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The 20S proteasome, a multi-subunit protease complex, present in all domains of life and some 

orders of bacteria, is involved in degradation of the majority of cellular proteins. Structurally, it is 

made of α and β subunits arranged in four heptameric rings, with inner two β-rings sandwiched 

between outer two α-rings. The 20S proteasome in prokaryotes usually has one type of α and one 

type of β subunits, whereas eukaryotes have seven distinct types of α and seven distinct types of β 

subunits. Unlike the highly conserved structure of proteasome, its assembly pathway is different 

across the domains. In archaea and eukaryotes, proteasome assembly begins with α subunit 

interactions leading to the α-ring formation. By contrast, bacterial proteasome assembly pathway 

bypasses the α-ring formation step by initiating assembly through an α and β subunit interaction 

first. These early interactions are not well understood due to their highly rapid and dynamic nature. 

This dissertation focused on understanding the early events in proteasome assembly and 

contributed three significant findings. First, the archaeal proteasome assembly can also begin 

without formation of α-rings, demonstrating the coexistence of a bacterial-like assembly pathway. 

Second, a novel assembly intermediate was identified in yeast, and its composition argues for the 

presence of a similar α-ring independent assembly pathway. Third, the assembly chaperone Pba3-

Pba4 prevents the formation of high molecular weight complexes arising from spontaneous and 

non-productive interactions among the α subunits. These findings provide a broader understanding 

of proteasome biogenesis and suggest considering proteasome assembly event as a network of 

interactions rather than a linear pathway. The results also shed light on assembly chaperone’s 

contribution in increasing the efficiency of proteasome assembly by streamlining the productive 

interactions. 
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 INTRODUCTION TO THE 20S PROTEASOME AND ITS 

ASSEMBLY 

1.1 Ubiquitin Proteasome System (UPS) 

Protein synthesis and timely degradation is crucial and tightly regulated processes that 

ensures proper functioning of the cell. Various kinds of internal and external stressors can often 

disrupt protein homeostasis which then leads to accumulation of unwanted and misfolded proteins. 

Such a state is associated with various cancers, neurodegenerative and cardiovascular diseases. In 

eukaryotes, the ubiquitin-proteasome system (UPS) is responsible for the regulated degradation of 

the majority of intracellular proteins, including misfolded, or damaged proteins (Varshavsky, 

2012). 

 

  The UPS contains two main components, the ubiquitin machinery and the 26S proteasome. 

The ubiquitination machinery functions in the covalent attachment of a small, very highly 

conserved protein modifier (ubiquitin) to the protein substrate through a cascade of ubiquitination 

enzymes. A protein tagged with ubiquitin is marked for degradation. The mechanism of 

ubiquitination is well studied and reviewed elsewhere (Hochstrasser, 1996; Hochstrasser et al., 

2008; Komander & Rape, 2012; Kulathu & Komander, 2012). Ubiquitination-like tagging has also 

been observed in archaea and actinobacteria. The tagged protein substrates are then recognized 

and degraded by the 26S proteasome. The 26S proteasome is a threonine protease comprising of 

the 20S proteasome or the core particle (CP) and a 19S regulatory particle (RP). The CP is 

comprised of 28 proteins arranged in a barrel shaped complex that has the catalytic activity in its 

central core. The 20S proteasome is also present in archaea, actinomycetes and nirtrospirales 

orders of bacteria (De Mot, Nagy, & Baumeister, 1998; De Mot, Schoofs, & Nagy, 2007). The 

entry of substrate into the CP is regulated by activators or regulators that are present across all 

domains. The 19S regulatory particle is comprised of 19 subunits that are assembled into lid and 

base subcomplexes. Six of the nine base subunits are AAA ATPase family proteins that form the 

hexameric ring, and requires ATP to bind either one or both sides of CP. The 19S RP functions in 

recognizing, unfolding, deubiquitinating and translocating substrate to the central chamber of the 

CP.  
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1.2 The 20S Proteasome Structure 

The 20S proteasome is coaxially arranged as four heptameric rings with outer α-rings and 

inner β-rings made from α and β subunits respectively. The structure and arrangement of the 

proteasome is highly conserved across all domains of life (Fig. 1.1). One major difference lies in 

the subunit complexity found in higher organisms. Archaeal and bacterial proteasomes usually 

have one type of α and β subunits (Lin et al., 2006; Lowe et al., 1995; Tamura et al., 1995). 

Eukaryotes have seven different types of α (α1- α7) and seven different types of β (β1- β7) subunits 

arranged as α1-7 β1-7 β1-7 α1-7 (Groll et al., 1997).  

 

 

 

 

 

 

 

 

 

Figure 1.1: The 20S proteasome structure conservation across all domains 

Space filling model generated by Cn3D based on the crystal structure of the CP from 

Thermoplasma acidophilum (Archaea), Rhodococcus erythropolis (Bacteria) and Saccharomyces 

cerevisiae (Eukaryote). Each proteasome subunit within the same α-ring and β-ring is assigned 

different color. 

 

All β subunits in the archaeal and bacterial proteasome are catalytically active and 

preferentially cleave after hydrophobic residues. Among the seven distinct eukaryotic β subunits, 

β1, β2, and β5 are catalytically active and shows a broader substrate specificity by cleaving after 

acidic, basic and hydrophobic residues respectively. The active site residues within the surface 

pocket of β subunits determine its substrate specificity. Interestingly, the CP of Mycobacterium 

tuberculosis has cleavage specificities similar to eukaryotes (acidic, basic and hydrophobic 

residues) despite having only one type of β subunit (Lin et al., 2006). The crystal structure of M. 

tuberculosis CP revealed their β-subunit active site is unique. It is flanked by hydrophilic residues 

on one side and hydrophobic residues on the other side, thereby making it a hybrid of eukaryotic 
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catalytic subunits (Hu et al., 2006). Most β subunits are synthesized with N-terminal propeptides 

that are proteolytically removed during assembly. Removal of propeptides in the catalytic β 

subunits exposes its active site threonine (Thr1) residue that makes proteasome active only after 

its assembly (P. Chen & Hochstrasser, 1996; S. Witt et al., 2006). 

1.3 Gating 

CryoEM images and crystal structures of the free CP and CP bound to various activators 

have brought a detailed structural insight of the proteasome (S. Chen et al., 2016; Dambacher, 

Worden, Herzik, Martin, & Lander, 2016; Forster, Masters, Whitby, Robinson, & Hill, 2005; Groll 

et al., 1997; Huang, Luan, Wu, & Shi, 2016; Xueming Li et al., 2013; Lowe et al., 1995; Schweitzer 

et al., 2016; Unno et al., 2002b). The interior of the CP has three chambers, the two antechambers 

formed between the interface of α-rings and β-rings, and the central catalytic chamber formed 

between the two β-rings. A narrow opening, called the α-annulus, present at either end of the CP, 

is the entry site of the substrate. The first 10-15 residues at the N-termini of α subunits extends 

into the α-annulus to form a gate which remains closed until activated, and thereby prevents 

untimely entry of substrate into the central catalytic chamber (Groll et al., 2000; Religa, Sprangers, 

& Kay, 2010).  

 

Binding of activators to the α-ring brings conformational change in the α subunit that leads 

to opening of the gate (Groll et al., 2000; Hill, Masters, & Whitby, 2002). Deletion of gating 

residues result in a constitutively  “open gate” proteasome conformation that can degrade peptides, 

unfolded proteins, intrinsically disordered proteins or proteins with disordered regions without 

binding to the activators (Asher, Reuven, & Shaul, 2006; Asher & Shaul, 2005; Baugh, Viktorova, 

& Pilipenko, 2009; Choi et al., 2016; Lin et al., 2006). Under the oxidative stress conditions, 

leading to increased levels of damaged and misfolded proteins, such open gate proteasome might 

help in their clearance by remaining constantly active.  However, in one study, open gated 

proteasome mutant decreased yeast viability under prolonged stress condition, emphasizing the 

relevance of an intact gate (Bajorek, Finley, & Glickman, 2003). In eukaryotes, the distinct N-

termini residues of all α subunits (α1-7) attain a specific position contributing to a tightly closed 

gate such that the free CP remains incapable of hydrolysis without activator binding (Groll et al., 

1997). Bacterial proteasomes too have fully closed gates despite having only one type of α subunit. 
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Crystal structure revealed different conformation attained by the same α subunit within the α-ring 

contributing to a fully closed gate (D. Li, Li, Wang, Pan, & Lin, 2010). By contrast, the archaeal 

proteasome gate remains in a relatively open state, perhaps due to the disordered nature of gating 

residues, and these proteasomes show mild activity in the absence of activators (Lowe et al., 1995).  

1.4 Activators 

Apart from the well-characterized 19S RP, there are also other known activators found in 

all domains of life. PAN (Proteasome activating nucleotidase) and AMA (archeoglobus and 

methanogenic archaea) are two CP activators identified in archaea (Wilson, Ou, Aldrich, & 

Maupin-Furlow, 2000; Zwickl, Ng, Woo, Klenk, & Goldberg, 1999), whereas ARC (AAA ATPase 

forming ring shaped complexes) and its homolog Mpa (mycobacterial proteasome ATPase) are 

two activators that have been found in bacteria (Darwin, Ehrt, Gutierrez-Ramos, Weich, & Nathan, 

2003; Darwin, Lin, Chen, Li, & Nathan, 2005; Striebel, Hunkeler, Summer, & Weber-Ban, 2010; 

Wolf et al., 1998). In 19S RP, the AAA ATPase subunits (Rpt1-6) interact with the α-ring of the 

CP and uses the chemical energy from ATP binding and hydrolysis to unfold and translocate 

substrate. The interaction is mediated through a conserved three residue C-terminal HbYX 

(hydrophobic, tyrosine, any amino acid) motif, present in three Rpt subunits, that inserts into an 

intersubunit surface pocket formed by the α subunits. Another hexameric AAA ATPase, Cdc48, 

has been shown to bind and activate archaeal and mammalian CP (Barthelme & Sauer, 2012, 

2013), suggesting this interaction is significant enough to have an evolutionary conservation. 

Whether Cdc48: CP forms an alternate type of proteasome that offers specific substrate 

degradation or may function under certain stress conditions, is yet to be determined.  

 

Certain cofactors lacking the AAA rings can also activate proteasome. These include 

Blm10 (PA200), 11S in eukaryotes (described in a later section) and Bpa (bacterial proteasome 

activator) or PafE (proteasome associated factor E) in bacteria (Delley et al., 2014; Jastrab et al., 

2015). The seven membered 11S binding to 20S stabilizes the open gate conformation, and it is 

known to enhance degradation of peptides and partially unfolded proteins, but not of native 

proteins (Forster et al., 2005; Stadtmueller & Hill, 2011). Bpa is structurally and functionally 

similar to 11S except it was shown to degrade the fully native protein HspR in the absence of ATP 

(Bolten et al., 2016; Jastrab et al., 2015). 
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1.5 Assembly of the 20S Proteasome 

Although the 20S proteasome structure is highly conserved across all the domains, the 

assembly pathway differs among them. While the general assembly steps in archaea and 

eukaryotes are same, the subunit heterogeneity of eukaryotic proteasome requires their sequential 

interaction and assistance from assembly chaperones. In this section, assembly pathway and 

chaperones involved are discussed.  

1.5.1 Archaeal Proteasome Assembly 

Recombinant expression of archaeal proteasome subunits in Escherichia coli helped to 

understand proteasome biogenesis (Zwickl, Kleinz, & Baumeister, 1994). When archaeal α 

subunits are expressed in vitro, they formed α-rings. The additional H0 helix present in the α 

subunit, but not in the β subunit, contributes to its self-assembly into rings (Zwickl et al., 1994). 

Proteasomes formed when both wild-type α and β subunits were coexpressed, but not when the 

mutant α subunit (α35Δ), lacking 35 amino acid residues from the N-terminal including the H0 

helix, was used (Zwickl et al., 1994). These results suggested that the β subunits assemble on the 

α-rings and that the α-ring formation is the first step of assembly (Fig. 1.2a). The α-ring provides 

a scaffold for β subunits addition further leading to form an assembly intermediate called the half 

proteasome. Two of such half proteasomes dimerizes, through opposite β-ring surface interactions, 

to form a transient intermediate called preholoproteasome (PHP). At this stage, the propeptides of 

β subunits are autocatalytically removed transforming the PHP intermediate to a mature or 

catalytically active proteasome (Fig. 1.2a). In this case, the β subunit propeptide is dispensable for 

assembly. In a recent report, an evidence was provided for the existence of an alternative archaeal 

proteasome assembly pathway that doesn’t begin with α-ring formation (Panfair, Ramamurthy, & 

Kusmierczyk, 2015). This was demonstrated by showing tendency of α subunit mutants, incapable 

of forming α-rings, to form proteasomes when coexpressed with β subunits. More details are 

discussed in chapter 2.  

 

Given that the archaeal α and β subunits can spontaneously assemble to form proteasomes, 

it was assumed assembly chaperones are not needed. However, two putative assembly chaperones, 

PbaA and PbaB, that form a heterodimer and contains the C-terminal HbYX motif, similar to their 

eukaryotic homolog Pba1-Pba2 (described in section 1.5.3.1), were later discovered in 
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Methanococcus maripaludis (Kusmierczyk, Kunjappu, Kim, & Hochstrasser, 2011). These 

proteins exclusively interacted with PHP, but not with the mature proteasome. The HbYX motif 

of PbaA is essential for this binding. Later, homologues of these proteins were also discovered in 

Pyrococcus furiosus; however, they seem to play different roles. Here, PbaB not only 

preferentially binds to mature CP, but can also act as a proteasome activator (Kumoi et al., 2013). 

Additionally, P. furiosus PbaA, despite having a HbYX motif, does not bind to the CP. The crystal 

structure of this protein showed the C-terminus, containing the HbYX motif, adopted a different 

orientation, perhaps less suitable for CP binding (Sikdar, Satoh, Kawasaki, & Kato, 2014). The 

exact roles and relevance of these chaperones are still not very clear. 

1.5.2 Bacterial Proteasome Assembly 

There is a limited distribution of proteasomes in bacteria, and it is believed they 

evolutionarily acquired proteasomes from archaea through horizontal gene transfer (HGT) (Volker 

& Lupas, 2002), yet their assembly pathway seems to differ considerably (Fig. 1.2b). In contrast 

to archaeal α subunits, Rhodococcus erythropolis α subunits could not form α-rings when 

expressed in vitro whereas coexpression of both subunit types resulted in assembly into 

proteasomes. These results suggested that the bacterial proteasome assembly pathway starts with 

α/β interactions first that most likely forms a heterodimer which quickly multimerizes to form a 

half proteasome (Kwon, Nagy, Adams, Baumeister, & Jap, 2004; Zuhl, Seemuller, Golbik, & 

Baumeister, 1997). This is the first observable assembly intermediate in bacteria. Dimerization of 

two half proteasomes is followed by formation of PHP and its eventual maturation to CP by 

autocatalytic β subunit propeptide removal (Fig 1.2b). Our recent report (detailed in chapter 2) 

showed this seemingly separate bacterial assembly pathway also exists in archaea arguing for a 

conservation of assembly mechanism across all domains (Panfair et al., 2015).  

 

The crystal structure of bacterial proteasomes revealed a reduced surface contact area 

between two α subunits (α-α) within an α-ring helping explain their limited capability to form rings 

on their own. Here, the propeptide of β subunits acts as an internal assembly chaperone by 

facilitating α-α subunit contact. The exception lies in the propeptide of M. tuberculosis in that it is 

not only dispensable for assembly but also prevents the dimerization of two half proteasome (Lin 

et al., 2006). The orientation of the propeptide is outward from the β-ring in the half proteasome 
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Figure 1.2: Overview of proteasome assembly pathways 

Proteasome assembly is mediated by two types of pathways, α-ring dependent and α-ring 

independent. (a)  Archaea follows an α-ring dependent pathway that starts with the formation of 

α-ring. The β subunits assemble on α-ring to form a half proteasome intermediate. (b) Bacterial 

proteasome assembly pathway follows an α-ring independent pathway that starts with an α/β 

heterodimer formation followed by its multimerization to form a half proteasome intermediate.  

(c) Assembly in eukaryotes is much more complicated requiring assistance of five dedicated 

assembly chaperones (not shown) and follows an α-ring dependent pathway. The seven distinct α 

subunits form a heterogenous α-ring (α1-7). Addition of β2, β3, β4 generates a 13S assembly 

intermediate. Subsequent addition of β1, β5, β6 forms the 15S intermediate. Addition of β7 forms 

a half proteasome. The pathway follows similar steps in all the domains after half proteasome 

intermediate that involves dimerization of two half proteasomes leading to the formation of 

preholoproteasome (PHP) intermediate. This step is quickly coupled with β-subunit propeptide 

processing leading to maturation of the CP.  

 

intermediate and requires rearrangement during dimerization to attain similar orientation as 

observed in the PHP of R. erythropolis (Hu et al., 2006; D. Li et al., 2010). The propeptide, in this 

case, may only function in preventing the Thr1 residue from early activation. No assembly 

chaperones have been identified in bacteria. 

a 

b 

c 
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1.5.3 Eukaryotic Proteasome Assembly 

Assembly in eukaryotes is chaperone-mediated, highly ordered and a regulated process. 

There are several proteasome isoforms in eukaryotes (discussed in a later section). The order of 

specific subunit addition and assembly chaperone function slightly varies among different 

isoforms, and to some extent, among species. In general, the assembly pathway is similar to their 

archaeal counterparts that starts with the formation of α-rings first (Fig. 1.2c). Assembly chaperone 

Pba1-Pba2 (PAC1-PAC2) and Pba3-Pba4 (PAC3-PAC4) are known to assist in the α-ring 

assembly. Onto these rings, β2, β3, β4 subunits are added with the help of assembly chaperone 

Ump1. The Pba3-Pba4 assembly chaperone dissociates with the entry of these β subunits. This 

intermediate is called 13S (Hirano et al., 2008). Subsequent addition of β1, β2 and β5 results in 

forming an intermediate called 15S. Addition of β7 subunit is coupled with half proteasome 

dimerization that forms the PHP intermediate (Hirano et al., 2008; X. Li, Kusmierczyk, Wong, 

Emili, & Hochstrasser, 2007; X. Li, Li, Arendt, & Hochstrasser, 2016; Marques, Glanemann, 

Ramos, & Dohmen, 2007). The β subunit propeptides are removed at this stage, and the assembly 

chaperone Pba1-Pba2 is likely ejected at this stage. After maturation of proteasome, Ump1 

becomes the first proteasome substrate (P. Chen & Hochstrasser, 1996; Nandi, Woodward, 

Ginsburg, & Monaco, 1997; Schmidtke et al., 1996).  

 

Apart from these five dedicated assembly chaperones, the involvement of a known CP 

activator, Blm10, is also reported. There is growing evidence of other ancillary proteins directly 

or indirectly involved in assisting the assembly. Moreover, specific features of α and β subunits 

itself guide the assembly pathway. More details about assembly chaperones and ancillary proteins 

are described below. 

1.5.3.1 Pba1-Pba2 

  Pba1 and Pba2 (PAC1 and PAC2 in mammals) stabilize each other by forming a 

heterodimer (Hirano et al., 2005; Le Tallec et al., 2007; X. Li et al., 2007). Knockdown of PAC1, 

PAC2 or both resulted in reduced α-ring levels and formed an aberrant complex, likely an α-ring 

dimer (Hirano et al., 2005). This suggests Pba1 and Pba2 function in α-ring formation and prevent 

nonspecific interactions of α subunits. While the downregulation of PAC1 and PAC2 leads to 

reduced cell growth in mammals, pba1Δ pba2Δ in yeast did not show any growth defect. However, 
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when pba1Δ pba2Δ is combined with other mutations that reduce proteasome function, strong 

growth defects are observed. In yeast, Pba1 and Pba2 are associated with several assembly 

intermediates indicating their multiple roles that expand beyond the α-ring assembly. One of these 

likely roles is to prevent association of RP to CP assembly intermediates.  

 

Pba1-Pba2 contain conserved C-terminal HbYX motifs, a motif present in most 

proteasome binders (X. Li et al., 2007). Crosslinking study revealed the Pba1 and Pba2 HbYX 

motifs insert into the surface pocket formed by proteasome subunit α5-α6 and α6-α7 respectively, 

this was confirmed in the crystal structure of Pba1-Pba2-20S (Stadtmueller et al., 2012; Tian et 

al., 2011). As mentioned previously, RP binding to CP is also mediated by HbYX motifs and 

involves the same surface pocket. However, Pba1-Pba2 has a stronger affinity towards immature 

CP compared to RP (Wani, Rowland, Ondracek, Deeds, & Roelofs, 2015). Although, in one study, 

the Pba1-Pba2 was shown to bind mature CP at low salt concentration, the affinity considerably 

decreases under physiological salt conditions where the affinity of RP for mature CP is higher 

(Stadtmueller et al., 2012; Wani et al., 2015). Similar affinity bias was observed in the archaeal 

ortholog of Pba1 and Pba2 towards immature CP (Kusmierczyk et al., 2011). In both cases, the 

authors hypothesized that processing of β subunit propeptides allosterically alters the binding site 

of Pba1 and Pba2 in the α-ring, that it no longer favors it’s association after the maturation of CP. 

Additionally, the HbYX motif of Pba2 was shown to be dispensable for binding to mature CP, 

whereas both HbYX motifs of Pba1-Pba2 are required for binding to immature CP, lending further 

support for an altered conformation of the α5-α6 surface pocket, binding site of Pba1, after 

maturation (Wani et al., 2015).  

 

The single particle electron microscopy combined with crosslinked MS based structure of  

Pba1-Pba2-15S intermediate (containing Pba1, Pba2, Ump1, all α and β subunits except β7) 

highlighted the detailed orientation and interaction of Pba1-Pba2 in the 15S assembly intermediate 

(Kock et al., 2015). The structure revealed a much broader α-ring in the 15S intermediate compared 

to a fully assembled CP. The Pba1-Pba2 orients in the cavity of α-ring making extensive contacts 

with a majority of α subunits, and these interactions likely stabilizes the α-ring (Kock et al., 2015). 

The second structure involving Pba1-Pba2-PHP, a state attained after the β7 incorporation and 
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dimerization of half proteasome, showed Pba1-Pba2 shifted out of the central cavity to the top of 

α-ring. Such shifting of position might also be one of the contributing factors in the affinity switch.   

1.5.3.2 Pba3-Pba4 

  Pba3 and Pba4 (PAC3 and PAC4 in mammals) also form a heterodimer that stabilizes 

each other similar to Pba1 and Pba2 (PAC3 and PAC4) and function in α-ring assembly (Hirano 

et al., 2006; Kusmierczyk, Kunjappu, Funakoshi, & Hochstrasser, 2008) . PAC3 has been shown 

to bind α2 subunit and certain β subunits (Hirano et al., 2006). In vitro, Pba3 and Pba4 strongly 

associate with the α5 subunit and weakly with α1 and α6 (Kusmierczyk et al., 2008; Le Tallec et 

al., 2007; Yashiroda et al., 2008). 

 

Unlike Pba1-Pba2, Pba3-Pba4 have only been detected prior to the 13S assembly 

intermediate suggesting their exclusive role in α-ring formation. These assembly chaperones are 

structurally similar to α and β subunits (Yashiroda et al., 2008). However, the crystal structure of 

the ternary complex Pba3-Pba4-α5 revealed that Pba1-Pba2 associates with α subunits differently 

from the way proteasome subunits interact with each other (Yashiroda et al., 2008). Moreover, the 

structure revealed that the binding of Pba3-Pba4 to α5 would provide a steric hindrance to β 

subunits incorporation explaining why Pba3-Pba4 must dissociate early, likely before the arrival 

of β4 subunit (Hirano et al., 2008). 

 

In yeast, α3 is the only 20S proteasome subunit whose deletion is not lethal. In these cells, 

a unique isoform of the proteasome is formed, termed the “α4-α4” proteasome, that has an 

additional copy of α4 subunit in place of α3 subunit. Interestingly, in the absence of Pba3-Pba4, 

yeast also form the “α4-α4” proteasome, comprising ~20-50% of total proteasome pool 

(Kusmierczyk et al., 2008; Velichutina, Connerly, Arendt, Li, & Hochstrasser, 2004). Similar 

appearance of this evolutionarily conserved α4-α4 proteasome was recently shown when assembly 

chaperone PAC3 and PAC4 are knocked down in mammalian cells (Padmanabhan, Vuong, & 

Hochstrasser, 2016). These assembly chaperone perhaps assist α3 subunit incorporation between 

of α2 and α4 subunits (Kusmierczyk et al., 2008). In another study, pba3Δ and pba4Δ resulted in 

accumulation of an aberrant (likely assembly incompetent) complex resembling a 13S intermediate 

that lacked α4 and had twice the level of α2 (Takagi et al., 2014).  Overall, it seems that this 
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assembly chaperone drives the α-ring complex formation by guiding the order of specific α 

subunits addition within the α-ring. The exact mechanism of how this is achieved is not well 

understood.  

1.5.3.3 Ump1 

  Ump1, the first assembly chaperone to be discovered, functions from the point of β 

subunit entry onto α-rings up until the dimerization of two half proteasomes, after which it gets 

encapsulated within the core and becomes the first substrate of the newly assembled proteasome 

(Burri et al., 2000; Frentzel, Pesold-Hurt, Seelig, & Kloetzel, 1994; Griffin, Slack, McCluskey, 

Monaco, & Colbert, 2000; Hirano et al., 2008; X. Li et al., 2007; Ramos, Hockendorff, Johnson, 

Varshavsky, & Dohmen, 1998; E. Witt et al., 2000). This 16 kDa protein is intrinsically disordered 

and assist in precise β subunit assembly (Ramos et al., 1998). The mammalian Ump1 (called 

hUmp1) has been shown to assist β2 subunit entry onto α-rings. Ump1 in yeast is detected at the 

13S intermediate state; whether it appears along with β subunit addition, or before, is not known 

(X. Li et al., 2007). Recent negative stain EM and crosslinking based structure of 15S revealed 

Ump1 orientation and interaction with proteasome subunits (Kock et al., 2015). More than half of 

Ump1’s C-terminus is looped into the inner chamber of 15S making extensive contact with α and 

β subunits where it may function in stabilizing incoming β subunits (Howell, Tomko Jr, & 

Kusmierczyk, 2017). At the later stage of assembly, Ump1 functions to prevent premature 

dimerization of two half proteasomes (Kusmierczyk et al., 2008; X. Li et al., 2007). The checkpoint 

function may be attributed to the N-terminus of Ump1 that is observed at the interface of β6 and 

β7 and ideally oriented to prevent dimerization. Ump1 may also sense entry of β7, the last subunit 

to be added to form the half proteasome intermediate, after which it reorients towards the inside 

of the cavity (Budenholzer, Leng Cheng, Li, & Hochstrasser, 2017; Howell et al., 2017). 

1.5.3.4 Blm10 

  Blm10 (PA200 in human) has been shown to be involved in proteasome assembly, 

maturation, activation, and localization. It is a large dome-shaped protein, with a mass of ~250 

kDa, and preferentially binds to CP alone or as a hybrid with RP on the opposite side (Schmidt et 

al., 2005; Ustrell, Hoffman, Pratt, & Rechsteiner, 2002). Its function is partially redundant with 

RP in promoting CP activation (Takeuchi, Chen, Hoyt, & Coffino, 2008). Blm10 binds to α-ring 
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via its single C-terminal HbYX motif that gets inserted into α5-α6 surface pocket (Dange et al., 

2011; Sadre-Bazzaz, Whitby, Robinson, Formosa, & Hill, 2010; Schmidt et al., 2005). This 

binding stimulates gate opening that may involve small peptide degradation in an ATP independent 

manner (Schmidt et al., 2005; Ustrell, Pratt, Gorbea, & Rechsteiner, 2005). Blm10 is structurally 

related to importin (nuclear receptor protein) and has been implicated in nuclear import of CP 

(Weberruss et al., 2013). With regards to CP assembly, Blm10 binds to all the known assembly 

intermediates (Fehlker, Wendler, Lehmann, & Enenkel, 2003; X. Li et al., 2007). Double deletion 

of BLM10 gene and the C-terminal tail of the β7 subunit increased accumulation of proteasome 

precursors and showed a maturation defect of the β2 subunit propeptide suggesting a role in half 

proteasome dimerization and CP maturation (Marques et al., 2007).  

1.5.3.5 Intrinsic features of α subunits 

  There exists a high structural similarity between α and β subunit of the proteasome. The 

variation appears at the N-terminus. While the β subunits N-termini includes a varying length of 

propeptides that does not form a secondary structure, all the α subunit N-termini have a conserved 

H0 helix. The H0 helix is one of the primary factors responsible for α-ring formation, the first step 

of proteasome assembly (Zwickl, Voges, & Baumeister, 1999). Additional factors such as large 

buried surface area and stabilizing salt bridges between the α subunits also contribute to α-ring 

formation and stabilization (Kwon et al., 2004; Panfair et al., 2015).  

1.5.3.6 Intrinsic features of β subunit in proteasome assembly 

  Most proteasome β subunits except β3 and β4 are expressed with varying lengths of N-

terminal propeptides which are proteolytically removed during maturation of the CP. These 

propeptides along with C-terminal extensions of specific β subunits, act as intramolecular 

chaperones ensuring their sequential addition and maturation of CP. The N-terminal propeptide is 

present in the catalytically active subunits β1, β2, β5, and in non-catalytic subunits β6 and β7. The 

N-terminal propeptides of the catalytic subunits function in preventing inactivation of the catalytic 

Thr1 residue via Nα acetylation (Arendt & Hochstrasser, 1999; Jager, Groll, Huber, Wolf, & 

Heinemeyer, 1999; Schreiner et al., 2008).  
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In yeast, β5 propeptide also functions in β5 subunit incorporation, and its absence 

(β5Δpro), is lethal (P. Chen & Hochstrasser, 1996; Howell et al., 2017). When this 75-residue 

propeptide is expressed separately as an individual polypeptide, it rescues lethality, suggesting 

propeptide can act as an independent intramolecular chaperone (P. Chen & Hochstrasser, 1996; 

Jager et al., 1999). Its precise mechanism and whether it attains any specific form is not known. 

Assembly chaperone ump1Δ can also rescue β5Δpro lethality indicating a likely antagonistic role 

between these two components (Ramos et al., 1998). Functional overlap of β5 propeptide and β7 

C-terminal tail exists in assisting dimerization of two half proteasomes (X. Li et al., 2007). The β5 

propeptide is also essential for the incorporation of β6 subunit in mammals (Hirano et al., 2008). 

 

The β2 subunit propeptide is essential in mammals and assists in the incorporation of the 

β3 subunit (Hirano et al., 2008). While the β2 propeptide is not essential for viability in yeast, its 

deletion causes processing defects of β5 and β7 subunits (P. Chen & Hochstrasser, 1996; Jager et 

al., 1999). Similar processing defects of the β5 subunit are observed in the absence of the β1 

propeptide (P. Chen & Hochstrasser, 1996; Hirano et al., 2008; Jager et al., 1999). The function of 

the β6 propeptide and Ump1 are linked since Ump1 can rescue the lethal phenotype of β6Δpro (X. 

Li et al., 2007). The propeptide of β7 is not essential for viability, and its functional role is not 

clear. 

 

The C-terminal tails of β2 and β7 assist in CP assembly. The β2 C-terminal tail, essential 

in both yeast and mammals, is necessary for β3 subunit incorporation (Hirano et al., 2008; Ramos, 

Marques, London, & Dohmen, 2004). This ~ 30 residue tail loops around the adjacent β3 subunit 

and extends further making contact with the β4 subunit within the same β ring (Groll et al., 1997; 

Unno et al., 2002b). The β7 C-terminal tail functions in half proteasome dimerization. It does so 

by inserting its C-terminal tail between β1 and β2 in the opposite β ring, thereby acting as a 

lynchpin which clamps these rings together (Groll et al., 1997; Unno et al., 2002a). Moreover, this 

tail also functions in β7 incorporation since its absence increased levels of the 15S intermediate 

(contains all α and β subunits except β7) (Hirano et al., 2008; X. Li et al., 2007; Marques et al., 

2007; Ramos et al., 2004). 
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1.5.3.7 Other assembly factors 

  Specific proteins are known to associate with CP subunits and assembly intermediates, 

but further studies are needed to establish their contribution in CP assembly. Fub1 (function of 

boundary 1) protein directly interacts with several CP subunits (Hatanaka et al., 2011). When its 

deletion is combined with CP mutants, growth defects are exacerbated, and in some combinations, 

results in lethality (Hatanaka et al., 2011; Yashiroda et al., 2015). Hsp70 protein’s roles are well 

established in ubiquitination and substrate delivery to the 26S proteasome (Arndt, Rogon, & 

Hohfeld, 2007; Huyer et al., 2004; Kettern, Dreiseidler, Tawo, & Hohfeld, 2010; Metzger, Maurer, 

Dancy, & Michaelis, 2008; Plemper, Bohmler, Bordallo, Sommer, & Wolf, 1997; Shiber & Ravid, 

2014). Recently, two Hsp70 group proteins, Ssa1/Ssa2 were shown to interact tightly with early 

CP assembly intermediates but not with mature CP, a feature commonly found in assembly 

chaperones (Hammack, Firestone et al. 2017).  Their association with α4 complex, an in vivo non-

canonical complex formed by α4 subunit, suggests a likely role in α-ring formation (L. J. Hammack 

& A. R. Kusmierczyk, 2017).  Other proteins reported to have a link with proteasome assembly 

pathway are proteins involved in Transmembrane Recognition Complex (TRC) in 

mammals/Guided Entry of Tail-anchored pathway (GET) in yeast (Akahane, Sahara et al. 2013) 

and a zygote proteasome assembly chaperone in mouse (Shin, Shimizu et al. 2013). 

1.6 Non-canonical Complexes 

Certain proteasome α subunits form higher order structures when expressed in vitro. 

Recombinant archaeal α subunit can form single and double α-rings (Groll, Brandstetter, Bartunik, 

Bourenkow, & Huber, 2003; Panfair et al., 2015; Zwickl et al., 1994). Similarly, Trypanosoma 

brucei α5 can form four heptameric rings structurally similar to 20S (Yao et al., 1999). 

Recombinant human α7 can also form double α7-rings (Gerards et al., 1997). While the 

coexpression of α7 with β7 and β1 subunits, the immediate neighbors of the α7 subunit in the 

adjacent β-ring, still formed α7-rings, coexpression with the α6 subunit, native neighbor of the α7 

subunit within the α-ring, formed a complex containing both α6 and α7 subunits (Gerards, de Jong, 

Bloemendal, & Boelens, 1998; Gerards, de Jong, Boelens, & Bloemendal, 1998; Gerards et al., 

1997). Later, it was demonstrated that in the presence of the α6 subunit, a preformed double α7-

ring dissociates to form an α6-α7 complex (Ishii et al., 2015). These interactions show the inherent 
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tendency of α subunits to form non-canonical ring complexes in vitro, yet none of these have been 

observed in vivo. While the single α-ring is an on-pathway product, double α-rings are a dead-end 

complex (Panfair et al., 2015). Perhaps the presence of additional α subunits and assembly 

chaperones prevent such nonspecific interactions in vivo. In support of this, absence of assembly 

chaperone PAC1 and PAC2 results in accumulation of an aberrant complex, presumably an α-ring 

dimer, suggesting their role in preventing such off-pathway interaction (Hirano et al., 2005). 

 

Recently, the first evidence of a non-canonical complex formed by α4 subunit in yeast was 

provided (L. J. Hammack & A. R. Kusmierczyk, 2017). This α4 complex is present in wild-type 

cells, and its levels increase when the α3 subunit is deleted, suggesting a physiological relevance. 

Additionally, this complex also contains Ssa1/Ssa2 proteins (members of Hsp70 superfamily), 

which have recently shown to be associated with proteasome assembly (L. J. Hammack, Firestone, 

Chang, & Kusmierczyk, 2017). Moreover, crosslinking data suggests similar complex is likely 

present in mammalian cells, indicating the complex may be evolutionarily conserved 

(Padmanabhan et al., 2016). A crystal structure and further characterization of this complex might 

shed some light on its function. 

1.7 Alternative Proteasomes 

There are several isoforms of proteasome found in eukaryotes, some of which have tissue 

specific localization whereas others may form more broadly under certain conditions. These 

variants arise when specific α or β subunit paralogs take the place of their canonical subunit 

counterparts. These variants assemble differently from the canonical CP and some of them have 

preference for specific substrates. 

1.7.1 α4-α4 Proteasomes 

This alternative proteasome has an additional copy of the α4 subunit that takes the place of 

the α3 subunit. They were first reported in yeast cells lacking the α3 subunit, the only non-essential 

CP subunit in yeast, and their detection is possible by crosslinking two adjacent α4 subunits in the 

α-ring (Funakoshi, Li, Velichutina, Hochstrasser, & Kobayashi, 2004). Since the N-terminal tail 

of the α3 subunit is essential for gating, the absence of α3 indicates α4-α4 proteasome may have 

open gate conformation (Groll et al., 2000). Yeast cells bearing α4-α4 proteasomes are more 
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tolerant to heavy metal stress as compared to wild-type cells (Kusmierczyk et al., 2008). Perhaps 

the open gate conformation might be the contributing factor for enhanced stress tolerance. This 

isoform is also detected when the assembly chaperone Pba3-Pba4 is deleted (Kusmierczyk et al., 

2008). Recently, α4-α4 proteasomes were reported in mammalian cells, and their formation was 

shown to depend on relative levels of α3, α4 and PAC3-PAC4 (Padmanabhan et al., 2016). 

Moreover, their stress tolerant property regarding heavy metal tolerance is also evolutionarily 

conserved suggesting they might have a stress-based induction. Their role and assembly pathway 

are unclear. 

1.7.2 Gonad Specific Proteasome 

Testis-specific proteasome, first identified in Drosophila melanogaster, contains an 

alternative α6 subunit (prosalpha6T), which is essential for male fertility (Zhong & Belote, 2007). 

In mammals, spermatoproteasome were later discovered in testes which contain an alternative α4 

subunit called α4S (Qian et al., 2013). There exists ~82-85% of similarity between α4 and α4S; 

the latter is explicitly expressed in testes (Uechi, Hamazaki, & Murata, 2014). 

 

 Spermatoproteasomes preferentially bind to Blm10, and Blm10 is essential for 

spermatogenesis in mice (Qian et al., 2013). A difference in the sequence of the α4 and α4S 

subunit, particularly at the outer surface, might be the contributing factor for preferential Blm10 

binding (Uechi et al., 2014).  These alternative proteasomes are the predominant species in testes. 

What drives the preferential incorporation of α4S and prosalpha6T, as compared to their canonical 

counterparts, α4 and α6 respectively, is not known. 

1.7.3 Immunoproteasomes 

The immunoproteasome replaces catalytically active subunits β1, β2 and β5 with their 

paralogs β1i, β2i and β5i respectively. These paralogs are induced by interferon gamma (IFNγ) 

and tumor necrosis factor (TNF) (Akiyama et al., 1994; Tanaka, 1994), and have ~60% identity 

with their canonical counterparts. The immunoproteasomes have altered functional properties. 

Specifically, they generate a different peptide population that is optimized for presentation as 

Major Histocompatibility Class 1 (MHC-1) antigen (Gaczynska, Rock, & Goldberg, 1993). 

Various subtypes of immunoproteasome, containing different combinations of canonical catalytic 
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β subunits with their paralogs, have been reported and are hypothesized to result from varying 

level of IFNγ expression (Guillaume et al., 2010; Klare, Seeger, Janek, Jungblut, & Dahlmann, 

2007). 

 

The assembly pathway of immunoproteasomes is different in terms of β subunit 

incorporation. While in the canonical CP, the first β subunits to add on the α-ring are β2, β3, and 

β4, in immunoproteasomes it is, β1i and β2i that incorporate first, followed by β3. The β5i is added 

before the β4 subunit. These changes in the order suggest the β subunit paralogs tend to incorporate 

more efficiently than their constitutive counterparts. The propeptide of β2i subunit and the mature 

domain of β5i subunit contribute to their preferential incorporation (Bai et al., 2014; De et al., 

2003; Kingsbury, Griffin, & Colbert, 2000). 

 

An IFNγ inducible activator 11S (PA28αβ) binds to immunoproteasomes and is believed 

to enhance antigen presentation (Dubiel, Pratt, Ferrell, & Rechsteiner, 1992; Realini, Dubiel, Pratt, 

Ferrell, & Rechsteiner, 1994). The PA28 activator is comprised of α and β subunits that can 

assemble in three different forms when expressed in vitro. PA28α and PA28β form 

homoheptameric rings of made from α and β subunits respectively, whereas PA28α4β3 forms 

heteroheptameric rings containing four α and three β subunits (Huber & Groll, 2017; Knowlton et 

al., 1997; Wilk, Chen, & Magnusson, 2000). Among these three species, PA28α4β3 activator 

complex is more stable and active, and is likely physiologically relevant (Huber & Groll, 2017). 

Immunoproteasome can also bind to other activators, 19S RP and Blm10, either alone or as a 

hybrid with PA28 (Cascio, Call, Petre, Walz, & Goldberg, 2002; Hendil, Khan, & Tanaka, 1998; 

Tanahashi et al., 2000). This combinatorial binding enhances the epitope diversity for antigen 

presentation (Cascio et al., 2002; Hendil et al., 1998).  A homologue of PA28αβ, PA28γ, present 

throughout metazoan but not in yeast and plants, can also bind to immunoproteasomes (Masson, 

Andersson, Petersen, & Young, 2001). Its functional role is not very clear. 

1.7.4 Thymoproteasome 

The thymoproteasomes are similar to immunoproteasomes except the β5i is substituted by 

a thymus specific β5t subunit. The order of β5t incorporation is identical to β5i in 

immunoproteasome, but unlike the mature domain of β5i, here, the propeptide of β5t promotes its 
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preferential incorporation to form thymoproteasome (Bai et al., 2014). This proteasome isoform is 

involved in the positive selection of CD8+ T cells (Murata, Takahama, & Tanaka, 2008). A recent 

computational analysis of the human genome revealed a high polymorphism in the sequence of 

β5t subunit and suggested the variation may lead to individual’s susceptibility to autoimmunity 

(Nitta et al., 2017). 

1.8 Proteasome in Cancer Therapeutics 

The proteasome mediates degradation of various proteins involved in diverse cellular 

processes such as cell cycle progression, differentiation, apoptosis, DNA damage repair 

(Ciechanover, 2005; Ciechanover & Schwartz, 2004; Finley, Ulrich, Sommer, & Kaiser, 2012; 

Hochstrasser, 1996). Consequently, alterations in proteasome activity are associated with several 

diseases. In previous studies on understanding catalytic activity of the proteasome, its inhibition 

lead to unwanted accumulation of regulatory proteins that triggered apoptosis (Adams, 2004; 

Vinitsky, Cardozo, Sepp-Lorenzino, Michaud, & Orlowski, 1994). This sensitivity towards 

apoptosis appeared greater in certain cancer cell lines and even in some solid tumors (Imajoh-

Ohmi et al., 1995; Orlowski & Kuhn, 2008; Shinohara et al., 1996). This sensitization enabled the 

use of proteasome inhibitors as a new therapeutic approach for treatment of certain cancers.  

1.8.1 Proteasome Inhibitors 

Most proteasome inhibitors are peptide like compounds containing an electrophilic head 

comprised of either a boronic acid, β-lactone, or an epoxyketone, that occupies the active site Thr1 

residue. Protein degradation rates are majorly affected by inhibition of the chymotrypsin like 

activity of the β5 subunit (Jung, Catalgol, & Grune, 2009). Bortezomib (Velcade, Millennium 

Pharmaceuticals), a reversible boronate inhibitor targeting β5 subunit activity, was the first 

proteasome inhibitor approved by the FDA in 2003 for the treatment of multiple myeloma (Kane, 

Farrell, Sridhara, & Pazdur, 2006). It was later approved for the treatment of mantle cell lymphoma 

and showed efficacy for non-small cell lung cancer and pancreatic cancer (Frankland-Searby & 

Bhaumik, 2012). Treatment with bortezomib, however, develops resistance and shows adverse 

side effects including cardiac and pulmonary disorders, peripheral neuropathy, gastrointestinal 

problems and pain (Frankland-Searby & Bhaumik, 2012). Current investigations are focused on 

its combinatorial use with other chemotherapeutic agents for improving resistance and toxicity. 
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Carfilzomib (Kyprolis, Proteolix Inc.), an irreversible epoxyketone family proteasome inhibitor, 

with a broader therapeutic range was approved by the FDA in 2012 and showed an improved 

efficacy on bortezomib failed multiple myeloma patients (Kuhn et al., 2007; Moreau, 2014). 

Ixazomib (Millenium Pharmaceuticals) is the second-generation peptide boronate inhibitor 

approved by the FDA in 2015 (Crawford, Walker, & Irvine, 2011; Kupperman et al., 2010). This 

is the first orally available proteasome inhibitor; however, its half-life is shorter than bortezomib 

(Teicher & Tomaszewski, 2015).  

 

Numerous studies have shown upregulation of immunoproteasome or increased expression 

of their catalytic subunits in autoinflammatory and autoimmune diseases, neurological disorders, 

and in certain types of cancers including prostate cancer, multiple myeloma, lung cancer and others 

(Basler, Kirk, & Groettrup, 2013; Kaur & Batra, 2016). Selective inhibition of immunoproteasome 

is the recent focus of therapy since most proteasome inhibitors could not differentiate between the 

catalytic subunits of constitutive proteasomes (β1, β2 and β5) and immunoproteasomes (β1i, β2i 

and β5i) (Cromm & Crews, 2017). Perhaps this could be one of the reasons for numerous side 

effects of proteasome inhibitor therapies. Recent crystal structure of murine constitutive 

proteasome and immunoproteasome highlighted structural differences between the active site of 

β5 and β5i subunit which is helping to design specific immunoproteasome inhibitors (Huber et al., 

2012). One such inhibitor, KZR-616 (Kezar lifesciences) specifically targets β5i subunit, and it is 

under phase I clinical trial for the treatment of certain inflammatory and autoimmune diseases 

(Cromm & Crews, 2017).  

1.8.2 Proteasome Assembly Inhibition 

Upon malignant transformation of cells, with a consequent increase in metabolic and 

protein synthesis rates, there occurs a disruption in protein homeostasis. Among other mechanisms, 

certain cancer cells are heavily dependent on the increase in proteasome activity to help them 

survive this proteotoxic stress. Such increased proteasome activity does not entirely rely upon 

increasing the expression of proteasome subunit, but also involves an increase in the proteasome 

assembly (Hanssum et al., 2014; Levin, Minis, Lalazar, Rodriguez, & Steller, 2018).  The evidence 

is building up linking the increase in proteasome assembly to tumorigenesis and developing 

resistance towards treatment with proteasome inhibitors in certain cancers. 
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 A microRNA miR-101 is a potent tumor suppressor that targets a CP assembly chaperone 

POMP (mammalian Ump1) by reducing its expression (Zhang et al., 2015). Downregulation of 

POMP disrupts proteasome assembly and thereby makes miR-101 an endogenous proteasome 

inhibitor (Zhang et al., 2015). Interestingly, miR-101 is downregulated in a variety of cancers 

correlating uncontrolled proteasome assembly with disease progression (Varambally et al., 2008). 

Moreover, overexpression of POMP induced resistance in bortezomib sensitive tumor cells 

whereas, in another study, its inhibition re-sensitized bortezomib-resistant cells suggesting a link 

between increased proteasome assembly with the development of drug resistance (B. Li et al., 

2015; Zhang et al., 2015).  A recent study reported an increase in the association of 19S RP to 20S 

CP without a change in the individual subunit levels in tumor cells of gut epithelium, correlating 

enhanced 26S assembly to cancer (Levin et al., 2018). This increase in 26S assembly rate was 

shown to be achieved by reducing and eventual silencing the expression of a proteasome assembly 

inhibitor protein, PSMD5, during tumor progression. Intriguingly, in a separate study, suppression 

of PSMD5 was also linked to bortezomib resistance suggesting the involvement of enhanced 26S 

proteasome assembly in developing bortezomib resistance (Levin et al., 2018). Another study 

showed cooperation of a RP assembly chaperone NRF2 with a mutant p53 protein in cancer cells 

leading to activation of proteasome genes and resulted in resistance to proteasome inhibitor 

carfilzomib (Walerych et al., 2016).  

 

Thus, in addition to directly target proteasome activity, inhibiting proteasome assembly, 

either alone or in combination with the proteasome inhibitors, could offer a more effective 

therapeutic strategy. Despite having an elaborate structural and functional insights into the 

proteasome, its process of assembly is not completely understood. An in-depth understanding of 

proteasome assembly could provide a better insight into its regulation and may offer new 

approaches for its inhibition. Moreover, there are differences in the regulation and assembly 

pathways of proteasome isoforms. Such differences could be exploited to target assembly of 

specific isoform. 

 

The highly dynamic nature of the CP assembly, especially at the very early stages, poses 

one of the challenges in elucidating the mechanism of early interactions. This dissertation focuses 

on investigating early events in the assembly of the 20S proteasome. In the following chapter, the 
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evidence is provided for an alternative α-ring independent pathway of the archaeal proteasome. 

Chapter 3 presents evidence for a novel early assembly intermediate in yeast, sub-13S, that 

contains a subset of α and β subunits, and likely originates from an α-ring independent pathway. 

Chapter 4 demonstrates the ability of eukaryotic α subunits to form high molecular weight 

complexes (HMWC) whose formation is prevented by assembly chaperone Pba3 and Pba4. The 

data herein contribute to a better understanding of 20S proteasome biogenesis and suggest that, 

rather than being a strictly linear process, assembly can likely occur through multiple pathways 

that are interconnected through common intermediates. 
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 ALTERNATE PROTEASOME ASSEMBLY PATHWAY 

Chapter 2 along with Appendix A were originally published in Scientific Reports. 

 

Panfair, D., Ramamurthy, A., & Kusmierczyk, A. R. (2015). Alpha-ring Independent Assembly 

of the 20S Proteasome. Scientific reports, 5.  

2.1 Abstract 

Archaeal proteasomes share many features with their eukaryotic counterparts and serve 

as important models for assembly. Proteasomes are also found in certain bacterial lineages, yet 

their assembly mechanism is thought to be fundamentally different. Here, α-ring formation was 

investigated using recombinant proteasomes from the archaeon Methanococcus maripaludis. 

Through an engineered disulfide cross-linking strategy, the results demonstrate that double α-

rings are structurally analogous to half-proteasomes and can form independently of single α-

ring. More importantly, the targeted mutagenesis results show that single α-rings are not required 

for the efficient assembly of 20S proteasomes. The data supports updating the currently held “α-

ring first” view of assembly, initially proposed in studies of archaeal proteasomes, and present 

a way to reconcile the seemingly separate bacterial assembly mechanism with the rest of the 

proteasome realm. The results suggest that a common assembly network underpins the 

absolutely conserved architecture of proteasomes across all domains of life. 

2.2 Introduction 

Most intracellular proteins end their existence at the proteasome, a large multifunctional 

protease complex found in all domains of life. Proteasomes share a common architecture of a 

central protease capped by one or more regulatory complexes (J. Maupin-Furlow, 2012). The 

regulatory complexes differ in composition, from the hexameric ring-shaped AAA ATPases such 

as PAN in archaea (Benaroudj & Goldberg, 2000; Wilson et al., 2000) and MpA/ARC in bacteria, 

to the ~19 subunit Regulatory Particle of eukaryotes (RP, also called PA700 or 19S proteasome) 

(Glickman et al., 1998; Lander et al., 2012). By contrast, the central protease, called the 20S 

proteasome or core particle (CP), has an absolutely conserved quaternary structure (Groll et al., 

1997; Hu et al., 2006; Lowe et al., 1995; Unno et al., 2002b). The CP consists of four stacked 
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heptameric rings. Structurally related subunits, α and β, comprise the outer and inner rings, 

respectively. Only β subunits are proteolytically active; they are synthesized as proprotein 

precursors and undergo autocatalytic activation to expose the N-terminal threonine nucleophile (P. 

Chen & Hochstrasser, 1995, 1996; Frentzel et al., 1994). Eukaryotic CP rings contain 7 unique α 

and β subunits, while those of archaea and bacteria usually consist of one or two types of subunit 

each. Although ubiquitous in archaea and eukaryotes, only a small subset of bacteria possess 20S 

proteasomes, possibly owing to a lateral gene transfer from archaea (Volker & Lupas, 2002). 

 

 Assembly of the proteasome, and of the 20S CP in particular, has garnered considerable 

attention recently reviewed in (Kunjappu & Hochstrasser, 2013; Saeki & Tanaka, 2012; Tomko & 

Hochstrasser, 2013). The general consensus posits that α subunits form rings first which act as a 

platform for the subsequent entry of β subunits (Hirano et al., 2008; Zwickl et al., 1994). 

Incorporation of the β subunits leads to the formation of a double-ring structure, the half-

proteasome, which quickly dimerizes to form the 20S CP. A cadre of dedicated chaperones assists 

in CP assembly in eukaryotes (Hirano et al., 2006; Hirano et al., 2005; Kusmierczyk & 

Hochstrasser, 2008; Le Tallec et al., 2007; X. Li et al., 2007; Ramos et al., 1998; Yashiroda et al., 

2008) and a subset of these chaperones may be conserved in archaea (Kusmierczyk et al., 2011). 

Despite differences in complexity, the assembly of archaeal and eukaryotic CP shares the same 

mechanism. Consequently, archaea have served as an important model for eukaryotic CP assembly 

(Frankenberg, Hsu, Yakota, Kim, & Clark, 2001; Groll et al., 2003; Zwickl et al., 1994). By 

contrast, the bacterial CP assembles via a different mechanism involving the formation of αβ 

heterodimers and their subsequent assembly into half-proteasomes (Kwon et al., 2004; Sharon, 

Witt, Glasmacher, Baumeister, & Robinson, 2007; Zuhl, Seemuller, et al., 1997).  

 

 Since early events in CP assembly, including those leading to the formation of α-rings, 

are not completely understood, this step was explored in more detail using recombinantly 

produced archaeal α subunits as a model. The results show that the currently held α-ring first 

view of CP assembly should be updated to include an alternate, parallel assembly pathway highly 

reminiscent of bacterial CP assembly. Our findings demonstrate that the common CP 

architecture across all domains of life is underpinned by common mechanisms of assembly, 

further underscoring the shared evolutionary origin of this important complex. 
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2.3 Materials and Methods 

2.3.1 Creation of Plasmids and Mutant Constructs 

Plasmids used in this study are listed in Supplementary Table 1 in Appendix A. DNA 

fragments encoding archaeal α and β subunits were cloned by PCR from Methanococcus 

maripaludis S2 genomic DNA kindly provided by John Leigh (University of Washington). Where 

indicated, primers were designed to incorporate C-terminal hexahistidine tags (his-tag). DNAs 

were subcloned into pET42 vector for expression in bacteria. Construction of polycistronic 

expression plasmids enabling the coexpression of archaeal α and β subunits was carried out as 

described (Kusmierczyk et al., 2011). Mutagenesis was carried out by PCR using the Quickchange 

method and kit (Stratagene). Automated DNA sequencing was used to verify all constructs. 

2.3.2 Protein Expression and Isolation from Bacteria 

Plasmid transformation into Escherichia coli BL21 cells, subsequent induction of protein 

synthesis by IPTG, and harvesting of the cultures were performed as described (Kusmierczyk et 

al., 2008; Kusmierczyk et al., 2011). Frozen cell pellets were thawed on ice and resuspended in 

0.6 ml of Buffer A (50 mM HEPES-NaOH, pH 7.5, 0.3 M NaCl, and 5 mM MgCl2 supplemented 

with 2 mM Pefabloc, 0.3 mg ml–1 lysozyme, 10 µg ml–1 DNase I and 0.1% (v/v) Triton X-100. The 

suspensions were lysed by shaking at 30 °C for 30 min. The resulting total crude lysate was 

centrifuged at 10,000 × g for 10 min at room temperature to separate soluble and insoluble material. 

The soluble material was applied to 50 µl of equilibrated immobilized cobalt affinity resin (ICAR) 

(Talon resin; Clontech), incubated for 1 hour and centrifuged at 700 × g for 5 min. The resin beads 

were washed 2 times with 1 ml of Buffer A, 2 times with 1 ml of Buffer B (Buffer A supplemented 

with 5 mM imidazole), and 1 time with 1 ml of Buffer C (Buffer A supplemented with 10 mM 

imidazole). Each wash step was carried out with gentle rocking for 5 mins at 4 °C, followed by 

centrifugation at 700 × g for 5 mins to pellet the resin. His-tagged proteins were eluted in 600 µl 

of Buffer E (Buffer A supplemented with 200 mM imidazole). Following purification, protein 

samples were desalted by serial centrifugation as described (Kusmierczyk et al., 2011). Prior to 

gel electrophoresis or size exclusion chromatography, protein concentrations were measured using 

the BCA Assay (ThermoScientific). For lysate mixing experiments, total crude lysates of desired 

samples were mixed and incubated at 37 °C with slow shaking for 30 mins. Following incubation, 
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mixed total crude lysates were separated into soluble and insoluble fractions as described above 

and subjected to protein purification by ICAR. 

2.3.3 Polyacrylamide Gel Electrophoresis  

Equal amounts of protein (10 µg or 20 µg) were mixed with 5× nondenaturing sample 

buffer (0.5 M Tris-HCl, pH 8.8, 50% (v/v) glycerol, traces of bromophenol blue). Samples were 

subjected to analysis by nondenaturing gel electrophoresis as described (Kusmierczyk et al., 2008; 

Kusmierczyk et al., 2011) except 4-15% gradient and 5-10% gradient gels were used as indicated 

in the Figure legends. All gels were lab poured except for the 4-15% gradient gels which were 

precast Mini-PROTEAN TGX gels (BioRad). Aliquots of native high molecular weight marker 

mix for nondenaturing gel electrophoresis (GE Healthcare) were mixed with 5× nondenaturing 

sample buffer and loaded along with the protein samples. The electrophoretic run was carried out 

at 55 V and 4 °C until the dye front ran off the gel. Where indicated, following electrophoresis, 

nondenaturing gels were subjected to substrate overlay assay using the fluorogenic substrate Suc-

LLVY-AMC (Enzo) to visualize the peptidase activity of the proteasome on a UV transilluminator 

(Kusmierczyk et al., 2011) and then stained with GelCode blue (ThermoScientific). Aliquots of 

samples analyzed by nondenaturing gel electrophoresis were mixed with 5× SDS sample buffer 

and separated on 12% SDS-PAGE as indicated in the Figure legends.  

2.3.4 Cross-linking Analysis 

For experiments utilizing engineered cysteine mutant α subunits, no cross-linking and/or 

oxidizing agents were added to the samples to induce disulfide formation. Experimental conditions 

during expression, lysis, and ICAR purification were sufficiently oxidizing to allow disulfide 

bonds to form. Purified proteins (20 µg) were analyzed by nondenaturing PAGE as described 

above. Bands of interest were excised from the gel, cut into small pieces, and incubated overnight 

at 4 °C in 1× SDS sample buffer without DTT in order to allow proteins to elute. The supernatants 

containing the eluted proteins were analyzed by 12% SDS-PAGE under non-reducing conditions 

and stained with the Pierce Silver Stain Kit (ThermoScientific). Where indicated, DTT was added 

back to some aliquots prior to electrophoresis. 
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2.3.5 Size Exclusion Chromatography 

Wild-type and mutant α subunits (780 µg) were loaded on to a HiPrep Sephacryl S-300 HR 

column (GE Healthcare) coupled to an AKTA Prime Plus chromatography system (GE 

Healthcare). Elution profiles were analyzed using Prime View evaluation software. The column 

was equilibrated with Buffer D (25 mM Tris-HCl, pH 7, 150 mM NaCl), the flow rate was 0.8 ml 

min-1, and 3 ml fractions were collected. Calibration of the column was carried out using 360 µg 

of each of six molecular weight standards (Serva). Aliquots (15 µl) of sizing column fractions were 

mixed with 5× SDS sample buffer and analyzed by 12% SDS-PAGE followed by staining with 

GelCode blue. In addition, aliquots (50 µl) of sizing column fractions were mixed with 5× 

nondenaturing sample buffer and analyzed by nondenaturing 4-15% gradient precast gels followed 

by staining with Imperial Stain (ThermoScientific) or Pierce Silver Stain Kit (ThermoScientific). 

In experiments requiring the pooling of sizing column fractions, the indicated fractions were 

combined and concentrated down to a volume of 0.6 ml using Pierce Protein Concentrators, 9K 

(ThermoScientific). These pooled and concentrated fractions were then mixed with crude lysates 

of BL21 cells expressing untagged archaeal β subunits. Proteins were repurified by ICAR and 

analyzed by native PAGE and substrate-overlay assay as described above.  

2.4 Results 

2.4.1 Archaeal α-rings 

 Recombinant archaeal α subunits form single (Groll et al., 2003) or double (Zwickl et al., 

1994) rings. To investigate early events of α subunit assembly, C-terminally hexahistidine-tagged 

(his-tagged) α subunits (α-his) from the archaeaon Methanococcus maripaludis S2 were expressed 

in Escherichia coli. The α-his protein was purified by immobilized-cobalt affinity resin (ICAR) 

and analyzed by native PAGE. Two main bands were observed: a prominent lower band near the 

232 kDa size standard and a weaker upper band near the 440 kDa size standard (Fig. 2.1a, lane 1). 

Size exclusion chromatography confirmed that these two bands represented distinct species; the 

two elution peaks overlapped in fractions 17-20 (Fig. 2.1b). A smaller third peak was observed in 

fractions 25-28 most likely representing free α-his subunits (expected Mr 29.5 kDa); referred as 

“non-ring” (nonR) to account for the possibility that some dimers might be present. The lower and 
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upper bands on native PAGE were tentatively assigned to be single α-rings (SR; expected Mr 206 

kDa) and double α-rings (DR; expected Mr 413 kDa), respectively.   

 

 

 

Figure 2.1: Structural similarity between double α-rings and half-proteasomes  

(a) Recombinant wild-type (WT) and mutant archaeal α-his subunits (20 µg) were analyzed by 

nondenaturing 4–15% gradient gel (top panel). Equal protein loading was verified by 12% SDS-

PAGE (bottom panel). Proteins visualized by GelCode blue. Black arrowheads denote double α-

ring (DR) and single α-ring (SR) species. White arrowhead denotes a gel-induced higher order 

species. The position of several molecular size standards (in kDa) is indicated in each panel. (b) 

Wild-type α-his protein (780 µg) subjected to size exclusion chromatography on a Sephacryl S-

300 column. Indicated fractions were analyzed by three 12% SDS-PAGE gels stained with 

GelCode blue (top panels). Black arrowheads indicate the column void volume and the elution 

peaks of molecular size standards (in kDa). Aliquots from the major peak (fractions 17–20) were 

analyzed on a nondenaturing 5–10% gradient gel stained with silver (bottom panel, “native”). 

Black arrowheads denote SR and DR species. The position of several molecular size standards (in 

kDa) is indicated. (c) The Q99C mutation results in cross-linked α-rings. Bands corresponding to 

several DR species were excised from the native gel in a. Proteins within the bands were eluted, 

analyzed by 12% SDS-PAGE under non-reducing (lanes 1–3), or reducing (lanes 6,7), conditions, 

and visualized by silver staining. M, molecular size standards (size in kDa indicated at right). (d) 

Q99C is ideally placed to enable cross-linking of α-rings. Recombinant wild-type (WT) and mutant 

archaeal α-his subunits were purified and analyzed as described in (a).  
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Some eukaryotic α-subunits also assemble into DR when expressed in bacteria (Gerards, 

de Jong, Bloemendal, et al., 1998; Gerards et al., 1997). The significance of DR formation is not 

known, and no high-resolution data describes their structure. Cryoelectron microscopy (cryoEM) 

analysis reveals that the two α-rings are offset by ~25° relative to each other (Zwickl et al., 1994). 

An identical offset exists between α-rings and β-rings within each half of the CP, contributing to 

the saw-tooth interdigitation of the subunits (Lowe et al., 1995) mediated mainly by contact 

between respective H1 helices (Sup Fig. 1). Since α and β subunits are structurally related (Lowe 

et al., 1995), one can hypothesize that a DR and an αβ ring pair (i.e. a half-proteasome) exhibit a 

similar quaternary structure. To test this, a cross-linking strategy was adopted:  if DR and half-

proteasomes are structurally analogous, it should be possible to cross-link two α subunits with a 

suitably placed cysteine residue in the H1 helix.  

 

 A glutamine at position 99 of the M. maripaludis α-subunit may be well positioned for an 

engineered disulfide cross-link (Sup Fig. 1). Three α subunit mutants were generated by site 

directed mutagenesis: a mutant containing an engineered H1 helix cysteine in addition to the three 

endogenous cysteines (Q99C); a mutant containing the H1 helix cysteine but with no endogenous 

cysteines (Q99CΔcys); and a mutant with no endogenous cysteines (Δcys). These α-his subunit 

mutants were expressed in E. coli, purified them by ICAR, and analyzed them by native PAGE 

(Fig. 2.1a, lanes 2-4). Unlike wild-type α subunits, the Q99C and the Q99CΔcys mutants exhibited 

no SR band but a prominent DR band instead. An even slower-migrating band (Fig. 2.1d, white 

arrowhead) was a gel-induced higher order species (Sup Fig. 2). The transition to DR as the major 

species was absent in the Δcys mutant.  

 

 These results were consistent with Q99C-dependent cross-linking of α subunits locking 

two α-rings together, causing SR to convert to DR. To confirm this, the DR bands were excised 

from the wild-type, Q99C, and Q99CΔcys samples, eluted the proteins within, and subjected them 

to SDS-PAGE under non-reducing conditions (Fig. 2.1c, lanes 1-3). The wild-type sample 

exhibited only a band at ~30 kDa, corresponding to an α subunit monomer. The Q99C and the 

Q99CΔcys samples exhibited the monomer band and a new ~60 kDa band, consistent with an α 

subunit dimer, which disappeared under reducing conditions (Fig. 2.1c, lanes 6,7). The lack of 

endogenous cysteines in the Q99CΔcys mutant means that only the desired cross-links are 
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observed, consistent with the higher intensity of the ~60 kDa band in the Q99CΔcys sample versus 

the Q99C sample. The cross-linking efficiency was not 100% in either mutant (Fig. 2.1c), yet the 

SR to DR shift on native PAGE was complete in both (Fig. 2.1a). This is explained by only one 

cross-linked pair of α subunits being needed to lock the two α-rings in a DR. Placing the cross-

linkable cysteine even one residue away from position 99 eliminated (A98C), or greatly reduced 

(M100C), the transition from SR to DR (Fig. 2.1d). The data conclude that the Q99C mutation can 

cross-link two α-subunits in opposite rings together, effectively locking the DR, because the α-

rings interact via precisely aligned H1 helices. This is a strong evidence that our tentative 

assignment of the lower (SR) and upper (DR) bands on native PAGE was correct and, more 

importantly, supports the hypothesis that DR are structurally analogous to half-proteasomes. 

2.4.2 Charged Residues and α-ring Assembly 

 In the current view of CP assembly, α-subunits assemble into single rings (SR) first. Double 

rings (DR) presumably arise from preformed SR and exist in equilibrium with them; our cross-

linking results are consistent with this view. Interactions between H0 helices, present in α but not 

β subunits, help stabilize the formation of α-rings (Zwickl et al., 1994). Site directed mutagenesis 

was used to investigate what other factors influence ring stability. Based on available structures 

(Groll et al., 2003; Lowe et al., 1995), highly conserved charged residues at α subunit interfaces 

within the same ring were targeted (Sup Fig. 3). Those that were close to highly conserved residues 

of opposite charge on an adjacent subunit might form stabilizing salt bridges; if so, mutating them 

would destabilize α-rings, interfering with their formation. Two mutant α-his subunits were 

expressed in E. coli (K59E and R88D), purified them by ICAR, and analyzed them by native 

PAGE.  

 

In both mutants, the SR band was replaced with a much faster migrating species, consistent 

with these two mutations having a destabilizing effect on α-ring formation (Fig. 2.2a). This faster 

migrating species most likely represents free α subunits but, as above, referred as nonR to allow 

for the possibility of some dimers. For the R88D mutant, the nonR species was the only readily-

observed species, arguing that this mutation had a profound effect on ring formation. By contrast, 

the K59E mutant exhibited a weak band migrating near the DR of the wild-type.  This band was 

surmised as a DR whose mobility on native PAGE was slightly different because the mutation 
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affected the mass-to-charge ratio of the protein. Size exclusion chromatography verified the native 

PAGE results (Fig. 2.2 b, c and Sup Fig. 4). The K59E mutant protein exhibited two peaks, a major 

peak in fractions 25-28 (nonR) and a minor peak in fractions 17-19 (DR). The R88D mutant protein 

exhibited only the major peak in fractions 25-28 (nonR). In conclusion, perturbing conserved 

charged residues at the intra-ring α subunit interface interferes with the assembly of SR, but not 

necessarily DR, and that the R88 residue has a much bigger effect on ring stability. 

 

 

 

Figure 2.2: Conserved charged residues at α-α subunit interface contribute to α-ring stability 

Recombinant wild-type (WT) and mutant archaeal α-his subunits were purified by immobilized 

cobalt affinity resin (ICAR) and 10 µg of protein from each sample eluate was analyzed on a 

nondenaturing 4–15% gradient gel stained with GelCode blue (a). Double α-ring (DR), single α-

ring (SR), and non-ring (nonR) species are denoted with black arrowheads; nonR denotes α 

subunits that have not assembled into any ring and consist mostly of free α subunits. The position 

of several molecular size standards (in kDa) is indicated. (b, c) The purified mutant proteins (780 

µg) were subjected to size exclusion chromatography on a Sephacryl S-300 column and 3 mL 

fractions were collected. Aliquots (50 µl) of the indicated fractions were analyzed by three 12% 

SDS-PAGE gels and stained with GelCode blue. Black lines delineate the position of the DR and 

nonR peaks. The locations of the column void volume and the elution peaks of the indicated 

molecular size standards (in kDa) are indicated with black arrowheads. 

 

2.4.3 α-ring Independent 20S Assembly 

 The SR is considered to be an obligatory assembly intermediate in archaea and eukaryotes 

while a DR is thought to be an assembly-incompetent complex (Hirano et al., 2005). Since both 

mutants appeared unable to form any detectable SR (K59E did form some DR), it was expected 
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they would be incapable of proteasome formation. To determine if this was the case, M. 

maripaludis α-his and β subunits were expressed in bacteria (Kusmierczyk et al., 2008), purified 

them by ICAR and analyzed them by native PAGE (Fig. 2.3).  

 

 

Figure 2.3: Mutant α subunits form functional 20S proteasomes 

(a,b) Wild-type (WT) and mutant archaeal α-his subunits were expressed in E. coli either 

individually, or coexpressed with wild-type archaeal β subunits. The recombinant proteins were 

purified by immobilized cobalt affinity resin (ICAR) and 10 µg of protein from each sample eluate 

was electrophoresed on a nondenaturing 5–-10% gradient gel. Immediately prior to GelCode blue 

staining (a), the polyacrylamide gel was overlaid with buffer solution containing the fluorogenic 

peptide substrate Suc-LLVY-AMC to detect peptidase activity (b). Black arrowheads denote the 

positions of assembled 20S core particle (20S), double α-ring (DR) and single α-ring (SR). The 

position of α subunit species that do not assemble into any ring (nonR), and are mostly free α 

subunits, is shown with a bracket. The migration of several molecular size standards (in kDa) is 

indicated. (c) Aliquots of the ICAR-purified proteins from a were also analyzed by 12% SDS-

PAGE stained with GelCode blue. Migration of the 25-kDa molecular size standard is indicated. 

  

Coexpression of wild-type α and β subunits resulted in a prominent species near the 670 

kDa size standard (Fig. 2.3a). This band has been earlier shown to be a functional 20S 

(Kusmierczyk et al., 2011) and it exhibited peptidase activity in an in-gel assay (Fig. 2.3b). Some 

SR, and a small amount of nonR, was also observed in the wild-type sample but no DR band was 

present. Unexpectedly, coexpression of both K59E and R88D mutants with wild-type β subunits 
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also resulted in catalytically active bands near the 670 kDa size standard; small amounts of nonR 

species were observed in each mutant as well. SDS-PAGE analysis revealed both α and primarily 

mature β subunits in all 3 proteolytically active samples (Fig. 2.3c). The results conclude that the 

mutant α subunits formed functional proteasomes.   

 

 Next, an important control experiment was carried out. Protein assembly is cooperative 

and strongly concentration dependent (Williamson, 2008). Mutant α subunits appeared incapable 

of forming SR (Fig.  2.2, lanes 1-3), but this conclusion is based on in vitro experiments where the 

purified protein is at much lower concentrations. By contrast, excluded volume effects inside 

bacteria result in much higher effective protein concentrations (Zimmerman & Trach, 1991). 

Therefore, one cannot rule out that these higher concentrations during coexpression could promote 

just enough SR assembly from mutant α subunits to allow β subunits to bind and form CP. To 

overcome this uncertainty, α-his and untagged β subunits were separately expressed in bacteria 

and performed lysate mixing prior to purification by ICAR. Since the mutant α subunits do not 

appear to form SR under the decreased protein concentrations post-lysis (Fig. 2.2), this eliminated 

the concentration concerns. The purified proteins were analyzed by native PAGE and, in all cases, 

functional proteasomes were formed (Fig. 2.4a). In conclusion, formation of SR is not required for 

assembly of functional proteasomes.  

 

Interestingly, lysate mixing produced a number of changes. First, the DR species 

reappeared in the wild-type sample. Second, while the coexpressed samples contained mostly fully 

mature β subunits (mβ), the lysate mixing samples all contained higher levels of immature (proβ) 

β subunits (Fig. 2.4b). This argued for much less efficient assembly during lysate mixing relative 

to coexpression likely because the lower protein concentrations in lysates result in decreased 

assembly rates. Third, a prominent new band migrating between the 670 and 440 kDa size 

standards appeared in all three samples; it was slightly more abundant in the two mutants. This 

band was already faintly present in the mutant samples during coexpression, but it was more 
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Figure 2.4: Proteasome assembly assayed by coexpression and lysate mixing 

(a) For coexpression (C), wild-type (WT) or mutant α-his subunits were coexpressed with wild-

type β subunits in E. coli and the proteins purified by immobilized cobalt affinity resin (ICAR). 

For lysate mixing (L), proteasome assembly was initiated by mixing equal volumes of lysates from 

cells separately expressing the indicated α-his and β subunits, and proteins were purified by ICAR. 

Purified proteins (10 µg) from each sample eluate were electrophoresed on a nondenaturing 5–

10% gradient gel. Immediately prior to GelCode staining (left panel), the gel was overlaid with 

buffer solution containing the fluorogenic peptide substrate Suc-LLVY-AMC to detect peptidase 

activity (right panel). Black arrowheads denote the assembled 20S core particle (20S), putative 

half-proteasome (half), double α-ring (DR) and single α-ring (SR). The position of α subunit 

species that do not assemble into any ring (nonR), and are mostly free α subunits, is shown with a 

bracket. The migration of several molecular size standards (in kDa) is indicated. (b) Decreased 

processing of β subunit propeptides during lysate mixing. Aliquots of the ICAR-purified proteins 

from a were analyzed by 12% SDS-PAGE stained with GelCode blue. Black arrowhead denotes 

migration of α-his subunit and arrows indicate position of fully mature (mβ) and immature (proβ) 

β subunits. The migration of the 25-kDa molecular size standard is shown. Asterisk denotes the 

migration of a truncated α-his subunit resulting from non-specific proteolysis post lysis; its 

migration is also apparent on native PAGE in (a). 
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prominent during lysate mixing. It was tentatively assigned as half-proteasome (Fig. 2.4a, half) 

since excision of this band, and elution of the proteins within, revealed comparable levels of α and 

β subunits (not shown) yet it had no peptidase activity in the in-gel assay (Fig. 2.4a, right panel).   

2.4.4 Bacterial-like Assembly Features 

 How functional proteasomes can form independently of SR could be explained if α and β 

subunits combined directly to form half-proteasomes. This would imply that archaeal CP assembly 

can proceed along a pathway similar to bacterial CP assembly (Zuhl, Tamura, et al., 1997). That 

mutant α subunits can form half-proteasomes without forming SR or DR was suggested by lysate 

mixing experiments (Fig. 2.4a, half). Additional data was needed to confirm the identity of this 

putative half-proteasome and demonstrate that it is an on-pathway intermediate. In the archaeal 

CP, a highly conserved β subunit arginine (R166 in M. maripaludis) in one β-ring is well 

positioned to form stabilizing salt bridges with conserved acidic residues on the opposing β-ring 

(Sup Fig. 3 and (Lowe et al., 1995)). This residue was mutated to a tryptophan (R166W), reasoning 

that this should disrupt half-proteasome dimerization and hence CP assembly. Consequently, 

levels of the half-proteasome precursor should accumulate while levels of the 20S CP product 

should decrease, consistent with a precursor-product relationship. Lysates expressing wild-type or 

mutant α-his subunits were mixed with lysates expressing full length wild-type or mutant β 

subunits. The mixtures were purified by ICAR and the purified proteins analyzed by native PAGE 

and in-gel substrate overlay assay.  

 

As before, mixing wild-type α and wild-type β subunits resulted in functional proteasomes; 

DR, SR, nonR and half species were also present (Fig. 2.5a, b, lane 1). Mixing wild-type α with 

mutant β (R166W) subunits resulted in the same banding pattern except the 20S species was 

greatly reduced and the half species was increased (Fig. 2.5a, lanes 1 versus 6). The change in the 

relative intensities of the 20S and half species (lane 1 versus lane 6) implies a precursor-product 

relationship for these two bands. The results conclude that the R166W mutation disrupts assembly 

at the half-proteasome stage and that our tentative assignment of the half species as a half-

proteasome was correct. 
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Figure 2.5: Bacterial-like features of archaeal 20S proteasome assembly 

(a-c) Lysate mixing. Proteasome assembly was initiated by mixing equal volumes of lysates from 

cells separately expressing the indicated α-his and β subunits, and proteins were purified by ICAR. 

(d-f) Coexpression. Wild-type (WT) or mutant α-his subunits were coexpressed with wild-type β 

subunits in E. coli and the proteins purified by immobilized cobalt affinity resin (ICAR). Purified 

proteins (10 µg) from each sample eluate were electrophoresed on a nondenaturing 5–10% gradient 

gel. Immediately prior to staining with GelCode blue (a, d) the native gels were overlaid with 

buffer solution containing the fluorogenic peptide substrate Suc-LLVY-AMC to detect peptidase 

activity (b,e). Black arrowheads denote the assembled 20S core particle (20S), half-proteasome 

(half), double α-ring (DR) and single α-ring (SR). The position of α subunit species that do not 

assemble into any ring (nonR), and are mostly free α subunits, is shown with a bracket. White 

arrowhead denotes a gel-induced higher order species. The migration of several molecular size 

standards (in kDa) is indicated. (c, f) Aliquots of the ICAR-purified proteins from a and d were 

also analyzed by 12% SDS-PAGE stained with GelCode blue. Black arrowhead denotes migration 

of α-his subunit and arrows indicate position of fully mature (mβ) and immature (proβ) β subunits. 

The migration of the 25-kDa molecular size standard is shown. Asterisk denotes a truncated α-his 

subunit resulting from non-specific proteolysis post lysis; its migration is also apparent on native 

PAGE in a and d. 

 

When α (R88D) was combined with wild-type β subunits, functional proteasomes were 

again observed (lane 2). NonR and half species were also present, and the half species was slightly 

more abundant in the α (R88D) sample than in the wild-type α sample (Fig. 2.5a, lane 2 versus 1). 

Finally, when α (R88D) was combined with β (R166W), the same decrease in the 20S species and 
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the same increase in the half species was observed (Fig. 2.5a, lane 2 versus lane 5). These results 

conclude that the same precursor-product relationship was being observed and that the half species 

in the α (R88D) mutant samples was also an on-pathway half proteasome.  

  

There was no peptidase activity in any sample employing the R166W mutant (Fig. 2.5b) 

and this correlated with a lack of fully mature β subunits (Fig. 2.5c). This is also consistent with 

the R166W mutation disrupting assembly at the half-proteasome stage, thereby reducing the 

likelihood of assembly of mature 20S. The slight migration differences of the half-proteasome 

bands between the various samples (Fig. 2.5a, lanes 1, 2, 5, 6) was attributed to both mutations 

(R88D and R166W) being capable of altering the mass-to-charge ratios of this complex relative to 

wild-type. As might be expected, the degree of accumulation of the half-proteasome was greatest 

in the double mutant and least in the wild-type sample. The degree of half-proteasome 

accumulation in the various mutants is summarized as: [α (R88D) β (R166W)] > [α β (R166W)] 

> [α (R88D) β] > [α β]. When repeated the entire R166W analysis described above (Fig. 2.5a-c) 

using subunit coexpression, as opposed to lysate mixing, an essentially identical results were 

obtained (Fig. 2.5d-f). The major difference was that coexpression, but not lysate mixing, resulted 

in some 20S activity in the R166W samples (compare corresponding lanes 5 and 6). This was 

likely due to more efficient maturation during coexpression, evidenced by increased levels of the 

mature β (mβ) subunit (Fig. 2.5c, f). 

 

 Prior to this study, one aspect of assembly where archaeal and bacterial CP were similar 

was in the role of the β subunit propeptide:  neither required it (Lin et al., 2006; Zwickl et al., 1994) 

though it greatly improved assembly efficiency in some bacteria (Zuhl, Seemuller, et al., 1997). 

To determine the role of the β subunit propeptide when archaeal α subunits were incapable of 

forming rings, the β subunit mutants lacking the propeptide (Δpro), and ones incapable of cleaving 

their propeptide due to an active site mutation (T1A) (Kusmierczyk et al., 2011) were employed.  

Functional proteasomes were obtained in both lysate mixing (Fig. 2.5a-c) and coexpression (Fig. 

2.5d-f) experiments employing β (Δpro), indicating that the propeptide is not required for 

assembly. Fully assembled, albeit inactive, 20S species were also obtained in both lysate mixing 

and coexpression experiments employing β (T1A), indicating that a permanently present 

propeptide does not prevent assembly. The data conclude that even when α subunits cannot form 
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rings, archaeal and bacterial CP assembly remain similar with regards to the role of the β subunit 

propeptide (see Supplementary Note, appendix A). Two minor differences between lysate mixing 

and coexpression results, which do not affect this conclusion, are noted in the text that accompanies 

Supplementary Figure 5. This supplementary Figure also demonstrates that results obtained with 

the α (K59E) mutant were identical to those described for α (R88D) in Figure 2.5. 

2.4.5 Assembly-competent Species 

 The data so far suggest that archaeal α subunits can form proteasomes along an SR-

independent pathway, reminiscent of bacterial 20S assembly. It was needed to show that the 

free/unassembled α subunits served as the starting point for this alternative pathway. To this end, 

wild-type and mutant α-his subunits were purified by ICAR and fractionated them by size 

exclusion chromatography as before (Figs. 2.1b and 2.2b). The fractions 17-19 were combined 

into pool 1, corresponding to “ringed species”. As seen in Figure 2.1b, the sizing column cannot 

cleanly separate SR from DR, hence the “ringed species” pool from wild-type subunits contains 

both SR and DR. Fractions 25-28 were compiled into pool 2, corresponding to nonR species 

(mostly free α subunits). The pooled samples were concentrated, mixed with equal volumes of 

bacterial lysates containing untagged wild-type β subunits, and repurified by ICAR. The repurified 

samples were analyzed by native PAGE (Fig. 2.6 and Sup Fig. 6).  

 

In the wild-type sample, pool 1 contained the expected SR and DR bands and gave rise to 

functional CP (lane 1). Pool 2 also gave rise to functional CP (lane 2), consistent with the idea that 

nonR species (mostly free αsubunits) can serve as starting material for assembly. There was more 

CP formed from pool 1 because wild-type α subunits exist primarily as SR and DR (Fig. 2.1) so 

this pool contained more α subunits to begin with. The small amount of DR in pool 2 likely formed 

from free α subunits during sample concentration. The α(K59E) subunits can also form some DR 

(Fig. 2.2 and Sup Fig. 4) and pool 1 from the α (K59E) mutant sample exhibited a DR band. 

However, there was very little assembled CP generated from this pool (Fig. 2.6 lane 6) suggesting 

that DR is a poor substrate for CP formation. DR have been proposed to be dead-end complexes 

(Hirano et al., 2005). The barely-perceptible amount of 20S species formed from this pool could 

be due to some DR dissociating into assembly competent nonR. A barely-perceptible amount of 
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20S species was also observed from pool 1 of the α (R88D) mutant (lane 4); a likely reason for 

this is presented in Supplementary Figure 7. 

 

 

Figure 2.6: Ring independent assembly of archaeal 20S proteasomes 

Recombinant wild-type (WT) and mutant archaeal α-his subunits were purified by immobilized 

cobalt affinity resin (ICAR). The purified proteins (780 µg) were fractionated by size exclusion 

chromatography on a Sephacryl S-300 column exactly as described in Figures 2.1b and 2.2b, c. 

For each of the three α-his samples, fractions 17–19 were combined and concentrated (pool 1; 

ringed species), and fractions 25–28 were combined and concentrated (pool 2; nonR species). The 

three pool 1 and three pool 2 samples were mixed with equal volumes of lysate from E. coli 

expressing wild-type archaeal β subunits. The proteins were repurified by ICAR and equal 

volumes of each eluate were electrophoresed on a nondenaturing 5–10% gradient gel. Immediately 

prior to GelCode staining (top panel), the polyacrylamide gel was overlaid with buffer solution 

containing the fluorogenic peptide substrate Suc-LLVY-AMC to detect peptidase activity (bottom 

panel). Black arrowheads denote the positions of assembled 20S core particle (20S), half-

proteasome (half), double α-ring (DR) and single α-ring (SR). The position of α subunit species 

that do not assemble into any ring (nonR), and are mostly free α subunits, is shown with a bracket. 

The migration of several molecular size standards (in kDa) is indicated. 

 

Unlike wild-type α subunits, both mutant α subunits existed primarily as nonR species 

(Fig.s. 2.2, 2.3). When these nonR species were used as the starting material for assembly (i.e. 

pool 2), functional proteasomes formed readily (Fig. 2.6 lanes 5 and 7). This strongly argues that 

free α subunits can serve as starting material for SR-independent assembly of CP. Interestingly, 
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all the pools which readily gave rise to functional CP also gave rise to the half-proteasome (lanes 

1, 2, 5, 7). This was consistent with results showing that the half-proteasome is an on-pathway 

intermediate in both SR-dependent and SR-independent pathways (Fig. 2.5).  

 

 Bacterial 20S proteasomes most likely assemble via αβ heterodimers (Kwon et al., 2004; 

Sharon et al., 2007; Zuhl, Seemuller, et al., 1997). To determine if the SR-independent assembly 

of archaeal 20S proteasomes also involved the formation of αβ heterodimers, a time course 

experiments was designed. These experiments, based on the mixing of separately purified α-his 

and β-his subunits, demonstrated that assembly was rapid (Sup Fig. 8). The results did not show 

any novel bands on nondenaturing gels that would be consistent with αβ heterodimer formation. 

This could be due to αβ heterodimers being a transient species, which assembles quickly into half-

proteasomes, or to αβ heterodimers not being stable enough to survive electrophoresis, or both. As 

an alternate approach, lysates expressing wild-type or mutant α-his subunits were mixed with 

lysates expressing untagged full length wild-type or mutant β subunit. The mixtures were purified 

by ICAR and the purified proteins fractionated by size exclusion chromatography (Sup Fig. 9).  

 

 When wild-type α-his subunits were mixed with wild-type untagged β subunits, a 

prominent peak of α and β subunits in fractions 15-18 was observed. This peak corresponded to 

assembled proteasomes and half-proteasomes. The excess of α-his subunits over β subunits in these 

fractions was due to the presence of DR and some SR, since the Sephacryl S-300 column cannot 

reliably separate these species (Fig. 2.1b and not shown). Some free β subunits eluted in fractions 

32 to 34, consistent with what was observed for purified α-his subunits (Sup Fig. 8). A small 

amount of β subunits was also found coeluting with α-his subunits in fractions 25 to 30. This region 

contains the nonR α subunit species (Fig. 2.1b) and is consistent with where an αβ heterodimer 

(predicted Mr, 53.1 kDa) might be expected to elute. When mutant α-his subunits (K59E) were 

mixed with wild-type untagged β subunits, a peak in fractions 15-18, corresponding to assembled 

proteasomes, was again observed. Here, the levels of α-his and β subunits were approximately 

equal because the K59E mutant forms very little DR (and no SR). Interestingly, more β subunits 

were now coeluting with the mutant α-his in factions 25 to 30 (Sup Fig. 9).  The K59E mutation 

generates more nonR species (Fig. 2.2c). Hence, increased levels of β-subunits in these fractions 

could be due to more αβ heterodimer formation from the free α subunits in the nonR species, 
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because the SR-dependent assembly pathway is not available to the K59E mutant. Finally, the 

analysis was repeated with the α-his (K59E) mutant but employed a β subunit mutant (K29E) that 

is expected to weaken β-β subunit interactions within a β-ring (Sup Fig. 9). This β mutant should 

impair the SR-independent assembly pathway, which is the only assembly pathway operating in 

the α(K59E) mutant. If the SR-independent pathway involves the formation of αβ heterodimers, 

even more β subunits should accumulate in fractions 25 to 30 due to the accumulation of these 

precursors. This is exactly what was observed (Sup Fig. 9). Taken together, our results are 

consistent with the existence of archaeal αβ heterodimers. However, the possibility of 

heterotrimers (α2β or αβ2) cannot be excluded given the resolving capacity of the size exclusion 

column (see also Supplementary Note).  

2.5 Discussion 

 Until now, two separate narratives described the assembly of the 20S proteasome. In one, 

bacterial α subunits do not form rings but likely form heterodimers with β subunits that assemble 

into half-proteasomes which then dimerize to form the 20S proteasome (Kwon et al., 2004; Sharon 

et al., 2007; Zuhl, Seemuller, et al., 1997). In the other, archaeal and eukaryotic α subunits form 

α-rings first; these template βsubunit incorporation until a half-proteasome is formed, which then 

dimerizes (Hirano et al., 2008; Zwickl et al., 1994). Here the results suggest that this dichotomy 

might not be necessary. Archaeal proteasomes can assemble along a pathway independent of α-

ring formation, reminiscent of bacterial 20S assembly (Fig. 2.7). 

 

The α-ring first view of proteasome assembly arose from observations demonstrating that 

archaeal and eukaryotic α subunits form rings on their own (Gerards, de Jong, Bloemendal, et al., 

1998; J. A. Maupin-Furlow, Aldrich, & Ferry, 1998; Yao et al., 1999; Zwickl et al., 1994). Stability 

of α-rings is partly due to extensive inter-subunit interactions mediated by α subunit H0 helices. 

Lacking the N-terminal extensions that contain H0 helices, β subunits cannot form rings by 

themselves and depend on α-rings to guide their assembly (Hirano et al., 2008; Lowe et al., 1995; 

Zwickl et al., 1994). Many of these studies relied on bacterial expression of proteasome subunits. 

This continues to be a valuable approach because one can generate subunits in isolation, in 

combination with other subunits, and as both wild-type and mutant versions, without the need to 

worry about interference from endogenous 20S, which E. coli lacks. Using recombinant α subunits 
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from the archaeon M. maripaludis, which form single (SR) and double (DR) α-rings (Fig. 2.1), the 

data show that highly conserved charged residues at the α-α subunit interface are important for α-

ring stability, likely through the formation of stabilizing salt-bridges. The K59E and R88D α 

subunit mutants do not form any detectable SR (Fig. 2.2) yet both efficiently assemble into 

functional 20S proteasomes (Fig. 2.3, 2.4) via a pathway that involves direct formation of half-

proteasomes (Fig. 2.5, 2.6), probably from αβ heterodimers (Sup Fig. 9). 

 

Assembly of recombinant α subunits into DR had been documented (Gerards, de Jong, 

Bloemendal, et al., 1998; Zwickl et al., 1994). The implicit assumption was that DR arose from 

SR, yet this was never explored. Here it was shown that the α (K59E) mutant, which does not form 

any detectable SR, is able to generate some DR (Fig. 2.2). This suggests that DR can form 

independently of SR. The significance of this observation is made clear by our cross-linking data 

showing that DR are structurally analogous to half-proteasomes; both types of double rings interact 

via H1 α helices (Fig. 2.1, Sup Fig. 1, and (Lowe et al., 1995). This quaternary structure for DR 

was foreshadowed by cryoEM analysis (Lowe et al., 1995; Zwickl et al., 1994) but our study 

presents the first biochemical confirmation of this arrangement. To form DR without first forming 

SR, α subunits need to pair in trans (i.e. using the H1-helix-based surfaces used to hold two α-

rings together). Since α and β subunits share the same structure, and interact via H1 helices, this 

trans pairing would be analogous to the formation of αβ heterodimers that give rise to half-

proteasomes in bacteria (Sharon et al., 2007) and probably now in archaea. The structural 

similarities between DR and half-proteasomes, which this study confirms, suggest that direct α-

subunit-to-DR assembly mimics the direct α-subunit-to-half-proteasome assembly, with both 

occurring independently of SR. Yet these similarities remained elusive, until now.  

 

As the direct precursor to 20S CP, the half-proteasome is an important intermediate in CP 

assembly. Having more than one pathway to reach the half-proteasome could be advantageous in 

case one is compromised. 
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Figure 2.7: Assembly network for the archaeal 20S proteasome 

Three assembly pathways are available to α subunits. The α subunits can interact with each other 

in cis (pathway 1) leading to the formation of an α-ring (SR). The SR acts as a template for β 

subunit entry until a half-proteasome (half) is formed, which dimerizes to give rise to the core 

particle (20S). This pathway is followed by archaeal and eukaryotic α subunits. The α subunits can 

interact with βsubunits to form the half-proteasome directly (pathway 2) and independently of SR. 

Here, the bracket denotes αβ heterodimers as the most likely precursor to half-proteasomes. 

Pathway 2 is highly reminiscent of bacterial 20S assembly. It is not known if eukaryotic α subunits 

can follow an SR-independent route. The α subunits can interact with each other in trans mediated 

by contacts between H1 helices (pathway 3) in a manner that would be entirely analogous to the 

formation of αβ heterodimers. This leads to the formation of a double α-ring (DR) that is 

structurally analogous to a half-proteasome. This pathway can be followed by archaeal and 

eukaryotic α subunits. DR can also form directly from SR. Regardless of how it arises, the DR is 

an assembly-incompetent species. Its formation is an example of an off-pathway process (dashed 

lines) that competes with on-pathway reactions (solid lines) leading to functional 20S. 

 

 The idea of alternative pathways for proteasome assembly is supported by studies which 

showed that paralogous β subunits in mammalian immune cells are incorporated in a different 

order than their constitutive counterparts (Griffin et al., 1998; Groettrup, Standera, Stohwasser, & 

Kloetzel, 1997; Kingsbury et al., 2000); that deletion of an assembly factor in yeast results in 

simultaneous production of both normal CP and alternate versions in which a second copy of α4 

replaces the endogenous copy of α3 (Kusmierczyk et al., 2008); and that the 19S regulatory particle 

can assemble via pathways dependent on (Hendil et al., 2009; Lee, Moon, Yoon, & Yoon, 2012; 

Park et al., 2009; Yu et al., 2015), and independent of (Thompson, Hakala, & DeMartino, 2009), 

a pre-existing 20S proteasome. Consequently, the concept of a single linear assembly “pathway” 

for the proteasome should perhaps be updated to an assembly “network” consisting of several 
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pathways leading to the formation of this complex. There are ~33 different proteins that make up 

the eukaryotic proteasome. In addition to productive pathways leading to its formation, there will 

also be unproductive pathways giving rise to assembly-incompetent (i.e. dead-end) complexes. 

The DR may be one such complex. DR and various DR-like species have been postulated to be 

dead-end complexes in eukaryotes in vivo (Hirano et al., 2005; Takagi et al., 2014; Yashiroda et 

al., 2008).  Archaeal proteasomes are compositionally simpler, but the data show here that archaeal 

DR are poor substrates for CP formation (Fig. 2.6) and thus likely candidates for dead-end 

complexes. 

 

 If multiple assembly pathways are possible, determining the extent to which each pathway 

is populated in vivo, and how unproductive pathways leading to dead-end complexes are avoided, 

remains to be determined. Kinetics and thermodynamics governing subunit association are 

important; pairings that occur quickly and/or produce stable intermediate complexes will be 

favored (Williamson, 2008). According to the updated assembly model (Fig. 2.7), α subunits can 

assemble with each other in cis, leading to the formation of SR, or with β subunits, leading to the 

half-proteasome, or with each other in trans, leading to the unproductive DR. The DR formation 

was observed under lysate mixing but not coexpression. This argues that the pathway leading α 

subunits to DR can be suppressed if conditions ensure that the SR and/or half-proteasome 

pathways occur faster. This is not the case during lysate mixing which artificially creates a low 

subunit concentration condition that slows assembly and thus allows the DR pathway to become 

populated. Besides kinetics and thermodynamics, dedicated assembly factors (Hirano et al., 2005; 

Takagi et al., 2014; Yashiroda et al., 2008) and post translational modifications (Humbard, Zhou, 

& Maupin-Furlow, 2009) will be shown to play increasingly important roles in shepherding 

assembling subunits onto productive pathways, and away from non-productive ones.  

 

 Our data do not question the importance of the SR to archaeal 20S assembly, as 

demonstrated by others (J. A. Maupin-Furlow et al., 1998; Zwickl et al., 1994). Nor do our data 

establish the extent to which SR-dependent and SR-independent assembly occurs in vivo. 

However, our findings that archaeal 20S proteasomes can assemble along an SR-independent 

pathway, reminiscent of bacterial 20S assembly, suggest a path toward a clearer understanding of 

proteasome evolution. Unlike eukaryotes and archaea, the proteasome has a limited distribution in 
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bacteria; it has been argued that a horizontal gene transfer (HGT) from archaea endowed these 

limited lineages with proteasomes (Volker & Lupas, 2002). Under the current dichotomy of 

assembly, one is forced to argue that bacterial 20S proteasomes must have lost their ability to 

assemble like archaeal proteasomes (SR-dependent pathway) and gained an entirely new assembly 

mechanism (SR-independent pathway) soon after HGT from the archaeal donor. Our results 

suggest that this ancestral archaeal donor assembled its 20S along both SR-dependent and SR-

independent pathways, as its descendant M. maripaludis can today (at least in vitro). Therefore, 

the bacteria that received the proteasome from this donor would only need to lose the SR-

dependent pathway while retaining the SR-independent pathway; no gain of function change is 

required. This is a more parsimonious explanation for the evolution of bacterial proteasome 

assembly. This explanation is also supported by structural data showing less surface area buried 

between α subunits, a likely reason for unstable bacterial α-ring (Hu et al., 2006; Kwon et al., 

2004). The conserved CP architecture across all domains of life contradicts the expected common 

assembly mechanisms, which this data now suggest are conserved across evolutionary time. It will 

now be interesting to determine if eukaryotic 20S proteasomes also retain an SR-independent 

assembly pathway.  
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 A NOVEL ASSEMBLY INTERMEDIATE “SUB-13S” 

3.1 Abstract 

The eukaryotic 20S proteasome is composed of seven distinct α-type and β-type subunits 

that assemble into four heteroheptameric rings in an α1-7β1-7β1-7α1-7 arrangement. These subunits 

assemble in an ordered and efficient manner requiring the assistance of assembly chaperones. 

Assembly begins with α subunit interactions that form an α-ring first which acts as a base for the 

sequential addition of β subunits. The rapid rate of a α subunit interaction poses a challenge to 

study a-ring formation step. Neither the order of α subunit interaction is known, nor these rings 

have been formally observed in yeast. The earliest known assembly intermediate is a 13S complex 

that contains all the α subunits plus the β2, β3 and β4 subunits. Here, identity of a complex, named 

as “sub-13S” that contains α1, α2, α3, α4, β2, β3, and β4 subunits, as a novel assembly intermediate 

is investigated in Saccharomycetes cerevisiae is investigated. Its existence becomes more apparent 

when proteasome assembly is slowed down. More importantly, the protein mixing experiment 

demonstrates that sub-13S is an assembly competent species that can convert into 13S intermediate 

when the remaining subunits, α5, α6, and α7, and assembly chaperone Pba3-Pba4 are provided. 

Lack of a complete α-ring in the sub-13S intermediate argues its origin from an α-ring independent 

proteasome assembly pathway that may coexist with the canonical α-ring dependent pathway. 

3.2 Introduction 

The proteasome, a part of ubiquitin proteasome system (UPS), is a multiprotein complex 

that plays a major role in degradation of proteins. The 26S proteasome is composed of two major 

complexes, the proteolytic core particle (CP) or 20S proteasome, and the regulatory particle (RP). 

The proteins targeted for degradation are usually tagged by ubiquitin. The RP is responsible for 

recognition, deubiqutination, unfolding of ubiquitinated substrates and directing them into the 

proteolytic CP for degradation (Tomko & Hochstrasser, 2013). The CP is arranged as a barrel of 

four coaxially stacked heptameric rings with outer rings composed of α-type subunits and the inner 

rings composed of β-type subunits. The β subunits are expressed with N-terminal propeptides that 

mask the catalytic N-terminal threonine residue. These propeptide are autocatalytically removed 

during assembly making the β subunits catalytically active only after CP is fully assembled (P. 
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Chen & Hochstrasser, 1996; Groll et al., 1997; S. Witt et al., 2006).  The CP, found in all three 

domains of life (archaea, eukaryota, actinomycetes and nitrospirales lineages of bacteria), is 

compositionally simpler in prokaryotes having only one or two type of α and β subunits, whereas 

in eukaryotes, there are seven different types of α (α1- α7) and seven different types of β (β1- β7) 

subunits with β1, β2 and β5 bearing the catalytic function (Groll et al., 1997; Lin et al., 2006; Lowe 

et al., 1995; Tamura et al., 1995). 

 

Eukaryotic proteasome assembly is a rapid, highly efficient, and ordered process that 

requires sequential addition of subunits and assistance of assembly chaperones (Howell et al., 

2017; Kunjappu & Hochstrasser, 2013). Assembly begins with α subunits assembling into an α-

ring first aided by assembly chaperones Pba1-Pba2 and Pba3-Pba4 (Hirano et al., 2005; Hirano et 

al., 2008; Kusmierczyk & Hochstrasser, 2008; Le Tallec et al., 2007; X. Li et al., 2007; Yashiroda 

et al., 2008). This α-ring serves as a template for subsequent addition of β subunits (Frentzel et al., 

1994; Nandi et al., 1997). The β2, β3, and β4 are first β subunits added on the α-ring with the 

assistance of assembly chaperone Ump1. This step is accompanied by the dissociation of Pba3-

Pba4, forming an intermediate called 13S (Hirano et al., 2008; Kock et al., 2015; Ramos et al., 

1998). This is the smallest assembly intermediate observed in yeast. Subsequent entry of β5, β6 

and β1 forms the 15S intermediate. β7 is the last subunit to be added onto the α-ring to form a half 

proteasome intermediate that quickly dimerize to form an immature CP intermediate referred to as 

the preholoproteasome (PHP) (X. Li et al., 2007; Marques et al., 2007).The proteolytic removal of 

β subunit’s propeptides occurs at this stage and transforms the PHP to mature CP (P. Chen & 

Hochstrasser, 1995; Heinemeyer, Fischer, Krimmer, Stachon, & Wolf, 1997). The assembly 

chaperone Ump1 is encapsulated during assembly, becoming the first proteasome substrate, and 

the assembly chaperone Pba1-Pba2 dissociates after the maturation process.  

 

Due to the rapid nature of proteasome biogenesis, not much information is known about 

the early events that involves α-ring assembly. Based on the detection of α-rings in mammals 

(Hirano et al., 2005) and the inherent tendency of archaeal and certain eukaryotic α subunit, but 

not β subunits, to spontaneously assemble into rings when expressed in vitro (Gerards et al., 1997; 

Yao et al., 1999; Zwickl et al., 1994), the assembly pathway in eukaryotes and archaea is 

considered α-ring dependent. Bacterial proteasome assembly was considered an exception in 
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which the α subunits interact with the β subunits first, possibly forming α/β heterodimers that 

multimerize to form half proteasomes (D. Li et al., 2010; Sharon et al., 2007; Zuhl, Seemuller, et 

al., 1997). Recent demonstration of an α-ring independent assembly pathway in archaea allowed 

to offer a plausible hypothesis about the origin of the seemingly different assembly pathway in 

bacteria (Panfair et al., 2015). Recent reports from our lab mentioned a novel species, referred to 

as “sub-13S”, that lacks a full α-ring and contains subset of β subunits along with Ssa1/Ssa2 

proteins (L. J. Hammack et al., 2017; Lindsay J. Hammack & Andrew R. Kusmierczyk, 2017). 

Here, further characterization, including the possibility of this complex to be an assembly 

intermediate, is investigated. Perturbation in the formation of the 13S intermediate increased the 

accumulation of the sub-13S complex suggesting their product precursor relationship. Moreover, 

when providing the missing subunits, maturation of sub-13S complex into a 13S like complex 

demonstrated the assembly competency of the sub-13S species. These results provide evidence for 

sub-13S as a novel assembly intermediate, smaller than the 13S intermediate.  

3.3 Materials and Methods 

3.3.1 Yeast Strains and Media 

All yeast manipulations were carried out according to standard protocols (C. Guthrie, 

1991). Strains used in this study are listed in Supplementary Table 2 in Appendix B. Dilution 

series experiments were carried out as described (Kusmierczyk et al., 2008). For biochemical 

analyses, one-liter yeast cultures were grown in YPD at 30 °C to mid-log phase. Yeast cells were 

harvested by centrifugation at 3000 x g for 10 minutes and the pellets washed with 40 ml of H2O 

prior to storage at –80 °C. 

3.3.2 Yeast lysis and Flag purification 

The lysis of yeast pellets and subsequent Flag purification was carried out as described (L. 

J. Hammack et al., 2017). The elution of proteins was slightly modified for the samples used for 

depletion, lysate mixing and purified protein mixing experiments. Briefly, the purified proteins 

were eluted in 450 µl of 5 µg/µl flag peptide (Sigma) in Tris-buffered saline (TBS), for 30 minutes 

at 4 °C. The eluted proteins were collected by transferring the resin mixture to a Pierce Micro-spin 

column (ThermoScientific) and centrifuging at 10,000 × g for 3 minutes. Samples were 

concentrated to a final volume of 200 µl by centrifugation using Vivaspin 500 columns 
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(Vivascience) with a molecular weight cut-off of 10 kDa. Depletion experiment was carried out 

as described (L. J. Hammack & A. R. Kusmierczyk, 2017) with the following modifications. The 

Flag eluate (450ul) was applied to 100 µl of cobalt resin (TALON resin; Clontech) for 1h at 4 °C 

with gentle rocking. The flow through from the first round of ICAR depletion was subjected to a 

second round of ICAR depletion using a fresh 100 µl aliquot of resin. The flow through from the 

second round of ICAR depletion was concentrated to a final volume of 100 µl using Vivaspin 500 

columns (Vivascience) with a molecular weight cut-off of 10 kDa. Native sample buffer (0.5 M 

Tris-HCl pH 8.8, 50% (v/v) glycerol, traces of bromophenol blue) and 5X denaturing buffer (0.3 

M Tris-HCl pH 6.8, 600 mM dithiothreitol (DTT), 10% (w/v) SDS, 50% (v/v) glycerol and traces 

of bromophenol blue) were added to purified protein aliquots to final 1X concentration for Native 

and SDS Page analysis respectively. 

3.3.3 Bacterial Protein Expression and Purification 

Bacterial expression plasmids, including those enabling polycistronic gene expression 

from a single mRNA, were generated as described (Kusmierczyk et al., 2008) and listed in 

Supplementary Table 3 in Appendix B. Proteins were expressed as described in (Kusmierczyk et 

al., 2008) with some modifications. After transformation of plasmid into BL21 cells, single 

colonies were inoculated in 6 ml of LB medium supplemented with ampicillin. After 6 hours of 

growth at 37 °C with shaking, the primary culture was diluted to an OD600 of 0.2 in 200ml of LB 

with ampicillin and reincubated at 37 °C for 40 minutes. The cultures were then transferred to 

30 °C and incubated for another 30 mins before adding 1 mM IPTG to induce protein expression. 

After 14 hours of induction, the culture was split into 50 ml aliquots and pelleted by 

centrifugation for 10 mins at 13000 rpm. The pellets were stored in -80°C. Frozen pellet lysis 

and immobilized cobalt affinity resin (ICAR) purification were carried out as described in 

(Panfair & Kusmierczyk, 2016) with two changes. The pellets were lysed in 1ml of lysis buffer 

and for the total, soluble and pellet fraction analysis by denaturing gels, the lysates were diluted 

to 50% in lysis buffer and 5 µl of samples were loaded.  
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3.3.4 Lysate Mixing and Purified Protein Mixing 

For lysate mixing experiments, soluble bacterial lysates of desired samples were mixed 

with soluble yeast lysate and incubated at 30 °C with slow shaking for 30 min. Similarly, wild-

type yeast lysates were mixed with doa5-1 mutant yeast lysate and incubated at 30 °C for 30 

mins. Following incubation, mixed lysates were subjected to Flag purification as described 

previously. For purified protein mixing, ICAR purified proteins from bacterial lysates of desired 

sample recombinantly expressing yeast proteins of desired samples were mixed with Flag 

purified proteins from the yeast doa5-1 mutant at 1:4 and 1:5 ratios.  

3.3.5 Electrophoresis 

Samples were subjected to SDS-PAGE and native PAGE as previously described 

(Kusmierczyk et al., 2011) except 4–15% non-denaturing polyacrylamide gradient gels, 5% , as 

well 12% SDS-PAGE gels were used as indicated. For all gels, the migration of molecular size 

standards is indicated to the left of each gel image in the Figures. The 4–15 % gradient gels were 

precast Mini-PROTEAN TGX (Bio-Rad) while all others were poured in lab. Non-denaturing 

gradient gels were run at 60 V for 11 hours at 4 °C, 5% non-denaturing gels were run at 55V for 

3.5 hours. The native gels were stained with Imperial Protein Stain (ThermoScientific). Loading 

control samples were run on reducing 12% SDS-PAGE. All SDS-PAGE gels were stained with 

GelCode blue (ThermoScientific). 

3.3.6 Mass Spectrometry Analysis 

Gel slices were submitted to the Indiana University School of Medicine Proteomics Core 

Facility (IUSM-PCF) on a fee-for-service basis. Protein contents of the gel slices were identified 

by LC-MS/MS as described in (L. J. Hammack & A. R. Kusmierczyk, 2017). Additional tables 

are presented in the supplementary information.  

3.4 Results 

3.4.1 Recapitulating Appearance of the Sub-13S Complex 

Two separate reports from our lab mentioned a novel complex that appears when certain 

S. cerevisiae proteasome subunits were tagged (L. J. Hammack et al., 2017; Lindsay J. Hammack 

& Andrew R. Kusmierczyk, 2017). Both complexes are likely the same in that they comprise 
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proteasome subunits α1, α2, α3, α4, β2, β3, β4. Additional proteins belonging to Hsp70 proteins 

family such as Ssa1/a2 and assembly chaperone Ump1 are also present. It is not clear whether 

assembly chaperone Pba1-Pba2 is component of the sub-13S complex. The complex is termed as 

sub-13S because it lacks just three α subunits (α5, α6, and α7) compared to the 13S intermediate. 

Here, further characterization of this complex is carried out. The characterization began with 

recapitulating its appearance by tagging different proteasome subunits. For this, proteasome 

subunits α2, α4, α5, and β4 were either Flag tagged (F) or hexahistidine and Flag tagged (HF). 

Before purifying proteins from these strains, it needed to be determined if tagging the proteasome 

subunits does not cause any growth defect. Temperature sensitive growth assays of these strains 

were carried out by doing a dilution series. Serially diluted yeast cells from these strains were 

spotted on YPD plates and incubated at 30 °C and 37 °C for 3 days. There were no clear growth 

defects in the tagged strains as compared to the wild type, suggesting the tags were well tolerated 

and did not significantly perturb proteasome function (Fig. 3.1a, top). However, yeast has a robust 

feedback mechanism, mediated by the Rpn4 transcription factor, which upregulates proteasome 

levels whenever proteasome function is compromised. Consequently, mild defects in proteasome 

function can escape detection and become apparent only when combined with a deletion of the 

RPN4 gene (Le Tallec et al., 2007).  When the tagged subunit alleles were generated in a rpn4Δ 

background, again, no obvious growth defects or temperature sensitivity was observed (Fig. 3.1a 

bottom). This lack of a phenotype increased our confidence that the tagged proteasome subunits 

do not cause any notable functional deficiency. 

 

Continuing with reproducing the appearance of sub-13S complex, mid-scale cultures (1L) 

from the indicated yeast strains were then grown, and lysates prepared were subjected to Flag 

purification followed by native PAGE analysis. As expected, the most abundant species in all the 

purified proteins samples was the CP (Fig. 3.1b). Bands migrating slower than the CP are usually 

CP-bound Blm10 species (Lehmann, Jechow, & Enenkel, 2008). In addition to the most abundant 

20S CP band, one faster migrating band, most likely a common assembly intermediate, appeared 

in all the samples (Fig. 3.1b, band 1, 3, 4 and 5). Mass spectrometry (MS) analysis revealed these 

bands are likely a mixture of 13S/15S intermediates (Sup Fig. 10). Band 1 has been identified as 

13S in the previous study (Lindsay J. Hammack & Andrew R. Kusmierczyk, 2017). An additional 

faster migrating band appeared when α4 subunit is Flag tagged (Fig. 3.1b, band 2). This species is 
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identified as sub-13S in the previous study (L. J. Hammack et al., 2017). MS analysis of this band 

showed relative abundances of the expected subunits (Sup Fig. 10) suggesting the complex is sub-

13S.   

 

a           b 

  

Figure 3.1: Analysis of yeast strains with tags on different subunits 

(a) Dilution series of indicated yeast strains grown at 30 °C and 37 °C. (b) Flag purified proteins 

from the indicated yeast strains were analyzed by native 4-15% gradient PAGE. (-) Denotes CP-

bound Blm10 complex. Species indicated are based on relative molecular weight and previous 

mass spectrometry (MS) analysis. Unique species and other intermediate bands were excised for 

MS analysis to confirm identity.  Figure 3.1b is derived and modified from (L. Hammack, 2017).  

 

The sub-13S complex uniquely appeared only in purifications of α4F strain. Since this 

complex does not contain α5 subunit, its absence in purification of α5HF strain was expected. But 

one questions why, despite the presence of β4 and α2 subunit in sub-13S complex, it did not appear 

in purifications from α2HF and β4F strains (Fig. 3.1b, lane 2 and 4). One possibility is that even 

though the epitope tagging of the α4 subunit does not lead to discernible growth defects, even in 

the context of an RPN4 deletion, assembly could be slightly perturbed. And this effect may slow 

down some assembly step(s) just enough to enable the appearance of novel complexes, such as 

sub-13S, without causing a significant growth defect.   

3.4.2 Induction of the Sub-13S Complex 

The composition and selective appearance of sub-13S, likely due to assembly slow down, 

suggest two possibilities related to its identity. Either sub-13S is an assembly intermediate existing 
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before the 13S intermediate, or it is an aberrant complex. To investigate the possibility of sub-13S 

as an assembly intermediate, a strategy was employed to further impair assembly of the 13S 

intermediate in the α4F strain. The difference between 13S and sub-13S concerning proteasome 

subunit composition is the absence of α5, α6 and α7 subunits in the latter. If incorporation of either 

of the missing subunits (α5, α6, and α7) is impaired, then the rate of formation of the 13S 

intermediate would decrease. This slow down should lead to an increase in the accumulation (and 

appearance) of the precursor intermediate, i.e., sub-13S. 

   a                            b                    c 

 

Figure 3.2: Induction of the sub-13S complex with doa5-1 

(a) Equal amounts (30 µg) of Flag purified protein (α4F) were analyzed by native PAGE followed 

by imperial blue staining. Species of interest are indicated by arrowheads. Asterisk denotes an 

additional very faint band appearing in lane 2. (-) Denotes CP-bound Blm10 complex. (b) shows 

equal protein loading (5μg) from (a) on 12% SDS PAGE, stained with GelCode blue. (c) 

Comparison of peptide spectral matches (PSMs) generated by MS analysis of band 2 and band 3. 

These bands are similar to band 2 and band 3 from (a) except they are excised from a different gel 

shown in Sup. Fig 11a. Red indicates PSMs of band 3 and blue indicates PSMs of band 2.  

 

To this end, we crossed a doa5-1 mutant strain with the α4F strain to generate a doa5-1 

α4F strain. The doa5-1 is an α5 subunit mutant that causes an amino acid change from Gly to Asp 

at position 49 (P. Chen & Hochstrasser, 1995). This Gly residue is normally buried within the 

hydrophobic core, and its change to a charged Asp residue may affect the folding of α5 perhaps 

impairing its ability to reach the native state. This, in turn, should slow the rate at which α5 is 

incorporated during assembly.  
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Flag purified proteasomes from α4F and α4F doa5-1 strains were then analyzed on native 

PAGE (Fig. 3.2a). In both samples, CP was the dominant species, and in the α4F sample, two 

species migrating faster than CP were again observed (Fig 3.2a). Bands were excised from a repeat 

of this experiment analyzed on a separate gel shown in Sup. Fig 11. MS analysis showed the higher 

of the two bands is again a 13S intermediate (Sup Fig. 12, band 1) while the lower band is sub-

13S complex (Sup Fig. 12 band 2). Interestingly, in the doa5-1 α4F sample, a band migrating at 

the position of the 13S intermediate was no longer present. Instead, this position on the gel was 

more smeared, suggesting assembly of 13S was likely perturbed. Consistent with this, a prominent 

band migrating at the position of sub-13S was observed (band 3). Indeed, band 3 showed PSMs 

for α1, α2, α3, α4, β2, β3, β4, Ump1, Ssa1/2 consistent with the composition of the sub-13S 

complex (Sup Fig. 12). Additional Hsp70 group proteins Sse1/2 were also detected. Band 2 and 

band 3 have similar composition and migration on native PAGE suggesting both of these 

complexes are the same, i.e., sub-13S (Fig. 3.2a, c). Because band 3 is more prominent here, the 

MS data has a higher signal to noise ratio, and clearly shows a strikingly higher PSMs for proteins 

present within the complex (Fig. 3.2c). The PSMs of additional proteins that showed up in band 2 

did not increase in band 3 further supporting those proteins are not the component of the sub-13S 

complex (Fig. 3.2c). The PSMs of assembly chaperone Pba1-Pba2 also did not increase in band 3 

as compared to band 2 suggesting this chaperone is not present in the complex. 

 

If interpretation of the nature of sub-13S species in the doa5-1 α4F strain is correct, then 

the same genetic manipulation should slowdown 13S assembly and induce accumulation of the 

sub-13S species in the strains that did not previously showed sub-13S, i.e. β4F and α2HF. Among 

these strains, the α2HF strain was chosen, with no specific preference, to incorporate the genetic 

manipulation. To this end, the doa5-1 mutation was introduced in α2HF strain via mating and 

dissection. Flag purified proteins from both α2HF and α2HF doa5-1 strains were analyzed by 

native PAGE. In the latter strain, as expected, a newly formed faster-migrating band appeared (Sup 

Fig. 11b, lane 2, band 6). MS analysis confirmed the composition of this band is similar to sub-

13S complex (Sup Fig. 12). The increase in the appearance of the sub-13S complex in both the 

strains confirms its direct association with the 13S intermediate. The correlation between 

decreasing levels of 13S being accompanied by the increasing levels of sub-13S hints at a 
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precursor-product relationship between these two species and suggests that sub-13S species is 

more likely an assembly intermediate.  

 

An additional very faint band (band 7) appeared migrating faster than the sub-13S band 

(Sup Fig. 11b). MS analysis showed the composition of this species is similar to sub-13S except 

there are relatively higher PSMs for Hsp70 group proteins (Sup Fig. 12 band 7). This species was 

provisionally called as pre-sub-13S. The migration profile of a band labeled as an asterisk in Fig. 

3.2a, lane 2, is similar to pre-sub-13S, suggesting both of these complexes could be similar.  

3.4.3 Sub-13S is Not a Gel Artifact 

Based on the compositional similarity between 13S and sub-13S with the later lacking three 

proteasome subunits, one could wonder if dissociation of 13S, perhaps due to electrophoretic 

conditions during native PAGE, results in the appearance of the sub-13S complex. To eliminate 

the possibility of sub-13S being a gel artifact, a depletion strategy was employed (diagrammed in 

Sup Fig. 13) to isolate sub-13S species from the 13S intermediate before native PAGE. For this, 

an α4F α5HF strain was generated. When proteins are flag purified, by virtue of the α4F subunit, 

the eluates should contain (and does contain) both the 13S intermediate and the sub-13S species 

(Sup Fig. 12, lane 3). However, if the Flag-purified eluate is subjected to depletion by passing it 

over the cobalt resin beads (ICAR) prior to native PAGE, all the α5-containing species, including 

the 13S intermediate, will bind to the resin (due to the hexahistidine tag on α5). As a result, the 

depleted sample, now lacking the 13S intermediate, should also lack sub-13S complex, if the latter 

arose due to dissociation of 13S during electrophoresis. 

 

 Nevertheless, even after depletion, a band migrating at the position of sub-13S species was 

observed (Sup Fig. 14a, lane 6) suggesting the complex did not result from dissociation of 13S 

after native PAGE. The depletion procedure dilutes and reduces the protein amount leading to the 

faint appearance of the likely sub-13S band. A larger scale culture and concentrating the depleted 

sample enhanced the appearance of this band (Fig. 3.3 lane 3, band 1) whose migration is similar 

to sub-13S.  Usually, the high abundance of the 20S CP as compared to assembly intermediates 

results in some amount of CP retention in the depleted sample (L. J. Hammack et al., 2017). Due 
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to the additional concentration step involved and higher protein loads, the CP retained even higher 

in the depleted sample (Fig. 3.3).  

 

Figure 3.3: Depletion analysis shows presence of sub-13S species in WT yeast strain 

Flag purified proteins (flag eluates) of indicated yeast strain was subjected to two rounds of 

depletion by ICAR to remove his-tagged proteins. Aliquots of the flag eluate and His flow through 

from the second ICAR round were analyzed on the native PAGE gel. Lane 3 is loaded 1.5x times 

lane 2. Arrowheads denote CP and other bands of interest. (-) denotes CP-bound Blm10 complex.  

 

  As in the doa5-1 mutant strains, another band (more like a smear) was visible below the 

sub-13S species in the depleted and only in higher protein loading lane (Fig. 3.3 lane 3 pre-sub-

13S) (Fig. 3.2). MS analysis of the band revealed its composition is similar to the previously 

mentioned pre-sub-13S band (Sup Fig. 15 and Sup Fig 12, band 7).  

3.4.4 Sub-13S is an Assembly Competent Species 

The data, so far, have demonstrated that sub-13S species appearance can be induced by 

slowing down assembly. We now sought data to verify the precursor-product relationship between 

sub-13S and 13S demonstrating that sub-13S is an on pathway intermediate. If sub-13S is a 

precursor to 13S, then by providing the missing subunits (i.e. α5, α6 and α7), sub-13S should 

convert into 13S, and this can be viewed as a band shift on native PAGE. To this end, untagged 

wild-type yeast lysate was mixed with the doa5-1 α4F lysate for 30 mins at 30 °C followed by 

Flag purification. The wild type copy of α5 from the wild-type yeast strain should complement the 

doa5-1 defect and convert the putative precursor (sub-13S) to the product (13S). Unfortunately, 

the expected gel shift (Sup Fig. 16) was not observed probably because in the wild-type yeast 
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lysate, most of the proteasome subunits are in the fully assembled state and very little exist as free 

subunits. 

      a                                              b                              c 

 

PSMs 

Band 1 Band 2 

α1 441 261 

α2 213 98 

α3 101 68 

α4 126 125 

α5 9 74 

α6 10 127 

α7 9 80 

β1 12 10 

β2 195 98 

β3 54 42 

β4 120 77 

β5 5 6 

β6 8 14 

β7 0 0 

 

Figure 3.4: Sub-13S is an assembly competent species 

(a) Flag purified proteins from a yeast mutant α4F doa5-1 (40μg) were mixed ICAR purified 

proteins from E. coli lysate expressing Pba4 Pba3H α5α6α7α1 (8μg) at a ratio of 5:1. Samples 

were incubated at 30 °C for 30 minutes and analyzed by native PAGE followed by imperial blue 

staining. Lane 1 and lane 3 are input lanes. Bands of interest are labeled with an arrowhead. (b) 

Shows the loading control of the input lanes from (a) analyzed by 12% SDS PAGE followed by 

GelCode blue staining. Lane 1 shows CP subunits. The migration of several molecular size 

standards (in kDa) is indicated on the left. (c) Contents of indicated bands excised from (a) were 

analyzed by LC-MS/MS. The table indicates the total count of PSMs for peptides derived from 

individual proteins. Proteins with a significant increase in PSMs in band 2 as compared to band 1 

are highlighted in red. 

 

To overcome this issue, recombinantly expressed proteasome subunits in E. coli were 

chosen as a source of free subunits. Coexpression of α5, α6, and α7 subunits results in partially 

soluble proteins (Sup Fig. 17a), but these proteins may not be properly folded as the soluble 

material sticks to the resin (Kusmierczyk et al., 2008). Addition of α1 to an operon containing α5, 

α6, and α7 results in a high molecular weight complex that is likely a dead-end product (see chapter 

4). Proteasome assembly chaperone Pba3-Pba4 binds strongly to α5 and weakly to α1 and have 

been shown to play an exclusive role in α-ring assembly.  When Pba4-Pba3H (his tagged Pba3) is 

coexpressed with α5, α6, and α7, and α1 subunit, the expressed α subunits were soluble (Sup Fig. 

17b) and did not form HMWC (see chapter 4). When the lysates were subjected to ICAR 
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purification, the bound material mainly contained α5, α6, and α7 along with Pba3-Pba4 (Sup Fig. 

17b lane E, also Fig. 4.2b lane 5).  

 

Flag purified proteins from the doa5-1 α4F sample were mixed with the ICAR purified 

proteins from E. coli expressing Pba4-Pba3Hα5α6α7α1 for 30 mins at 30 °C. Native PAGE 

analysis showed the expected sub-13S complex in the doa5-1 α4F strain (Fig. 3.4 lane 1, band 1) 

and faster migrating complexes likely multimers of Pba3-Pba4 and α5, α6, α7, and α1 in Pba4-

Pba3Hα5α6α7α1 sample (Fig. 3.4 lane 3). Protein mixing of these two samples resulted in 

complete disappearance of the sub-13S band and the appearance of a new slower migrating band 

(Fig. 3.4 lane 2, band 2). MS analysis of the band showed an abundance of all the α subunits in 

addition to the β2, β3, and β4, a composition consistent with the 13S intermediate (Fig. 3.4c). A 

detailed composition including additional proteins is shown in Sup Fig. 18. These results showed 

successful incorporation of α5, α6 and α7 in the newer complex demonstrating its assembly 

competency. Few PSMs of Pba3-Pba4, not usually present in the 13S intermediate, also appeared 

in the newly formed species, suggesting this chaperone’s involvement in conversion of sub-13S to 

highly ordered species (Sup Fig. 18). Moreover, its presence also means the newly formed complex 

is not completely transformed into 13S suggesting likely involvement of other proteins for its 

dissociation. Another possibility is perhaps the conformation of the newly formed complex is 

different from the 13S intermediate in a way that it no longer poses the expected steric hindrance 

between Pba3-Pba4 complex and the β subunits (Yashiroda et al., 2008). 

 

The faster migrating bands in lane 2 and lane 3 (band 3-8) are sub-complexes containing 

Pba3, Pba4, α5, α6, α7, α1 in different stoichiometries (Fig. 3.4a and Sup Fig. 18). Among these 

bands, Pba3-Pba4-α5 has been previously well characterized (Yashiroda et al., 2008). Association 

of α5, α6, α7, and α1 with Pba3-Pba4 prevents non-specific interactions among the subunits (see 

chapter 4). There is also another faint band present right above the shifted band. When the ratio of 

Pba3Hα5α6α7α1 in protein mixing with doa5-1 mutant was increased, this additional faint band 

became more prominent (Sup Fig. 19a). MS analysis revealed of both band 2 and band 3 are similar 

(Sup Fig. 19b, band 3). Perhaps these two newly formed species have different conformation or 

stoichiometry.  
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3.5 Discussion 

The results herein provide evidence for a novel assembly intermediate, sub-13S, 

comprising of proteasome subunits α1-4, β2-4, as well as certain members of Hsp70 family proteins. 

The canonical proteasome assembly pathway is known to start with the formation of an α-ring 

followed by β subunit incorporation. The absence of a complete α-ring with the presence of a 

subset of β subunits in this novel species argues for the existence of an α-ring independent 

assembly pathway in yeast. This complex was first described in a previous report (L. J. Hammack 

et al., 2017). Here, its existence as an assembly intermediate was investigated. To reproduce the 

appearance of sub-13S in other strains, different proteasome subunits were epitope tagged for 

protein purification. These tagged subunits did not exhibit growth defects on their own or in the 

absence of RPN4 gene (Fig. 3.1a).  Native PAGE analysis showed the sub-13S species appeared 

only when the α4 subunit was tagged, but not when α2 or β4 were tagged, despite their presence 

in the complex (Fig. 3.1b). It is possible that tagging of α4 subunit, while not resulting in visible 

growth defects, could perturb the assembly just enough to accumulate sub-13S. Consistent with 

this, in the previous report, sub-13S appeared when both β4 and β5 subunits were tagged, but not 

when only β4 was tagged (L. J. Hammack et al., 2017). The additional tag on the β5 subunit, just 

like the tag on the α4 subunit, might have slowed assembly down sufficiently to allow sub-13S to 

accumulate.  

 

An α5 subunit mutant, doa5-1, enabled further slow down of the assembly that resulted in 

increased levels of sub-13S when combined with a2HF and a4 Flag strains (Fig. 3.2a and Sup Fig. 

11). The mutant likely delays the folding of α5 subunit into the native state, and thereby its 

incorporation into nascent CP. This mutant directly affected the formation of 13S intermediate as 

evident from the disappearance (or smeary appearance) of the 13S intermediate band in the mutant 

lane (Fig. 3.2a and Sup Fig. 11). The correlation between the disappearance of 13S and the 

appearance of sub-13S suggest a product precursor relationship between the two complexes.  

 

Since sub-13S is closely related to 13S intermediate based on its composition, one could 

argue that tagging of specific subunit perhaps makes 13S intermediate unstable, leading to its 

dissociation into sub-13S likely during (or after) lysis or electrophoresis. The depletion strategy 

demonstrated sub-13S complex does not result from 13S dissociation during electrophoresis (Fig. 
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3.3, Sup Fig. 13-15). It is worth to mention that the order in which a protein complex disassociates 

in vitro is usually in reverse of the order they assemble. Therefore, even if some amount of sub-

13S arises due to dissociation of 13S intermediate, this could still be consistent with sub-13S being 

a precursor to the 13S intermediate. 

 

The last piece of evidence provided by protein mixing experiment demonstrated that sub-

13S is an assembly competent complex. It involved mixing the recombinantly expressed missing 

subunits (α5, α6, and α7) with the purified sub-13S complex that resulted in complete 

disappearance of sub-13S complex and appearance of a slower migrating complex (13S 

intermediate) that contained α5, α6 and α7 subunits (Fig.  3.4, Sup Fig. 19). The missing subunits 

required coexpression with the assembly chaperone Pba3-Pba4 and α1 subunit to attain better 

solubility and prevention of non-specific interaction among the expressed subunits. Since Pba3-

Pba4 are not normally present in the 13S intermediate, its appearance in the slowly migrating 

complex suggests other proteins might be needed for dissociation of this chaperone. One likely 

candidate could be assembly chaperone Pba1-Pba2. Their binding might influence the orientation 

of the proteasome subunits in the 13S intermediate that could induce dissociation of Pba3-Pba4. It 

is likely that Pba3-Pba4 have an additional role in the conversion of sub-13S to 13S, but the exact 

mechanism remains to be determined.  

 

The data provided strong evidence of a bona-fide novel assembly intermediate, sub-13S. 

The absence of a complete α-ring and presence of β subunits in this intermediate suggest its origin 

is likely from an alternative proteasome assembly pathway that does not begin with the α-ring 

formation. This pathway could very well coexist with the canonical α-ring dependent assembly 

pathway. The existence of a similar α-ring independent pathway was demonstrated in archaea 

arguing the multiple assembly pathway theme is likely conserved. This is another evidence, a first 

in eukaryotes, supporting the need to update the linear proteasome assembly pathway into an 

assembly network which is connected through common assembly intermediates. 

 

It is worthwhile to mention that an additional band “pre-sub-13S” appeared in both wild-

type and doa5-1 mutant strains and migrated faster than the sub-13S intermediate (Sup. Fig. 11b 

and Fig 3.3). Compared to sub-13S, this complex has an abundance of the Hsp70 group proteins 
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and has additional members of the group including Ssb1/2, Sse1/2, and Ssc1. This complex could 

be another novel species likely to be an assembly intermediate precursor to sub-13S, but this 

hypothesis remains to be determined. Association of Ssa1/Ssa2 with proteasome assembly 

intermediates and a newly-discovered non-canonical α4 complex in vivo has been previously 

shown (L. J. Hammack et al., 2017; Lindsay J. Hammack & Kusmierczyk). Their abundance in 

early intermediates and eventual disappearance in later assembly intermediates suggest their 

particular role in the early stages of proteasome assembly, especially in α subunit interaction. Since 

these Hsp70 group proteins have ATP binding domains, their interaction with α1-4 subunits could 

be ATP dependent. It is not surprising to see Ssb1/ Ssb2 in the complex as they are known 

proteasome mutant suppressors (Ohba, 1994). Moreover, the Ssb1 contains a nuclear export 

sequence (NES) in its C-terminus and certain proteasome α subunits also include NLS like 

sequences. Their association indicates they may contribute to assembly intermediate localization. 

It will be interesting to analyze further the association of Hsp70 family proteins with early 

assembly intermediates to understand the factors necessary for initiation of proteasome assembly. 
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 HIGH MOLECULAR WEIGHT COMPLEXES 

4.1 Abstract 

The proteasome is a multi-subunit protease complex that plays a major role in the 

degradation of ubiquitin tagged proteins. Structurally, the 20S proteasome is composed of four 

coaxially arranged rings. The two outer α rings, and two inner β rings, are each made up of seven 

homologous but distinct subunits. Proteasome assembly is a complex and highly ordered process 

that requires the assistance of assembly chaperones. The assembly chaperone Pba3-Pba4 assists in 

the formation of the α ring, which is an early event in proteasome assembly. Due to the rapid nature 

of these events, the exact order of the α subunit addition to form an α ring, and the precise role of 

Pba3-Pba4 in this process, remain unclear. This chapter focus on investigating the early events in 

proteasome assembly by the recombinant expression of Saccharomyces cerevisiae α subunits 

in Escherichia coli. Recombinant co-expression of several α subunit combinations, such as α7α1, 

α6α7α1 and α5α6α7α1, results in the formation of high molecular weight complexes (HMWC). 

An engineered disulfide crosslinking strategy shows that all of these complexes are double α rings. 

Interestingly, the co-expression of Pba3-Pba4 with α5α6α7α1 prevents the formation of this 

HMWC, whereas the Pba3-Pba4 cannot disrupt a preformed α5α6α7α1 complex. More 

importantly, the crosslinking strategy suggests that similar HMWCs may form in vivo when Pba3-

Pba4 is absent. These data suggest that α subunits have a tendency to form non-canonical ring 

complexes and one of the roles of Pba3-Pba4 is to prevent the formation of these likely dead-end 

species. 

4.2 Introduction 

The 20S proteasome or core particle (CP) is a multi-subunit protease complex involved in 

the degradation of the majority of proteins. Structurally, it is made of 14 distinct α and β subunits 

that form four heteroheptameric α-rings and β-rings arranged as α1-7, β1-7, β1-7, α1-7  (Groll et 

al., 1997). Among the seven β subunits, β1, β2, and β5 are catalytically active bearing the Thr1 

nucleophile, and are synthesized as proproteins (Arendt & Hochstrasser, 1999; P. Chen & 

Hochstrasser, 1996; Groll et al., 1997; S. Witt et al., 2006).  The inner β-rings form the catalytic 

chamber and the outer α rings form a gated pore which, when in open conformation, allows passage 
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of the substrate into the catalytic chamber (Groll et al., 2000; Groll et al., 1997; Religa et al., 2010). 

Often, activators like the 19S regulatory particle (RP) bind to the ring to open the gate, and function 

in substrate recognition, unfolding and translocating to the catalytic core of the 20S proteasome 

(Groll et al., 2000).  

 

The CP assembly is a complex, yet highly efficient process supported by several assembly 

chaperones (Fig. 1.2) (Budenholzer et al., 2017; Howell et al., 2017; Kunjappu & Hochstrasser, 

2013). Assembly starts with α subunit interactions leading to the formation of α rings. These rings 

act as a base for the subsequent addition of β subunits (Hirano et al., 2006; Zwickl et al., 1994). 

Sequential addition of β2, β3, β4 followed by β1, β5, β6 is defined by intermediates 13S and 15S 

respectively (Hirano et al., 2008; X. Li et al., 2007; Marques et al., 2007). Addition of β7 completes 

the β ring to form a half proteasome intermediate. Two half proteasomes dimerize to yield a 

preholoproteasome (PHP) that structurally resembles CP but has intact β subunit propeptides (X. 

Li et al., 2007). Autocatalytic removal of the propeptides exposes the Thr1 residue, transforming 

the PHP into the mature CP. Several assembly chaperones are known to support proteasome 

assembly. Ump1 assists in the dimerization step of half proteasomes (X. Li et al., 2007). Pba1-

Pba2 is involved in α- ring assembly, and perform a safety function to prevent premature 

association of activators to CP intermediates (Kusmierczyk et al., 2011). Pba3-Pba4 functions in 

α-ring assembly by ensuring the correct placement of α3 between α2 and α4 subunits 

(Kusmierczyk et al., 2008). In the absence of Pba3-Pba4,  yeast forms a subpopulation of the 

evolutionary conserved α4-α4 proteasome that has an additional copy of α4 subunit positioned in 

place of α3 (Kusmierczyk et al., 2008; Padmanabhan et al., 2016; Velichutina et al., 2004).  

 

The early event of the proteasome assembly, α-ring formation, is the least understood step 

to date. Recombinant expression of archaeal and specific eukaryotic α subunits in vitro has 

revealed their inherent tendency to readily form high molecular weight complexes (HMWC) with 

different subunit stoichiometries (Gerards, de Jong, Bloemendal, et al., 1998; Gerards et al., 1997; 

Groll et al., 2003; Ishii et al., 2015; Panfair et al., 2015; Yao et al., 1999; Zwickl et al., 1994). 

However, such HMWC does not form in vivo. The assembly chaperones may function in 

preventing unproductive association of proteasome subunits (Hirano et al., 2005; Takagi et al., 

2014). The focus of this chapter is to study the α-ring assembly and determine the role of assembly 
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chaperones involved. The results show recombinant expression of specific S. cerevisiae α subunits 

forming double ringed HMWCs. Presence of Pba3-Pba4 prevents the formation of such complexes 

in vitro. The crosslinking data provide evidence of similar HMWC formation in vivo when Pba4 

is absent. These results demonstrate the role of Pba3-Pba4 in preventing formation of these likely 

off-pathway products. 

4.3 Materials and Methods 

4.3.1 Bacterial Protein Expression and Purification 

Bacterial expression plasmids, including those enabling polycistronic gene expression 

from a single mRNA, were generated as described (Kusmierczyk et al., 2008). Plasmids used in 

this study are listed in Supplementary Table 4 in Appendix C.  Proteins were expressed as 

described in (Kusmierczyk et al., 2008; Panfair & Kusmierczyk, 2016). Proteins were induced at 

30 °C or, where indicated, specific protein induction was carried out at 37 ⁰C. Small scale (6 ml) 

cultures were used for recombinant protein expression except for AKB 349. After transformation 

of AKB 349 plasmid into the BL21 cells, single colonies were inoculated in 6 ml of LB medium 

supplemented with ampicillin. After 6 hours of growth at 37 °C with shaking, the primary culture 

was diluted to an OD600 of 0.2 in 200 ml of LB with ampicillin and reincubated at 37 °C for 40 

mins. The cultures were then transferred to 30 °C and incubated for another 30 mins before adding 

1 mM IPTG to induce protein expression. After 14 hours of induction, the culture was split into 

four 50 ml aliquots and pelleted down by centrifugation for 10 mins at 13000rpm. The pellets were 

stored at -80 °C. The frozen pellet lysis and immobilized cobalt affinity resin (ICAR) purification 

were carried out as described in (Panfair & Kusmierczyk, 2016) with two changes in AKB349 

lysis. The pellets were lysed in 1ml of lysis buffer and for the total, soluble and pellet fraction 

analysis by denaturing gels, the lysates were diluted to 50% with lysis buffer and 5 μl of samples 

were loaded.  

4.3.2 Yeast lysis and Flag purification 

The yeast strains used are listed Supplementary Table 5 in Appendix C. Yeast growth 

conditions and manipulations were carried out according to established protocols (C. Guthrie, 

1991). Protein purifications, depletion analysis and electrophoresis were carried out as described 

(Hammack & Kusmierczyk, 2017; Kusmierczyk et al., 2008). 
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4.3.3 Disulfide Crosslinking 

Disulfide crosslinking was performed as described in (Kusmierczyk et al., 2011). 

Crosslinked and non-crosslinked samples were mixed with 2 x SDS sample buffer without DTT 

and loaded onto 12% SDS PAGE step gradient gels. Where indicated, a 25 µl aliquot of each 

sample was reduced with 2 µl of 1M DTT at room temperature for 15 minutes. 

4.3.4 Lysate Mixing and Purified Protein Mixing 

For lysate mixing experiments, equal volumes of soluble bacterial lysates of desired 

samples were mixed and incubated at 30 °C with slow shaking for 30 min. Following incubation, 

mixed lysates were subjected to ICAR purification as described previously in (Panfair & 

Kusmierczyk, 2016). For purified protein mixing, equal amounts of ICAR purified proteins of 

desired samples were mixed at 30 °C for 30 minutes followed by native PAGE analysis. 

4.3.5 Electrophoresis 

Samples were subjected to SDS-PAGE and native PAGE as previously described 

(Kusmierczyk et al., 2011) except 5% and 4–15% non-denaturing polyacrylamide gradient gels, 

as well 12% SDS-PAGE gels were used as indicated. For all the gels, the migration of molecular 

size standards is indicated to the left of each gel image in the Figures. The 4–15 % gradient gels 

were precast Mini-PROTEAN TGX (Bio-Rad) while all others were poured in lab. Non-denaturing 

gradient gels were run at 60 V for 11 hours at 4 °C, 5% non-denaturing gels were run at 55V for 

3.5 hours. The native gels were stained with Imperial Protein Stain (ThermoScientific). Loading 

control samples were run on reducing 12% SDS-PAGE. All SDS-PAGE gels were stained with 

GelCode blue (ThermoScientific). 

4.3.6 Mass Spectrometry Analysis 

Gel slices were submitted to the Indiana University School of Medicine Proteomics Core 

Facility (IUSM-PCF) on a fee-for-service basis. Protein contents of the gel slices were identified 

by LC-MS/MS as described (Lindsay J. Hammack & Andrew R. Kusmierczyk, 2017). Annotated 

data is presented in the Sup Fig. 23.  
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4.4 Results 

4.4.1 α Subunits Form Non-canonical Complexes 

  To study the events involved in the α-ring formation, S. cerevisiae α subunits in E. coli 

were expressed. When expressed individually, all the subunits were mostly insoluble (data not 

shown). The subunits were coexpressed with their native neighbor within α-ring in different 

combinations. Among several combinations, expression of C-terminal hexahistidine tagged α1 

(α1H) with α7 increased the solubility of both subunits (Sup Fig. 20 a). Further extending the 

coverage of α-ring, two other neighboring subunits, α5 and α6, were sequentially added that 

resulted in improved solubility of all the included subunits in α6α7α1H, α5α6α7α1H samples (Fig. 

4.1b and Sup Fig. 20 b). Their likely interaction contributes to their enhanced solubility. Native 

PAGE analysis of purified proteins by ICAR revealed coexpression of α7α1, α6α7α1, α5α6α7α1 

subunits combinations forms HMWCs (Fig. 4.1a, lanes 1-3). Excision of the bands followed by 

elution of the proteins within and analysis by SDS-PAGE confirmed the composition of these 

complexes correlates with the co-expressed subunits (Ramamurthy unpublished).  

 

 Interestingly, when the proteins were induced at a higher temperature (37 °C), an additional 

band, migrating similar to the α7α1 band, was observed in α6α7α1 sample (Fig. 4.1a, lane 5). The 

soluble fractions of α6α7α1 lysate analyzed by SDS PAGE revealed a much-reduced solubility of 

α6 at a higher temperature (Fig. 4.1b lane 2 vs. lane 5). The reduced solubility lowered the relative 

level of α6 compared to α7 and α1 levels. The excess of α7 and α1 formed the α7α1 complex which 

migrates faster than α6α7α1 complex (Fig. 1a lane 4 and 5). The α6 subunit did not show sensitivity 

towards higher temperature in the presence of its native neighbor α5 in the α5α6α7α1sample 

suggesting α5α6 interaction increases the stability of α6 subunit (Sup Fig. 20 b, lane 2 vs. lane 5).  

The loading control shows a faint α6 band compared to α7 and α1 in the α6α7α1coexpression lane 

suggesting a sub-stoichiometric level of α6 in the α6α7α1 complex (Fig. 4.1a, Bottom lane 2). 

However, such a stoichiometric difference was not observed in the α5α6α7α1 sample (Fig. 4.1b, 

lane 3) suggesting the α5-α6 interaction promotes α6 incorporation in the HMWC. These results 

were consistent when the subunit levels within the complex were compared by excising the bands 

and analyzing the eluted protein by SDS-PAGE (Ramamurthy unpublished). 
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                  a             b 

 

Figure 4.1: Recombinant coexpression of α subunits forms HMWC 

(a) Purified proteins (10µg) from the coexpression of α subunit in combinations as indicated were 

analyzed by 5% native PAGE (top) and SDS PAGE (bottom) The α1 subunit has the hexahistidine 

tag (α1H). The HMWC are shown by bracket. The individual subunits in the loading control gels 

are indicated by the arrows. (b) Total (T), Soluble (S) and Pellet (P) fractions of extracts from E. 

coli expressing α6, α7, and α1H induced at 30 °C and 37 °C. The migration of individual subunits 

is labeled. All the gels were stained by GelCode blue. Migration of molecular size standards in 

kDa is indicated on the left. 

 

The key interaction in the formation of the α5α6α7α1complex is likely α7 and α1, since 

they can interact independently. The presence of a single complex in co-expression of α5, α6, α7, 

and α1 despite the capability of α6, α7, α1 (and α7 and α1) to form other complexes, suggests that 

formation of the α5α6α7α1 complex is more favorable. Given that co-expressing 4 of the 7 alpha 

subunits (α5α6α7α1) is arguably more physiologically relevant than co-expressing 2 or 3, we chose 

to characterize this complex further. 

4.4.2 Characterization of the α5α6α7α1 Complex 

Purified α5α6α7α1 complex observed under negative-stain electron microscopy (EM) 

appeared as rings having an approximate diameter of 11 nm, a size consistent with proteasome α 

rings (Sup Fig. 21b) (Groll et al., 1997). Mass spectrometry analysis estimated a molecular mass 

for this complex of ~457 kDa (Sup Fig. 21a). The average molecular mass of the α5, α6, α7, and 

α1 subunits is 28 kDa. Based on this, the mass of a single and double heptameric ring would be 
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around 196 kDa and 392 kDa respectively. However, if the rings were octameric, the mass of such 

a double ring would be around 448 kDa, much closer to the observed mass of this HMWC. These 

results suggest that the α5α6α7α1HMWC is most likely an octameric double ringed species.  

 

In chapter 2, the identity of an archaeal double α-ring was confirmed via cross-linking two 

α subunits by suitably placing a cysteine residue in the H1 helix (Panfair et al., 2015). The crosslink 

only forms when two α subunits (α/α, where / indicates a trans interaction) interact like an α and β 

subunit (α/β). Here, the same cross-linking strategy was applied to investigate whether the HMWC 

is double ring species. Using multiple sequence alignment revealed the corresponding position in 

the H1 helix of yeast α subunits to introduce the cysteines for crosslinking. The likelihood of 

observing a crosslink involving either α7 or α1 subunits in the HMWC was greater as these two 

subunits appear to nucleate HMWC formation. The alanine at position 102 was changed to cysteine 

in the α1 subunit, now referred to as α1cc. Gel extracted proteins from the HMWC band, formed 

by co-expressing α5, α6, α7 and α1cc, were analyzed by non-reducing SDS PAGE and showed an 

α1-α1 dimer band. This result suggests that HMWC contains at least one pair of α1 subunit sitting 

across each other thereby confirms the double ring conformation of the complex (Sup Fig. 22).  

4.4.3 Pba3-Pba4 Prevents the Formation of HMWC in vitro 

The ability of certain α subunits to form HMWC in vitro has been reported across other 

species (Gerards, de Jong, Bloemendal, et al., 1998; Yao et al., 1999; Zwickl et al., 1994). 

However, these complexes are not common in vivo. There must exist a mechanism to prevent their 

formation or disintegrate them if formed. Out of the six known assembly chaperones assisting 

proteasome assembly, four are involved in α-ring formation. Perhaps the chaperone presence may 

prevent spontaneous off pathway α subunit interaction, which in turn might prevent HMWC 

formation. To test this hypothesis in vitro, assembly chaperone Pba3-Pba4 was chosen for two 

reasons. First, they are exclusively involved in the α-ring formation, and their absence results in 

altered order of α subunits within α-ring, suggesting their role in maintaining the order of subunits 

(Hirano et al., 2006; Kusmierczyk et al., 2008; Takagi et al., 2014). Second, they show strong 

binding to α5, and weak binding α1 subunit, both of which are present in the α5α6α7α1 HMWC 

(Kusmierczyk et al., 2008; Le Tallec et al., 2007; Yashiroda et al., 2008) 
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                 a                                       b 

 

Figure 4.2: Pba3-Pba4 prevents the formation of α5α6α7α1 complex 

(a) Native PAGE analysis of ICAR purified proteins from coexpressed hexahistidine tagged Pba3 

(pba3H)-Pba4 α5α6α7α1 along with separate expression as controls. Lysate mixing (LM) and 

purified protein mixing (PM) of separately expressed Pba4-Pba3H and α5α6α7α1H was carried 

out at 30 °C for 30 min (lane 3-4). The Pba3-Pba4 complex and HMWC are indicated by the 

arrows. (b) Aliquots from (a) analyzed by SDS PAGE. A faint band present between α5 and α7 

subunit in lane 5 is clipped α7 subunit likely arising due to non-specific proteolysis post lysis. Both 

the gels were stained with GelCode blue. 

 

To see if this assembly chaperone prevents the formation of HMWC, C-terminally his 

tagged Pba3 (Pba3H) and Pba4 were co-expressed with α5, α6, α7, α1 subunit followed by protein 

purification and native PAGE analysis. Consistent with the earlier report, when co-expressed, 

Pba3-Pba4 multimerize to form a complex (Fig. 4.2, lane 2) (Kusmierczyk et al., 2008; Yashiroda 

et al., 2008). In the presence of Pba3-Pba4, co-expression of α5, α6, α7, and α1 did not show the 

HMWC band (Fig. 4.2, lane 6 vs. lane 1). The band migrating at the position of Pba3-Pba4 complex 

in lane 5 is resolved into three separate bands when analyzed on 4-15% gradient PAGE and 

contains multimers of Pba3-Pba4, α5, α6, α7 and to some extent α1 (See chapter 3, Fig 3.4a, band 

3-8, Sup Fig. 18). The loading control showed Pba3-Pba4 pulled down α5, α6, α7 but very little 

α1, indicating the assembly chaperone somehow prevents the key interaction between the α7 and 

α1 subunits (Fig. 4.2b, lane 5). An additional faint band migrating between α5 and α7 subunit in 

lanes 1, 3 and 5 is likely truncated α7 subunit resulting from non-specific proteolysis after lysis. 

Its higher intensity in lane 5 could be the result of the subunit being more accessible to proteolysis 

when not present within the HMWC.  
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Pba3-Pba4 could prevent the α7 and α1 interaction in two possible ways: First, when co-

expressed, the preferential binding of Pba3-Pba4 to α5 happens first. Sequential binding of α7 and 

α6 to the Pba3-Pba4-α5 trimer may alter the conformation of the bound α subunits such that they 

could no longer associate with α1. Second, the involved α subunits interact first, and a later binding 

of Pba3-Pba4 to α5 brings conformational change in the subunits that leads to dissociation of α1 

subunit. The earlier hypothesis is preferable based on the lysate mixing and purified protein mixing 

results. When a preformed HMWC was mixed with the Pba3-Pba4 complex, both by purified 

protein mixing and lysate mixing, the HMWC band remained intact suggesting the Pba3-Pba4 

complex could not dissociate a preformed HMWC complex (Fig. 4.2, lane 3 and 4).  

4.4.4 Pba3-Pba4 prevents the Formation of HMWC in vivo 

If Pba3-Pba4 can prevent the formation of HMWC, then its absence should trigger this 

complex formation in vivo. To test this, a C terminally flag epitope-tagged α1cc mutant (with all  

      a          b 

 

Figure 4.3: Absence of assembly chaperone Pba4 leads to HMWC formation in vivo 

(a) Flag purified proteins from the indicated yeast strains containing either α1cc (crosslinkable) or 

α1nic (no internal cysteine) mutant were crosslinked using CuCl2 followed by SDS PAGE under 

non-reducing (lanes 1-4) and reducing (lanes 5-8) conditions and immunoblotting using anti-Flag 

antibody. Arrowheads denotes the position of a crosslinked α1 dimer and an α1cc monomer. 

Bottom shows schematic of the crosslinkable α1 subunit (α1cc) and the resulting crosslink of 

adjacent α1 subunits in opposite α-ring in the α5α6α7α1 complex. (b) An aliquot (20µg) of native 

samples from (a) before crosslinking was analyzed by imperial stained 4-15% TGX non-

denaturing gel. Core particle (CP), CP-bound Blm10 hybrid species and HMWC are labeled. 

Bottom shows loading control focused on CP subunits (bracket) analyzed on 12%SDS PAGE 

stained by GelCode blue. 
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the internal cysteines removed and bearing only the crosslinking mutation A102C in the H1 helix), 

and its α1nic mutant control (no internal cysteines), were introduced into wild-type and pba4Δ 

yeast strains. The α1cc will detect putative HMWC(s), if present, by showing the signature dimer 

band. Flag purified proteins from the indicated strains, after CuCl2 mediated crosslinking followed 

by non-reducing SDS PAGE and immunoblotting, showed the presence of α1 dimer band, between 

50-75 kDa, when PBA4 gene was deleted in the α1cc mutant (Fig. 4.3, lane 2). The band 

disappeared under reducing conditions as expected from a crosslinked species. Moreover, this 

band did not appear in pba4Δ α1nic mutant lane suggesting the α1 dimerization is specific to the 

introduced cysteine in the H1 helix (Fig. 4.3 lane 4). 

 

One could argue that the observed crosslinking arises from dimerization of the free α1 

subunits which might accumulate in pba4Δ cells because proteasome assembly is known to be 

perturbed in these cells. To eliminate this possibility, purified proteins from the indicated samples 

were analyzed by native PAGE. The major band in all the samples, migrating near 669 kDa size, 

was the CP (Fig. 4.3b). About 20-50% of CP in pba4Δ samples are α4-α4 proteasomes 

(Kusmierczyk et al., 2008). Bands migrating slower than CP are likely complexes of Blm10 and 

CP; these were more prominent in pba4Δ samples because Blm10 preferentially binds to open gate 

CP and α4-α4 proteasome are hypothesized to have open gates (Lehmann et al., 2008). The MS 

analysis of these bands confirmed Blm10 association with CP (Sup Fig. 23b). Species migrating 

faster than CP were also observed. These are likely CP assembly intermediates. A closer look at 

the faster migrating species shows there may be two closely migrating bands in the pba4Δ samples.  

Increased intensity of these faster migrating band(s) in the pba4Δ samples could be due to any (or 

all) of the following three possibilities. First, the known CP assembly intermediates accumulate in 

the absence of Pba4, resulting in the more intense band(s). Second, a previously reported aberrant 

complex (similar to the13S intermediate except it has an additional α2 that takes the place of α4) 

formed in the absence of Pba4, would be expected to migrate near this position. Third, HMWC(s) 

(similar to, or even identical with, the α5α6α7α1 complex) would also be expected to migrate near 

this position.  
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Figure 4.4: Depletion analysis for isolating HMWC 

Aliquots of flag purified CP from the indicated yeast strains were subjected to native PAGE (Eluate 

E). The remainder of the flag-purified material was depleted of his-tagged proteins via two rounds 

of binding to immobilized-cobalt affinity resin (ICAR). Aliquots of ICAR bound proteins, eluate 

1 (E1) and eluate 2 (E2) from round 1 and round 2 binding respectively, and the flow through (FT) 

from round 2, were loaded on the same native gel. (B) Indicates blank. Arrow denotes a faster 

migrating species that remains after depletion.  

 

To address these three possibilities and determine if HMWC(s) are present in the faster 

migrating band(s), a depletion approach (diagrammed in Sup Fig. 24) was employed. This strategy 

was recently used to detect non-canonical α4 complexes in vivo, which are obscured on native 

PAGE by “normal” assembly intermediates (Lindsay J. Hammack & Andrew R. Kusmierczyk, 

2017). Briefly, a C-terminal hexahistidine-and-flag tagged β4 subunit (β4HF) was generated in the 

context of a pba4Δ α1cc strain (recall the cross-linkable α1cc is also flag tagged). After flag 

purification, the sample should contain assembly intermediates, aberrant 13S like complexes, and 

putative HMWC when analyzed by native PAGE (Fig.4.4 lane 10). However, when the flag 

purified material is subjected to depletion through TALON resin, because of histidine tag on β4, 

all the CP, assembly intermediates, and aberrant 13S like complexes should bind to the resin. Since 

the HMWC likely does not contain the β4 subunit, the flow through (FT) should contain the 

HMWC. Two rounds of TALON resin binding were performed to enhance depletion. 

 

Native PAGE after depletion showed a faint band in the β4HF pba4Δ α1cc FT lane (Fig. 

4.4 lane 13) migrating near the 440 kDa size standard. An absence of this band in the FT of the 

corresponding wild-type sample suggests that the complex does not form when Pba3-Pba4 is 
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present, as would be expected. And an absence of this band in the FT of the corresponding pba4Δ 

α1nic control suggests its formation can only be detected on native PAGE using a cross-linkable 

α1. The high abundance of CP makes its complete depletion difficult, even with two rounds of 

ICAR binding, which is why a small amount of it still persists in the FT lanes. The composition of 

the HMWC band in the FT lane of the pba4Δ α1cc sample remains to be determined. 

4.5 Discussion 

The ability of α subunits to form high molecular weight complexes (HMWC) and its 

prevention by the assembly chaperone Pba3-Pba4 is demonstrated in vitro and in vivo.  

Recombinant expression of S. cerevisiae proteasome subunits α5, α6, α7, and α1 subunits in 

combinations results in the formation of HMWC as long as both α1 and α7 are present (Fig. 4.1 

a). The α5α6α7α1 complex is physiologically relevant compared to other HMWCs as it appears 

more stable and contains the maximum number of subunits that can be successfully coexpressed 

in vitro. Negative stain EM and MS analysis suggested the HMWC is likely a double octameric 

ringed species (Sup Fig. 21). The crosslinking strategy adopted from (Panfair et al., 2015) showed 

the presence α1 crosslinks within this complex further corroborated the double ring conformation 

of this complex (Sup Fig. 22). While the order of the subunits in the complex is not clear, based 

on the crosslinking data, at least one pair of α1 subunits is positioned across from each other in the 

two adjoining rings (Fig. 4.3c). It is also likely, given that α5α6α7α1 (in that order) are neighbors 

within an α-ring in vivo, that this subunit order is maintained within each ring of the HMWC to 

maximize native subunit contacts.  

 

A similar tendency of certain recombinant α subunits forming such double ringed HMWC 

has been demonstrated in different species (Gerards, de Jong, Bloemendal, et al., 1998; Yao et al., 

1999). Such complexes highlight the tendency of specific α subunits to interact spontaneously. 

Despite such easiness in their formation, HMWCs are not common in vivo. A double α-ring, 

whether in archaea or in eukaryotes, are considered dead end complexes, and there must exist some 

mechanism to prevent their formation. Since only specific α subunit interaction triggers HMWC 

formation, perhaps interaction of these subunits is well coordinated in a timely manner that might 

prevent such aberrant complex formation. Assembly chaperones, particularly ones that are 

involved in the α-ring formation, such as Pba3-Pba4, are known to direct specific α subunit 
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interactions. These proteins were the likely candidates for further investigation. Indeed, 

coexpression of assembly chaperone Pba3-Pba4 with α5, α6, α7, and α1 subunits prevented the 

formation of HMWC (Fig. 4.2a lane 6). In the presence of Pba3-Pba4, while stoichiometric levels 

of α5, α6 and α7 subunit coprecipitated, sub-stoichiometric levels of α1 subunit was pulled down 

(Fig. 4.2b lane 5). The poor association of Pba3-Pba4 with α1 subunit has also been shown in a 

previous report (Kusmierczyk et al., 2008). Perhaps isolation of the α1 subunit inhibits the critical 

interaction between α1-α7 subunit which is likely responsible for triggering the HMWC formation. 

However, Pba3-Pba4 could not dissociate a preformed HMWC as shown by the lysate mixing and 

purified protein mixing (Fig. 4.2a lane 3 and 4). This underscores the importance of having 

assembly chaperones present from the start of proteasome biogenesis. These results demonstrate 

Pba3-Pba4 prevents α5α6α7α1 complex formation.  

 

Further evidence for the involvement of assembly chaperone in preventing the formation 

of HMWC was investigated by looking for aberrant complexes in vivo in the absence of Pba3-

Pba4. If aberrant complex does form in the absence of Pba3-Pba4, they would likely contain the 

α1 crosslink, a characteristic of the HMWCs in vitro. Indeed, the non-reducing SDS PAGE showed 

an α1 crosslinking only when assembly chaperone PBA4 gene was deleted and the crosslinkable 

α1 mutant (α1cc) was used (Fig. 4.3a, lane 2). Native PAGE of the same strains showed an increase 

in levels of a faster migrating species in the pba4Δ strain, which could be a mix of assembly 

intermediates and HMWC (Fig. 4.3b). The depletion strategy removed assembly intermediates and 

left behind a very faint faster migrating band, likely a HMWC (Fig. 4.4 lane 13).  

 

The low abundance of the putative HMWC in pba4Δ cells, even after using a large-scale 

yeast culture, indicates perhaps other factors may be involved in preventing the HMWC formation. 

These could be assembly chaperones Pba1-Pba2 and/or the presence of other proteasome subunits 

that compete for binding. The absence of this band in the wild-type sample indicates that this 

putative HMWC does not form under normal conditions (Fig. 4.4 lane 4). The HMWC complex 

did not appear in the absence of Pba4 when the non-crosslinkable mutant of α1 subunit (α1nic) 

was used (Fig. 4.4 lane 8) suggesting the necessity of crosslinking mutation for enabling complex’s 

detection. This argues that this putative HMWC may not be stable enough to survive 

electrophoresis on its own, and why it might have escaped detection until now. A labile non-
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canonical complex formed by α4 subunits was recently reported whose detection on native PAGE 

also relied on crosslinking (Lindsay J. Hammack & Andrew R. Kusmierczyk, 2017). Further 

analysis of the putative HMWC complex is required to show it as a novel non-canonical complex 

and to determine its composition. Eventually, a structural analysis would provide conformational 

details of the complex.  

 

Overall, the results provide evidence of α subunit interaction following an alternate 

assembly pathway, one that leads to the formation of a dead-end complex. The assembly chaperone 

Pba3-Pba4 prevents this non-productive pathway by directing productive α subunit interactions 

and thereby increases the efficiency of proteasome assembly. These results further suggest the 

proteasome subunit interactions are not linear. They can interact in multiple ways, and ancillary 

proteins promote productive pathways. 
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 SUMMARY AND CONCLUSION 

5.1 Overview 

  The 20S proteasome contains 14 distinct types of α and β subunits that are arranged into 

four heptameric rings. The support of assembly chaperones makes the assembly process highly 

efficient. Assembly of these subunits is believed to follow a linear pathway that begins with the 

formation of α-rings onto which the β subunits are sequentially added, forming assembly 

intermediates that eventually lead to form mature 20S proteasome. Different proteasome isoforms 

observed in specific tissues assemble slightly different from the canonical 20S proteasome. 

Dedicated assembly chaperones Pba1-Pba2, Pba3-Pba4, and Ump1 are involved at various stages 

guiding the productive interactions. The assembly pathway has been well studied over the past few 

decades, yet some of the steps, especially the early events, are still not well understood. 

 

  Proteasome dysfunction is linked to several types of cancers, neurodegenerative diseases 

and cardiovascular diseases (McNaught & Olanow, 2006; Paul, 2008; Schmidt & Finley, 2014). 

In addition to other factors, an assembly defect in the proteasome could lead to proteasome 

dysfunction (Arima et al., 2011; Asai et al., 2009; Day et al., 2013; Treise et al., 2018). In some 

cases, the defects may be limited to a specific population of the proteasome. The proteasome is 

already a target of several FDA-approved medicines. While the current approaches to treatment 

cannot distinguish different proteasome populations, a better understanding of the assembly 

pathway may help design new strategies in therapeutics to target a specific population of the 

proteasome. This dissertation expands our knowledge of proteasome assembly via three significant 

contributions. First, archaeal proteasome can assemble in an α-ring independent pathway, the first 

evidence of α-ring independent proteasome assembly outside of bacteria. Second, a novel early 

assembly intermediate, sub-13S, is discovered in yeast that contains a subset of α and β subunits. 

Its existence argues that α-ring independent proteasome assembly pathways may be present in 

eukaryotes as well. Finally, Pba3-Pba4 enhance the efficiency of proteasome assembly by 

preventing the formation of aberrant complexes. 
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5.2 Archaeal Proteasome Can Assemble by Two Separate Pathways 

  The archaeal proteasome is compositionally simpler and shares many assembly features 

with their eukaryotic counterparts. For this reason, early proteasome assembly studies were 

initiated in archaea by recombinant expression of α subunits. Expression of α subunits in E. coli 

formed a single ring, and a double ring (DR) likely by dimerization of two single rings (Fig. 2.1). 

This was confirmed using a crosslinking strategy that showed the α subunits interact between the 

adjacent rings through H1 helices (α/α interaction, / denotes H1 helix-based interaction in adjacent 

rings) similar to an α/β interaction in a half proteasome intermediate (Fig. 2.1 and Sup. Fig. 1). 

When the α rings were destabilized using site directed mutagenesis, some level of DR was still 

observed, which indicated the DR formation could form independent of the single ring (Fig 2.2). 

The inability of DR to form proteasome showed that the DR is an assembly incompetent species 

(Fig 2.6). Combining the ring destabilizing α subunit mutants with β subunits resulted in formation 

of the proteasome, indicating the proteasome assembly can occur without the formation of α rings 

(Fig. 2.3). Proteasome also formed when the size exclusion chromatography fractions containing 

unassembled ring disrupting α subunits mutants were mixed with lysates containing β subunit (Fig. 

2.6). This experiment ruled out the possibility of some level of undetected single rings being the 

reason for proteasome formation. 

 

  These results emphasized two things. First, they linked the bacterial proteasome assembly 

pathway (α-ring independent) to archaea, from which the bacteria were hypothesized to have 

acquired proteasomes through HGT. One could now advance a reasonable hypothesis for why 

bacterial proteasome assembly was long considered “different”. Simply put, bacterial proteasomes 

lost the α-ring dependent pathway shortly after HGT and retained only the α-ring independent 

pathway. Second, the ability of bacterial and archaeal proteasomes to assemble independently of 

α-ring formation suggested this mechanism might be broader and perhaps even present in 

eukaryotes. 

5.3 A Novel Early Assembly Intermediate Sub-13S 

A depletion strategy implemented to purify proteasome intermediates and their potential 

binding partners in another study from our laboratory identified a novel species containing 
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proteasome subunits α1-4 and β2-4 (L. J. Hammack et al., 2017). This species migrated faster than 

the 13S intermediate on native PAGE, so it was referred to as the sub-13S.  

 

The sub-13S does not fit within the accepted assembly pathway for eukaryotes due to the 

lack of a complete α ring. Eukaryotic proteasome assembly initiates with the formation of an α-

ring (Hirano et al., 2005). This was also assumed to be the case in archaea, whose proteasomes 

have long served as models for studying 20S CP assembly (Zwickl et al., 1994). However, the 

results from chapter 2 showed proteasome assembly in archaea could also initiate through an α 

and β subunit interaction, bypassing the α-ring formation. This suggested that the sub-13S 

intermediate likely originates from a similar α-ring independent pathway that may also exist in 

eukaryotes.  

 

The sub-13S resembles a 13S intermediate lacking α5, α6, and α7. Because of this 

similarity, it was hypothesized that sub-13S might be a precursor to the 13S. The observation of 

sub-13S in some strains, but not others, was attributed to the mild perturbations in assembly caused 

by tagging different proteasome subunits (Fig.3.1). To test the idea of a precursor-product 

relationship of sub-13S and 13S, 13S assembly was disturbed by slowing down the rate at which 

α5 could incorporate using an α5 mutant. The results were consistent with sub-13S being the 

immediate precursor to the 13S. Slowing down assembly in strains that produced low levels of 

sub-13S caused more sub-13S accumulation with a consequent reduction in 13S level (Fig 3.2). 

Furthermore, slowing down assembly with the α5 mutant induced the formation of sub-13S in 

strains where it was previously not detected (Sup. Fig. 11b). To rule out the possibility of sub-13S 

being an off-pathway intermediate, the missing subunits (α5, α6, and α7) and assembly chaperone 

Pba3 and Pba4 were mixed with the sub-13S intermediate. Based on the observed band shift on 

native PAGE, sub-13S converted to a 13S like intermediate (Fig. 3.4 and Sup. Fig 19). Pba3-Pba4 

are required to keep the α subunits in free form as they would otherwise form a dead-end complex 

(shown in chapter 4). The assembly chaperone may also assist in band shift. The MS analysis of 

the slower migrating band will confirm the identity of the complex by showing its composition.  

 

The evidence provided argues for this novel sub-13S species participating within an 

alternative assembly pathway, initiating through the interaction of α and β subunits. Perhaps, this 
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novel intermediate is unique to yeast, since α-rings were never formally detected in this species. 

But it is also possible that eukaryotes, like archaea, can use more than one assembly pathway. 

5.4 Pba3-Pba4 Prevents HMWC Formation  

To study α-ring formation, S. cerevisiae α subunits were expressed in E. coli. Coexpression 

of α7α1, α6α7α1, and α5α6α7α1 formed high molecular weight complexes (HMWC) (Fig. 4.1). 

The α5α6α7α1 HMWC was chosen for further study because it is more physiologically relevant 

than the other complexes (it contained 4 of the 7 subunits). Mass spectrometry, negative stain EM 

and crosslinking strategy (similar to archaea, Chapter 2) showed the HMWC complex is a double 

octamer ring having at least one pair of α1 subunit interacting via H1 helices (α1/α1) (Sup. Fig. 21 

and 22). Assembly chaperone Pba3-Pba4 prevented the formation of this complex when 

coexpressed with α5, α6, α7, and α1. However, Pba3-Pba4 could not dissociate a preformed 

complex (Fig. 4.2). This is consistent with the previously hypothesized roles of assembly 

chaperones in preventing off-pathway interactions. The crosslinking strategy detected an α1 dimer 

indicative of a putative HMWC in vivo when the assembly chaperone gene PBA4 was deleted in 

yeast (Fig 4.3). Native PAGE analysis showed a more intense, faster-migrating complex in the 

pba4Δ strains (Fig 4.3). To determine if the putative HMWC is present within the intense band, a 

depletion strategy was employed. Native PAGE after depletion showed a presence of a unique 

band in the pba4Δ strain that contained crosslinking mutation suggesting the crosslinking 

stabilized HMWC and enabled its detection (Fig 4.4). 

 

The results argue that Pba3-Pba4 prevent the formation of aberrant complexes that likely 

results from an off-pathway interaction. Similar roles were demonstrated for assembly chaperone 

Pba1-Pba2 in mammalian cells (Hirano et al., 2005). Whether β subunits are present in this 

complex or it is strictly an α subunit aberrant complex is not known. Mass spectrometry of the 

unique band on native PAGE will disclose its subunit composition. These results further add to the 

multiple pathway theme of proteasome assembly advanced in this dissertation: whereas some 

pathways (both α-ring dependent and α-ring independent) are productive, there are some pathways 

that are nonproductive. Assembly chaperones can help ensure the productive interactions are 

preferred, perhaps by preventing subunit interactions that produce dead end species (like the 

HMWC). 
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5.5 Concluding Remarks 

The data resulting from this dissertation led to three discoveries: 1. the existence of 

alternative assembly proteasome assembly pathways in archaea and yeast; 2. evidence of a novel 

assembly intermediate; 3. the establishment of an additional role of assembly chaperone Pba3-

Pba4 in yeast.  

 

 

Figure 5.1: Contributions to the 20S proteasome assembly pathway 

This schematic is modified from the schematic shown in Figure 2.7. The findings from this 

dissertation are included and labeled in red.  

 

The data converge to support the existence of a proteasome assembly network containing 

multiple productive pathways (pathways 1 and 2) and non-productive pathways (pathway 3), in 

which the ancillary proteins/ β subunits prevent the unproductive route of assembly pathway 

(pathway 3) (Fig. 5.1). The demonstration of an assembly network also connects the seemingly 

separate bacterial proteasome assembly pathway with rest of the proteasome realm.  It is not yet 

known if these productive pathways operate simultaneously or a preference exists for a specific 

pathway in vivo.  However, having multiple pathways may offer an advantage to the cell by 

enabling assembly of proteasomes via an alternate pathway in the event of a defect in one pathway. 
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APPENDIX A. SUPPLEMENTARY FOR CHAPTER 2 

Supplementary Note 

On the function of β subunit propeptides (Kusmierczyk et al., 2011)  

 

 In Figure 2.5, we demonstrate that the archaeal β subunit propeptide is dispensable for CP 

assembly even when archaeal α subunits cannot form rings; assembly occurs with comparable 

efficiency with or without the propeptide. The bacterial β subunit propeptide is also not required 

for CP assembly (Lin et al., 2006; Zuhl, Seemuller, et al., 1997) hence the dispensable nature of 

the propeptide is conserved in archaeal and bacterial CP assembly. However, this is not to argue 

that the purpose of the propeptide is identical in both. A number of differences are worth 

discussing. 

 

 The cis α-α subunit interface in bacterial proteasomes is much smaller than in 

eukaryotic/archaeal counterparts (Hu et al., 2006; Kwon et al., 2004). This likely contributes to 

the inability of bacterial α subunits to form stable α rings on their own (Zuhl, Seemuller, et al., 

1997), though dimers and trimers are apparently possible (Sharon et al., 2007). Consequently, 

bacterial β subunit propeptides are large in part to provide this missing contact surface and function 

as a “glue” to stabilize bacterial α-rings (Kwon et al., 2004). Consistent with this, in the absence 

of the β subunit propeptide, assembly of CP from Rhodococcus erythropolis is very inefficient 

(Zuhl, Seemuller, et al., 1997). Interestingly, assembly of CP from Mycobacterium tuberculosis is 

not affected by the absence of its corresponding propeptide (Lin et al., 2006). This argues that the 

“glue” function, while important, likely cannot be the only role for a bacterial β subunit propeptide 

in assembly. The visualization of the Mycobacterium propeptides outside (and below) the α-ring 

in a half proteasome (G. Li et al., 2010), and their ability to negatively impact assembly (Lin et al., 

2006), are consistent with this view. 

 

 Unlike bacterial propeptides, archaeal β subunit propeptides are much shorter. Clearly, the 

“glue” function is not required by archaeal proteasomes since their α subunits can form stable α-

rings independently. Also, archaeal β subunit propeptides are completely dispensable for assembly 

(J. A. Maupin-Furlow et al., 1998; Wilson et al., 2000; Zwickl et al., 1994). Our data suggests that 
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assembly is equally efficient in their presence or absence, even when archaeal α subunits cannot 

form rings. So, what is their role? One possible function is to ensure that the active site threonine 

is only exposed upon completion of assembly where it is safely enclosed within the central cavity. 

Numerous observations, for proteasomes from all three domains of life, that propeptide processing 

is coupled to assembly support this view (P. Chen & Hochstrasser, 1996; D. Li et al., 2010; 

Schmidtke et al., 1996; Seemuller, Lupas, & Baumeister, 1996; Sharon et al., 2007; S. Witt et al., 

2006). Related to this function is the finding that the active site threonine can also be inactivated 

by N-acetylation if exposed to the cytosolic milieu (Arendt & Hochstrasser, 1999); a propeptide 

would again serve in a protective role until assembly is nearly complete. A third possible function 

is that propeptides can allosterically convey assembly status. A previous report demonstrated the 

ability of PbaA, the putative archaeal ortholog of the Pba1-Pba2 assembly factor that binds to the 

outer α-ring surface, to preferentially bind to propeptide-containing intermediates (Kusmierczyk 

et al., 2011). This binding became progressively weaker with increased β subunit processing and 

let us to propose a “safety” function for this assembly factor:  by recognizing propeptide-

containing intermediates, assembly factors like PbaA and Pba1-Pba2 could prevent the premature 

association of activators (such as PAN in archaea, or RP in eukaryotes) to incompletely assembled 

CP (Kusmierczyk et al., 2011). This safety function was recently confirmed for Pba1-Pba2 in yeast 

(Wani et al., 2015).  

 

 All three of these functions are not mutually exclusive, but all of them can be satisfied by 

a small propeptide like those found in archaea. Since all three of these functions reduce the 

incidence of undesirable events, this could help explain the non-essential nature of these 

propeptides, namely:  assembly per se is not affected in their absence, only the incidence of 

(undesirable) side-reactions would increase. Most pertinent to this study, all three of these 

functions are compatible with an α-ring dependent and an α-ring independent assembly 

mechanism, both of which are shown here to be possible for the archaeal CP. Other functions 

beyond those suggested here are also possible and may come to light with increasing experimental 

evidence. 
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On the formation of αβ heterodimers 

 In Supplementary Figure 9, and the accompanying main text, we describe experiments 

aimed at determining if SR-independent assembly of archaeal proteasomes can proceed through 

the formation of αβ heterodimers. Lysate mixing was used to initiate proteasome assembly, and 

after 30 min, an assembly reaction was subjected to ICAR and the purified proteins loaded onto a 

size exclusion column. Fractions 15 to 18 contained coeluting α and β subunits and corresponded 

to assembled proteasomes (and other large species). Fractions 25 to 30 also contained coeluting α 

and β subunits and we present arguments in the main text supporting our claim that these fractions 

could contain the putative αβ heterodimers. Here, we put forth additional arguments based on our 

data to support this claim. 

 

 First, the overlap between the nonR peak of α-his subunits and the presence of β subunits 

in fractions 25 to 30 would be expected given that nonR species (i.e. mostly free α subunits) are 

the immediate precursor to αβ heterodimers. Second, the only way β subunits should end up in 

fractions 25 to 30 (or any fractions for that matter) is via complex formation with α-his subunits 

because free untagged β subunits do not bind to the metal-affinity resin (ICAR purification) that 

immediately precedes the size exclusion separation. Finally, the elution of β subunits in fractions 

25 to 30 is not observed when β subunits are fractionated on a size exclusion column in the absence 

of α subunits; free β subunits elute in fractions 32 to 34 (Sup Fig. 8). This shift in elution profile 

(from fractions 32-34 to fractions 25-30) implies a higher molecular mass and thus complex 

formation with α subunits.  

 

 Taken together, our data support the existence of archaeal αβ heterodimers but they also 

do not rule out other interpretations (i.e. heterotrimers). However, it is important to note that this 

lack of absolute certainty is also the case with bacterial αβ heterodimers. A mass-spectrometry 

analysis has provided the first, and to date the only, physical evidence of bacterial αβ heterodimer 

formation (Sharon et al., 2007). However, all the αβ heterodimer species identified in that study 

contained truncated β subunits that lacked no fewer than 25 N-terminal amino acids of the 65 

amino acid propeptide (Sharon et al., 2007). The authors themselves offered an alternate 

explanation for these complexes as “trapped” species, not capable of assembly (Sharon et al., 

2007). The formation of αβ heterodimers is the most plausible explanation for how proteasome 
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assembly can occur in the absence of SR formation. Nevertheless, despite data in bacteria (Kwon 

et al., 2004; Sharon et al., 2007; Zuhl, Seemuller, et al., 1997) and now in archaea (this study) that 

strongly support this view, one must allow that a bona fide heterodimer (consisting of a full length 

α subunit bound to a full length β subunit) functioning as an assembly-competent species remains 

to be unequivocally demonstrated for any proteasome. 
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Supplementary Table 1: Plasmids used in chapter 2  

Name Genotype Source 

AKB191 pET42 psmA-his 
(Kusmierczyk et al., 

2011) 

AKB254 pET42 psmA (R88D)-his This study 

AKB257 pET42 psmA (K59E)-his This study 

AKB946 pET42 psmB This study 

AKB950 pET42 psmB Δpro This study 

AKB951 pET42 psmB (T1A) This study 

AKB952 pET42 psmB (R166W) This study 

AKB464 pET42 psmA-his psmB 
(Kusmierczyk et al., 

2011) 

AKB600 pET42 psmA (Q99C)-his This study 

AKB628 pET42 psmA-his psmB Δpro 
(Kusmierczyk et al., 

2011) 

AKB572 pET42 psmA-his psmB (T1A) 
(Kusmierczyk et al., 

2011) 

AKB573 pET42 psmA-his psmB (R166W) This study 

AKB706 pET42 psmA (A98C)-his This study 

AKB707 pET42 psmA (M100C)-his This study 

AKB708 pET42 psmA (Δcys)-his This study 

AKB709 pET42 psmA (Q99C Δcys)-his This study 

AKB727 pET42 psmA (K59E)-his psmB This study 

AKB943 pET42 psmA (K59E)-his psmB (R166W) This study 

AKB944 pET42 psmA (K59E)-his psmB (T1A) This study 

AKB945 pET42 psmA (K59E)-his psmBΔpro This study 

AKB949 pET42 psmA (R88D)-his psmB This study 

AKB953 pET42 psmB-his This study 

AKB964 pET42 psmA (R88D)-his psmBΔpro This study 

AKB965 pET42 psmA (R88D)-his psmB (T1A) This study 

AKB966 pET42 psmA (R88D)-his psmB (R166W) This study 

AKB976 pET42 psmB (K29E) This study 

AKB988 pET42 psmB (K29E)-his This study 

   

psmA = α subunit from Methanococcus maripaludis 

psmB = β subunit from Methanococcus maripaludis 
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Supplementary Figure 1: The H1 helices of α and β subunits contribute to inter-ring contacts 

Structural models based on the T. acidophilum crystal structure (1PMA) and generated with the 

program Cn3D. (a) Subunit contacts between two neighboring α (red/pink) and two β (blue) 

subunits viewed from inside the 20S cavity. (b) Subunit contacts and color scheme as in (a), with 

an α-β subunit pair isolated for emphasis. The C- terminal halves of helices H1 in each subunit are 

indicated in purple and orange. Close-up of H1 helices (c) and sequence alignment of relevant 

region (d) with color scheme as in (a, b). Glutamine 97 in the H1 helix of the T. acidophilum α 

subunit (yellow) is juxtaposed with the corresponding aligned residue (glutamate 62; teal) in the β 

subunit. Hence, if a second α subunit were to take the place of the β subunit, as hypothesized for 

a double α-ring, the indicated glutamine might be suitably positioned for an engineered disulfide 

cross-link. The equivalent position in the M. maripaludis α subunit is Q99 (e). 
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Supplementary Figure 2: Gel-induced higher order species artifacts 

In order to better visualize some lower-abundance species, native gels in this study were frequently 

heavily loaded with protein (10–20 µg per lane). When this was done, however, one could 

sometimes observe higher order species migrating above the band of interest. These are identified 

by white arrowheads in the main Figures and they are gel-induced artifacts. Formation of gel-

induced artifacts can be illustrated in the nondenaturing 4–15% gradient gel above, stained with 

GelCode blue. Lane 1 contains the molecular size standards used throughout this study. In lanes 

2–4 (2: 670 kDa standard {Thyroglobulin}, 3: 440 kDa standard {Ferritin} and 4: 67 kDa standard 

{Bovine serum albumin}), some of these standards are heavily loaded and run individually. In 

addition to the correctly running major band, the heavily loaded samples exhibit higher order 

species to varying degrees (white arrowheads). 
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Supplementary Figure 3: Residues selected for mutagenesis 

Space filling models based on the T. acidophilum crystal structure (1PMA) and generated with the 

program Cn3D. (a,b) Highly conserved charged residues (yellow) in one α subunit (red) are 

juxtaposed with highly conserved residues of opposite charge (teal) located within 5 angstroms on 

the neighboring α subunit (pink). (a) Top view of α-ring with R57 of T. acidophilum (yellow). The 

equivalent position in M. maripaludis α subunit is K59. (b) Bottom view of α-ring with R86 of T. 

acidophilum (yellow). The equivalent position in M. maripaludis α subunit is R88. (c) Side view 

of the half-proteasome, angled upward, showing highly conserved β subunit arginine 164 (yellow). 

Two α and β subunits are colored for reference. Numbering in the sequence alignment is based on 

the N-terminal catalytic threonine being assigned position1; hence in M. maripaludis the β subunit 

arginine is at position 166. 
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Supplementary Figure 4: The K59E mutant form some DR without apparently forming SR 

Following the fractionation of the α (K59E) mutant by size exclusion chromatography (Fig. 2.2b 

main text), aliquots of fractions 18, 19, 26, and 27 were analyzed by native PAGE on a 

nondenaturing 4–15% gradient gel shown here stained with Imperial Stain This analysis confirmed 

the assignment of the major peak in fractions 25–28 as the nonR peak, and the minor peak in 

fractions 17– 19 as the DR peak (see main text). The data are consistent with the α (K59E) mutation 

interfering with the assembly of SR, yet still allowing some DR to form. 
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Supplementary Figure 5: Assembly of archaeal proteasomes exhibits bacterial-like features 

The experiments described in the panels above use the α (K59E) mutant but are otherwise identical 

to those carried out with the α (R88D) mutant described in the main text (Fig. 2.5). Indeed, the 

Figure legend to Figure 2.5 applies here exactly, with K59E substituted for R88D. The results of 

this Figure support the same conclusions drawn from the main text (Fig. 2.5) namely: (i) that 

archaeal 20S assembly can proceed along a bacterial-like pathway, independent of SR; (ii) that 

this SR-independent pathway still proceeds through a half-proteasome; (iii) that the SR-

independent pathway does not depend on the β subunit propeptide; and (iv) that the same 

conclusions could be drawn regardless of the approach, lysate mixing versus coexpression, though 

the latter approach results in more efficient assembly (see main text pertaining to Fig. 2.5). 

 

As stated in the main text, there are two minor differences between lysate mixing and coexpression 

approaches. These differences do not affect the aforementioned conclusions, but they are worth 

noting here. First, in lysate mixing experiments, levels of the half proteasomes were similar within 

wild-type α subunit samples (Fig. 2.5a and Supplementary Fig. 5a, lanes 1, 7, 8), and within mutant 

samples (Fig. 2.5a and Supplementary Fig. 5a, lanes 2, 3, 4), regardless of the β subunit propeptide 

variant employed. By contrast, this uniformity was absent during coexpression (see corresponding 

lanes in Fig. 2.5d and Supplementary Fig. 5d). This was likely due to slower assembly in lysate 

mixing where the rate limiting step might be (i) the association of α subunits into SR and/or (ii) 

the association of α and β subunits into half-proteasomes.  

 



121 
 

Supplementary Figure 5 (continued) 

Second, in coexpression experiments, the samples employing β (T1A) exhibited sharp decreases 

in SR and nonR (Fig. 2.5d and Supplementary Fig. 5d, lanes 4 and 7). By contrast, SR and nonR 

levels were constant in lysate mixing regardless of which β subunit variant was being used. This 

suggests that under coexpression conditions, where assembly is already more efficient than lysate 

mixing, the T1A mutant is even more efficient at interacting with free subunit, and/or SR, than a 

wild-type β subunit. However, the reason for this is unknown. 
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Supplementary Figure 6: Ring independent assembly of archaeal 20S proteasomes 

This is another iteration of the same experiment as described in Figure 2.6. The difference is that 

in this version, the isolated pool 1 and pool 2 samples for each of the α-his proteins (a, wild-type 

and R88D; b, K59E) were split in half. One half was mixed with an equal volume of lysate from 

E. coli expressing wild-type archaeal β subunits (+) and the other half was not (−). Following 

incubation to allow assembly to occur, the proteins were repurified by ICAR and equal volumes 

of each eluate were electrophoresed on a nondenaturing 5–10% gradient gel. Immediately prior to 

GelCode staining (top panels), the polyacrylamide gel was overlaid with buffer solution containing 

the fluorogenic peptide substrate Suc-LLVY-AMC to detect peptidase activity (bottom panel). 

Black arrowheads denote the positions of assembled 20S core particle (20S), half-proteasome 

(half), double α-ring (DR) and single α-ring (SR). The position of α subunit species that do not 

assemble into any ring (nonR), and are mostly free α subunits, is shown with a bracket. The 

migration of several molecular size standards (in kDa) is indicated. 
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Supplementary Figure 7: On the severity of the R88D mutation 

The α (K59E) mutant does not appear capable for forming any detectable SR, though it does form 

some DR, while the α (R88D) mutant appears to form neither SR nor DR (Figs. 2.2, 2.3). Both 

mutants exist primarily as nonR (mostly free α subunits) species. Although the effect of the R88D 

mutation on ring assembly is profound, it is not absolute. When purified α (R88D) protein is 

heavily overloaded on a nondenaturing 4–15% gradient gel, one can begin to discern a very faint 

DR band (left panel). Adjusting the brightness and contrast of this image makes this band a bit 

easier to visualize (right panel). No SR band is ever seen. Hence, the α (R88D) mutation can be 

thought of as a more extreme version of the α (K59E) mutation i.e. neither forms SR but α (R88D) 

is much more severe in its effect on DR. 

 

  Since the levels of DR in the α (R88D) mutant sample are almost but not quite zero, this 

can help explain why pool 1 from this mutant also gave rise to barely-perceptible levels of 20S 

(Fig. 2.6a, lane 4 and Supplementary Fig. 6a, lane 4). Although present at much lower levels than 

the α (K59E) DR, the α (R88D) DR is inherently less stable and will dissociate more readily into 

assembly competent nonR (mostly free α subunits). Because such a large amount of protein is 

loaded onto the Sephacryl S-300 column (780 µg), there should be enough DR present in pool 1 

that, upon concentration and mixing with β-subunit-containing lysates, vanishingly small but 

detectable levels of 20S species will form. Regardless, these tiny levels of 20S in the pool 1 

samples do not alter the main point (Fig. 2.6 and Sup Fig. 6) that free α subunits (pool 2) can 

serve as the starting point for efficient CP assembly along a pathway that does not require SR to 

form. 
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Supplementary Figure 8: Rapid assembly of 20S proteasomes following subunit mixing 

To visualize additional assembly intermediates, we sought to carry out mixing experiments using 

separately expressed wild-type, or mutant, α-his and wild-type β- his subunits that were first 

purified via ICAR. (a) Purified wild-type, or K59E mutant, α-his (10 µg) was mixed with purified 

wild-type β-his (10 µg) and incubated for increasing amounts of time (0 to 20 min) prior to loading 

onto a nondenaturing 5-10% gradient gel. The dead time of the experiment was ~8 mins. This is 

the time it takes to withdraw an aliquot of the assembly mixture, add nondenaturing sample buffer, 

load the sample, turn on the voltage, and have the sample enter the gel. Assembly can continue 

during the dead time because the sample is always under nondenaturing conditions and it is only 

when protein enters the gel (and free α and β subunits begin to separate from each other) that 

assembly is no longer happening. The data suggest that most of the assembly observed occurred 

during the dead time. Black arrowheads denote the positions of assembled 20S core particle (20S), 

half- proteasome (half), double α-ring (DR) and single α-ring (SR). The position of α subunit 

species that do not assemble into any ring (nonR), and are mostly free α subunits, is shown with a 

bracket. The migration of several molecular size standards (in kDa) is indicated. As stated in the 

main text, no new assembly intermediates (i.e. αβ heterodimers) were evident in mixing 

experiments. This could be because αβ heterodimers are transient and very rapidly assemble into 

half -proteasomes, or because αβ heterodimers are not stable enough to survive electrophoresis, or 

both. 
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Supplementary Figure 8 (continued). 

 

While purified α-his subunits (wild-type or mutant) resulted in distinct species when separated by 

nondenaturing PAGE, purified β-his subunits produced a slowly migrating smear (a). We attribute 

this to the high predicted isoelectric point for β -his (pI = 8.39). Since the pH of the nondenaturing 

gel is 8.8, β -his may not be appreciably negatively charged at this pH to easily enter the gel. In 

support of this, we fractionated purified β-his by size exclusion chromatography. (b) ICAR-

purified recombinant β-his subunits were subjected to size exclusion chromatography on a 

Sephacryl S-300 column. Aliquots of every other fraction were analyzed by 12% SDS-PAGE 

followed by staining with Imperial Stain. Black arrowheads indicate the column void volume and 

the elution peaks of molecular size standards (in kDa). M, molecular size standards (size in kDa 

indicated at left). L, aliquot of the sample load. Purified β-his elutes late as a single peak. No β-his 

was observed near the void volume or in high molecular weight fractions, consistent with purified 

β-his behaving as a monomer. The slightly later elution of the β -his protein (predicted Mr of 24.6 

kDa) relative to the molecular size standards could reflect weak affinity of the β-his subunit for 

the Sephacryl resin. At the near neutral pH of the size exclusion column, the basic β -his protein 

(predicted pI = 8.39) may weakly bind to the low levels of carboxylates in the Sephacryl matrix 

thereby slowing its elution
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Supplementary Figure 9: SR-independent assembly likely proceeds via αβ heterodimer  

(a) Proteasome assembly was initiated by mixing equal volumes of lysates from cells separately 

expressing the indicated α-his and β subunits. After 30 minutes, proteins were purified by ICAR 

and loaded onto a Sephacryl S-300 size exclusion column and 3 ml fractions were collected. 

Aliquots (50 µl) of the indicated fractions were analyzed by three 12% SDS-PAGE gels and stained 

with Imperial stain. Black lines delineate the position of the 20S peak (also containing half-

proteasomes and DR) as well as the α subunit nonR peak and free β subunit peak. We note that 

both wild-type (Sup Fig. 8) and mutant β subunits (K29E; not shown) elute in fractions 32-34 

when expressed on their own. The locations of the column void volume and the elution peaks of 

the indicated molecular size standards (in kDa) are indicated with black arrowheads. M, molecular 

size standards (size in kDa indicated at left). Panels (ii) and (iii) show progressively increasing 

amounts of β subunits eluting in fractions 25-30, consistent with αβ heterodimer formation. (b) 

Side view of the half-proteasome based on the T. acidophilum crystal structure (1PMA) and 

generated with the program Cn3D. Two α and β subunits are colored for reference. A conserved 

lysine (K29; yellow) in one β subunit is shown juxtaposed with a conserved residue of opposite 

charge (teal) located within 5 angstroms on the neighboring β subunit. Numbering is based on the 

N-terminal catalytic threonine being assigned position1; in M. maripaludis this β subunit lysine is 

also at position 29. 
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APPENDIX B.  SUPPLEMENTARY FOR CHAPTER 3 

Supplementary Table 2: Yeast strains used in chapter 3 

Name Genotype Source 

AKY709 MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 PRE1-6XGLY-3XFlag::kanMX6 

 (Sa-Moura et 

al., 2013) 

AKY889 MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 pre6∆::HIS3 [pRS315 pre6-Flag] 

(L. J. Hammack 

& A. R. 

Kusmierczyk, 
2017) 

AKY1066 MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 pre8-HF(URA) 

(L. J. Hammack 

& A. R. 
Kusmierczyk, 

2017) 

AKY1368 MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1- pre6∆::HIS3 rpn4∆::hphMX6 [pRS315 pre6-Flag]  

AKY1346 MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 pre6∆::HIS3 DOA5-HF::hphMX6 [pRS315 pre6-Flag]  

AKY1347 MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 pre6∆::HIS3 doa5∆::HIS3 [pRS315 pre6-Flag] [Ycplac22 doa5-1] 

AKY1375 MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 pre8-HF(URA) rpn4∆::hphMX6  

AKY1377 MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 DOA5-HF::hphMX6 rpn4∆::hphMX6 pre6∆::HIS3  

AKY1379    MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 DOA5-HF::hphMX6 PRE1-6XGLY-      3XFlag::kanMX6  

AKY1402 MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 pre8-HF(URA) doa5∆::HIS3 [Ycplac22 doa5-1]  

Unless otherwise indicated strains were generated in this study. 

 

 

 

 

 

 
 

Supplementary Table 3: Plasmids used in chapter 3 

 

Name Genotype Source 

AKB 70 Pet42 α5α6α7his 
(Kusmierczyk et al., 
2008) 

AKB 349 pET42 Pba4-Pba3his α5α6α7α1 this study 
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a                                                      b 
 

 

 

Supplementary Figure 10: Composition of bands from Fig. 3.1b 

Contents of bands were analyzed by LC-MS/MS. The table indicates the total count of PSMs 

(peptide spectral matches) for peptides derived from individual proteins. (b) Shows the identity of 

likely complexes and intermediates. Band 2 is sub-13S complex comprising of proteasome 

subunits α1-4 and β2-4 as per the analysis done in a previous study (Lindsay J. Hammack & Andrew 

R. Kusmierczyk, 2017). MS analysis of band 2 showed the expected abundance of the α1-4 subunit. 

The PSMs for β2-4 subunit are higher than other β subunits, but overall PSM count is relatively low 

to make a significant comparison. This is likely due to low protein amount as indicated by the faint 

appearance of these bands. Also, since these samples are not generated from a depletion strain, a 

strain created by strategically tagging specific subunit to isolate the species of interest, low PSMs 

for additional subunits also appears. 

 
α4F α2HF α5HF β4F 

1 2 3 4 5 

α1 31 46 28 34 28 

α2 15 29 15 30 20 

α3 18 28 23 26 27 

α4 21 27 8 17 29 

α5 14 7 16 21 20 

α6 23 0 24 24 37 

α7 12 5 12 14 15 

β1 5 4 5 8 8 

β2 7 10 7 9 6 

β3 9 11 12 11 18 

β4 14 16 10 14 13 

β5 4 4 6 7 8 

β6 0 0 0 5 4 

β7 0 0 0 5 4 

Pba1 9 0 13 17 25 

Pba2 5 5 5 8 11 

Pba3 1 0 0 0 0 

Pba4 2 0 0 0 0 

Ump1 0 5 0 7 8 

Ssa1/2 27 83 0 2 0 

Ssb2 0 0 0 0 0 

Ssc1 0 12 0 0 0 

Sse1/2 0 30 0 0 0 

Blm10 4 0 0 11 3 
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a                                                      b                                                                                                                                            

 

Supplementary Figure 11: Induction of sub-13S in doa5-1 mutants 

Equal amounts (25 µg) of Flag purified proteins from indicated yeast strains were analyzed by 

native PAGE. Species of interest are indicated by arrowheads. (-) Denotes Blm10-CP complex. 

These bands were gel excised and analyzed by MS. Loading controls from the native gel in are 

shown in the bottom. These figures are derived from (L. Hammack, 2017). 
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a                                                                                        b                                                                          

     

 

 

 

 

 

   

 

Supplementary Figure 12: Composition of bands from Sup Fig. 11 

Contents of bands were analyzed by LC-MS/MS. The table indicates the total count of PSMs for 

peptides derived from individual proteins. (b) Represents the identity of likely complexes and 

intermediates. 

 

 

 

 

 

 

 

 

 
α4F α4F 

doa5-1 

α2HF α2hF 

doa5-1 

1 2 3 4 5 6 7 

α1 70 124 434 72 14 140 62 

α2 38 55 176 48 5 62 21 

α3 44 75 234 41 15 69 21 

α4 42 42 153 39 6 42 13 

α5 29 14 1 42 11 3 5 

α6 38 7 2 48 3 5 8 

α7 22 11 12 29 4 13 7 

β1 9 10 0 12 4 7 5 

β2 15 27 103 24 7 31 12 

β3 15 19 67 22 2 17 4 

β4 25 44 165 31 3 49 8 

β5 7 5 2 10 1 3 3 

β6 6 5 2 5 2 3 4 

β7 0 1 0 0 0 0 0 

Pba1 21 7 4 24 5 5 2 

Pba2 15 4 2 37 4 6 3 

Pba3 0 0 0 0 0 0 0 

Pba4 3 0 0 0 0 0 0 

Ump1 18 34 71 23 3 42 5 

Ssa1/2 91 96 180 2 1 63 92 

Ssb2 0 15 1 0 0 1 17 

Ssc1 0 14 1 0 0 15 34 

Sse1/2 0 13 36 0 0 0 27 

hsp60 11 0 0 3 0 0 0 

Blm10 6 0 3 6 0 0 0 
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Supplementary Figure 13: Depletion strategy for isolating sub-13S 

First yeast lysate is Flag-purified. The purified eluates are subjected to two rounds of ICAR that 

leads to binding of all histidine tagged proteins/complexes to TALON resin, including the 13S. 

The sub-13S complex, lacking the histidine tag, should remain present in the His flow through 

after depletion. Results of this strategy are depicted in Fig 3.3 and Sup. Fig. 14. 
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132 
 

            a                                              b 

 

Supplementary Figure 14: Depletion analysis to test for gel artifact 

(a) Native PAGE analysis of Flag-purified CP (α4-Flag) from the indicated yeast strains (lanes 1 

to 3). The Flag-purified material was subjected to two rounds of depletion by ICAR to remove his-

tagged proteins. Aliquots of the flow through from the second ICAR round were analyzed on the 

same native PAGE gel (lanes 4 to 6). Arrowheads denote CP and other bands of interest. Figure 

source (L. Hammack, 2017) 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



133 
 

a                                                              b 
 

       

 

Supplementary Figure 15: Composition of band 2 from Figure 3.3 

Contents of the band were analyzed by LC-MS/MS. The table indicates the total count of PSMs 

for peptides derived from individual proteins. (b) Represents the identity of the likely complex. 

Blue rectangle indicates Hsp70 group proteins including Ssa1/2, Ssb1/2, Ssc1, Sse1/2. These 

proteins are more abundant in the pre-sub-13S complex as depicted by more blue squares. 

 

 

 

 
α4F 

α5HF 

2 

α1 41 

α2 19 

α3 22 

α4 28 

α5 5 

α6 8 

α7 1 

β1 3 

β2 7 

β3 8 

β4 16 

β5 3 

β6 3 

β7 0 

Pba1 2 

Pba2 4 

Pba3 2 

Pba4 3 

Ump1 4 

Ssa1/2 234 

Ssb1/2 67 

Ssc1 18 

Sse1/2 19 

hsp60 0 

Blm10 10 

pre-sub-13S 

β2 
β4 

α1 
α2 α3 

α4 β3 

sub-13S 

β2 
β4 

α1 
α2 α3 

α4 β3 



134 
 

                     a                                                b              

 

Supplementary Figure 16: Lysate mixing of WT yeast with doa5-1 mutant 

(a) Lysate of yeast mutant α4F doa5-1 was mixed with wild-type yeast lysate at 30 °C for 30 mins 

followed by flag purification and native PAGE analysis. There was no difference in the lysate 

mixed and individual sample profile. (b) Shows the loading control. The migration of several 

molecular size standards (in kDa) is indicated on left.  
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Supplementary Figure 17: Recombinant expression of yeast proteasome subunits in E. coli 

Lysates of E. coli coexpressing α5, α6, and α7H (a), Pba4, Pba3H, α5, α6, α7, and α1 (b) are 

fractionated into total (T), soluble (S), pellet(P) fractions, (F) flow through and (E) eluate (after 

ICAR purification) fractions followed by 12% SDS PAGE analysis shows subunit expression and 

solubility. The migration of several molecular size standards (in kDa) is indicated on left. A faint 

band present between α5 and α7 subunit in lane 5 is clipped α7 subunit likely arising due to non-

specific proteolysis post lysis. Both the gels were stained with GelCode blue. 
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a                     b 
 

α4F 

doa5-1 

Pba4-Pba3H α5671H + α4F doa5-1 Pba4-Pba3H α5671H 

1 2 3 4 5 6 7 8 

α1 441 261 41 32 8 4 14 5 

α2 213 98 11 1 0 0 0 0 

α3 101 68 30 39 20 0 3 2 

α4 126 125 15 4 2 0 0 1 

α5 9 74 313 455 870 26 816 294 

α6 10 127 467 260 33 28 656 118 

α7 9 80 198 33 33 12 26 8 

β1 12 10 10 10 4 0 1 0 

β2 195 98 11 8 5 0 0 0 

β3 54 42 12 10 6 0 0 0 

β4 120 77 6 4 2 0 1 2 

β5 5 6 5 0 1 0 0 0 

β6 8 14 2 1 1 0 0 0 

β7 0 0 0 0 0 0 0 0 

Pba1 2 2 0 1 6 0 1 0 

Pba2 1 0 0 1 6 0 1 0 

Pba3 1 36 400 153 459 41 472 133 

Pba4 4 29 246 233 346 49 324 207 

Ump1 54 37 3 1 4 0 0 1 

Ssa1/2 79 40 138 7 0 0 0 0 

Ssb2 0 0 0 0 0 0 0 0 

Ssc1 2 0 0 0 0 0 0 0 

Sse1/2 0 0 0 0 0 0 0 0 

hsp60 0 0 1 0 0 0 0 0 

Blm10 0 6 0 0 0 0 0 0 

 

Supplementary Figure 18: Composition of bands from Fig. 3.4a 

(a) Analysis of indicated sample from Fig 3.4 lane 3 is analyzed on a separate 4-15% TGX gel 

followed by imperial blue stain. The migration of several molecular size standards (in kDa) is 

indicated on left. Contents of bands from Fig 3.4a were analyzed by LC-MS/MS. (b) The table 

indicates total count of PSMs for peptides derived from individual proteins. Band 6 was excised 

from the (a). 
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             a                                                   b 

 

Supplementary Figure 19: Sub13S is an assembly competent species 

(a) This is the same experiment as shown in Figure 3.4 except the protein mixing ratio for Pba3-

Pba4α5α6α7α1 to doa5-1 mutant is 1:4. The migration of several molecular size standards (in kDa) 

is indicated on left. (b) Contents of the indicated bands from (a) were analyzed by LC-MS/MS.  

The table indicates total count of PSMs for peptides derived from individual proteins.  
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APPENDIX C.  SUPPLEMENTARY FOR CHAPTER 4 

Supplementary Table 4: Yeast strains used in chapter 4 

Name Genotype Source 

AKY 1062 MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 gal2 scl1∆::natMX4 [pRS315α1nic] This study 

AKY1097 MATα his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 gal2 scl1∆::natMX4 

pba4∆::hphMX[pRS315α1nic] 

This study 

AKY1064 

MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 gal2 scl1∆::natMX4 

[pRS315scl1(A102C)] 

This study 

AKY1063 MATα his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 gal2 scl1∆::natMX4 pba4∆::hphMX 

[pRS315scl1(A102C)] 

This study 

AKY1243 

MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 gal2 scl1∆::natMX4 pba4∆::hphMX 

[pRS315scl1(A102C)] 

This study 

AKY1257 MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 gal2 scl1∆::natMX4[pRS315scl1(A102C)] This study 

AKY1261 MATa his3-∆200 leu2-3,112 ura3-52 lys2-801 trp1-1 gal2 scl1∆::natMX4 

pba4∆::hphMX[pRS315α1nic] 

This study 

 

 

Supplementary Table 5: Plasmids used in chapter 4 

  

Name Genotype Source 

AKB49 pET11a α5α6α7α1 This study 

AKB80 pET11a α5α6α7α1his This study 

AKB143 pET11a α7α1his This study 

AKB145 pET11a α6α7α1his This study 

AKB268 pET42 Pba4-Pba3his This study 

AKB349 pET42 Pba4-Pba3his α5α6α7α1 This study 

AKB 788 pET11a α5α6α7α1(A102C) his This study 

AKB1010 pRS315 SCL1(A102C) Flag This study 

AKB1011 pRS315 SCL1(NIC)Flag This study 

AKB1035 pRS315 SCL1Flag This study 
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         a       b 

 

Supplementary Figure 20: Fractionation of E. coli lysates expressing indicated α subunits 

(a, b) Total (T), Soluble (S) and Pellet (P) fractions of extracts from E. coli expressing α7, and 

α1H and α5, α6, α7, and α1H induced at 30 °C and 37 °C. The migration of individual subunit is 

labeled. All the gels were stained by GelCode blue. Migration of molecular size standards in kDa 

is indicated on the left. 
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        a             b 

 

 

 

 

 

 

 

 

 

Supplementary Figure 21: Characterization of HMWC by MS and negative stain EM 

(a) m/z spectra of α5α6α7α1 HMWC analyzed by mass spectrometry. Arrow points to the expected 

mass of the complex ~ 457 kDa (Stengel and Kusmierczyk, unpublished) (b) Negative stain EM 

image of the immobilized cobalt affinity purified (ICAR) α5α6α7α1 complex. White arrowed 

depicts ringed shaped.  
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   a                                b                                          c 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 22: The α1 crosslink confirms the DR conformation of HMWC 

(a) ICAR purified proteins from the indicated samples were analyzed by Native page. Species of 

interest, labeled as bands 1 and 2, were excised. (b) Eluted proteins from the excised bands in (a) 

were analyzed by SDS PAGE under non-reducing (lane 1 and 2) and reducing (lane 2 and 3) 

conditions. An aliquot from the non-reducing sample was reduced by adding dithiothreitol (lane 3 

and 4). An aliquot of the reduced sample was reoxidized by removing dithiothreitol (lane 5 and 6). 

The α1 dimer band, indicated by an arrowhead, appeared in the crosslinked and reoxidized samples 

containing the α1cc mutant. (c) The α1 dimer band from (b) was gel excised, the eluted proteins 

were reduced, followed by SDS PAGE analysis and silver staining. The subunits are indicated by 

arrows. Molecular size standards (in kDa) are indicated on the right in (a) and left in (b) and (c). 

Figure source (Ramamurthy, 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

C: α5, α6, α7, α1H 

E: α5, α6, α7, α1cc 
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          a                                              b        

 PSMs 

Band 1 Band 2 Band 3 
Band 

4 

α1 582 505 619 754 

α2 202 164 224 299 

α3 206 30 318 529 

α4 927 853 846 971 

α5 318 110 394 666 

α6 405 330 383 500 

α7 202 169 204 232 

β1 185 164 197 362 

β2 262 183 256 487 

β3 112 61 164 226 

β4 139 82 118 216 

β5 316 118 330 399 

β6 463 252 516 597 

β7 847 624 943 1127 

Blm10 83 24 0 0 

 

Supplementary Figure 23: Slower migrating band is CP-bound Blm10 complex 

(a) Native PAGE analysis (tris-borate gradient gel) of flag purified proteins from indicated yeast 

strains shows a slower migrating species when assembly chaperone Pba4 is absent (lane 3). A 

pre9Δ strain was used to compare the migration of α4-α4 proteasome with the slower migrating 

band in Pba4Δ strain. The migration of several molecular size standards (in kDa) is indicated on 

left. (b) Results of LC-MS/MS analysis of the indicated bands in (a) shows the peptide spectral 

matches (PSM) for the identified components. The higher PSM for Blm10 in band 1 and band 2 

(highlighted in red) and, its absence in band 3 and band 4, indicates that these are CP-bound Blm10 

complexes.  
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Supplementary Figure 24: Depletion strategy to confirm presence of HMWC 

First yeast lysate is bound to Flag resin. The Flag-purified material is subjected to two rounds of 

ICAR. The assembled CP and intermediates containing the hexahistidine tag on β4 will bind to the 

TALON resin. Eluted protein fractions bound to TALON resin are designated as E1 and E2. The 

HMWC lacking the β4 subunit, if formed, will escape the TALON resin binding and remain in the 

flow through (FT) lane. Results of this strategy are depicted in Fig. 4.4. 
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