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ABSTRACT

Kim, Yongho Ph.D., Purdue University, December 2018. Goal Deliberation and
Planning in Cooperative Multi-Robot Systems. Major Professor: Eric T. Matson.

Intelligent robots are rational agents. The rationality of robots working

cooperatively is significantly different from robots working independently.

Cooperation between intelligent robots requires the high level of reasoning and

complex interactions for successful operations. The required reasoning process

includes knowledge representation and sharing as well as the ability to understand

the context of a situation. The reasoning process heavily influences on the planning

of deciding what actions need to be taken. Goal deliberation and planning is the

process that deals with those requirements. This dissertation investigates the

problem of goal deliberation and planning to enable such cooperation between

goal-oriented intelligent robots, working as a team. The dissertation then proposes a

multi-robot system model that embraces results of the investigation. The proposed

model is realized on the top of the platform ‘robot operating system’ (ROS). The

implemented system, named ‘goal-oriented multi agent systems’ (GOMAS), is

demonstrated with the computer game, StarCraft II. Units in StarCraft II are

individually controlled by the GOMAS robots and work cooperatively to attain a

set of goals given from operators. The demonstration with the three different

scenarios validates that the GOMAS system successfully and efficiently deliberates

and plans the given goals.
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CHAPTER 1. INTRODUCTION

This chapter introduces the area of research and its environment to help dive

into the topic of this research study. The area mainly falls into the field of

distributed artificial intelligent (DAI). DAI focuses mainly on the intelligence of

individual agents and its potentials for situations where robots coexist in the same

environment and possibly work cooperatively. And then, the research motivation

and problem are described in detail. Later, assumptions of this research study are

listed and discussed.

1.1 Automation and Reasoning

Automation in service robots is defined differently from factory robots.

Factory robots generally deal with things from a static environment using a single

capability (a couple of capabilities at most) whereas service robots serve multiple

tasks using multiple capabilities in a dynamic environment. Automation of the

factory robots is simply defined as reactive agents, meaning that the robots do not

think, but act whenever they perceive a certain level of stimulus. Multiple factory

robots can easily be controlled by one that plans every task that the robots need to

perform. In contrast, service robots are automated in a way that they perceive

information from the environment, think what actions are available according to the

perceived information, and select and perform an action while perceiving the

environment to avoid any failure on the action. Those service robots are classified as

behavioural or proactive agent. Reasoning requires many facts and relationships of

the facts to conclude another fact that may activate another conclusion. For such

service robots, the reasoning process may be the key to drive them to appropriately

serve complex goals.
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1.2 Multiple Agents and Their Environment

Automated computational agents have performed excellently in the fields

that require precise, accurate, and simple operations, such as in a factory. In

particular, autonomous robots in factories have outperformed tasks that any human

can do, in terms of their productivity. Moreover, those factories have made the

robots parallel and cooperative to increase the productivity even a way further. In

practice, it is generally believed that running multiple copies of single-capable robot

is more time and resource efficient than a single multi-capable robot as their task

generally requires physical presence to work.

Operating multiple robots, however, may become significantly difficult when

robots perform their action in a shared environment. As robots work closer they

may face more uncertainties of information and unexpected events from their

perception. In this environment those factors are usually perceived not because

their sensors did not work properly, but because the actions that other robots

committed to do and consequences of the actions unintentionally conflicted with an

action from a robot. Often, neighbor robots disrupt one robot’s perception (e.g., a

robot does not see an object hindered from other robots). This implies that

intelligent robots are required to be able to have an additional ability (e.g., make an

organization to work together, adjust the system model to continue working), to

deal with the uncertainties while continuing their task. Such uncertainties may not

be crucial – the uncertainties might be trivial to robots and do not interrupt the

robots while attaining a given goal. For example, an autonomous ground vehicle is

driving on a road. The vehicle could possibly encounter unexpected obstacles on the

road while driving. If the vehicle has an obstacle avoidance capability, it could

overcome the uncertainty and drive to its destination to complete the given task.

The vehicle could even keep driving over the obstacle even if it does not have such

capability. However, if one of the tires is punctured by a sharp object and becomes

flat or other vehicle runs into the vehicle while driving, the vehicle could not be able
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to arrive to the destination and thus the goal can not be attained. Because this

change is critical for reliability of the robot (or the system), designers should be able

to address those changes before deploying their robots.

In multi-robot systems, the difficulty mentioned above becomes more

intensified because of complexity of the system itself, and because of a higher level

of uncertainty brought by the complexity. Although multi-robot systems and

behavior rules for robots in the systems are modeled correctly and triggered

properly to serve a given goal, any changes that the other robots would make

through the environment can interfere in events that a robot uses as a trigger to

execute one of pre-defined actions. This falsified event may lead to a starting

condition of another action which should not be executed, and may eventually result

in failure of the mission. However, it is almost impossible to predict and prepare

unexpected changes while designing the system. Instead, each robot in multi-robot

systems has to have the ability to make them adaptive to the environment, and

change its course of actions when necessary.

Multi-agent systems allow their robots to eliminate some of the

aforementioned uncertainties, particularly coming from others. Communication in

an organization can be used to inform actions and intentions of committing to a

course of actions to one or more robots in the system. In fact, knowing others’

actions helps plan the next action with regard to the others’ (possible) actions.

1.3 Research Motivations

The internet of things (IoT) has accelerated spreading the concept of using

multiple entities that are interconnected to transfer a stream of data. IoT

applications have started a variety of services that improves the quality of human

life. As manufacturing hardware components (e.g., sensors and actuators) is getting

cheaper and the components are more accessible to service providers, the trend of

spreading IoT services to the world has been accelerated even more. This resulted
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in deploying so many network-capable CPS that serve one goal, e.g. a service of

sensing environments for environmental research studies. Various types of

multi-agent based models have been proposed to manage IoT devices (Ayala, Amor,

Fuentes, & Troya, 2015), Smart Grid (Merabet et al., 2014), and so on.

Operators of multi-robot systems have been willing to have their intelligent

robots perform autonomously as a team in order for the robots to attain a given

complex goal with little or zero control. Controlling them from an operator is even

impossible for cases where a goal requires complex sequence of actions that are

dependent on context and environmental conditions, and for other cases where the

number of robots is too many (e.g., tens or hundreds) to control in assigning them

to a specific task. Scaling up systems even further to tens of hundreds or thousands

escalates the willingness and turns it into a must-have capability. Formation control

is one of the research fields in multi-agent systems that utilizes the capability in

controlling from a few tens to hundreds of robots with minimal intervention

(Antonelli, Arrichiello, Caccavale, & Marino, 2014). Ultimately, operators do not

provide a sequence of actions, but just toss a goal and have the robots figure out

how to attain the goal.

Intelligent multi-agent systems have been utilized to solve complex problems.

According to Durfee, Lesser, and Corkill (1987), the complex problems in

multi-agent systems domain tend to require multiple activities from agents in a

coherent way. This means that those activities are interrelated in that fitting the

activities draws the overall picture of the problem. And thus, agents may need to

hold any action until present activities are finished, and should avoid duplication of

activities when unnecessary. Moreover, scope of the perception of an agent and its

view in multi-agent systems is limited and information is perceived locally. Due to

these circumstances, it is desirable that agents are able to share the knowledge of

information and their status, including their intention toward solving the problem.

Computer games, e.g. ATARI games and StarCraft from Blizzard

Entertainment, have been used as a test-bed for intelligent agents and machine
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learning techniques (Guo, Singh, Lee, Lewis, & Wang, 2014; Mnih et al., 2013;

Ontanón et al., 2013). At the same time, such tested and validated AI techniques

have been applied back to those games to improve the quality of non-player units in

the game. This increases the difficulty of the game play so much in that human

players do feel that the player plays with another human player. One fascinating

example of it is the match between the non-human player, AlphaGo from Google,

and the human player, Sedol Lee, in Go (Chouard, 2016). There is no reason why

utilizing such computer games cannot be used in simulating multi-agent systems,

especially simulating multi-robot systems. It is hoped that autonomy in multi-robot

systems and emergence may arise from studies using those computer games and

those empower operators to control groups of multiple robots to deal with complex

goals.

1.4 Research Scope and Aims

Kraus (1997) well described the target situation of this research study as,

“... all the agents work together toward the satisfaction of a joint goal;

the designer of the automated agents can develop, in advance, protocols

for cooperation between the agents; the number of agents is not large;

and the agents can communicate and have computation capabilities.”

(Kraus, 1997, p. 88)

To deal with the situations, Kraus (1997) recommended employing operation

research techniques. Operation research (OR) is the domain that deals with

problems of how to model and operate organizations of agents when available

resources are limited and sparse (Hira, 2007; Winston & Goldberg, 2004).

This research study aims to address two research topics from the situation

described above. The first topic is to investigate and understand process of

deliberation and goal planning in a cooperative multi-robot system. Deliberation

allows robots to reason about what they know about the goal and how they can
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attain it. To understand the process of deliberation toward a complex goal, all

details about the reasoning process for deliberation need to be addressed.

Interactions to share information between robots during the reasoning process are

the key that enables the robots to track progress of sub-goals. Goal planning

addresses how robots plan a series of actions with regard to current circumstances

as well as other’s intention and ongoing actions. A robot’s capability may restrict

what they can do for the goal. Defining types of information for the goal planning

and generalizing the types are also the key components that make agents intelligent.

Before and after robots are committed to perform actions, they need to again

update their knowledge set to avoid any conflicts from their actions and intentions

with others.

The second topic is to propose a system that embodies all the features

described above, and to prove that the computer games, aforementioned, can be

used to run a simulated environment for the proposed multi-robot system. Agents

running outside of the simulated environment control each unit rendered in the

simulation environment. The agents perceive information and act through their

unit. Inter-communications between the agents happen from outside of the

simulation, but interactions with the environment occur within the simulation

environment. Through the simulation, it is hoped to see how intelligent robots

deliberate goals and plan accordingly while tracking how other cooperative robots

have attained other goals.

1.5 Research Assumptions

Because this research study aims at capturing phenomena from high-level

intelligence, several concepts need to be defined in order to focus on the research

problem, deliberation and goal planning.

• Social Agents According to the definition of rationality (Binmore,

Castelfranchi, Doran, & Wooldridge, 1998), rational agents act to maximize
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benefits that they earn as a result of their action. In multi-agent systems

environment the total amount of resources and benefits are limited. Therefore,

rational agents in such environment may conflict on their actions and may

compete with each other. System designers and operators in multi-agent

systems however do not wish their agents compete, but rather cooperate unless

desired. Because this research study investigates how rational (i.e., intelligent)

agents cooperate to attain a given goal, the agents are socially rational, which

makes them act to maximize social benefits, not individual benefits.

• Single-minded Agents Intelligent agents sometimes need to reconsider the

plan that they are committed to do, whenever the plan or the intention

becomes inapplicable. Thorne (2005) described three main types of agent

based on their commitment strategy: blind-minded, single-minded, and

open-minded. Blind-minded agents never reconsider or revise the plan it is

committed to do, whereas both single-minded and open-minded agents do

revise the plan whenever their perception tells them that the plan or goal is

not applicable to pursue. Open-minded agents are capable of modifying a plan

as well as creating a new one when necessary. This research study considers

single-minded agents such that agents may change their plan, but are not able

to generate plans that do not exist.

• Pre-defined Goal Decomposition Decomposing a goal is a process that

breaks down a high-level goal (i.e., an abstracted goal) into sub-goals (i.e.,

more specific goals). This process needs to be done before agents take the goal

because decomposed sub-goals look more specific and understandable to

agents in that they are able to manage the sub-goals to attain the high-level

goal. Goal decomposition is another area of study and is out of scope of this

research study (Alford, Shivashankar, Roberts, Frank, & Aha, 2016; DeLoach

& Miller, 2010). Therefore, this research study does not tackle how

decomposition of a high-level goal is proceeded. Instead, it is assumed that a
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high-level goal is well decomposed into sub-goals using pre-defined rules that

all agents know. This means that a goal is always decomposed into the same

set of sub-goals.

• Stable Communication Communication protocol is assumed to be defined

well enough to support interactions between agents. Exchanging messages

happens instantly without any delay between neighbors to eliminate temporal

constraints discussed in (Calvaresi, Marinoni, Sturm, Schumacher, &

Buttazzo, 2017). Since most of intelligent agents are capable of using network

communication through wireless and Bluetooth, communication barrier

applies only when agents are too far to communicate; presumably more than

distance of 100 m in open space could cause this barrier.

• Semi-Closed System The proposed model is a semi-closed system where

agents can be joined to the system, but none of the member agents allow to

retire or withdraw themselves from the system.

• Honesty in System Because this research study investigates cooperation

and coordination in intelligent systems, agents in the proposed system are

responsible ones.

1.6 Structure of The Thesis

Chapter 2 reviews relevant literature on DAI and intelligent agent for goal

deliberation and planning. Relevant sub-fields are also addressed to understand the

research problem in detail. In addition, the chapter discusses existing simulation

tools for multi-agent systems. Chapter 3 describes the proposed system model to

deal with the problem. Chapter 4 then illustrates a simulation tool that validates

the proposed system model. Chapter 5 discusses conclusions of the research study

with limitations and future works.
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CHAPTER 2. REVIEW OF RELEVANT LITERATURE

This chapter first introduces intelligent systems and Distributed Artificial

Intelligence (DAI), a principle of artificial intelligence in multi-agent systems, to

discuss characteristics of multi agent systems in dynamic environment. Next,

different aspects of multi-agent systems (MAS) models are described to clarify

target system of this research study. Later on, in-depth exploration of practical

reasoning techniques that enable agents to express and exchange their knowledge for

goal planning are presented. Lastly, existing simulation tools for multi-agent

systems and their features are discussed.

2.1 Distributed Artificial Intelligence

Centralized multi-agent systems are usually efficient in a static environment.

When agents are working in the same environment, coordination of their tasks can

greatly improve performance by bringing the maximum utility. Moreover, the

coordination can be easily modeled and analyzed because it considers only a small

number of variables and narrower variation of these variables. However, centralized

systems have huge drawbacks such as single point of failure, centralized

computation that makes the system slow and complex, and consistent and stable

connection between peers and the central unit. As the number of agents increases

these drawbacks significantly impact to reliability of the system.

M. J. Wooldridge (1992) described the key features of DAI systems for

reasoning about multi-agent systems as follows,

“agents have a set of explicitly represented beliefs, which are formulae of

some internal, logical language of belief; agents are able to derive some

though not necessarily all of the logical consequences of their beliefs;
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agents have computational resources upon which they may draw, by

performing private, internal, cognitive actions (for example, a database

agent might perform a retrieve action); agents are able to affect the

beliefs of other agents by communicating with them through message

passing” (M. J. Wooldridge, 1992, p. 5)

DAI has received attention from researchers because DAI well describes

characteristics of environments in the world and models intelligent agents working

in a shared environment (Weiss, 1999). DAI focuses more on groups and

interactions than individuals and actions. Interactions allow individuals to deliver

knowledge of beliefs, desires, and plans. Then, the individuals are able to reason

socially, in order to take an action towards attaining a complex goal, which requires

concurrency of multiple actions.

Various communication protocols provide ways of such interactions in that

agents in a DAI system are able to packetize information into a form of message,

send the message over a network where others are involved in, and understand

information sent from the others.

Communication protocols do not necessarily use explicit forms, but rather

utilize an implicit way of expressing information in some situations where

information is simple and easily explainable. These types of communication are

usually happening throughout artifacts that nearby agents are aware of. In nature,

ants are a perfect example of the implicit communication in that ants use

pheromone in their trail to notice a way to the pray. In engineering, the ants model

inspired from the nature has been utilized to solve complex problems such as Travel

Salesman Problem (TSP) (Dorigo & Gambardella, 1997), assembly sequence

planning in factory (Wang, Liu, & Zhong, 2005), and data aggregation problem

(Liao, Kao, & Fan, 2008).
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2.1.1 Intelligent Agents and Robots

Cyber Physical Systems (CPS) are computational systems that have abilities

to intelligently interact with the cyber, e.g., Internet, and the physical world, the

world we live in. The use of CPS has shifted from industries to human-friendly

environments such as home, office, school, and public places, in order to utilize

those abilities for services to humans. Autonomous robots, one kind of such CPS,

are a physical system designed to closely interact with the surrounding environment.

Software agents are one other kind that generally exists in the cyber world and

provides services (e.g., booking a flight, broadcasting an announcement to

employees) that typically do not require physical actions.

Not all kinds of CPS are necessarily intelligent. A electrical thermometer, for

example, interacts with an environment by measuring temperature of the area, but

it does not consider why and how it measured. A washing machine may pour water

inside the drum to wash, based on the weight of the clothes in the drum. This

reactive behaviour may be called intelligent in a broader context. A certain level of

intelligence can enable CPS to reason about the environment and allow them to

decide what to do (i.e., decision making). According to the term ‘autonomy’

(Castelfranchi, 1995; M. Wooldridge & Jennings, 1995), the self-reasoning requires

the following contexts,

• There should be alternatives to attain a given goal

• Agents have an utility function that describes expected outcomes from the

alternatives in a numeric value

• Agents have a form of knowledge representation that contains intentions and

beliefs on what behaviors the agents prefer

Those which satisfy the aforementioned requirements are called intelligent

agent. The washing machine from the above example can be intelligent if it

measures how much dirty the clothes are and adds the proper amount of detergent
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based on the measurement. It can be even more intelligent if it optimizes the

number of running cycles based on the dirty level.

Intelligent robots have three key components: sensors, actuators, and an

intelligence. Those three components are closely related to bring an action, as a

result of reasoning. Sensors and actuators are usually limited in a way that they

interact with the local environment only. As the intelligence relies on both the

sensors and actuators, reasoning and decision making processes concern information

mainly from the surroundings. Many machine learning techniques and AI

applications have focused on this process – how to make the process appropriately

react with and without prior experiences upon a given set of inputs. Ultimately,

those techniques attempt to make the robots think and act rationally.

2.1.2 Rationality in Multi-Agent Systems

The term ‘rationality ’ can be seen differently from many views as the term is

defined subjectively. In economics, the rationality is defined as “ ... by attributing

to every actor a utility function, which assigns to every possible outcome a value.

An agent is then rational if it acts so as to maximize its utility.” (Binmore et al.,

1998, p.309). In cognitive and social sciences the term is defined in a different way

as “Agents are not moved to action by the principle of maximum utility, although

actions are controlled by this principle. Actions are motivated by needs, desires,

etc.”(Conte & Castelfranchi, 1995, p.6). This difference implies that the rationality

of an intelligent agent cannot be explained from one view. Nonetheless, those

definitions of ‘rationality’ coexist in human society.

Self-rational decision making in multi-agent systems can be dangerous as the

agents are then greedy for pursuing their maximum utility only. In general,

environments do not provide an ample amount of resources for all robots playing

upon. Performing a series of actions that would bring the highest profit to the

robots may lead them into the zero-sum game. In the zero-sum game, none of the
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robots would earn benefit from the actions that they are committed to. Research

studies have investigated how robots and agents can be rational in their society to

avoid such unwilling situations (Boman, 1999), or to maximize the utility even

more (Kalenka & Jennings, 1999).

2.1.3 Social Agents and Cooperation in Multi-Agent Systems

Socially rational agents generally assess social benefits as much as their

individual benefits. In order for them to balance those two types of benefits, they

cope with social-based decision making as well as self-interested decision making.

However, it is still arguable that when and how those rational decision makings

need to be adjusted for itself or its society, or even for both. Agents in a competing

environment may choose self-rational approach as they concern only themselves. In

contrast, socially-rational based approaches would be needed for cooperative

multi-agent environments. This in fact depends on what the system designers desire

to achieve through agents in the system.

Parker (2008) described and compared the four interaction types used in the

field of distributed intelligence: collective, cooperative, collaborative, and

coordinative. The four types are distinguished and applied according to the

characteristics of the target environment. The characteristics are awareness of

others, types of goals, and influences of actions. Collective interactions are used

when the given goals are shared among agents and actions from the agents affect

the goals of others, but they are not aware of each other. Coordinative interactions

can be utilized when agents have individual goals and do recognize others. However,

their actions do not influence the goals of others. Collaborative and cooperative

interactions seem similar as both require awareness of others and actions of agents

affecting the goals of others. The difference between the two interaction types comes

from the type of goals – collaborative interactions require individual goals while

cooperative interactions are more suitable for shared goals. Such distinction is
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however not clear because the type of goals can be viewed differently. For example,

a given goal can be decomposed into multiple individual goals. Interactions that

help achieve the decomposed individual goals can be collaborative. However, the

interactions can also be cooperative as the achievements of the individual goals can

also help achieve the given goal.

A cooperation among intelligent agents can be achieved by coordinating

actions of the agents toward a shared goal. According to results from the

coordination process, agents are committed to perform a course of actions to attain

each given goal of the shared goal. Since the cooperation has been defined from a

variety of research fields, such as controls, multi-agent systems, economics,

networks, transportation, etc., many computational multi-agent system models

support the cooperation in different ways. Doran et al. (1997) categorized the

cooperation based on characteristics of multi-agent systems (See Figure 2.1).

Figure 2.1. Different types of cooperations based on characteristics of multi-agent

systems (Doran et al., 1997)

Swarm intelligence and colony-based multi-agent system models, inspired

from the nature (Bonabeau, Dorigo, & Theraulaz, 1999; Olfati-Saber, 2006;

Parunak, 1997), fall into the areas of the independent cooperation. Individuals in
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an organization perform their actions based only on perceptions from the local

environment. They do not attempt to transfer any form of information to others –

to them, other agents are the same as artifacts. A formation control of the birds

flocking model (Olfati-Saber, 2006), multiple unmanned aerial vehicles (UAV) for

formation control (Kuriki & Namerikawa, 2014), and building a structure without a

blueprint (Allwright et al., 2014; Werfel, Petersen, & Nagpal, 2011) are

applications of the multi-agent systems in this category.

On the other hand, some of the research studies from the swarm or

colony-based multi-agent system models can also be categorized in

non-communicative under cooperative because agents in those models do attempt to

communicate with each other through nearby objects (i.e., artifacts) in the

surrounding environment. Dorigo, Maniezzo, and Colorni (1996) and Karaboga and

Basturk (2007) proposed a colony-based cooperative multi-agent system to solve the

problem of optimization.

Cooperative multi-agent systems are generally capable of dealing with

high-level goals as individuals in the systems handle different types of tasks using

their distinctive capabilities. A coordination to assign cooperative actions to agents

can be performed according to some criteria. One of the criteria is capability

(Deloach, Oyenan, & Matson, 2008). Agents are assigned to a task, which the

agent can serve it the best among them (i.e., the agent that brings the highest profit

from the task). The holonic model (Fischer, Schillo, & Siekmann, 2003) groups

agents in a holon according to the roles of the agents. Every holon has a leader

which takes a goal from outside of the holon. The leader then delegates the goal to

the agent that its role is associated with the goal. Because holons take actions in

parallel, the holonic model is capable of solving problems of which the

‘divide-and-conquer ’ strategy is applicable. The game theory based approaches in

multi-agent systems manipulate the cooperation process using contract net protocol

(CNP) (Akbarimajd & Barghi Jond, 2014; Kuwabara, Ishida, & Osato, 1995;

Zhao, Wang, Cheng, Yang, & Huang, 2010). In this case, an agent that proposes
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the most profitable bid to the coordinator (i.e., a group leader or an agent in the

group) is selected to take the goal. Those approaches require self-rational agents

that pursue obtaining profits from attainments of goals. Chien, Barrett, Estlin, and

Rabideau (2000) however showed that socially rational agents are also capable of

employing CNP to deal with the task of distributing goals. In the study, the robots

bid if the goal can fit in their schedule, otherwise they do not bid. In another case,

coordinators may rely on how much the agents trust others when allocating tasks.

The trust and reputation model has been proposed to allocate a task to the most

trustworthy agent (Ramchurn et al., 2009). In the model, the trustworthiness of

individuals can be accumulated based on the mental state toward the individual, or

on an aggregation of parts from the utilities that the individual has brought.

The research study is categorized in deliberative cooperation as the study

designs a situation, in which socially rational agents communicate with each other to

deliberate a set of goals. Those agents do not take into account individual benefits.

Rather, they count on social benefits such that their basic behavior is to attain

goals as much as possible to maximize social benefits, but not to debate which agent

takes the goal. This type still requires the high-level of intelligence and an explicit

process of a coordination to make such deliberation and delegation possible.

2.1.4 Coordination and Consensus in Multi-Agent Systems

A coordination in DAI-based multi-agent systems is a challenging problem in

that agents encounter dependencies and constraints from goals. O’Hare and

Jennings (1996) stated that the main reasons of a coordination among agents as

follows:

• A course of actions is dependent on other courses of actions. This dependency

comes from different levels of a goal structure. For example, when a house is

being built rooftop cannot be built prior to the completion of lower level

structures and the ground. In addition, it comes from conflicts of the same
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level goals. Escaping hundreds of agents from a room through a single door in

a brute-force way may cause delays and damages as the agents would run into

themselves at the door.

• Agents are constrained by shared resources. An agent is pausing its action

until a certain amount of resources is gathered, while another agent is

spending the resources whenever gathered. The agent is unlikely to take the

action unless the other agent stops spending the resources.

• A given goal is too complex that no individual is capable of attaining the goal.

This occurs when the individuals do not have sufficient resources, information,

or capabilities – most of multi-agent systems, particularly multi-agent systems

with DAI, run into this situation.

When a coordination process is taken into account, a success of the process

puts the system into a situation where the agents participated in the process have

an agreement of a plan or a state, called ‘consensus’. According to Olfati-Saber,

Fax, and Murray (2007), the consensus is defined as:

“In networks of agents (or dynamic systems), “consensus” means to

reach an agreement regarding a certain quantity of interest that depends

on the state of all agents. A “consensus algorithm” (or protocol) is an

interaction rule that specifies the information exchange between an

agent and all of its neighbors on the network.” (Olfati-Saber et al.,

2007, p. 215)

Ren, Beard, and Atkins (2005) surveyed consensus protocols used in many

sub-areas of control systems. The consensus in control systems is an agreement of

the most desirable state and can be found by exploring possible state space. In the

control system (Cao, Yu, Ren, & Chen, 2013), a convergence of a state is the mean

of input variables. The variables can vary depending on geographical distances of

individuals (Mastellone, Stipanović, Graunke, Intlekofer, & Spong, 2008), logical
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distances in a network topology (Ji & Egerstedt, 2007; Li & Zhang, 2010), or

some values measured locally by the individuals (Seyboth, Dimarogonas, &

Johansson, 2013). In the study (Papadopoulos, Jenkins, Cipcigan, Grau, & Zabala,

2013), the most efficient strategy for an agreement was found using computational

search methods and statistical approaches. Research studies in this research area

have been trying to converge some values that are shared by individuals. These

approaches, however, do not consider individuals’ beliefs toward the value. Instead,

they focus on merging values and providing one that the individuals are supposed to

accept without any complaints, even when the one neglects some of the individuals.

For example, systems in formation control assume that all agents drive toward the

same direction while keeping a certain distance between them. When some of the

agents in the group sense that they will run into an obstacle, they may try to avoid

the obstacle by maneuvering themselves toward a direction perpendicular to the

direction of the group. However, nearby agents from the maneuvering agents may

not sense the obstacle, but sense the change in distance that the maneuvering

agents are making. The nearby agents may then try to adjust the distance by

maneuvering themselves toward the agents. As a result, the nearby agents heading

to the agents that are avoiding the obstacle may run into the obstacle. The example

implies that such deviation can influence consensus in an unwilling way.

The consensus in agent-oriented systems and DAI systems is an agreement of

a selection among alternatives by making the alternatives compete each other. The

most high level of cooperation falls into this domain. Kraus, Sycara, and Evenchik

(1998) proposed a logical model to reach an agreement through the process of

argumentation. In the model, a set of agents exchanges information to persuade the

others for bringing the intention that they desire to achieve. Because the agents in

the model are self-rational, they evaluate (future) rewards and costs when they

negotiate. On the other hand, Liu et al. (2014) proposed a decentralized multi-agent

system model consisting of socially rational agents that pursue a common goal to

deal with cooperative power distribution in a power grid. Because the agents in the
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system are socially rational, they try to share their beliefs and intentions to

estimate the amount of power that they can generate and compare the amount with

the demand. The agents may adjust their intention based on how much power they

need to generate to meet the demand.

2.2 Belif-Desire-Intention Model in Multi-Agent Systems

Belief-Desire-Intention model, introduced by Rao and Georgeff (1995), is a

core architecture for intelligent agents behaving proactively. The model has been

recognized a promising modeling approach as it bases on the theory of practical

reasoning (Bratman, 1987). The BDI model illustrates agent’s mental states and

enables reasoning to perform a course of actions triggered by its intention. BDI

agents perceive states of interests from the surrounding environment as well as from

other agents through a form of communication. The perceived states are then stored

in their belief set, i.e. a knowledge base. The belief set is also capable of generating

a new knowledge from existing knowledge statements using the process of inference.

More details about inference can be found in the books (Pearl, 2014; Russell &

Norvig, 2016). Desires illustrate a state of affairs that agents desire to achieve.

Desires are usually generated by events perceived from an environment, as well as

internals of an agent (e.g., a perceived statement not enough battery may trigger the

desire charge the battery). Intentions are a desire that is committed by a set of

knowledge and information from beliefs.

Since BDI-based systems in DAI cover a broad area of the problem domain,

the problem of determining which alternative (i.e., desire) is the best depends on a

situation and what the system pursues. Weiss (1999) explained several criteria that

help evaluate the alternatives:

• Social Welfare: alternatives are compared based on what these bring (i.e.,

utility), and thus the alternative that brings the most utility is selected
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• Pareto Efficiency: an alternative that is Pareto efficient is selected; a solution

is Pareto optimal if there is no solution that brings better to any agent and

there is no solution that brings worse to any agent

• Individual Rationality: an alternative is selected when the selection is

individually rational for all the agents

• Stability: all alternatives are dependent on others; each agent selects an

alternative if it is the best response on the other agents’ selections — Nash

equilibrium. The research study conducted by Bowling, Jensen, and Veloso

(2005) falls into this category

• Computational Efficiency: the alternative that requires the lowest

computational overhead is selected

• Distribution and Communication Efficiency: an alternative that makes the

agents distributed is selected. Also, an alternative that minimizes the cost of

communication is selected. According to Weiss (1999), the two criteria may

conflict in some cases

BDI-based agents are goal-oriented in a way that they look for events

generated from both inside and outside of them, and those events may trigger

generating a goal (i.e., a desire) to attain. Desires are therefore a precondition for

them to act. In order to generate goals appropriately, statements in the belief set

need to be updated in real-time, even while agents are in their action.

2.2.1 Knowledge Representation

Knowledge representation is defined as, “... is the application of logic and

ontology to the task of constructing computable models for some domain” (Sowa,

2000, p. xii). Knowledge statements provide clues for a following statement. Logic

and set functions are commonly used to represent knowledge in computational
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agents. NOT, AND, OR, IMPLY, and IF AND ONLY IF are connectives expressed

as ¬, ∧, ∨, ⇒, and ⇐⇒ , respectively. Using those connectives makes a

relationship between logics and constructs complex propositions such as,

• ¬P: negation of proposition P

• (P ∧ Q) ∨ R: P and Q, or R

• P ⇒ Q: P implies Q (i.e., if P, then Q)

• P ⇐⇒ Q: if P, then Q and if Q, then P (i.e., biconditional)

• (P ∧ Q) ⇒ R: if P and Q, then R

For example, a knowledge statement ‘FooHasAnApple’ represents a state

where the agent Foo has an apple. Logics are strictly explicit. Negation of the

statement ‘¬FooHasAnApple’ does not necessarily mean a state that the agent Foo

does not have an apple. It is reasonable to interpret ‘¬FooHasAnApple’ as ‘it is not

believed that the agent Foo has an apple’.

Propositional logic is useful to express knowledge statements, but is less

flexible than predicate logic (i.e., first-order logic). When representing ‘ten Foo

agents each have an apple’, propositional logic would represent it as,

‘FooOneHasAnApple ∧ FooTwoHasAnApple ∧ ... ∧ FooTenHasAnApple’

Predicate logic however would represent the statement using propositional

variables as,

‘Has(FooOne, Apple) ∧ Has(FooTwo, Apple) ∧ ... ∧ Has(FooTen, Apple)’

Because predicate logic uses the propositional symbol ‘Has ’, it is much easier

to make relationships between the variables (i.e., FooOne, FooTwo, ... FooTen), and

thus more expressive. For example, other variables can easily be expressed using

predicate logic: ‘Has(FooOne, Banana)’
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In the BDI model, the belief set is a knowledge base that stores knowledge

statements (i.e., beliefs) that express a state of affairs of an object or a value of a

property. ‘the robotr is working ’ and ‘the resource currently obtained is 100 units ’

are examples that can exist in the belief set. Representation of a belief can be

formed in a variety of ways including descriptive and logical (Brachman, Levesque,

& Reiter, 1992; Szolovits, Hawkinson, & Martin, 1977; M. J. Wooldridge, 1992).

Maleković and Čubrilo (1999) proposed the framework for a knowledge base in

multi-agent systems that provides a set of functions. With the provided functions,

agents are allowed to tell the knowledge base statements to store and to query a

stored knowledge statement from the knowledge base.

In order to utilize beliefs in a knowledge base for reasoning, agents need to

understand the meaning of beliefs and the relationships of them. Rao (1996)

proposed a language, called ‘AgentSpeak’, that expresses events and actions using

first-order logic. AgentSpeak defines belief literals as well as goals. Beliefs and goals

are related with symbols such as ‘+’, ‘-’, ‘!’, and ‘?’, in order for agents to reason

about the goals. For example, adding a state depicting that the agent a takes the

task t using the resource r can be logically expressed as +possess(a, t, r). After the

agent a finishes possessing the task t using the resource r, the belief can be dropped

by adding -possess(a, t, r) in the knowledge base.

Beliefs in a knowledge base also need to be represented in a form to be

transferred to knowledge bases of other agents. Knowledge interchange format

(KIF) is a language that manipulates information in a format (Genesereth, Fikes, et

al., 1992). With using KIF, the intended meaning of information is logically

expressed and can be reproducible by another agent. Laclavık, Balogh, Babık, and

Hluchỳ (2006) proposed a knowledge model, called ‘AgentOWL’, that integrates the

communication model of agents with semantic web standards (OWL). With the

model, agents are able to transfer their beliefs over existing web standards. This

makes the agents (in multi-agent systems) bonded with existing technologies and

services.
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Similarly, the ontology-based natural language exchange model proposed a

way that allows agents, which have different languages, to exchange information

using their languages (Matson, Taylor, Raskin, Min, & Wilson, 2011). Information

described in a language is interpreted into a form, called Text Meaning

Representation (TMR), when the information is being sent to others. TMRs enable

agents being indistinguishable in terms of what language they use. Ontological

Semantics Technology (OST) to represent the meanings of information helps such

interpretation of information with a specific domain. As OST accommodates larger

domain, the meanings of information can be transformed more precisely and

transmitted to broader spectrum of agents including humans. In 2012, IEEE-RSA

(Robotics and Autonomous Systems) group has been formed to provide a standard

ontology for robotics and automation that provides a unified way to represent

knowledge to share (Schlenoff et al., 2012).

Shapiro and Iwánska (2000) argued that representing information from

natural language into first-order logic may not capture the exact meaning of the

information. The first-order logic referred here is “the standard, classical, first-order

predicate logic, using its standard syntax” – from the footnote (Shapiro & Iwánska,

2000). The reason for the argument comes from the difference between logic and

natural language when used to interpret information. SNePS is one of the

knowledge representation systems that builds rational agents using natural

languages (Shapiro & Rapaport, 1991).

2.2.2 Goal Model

When multiple agents perform their actions in a shared environment, their

actions and intentions may conflict even if they are cooperative. Resolving conflicts

of actions is relatively easier as the agents participating in the situation need to

establish an interaction locally and adjust their actions (e.g., prioritizing the

actions) until resolved. It is assumed that they are capable of communicating with
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each other to exchange information in a form of representations, such as TMR

(Matson et al., 2011), XML (Laclavık et al., 2006), etc. In contrast, resolving

conflicts of intentions needs higher level of interaction in order to bring the best

outcome from possible adjustments. This type of interaction may cost very

expensive as higher number of agents involved, and as their knowledge differs (i.e.,

larger number of alternatives to resolve).

A complex goal is not easily attained by simply deploying multiple intelligent

agents. In general, such complex goals are not meant to be attained by individuals,

but by multiple agents working in a cooperative manner. Complex goals can be

analyzed and possibly decomposed into sub-goals such that agents take the

sub-goals to attain the goal initially given. Sub-goals are associated with each other

in the following ways (see Figure 2.2),

Figure 2.2. Representation of the two types of sub-goals; pairs of G2 – G3 and G4 –

G5 are conjunctive sub-goals whereas G6, and G7 are disjunctive sub-goals
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• Conjunctive: all the sub-goals should be attained to attain the parent goal

• Disjunctive: accomplishment of one of the sub-goals can attain the parent goal

If a goal can be decomposed into both conjunctive and disjunctive sub-goals

(e.g., the relationships between the sub-goals of G2 in Figure 2.2), the goal can be

attained from attainments of the conjunctive sub-goals or an attainment of one of

the disjunctive sub-goals. The effects of those attainments between the conjunctive

and disjunctive sub-goals are the same. This is because these two types are

distinguished only by characteristics of their parent goal.

Excessive assignment of agents to disjunctive sub-goals or shortfall in

assigning agents to conjunctive sub-goals can result in poor performance. This

implies that for conjunctive sub-goals agents need to be coordinated and assigned

properly to all of the sub-goals, whereas one agent needs to be assigned to the best

sub-goal among disjunctive sub-goals, in order to bring the most efficient outcome.

The research studies have illustrated different types and structures of goals

(Braubach et al., 2004; Thangarajah, Padgham, & Harland, 2002;

Van Riemsdijk, Dastani, & Winikoff, 2008), and its operational semantics

(Harland, Morley, Thangarajah, & Yorke-Smith, 2014). In multi-robot systems,

Perform and Maintain goals are the common types of goals as both goals typically

require a physical action. The study (Braubach et al., 2004) also showed that many

multi-agent modeling tools support those two types of goals.

Figure 2.3, brought from Braubach et al. (2004), illustrates life-cycle of a

goal. During the cycle, beliefs stored in a knowledge base may be used as creation

and drop conditions of a goal. Once created, goals can be in different states before

dropped. Whenever a goal is created, it first transitions to ‘option’ state. In this

state, the goal is treated as a desire for agents to pursue. When an agent decides to

take this goal, the state transitions to ‘active’ state. In ‘active’ state, the agent that

takes the goal tries to attain the goal by performing a course of actions that leads to
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the state ‘finished’. The goal may be suspended and may become an option again,

based on the context currently being perceived from the environment.

Figure 2.3. Life-cycle of a goal, from the study (Braubach et al., 2004)

2.2.3 Goal Deliberation and Reasoning

Whenever agents sense or receive a desire, they start reasoning to evaluate if

the desire can be pursued. If it can be pursued, the desire (i.e., goal) becomes an

intention and the appropriate plan is selected to attain the desire. In BDI-based

agent systems, this process is called deliberation. From the view of goal life-cycle

(see Figure 2.3), this is the process that brings a goal from ‘option’ state to ‘active’

state. To make this process occur, the context conditions of the goal need to be

checked whenever necessary (e.g., when agents do not have any intention currently

pursued).

Deliberation evaluates context conditions of goals with relevant beliefs,

represented in predicate logic. If all context conditions of a goal can be entailed by

beliefs currently believed to be true, the conditions are met. This entailment can be

driven by ‘forward chaining ’ algorithm. On the other hand, the deliberation process
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can also examine what other context conditions including the context conditions

currently being evaluated need to be met to activate the goal. This examination can

be done by ‘backward chaining ’ algorithm. The forward and backward chaining

approaches are described as (some points are highlighted to emphasize),

“Backward chaining is a form of goal-directed reasoning. It is useful

for answering specific questions such as What shall I do now? and Where

are my keys? Often, the cost of backward chaining is much less

than linear in the size of the knowledge base, because the

process touches only relevant facts. In general, an agent should

share the work between forward and backward reasoning, limiting

forward reasoning to the generation of facts that are likely to be relevant

to queries that will be solved by backward chaining.” (Russell & Norvig,

2016, p.220)

For example, let a knowledge base consist of the following beliefs,

P

∧Q

∧(P ∧Q)⇒ T

∧(Q ∧R)⇒ S

∧(P ∧ S)⇒ W

From the knowledge base above, forward chaining algorithm finds that the

symbol T can be entailed because both P and Q are satisfied (i.e., both symbols are

true in the knowledge base). The algorithm also finds that the symbols S and W

are not entailed due to the lack of the symbols R and S. However, backward

chaining algorithm first finds that W needs P and S to be met. Since P already

meets, it looks for S. The symbol S needs R to be met. The backward chaining

algorithm finally finds that the symbol R needs to be met to satisfy W . Backward

chaining algorithm allows agents to find missing pieces to meet the goal that they

are currently pursuing. The missing pieces may turn into sub-goals that require to
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be attained prior to the goal. The goal and its sub-goals can then be structured

using the goal tree (See Figure 2.2) to illustrate their relationships.

Once a goal tree is organized from the process of deliberation and reasoning,

it is time to select one from the goal tree. When multiple goals including sub-goals

are available (i.e., the goals in ‘option’ state), BDI-based agents need to be able to

prioritize the goals because the goals are dynamically suspended and re-activated in

operation. Khan and Lespérance (2010) proposed a logical framework to prioritize

goals based on priority and dynamics of goals. In addition, Thangarajah, Harland,

and Yorke-Smith (2007) proposed the constraint optimization problem (COP)

model to reflect preferences toward goals and utility measurements in the process of

prioritization. Pokahr, Braubach, and Lamersdorf (2005a) proposed ‘Easy

Deliberation’ that allows agents to specify relationships between goals to help decide

what goal to pursue.

Selection of a plan to attain a goal needs to consider environmental

properties and preferences of agents. Nunes and Luck (2014) proposed the plan

selection algorithm that takes into account costs of execution of actions and agent’s

preferences. In the example of the study, the algorithm selects the best applicable

plan with consideration of the factors – ‘safety’, ‘security’, ‘performance’, ‘cost’, and

‘comfort’ – to attain the goal ‘go to work from its home’.

2.2.4 Distributed Goal Planning in Cooperation

Intelligent agents in multi-agent systems usually do not have information

that describes the whole world; they only know a part of the world (refer to the

blind man and the elephant from the article (Saxe & Schwartzott, 1994)). The lack

of information may fail to allocate a complex goal in cooperative MAS. Pieces of

information perceived from individuals need to be merged and shared among the

individuals to make rational decisions for the organization that the individuals

belong to.
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For both homogeneous and heterogeneous multi-agent systems, coordination

of agents toward goals occurs based on the results from interactions between agents

participating to the interactions. In general, conducting the process of coordination

is easier and simpler in homogeneous systems than heterogeneous systems because

agents in homogeneous systems are single-capable that brings fewer alternatives to

coordinate, i.e. less complex. Unless agents are originally structured in a hierarchy,

no agent possesses or directly controls other agents, i.e., the hierarchy of commands

is flat.

Although any agent can initiate a series of communication at anytime for

coordination, it typically happens when agents perceive a goal, which cannot be

attained by the individuals, as described in the previous section. The agents then

broadcast the perceived goal to others in the boundary of influence to initialize

interactions for coordination. Such interactions allow them to exchange information

of what they believe to be true. The interactions directly update beliefs in their

knowledge base, and thus bring alternatives to serve the given goal. The

alternatives usually bring social benefits or individual benefits or both. In the

environment where resources are limited, alternatives that bring only individual

benefits are difficult to be selected, but other alternatives that bring either social

benefits or both benefits are likely to be selected. Once the most beneficial

alternative is selected, all participants of the interactions agree to be committed to

take a course of coordinated actions.

As those social interactions enable communications between agents toward

social decision making, a variety of interactions has been studied. In particular, the

market-based approaches have received an attention from the research community

as the approaches well illustrate the cooperation problem and relevant solutions

(Dias, Zlot, Kalra, & Stentz, 2006; Semsar-Kazerooni & Khorasani, 2009).

The auction-based method initiates interactions between agents to select who

bids the best. The bidder who wins an auction is selected to take what it desires to

do, as a price of the auction. In task distribution and planning, some of bidders
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usually bid for the same item because their preferences toward tasks are similar (for

most of time they bid for the item that gives them the most profit). A bid usually

represents a cost that the bidder proposes to spend for the auction item. The best

bid is then the minimum cost to do the task (i.e., the auction item). From an

organizational perspective, it is optimal when all tasks for a given set of goals are

distributed to the agents which consume minimal resources and bring the maximum

profit obtained from the allocated tasks. However, in cooperative multi-agent

systems within dynamic environments it is difficult to find an optimal solution of

the problem so that calculating cost should consider not only resources based on

bidders’ capabilities toward the task, but also agent’s independent variables

(Hoeing, Dasgupta, Petrov, & O’hara, 2007), agent’s instant limitations (Michael,

Zavlanos, Kumar, & Pappas, 2008), communication cost (Xuan, Lesser, &

Zilberstein, 2001), and social welfare (Jennings & Campos, 1997). For example, if

the agent a is more capable of serving the task t than the agent b, the agent a’s bid,

i.e., cost, is likely to be always lower than the agent b’s bid so that the agent a

always takes the task and the agent b never wins. In order to prevent the point of

starvation, a bid needs to include bidder’s independent variables such as

geographical location toward the auction items or remaining battery life. In

addition, social factors need to be considered when bidders calculate a cost. One of

social factors can be formalized by the fact that a goal requires a form of

cooperation. In order to deal with such social factors, the research studies have

proposed recursive auction (Viguria, Maza, & Ollero, 2008), utilization of

combinational bids (Lin & Zheng, 2005), and use of combination of auction-based

methods and others (Liekna, Lavendelis, & Grabovskis, 2012).

Intelligent agents in multi-agent systems always wonder how the world is

shaped and try to map the world into their mind. Because those agents perceive

incomplete of information about the world, they are willing to fill the missing

information by asking their companions, which have another piece of information.

In cooperative multi-agent systems, agents need to know what others do in order to
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coordinate itself to the plan that they have agreed to be committed. Placing a

blackboard in such systems allows agents to check and change status of the world

(Ram & Ramesh, 1995). Using blackboard is beneficial in that it reduces

communication cost and time that takes to wait responses from others (Vallejo,

Albusac, Castro-Schez, Glez-Morcillo, & Jiménez, 2011). The blackboard method

has been used in multi-agent systems mostly to support concurrent tasks.

Blackboard can even be divided into sub-blackboards when agents are limited in

their communication; each communication group shares one sub-blackboard (Jiang,

Xia, Zhong, & Zhang, 2005).

2.3 Simulating Multi-Agent Systems

Various forms of tools for simulating intelligent agents and robots have been

developed in order to support actions and interactions that such intelligent ones

perform in a simulated environment. Those tools are extremely helpful to validate

the concept of proposed systems, and to prototype autonomous agents and robots.

The tools are even more valuable when agents and robots that are designed are

multiple and expensive due to physical and economical limits, i.e. size and cost.

Testing Mars exploration robots (Carsten, Rankin, Ferguson, & Stentz, 2009),

swarm bots (Mondada et al., 2004), and disaster-rescue robots (Schwarz et al.,

2017) are examples of showing why using simulation tools are crucial. The following

subsections review existing simulation tools and computer games that have been

utilized for multi-agent systems.

2.3.1 Simulation Tools for Multi-Agent Systems

In the agent modeling approach, simulation tools are required to support at

least one of the two features: modeling agent and defining interaction rules between

agents, and between agents and an environment. Many studies and their tools have

defined their own modeling language to model an agent and tried to standardize the
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modeling language for general use in agent modeling: Jason in AgentSpeak (Bordini

& Hübner, 2005), Jadex (Pokahr, Braubach, & Lamersdorf, 2005b), NetLogo

(Tisue & Wilensky, 2004), agent modeling language (AML) (Trencansky &

Cervenka, 2005), SARL (Rodriguez, Gaud, & Galland, 2014), and so on. The

reason that they support such modeling language is to implement agent-oriented

programming (AOP) architecture because traditional object-oriented programming

(OOP) architecture, supported from general purpose programming languages such

as C++ and JAVA, does not fully capture characteristics of rational agent. For the

other feature, the tools provide ways to design communications between agents, e.g.

exchanging messages, and between agent and its surrounding environment, e.g.

changing properties of nearby objects in the environment.

Agent-based modeling (ABM) is a one popular principle to model agents.

ABM platforms well describe behaviors of agents and reflections of the behaviors in

an ABM environment. AnyLogic (Emrich, Suslov, & Judex, 2007), NetLogo (Tisue

& Wilensky, 2004) are ones of the known ABM-based simulation tools for

multi-agent systems. However, ABM lacks of reasoning – it does not describe how

and why an agent acts. Padgham, Scerri, Jayatilleke, and Hickmott (2011) proposed

a way of integrating BDI agents into a simulation using ABM. The integration of

BDI-based agents into ABM enables ABM agents to understand perceived

information and reason what to do. A result of reasoning then fires an action linked

to the behavior model of ABM. The study also designs an interface to support

message exchange between ABM agents to share perceptions and intentions.

2.3.2 Simulation Tools for Multi-Robot Systems

To validate system models, simulation tools also need to provide a realistic

simulation environment as closer to the real world as possible. Autonomous robots

particularly require realistic simulation tools more than other types of agents

because robots change the environment more actively, using their actuators. Hence,
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failure in simulating behaviors of a robot may fail to deploy the system to the real

world. A massive number of research studies and products in multi-robot systems

have been published since various types of robots including cyber-physical agents,

internet of things (IoT) concept, and their applications started actively being

utilized and realized in the real world (do Nascimento & de Lucena, 2017; Zhong

& DeLoach, 2011). These efforts try to integrate multi-agent system models and

CPS including robots, in order to provide more realistic services to users,

particularly to humans. Nevertheless, it also indirectly emphasizes simulation

developers that simulation tools need to support characteristics of their models and

targeted robots for successful integration.

Principles of multi-agent systems and reasoning of rational agent have

started being embodied into the field of robotics as robots evolve and become more

intelligent. This has happened more actively in simulation environments then the

real world because robots are expensive entities – as described at the beginning of

the section. Gerkey, Vaughan, and Howard (2003) described Player/Stage tool to

simulate multi-robot, distributed-robot, and sensor network systems. Similar to

ABM, Player models actors (i.e., robots) playing roles and Stage describes the

simulated environment. Development of Players is done through general purpose

programming languages. This enables flexibility in modeling various types of robots

and their sensor models. The flexibility has led the tool being popularly used by

studies in the field of robotics since 2002. Gazebo is an open-source simulation tool

developed in cooperation with Player/Stage (Koenig & Howard, 2004). Gazebo

provides in-depth modeling framework for both Player and Stage. Robots modeled

in Gazebo are able to control each joint of the body and obtain more precise (i.e.,

more realistic) information from modeled sensors. Moreover, the 3D rendered

simulation environment in Gazebo enhances reality of robots and their interactions.

Later, robot operating system group, known as ROS, has launched a

platform consisting of supportive libraries and simulation tools to reduce the gap

between the simulation environment and the real world (Quigley et al., 2009). ROS
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has successfully maintained and updated libraries and packages, and has been

growing to continue supporting research studies involved mostly in robotics.

ROS-powered robots can precisely be simulated in the tool, Gazebo. With this, any

robot verified in the simulation can easily be deployed to the real world with a little

or zero modification. However, multi-agent modeling principles and architectures

such as Belief-Desire-Intention (BDI) and holonic organization model, studied in

multi-agent systems, are yet weakly supported – existing libraries are not well

maintained and their applications are stil sparse, comparing to other commonly

used libraries and packages in ROS.

Use of simulation tools has recently been accelerated along with the fact that

unmanned aerial vehicles (UAV) has been highlighted in the research field because

of its potential for future applications toward intelligent robots (Ma’sum et al.,

2013; Wagoner, 2017; Zhang et al., 2015). Schmittle et al. (2018) introduced a

platform, OpenUAV, that supports testing UAVs in a simulation environment. It

incorporates many state-of-art technologies such as Docker1, ROS, MAVLink2, and

Cloud to make the platform extremely accessible from existing models and libraries.

OpenUAV provides containers to run a simulation independently from other running

simulations. This allows multiple simulations to run concurrently. Each container

runs an instance of ROS that interfaces with Gazebo simulation. Simulations

running in containers can be monitored using TensorBoard3 or web interfaces.

2.3.3 Computer Games for Simulating Intelligent Agents

Computer games typically have a goal for players to attain. A list of actions

to attain the goal are also provided to give players alternatives. Players including

non-human players may compete or cooperate, depending on the genre of the game.

In either situation, each player needs to reason about facts perceived from the game

1An automated program that encapsulates software components into a virtual container to run
independently
2Micro Air Vehicle Link that defines a protocol for communication between UAV and host system
3A web interface that monitors and logs values of interests in time domain
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and plan the best action to attain the goal. Each active player can be considered as

an agent playing roles in the games. Computer games are similar to other

multi-agent simulation tools such as Gezebo except the fact that they provide a

specific context.

Computer games have been actively used as a test-bed in the area of

practical AI and machine learning (ML). Norling and Sonenberg (2004) modeled

BDI agents as a player in the game Quake2 to capture human behavior. Other

techniques such as reinforcement learning (Mnih et al., 2013), deep learning (Guo

et al., 2014), and case-based reasoning (Aha, Molineaux, & Ponsen, 2005) were

also utilized in games to prove and validate those AI techniques. As the game

industry expands, games and their market become more detailed (e.g., applying

physics engines and larger number of types of behaviors in games), and become

more realistic – similar to Gazebo in ROS.

StarCraft II is a real-time strategic game popularly played by over 200,000

users from many countries in the world since 2010 (with the best effort, no official

record on the number of players was found such that it is estimated unofficially).

All units in the game are originally designed to be controlled by one player and each

unit has different capability. This allows players to build their own strategy to win

the game. The AAAI conference on artificial intelligence and interactive digital

entertainment and the conference of computational intelligence in games have held

annual tournaments (Churchill et al., 2016), in which intelligent bots that are

either scripted their strategy or trained by machine learning algorithms compete in

StarCraft for research purposes (Ontanón et al., 2015; Wender & Watson, 2012)

and fun. In addition to the efforts of using StarCraft as a simulation tool, in 2017,

Blizzard entertainment, the maker and publisher of StarCraft II, and Google

DeepMind team have released a more standardized way to access the game from

external and control units in game (Vinyals et al., 2017). Many artificial intelligent

related research studies have started using this game as a simulated environment

(Gajurel, Louis, Mendez, & Liu, 2018; Park et al., 2018; Rashid et al., 2018).
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Because all StarCraft II units and their actions are well modeled and verified from

both the game designers and users for many years, only modeling a multi-robot

system that controls those units to test and validate the system is required.

2.4 Summary

This chapter provided a review of the literature relevant to goal deliberation

and planning problem in cooperative multi-agent systems. Although heterogeneous

agents are capable of serving complex goals, coordinating agents to goals needs to

be carefully proceeded in order to prevent confusions about what to do and conflicts

between agents while performing actions. Moreover, dynamic environment changes

the criteria used for the coordination process such that the system needs to address

those changes.

Running BDI agents in simulations still has a technical gap between modeling

BDI agents and use of appropriate simulation tools. Many existing multi-agent

simulation tools did not elaborate actions and consequences of the actions enough to

deploy and use the acting entity to the real world. One cannot say “let’s deploy our

robot to pick up the box on the floor, after the simulator prompted in terminal ‘the

robot has successfully picked up a box’.”. This is because the modeling tools have

focused more on the mindset of agents and cyber-interactions between agents. It is

hoped that more multi-agent simulation tools such as Player/Stage are introduced

in the future to apply BDI principles for better intelligence in robotics.

Next chapter deals with the problem of goal deliberation and planning in

detail and propose a computational model that accommodates the desired features

discussed in this chapter.
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CHAPTER 3. GOAL DELIBERATION AND PLANNING IN COOPERATIVE

MULTI-AGENT SYSTEMS

This chapter introduces a multi-agent system model that copes with the goal

deliberation and planning problem, discussed and detailed in the previous chapters.

Agents in the multi-agent system are socially rational, as assumed in Chapter 1, and

eager to attain goals whenever possible. To realize it, the system model is required

to accommodate representation of information, reasoning using the information, and

planning and sharing intentions that the reasoning would bring. The rest of this

chapter first describes the proposed model, and then addresses each of the

accommodations.

3.1 Goal-Oriented Multi-Agent Systems (GOMAS)

The system model that this research study proposes is named goal-oriented

multi-agent system (GOMAS). Despite of the implication from the name that the

model would work for all types of agents, this research study strictly targets robots

as the intelligent entity in the system – cyber agents do not fall into the

consideration. The two main reasons are because the system assumes that the

agents have actuators to influence directly on objects in the environment, and

because it mainly considers applications where the connection between robots and

operators of the system is unreliable, while robots are interconnected as long as they

present within their communication range. In other word, the applications require

physical presence of agents, not the agents that exist in cyber world.
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3.1.1 Overview

The architectural view of the GOMAS model is depicted in Figure 3.1. The

arrows in the figure indicate flows of information. Since the actors in the GOMAS

model are robots, they have physical sensors and actuators. Using those components

the GOMAS robots are able to perceive information from the environment and alter

properties of objects in the environment. The GOMAS robots have two core

components: goal reasoner and goal planner. The core components actively deal

with the problem ‘goal deliberation and planning’. The knowledge base, abbreviated

as KB, stores all perceptions from the sensors as well as actions that the robot is

committed to perform. The plan library stores a set of plans and suggests any

applicable plan toward a goal requested from the goal planner. The blackboard

tracks progress of goals that the GOMAS robots are currently pursuing. It also

allows them to share those progress to attain goals cooperatively.

3.1.2 Basic Behaviors of GOMAS

Once new instances of goals are given during life-cycle of robots, the robots

show rational behaviors in a sense that they proactively pursue the instances of

goals. The basic behaviors of robots in the GOMAS model is illustrated in Figure

3.2. These behaviors are repeated whenever a new instance of goals arrives to the

system. The four basic behaviors are detailed as follows,

Distribution: Operators do not specify a robot when a set of goals is given

to the system. They rather give the set of goals to any robot that they can reach at

the moment. Operators may choose the closest robot – the closest in geometry or

network topology. Since agents in the GOMAS model are robots (i.e. a kind of

cyber physical systems), they are capable of receiving goals using their physical

sensors such as microphone and camera as well as networking modules. As soon as a

robot receives the set of goals from the operator, it begins to distribute the goals.

This happens only in the boundary of influence of the robot – it does not send the
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Figure 3.1. The architecture of the GOMAS model. The arrows indicate a flow of

information.

goals to all robots in the system. The boundary of influence is determined based on

network capability or sensor limits of the robots. For example, if they use

commercial products that utilize 2.4 GHz ISM bands for tele-communication, their

boundary of influence may be limited within 100 m. For another example, if robots

use a speaker that produces about 60 decibels (similar to the sound level of normal

human conversation) to describe the goals to other robots nearby, the boundary of

influence can be significantly reduced by up to several tens of meters – it is assumed

that the background noise from the actuators of the robots disturbs perception of

the sound under 30 decibels; then, a sound source that produces 60 decibels at 1

meter may travel approximately 31.62 m. Other robots which received the goals
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Figure 3.2. An illustration of showing how GOMAS system operates from the view

of operators. G indicates a given goal while SG stands for a sub-goal.

may re-distribute the goals to another robots in their boundary of influence.

However, the distribution only occurs when robots receive a new goal; joining to the

boundary of influence of others and updating existing goals do not trigger this

process unless requested.

Deliberation: During the process of deliberation robots do not interact

with each other. Instead, they start inferring internally toward the goals that they

are given. The goals may have prerequisites. The prerequisites that are not satisfied

with the current context generate sub-goals (shown as SG in the Figure 3.2) and

relate the sub-goals under the goal. Creating sub-goals may occur recursively as

necessary – sub-goals of a goal may also have prerequisites to satisfy the sub-goals.
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It is reasonable to say that robots may bring a set of sub-goals different from each

others based on their level of intelligence. Since this research study does not address

this difference in knowledge, it is assumed that the level of knowledge is the same

across all the robots in this system. This makes the robots bring the same set of

sub-goals for the goal that they shared. It is also assumed that the context that

they perceived is the same unless perceived locally.

Planning: Once robots finished structuring all sub-goals along with their

parent goals, they start planning their actions to attain the (sub-)goals. Because

they constructed the same goal tree they would come up with the same set of

(sub-)goals that they need to attain first. They now begin examining each of the

(sub-)goals to see if they have an ability to attain. As a result, a set of (sub-)goals

that are available and can be attained by the robot is listed. And then, the robots

choose one that is the most desirable. Note that the strategy on selecting one goal

from a set of goals is subjected to regulations of the organization, preferences of

individuals, benefits from the goals, and so on. Later section will deal with the

strategy used in the GOMAS model in detail. Nevertheless, the most important

step in this process is to inform other robots about their selection from the set of

goals. When this is informed, other robots either do not pursue the goal (i.e., mark

the goal as not attainable by them) or suggest a conversation on deciding which

takes the goal. Depending on the result of the conversation, they may take the goal

or move onto the other available goals and repeat this process. If there are no goals

that one can attain or all goals are currently pursued by other robots, the one may

do nothing or do whatever that is designed to perform when idle.

Pursuing: At this stage, robots know their intention toward the goal that

they selected in the previous stage. The plan that can attain the goal is in place.

Now robots perform required actions for the plan in a sequence. While performing

actions, the robots considerably and continuously verify the current context to react

to any condition changes that may affect the intention as well as the plan. If such

conditions are perceived, the robot adjusts its behavior. The robot may attain or
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fail to attain the goal. In any case, the robot is responsible for updating other

robots on the status of the goal. Once this stage finished, robots may go back to

planning stage until the top-level goal is attained.

3.2 Goals in GOMAS

Robots in the GOMAS model are goal-oriented, as the name of the model

implies. The robots always look for goals. Because the GOMAS model considers

goals as desires of what operators want the system to achieve, goals are given to the

GOMAS robots from outside of the system, i.e. from operators. Many goals can be

provided to the robots and further added in the future. However, only one goal or

one sub-goal can be pursued by one robot at a time. The following sub-sections

describe how goals are created, related, and pursued by the GOMAS robots.

3.2.1 Goal Model

The goal model in the GOMAS model structures goals and sub-goals in an

hierarchical way. Goals that have no parent are top-level goals. Top-level goals are

given from operators. Sub-goals (i.e., child goals) apparently have a parent goal.

Goals that have sub-goals are not supposed to be pursued until the sub-goals are

attained. As described earlier in the previous chapter, all sub-goals need to be

attained to activate the parent goal if the sub-goals are in a conjunctive

relationship. On the other hand, one of the sub-goals needs to be attained to enable

the parent goal if the sub-goals are in a disjunctive relationship. Robots distribute a

goal including its sub-goals and sub-goals of the sub-goals if exist.

This research study actively employs the concept of the goal model from the

study (Braubach et al., 2004). Braubach et al. (2004) described the life cycle of a

goal (See Figure 2.3). According to the concept, goals are created and dropped

dynamically. The study also described different types of goals: achieve, maintain,

query, text, perform and so on. Among the goal types the GOMAS model
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implements only the type perform. The reason comes from the fact that in the

GOMAS model operators provide a goal to actively reach a state of affairs – a series

of actions needs to be performed to transition toward the state. However,

autonomous robots need to maintain their status as valid (e.g., charge battery,

avoid collisions) to continue serving goals. In this research study, this remains as

future works.

Figure 3.3 shows the GOMAS goal model. A goal can be transitioned to

‘suspended’, ‘option’, and ‘active’ after created. Transitions only occur by activation

and context conditions of the goal. Those conditions are states currently perceived

from the environment. Activation conditions consider state of sub-goals, while

context conditions look for perceptions related to the goal. In ‘suspended’ state, the

goal is not considered by robots, i.e. the goal is not desired.

In order for a goal to transition from ‘suspended’ to ‘option’, state of the

sub-goals under the goal need to satisfy the activation conditions. This mechanism

not only allows goals to be prioritized, by blocking one until others have attained,

but also allows robots not to consider the goals – the size of considerable goals can

be reduced. Once the activation conditions are met, the goal transitions to ‘option’

state. In this state, the goal becomes a desire. The desire now attracts robots as

they proactively behave toward goals. When robots decide to pursue this goal, and

when the context conditions of the goal are met, the goal can transition to ‘active’

state. The robot pursuing the goal is now performing a course of actions. Because

the type of the GOMAS goal is perform, the goal is transitioned to the end and thus

attained, as soon as the robot successfully delivered all the actions. However, the

state of the goal may go back to ‘option’ state if one or more of the context

conditions become unsatisfied while the course of actions in place. The goal that

went back to ‘option’ state can be pursued again, as long as there is a robot that

takes the goal and all the context conditions of the goal are met again.

The GOMAS goal including sub-goals is characterized by the following

properties:
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• Activate conditions: Activate conditions are conditions that each specifies

desired state of a sub-goal. Depending on how sub-goals are related, the

conditions can be satisfied from one sub-goal or all of the sub-goals. The

conditions are represented and compared using first-order predicate logic.

• Context conditions: Context conditions control state of the goal. As long as

the context conditions are met, the goal should eventually be attained. The

conditions are also represented and validated using first-order predicate logic.

• Concurrency limit: The concurrency limit defines how many robots can pursue

the goal at the same time.

Suspended

Active

Context

Conditions

Option

Activation

Conditions

Finished
Condition guards transition

Activated

Pursued

Failed

Condition triggers transition

Figure 3.3. Goal lifecycle in GOMAS, inspired and referenced from (Braubach et al.,

2004)
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• Parent: There is always zero or one parent in a goal. If this is set as zero or

none, the goal is a top-level goal. Otherwise, the goal is a sub-goal.

• Children: This defines a list of sub-goals. If the list is not empty, the goal

contains activation conditions. If it is empty, the goal immediately transitions

to ‘option’ state.

Goals that require only one robot do not use the ‘concurrency limit’ property.

The property is rather set to 1 as default, to mean that only one can attain the goal

at the same time. In this case, actions to attain such goals are typically constrained.

For example, a goal ‘Parked at the spot A‘ does not need many mobile robots to

park at the spot. Instead, only one mobile robot is required to park at the spot for

the goal. On the other hand, goals that require multiple instances of actions

concurrently happening set this property. For example, a goal ‘Clean the room’ may

set the property as 10 to allow that up to 10 cleaning robots can clean the room at

the same time. This property ultimately brings the system higher efficiency in time.

3.2.2 Sequential and Parallel Goals

Operators can relate goals to make explicit priority between the goals, before

giving them to the system. Relating goals is done through a process of placing goals

in a hierarchical structure using the goal tree – the relationship of a parent and

children (See Figure 2.2). Parent goals are not pursued until all children (or one of

the children) of the parent are attained. Figure 3.4 shows an example of two general

types of goals that structure operator’s desires. As illustrated in Figure 3.4(a), goals

without relationships are attained in a brute-force manner, depending on which

conditions that satisfy the goals are met first. For example, G2 would have been

attained before G1, if the satisfactory conditions of G2 were met prior to G1. This

allows participating robots to decide the order of attainment based on the current

context. On the other hand, Figure 3.4(b) shows an explicit order for the goals –

G3, G4, G2, and G1. The order of attainment between G3 and G4 also depends on
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(a) multiple independent goals

G1

(b) multiple dependent goals

G2

G3 G4

G1 G2

G3 G4

G1 G2

G3 G4

G1 G2

G3 G4

G1

G2

G3 G4

G1

G2

G3 G4

G1

G2

G3 G4

G1

G2

G3 G4

Figure 3.4. Examples of initial goals and showing how different types of goals would

be attained over time. Goals that are attained are grayed while goals that are not yet

attained are shaped in a solid circle. (a) depicts independent goals while (b) shows

dependent goals.

the context conditions. However, G2 cannot be pursued before G3 and G4. G1 also

cannot be pursued before G2.

Goals and sub-goals that are not directly related to each other can be

pursued in parallel by multiple robots. Once the goals and sub-goals turn into

desires, i.e. in the ‘option’ state, and their context conditions are satisfied, they are

considered by robots. The robots may select each goal and independently perform

courses of actions to attain the goal. From the example of Figure 3.4 (a), the four

goals can be simultaneously pursued and attained by four robots. G3 and G4 from
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Figure 3.4 (b) can also be pursued and attained at the same time from two robots.

This greatly improves time-efficiency until the number of robots exceeds the number

of the goals and sub-goals. Sub-goals of a parent goal are also considered for this

parallel process. If the sub-goals are conjunctive each robot takes each sub-goal and

attains it. On the other hand, if the sub-goals are disjunctive each robot takes each

sub-goal, but the earliest attainment of the sub-goal may terminate the other

sub-goals being pursued by the other robots.

3.3 Deliberation of Goals in GOMAS

As described in the previous section, a goal may require a set of prior states

to be satisfied prior to attaining the goal. The GOMAS robots need to be able to

reason about the goal and its prerequisites, and expand it further in depth to

understand ‘what things need to be done for the goal ’ for successful operation. The

robots also need to cautiously keep watching their actions toward the goal and

consequences of the actions, in order to track ‘when the things are satisfied ’. The

GOMAS model provides a knowledge base for each robot to store every piece of

information that the robot perceived from the environment and others. Beliefs

stored in the knowledge base are later used to reason about goals.

3.3.1 Knowledge Representation and Logical Rules

Beliefs are represented using first-order predicate logic. Logical relationships

between literals are made using the connectives: ¬, ∧, ∨, ⇒, and ⇐⇒ . Then, a

belief can be elaborated by combinations of those relationships. Predicate logic uses

propositional variables to represent different states. For example, ‘Has(he, car)’

representing that ‘he has a car’ is different from ‘Has(she, car)’ that apparently

represents ‘she has a car’.

Unlike linear temporal logic (LTL) and computation tree logic (CTL) that

support temporal operators (e.g., X and U representing next and until, respectively)
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as well as logic operators, predicate logic itself does not represent information in

time domain. For example, a predicate logic ‘Hungry(me)’ can be true if ‘me’ is

hungry now. The predicate logic can however be false if ‘me’ is not hungry now.

Even, the predicate logic can be true and become false in the future. Some may

argue that predicate logic can represent temporal property, ‘Hungry(me, now)’ or

‘Hungry(me, 10 seconds ago)’ as examples. However, that makes the knowledge

base too complex – too many beliefs to store, and to retrieve when inferring.

Multi-robot systems in the real world need to consider temporal properties of

the environment to appropriately act in time. The GOMAS model therefore

generates all time-dependent beliefs whenever the deliberation process occurs –

noting that beliefs are only valid when reasoning. When not deliberating, pieces of

information are stored as variables. For example, a piece of information indicates

that the level of hunger is low. Then, the predicate logic ‘Hungry(me)’ is not

generated in the process of deliberation – of course the predicate logic is generated if

the level indicates high. In another example, ‘CanBuy(Car)’ may be generated if it

is believed that the robot has sufficient amount of the resources (i.e., money, a place

to park the car) to buy a car. Deciding if those variables fall within the threshold

can be a fuzzy process. For instance, medium level of hungry may or may not

generate ‘Hungry(me)’. This fuzziness, however, is not further discussed in this

research study because the topic is out of the scope of this research study.

However, the GOMAS knowledge base does keep some beliefs that are

permanent over time. Those beliefs are known as rules and permanent facts. Rules

are pre-defined by the system designer.

Bought(me, car) ⇒ Has(me, car)

Has(me, apple) ∧ Ate(me, apple) ⇒ ¬Hungry(me)

are examples of rules. Permanent facts are beliefs that never change after

once generated.

Identifier(me, xyz)
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Name(me, John)

NetworkAddress(me, 127.0.0.1)

are examples of permanent facts.

The GOMAS knowledge base supports many well-known rules to help

inferring. Modus Ponens is one of the best-known inference rules. This rule is

expressed as follows,

P ⇒ Q,P

Q
(3.1)

The expression means that if P ⇒ Q and P are given, then Q can be

inferred. This rule allows the GOMAS robots to infer something that has not

explicitly perceived. For example, a relationship CleanedRoom⇒ RoomCleaned

makes robots believe that the room is cleaned when they perceived a fact that a

robot cleaned the room, even if they never perceived a fact that the room is actually

cleaned. And-Elimination is another useful rule and is expressed as follows,

P ∧Q
Q

(3.2)

This simply means that Q can be inferred if P and Q are given. For

example, from a fact that Y ouLive ∧ ILive, ILive can be inferred. Unification is a

process that unifies propositional variables of predicate logic symbols that make the

logic symbols look identical. For example, the unification process produces a

dictionary {x : me} from ‘Hungry(x)’ and ‘Hungry(me)’. Unification process is

useful for inferring because it allows to examine if the predicate symbol ‘Hungry(x)’

satisfies with the given variable ‘me’. However, a unification of unrelated predicate

symbols (e.g., ‘Hungry(x)’ and ‘Has(me, car)’) outputs an empty dictionary.

It is claimed that ‘every sentence of propositional logic is logically equivalent

to a conjunction of disjunctions of literals ’ (Russell & Norvig, 2016, p. 215). A

conjunction of disjunctions of literals is called ‘conjunctive normal form’ (CNF).

According to Russell and Norvig (2016), logically represented beliefs can be
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expressed in a form of CNF after converting the beliefs using the logic rules (For

details, refer to Appendix A). A Horn clause is a disjunction of literals that contains

at most one positive literal. For example, (P ∧ ¬Q ∧ ¬R) is a Horn clause. Horn

clauses that have only one positive literal are called Definite clauses.

And-Elimination and Definite clauses play an important role for inference because

of their use in CNF.

3.3.2 Backward Chaining for Goal Deliberation

Backward chaining is a process that proves that a predicate literal Q is true.

In the GOMAS model, this process tells the GOMAS robots what they need to do

to satisfy a goal (i.e., a query). The algorithm 3.1 shows the backward chaining

process used in GOMAS. The backward chaining process first finds all implications

that conclude the query. At the same time, it also checks if the query is already

satisfied. If not satisfied, it tries to prove all literals of the found implications. If a

literal of any implication is not satisfied and there is at least one implication that

concludes the literal, the process continues further proving the literal. This process

recursively runs until it visits all of the relevant implications. If the query Q can be

satisfied from this recursive process, then the query is logically satisfied. However, if

there is no satisfied implication to support satisfaction of the query, then the

process outputs that the query is not logically satisfied. Russell and Norvig (2016)

claimed that computational complexity of the backward chaining process is less

than the size of the knowledge base because it visits only relevant beliefs.

The backward chaining process evaluates if a query is logically satisfied.

However, this process should not only tell the result of the evaluation, but also

should provide why the query cannot be satisfied if unsatisfied. In other word, it

should tell what should be done to satisfy the query. The GOMAS backward

chaining process supports this feature by providing all literals required to satisfy the

query. The process accumulates all unsatisfied predicate symbols during the
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Algorithm 3.1 The GOMAS backward chaining process

Require: the knowledge base KB, the query Q
Ensure: : result of the query Q, and unsatisfied symbols for the query Q

1: function GOMASBackwardChaining(KB, Q)
2: for all beliefs in KB do
3: Let bi the CNF-converted i-th belief from KB
4: Let lhsi a list of left-hand side literals of bi
5: Let rhsi the right-hand side literal of bi
6: if rhsi and Q are related then
7: Let usymi an empty list for unsatisfied symbols for bi
8: if rhsi and Q are identical then
9: Return True and usymi

10: else
11: for each belief from lhsi do
12: Let lhsij j-th belief from lhsi
13: Let ui unified literal of rhsi with Q
14: Let stij lhs

i
j with the variables substituted by ui

15: Call GOMASBackwardChaining(KB, stij)
16: Let rij a satisfactory result of lhsij returned from the call
17: Let usymi

j a list of unsatisfied symbols of stij returned from the
call

18: if rij is false then
19: Append usymi

j to usymi

20: end if
21: end for
22: if rij is true for ∀ lhsij ⊂ lhsi then
23: Return True and usymi

24: else
25: Return False and usymi

26: end if
27: end if
28: end if
29: end for
30: end function

evaluation, and returns a list of the unsatisfied symbols. The GOMAS robots use

those symbols to plan appropriately toward the query (i.e., the goal).
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3.4 Goal Planning in GOMAS

The GOMAS backward chaining process, detailed in the previous section,

should now tell the GOMAS robots any unsatisfied symbols for the goal. The

process can actively be used for the robots to expand a goal. Once the goal is fully

expanded, the GOMAS robots begin planning how to attain the goal. All the

decisions and consequences of their actions made during this process need to be

informed to other robots. Informing to others is essential to a successful and

efficient goal planning. The following subsections will describe how an expanded

goal can be tracked and attained.

3.4.1 Goal Expansion

To decide which sub-goal to pursue, the goal first needs to be fully expanded

with regard to the current context. The goal may have some sub-goals that are

already satisfied. All pre-satisfied goals and sub-goals are not generated in this

process. This means that all generated sub-goals are not currently satisfied and thus

need to be pursued. Figure 3.5 illustrates an example of the process of expanding a

goal. In this example, G1 is given as a top-level goal. In a), the deliberation process

first visits the top-level goal G1 and figures out that G2 and G3 are sub-goals of G1.

Since G2 and G3 are not satisfied with regard to the current context, both sub-goals

are generated in the goal tree. Because goals are expanded in a post-order manner,

G2 is examined by the process prior to G3. In b), the process reveals that G4 and

G5 are the sub-goals of G2. G5 is not generated because it is already satisfied by the

current context. Next, G4 is considered by the process and G6, G7, and G8 are

added to the goal tree. G6, G7, and G8 are however leaf goals. This means that the

literals of the goals do not have any implication in the knowledge base to expand.

The deliberation process would of course visit those leaf goals, but would come up

with no sub-goals, disregarding satisfied or unsatisfied. In d), G3 has two sub-goals

G9 and Ga – indicating 10 in decimal. Since G9 is already satisfied only Ga is
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Figure 3.5. The process of expansion of a goal
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added. In e), the process figures out that Gb and Gc are the sub-goals of Ga, and

are already satisfied. Thus, they are not added to the tree. f) finally shows the fully

expanded goal tree of G1.

3.4.2 Goal Selection and Planning

The goal selection visits leaf goals first (i.e., the bottom-up approach). For

the fully expanded goal tree from Figure 3.5 f), G6, G7, G8, and Ga are the

alternatives for the consideration of selection. Although G6, G7, and G8 are placed

in the same level (i.e., the same priority), the order of the visit would be G6, G7,

and G8 for technical reasons. One technical reason would be the way of visiting

nodes in a tree structure. In this research study, left nodes are visited first (i.e.,

post-order). If goals have a utility function that approximates benefits from

attaining the goals, the order would start from the most valuable goal. Moreover,

the order could be determined by the order of preferences toward the goals.

While the goal selection sequentially visits the leaf goals, it evaluates two

things: the activation conditions of the leaf goals and applicable plans for the leaf

goals. The activation conditions should be empty for those goals when they are

generated – they are leaf goals, and thus have no sub-goals. This may not be true in

some cases. Recall Figure 3.5 for an example. It is known that G5 is a sub-goal of

G2 and it was satisfied when considered by the deliberation process. When the

selection returns to G2 after G4 and its sub-goals are attained, G5 may become

unsatisfied at that moment in time. This can happen when robots cooperatively

share resources. Consider the following scenario to understand the circumstance:

“Robota and robotb are attaining the goal ‘build a wooden table’. The

goal requires the two robots to make a wooden top as well as wooden

legs. Robota begins pursuing the sub-goal of making a wooden top while

robotb tries to attain the other sub-goal ‘make wooden legs’. Both

sub-goals require them to prepare a pile of woods. Robota prepares a
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pile of woods for the wooden top. While robota is making (or buying)

nails and screws for the wooden top, robotb takes the pile of woods that

robota prepared, and makes wooden legs. The behavior of robotb may

seem reasonable because the sub-sub-goal ‘prepare a pile of wood’ under

the sub-goal ‘make wooden legs’ was already satisfied (by robota), even

if the pile of woods was actually for the sub-goal ‘make a wooden top’.

Because the robots are cooperative, sharing and occupying resources

may be tricky unless robota would have informed robotb that the pile of

woods was for the wooden top.”

Once the activation conditions of the leaf goal are checked again and are all

satisfied, the selection process begins asking suggestions for applicable plans from

the plan library. The plan library is a system component that stores pre-defined

plans. The plan library defines a dictionary of matches between goals and plans.

The relationship between goals and plans is 1:n. It means that multiple individual

plans can attain the same goal. Because of the assumption ‘single-minded agents’

(see Section 1.5), the plan library does not attempt to create a new plan, nor change

the context of the existing plans.

A plan consists of a course of actions. The course of actions actively changes

conditions and properties of the world. The plan thus needs to provide the GOMAS

robot that is committed to perform this plan additional information (e.g.,

consequences of the actions) and its context information. The additional

information is stored in the knowledge base of the robot. This information can then

be used by the robot to track progress of the actions, and to determine if the actions

are performed successfully.

Figure 3.6 shows the process in detail. The GOMAS robots that utilize this

process first store their capabilities. This step happens every time when the robots

request a plan from the plan library. The reason is because their capability may

change over time, due to malfunctioning or context conditions that restrict the use
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Figure 3.6. A sequential diagram of the goal selection and planning
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of their capability. A flying robot for example may not fly because of the regulation

that has been agreed by the organization that the flying robot belongs to.

The plan library suggests a plan whenever requested. During this step, the

plan library lists all plans that can attain the goal. The listed plans are further

pruned by matching the plans with the stored capabilities. If the GOMAS robot

does not have the capability to perform a specific plan, the plan is not considered.

And then, the plan library evaluates the context conditions of the remaining plans

to determine if the plans are applicable now. For example, the plan library does not

suggest a plan Move if there is no path currently available to go to the destination.

After a plan is suggested from the plan library, the GOMAS robot begins to take

actions from the suggested plan and perform. While performing actions, the robot

also updates their knowledge base to see if the actions bring the expected

consequences such that the plan is performed successfully. If the plan has failed, the

GOMAS robot removes the plan and goes back to the goal selection process.

3.4.3 Asynchronous Blackboard for Goals

The GOMAS robots are required to inform their intention to others. As Ram

and Ramesh (1995) stated, the act of informing others is the key to enable multiple

robots to work collaboratively. In the GOMAS model, the GOMAS robots share

information related to goals using the blackboard approach. The information

includes any updates on goals, such as creations, modifications, attainments as well

as occupations or releases of goals. Unlike the typical centralized blackboard

approach, the GOMAS model employs the decentralized – distributed – blackboard

approach, called GOMAS blackboard, in order to manage the implementation of the

GOMAS goal tree. The GOMAS blackboard is not a singleton instance across the

system, but is managed inside individuals. This liberates the GOMAS robots from

maintaining any continuous connection to outside of them.
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The GOMAS robots utilize the supported operations to maintain goals in

their GOMAS blackboard. Table 3.1 shows the operations and its descriptions. Note

that an operation of checking context conditions is not supported in the GOMAS

blackboard because the operation should happen in the GOMAS robot model.

3.5 Robot Model in GOMAS

The GOMAS robots are the main actors of the system. They actively utilize

the components of the GOMAS model to behave intelligently. Since quite intensive

computations are used in the knowledge base and reasoning, the GOMAS robots

need to be computationally powerful to react fast in real-time applications.

3.5.1 BDI Perspective

The GOMAS robots strictly follow the BDI principles. The robots reason and

act only when there is at least a desire that may possibly become an intention. In

traditional BDI architecture, desires are generated from events. The events include

perceptions from environment as well as messages received externally. However, in

Table 3.1.

The supported operations of the GOMAS blackboard

Operation Description

AddTopGoal Adds a top-level goal
ExpandGoal Initiates deliberation process for a goal
SearchAvailableGoals Returns a list of leaf goals
CheckActivationConditions Checks if the activation conditions of the goal

are met
UpdateGoal Updates properties of the goal
DropGoal Drops the goal from the goal tree
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the GOMAS model desires are generated only by messages containing goals, and

those messages are expected to be sent from operators – desires of the operators.

Intentions do not coexist. There can be a situation in which many desires

exist and context conditions of those desires are met. The GOMAS robots however

pick one desire from the desires to pursue. They do not consider multiple intentions

at the same time. In typical cases, they even cannot achieve multiple intentions at

the same time.

3.5.2 Main Algorithm

The main control loop of the GOMAS robots is illustrated in Figure 3.7. The

loop begins by checking if the robot has any intention I. If the robot does not have

any intention that is being currently pursued, it searches all current desires (from

the goal tree through the GOMAS blackboard). If the list of desires Dn is empty –

there is no current desire presented to the robot –, then the robot does noop (i.e.,

no operation), because they are goal-oriented agents. If the list contains at least one

desire after the search, the robot now can pick one desire from the list to examine if

it can make the desire an intention. Making a desire an intention means that the

robot wants to attain the desire and context conditions of the desire are met. The

next behavior checks if the intention can be attained or it becomes impossible to be

attained. This logic is important to prevent the GOMAS robots from blindly

pursuing an intention that has already been achieved or will never be achieved in

the future. The robot next checks any plan P available in hand to achieve the

intention. If not, the robot asks the plan library for any suggestion. If the plan

library brings no applicable plan for the intention, the robot drops the intention

because it now knows that the intention is not possible to be achieved from the

robot. If any application plan is suggested from the plan library, the robot begins

performing the list of actions Act of the plan in a sequence. While performing the

actions, the robot evaluates if the last action was performed correctly. Lastly, the
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61

robot updates its knowledge base with the new information generated from the last

action. And then, it proceeds to the next action of the plan until either there is no

action remains or the intention is achieved.

The logic of the GOMAS robot is robust against dynamic changes of the

context. While performing actions, the context may block the current intention

from being achieved. For example, if all the paths to the destination are currently

blocked by obstacles or other robots, the robot may give up its intention toward the

goal ‘going to the destination’ and proceed to the next desire if exists. Some may

argue that the robots may need to reattempt the plan. In the GOMAS model, the

robots do reattempt the plan after they considered other goals and come back to

the goal again.

3.6 Summary

This chapter provided all the details about the GOMAS model. By

employing the BDI principles, the GOMAS robots are able to explore currently

perceived desires, coming from the operators, and seek any applicable plan for the

desires. The goal deliberation and planning process that utilizes the knowledge

base, plan library, and blackboard provides a way to handle the distributed goal

planning problem. Moreover, the architecture of the model allows the robots to

reconsider their intention as well as plans to improve reliability of the system

against dynamically changing environments.

Since the proposed model is elaborated using the abstracted concepts and

principles, it is still too general to be applied to applications. The next chapter

provides specific applications where the proposed model can be applied to solve the

goal deliberation and distributed goal planning problem.
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CHAPTER 4. A SIMULATION TOOL FOR MULTI-ROBOT SYSTEMS

This chapter focuses on realization of the GOMAS model, introduced and

detailed in the previous chapter, in order to demonstrate its use in possible

application domains. The GOMAS system is implemented on the top of the

platform, robot operating system (ROS), and actively interacts with StarCraft II

application programming interfaces (APIs). Technological backgrounds of those

tools are introduced and described to help understand the GOMAS system.

Multiple scenarios are later described to illustrate the application domains in detail.

Simulation results and discussions of the results are discussed at the last of this

chapter.

4.1 Technological Backgrounds

The GOMAS system relies on the tools: ROS and StarCaft II APIs. The

system takes many advantages from the ROS platform. The features that are

required to support the intelligence of the GOMAS robots are already implemented

and supported by the platform. The supported features include message exchanges,

handling of asynchronous requests, and running multiple instances (i.e., the GOMAS

robots) in parallel. The computer game, StarCraft II, has been updated to reflect

requests on balancing between the units. Those updates have made the players

come up with different strategies based on situations from time to time. As the

balancing changes the units more delicately, the strategies on deciding which unit

does what in what circumstances become more complex. This is the situation where

the GOMAS system needs to be applied to solve such complex planning problem.

The following sub-sections detail the backgrounds of both ROS and StarCraft II.
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4.1.1 Robot Operating System as A Platform

Figure 4.1 illustrates the ROS components and their relationships. The ROS

core, shown in the figure, is a program that launches instances of a ROS master, a

parameter server, and a logging service. Once the ROS core starts running, ROS

can run instances of a program using the concept, named ROS node. A ROS node

performs all computation of a program and thus acts as the main thread of the

program. Every ROS nodes are required to have a stable connection to a server,

called ROS master. The ROS master allows the connected ROS nodes to discover

each other. Once ROS nodes are connected to the same ROS master, the nodes are

able to send messages between them.

ROS core

ROS service layer

ROS master Parameter server Logging server

ROS application layer

ROS node1 ROS node2 ROS noden…

Topics

/rosnode_1

/rosnode_1/print

Services

/rosnode_1/service1

Topics

/rosnode_2

/rosnode_2/echo

Services

/rosnode_1/service2

Topics

/rosnode_n

/rosnode_n/print

Figure 4.1. Overview of the ROS architecture
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The ROS topics provide a method to transfer messages between the ROS

nodes over the ROS master. Topics are defined by the ROS nodes as needed. ROS

supports the publisher-subscriber mechanism. The ROS topics can be used to

publish messages. The ROS nodes use those topics to subscribe any messages that

the publisher topics are sending. The rate of publishing and subscribing a message

can be adjusted as desired. However, the ROS messages are not meant to transfer a

stream of bits (i.e., raw data such as an image or a clip of sound waves). The ROS

messages are the best when used in transferring meaningful information (e.g.,

coordinates of a location, the name of a node, the number of detected pedestrians in

a scene, and so on).

A message consists of one or more elements with different data types. The

parameter server, shown in Figure 4.1, provides the data types used in ROS to

construct a message. Table 4.1 shows the primitive data types supported by ROS.

The table only shows the data types actively used in this research study – there are

more data types available in ROS. ROS also supports nested data structures such as

an array or a custom data structure using the primitive data types (See Table 4.2).

The ROS nodes not only publish and subscribe messages, but also handle

requests. The ROS service offers an asynchronous request handling mechanism.

Table 4.1.

Some of the primitive data types in ROS

Primitive type Description

int8 8-bit signed integer
uint8 8-bit unsigned integer
uint16 16-bit unsigned integer
uint32 32-bit unsigned integer
uint64 64-bit unsigned integer
float32 single-precision floating-point number
float64 double-precision floating-point number
string an array of characters
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Table 4.2.

Nested data types used in this research study

Nested type Description

int16[] an array of 16-bit signed integers
geometry msgs/Point a nested three double-precision floating-point numbers
sc2 ros/Point2D a nested two double-precision floating-point numbers

Requests to a ROS service (and also subscriptions to a ROS topic) are handled

asynchronously such that the ROS node does not actively handle the requests. The

ROS services can be used when an immediate response from the ROS nodes is

required.

ROS comes with a simulation, called Gazebo (when installed fully). Gazebo

supports importing pre-modelled robots as well as any custom robots. ROS and

Gazebo communicate with each other using TCP/IP and UDP/IP protocols.

Because both ROS and Gazebo are standalone tools, ROS can be integrated with

any other simulation tools, as long as those simulation tools support TCP/IP or

UDP/IP protocol. Even if a simulation tool does not support those protocols, a

proxy ROS node that supports the communication protocol that the simulation tool

supports can bridge between the ROS core and the simulation tool.

4.1.2 A Proxy to StarCraft II

In 2017, Blizzard Entertainment, the maker of StarCraft II, and Google

DeepMind team released APIs to control units in StarCraft II (Vinyals et al.,

2017). The game accepts connections using the TCP/IP protocol from outside the

game. Once a connection to StarCraft II is established, it is possible to send

commands to the units in the game and receive information about the game (i.e.,

information about the environment where the units play upon). The StarCraft II
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APIs support Protocol Buffers1 to send requests and receive responses. Clients that

access to the APIs need to install the Protocol Buffers library as well as the

StarCraft II API library. All the libraries are available from the research study

(Vinyals et al., 2017). The APIs currently support the major operating systems:

Mac OS, Windows, and Linux.

There is a certain sequence of state changes required to run a single mode

game in StarCraft II. The sequence is shortly described as,

0. launched state: This is the state entered when the game is just launched

successfully. The game may be waiting for a connection or a connection is just

made. To go to the init game state, the request ‘create game’ with the

required parameters (i.e., a map to play, player race, real-time or discrete

time, etc) needs to be sent to the game.

1. init game state: In this state, the game awaits players to join the game. The

‘join game’ request starts the game with the map and the player information

that are already set in the previous state. After the game started, the state

transitions to the in game state.

2. in game state: All in-game requests including actions and queries as well as

observations are processed in this state. Requests for actions command the

units in the game while requests for queries ask for an answer for the queries.

Requests for observations retrieve information about the environment as well

as the states of the units at the moment. The observation request is the only

way to perceive information about the game from outside. Therefore, the

observation request is usually requested repeatedly (e.g., once every second).

3. ended state: The game can transition to this state by the two requests: ‘quit’

or ‘save replay’. The two requests end the current game and in-game requests

are no longer accepted by the game. The only difference between the two

1A messaging protocol, offered from Google, to serialize data
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requests is that ‘save replay’ stores all actions and environmental changes

happened in the in game state into a file with the ‘SC2Replay’ extension.

This file can later be replayed to give further analysis on the actions and

situations of the game.

The response of an observation request provides in-depth information about

the game. Figure 4.2 shows the information through the player’s screen. The

information includes (but, not limited),

• states of the units (e.g., their position, orientation, remaining health, etc)

appearing in the game; units in the fog of war (FOW) do not report their

state as they are not perceivable from the player’s perspective, nor the allied

unit’s perspective

• actions that the units (not in FOW) are currently performing

• resources that are shared among the allied units

There are about 56 different types of units in StarCraft II. The units are

multi-capable and usually have counter units. The non-worker units cannot build

structures and only structures can train new units. The number of units per player

is limited to 200. Each unit is identified by a unique 64-bit integer number.

4.2 Implementation of The GOMAS Model

This section details the implementation of the GOMAS model using ROS

and the StarCraft II APIs. The GOMAS system consists of two ROS packages:

ros sc2 and ros gomas. The packages run independently on the same ROS master.

The overall architecture of the GOMAS system is depicted in the Figure 4.3.

The ros sc2 package serves as a proxy to an instance of StarCraft II. The

SC2 node primarily delivers requests and responses of the requests between the

Robot nodes to the instance of StarCraft II. The SC2 request and SC2 response
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Figure 4.2. A StarCraft II screenshot illustrating states and actions of the units, and

the shared resources

modules in the ros sc2 service layer embed a parser for the SC2 messaging protocol,

defined in Protocol Buffers. The modules utilize the parser to respectively support

serialization and deserialization of requests and responses. The SC2 utilities provide

a set of functions that both the SC2 node and robot nodes can use to understand

the meaning of responses received from StarCraft II. The SC2 node on the other

hand takes an action to retrieve information from the instance of StarCraft II and

update any connected robot nodes for their real-time perception. This action is

taken repeatedly, by default it occurs every second. Table 4.3 and table 4.4

respectively list the topics and services that the SC2 node provides to all robot

nodes connected to the same ROS master.
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ros_sc2 Application Layer

ros_gomas Service Layer ros_sc2 Service Layer

ros_gomas Application Layer

ROS Service Layer

ROS master Parameter server Logging server

Robot node1 Robot node2 Robot noden…

SC2

request

ros_sc2 ROS services

SC2

response

ros_gomas ROS services

StarCraft II

Blackboard

Knowledge base

Plan Library

Logic utilities SC2 utilities

SC2 node

GOMAS core components

GOMAS service components

Figure 4.3. Architecture of the GOMAS system.

The ros gomas package encompasses the core components of the GOMAS

model: blackboard, knowledge base, and plan library. When a robot node is

spawned (to control a unit in StarCraft II), the node instantiates instances of the

Table 4.3.

The ROS topics supported from the SC2 node

Topic name Description

sc2/resource publishes information of the shared resources in the game
sc2/x/y/z publishes information of y type of the robot z that belongs to

the team x
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Table 4.4.

The ROS services supported from the SC2 node

Service name Description

sc2/set state changes the state of the game
sc2/request requests an action to the units in the game
sc2/query queries information from the game
sc2/log prints out messages in the game

core components to deliberate and plan goals. Each node should control only one

unit in StarCraft II and the unit must exist in the game. Structures such as

‘CommandCenter’ or ‘Barracks’ are considered as a unit as they are also agents

capable of bringing actions, e.g. training a unit).

The robot nodes constantly subscribe the topics that the SC2 node

publishes. Those topics carry the environmental information of the game. The

information is stored in the knowledge base of the nodes and changes existing beliefs

in the knowledge base. Whenever the robot nodes need to control their unit for an

action, they request and query through the SC2 services. The action requests are

performed as soon as the requests arrive in the game. The SC2 node is able to

handle multiple service requests from multiple nodes in parallel. The sc2/log service

is used for debugging purpose.

Operators or system designers are able to define actions and rules. Those

pre-defined actions and rules are stored in the plan library and knowledge base,

respectively. The actions and rules should logically sound and complete since the

robot nodes rely heavily on them for the deliberation and planning process. This

means that the rules should not,

• have a path that circulates in the rules; for example, A ⇒ B, B ⇒ C, and C

⇒ A

• have any belief that is not entailed by the inference procedure, and
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• make things up; that should not infer any belief that should not exist.

Russell and Norvig (2016) stated for the inference procedure that “if KB is

true in the real world, then any sentence α derived from KB by a sound inference

procedure is also true in the real world”. This emphasizes why beliefs, including the

pre-defined rules, in the knowledge base should fairly reflect the real world (i.e., the

environment).

4.3 Demonstrations

This section describes the target scenarios in StarCraft II to demonstrate the

GOMAS system. There are three scenarios considered in this research study. The

first sub-section details the context of the scenarios. Then, all the three scenarios

run in each of the following sub-sections.

4.3.1 The Context of The Target Scenarios

Multiple heterogeneous robots working as a team serve any given goals from

an operator. The robots are types of ‘SCV’, ‘CommandCenter’, ‘Barracks’, and

‘Marine’. The robots are shown in Figure 4.4. Some of the robots may already exist

at the beginning of the simulation, some of them may be created during the

demonstration. The capabilities of the robots are Move, Build, Attack, Repair, and

Train. To support those capabilities in the GOMAS system, plans are defined and

stored in the plan library. Each of the plans consists of a helper function for

preparation and a sequence of actions that are actually used in StarCraft II. The

helper function determines whether the plan is applicable with the current context.

For example, if there is no path going to the destination, the Move plan for going to

the destination is not suggested by the plan library. The defined plans are further

described in Appendix B.
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Figure 4.4. The StarCraft II units used in the demonstration

In each of the scenarios, an operator provides the robots a set of goals. Each

of the robots expands the set of goals to reason what needs to do to attain the

goals. The rules that are used in this context are listed as follows,

R1 : Trained(x, TERRAN SCV) ⇒ TERRAN SCV(y)

R2 : Built(x, TERRAN BARRACKS, px, py) ⇒ TERRAN BARRACKS(y)

R3 : Attack(x, y) ⇒ Attacked(x, y)

R4 : Located(x, y) ⇒ Scouted(x, y)

R5 : CloseTo(x, y) ⇒ Located(x, y)

R6 : Built(x, TERRAN SUPPLYDEPOT) ⇒ EnoughFood(TERRAN MARINE)
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R7 : TERRAN SCV(x) ∧ EnoughMineral(TERRAN SUPPLYDEPOT) ∧

Build(x, TERRAN SUPPLYDEPOT, px, py) ⇒ Built(x,

TERRAN SUPPLYDEPOT, px, py)

R8 : EnoughMineral(TERRAN BARRACKS) ∧ TERRAN SCV(x) ∧ Build(x,

TERRAN BARRACKS) ⇒ Built(x, TERRAN BARRACKS, px, py)

R9 : TERRAN COMMANDCENTER(x) ∧ EnoughMineral(TERRAN SCV) ∧

Train(x, TERRAN SCV) ⇒ Trained(x, TERRAN SCV)

R10 : TERRAN BARRACKS(x) ∧ EnoughMineral(TERRAN MARINE) ∧

EnoughFood(TERRAN MARINE) ∧ Train(x, TERRAN MARINE) ⇒

Trained(x, TERRAN MARINE)

The lower case symbols in the parentheses such as x, y, px, and py are

propositional variables, whereas the upper case symbols are propositional constants.

Time-dependent beliefs need to be thoroughly generated. As described early

in the section 3.3.1, in the GOMAS system variables make the time-dependent

beliefs whenever the deliberation process occurs. The variables used in this context

are listed as follows,

• mineral: the amount of Minerals shared across the robots

• food cap: the amount of the total supplies

• food used: the amount of supplies occupied by the existing units

• loc x: the current position of a unit in x axis

• loc y: the current position of a unit in y axis

• target x: the position of the target in x axis

• target y: the position of the target in y axis

• training object: the object being trained
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• training progress: the progress of the training for the training object

• my state: the current state of a unit

• my last state: the last state of a unit

• building object: the object being constructed

The relationships between the variables and corresponding time-dependent

beliefs are shown in Table 4.5. The symbol ‘abs’ in the table represents a

mathematical function that calculates absolute value of the result from the

calculation in the parentheses.

Since the process of inference sequentially searches all the beliefs in the

knowledge base, the beliefs that are likely to be used more frequently are better to

Table 4.5.

The time-dependent beliefs and the variables used in the demonstration

Generated literal Condition

EnoughMineral
(TERRAN SCV)

mineral ≥ the required amount of Minerals
for a single SCV

EnoughMineral
(TERRAN MARINE)

mineral ≥ the required amount of Minerals
for a Marine

EnoughMineral
(TERRAN SUPPLYDEPOT)

mineral ≥ the required amount of Minerals
for a Supplydepot

EnoughMineral
(TERRAN BARRACKS)

mineral ≥ the required amount of Minerals
for a Barracks

EnoughFood
(TERRAN SCV)

(food cap - food used) ≥ the required amount
of food for a single SCV

EnoughFood
(TERRAN MARINE)

(food cap - food used) ≥ the required amount
of food for a Marine

CloseTo
(target x, target y)

abs(loc x - target x) ≤ 1
∧ abs(loc y - target y) ≤ 1

Train
(x, training object)

training object exists
∧ training progress > 0.1

Build
(x, building object, px, py)

my last state = building object
∧ my state = INVALID
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be placed at front in the knowledge base. Even though the goal deliberation process

visits every belief in the knowledge base, it is still better to place the beliefs (i.e.,

propositional symbols that do not contain an implication, ⇒) at front, in order to

reduce complexity of the search.

Once the deliberation process is finished, the robots look for their capabilities

to see if they can attain any sub-goals of the goals. Table 4.6 shows the

relationships between goals and plans in this context. With the helper function of

the plans, the robots skip goals if they do not have the required capability for the

goals. If they have, they take courses of actions from the plan to attain the goal.

This behavior continues until there is no desires (i.e., sub-goals and goals).

4.3.2 Scenario I: Scout Areas

Scouting areas to identify enemy units is one of the basic strategies used in

StarCraft II. This requires multiple entities visit multiple places to observe the

areas. In this scenario, multiple SCVs that are capable of moving are deployed for

the operation. The given goal tree consists of four instances of the goal

Scouted(location x, location y) with different target locations. Figure 4.5 shows the

given goals and generated sub-goals for the goals. To expand the given goals

Table 4.6.

The set of goals and plans in the plan library

Goal Applicable plan

Train PlanTrain
EnoughMineral PlanGather
EnoughFood PlanBuild
Build PlanBuild
ClosedTo PlanMove
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The given goal tree The sub-goals created

Scouted(27, 43) Located(27, 43) CloseTo(27, 43)

Scouted(27, 51) Located(27, 51) CloseTo(27, 51)

Scouted(37, 51) Located(37, 51) CloseTo(37, 51)

Scouted(37, 43) Located(37, 43) CloseTo(37, 43)

Dependency (from child to parent)

1st expansion 2nd expansion

Figure 4.5. The expanded goal tree from the given goal in the scenario I

(illustrated as solid circle-shaped goals in Figure 4.5), the rules R4 and R5 are used

in the deliberation process.

The snapshots of the demonstration in the Scenario I are shown in Figure

4.6, 4.7, 4.8, 4.9, and 4.10 in the chronological order. Since none of the sub-goals

created from the deliberation process have been attained, the SCVs take the leaf

goals ‘CloseTo’ first. As defined in Table 4.6, their plan library suggests them the

plan ‘PlanMove’ to attain the leaf goals. Later, the leaf goals are marked as

attained, as they reach to the points using the plan ‘PlanMove’. As shown in

Figrure 4.8, the first two SCVs that arrive at the right bottom point attain the leaf

goal ‘CloseTo(37, 43)’, which also satisfies attainments of the parent goals

‘Located(37, 43)’ and ‘Scouted(37, 43)’. When the two SCVs start the goal planning
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process again, they know that the other two sub-goals, going to the top points, are

being pursued by the other two SCVs. Therefore, the goal planning process picks

the sub-goal ‘CloseTo(27, 43)‘, going to the left bottom point, for the next available

goal. Figure 4.9 illustrates this process. However, the other two SCVs located at the

two top points conclude that there is no goals that need to be pursued at the

moment, and thus become noop state – doing nothing. In Figure 4.10, all the given

goals are finally attained by the four SCVs.

Figure 4.6. The snapshot of the demonstration for the scenario I at 0:10

The detailed movements of the SCVs are depicted through Figure 4.11, 4.12,

4.13, and 4.14. The figures show that each SCV tries to reach the coordinate to

attain the goal ‘CloseTo’. For example, SCV II moves and stops at the coordinate

(37, 43) from 3 to 9 seconds after the simulation starts and does the same for the

coordinate (27, 43) approximately from 12 to 17 seconds. It is observed that the

SCV II and IV are pursuing the same sub-goal ‘CloseTo(37, 43)’, which should be

pursued by only one robot. The reason the two SCVs pursue the same sub-goal is

because the four SCVs are spawned sequentially such that later SCV could not
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Figure 4.7. The snapshot of the demonstration for the scenario I at 0:12

Figure 4.8. The snapshot of the demonstration for the scenario I at 0:15
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Figure 4.9. The snapshot of the demonstration for the scenario I at 0:16

Figure 4.10. The snapshot of the demonstration for the scenario I at 0:19
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notice the progress of the sub-goal that the former SCV updated. This will not

occur if robots get the goal after they are all spawned (i.g., ready for operation).

Figure 4.11. Movement of the SCV I. Dashed line indicates the time that the goal is

pursued and solid line indicates attainment of the goal.

Figure 4.12. Movement of the SCV II. Dashed line indicates the time that the goal

is pursued and solid line indicates attainment of the goal.
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Figure 4.13. Movement of the SCV III. Dashed line indicates the time that the goal

is pursued and solid line indicates attainment of the goal.

Figure 4.14. Movement of the SCV IV. Dashed line indicates the time that the goal

is pursued and solid line indicates attainment of the goal.

4.3.3 Scenario II: Draw GG

The good game, ‘GG’, means the sign for the end of a match. This is usually

used in a chat in order for players to express the good impression received from the

opponent throughout the match. ‘GG’ has also been used by players to show off the

almost certain victory when the player is overwhelming the opponent. In this
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situation, the player intentionally wastes the resources by constructing structures

sequentially to illustrate GG-shape in the game.

In this scenario, multiple SCVs build structures at the designated locations

to draw ‘GG’. The operator constructs the goal tree to specify the order of the

constructions. 20 structures are needed to draw ‘GG’ – each ‘G’ shape requires 10

structures. When the goal tree is given to the SCVs, they starts expanding the goal

tree to see what to do. According to the rule R7, each construction, ‘Built(x,

TERRAN SUPPLYDEPOT, px, py)’, requires a set of sub-goals:

‘TERRAN SCV(x)’

‘EnoughMineral(TERRAN SUPPLYDEPOT)’

‘Build(x, TERRAN SUPPLYDEPOT, px, py)’

The fully expanded goal tree is partially shown in Figure 4.15. The figure

does not show the entire goal tree in a full scale since there are too many goals to

show – 20 goals that are given and 60 sub-goals that are generated by the SCVs.

The figure however should easily be interpreted without the full scale of the goal

tree as each goal is expanded using the same rule (i.e., each expanded goal has the

same set of sub-goals with different parameters).

The demonstration is illustrated through Figure 4.16, 4.17, 4.18, 4.19, 4.20,

and 4.21. The sub-goal ‘TERRAN SCV(x)’ is already satisfied by the SCVs because

the belief that satisfies the sub-goal already exists in their knowledge base. An

interpretation of this in English would be ‘the goal requires a worker and the robots

are the worker ’. The sub-goal ‘EnoughMineral (TERRAN SUPPLYDEPOT)’

however requires the SCVs to gather resources from the Minerals nearby because

the SCVs start with no Minerals. The SCVs plan ‘PlanGather’ to gather the

required amount of Minerals. When the SCVs gather 100 units of Minerals,

‘EnoughMineral (TERRAN SUPPLYDEPOT)’ is attained. Next, the sub-goal

‘Build(x, TERRAN SUPPLYDEPOT, px, py)’ requires a single SCV to construct
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the structure at the location of (px, py). Figure 4.22 supports the process of the

goal planning and pursuing. The figure shows only the events between 250 seconds

and 350 seconds after the simulation starts because the same pattern of the events

happends over the entire simulation. The SCVs gather the resource to meet the

sub-goal ‘EnoughMineral’ and construct whenever they see the sufficient amount of

the resource is gathered.

Note that the sub-goal of gathering Minerals can be pursued by multiple

SCVs whereas only one SCV can pursue the sub-goal of constructing a building.

This makes the SCVs seem cooperative and distributed because they gather

resources together while one of them constructs a structure. Moreover, this level of

cooperation is also captured from a situation where a single SCV constructs a

Built(x, TERRAN_SUPPLYDEPOT, 39, 41) EnoughMineral(TERRAN_SUPPLYDEPOT)

…

Build(x, TERRAN_SUPPLYDEPOT, 39, 41)

TERRAN_SCV(x)

Built(x, TERRAN_SUPPLYDEPOT, 41, 41) EnoughMineral(TERRAN_SUPPLYDEPOT)

Build(x, TERRAN_SUPPLYDEPOT, 41, 41)

TERRAN_SCV(x)

Built(x, TERRAN_SUPPLYDEPOT, 30, 45) EnoughMineral(TERRAN_SUPPLYDEPOT)

Build(x, TERRAN_SUPPLYDEPOT, 30, 45)

TERRAN_SCV(x)

The given goal tree The sub-goals created

Dependency (from child to parent)

Figure 4.15. The expanded goal tree from the given goal in the scenario II
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Figure 4.16. The snapshot of the demonstration for the scenario II at 0:40

Figure 4.17. The snapshot of the demonstration for the scenario II at 1:03
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Figure 4.18. The snapshot of the demonstration for the scenario II at 2:43

Figure 4.19. The snapshot of the demonstration for the scenario II at 7:03
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Figure 4.20. The snapshot of the demonstration for the scenario II at 8:40

Figure 4.21. The snapshot of the demonstration for the scenario II at 9:47



87

Figure 4.22. A fraction of the simulation that shows how the SCVs act and how the

resource is spent. Dashed line indicates the time that the goal is pursued and solid

line indicates attainment of the goal. Different color indicates different SCV.

structure at (x1, y1) while another SCV starts constructing another structure at (x2,

y2). This indicates that deploying higher number of SCVs can improve efficiency in

time and the level of collaboration.

4.3.4 Scenario III: Train Units

In StarCraft II, gathered resources are mostly used to train more new units

to enhance the quality of tactical forces, leading to a victory of a match. StarCraft

II requires players to follow the order of structures (i.e., tech-orders) to train

higher-tier units. For example, Barracks, is required to train the unit, Marine. The

Battlecruiser, one of the most advanced units in StarCraft II, requires much more

complex order of constructions of structures – Barracks → Factory → Starport →

Tech lab (an add-on to the Starport) → Fusion Core.

In this scenario, the SCVs are given a goal to train a Marine. The SCVs

utilize the rule R10 to deliberate the goal. According to the rule, the goal is

expanded with 4 sub-goals. The first sub-goal ‘TERRAN BARRACKS(x)’ cannot

be satisfied because there is no Barracks at the beginning of the simulation. The
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SCVs therefore further expand the sub-goal with the rule R2, in order to construct

a Barracks. And then, the SCVs use the rule R8 to finalize the expansion. The

completed goal tree is depicted in Figure 4.23. The Barracks from the goal tree is

constructed at a random location since the operator did not specify it (the operator

may not consider the location of the structure).

The given goal tree The sub-goals created

Trained(x, TERRAN_MARINE)

TERRAN_BARRACKS(x)

Dependency (from child to parent)

1st expansion

EnoughMineral(TERRAN_MARINE)

EnoughFood(TERRAN_MARINE)

Train(x, TERRAN_MARINE)

Built(v_25, TERRAN_BARRACKS, v_26, v_27)

TERRAN_SCV(v_25)

EnoughMineral(TERRAN_BARRACKS)

Build(v_25, TERRAN_BARRACKS, v_26, v_27)

2nd expansion

3rd expansion

Figure 4.23. The expanded goal tree from the given goal in the scenario III

Figure 4.24, 4.25, 4.26, 4.27, 4.28, 4.29, 4.30, and 4.31 show the goal planning

process in detail. In Figure 4.24, the SCVs try to gather the resource, Minerals, to

build a Barracks. When the required amount of Minerals is gathered, one of the

SCVs randomly picks a location from its current location and constructs a Barracks

to attain the sub-goal of constructing a Brrracks (see Figure 4.26). While the

Barracks is being constructed, the rest SCVs start looking at the other sub-goals
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and decide to pursue the sub-goal ‘EnoughMineral (TERRAN MARINE)’ (see the

moment at around 85 seconds from Figure 4.31 and also see Figure 4.27). The rest

of the SCVs attain the sub-goal at around 108 seconds, after they gather the

required amount of Minerals for a Marine (see Figure 4.28). Since they already have

enough supply for the upcoming Marine, ‘EnoughFood(TERRAN MARINE)’ is

dropped without an action. Note that a structure is built to satisfy the requirement

for the SCVs to build a Barracks. The 100 units of Minerals spent at around 38

seconds indicates that the structure is built by the simulation runner (see Figure

4.25). This is a game-specific requirement and is not recognized by the robots – it

could have been added as another rule in the knowledge base though. Because the

SCVs do not have the ability to train a Marine, they do not intend to pursue the

sub-goal ‘Train(x, TERRAN MARINE)’. It may seem that the SCVs do nothing,

but they repeatedly re-visit all the sub-goals that are not yet attained and not

assigned to any robot. At this moment, the sub-goal for training a Marine is the

only sub-goal remained. The newly built Barracks has the ability such that it

intends to pursue the sub-goal, as shown in Figure 4.29. In Figure 4.30, the

Barracks attains the sub-goal of training a Marine. With the blackboard sharing,

the SCVs and Barracks know that the given goal is finally attained.

4.4 Discussions

The GOMAS system is demonstrated through the three scenarios. The

demonstration showed that the deliberation process is one of the keys that makes

the robots intelligently reason about goals. The proposed system even granted the

robots higher level of reasoning – the robots not only utilize what they currently

have, but also create ones that do not exist (e.g., the barracks from the scenario

III). This feature is extremely useful when the environment changes severely. For

example, existing resources and entities may be wiped out by a giant sand storm
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Figure 4.24. The snapshot of the demonstration for the scenario III at 0:29

Figure 4.25. The snapshot of the demonstration for the scenario III at 1:08
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Figure 4.26. The snapshot of the demonstration for the scenario III at 1:35

Figure 4.27. The snapshot of the demonstration for the scenario III at 1:45
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Figure 4.28. The snapshot of the demonstration for the scenario III at 1:56

Figure 4.29. The snapshot of the demonstration for the scenario III at 2:29
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Figure 4.30. The snapshot of the demonstration for the scenario III at 2:40

Figure 4.31. The simulation that shows how the SCVs act and how the resource is

spent. Dashed line indicates the time that the goal is pursued and solid line indicates

attainment of the goal. Different color indicates different SCV.

while exploring Mars. Robots that are able to gather and construct may be able to

recover any failure caused by the lost from the giant sand storm.
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The goal planning process, the other key, allowed the robots in the scenarios

to plan which goals to pursue with regard to what other robots intend to pursue.

The distributed blackboard approach makes this process technically possible. With

the blackboard, the sub-goal ‘EnoughMineral’ allows multiple robots involved at the

same time, whereas the other sub-goals such as ‘Train’ and ‘Build’ require only one

robot to participate. This made the robots in the scenarios skip sub-goals that are

not attained yet, but occupied by other robots.

One of the points for further discussions is synchronization of their intentions

more firmly. A robota that intends to attain a goal1 informs a robotb of its

intention. At the same time, the robotb also intends to attain the goal1 and tries to

inform the robota of its intention, too. If the goal1 accepts only one robot, then one

of them should drop its intention to avoid the conflict of their intention. Robots in

the GOMAS system generally follow the process to avoid it. However, there can be

a timing issue that may cause the two robots pursuing the goal1, which they should

not. This happens when the two robots finished its goal process and notify the

result exactly at the same time. Both robots cannot modify their intention because

they already started performing an action for the goal. Moreover, the goal planning

process does not support synchronization of goals after the goal deliberation process

– the synchronization happens only while deliberating goals.
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CHAPTER 5. CONCLUSIONS AND FUTURE WORKS

This chapter concludes this research study and the proposed system that is

demonstrated in the previous chapter. The key contributions and challenges are

discussed in the conclusion as well. And then, possible applications and future

works to improve both proposed model and system are described.

5.1 Conclusions

Multi-agents model and its execution model are not intended to involve any

active humans in the loop. M. J. Wooldridge (1992) stated it in his dissertation as,

‘In contrast, the theory is emphatically not intended to be a model of

human social systems’ (M. J. Wooldridge, 1992, p. 5).

Instead, such multi-agent models are designed to help tasks that humans feel

difficult because of physical or mental risks to them. Those multi-agent models that

do not actively rely on human interventions still need a certain level of intelligence

to deal with the aforementioned tasks, which usually require the high-level of

intelligence. The GOMAS model and its goal deliberation process using first-order

predicate logic allow robots to have a limited human-level intelligence such that the

robots perform actions similar to what humans would have done. Employing more

powerful computation units and an immense size of storage for the robots could

make them deal with more complex tasks.

As more intelligent robots working cooperatively, their decisions impact more

on other’s decision. The goal planning process among the intelligent robots is

essential to bring successful operations without conflicts of their actions and

intentions. Many interaction methodologies have been proposed to support the
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process. The blackboard approach is one of the reliable and intuitive methods to

model the planning process in cooperative goal-oriented multi-agent systems. The

distributed blackboard approach, proposed and implemented in the GOMAS

system, make the blackboard approach working even more reliable for distributed

multi-agent systems.

With the best knowledge, this research study is the first attempt of

integrating ROS with StarCraft II to run multi-robot simulations. Existing

simulation tools using StarCraft: Blood War (the previous version of StarCraft II)

have successfully supported research studies and practical applications. However,

their tools are sparse in terms of the platforms, supportive tools, and messaging

protocols that have been utilized in the tools. For example, Šustr, Malỳ, and

Čertickỳ (2018) proposed the Docker1 contained platform using remote control

protocols to deploy multiple instances of the simulation. Synnaeve et al. (2016)

proposed TorchCraft that utilizes the server-client approach over a messaging

protocol, ZeroMQ2. Since both ROS and StarCraft II APIs support the well-known

standards, this integration bonds them tightly to bring a unified simulation tool.

This tool will then serve many applications where multiple heterogeneous robots

play actions.

5.2 Future works

Since the topic of this research study touches many relevant fields in DAI,

there are possible improvements to apply the model to the broader areas of

applications. The future works are described as follows,

• Speech-Based Goal Generation: Goals can be generated from human

operators by converting sentences spoken from operators into a goal structure.

Interpretation of the sentences along with the technology of ontological

1A virtualized environment in computer systems to run instances of programs independently from
each other
2A distributed messaging protocol that carries messages over IPC, TCP, and TIPC protocols
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semantics extracts conditions for the goals to be satisfied. This may open a

new area of applications in which humans closely interact with the systems.

• Utility Functions for Goals and Plans: Selecting goals from the goal tree

and plans from the plan library may depend on how efficient the selected goal

and plan would be in the current context. Many selection algorithms based on

prior experiences, social norms, and individual preferences can be applied to

bring the best goal and plan that maximize the utility.

• Blackboard Synchronization: Synchronization of distributed blackboards

is the key to improve efficiency of collaboration and the key to solve complex

problems. The synchronization allows distributed intelligent robots to

understand the best of the current context. Synchronization algorithms such

as Blockchain technology and fuzzy-based decision making algorithms can

enhance reliability of the blackboard approach.

• Means-End Reasoning: Efficient goal planning improves performance of

intelligent multi-agent systems. The BDI model used in this research study

does not fully support the goal planning process. Thorne (2005) mentioned

this point in the article as,

“BDI logics model only deliberation and not means-end reasoning.

This is somehow a handicap, because planning is an essential part of

practical reason. Woolridge in [17] remedies to this by introducing

action modalities and action operators which lets us define

conditional and iterative control structures.” (Thorne, 2005)

It is necessary to propose further mean-end reasoning models and algorithms

to capture the missing part.
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CHAPTER A. THE CNF CONVERSION

Russell and Norvig (2016) described the steps to convert sentences into

conjunctive normal form (CNF). The objective of the conversion is to simplify

sentences such that inference can be possible on complex sentences. The steps are

fully described in the section 7.5 in the book (Russell & Norvig, 2016, p. 215). The

following steps describe the conversion briefly with an example P ⇐⇒ (Q ∧ R),

1. Convert bi-implications to implications

replace ⇐⇒ with ⇒

(P ⇒ (Q ∧ R)) ∧ ((Q ∧ R) ⇒ P)

2. Convert implications to their logical equivalents

eliminate ⇒ using ¬ and ∨

(¬P ∨ (Q ∧ R)) ∧ (¬(Q ∧ R) ∨ P)

3. Move negations inwards

use the logic rules, double-negation elimination and de Morgan, to have

negations only with literals

(¬P ∨ (Q ∧ R)) ∧ (¬Q ∨ ¬R ∨ P)

4. Distribute disjunction over conjunction

(¬P ∨ Q) ∧ (¬P ∨ R) ∧ (¬Q ∨ ¬R ∨ P)

Now, ‘(¬P ∨ Q) ∧ (¬P ∨ R) ∧ (¬Q ∨ ¬R ∨ P)’ is called a form of CNF.



99

CHAPTER B. THE PLANS USED IN THE DEMONSTRATION

Plans in the GOMAS system are a software component that describes

actions. Consequences of the actions change some states in the environment. Plans

are defined by system designers and used by robots. In this research study, the

plans are static – the contents of the plans never be changed. However, plans can be

generated, used, and possibly evaluated by robots if the robots are the type of

open-minded agents (Thorne, 2005).

Plans provide two features to support the plan suggestion process as well as

the plan execution, described in Section 3.4.2. The features are,

• Preparation: evaluates the conditions for the plan to be proceeded.

• Consequence: tells information about the consequences that the plan brings,

no matter if the plan succeeds or fails.

The plans used for the demonstration in Section 4.3 are detailed along with

the description of the two features as follows,

PlanMove is to move a robot to a coordinated location in a two dimensional space.

• Preparation: evaluates if the destination is currently reachable from the

current location of the robot. This also calculates how far the destination is

from the current location.

• Consequence: provides coordination of the destination.

PlanGather is to gather resources.

• Preparation: evaluates source of the target resource and a destination where

the resource is returned. Both source and destination need to exist. If the
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target resource or destination is multiple, the plan selects the closest one from

the robot.

• Consequence: provides coordination of the closest target resource.

PlanTrain is to train a unit.

• Preparation: not applicable.

• Consequence: provides the type of the unit being trained. The progress of the

training can be obtained from the knowledge base in order to determine if the

training is done.

PlanBuild is to build a structure.

• Preparation: evaluates if the location for the structure is valid – see if the

structure can be built on the location. If the location is not given, the plan

randomly selects the building location nearby the robot.

• Consequence: provides the type of the structure and coordinates of the

building location. Moreover, the progress of the building can be obtained from

the knowledge base.
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(2011). A multi-agent architecture for supporting distributed
normality-based intelligent surveillance. Engineering Applications of
Artificial Intelligence, 24 (2), 325–340.

Van Riemsdijk, M. B., Dastani, M., & Winikoff, M. (2008). Goals in agent systems:
a unifying framework. In Proceedings of the 7th international joint conference
on autonomous agents and multiagent systems-volume 2 (pp. 713–720).

Viguria, A., Maza, I., & Ollero, A. (2008). S+ t: An algorithm for distributed
multirobot task allocation based on services for improving robot cooperation.
In Robotics and automation, 2008. icra 2008. ieee international conference
on (pp. 3163–3168).

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M., . . .
others (2017). Starcraft ii: A new challenge for reinforcement learning. arXiv
preprint arXiv:1708.04782 .

Wagoner, A. R. (2017). A monocular vision-based target surveillance and
interception system demonstrated in a counter unmanned aerial system
(cuas) application. Unpublished doctoral dissertation, Purdue University.

Wang, J., Liu, J., & Zhong, Y. (2005). A novel ant colony algorithm for assembly
sequence planning. The international journal of advanced manufacturing
technology , 25 (11), 1137–1143.

Weiss, G. (1999). Multiagent systems: a modern approach to distributed artificial
intelligence. MIT press.



109

Wender, S., & Watson, I. (2012). Applying reinforcement learning to small scale
combat in the real-time strategy game starcraft: Broodwar. In
Computational intelligence and games (cig), 2012 ieee conference on (pp.
402–408).

Werfel, J. K., Petersen, K., & Nagpal, R. (2011). Distributed multi-robot
algorithms for the termes 3d collective construction system..

Winston, W. L., & Goldberg, J. B. (2004). Operations research: applications and
algorithms (Vol. 3). Thomson Brooks/Cole Belmont.

Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice.
The knowledge engineering review , 10 (02), 115–152.

Wooldridge, M. J. (1992). The logical modelling of computational multi-agent
systems. Unpublished doctoral dissertation, Citeseer.

Xuan, P., Lesser, V., & Zilberstein, S. (2001). Communication decisions in
multi-agent cooperation: Model and experiments. In Proceedings of the fifth
international conference on autonomous agents (pp. 616–623).

Zhang, M., Qin, H., Lan, M., Lin, J., Wang, S., Liu, K., . . . Chen, B. M. (2015). A
high fidelity simulator for a quadrotor uav using ros and gazebo. In
Industrial electronics society, iecon 2015-41st annual conference of the ieee
(pp. 002846–002851).

Zhao, Y., Wang, S., Cheng, T. E., Yang, X., & Huang, Z. (2010). Coordination of
supply chains by option contracts: A cooperative game theory approach.
European Journal of Operational Research, 207 (2), 668–675.

Zhong, C., & DeLoach, S. A. (2011). Runtime models for automatic reorganization
of multi-robot systems. In Proceedings of the 6th international symposium on
software engineering for adaptive and self-managing systems (pp. 20–29).



VITA



110

VITA

Yongho Kim

Education

• Doctor of Philosophy, Computer and Information Technology

Purdue University, West Lafayette, Indiana, United States of America

December 2018

• Master of Science, Electronics and Radio Engineering

Kyung-Hee University, Yongin, Republic of Korea

February 2012

• Bachelor of Science, Computer Science and Engineering

Seoul National University of Science and Technology, Seoul, Republic of Korea

February 2010

Work Experience

• Research and Teaching Assistant

Purdue University, West Lafayette, Indiana United States of America

August 2017 - December 2018

August 2016 - May 2017

January 2014 - May 2016

• Research Aide

Argonne National Laboratory, Lemont, Illinois, United States of America

May 2017 - August 2017

May 2016 - August 2016

• Researcher



111

Moa payment Inc, Seoul, Republic of Korea

August 2013 - December 2013

• Research Assistant

Kyung-Hee University, Yongin, Republic of Korea

April 2010 - March 2013

• Research Assistant

Seoul National University of Science and Technology, Seoul, Republic of Korea

July 2008 - June 2009

Publications

Journal Articles

• Y. H. Kim, J. W. Jung, J. C. Gallagher, and E. T. Matson, 2016, An Adaptive

Goal Based Model for Autonomous Multi-Robot Using HARMS and NuSMV.

International Journal of Fuzzy Logic and Intelligent Systems, 16(2), pp. 95-103.

• S. M. Shin, S. H. Park, Y. H. Kim, and E. T. Matson, 2016, Design and

Analysis of Cost-Efficient Sensor Deployment for Tracking Small UAS with

Agent-Based Modeling, Sensors, 16(4), 575.

• B. C. Min, Y. H. Kim, S. J. Lee, J. W. Jung, and E. T. Matson, 2015, Finding

the Optimal Location and Allocation of Relay Robots for Building a Rapid

End-to-end Wireless Communication, Ad Hoc Networks

• Y. H. Kim et al, 2012, Computational Method for Analyzing the Cumulative

Ionizing Effect from Solar-terrestrial Charged Particles and Cosmic Rays with

Geant4, Journal of the Korean Physical Society, 61, pp. 653-657.

• Y. M. Seo, Y. H. Kim, S. H. Park, and J. H. Seon, (2012), Cumulative ionizing

effect from solar-terrestrial charged particles and cosmic rays for CubeSats as

simulated with GEANT4, Current Applied Physics, 12(6), pp. 1541-1547.

Book Chapters and Proceedings



112

• S. J. Park,, S. U. Park, H. G. Lee, M. J. Hyun, E. S. Lee, J. H. Ahn, L.

Featherstun, Y. H. Kim, and E. T. Matson, 2018, Collaborative Goal

Distribution in Distributed Multiagent Systems. 2018 Second IEEE

International Conference on Robotic Computing (IRC), pp. 313-318

• J. M. Goppert, A. R. Wagoner, D. K. Schrader, S. Ghose, Y. H. Kim, S. H.

Park, M. Gomez, E. T. Matson, and M. J. Hopmeier, 2017. Realization of an

autonomous, air-to-air counter unmanned aerial system (CUAS). IEEE

International Conference on Robotic Computing (IRC), pp. 235-240

• Y. H. Kim, and E. T. Matson, 2016. A Realistic Decision Making for Task

Allocation in Heterogeneous Multi-agent Systems. Procedia Computer Science,

94, pp. 386-391.

• Y. H. Kim, and E. T. Matson, 2016. A Realistic Decision Making for Task

Allocation in Heterogeneous Multi-agent Systems. Procedia Computer Science,

94, pp. 386-391.

• Y. H. Kim, M. Gomez, J. Goppert, and E. T. Matson, 2015. Model checking of

a training system using nusmv for humanoid robot soccer. In Robot

Intelligence Technology and Applications 3, pp. 531-540.

• S. H. Kang, Y. H. Kim, E. J. Lee, S. G. Lee, B. C. Min, J. U. An, and D. H.

Kim, 2011, Implementation of Smart Floor for multi-robot system, The 5th

International Conference on Automation, Robotics and Applications (ICARA),

pp. 46.

• J. W. Kim, Y. H. Kim, B. C. Min, and D. H. Kim, 2010, Tacit Navigation

Method for Multi-agent System, Communications in Computer and

Information Science, Vol. 103, pp. 186.

• Y. W. Lim, Y. H. Kim, J. U. An, and D. H. Kim, (2010, September), Path

planning algorithm based on the limit-cycle navigation method applied to the

edge of obstacles. In FIRA RoboWorld Congress, pp. 226-233, Springer,

Berlin, Heidelberg.



113

• Y. H. Kim, J. W. Kim, B. C. Min, and D. H. Kim, 2010, Dynamic Obstacle

Avoidance Using Vector Function Algorithm, International Conference on

Electronics, Information and Communication, pp. 229-231.

Academic Activities

Academic Services

• Program committee, The 17th International Conference on Practical

Applications of Agents and Multi-Agent Systems (PAAMS 19), Àvila, Spain,
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