBs) are commonly considered a strategy for self-

regulated learning (Karabenick & Berger, 2013).  Pintrich and Zusho’s (2007) model of 

motivation and self-regulation posits that self-regulatory processes, like HSBs, can have direct 

and indirect effects on student’s achievement.  Resource-usage patterns are an outcome of the 

students’ HSBs, so they too can relate to achievement.  Thus, by better understanding their 

students’ resource-usage behaviors, instructors further their insights into the factors that can 

influence their students’ achievement.   

Help Seeking and Self-Regulated Learning 

The help-seeking process is considered a strategy for self-regulated learning (SRL) 

because it is a cyclical and reflective process in which students continually modify their behavior 

to better support their goal attainment (Herring & Walther, 2016; Horowitz et al., 2013; 

Newman, 2002).  The help-seeking process has been modeled as having eight components, see 

Figure 6, and those eight components align with the three phases of Zimmerman’s model for 

SRL (Karabenick & Berger, 2013).  This study focuses on the resource-usage outcomes of 

soliciting and obtaining help (Steps 6 and 7) and why students used the resources they did (Steps 

4 and 5).   

Because SRL is a cyclic and reflective process, a student’s constant evaluation of the 

assistance they receive from specific resources (Step 8) could lead students to exhibit different 

resource-usage patterns depending on the type of help they desire (Step 4).  A student with a 
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mastery-goal orientation, reflecting the student’s preference for understanding rather than simply 

getting the correct answer, could settle on the use of a different set of resources than a student 

who is performance-goal oriented and considers learning as secondary to completing the task 

correctly and quickly.  However, there are other factors that influence a student’s decision of 

what help source to consult, as elucidated by Makara and Karabenick’s (2013) expectancy-value 

model for resource selection. 

 

 

 

Figure 6.  A self-regulated-learning perspective of HSBs underpins the conceptual framework of 

this study (Karabenick & Berger, 2013). 

 

Expectancy-Value Model for Help Source Selection 

Makara and Karabenick (2013) proposed an alternative model for Steps 4-7 of the help-

seeking process that is based on expectancy-value (EV) theory.  The EV model, shown in Figure 

7, posits that the interaction of a student’s expectations of a help source and the student’s 

perceived value of the help source affect whether or not a student will seek help from that source.  
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Makara and Karabenick proposed that the expectancy component of this model consisted of the 

student’s perceptions of the accessibility and availability of the source and the student’s 

perceived expectations regarding whether or not that the source will provide help if asked.  

Availability refers to whether a source could provide help, and accessibility refers to how easy 

that help can be obtained.  The value aspect of this EV model clearly articulates that the type of 

help desired (adaptive or expedient) and the perceived quality and accuracy of the help directly 

influence which help source is chosen.   

Overall, the EV model suggests that if a student perceives a source as being available and 

willing to help and the type of help the source provides is perceived as accurate and in alignment 

with the type of help they desire, then the likelihood of a student seeking help from the is source 

is high.  Conversely, if the source is perceived to be unavailable, unwilling to help, misaligned 

with the type of help desired, or inaccurate, then the likelihood of the student seeking help from 

that source decreases.  This EV model provides a framework through which we can view our 

quantitative and qualitative results to better understand which expectation and value factors 

contributed to the resource-usage patterns of specific subgroups of students. 

 

 

 

Figure 7.  An expectancy-value model for help source selection (Makara & Karabenick, 2013). 

 

Prior Dynamics Results and the EV Framework 

Prior research that considered all of the students in Dynamics in aggregate, not grouped 

by resource-usage pattern, identified that the convenience and availability of a resource 

(Evenhouse et al., in preparation) and the alignment of a specific resource with the task at hand 

(Kandakatla et al., in review) were primary determinants of what resources students used.  These 

findings, when viewed through the EV framework, suggest that the perceived accessibility and 
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availably of a resource along with its perceived quality had a significant impact on whether or 

not a Dynamics student used that resource.  However, neither of these studies mentioned that the 

alignment of the type of help provided by a source (adaptive or expedient) and the type of help 

desired by the student factored into a student’s resource-selection decisions.  Overall, the 

previous research on the HSBs of Dynamics students contributed to our earlier hypothesis that 

we will find evidence that the factors in Makara and Karabenick’s EV model influenced the 

Dynamics students’ resource-usage decisions, with the possible exception of the help-alignment 

factor because, like Giblin (2016), we may find that all of the students self-report their HSBs as 

adaptive in nature.   

Methods 

This study employed an embedded research design (Creswell, 2012, Chapter 16) because 

quantitative and qualitative data that related to the same phenomenon, resource usage and HSBs, 

were collected from the students simultaneously, during the same semester.  Furthermore, neither 

data source directly influenced the collection of the other, and the two data sources were 

collected to answer different research questions in this study.  Quantitative survey data were used 

to identify clusters of students who exhibited the same resource-usage patterns (RQ1), and 

qualitative interviews provided insights into how and why students used the resources in certain 

ways (RQ2).  

Participants 

The data for this study were collected from students enrolled in Dynamics, a sophomore-

level engineering course at a large, public university in the Midwestern USA with the highest 

category of research activity (Indiana University Center for Postsecondary Research, n.d.).  The 

sampling frame for this research was all of the students enrolled in the fall or spring semesters of 

Dynamics from Spring 2016-Spring 2018.  Of the 1,379 students in the sampling frame, 581 

completed the survey that provided the quantitative data to investigate RQ1, and the interview 

transcripts of 44 students served as the qualitative data for RQ2.  Additional details regarding our 

recruitment and sampling processes for the survey and interview data sources are included in 

Appendix G. 



59 

 

The demographic characteristics of all of the participants are shown in Table 12.  This 

demographic data was obtained from the institution’s Registrar, and the categories used in Table 

12 reflect how the data were collected.  Gender was reported by the institution as a binary 

variable, and we acknowledge that this is a simplification of the gender spectrum and that the 

terms “male” and “female” are terms to describe one’s sex, not gender.  We also recognize that 

race, ethnicity, and international status were all confounded together into one “ethnicity” 

variable.  Nonetheless, the demographic characteristics in Table 12 help us better understand the 

backgrounds and socializations of the students in our sample. 

 

 

Table 12.  Demographic characteristics of the survey and interview participants. 

  Survey Participants Interview Participants 

Variable Count % Count % 

Major     
Mechanical Engineering 459 79% 27 61% 

Agricultural Engineering 32 6% 4 9% 

Nuclear Engineering 28 5% 2 5% 

Multidisciplinary Engineering 25 4% 5 11% 

Other 37 6% 6 14% 

     
Ethnicity (Race/Ethnicity/ 

International Status)     
Domestic, White 379 65% 30 68% 

Domestic, Asian 31 5% 3 7% 

Domestic, URM 25 4% 0 0% 

Domestic, Other 34 6% 1 2% 

International 112 19% 10 23% 

     
Gender     

Male 437 75% 28 64% 

Female 144 25% 16 36% 

Note. The sum of the percentages for the ethnicity categories for the survey participants 

does not equal 100% because of numerical rounding. 

 

Data Sources 

At the end of the semester, students were asked to complete a survey about their study 

habits, help-seeking behaviors, resource usage, and general experiences in the class.  This study 
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utilized one specific multiple-part question from the survey that asked the students to: “Please 

identify how frequently you use each of the following resources for help in Dynamics.”  The 

response options were (verbatim, and in the order in which they appear on the survey): at least 

once per day, 3-6 times per week, 1-2 times per week, 1-3 times per month, 1-3 times per 

semester, and never.  The nine resources included in the survey question are listed in Table 13 

along with their descriptions and their median response.   

 

 

Table 13. A description of the nine resources included on the end-of-semester survey and the 

median frequency with which students used the resource (N = 581). 

Resource Description Median Frequency 

My peers in the class Group quizzes in class; virtual or in-person 

collaboration outside of class 

1-2x/wk 

The course lecturebook Combination of a workbook and concise 

textbook; students write notes and solve 

problems directly in book 

3-6x/wk 

The lecture example and 

homework solution videos 

Screencasts of the instructor solving a 

problem; every lecturebook example and 

homework problem has a solution video 

1-2x/wk 

The course blog “Blog” most often refers to the discussion 

forum, but could also be interpreted as the 

course website 

1-2x/wk 

The instructor, by asking 

questions in class 

Could include questions before, during, or 

after class 

1-3x/semester 

The instructor, during 

office hours 

Office hours were usually 1 hour long, 2-3 

days/wk 

Never 

Online resources not 

accessed from the course 

blog (ex: online lectures or 

videos not associated with 

the course) 

Could include online videos, online 

example problems, or online tutoring 

websites 

1-3x/semester 

Other students I know who 

are not currently enrolled 

in the class 

Friends who have taken Dynamics 

previously (although there is evidence in 

the student interviews that students may 

have misinterpreted this as asking about 

students in other sections of the course) 

Never 

The TAs in the Mechanics 

Tutorial Room 

A dedicated help room staffed over 40 

hours/wk with undergraduate- and 

graduate-student TAs 

1-3x/semester 
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For RQ2, the students’ resource-usage behaviors were explored through semi-structured 

interviews conducted with students during the last week of the semester in which they were 

enrolled in Dynamics.  A predetermined set of questions probed a variety of topics including (but 

not limited to): the student’s perceptions about the learning climate at the institution and in their 

major department, their preferred study strategies, their perceptions of the quantity and quality of 

the resources for Dynamics as compared to the resources provided for other engineering courses, 

their resource usage, and their recommendations to future students on how to be successful in 

Dynamics.  The same set of questions was used for every interview, but the interviewer could 

reorder the questions and/or ask follow-up and clarification questions, as appropriate, based on 

the interviewee’s responses.  Because the interviews were limited to approximately 30-45 

minutes yet were used to collect data for this study and several others, not all of the resources 

listed on the survey were explicitly discussed in the interview.  For example, students were not 

directly asked about their use of other online resources not provided by the instructor or about 

their use of students not currently in Dynamics.  The audio of each interview was recorded and 

subsequently transcribed by a third-party transcription service. 

Data Analysis 

Quantitative Analysis   

To quantitatively find the students’ archetypical patterns of resource usage across all nine 

of the resources listed in Table 13, we conducted a model-based cluster analysis using the mclust 

package (version 5.3) in R (version 3.3.2) to evaluate 14 different clustering shapes with the 

number of clusters ranging from one to ten.  The frequency-of-use data from the survey for the 

nine resources were on the same ordinal scale, so no data transformations were needed.  Two of 

the primary advantages of model-based clustering over the commonly-used K-means clustering 

technique are that multiple shapes for the clusters are considered and the clusters can overlap 

because the classification of a student into a cluster is based on a vector of probabilities 

corresponding to the alignment of a student’s behavior with that of the other students’ behaviors 

in that cluster (Fraley & Raftery, 2007).  In contrast, K-means clustering separates students into 

exclusive groups that are spherically or circularly shaped (Jain, 2010).  Because we had no a 

priori knowledge about the shape of the resource-usage clusters and because we planned to use 
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each student’s vector of probabilities to gauge how well their behavior aligned with each 

cluster’s typical behavior, this study utilized model-based cluster analysis. 

The selection of the best-fitting cluster model was primarily driven by the Bayesian 

information criterion (BIC), which is a likelihood criterion that penalizes models with increased 

complexity (Spiegelhalter, Best, Carlin, & van der Linde, 2014).  The shape and cluster-number 

combinations that had the three highest BIC values were considered the best-fitting models.  The 

differences in the BIC values between the top three cluster models were small (less than 0.5% of 

a difference in the BIC values), so we compared the three models for differences in the number 

of qualitatively-unique patterns of resource usage.  The most parsimonious model that also 

captured all of the qualitatively-unique usage patterns was selected as the final model. 

Qualitative Analysis   

To better understand why students utilized the resources in certain ways, we conducted 

what Merriam (2009) referred to as a basic qualitative study with the data from the student 

interviews.  The focus of this basic qualitative study was to better understand the usage behavior 

that made each cluster qualitatively unique.  The interviews of students within a given cluster 

were evaluated for common themes regarding why students in that cluster used a resource 

differently than many of their peers.  We used a thematic-analysis process based on the 

guidelines of Braun and Clarke (2006), as described in Appendix G.  After the themes were 

developed, we viewed our results through the EV framework to determine which expectations or 

values for the resources were influencing the students’ decisions on which resources they used.   

Only interviewees with a cluster-classification uncertainty of less than 0.30 were included 

in the qualitative analysis because we wanted to understand the archetypical behaviors identified 

by the cluster analysis.  A student’s cluster-classification uncertainty is calculated as unity minus 

the maximum probability in the vector of cluster probabilities.  The process of determining the 

threshold of 0.30 is further explained in Appendix G.  Because this was an embedded research 

design where the survey and interview data were collected simultaneously, but independently, 

the number of interviewees in each cluster varied from one to 12, with the majority of clusters 

having 3 to 6 interviewees (see Figure 8 for the distribution of interviewees across the clusters).  

Given the small number of interviews per cluster, we considered similar content across 
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interviews to be a theme when it was mentioned by two or more students (for the clusters with 

more than one interviewee). 

Results 

Cluster Analysis of Survey Data 

Model Selection   

The cluster model that had the highest BIC (-16,490) had eight clusters, and the models 

with the second- and third-highest BIC values (-16,533 and -16,549) had nine and ten clusters, 

respectively.  The model with nine clusters suggested that a group of students infrequently used 

the online blog (which, according to our interviews, students most-often interpret as the 

discussion forum, but they could have also interpreted the “blog” to be the website as a whole), a 

usage behavior that was not reflected in the eight-cluster model.  The ten-cluster model did not 

offer any additional, qualitatively-different usage behaviors compared to the nine-cluster model; 

the additional cluster was made up of students who asked the instructor slightly fewer questions 

and who used other online resources outside of those provided by the instructors a little more 

frequently than the students in an existing cluster of both the eight- and nine-cluster models.  

Given the ordinal scale on which students indicated their frequency of use of these resources, we 

did not believe the extra cluster of the ten-cluster model provided any more information about 

the students’ resource-usage patterns than the nine-cluster model.  Thus, the nine-cluster model 

was chosen as the most parsimonious model that still captured the qualitatively unique resource-

usage patterns of the students.  The average values for how frequently the students within each 

cluster used each of the nine resources of the survey are shown in Figure 8.   

In the nine-cluster model, the only two clusters that were substantially similar, C2 and C6, 

primarily used the same four resources, but students in C2 used the other five resources slightly 

more often than the students in C6.  While one could argue that C2 and C6 did not exhibit 

qualitatively different resource-usage patterns, these two clusters were identified in models with 

seven, eight, and ten clusters also, so changing the number of clusters did not resolve the issue of 

having two similar clusters.  We considered combining the similar clusters but decided to keep 

them separate in case the qualitative analysis yielded distinct differences between the clusters.   
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Figure 8.  The average values for how frequently the students within a cluster used each of the 

nine resources. The sample sizes with the “int” subscripts indicate the number of interviewees in 

each cluster. 

 

 

One measure of how well the cluster model fits the data is the uncertainty associated with 

the cluster classification of each student.  For the nine-cluster model, almost half of the students 

had an uncertainty of less than 2%, and approximately 84% of the students had an uncertainty of 

less than 30% (which was the filtering threshold used for the qualitative study).  These 

uncertainties were similar to those for the eight- and ten-cluster models, which had 85% and 83% 

of the students, respectively, with less than 30% uncertainty.  The mean and median uncertainty 
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for the nine-cluster model was 11% and 2%, respectively, which leads us to have high 

confidence in most of the students’ cluster classification. 

Characteristics of Resource-Usage Patterns   

Figure 8 illustrates that a finite number of patterns represents the resource-usage 

behaviors of most students.  Cluster 1 (C1), on average, utilized the Dynamics resources the most 

often, and students in C9 used the resources the least.  This frequency of usage across clusters 

correlated with the students’ survey responses regarding the time they spent on the class outside 

of lecture.  For example, the number of hours per week that the students in C1 (M = 10.34, SD = 

5.23) spent on the class was statistically higher than the number of hours spent by student in C6 

(M = 7.8, Med = 7, SD = 3.0; U = 2862, p = 0.002, reffectsize = 0.273, small), C8 (M = 7.0, Med = 

6, SD = 3.5; U = 2955, p < 0.001, reffectsize = 0.387, medium), and C9 (M = 7.2, Med = 6, SD = 

3.4; U = 3285, p < 0.001, reffectsize = 0.349, medium), where U is the Mann Whitney U test 

statistic and reffectsize is the non-parametric, point-biserial correlation effect size that is categorized 

according to Cohen’s suggested ranges (Cohen, 1988; Fritz, Morris, & Richler, 2012). 

The students in every cluster consistently used at least two of the “core” resources of 

Dynamics, which we classify as peers, lecturebook, online videos, and the discussion forum.  

Thus, according to the EV model, these core resources must generally be perceived as available, 

willing to help, able to provide help that matches their desired type of help, and able to provide 

quality and accurate help.  This logical inference aligns with the finding of Evenhouse et al. (in 

preparation) when they qualitatively analyzed the HSBs of a similar, but aggregated, sample of 

students and found that the convenience and availability of the core resources contributed to their 

high usage.   

The most common, holistic pattern of resource usage, that of C3, mostly included the use 

of core resources and the tutorial room.  The tutorial room is one of the few resources that has 

fixed times for its availability, so, according the EV model, its inclusion in the resource-usage 

pattern of the largest cluster likely indicates that many students perceived the value of the help it 

offered to be high.   

As expected, the resource-usage patterns suggest that students did not use just one 

resource when seeking help.  With nine resources and nine clusters, it is conceivable that each of 

the clusters would be centered around the frequent use of a single resource.  Instead, every 
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cluster of students used multiple resources.  This likely indicates an awareness of the different 

help sources for diverse needs.  However, it also likely reflects some students’ lack of SRL skills 

and an inability to match the help source to their needs, thereby causing them to consult multiple 

resources before getting the appropriate help.  We revisit this issue of SRL skills in the 

qualitative analysis of the interview data from students in C1 because students in C1 use the most 

resources. 

Almost every resource was frequently used by at least one cluster of students.  The least 

utilized resources were those involving the instructor, which corroborates the findings of Wirtz et 

al. (2018), who studied the HSBs of students in mechanical engineering at the same institution as 

our participants.  Thus, the lack of using the instructor as a help source could reflect the 

departmental culture rather than the course-specific culture.  It could also reflect the importance 

of instructors actively fostering an atmosphere of help seeking—which can be especially 

important in large classes (Griffin et al., 2014)—that reduces the threat associated with 

hierarchical power relationships that some students perceive between instructors and students (Er 

& Orey, 2017; Joyce, 2016; Martin & Myers, 2006). 

Thematic Analysis of Interview Data 

In this qualitative analysis, we focused on how and why students enacted their respective 

resource-usage pattern and how the students’ perceived expectations and values for the resources 

influenced their resource usage.  Therefore, we analyzed the student interviews for resource-

usage themes within a cluster, rather than looking across clusters for themes regarding a specific 

resource, which has been done previously (Evenhouse et al., in preparation).  We explain the 

resource-usage behaviors of students in C1 for all nine of the resources; thus, the thematic 

analysis of C1 is very thorough.  For the other eight clusters, we briefly discuss the resource-

usage characteristics that make that cluster unique.  We highlight how each cluster’s themes 

relate to three of the four factors of the EV model for resource selection: 1) perceived availability 

and accessibility, 2) perceived likelihood of the source providing help, and 3) perceived quality 

and accuracy. The one component of the EV model that we do not discuss until the end of this 

section is how well the help provided by the source matches the desired type of help (adaptive or 

expedient).  We save this discussion until the end because all of the interviewees described their 

HSBs as adaptive, regardless of their resource-usage pattern.  
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Cluster 1 (Frequent Users of Most Resources)   

The students in this cluster perceived the culture in engineering as collaborative, and they 

did not mind reaching out to their peers, TAs, or instructor for help with Dynamics.  For 

example, one student commented: 

 

[The undergraduate student culture is] good in the sense that a lot of people seem 

to want to help each other with understanding the concepts behind their classes. 

You know, I’ll ask someone a question about a homework problem—and I can go 

up to practically anyone in the [mechanical engineering] building—and they’d be 

willing to help me through it. (Student 3) 

 

Students in this cluster utilized many of the Dynamics resources when they did not 

understand a concept.  The following quotes illustrate typical resource-usage behaviors in this 

cluster, all of which include some level of peer collaboration: 

 

I do [the homework] myself first. If I don’t get it, I’ll look up [an] example [from 

the] lecture or lecture example videos online. And then, if I still don’t get it, I’ll 

go into the help room. And there’s a lot of people there, too. (Student 1) 

 

There’re a couple guys that I knew before this…course, and we usually meet in 

the [mechanical engineering building].  And we’ll just, like, we’ll start the 

problems. If we don’t understand it, we’ll go into the help room and get our 

questions answered, and, obviously, along the way we’ll try to help each other 

and that’s usually how I approach the homework problems. (Student 3) 

 

I always review [for the] exam with my friend, but homework I always do 

myself—but sometimes we will discuss it a bit. (Student 4) 

 

Multiple interviewees checked the online discussion forum for helpful hints, but they 

often did not find the forum that useful, in part because (in certain semesters) not many students 

were posting questions or answers:   

 

I check [the discussion forum] while I’m doing homework sometimes, just to see 

if there’s anything interesting or anything that I might be missing from this 

problem. (Student 1) 
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Yeah, I did not use the actual [discussion forum] this time. Like I didn’t respond 

to homework questions or ask questions on that, but the main reason for that was 

because I would just go to the help room and talk to the TA about it. But yeah I 

felt like that wasn’t as useful because not many people seem to be using it. So, if 

you had a question it probably wouldn’t get answered on the [discussion forum]. 

(Student 3) 

 

One student mentioned that they utilized their friends who had already taken Dynamics: 

 

I do study alone, but sometimes I have friends who already took their ME 

Dynamics before this semester, so I approach them and ask them questions 

...[and] if they still have resources from their semesters so that I can use it and 

study—or just ask them for help, or something. (Student 2) 

 

Lastly, the instructor’s office hours were used infrequently, but the students found the 

instructors’ responses to questions in class helpful.  For example, Student 2 said, “Sometimes, 

people don’t understand, and the professor will give you extra information from that. That’s one 

thing I like about the community, … they ask questions.”  Overall, the students in C1 found the 

resources to be very helpful, as this student succinctly articulated: 

 

If you’re struggling, there are a lot of resources that you can go to…there are 

plenty of staff that you can get help from. Yeah, I felt like it was very well, I 

guess, instructed; well organized. (Student 1) 

 

When considering the common behaviors of C1 through the lens of the EV model, the 

students perceived many of the resources as available and willing to provide help, but their 

perceived quality for the resources varied.  The perceived quality and the likelihood of receiving 

help for the discussion forum was lower because the posted discussion might expose 

misconceptions and an asked question may be answered.  The tutorial (or “help”) room was 

referenced by multiple students as a place to go after first seeking help from other resources; 

thus, the students in C1 appear to perceive the quality and accuracy of the TA’s help in the 

tutorial room as being higher than the other resources, with the exception being the instructor.  

The interview data was inconclusive on whether the use of many resources is a sign of seeking 

deep understanding or the result of inefficiently aligning one’s needs with the help source.  

Because these interviewees perceived the resources as being available and willing to provide 
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help, it is possible that they move quickly from one resource to another if they do not 

immediately find the help they seek. 

Cluster 2 (Primarily Core Users)   

Students in C2 more frequently used the discussion forum while working on their 

homework when compared to C1, possibly driven by their instructor encouraging their use of the 

discussion forum: 

 

I used [the discussion forum] to do a quick check… [at] the beginning of the 

semester I used it a little bit more when [our instructor] was like, “Make sure 

you’re using this.” Then when [our instructor] wasn’t saying, “Use it,” I would 

just kind of forget about it. I think it was moderately useful. I did maintain that 

skepticism about some of the things that were on there—that people could be 

wrong. It was lower on my list [of useful resources]. (Student 10) 

 

As mentioned by Student 10 (above) and Student 6 (below), the information on the discussion 

forum was not always useful to the students: 

 

Towards the end of the semester, I checked [the discussion forum] probably every 

homework. … I thought it was useful just because different people brought up 

different things about the problems that I wouldn’t think about. Or, you would get 

stuck and somebody else would have the same problem, and someone would give 

an answer. But then on the other hand, sometimes people would give answers that 

they wouldn’t explain fully. So, it would be difficult to get what they were trying 

to tell you if they didn’t explain it very well. (Student 6) 

 

Thus, the students in C2 perceived the discussion forum as more available and more likely to 

provide helpful insights than students in C1, but the students in C2 shared the same low 

perception of the discussion forum’s quality and accuracy. 

Compared to the students in C1, the students in C2 did not utilize the tutorial room or 

instructor office hours as often.  Interviewees indicated that the availability and accessibility of 

various online resources reduced the need for students to seek help from the TAs, as exemplified 

by this quote: 

 

I’ve been in the tutorial rooms but less [for Dynamics] because the online stuff is 

more available. (Student 10) 
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The difference in office hours use appeared to be primarily a result of scheduling 

conflicts that reflected the limited availability of the instructors’ office hours.  However, one 

student referenced the power differential, an aspect of accessibility, between the instructor and 

student as a cause for not asking the instructor questions: 

 

I have class during his office hours, and I’m also like a bit intimidated by 

approaching him and sometimes like I don’t want to ask stupid questions.  So, like 

for me, I would try to work by myself first, and if I really cannot understand, I 

would just go to help room or ask my peers because I don’t want to appear stupid 

to the instructor. (Student 5) 

 

Overall, the students in C2 seemed to be heavily influenced by the availability and 

accessibility of the resources, but quality played a role in how likely the students would be to 

utilize the help, especially for the discussion forum. 

Cluster 3 (Core + Tutorial Room Users)   

This was the resource-usage pattern with the largest membership, and compared to most 

of their peers, the students in C3 frequently used the tutorial (“help”) room.  They preferred the 

immediate, personalized, and accurate help that the help room and its TAs provided to them.  

The help room did have only certain hours of availability, but interviewees organized their study 

schedules around this availability so that the help room was perceived as being highly available.  

For example, Students 11 and 17 took different approaches to solving their homework, but they 

both relied heavily on the TAs in the help room for their learning: 

 

I’ll usually go home and try [to complete my homework] on my own at night, for 

an hour to two hours, for the two problems, usually getting a good jump on what I 

think the solution’s going to look like. …And then, the next day, …I’ll go to the 

tutorial room, and kind of ask the TAs that are there if my solution generally 

looks correct and if it looks like I’ve missed anything. Most of the time, there’s 

something that I’ve missed, or I haven’t gotten, and then I’ll go sit down at the 

table and solve it and try to fix my solution. (Student 11) 

 

What I did that finally helped me understand [the course content] was 

immediately after class, I would just go to the help room.  Just sit there; do 

homework where, if I needed help, I’d be able to ask the TA’s there. (Student 17) 
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Multiple interviewees in this cluster acknowledged a tension between the expectations 

and value dimensions of the EV framework with regard to their peers, TAs, and instructors.  For 

example, Student 12 said: 

 

I think that my experience in this class has definitely been a good one because of 

the tutorial room. I think that the TAs in there are an even greater resource 

sometimes than the professor can be because they’re more available. They’re 

more available [than the professor] and more accurate [than your peers] then 

you’re going to get the best of both worlds there. Maybe the [group messaging 

with your peers] might be more available, but not as accurate. And the professor, 

vice-versa. (Student 12) 

 

Overall, the perceived high availability of the TAs in the help room coupled with a perception of 

receiving high quality help explains why students in this cluster utilized the help room 

frequently.  

Cluster 4 (Users of Students Not in Dynamics)   

The interviews of students in this cluster did not reveal any insights into why students in 

this cluster utilized students not currently in Dynamics relatively frequently, but we did not 

explicitly ask for this information in the interviews.  We did find evidence that suggests students 

in this cluster reached out to their peers in other sections for help (there were two sections of 

Dynamics each fall semester and four sections each spring semester), so students in this cluster 

could have misinterpreted the survey questions.  The question regarding use of students outside 

Dynamics begins with the phrase “other students I know”, and the first question asks about “my 

peers in the class.” Thus, it is possible that students perceived the first question to be about 

students in their section and the subsequent question to be about students outside their section.  

The following is one example of how and why students worked with their peers from other 

sections of Dynamics and illustrates the value of aligning content across sections: 

 

Sometimes if I didn’t understand a general topic I’d also reach out to some of my 

peers who were in different sections to see, “Which examples did your professor 

do? Did they mention anything differently?”  …[For exams], I was comfortable 

studying with people for my exams, and also knowing that everyone was doing 

similar material. Not that, “Oh we have these 3 sections, and your teacher is 

teaching you whatever they want.” The fact that it was really organized, we were 
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all on the same thing at the same time, I knew that I could study with others in 

different sections for exams and not be at a disadvantage. (Student 26) 

 

For students in C4, the alignment of the Dynamics curriculum across multiple sections increased 

the perceived quality of the help that peers in other sections could provide. 

Cluster 5 (Non-Users of the Discussion Forum, Users of Non-Dynamics Resources)   

Two factors that seemed to contribute to students in this cluster not using the discussion 

forum were their perceptions of the forum as having a low likelihood of providing help and low 

quality.  In certain semesters, the usage of the discussion forum was quite low, leading some 

students to believe that the discussion forum could be a useful resource, but it was not for them.  

For example, one student said:  

 

I don’t think [the discussion forum is] super helpful now. I think it has the 

potential to be very helpful. Someone [who] took this [course] previously 

mentioned [that] when they took it the [discussion forum] was super, super 

popular. People were posting on it all the time and the only way to do the 

homework was to, like, look at the blog and see what people were posting. …But 

every time I checked, it was someone asking a question, [and] no one would 

answer it. Someone would ask another question; no one would answer it. Then 

there’d be another question that was easier that someone would answer, but it 

wouldn’t be very descriptive.  So, I think, again, it could be very, very helpful, but 

I don’t think it was very helpful. (Student 33) 

 

Interviewees in this cluster also did not use the discussion forum frequently because they 

perceived it as less helpful than other resources, indicating the value dimension of the EV model 

dominated their usage decision.  Private communications with friends, often virtually via a 

group-messaging platform, were not viewable by the instructor and were perceived as being of 

higher quality than the public discussion forum because these private communications were more 

open and specific.  The following quote illustrates this sentiment: 

 

[When asking for help on the discussion forum], it’s hard to know where the line 

is with cheating ….[Instead,] we have an environmental engineering Dynamics 

[group-messaging chat], and we’ll usually ask a question like, “Hey, this is what 

I’m doing. Does this look like what other people are doing?” Occasionally, people 

will post an answer like, “I got this. Is this a close answer to what anyone else 
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got?” They’ll get a yes or a no. Again, hard to know where that academic integrity 

line is, but …[the group chat is] just not as public. (Student 32) 

 

The students in C5 were also more likely to find other online resources outside the 

Dynamics learning environment.  These resources included content from an online tutoring 

platform—a platform that concerns the instructors because of how easy it is for students to 

receive expedient-oriented help.  However, Student 31 described the website as just another 

support resource that they could use if they had exhausted their other options:  “…if I’m really 

confused and stuck I’ll go on [the tutoring website] and it’ll sometimes help.” 

Cluster 6 (Almost Exclusively Core Users)   

Students in C6 displayed similar resource-usage behaviors as C2, but, unlike students in 

C2, who often did not use the instructor’s office hours because of scheduling conflicts, the 

interviewees in C6 simply preferred not to use office hours.  When asked how often they received 

help from their instructor, these two students said: 

 

Never. …That’s just a result of me being me and not wanting to go to office 

hours, even though I probably should. (Student 37)   

 

I personally don’t interact with him that much.  … I think if I needed to, he would 

be easily reached, and I can meet with him to talk about stuff, but I personally 

don’t. (Student 38) 

 

It is interesting to view the above comments through the lens of the EV model.  Rather than the 

expectations and values for the Dynamics instructor determining whether or not the students in 

this cluster used the instructors’ office hours, the students’ prior help-seeking habits seem to 

have dictated their decision.  This result aligns with Giblin’s (2016) proposition that students 

also use heuristics (or “empirically derived short cuts”, p. 16) based on prior experience when 

deciding whether or not to seek help from a resource.  Furthermore, portions of Student 38’s 

quote, “I think if I needed to” and “ I can meet with him”, corroborate Broidy et al.’s (in review) 

findings that students use conditional statements and modal verbs (can/could/may/might) to 

justify and hedge their use of office hours. 
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Cluster 7 (Non-Users of Lecturebook)   

We had only one interview transcript to analyze for C7; therefore, the archetypical 

behaviors of this cluster as exemplified by this one student are more tentative than the other 

clusters.  The one student we interviewed in C7 seemed to be budget conscious, meaning the 

price of the lecturebook limited its accessibility.  They purchased the book, but did not use it, so 

they returned it.  Instead, the student took detailed notes when the instructor used their own 

slides for explaining the theory of each topic.  When the instructor solved an example problem, 

however, they did not take notes; they listened and tried to understand the process.  They took 

notes on how to solve the example problems later, when they watched the online solutions for 

the lecturebook examples in preparation for doing their homework.  Because they did not have 

the lecturebook as a reference, they clicked through many online solution videos until they found 

one (or more) that looked similar to the homework problem of interest.  Overall, this student did 

not perceive their lack of using the lecturebook as a hinderance to their learning; they had this to 

say about the learning process they employed:  “it’s less expensive, and I feel like I learn just as 

much.”  

Cluster 8 (Reliant on Peers and Lecturebook)   

Students in this cluster primarily relied on their peers and lecturebook for support.  All 

three of the interviewees exhibited similar usage behavior with the lecturebook, online videos, 

and their peers.  They all read the theory portion of the lecturebook after the lecture to clarify the 

concepts, and one of the students also read it before the lecture.  Overall, the interviewees found 

the lecturebook to be of very high value, as exemplified by this quote: “[At first] I didn’t realize 

how helpful [the lecturebook] was and how directly it related to exactly what you’re doing” 

(Student 35). 

If working on their homework, the students in this cluster would only seek help from 

online example videos after they revisited the theory sections of the lecturebook.  However, the 

students mostly used the online homework and example videos to test their understanding before 

an exam.  One student mentioned that they consciously chose not to watch all the example 

videos before attempting their homework because they saved some unseen examples for their 

exam preparation: 
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I kind of mentioned that I watch like half the lecture videos … before the 

homework, and then maybe I’ll save them for before the exam. …Maybe I have a 

better chance to kind of refresh and go through new problems that I haven’t seen 

before, right before the exam. (Student 35) 

 

Like students in C5, the students in this cluster appear to rely heavily on their peers for 

support through private channels rather than via the discussion forum.  Two of the interviewees 

mentioned that help from people they knew and trusted was more useful than the information on 

the discussion forum, suggesting the quality aspect of the EV model drove their decision of who 

to ask for help.  Unlike C5, whose interviewees used a group-messaging platform to 

communicate with a larger number of students, the interviewees of C8 kept their peer-network 

small.  The interviewees often physically met with a small group of friends to do their 

homework, as described by Student 41: “If we are in a group,…we normally each do [the 

problem] on our own, and then stop at checkpoints, or when people get confused, and go over 

and make sure everyone is caught up.”  All of the interviewees checked their homework answers 

with their peers, either in person or via text messaging.  The action of checking answers may 

appear to be performance-goal oriented, but these students described it as a way to get immediate 

feedback that they could use to correct misunderstandings.  For example, one student said: 

 

Most of my homeworks, I will either work together with my roommate, or check 

our answers together at the end.  And that’s really helpful ‘cause a lot of times 

you can figure out that you were doing something wrong, and you may have just 

got your math wrong, or you may have a whole concept wrong, that you probably 

wouldn’t have caught until the homework was already graded, and you were on to 

the next concept in class. (Student 34) 

 

Overall, the high perceived quality, availability, and expectation to receive help when it was 

needed led the interviewees in C8 to frequently utilize a small, intimate group of peers. 

Cluster 9 (Non-Users of Peers)   

Most of the students in this cluster preferred to work and learn alone, which interviewees 

mentioned was enabled by the high availability and accessibility of the online resources.  For 

example, one student commented: 
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I don’t [interact with my peers] very often. I just like to work by myself.  

Especially with this class with all the resources there are online, it was easier to 

do that. (Student 42) 

 

The interviewees in this cluster had varied reasons from not reaching out to their peers 

for help, ranging from not feeling a need for help very often to having poor experiences when 

they did ask for help.  The following quotes illustrate this range: 

 

I don’t specifically meet classmates that are in my class directly. Like I said, I 

usually go on the [discussion forum] to see what students have written about the 

homework. If at all, I do have friends who are also taking the course, so I 

sometimes ask them about conceptual problems which don’t have solutions. 

(Student 43) 

 

I think I’ve tried [getting help from my peers] once, twice. …I found actually last 

year, when I tried to ask my peers for help, that everyone’s like, “if you don’t 

understand this by now, why are you here?” I’ve been told that a few times. I just 

quit [asking my peers for help]. (Student 44) 

 

Like the quotes from C6, the quote of Student 44 suggests that prior experiences influence 

current HSBs. 

HSB Orientations of Each Cluster 

Our qualitative data suggest that the interviewees’ HSBs were adaptive in nature across 

all of the resource-usage patterns and with respect to any individual resource.  An example of an 

adaptive HSB, in the voice of the students, for each cluster is shown in Table 14.  An example of 

how the students exhibited adaptive HSBs toward each of the nine resources considered on the 

survey is listed in Table 15.  Evidence of all of the participants in a study exhibiting adaptive 

HSBs is not unprecedented; Giblin (2016) noted that all 25 of their upper-level, undergraduate 

math students sought help for the purpose of understanding.  Because of the lack of data 

regarding expedient behavior, we are unable to make conclusions about the relationship between 

expedient HSBs and resource-usage patterns.  However, the evidence of adaptive HSBs across 

all of the clusters suggests that all of the resource-usage patterns can support students in their 

desire to understand the content.   
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The final finding from the qualitative research worth mentioning is in regard to the 

students avoiding the instructor as a help source.  Some researchers classify this type of behavior 

as help avoidant, (Briody et al., in review; Karabenick, 2003; Makara & Karabenick, 2013). 

Earlier, we posited that the relative infrequency at which students use their instructor for help 

could be an indication of the hierarchical power differential between instructor and student.  Our 

qualitative results suggest that students do not use the instructor as a help source for reasons that 

include scheduling conflicts with office hours and personal preference, but some interviewees 

mentioned intimidation or the fear of being perceived as “stupid” or “dumb” as reasons for not 

asking the instructor questions.  One quote exemplifying this sentiment was included in the C5 

section above, and another quote follows: 

 

Never. I mean personally I would never go to the office hours. I would rather 

figure it out on my own, that’s just because I feel intimated almost, to go to office 

hours because I don’t know what’s going on most of the time I have to really, 

really struggle through problems to kind of grasp the concept. I always kind of 

feel stupid afterwards because I’m talking to the instructor about how I don’t 

know anything. (Student 33) 

 

These quotes highlight the need for instructors to actively cultivate a culture of help 

seeking that encourages students to ask questions and reduces their fears of “looking stupid” if 

they need help (Briody et al., in review; Er & Orey, 2017). 
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Table 14. Examples of adaptive HSBs for each cluster.  The bolded text indicates key phrases 

related to adaptive HSBs. 

Cluster Adaptive HSB Example 
C1 We have all the homework solution videos online, so every time, if I got something wrong, I 

can go online to see what steps can I improve. (Student 4) 

C2 I remember last semester I would go to help room a lot and, like, a few semesters before that 

too, because there is not other, like, electronic/online resources.  But for [Dynamics], I could 

just take time to solve the problems by myself and understand them. ...Usually I would 

just freak out by myself and just go to the help room and try to get the homework done 

without actually understanding [the problems], but this time I would just sit down and just 

try to study them. (Student 5)  

C3 I work on the problem in the Help Room, and, as soon as I get a question, I’m turning and I 

want an answer.  Then and there while it’s fresh in my mind and I can really talk to the 

TA, not just about how to answer this question, but about the concept that’s behind it 

and how I can learn from my mistake. (Student 12)  

C4 I use my peers almost every day of the week for homework, studying, clarification on 

concepts, and they were my most useful resource. (Student 26) 

C5 Actually, several of us environmental juniors made a ... group chat. That gives us a chance 

to go in and say, “Hey, I’m not understanding this. Could you please help break down this 

concept?” Or “Does anyone understand what he’s asking in part D of such and such 

problem.” That gives us a chance to go back and forth and bounce ideas off each other and 

figure out if there’s, like, competing ideas or something, and work on that. (Student 30) 

C6 I’ll copy down the homework assignments, and then I’ll look through the lecture example 

videos to see if any lecture problems that we haven’t covered or similar to it, and review 

those. That way I get those ideas beforehand. Then I’ll try the problem. If I can’t get 

through it on my own, then I’ll check the various blog comments that people have left, and 

then pitch in if I can, and then go back and just finish up the problem. The next day, after 

turning it in, I think, is when they put up the solutions. I guess whenever the solutions go up, 

I’ll go back and look and see what it is that I didn’t do. (Student 36) 

C7 So, for the exams, …[once] I’ve learned as much as I can by reading and doing my own 

problems, but still making mistakes, I learn the best by explaining it to someone. Because 

when I explain it to someone, ...I want to make sure I’m right in how I explain it, so 

then I think I subconsciously pay extra attention. That’s how I learn the best, I think. 

(Student 40) 

C8 I guess my strategy [for completing the homework] would usually be to watch a couple of 

lecture examples and go through the textbook, … then I can just go straight into the 

homework. … And then as far as working with other people, I’ll usually go through all of 

[the homework] and make sure I think I have it right and then I’ll just make sure that I have 

the same answers hopefully, and if I don’t, then I’ll have to go back and redo it. (Student 35) 

C9 My preferred method [of learning] is just to go through and continually do problems. A lot 

of times it seems repetitious or that you’re not learning anything, but every once in a while 

you run into something you didn’t even think of or wouldn’t think to look for and then 

you learn that way. (Student 42) 
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Table 15. Examples of adaptive HSBs for each resource listed on the survey. The bolded text 

indicates key phrases related to adaptive HSBs. 

Resource Adaptive HSB Example 
My peers in the class When I work with my friend, she thought of some concepts or ideas I have 

never thought [of] before. So, it’s pretty useful to get me to understand the 

class materials better. And, like, some of the homework I solve it 

differently, ... but in the end I try to compare my answers with her is 

actually proof that, like, both concepts are right. So, they help me to 

understand different ways of solving the problems. (Student 5, C2) 

The course lecturebook I do notes in all my classes the week before for the lecture, so I’ll go 

through what the concept that we’re learning is the next week and 

highlight things [in the lecturebook], and then we go over it in class. 

Then I’ll use it for my homework then, and then I use it to study. (Student 

41, C8) 

The lecture example and 

homework solution 

videos 

Yeah, I use [the homework solution videos] all the time. ... If I think I know 

what I’m doing I’ll go through and work the whole problem and then 

just skip to the end of the video to kind of see the solution and make 

sure I did the right thing. (Student 31, C5) 

The course blog …[when more students were using it], I thought [the discussion forum] was 

useful just because different people brought up different things about 

the problems that I wouldn’t think about. (Student 6, C2) 

The instructor, by asking 

questions in class 

I know my professor does a really good job of making sure that people 

actually ask questions and when they ask questions he doesn’t say things 

like, ... “oh well that’s easy, you should understand this.” He’ll actually 

answer them and understand that not everyone understands this right 

away. (Student 44, C9) 

The instructor, during 

office hours 

My instructor, I utilized ... several times throughout the semester for office 

hours ... for special clarifications on concepts …. “That didn’t click the 

first time. Can you explain it to me a different way?” Or, I’d go to a 

different professor’s office hours to see if they explained it in a way that 

was better for me. (Student 26, C4) 

Online resources not 

accessed from the course 

blog (ex: online lectures 

or videos not associated 

with the course) 

I do Google a whole lot of stuff.  [An online tutoring website] is pretty 

helpful, and ... a lot of times you’ll find the exact problem on [the website], 

but they’re not that useful because the guys on [the website] get it wrong all 

the time. But just to see their thought process is quite helpful. (Student 

40, C7) 

Other students I know 

who are not currently 

enrolled in the class 

I do study alone, but sometimes I have friends who already took 

[Dynamics] before this semester, so I approach them and ask them 

questions ...If they still have resources from their semesters so that I can 

use it and study or just ask them for help or something. (Student 2, C1) 

The TAs in the 

mechanics tutorial room 

So, I utilize the help room quite a bit, which there’s a TA in there, but 

there’s also other students in Dynamics who are working on the same 

problems. ...I usually talk to the TA first about problems, and then once 

I have a good understanding of it, if [there are] any students in that room, 

and there’s a line for the TA, I’ll try to explain that to them because I find 

I learn better when I’m explaining things. (Student 14, C3) 
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Discussion 

The aim of this study was to identify (RQ1) and understand (RQ2) the holistic patterns of 

resource usage by students in a resource-rich, blended learning environment for an 

undergraduate dynamics course.  The summaries and implications of our results are organized 

below by research question. 

RQ1: Patterns of Resource Usage 

The most important result from the cluster analysis of the students’ self-reported 

resource-usage data (see Table 13) was that there is not one typical resource-usage pattern for 

students in Dynamics; our analysis identified nine common resource-usage patterns.  So, when 

instructors evaluate how well the Dynamics curriculum and Freeform environment supports the 

learning needs of all students, they should consider at least nine archetypical students, not one 

stereotypical student. 

The identification of nine archetypical resource-usage patterns illustrates that students are 

tailoring their use of resources to their preferences, needs, and schedules—yet, a finite number of 

patterns captures how most students use the resources.  The finding that all of the students are 

referencing multiple help sources of diverse types (face-to-face, mediated, text, video, etc.) 

reflects the integrated nature of the active, blended, collaborative resources of the Dynamics 

learning environment.  When viewed through the EV framework, the fact that each of the nine 

resources was frequently used by at least one group of students indicates that every resource is 

perceived as available and valuable to at least some students, and instructors, therefore, should 

continue to offer the current suite of Dynamics resources in future semesters.  At the same time, 

instructors should consider altering the resources that are less frequently used—e.g., instructor 

office hours—to better support more students. 

The frequent use of the tutorial room by students in C3 (the cluster with the largest 

membership) and C1 indicates that access to a TA is a valued component for many students in 

the suite of Dynamics resources.  In addition to receiving help, some students who used the 

tutorial room may have honed their SRL skills and enacted adaptive HSBs because, ideally, the 

TAs encouraged SRL and mastery-goal orientation (Puustinen, Bernicot, Volckaert-Legrier, & 

Baker, 2015).  Student interviews suggested that some students used the tutorial room because it 
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provided them with a more informal and less-intimidating path to expert help than visiting an 

instructor’s office hours.  Unfortunately, tutorial rooms open to all students and for specific 

courses are not a common resource for most universities.  This study’s institution makes helping 

students in the tutorial room the sole responsibility of the course’s TAs.  Because Dynamics has 

multiple sections and TAs are expected to work 20 hours each week, multiple TAs are hired each 

semester to provide 40+ hours of tutorial-room availability each week.  Each instructor also hires 

one undergraduate student to help them grade the homework assignments.  This sharing of 

resources across sections and the specialization of job functions allows this study’s institution to 

offer the tutorial room, and we hope our findings encourage more engineering departments to 

consider providing this type of resource.   

Lastly, the students’ high perceptions for the expectations and value of the core resources 

was evident in the high usage frequencies for those resources.  Other resources that were 

perceived high on only one of the dimensions of the EV framework were not used as universally.  

For example, non-course online resources were always available (although one could argue not 

as accessible because a student has to search for relevant content), but some interviewees 

suggested that they could be lacking in quality and accuracy.  Similarly, students perceived 

instructors and TAs as sources of very high-quality help, but these resources were not as 

available or accessible as the core resources (with a possible exception being the discussion 

forum in semesters with low participation).  In summary, our results corroborate the EV 

framework of Makara and Karabenick (Makara & Karabenick, 2013) and the findings of 

Evenhouse et al. (in preparation) and Wirtz et al. (2018) in that the availability, convenience, and 

quality of a resource are important factors in determining if a student will use the resource. 

RQ2: Understanding How and Why 

The qualitative interviews revealed a wide variety of reasons that students engaged with 

the resources as they did.  One of the more common themes of how students utilized the 

Dynamics resources was to work on an assignment alone and only seek assistance if they could 

not overcome the challenge by themselves.  The order and frequency in which they used a 

resource for help varied by cluster and depended on the students’ perceptions of the expectations 

and value for each resource, as suggested by the EV model for resource selection, with the 

students’ perceptions being influenced by their own schedule, needs, and preferences.   
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Overall, the results of the qualitative analysis corroborated three of the four expectation 

and value factors listed in Makara and Karabenick’s EV model, see Figure 7.  The one factor of 

the EV model that our interviewees never seemed to consider when choosing a resource was how 

well the help provided would match the type of help (adaptive or expedient) desired.  However, 

all our interviewees described their HSBs as adaptive, so our results do not contradict the EV 

model, but they do not confirm the EV model either.   

Implications for Practice 

The cluster analysis used to group students according to how they use a set of resources is 

generalizable to any resource-rich learning environment.  The only data required are responses to 

one multiple-part survey question.  Thus, any instructor could employ the quantitative portion of 

our research design to identify how their students use the resources available to them.  This 

information could be used to make decisions about how an instructor or department allocates 

their time or money to best support the learning needs of their students.  For example, if 

administrators only looked at the average usage of each Dynamics resource (the first row of 

Figure 8), they may conclude that the tutorial room is used relatively infrequently compared to 

other lower-cost resources (like the discussion forum or the online videos).  Consequently, they 

may decide to discontinue offering TA support in the tutorial room, or significantly cut back on 

staffing hours.  However, the cluster analysis reveals that the students in two of the nine clusters 

frequently used the tutorial room, and one of those clusters had the largest membership.  Thus, 

analyzing the behaviors of subsets of students, rather than analyzing the average behaviors of the 

sample, can have a practical impact on how instructors and administrators spend their time and 

financial resources to support students. 

Because our results suggest that all of the resources can be used in adaptive ways, 

instructors may want to limit the time spent advising students on the specific resources they 

should use.  Within the scope of coaching students on resource usage, instructors could reiterate 

the variety of resources available and emphasize the importance of the self-evaluation phase of 

SRL (Step 8 in Figure 6).  One concrete example of how instructors could help students develop 

their metacognitive awareness and self-regulation is to implement a “post-test analysis,” which 

includes multiple reflection exercises (Barkley, 2010), but there are many alternative 

pedagogical ideas for improving students’ SRL skills in the research literature (e.g., Ambrose, 
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Bridges, DiPietro, Lovett, & Norman, 2010; Bandura, 1994; Linnenbrink & Pintrich, 2003; 

Zimmerman, 2008)  Based on Karabenick and Berger’s (2013) representation of help-seeking as 

a SRL process, as shown in Figure 6, the better students get at critically evaluating the usefulness 

of the help they receive, the better they should get at matching their needs to a help source.  The 

development of SRL and help-source-matching skills would benefit all students, but it could be 

especially valuable for some of the students in C1 if lower SRL skills is the cause of the students 

in C1 spending the most time, on average, on Dynamics outside of class and using the most 

resources of any of the clusters.   

Another actionable finding from this work is for instructors to consider alternatives or 

modifications to the online discussion forum.  The cluster analysis indicates that many students 

use the discussion forum, but a considerable number of interviewees described it as an unreliable 

source of support (in terms of accuracy and expected response).  Students often preferred to rely 

on small, private, and personal peer networks for help.  Therefore, instructors should evaluate if 

there is a way to preserve the valued aspects of the private, smaller-group communications while 

also making that information available to all of the students in the class.  Alternatively, Er and 

Orey (2017) suggested that instructor participation on the discussion forum or adding a social-

networking aspect (like following, friending, or liking) could encourage participation and 

reducing the fear of seeking help publicly.  Regardless of what modifications are considered, the 

asynchronous nature of the discussion forum may still cause some students to perceive it as less 

useful.  Students who work on their homework right after it is assigned may not find the 

discussion forum as useful because the posted content and student participation are more limited 

than they are in the hours leading up to the due date (Evenhouse et al., in preparation). 

Nonetheless, any improvement to the content or participation on the discussion forum will likely 

differentially benefit those who do not have the affordances of being part of a smaller network of 

peers, thereby improving Freeform’s ability to support the success of all students. 

Implications for Research 

 This study suggests that most students seek help from multiple resources, and how and 

why the students choose to use certain resources varies across the resource-usage patterns.  We 

posit that the use of multiple resources is not unique to Dynamics and is true in most 

undergraduate courses, especially in engineering where students often have at least a textbook 
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(or course notes), their peers, internet resources, and the instructor’s office hours available to 

them (Wirtz et al.).   A holistic, student-centered approach allows researchers to identify and 

understand the multifaceted resource-usage characteristics of smaller subgroups of students, 

whereas the investigation of individual resources in isolation primarily reveals the average-usage 

statistics for each resource without contextualizing those statistics in the broader help-seeking 

behaviors of specific students.  Therefore, to accurately understand how and why students use 

the resources available to them, researchers should employ a holistic, student-centered approach 

instead of studying the use of individual resources in isolation.   

Limitations and Future Work 

One of the most significant limitations of this work is the limited sample sizes of both our 

quantitative and qualitative data.  Because the cluster analysis suggests that nine patterns 

describe the resources-usage patterns of most students, the number of participants (survey and 

interview) that we had in each cluster became limited.  Future research that conducts targeted 

sampling of interview participants from less-common clusters would allow for a more thorough 

investigation into why students in those clusters engage with the resources as they do. 

A second limitation of this work is that both the quantitative and qualitative analyses 

relied on self-reported data.  For the cluster analysis, self-report errors in the resource-usage 

responses on the survey could have affected the students’ cluster classification.  We expect, 

however, that errors in the survey data had a minimal effect on most of the students’ cluster 

classification because:  i) the classification uncertainty for most students was very low, meaning 

that the resource-usage pattern of most students only aligned with that of a single cluster; ii) the 

nine resource-usage patterns were qualitatively unique, so gross misrepresentations of a student’s 

resource usage would have been necessary for a student to be misclassified; and iii) the thematic 

analysis of interview transcripts for students within each cluster corroborated the quantitative 

resource-usage patterns.  Regarding the qualitative data, it is possible that the interviewees did 

not feel comfortable sharing details of how or why they used certain resources.  Some 

interviewees may have misrepresented their behavior because of fear for how the interviewer 

may perceive them (Pekrun, 2016).  We tried to minimize this impression threat by conducting 

the interviews in a location that was not connected with Dynamics and by utilizing an 

interviewer who was not associated with the instructional team for Dynamics.  Nonetheless, the 
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possibility that students misrepresented their resources-usage behaviors in the interviews could 

have contributed to our lack of evidence regarding whether or not students enacted expedient 

HSBs. 

In future studies, our data collection instruments and processes could be improved and 

aligned.  The end-of-semester survey should clarify its language regarding the “blog” and 

students who are not currently in Dynamics.  Through our interviews with students, we have 

found that the majority of students perceived the “blog” to be the discussion forum, but some 

students considered the course blog to be the course website (as a whole).  In the interviews, we 

should explicitly ask students about their tendencies to use online resources outside of the course 

and peers not currently in Dynamics.  We should also consider ways in which we can better 

research the extent to which students in each cluster exhibit expedient HSBs.  One option is to 

consider administering a HSB instrument (e.g., see Karabenick, 2003) to get a sense of the 

students’ general HSB tendencies.  

Finally, future work (which is presented in Chapter 4) needs to correlate the students’ 

resource-usage patterns to their achievement in Dynamics.  The results of this study suggest that 

the students in all clusters sought to develop an understanding of dynamics.  If the students 

across all clusters were equally successful at developing this understanding, then we would 

expect the performance of the students in each cluster to be similar, and a student’s resource-

usage pattern would not be a significant predictor of their achievement.  An insignificant 

relationship between a student’s resource-usage pattern and their achievement would also further 

strengthen the possibility that the specific resource (or usage pattern) from which a student seeks 

help should not be the focus of academic coaching because students can engage with the 

resources in many different ways and still achieve similar academic results.  Alternatively, if a 

student’s resource-usage pattern is a significant predictor of achievement, then the proposed 

future work could inform the coaching of students on what resource-usage patterns might 

maximize their academic achievement in Dynamics. 

Conclusion 

As engineering continues to adopt and develop innovative teaching methods and learning 

environments, researchers must investigate how students experience these innovations and how 

the innovations affect the students’ learning.  The purpose of this research was to better 
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understand how and why students utilized the plethora of resources that were available for an 

undergraduate engineering course that emphasized active, blended, and collaborative learning.  

We identified nine qualitatively-unique patterns of resource usage, indicating that students 

regularly consulted multiple resources in the highly-integrated environment.  Interviews 

suggested that the students exhibited their respective resource-usage patterns according to three 

out of the four factors in Makara and Karabenick’s (2013) expectancy-value model for resource 

selection.  Our interviewees described their HSBs as adaptive regardless of their resource-usage 

pattern; therefore, we found no evidence to support or refute the fourth factor of the expectancy-

value model which contends that students will choose a help source that provides the same type 

of help (adaptive or expedient) that is desired.  Overall, our results reflect the value of having 

multiple, highly-integrated resources to support students’ unique needs, preferences, and 

adaptive HSBs.  With this increased understanding of how and why students utilize the 

resources, instructors no longer have to rely on anecdotal evidence, assumptions, or stereotypes 

and can instead evaluate curricular and resource changes with regard to how the changes may 

affect the students of each data-driven, archetypical resource-usage pattern.   
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CHAPTER 4. RELATING RESOURCE-USAGE PATTERNS TO 

ACADEMIC ACHIEVEMENT 

Stites, N. A., Berger, E., DeBoer, J., & Rhoads, J. F. (in review). Do resource-usage patterns 

predict achievement?: A study of an active, blended, and collaborative learning 

environment for undergraduate engineering courses. 

Abstract 

Pedagogical innovations continue to be developed and adopted in engineering education, 

but how these pedagogical innovations affect the students’ experiences and learning outcomes is 

not fully understood.  This study investigates the relationship between a student’s resource-usage 

pattern and their achievement in a resource-rich undergraduate dynamics course taught in an 

active, blended, and collaborative learning environment.  The study extends prior research that 

identified nine archetypical patterns of resource usage for students in the dynamics course.  A 

regression analysis is used to determine the extent to which a student’s resource-usage pattern 

predicts their course grade, scores on problem-solving exam questions, and scores on conceptual 

exam questions.  A variety of cognitive, non-cognitive, and demographic variables are included 

in the regression analysis to control for factors that prior research has shown are predictors of 

performance and could confound the resource-usage and achievement relationship.  The results 

indicate that on average a student’s resource-usage pattern is not predictive of their achievement, 

which suggests that there are many different ways to use the resources and be successful in the 

course.  However, when individual resource-usage patterns are considered, the regression 

analysis identified two patterns that were associated with statistically different achievements.  

Students who primarily relied on their lecturebook (a custom-written textbook) and their peers 

for support performed higher on all three achievement metrics than their peers, and students who 

rarely used their lecturebook earned lower course grades and problem-solving scores.  Based on 

the resource-usage behaviors of these two clusters, students should consider reading the 

lecturebook after class, but before starting their homework, and consistently collaborating with a 

small, intimate support group of peers.  This research illustrates the power of investigating the 

experiences and achievements of specific subgroups of students, not just those of the 

stereotypical or average student. 
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Introduction 

Engineering education continues to develop and implement innovative learning 

environments, but how these innovations affect the student experience is not fully understood.  

Without the knowledge of how students experience a learning environment and the resources it 

incorporates, instructors must rely on assumptions, stereotypes, or fragmented data to infer the 

students’ experiences (Turns et al., 2015).  The importance of knowing a product’s user has been 

stressed by the design field for years (Cooper et al., 2007), in part because it is a way to ensure 

that all users’ needs are considered, not just those of the majority (Rose, Harbour, Johnston, 

Daley, & Abarbanell, 2006).  Students can be considered to be the users of educational products 

(the learning environment and its resources), so it is paramount to understand how the students 

experience a pedagogical innovation and how the innovation impacts their learning (Dean, Lee-

Post, & Hapke, 2016; Minichiello & Jouffray, 2018).  In this paper, we investigate the 

relationship between engineering students’ resource-usage patterns and their academic 

achievement for a course that utilizes a resource-rich, active, blended, and collaborative learning 

environment. 

In 2010, two professors of engineering developed a new learning environment for 

teaching an undergraduate dynamics course (Rhoads et al., 2014).  This environment, named 

Freeform, leveraged the known benefits of active (Freeman et al., 2014), blended (Bernard et al., 

2014), and collaborative (Wiggins et al., 2017) learning.  In the Freeform environment, students 

are encouraged to take notes and solve example problems during class in a custom-written 

textbook, called a lecturebook, and to collaborate with their peers in class and (optionally) out of 

class via an online discussion forum.  A suite of online solution videos (for the lecturebook 

examples and all of the homework problems) also supports the students’ self-directed learning.  

Since 2010, the Freeform learning environment has been adopted for multiple engineering 

courses (such as statics, mechanics of materials, and vibrations), but its most mature instantiation 

is for an undergraduate dynamics course, which we will henceforth refer to as Dynamics, with a 

capital “D.”  The Freeform environment, and its numerous resources, offers Dynamics students 

many choices from which they can seek help. 
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Prior research employed cluster analysis to group Dynamics students according to the 

frequencies at which they used nine different resources:  their peers, their lecturebook, online 

videos, an online discussion forum, their instructor during class, their instructor during office 

hours, online resources outside of the Dynamics learning environment, other students not 

enrolled in Dynamics, and a tutorial room staffed by teaching assistants (TAs; see N. A. Stites, 

Edward Berger, J. DeBoer, & J. F. Rhoads, in review-a).  The analysis identified nine 

archetypical, yet qualitatively unique, patterns of resource usage.  Every resource-usage pattern 

included the frequent use of at least two of the nine resources.  The unique usage patterns 

involving multiple resources informs the need to study the relationship between a student’s 

achievement and their holistic (overall) resource-usage patterns.  This holistic approach is in 

contrast to previous studies that have only considered the average effect of individual resources 

on achievement (e.g., Hao et al., 2016; Horowitz et al., 2013). 

The prior research on resource usage in Dynamics also detailed evidence from student 

interviews of adaptive help-seeking behaviors (HSBs) across all of the resource-usage patterns 

(Stites, Berger, et al., in review-a).  Adaptive HSBs are those enacted when a student seeks 

understanding and autonomy, and they are generally associated with higher academic 

performance (Credé & Kuncel, 2008; Er & Orey, 2017; Ryan & Shin, 2011).  While the prior 

study found evidence of adaptive HSBs across all of the resource-usage patterns, the actual 

academic achievements of the students exhibiting each pattern were not compared to see if the 

use of one particular set of resources might enable deeper understanding and better course 

performance than others. 

Purpose of Study 

The purpose of this study is to investigate the following research question: to what extent 

is a students’ resource-usage pattern predictive of their academic achievement?  We 

operationalize academic achievement as three measures: a student’s overall course grade, their 

scores on problem-solving exam questions, and their scores on conceptual exam questions.  We 

use multiple linear regression analysis to investigate the relationship between resource usage and 

these three measures of achievement while controlling for multiple cognitive and non-cognitive 

factors that can influence a student’s resource usage and/or their achievement. 
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We utilize three measures of academic achievement because each incorporates different 

types of knowledge and is determined by different assessments.  A student’s overall course grade 

is an aggregate measure of a student’s performance on individual and group assessments.  Exam 

scores, meanwhile, are purely individual measures of performance.  The separation of problem-

solving questions from conceptual exam questions reflects the difference in format and goals of 

these two types of questions.  The problem-solving questions assess a combination of procedural 

and conceptual knowledge, where procedural knowledge is knowledge of “a series of steps, or 

actions, done to accomplish a goal” and conceptual knowledge is knowledge of “abstract and 

general principles” (Rittle-Johnson et al., 2015, p. 588).  The conceptual exam questions target 

only conceptual knowledge.  Every exam in Dynamics, including the final exam, incorporates 

both problem-solving questions and conceptual questions because the developers of Freeform 

recognized the importance of both procedural and conceptual knowledge (Bohle Carbonell et al., 

2014). 

This research presents an alternative, holistic way of investigating the relationship 

between the students’ resource-usage behaviors and their achievement.  Prior research has 

analyzed students general help-seeking tendencies (e.g., Karabenick, 2003) or their use of 

individual resources (e.g., Horowitz et al., 2013).  However, we found that most Dynamics 

students do not use just one resource; they use multiple resources in a variety of combinations 

(Stites, Berger, et al., in review-a).  We expect this behavior is generally true for the students in 

most courses, especially undergraduate engineering-science courses and courses with many help 

sources available.  Therefore, we argue that in many contexts the clustering of students according 

to their holistic resource-usage patterns is a more representative method of studying the 

relationship between a student’s resource usage and achievement. 

In general, the knowledge of how the students’ resource-usage patterns relates to their 

academic achievement is important because it can inform how instructors coach their students to 

be successful in the course (Mercer, DeMaio, Wascher, Echols, & Schenck, 2018; Turns et al., 

2015).  If resource-usage patterns are predictive of achievement, instructors can encourage the 

resource usage and HSBs that are associated with higher-performing resource-usage patterns and 

warn against the employment of lower-performing resource-usage patterns.  Instructors can also 

modify the course curriculum or resources to structurally encourage resource usage and HSBs 

that may lead to higher academic achievement.  Conversely, if the students’ resource-usage 
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patterns are not predictive of academic achievement, instructors may want to limit the coaching 

they do on what resources the students should use, and instead, coach students on other aspects 

the student experience that may influence achievement, as further detailed in the conceptual 

framework we use. 

Conceptual Framework 

General Model of Learning 

The conceptual framework for this study, depicted in Figure 9, is based on the motivation 

and self-regulated learning (SRL) model for college students that was proposed by Pintrich and 

Zusho (2007).  Pintrich and Zusho stated that the factors that influence a student’s academic 

achievement can be organized into five interrelated categories: personal characteristics, 

classroom context, motivational processes, self-regulatory processes, and past and current 

outcomes.  The interrelated nature of this model illustrates that cognitive, non-cognitive, and 

demographic factors from all five variable categories can have a direct or indirect effect on 

achievement.  For example, a student’s academic major could affect how much value they see in 

learning dynamics, which could affect their SRL behaviors and/or their achievement (Hilpert et 

al., 2012; Karabenick, 2003).  Another example is that a student’s self-efficacy can influence 

their HSBs (Herring & Walther, 2016; Stump et al., 2011), and both self-efficacy and HSBs can 

influence performance (Karabenick, 2003; Schneider & Preckel, 2017; Stump et al., 2011; J. D. 

Williams & Takaku, 2011).  Recursively, a student’s achievement can impact their motivation, 

self-efficacy, HSBs, perceptions of the course content, and the instructor’s behavior (e.g., 

Schneider & Preckel, 2017).  Therefore, the model in Figure 9 indicates that we must control for 

many factors that can influence and confound the relationship between a single variable—e.g., 

resource usage—and achievement if we want to investigate a specific dyadic relationship and 

address limitations such as simultaneity bias.  Later, we describe a regression model that we use 

for this purpose. 
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Figure 9.  A model for motivation and self-regulated learning for college students.  Adapted from 

Pintrich and Zusho (2007). 

 

Resource Usage and Achievement 

In this research, we are interested in the relationship between the students’ holistic 

resource-usage behaviors and their achievement in Dynamics.  Pintrich and Zusho did not 

explicitly include resource-usage behaviors in their model of learning, but we contend that 

resource-usage patterns are part of the “self-regulatory processes” category of variables.  

Resource-usage patterns are an outcome of the help-seeking process, and the help-seeking 

process is considered a SRL strategy (Karabenick & Berger, 2013).  

Karabenick and Berger’s (2013) model of the help-seeking process as a SRL strategy and 

Makara and Karabenick’s (2013) expectancy-value model for resource selection contend that the 

type of help a student desires affects what resource they ask for help.  The two types of help most 

often discussed in the literature are adaptive and expedient.  Adaptive (also called instrumental 

or strategic) HSBs are exhibited by students who seek understanding and who have mastery-

oriented goals (Horowitz et al., 2013; Karabenick, 2003; Karabenick & Berger, 2013; Newman, 

2002, 2006).  Expedient (also called non-adaptive or executive) HSBs, in contrast, are used by 

students who seek unneeded help or help that allows them to complete the task correctly with as 

little effort as possible (Er & Orey, 2017; Karabenick, 2003; Newman, 2006).  The expedient-

oriented students are usually more performance-goal oriented, meaning deep understanding of 
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the content is a secondary concern to outperforming others.  However, researchers have found 

that adaptive HSBs, not expedient HSBs, are generally associated with higher performance (Er & 

Orey, 2017; Horowitz et al., 2013; Karabenick, 2003; Ryan & Shin, 2011).  In summary, because 

resource usage is dependent on a student’s help-seeking and goal orientations, it is theoretically 

possible for some resource-usage patterns to be associated with students who primarily exhibit 

adaptive or expedient HSBs and who, therefore, have higher or lower performance, respectively. 

Alternatively, Makara and Karabenick’s (2013) expectancy-value model for resource 

selection also posits that the type of help desired is only one of the factors that can influence the 

likelihood of a student asking a given resource for help.  Other factors that affect a student’s 

resource selection include the student’s perceptions of the availability of the resource and the 

quality of the help that would be provided.  Therefore, it is also theoretically possible that 

students can have the same goal and HSB orientations but choose to use different resources 

because of other expectancy-value factors.   

Synthesizing these theoretical scenarios and applying them to the context of this study, 

we would not expect any difference in achievement across resource-usage patterns if the 

following assumptions were true:  1) the proportion of students in each resource-usage cluster 

with adaptive- or expedient-oriented HSB was consistent across all of the clusters, 2) other 

cognitive, non-cognitive, and demographic factors that can affect achievement or resource usage 

were controlled for, and 3) all of the resource-usage patterns and behaviors were equally as 

effective in developing the students’ knowledge of dynamics.  Based on prior research results 

(see Stites, Berger, et al., in review-a) that only found evidence of adaptive HSBs across all of 

the resource-usage patterns, we accept the first assumption to be true.  This study uses multiple 

regression analysis to satisfy the second assumption.  The third assumption is the motivation for 

this study.  This study aims to compare the academic achievements of similar students who 

choose to use different resources to determine if certain resource-usage patterns or behaviors 

may be more effective at developing the students’ knowledge of dynamics. 
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Background 

Dynamics Resources 

Descriptions of the nine resources available to students in Dynamics are shown in Table 

13.  The students were asked via an online survey at the end of the semester how frequently they 

used each of the resources, and the median responses are also shown in Table 13.  The median 

responses clearly indicate that the first four resources—peers, the lecturebook, online Dynamics 

videos, and the online discussion forum (or “blog”)—are the most commonly used resources.  

We will refer to these four resources as the “core” resources of Freeform and further explain 

them below.   

Much of the Dynamics curriculum and Freeform environment centers around a custom-

written textbook, called a lecturebook, that concisely explains the dynamics theory and then 

provides many unworked example problems.  The instructors and students solve many of the 

example problems together (with the students writing directly in their lecturebooks) during the 

class meeting time, which encourages students to be actively engaged in the class meetings (Chi, 

2009).  For each example problem in the lecturebook, and for each homework problem, a 

corresponding solution video exists on the course’s website.  Therefore, for any example 

problem unsolved during the class meeting, the students can watch the online videos to see how 

an expert approaches and solves the problem. 

Peer collaboration is also in integral part of the Freeform learning environment.  In class, 

students are often asked to complete group quizzes, with some instructors requiring that the 

students work with a new group for every quiz.  Outside of the lecture time, an online discussion 

forum enables students to ask and answer questions regarding the course material and their 

homework problems.  The Freeform philosophy encourages instructors to monitor this discussion 

forum and further clarify points of confusion in class but, for the most part, instructors let the 

discussion forum be student driven and student supported. 
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Table 16. A description of the nine resources included on the end-of-semester survey and the 

median frequency at which students used the resource (N = 581; adapted from Stites, Berger, et 

al., in review-a). 

Resource Description Median Frequency 

My peers in the class Group quizzes in class; virtual or in-

person collaboration outside of class 

1-2x/wk 

The course lecturebook Combination of a workbook and concise 

textbook; students write notes and solve 

problems directly in book 

3-6x/wk 

The lecture example and 

homework solution videos 

Screencasts of the instructor solving a 

problem; every lecturebook example and 

homework problem has a solution video 

1-2x/wk 

The course blog “Blog” most often refers to the discussion 

forum, but could also be interpreted as the 

course website 

1-2x/wk 

The instructor, by asking 

questions in class 

Could include questions before, during, or 

after class 

1-3x/semester 

The instructor, during 

office hours 

Office hours were usually 1 hour long, 2-3 

days/wk 

Never 

Online resources not 

accessed from the course 

blog (ex: online lectures or 

videos not associated with 

the course) 

Could include online videos, online 

example problems, or online tutoring 

websites 

1-3x/semester 

Other students I know who 

are not currently enrolled 

in the class 

Friends who have taken Dynamics 

previously (although there is evidence in 

the student interviews that students may 

have misinterpreted this as asking about 

students in other sections of the course) 

Never 

The TAs in the Mechanics 

Tutorial Room 

A dedicated help room staffed over 40 

hours/wk with undergraduate and 

graduate-student TAs 

1-3x/semester 

Note.  The frequency-of-use data in this table represents the results from one multiple-part 

question from an online survey that asked students to: “Please identity how frequently you use 

each of the following resources for help in dynamics.” The survey responses were limited to a 

seven-option, ordinal scale that ranged from “never” to “at least 1x/day.”   

 

 

Another important aspect of the Freeform learning environment is its emphasis on 

conceptual understanding.  Instructors want the students to be capable of solving complex, 

mathematically-involved dynamics problems, but they also want the students to have a strong 
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conceptual understanding of the material.  Thus, every chapter of the lecturebook includes 

conceptual problems that the students can use to test their understanding.  Videos that illustrate 

many of the foundational concepts of dynamics via live demonstrations are available on the 

course’s website and are periodically shown in class.  The group quizzes during class often 

consist entirely of conceptual questions, and conceptual problems constitute approximately one 

third of every exam, including the final exam.  Therefore, the variety of resources that students 

can utilize to build conceptual understanding and procedural knowledge purposefully align with 

the assessments used in Dynamics. 

Resource-Usage Patterns 

The median frequencies for each resource delineated in Table 13 give a general sense for 

how frequently each resource is used when considering all of the students together.  However, 

our prior work identified nine qualitatively-unique resource-usage patterns for Dynamics 

students when considering the survey responses of each student holistically in a cluster analysis.  

The average frequencies of use for each resource for all nine of the archetypical resource-usage 

patterns are shown in Figure 10.  The usage statistics in Figure 10 illustrate that the students in 

each cluster used multiple resources for support. The students in each cluster frequently used at 

least two of the four core resources, so the use of all of the four core resources was not universal, 

as a superficial glance at Table 13 might suggest.   

Our prior work also included the thematic analysis of interview data to better understand 

how, and why, students used the resources as they did.  All of the interviewees described the type 

of help they desired as adaptive.  Thus, all of the interviewees perceived the resource-usage 

pattern they employed as supporting their goal of understanding dynamics.  We did not, 

however, actually compare the students’ academic achievements across clusters.  This study aims 

to determine the extent to which certain resource-usage patterns are associated with higher or 

lower achievement even if the students in each cluster are assumed to exhibit similar adaptive 

HSBs. 
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Figure 10. The Dynamics students exhibited nine archetypical resource-usage patterns (Stites, 

Berger, et al., in review-a).  The “reg” subscript indicates the number of students in each cluster 

for the regression analysis, and the “clust” subscript designates the sample size for the cluster 

analysis.  The two samples differ because of data availability. 

 

Methods 

Participants 

The participants of this study were students enrolled in Dynamics at a large, public, 

Midwestern USA university with the highest category of research activity (Indiana University 

Center for Postsecondary Research, n.d.).  The sampling frame for the study was all of the 

Dynamics students from Spring 2016 to Spring 2018 for the fall and spring semesters only.  Of 

the 1,379 students in the sampling frame, 581 completed the survey that was used to collect data 
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for identifying the students’ archetypical patterns of resource usage.  Of those students, 479 

finished another survey regarding their motivations and self-efficacy and had complete registrar 

data, which we used for the students’ cumulative GPA and demographic information.  The 

survey on motivations and self-efficacy was not administered during the Spring 2016 semester, 

so no students from that semester are included in the regression analysis.  There was no incentive 

or reward given to those students who completed the resource-usage survey during the Spring 

2016-Spring 2017 semesters, but 10 points of extra credit toward the students’ homework grade 

(which equated to less than 0.45% toward their final course grade) were offered for the Fall 2017 

and Spring 2018 semesters.  No incentives were offered for completing the motivations and self-

efficacy survey.  In summary, 581 students served as the sample for the cluster analysis that 

grouped the students according to their resource usage behaviors, and 479 of those students 

constituted the sample for the regression analysis that investigated the relationship between 

resource-usage patterns and academic achievement.   

The demographic characteristics of these two samples are listed in Table 17, and the 

categories listed reflect how the institution collects and reports this data.  We acknowledge that 

the binary representation of gender is a simplification of the gender spectrum (and that the 

“male” and “female” designations are classifications for sex, not gender) and that race, ethnicity, 

and international status are conflated together in one variable. 
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Table 17. The demographic characteristics of the samples used in this study.  The sample used 

for the regression analysis is a subset of the clustering-analysis sample because of data 

availability. 

  Clustering Sample   Regression Sample 

Variable Count %   Count % 

Major      
Mechanical Engineering 459 79%  376 78% 

Agricultural Engineering 32 6%  26 5% 

Nuclear Engineering 28 5%  20 4% 

Multidisciplinary Engineering 25 4%  23 5% 

Other 37 6%  34 7% 

      
Race/Ethnicity/ 

International Status      
Domestic, White 379 65%  310 65% 

Domestic, Asian 31 5%  27 6% 

Domestic, URM 25 4%  21 4% 

Domestic, Other 34 6%  31 6% 

International 112 19%  90 19% 

      
Gender      

Male 437 75%  358 75% 

Female 144 25%   121 25% 

Note. The sums of the percentages for the ethnicity categories for the survey participants and 

the major categories for the regression sample do not equal 100% because of numerical 

rounding. 

 

Data Sources 

In order to investigate the effect of using certain resources on a student’s achievement, 

we had to control for as many of the other factors that can affect resource usage and achievement 

as possible.  We used Pintrich and Zusho’s model of learning, see Figure 9, as a guide for what 

types of control variables that we needed, and we describe the measures we used for each of the 

five categories of variables in the following sections. 

Personal Characteristics   

The data regarding the students’ gender, race/ethnicity/international status, declared 

academic major, and whether or not they were repeating the class were gathered from the 

university’s Registrar.  Because of the small sample sizes in some of the subcategories for the 
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race/ethnicity/international status and academic major variables, both of these variables were 

simplified into binary variables.  The race/ethnicity/international status variable was converted 

into a variable that only reflected a student’s international status (0 = domestic, 1 = international) 

to explore the differences in achievement that may be related to cultural and language differences 

(Kerrie A. Douglas et al., 2018; Jarvela, 2011; Ogan et al., 2014).  Major was simplified to 

indicate whether or not a student was a mechanical engineering major (0 = mechanical 

engineering major, 1 = all other majors).  

Classroom Context   

Researchers have found that an instructor’s teaching experience affects their students’ 

course grades (Stites, Kandakatla, Berger, Rhoads, & DeBoer, in review).  Students in the 

sections of Dynamics taught by the two developers of the Freeform environment generally earn 

higher course grades than students with other instructors.  Stites et al. (in review) also found the 

number of times an instructor has taught Dynamics to be a statistically-insignificant predictor of 

the students’ performance in the class.  Therefore, for instructor-related variables, we only 

included a binary variable that represented if a student’s instructor was a developer of Freeform 

or not. 

All of the students in the same semester took the same exams and homework 

assignments, which constituted approximately 92% of a student’s grade in the course.  The 

exams and homework assignments, however, were custom written each semester, so the content 

and difficulty varied slightly from semester to semester.  Thus, a categorical variable 

representing the fixed effect of each semester was used to capture this semester-to-semester 

variability in the assessments. 

Motivational Processes   

Dynamics students were asked to participate in a survey regarding, among other 

constructs, their perceived instrumentality (PI) of the course content and about their academic 

self-efficacy.  We used the endogenous and exogenous PI scales (four questions for each scale) 

that have been included in a validation study with engineering students (Husman, Lynch, Hilpert, 

& Duggan, 2007) and have been used previously to study the motivations and “knowledge-

building” behaviors of engineering students (Hilpert et al., 2012), which is a similar context to 
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this study.  An example of an endogenous PI question is: “What I learn in [Dynamics] will be 

important for my future occupational success,” and an example of an exogenous PI question is: 

“The grade I get in [Dynamics] will affect my future” (Hilpert et al., 2012, p. 235).  The scale of 

academic self-efficacy consisted of eight questions and originated from Pintrich and colleagues’ 

(1991) Motivated Strategies for Learning Questionnaire (MSLQ).  Both the PI and self-efficacy 

items were measured on a 1-7 Likert scale with one being “not at all true of me” and seven being 

“very true of me.”  Negative-oriented items were reverse coded.  This survey was administered 

in a paper format at the start of the semester (Spring 2017) or at the start and the end of the 

semester (Fall 2016, Fall 2017, and Spring 2018).  For semesters in which this survey was 

administered twice, the averages of the scales’ scores were used. 

Self-Regulatory Processes   

The only available data we had for this category were the students’ resource-usage 

patterns, which were an outcome of their HSBs.  We otherwise relied on variables in other 

categories, including the students’ cumulative GPA, to indirectly capture the students’ self-

regulatory skills. 

The process of clustering students according to the frequencies at which they utilized 

nine different resources is fully explained in Stites et al. (in review-a), and the nine archetypical 

resource-usage patterns are shown in Figure 10.  The nine clusters (patterns) were represented 

with a categorical variable using weighted-effects coding so that the performance of a student 

within a given cluster was compared to the average performance of the students across all of the 

clusters, when controlling for the other variables in the model. 

Outcomes (Achievement)  

Because of the reciprocal nature of the learning model in Figure 9, we used the students’ 

cumulative GPA at the start of Dynamics (a metric of past achievement) as our final control 

variable and as an overall proxy measurement of factors in the other four categories of Pintrich 

and Zusho’s model that we did not explicitly measure.  There is plenty of research to support a 

student’s cumulative GPA serving as a proxy measurement for these other factors.  For example, 

Schneider and Preckel (2017) conducted a meta-analysis of prior meta-analyses on the variables 

associated with achievement in higher education and found that achievement is strongly related 
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to a students’ social interactions with their peers and their instructor, instructor preparation and 

effort, high self-efficacy, high intelligence, conscientiousness, and the use of learning strategies 

to achieve specific goals.  Similarly, Kuh and colleagues (2006) synthesized the factor related to 

academic success for college students and found that a student’s GPA is directly correlated to 

“time spent preparing for class, coming to class prepared, asking questions in class, tutoring 

other students, receiving prompt feedback from faculty, [and] maintaining high quality 

relationships with faculty” (p. 76).  Overall, there is much evidence to support our use of a 

student’s cumulative GPA as an indirect measure of personal characteristics, classroom context, 

motivational processes, and self-regulatory processes that may have affected the student’s 

achievement in Dynamics. 

Our outcomes of interest for Dynamics were three measures of achievement: a student’s 

overall course grade (from the instructors’ grade book, with 100% being the maximum grade), a 

student’s total score (percent correct) on all the problem-solving exam questions, and a student’s 

total score (percent correct) on all the conceptual exam questions.  A student’s overall course 

grade represented a weighted sum of their performance on individual and group assessments.  

The assessments that influenced a student’s grade the most were exams, homework problems, 

and group quizzes, which constituted 75%, 17%, and 5% of a student’s grade, respectively.   

Every exam, including the final exam, included a combination of problem-solving 

questions and conceptual questions.  The conceptual questions made up about one third of the 

total number of points available on the exams and were short-answer or multiple-choice 

questions that required little to no calculations.  These questions assessed how well students 

understood fundamental dynamics topics conceptually, rather than how well students could solve 

a mathematical problem.  The problem-solving questions, however, required multiple, 

mathematically-intense steps to solve and measured a combination of the students’ procedural 

knowledge and conceptual knowledge (Rittle-Johnson et al., 2015).  These problem-solving 

questions assessed the students’ conceptual understanding of dynamics to an extent because to 

solve these multiple-step problems, the students must first choose the correct approach and the 

correct equation(s) of motion.  Cornwell (2000) stated that students can struggle to identify the 

correct equation(s) of motion when they do not understand the underlying concept of the 

problem.  
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The final exam of Dynamics for all of the semesters in this study included a version of 

the Abbreviated Dynamics Concept Inventory (aDCI).  The aDCI is a 12-item, multiple-choice 

instrument that is based on the 29-item Dynamics Concept Inventory (Gray et al., 2005; Stites et 

al., in press; Stites et al., 2016).  A second version of the aDCI, aDCI.v2, was developed for 

Dynamics in an attempt to eliminate the construct-validity and gender-bias concerns of three 

aDCI.v1 items (Stites et al., in press), and was used in the semesters since Fall 2017.  To account 

for the validity and bias issues of the aDCI.v1 items, we excluded these three items from the 

aDCI.v1 total scores.  Thus, the aDCI.v1 scores were based on nine items, and the aDCI.v2 

scores were based on 12 items. There has not been enough data collected from the students using 

the aDCI.v2 to conduct a second validation and fairness study, and there are not enough students 

in a given semester to evaluate the validity and fairness of semester-specific exam questions 

(problem-solving or conceptual).  Overall, when possible, we evaluated the exam questions for 

validity, reliability, and fairness, and we excluded all questions of unsatisfactory quality from 

this analysis. 

Data Analysis 

The variables introduced above were used in a multiple linear regression analysis for 

each measure of achievement.  However, prior to conducting the regression analysis, we 

explored the descriptive statistics and correlations between the variables in the model.  An alpha 

value of 0.05 was used for determining the statistical significance of the correlation coefficients.  

We also compared each cluster’s characteristics to those of the rest of the sample, using Fisher’s 

exact test for count variables and Mann-Whitney U tests for the ordinal and continuous variables.  

To account for the threat of inflated family-wise Type I error stemming from the nine hypothesis 

tests (one for each cluster) for each variable, we applied a Bonferroni adjustment to each test’s p-

value and compared the adjusted p-value to an alpha of 0.05. 

After exploring the bivariate relationships of all of the variables in the model, six 

multiple regression models were evaluated, two for each achievement variable.  The first 

regression model for each achievement variable estimated how well the controls explained the 

variance in the achievement variable.  The second model for each achievement measure included 

the controls and the set of variables representing the resource-usage clusters.  The statistical 

significance, using an alpha value of 0.05, of the coefficient for each resource-usage pattern 
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determined if the students in that cluster performed differently than the average student across all 

clusters when controlling for the other variables in the model.  The statistical significance of the 

change in the adjusted R2 value between the first and the second regression models indicated 

whether or not the set of resource-usage variables, as a whole, significantly improved the model 

fit. 

Results 

Descriptive and Correlation Statistics 

The descriptive statistics for the control and achievement variables for the entire sample 

and for each cluster are shown in Tables 18-20.  The correlations between the variables for the 

entire sample are shown in Table 21.  All of the personal characteristics and classroom context 

variables were negatively correlated or did not have a significant relationship with each of the 

three achievement metrics.  Conversely, the statistically-significant correlations between the 

achievement variables and the motivation and prior-performance variables were positive.  Self-

efficacy and prior GPA had the strongest correlations with achievement, which corroborates 

research on the predictive power of these variables (Huang & Fang, 2013; Kuh et al., 2006; 

Schneider & Preckel, 2017).  Overall, the substantial number of statistically significant 

correlations in Table 21 illustrates the complex, interrelated nature of the factors that influence 

learning, just as Pintrich and Zusho’s model in Figure 9 proposed. 

Group Comparisons 

When comparing the achievement of students by cluster, the results of the Mann-Whitney 

U tests in Table 18 suggest that the students in C5 earned lower course grades and lower scores 

on problem-solving exam questions than the other students in the sample.  Conversely, the 

students in C8 performed better than the rest of the students on all three measures of 

achievement.  These cluster differences in achievement are visibly evident in the distributions of 

the students’ achievement scores for each cluster, see Figure 11.  The light grey distribution lines 

in Figure 11 show that the achievement of the students in most of the clusters were very similar 

to each other and not statistically different than the sample averages.  
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Because the controls and achievement variables are so interrelated, it is important to view 

the achievement differences of Table 18 and Figure 11 in the context of any differences in the 

control variables.  Table 19 shows that students in C8 typically have higher self-efficacy than the 

other Dynamics students, students in C2 have higher endogenous PI, and students in C5 have 

lower cumulative GPAs.  The correlation table, Table 21, suggested that the relationship between 

endogenous PI and achievement was weaker than the relationship between self-efficacy or 

cumulative GPA and achievement.  Thus, we see no evidence of students in C2 performing 

higher than their peers in Table 18, but the lower self-efficacy (although not statistically 

significant) and GPAs for C5, see Figure 12, are reflected in the achievement scores of students 

in C5.  Similarly, the higher self-efficacy of the students in C8 is evident in their higher 

performance.  These findings suggest that self-efficacy and a student’s prior academic 

performance are highly predictive of their performance in Dynamics. 

 



 106 

 

 

 

Table 18. Descriptive statistics and group comparisons for the achievement metrics.  Clusters with means that statistically differed (p 

< 0.050) from that of the rest of the sample are bolded.  All p-values were multiplied by nine as a Bonferroni adjustment. 

    Final Grade (%) Problem-Solving Questions (%) Conceptual Exam Questions (%) 

  #     Mean     SD p-value     Mean     SD p-value     Mean     SD p-value 

Sample 479 75.83 10.14  - 72.55 12.96  - 67.77 12.35  -  

C1 55 74.88 9.02 > 0.999 70.30 11.86 > 0.999 65.72 10.54 > 0.999  

C2 61 76.78 8.57 > 0.999 73.46 12.11 > 0.999 67.66 11.54 > 0.999  

C3 113 76.99 7.95 > 0.999 72.85 11.59 > 0.999 66.75 10.86 > 0.999  

C4 61 73.51 10.56 0.490 70.49 12.37 0.998 66.00 13.86 > 0.999  

C5 15 65.90 8.90 0.001 61.31 12.18 0.005 59.93 10.66 0.101  

C6 51 76.84 8.25 > 0.999 72.39 12.62 > 0.999 68.24 10.49 > 0.999  

C7 20 71.80 13.12 > 0.999 68.74 15.23 > 0.999 69.67 13.98 > 0.999  

C8 50 80.63 10.81 0.002 78.62 13.48 0.002 74.50 13.98 0.001  

C9 53 74.77 13.43 > 0.999 74.57 14.82 0.718 68.92 13.85 > 0.999 

 

Table 19. Descriptive statistics and group comparisons for ordinal and continuous control variables.  Means that statistically differed 

(p < 0.050) from that of the rest of the sample are bolded.  All p-values were multiplied by nine as a Bonferroni adjustment. 

    Self-Efficacy PI Endogenous PI Exogenous Cumulative GPA 

  # Mean SD p-value Mean SD p-value Mean SD p-value Mean SD p-values  

Sample 479 5.37 1.01  - 5.69 1.03  - 5.30 0.88  - 3.42 0.40  -  

C1 55 5.32 1.07 > 0.999 5.55 1.09 > 0.999 5.17 0.90 > 0.999 3.38 0.37 > 0.999  

C2 61 5.44 0.84 > 0.999 6.03 0.82 0.037 5.39 0.92 > 0.999 3.47 0.41 > 0.999  

C3 113 5.25 1.07 > 0.999 5.65 0.92 > 0.999 5.30 0.88 > 0.999 3.46 0.36 > 0.999  

C4 61 5.34 0.94 > 0.999 5.84 1.08 0.808 5.38 0.89 > 0.999 3.30 0.42 0.155  

C5 15 4.51 1.32 0.088 5.11 1.15 0.284 5.29 0.82 > 0.999 3.04 0.26 0.001  

C6 51 5.37 0.82 > 0.999 5.69 1.09 > 0.999 5.27 0.87 > 0.999 3.47 0.27 > 0.999  

C7 20 5.76 1.00 0.433 5.27 1.20 0.603 4.99 0.75 0.578 3.33 0.51 > 0.999  

C8 50 5.76 0.96 0.006 5.63 1.20 > 0.999 5.17 0.92 > 0.999 3.52 0.39 0.363  

C9 53 5.33 1.05 > 0.999 5.71 0.86 > 0.999 5.50 0.84 0.257 3.42 0.45 > 0.999 

Note.  PI = Perceived Instrumentality 
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Table 20. Descriptive statistics and group comparison for the dichotomous control variables.  Cluster proportions that statistically 

differed (p < 0.050) from that of the rest of the sample are bolded.  The p-values were multiplied by nine as a Bonferroni adjustment. 

    Women Int'l Students Non-ME Students Non-Dev. Instructors 

 # Proportion p-value Proportion p-value Proportion p-values Proportion p-values 

Sample 479 0.25  -  0.18  - 0.22  - 0.65  - 

C1 55 0.15 0.614 0.38 0.003 0.18 > 0.999 0.60 > 0.999 

C2 61 0.28 > 0.999 0.21 > 0.999 0.16 > 0.999 0.53 > 0.999 

C3 113 0.34 > 0.999 0.14 > 0.999 0.19 > 0.999 0.49 > 0.999 

C4 61 0.26 > 0.999 0.20 > 0.999 0.18 > 0.999 0.49 > 0.999 

C5 15 0.27 > 0.999 0.13 > 0.999 0.47 0.220 0.93 0.220 

C6 51 0.27 > 0.999 0.14 > 0.999 0.03 0.004 0.44 > 0.999 

C7 20 0.10 > 0.999 0.40 0.159 0.16 > 0.999 0.64 > 0.999 

C8 50 0.16 > 0.999 0.02 0.004 0.19 > 0.999 0.60 > 0.999 

C9 53 0.26 > 0.999 0.15 > 0.999 0.23 > 0.999 0.53 > 0.999 

Note.  The proportions listed for Non-Dev. Instructors indicate the proportion of students who had an instructor who did not develop 

the Freeform environment.  Non-ME represents students who declared a major other than mechanical engineering. 
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Table 21. Correlation coefficients (lower triangle) and their respective p-values (upper triangle) for control and achievement variables.  

Statistically-significant (p < 0.050) relationships are bolded. 

  Variable 1 2 3 4 5 6 7 8 9 10 11 12 

1 Gender: Female - 0.005 < 0.001 0.004 0.244 < 0.001 0.047 0.041 0.013 0.001 < 0.001 < 0.001 

2 Int’l Status: Int’l -0.13 - 0.002 0.177 0.136 0.883 0.600 0.109 0.017 0.553 0.229 0.222  

3 Major: Non-ME 0.25 -0.14 - < 0.001 0.438 < 0.001 < 0.001 0.029 < 0.001 < 0.001 < 0.001 < 0.001 

4 Repeater 0.13 0.06 0.19 - 0.732 0.060 0.043 0.012 < 0.001 < 0.001 0.011 0.005  

5 Instr: Non-Dev. -0.05 0.07 0.04 0.02 - 0.027 < 0.001 0.469 0.004 0.001 0.222 0.001  

6 Self-Efficacy -0.27 -0.01 -0.21 -0.09 -0.10 - < 0.001 0.541 < 0.001 < 0.001 < 0.001 < 0.001 

7 PI Endogenous -0.09 -0.02 -0.32 -0.09 -0.15 0.38 - < 0.001 0.001 < 0.001 < 0.001 < 0.001 

8 PI Exogenous 0.09 -0.07 -0.10 0.11 0.03 0.03 0.36 - 0.016 0.483 0.358 0.562  

9 Cumulative GPA -0.11 0.11 -0.29 -0.28 -0.13 0.32 0.16 -0.11 - < 0.001 < 0.001 < 0.001 

10 Course Grade -0.16 -0.03 -0.28 -0.18 -0.15 0.46 0.24 -0.03 0.75 - < 0.001 < 0.001 

11 PS Exam Quest. -0.17 0.06 -0.22 -0.12 -0.06 0.40 0.16 -0.04 0.64 0.85 - < 0.001 

12 Conc. Exam Quest. -0.22 -0.06 -0.24 -0.13 -0.15 0.47 0.23 -0.03 0.60 0.83 0.64 - 
Note. Non-Dev = Instructor who did not develop Freeform; PI = Perceived Instrumentality; PS = Problem-Solving.
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Figure 11.  Cluster distributions of the three achievement metrics: overall course grade, 

performance on the problem-solving (PS) questions of the exams, and performance on the 

conceptual questions of exams.  Clusters with central tendencies that differed (p < 0.050) from 

that of rest of the sample are bolded. 
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Figure 12. Cluster distributions for self-efficacy and cumulative GPA at the start of the semester 

in which students took Dynamics.  Self-efficacy was measured on a 1-7 Likert scale that 

corresponded with increasing levels of self-efficacy.  Cumulative GPA was measured on a 4.0 

scale (A = 4.0).  Clusters with central tendencies that differed (p < 0.050) from that of rest of the 

sample are bolded. 

 

 

Personal characteristics and classroom context can also affect resource usage and 

achievement, so it is prudent to investigate the statistics of these variables by cluster as well.  

Table 20 shows that international students are overrepresented in C1 and underrepresented in C8.  

International students on average have higher GPAs than domestic students, so their 

underrepresentation in C8—an overperforming cluster—implies that C8 includes mostly high-

performing domestic students.  The overrepresentation of international students in C1 may be 

indicative of international students needing to seek help from many sources because of language 

or cultural barriers, but the under- or overrepresentation of international students and non-

mechanical-engineering majors in certain clusters warrants future study.   

In summary, the results of our bivariate statistics and group-comparison tests highlight 

the need to control for a variety of factors that can influence a student’s academic achievement, 

using a method such as multiple regression analysis, if we wish to isolate the relationship 

between resource-usage patterns and achievement in Dynamics. 
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Multiple Regression Analysis 

The results of the multiple regression analysis are shown in Table 22.  Models 1, 3, and 5 

are the control models and Models 2, 4, and 6 are the full models that include the controls and 

the set of variables that represent the nine archetypical resource-usage patterns.  Four important 

findings from the regression analysis are highlighted below. 

First, the changes in the adjusted R2 between the control models and the full models were 

not statistically significant, indicating that on average knowing a student’s resource-usage 

pattern does not significantly improve the predication of their achievement in Dynamics.  

However, for certain students, namely those in C7 and C8, there is a significant relationship 

between their resource-usage pattern and their achievement.  Students in C7, who rarely used the 

lecturebook, earned lower course grades and problem-solving scores (although the latter was not 

quite statistically significant) than similar students in the other clusters.  Students in C8, who 

primarily relied on their peers and the lecturebook for help, scored statistically higher on all of 

the achievement metrics.  We examine the ways in which the students in C7 and C8 used their 

respective resources in the Discussion section to contextualize these results. 

Second, the differences in achievement for C5 and C8 that were evident in the group-

comparison test, see Table 18, became insignificant for C5 and remained statistically significant 

for C8 after controlling for the other factors of influence.  This suggests that the lower 

performance of C5 can be explained by the students’ personal characteristics, classroom context, 

motivation and self-efficacy, and/or self-regulatory processes.  The higher performance of C8, in 

contrast, is not fully explained by the other factors in the model.  Therefore, the regression 

models predict that future Dynamics students who use the resources in the same way as those in 

C8 will outperform similar students who exhibit a different resource-usage pattern. 

Third, in a majority of the instances when a variable has a statistically-significant 

relationship with the scores of the problem-solving exam questions, it also has a statistically-

significant relationship with the conceptual-question scores.  This level of consistency likely 

reflects the fact that both of the outcome metrics assess a student’s conceptual understanding of 

the material to some extent, and it also likely reflects the intertwined nature of procedural and 

conceptual knowledge (Rittle-Johnson & Schneider, 2015).  However, at the same time, the 

instances in which the statistical significance of the predictor variables are not consistent across  
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Table 22.  The estimated regression coefficient for models comparing academic achievement across clusters.  Estimates that were 

significant (p < 0.050) are bolded. 

  Course Grade (%) Procedural Exam Questions (%) Conceptual Exam Questions (%) 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Variable Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

A. Personal 

Characteristics             
Gender: Female -1.25 0.086 -1.32 0.071 -2.44 0.027 -2.53 0.025 -4.04 < 0.001 -3.73 < 0.001 

Int’l Status: Int’l -3.33 < 0.001 -2.97 < 0.001 -2.12 0.075 -1.86 0.139 -4.39 < 0.001 -3.99 0.001 

Major: Non-ME -1.13 0.165 -1.13 0.167 -0.78 0.528 -1.18 0.349 -0.68 0.554 -1.03 0.383 

Repeater 3.42 0.051 3.62 0.040 4.99 0.061 5.06 0.064 7.81 0.002 7.81 0.002 

B. Classroom 

Context             
Instr.: Non-Dev. -1.14 0.082 -1.05 0.110 0.21 0.829 0.23 0.816 -1.34 0.153 -1.55 0.097 

Academic Period             
Fall 2016 -0.19 0.863 -0.11 0.920 3.07 0.063 2.81 0.090 2.17 0.161 2.28 0.143 

Spring 2017 1.31 0.006 1.35 0.005 1.43 0.048 1.58 0.032 2.23 0.001 2.16 0.002 

Fall 2017 1.26 0.070 1.21 0.087 2.58 0.015 2.67 0.013 1.52 0.124 1.50 0.135 

Spring 2018 -1.21 < 0.001 -1.23 < 0.001 -2.25 0.000 -2.33 < 0.001 -2.21 0.000 -2.18 0.000 

C. Motivational 

Processes             
Self-Efficacy 1.89 < 0.001 1.88 < 0.001 2.45 < 0.001 2.41 < 0.001 2.69 < 0.001 2.46 < 0.001 

PIEN 0.52 0.140 0.50 0.164 -0.33 0.541 -0.44 0.416 0.23 0.645 0.39 0.447 

PIEX 0.04 0.914 0.06 0.862 0.05 0.934 -0.02 0.975 0.19 0.718 0.20 0.704 

E. Prior Outcomes             
Cumulative GPA 17.61 < 0.001 17.23 < 0.001 20.18 < 0.001 19.51 < 0.001 17.52 < 0.001 17.53 < 0.001 

D. Self-Regulatory 

Processes             
C1   0.21 0.796   -1.82 0.141   -0.96 0.406 

C2   -0.07 0.923   0.11 0.924   -0.98 0.362 

C3   0.71 0.177   0.01 0.993   -1.21 0.104 

C4   -0.41 0.587   0.16 0.892   -0.06 0.958 

C5   -1.70 0.302   -3.17 0.206   0.81 0.730 

C6   -0.20 0.819   -0.72 0.580   -0.43 0.725 

C7   -2.82 0.045   -3.87 0.070   2.70 0.178 

C8   1.73 0.046   2.79 0.034   3.26 0.008 

 

1
1
2
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Table 22 continued. 
 

C9   -1.06 0.200   1.98 0.114   0.88 0.455 

Intercept 78.10 < 0.001 77.98 < 0.001 73.83 < 0.001 73.70 < 0.001 70.91 < 0.001 70.93 < 0.001 

Radj
2 0.618   0.621   0.460   0.465   0.48   0.48   

ΔRadj
2     0.003 0.165     0.006 0.119     0.005 0.149 

   (df = 8, F = 1.47)   (df = 8, F = 1.61)   (df = 8, F = 1.52) 

 

1
1
3
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the achievement metrics illustrate that these three outcome variables do measure different 

constructs. 

Lastly, the regression results highlight the complexity of the learning process.  At least 

one variable from each category of Pintrich and Zusho’s (2007) model has a statistically-

significant relationship (bolded items in Table 22) with each of the three achievement measures 

(course grade, procedural exam questions, and conceptual exam questions).  The practical 

implications of this result are that instructors and course designers must consider the many 

cognitive and non-cognitive aspects of their students when designing curricula and learning 

environments and researchers must control for as many of these factors as possible when 

investigating dyadic relationships in the learning process. 

Discussion 

Review of Purpose and Results 

The goal of this research was to determine the extent to which a student’s resource-usage 

pattern predicted their achievement in Dynamics.  We defined achievement with three metrics: 

overall course grade, performance on problem-solving exam questions, and performance on 

conceptual exam questions.  The most comprehensive tool we used to investigate this 

relationship was multiple regression analysis.  Our regression model enabled us to control for 

many cognitive, non-cognitive, and demographic factors that can influence a student’s learning 

and resource usage, as suggested by Pintrich and Zusho’s model of motivation and SRL of 

college students.  From the multiple regression analysis, we determined that the set of students’ 

resource-usage patterns was not predictive of their achievement; however, for the students in C7 

and C8, their resource-usage pattern was significantly related to their achievement.  In the 

sections below, we draw on the results of our prior qualitative analysis of interview data from 

each cluster (see Stites, Berger, et al., in review-a) to further explore the resource-usage 

behaviors of C7 and C8.  We extract suggestions on resource-usage behaviors that would be 

applicable to all of the students in Dynamics on how they might leverage the available resources 

to improve their performance in the course. 



 115 

Resource-Usage Behaviors of C8 

Students who exhibited the resource-usage pattern of C8 on average outperformed similar 

students who chose a different resource-usage pattern on all of the three measures of 

achievement.  As Figure 10 illustrates, the students in C8 primarily relied on their peers and the 

lecturebook for support.  As discussed in our analysis of interviews from the students in each 

cluster (Stites, Berger, et al., in review-a), we found three common resource-usage behaviors of 

the students in C8.  First, if the interviewees did not understand a concept that was presented 

during a lecture, they would read the theory portion of the lecturebook after class but before 

starting their homework.  They would use the lecturebook to clarify the concept and the 

homework problems to self-assess their understanding.  Second, they primarily employed the 

online videos of example and homework problems as a tool for exam preparation by using these 

problems to self-evaluate their understanding of the material.  Conversely, students from the 

other clusters most often used the example videos as a support resource for completing their 

homework.  Lastly, instead of frequently using online videos for homework help, they heavily 

relied on a small, intimate group of friends for support.  They would always check their 

homework answers with their small group of friends, either face-to-face or electronically, to get 

timely feedback on whether they understood how to solve the problem; and timely feedback has 

been shown to positively correlate with learning (Hattie & Timperley, 2007). 

Using the resource-usage behaviors of C8 to inform suggestions for the other students on 

how to improve their performance in Dynamics must be done cautiously because our thematic 

analysis of the interview data for C8 was only based on three students.  Nonetheless, one 

tentative suggestion to the students in Dynamics that is based on the HSBs of the students in C8 

would be to constantly self-evaluate their understanding of the material, and if they do not 

understand a concept, they should start their help-seeking process by (re)reading the theory 

sections of the book and then use the lecturebook examples or the homework problems to self-

evaluate their understanding of the material.  Also, the students should consider developing a 

small peer support network that they consistently utilize for help and for checking their 

understanding of the material.  These suggestions are well rooted in other research evidence—

e.g., see (Schneider & Preckel, 2017) for self-regulated learning strategies, (Berry, Cook, Hill, & 

Stevens, 2010; Lee, Mcneill, Douglas, Koro-Ljungberg, & Therriault, 2013) for textbook usage, 

and (Stump et al., 2011; Wiggins et al., 2017) for collaborative learning. 
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Resource-Usage Behaviors of C7 

The students in C7 used the lecturebook much less frequently than their peers.  Their 

infrequent use of such a principal component of the Freeform environment was surprising.  The 

one student we interviewed from this cluster said they returned the book after buying it because 

they never used it.  However, they also mentioned how useful it would be to have a copy of the 

problem statements for the example problems that the instructor solved in class, not knowing that 

all of the example problems used during the lecture were also in the lecturebook.  Because they 

did not have the lecturebook, this interviewee said they took especially careful notes when the 

instructor was explaining the theory and conceptual foundation of a dynamics topic.  Notedly, C7 

did not score significantly different than average on the conceptual exam questions.  Overall, 

when considering the lower achievements of the students in C7, who rarely used the lecturebook, 

and the higher achievements of the students in C8, who constantly referenced the theory sections 

of the lecturebook, the simplest suggestion for all of the Dynamics students is to read and 

otherwise utilize the lecturebook. 

Suggestions from Other Clusters 

While the Dynamics achievements of the students in C1 and C5 are not statistically 

different than the rest of the sample when controlling for the other factors in our regression 

model, they still warrant discussion.  First, the students in C1 performed the same as similar 

students in other clusters, but they spent statistically-significantly more hours per week (M = 

10.3, Med = 9, SD = 5.2)  working on assignments or studying for Dynamics than many of their 

peers—specifically those in C6 (M = 7.8, Med = 7, SD = 3.0), C8 (M = 7.0, Med = 6, SD = 3.5), 

and C9 (M = 7.2, Med = 6, SD = 3.4), as reported in Stites et al. (in review-a).  This contrast in 

hours spent outside of class on Dynamics may suggest that students in C1 could further develop 

their SRL skills so that they can better match their needs to the help source, or it may be 

indicative of beneficial characteristics like grit and persistence.  Future studies should try to 

further understand why students in C1 use so many resources and spend so much time on 

Dynamics (relative to many students) to determine how they might become more efficient with 

their work. 
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Second, the fact that students in C5 performed the same as similar students in other 

clusters does not negate the fact that C5 has a higher concentration of students who performed 

lower than average in Dynamics and have lower than average cumulative GPAs.  According to 

Pintrich and Zusho’s (2007) learning model, these statistics may indicate lower levels of 

motivation and/or self-regulation skills, which likely affect other important outcomes for these 

students in addition to achievement, such as persistence to graduation (Geisinger & Raman, 

2013).  Therefore, interventions and coaching that target those areas may be especially helpful 

for the students in C5. 

Implications for Practice 

 The results of this study suggest that on average a student’s resource-usage pattern is not 

predictive of their performance in the class.  We expect that this result is true for most courses 

that have high-quality and well-aligned resources.  Therefore, instructors of courses with many 

quality resources may want to refrain from suggesting that the students use a specific resource in 

a specific way.  For example, instructors might not want to tell students that they should use 

online videos for help with their homework because some students may prefer to work through a 

problem with their peers or consult the textbook.  However, our research does suggest that there 

are some general resource-usage suggestions that may help students learn the course content.  

Students should consider mimicking the peer-collaboration strategies of C8 by finding a small 

group of friends with whom they can consistently interact. In addition, students should 

continuously self-evaluate their understanding of the material and seek help when necessary. 

 The statistical significance of a student’s self-efficacy and prior GPA, which we used as a 

proxy measurement for a student’s motivational and self-regulatory processes, align with many 

previous studies of higher education (e.g., Robbins et al., 2004; Schneider & Preckel, 2017; 

Stajkovic, Bandura, Locke, Lee, & Sergent, 2018) and for engineering (e.g., French, Immekus, & 

Oakes, 2005; Huang & Fang, 2013; Vogt, Hocevar, & Hagedorn, 2007).  These findings suggest 

that instructors should consider interventions that help improve a student’s self-efficacy and self-

regulated learning skills.  Practical interventions could include: i) coaching students on the 

importance of time and practice so that they develop a growth mindset rather than a fixed 

mindset (Dweck, 2006), ii) implementing a post-test analysis that develops the students’ 

metacognitive awareness and self-regulation (Barkley, 2010), and iii) incorporating cooperative 
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activities and assessments into the curriculum to promote positive self-evaluations and self-

efficacy (Bandura, 1994). 

Implications for Research 

 The results of this study suggest that researchers should critically evaluate single-

resource studies—i.e., studies that only consider the relationship between a student’s learning 

and the use of a single resource, such as online videos (e.g., A. E. Williams, Aguilar-Roca, & 

O'Dowd, 2016) or a discussion forum (e.g., Joksimović, Gašević, Kovanović, Riecke, & Hatala, 

2015).  We found no evidence of a student using only a single resource; the students in all nine 

archetypical patterns of resource usage incorporated the frequent use of at least two resources.  

We posit that students utilize multiple resources (including their peers) in most of their 

undergraduate courses, which leads us to question the authenticity and validity of single-resource 

studies.  Furthermore, the higher performance of the students in C8 and the unique ways in which 

they used only two of the nine resources illustrates the need to understand how and why the 

students use, or do not use, certain resources, rather than only looking at how frequently the 

students use an individual resource. 

We contend that our student-centered research design is generalizable to any resource-

rich course or learning environment.  The cluster analysis to find the students’ archetypical 

resource-usage patterns requires survey responses from students regarding their resource-usage 

behaviors, and the regression analysis requires information about the control variables (collected 

from a survey or from the Registrar’s office) and at least one outcome variable.  None of these 

data types are unique to Dynamics.   

Limitations and Future Work 

One limitation of this study is the small number of control variables that were explicitly 

measured.  Our use of a student’s cumulative GPA as a proxy for the unmeasured constructs 

relating to personal characteristics, classroom context, motivation, and self-regulatory processes 

is well supported by Pintrich and Zusho’s (2007) learning model and other research (e.g., Credé 

& Kuncel, 2008; Karabenick, 2003; Schneider & Preckel, 2017; Stajkovic et al., 2018; Wingate 

& Tomes, 2017).  However, to better understand how other cognitive and non-cognitive factors 

influence achievement and resource-usage patterns, future studies could explicitly measure more 
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control variables.  Possible suggestions include classroom climate, instructor support, general 

HSB tendencies, and self-regulated learning skills. 

Another limitation of this study was the relatively small sample sizes of some of the 

clusters, especially for C5 and C7.  The small cluster sizes limited the statistical power of our 

regression methods.  Low sample sizes also affected the qualitative analysis of our companion 

study which we utilized to elicit suggestions of how students should or should not use the 

available resources.  Therefore, this study would benefit from more quantitative and qualitative 

data.  

The generalizability of our results is limited by the fact that we only studied the resource-

usage behaviors of students in one specific course, Dynamics.  Nonetheless, we expect that our 

results are relevant to other technical courses, including engineering-science courses, with 

similar resources.  An undergraduate dynamics course is only one of many core engineering-

science courses aiming to develop the students’ fundamental engineering knowledge and skills.  

Other courses that often have similar goals and resources (e.g., peer support, instructor’s office 

hours, textbooks, supplemental online videos) include statics, mechanics of materials, 

thermodynamics, fluid mechanics, and circuits.  Therefore, we posit that the generic study-skill 

suggestions that we developed based on the results of this study are applicable to students in 

many, if not most, engineering-science courses and other courses with a technical emphasis and 

similar resources. 

Future studies should further investigate the experiences of students in minority 

demographic groups.  The regression analysis indicated that almost all of the achievement 

measures were statistically-significantly lower for women and international students.  The group-

comparison tests indicated that international students and non-mechanical engineering students 

were over and underrepresented in certain resource-usage patterns.  It is important to understand 

why these differences exist to ensure that the curriculum and learning environment provide fair 

and supportive experiences for all of the students, not just the majority. 

Conclusion 

As new learning environments and educational resources are developed for engineering 

education, it is important to understand how these innovations affect the students’ experiences 

and learning.  This study investigated the relationship between the students’ holistic resource-
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usage patterns and their achievement in an undergraduate dynamics course that was taught in an 

active, blended, and collaborative learning environment.  To our knowledge, this is the first help-

seeking study to incorporate the fact that most students utilize multiple resources for help and to 

group student according to a cluster analysis of their self-reported usage data.  Our results 

suggest that on average there is no difference in course grades, performance on problem-solving 

exam questions, or performance on conceptual exam questions across students who exhibited 

nine, qualitatively-unique, archetypical resource-usage patterns after controlling for many 

cognitive and non-cognitive factors that are known to influence learning.  This null result 

suggests that in general, an instructor should limit how much time they spend on coaching 

students on what resources they should use.  Instead, coaching and interventions that target self-

efficacy or self-regulation processes may be more impactful.   

However, this study also illustrates the power of considering specific users, not just the 

stereotypical or average users, because achievement differences were evident for students in two 

of the resource-usage patterns.  From the resource-usage behaviors of the clusters with higher 

(C8) and lower (C7) achievement metrics, we extracted general suggestions for how students 

might use the resources in a manner that improves their achievement in Dynamics.  These 

suggestions included reading the theory portion of their lecturebook, especially after a student 

self-determines that they do not understand a concept and before they start their homework.  

Also, the cultivation of a small, strongly-connected group of peers in which students consistently 

support the learning of everyone in the group could be beneficial.  These suggestions, while 

stemming from this study’s results, are well supported by broader research findings and, 

therefore, are applicable to students in other engineering-science and technical courses similar to 

Dynamics. Overall, data-driven knowledge of how specific subgroups of students use the course 

resources and perform in the class can help the instructors better coach and support the success 

of all students in Dynamics and negate the need to rely on assumptions or stereotypes about the 

students’ behaviors and achievements. 
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CHAPTER 5. CONCLUSION 

Review of Purpose and Results 

 The purpose of this dissertation was to explore students’ experiences and achievements in 

an undergraduate dynamics course that was taught in the Freeform learning environment.  The 

two specific areas of concentration were the students’ performance on an Abbreviated Dynamics 

Concept Inventory (aDCI) and their resource-usage behaviors.  Three studies organized this 

work and explored: 1) the quality—validity, reliability, and fairness—of the aDCI to measure the 

students’ conceptual understanding of Dynamics; 2) the archetypical patterns of resource usage 

and why the students’ exhibited their respective behaviors in an active, blended, and 

collaborative Dynamics course; and 3) the relationship between the students’ holistic resource-

usage patterns and their achievements in Dynamics.  The focus of each study was to employ 

analytical methods that would help understand the experiences and achievements of all of the 

students, and not just the majority. 

 The three studies of this dissertation utilized analytical methods that disaggregated the 

data according to the students’ gender or holistic resource-usage pattern.  The first study, as 

presented in Chapter 2, used multiple-group confirmatory factor analysis to test for differential 

item functioning (DIF) of the aDCI across genders.  Chapter 3 detailed the cluster analysis of the 

students’ holistic resource-usage behaviors to find archetypical patterns of resource usage, rather 

than relying on the “average” usage pattern of the entire sample.  It also focused on how the 

students used various combinations of resources, instead of concentrating on the usage 

characteristics of individual resources, as previous research has done.  These clusters of students 

according to their holistic resource-usage behaviors then served as the organizational framework 

for the thematic analysis of student interviews, and they were represented as a categorical 

variable in the regression analysis of Chapter 4 that investigated their relationship to the 

students’ achievement in Dynamics. 

 The results highlight the importance of intentionally studying the experiences of smaller 

subsets of students when the students are delineated according to demographic or behavioral 

(like resource-usage) characteristics.  Chapter 2 found that two of the 12 items of the aDCI items 

exhibited slight bias against women.  Because the aDCI constituted part of the final exam for 
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Dynamics, this item-level bias likely had unfair practical consequences on the final-exam scores 

and the course grades of some women, and this bias would have gone undetected if the data were 

only evaluated in aggregate. 

 Chapter 3 determined that students exhibited nine, qualitatively-unique patterns of 

resource usage, none of which matched the pattern of the entire sample in aggregate.  Interviews 

with students in each resource-usage cluster were analyzed separately, giving the experiences of 

each cluster equal weight and importance in the results, regardless of the number of students in 

each cluster.  This method of analysis revealed that the students in different clusters used the 

resources differently because they had different perceptions about the expectations and values for 

certain resources. 

 In Chapter 4, I took a cluster-centered approach to representing resource-usage in the 

regression analysis.  Previously, researchers had used a resource-centered approach, so their 

results were primarily shaped by the average use of a given resource across all students.  The 

achievement differences found that for students in two, smaller clusters most-likely would have 

gone undetected with a resource-centered approach that operated on aggregated data because the 

results in Chapter 4 indicated that, on average, a student’s resource-usage pattern is not 

predictive of their achievement in Dynamics.  Also, on average, the students in Dynamics 

frequently used their peers, the lecturebook, the online videos, and the online discussion forum.  

However, the students in one of the clusters that had a resource-usage pattern that was predictive 

of achievement rarely used the online videos or the discussion forum (an overperforming 

cluster), and the students in the other cluster with a significant relationship with achievement 

rarely used their lecturebook (an underperforming cluster).  The unique relationships between 

resource usage and achievement for these two clusters of students would have been 

overshadowed by the average relationships between the variables if the analysis would have 

utilized aggregated data. 

 The results of Chapter 4 also highlight the need for more validation and fairness studies 

of engineering curricula, like that in Chapter 2.  Demographic characteristics (gender and 

international status) were statistically significant predictors of achievement, even after 

controlling for multiple cognitive and non-cognitive factors that can influence learning.  

However, because little is known about the fairness of the Dynamics curriculum, it is unknown if 

these differences in performance are a reflection of true differences in knowledge or of bias in 
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the assessments.  Furthermore, international students were underrepresented in the one cluster 

that had statistically-higher performance than the other students in the course, and they were 

overrepresented in the cluster that spent the most hours per week working on Dynamics outside 

of class.  These achievement and behavioral differences may have short- and long-term effects 

on the academic and professional lives of women and international students and, therefore, 

should be further investigated. 

Contribution 

 This dissertation contributes to the scholarly advancement of knowledge in two areas: the 

assessment of conceptual understanding and the study of academic help-seeking behaviors.  In 

Chapter 2, I presented a framework for validating concept inventories (CIs) that utilizes Kane’s 

argument-based approach to validation and Messick’s framing of validation as a series of 

hypothesis tests (Kane, 1992; Messick, 1990).  This framework is very adaptable to other 

validation studies, and in its current form brings the often-neglected issue of fairness to the 

forefront.  Regarding resource usage, I presented an accessible way to determine students’ 

holistic archetypical resource-usage behaviors based on self-reported usage data.  I also 

developed an alternative way of representing resource usage—according to the students’ holistic 

patterns—when relating it to achievement.  Previous studies have only considered general help-

seeking tendencies or the use of individual resources as prediction variables, rather than 

considering the different combinations of resource usage that students employ.  These 

contributions are further discussed below. 

Contribution 1: An-Argument-Based Validation Approach for CIs 

 Concept inventories are becoming increasingly popular in engineering education as more 

instructors embrace the importance of students understanding the material conceptually.  

However, the evidence regarding the quality of these CIs varies greatly.  Thus, further research 

on the validity, reliability, and fairness of these instruments is sorely needed to ensure that only 

valid inferences are drawn from the students’ scores. 

 This need for validation studies has led to the development of evaluation frameworks for 

CIs (e.g., Jorion et al., 2015), but these frameworks can be very prescriptive—“do ‘this’ and then 

interpret your results according to ‘this’.”  The argument-based validation framework that I 
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implemented in Chapter 2 enables the researcher to decide what claims they want to make about 

the CI scores and what evidence is necessary to support those claims.  This more-flexible 

approach empowers the researcher to formulate their own study, rather than prescribing a study 

for them. 

Contribution 2: Awareness and Template for Evaluating the Fairness of CIs 

 The validation study in Chapter 2 also emphasized the evaluation of the aDCI for 

fairness, but fairness has previously been absent in the validation studies of engineering CIs.  

Furthermore, my results highlight the importance of considering item-level differences that can 

reflect biases in individual items that may otherwise be overshadowed by the average fit of a 

psychometric model.  I focused on the gender fairness of the aDCI, but the methods I used 

provide a template for how to conduct similar studies of fairness for other subgroups of students.   

Contribution 3: Holistic, Cluster-Based Approach to Studying HSBs 

 The work of Chapter 3 represents a new way of analyzing students’ help-seeking 

behaviors.  Rather than studying students’ help-seeking behaviors via a survey on general help-

seeking tendencies and/or investigating the students’ use of individual resources (in isolation), 

my study clusters students according to their holistic resource-usage behaviors with course-

specific resources.  My holistic, student-centered approach recognizes the fact that most students 

do not use just one help source; they use multiple resources in different combinations, and the 

results in Chapters 3 and 4 illustrate that there is value to grouping students according to these 

combinations to understand their behaviors and achievements.  Also, this course-specific scoping 

of the research methods gives instructors extremely specific information about the help-seeking 

behaviors of students in their course.  The instructors can use this data-driven information to 

better coach the students or modify the course’s resources. 

Implications 

 This work has an impact locally, on the instructors and students in Dynamics, and on the 

larger engineering-education community.  Locally, the validation and fairness results have 

already informed the development of a second version of the aDCI.  The two questions that were 

identified as being slightly biased against women were modified and included in the second 
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version.  Future research should evaluate the impact that the changes to the content and contexts 

of these questions had on their gender fairness.  More broadly, my work illustrates the 

importance of researchers and instructors evaluating the fairness of their curriculum, including 

CIs or other assessments, because of the considerable practical consequences that unfair 

curricula and assessments can have on the learning experiences and grades of specific groups of 

students. 

 Locally, the results of Chapters 3 and 4 should help instructors better understand how and 

why students use the resources in Dynamics.  More broadly, the research designs of Chapters 3 

and 4 consider the students’ use of course-specific resources, rather than their general HSB 

tendencies as previous researchers have done.  We argue that this course-specific information is 

more useful to instructors on how to better support their students’ learning in a specific course. 

 The research designs of Chapters 3 and 4 also represent a shift from considering the 

aggregated statistics of individual resources in isolation to studying the behaviors of subgroups 

of students according to their holistic resource-usage patterns.  We contend that most students 

use multiple resources (including their peers) in their undergraduate courses, especially 

engineering courses.  Therefore, the holistic, student-centered approach to understanding 

students’ resource-usage patterns is a more appropriate research method than studying the use of 

individual resources in isolation. 

Lastly, in a local context, the regression results of Chapter 4 can help instructors better 

coach their students on how to be successful in the course.  Most resource-usage patterns are 

associated with similar achievement, after controlling for other cognitive and non-cognitive 

factors.  Therefore, instructors may want to limit the time they spend coaching students on what 

resources to use.  Instead, the regression results suggest that interventions regarding self-efficacy 

or self-regulated learning skills may have more of an impact on the students’ achievements, and 

practical interventions that instructors could incorporate into their curriculum are included in 

Chapters 3 and 4. 

Limitations and Future Work 

 The studies in this dissertation represent the beginnings of multiple research pathways.  

Each study can be improved to address its limitations, extended to gain further insights, or 
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adapted to explore similar areas.  Each chapter discusses the limitations and future work related 

to its respective study, and I highlight a few of these recommendations below. 

 One of the limitations across all three of the studies is the sample sizes of the students in 

minority groups.  In Chapter 2, the unbalanced sample sizes of men and women limited the 

statistical power to detect performance differences between the groups.  In Chapters 3 and 4, the 

sample sizes of some of the resource-usage clusters were relatively small, both for the 

quantitative and qualitative analyses.  The collection of more data for future analyses would help 

alleviate these limitations, especially if the sampling and recruitment procedures placed an 

emphasis on getting increased participation from the smaller student groups. 

 The validation study in Chapter 2 would also benefit from a qualitative study that aims to 

better understand how men and women perceive, interpret, or otherwise experience any gender 

biases that may be in the aDCI, the Dynamics curriculum, or the Freeform learning environment.  

Like Smith and Gayles (2018) and Truong et al. (2015), the qualitative study could include semi-

structured interviews regarding students’ experiences with gender bias in various contexts—e.g., 

in general, in their academic program, and in Dynamics.  Similarly, the results of the group 

comparisons and regression analyses in Chapter 4 suggest that a fairness study of the Dynamics 

curriculum across international statuses or, more generally, races/ethnicities is needed.  While 

Purdue collects information about racial/ethnicity subgroups for domestic students, they group 

all international students into the same category.  To better understand their experiences, a more-

nuanced categorization of international students (e.g., one that captures language differences) 

may be necessary, but this information would have to be collected directly from the students.  

The fairness study across racial/ethnicity/nationality groups should include quantitative methods, 

like those presented in Chapter 2, but a qualitative study into how students of different ethnicities 

experience Dynamics would also be needed to make meaning of the quantitative results. 

 Overall, it is important to continue researching the experiences and achievements of 

students outside the majority group to ensure that the engineering curricula and learning 

environments are fair and supportive for both majority and minority student groups.  
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APPENDIX B. INTERVIEW CONSENT FORM 

 



146 

 

 



147 

 

  



148 

 

APPENDIX C. RESOURCE USAGE SURVEY 

 
 

Start of Block: Percentage of Time Spent Studying Alone 

 

SAQ This survey begins with questions about your ME 274 work habits, and we are specifically 

interested in your relationships to your peers. In the following questions:  

    ALONE means you are working by yourself.  IN A GROUP means you are 

working with at least one other person. This work time could be planned ahead of time ("Let's 

meet in the ME building at 7 pm.") OR it could be unplanned ("I see that you are working on 

ME 274, would you like to work together on it?").    

    

In this survey, we use the terms WORK or WORKING to indicate any activity in which you 

engage that contributes to your academic success in ME 274. 

   Please estimate the percentage of your out of class work time for dynamics that you spend 

doing the following: 

Percentage of time I spend working on 

dynamics ALONE. (1) 
 

 

 

End of Block: Percentage of Time Spent Studying Alone 
 

Start of Block: Study Group Questions 

 

SG1 When you work on dynamics IN A GROUP, what is the typical size of the group, 

including yourself? 

Number of people typically present when I 

work IN A GROUP. (1) 
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SG2 In a typical week of working on dynamics: 

About how many hours do you work outside 

of class ALONE? (1) 
 

About how many hours do you work outside 

of class IN A GROUP? (2) 
 

 

 

 

SG3 During the week before a dynamics exam: 

About how many hours do you work outside 

of class ALONE? (1) 
 

About how many hours do you work outside 

of class IN A GROUP? (2) 
 

 

 

 

 

SG4 In a typical week of working on dynamics: 

About how many work sessions do you 

engage in ALONE? (1) 
 

About how many work sessions do you 

engage in IN A GROUP? (2) 
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SG5 When you work IN A GROUP, indicate how frequently you meet in various locations: 

 Never (1) Rarely (2) 
Sometimes 

(3) 
Often (4) Always (5) 

In an academic 

space, like a 

vacant classroom 

or the library. (1)  

o  o  o  o  o  

In a  residential 

space, like an 

apartment, dorm 

room, or 

fraternity/sorority 

house. (2)  

o  o  o  o  o  

In another public 

location, like a 

coffee shop or 

the Union. (3)  

o  o  o  o  o  

 

 

 

 

SG6 When you work ALONE, indicate how frequently you work in various locations: 

 Never (1) Rarely (2) 
Sometimes 

(3) 
Often (4) Always (5) 

In an academic 

space, like a 

vacant classroom 

or the library. (1)  

o  o  o  o  o  

In a  residential 

space, like an 

apartment, dorm 

room, or 

fraternity/sorority 

house. (2)  

o  o  o  o  o  

In another public 

location, like a 

coffee shop or 

the Union. (3)  

o  o  o  o  o  
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SG7 When you work ALONE or IN A GROUP, indicate how frequently you work during 

various times of the day: 

 ALONE IN A GROUP 

 
Neve

r (1) 

Rarel

y (2) 

Sometime

s (3) 

Ofte

n (4) 

Alway

s (5) 

Neve

r (1) 

Rarel

y (2) 

Sometime

s (3) 

Ofte

n (4) 

Alway

s (5) 

During 

the day, 

before 

5 pm. 

(1)  

o  o  o  o  o  o  o  o  o  o  

During 

the 

evening

, 

betwee

n 5-10 

pm. (2)  

o  o  o  o  o  o  o  o  o  o  

Late at 

night, 

after 10 

pm. (3)  

o  o  o  o  o  o  o  o  o  o  

 

 

End of Block: Study Group Questions 
 

Start of Block: Blog Questions 
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B1 This question asks about your BLOG USAGE.   

  The course blog has a comment section that allows students to interact with each other students, 

ask questions, answer questions, and share information. Of the following choices, which are 

reasons why you WOULD NOT routinely use the blog COMMENT features? (Check all that 

apply.) 

▢  I prefer to interact with my peers face to face.  (1)  

▢  I prefer to ask the instructor for help in person.  (2)  

▢  The lecture book is a good source of information for me.  (3)  

▢  The online solution videos (both lecture examples and homework) generally answer my 

questions for me.  (4)  

▢  I don't like the 'public' nature of the blog comment threads.  (5)  

▢  I don't think I have anything to contribute.  (6)  

▢  I didn't have time to be active on the blog.  (7)  

▢  Not enough of my peers use the blog for it to be useful.  (9)  

▢  Other  (8) ________________________________________________ 

 

End of Block: Blog Questions 
 

Start of Block: Video Usage Questions 
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VU1 This next set of questions asks about your USAGE OF THE LECTURE EXAMPLE 

AND HOMEWORK SOLUTION VIDEOS.   

  When you watch lecture example or homework solution videos, which choice best describes 

your usual approach?  

o I usually watch the entire video, from beginning to end.  (1)  

o I usually search for and watch specific parts of the video that I think will be useful or 

informative.  (2)  

o My strategy in watching the video usually depends upon what problem I'm trying to 

solve.  (3)  

 

 

 

VU2 What is the ideal length of a single video (in minutes), to maintain your attention? 

Video length (minutes) (1) 
 

 

 

 

 

VU3 About how many videos (lecture example or homework solution) have you watched this 

semester (in part or in full)? 

Approximate number of videos watched this 

semester (1) 
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VU4 How frequently are you doing the following when you watch lecture example or homework 

solution videos? 

 Never (1) Rarely (2) 
About half 

the time (3) 

Most of the 

time (4) 
Always (5) 

I am alone. 

(1)  o  o  o  o  o  

I am with 

other people. 

(2)  
o  o  o  o  o  

I am doing 

homework. 

(3)  
o  o  o  o  o  

I am 

preparing for 

class. (9)  
o  o  o  o  o  

I am 

preparing for 

an exam. (4)  
o  o  o  o  o  

I am 

checking the 

solution to 

my 

homework 

after it has 

been graded 

and returned 

to me. (8)  

o  o  o  o  o  

I watch on 

my computer 

or tablet 

device. (5)  

o  o  o  o  o  

I watch on 

my phone. 

(6)  
o  o  o  o  o  
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VU5 Of the following choices, which one best describes the way you usually use the solution 

videos to support your problem solving. 

o I watch the video in its entirety before I attempt to solve the problem.  (1)  

o I write the solution to the problem in the video, as the video is playing.  (2)  

o I watch part of the video, pause it, and try to complete the next step on my own. Then I 

check my work with the video.  (3)  

o I solve the entire problem on my own, then use the video to check my work.  (4)  

o Other  (5) ________________________________________________ 

 

End of Block: Video Usage Questions 
 

Start of Block: Help Seeking Behaviors 
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HS1 This section of the survey focuses on how you access academic help when you need it in 

dynamics. Please identify how FREQUENTLY you use each of the following resources for 

help in dynamics.  

 

 

At least 

once per 

day (1) 

3-6 times per 

week (2) 

1-2 times per 

week (3) 

1-3 times per 

month (4) 

1-3 times per 

semester (5) 
Never (99) 

my peers in the 

class (1)  o  o  o  o  o  o  

the course 

lecturebook (2)  o  o  o  o  o  o  

the lecture example 

and homework 

solution videos (3)  
o  o  o  o  o  o  

the course blog (4)  o  o  o  o  o  o  

the instructor, by 

asking questions in 

class (5)  
o  o  o  o  o  o  

the instructor, 

during office hours 

(6)  
o  o  o  o  o  o  

online resources not 

accessed from the 

course blog (ex: 

online lectures or 

videos not 

associated with the 

course) (7)  

o  o  o  o  o  o  

other students I 

know who are not 

currently enrolled in 

the class (8)  

o  o  o  o  o  o  

the TAs in the 

mechanics tutorial 

room (9)  
o  o  o  o  o  o  
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HS2 For the resources you used LEAST FREQUENTLY, for which of the following reason(s) 

do you access those resources so infrequently? Check all that apply. 

▢  The resources are rarely helpful.  (1)  

▢  The resources are too hard to access (example: too far away from where I usually study).  

(2)  

▢  The resources are not available when I need it (example: office hours conflict with my 

course schedule).  (3)  

▢  For another reason (please specify in the text box below).  (4) 

________________________________________________ 
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HS3 Please identify HOW USEFUL the following resources are for the dynamics course.  

 
Completely 

useless (1) 

Somewhat 

useless (2) 

Neither useless 

nor useful (3) 

Somewhat 

useful (4) 

Very useful 

(5) 

No opinion 

(99) 

my peers in the 

class (1)  o  o  o  o  o  o  

the course 

lecturebook (2)  o  o  o  o  o  o  
the lecture 

example and 

homework 

solution videos 

(3)  

o  o  o  o  o  o  

the course blog 

(4)  o  o  o  o  o  o  
the instructor, 

by asking 

questions in 

class (5)  

o  o  o  o  o  o  

the instructor, 

during office 

hours (6)  
o  o  o  o  o  o  

online 

resources not 

accessed from 

the course blog 

(ex: online 

lectures or 

videos not 

associated with 

the course) (7)  

o  o  o  o  o  o  

other students I 

know who are 

not currently 

enrolled in the 

class (8)  

o  o  o  o  o  o  

the TAs in the 

mechanics 

tutorial room 

(9)  

o  o  o  o  o  o  

 

 

End of Block: Help Seeking Behaviors 
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Start of Block: Experience and Comparison Questions 

 

EC1 This block of questions asks you to COMPARE YOUR EXPERIENCE IN DYNAMICS 

THIS SEMESTER with your experience in OTHER COURSES.   

  This question asks you to compare your experience in dynamics this semester with your 

experiences in the other courses in which you were enrolled this semester. Choose the option that 

reflects your level agreement with each statement. 

 
Strongly disagree 

(1) 

Somewhat 

disagree (2) 

Neither agree nor 

disagree (3) 

Somewhat agree 

(4) 
Strongly agree (5) 

In dynamics, I felt 

a stronger 

connection to my 

peers. (1)  

o  o  o  o  o  
The dynamics 

class had more 

online resources 

available to help 

me. (2)  

o  o  o  o  o  

Dynamics was 

taught in a way 

that aligns more 

closely with my 

preferred way of 

learning. (3)  

o  o  o  o  o  

The dynamics 

course was more 

organized and 

structured. (4)  

o  o  o  o  o  
I felt a strong 

connection to my 

dynamics 

instructor. (6)  

o  o  o  o  o  
I found it harder 

to be successful in 

dynamics than it 

was to be 

successful in my 

other courses. (5)  

o  o  o  o  o  
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EC2 These questions ask you to compare your experience in dynamics this semester with your 

experiences in the other courses in which you have enrolled that PROVIDED SIGNIFICANT 

ONLINE CONTENT as part of the course. Choose the option that reflects your level of 

agreement with each statement. (If you have NEVER TAKEN another course with significant 

online content, you can skip this question.)  

 
strongly disagree 

(1) 

somewhat 

disagree (2) 

neither agree nor 

disagree (3) 

somewhat agree 

(4) 
strongly agree (5) 

In dynamics, I felt 

a stronger 

connection to my 

peers. (1)  

o  o  o  o  o  
The dynamics 

class had more 

online resources 

available to help 

me. (2)  

o  o  o  o  o  

Dynamics was 

taught in a way 

that aligns more 

closely with my 

preferred way of 

learning. (3)  

o  o  o  o  o  

The dynamics 

course was more 

organized and 

structured. (4)  

o  o  o  o  o  
I felt a stronger 

connection to my 

dynamics 

instructor. (6)  

o  o  o  o  o  
I found it harder 

to be successful in 

dynamics than it 

was to be 

successful in 

those other 

courses. (5)  

o  o  o  o  o  
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EC3 In what ways did the actual experience of the dynamics course meet, not meet, or exceed 

the expectations you had at the start of the semester? 

o The dynamics course MET my expectations in the following ways:  (1) 

________________________________________________ 

o The dynamics course DID NOT MEET my expectations in the following ways:  (2) 

________________________________________________ 

o The dynamics course EXCEEDED my expectations in the following ways:  (3) 

________________________________________________ 
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EC4 For each category below, please give us your recommendations about how to improve your 

experience in dynamics. For each item, tell us whether we should increase, decrease, or keep that 

item about the same.  

 increase this (1) keep this about the same (2) decrease this (3) 

quantity of homework (1)  o  o  o  

difficulty of  homework (2)  o  o  o  

number of  exams (3)  o  o  o  

difficulty of exams (4)  o  o  o  

instructor office hours (5)  o  o  o  

number of lecture example 

and homework solution 

videos (6)  
o  o  o  

amount of discussion activity 

on the blog (7)  o  o  o  

amount of active learning in 

class (8)  o  o  o  

amount of lecturing in class 

(9)  o  o  o  

opportunities to formally 

work in teams (ex.: a team-

based course project) (10)  
o  o  o  

other suggestion (please 

describe in the box) (11)  o  o  o  
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EC5 What is your single most important suggestion about how to improve the student experience 

in dynamics? 

________________________________________________________________ 

 

 

EC6 Knowing what you know now, what advice would you give to other students about how to 

be successful in dynamics? 

________________________________________________________________ 

 

End of Block: Experience and Comparison Questions 
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APPENDIX D. MOTIVATION AND TASK VALUE SURVEY 
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APPENDIX E.  IJEE COPYRIGHT PERMISSION 
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APPENDIX F. LIST OF ACRONYMS USED IN CHAPTER 2 

 

 

 

 

Acronym Definition Description 

aDCI Abbreviated Dynamics 

Concept Inventory 

Selection of 12 items from the DCI 

CFA Confirmatory factor analysis Method for testing latent structures 

CFI Comparative fit index Goodness of fit statistic 

CI Concept inventory Usually multiple-choice tests that require little or 

no calculations 

DCI Dynamics Concept Inventory 29-item dynamics concept inventory 

df Degrees of freedom Measure of how much data is available relative to 

how many model parameters are being estimated 

DIF Differential item functioning Scenario of an item functioning differently for 

distinct groups 

FCI Force Concept Inventory Physic concept inventory 

IRT Item response theory Method of modeling latent ability and item 

characteristics 

MG-CFA Multiple-group confirmatory 

factor analysis 

Method for testing the invariance of a 

measurement model across multiple groups 

RMSEA Root-mean square error of 

approximation 

Goodness of fit statistic 

χ2 Chi-squared test statistic Goodness of fit statistic 

3PL Three parameter model IRT method that models an items difficulty, 

discrimination, and guessing parameter 
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APPENDIX G. ADDITIONAL METHOD DETAILS FOR CHAPTER 3 

Participants 

 Approximately 500 students enrolled in Dynamics each year, with the most students 

(over 350) enrolling during the spring semester.  The total number of survey responses was 581, 

comprised of 95, 36, 139, 83, and 228 responses from the Spring 2016, Fall 2016, Spring 2017, 

Fall 2017, and Spring 2018 semesters, respectively.  From Spring 2016-Spring 2017, no 

incentive was given for completing the survey.  For the Fall 2017 and Spring 2018 semesters, 

additional questions from a partner organization were appended to the original survey, and ten 

points of extra credit toward the student’s homework grade (which amounted to less than 0.45% 

of extra credit toward a student’s overall grade in Dynamics) were given to anyone who 

completed the survey.   

Regarding the qualitative data, students were offered a $20 gift card for participating in 

an interview.  Participants were recruited through email, using a stratified sampling strategy 

based on prior GPA, section (instructor), and international status to capture the experiences of 

different student groups.  These stratifications reflect the fact that the student interviews were 

used to collect data for this study and many others not discussed here (e.g., how the students’ 

experiences in Dynamics differed across instructors with varying levels of experience teaching 

the course).  Regarding the international-status stratification, we expected that a student’s 

experiences in the class may vary more according to a student’s international status than 

according to their gender or major because of language and cultural differences. 

Our goal was to interview at least two students from each of the stratified student groups.  

If the number of participants was low in a given stratified group, then up to two follow-up 

recruitment emails were sent to that group.  Over-participation from a stratified group was 

allowed as no volunteer was denied an interview.   

A total of 53 interviews with students who also completed the end-of-semester survey 

were completed between Spring 2016-Fall 2017 (there were none conducted during Spring 

2018), but this study only utilized 44 of those interviews.  We used a subsample of the interviews 

because we wanted to better understand the archetypical resource-usage behaviors of the 

students.  Therefore, if a student’s usage pattern did not meet a threshold for alignment with one 
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of the most-common patterns of resource usage, as further explained in the Data Analysis 

section, the student’s interview data was not used in the qualitative analysis.   

Data Analysis 

Interviewee Selection   

The cluster analysis results were used to subsample the student interviewees so that we 

only analyzed the interview transcripts of students who exhibited resource-usage behavior that 

aligned well with one of the archetypical resource-usage patterns.  We used a measure of cluster-

membership uncertainty to do this, which is calculated as unity minus the largest cluster-

membership probability—see the Data Analysis section of the main paper for more details.  The 

qualitative analysis only included students with cluster-membership uncertainties of less than 

0.30.  When considering the entire sample, approximately 84% of the students had an uncertainty 

less than 0.30 (the mean uncertainty was 0.11, and the median was 0.02).  We also considered a 

lower uncertainty threshold of 0.10 (~68% of the sample had an uncertainty of less than 0.10), 

but the number of students who completed an interview and had uncertainties less than 0.90 was 

ten students fewer than a threshold of 0.30.  Of these ten students, five were women and four 

were not mechanical-engineering majors; all were domestic students.  Given that the cluster 

analysis is largely driven by the patterns of resource-usage of the majority—White, domestic 

men majoring in mechanical engineering—we decided to use the higher uncertainty threshold of 

0.30 in order to improve the diversity of the interviews included in the qualitative analysis.   

Qualitative analysis.   

We used thematic analysis to find themes from the students’ interview transcripts in their 

descriptions and explanations of their resource-usage.  We used a thematic-analysis process 

based on the recommendations of Braun and Clarke (2006).  The coding happened in two phases.  

First, to categorize the content of the interview, we read through each interview and coded the 

content related to each of the resources listed in Table 1 of the main paper.  For this 

categorization of content, we used a coding scheme developed by Kandakatla et al. (in review).  

This coding was completed mostly by one undergraduate research assistant, and two inter-rater 

reliability checks with one of the authors ensured coding consistency.  Then, for the second 
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phase of coding, we reread the transcripts and then, using the codes from the first phase, 

extracted the resource-related content that corresponded to the unique resource-usage 

characteristics of each cluster.  This extracted content for students in a given cluster was coded 

for interesting features.  These initial codes were then grouped according to potential themes, and 

the transcripts were reread to ensure that these potential themes accurately represented the 

students’ thoughts and words.  The final themes were summarized for each cluster.  Lastly, the 

themes were viewed through the expectancy-value conceptual framework for resource selection 

to determine what factors of the expectancy-value model seemed to influence the resource usage 

of the students in each cluster. 

 

 

 

 


