
THE MECHANOTRANSDUCTION OF HYDROSTATIC PRESSURE

BY MESENCHYMAL STEM CELLS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Seyedeh Ghazaleh Hosseini

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Biomedical Engineering

December 2018

Purdue University

Indianapolis, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Diane R. Wagner, Chair

Department of Mechanical Engineering

Dr. Julie Ji

Department of Biomedical Engineering

Dr. Sungsoo Na

Department of Biomedical Engineering

Approved by:

Dr. Julie Ji

Head of the Graduate Program



iii

ACKNOWLEDGMENTS

First of all, I would like to appreciate Dr. Diane Wagner for her support as an

advisor. She always encouraged and motivated me and taught me a lot about work

and also life. I would like to thank my committee members, Dr. Julie Ji and Dr.

Sungsoo Na, for their support and suggestions. I also would like to thank the funding

source, which is National Science Foundation grant # 1563721.

Thanks to all my colleagues in Dr. Wagner's lab past and present, including,

Komal Yadav, Huseyin Arman, Dr. Nizeet Aguilar, and Dr. Sonali Karnik, Amin

Joukar, and Hessam Noori. Special thanks go to Sherry Clemens for helping me with

all the administrative work.

I would like to give my most appreciation to my mother, father, sister, and friends

who have supported me through all the hardships and have been warmth of my heart.



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Articular Cartilage Composition and Structure . . . . . . . . . . . . . 1

1.1.1 Composition of Articular Cartilage . . . . . . . . . . . . . . . . 1

1.1.2 Structure of Articular Cartilage . . . . . . . . . . . . . . . . . . 2

1.1.3 Mechanical Properties of Articular Cartilage . . . . . . . . . . . 4

1.1.4 Articular Cartilage Injuries . . . . . . . . . . . . . . . . . . . . . 5

1.2 Treatment Options for Articular Cartilage Injuries . . . . . . . . . . . . 6

1.2.1 Microfracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Autologous Chondrocyte Implantation . . . . . . . . . . . . . . 6

1.2.3 Autografts and Allografts . . . . . . . . . . . . . . . . . . . . . 7

1.2.4 Total and Partial Joint Replacements . . . . . . . . . . . . . . . 8

1.3 Cell Sources for Articular Cartilage Repair and Regeneration . . . . . . 9

1.3.1 Chondrocytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Stem Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Tissue Engineering Scaffolds for Articular Cartilage Repair and
Regeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Growth Factors and Mechanical Stimuli for Improving Cartilage Tissue
Repair and Regeneration . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Growth Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.2 Mechanical Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . 14



v

Page

1.4.3 Shear Stress, Compression . . . . . . . . . . . . . . . . . . . . . 17

1.5 Question and Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 REAL TIME IMAGING OF CALCIUM ION SIGNALING WITH HYDRO-
STATIC PRESSURE BIOREACTOR . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Ca++ Signaling and Mechanotransduction . . . . . . . . . . . . 20

2.1.2 Bioreactor Design . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Cell Isolation, Expansion and Encapsulation . . . . . . . . . . . 24

2.2.2 Hydrostatic Pressure Application with Bioreactor . . . . . . . . 24

2.2.3 Validation of Cell Imaging with Confocal Microscopy . . . . . . 25

2.2.4 Loading Constructs in Bioreactor with Hydrostatic Pressure . . 26

2.2.5 Fixing Gels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Activation of Ca++ Channels with ATP . . . . . . . . . . . . . . 28

2.3.2 Loading Constructs in Bioreactor with Hydrostatic Pressure . . 29

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 ANALYSIS OF THE GEL DISPLACEMENT IN THE BIOREACTOR SYS-
TEM DUE TO HYDROSTATIC PRESSURE . . . . . . . . . . . . . . . . . 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Quantification of Displacement . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Source of Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 THE EFFECT OF FAK INHIBITION IN EARLY AND LATE CHONDRO-
GENESIS AND HP MECHANOTRANSDUCTION . . . . . . . . . . . . . . 54



vi

Page

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Cell Isolation, Expansion, Encapsulation and Culture . . . . . . 56

4.2.2 RNA Isolation and Real-time Polymeric Chain Reaction . . . . 57

4.2.3 Biochemical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.4 Histology and Immunohistochemistry . . . . . . . . . . . . . . . 59

4.2.5 Application of Hydrostatic Pressure . . . . . . . . . . . . . . . . 59

4.2.6 Protein Extraction and Western Blot . . . . . . . . . . . . . . . 60

4.2.7 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Chondrogenic Gene Expression with FAK Inhibition in Early
Chondrogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.2 Total DNA and Total sGAG and Collagen Decrease by Increas-
ing FAK Inhibition in Late Chondrogenesis . . . . . . . . . . . . 61

4.3.3 Time-dependent Response of MSCs to FAK Inhibition . . . . . 64

4.3.4 Hydrostatic Pressure Activates FAK . . . . . . . . . . . . . . . 65

4.3.5 FAK Inhibition Eliminates the Beneficial Effect of Hydrostatic
Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 THE EFFECT OF SIRTUIN1 INHIBITION ON CHONDROGENESIS AND
HYDROSTATIC PRESSURE MECHANOTRANSDUCTION . . . . . . . . 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Cell Isolation, Expansion, Encapsulation and Culture . . . . . . 71

5.2.2 Application of Hydrostatic Pressure . . . . . . . . . . . . . . . . 71

5.2.3 RNA Isolation and Quantitative Real-time Polymeric Chain
Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.4 Protein Extraction and Sirtuin Activity Measurement . . . . . . 72

5.2.5 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



vii

Page

5.2.7 SIRT1 Inhibition Suppressed the Beneficial Effect of Hydro-
static Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A MATLAB Code to Recognize Peaks in Data . . . . . . . . . . . . . . . . . . 91

B MATLAB Code to Fit Quadratic Polynomial Curve on Data . . . . . . . . . 94



viii

LIST OF TABLES

Table Page

2.1 Amplitude and duration of the fluorescent intensity peak indicating inter-
acellular Ca++ concentration change because of application of exogenous
ATP to the cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Best-fit parameters of functions f(z) = a(z)2 + b(z) + c and g(z) = a(z −
d)2 + b(z − d) + c from method #1 to determine the displacement d in z. . 39

3.2 Best-fit parameters of functions f(z) = a(z)2 + b(z) + c and g(z) = a(z −
d)2 + b(z − d) + c from method #2 to determine the displacement d in z.
* Outlier data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 R2 values of curve fittings for methods 1 and 2. . . . . . . . . . . . . . . . 41

4.1 Reverse and forward gene primers for polymeric chain reaction. 18s is
housekeeping gene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



ix

LIST OF FIGURES

Figure Page

1.1 Schematic of composition and structure of articular cartilage (not drawn to
scale). There are four zones with different structures in articular cartilage:
superficial, middle, deep, and calcified [7]. . . . . . . . . . . . . . . . . . . 3

1.2 The concept of tissue engineering. Tissue engineering incorporates many
critical factors including cells, scaffolds, bioactive factors, and physical
stimuli to assemble biomimetic tissue-engineered constructs for replacing
damaged tissues [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Totipotent, pluripotent, multipotent, and unipotent stem cells [15]. . . . . 11

1.4 Integrins, focal adhesions, the cytoskeleton, ion channels, and P-receptors
interact with the PCM to transmit signals into or out of the cell [31]. . . . 15

1.5 Hydrostatic pressure transmits a uniform normal compressive stress to the
cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Cells can respond to mechanical forces via several mechanisms, such as
stretch activated ion channels and focal adhesion complexes [6]. . . . . . . 18

2.1 The purinergic and calcium signaling pathways proposed to act in the
mechanotransduction of HP [50]. . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Custom bioreactor for real time confocal imaging of cell-seeded gels under
12 MPa static hydrostatic pressure (a) The pump generating the pressure
(b) The chamber holding the cell-seeded gel sample. . . . . . . . . . . . . . 23

2.3 Schematic of seeded cells in (a) gel construct and 4 heights imaged by the
microscope. (b) gel with microscope objective. . . . . . . . . . . . . . . . . 26

2.4 Acellular hand-made fixing gel to stop the construct sample from floating,
placed on top of the cell-seeded gel inside the chamber. . . . . . . . . . . . 27

2.5 Fluorescent intensity change over time. Exogenous ATP was added to cell-
seeded gels induced intracellular Ca++ concentration change. Confocal
microscopy imaged the fluorescent intensity change inside the chamber,
through the chambers window. Data collected by Komal Yadav. . . . . . . 28

2.6 Fluorescent intensity of four Z-stacks over time for a representative cell
before and after the application of 12 MPa of static hydrostatic pressure
without fixing gel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



x

Figure Page

2.7 Fluorescence intensity of a representative cell at four Z-stacks and the sum
of Z-stacks over time with the use of a fixing gel. The cell-seeded gel struc-
ture was pressurized with 12 MPa of static HP at 147s and depressurized
at 602 s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Schematic of gel displacement inside the chamber after stabilization by
the fixing gel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Fluorescent intensity changes during time for each height/z-stack. Dots
indicates the intensities before (blue) and after (red) pressurizing selected
and collected for further analysis for a representative cell. . . . . . . . . . . 35

3.2 Schematic of cell before (blue) and after (red) loading and the displacement
d in height (z). Quadratic functions were fit to the data before pressurizing
(f(z)) and after pressurizing (g(z)) and the amount of shift between two
functions (d) was determined. . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Fluorescent intensity changes during time for each height/z-stack. Dots
indicates the intensities before (blue) and after (red) pressurizing selected
and collected for further analysis for a representative cell. . . . . . . . . . . 38

3.4 Schematic of the sapphire glass window epoxied to the window holder. . . 44

3.5 Schematic of the finite element model of sapphire window with fixed top
edge and 12 MPa pressure on top surface. . . . . . . . . . . . . . . . . . . 45

3.6 Schematic of the finite element model of the sapphire window with fixed
side surface and 12 MPa pressure on top surface. . . . . . . . . . . . . . . 45

3.7 Schematic of the finite element model of the sapphire window with fixed
outer top surface and 12 MPa pressure in the center. . . . . . . . . . . . . 46

3.8 Schematic of finite element model of epoxy with 12 MPa of applied pressure
on top. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 Displacement of the sapphire glass with a fixed top edge in the finite
element model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.10 Displacement of the sapphire glass with a fixed side surface in the finite
element model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.11 Displacement of the sapphire glass with a partially fixed top surface in the
finite element model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12 Displacement of epoxy with thickness of (a) 0.5 mm (b) 0.6 mm (c) 0.7
mm (d) 0.8 mm (e) 0.9 mm and (f) 1 mm. Simulated in Abaqus. . . . . . 51

3.13 Linear relationship between maximum epoxy displacement (determined in
Abaqus) and epoxy thickness. . . . . . . . . . . . . . . . . . . . . . . . . . 52



xi

Figure Page

4.1 Left: An integrin with and subunits attached to a scaffold. Right: A
focal adhesion containing multiple integrins is a concentrated site of actin
filament and protein binding [82]. . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Alcian blue staining of MSCs in agarose scaffold, cultured with different
concentrations of FAK inhibitor PF 573228 from day 1 to day 21 (early
chondrogenesis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 (a) Agc and (b)Col2 relative gene expression with different concentrations
of FAK inhibitor in early chondrogenesis (day 1 to 21), relative to vehicle
control. * indicates significant difference from control group (cnt), p < 0.05. 61

4.4 Total DNA, (b) Total sGAG and (c) toal sGAG/DNA for different con-
centrations of FAK inhibitor applied in weeks 4 to 6 (late chondrogenesis).
* indicates significant difference from control, p < 0.05. . . . . . . . . . . . 62

4.5 Representative images of (a) collagen II, X and I IHC staining for different
concentrations of FAK inhibitor (scale bars = 50 µm) and (b) Alcian blue
staining of sGAG deposition for different concentrations of FAK inhibitor
(scale bars = 1000 µm) in late chondrogenesis (FAK inhibitor applied from
week 4 to week6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 (a) Agc, (b) Col2 and (c) Sox9 relative gene expression with overnight
application of FAK inhibitor relative to vehicle control at days 7 and 21.
* indicates significant difference between days 7 and 21, p < 0.05; # tends
to be different between days 7 and 21, 0.056p6 0.1. Dashed line indicates
a normalized value of 1.0 (no difference between treated (inhibitor) and
control samples). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Western Blot analysis of p-FAK and FAK for loaded (1 Hz of 10 MPa
hydrostatic pressure for 4 hours on day 21) and unloaded groups exposed
to (a) vehicle control and (b) overnight FAK inhibitor. β-actin was a
loading control for the Western blot. . . . . . . . . . . . . . . . . . . . . . 65

4.8 (a)Sox9, (b) Agc, and (c) Col2 relative gene expression for cells treated
with PF573228 or vehicle control. Expression of loaded (1 Hz of 10 MPa
hydrostatic pressure for 4 hours on day 21) cells normalized to the un-
loaded condition. * indicates a significant difference between loaded and
unloaded conditions, p <0.05. Dashed line indicates a normalized value of
1.0 (no difference between loaded and unloaded samples). . . . . . . . . . . 67

5.1 Agc, Col2, and Sox9 relative gene expression, SIRT1 inhibitor EX527 nor-
malized to the vehicle control. * indicates significant difference between
inhibitor group and vehicle control group; p < 0.05. Dashed line indicates
a normalized value of 1.0 (no difference between treated (inhibitor) and
control samples). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



xii

Figure Page

5.2 SIRT1 activity of unloaded and loaded vehicle controls (1 Hz of 10 MPa
hydrostatic pressure at 1 Hz for 4 hours on day 21). * indicates significant
difference between groups; p <0.05. . . . . . . . . . . . . . . . . . . . . . . 74

5.3 SIRT1 activity with different inhibitors confirms that EX527 provides suf-
ficient SIRT1 inhibition. Data compared to SIRT1 activity when no in-
hibitor was used on the sample. . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 (a)Col2, (b) Agc, and (c) Sox9 relative gene expression for SIRT1 inhibitor
EX527 and vehicle control loaded (10 MPa hydrostatic pressure at 1 Hz for
4 hours on day 21) normalized to the unloaded condition. * indicates a sig-
nificant difference between loaded and unloaded cell-seeded gels, p <0.05.
Dashed line indicates a normalized value of 1.0 (no difference between
loaded and unloaded samples). . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1 Relations between chondrogenesis, hydrostatic pressure and different bio-
chemical factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



xiii

LIST OF ABBREVIATIONS

Agc Aggrecan

AMP-B Amphotericin B

ASC adipose-derived stem cell

ATP Adenosine triphosphate

bFGF basic fibroblast growth factor

BMP bone morphogenetic proteins

Ca++ Calcium ions

cDNA complimentary deoxyribonucleic acid

Col2 Collagen II

DMMB dimethylmethylene blue

DNA deoxyribonucleic acid

DTT Dithiothreitol

ECM extracellular matrix

ESC embryonic stem cell

FAK focal adhesion kinase

GAG glycosaminoglycan

HGF hepatocyte growth factor

HP hydrostatic pressure

IGF insulin-like factor

iPSC induced pluripotent stem cells

MAP mitogen-activated protein

MSCs mesenchymal stem cells

NAD Nicotinamide adenine dinucleotide

OA Osteoarthritis



xiv

PEEK polyether ether ketone

PGA polyglycolic acid

PLA poly lactic acid

PLGA poly(lactic-co-glycolic) acid

RA rheumatoid arthritis

RT-PCR real time-polymeric chain reaction

SERC sarcoendoplasmic reticulum Ca++ stores

TGF transforming growth factor

VGCC voltage gated Ca++ channels



xv

ABSTRACT

Hosseini, Seyedeh Ghazaleh M.S.B.M.E., Purdue University, December 2018. The
Mechanotransduction of Hydrostatic Pressure by Mesenchymal Stem Cells. Major
Professor: Diane R. Wagner.

Mesenchymal stem cells (MSCs) are responsive to mechanical stimuli that play an

essential role in directing their differentiation to the chondrogenic lineage. A better

understanding of the mechanisms that allow MSCs to respond to mechanical stimuli

is important to improving cartilage tissue engineering and regenerative medicine.

Hydrostatic pressure (HP) in particular is known to be a primary mechanical force in

joints. However, little is known about the underlying mechanisms that facilitate HP

mechanotransduction. Understanding the signaling pathways in MSCs in transducing

HP to a beneficial biologic response and their interrelationship were the focus of this

thesis. Studies used porcine marrow-derived MSCs seeded in agarose gel. Calcium

ion Ca++ signaling, focal adhesion kinase (FAK) involvement, and sirtuin1 activity

were investigated in conjunction with HP application.

Intracellular Ca++ concentration was previously shown to be changed with HP

application. In our study a bioreactor was used to apply a single application of HP to

the MSC-seeded gel structures and observe Ca++ signaling via live imaging of a flu-

orescent calcium indicator in cells. However, no fluctuations in Ca++ concentrations

were observed with 10 minutes loading of HP. Additionally a problem with the biore-

actor design was discovered. First the gel was floating around in the bioreactor even

without loading. After stabilizing the gel and stopping it from floating, there were

still about 16 µm of movement and deformation in the system. The movement and

deformation was analyzed for the gel structure and different parts of the bioreactor.
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Furthermore, we investigated the role of FAK in early and late chondrogenesis

and also its involvement in HP mechanotransduction. A FAK inhibitor was used on

MSCs from day 1 to 21 and showed a dose-dependent suppression of chondrogenesis.

However, when low doses of FAK inhibitor added to the MSC culture from day 21 to

42, chondrogenesis was not inhibited. With 4 hour cyclic HP, FAK phosphorylation

increased. The beneficial effect of HP was suppressed with overnight addition of the

FAK inhibitor to MSC medium, suggesting FAK involvement in HP mechanotransd-

ucation by MSCs.

Moreover, sirtuin1 participation in MSC chondrogenesis and mechanotransduc-

tion was also explored. The results indicated that overnight sirtuin1 inhibition in-

creased chondrogenic gene expression (Agc, Col2, and Sox9) in MSCs. Additionally,

the activity of sirtuin1 was decreased with both 4 hour cyclic hydrostatic pressure

and inhibitor application. These two together demonstrated that sirtuin1 inhibition

enhances chondrogenesis.

In this research we have investigated the role of Ca++ signaling, FAK involvement,

and sirtuin1 activity in the mechanotransduction of HP in MSCs. These understand-

ings about the mechanisms regulating the chondrogenesis with respect to HP could

have important implications for cartilage tissue engineering and regenerative studies.
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1. INTRODUCTION

1.1 Articular Cartilage Composition and Structure

1.1.1 Composition of Articular Cartilage

Articular cartilage is a connective tissue lining the outer surfaces of bones in

diarthrosis joints; tissue thickness can vary from 1.5 to 3 mm [1]. Articular cartilage

is made up of two different phases; solid and liquid. The solid phase itself is composed

of two main parts.

The first part is cells, which forms 1% of the total tissue volume and can modify

the other part of the solid phase, which is extra cellular matrix (ECM) [2]. The only

type of cells in cartilage are chondrocytes, which sense and react to different kinds of

mechanical stimuli in their secreted microenvironment. Moreover, they form various

morphologies in different zones of articular cartilage. The dense ECM around the cells

does not allow them to migrate or proliferate significantly [3], limiting regeneration

when injury happens.

The ECM is composed of different organic proteins and proteoglycans and a small

amount of fibronectin. The main proteins in articular cartilage ECM are collagens. As

the cartilage matures, the random distribution and uniform size of collagen transforms

to have an oriented distribution with non-uniform size [4]. Moreover, type II collagen

is the most prevalent in mature tissue, in comparison to collagen type VI, IX, X, and

XI. Collagen II comprises 15%-20% wet weight of the cartilage and contributes to

the tensile properties and macromolecular entrapment of cartilage [3]. In addition,

collagens IX and XI form fibrils when crosslinked with collagen II and results in

a mesh structure that also plays roles in tensile properties [4]. Beside collagen II,
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collagen VI has been shown to be a part of the mechanotranduction mechanism of

chondrocytes [5].

Proteoglycans, a special group of glycoproteins found in hyaline cartilage, provide

the compressive and flow-dependent viscoelastic properties of cartilage. Swelling and

shrinking of proteoglycans plays a role in the degree of tissue hydration, and thereby

the compressive properties of the tissue [6]. Proteoglycans can also associate as a

large chain with small branches of glycosaminoglycans (GAGs) [7].

The liquid phase of cartilage contains interstitial water and electrolytes forming

60%-80% of the wet weight. Due to negative charge of the tangled aggrecans, a high

density of ions is seen in the liquid phase. The role of this liquid is to exchange nutri-

ents with synovial fluid, lubricate the joint, and contribute to compressive resistance

and deformation [7].

1.1.2 Structure of Articular Cartilage

There are four different zones in articular cartilage, with variations in matrix

composition, morphology, mechanical, cellular and metabolic parameters. Every zone

acts differently in function and has different properties (Figure 1.1).

The top zone at the articular surface, called the superficial zone, occupies 10%

to 20% of the thickness. However, this zone comprises a high density of collagen in

comparison to other zones. On the other hand, the oriented collagen fibrils in this

area are thinner than in the other underlying layers. There are fewer proteoglycans in

this region in comparison to other zones. The fibroblast-like chondrocytes present in

this zone are flattened and oriented parallel to the direction of shear stress that they

sense. It is believed that this composition and organization provide tensile strength,

shear resistance, and fluid permeability during articulation [8].

The transitional zone or middle zone is below the superficial zone and contains

the highest amount of proteoglycans in the tissue. The collagen and water content
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Fig. 1.1.: Schematic of composition and structure of articular cartilage (not drawn

to scale). There are four zones with different structures in articular cartilage:

superficial, middle, deep, and calcified [7].

decreases and collagen fiber size increases in this zone compared to the superficial

zone. Chondrocytes display a rounded morphology in this zone [7].

The deep zone has a different composition and organization of cell and collagen

fibril morphology. Collagen fibers have a larger diameter and are organized perpen-

dicular to the articulating surface in this zone. Chondrocytes form columns parallel

to the arranged collagen fibers with 10-fold higher synthesizing activities than cells

in the superficial zone [9].

The calcified zone is a transition from articular cartilage to the outer surface of

bone. Collagen type X is observed in this zone and plays roles in mineralization and
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strength of the tissue. The number of chondrocytes in this zone is few and those that

are present are inert and embedded in a calcified ECM.

Alternately, cartilage matrix can be categorized into three classes based on the

distance from the chondrocyte; territorial, interterritorial, and pericellular. Pericel-

lular is the closest region to each cell and is composed of collagen VI, proteoglycans,

and some other proteins. The collagen and proteins in this area protect individual

cells from mechanical loadings and are also responsible for a cells response to different

kinds of loading. The next furthest region from the cells, interterritorial, contains the

largest fibrils and takes the most volume in the matrix. The territorial part is the

farthest region and has less organized collagen fibrils [10].

1.1.3 Mechanical Properties of Articular Cartilage

Articular cartilage accounts for a smaller volume than muscles, tendons, ligaments,

and also bones. However, this small tissue plays a key role in distributing mechanical

forces, joint lubrication and friction, shock absorbance, and dispersing compression.

Other characteristics such as the interaction between the liquid and solid phase affect

the viscoelastic properties of the cartilage. Outflow of the interstitial liquid from the

porous collagen-proteoglycan matrix lubricates the joint during loading [11].

The composition of cartilage ECM is also critical in regulating the biomechanical

characteristics of this tissue. Tensile behavior, as an example of biomechanical prop-

erties, is mainly determined by collagens. As stated earlier, collagens are varied in

diameter and organization in different zones. This explains the variation of tensile

properties in different zones of the cartilage. For instance, the tensile modulus can

be as low as 5.4 MPa in the middle zone and as high as 10.1 MPa in superficial zone

in human cartilage. This may be a result of more abundant and organized cartilage

in the superficial zone as opposed to the middle zone [12].
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Another important biomechanical characteristic in cartilage is compressive prop-

erties, as this tissue bear frequent compression during physiological activities. The

compressive modulus depends on the depth and location of the tissue.

1.1.4 Articular Cartilage Injuries

Articular cartilage injuries can be caused by destructive trauma or degenerative

joint diseases. The defects can be classified into two main categories; partial thickness

and full thickness cartilage defects. The former − partial thickness defect − is only

a defect of the articular cartilage and does not penetrate into the subchondral bone,

and therefore does not extend to the blood or progenitor cells that are available in

bone marrow for repair. The repair cannot be effective due to the lack of migrating

chondrocytes. Although there are some metabolic and enzymatic activities to regen-

erate the ECM components and induce the chondrocyte to proliferate and produce

matrix, chondrocytes are not sufficiently active to heal the defect completely. Thus,

the defect persists and could reduce the functionality of the cartilage leading to tissue

degeneration [13].

Full thickness defects, also called osteochondral defects, extend through the whole

cartilage thickness and penetrate the calcified zone and even the subchondral bone.

In this type of defect, the defect area reaches the progenitor cells, blood cells, and

macrophages for immune response and the healing reagents [13]. Consequently, in

response to the injury, the defect area is filled with a fibrin clot and the inflammatory

response cascade is activated. The mesenchymal stem cells (MSCs) from bone mar-

row migrate to the fibrin clot after 1 week and will differentiate and produce their

own matrix gradually [13]. Their matrix is proteoglycan-rich ECM and is may be con-

sidered as a repair for the defect. However, this repair is more fibrous than hyaline

cartilage, having weaker mechanical characteristics and also higher permeability [14].

Accordingly, this repair is transient and incomplete and causes tissue degeneration few

months later. As the repair tissue is not stable cartilage, regeneration of the cartilage
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functionality and properties is not complete or sufficient. Consequently, bone-to-bone

articulation, pain, inflammation, and disabilities may eventually occur [15].

1.2 Treatment Options for Articular Cartilage Injuries

Considering the lack of cartilage tissue regeneration and self-healing, the shortage

of treatment options for giving the true function back to injured cartilage, and the

increasing need for curative therapies, researchers have focused on substitutions for

this tissue.

1.2.1 Microfracture

Microfracture is a well-known and effective surgery to heal small injuries in ar-

ticular cartilage. This procedure is inspired by a natural physiological response of

the body to heal full-thickness defects by signaling the cells in the bone marrow for

wound healing. Micro-scale holes are drilled in the underlying subchondral bone.

These small holes allow progenitor cells to be released from the bone marrow. When

the inflammatory response is activated, cells fill the defect in a fibrin clot. This process

works effectively for defects less than 2 cm2 and has some advantages like minimally

invasive nature, short time for surgery and recovery, and low site morbidity [16]. De-

spite these attractive features, the healing responses are different in patients due to

personal physical conditions. Smaller injuries, younger patients, and earlier therapy

lead to a better repair as mesenchymal stem cells in bone marrow are more abundant

and active in these situations [17]. Moreover, tissue regeneration is not ideal, as a

weak fibrocartilage is made, and consequently the failure rate is high [18].

1.2.2 Autologous Chondrocyte Implantation

One other common technique for cartilage repair is autologous chondrocyte im-

plantation (ACI). This method is often suggested to patients with a failure in mi-
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crofracture surgery and wounds between 1 cm2 and 12 cm2 [19]. Two separate surg-

eries are done in this procedure; one for harvesting healthy cartilage, and the other

one to implant chondrocytes in the defect site. The first surgery includes collecting a

small piece of non-injured cartilage from the low weight-bearing part of the patients

knee. This piece of cartilage contains chondrocytes that can be harvested and cul-

tured out of the body for 3 to 5 weeks to attain about 12 million cells for the second

surgery. The second surgery is a reimplantation of the cells to the defected area by

injection. In this operation, a patch of patients periosteum is sutured over the defect

to retain the chondrocytes at the injured site. This procedure has shown promis-

ing results in healing. However, there are some limitations such as being invasive,

requiring multiple surgeries, donor site morbidity, dedifferentiation of the harvested

chondrocytes, and lack of number of healthy cells in patients [20].

1.2.3 Autografts and Allografts

Autografts and allografts are another available options to heal small lesions in

cartilage. In an autograft procedure, a cylindrical section of a healthy cartilage is

collected from non-weight bearing or low weight bearing areas of the patient. This

piece is then implanted into the defected site of the same person to restore the function

of the cartilage. Some advantages such as less donor site morbidity than ACI and

promising clinical results make this method attractive. Nevertheless, an insufficient

quality or quantity of donor tissue, donor site morbidity, implant surface mismatch

with the surrounding tissue, instable graft, and compatibility of low weight bearing

cartilage with a high weight bearing site are limitations of autograft surgery [16].

Allografts are tissues from another person, and are available from tissue banks.

Although this procedure avoids multiple surgeries and donor site morbidity, there

are still the same limitation for this option of therapy which are surface matching,

load bearing compatibility. Some other limitations come along with this method,
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including immune rejection, inflammations, and the presence of dysfunctional dead

cells in allograft tissue [7].

1.2.4 Total and Partial Joint Replacements

All of the above therapies can be used when the injury is not too acute. For severe

traumas, disease, or advanced osteoarthritis, total or partial joint replacement is sug-

gested. In this method, it is necessary to remove the damaged joint and then implant

the artificial joint. The artificial implant is composed of a metal stem (for stabil-

ity), a metal shell (made of titanium, stainless steel, or alloys), and a polymeric part

(made of polyethylene for smooth sliding). Although this therapy is great for older

patients and patients with severe injuries, second surgeries are sometimes performed

due to reported infection, implant loosening, implant wear and tear. The other main

consideration is that the implant has a finite life and is not ideal for younger or more

active patients [15].

1.2.4.1 Tissue Engineering

Regenerative medicine or tissue engineering uses concepts of engineering, biology,

chemistry and material science to build a substitution of a tissue. The substitute

helps, maintains, or brings back function to the damaged part of the body. Aspects of

tissue engineering that have been investigated include various cell types; scaffolds that

may be biodegradable, natural, synthetic, hydrogels, polymers, and nanocomposites;

and chemical and physical factors including growth factors, cytokines, mechanical

loading and electrical stimulation (Figure 1.2) [7].
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Fig. 1.2.: The concept of tissue engineering. Tissue engineering incorporates many

critical factors including cells, scaffolds, bioactive factors, and physical stimuli to

assemble biomimetic tissue-engineered constructs for replacing damaged tissues [7].

1.3 Cell Sources for Articular Cartilage Repair and Regeneration

1.3.1 Chondrocytes

The one and only type of cell in cartilage is chondrocytes, having a diameter of 10

to 13 µm [21]. In practice, chondrocytes have been a popular source for regeneration

of articular cartilage. Despite some limitations, autologous transplantation is widely

used for repairs. The low number of chondrocytes that can be used for therapy,

dedifferentiation and lack of capability of chondrocytes in in vitro cell expansion are

the main concerns about this type of therapy. The other available sources of chon-

drocytes such as allogeneic and xenogeneic chondrocytes also have some restrictions.

They can potentially trigger immune responses of the patient and also there is a risk

for transmission of diseases. Separately seeded zonal chondrocytes may be a source for

regenerating the tissue structure, as different zones have different characteristics [8].
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1.3.2 Stem Cells

Due to the limitations listed above, investigators have been looking for other avail-

able sources for cartilage repair and tissue engineering. Stem cells are considered a

promising source due to their availability, accessibility, and capability of differentiat-

ing to the chondrogenic lineage. Different kinds of stem cells can be used for tissue

regeneration, including mesenchymal stem cells (MSCs) and embryonic stem cells

(ESCs).

From a functional point of view, stem cells are distinctive in two ways: first of

all, they are capable of proliferating when they are at an undifferentiated state, and

secondly, they can differentiate into one or multiple lineages of specific cells (Figure

1.3). Based on the number of lineages to which they are able to differentiate, we can

classify them into four groups: totipotent, pluripotent, multipotent, unipotent.

Totipotent stem cells or morula cells can develop a whole human body and are

able to differentiate into any type of cell. ECSs are pluripotent cells that can differen-

tiate to any type expect for placental cells. These stem cells are obtained artificially

through an in vitro fertilization.

Multipotent stem cells are able to differentiate into multiple related cell types,

and can be harvested from many different tissues. This group includes hematopoietic

stem cells that can become blood cells, and also mesenchymal stem cells that can

differentiate to bone, cartilage, muscle, and fat cells. Finally, unipotent stem cells

can only become one type of cell and has the ability to self-renew [15].

1.3.2.1 Mesenchymal Stem Cells

MSCs can be harvested for repair purposes from different tissues in the body, such

as bone marrow, fat, synovium, periosteum, muscle, and skin [22]. Autologous MSCs

have the ability to proliferate to get enough number of cells, and do not induce an

immune responses in comparison to allografts and xenograft alternatives. Moreover,
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Fig. 1.3.: Totipotent, pluripotent, multipotent, and unipotent stem cells [15].

MSCs can be isolated in a minimally invasive process and have decreased donor site

morbidity and pain complaints compared to ACI and tissue autografts [21].

MSCs have the ability to differentiate to multiple types of cell. One of the main

cell types that MSCs can be differentiated to are cells that resemble chondrocytes in a

process called chondrogenesis [21]. The chemical factors that induce chondrogenesis

are transforming growth factors (TGF), insulin-like factors (IGF), dexamethasone,

bone morphogenetic proteins (BMP) and fibroblast factors. These can all be pro-

vided in the media, and some physical factors such as mechanical stimuli (e.g. cyclic

hydrostatic pressure, compression) also enhance chondrogenesis [22–24]. MSCs iso-

lated from bone marrow are widely used due to their accepted ability to differentiate

to the chondrogenic lineage and their easy access via the iliac crest.
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Other source for mesenchymal stem cells are adipose-derived stem cells (ASCs)

from subcutaneous fat that have shown potential for chondrogenic differentiation.

Scientists are interested in ASCs because of their abundancy, minimally invasive

procedure for isolation, and lower donor site morbidity and pain [25].

MSCs have shown great ability to repair cartilage in in vitro and in vivo studies.

However, few clinical trials have been conducted. Walkitani et al. transplanted au-

tologous MSCs in three patients knees after isolating and expanding them in vitro.

Improvements were observed after 6 months of reimplantation [26]. Moreover, Chon-

droen from Osiris Therapeutics Inc. showed potential to prevent osteoarthritis in

phase I or II clinical trials using expanded MSCs from human bone marrow. All in

all, clinical trials show promise for MSC therapies for cartilage repair and regener-

ation. However, more study and work is needed to optimize culture conditions and

overcome limitations in the differentiation of MSCs for cartilage regeneration [7].

1.3.2.2 Other Cell Sources

Embryonic stem cells are known to have nearly unlimited ability to proliferate and

also can potentially differentiate to all cell types. These interesting characteristics

make them favorable for cartilage tissue engineering as a cell source. For instance,

Koay et al. expanded human ESCs in scaffold free conditions to make cartilage-like

structures in agarose wells [27]. Another interesting alternative for cell source in tissue

engineering is the dermis of the skin. This autologous option and other cell sources

can be dedifferentiated to less mature cells (induced pluripotent stem cells or iPSCs)

and then differentiated to the chondrogenic lineage. This process has been shown

to produce constructs containing cartilage matrix components like aggrecan, making

iPS cells a promising cell source that can be used for tissue engineering purposes [28].
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1.3.3 Tissue Engineering Scaffolds for Articular Cartilage Repair and Re-

generation

3D scaffolds are crucial to provide the right environment for cells to grow, produce

matrix, and differentiate. The scaffold needs to have some essential characteristics;

1) biocompatibility, 2) appropriate degradation as cells produce their own matrix,

3) appropriate mechanical properties [21]. Sources of scaffold for tissue regeneration

vary from natural polymers from living organisms to synthetic materials obtained

from chemical processes. Some of the most common materials used as scaffolds are

described in the following paragraphs.

1.3.3.1 Natural Scaffolds

Natural materials are frequently studied as tissue engineering scaffolds. They

have good biocompatibility and may provide cell anchorage and promote differentia-

tion. Cartilage tissue engineering scaffolds can be supplied from carbohydrate-based

hyaluronic acid, agarose, alginate, chitosan, proteins or fibrin glue. Non-sulfated gly-

cosaminoglycan harvested from tissue (hyaluronan) can be injected to the body [29].

Collagens are common to use as scaffolds. In addition, other natural scaffolds such

as biodegradable fibrin, chitosan, or composites have also been studied and shown to

be advantageous for cartilage tissue engineering [21]. Chondrogenesis favors a 3D en-

vironment with rounded cell morphology and limited cellular attachments, and there

are some scaffolds are better at providing that environment than others. Agarose

and alginate are hydrogels made from seaweed and are options for cartilage tissue

engineering [30]. Steward et al. showed that 4% agarose (stiffer) is better than 1%

and 2% for retention of the matrix products [31].
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1.3.3.2 Synthetic, Nanostructured Scaffolds and Scaffold-free materials

Synthetic and nanostructured materials fabricated from polymers are interest-

ing to study due to their easy fabrication, biocompatibility, versatility, controllable

porosity and mechanical characteristics, and controllable degradability. Poly lactic

acid (PLA), polyglycolic acid (PGA), and poly(lactic-co-glycolic) acid (PLGA) are

common choices of scaffolds approved by the Food and Drug Administration [21].

There are different ways of manufacturing polymer materials to be used as scaffolds.

Procedures which can be used to produce scaffolds include electrospinning, partic-

ulate leaching, chemical etching, 3D printing techniques, and phase separation [15].

Other than the tissue engineering through scaffolds, some scaffold-free methods can

be used. Pellets, organ culture, aggregate culture, and self-assembling process are

some examples of this method [15].

1.4 Growth Factors and Mechanical Stimuli for Improving Cartilage Tis-

sue Repair and Regeneration

1.4.1 Growth Factors

Different hormonal and growth factors are used in order to regulate cells aggre-

gation, adhesion, and metabolism. Some of the growth factors include insulin-like

growth factors (IGF-I), basic fibroblast growth factor (bFGF), hepatocyte growth

factor (HGF), platelet-derived growth factor (PDGF), and the TGF-β. TGF-β1 and

TGF-β3 promote collagen formation and chondrogenic differentiation in mesenchymal

stem cells [31–34].

1.4.2 Mechanical Stimuli

Many studies confirmed that different mechanical loading modalities regulate MSC

fate. The deformations in the pericellular matrix can be sensed by cells mostly by
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changes in ion concentration, changes in ATP concentration, and though integrins

(which connects the outside of the cell to the cytoskeleton) as well as other factors

(Figure 1.4) [35].

Fig. 1.4.: Integrins, focal adhesions, the cytoskeleton, ion channels, and P-receptors

interact with the PCM to transmit signals into or out of the cell [31].

1.4.2.1 Hydrostatic Pressure

Cartilage is subjected to mechanical forces because of joint loading. Cartilage is

mostly composed of water, which is mostly trapped inside the matrix due to the low

matrix permeability. The result of this structure is that compressive loads are initially

supported by the fluid phase. In fact, compressive loads are supported up to 90% by

hydrostatic pressure in the fluid phase [36–38], causing a uniform normal stress on

the cells (Figure 1.5). Physiologic levels of hydrostatic pressure have been determined

to be 3 to 10 MPa [39]. Hydrostatic pressure (HP) is an important biomechanical
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Fig. 1.5.: Hydrostatic pressure transmits a uniform normal compressive stress to the

cells.

stimuli in cartilage tissue engineering. Different studies have shown beneficial or

detrimental effects of hydrostatic pressure, depending on the magnitude of the load.

Cyclic HP with magnitude in physiological range induced increasing GAGs production

in chondrocytes [40]. Cyclic HP increased markers of chondrogenesis in different

environments (e.g. 4% agarose gel, collagen I, synthetic scaffold, and pellets) including

increasing gene expression and matrix production specific for cartilage [41]. All in all,

frequency between 0.05 to 1 Hz (the human walking cadence [42]) and HP magnitude

between 1 and 15 MPa was shown to be beneficial for cartilage tissue engineering [43].

Negative influences on cell viability and secretion may be caused by high magni-

tude static HP [44]. Proteoglycan secretion is inhibited by static HP at levels of 30

MPa [45]. Moreover, microtubule and actin fibers in epithelial cells were disrupted

by high magnitude static HP [46].

Although mechanotransduction pathways are not well understood with hydro-

static pressure, the ion concentration changes inside the cells is suggested as a possible

pathway [47]. It was shown that static HP inhibits the Na/K and Na/K/2Cl pump,
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and increases Na/H interchanges [48]. Moreover, static HP for 5 minutes induced

changes in calcium ion concentrations by activating stretch calcium channels [49]. It

was also shown that that calcium signaling is required for HP mechanotransduction,

and that it is likely activated by the purinergic pathway [50]. Beside calcium ion

channel role, integrin binding can help to transduce HP [35, 51]. Integrin binding

to the pericellular matrix could determine the response of MSCs to cyclic HP by

regulating vimentin organization [35].

1.4.3 Shear Stress, Compression

Although cartilage is minimally loaded in shear in vivo because of the low friction,

shear loading is effective at inducing cartilage matrix production. For example, 1%

to 3% dynamic shear with a frequency of 1 Hz was beneficial for increasing ECM

synthesis and cartilage oligomeric matrix protein expression [52]. Compression is an-

other mechanical stimulus shown to be beneficial for cartilage tissue engineering. The

mechanical load affects the cells response through their pericellular environment and

through the mechanotransduction pathways, especially when the load is dynamic.

Static compression has not shown a positive effect on the cells [5]. Tissue engineers

have studied mechanotransduction to determine how cells respond to mechanical load-

ing (Figure 1.6). For instance, mechanosensitive ion channels have been shown to be

activated by compression and shear stress in several studies [47,48,53]. The changes in

ion concentrations cause upregulation or downregulation of gene expression in cells.

Integrins and the cytoskeleton have been shown to play roles in the responses to

mechanical forces, with focal adhesion complexes as one of the messengers for these

responses [54].

1.5 Question and Hypothesis

It is challenging to engineer cartilage tissue that has the same composition, struc-

ture and mechanical properties as native tissue. Understanding the pathways involved
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Fig. 1.6.: Cells can respond to mechanical forces via several mechanisms, such as

stretch activated ion channels and focal adhesion complexes [6].

in HP mechanotransduction may provide targets to stimulate the desired change in

cell behavior, and could help overcome these challenges. In this research we have

investigated the role of Ca++ signaling, focal adhesion kinase (FAK) involvement,

and sirtuin1 activity in the mechanotransduction of HP in MSCs. It was expected to

be able to image changes in Ca++ concentration with mechanical loading and to in-

vestigate its correlation with other signaling molecules in MSC mechanotransduction.

Furthermore, the role of FAK was examined in the study, because integrin binding

to the pericellular matrix was previously shown to be necessary to transduce HP [55]

to a cellular response, and also FAK is known as an early downstream regulator for

transferring signals from integrin binding [56]. Therefore we hypothesized that FAK

is necessary for transducing HP to MSCs and is part of its mechanotransduction path-
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way. In another part of the study, it was questioned whether surtuin1 (an antiaging

agent) activity could enhance chondrogenesis in MSCs or if it was part of HP mechan-

otransduction. These improved understandings about the mechanisms regulating the

chondrogenesis in response to HP may reveal insights for cartilage tissue engineering

and regenerative studies.
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2. REAL TIME IMAGING OF CALCIUM ION

SIGNALING WITH HYDROSTATIC PRESSURE

BIOREACTOR

2.1 Introduction

2.1.1 Ca++ Signaling and Mechanotransduction

Calcium ions (Ca++) are present in many cellular signaling pathways. The con-

centration of this ion is different in intracellular and extracellular spaces. There is a

104 times higher Ca++ concentration in extracellular fluid suggesting the potential for

Ca++ flux into the cells, providing a message. Mechanical stimulations can cause the

Ca++ flux from intracellular or extracellular space into the cytosol [57]. The change of

Ca++ concentration in the cytosol can be a messenger for protein kinases and protein

phosphatases resulting in cellular proliferation or differentiation [58]. Ca++ sensitive

enzymes have been shown to play an important role in cartilage differentiation such

as Ser/Thr specific protein kinases, PKCalpha, and Ser/Thr specific phosphatase

calcineurin [59–61].

Many types of mechanical loading are beneficial for chondrogenesis of MSCs due to

the involvement of Ca++ signaling pathways in mechanotransduction. For instance,

cyclic tensile loading of MSCs caused them to produce more proteoglycans; this matrix

deposition was suppressed by inhibiting stretch-activated ion channel activity that

allows Ca++ flux through the membrane of cells [62]. Moreover, other studies have

shown increased intracellular Ca++ and mitogen-activated protein (MAP) kinases

in MSCs that influence their differentiation due to fluid flow stimulation [63–65].

Mechanical stress and deformation by compression in agarose constructs or deforming

the cell surface with a micropipette in monolayer culture increased intracellular Ca++
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concentrations in chondrocytes [66–69]. In another study, Mizuno measured Ca++

concentration changes in chondrocytes exposed to 0.5 MPa static HP with a live-cell

imaging bioreactor. He observed peaks during and after loading and claimed that

these changes occurred through stretch activated calcium channels.

It is also suggested that the mechanism of how HP can transduce a mechani-

cal load to a beneficial biological response is due to activation of Ca++ signaling

pathways. Steward et al. demonstrated that Ca++ signaling is necessary in HP

mechanotransduction. They further demonstrated that the purinergic pathway is

involved in the Ca++ signaling in response to HP (Figure 2.1). In this pathway,

adenosine triphosphate (ATP) is a paracrine or autocrine factor that initiates Ca++

signaling. The mechanical load causes the release of ATP into pericellular area. Af-

terwards, ATP binds to P-receptors that are coupled to Ca++ channels to activate

voltage gated Ca++ channels (VGCCs) or sarcoendoplasmic reticulum Ca++ stores

(SERCS) [70]. Pathways such as purinergic mechanotransduction pathway, activation

of voltage-gated calcium channels, and integrin binding have been shown to be part

of HP mechanotransduction by MSCs. However, the relation between these factors

and Ca++ signaling is not known. Using a bioreactor that allows confocal imaging

of cell-seeded gels that have been dyed with a fluorescent Ca++ indicator while HP

is applied, our long term goal was to investigate the relationships between different

signaling molecules and the Ca++ pathway. For the first step, the bioreactor was used

to image the fluorescent Ca++ indicator with a single application of hydrostatic pres-

sure to verify that this pathway is activated by the mechanical load. The previously

designed and fabricated bioreactor maintained the pressure at 12 MPa and allowed

confocal imaging of MSCs in their agarose scaffold.

2.1.2 Bioreactor Design

A bioreactor is defined as an apparatus in which a biological reaction or process

is carried out, especially on an industrial scale. The bioreactor for detecting the
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Fig. 2.1.: The purinergic and calcium signaling pathways proposed to act in the

mechanotransduction of HP [50].

Ca++ changes in the cell-seeded gel has special features that allows it to hold a

φ=5mm scaffold with thickness of 3mm, maintains pressure safely up to 20 MPa, is

compatible with media and cells, has an optically clear window for imaging and has a

temperature control system. The materials used to make the bioreactor are stainless

steel, polyether ether ketone, sapphire, and Loctite (EA E-05MR, HYSOL) epoxy

that are all non-toxic to cells.

The bioreactor has two major parts: the chamber and the pump (Figure 2.2).

These two parts of the system is are connected with polyether ether ketone (PEEK)

tubing. The chamber is a stainless steel cuboid that has 4 ports, which are designed

to attach a pressure sensor, pressure release valve, tubing, and window. The pressure
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Fig. 2.2.: Custom bioreactor for real time confocal imaging of cell-seeded gels under

12 MPa static hydrostatic pressure (a) The pump generating the pressure (b) The

chamber holding the cell-seeded gel sample.

sensor converts pressure to a voltage with a linear relationship. The pressure release

valve is designed to eliminate air bubbles when running the system. The tubing port

provides a connection to the pump. The window is a challenging part that needs to

be optically clear, withstand up to 20 MPa of pressure and also needs to be sealed

completely. The window subsystem consists of a metal holder, an O-ring and also

a sapphire glass that is glued in place with Loctite (EA E-05MR, HYSOL) epoxy

glue. There are also two cavities to insert heaters to maintain the temperature. The

temperature and pressure are measured and monitored with an Arduino board.

The pump is another stainless-steel part that has 4 ports. The first port is sealed

with a pressure release valve that is needed when the system is depressurized. The

second port is for the tubing that connects it to the chamber. The other port is

machined to have mating threads for the needle to advance. The last port contains a

pressure rupture disc for safety, which bursts and releases the pressure if it becomes

overloaded. Additionally, the tubing is made of polyether ether ketone (PEEK) that



24

connects the chamber to the pump. It also allows the pump to be operated away

from the chamber and microscope.

2.2 Materials and Methods

2.2.1 Cell Isolation, Expansion and Encapsulation

MSCs were harvested under sterile conditions from the bone marrow of porcine

femurs. MSCs were expanded in high glucose Dulbeccos modified Eagles Medium

(hgDMEM with GlutaMAX) supplemented with 10% fetal bovine serum (FBS),

penicillin-streptomycin, and Amphotericin B (Amp-B). At the end of passage 2, they

were seeded in 4% agarose with the density of 15 million cells/mL. The heated cell/gel

solution was poured to a 3 mm space between a stainless-steel mold and plexiglass

cover. After solidification, a biopsy punch (φ=5mm) was used to obtain cell-seeded

scaffolds, which were cultured for 3 weeks in chondrogenic differentiation media con-

sisting of DMEM with sodium pyruvate, L-proline, bovine serum albumin (BSA),

penicillin-streptomycin, Amp-B, 50 ng/mL transforming growth factor (TGF-β3), 50

ng/mL of L-ascorbic acid, 10 g/mL insulin-transferrin-selenium, 50 ng/mL lineoic

acid, and 100 ng/mL dexamethasone. Half-media changes were done twice per week.

The constructs deposited enough matrix to respond to mechanical loading after 21

days in culture [31].

For imaging calcium, 12 µM of fluorescent calcium indicator (Cal-520® AM, AAT

Bioquest®) was applied to the media of gels one hour before imaging. After one hour,

the gel construct was washed and placed in Hanks Balanced Salt Solution (HBSS).

2.2.2 Hydrostatic Pressure Application with Bioreactor

To pressurize the chamber, the pressure release valve was unscrewed from the

chamber. This is right above the window, so the scaffold could be placed on the

window. HBSS was added to the chamber until it was filled with fluid. Then the
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pressure release valve was put in place but was left open. Fluid was added to the

pump as the whole system filled with fluid. Some bubbles came out of the valve on

chamber. Air is very compressible and the system does not have sufficient motion to

obtain 12 MPa of pressure if the air is not out of the system as much as possible.

Everything was sealed with Teflon sealing tape and no leakage should be observed

during the experiment. After the pressure valve was closed, the needle was advanced

on the threads to obtain the pressure. The needle was advanced by an electric drill

to generate pressure quickly.

To depressurize the system, the needle was slightly unscrewed. Then to avoid

letting air into the chamber again, the pressure release valve on the pump was opened.

The needle could be removed then.

After each day of experiments, the whole system was filled with 70% ethanol and

pressurized a little bit.

There are some challenges in using this bioreactor. First of all, the parts should

not be washed with or exposed to bleach, since the bleach is corrosive and any residual

bleach will kill the cells. However, components are autoclave compatible. No grease

should be used as a sealant because it may clog the PEEK tubing.

2.2.3 Validation of Cell Imaging with Confocal Microscopy

The chamber of the bioreactor was placed on top of the microscope objective.

The gel was placed on the sapphire glass inside the chamber. A drop of adenosine

triphosphate (ATP) was applied to the gel and the fluorescence was recorded. The

amplitude and duration of the spike in fluorescent intensity change (Ca++ concentra-

tion change) was analyzed with a self-provided custom-made MATLAB (Mathworks

Inc, Natick, Massachusetts, USA) script (Appendix A).
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2.2.4 Loading Constructs in Bioreactor with Hydrostatic Pressure

The gel was seated on top of the window inside the chamber, while the cham-

ber was seated on top of the confocal microscope (Olympus 2) with an objective of

20x or 10x. The PEEK tubing allowed us to pressurize the pump away from the

microscope. The Ca++ staining was observed with the fluorescent calcium indicator

having excitation/emission at 492/514 nm at 4 different z stacks through the height

of the cylindrical scaffold. The first z stack was chosen to be adjacent to the window

and the bottom of gel construct. The space between the z-stacks was 45 µm (Figure

2.3). Images were taken at 5 second intervals for 374 seconds before pressurizing and

during loading for approximately 500 seconds. The fluorescent intensity of individual

cells was quantified with FIJI software [71].

Fig. 2.3.: Schematic of seeded cells in (a) gel construct and 4 heights imaged by the

microscope. (b) gel with microscope objective.

2.2.5 Fixing Gels

Due to the movement of the gel inside the bioreactor even before pressurizing the

system, it was necessary to make the gel stay in place. It needed to be fixed next to
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the window in a way that the HP load was transferred to the scaffold. It was decided

to have the same gel structure (4% agarose) fill the chamber above the cell-seeded

gel to keep it from floating around inside the chamber. This acellular gel was called

fixing gel and was a cylinder with the diameter of 6.35 mm and height of 15.68 mm

(Figure 2.4).

The fixing gels were made by hand. A clear plastic sheet was rolled with the desired

diameter and the gel was poured in at an elevated temperature (around 800C) and

was cooled down until the plastic sheet could be removed (Figure 2.4). The gel was

cut into the required length.

Fig. 2.4.: Acellular hand-made fixing gel to stop the construct sample from floating,

placed on top of the cell-seeded gel inside the chamber.
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2.3 Results

2.3.1 Activation of Ca++ Channels with ATP

To test the bioreactor, ATP could be used to generate a spike in Ca++ concentra-

tion (Figure 2.5). Four cells were individually selected and analyzed with a custom-

made MATLAB script to quantify the amplitude and duration of the peaks in the

intensity-time graph (Appendix A). The code provided the start time of the peak,

Fig. 2.5.: Fluorescent intensity change over time. Exogenous ATP was added to

cell-seeded gels induced intracellular Ca++ concentration change. Confocal

microscopy imaged the fluorescent intensity change inside the chamber, through the

chambers window. Data collected by Komal Yadav.

the end time, duration, and the amplitude of intensity. The duration and amplitude

of the Ca++ spike for four cells are shown in Table 2.1.

These results verify that the Ca++ response of the cells can be observed through

the window of the bioreactor with confocal microscopy.
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Table 2.1.: Amplitude and duration of the fluorescent intensity peak indicating

interacellular Ca++ concentration change because of application of exogenous ATP

to the cells.

Cell Code Duration of Peak (s) Amplitude of Peak

Cell#1 75.1720 140.3660

Cell#2 83.1580 378.5840

Cell#3 39.3489 132.1680

Cell#4 62.1907 239.8940

2.3.2 Loading Constructs in Bioreactor with Hydrostatic Pressure

In the first run, the fixing gel was not used. To analyze the data, the fluores-

cent intensity for each Z stack was graphed vs time for 5 different cells. If the Ca++

concentration is not changing in the cell and the cell is not moving, then the flu-

orescent intensity at each z-stack would have been stable over time. However, the

maximum intensity was at Z2 at first (*), then was seen at Z3 before pressurizing

(*) pressurizing (Figure 2.6). The change of intensities before loading suggest that

the cell-seeded gel is floating in the chamber and is not resting on the window before

loading. After loading, the fluorescent intensities changed again, suggesting that the

gel was displaced downward with pressure. The cell-seeded gel was floating around

with and without loading.

Next, the fixing gel was used on to hold the cell-seeded gel scaffold in place and

the fluorescence intensity data was analyzed for 10 different cells. Unlike the previous

run, the fluorescent intensity did not change without loading, and was relatively stable

before applying the pressure (Figure 2.7). This proved that the fixing gel worked and

stopped the gel from floating.
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Fig. 2.6.: Fluorescent intensity of four Z-stacks over time for a representative cell

before and after the application of 12 MPa of static hydrostatic pressure without

fixing gel.

There was a change in fluorescent intensity during the time of loading. As can be

seen in Figure 2.7, the intensity of upper heights (Z stacks 3 and 4) was decreased and

the other two lower Z stacks were higher in intensity while the pressure was applied.

However, when the pressure was released, the fluorescent signal came back to the

intensity it was before loading. This suggests that the gel was displaced towards the

microscope due to the mechanical load and was returned to its original place after

depressurizing (Figure 2.8).

No Ca++ peaks were observed during or after applying the hydrostatic pressure

for 10 minutes for any of the 10 cells that were analyzed.
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Fig. 2.7.: Fluorescence intensity of a representative cell at four Z-stacks and the sum

of Z-stacks over time with the use of a fixing gel. The cell-seeded gel structure was

pressurized with 12 MPa of static HP at 147s and depressurized at 602 s.

Fig. 2.8.: Schematic of gel displacement inside the chamber after stabilization by

the fixing gel.
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2.4 Discussion

Ca++ ion signaling was previously shown to be an important part of mechan-

otranduction for mesenchymal stem cells in different types of loading such as ten-

sion, compression, fluid flow, and osmotic pressure, as well as hydrostatic pres-

sure [35,62,63,67,72–77]. As Ca++ seems to be necessary in mechanotransduction of

many kinds of loading, we aimed to study different aspects of its role and later on its

relationship to other factors involved in HP mechanotransduction.

The bioreactor was designed such that the Ca++ flux in the cells in a 3D con-

struct could be imaged live while being pressurized by HP; the ability to image the

Ca++ concentration changes was demonstrated by the addition of exogenous ATP.

Firstly, the Ca++ concentration change (fluorescent intensity change) due to loading

could not be imaged because the gel was floating around, even without loading. A

cylindrical acellular 4% agarose gel (called fixing gel) was made and placed on top of

the cell-seeded gel construct. By using the fixing gel, the cell-seeded gel was stopped

from moving. Therefore, the fluorescent intensity (implying the Ca++ concentra-

tion) change during the time of HP application could be imaged. However no peaks

detected during or after pressurizing.

Mizuno reported Ca++ concentration changes in bovine articular chondrocytes

exposed to static HP with a magnitude of 500 kPa at the time of applying the pres-

sure and after applying the load [48]. However, our results were not consistent with

this previous study; we did not see any changes in Ca++ concentrations in our cells

during or after loading. This may be because the two studies used different cell

types and scaffolds. Mizuno used bovine chondrocytes in monolayer, as opposed

to the mesenchymal stem cells in an agarose scaffold that were used in the current

study. Another study by Steward et al. demonstrated Ca++ involvement in cyclic

HP mechanotransduction by MSCs [76]. The varying responses to HP shows that the

magnitude of loading, time of loading, and whether the pressure is cyclic or static can

play roles in the response of the cells. Cyclic HP appears to activate Ca++ signaling,
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but a single application of HP for 10 minutes may have no effect on intracellular Ca++

concentration.
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3. ANALYSIS OF THE GEL DISPLACEMENT IN THE

BIOREACTOR SYSTEM DUE TO HYDROSTATIC

PRESSURE

3.1 Introduction

In our previous study, we used the bioreactor to image cells in 4% agarose gel live

and real time as described in Chapter 2, and saw that the gel was being deformed or

was moving when HP was applied.

In this chapter, the amount of movement and the cause of movement is analyzed.

Firstly, the magnitude of the movement was estimated. After that, possible reasons

for this movement, such as deformation of different parts of the bioreactor or the

deformation of the gel were analyzed.

3.2 Quantification of Displacement

3.2.1 Materials and Methods

The overall goal was to fit curves to the fluorescent intensity of the cells as a

function of z-height before and after loading and determine the shift in z due to

loading. In order to analyze the magnitude of the movement, we assumed the calcium

concentration in the cells was not changed by HP or cell movement. We further

assumed that the z location of the maximum fluorescent intensity coincided with the

location of the cell in z.

The intensity of fluorescent for 10 cells was determined at the moments before

and after pressurizing for four z-stacks (Figure 3.1). The first z-stack was adjacent to

the window near the bottom of gel construct (z1 =25 µm). The space between the
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z-stacks was 45 µm, with the highest image taken at z4=160 µm. The data before

pressurizing was fit to the quadratic equation:

f(z) = a(z)2 + b(z) + c (3.1)

while the data after pressurizing was fit to:

g(z) = a(z − d)2 + b(z − d) + c (3.2)

where a, b, and c are curve fitting parameters that are the same for both equations.

Parameter d in g(z) is the amount of shift between the two curves in z and represents

the magnitude of the movement of the cells (Figure 3.2) and was calculated in two

different ways.

Fig. 3.1.: Fluorescent intensity changes during time for each height/z-stack. Dots

indicates the intensities before (blue) and after (red) pressurizing selected and

collected for further analysis for a representative cell.
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Fig. 3.2.: Schematic of cell before (blue) and after (red) loading and the

displacement d in height (z). Quadratic functions were fit to the data before

pressurizing (f(z)) and after pressurizing (g(z)) and the amount of shift between

two functions (d) was determined.

3.2.1.1 Method#1

In this method the movement d was determined in two steps. First the intensity

data before loading was used to determine the a, b, and c value for f(z). The values

were used in g(z) and in the next fit only the undetermined parameter d was found.

For finding best-fit parameters, a custom-made MATLAB (Mathworks) script was

developed using the least square method (Appendix B).
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3.2.1.2 Method#2

In this method the data before and after loading (8 data points) was simultane-

ously fit to equations f(z) and g(z), respectively to find optimized values for a, b, c,

and d. This was done by maximizing the coefficient of determination (R2).

Assume an experimental data set with n values in form of yi(i = 1, 2, , n) with

ȳ = 1
n

∑n
i=1(yi) and each data point is modeled and named as fi(i = 1, 2, , n). The

residuals of each prediction would be in the form: ei = yi − fi. The variability can

be defined based on three sums:

SStot =
∑
i

(yi − ȳ)2 (3.3)

SSreg =
∑
i

(fi − ȳ)2 (3.4)

SSres =
∑
i

(yi − ȳ)2 =
∑
i

(ēi)
2 (3.5)

Then coefficient of determination is defined as:

R2 = 1− SSres

SStot

(3.6)

The solver method in Excel (Microsoft) was used to find best fit values for a, b, c, and

d by maximizing R2. The Excel solver uses GRG nonlinear method.

3.2.2 Results

3.2.2.1 Magnitude of Displacement

A quadratic polynomial adequately fit the data and provided unique coefficients

(Figure 3.3). The magnitude of movement was determined for 10 selected cells with

two methods.
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Fig. 3.3.: Fluorescent intensity changes during time for each height/z-stack. Dots

indicates the intensities before (blue) and after (red) pressurizing selected and

collected for further analysis for a representative cell.

3.2.2.2 Method#1

This method first used the data before loading to determine the best-fit values of

a, b, and c from f(z). Then these values were used in g(z) and the undetermined

parameter d was calculated. Values were found with self-developed MATLAB code

(Table 3.1). The average shift between two curves was d = 13.46 ± 1.68 µm.
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Table 3.1.: Best-fit parameters of functions f(z) = a(z)2 + b(z) + c and

g(z) = a(z−d)2 + b(z−d) + c from method #1 to determine the displacement d in z.

Cell Code |d| (µm) a b c

Cell#1 11.89 -0.78 12.08 305.96

Cell#2 13.61 -0.91 15.83 94.098

Cell#3 14.75 -0.11 16.91 489.15

Cell#4 11.19 -0.045 6.79 212.26

Cell#5 14.11 -0.037 7.12 85.51

Cell#6 14.63 -0.030 6.55 -39.43

Cell#7 15.96 -0.089 18.69 -172.18

Cell#8 11.50 -0.085 15.68 -119.50

Cell#9 14.94 -0.054 11.92 -93.42

Cell#10 12.02 -0.041 8.55 -37.90

Average 13.46

STDEV 1.68

3.2.2.3 Method#2

This method simultaneously used the data before and after loading and found

optimized values of a, b, c, and d for 10 cells with GRG nonlinear method (Tale 3.2).

The average shift between the two curves was d = 16.73 ±4.19 µm for method#2.
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Table 3.2.: Best-fit parameters of functions f(z) = a(z)2 + b(z) + c and

g(z) = a(z − d)2 + b(z − d) + c from method #2 to determine the displacement d in

z. * Outlier data.

Cell Code |d| (µm) a b c

Cell#1 15.22 -0.05 6.93 517.68

Cell#2 19.90 -0.060 10.03 274.64

Cell#3 27.05∗ 0.05 4.80 875.651

Cell#4 15.19 -0.028 3.51 334.62

Cell#5 18.67 -0.029 5.66 140.20

Cell#6 13.59 -0.033 6.96 -53.33

Cell#7 14.84 -0.91 18.70 -192.13

Cell#8 15.22 -0.06 11.58 7.49

Cell#9 13.25 -0.062 13.31 138.29

Cell#10 14.39 -0.034 7.29 3.92

Average 16.73

STDEV 4.19

3.2.2.4 Quality of Fit

Method 1 fit the data before loading well, but had poor fitting to the data after

loading because it did not use them to determine a, b or c. On the other hand, method

2 used all the data to simultaneously find best-fit values for the parameters and had

better overall R2 values. R2 values for the equation f(z) before loading were only

slightly different at 0.95 and 0.89 for methods 1 and 2, respectively. However the

average R2 after loading (g(z)) was 0.65 for method 1 and was substantially higher

at 0.84 for method 2 (Table 3.3). This suggests that method 2 was an overall better
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fit for the 10 cells and therefore the magnitude of displacement was determined from

the second method; d was estimated to be 16.73 µm.

Table 3.3.: R2 values of curve fittings for methods 1 and 2.

Cell Code R2 for f(z) R2 for g(z) R2 for f(z) R2 for g(z)

in Method 1 in Method 1 in Method 2 in Method 2

Cell#1 0.92 0.66 0.83 0.84

Cell#2 0.94 0.46 0.84 0.73

Cell#3 0.82 0.41 0.69 0.82

Cell#4 0.91 0.66 0.83 0.84

Cell#5 0.96 0.53 0.90 0.76

Cell#6 0.99 0.89 0.99 0.90

Cell#7 0.98 0.80 0.96 0.87

Cell#8 0.99 0.48 0.93 0.79

Cell#9 0.99 0.92 0.99 0.95

Cell#10 0.99 0.68 0.97 0.84

Average 0.95 0.65 0.89 0.84

STDEV 0.06 0.18 0.09 0.06

3.3 Source of Displacement

3.3.1 Materials and Methods

To determine the source of the displacement of the gel, three possible sources

were considered: deformation of the gel scaffold, deformation of the glass window,

and deformation of the epoxy glue.
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3.3.1.1 Scaffold Gel Deformation

As described in section 2.2.1, cells were seeded into 4% agarose gels. This means

the scaffolds contained 96% water and as a result the properties of water were used

to estimate the deformation of scaffold due to 12 MPa of hydrostatic pressure. The

change of volume in gels due to HP was determined through the following equation:

∆p = k
∆v

v
(3.7)

where p is HP, k is bulk modulus, and v is volume.

From the change in volume, can also be calculated as:

∆v

v
=
πr2h− πr2

0h0

πr2
0h0

(3.8)

where r0 and h0 are the undeformed radius and height of the gel, respectively, and r

and h are the radius amd height of the deformed scaffold. Expanding the terms and

neglecting higher order terms in small displacement:

∆v

v
=

(r0 −∆r)2(h0 −∆h)− r2
0h0

r2
0h0

(3.9)

∆v

v
=

(r2
0 − 2r0∆r)(h0 −∆h)− r2

0h0

r2
0h0

(3.10)

Assuming small displacements, higher order terms can be neglected:

∆v

v
=
r2

0h0 − r2
0h0 + r2

0∆h+ 2r0h0∆r

r2
0h0

(3.11)

Simplifying,
∆v

v
=

∆h

h0

+
2∆r

r0

(3.12)

For isotropic material under the uniform load of HP, ∆h
h0
≈ ∆r

r0
, so:

∆h

h0

=
1

3

∆v

v0

(3.13)

These equations were solved using the following values:

p= 12 MPa, k = 2.15× 109 Pa, h0 as primary height =3 mm
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3.3.1.2 Sapphire Glass Deformation

The movement of cells may be due to the glass deformation under the pressure.

To estimate the deformation of the glass, a finite element model was made of the

glass window. The simulations were modeled in Abaqus (ABAQUS (2011), Dassault

Systmes, Providence, RI, USA) with 3-D tetrahedron meshes.

The sapphire glass window was modeled as 0.5” in diameter, 0.08” in height with a

Youngs modulus of 462.6 GPa and Poissons ratio of 0.309 (data from www.ispoptics.com).

The boundary conditions were determined based on how the window is held in

the chamber (Figure 3.4). Three different boundary conditions were applied to the

window in separate Abaqus simulations, as the epoxy glue does not provide simple

fixation.
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Fig. 3.4.: Schematic of the sapphire glass window epoxied to the window holder.

In the first model, it was assumed that the top edge of the window was fixed and

12 MPa of pressure was applied to the entire top surface of the window (Figure 3.5).
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Fig. 3.5.: Schematic of the finite element model of sapphire window with fixed top

edge and 12 MPa pressure on top surface.

In the second model, it was assumed that the side of the window was fixed and

12 MPa pressure was applied to the entire top surface of the window (Figure 3.6).

Fig. 3.6.: Schematic of the finite element model of the sapphire window with fixed

side surface and 12 MPa pressure on top surface.

In the third model, it was assumed that the outer top surface is fixed and 12 MPa

pressure was applied to the non-fixed circle on the top surface with a diameter of

0.25” (Figure 3.7).
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Fig. 3.7.: Schematic of the finite element model of the sapphire window with fixed

outer top surface and 12 MPa pressure in the center.

3.3.1.3 Epoxy Glue Deformation

The movement of cell-seeded gels may be due to the epoxy tension under the

pressure, as the window is glued to chamber with epoxy (Figure 3.4). Models with

different thicknesses were generated because the actual thickness could not be deter-

mined. The deformation was modeled for thicknesses of 0.5, 0.6, 0.7, 0.8. 0.9 and 1

mm. The epoxy (EA E-05MR, HYSOL) was modeled as a cirlcular strip with inner

diameter of 0.25” and outer diameter of 0.5” (Figure 3.8). The Young's modulus

and Poisson's ratio were 723 MPa and 0.433 respectively [78]. The simulations were

modeled in Abaqus (ABAQUS (2011), Dassault Systmes, Providence, RI, USA) with

3-D tetrahedron meshes and 12 MPa of pressure was applied to the epoxy.
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Fig. 3.8.: Schematic of finite element model of epoxy with 12 MPa of applied

pressure on top.

3.3.2 Results

In Chapter 2, it was determined that although the gel was stopped from float-

ing around with a fixing gel, there was still ∼ 16 µm downward movement during

pressurizing. The cause for this movement was determined next.

3.3.2.1 Scaffold Gel Deformation

The change of volume and height in gels due to HP was determined through the

equation 3.7 to 3.11 and the properties of water. The volumetric strain was first

calculated:
∆v

v
= 5.58× 10−3 (3.14)

The strain in the vertical direction was:

∆h

h0

≈ 1

3

∆v

v0

= 1.86× 10−3 (3.15)
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This was used to calculate the theoretical change in the height of the scaffold.

∆h = 5.58µm (3.16)

We only imaged the bottom 4.5% of the scaffold height. Therefore, the theoretical

change in the height of imaging would be:

∆himaged = 0.045× 5.58 = 0.25µm (3.17)

3.3.2.2 Sapphire Glass Deformation

In the first model of the sapphire glass, it was assumed that the circular edge

at the top of the window was fixed and the pressure was applied to the entire top

surface. The maximum displacement in this model was 0.3135 µm (Figure 3.9).

Fig. 3.9.: Displacement of the sapphire glass with a fixed top edge in the finite

element model.

In the second model of the sapphire window with a fixed side surface, the maximum

displacement was 0.1543 µm (Figure 3.10).



49

Fig. 3.10.: Displacement of the sapphire glass with a fixed side surface in the finite

element model.

The finite element model of the sapphire glass window with the top surface par-

tially fixed resulted in a maximum displacement of 0.2220 µm (Figure 3.11).

Fig. 3.11.: Displacement of the sapphire glass with a partially fixed top surface in

the finite element model.

Overall, the models suggest a maximum displacement of the glass between 0.1544

µm and 0.3135 µm, which is small compared to our estimate of the movement of

the gel. Therefore, this displacement cannot be the main reason for the movement.
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Another material which is more deformable is the epoxy used to glue the window to

the chambers body, and this a cause of movement was also considered.

3.3.2.3 Epoxy Deformation

Epoxy thicknesses of 0.5, 0.6, 0.7, 0.8. 0.9 and 1 mm were modeled; the maximum

displacement increased with thickness and the relationship was linear (Figure 3.13).

The displacement for thickness of 1.0 mm were as high as 16.97 µm (Figure 3.12).

The calculations in the previous section show that the movement of the gel inside

the chamber was about 16.73 µm. If we assume the movement is due entirely to

epoxy deformation, the thickness of epoxy is approximately 0.98 mm.
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Fig. 3.12.: Displacement of epoxy with thickness of (a) 0.5 mm (b) 0.6 mm (c) 0.7

mm (d) 0.8 mm (e) 0.9 mm and (f) 1 mm. Simulated in Abaqus.
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Fig. 3.13.: Linear relationship between maximum epoxy displacement (determined

in Abaqus) and epoxy thickness.

3.4 Discussion

The fixing gel stopped the cell-seeded gel from moving in the absence of applied

load but there were still some movement due to the application of HP. The move-

ment was quantified by fitting quadratic curves to the fluorescent intensity data as a

function of z before and after loading. Two methods were used to fit the data. In the

first method, 4 data points from before loading were used to fit the curve and deter-

mine parameters a, b, and c and then the curve was fit to data after pressurizing and

parameter d was calculated. In the second method, all 8 data from before and after

loading were simultaneously utilized to determine the optimum values for parameters

a, b, c, and d. The second method showed overall better quality fitting based on R2

values. About 16 µm displacement or movement of the gel in the bioreactor was esti-
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mated. Further analysis determined that this was due more to the bioreactor design

rather than the gel construct deformation.

Deformation of the epoxy between the window of the bioreactor and its chamber

seemed to be one of main reasons for the displacement of the gel. Other causes of

the movement could be due to deforming or slipping of threads between the window

holder and chamber. In reality, all these sources of deformation combine to cause the

movement. The bioreactor provides live imaging of cells when they are seeded in φ=5

mm gels and also can hold up to 12 MPa of hydrostatic pressure. However, further

studies and efforts would have to be done on the bioreactor design to minimize the

deformations and maximize the quality of the images.
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4. THE EFFECT OF FAK INHIBITION IN EARLY AND

LATE CHONDROGENESIS AND HP

MECHANOTRANSDUCTION

4.1 Introduction

Mechanotransduction pathways for hydrostatic pressure are poorly understood,

and all of the signaling molecules are not known. A better understanding of how

the mechanical load is translated into a beneficial response could help to overcome

current limitations in cartilage tissue engineered structures. In this study, the in-

volvement of focal adhesion kinase (FAK) was considered as one of the agents in HP

mechanotransduction and chondrogenesis of MSCs.

Integrin binding to the extracellular matrix (ECM) outside the cell and to the cy-

toskeleton inside the cell, triggers intracellular pathways controlling cell behavior such

as proliferation, migration, and differentiation [79]. Focal adhesions are a response

to integrin binding formation, contain multiple integrins and are a concentrated site

of actin filaments and proteins such as talin, vinculin, paxillin (pax), Srx, and FAK

(Figure 4.1). FAK is one of the downstream regulators that transfers signals from

focal adhesions. The role of FAK in MSC proliferation and migration has been more

studied than differentiation. However, reports indicate a function for FAK in the

differentiation of MSCs and preosteoblasts [56,79–81].

Integrin binding and focal adhesions are mainly thought to inhibit chondrogene-

sis [83]. FAK signaling pathways were shown to suppress early chondrogenesis [84].

On the other hand, type II collagen decreased with FAK knockdown when the chon-

drocytes were cultured in alginate hydrogel [85]. Moreover, GAG secretion as well

as aggrecan was not affected by FAK knockdown in chondrocytes [85]. These results

showed the important role of FAK signaling in chondrogenesis but did not support
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Fig. 4.1.: Left: An integrin with and subunits attached to a scaffold. Right: A

focal adhesion containing multiple integrins is a concentrated site of actin filament

and protein binding [82].

each other in every aspect. In our lab, Huseyin Arman previously showed a dose-

dependent decrease in matrix production when FAK inhibitor was used on MSCs

seeded in 4% agarose gel. In addition, Komal Yadav from our lab confirmed this with

Alcian Blue staining (Figure 4.2).

There are many studies on FAK activity in response to different mechanical stimuli

for various types of cells. Fluid shear stress has been shown to activate FAK in bovine

aortic endothelial cells [86]. Moreover, FAK involvement was shown in mechanotrans-

duction of fluid shear stress by osteoblasts [87]. Wang et al. demonstrated that FAK

is involved in mechanosensing of mouse embryonic fibroblasts [88]. However, FAK

involvement in HP mechanotransduction had not been previously studied.
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Fig. 4.2.: Alcian blue staining of MSCs in agarose scaffold, cultured with different

concentrations of FAK inhibitor PF 573228 from day 1 to day 21 (early

chondrogenesis).

In this chapter the FAK participation in early and late chondrogenesis was investi-

gated. The study utilized a pharmacological FAK inhibitor at early and late stages of

MSC chondrogenic differentiation, and chondrogenic gene expression and matrix pro-

duction was assessed. Additionally, FAKs involvement in HP mechanotransduction

was studied.

4.2 Materials and Methods

4.2.1 Cell Isolation, Expansion, Encapsulation and Culture

The same procedure of seeding porcine MSCs in 4% agarose gels was done as in

Chapter 2, Part 2.2.1; cell-seeded gels were cultured in chondrogenic differentiation

medium for up to 6 weeks.

In some studies different concentrations of FAK inhibitor PF573228 (Sigma Aldrich)

were added to the culture medium on the gels from day1 to day 21 (early chondro-

genesis) or from day 22 to 42 (late chondrogenesis). The concentrations were: 0 µM

(control), 0.4 µM, 2 µM, 10 µM, and 50 µM. Gels were harvested either at day 21

(early chondrogenesis) or day 42 (late chondrogenesis).

In another study, cell-seeded gels were treated with 50 µM of the FAK inhibitor

overnight in their culture medium at days 6 and 20. The vehicle control for each
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group received the same volume of DMSO. Gels were harvested at day 7 (week1) and

day 21 (week3).

To investigate FAK involvement in mechanotransduction, gels were treated with

50 µM of the FAK inhibitor overnight after 3 weeks of culture. The same volume of

DMSO was added to each well as vehicle control. Gels were loaded the next day.

4.2.2 RNA Isolation and Real-time Polymeric Chain Reaction

Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to

quantify relative changes in the expression of chondrogenic genes in different groups.

RNA was extracted by homogenizing each construct in 1 mL of TRIzol® reagent

(Fisher Scientific Co.), followed by chloroform (Sigma-Aldrich) extraction. The ex-

tracted amount was incubated with an equal volume of 2-propanol in -20 0C freezer

overnight. The solution was then centrifuged at 4 0C and the precipitate was washed

once with 70 % ethanol. The precipitate was suspended in 100 µL DNAse and RNAse

free water and an equal volume of 75% ethanol was added. The RNA then was purified

with a PureLink RNA Mini kit (Ambion) according to manufacturers instructions. 3

gels were pooled together per replicate for higher concentrations of RNA. Total RNA

yield and purity were analyzed using a NanoDrop Spectrophotometer. To quantify

mRNA expression, 100 ng total RNA was reverse transcribed into cDNA using Ap-

plied Biosystems™ High-Capacity cDNA Reverse Transcription Kit (Fisher Scientific

Co.). Forward and reverse primers including Sox9, aggrecan (Agc), collagen type

II alpha 1 (Col2), and housekeeping gene (18s) were used in this study (Table 4.1).

RT-PCR was performed using an SYBR® Green MasterMix (Applied Biosystems,

A25742). 5 µL cDNA preparation (diluted 1:5 with RNase free water), 0.1 µL gene

assay, 10 µL Master mix and 4.8 µL RNase free water (20 µL total volume) were

added to each well. Samples were analyzed in duplicate or triplicate in one run (40

cycles). RT-PCR data were analyzed using the ∆∆CT method with 18s as the en-

dogenous control (n=3). In FAK inhibitor and early/late chondrogenesis study, data



58

are presented as fold changes in gene expression relative to the control group. For

investigating FAK involvement in mechanotransduction, data are presented relatively

as fold changes in gene expression relative to the unloaded group.

Table 4.1.: Reverse and forward gene primers for polymeric chain reaction. 18s is

housekeeping gene.

Gene Forward 5’-3’ Reverse 5’-3’

18s TCGGAACTACGACGGTATCTCT CGGAACTGAGGCCATGATTA

Agc CGGTAATGGAACACAACCCCT TGCAGGTGACCATGGCC

Sox9 CTTGTAATCCGGGTGGTCCTT ATCAGTACCCGCACCTGCAC

Col2 CCACGAGGCCAGGAGCT CCATCTGGCTTCCAGGGAC

4.2.3 Biochemical Analysis

Gel constructs (n=4 for each group) were digested with papain (125 µg/mL)

in 0.1 M sodium acetate, 5 mM L-cysteine-HCl, and 0.05 M EDTA (pH 6.0, all

Sigma-Aldrich) at 60 0C overnight. Sulphated glycosaminoglycan (sGAG) content

was quantified using the dimethylmethylene blue dye-binding assay (DMMB; Sigma)

with a chondroitin sulphate standard. Media samples from the twice weekly half me-

dia changes were also analyzed using the DMMB assay. Total sGAG was determined

by summing the amount of sGAG in each gel with the corresponding amount in the

media.

A Pico Green assay was also performed on the papain digests to measure the total

DNA in the constructs using Quant-iT™ PicoGreen™ dsDNA Assay Kit (Thermo

Scientific P11496) following the manufacturers protocol.
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4.2.4 Histology and Immunohistochemistry

One sample from each group (0, 0.4, 2, 10, 50 µM of FAK inhibitor) was fixed in

paraformaldehyde (PFA) overnight and then embedded in paraffin and sectioned with

a thickness of 5 µm. Sections were stained with 1 % Alcian blue 8GX (Sigma- Aldrich)

in 0.1 M HCl for to visualize sGAG distribution. Collagen types I and II and X

were determined with immunohistochemistry. Sections were treated with peroxidase,

followed by chondroitinase ABC (Sigma-Aldrich) in a humidified chamber at 37 0C

for 1 h to make the extracellular matrix permeable. Samples were then blocked

with goat serum diluted in PBS with 1 % BSA (Hyclone). Afterwards, the primary

antibodies for collagen types I, II and X(mouse monoclonal, Abcam) were applied for

1 h. Next, the secondary antibody (anti-Mouse IgG biotin conjugate, Sigma-Aldrich)

was applied for 1 h, followed by incubation with ABC Peroxidase Standard Staining

Kit (Fisher Scientific Co.) for 45 minutes all in a humidity chamber. Finally, the

slides were developed with DAB peroxidase (Vector Labs) for 10 minutes. Samples

were washed with PBS between each step and Permount (Fisher Scientific Co.) was

used under a cover slip. Negative and positive controls of pig ligament and meniscus

(positive for type I collagen, negative for type II collagen) and cartilage (positive for

type II collagen, negative for type I collagen) were also stained.

4.2.5 Application of Hydrostatic Pressure

Constructs were sealed into sterile bags with 1.5 mL of medium per construct.

Cyclic HP was applied in a metal pressure vessel filled with water within a 37 0C

water bath. The sealed bags exposed to HP were placed into the pressure vessel while

the controls were placed into a similar container in the same water bath. The pressure

vessel was connected by tubing to a hydraulic cylinder (PHD Inc., Fort Wayne, IN,

USA) that was loaded using a computer controlled MTS (858 Mini Bionix) testing

machine. The pressure inside the vessel was measured using a pressure gauge (Omega

Engineering Inc.). The load applied to the hydraulic cylinder by the MTS was set
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such that the HP inside the vessel reached an amplitude of 10 MPa at a frequency of

1 Hz, for 4 hours. Immediately after loading, constructs were snap-frozen and stored

at -80 0C until further analysis.

4.2.6 Protein Extraction and Western Blot

Snap frozen samples were transferred to 500 µL of RIPA buffer (Alfa Aesar J60629)

with EDTA and Halt Phosphatase-Proteinase cocktail (Thermo scientific 78440). The

samples incubated in the solution for 10-15 minutes and then they were homogenized

for 1 minute. The blade of the homogenizer was washed twice with 200 µL of RIPA

buffer solution to reach a total volume of 900 µL for each sample. Samples were in 40C

for 2 hours while shaking. The samples were centrifuged at 12000 g for 20 minutes

and the supernatant was taken to new tubes. The solution that contains protein then

was concentrated with Amicon Ultra Centrifugal Filters (3k) following the protocol

provided in the kit. The amount of protein was then determined by BCA Protein

Assay Kit, Thermo scientific 23227. Western blots were performed by Yao Fan in Dr.

Yokota's lab.

4.2.7 Statistical Analysis

Data were reported in form of mean ± standard deviation. Statistical analyses

performed using Student's t-test (for difference between 2 groups) or one-way ANOVA

with Tukey's post hoc test (for difference between multiple groups). A level of p <0.05

was considered significant.
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4.3 Results

4.3.1 Chondrogenic Gene Expression with FAK Inhibition in Early Chon-

drogenesis

The chondrogenic gene expression for different concentrations of FAK inhibitor

applied during the first 3 weeks of culture was determined. The expression of Agc

and Col2 decreased with increasing concentrations of the FAK inhibitor in a dose-

dependent manner (Figure 4.3).

Fig. 4.3.: (a) Agc and (b)Col2 relative gene expression with different concentrations

of FAK inhibitor in early chondrogenesis (day 1 to 21), relative to vehicle control.

* indicates significant difference from control group (cnt), p < 0.05.

The results are consistent with the DMMB assay and Alcian Blue staining that

had been done in our lab by Huseyin Arman and Komal Yadav respectively.

4.3.2 Total DNA and Total sGAG and Collagen Decrease by Increasing

FAK Inhibition in Late Chondrogenesis

Cell seeded agarose constructs were cultured in differentiation medium for 6 weeks

with the FAK inhibitor added in the last 3 weeks. The results show decreasing in DNA
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from 3.54±0.44 µg for the control group to 1.74±0.18 µg for the highest concentration

of FAK inhibitor (Figure 4.4a). The total sGAG also decrease from 811.63±133.5 3µg

for the control group to 188.48±56.8 µg for the highest concentration of FAK inhibitor

(Figure 4.4b). No trend was seen in Total sGAG/DNA for late chondrogenesis and

just the highest concentration of FAK inhibitor application was different from the

control group (Figure 4.4c).

Fig. 4.4.: Total DNA, (b) Total sGAG and (c) toal sGAG/DNA for different

concentrations of FAK inhibitor applied in weeks 4 to 6 (late chondrogenesis).

* indicates significant difference from control, p < 0.05.

Immunohistochemistry staining for Col II, I and X generally showed less staining

for higher concentrations of the FAK inhibitor. However, one concentration (0.4 µM)

did not follow this trend. This sample may have had a defect as other results seem

consistent (Figure 4.5a).
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Alcian blue staining was also done to visualize sGAG production with different

FAK inhibitor concentrations. The matrix production in the gel construct decreased

in a dose-dependent manner with FAK inhibition, suggesting that FAK may be im-

portant to MSC functionality (Figure 4.5b).

Fig. 4.5.: Representative images of (a) collagen II, X and I IHC staining for different

concentrations of FAK inhibitor (scale bars = 50 µm) and (b) Alcian blue staining

of sGAG deposition for different concentrations of FAK inhibitor (scale bars = 1000

µm) in late chondrogenesis (FAK inhibitor applied from week 4 to week6).
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4.3.3 Time-dependent Response of MSCs to FAK Inhibition

It had been shown that the FAK signaling suppressed early chondrogenesis [84].

We examined possible difference in gene expression when the matrix is not fully

produced (day 7) and when matrix is observed around the cells (day 21). In this

study, the inhibitor was on gels overnight. The results showed a decrease in expression

of all genes with FAK inhibition at day 7. At day 21, the expression of Agc and Sox9

was less with the FAK inhibitor, but the decrease was not as great as at day 7 (Figure

4.6a,b). At day 21 the expression of Col2 did not decrease with overnight application

of the FAK inhibitor (Figure 4.6c).

Fig. 4.6.: (a) Agc, (b) Col2 and (c) Sox9 relative gene expression with overnight

application of FAK inhibitor relative to vehicle control at days 7 and 21. * indicates

significant difference between days 7 and 21, p < 0.05; # tends to be different

between days 7 and 21, 0.056p6 0.1. Dashed line indicates a normalized value of

1.0 (no difference between treated (inhibitor) and control samples).
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4.3.4 Hydrostatic Pressure Activates FAK

Western Blot analysis of p-FAK, FAK and -actin was performed for loaded and

unloaded cells treated with either the FAK inhibitor or the vehicle control. With the

vehicle control, higher levels of FAK phosphorylation were seen with HP loading than

in the unloaded cells, suggesting that HP loading leads to an increase in FAK activity

and that FAK may be a part of MSCs mechanotransduction. On the other hand,

groups that were treated with the FAK inhibitor did not show a difference between

loaded and unloaded conditions (Figure 4.7).

Fig. 4.7.: Western Blot analysis of p-FAK and FAK for loaded (1 Hz of 10 MPa

hydrostatic pressure for 4 hours on day 21) and unloaded groups exposed to (a)

vehicle control and (b) overnight FAK inhibitor. β-actin was a loading control for

the Western blot.
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4.3.5 FAK Inhibition Eliminates the Beneficial Effect of Hydrostatic Pres-

sure

Integrin binding had been shown to play a part in the mechanotransduction of

hydrostatic pressure by MSCs [32,82], therefore we examined if FAK also plays a role

in the chondrogenic response to mechanical loading. The results confirm that HP

increases chondrogenic gene expression, and also show that FAK inhibition suppressed

MSCs′ response to HP (Figure 4.8). This outcome suggests that FAK is a part of the

pathway of HP mechanotransduction by MSCs.
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Fig. 4.8.: (a)Sox9, (b) Agc, and (c) Col2 relative gene expression for cells treated

with PF573228 or vehicle control. Expression of loaded (1 Hz of 10 MPa hydrostatic

pressure for 4 hours on day 21) cells normalized to the unloaded condition.

* indicates a significant difference between loaded and unloaded conditions, p <0.05.

Dashed line indicates a normalized value of 1.0 (no difference between loaded and

unloaded samples).

4.4 Discussion

Cell-matrix interactions been have shown to control chondrogenesis [89]. It has

also been shown that FAK might play a role in chondrocyte specific gene expression

and is required in chondrocyte communication with type II collagen and the mainte-
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nance of chondrocyte phenotypes [85]. On the other hand, Pala et al. demonstrate

that FAK/Src suppresses early chondrogenesis [84]. In this study, chondrogenic gene

expression of MSCs with the application of 50 µM FAK inhibitor at days 7 and 21 was

studied. The Agc gene expression increased at day 21 in comparison to day 7. This

difference helps to explain the contradiction between different studies and guided us

to further study of FAK.

Furthermore, FAK inhibition for MSCs in the early stage of chondrogenesis (weeks

1 to 3) decreased the amount of matrix production in a dose-dependent manner. This

observation was consistent between sGAG production per DNA, gene expression, and

immunohistochemistry and agrees the study done by Pala et al [84]. However, in the

late chondrogenic stage (weeks 4 to 6) no trend was observed in sGAG production

between groups. The DNA was higher in control group and decreased in higher

concentrations of FAK inhibitor. This suggest either the cells died in higher concen-

trations or proliferated in the control group. Immunohistochemistry for collagens II,

I and X and Alcian blue histology showed less staining with increasing FAK inhibitor

concentration. Therefore, more study is needed to have more consistent data between

techniques.

Mechanotransduction varies based on cell type, scaffold material, media supple-

ment and culture condition. Therefore, defining the conditions that allow for cells to

respond to mechanical loading is important. FAK was shown to be part of different

mechanotransduction pathways for shear stress [86, 87] and cyclic tensile strain [78]

for different types of cells. In the current study, 10 MPa cyclic HP of 1 Hz increased

FAK activation in MSCs (shown by Western blot) and also increased the chondro-

genic gene expression. Furthermore, the beneficial chondrogenic effect of HP on MSCs

was suppressed by inhibition of FAK. These observations suggest that focal adhesion

kinase is involved in the HP mechanotransduction of MSCs.
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5. THE EFFECT OF SIRTUIN1 INHIBITION ON

CHONDROGENESIS AND HYDROSTATIC PRESSURE

MECHANOTRANSDUCTION

5.1 Introduction

A better understanding of the signaling pathways involved in the cells response to

beneficial mechanical loading may uncover new molecular targets to enhance cartilage

matrix production and address limitations in cartilage tissue engineering and regen-

erative medicine. To this end, the potential role of surtuin1 (SIRT1) was studied in

HP mechanotransduction and chondrogenesis for MSCs.

SIRT1 is a NAD+-dependent histone deacetylase that is known to be an anti-

aging gene [90]. As SIRT1 can de-acetylate various transcription factors and also

reacts with chromatin and nonchromatin proteins, it cooperates in cell differenti-

ation, survival, tumorigenesis, inflammation, and metabolism [91]. SIRT1 can be

activated by resveratrol (3,5,4-trihydroxy-tran-stilbene), which is found in the skin

of red grapes, cranberries, and peanuts [90]. Investigations show that resveratrol

has anti-inflammatory, antioxidant, and antitumor effects on tumor cells [92–94] and

other cell types.

Although SIRT1 is the best-studied of the 7 sirtuins, there are some considera-

tions about SIRT6 as well. It has been shown in vivo that SIRT1 and SIRT6 play

important roles in cartilage homeostasis and their activators might be effective in

cartilage anabolism [95]. It has been suggested to activate sirtuins to treat OA and

joint degenerative pathologies as the sirtuins are thought to encourage chondrocyte

survival, especially under stress conditions. Therefore, the function and pathway of

sirtuin activity is under investigation in different aspects of cartilage biology, such as

skeletal development, osteoarthritis (OA), and rheumatoid arthritis (RA) [95].
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SIRT1 is known as a mammalian ortholog of yeast SIR2, and one of the genes in-

volving in aging [96]. Aging is a destructive factor in MSCs capability to self-renew,

stemness, and differentiation. The loss of SIRT1 expression is partly responsible for

older individuals to have fewer MSCs and for their harvested MSCs to poorly prolif-

erate and differentiate. MSCs also tend to differentiate to the adipose lineage with

decreased SIRT1 expression and age [97]. These factors might explain increasing tis-

sue degeneration diseases (such as osteoporosis, arthritis, and sarcopenia) with aging.

SIRT1 activation can protect MSCs from DNA damage, reactive oxygen species, hy-

perinflammatory, and apoptotic signaling and help them maintain their self-renewal

characteristic [98]. The protective role of SIRT1 in MSCs has been demonstrated in

ex vivo growth of human MSCs in culture [99] and the in vivo maintenance and func-

tion of MSCs in mice [100]. In addition, SIRT1 is responsible for various biological

functions besides aging, such as stress responses [101–103].

In actuality, an early study showed reduction of sirtuin protein level and activity

with osteoarthritis development [104]. Afterwards, the sirtuin activity and influence

in biology were widely studies and it was observed that this protein plays roles in

metabolism and heath of articular cartilage. There is evidence that SIRT1 plays

a role in regulating cartilage homeostasis [105]. In this regard, chondrocytes from

patients with osteoarthritis were harvested and SIRT1 overexpression or activation

increased cartilage related gene expression (Collagen II and Aggrecan) [106]. On the

other hand, SIRT1 knockout in mice leads to osteoarthritis [107]. Another study of

chondrocytes confirmed that SIRT1 inactivation caused hypertrophy and catalytic

activity in this type of cell [108].

Although there has not been sufficient study, some evidences demonstrate poten-

tial role of SIRT1 in mechanotransduction. Recently, Chen et al. claimed the decrease

of reactive oxygen species generation caused by mechanical stretch in skeletal muscle

cells was due to upregulation of SIRT1 [109]. Moreover, human periodontal ligament

cells expressed immune response genes through the SIRT1 pathway under mechani-

cal stretch [110]. Additionally, mechanical stretch encouraged antioxidant response
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and osteogenic differentiation in human MSCs by the activation of the AMPK-SIRT1

signaling pathway [111].

In this chapter, the possible role of SIRT1 in differentiation and HP mechan-

otransduction of mesenchymal stem cells was investigated. Due to beneficial effect of

SIRT1 in MSC differentiation and survival and its response to mechanical stimuli, we

hypothesized that SIRT1 is activated in response to cyclic hydrostatic pressure and

is necessary for the mechanotransduction of HP and MSC chondrogenesis.

5.2 Materials and Methods

5.2.1 Cell Isolation, Expansion, Encapsulation and Culture

The procedure of seeding 4% agarose gels was done as described in Chapter 2,

Part 2.2.1. Briefly, MSCs were harvested from porcine femoral bone marrow and

were expanded in for 2 passages. Afterwards, they were seeded in 4% agarose gel at a

density of 15 million cells/mL, and scaffolds with dimension φ=5mm×3mm thickness

were obtained. They were cultured in chondrogenic differentiation medium containing

TGF-β3 for 3 weeks. A day before the application of hydrostatic pressure, 0.1 mM

SIRT1 inhibitor (EX527, Sigma, St. Louis, MO) was added to the media overnight

on the cell-seeded gel constructs. The same volume of DMSO was added to other gels

as vehicle control.

5.2.2 Application of Hydrostatic Pressure

As explained in Chapter 4, part 4.2.1, constructs were sealed into sterile bags

with 1.5 mL of medium per construct. Cyclic HP was applied in a pressure vessel

filled with water within a 37 0C water bath. The sealed bags exposed to HP were

placed into the pressure vessel while the controls were placed into a similar container

in water bath next to the pressure vessel. The load applied to the hydraulic cylinder

by the MTS was set such that the HP inside the vessel reached an amplitude of 10
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MPa at a frequency of 1 Hz, for 4 hours. Immediately after loading, constructs were

snap-frozen and stored at -800C until further analysis.

5.2.3 RNA Isolation and Quantitative Real-time Polymeric Chain Reac-

tion

As described in Chapter 4, part 4.2.3, the total RNA was extracted using TRIzol

(Invitrogen) followed by an RNA purification kit. Then 100 ng of RNA for each

sample went through reverse transcription and cDNA was obtained. RT-PCR was

done with SYBR® Green protocol for aggrecan, Sox9, and collagen II genes with 18s

as the housekeeping gene and analyzed with ∆∆CT method. The primer sequences

are found in Table 4.1.

5.2.4 Protein Extraction and Sirtuin Activity Measurement

Snap frozen samples were transferred to 500 µL of DL-Dithiothreitol (DTT; Sigma,

43815) with EDTA solution and protease inhibitor cocktail (Sigma, P8340) and were

homogenized for 1 minute for each sample. The blade of the homogenizer was washed

with 100 µL of the DTT solution to reach a total volume of 600 µL for each sample.

Samples were placed in 40C for 10-15 minutes while shaking. Then, samples were

centrifuged at 16000 g for 20 minutes at 40C and the supernatant was taken to new

tubes. The protein was concentrated with Amicon Ultra Centrifugal Filters (50k)

following the manufacturers protocol. The activity of protein was then determined

by SIRT1 Assay Kit (Sigma Aldrich, Cat# CS1040) following the protocol provided

by the manufacturer.
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5.2.5 Statistical Analysis

Biochemical measurement were reported in the form of mean ± standard de-

viation. Differences between groups were determined using Students t-test (Excel,

Microsoft office). A level of p <0.05 was considered significant.

5.2.6 Results

5.2.6.1 Effect of SIRT1 Inhibitor on Gene Expression

First the effect of SIRT1 inhibition on the chondrogenic gene expression was as-

sessed via RT-PCR. Sox9, Agc and Col2 gene expression all increased significantly

by application of SIRT1 inhibitor EX527 overnight (Sox9: 79.16 ± 31.13 fold, Agc:

20.83 ± 9.45 fold, Col2: 13.95 ± 5.65 fold) (Figure 5.1).

Fig. 5.1.: Agc, Col2, and Sox9 relative gene expression, SIRT1 inhibitor EX527

normalized to the vehicle control. * indicates significant difference between inhibitor

group and vehicle control group; p < 0.05. Dashed line indicates a normalized value

of 1.0 (no difference between treated (inhibitor) and control samples).
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5.2.6.2 EX527 and Hydrostatic Pressure Decreasing SIRT1 Activity

SIRT1 activity was measured in cell-seeded gels that were exposed to vehicle

control and were either loaded with hydrostatic pressure or were left unloaded. The

activity of SIRT1 was decreased by the application of cyclic HP (Figure 5.2).

Fig. 5.2.: SIRT1 activity of unloaded and loaded vehicle controls (1 Hz of 10 MPa

hydrostatic pressure at 1 Hz for 4 hours on day 21). * indicates significant difference

between groups; p <0.05.

To verify that EX527 was effective at inhibiting SIRT1 activity, it was used with

the SIRT1 activity kit. The kit was used with purified SIRT1, an inhibitor that was

provided with the kit, and EX527. Blank readings were subtracted from readings

for each inhibitor. The SIRT1 activity was lower with EX527 than with the kit's

inhibitor, suggesting that the EX527 effectively inhibited the SIRT1 enzyme (Figure

5.3).
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Fig. 5.3.: SIRT1 activity with different inhibitors confirms that EX527 provides

sufficient SIRT1 inhibition. Data compared to SIRT1 activity when no inhibitor was

used on the sample.

5.2.7 SIRT1 Inhibition Suppressed the Beneficial Effect of Hydrostatic

Pressure

As before, cyclic HP increased the expression of the 3 chondrogenic genes that

were assessed. The beneficial effect of HP was suppressed in these genes when EX527

was applied to gels overnight (Figure 5.4).
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Fig. 5.4.: (a)Col2, (b) Agc, and (c) Sox9 relative gene expression for SIRT1 inhibitor

EX527 and vehicle control loaded (10 MPa hydrostatic pressure at 1 Hz for 4 hours

on day 21) normalized to the unloaded condition. * indicates a significant difference

between loaded and unloaded cell-seeded gels, p <0.05. Dashed line indicates a

normalized value of 1.0 (no difference between loaded and unloaded samples).

5.2.8 Discussion

SIRT1 is involved in biological responses such as stress responses, DNA repair

and inflammation, differentiation, and survival [101–103,112]. Some data suggest the

potential role of SIRT1 in mechanotransduction. However, SIRT1 activity had not

been previously studied with HP or with chondrogenic mechanical loading.
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The results show that the SIRT1 inhibitor EX527 increased chondrogenic gene

expression in mesenchymal stem cells in chondrogenic conditions. Since this was a

surprising result, we verified that the inhibitor decreased the SIRT1 activity using

purified SIRT1 and the SIRT1 activity kit, and saw that it was effective. This study

also confirmed that mechanical loading improves MSCs chondrogenesis, as has been

observed previously using various scaffolds [31, 40, 41]. The results also suggest that

SIRT1 is involved in hydrostatic pressure mechanotransduction as the SIRT1 activity

decreased with HP loading and also the inhibition of SIRT1 suppressed the beneficial

effect of HP for chondrogenesis.

Results from our study suggest that SIRT1 inhibition increased chondrogenesis in

MSCs, as cells exposed to EX527 demonstrated increased chondrogenic gene expres-

sion (Agc, Col2, and Sox9) and the activity of SIRT1 was decreased with both cyclic

hydrostatic pressure and EX527 application to MSCs. SIRT1 inhibition appeared to

improve chondrogenesis, which is opposite from what had been reported in previous

studies. Buhrmann et al. demonstrated that SIRT1 activity enhances chondrogenic

differentiation of human MSCs [91]. Other studies demonstrated that SIRT1 overex-

pression or activation increased cartilage related gene expression (Col2 and Agc) in

human chondrocyte [109] or that deletion of SIRT in mice leads to more severe os-

teoarthritis [107]. On the other hand, it has been shown that sirtuin1 (SIRT1) activity

was higher in growth plate endochondral ossification than chondrogenic lineage. Our

hypothesis that mechanical load would increase SIRT1 activity and enhance chon-

drogenesis was not supported by the data. This may due to the short term duration

of the inhibition, or to differences in cell types and treatments between the current

study and previous reports. The contradictions may reveal new insights for cartilage

tissue engineering if the role of SIRT1 is better understood.
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6. CONCLUSIONS

The work in this thesis aimed to determine the role of different signaling pathways

in the chondrogenic responses of MSCs to HP. Firstly, we tried to image the Ca++

signaling response of a single application of HP, as Ca++ signaling was previously

shown to be involved in the mechanotransduction of HP. The eventual goal of this

study was to investigate its relationship with other factors that are involved in HP

mechanotrasduction in MSCs. We applied HP for 10 minutes to the cells and saw

no change in Ca++ concentration. Additionally, we discovered that cell-seeded gels

moved during mechanical loading due to deformations in the bioreactor. The magni-

tude and the cause of the deformation was analyzed, however, there are some other

elements that should also be considered as possible sources of deformation.

Moreover, the result from investigating the role of FAK in chondrogenesis showed

a differential responses of MSCs to FAK inhibition in early and late stages of chon-

drogensis. Previous studies from our lab showed a dose-dependent loss of matrix

production with increasing concentration of a pharmacological FAK inhibitor in early

chondrogenesis. In this study the matrix production with FAK inhibition during late

chondrogenesis was investigated; some differences were shown in matrix production

between early and late chondrogenesis. Additionally, FAK phosphorylation increased

with 10 MPa of cyclic HP loading for 4 hours, and the inhibition of FAK suppressed

the increase in chondrogenic gene expression with loading. These results suggesting

the FAK signaling is important for MSCs mechanotransduction. For further study,

some improvements are needed for different result to be consistent. Moreover, the

study should be done using more donors to verify the results.

Another part of our study explored SIRT1 involvement in MSC chondrogenesis.

Firstly, the chondrogenic gene expression increased when a SIRT1 inhibitor was used

overnight on MSCs. Secondly, SIRT1 activity decreased with a beneficial chondro-
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genic load of 10 MPa of cyclic HP for 4 hours. These two results suggest that SIRT1

inhibition could enhance chondrogenesis. In other studies in the literature, SIRT1 was

shown to be necessary for chondrogenesis, and to be important for cartilage home-

ostasis. This discrepancy between published reports and our results may be due to

differences in cell type or the duration of SIRT1 inhibition. Additionally, SIRT1 inhi-

bition suppressed the beneficial effect of HP in chondrogenic gene expression, impli-

cating SIRT1 involvement in HP mechanotransduction. Exploring the contradictions

between studies may lead to new insights into SIRT1 activity in chondrogenesis. Fur-

ther investigation is needed about the relation of sirtuin1 inhibition and its activity

with mechanical stimuli.

In conclusion, the results from this study help explain the role of different factors

such as Ca++, FAK, and sirtuin1 in cyclic HP mechanotransduction by MSCs (Figure

6.1). Understanding and investigating the relation between these different factors

could be the goal of future studies. Additionally, the duration of loading might be

important for the activity and expression of these factors and could be the subject

of additional studies. Moreover, our study used the inhibitors overnight and more

study could be done about the difference between overnight application and long-

term application of sirtuin1 inhibitor on cells. If the biochemical pathway of MSC

mechanotransduction is clarified, it could serve as a guideline for improving current

cartilage tissue engineering strategies.
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A. MATLAB CODE TO RECOGNIZE PEAKS IN DATA

This MATLAB Script is developed for recognizing peaks and determining their

duration and amplitude in Fluorescent intensity-time Graphs.

clear;

clc;

IU1 = xlsread(’DATAcopy.xlsx’,’sheet1’);\%intensity of the cell1

IU2 = xlsread(’DATA.xlsx’,’sheet2’);\%intensity of the cell2

IU3 = xlsread(’DATA.xlsx’,’sheet3’);\%intensity of the cell3

IU4 = xlsread(’DATA.xlsx’,’sheet4’);\%intensity of the cell4

time = xlsread(’DATAcopy.xlsx’,’sheet5’);\%time

tao=1100/110;\%tao=real time of experiment(sec)/pics created by Fiji

duration = [];

amplitude = [];

start = [];

finish = [];

\%Cell\#1 analysis

for i=1:size(IU1,1)-1\%number of data

IU1dif(:,i)=IU1(i+1)-IU1(i);

end

M1=abs(IU1dif);

avg1=mean(M1); \%avg of subtraction of IU(i+1)-IU(i)
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std1=std(M1);

L1=std1+avg1; \%standard definition for finding peaks

timehold = 1;

IUdifff1 = IU1dif;

while max(IUdifff1) > L1

c=0;

for i=timehold:size(IU1dif’,1)\%number of data

if IU1dif(i)-L1>0

c=c+1;

more1(c)=IU1dif(i);

end

end

IUdiff1 = IU1dif(timehold:size(IU1dif’,1));

s1=find(IUdiff1==more1(1));

s1 = s1 + timehold -1;

tbegin1=tao*(s1-1); \%where the peak starts

A1 = [];

for j=1:(size(IU1dif’,1)-s1)

A1(j)=IU1(j+s1)-IU1(s1); \%subtraction of points after

the start point from the start point

end

N1=A1(A1<0);

a1=N1(1);

jj1=find(A1==a1); \%shows the place of the first negative number in matrix A

jj1 = jj1(1,1);

eL1=s1+jj1; \%ending point later

eF1=eL1-1; \%ending point former
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\%linear interpolation between two ending points:

te1=(IU1(s1)-IU1(eF1))/(IU1(eL1)-IU1(eF1))+eF1;

tend1=te1*tao;

duration1=tend1-tbegin1

amplitude1=max(IU1)-IU1(s1)

s1

amplitude = [amplitude;amplitude1];

finish = [finish;tend1];

start = [start;tbegin1];

duration = [duration;tend1];

timehold = eL1;

IUdifff1 = IU1dif(timehold:size(IU1dif’,1));

end

IUs=[amplitude, start, finish, (finish-start)]

\%Plotting:

plot(time,IU1,’-’,’linewidth’,1.2);

xlabel(’Time’)

ylabel(’Fluorescent Intensity’)
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B. MATLAB CODE TO FIT QUADRATIC POLYNOMIAL

CURVE ON DATA

This MATLAB Script is developed for fitting quadratic poly to the data before

pressurizing.

% fitting quadratic poly to the data before(f(x)) and finding delta for the poly fit

after(g(x)=f(x+delta)) for

\% fitting quadratic poly to the data before(f(x)) and finding delta

for the poly fit after(g(x)=f(x+delta)) for

clear;

clc;

cell_1 = xlsread(’movement.xlsx’,’sheet1’);

$z$ = cell_1(:,1) \% before loading height

int_be = cell_1(:,2) \%before loading intensity

int_af = cell_1(:,3) \%after loading intensity

F= @(x,z)(x(1)+x(2)*z+x(3)*(z.^2)); \%x(i)’s are model parameters to be fit.

x0 = [1 1 1]; \% Initial guess of x(i)’s

\%nonlinear least squares solver

[x,resnorm,residual,exitflag,output]= lsqcurvefit(F,x0,z,int_be);

\%print the results

fprintf([’There were \%d iterations using lsqcurvefit.\n’],output.iterations);

fprintf([’There were \%d function evaluations,lsqcurvefit.\n’],output.funcCount);

fprintf([’The value of error \%f.\n’],resnorm);\%resnorm is the sum of the

residuals squared,
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gives a measure of the overall error

c=x(1);

b=x(2);

a=x(3);

G= @(y,z)(c+b*(z-y(1))+a*((z-y(1)).^2)); \%d is the shifting parameter

y0 = [0];

\% Initial guess of d

\%nonlinear least squares solver

[y,resnorm,residual,exitflag,output]= lsqcurvefit(G,y0,z,int_af);

\%print the results

fprintf([’There were \%d iterations using lsqcurvefit.\n’],output.iterations);

fprintf([’There were \%d function evaluations,lsqcurvefit.\n’],output.funcCount);

fprintf([’The value of shift.\n’],y(1));

fprintf([’The value of error \%f.\n’],resnorm);\%resnorm is the sum of

the residuals squared,

gives a measure of the overall error

d=y(1);

fprintf([’before(z)=a*z.^2+b*z+c, after(z)=a*(z-d).^2+b*(z-d)+c, with:.\n’]);

fprintf([’and after(z)=a*(z-d).^2+b*(z-d)+c.\n’]);

fprintf(’a= \%f.\n’,x(3));

fprintf(’b= \%f.\n’,x(2));

fprintf(’c= \%f.\n’,x(1));

fprintf(’d= \%f.\n’,y(1));

times = linspace(25,160);

plot(z,int_be,’bo’,times,F(x,times),’b-’)

hold on;
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plot(z,int_af,’go’,times,G(y,times),’g-’)

legend(’Data’,’Fitted curve’)

title(’Data and Model’);

xlabel(’height, um’);

ylabel(’intensity’);

hold off;


