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Protein conformational transitions are fundamental to the functions of many proteins, and 

computational methods are valuable for elucidating the transitions that are not readily 

accessible by experimental techniques. Here we developed accelerated sampling methods 

to calculate optimized all-atom protein conformational transition paths. Adaptively biased 

path optimization (ABPO) is a computational simulation method to optimize the 

conformational transition path between two states. We first examined the transition paths 

of three systems with relatively simple transitions. The ways to define reduced variables 

were explored and transition paths were built at convergence of the optimizations. We 

constructed the all-atom conformational transition path between the active and the inactive 

states of the Src kinase domain. The C helix rotation was identified as the main free 

energy barrier in the all-atom system, and the intermediate conformations and key 

interactions along the transition path were analyzed. This is the first demonstration of the 

robustness of a computational method for calculating protein conformational transitions 

without restraints to a specified path. We also evaluated protein-peptide interactions using 

both molecular dynamics simulations and peptide docking.  Long unbiased simulations 

were used to evaluate Src-SSP interactions and complex stability in both implicit and 

explicit solvent. Molecular docking was used to build possible protein-peptide interaction 

models, using both Src regulatory domain SH2 and the kinase domain. Possible Src-SSP 

complexes were built as the first Src-substrate complex structure models.
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CHAPTER 1. INTRODUCTION 

1.1 Biological Functions of Src Family Kinases 

Protein kinases regulate intracellular and intercellular signal transduction pathways in 

a series of important functions, including cell migration, cell cycle and survival[1-2]. 

Dysregulation of the kinase activity often leads to aberrant signaling pathways, cell 

malignancy and diseases including cancer, diabetes and inflammation, making them good 

targets for drug design purposes[3-6].  

Src family kinases (SFKs) are a group of non-receptor tyrosine kinases. Src protein is 

the product of the first proto-oncogene discovered[7]. SFKs consists of 11 members in 

human[8], namely Src, Lyn, Lck, Hck, Fyn, Yes, Blk, Fgr, Brk, Frk and Srm. While the 

expression of Src, Yes, Yrk and Fyn are ubiquitous, the expression of the other family 

members are usually tissue or cell specific[9]. SFKs are involved in various signal 

transduction pathways and cellular functions[9-12]. The members interact with a broad set 

of transmembrane receptors and signal to downstream DNA synthesis, MAPK activation, 

cytoskeletal rearrangements and cell migration[13]. A few examples of the  receptors that 

interact with SFKs are GPCRs[14], integrins[15], steroid receptors[16], 

immunoreceptors[17] as well as receptor tyrosine kinases such as growth factor 

receptors[18]. The activity of Src is regulated via phosphorylation of tyrosine residues. The 

first regulation site is Tyr416, whose phosphorylation is associated with the upregulation 

of the kinase activity[19-21]. Another site is Tyr527, the phosphorylation of which will 

downregulate the kinase activity[22-23].  

SFKs are involved in multiple types of cancer and autoimmune diseases as a result of 

its important roles described above. The overexpression and/or mutation of the Src family 

tyrosine kinases (SFKs) has been observed in various types of cancers, including 

carcinomas of the lung, ovary, gastrointestinal tract, pancreas[24], and breast[4][25-27]. 

Besides, SFKs play roles in autoimmune diseases due to their involvement in the immune 

cell signaling[28-29]. While targeting Src for autoimmune diseases might be difficult due 

to the complex and sometimes conflicting signaling pathways and tissue-specific 

expressions[29], the development of Src inhibitors for several types of cancers has seen 
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encouraging progress. Two selective kinase inhibitors that target BCR-ABL are imatinib 

(Gleevec)[30][31] for chronic myelogenous leukemia (CML), and dasatinib for imitanib 

resistant CML. Those two inhibitors were approved by FDA. Allosteric inhibitors targeting 

BCR-ABL such as asciminib[32-33] that bind to the myristoyl-binding site has also 

reached phase III trial[34]. Several Src inhibitors have reached phase II or phase III testing, 

such as saracatinib that inhibits SRC  but failed in several phase II trials [35-38], bosutinib 

that inhibits SRC/ABL that is in ongoing, promising phase III trial[39-41]. Given that the 

published inhibitors in early stages from Pharma companies are not usually the most 

promising ones, it is likely that there are more SFKs inhibitors under development. A list 

of SFKs inhibitors, the target and binding site, the development stages, and PDB code if 

available, including these inhibitors described here, is in Table 1.1. 

Table 1.1 A list of BCR-ABL and SFKs inhibitors and the development stage. 

Inhibitor target Binding site PDB code stage 

imatinib BCR-ABL catalytic  FDA approved 

dasatinib SFKs, BCR-ABL catalytic 3GSD, 3QLG FDA approved 

saracatinib SRC catalytic 2H8H Phase II 

bosutinib SRC-ABL catalytic  Phase III 

asciminib BCR-ABL allosteric  Phase III 

  

1.2 Structures of Src Kinase and the Conformational Activation 

Non-receptor tyrosine kinase structures consist of regulatory domains and kinase 

domain. SFKs are about 60kD in molecular weight and have conserved domain 

organizations. The domain structures consist of a short SH4 domain, a unique region, SH3 

domain[42], SH2 domain[43], a catalytic domain (kinase) and a short C-terminal tail[44]. 

Each large region has about 40-70 (unique region), 50(SH3), 100(SH2) and 250 (kinase) 

residues respectively. A schematic representation is in Figure 1.1A. The regions and the 

residue numbering in c-Src are listed in  

 

Table 1.2. The two tyrosine regulatory sites Y416 and Y527 mentioned before are in 

the kinase domain and C-terminal tail respectively. SFKs associate with the cytoplasmic 

side of the plasma membrane via myristylation and palmitylation of the residues in N-
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terminal SH4 domain[45-46]. Gly 2 is a myristoylation site in SH4, and residue 3 is the 

palmitoylation site in Lck, Hck but does not exist in Src or Blk[44]. SH3 domain and SH2 

domain are regulatory units that recognize proline-rich regions[47] and phosphorylated 

tyrosine[48] respectively.  

The crystal structures of the down-regulated and active conformations of Src are 

available for both full-length protein (excluding SH4) and the kinase domain. The 

full-length Src structure is shown in Figure 1.1B. In the down-regulated form, the kinase 

is in an assembled form with the phosphorylated C-terminal tail forming an intra-molecular 

interaction with the SH2 phosphotyrosine binding pocket. The SH3 domain interacts with 

the proline-rich linker between SH2 and the kinase domain. The linker adopts a left-handed 

polyproline II helix conformation in the down-regulated form. Both SH3 and SH2 domains 

are at the back side of the kinase domain. In the active conformation where Y527 is 

unphosphorylated, the SH2 domain is released from the C-terminal tail, and the SH3 and 

SH2 domains have no interactions with the kinase domain. The relative orientation of the 

three domains also changes during the activation process, and the SH3-SH2 linker partially 

unfolds and extends to accommodate the domain movements.  

There are several functionally important conformational changes happening within the 

kinase domain during the activation indicated from the two forms of crystal structures. The 

downregulated and active kinase domain structures are detailed in Figure 1.1C. The two 

structures differ in three aspects, the C-helix orientation, the A-loop conformation, and 

the relative orientation of N-lobe and C-lobe, with the former two being the main 

differences. In the down-regulated form, the A-loop residues form a two-helical structure 

and reside between the N-lobe and the C-lobe, preventing binding in the catalytic site. In 

the active form, the A-loop unfolds and extends to a free loop structure, exposing the 

catalytic site for substrate phosphorylation. The C-helix orientation also alters between 

the two states. In the down-regulated form, the C-helix is out to be away from the cleft, 

exposing the catalytically important Glu310 in solution. In this conformation, E310 

interacting with R409 on the A-loop. In the active conformation, the C-helix rotates ~25º 

to bring the E310 to the cleft to interact with K295 and form a catalytic important salt 

bridge[49]. The details of the residue-residue interactions difference of the two forms can 
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be described in terms of a switched electrostatic network[50][51]. Finally, the lobe-lobe 

distance increases in the active state, resulting in a more open catalytic cleft.  

 

Table 1.2 The residue numbering of the domains in c-Src kinase.  

Region SH3 SH2 linker N lobe C lobe C-terminus 

Residue NO. 84-153 154-245 246-259 260-341 342-521 522-533 
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Figure 1.1 The SRC protein schematic and crystal structures. A: a schematic representation 

of SFKs structure, showing the domains and the C-terminal tail. B: the down-regulated and 

active full-length Src kinase. Left: the down-regulated form, PDB ID 2SRC. Right: the 

active form, PDB ID 1Y57. C: the Src kinase domain with the down-regulated form on the 

left and the active form on the right to show the structural difference between the two forms. 

Pink: the αC helix. Orange: the A-loop. Cyan: the N-terminal linker. The residues in the 

electrostatic network are shown in stick representation.  
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Part of 1.3, and 1.4 partially adapted with permission from “Protein Conformational 

Transitions from All-Atom Adaptively Biased Path Optimization” by Heng Wu and Carol 

B. Post, J. Chem. Theory Comput., 2018. Copyright (2018) American Chemical Society. 

1.3 Computational Methods for Conformational Transitions, and Computational Studies 

on Src 

Conformational transitions are fundamental to functions of many proteins[52-54], such 

as signaling proteins that convert between an enzymatically active and down-regulated 

forms, membrane proteins that transport molecules via open/closed forms, and molecular 

machines that couple chemical energy to molecular motion. Many conformational 

transitions are between states with disparate functionality and often tightly regulated for 

proper control of cellular processes, which highlights the importance of studying the 

transition processes. Computational methods are valuable for elucidating such transitions 

in atomistic detail not achievable by experimental observation. Mechanistic insights, and 

an understanding of molecular recognition or regulation of enzymatic activity can be 

gained from knowledge of a free-energy surface or free-energy profile along a pathway.   

Most functionally interesting protein conformational transitions are activated processes, 

and the timescales are typically longer than can be adequately sampled with current 

unbiased molecular dynamics (MD) simulations. Enhanced sampling methods are 

therefore required to overcome the free-energy barriers that separate different protein 

conformational states[55-57].  

Several of the most notable methods that utilize features of the transition to efficiently 

explore relevant regions of the conformational space are reviewed here. 

Metadynamics[58-60] explores multidimensional free energy surface (FES) by defining a 

few collective coordinates. A sampling history-dependent potential energy term, or, 

adaptive biasing potential, fills minima on the FES to allow the efficient exploration of the 

FES. Adaptive biasing force[61-62] evaluates the derivatives of the free energy with 

respect to both Cartesian coordinates and time for free energy calculations based on 

thermodynamic integration. It works that when the force acting on the coordinate of interest 

(defined as instantaneous force) is subtracted from the equation of motion, the acceleration 

along the coordinate becomes zero. The potential of mean force is calculated once the 

simulation is completed by integrating the derivatives. It is simple to use for complicated 
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order parameters and straightforward to implement under the available simulation 

framework. Milestoning[63] defines a sequence along the reaction coordinate as 

milestones and launches short trajectories at each of the milestone hypersurface. The 

trajectories are terminated when for the first time they reach one of the neighboring 

milestones. Then the probability densities of the short trajectories along the reaction 

coordinates are calculated. Accelerated MD[64] adds a continuous non-negative bias boost 

potential to the true potential when the true potential is below a threshold value. This results 

in an enhanced escape rate for the modified potential and accelerate sampling on the free 

energy surface rather than stay at a local minimum.    

Path-directed approaches seek to specify the transition pathway between two known 

states, A and B, using a series of images to define the pathway through a space of a reduced 

set of variables. Evolution to the optimal pathway in most cases involves restrained 

sampling near the images. The finite temperature string method[65], implemented with 

restraints in the hyperplanes, or with swarms of trajectories[66], or with umbrella sampling 

underlies many of these techniques to find the minimum free-energy path[67]  or maximum 

flux transition path[68]. 

Src catalytic domain activation features αC helix displacement and A-loop extension. 

The atomic details are not readily accessible by experimental techniques. Also, the 

transition is not easily accessed by conventional computational methods due to the high 

free energy barrier between the two states. Several studies indicate that calculating the Src 

activation transition using long simulations very likely exceeds the current simulation 

computation power[69-70]. Unbiased long simulations suggested an allosteric network 

underlying kinase regulation, involving the key structural elements in Src kinase domain, 

including αC helix, the regulatory spine (R spine), the catalytic spine (C spine), the HRD 

motif and several loops[70].   

Accelerated sampling methods have been applied to study the conformational transition. 

A simulation using string method with swarms of trajectories identified the activation as a 

two-step process with A-loop opening followed by αC helix rotation[71]. The DFG-flip 

conformational transition was characterized using the same method combined with 

umbrella sampling[72].  A Markov state model was built to understand the kinetics of the 

transition[73], while the main features of the MSM transition path was studied by a 
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transition path theory framework[74]. Umbrella sampling was used to explore the free 

energy landscape of the active form, and the structural features like the regulatory spine(R-

spine), HRD motif, and the electrostatic switch were analyzed[75]. A connectivity map 

was built from simulations to show the Src family member (Hck and Lck) conformational 

activation and identify intermediate states[76]. While the above summarized simulations 

mostly focus on the kinase domain, a simulation using mutations emphasized the 

importance of the linker connecting the SH2 and kinase domain[77]. Besides, full length 

Src activation was studied by a combination of string methods and umbrella sampling[78]. 

While these simulations provide valuable insights into the activation process, an initial path 

is often required for the calculation. Also, statistical methods were utilized to build the path 

from discontinuous simulations in several cases, while a continuous activation process is 

not observed.  

Several questions remain unclear in the Src conformational transition process. The first 

is the order of events that happen along the transition path. It is not clear that during the 

inactivation process, if the A-loop folding happens before or after the αC helix rotation. It 

is explicitly stated in several studies that the αC helix rotation happens before the A-loop 

folding[71][74][76] during the inactivation. For other studies, this order of events is not 

explicitly discussed. The SFK Lyn kinase transition path built by MFTP suggested that the 

αC helix rotation happens after the A-loop folding and locks the two-helical A-loop 

conformation[79]. Further examinations would be needed to solve this inconsistency. 

Second is the structural information along the transition path. Previous results either have 

the structures from trajectories launched from a pre-determined path[71], or have the path 

built from short trajectories using statistical methods[74], or a combination of both[80], 

while a continuous and unrestrained path is not observed. Third is that the function of the 

Src regulatory domains and how they affect the kinase domain transition are not clear. Most 

of the reviewed works use the Src kinase domain starting from residue 260[71-72] 

[74-76][80]. The roles of the linker in Src activation regulation will be inspected in our 

work. 



26 

 

1.4 A brief introduction on adaptively biased path optimization (ABPO) 

The ABPO methodology was developed and described in detail in reference[81] and is 

summarized here. ABPO uses an adaptive biasing potential in an iterative scheme to evolve 

an initial path to the optimal principal path connecting two pre-determined stable states by 

following the formula of the string method[65][82]. Unlike the string method where an 

initial path with structures along the path is required and the sampling is restrained to the 

initial path, ABPO does not start from an initial path and no restraints are required. The 

path is optimized through a reduced variable (RV) space and parameterized by  with  

varying from 0 to the total length of the curve.  indicates the position along the path, and 

when normalized,  ranges from 0 to 1 from one state to the other. Multiple trajectories are 

launched from each end state and visits along a path defined with initial RV values are 

accumulated with a histogram. The histogram records the number of samplings on the 

positions along the path and is a function of both  and the simulation time t, and is denoted 

as h(, t).   

Path optimization proceeds in a set of cycles to update the position of the path and 

re-parameterize . In each cycle of the computation, the path is evolved according to 

the mean RV position of the trajectories associated with the hyperplane perpendicular to 

the path at each [67]. At the end of each cycle, the optimized path is updated to the mean 

position of the sampling on each hyperplane for each  along the path.  

An adaptive biasing potential[83] is constructed on the path to accelerate sampling 

along the path through the reduced-dimensional space. There are no restraints to localize 

trajectories to the path.  The sampling is further facilitated by computing multiple 

independent trajectories in parallel (replicas) to determine the mean position for a cycle. 

The replicas have identical initial coordinates and simulation parameters, and they only 

differ in the initial velocity for the atoms. The replicas are used to enhance the sampling 

along the path. 

ABPO accelerates the sampling in the region surrounding the path by adding the bias 

potential 𝑉𝑏[83] at point  on the path. The bias potential, up to an arbitrary constant, is  

 𝑉𝑏(, 𝑡) = 𝑘𝐵𝑇
𝑏

1−𝑏
ln⁡[𝑐(1 − 𝑏)ℎ(, 𝑡) + 1] (1.1) 
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The histogram ℎ(, 𝑡) counts visits to the region around  over time t, b is the fraction of 

the free energy that is flattened by the bias, c controls how the bias couples to the dynamics 

and has inverse time units, kB is the Boltzmann constant, and T is temperature. The bias 

potential at increases with visits so the region is ‘flooded’ on the potential energy surface. 

The gradient of Vb is an ensemble average and well converged. For details on the gradient 

of Vb and a discussion of its convergence in the integration to propagate trajectories, the 

reader is referred to references[81][83] , where it was also shown that in the limit b1, 

equation 1 reduces to the potential for standard metadynamics[83].   

The only positional restriction in ABPO is a one-sided harmonic tube-wall potential to 

limit the sampling within a tube-shaped space around the path. The tube potential 

constructs a conformational space that has a distance R from the current path. The sampling 

is only allowed within the distance R from at least one point on the path[81] to discourage 

sampling far away from the current path that would not help with updating the current path. 

This tube potential is proved to be necessary and would improve the path optimization 

efficiency. A schematic representation of the construction of the tube is shown in Figure 

1.2. The two ends of the tubes are modeled as hemispheres to avoid sudden change in tube 

potential. 

 

 

Within each cycle, the trajectories proceed in blocks. At the end of each block, the 

histograms from all replicas are pooled together to check if the combined sampling at each 

slice has reached a pre-set minimum threshold. The cycle is terminated when the threshold 

A B

Figure 1.2 A schematic representation of the tube defined around the path. Point A and B 

indicate two state on the free energy surface, and the black line shows a path connecting 

the two states. The green area shows the tube space around the path.  
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is reached, and the path is updated to the mean RV position of the replica ensemble for 

each hyperplane. Another cycle is started with reinitialized histograms, and cycles 

continued until the path is converged based on the distance between the current path and 

previous paths.  At convergence, the path is the principal curve through RV space 

connecting the two end states. A flow chart of ABPO simulations in execution is in Figure 

1.3.  

 

 

 

 

 

Figure 1.3 A flow chart for ABPO simulations. The path is updated through cycles, and 

within each cycle, the simulation progresses with blocks. The convergence of the 

simulation is checked to determine when to end. 

 

The free energy for each slice, up to an additive constant, is obtained from the 

converged path and the histograms that contain only information for this final path.  The 
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PMF 𝐴(, 𝑡) [83] at the principal curve is computed from the combined histogram 

according to the following equation: 

 𝐴(, 𝑡) = −𝑘𝐵𝑇
1

1−𝑏
ln⁡[ℎ(, 𝑡)] (1.2) 

With this equation, the PMF is calculated from the sampling history ℎ(, 𝑡) along the path. 

This approach to estimate free energy from the dynamics accumulated with the bias 

potential (equation 1.2) was introduced previously[83][84], where was also shown that b 

specifies the percentage of the free energy canceled by the bias potential 

(  1( , ) ,   bA t b V t ). Equation 2 limits b to values less than 1.0; when b1, A(,t) 

diverges. Similar divergence behavior exists with metadynamics computation[85-86]. 

ABPO implementations have used b values of 0.8 to 0.9. 

 Compared with the aforementioned computational methods that accelerate sampling, 

ABPO has several advantages. First, an initial path that might be unphysical between the 

two states is not required. The transition path can be built from trajectories initiated from 

the two end states. Second, the sampling is unrestrained on the free energy surface, except 

the tube wall potential to restrict the sampling within a certain distance. This tube wall 

potential has been proven to be necessary; it reduces sampling on the plane perpendicular 

to the path, and encourages sampling in the direction of diffusion along the path. The lack 

of such potential might lead to computational time wasted on sampling far from the path 

and failure in identifying the optimal path. Third, the sampling is enhanced by launching 

multiple replicas in addition to the adaptive biasing potential, which further improves the 

optimization speed. 

1.5 Outline of the Thesis 

The aims of this thesis are to 1) develop a methodology to build protein conformational 

transition pathways, 2) elucidate protein-ligand interactions using simulations and 

molecular docking. The ultimate goal is to facilitate structure-based drug design efforts 

targeting protein kinases. To achieve the aims, in Chapter 2, we report applying ABPO to 

three all-atom systems with relatively small transitions in response to ligand binding. Two 

systems have a local loop flipping, and the third system experiences a helix displacement. 

As introduced in Chapter 1.4, ABPO works in reduced variable space. Therefore, we 



30 

 

explore the methods to define proper reduced variables for each type of transitions. We 

analyze the transition paths for the three systems and recover the potential of mean force 

(PMF) profiles along the paths from the sampling. In Chapter 3, we describe the Src 

all-atom conformational transition path from ABPO calculations. We analyze the reduced 

variables and the structures along the transition path. Also, we identify the main free energy 

barrier along the path and determine the functions of the key residue. In Chapter 4, we look 

at how Src kinase domain interacts with its substrate. We use long, unbiased molecular 

dynamic simulations to study the protein-peptide complexes behavior in both explicit and 

implicit solvent. The protein and ligand backbone dynamics behavior are reported, and the 

protein-ligand interaction energy profiles are analyzed. In Chapter 5, we use molecular 

docking to model Src regulatory SH2 domain-flexible molecule complexes, and Src kinase 

domain-substrate peptide complexes. Glide is used for docking, and several types of 

techniques are reported to improve the performance of modeling the complex. The main 

issues in flexible molecule docking are also discussed. Finally, in Chapter 6, we summarize 

our work and provide future directions for this thesis.  
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CHAPTER 2. SMALL-SCALE PROTEIN CONFORMATIONAL 

TRANSITIONS FROM ALL-ATOM ABPO 

Adapted with permission from “Protein Conformational Transitions from All-Atom 

Adaptively Biased Path Optimization” by Heng Wu and Carol B. Post, J. Chem. Theory 

Comput., 2018. Copyright (2018) American Chemical Society. 

2.1 Introduction 

Adaptively biased path optimization (ABPO) is an approach[81] to optimize 

conformational transition pathways by constructing the adaptive biasing potential 

introduced in reference[83] in terms of a one-dimensional path in a reduced-variable space. 

The path is evolved with trajectories determined from the gradient of the adaptively biased 

potential and without restraints that localize the trajectories to the path.  The path is 

optimized according to  the description of the finite temperature string[65][82], and 

proceeds iteratively by updating the path variables according to the mean position of 

trajectories in cross sections, or hyperplanes orthogonal to the path at the images.  The 

ABPO methodology differs from other path methods by allowing unrestrained sampling 

along the path rather than performing a linearly restrained path search. An adaptively 

biased potential is constructed on-the-fly to enhance the sampling along the path, without 

employing restraints, which are thought to potentially impede convergence or be difficult 

to sample[62][87]. Further, the approach does not require the generation of initial structures 

at specified positions along the path to initiate the computation as is needed by approaches 

that utilize restrained images in discretizing the path.  Such initial structures could be 

unphysical and lead to instability or poor convergence when trying to move the system to 

the optimal pathway.  

A first step of transition path optimization is to define the reduced variables that 

adequately capture the structural changes necessary and sufficient for the transition. We 

use the term “reduced variable” to reflect the low dimensionality of the space in which the 

pathway is determined rather than the previously used term “collective variable”[81] 

[88-89] to avoid inference of a collective motion being involved in optimizing the transition. 

The simplification afforded by using a reduced dimensionality for defining a path in a 
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complex conformational space has been appreciated for some time[90]. Four types of 

geometric reduced variables have been typically used: internal distances[58] or a linear 

combination[79] thereof, angles[91], and torsion angles[58][92]. The choice of reduced 

variables is a critical step for achieving a converged pathway but remains an ill-defined 

step in practice. 

ABPO was introduced[81] using a Gō-model[93-94] and applied[81] to define the 

pathway for conformational activation of Lyn kinase, a Src-family protein tyrosine kinase. 

The Gō potential models a protein at the residue level with a single Cα position representing 

each residue, compared with an all-atom model, which includes greater than ten times more 

particles for the protein molecule.  An important result of this earlier study was that the 

transition between down-regulated and activated conformations of Lyn obtained by ABPO 

and the maximum flux transition path (MFTP) method[79] were mechanistically similar. 

This direct comparison of the two computed pathways determined independently, using 

different computational approaches, gives confidence in the pathway. In addition, 

convergence of the pathway was achieved using ABPO with a 4.5 times smaller 

computational cost, demonstrating the efficiency of the ABPO method. Examination of the 

pathway found that the conformational changes contributing to the highest free-energy 

barrier were associated with the rotation of helix C, and thus provided a physical rationale 

for a large number of structurally diverse, kinase regulatory complexes for which the 

mechanism of the regulation was not always apparent from the crystal structure alone[79].  

Here, the application of ABPO is extended to an all-atom description of the protein systems. 

How well ABPO can sample with the increased resolution and ruggedness of an all-atom 

force field has not yet been reported. Exploration of a higher resolution energy surface 

requires an appropriate choice of reduced variables that define the transition pathway 

keeping in mind that an atomistic model offers many additional descriptors of the transition 

beyond those specified in terms of only Cα positions. We examine conformational 

transitions with biological relevance in three protein systems (Figure 2.1): triose phosphate 

isomerase (TIM) has a flexible loop that closes when the protein is bound to a ligand[95]; 

dihydrofolate reductase (DHFR) has a loop that can adopt open and occluded forms in two 

states[96];and estrogen receptor has a helix that adopts two distinct positions when the 

protein is bound to an agonist or an antagonist[59][97]. For each system, distance-based or 
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torsion-angle-based reduced variables were identified from equilibrium trajectories. We 

discuss the choice of reduced variables, which is a critical step for path sampling methods. 

ABPO was launched to obtain the transition path between the two states. Our results 

suggest that ABPO works efficiently to converge an optimized transition pathway using an 

all-atom description of the protein systems. The all-atom transition pathways for the three 

systems identified from the simulations are described. 
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Figure 2.1 The conformational transitions of the three systems, illustrated in ribbon 

representation, are shown with opaque ribbon for the region of the transition. 

Zoomed-in views of the transition regions are at the bottom. The residues in stick 

representation in the zoomed-in views have disparate - distributions in the two 

end states, as detailed in the results for each system. A: triose phosphate isomerase 

(TIM) transition of residues 166-176, including loop6. Cyan: open form, PDB ID 

8TIM; orange: closed form, PDB ID 1TPH. B: dihydrofolate reductase (DHFR) 

transition of residues 9-24, including Met20 loop. Cyan: open form, PDB ID 1RA2; 

orange: occluded form, PDB ID 1RX7. C: estrogen receptor α ligand binding 

domain (ERα LBD) transition of residues 528-550, including helix12. Helix 4, 6, 

and 11 that interact with H12 are labeled. Cyan: antagonist-bound form, PDB ID 

3ERT; orange: agonist-bound form, PDB ID 1QKU. 
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2.2 Methods 

2.2.1 Simulation systems  

TIM is an enzyme in glycolysis that catalyzes the reversible conversion of 

dihydroxyacetone phosphate to glyceraldehyde 3-phosphate. Loop 6, a flexible loop that 

contacts the active site (Figure 2.1A), is in a closed state when TIM is bound with a ligand, 

and in an open state on average in the absence of ligand. The transition between the two 

states is a key feature of the catalytic function of the enzyme by allowing substrate access 

to the active site in the open state while excluding water in the closed state[98-100]. Here 

we modeled the transition pathway between the two states using ABPO. 

DHFR is an enzyme that reduces dihydrofolate to tetrahydrofolate. The Met20 loop 

adjacent to the active site is highly flexible (Figure 2.1B)[101], and immobilizes NADPH 

to promote the transfer of hydride from NADPH to dihydrofolate. Three Met20 loop 

conformations have been observed in various crystal structures, distinguished depending 

on if the active site is open, closed or occluded by the loop[96]. Met20 loop conformational 

flexibility is closely linked to the function of the enzyme given its alternating positions that 

either occlude or stabilize NADPH in the active site[101]. Here we study the transition 

between the open and occluded states, which is the largest conformational transition among 

the three states. The DHFR loop motion is more complex by involving more than a single 

peptide-bond motion. 

ERα is a member of the nuclear receptor (NR) superfamily. Dysregulation of NR 

signaling often results in diseases such as cancer, diabetes, infertility and obesity. 

Specifically, ERα overexpression is often identified in breast cancer, and various studies 

have established ER as one of the therapeutic targets in breast cancer[102-103].  

The NR superfamily structure comprises three domains, and the ligand-binding domain 

(LBD) is the focus of our study. The NR LBD structure is highly conserved with eleven α-

helices packing into a three-layer sandwich motif (Figure 2.1C). In ERα LBD, only H12 

on the C-terminus is highly dynamic.  

H12 is an essential element in ERα function by serving as a gate to regulate the binding 

of coactivators[104]. When LBD is bound to an agonist, the H12 gate is positioned to form 

the coregulatory surface that binds coactivators to activate downstream signaling for gene 

transcription. When LBD is bound to an antagonist, H12 adopts a new conformation, and 
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is positioned in the coactivator binding site, prohibiting the activation of the receptor[104].  

NMR studies[105-107] show that the unligated forms of NR LBDs are conformationally 

dynamic, and the motions of LDB occur on a ms timescale.  

2.2.2 Simulation details 

Three systems, each in two states, are from the PDB entries 8TIM, 1TPH, 1RA2, 1RX7, 

1QKU and 3ERT. Missing atoms, including all hydrogens atoms, were added to the set of 

coordinates retrieved from the PDB using the IC BUILD facility of CHARMM[108]. All 

crystal water molecules and ligands were removed. Simulations of the proteins were carried 

out using the CHARMM22 all-atom force field with CMAP dihedral angle 

corrections[109-110]. Unless stated otherwise, the solvent was modeled by the implicit 

solvent model FACTS[111] . It has been established that the structure and dynamics of 

single-domain, globular proteins are accurately reproduced with FACTS by comparison 

with explicit water TIP3P[112]. As the preparation steps for ABPO, we first performed 

energy minimization on the two structures for the end states of the transition. The energy 

was minimized using the steepest descent and Powell algorithms to a gradient less than 1.0 

in the following stages: 1) with the position of protein heavy atoms fixed, 2) with harmonic 

restraints on protein heavy atoms, 3) with harmonic restraints on protein backbone (N, C, 

Cα) atoms, and 4) without restraints. 

The energy-minimized structures were heated from 100 K to 300 K and equilibrated at 

300 K over a total period of 500 ps. The initial velocities were generated from Gaussian 

distributions at the specified temperature. The leapfrog integrator was used to calculate the 

trajectories with a 2 fs time step.  

A 10-ns simulation was initiated using coordinates from the equilibration run and 

Langevin dynamics with a temperature of 300 K, with long-range interactions cutoff 

distances set to 10, 12 and 14 Å. Coordinates were saved every 2 picosecond. The time 

series of temperature, potential energy, and heavy atom RMSD with respect to the energy-

minimized structure were monitored to assess the simulations were stable.  

A “closest-to-average structure” is a frame taken from the trajectory in place of a 

structure generated from the statistically averaged coordinates, which are often unphysical 

even after energy minimization. The closest-to-average structure was generated from the 
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last 4ns of the trajectories and used to define the distance RVs, to set values for the RVs at 

the end states and initiate the ABPO simulations. The coordinates averaged over the last 

4 ns of the unbiased MD were compared to coordinates of each frame. The frame with the 

minimum heavy-atom RMSD with respect to the average structure was extracted from the 

trajectory as the closest-to-average structure.  

2.2.3 ABPO parameters 

The transition pathways were computed using the ABPO module in CHARMM.  

ABPO is an implementation of the path optimization and calculation of path free energy 

based on the bias potential in equation 1 and its gradient[81]. The number of replicas, the 

tube radius (R), the number of blocks per cycle, time steps per block, number of cycles and 

total simulation time for each system are summarized in Table 2.1. The effect of R on 

sampling efficiency and the free energy along the pathway are discussed in 2.2.3. 

In all simulations, a time step of 2 fs was used. Langevin dynamics was used with a 

temperature of 300K. From equation 1, the fraction of the free energy cancelled by the bias 

potential, b, was 0.8, and the coupling of the bias to the dynamics, c, was 2.5 t-1.  The 

histogram for visits to path slices are smoothed using a Gaussian mollification factor set to 

0.05. The number of slices are indicated in the plots for each path. The parameter values 

for the radius and force constant in the tube-wall potential[81] were chosen to enable 

efficient sampling; transition paths with more complex RVs require a larger radius.  For 

the paths specified by dihedral RVs, the tube radius was 0.2 and 0.4 rad, and the force 

constant was 15 and 5 kcal/mol for TIM and DHFR transitions, respectively.  For the 

distance-based RVs of ERα LBD, the tube radius was 10 Å and force constant 5 

kcal/mol/Å2. Ref[81] provides guidance for setting ABPO parameters. 

Here, the initial paths were discretized to a set of linearly interpolated points between 

the two end-state values of the RVs.  The end-state values were set equal to the population 

average from the distributions obtained in an unbiased simulation of the two known forms 

of the protein. The number in the set, or number of slices, varied depending on the 

complexity of the transition path.  Initial coordinates to launch ABPO for path optimization 

are needed only for the end states; no coordinate sets are required at intermediate points of 

the path.  The closest-to-average structure from the unbiased simulations were used for 
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end-state initial coordinates to start multiple trajectories running in parallel to accumulate 

sampling information to adapt the bias potential (Equation 1.1).  

The string method[67][82] followed here to describe the evolution of the path includes 

a metric tensor, D, with the dimension of a diffusion coefficient.  D was evaluated with 

equation 2 in reference[81], with averages estimated from short unbiased simulations at 

each end state and the inverse of D stored for input to ABPO optimization and free energy 

evaluation.  As such, D is assumed to be approximately constant, which was verified by 

comparison of the elements computed at each end state and finding that the elements are 

acceptably close in value. For TIM and DHFR, D was evaluated from unbiased simulations 

over 100 ps with a 2 fs timestep.  For ER LBD, D was evaluated from unbiased 

simulations over 2 ns with a 2 fs timestep. 

Distance combination RVs 

A combination of individual inter-atom distances[79] was calculated using equation 

(2.1). For a distance combination RV with n individual inter-atom distances, Z is the 

combined value, 𝑟𝑗
𝑠𝑡𝑎𝑡𝑒 is the inter-atom distance of residue pair j in the state. 

𝑍 = ∑
𝑟𝑗
𝑠𝑡𝑎𝑡𝑒1−𝑟𝑗

𝑠𝑡𝑎𝑡𝑒2

|𝑟𝑗
𝑠𝑡𝑎𝑡𝑒1−𝑟𝑗

𝑠𝑡𝑎𝑡𝑒2|
𝑟𝑗

𝑛
𝑗=1                                                                                                                              (2.1)  

For all simulations, a time step of 2fs was used. Langevin dynamics was used with a 

temperature of 300K. The simulation details for each system are summarized in Table 2.1. 

Tube potential effect on sampling efficiency and free energy of the path  

The tube potential is a harmonic restraint to restrict the sampling of trajectories within 

a distance, R, of the closest point on the path.  The choice of R should be large enough to 

allow a degree of exploration that finds alternative channels in the energy surface.  R affects 

not only the sampling efficiency for optimization, but can also impact the entropic 

contribution computed from an ABPO final optimized path if the tube is more narrow than 

the actual reaction channel for the transition[81].   

For the three conformational transitions of this study, the choice of R was made based 

on the efficiency of the pathway moving away from the initial path and toward a well 

converged path.  Too small a value for R can limit the possibility of exploring multiple 

channels on a rugged surface and the path does not evolve, while too large a value can slow 

the progress of converging the path position.  R was varied to define a value such that 
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trajectories traveled along the path and the path moved in the reduced-variable space in an 

acceptable amount of simulation time.  An example for varying R in the case of the DHFR 

loop transition, with main-chain dihedral-angle reduced variables, is shown in Figure 2.2. 

For the R values 0.8 and 0.6 the time progress of A_RMSD is deemed too slow, while the 

convergence rate with 0.4 is acceptable. 

 

 

Figure 2.2 The tube radius, R, was varied to determine its effect on the rate of convergence 

of the ABPO calculation. When R is large, the A_RMSD against the last cycle is 

consistently large so that more cycles are required for the calculation to converge as a result 

of larger RV space surrounding the path. 

 

Whether the tube is too narrow to accurately capture the entropic contribution to the 

free energy of the transition path can be explored by varying the value of R when 

accumulating histogram information from the final path (Equation 1.2).  The possibility of 

R limiting an entropic contribution to the FE was tested for the transition of ER LBD and 

the results are shown in Figure 2.3. 

  

R=0.8 R=0.6 R=0.4
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Figure 2.3 R was altered in the ABPO cycle to compute the PMF from the optimized path 

of ER LDB for the purpose of detecting affects due to a possible entropic contribution; 

higher entropy manifests as a broad reaction channel. A reaction channel broader than the 

tube width would lead to an inaccurate free energy profile, and a larger R would be needed 

to accurately capture the entropic effect.  We observe that varying R from 5 to 15 Å has no 

substantial effect on the PMF. The three PMF profiles have the same shape and a single 

peak at a similar slice index along the path.  Thus, these tube widths adequately capture 

entropic contributions to the path free energy. 

  

R=15 R=10 R=5
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2.2.4 Data analysis  

A_RMSD 

To validate convergence in ABPO, we define A_RMSD as follows: 

𝐴_𝑅𝑀𝑆𝐷 = ∑
√∑ (𝐶𝑦𝑐𝑙𝑒𝑖𝑗

𝑛𝑢𝑚−𝐶𝑦𝑐𝑙𝑒𝑖𝑗
𝑙𝑎𝑠𝑡)

2
𝑛
𝑗=1

𝑛

𝑁
𝑖=1                                                                                 (2.2) 

In this equation, N is the number of RVs, n is the number of slices, 𝐶𝑦𝑐𝑙𝑒⁡𝑖𝑗
𝑛𝑢𝑚 is the RV 

value for the ith RV on the jth slice at the end of the cycle num. 𝐶𝑦𝑐𝑙𝑒𝑖𝑗
𝑙𝑎𝑠𝑡 is the RV value 

for the ith RV on the jth slice from the last cycle. If there are S cycles in total, we compare 

the RV values of the last cycle (S) to the previous cycles (1 to S-1) and calculate A_RMSD 

for each point 1 to S-1 and plot the data. The curve should first decrease and go flat at 

convergence. 

Normalized RV  

We used equation (2.3) to calculate the normalized RV value for a RV for each slice 

along the path. For each RV, RVstate1 and RVstate2 are the RV values for the two end-states 

respectively, while RVi is the value on the ith slice.  

𝑅𝑉𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
(𝑅𝑉𝑖−𝑅𝑉𝑠𝑡𝑎𝑡𝑒1)

(𝑅𝑉𝑠𝑡𝑎𝑡𝑒2−𝑅𝑉𝑠𝑡𝑎𝑡𝑒1)
                                                                                                         (2.3) 
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Table 2.1 The ABPO simulation details for each system. 

System NO. of 

cycles 

NO. of 

replicas 

Time step

s per block 

Blocks1 

per cycle  

Blocks2 

per cycle  

R3  Path optimization 

time (ns) 

TIM 50 4 20,000 2-3 1-2 0.2 15.84 

DHFR 100 4 20,000 2-3 1-2 0.4 24.64 

ERα LBD 70 16 30,000 25 7 10 989.76 
1 at the beginning of ABPO 

2 near convergence of ABPO 

3 tube radius 
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2.3 Results and Discussion 

2.3.1 TIM 

As for any path-transition computational method, a first step is to identify RVs that 

capture the motion and are effective for sampling the transition. A natural choice of reduced 

variables for transitioning between open and closed positions of a short loop is the main 

chain torsion angles,  and , that distinguish the two forms. We defined the torsion angles 

 and  from simulating the open (PDB ID 8TIM) and closed (PDB ID 1TPH)[95] forms 

of TIM shown in Figure 2.1A for 10 ns to obtain the equilibrium distribution of - torsion 

angle values for the loop residues 166-176 at each end state. Only two residues showed 

distinct - distributions with less than 5% overlap in the populations from the two forms 

(Figure 2.4A and B). Based on these populations, we defined  of residue 170 and  of 

residue 171 to be the reduced variables for the transition pathway, and set the end-state 

path values close to the population average of the equilibrium distribution. The other 

residues in the loop had overlapping dihedral angle distributions in the two states (Figure 

2.5) and were therefore not selected to be a reduced variable.  

To convey the structural nature of the transition, we note that residues 170 and 171 are in 

the middle of the loop (Figure 2.1A), and not at the end of the loop as expected for a hinge-

like motion. Examining the - plot, we find that the loop closes by the two central residues 

acting as a single switch involving rotations of the dihedrals flanking the intervening 

peptide bond.  

The initial path was set up as follows. The dihedral angle values for 170 and 171 at 

the two ends of the pathway were set equal to the population average values (Table 2.2) 

determined from the distributions generated with unbiased simulations of the open and 

closed forms of TIM (Figure 2.4). The initial transition path was a set of 200 linearly 

interpolated points between each of the two end-state RV values. The combined set with 

the two RVs defined the initial 200 hyperplanes perpendicular to the curve.  
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cycle	50

y170

f171
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Figure 2.4 TIM transition path results from all-atom ABPO. A and B: Distributions of 

, angles for residues 170 and 171 show distinct populations in the open and closed 

forms of TIM. Each dot represents a frame in the 10 ns trajectory. Cyan: open form; 

orange: closed form. C and D: normalized values for the two RVs at each slice 

(hyperplane) of the path evolving from cycle 1 to cycle 50. E: the two RVs of the ABPO 

calculation plotted together for each cycle to show progress and convergence of the path 

optimization. F: A_RMSD (see Methods) of the path at each cycle compared to the final 

path at cycle 50. The plateau near zero further demonstrates convergence of the 

simulation. 
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Figure 2.5 - distributions for residues 166-176, except 170-171, for the open (cyan) and 

closed (orange) states of TIM from 10 ns equilibrium simulations. For the residues, the two 

states have highly overlapping dihedral angle populations sampled, and therefore are not 

good choices as the reduced variables for ABPO computations. 
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Table 2.2 The values in degree for torsion-angle RVs obtained from the close-to average 

structure of the MD simulation of the end states 1 and 2. 

System TIM DHFR 

Torsion angle 170 171 14 18 19 

State 1 -50.1 -56.0 -7.6 169.0 119.6 

State 2 117.4 76.0 133.1 -13.9 -31.0 

 

The ABPO computation was initiated with coordinates of the ‘closest-to-average 

structure’ of the unbiased simulations, defined by the minimum heavy-atom RMSD to the 

population-average structure (see Methods). The closest-to-average structure has 170 and 

171 values near the population average values. Multiple trajectories were computed with 

adaptive bias starting from the two end states as described above and in methods. 

The ABPO approach generated a good transition path for the loop motion of TIM.  The 

effectiveness of the bias potential (Equation 2.1) constructed along a path specified by the 

two RVs, 170 and 171, is evident from the observation that the unrestricted trajectories 

freely sample along the path; each replica traverses nearly the full  range (shown in Figure 

2.6).  The evolution of the two RVs along the transition path between the two states is 

shown in Figure 2.4C and D. From the plot, the transitions of the two dihedral angles do 

not occur simultaneously. Starting from the open state (slice 1) and moving to the closed 

state (slice 200), the transition of 171 occurs first, followed by the 170 transition to 

complete the transition. How the two RVs of the transition path evolve together from the 

first cycle to the final cycle can be seen in the two-dimensional RV plot (Figure 2.4E). 

Based on the RV evolution along the pathway, it is concluded the optimization converged 

quickly after about 15 cycles. To further examine convergence of the ABPO results, we 

compared the path at each cycle to the final path from cycle 50 by evaluating A_RMSD 

(see Methods). The results are shown in Figure 2.4F as a function of cycle index. The 

plateau with values near zero after 15 cycles further establishes good convergence of the 

path. A PMF plot from the final cycle has two low free energy barriers between the two 
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states equal to ~2.5 and 1.5 kcal/mol respectively (Figure 2.7A), which is consistent with 

the short convergence time. 

 

Figure 2.6 An illustration of the unrestricted sampling along the optimized path by ABPO 

trajectories. The visits of individual replicate trajectories to slices  parameterizing the path 

length are plotted as a function of simulation time.  The path sampled here is the optimized 

path for the loop motions of TIM (left) or DHFR (right). The bias potential is effective at 

enhancing sampling along the full path. 

 

  

A BTIM DHFR

open closed open occluded

Figure 2.7 PMFs for the TIM and DHFR conformational transitions for the paths obtained 

using the defined RVs and ABPO. A: PMF from cycle 50 for TIM. Two barriers are shown 

in the PMF, corresponding to rotation of each of the two torsion angle RVs. The minimum 

number of visits to each slice was set to 200. B: PMF from cycle 100 for DHFR. One major 

barrier is observed. The smaller peaks are due to the noise of the PMF. The minimum 

number of visits to each slice was set to 500. 
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2.3.2 DHFR 

As in the case of TIM, the structural difference between the two states of DHFR is the 

position of a loop (residues 14 to 19, Figure 2.1B), and therefore we looked to define 

dihedral angle RVs for the DHFR conformational transition. This reasoning that the 

backbone torsion angle RVs should be good descriptors of the localized loop transition is 

sound; however the selection of angles was not as straightforward as for the TIM loop.  

ABPO reduced variables for Dihydrofolate Reductase (DHFR) loop transition 

The - distributions for the DHFR residues 9-24, which includes the loop residues 14 

to 19 plus a few residues at each end, were determined from 10-ns simulations of the two 

end states starting from the crystallographic coordinates (PDB IDs 1RA2 and 1RX7)[96].  

Four residues, 14, 15, 18 and 19, showed distinct - distributions (Figure 2.8A) while all 

other distributions had overlapping populations (Figure 2.9). The main chain dihedral 

angles differ at the ends of the loops for residues 14,15 and 18,19, as anticipated for a 

hinge-like motion and in contrast to the TIM loop.  

Based on the distinct populations observed in - distributions (Figure 2.8A), we first 

defined four RVs to conduct the ABPO calculation: 14, 15, 18, and 19. The alternate 

conformations of DHFR differ in both  and  populations for residue 15; however, 15 

was chosen and 15 was not because of the overlap in the 15 sampling in the two states. 

The end-state path values were set to the population averages of the distributions shown in 

Figure 2.8A. Nonetheless, the four-RV bias potential did not lead to a transition path 

between the known end-states using the unrestrained ABPO computation. The ABPO 

simulations converged in 100 cycles, but to a path that lacked transition of 14 and 15 as 

shown in Figure 2.10A. It is noted that the ABPO trajectories were launched from both end 

states and sampled the range of 14 and 15 values in initial ABPO cycles, but converged 

to a path with values corresponding to only one of the end states along the path. That is, 

using unrestrained ABPO the normalized RV value of 14 and 15 did not transition 

between 0 and 1 in the final cycle (Figure 2.10A).  

We reasoned that additional features beyond the four RVs were needed for the 

transition and added 15 to the set of RVs, constituting a five-RV case. Still, the 

unrestrained ABPO with this set of RVs did not converge to a path with transition for all 
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dihedrals with distinct populations. In the five-RV path shown in Figure 2.10B, 15, 18, 

19 transition between one state and the other, while in the converged path (dark blue 

curves) 14 showed an incomplete transition and 15 remains in the vicinity of one state 

over the length of the optimized path. All major structural differences of the backbone -

 angles between the two states of DHFR are included in the five-RV case, yet an 

acceptable transition pathway was not achieved even though the path optimization was 

efficient and converged in 25 ns of simulation time. We therefore conclude that missing 

components in the RV set is not the cause of the incomplete transition. Alternatively, we 

considered that the near overlap in the - space sampled by residue 15 in the two 

end-states, coupled with the inclusion of 14 RV, which rotates the same peptide group as 

15, might be the cause of the problem. 

The possible issue related with residue 15 was tested by launching ABPO with only 

three RVs: 14, 18, and 19. Unrestrained ABPO generated the expected path with the 

three RVs showing complete transitions along the path as described in the Figure 2.8C-E. 

  

cycle	1

cycle	100

y14 y18 y19

residue	14

residue	15 residue	18
residue	19

A B

C D E

open occludedFigure 2.8 DHFR transition path results from all-atom ABPO. A: distributions of , 

backbone angles for the four residues with largely distinct populations in the open (cyan) 

and occluded (orange) states. B. A_RMSD of the path at each cycle compared to the final 

path at cycle 100. C-E: evolution of the path during the ABPO computation showing the 

normalized value for the three RVs at each slice (hyperplane) of the path from cycle 1 to 

cycle 100. The tight overlap of the paths indicates convergence of the optimization.  
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Figure 2.9 - distributions for residues 9-24, except 14,15, 18 and19, for the open (cyan) 

and occluded (orange) states of DHFR from 10 ns equilibrium simulations. For these 

residues, the two states have highly overlapping dihedral angle populations and were not 

selected for RVs. 
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Figure 2.10 A: Evolution of the four normalized RV values for ABPO simulations of 

DHFR. In the plot, 14 and 15 did not transition between the end states in the final cycle.  

14 stayed in the open state, while 15 stayed in the occluded state. B: Evolution of the 

five normalized RV values for ABPO simulations of DHFR. 14 showed an incomplete 

transition in the final cycle, and 15 mostly stayed in one state. Normalized RV values are 

adjusted to remove dihedral periodicity.  
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The three-RVs yielded a good transition path suggests the nearly overlapping 

distributions in - of residue 15, along with inclusion of the neighboring 14, could be 

the reason residue 15 dihedral angles are poor RVs. 

To further examine the dependence of defining the pathway on the choice of RVs, we 

asked if fewer than three RVs are sufficient to formulate the transition, and investigated 

the use of two RVs:  14 and 18, or 14 and 19. The two RV cases demonstrated that 

although the transition of the two residues developed, the transitions of other three 

dihedrals did not complete, showing that two RVs were not sufficient to characterize the 

loop movement. In Figure 2.11, 14 and 18 were defined as RVs, and from the scarcity 

of points in the range of values intermediate to the end states, the other three dihedral angles 

did not transition along the path. 

As implemented here, the ABPO approach does not fix the path ends; the RVs over the 

length of the path, including the ends evolve during path optimization, which can assist in 

judging if a set of RVs is appropriate for capturing the features relevant to the 

conformational transition. Some steps that developed out of the ABPO implementations 

covered in this study include: 1) a directional and efficient evolution of the RV value from 

the initial path value is needed to converge the transition pathway in a tolerable number of 

cycles; 2) each RV should converge to its known value at the two end states in the 

optimized pathway. Because our implementation of ABPO does not fix the ends of the path, 

the expected end-state values are not guaranteed. (In the previous ABPO work, the ends of 

the path were fixed[81].); and 3) all parameters that characterize the difference between 

the two states should transition, even if some of the parameters are not defined as RVs. We 

note that guidelines 2 and 3 are simply requirements that the final path connects the 

expected end-states. 

The main chain dihedral angle populations from unbiased MD simulations differ for 

residues 14,15 and 18,19 at the ends of the loop (Figure 2.8A), as anticipated for a hinge-

like motion and in contrast to the TIM loop. On the criterion of having distinct populations 

in  or  with essentially no overlap along the given dimension, we first selected four RVs 

to conduct the ABPO calculation: 14, 15, 18, and 19. The ABPO pathway converged; 

however, the path that was generated did not include rotation of 14 and 15.  To find 

better RVs, we reasoned that including both 14 and 15 could be problematic because 
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they both act on the same peptide group connecting residue 14 and 15. We therefore 

removed 15 as an RV and used only three RVs: 14, 18 and 19. The bias potential 

constructed on these three RVs generated an optimal path with the expected complete 

transitions of 14, 18 and 19 over the course of the pathway (Figure 2.8C-E). 

In the RV plots from the open to the occluded state, the 14 transition starts early, then 

the 19 transition initiates around 200 slice of the path, while the 18 transition is a 

continuous process that traverses the whole path. The good convergence of the path 

optimization is shown by the tight overlap of the final cycles (purple, Figure 2.8C-E), and 

further described by the A_RMSD against the final path (Figure 2.8B). From the plot, the 

optimization converged after about 50 cycles, taking almost twice the computation time 

compared with TIM (Table 2.1). Further, as with the TIM loop transition computation, the 

ABPO trajectories sample nearly the full length of the path given the bias potential and 

unrestrained sampling; plots of the position  as a function of time for the replicate 

trajectories are given in Figure 2.6.  The PMF from the last cycle has a single free-energy 

barrier between the open and occluded loop conformations of DHFR (Figure 2.7B).    

To determine if in the three-RV case of ABPO all five dihedral angles identified in the 

- plots (14, 15, 15, 18, and 19) actually transitioned between both end-state 

populations shown in Figure 2.8, we extracted the time series for the five dihedral angles 

from the final ABPO cycle.  We found from the time series (Figure 2.12) that even though 

only three of the five torsion angles,  14, 18 and 19, were used to bias sampling, the 

other two dihedral angles, 15 and 15, also transition given that the time series includes 

angle values intermediate to the two end-state values. This result testifies that adaptive 

biasing in the space of the three RVs can properly determine the complete transition 

process including features that are not part of the RVs.  
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Figure 2.11 When 14 and 18 are defined as RVs, these two dihedrals sample 

intermediate angles along the path.  The other three dihedrals that were not defined as RVs, 

15, 15 and 19, had significantly less sampling along the path as shown from few points 

intermediate to the end states. The ABPO computation included four replicas, with two 

trajectories initiated from each end state. The final cycle had one block of 20,000 steps 

with a 1,000-step saving frequency for each replica, totaling 80 frames. 
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Figure 2.12 In the three-RV case, 14, 18 and 19 are used to compute the transition 

path of DHFR using ABPO. The four replicate trajectories from the last cycle, two initiated 

from each end state, were concatenated and torsion angle time series were extracted from 

the combined trajectory for the three RVs and for the two other torsion angles that differ 

between the two end states, 15 and 15. The last cycle included two blocks, and each 

block had 20,000 steps with a 1000-step saving frequency, totaling 160 frames. The three 

RVs 14, 18 and 19 sample the full path as shown by visits to intermediate angle values. 

The other two dihedrals, 15 and 15, also sample the two end states and intermediate 

angles in this final cycle, showing the computed path captures the conformational transition. 
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2.3.3 ER LBD 

We applied ABPO to examine the transition of H12 between the agonist and 

antagonist-bound forms. The actual timescale specific to the H12 transition is unknown, 

although the NMR studies suggest a longer timescale (ms) than associated with localized 

loop transitions. To better understand the dynamics of H12 in ER LBD, we computed 

unbiased MD simulations for 6.2 s of each of the two structures. The agonist and the 

antagonist that stabilize the two states were removed in the simulations. Even without the 

ligands stabilizing the two structure, no transition-like conformational changes were 

observed in the long simulations, and the position of the H12 on the surface of ER LBD 

is stable over low s timescales 

(

Figure 2.13). These MD results combined with NMR suggest that H12 displacement is 

unlikely to occur within the timeframe of simulations possible with currently available 

resources, so that to explore the transition details it is necessary to use enhanced methods, 

such as ABPO.   
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Figure 2.13 The two end structures from crystallography for ER LBD were solvated with 

TIP3P and an unbiased simulation was computed for 6.2 s. For frames from each 

trajectory, the RMSD for H12 was calculated with respect to the initial coordinates of H12 

in either of the two forms of ER LBD. The time series is to detect any potential movement 

of the helix. The RMSD values for agER LBD show the position of H12 is stable after 

about 0.2 s with a RMSD value around 3.5 Å. For atER LBD, H12 RMSD fluctuates 

around 5 Å, but no transition between the two states was observed in the simulation. These 

results show enhanced sampling techniques are necessary to study the transition. 



58 

 

Alternative variables were explored to define the RVs for computing the transition 

between the two states of ERα LBD. First, we examined the backbone dihedral angles as 

RVs. In contrast to the loop transitions in TIM and DHFR, the transition in ERα LBD is a 

helix movement. In the agonist-bound form (called agER LBD hereafter), H12 (residues 

537-543) interacts with H11 and the N-terminus of H4; in the antagonist bound form 

(called atER LBD hereafter), H12 interacts with H6 and the C-terminus of H4 (Figure 

2.1C). We extracted the - time series of the residues 526-545 from 10-ns simulations 

using the crystal structures to obtain the - distributions for atER LBD (PDB ID 

3ERT)[97] and agER LBD (PDB ID 1QKU)[113]. These residues include the coil region 

connecting H12 and H11. Only four residues, located at either end of the coil N-terminal 

to H12, had distinct - distributions ( 

 

 

Figure 2.14). Based on the distributions, five dihedral-angle RVs were defined: 532, 

532, 533, 536, and 537. The ABPO simulation converged within 30 cycles based on 

the tight overlap of the evolution of the normalized RV values along the path. Nevertheless, 

examination of the structures at the computed end states of the path found that the dihedral 

rotation of the torsion angles RVs was achieved by residue movements localized to the coil 

without reposition of H12 on the surface of the protein. Based on this observation, we 

concluded that dihedral RVs were insufficient for transitions involving helix contacts and 

movements more complex than loop motions. 

Distance-based RVs were therefore explored with the rationale that inclusion of the 

H12 contacts with other ER LBD residues is needed to capture the essential structure 

features of the transition. The RVs chosen are a linear combination of multiple inter-residue 

distances[79]. The procedure to obtain a linear combination of multiple inter-residue 

distances to define RVs for the ER LBD transition was as follows. We ran a 10-ns 

simulation of the two end structures, and calculated the closest-to-average structure for 

each system from the last 4 ns of the trajectories as described in methods. For each structure, 

we identified the residue pairs that had side chain heavy atoms within 4.5 Å of each other, 

and compared the residue pairs from the two structures to determine Cα-Cα distances that 

differed by more than 1 Å in the two structures. These residue pairs were grouped based 
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on their spatial proximity, and the individual Cα-Cα distances for each residue pair within 

a group were combined linearly using equation (3) in Methods to define an RV. In general, 

the pairs between one residue on H12 and other residues outside H12 are grouped into the 

same RV. The distance values for the RVs were extracted from the two closest-to-average 

structures, and the RVs comprise only Cα-Cα distances with no side chain distances 

involved. For the transition in ERα LBD, we first defined nine combined-distance RVs, 

but two of them were eliminated due to “high noise” or large fluctuations on the normalized 

RV path evolution plots, indicating the RVs are not effective for promoting the transition.  

The final ABPO calculation included seven combined-distance RVs. A list of the residue 

pairs is in Table 2.3. The location of the residues in the seven RVs is shown in Figure 

2.15H-I where the residue pairs in one RV have the same color and each RV color is unique.  

The progression of the seven combined-distance RVs is shown in Figure 2.15. Although 

less cycles were used, the optimization in fact took much longer to converge compared 

with the previous two systems. For the previous two systems, only 3 blocks per cycle were 

needed; in ERα LBD, the simulation reached the specified maximum of 25 blocks per cycle 

at the beginning of the optimization (Table 2.1), which indicates the bias potential did not 

adapt sufficiently in the allotted simulation time for the initial cycles to promote complete 

sampling of the path. Nevertheless, the changes in the path variables from the initial guess 

were sufficient enough to achieve convergence to the principal curve in the subsequent 

cycles. 

The PMF computed from the principal curve for the ER LBD transition is shown in 

Figure 2.16A. The choice for the tube width, R, used to compute the trajectories that 

determine h(,t) to estimate A(,t) (Equation 2.2) must be larger than the reaction channel 

in order to accurately capture the entropic contribution to the free energy.  The PMF is 

roughly invariant to the R values used (results shown in Figure 2.3) so the entropic 

component is reasonably accounted for in the PMF shown in Figure 2.16A.  In addition, 

the results in Figure 2.3 include a second round of accumulating histograms with the same 

optimized path as Figure 2.16A and with R equal to 10Å.  The similarity in the plots 

demonstrates reasonable certainty in the estimates for the PMF. 
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Figure 2.14 The - distributions of the four residues in ER LBD. Cyan: atER LBD; 

orange: agER LBD. 

 

Table 2.3 The individual C-C distance pairs in each distance combination RV for ER 

conformational transition.  

 

 

 

The transition path has a maximum free-energy near 0.4 of the path total length (Figure 

2.16A), which likely is the reason for the more slowly converging optimization of this 

RV number Residue pairs 

1 531-339, 533-339, 533-340, 533-343, 534-343, 535-340, 535-343, 535-344 

2 536-350, 536-354, 536-383 

3 537-347, 537-351, 537-355, 537-376, 537-380 

4 540-346, 540-347, 540-358, 540-376, 541-372 

5 543-355, 543-358, 543-359, 543-362, 543-376, 543-379, 543-383 

6 544-362, 544-372, 544-383, 544-522, 544-525 

7 546-380, 546-381 
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transition path. Although the barrier height seems high given the timescale of the motion 

estimated from NMR[105-107], it is useful to examine the mechanism of the transition. By 

looking at the principal curve for each RV (Figure 2.15), RV3 and RV4 plateau near the 

same slice index as the free energy barrier, followed by a rapid change.  RV3 and RV4 

together describe the switching of the position of H12; RV3 and RV4 distances are the 

contacts between H12 and the two helices, H4 and H6, respectively. Based on this behavior 

of RV3 and RV4, the breaking and reforming of the interactions of H12 with H4 and H6 

are suggested to be a key step in the transition.  

A minimum in the PMF falls near slice 700, rather than near the end-state slice 1000, 

where the RV values are defined from the crystallographic structure (Figure 2.16A). The 

reduced coordinates that vary between slice 700 and 1000 are RV1, RV2 and RV3 (Figure 

2.15A-C), which correspond to displacement of the flexible loop between H12 and H11.  

Further, the normalized value of RV1 extends to almost 2, i.e. RV1 values beyond those of 

the atER LBD end state. The shift of the free-energy minimum, and the extended values of 

RV1 could occur as a result of the flexibility of the loop. That is, if the conformational 

fluctuations of the loop differ in solution compared to the conformational space accessible 

in the crystal, a shift in the position of the free-energy minimum could occur.  Alternatively, 

the implicit-solvent simulations may not properly account for the conformational 

equilibrium of this solvent-exposed loop[112], which could also give rise to the observed 

displacement of the minimum.  

We extracted structures along the principal curve from the trajectories of the final cycle 

of the ABPO simulation to visualize the transition pathway. A frame for each slice was 

used to construct a structure series showing the transition from agER LBD to atER LBD. 

The structure series showed some clear features in this process: from agER LBD to atER 

LBD, the N-terminus of H12 breaks interaction with the N-terminus of H4, then the H12 

C-terminus interaction with H11 is lost, so that H12 is more solvated. Gradually the C-

terminus of H12 forms alternative interactions with H4 C-terminus and H12 N-terminus 

with H6. In structures extracted at the transition state of the PMF, H12 contacts neither H4, 

H6 nor H11. A representative structure near the transition state is shown in Figure 2.16B. 
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Figure 2.15 ERα LBD ABPO results. A to G: evolution of the normalized value for the 

seven Cα-Cα-distance RVs (see Supplementary Table 1 for a list of residues) show 

convergence. H agER LBD and I atER LBD closest-to-average structures from the 

equilibrium simulation: residues in each RV are colored differently to show their 

locations. From RV1 to RV7, each RV is colored 1) blue, 2) red, 3) green, 4) black, 

5) pink, 6) yellow and 7) cyan. 
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Figure 2.16 An intermediate state structure in ERα LBD transition path from agER LBD 

to atER LBD. A: PMF along the transition path from the final ABPO cycle shows one 

major free-energy barrier. The minimum number of visits to each slice was set to 100. B: 

a snapshot at the free-energy barrier, where, in the transition from agERα LBD to atERα 

LBD, the interactions of H12 with H11 are broken and the interactions of H12 with H4 

have not formed. H12 is in opaque ribbon representation. In agER LBD, L544 interacts 

with M522, while in atER LBD, L544 interacts with K362. 
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2.4 Conclusions 

In conclusion, ABPO is demonstrated here to be an effective method to optimize 

conformational transitions of three protein systems using an all-atom force field. The path 

evolves efficiently from a starting path to the final converged path under the forces of the 

adaptive bias potential.  A highlight of ABPO is the free sampling in a tube around the path, 

which allows exploring multiple channels within the tube radius, and also the quality of 

the RVs to be readily assessed based on the ability of trajectories to traverse the path and 

describe the expected transition.  In addition, the ABPO formalism provides a straight 

forward evaluation of the PMF.  

We expanded the application of the unrestrained ABPO approach from the coarse-

grained Gō model[81] to all-atom protein conformational transitions and found the bias 

potential to be effective at enhancing the sampling along pathways specified in 

reduced-variables in the higher resolution space and more rugged potential surface of an 

atomistic protein model.  The trajectories, localized to the path by a tube potential but 

otherwise not restrained to the path, freely sample the path and showed good convergence 

to the final optimized curve. Compared to Gō-models with only C atoms represented, the 

all-atom model allows RVs to be in terms of main chain dihedral angles for motions 

localized to two sequential residues, which is convenient for exploring loop transitions.  

The unrestricted sampling of ABPO was effective for moving the path from the initial 

guess, which is not only important for converging to an optimal path but also allows for 

efficient exploration in the choice of select RVs that capture the features of the motion.  In 

the case of the switch in H12 position in ERα LBD, RVs derived from a linear combination 

of Cα-Cα distances that differed in the end states was found effective while dihedral angles 

were not. And, it was not necessary to include side-chain atom distances as the side chains 

moved with the main chain in the ABPO trajectories.   

The transition-pathway computations from the three systems validate ABPO as an 

efficient method to calculate protein conformational transitions.  The path computed with 

the ABPO approach for the DHFR loop included rotations of dihedral angles that were not 

specified as RVs, which speaks to the reliability of approach.     
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CHAPTER 3. SRC KINASE DOMAIN ALL-ATOM 

CONFORMATIONAL ACTIVATION USING ABPO 

3.1 Introduction 

The Src conformational activation process has been suggested from crystal 

structures[114-117]. NMR has been used to study the dynamics of Src SH3, SH2, unique 

and kinase domains[118-119][112][121-122]. The solution dynamics of Src-ligand 

complex reveals long-range communication between ligand binding and regulatory 

sites[123]. However, the atomic details of the activation process remain unrevealed.  

Besides, the study of the active form of Src is limited by the detection of the A loop in 

biophysical experiments. In the crystal structures, the active form of Src usually has the 

A-loop partially unsolved. Only two crystal structures, an unphosphorylated c-Src in 

complex with an inhibitor (PDB ID 1Y57 [117]) and c-Src kinase domain T338I mutant in 

complex with ATP (PDB ID 3DQW [124]), has the complete A-loop. In NMR, the peaks 

for the loops are usually missing due to the high flexibility of the regions.  

Computational simulation methods are valuable in elucidating the atomic details of 

conformational transitions. Specific techniques are required to overcome the high free 

energy barrier in the transition process. Several types of accelerated sampling methods 

have been applied to study the Src conformational transition as introduced in Chapter 1. 

The transition kinetics, the order of some specific events during the transition, the 

important intermediate states and residue-residue interactions have been reported from 

these simulations. These techniques usually require an initial path which can be arbitrary, 

or statistical methods to build the path, while a continuous, unrestrained transition has not 

been established.  

Here we apply ABPO to the all-atom Src kinase domain. Different from the transitions 

in Chapter 2, Src conformational transition is more complicated in both types of the 

transition and the number of residues involved. It involves rigid body movement/rotation 

like the displacement of C helix; also, it embraces protein unfolding like the structural 

change of the A-loop. The protein folding/unfolding problem itself remains an ongoing 

research topic in computational simulations. How to define reduced variables for a 

combined set of transitions is a challenge. The details of the transitions like the sequence 
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of the events also need to be determined. We first define and optimize the reduced variables 

to get a converged transition path. Then we analyze the transition path and the structures 

generated during the optimization process. This is the first direct observation of an 

unrestrained, continuous path optimization of Src kinase domain using computational 

methods.  

3.2 Methods 

3.2.1 Simulation systems 

Src kinase domain in active and inactive states are from the PDB entries 1Y57 [117] 

and 2SRC [116] respectively. Residues 255-521 were included in the simulations. All ions, 

ligand and crystal waters were removed from the structures. The coordinates of the missing 

atoms in the two structures and all hydrogen atoms were added using CHARMM IC 

BUILD facility. Simulations of the proteins were carried out using CHARMM 22 all-atom 

force field with CMAP dihedral angle corrections with implicit solvent model FACTS. To 

prepare the systems for ABPO, we first performed energy minimization on the two crystal 

structures. The energy was minimized using the steepest descent and Powell algorithms to 

a gradient less than 1.0. The initial velocities were generated from Gaussian distributions 

at 100K, then the energy-minimized structures were heated to and equilibrated at 298 K 

for a total of 500 ps. The leapfrog integrator was used to calculate the trajectories with a 

2 fs time step. 

A 10-ns simulation in Langevin dynamics was initiated using coordinates from the end 

of the equilibration run at 298 K. The long-range interactions cutoff distances were set to 

10, 12 and 14 Å. The time series of temperature, potential energy, and heavy atom RMSD 

with respect to the energy-minimized structure were monitored to assess the stability of the 

simulation. The closest-to-average structures from the last 4ns of the trajectories were used 

to define the distance RVs, to set values for the RVs at the end states and initiate the ABPO 

simulations. The closest-to average structure is determined as described in Chapter 2. 

3.2.2 ABPO parameters 

The transition pathway was optimized using the ABPO module implemented in 

CHARMM. The ABPO was started from two end structures with 16 replicas, 8 replicas for 
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each end structure. Each block has 40,000 time steps. The maximum number of blocks per 

cycle was set to 30. The total simulation time was 1.225 µs. In all simulations, Langevin 

dynamics was used at 298K with a time step of 2 fs. The fraction of the free energy 

cancelled by the bias potential was 0.8 (b in equation 1.1, CHARMM BFCT = 0.8). The 

coupling of the bias to the dynamics was 2.5 t-1 (c in equation 1.1).  The histogram for visits 

to path slices are smoothed using a Gaussian mollification factor set to 0.05. The number 

of slices was set to 2000 as indicated in the plots for each path to achieve desired sampling 

resolution along the path. For the tube radius and potential parameters, the radius was 20Å, 

and the force constant was 5 kcal/mol to enable efficient sampling of the system. The tube 

radius was chosen based on an estimation of the RMSD difference between the two states. 

The metric tensor D was evaluated using equation 2 in reference [81]. The D was 

evaluated from short unbiased simulations at each end state and the inverse of D was stored 

for input to ABPO. For Src kinase domain, D was estimated from 2 ns unbiased simulations 

with a 2 fs time step. The D is viewed as a constant for further calculations. 

Distance combination RVs for Src kinase domain 

We divide the kinase domain into 4 regions: C helix, Nlobe (excluding C helix), 

Aloop, and Clobe (excluding A-loop). The residue numbering of the regions is listed in 

Table 3.1. We looked at residue pairs in the region pairs: C helix-C helix, C helix-

Nlobe, C helix-Aloop, C helix-Clobe, Aloop-Aloop, Aloop-Nlobe and Aloop-Clobe. 

The C-C distances were extracted from the two close-to-average structures from the 

10ns equilibrium simulations, and the residue pairs that have distances differ by 2.5 Å in 

the two states were identified. Then the residue pairs in each region pair were grouped into 

distance combination reduced variables using equation 2.1. For the residues with long side 

chains, the farthest heavy atom from C atom was also used to calculate the residue-residue 

distances, including C-sidechain distance and sidechain-sidechain distance. The 

sidechain-related pairs were included in the calculation where the C-C distance 

difference between the two states is smaller than the sidechain-sidechain distance 

difference. Preliminary ABPO simulations for ~10 cycles were used to eliminate 

inappropriate reduced variables. Inappropriate RVs were determined that 1) there is a high 

flat region in the pmf indicating no sampling in the middle of the path, 2) the normalized 

RV does not evolve from 0 to 1, except for the N-linker residue based RVs, 3) the 
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normalized RV evolution profiles are not reproduced well in independent simulations with 

identical input. The N-linker residue based RVs are very flexible and might not transition 

from exact 0 to 1 as other RVs. The RV profiles that are not reproduced well indicate that 

the distance difference between the two states might be due to the structural flexibility of 

the protein in solution, not that the difference is essential to the transition. A complete list 

of the final reduced variables is in  

Table 3.2.  

 

 

 

 

Table 3.1 The residue numbering of the regions in c-Src kinase domain. 

Region N-linker N lobe C lobe A-loop C helix 

Residue NO. 255-259 260-341 342-521 404-424 304-316 

 

 

Table 3.2 List of residue pairs in each distance combination RV for Src kinase domain 

activation conformational transition. C-C distances are used unless otherwise noted. 

RV number Residue pairs 

1 311-260(NE1), 255-308, 255-311, 255-312, 256-311, 256-312, 257-311, 

257-312  

2 307-295, 307-296, 307-297, 307-334, 307-335, 307-336 

3 310-295, 310(CD)-295(CE), 310(CD)-382, 310-382, 310(CD)-409(CZ), 

310-410, 310(CD)-403, 310(CD)-404, 311-325 

4 406-410, 407-410, 407-411, 408-411, 409-412 

5 412-417, 413-416, 413-417 

6 414-417, 414-418, 415-418, 415-419, 415-420, 416-419  

7 413-423, 415-423, 416-424 

8 410-302, 411-278, 411-301, 411-302, 412-278 

9 410-380, 410-381, 410-382, 411-381 

10 416-386, 416-388, 416-428, 417-385 

11 422-437, 422-439, 422-433, 423-433, 423-429 
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3.2.3 Data analysis 

The normalized RVs are calculated using equation 2.3.  

3.3 Results and Discussion 

3.3.1 Reduced variable selections and path evolution profiles 

ABPO uses reduced variables that capture the structural changes necessary and 

sufficient for the transition, and the choice of reduced variables is a critical step for the 

pathway optimization. Four types of geometric reduced variables are implemented in 

ABPO, namely internal distances, or a linear combination of distances, angles and torsion 

angles. The scale of the conformational transition of Src kinase domain is larger than 

previous systems, and several types, or combinations of reduce variables have been 

attempted for the transition. From the active to the inactive conformation, the Aloop 

undergoes a structural change from an extended loop to a folded two-helical structure, and 

the values for torsion angles would have altered during this process. The difference in 

backbone torsion angle values is validated by visualizing the - distributions of the 

residues in the loop region residue 404-424 (Figure 3.1). Some residues with largely 

overlapping distributions are not included in the figure. We ran ABPO with a combination 

of distance-based RVs for C helix rotation and dihedral angle RVs for A-loop folding. 

Nevertheless, in the simulation, we observed that when the torsion angle RVs were used 

for the loop, the RVs showed progress along the cycles, while the structure did not change 

along the path. We concluded that the flexibility of the loop backbone atoms partially 

compensated for the difference in the dihedral angle values. Also, the lack of sampling 

along the path suggests that dihedral angle RVs are not good choices for protein folding 

conformational transition. This is also an example showing that only monitoring the 

progress of the reduced variables might not be sufficient for RV-based path sampling 

methods. 
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Figure 3.1 The - distributions for Src 404-424 A loop region from 10 ns equilibrium 

simulations. Each dot represents a frame in the simulation trajectories. Most of the residues 

have non-overlapping distributions as shown in the figure. Cyan: the active form. Orange: 

the inactive form. 
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Based on these observations, we explored distance based RVs for the loop transition, 

along with the RVs for the C helix rotation. A group of 11 RVs were chosen to calculate 

the transition path. The procedure and criteria of selecting the 11 RVs are detailed in 

methods. The evolvement of the 11 RVs from the first cycle to the last cycle is shown in 

Figure 3.2. The RVs converged within 70 cycles as shown in the figure.  

RV1 did not traverse from 0 to 1 directly as shown in Figure 3.2A, which can be 

explained by the nature of the movement described by RV1. RV1 describes the distance 

change between the N-linker and the C helix. In Figure 3.2A the normalized RV value 

first increases to ~1.5 then moves back to 0; it fluctuates in the 0-1range twice and finally 

reaches 1. This RV profile shows that the N-linker is very flexible. A further examination 

of the structure shows that the N-linker needs to move away to free C helix and allow C 

helix rotation. The two end states for the N-linker can be flexible, for the two ends are not 

fixed in the simulation.  
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Figure 3.2 Evolution of the normalized value for the 11 RVs show convergence. 

 

3.3.2 Transition path analysis 

The transition trajectory 

We built a transition path structure series using the trajectories from the last cycle. A 

frame for each slice was used to construct a structure series showing the transition from 

the active to the inactive form of Src kinase. The structure series shows atomistic details 

of the transition events along the transition path. The representative structures are shown 

in  
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Figure 3.3. From the active state to the down-regulated state, Tyr 416 first switches 

among several states with the movement of A-loop to break the interaction with Arg 409. 

Both Arg 409 and Tyr 416 moves towards the center of the kinase, with Arg 409 in the 

middle of the partially formed 1st helix and Tyr 416 with the following residues forming 

the 2nd helix on the A-loop. Arg 409 is freed with the interaction with Tyr 416 and moves 

up towards C helix to complete the formation of the 1st helix. C helix rotates out, and 

Glu 310 breaks interaction with Lys 295 and forms new interaction with Arg 409; this 

rotation of C helix locks the conformation of the 1st helix on the A-loop. In the mean time, 

with the C helix rotation, the freed Tyr416 moves further towards the center of the kinase 

to complete formation of the 2nd helix structures with other residues on the A-loop. The 2nd 

helix fluctuates and Tyr 416 moves closer to Asp 386 to form new interactions.  

C helix rotation is the main free energy barrier along the transition path 

C helix has been identified as a switch in the Src/CDK-like kinase domain 

conformational transitions in coarse-grained models[79][125]. The role of C helix 

regulation in the human kinome is also suggested by structural analysis[79]. In our 

simulations, C helix rotation has been constantly observed as the main free energy barrier 

along the path.  

The potential of mean force (PMF) (Figure 3.4) is computed from the combined 

histogram of sampling of cycle 70 using equation 1.2. The PMF profile and visualizing 

structures along the transition path reveals that the C helix rotation corresponds to the 

highest point on the PMF profile. Interestingly, we experimented different combinations 

and numbers of RVs, and the C helix rotation constantly shows up as the highest energy 

barrier on the path, while the Aloop transition did not complete with those RVs. These 

results show that C helix has an important role in regulating Src conformational activation.  

The movement of C helix rotation is presented as a switch completed in a short time 

in our simulation. This is concluded from the scarcity of structures obtained from the 
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simulation before and after the helix rotation. Also, the time profiles for Lys295-Glu310 

and Glu310-Arg409 from long equilibrium simulations reported before also showed the 

switch behavior[126]. However, the conformational change of Aloop was not reported in 

that work. 

 

 

 

 

 

 

 

Figure 3.3 The representative structures along the transition path. The C helix and the 

Aloop region are in orange. The three residue pairs, 404-295, 310-409 and 386-416 are in 

green, blue and mauve respectively with stick representation. 

Slice 61 Slice 235 Slice 583

Slice 833Slice 1406
Slice 1758



75 

 

 

 

 

The correlated motions of RV3 and RV12 

The correlated motions of residue groups in Src kinase domain have been observed in 

previous computational simulations[70][73]. The C helix movement was observed to be 

coupled with conformational changes in the C-lobe centered on Lys 427 and Trp428. The 

dynamic coupling between Aloop and the residues in the electrostatic network, R-spine 

and DFG motif was also observed. 

In our ABPO simulation, the motion of two reduced variables are highly correlated as 

shown in the normalized RV profile. In the converged curve, both RV3 and RV12 stayed 

relatively invariant till ~1300 slices, then increased to the final value. RV3 describes the 

C helix rotation with respect to Nlobe and Aloop, including the electrostatic network. 

R12 describes the relative movement of Aloop and Clobe. The correlated motion of the 

two reduced variables indicates that the two main events, C helix rotation and Aloop 

Figure 3.4 The PMF profile for Src conformational transition from active 

(left) to inactive (right) state. The highest point corresponds to the  C 

helix rotation. 
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extension, in the Src conformational activation are highly concerted and not independent. 

Also, it shows the concerted motions of residues spanning both lobes in the Src kinase 

domain. The coupling of residues more than 20 Å apart reveals the existence of a 

long-range allosteric network in the Src kinase domain.  

3.3.3 The function of the linker residues 

Previous experimental[127-130] and computational studies[77-78] suggest that the 

SH2-kinase domain linker plays an important role in regulating kinase activation. Leu 255 

has suggested to be a critical component of the SFKs intramolecular inhibition 

mechanism[129]. The W260A studies suggest that the conserved Trp 260 has a critical role 

in coupling the regulatory domains and the catalytic domain[128]. 

The preparation steps we used have little effect on the linker positions comparing the 

crystal structure and the close-to-average structure from the equilibrium simulations 

(Figure 3.5). In the active crystal structure, residue 255 is close to residues 304 and 305, 

and residue 260 is stacking against residue 315. In the active ABPO starting structure, 

residues 255, 256 are interacting with the middle part of C helix while residue 260 stays 

in the same position as in the crystal structure. In the inactive crystal structure, residue 260 

is in between the C helix and a  sheet, while residues 255-259 do not interact with the 

helix. In the inactive ABPO starting structure, the residues stay in the same positions as 

they are in the crystal structure. 

To test the importance of the linker residues, we compared the transition paths with and 

without the linker. In the first construct, the linker residues 255-259 were not included in 

the two end structures for simulation. We found that when the linker is not included, the 

C helix rotation may occur independently and earlier in the inactivation process, without 

correlating with the Aloop transitions. This can be visualized as the position of the highest 

peak shift on the PMF profile. 
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 To further evaluate the function of the linker, we deleted the first RV from the 11 RV 

groups and ran ABPO using 10 RVs. In this simulation, the conformations are not favored 

in the direction of moving the linker away from the C helix with the bias potential. We 

observed that if the linker did not move in the free sampling, the transition would not 

happen featured by a high free energy peak along the PMF.  

 

3.3.4 The conformational flexibility of the A-loop in the all-atom ABPO simulations 

Large conformational variations of A-loop have been observed in our all-atom 

simulations. Before the C helix rotation, the A-loop undergoes a series of conformational 

changes and gradually forms the 1st helix and partially the 2nd helix. After the C helix 

rotation, the 2nd helix continues to form and moves to its position in the down-regulated 

conformation. Comparing the all-atom deactivation transition path we built using ABPO 

and the Gō potential model path[79], the C helix remains as the switch for the 

conformational transition. However, there is a sharp decrease in the PMF profile in the Gō 

Active_close-to-average Active_crystal

Down-regulated_close-to-average Down-regulated_crystal

Figure 3.5 The linker position in the active form and the down-regulated form showing 

its interaction with the C helix. Leu 255 and Trp 260 are in stick representation. The 

preprocess steps for ABPO do not alter the linker-C helix interactions. 
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potential model, while in our PMF profile, the highest peak corresponds to ~0.7 of the total 

path length, indicating there are structural changes after C helix rotation. In the Gō 

potential model, the alpha-C helix rotation locks the two-helical structure, and no obvious 

structural changes was observed after C helix rotation[79]. In our model, the 2nd helix on 

the A-loop continues to form and move to its final position. This observed difference is 

probably due to the lack of the 2nd helical structure in the Gō model.  Gō model uses C 

atoms to present residues and are missing interactions between side chains and associated 

structural differences that are reflected on secondary structures. The 2nd half of A-loop in 

the Gō model showed high flexibility and were excluded when defining reduced variables 

for the transition. Also, we have a higher resolution of sampling along the path in ABPO, 

and more structures along the path were retrieved. The Gō-model only observes 40 path 

images. In our simulation, we divided the path into 2000 slices. While a large number of 

slices would cause some noise in the PMF, the higher resolution of sampling does help 

with visualizing structures along the path.  

The distance combination reduced variables successfully promote the formation of two 

helices from coil. RVs 4-6 describe the loop formation, with residue pairs 3 or 4 residues 

apart (Table 3.2). The standard -helix in proteins contains 3.6 residues per turn. In this 

sense, our reduced variables specify the largest distance changes in residue pairs that at 

least interact in one state of the protein. The formation of helix is promoted with adaptive 

biasing potential with this type of reduced variables. 

3.3.5 Electrostatic network analysis 

The atomic details of the conformational inactivation can be described in terms of an 

electrostatic network[50][51]. The residues that are involved in the electrostatic network 

are important for catalysis or regulation of the kinase. To analyze how the electrostatic 

network evolves during the inactivation process, the bins of distance distributions of 

electrostatic network residue pairs are visualized as described here. After the path 

optimization is completed, for each frame in all the trajectories in the last cycle, the inter-

residue distances for the 5 residue pairs and the corresponding slice index for that frame 

was extracted. The whole path is divided into 10 bins by slice index, for example, bin 1 

covers slices 1-200, bin 2 covers slices 201-400. The inter-residue distances for each frame 
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are assigned to the bins per the slice index associated with that frame. The inter-residue 

distances were then plotted for each bin for each pair. 

The analysis of the electrostatic network identifies three residues pairs as important to the 

Src inactivation process. The residue pair distances and their distributions in each bin are 

shown in  

 

 

Figure 3.6. The 310-409 and 295-310 pairs have the large distance change around the same 

time, further proving the C helix rotation as the switch for the conformational transition. 

For the two residue pairs 386-416 and 409-416, the distance distributions showed some 

trend of distance change with the increase of bin numbers that is not as obvious as stable 

switches. The behavior of residue pairs 386-416 and 409-416 are partially due to the 

flexibility of the Aloop and can be explained in terms of the transition structures. Asp 386 

is a residue in the HRD motif on the C-lobe of the kinase domain, and Tyr 416 is a residue 

on the A-loop. The two residues are not interacting with each other in the active form of 

the kinase. However, Tyr 416 might move closer to Asp 386 in space due to the flexibility 

of the A-loop, while the two-helical structure does not form completely with the loop 

movement. After the two helices on the A-loop form, Tyr 416 is part of the 2nd helix. The 

386-416 distance might still change, for the position of the 2nd helix is flexible for the short 

linkers on both ends of the short helix, while the helical structure remain intact. Similarly, 

for residue pair 409-416, the distance between the two residues increases in bin 2 and 3 

due to the temporary breaking of interaction, and the A-loop is still in extended loop 

conformation in this stage. Later, the 409-416 distances increases in bin 8 and remains 

stable till the end of the path, for the 2nd helical structure has formed, and it is not 

structurally viable for Tyr 416 to go back to interact with Arg 409 without breaking the 

helical structure. While the two helices are relatively stable after formation, the position of 

the 2nd helix, is observed as flexible after C helix switch. The 404-295 distance is mostly 

stable as observed in our simulations. The observed distance change in a previous work 

might be due to the choice of different crystal structures.  
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Figure 3.6 The distance distributions for the residue pairs in the electrostatic network. A-E 

are showing the distance distributions for the 5 pairs, F is showing three pairs in stick 

representation in both active and down-regulated structure. Green: 404-295. Blue: 310-409. 

Pink: 386-416. 
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3.4 Conclusions 

3.4.1 Structural and methodological insights 

Src transition pathway 

We examined the Src conformational transition and analyzed the features during the 

progress. The C helix rotation is established as the main free energy barrier along the 

transition path in the all-atom model. Also, the large flexibility of the Aloop structure was 

observed. Specifically, from the active to the inactive form, the Aloop first forms the two 

helical-like structure and moves towards the middle part of the protein, then the C helix 

rotates to lock the Aloop in place, and the 2nd helix on the Aloop continues to form and 

fluctuates gradually to its final position. This process reveals a series of intermediate states 

which will assist drug design efforts targeting Src kinase domain.  

The concerted motions of the reduced variables are observed as shown on the RV 

profiles. The concerted motions reveal key residues involved in the transition process 

across the kinase domain, which would help with molecule designs to regulate the kinase 

activity. 

The all-atom transition path is compared with the previous simulations in our group. 

Specifically, the difference observed in the ABPO simulation and MFTP Gō model is 

discussed and explained in terms of structures and the reduced variables used. The 

electrostatic network was analyzed and the distance changes are inspected in details. 

ABPO on large-scale conformational transitions 

Methodology insights are acquired from building the Src conformational transition 

pathway. In our project, we experimented several types of reduced variables, including 

single inter-residue distances, linear combination of inter-residue distances, and dihedral 

angles. It is demonstrated that while the protein folding features dihedral angle value 

changes in the protein backbone atoms, the dihedral angles might not be good reduced 

variables to describe the transition, for the inter-residue interaction information is not 

included. Distance combination reduced variables would be good choices for large 

conformational changes. For Src kinase domain, we incorporated both protein structural 

information and preliminary ABPO calculation to get the final set of reduced variables. In 

addition, the choice of simulation parameters is gaining importance in complicated 

transitions.  
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3.4.2 Advancement in the field 

 This is the first example using all-atom ABPO to optimize a large-scale conformational 

transition involving partial protein folding. Also, this is one of the few cases where the 

continuous, unrestrained conformational transition in an all-atom protein system is 

observed.  

The proper choice of reduced variables remains a main challenge for such calculations. 

Here we demonstrated that linear distance combination reduced variables defined from a 

combination of algorithmic approach and system structural information would work 

properly for large-scale all-atom conformational transitions.  

Our results answer several questions in Src conformational transition. The order of the 

two main events during the transition, A-loop folding and C helix rotation, was explained 

in details. Also, the linker residues are shown to be important in interacting with and 

regulating the kinase domain. Further, we relate our results with previous studies and 

provide a comprehensive explanation to the observed simulation results.  



83 

 

CHAPTER 4. SRC-SSP COMPLEX STABILITY IN IMPLICIT AND 

EXPLICIT SOLVENT 

4.1 Introduction 

How protein kinase interacts with its substrate is important to understanding the 

enzymatic activity and structure-based drug designs. Src phosphorylates its substrate by 

transferring a phosphate group from ATP to the substrate that binds to the Src kinase 

domain. Due to the disease relevance of SFKs misregulations, ATP analogs and some 

allosteric inhibitors have been designed to modulate Src activity. However, the substrate-

binding site is relatively unexplored. In serine/threonine kinases, the substrate binds to the 

cleft between the two lobes on top of the activation loop[131-135], while in tyrosine 

kinases, the substrate binds to the C-lobe below the activation loop[136-139]. To our 

knowledge, there is no crystal structure of Src in complex with a peptide/protein substrate 

to directly show Src-substrate interactions. 

Several mutation studies of Src identify some residues that are associated with substrate 

binding, while a specific site is not clearly identified. The R385A mutant of cSrc has low 

kinase activity suggests R385 is required to stabilize substrate binding[140]. The D404N 

mutation that mimics D404 protonation at the DFG motif promotes substrate-peptide 

binding[126]. Besides, NMR studies show allosteric communication across the whole 

kinase domain[123] upon substrate binding. The allosteric network within Src kinase 

domain complicates the interpretation of the mutagenesis studies, for the effect of the 

mutations might be due to long-range effect rather than direct change of the substrate 

binding site. 

Previous experimental results reported in a manuscript from a former group member 

Mehul Joshi suggest a change in substrate recognition within the TK group, that Src 

substrate might bind to the cleft between Nlobe and Clobe. NMR chemical shift 

perturbation (CSP) experiment indicates large-scale conformational motions upon SSP 

binding, involving both N and C lobes, and the paramagnetic relaxation enhancement (PRE) 

showed that multiple SSP bound forms might exist. Finally, residue L407 in the cleft with 

a strong PRE was studied. The enzymatic activity of a mutant L407D was determined to 

be 33-fold lower than the wild-type Src, supporting a cleft binding mode. Also, an earlier 
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study in our group by Beverly Gaul et al of activated SFK Lyn kinase recognition of 

immunoreceptor tyrosine-based activation motif (ITAM) substrate using both NMR and 

molecular docking suggests that ITAM binding in an orientation of the cleft-binding mode 

is strongly favored[141]. 

The Src substrate peptide we use here is a 11-residue peptide with sequence 

AEEEIYGEFEA (named SSP here). The peptide has a KM = 300 μM, and was identified 

from peptide library experiments [142]. 

The ensemble MD with PRE restraints obtained from NMR experiments was used to 

identify possible SSP-bound state orientations. The frames from the PRE-restrained 

simulations were clustered according to SSP backbone RMSD values, and the clusters have 

either cleft or clobe binding mode to satisfy the restraints. Two models were built from 

ensemble MD. Model 1 gives 9 clusters, with clusters 1-5 and 9 in cleft mode, and clusters 

6-8 in C-lobe mode. The clusters in cleft mode is further divided into two groups cleft-A 

and cleft-B.  For cleft-A mode, the N-lobe and cleft PREs are satisfied, while in cleft-B 

mode, the cleft and C-lobe PREs are satisfied. Among the 6 clusters in cleft mode, only 

cluster 2 is in cleft-B mode. For the C-lobe mode, only the C-lobe PRE is satisfied. An 

illustration showing the three binding modes using cluster 2, 4 and 6 is in Figure 4.1. The 

tyrosine residue on the peptide is positioned in between Asp 386 and Arg 388 for catalysis. 

Model 2 yields 8 clusters, with clusters 1, 2 and 5 in cleft binding mode and the other five 

clusters in C-lobe binding mode. It is worth noting that the more number of clusters are in 

C-lobe mode does not indicate the mode has a higher probability in simulations. The three 

cleft-mode clusters contain more total number of frames. Here we use unbiased MD 

simulations to understand the dynamics and stability of Src-SSP complexes, and further 

explore the possible binding modes.  
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Figure 4.1 The cluster 2, 4, 6 average structure to show cleft-B mode, cleft-A mode and C-

lobe binding mode. Red: N-lobe PRE. Blue: cleft PRE. Purple: C-lobe PRE. Pink: SSP 

except CYP. Green: CYP label. A: the N-lobe PRE residues 300-301, 305-306 are colored 

in red, the cleft PRE residues 406-407 are colored in blue, and the C-lobe PRE residues 

436 and 438 are colored in purple. The peptide is in stick representation and colored pink, 

except that CYP is in green. B: a zoom in view to show the tyrosine on the peptide in 

between Asp 386 and Arg 388 for catalysis.  

  

A 

B 
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4.2 Methods 

4.2.1 System setup in explicit solvent 

For Model 1, three groups of systems were set up. The SSP peptide in the simulation 

only contains 10 residues, without the 1st ALA as shown in the 11-residue sequence. The 

first group has the peptide with SSP label kept in the model, the 2nd group has ATP and 

magnesium modeled from Src-ATPgS complex (PDB ID 3DQW[124]); the two protein 

structures were aligned using PyMOL, and the new saved coordinates for ATP and Mg was 

added to the Src-SSP complex. The third group has a ALA in place of the CYP label. The 

ALA was generated that atoms coordinates for the CYP are deleted except the common 

heavy atoms with ALA.  

In addition to the Src-SSP models, two protein kinase crystal structures, tyrosine kinase 

insulin-like growth factor 1 (IGF1) receptor (PDB ID 1K3A[136]) and a serine/threonine 

kinase, the catalytic subunit of cAMP-dependent protein kinase (PKA, PDB ID 

1ATP[143]) in complex with peptide were also included to explore the stability of protein-

peptide complex. 

PKA has a 20-residue inhibitor peptide (residues 5-24, chain I in PDB file). The peptide 

was truncated to start from residue 14 in the original PDB numbering to match the length 

of SSP label, for a total length of 11 residues. The peptide is in cleft binding mode, 

consistent with the serine/threonine kinases substrate binding paradigm. 

IGF1 receptor has a 14-residue insulin receptor substrate peptide (residue 6-13, chain 

B in PDB file). The whole peptide was kept in the model. The peptide is in the C-lobe 

binding mode, consistent with the tyrosine kinase substrate binding paradigm. The loop 

residues 1069-1076 were missing in the PDB file. The loop was modeled from 

phosphorylated insulin receptor tyrosine kinase (PDB ID 1IR3[144]) by aligning insulin 

receptor to IGF1R and save the new coordinates using PyMol. The coordinates of the loop 

heavy atoms were copied to the missing region of IGF1R. Three residues 1073-1075 are 

different between the two structures, Gly, Arg and Pro in insulin receptor and Val, Leu, 

Ala in IGF1 receptor. For the three residues, the atoms except common heavy atoms were 

built using CHARMM. 
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The active form of Src kinase domain (PDB ID 1y57) was also included, to compare 

the protein backbone RMSD values of the crystal structure and the modeled structures on 

GPU.  

For Model 2, CYP label was replaced with ALA, and ATP and magnesium were not 

included in the system. A full list of the simulations for the two Src-SSP models carried 

out in explicit solvent is in Table 4.1. 

Hydrogens were added to the structures using CHARMM HBUILD. For the crystal 

structures, the protonation states of the His residues in CHARMM forcefield (HSD, HSE, 

HSP) were assigned manually by visualizing and deciding the state with the most favorable 

interaction. For the three clus2, clus4 and clus6 with SSP models, cubic TIP3 water boxes 

were added that each edge of the protein is at least 12Å to the edge of the box in all three 

directions. For IGF1R and PKA, the distance was shortened to 10Å to save simulation time. 

For all the other systems, box length was adjusted to have similar number of water 

molecules in each system, while the 10Å minimum distance to the edge is maintained. 

4.2.2 System setup in implicit solvent 

The SSP from cluster 2 was modeled to the active form of Src (PDB ID 1Y57) to 

explore the possible orientations of the C terminal of the peptide. Two SSP conformations, 

cleft-down and cleft-up, was observed. Only residues 1-8 was included for the peptide to 

allow the C terminal of the peptide to move freely to either the cleft-down or up state. The 

Src structure is taken from Src_e implicit solvent simulation in Chapter 3. Cluster 2 was 

aligned to Src using PyMOL, then the coordinates of the SSP was taken from the aligned 

cluster 2 to Src coordinates.  

The 9 cluster averages from Model 1 and 8 cluster averages from Model 2 was put in 

implicit solvent for unbiased simulations. For model 1, the CYP label was kept for each 

structure. The energy-minimized average structures of the 9 clusters were used for NVE 

heat up and equilibration, then MD simulations. For model 2, ALA was used to replace the 

CYP label. A full list of the simulations for the two Src-SSP models in implicit solvent is 

in Table 4.2. The implicit solvent model FACTS was used for the simulations. 

  



88 

 

Table 4.1 Src-SSP simulations for the two models, and IGF1R and PKA in explicit 

solvent. 

NO. System Number of waters Volume (cubic box 

edge length in MD, Å) 

Time(ns) 

 Model 1    

1 Clus2Cleft-down 29312 96.96550 600 

2 Clus4Cleft-up 27031 94.50081 600 

3 Clus6C-lobe 20480 86.69860 600 

4 IGF1R(1K3A) 15135 79.02618 300+100*31 

5 PKA(1ATP) 19150 85.29321 300+100*3 

6 Src (1y57) 16433 80.77988 300 

7 Clus2+ATP+Mg 25579 92.90044 300 

8 Clus4+ATP+Mg 25367 92.65180 300 

9 Clus6+ATP+Mg 24075 90.76119 300 

10 Clus2(ALA) 25591 92.96788 100*3 

11 Clus4(ALA) 25492 92.73978 100*3 

12 Clus6(ALA) 23763 90.74478 100*3 

 Model 2 

13 Clus1(ALA) 20519 86.64673 300 

14 Clus2(ALA) 20317 86.36997 100 

15 Clus4(ALA) 19220 84.96075 100 

16 Clus6(ALA) 18875 84.42043 100 

17 Clus3(ALA) 18967 84.55363 100 

18 Clus5(ALA) 22428 89.17764 100 

19 Clus7(ALA) 20585 86.75950 100 

20 Clus8(ALA) 19614 85.46293 100 
1 +: independent trajectories were started from the equilibrated structure 

2 *3: 3 independent trajectories were started with different velocities 
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Table 4.2 Src-SSP simulations for the two models in implicit solvent 

NO. System MD production run time (ns) 

 Model 1 

1 1y57+peptide 11 

2 Clus1 100 

3 Clus2 100 

4 Clus3 100 

5 Clus4 100 

6 Clus5 100 

7 Clus6 100 

8 Clus7 100 

9 Clus8 100 

10 Clus9 100 

 Model 2 

11 Clus1(ALA) 100 

12 Clus2(ALA) 100 

13 Clus4(ALA) 100 

14 Clus6(ALA) 100 

15 Clus3(ALA) 100 

16 Clus5(ALA) 100 

17 Clus7(ALA) 100 

18 Clus8(ALA) 100 
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4.2.3 Simulation details in explicit solvent 

0.15M NaCl ions was added to the solvated system. The simulations were carried out 

using CHARMM version c40b1. For the systems with CYP label, CHARMM22 all-atom 

force field with CMAP dihedral angle correction was used. The parameters for the CYP 

label was added to the force field. For the systems without CYP label, CHARMM36 all-

atom force field was used. An energy minimization was done NVE heat up and 

equilibration was finished on the cluster Halstead using CHARMM DOMDEC.  

The energy was minimized using the steepest descent and Powell algorithms to a 

gradient less than 1.0 in the following stages: 1) with the position of protein heavy atoms 

fixed, 2) with harmonic restraints on protein heavy atoms, 3) with harmonic restraints on 

protein backbone (N, C, Cα) atoms, and 4) without restraints. The steepest descent 

algorithm was used for the first three stages and the Powell algorithm is used for the final 

stage. 

The energy-minimized structures were heated from 100 K to 298 K and equilibrated at 

298 K over a total period of 500 ps in NVE ensemble. The initial velocities were generated 

from Gaussian distributions at the specified temperature. The leapfrog integrator was used 

to calculate the trajectories with a 2 fs time step. The NVE step was performed on the 

community cluster computation nodes. 

The steps following NVE was finished on GPU NVIDIA GENForce GTX 1080. A 

NPT equilibration for 1ns was restarted from the end of NVE equilibration. Langevin 

dynamics was used with a temperature of 298K, and the long-range interactions cutoff 

distances were set to 8, 10 and 12Å. The pressure was controlled using MC barostat 

(keyword PRMC), which is a Monte Carlo barostat that uses trial volume changes with a 

Metropolis-based acceptance criteria, with a reference pressure of 1 Pa.  

The production runs in NVT ensemble were restarted from NPT simulations on GPU. 

Langevin dynamics was used to calculate the trajectories at 298K. Coordinates were saved 

every 20 picosecond. The time series of temperature and potential energy were monitored 

to assess the simulations were stable.  
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4.2.4 Simulation details in implicit solvent 

For the active Src-peptide model, the system was first energy minimized following the 

steps as described for the explicit solvent systems. The energy minimized structures were 

put in NVE ensemble to heat up to 298K. Then production runs in NVT ensemble at 298K 

were restarted from the NVE equilibrated structures. Lagevin dynamics was used to 

calculate the trajectories, and the long-range interactions cutoff distances were set to 10, 

12 and 14 Å. Coordinates were saved every 2ps.  

A model was built to allow the C-terminus of the peptide to explore possible 

orientations that would satisfy the PREs. The peptide in Model 1 clus2 was modeled to the 

active form of Src (1Y57). Only the first 8 residues of the peptide were kept in the 

simulation to allow the C-terminus to explore possible orientations. The NOE restraints in 

CHARMM were used to keep the Tyr interactions with Asp 386 and Arg 388. To keep the 

protein fixed and allow the peptide C-terminus to explore the orientations, CHARMM 

tpcontrol was used that protein has a temperature of 100K and tau equals 10000, and the 

peptide has a temperature of 500K and tau=0.1. An vv2 integrator was used for the MD 

simulations for Langevin is not compatible with tpcontrol. The simulation was carried out 

for 11 ns, with a 2 fs timestep. 

All implicit solvent simulations were finished on the Halstead cluster nodes. 

4.2.5 Trajectory analysis 

The trajectories were aligned with respect to the corresponding energy minimized 

structure. For Src, the backbone atoms of the C-lobe excluding A loop, residue 342-403 

and 425-521, were selected for alignment. For IGF1R and PKA, the backbone atoms (type 

C, N and CA) of the protein were selected for alignment. Water molecules were removed 

for the explicit solvent systems. 

For each system, the RMSDs of protein and peptide were calculated from the aligned 

trajectory using the correl rms command in CHARMM, and only backbone atoms (type C, 

N and CA) were included for RMSD calculations; the timeseries of the interaction energy 

between the protein and the peptide were calculated by looping through the frames in the 

trajectory and using the inte command in CHARMM. 
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4.3 Results and Discussion 

4.3.1 The two crystal structures in explicit solvent (Table 4.1 NO. 4-5) 

The two protein-peptide complex crystal structures were used as a reference to study 

protein-peptide interactions in explicit solvent. As shown in Figure 4.2, for IGF1R, the 

protein backbone RMSD is less than 3Å. The peptide RMSD is around 2Å and remained 

stable during the 100 ns simulation time in all three cases. The interaction energy between 

the protein and peptide fluctuates within the -400 to -200 kcal/mol range without significant 

trend in a change of direction. Similarly, the PKA protein-peptide complex shows a protein 

backbone RMSD around 2Å, a peptide backbone RMSD about 4Å. The interaction energy 

is lower and fluctuates around -400 kcal/mol.  

To explore if the complexes are stable in a longer timescale, we ran a simulation for 

each of the two complexes for 300 ns in explicit solvent. Similar to the results from the 100 

ns trajectories, the RMSD values for both the protein and the peptide stayed stable during 

the 300 ns time period. The interaction energy also fluctuates in a similar range as in the 

100 ns simulations, indicating the systems are stable in a longer timescale. 

A closer look at the trajectories reveals some details in the protein-peptide interactions. 

For IGF1R, the tyrosine in the peptide only dissociated briefly 70-72 ns in one of the 100 

ns trajectories and stayed in place for the rest of the simulation time; in the 300 ns 

trajectory, Tyr moved out ~200 ns. For PKA, the central part of the peptide stayed stable 

in all 100 ns trajectories and 300 ns trajectories, while the N and C termini of the peptide 

might flip around without the peptide dissociating. These observations confirms that the 

peptides are positioned well for catalysis in these two crystal structures. 

In conclusion, the two crystal structure protein-peptide complexes are stable using our 

simulation protocol, and can be used as a reference for protein-peptide interactions in 

explicit solvent. IGF1R has the peptide in the C-lobe binding mode and PKA has the 

peptide in the cleft binding mode, providing template for how the substrate peptide 

interacts with the kinase.  
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Figure 4.2 The protein backbone RMSD, peptide backbone RMSD, and protein-peptide 

interaction energies for the two protein-peptide crystal structure complexes. The structures 

are generally stable during the simulation time period. 
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Figure 4.3 The two crystal structures in explicit solvent for 300 ns. The two structures 

remained stable in a longer simulation time period. 
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4.3.2 Model 1 in explicit solvent  

4.3.2.1 With CYP label (Table 4.1 NO. 1-3) 

The results for the three clusters were shown in Figure 4.4. The protein backbone 

RMSDs are mostly stable during the 600 ns time period. The peptide RMSD values are 

significantly higher, indicating the movement of the peptides. The trajectories showed that 

only the peptide in cluster 2 stayed in the cleft, but Tyr moved out from the active site 

during the MD simulation. For cluster 4 and cluster 6, Tyr moved out from the active site 

during the equilibration before the start of the MD simulation. Also, the peptide flipped 

around the binding site without forming stable interactions.  

 

Figure 4.4 Model 1 with CYP label in explicit solvent. The protein backbone RMSD, 

peptide backbone RMSD and interaction energy are shown for each of three complexes. 

4.3.2.2 With ALA replacing CYP (Table 4.1 NO. 10-12) 

We reasoned that the instability of the protein-peptide complexes might be due to the 

CYP label. Therefore, we replaced the CYP label with ALA to see how the complexes 

behave without the built CYP forcefield. It is worth noting that without CYP label, the 
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cleft-A and cleft-B peptide conformations have the same orientation at the C-terminus. 

Three 100 ns simulations were finished for clusters 2, 4 and 6. The results are shown in 

Figure 4.5. Surprisingly, the simulations without CYP and with shorter time period do not 

yield more stable complexes. Of the 9 simulations, clus2-1, clus 4-2, and all of the three 

clus 6 simulations have the peptide dissociate quickly, shown as a high peptide RMSD 

larger than 20 Å, and the interaction energies that increased to 0 indicating complete 

dissociation of the peptide. Generally, the simulations do not produce stable complexes but 

see the peptide dissociate partially or completely in the simulations. These results show 

that the instability do not come from the CYP label, but the systems themselves. 

Also, the model with Mg ion and ATP included in the structure does not help with ligand 

binding, and the results are not included here. 

 

Figure 4.5 The 100 ns by 3 trajectories for clusters 2, 4 and 6. The protein backbone RMSD, 

peptide backbone RMSD and protein-peptide interaction energy are shown for each 100 ns 

trajectory. 
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Figure 4.5 continued 
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4.3.3 Model 2 in explicit solvent (Table 4.1 NO. 13-20) 

Model 2 was built to optimize some of the protein-peptide interactions. 8 clusters were 

identified from the ensemble MD, and they are divided into two groups by manually 

examining the protein-peptide interactions. Clusters 1, 2, 4 and 6 are considered to have 

stronger protein-peptide interactions, and clusters 3, 5, 7 and 8 have relatively weaker 

interactions. Each cluster average was energy minimized and solvated in explicit solvent 

TIP3P. The MD simulation was run for 100 ns. The results are shown in Figure 4.6 and 

Figure 4.7. In clusters 7 and 8, the peptide dissociated as observed from the trajectory and 

shown in the peptide RMSD data. For clusters 1, 2 and 4, the N terminus of the peptide 

dissociated from the protein and the Tyr moved out from the active site. Clusters 7 and 8 

saw the peptide dissociated quickly, and only some weak interactions remained for cluster 

8. Interestingly, in clusters 3 and 6, it is observed from the trajectories that the peptide 

moved up to the cleft during the simulation; however, the Tyr did not find the interactions 

with Arg. For cluster 5, the peptide moved out of the cleft during the NPT stage.  

These results show that the new model, especially the four clusters with relatively 

strong interactions, has the protein-peptide complex in a more stable state. However, the 

simulation did not help with improved interactions, and the Tyr on the peptide moves out 

of the catalytic site most of the time, indicating that the sampling in explicit solvent is not 

sufficient to generate a stable protein-peptide complex. 
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Figure 4.6 The results for the 4 clusters in Model 2 with relatively strong protein-peptide 

interactions in explicit solvent. 
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Figure 4.7 The results for the 4 clusters in Model 2 with relatively weak protein-peptide 

interactions in explicit solvent. 

4.3.4 Model 1 in implicit solvent for the 9 cluster averages (Table 4.2 NO. 2-10) 

To explore if the instability of the protein-peptide complexes is caused by the effects 

of the explicit water molecules, we put the systems in implicit solvent model FACTS and 

analyze the behavior of the complexes. The simulations for the 9 energy-minimized cluster 

average structures were for 100 ns for each complex. The CYP label was kept in the 

simulations. The results are shown in Figure 4.8. Of all the 6 clusters 1-5 and 9 in cleft 

binding mode, the Tyr residue stayed in place during the simulations. Only cluster 1 has 

the peptide stable as shown in the peptide RMSD data. For the other 5 clusters, the two 
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ends of the peptide moved around or up and down to different extent. The interaction 

energies generally remained stable, and in none of the cases increased significantly. For 

the three clusters 6-8, Tyr moved away from the active site during the simulations. The 

peptide also had some movement, especially in cluster 7.  

In conclusion, the implicit solvent model simulations support the experimental results 

that the Src substrate peptide might adopt a cleft-binding mode. 

 

 

Figure 4.8 The 9 clusters in Model 1 in implicit solvent. The protein backbone RMSD, the 

peptide backbone RMSD, and the protein-peptide interaction energy are shown for each 

cluster for a 100 ns simulation. 
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Figure 4.8 continued 
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4.3.5 Model 2 in implicit solvent (Table 4.2 11-18) 

To see if a better modeling improves the protein-peptide complex stability in implicit 

solvent, we also ran 100 ns simulations for the 8 cluster averages in Model 2. The ALA 

residue was used to replace CYP in Model 2. For all the 4 cluster averages where the 

interactions are determined strong, the Tyr stayed in the catalytic site. Clusters 1 and 2 are 

in cleft binding mode and clusters 4 and 6 are in C-lobe binding mode. The peptide RMSD 

values show the peptide in clusters 1 and 2 are more stable than these in clusters 4 and 6. 

For cluster 4, the N terminus of the peptide moved out of the cleft causing an increase in 

RMSD value. For cluster 6, the peptide moved away from the C-lobe and was closer to the 

cleft at the end of the simulation, causing a peptide RMSD of ~15 Å. For the four clusters 

with relatively weak protein-peptide interactions, clusters 5 and 8 had the Tyr moved away, 

while clusters 3 and 7 had the Tyr in place. The peptides in the four complexes also moved 

as indicated from the peptide RMSD values. Among them cluster 3 is relatively stable, 

with the Tyr in place and the peptide interacting with the protein.  

Model 2 provides stable cleft binding mode for the complex. Also, the behavior of the 

peptide in cluster 6 indicates the cleft mode might be preferred. A C-lobe binding mode 

cannot be ruled out based on cluster 3 results, although the peptide has the tendency to 

move around in this complex. 
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Figure 4.9 The results for the 4 clusters in Model 2 with relatively strong protein-peptide 

interactions in implicit solvent. 
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Figure 4.10 The results for the 4 clusters in Model 2 with relatively weak protein-peptide 

interactions in implicit solvent 

4.4 Conclusions 

We use MD simulations to model the Src-SSP complex to identify possible binding 

modes for the Src substrate. To find the binding mode for a small drug molecule with an 

unguided simulation starting with a free-state ligand would require simulation in μs 

timescale and MD-specific purpose machines[145]. For a peptide with previously 

unknown binding mode, the simulation time sufficient to sample the possible 

conformations would be impractical with current available computation power. Here we 
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use ensemble MD to get possible binding modes first, then use equilibrated MD to study 

the complexes.  

The stability of the complex is affected by several factors, including the initial quality 

of the modeling, the solvent environment, and the flexibility of the peptide. Here the 

substrate we chose has a relatively low KM = 300 μM. Therefore, the affinity of the peptide 

is relatively low and make it harder to model the complex. The two models we built from 

ensemble MD are significantly affected by the explicit water molecules in solution, 

probably due to the weak protein-peptide interactions.  

The protein-peptide complex behavior in implicit solvent proves that the cleft binding 

mode is possible. Specifically, there are several cases where the peptide dissociates from 

the C lobe and move up to the cleft. Also, our modeling shows that a C-lobe binding mode 

is not required to satisfy the C-lobe PRE. A cleft binding mode with a CYP label that moves 

freely can also satisfy both N-lobe and C-lobe PRE in solution. 

Longer simulations might be required to get a more solid solution. In addition, new 

models might provide more insights into the Src-SSP interactions. 
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CHAPTER 5. DOCKING FLEXIBLE MOLECULES USING GLIDE 

5.1 Introduction 

The accurate docking of flexible ligands or short peptides has remained a topic under 

research progress. The ligand docking process, taking the academically and industrially 

widely used Schrödinger package as an example, can be divided into several steps. The 

first step is to prepare the proteins to an all-atom structure with proper protonation states 

in the physiological pH environment using Protein Preparation Wizard. In the docking 

process, the protein is treated as rigid except the option to rotation a few side chains, 

therefore, a careful selection of the initial structure and protein preparation is essential to a 

successful docking project. The 2nd step is to prepare the ligands using LigPrep. This 

includes generating conformational, protonation states and rotamer states. Or, a prepared 

library can be imported for docking. Thirdly, ligand docking that can be viewed as a two-

stage process including grid generation and the ligand docking step. The details for each 

step are described in methods. 

The main challenge in flexible ligand docking is to generate ligand conformations. 

Flexible molecules or short peptides have significantly more rotatable bonds compared to 

traditional small drug molecules, and the current ligand conformational generation 

techniques usually cannot exhaust all possible conformations for the ligands. With the 

increase in number of flexible bonds, the number of possible conformations increases 

exponentially. Some conformations that would fit the binding site, might never be 

generated during the ligand preparation process. On the other side, following Schrödinger 

workflow, the ligand conformations are generated without the knowledge of the binding 

site. In the case of flexible molecules, some conformations that are far too distorted to fit 

into the binding site are generated. Besides, the scoring of the protein-ligand complexes 

can be a problem due to the increased number of protein-ligand interactions, and the much 

larger number of possible conformations. Currently Schrödinger suites have no 

independent workflow for flexible molecule docking apart from regular docking. 
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The Schrödinger package provides an interface named Maestro for molecular modeling 

tasks. The Glide module is used for docking. Docking is a two-stage process, the first stage 

is Grid Generation and the second stage is Ligand Docking. The docking has three types 

of precisions, from the computationally least expensive to the most costly are High 

Through-put Virtual Screening (HTVS), Standard Precision (SP) and Extra Precision (XP). 

SP mode is designed to avoid false negatives using a soft potential, and XP mode uses a 

hard potential to minimize false positives. Glide works by filtering generated 

conformations through the “Glide funnel”. The funnel has four steps namely Rough 

Scoring, Refine, Grid Minimization and Post-Docking Minimization. At the end, the 

conformations are scored and ranked by Glide scoring functions as final poses. The binding 

poses with lower binding scores have better protein-ligand interactions.  

Here two projects of docking flexible molecules are presented. One is to dock a 

pYEEI-like molecule to Src regulatory domain SH2, and the other is to model Src kinase 

domain-SSP peptide binding. Inhibitors have been designed to target Src SH2 domain to 

disturb signal transduction[146-147]. The structure of SH2 domain is shown in Figure 5.1A. 

SH2 is a modular unit with about 100 residues. SH2 domains mediate protein-protein 

interactions in tyrosine kinase signaling by recognizing and binding to tryrosyl- 

phosphorylated peptide sequence on the target proteins. SH2 has been identified in over 

110 human proteins, and a number of these proteins are over-activated in diseases[148]. C-

Src SH2 domain preferentially binds to peptides containing a pYEEI (Figure 5.2 A) motif, 

and the crystal structure of Src SH2 in complex with pYEEI is solved at 1.9 Å 

resolution[149]. In the crystal structure, the phosphate binds tightly in the pY pocket, while 

the side chain of isoleucine fits into the specificity pocket (Figure 5.1B). The details of 

SH2-pYEEI interaction is shown in Figure 5.1C.  

The structures of two small molecule inhibitors (referred to as L1 and L2 in this Chapter) 

targeting SH2 domain were obtained from Prof. Borch. The structures of pYEEI and the 

two molecules are shown in Figure 5.2. The two molecules have high conformational 

flexibility with several rotatable bonds including three chiral centers in the structure. For 

both molecules, one end of each compound is a phosphate group, which is designed for pY 

pocket; the other end has a phenyl group, which would ideally fit into the specificity pocket. 

The two molecules are predicted to mimic the binding mode of pYEEI given the chemical 
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structural features. The objective of this project is to 1) predict the binding mode of the 

ligands 2) identify the relationship between the ligand affinity and the three chiral centers. 

 

 

Figure 5.1 An illustration of SH2 domain structure and SH2-pYEEI binding. PDB ID 1IS0. 

A: Src SH2 domain showing the two binding pockets. B: SH2-pYEEI complex showing 

the ligand binding mode. The pTyr residue is constrained in this structure. C: the detailed 

protein-ligand interaction scheme. 
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pY pocket

Specificity pocket
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Figure 5.2 The chemical structure of the constrained pYEEI and the two ligands mimicking 

pYEEI binding mode. A: pYEEI with pTyr constrained. B: two pYEEI-like ligand L1 and 

L2. Circles indicates the three chiral centers in the molecule.  

 

The other project is to model Src kinase domain-SSP peptide binding. As described in 

the introduction of Chapter 4, it is not directly shown with crystal structure proof if the Src 

substrate binds to the kinase domain in the cleft mode like serine/threonine kinases, or, 

binds to the lobe like other tyrosine kinases. Here we use Glide to dock the 11-residue 

peptide to Src kinase domain to explore a possible cleft binding mode.  

5.2 Methods 

5.2.1 Protein preparations 

Src SH2 domain 

Src SH2 in complex with PYEEI (PDB ID 1IS0) was used. The Src PDB contains 2 

SH2 subunits and some crystal water molecules. The Schrödinger’s Maestro interface was 

used for all operations. We overlaid the two subunits to identify the structural difference 

of the two units and determine if there are any conserved water molecules. Two waters that 

 

A 

B 

L1 L2 
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function as bridges between protein and ligand by forming hydrogen bonds are potentially 

important. 

The 3D structures of the two SH2 units are almost identical, therefore only chain B that 

has less missing atoms was kept for future work. The protein was prepared using 

Schrödinger’s Protein Preparation Wizard (PPW). Preprocess was done to assign bond 

orders, add hydrogens, create disulfide bonds, fill missing side chains using Prime and cap 

termini. For the protein refinement, the hydrogen bond network was optimized at pH=7. 

Crystal water molecules are removed except the two identified functionally important 

water molecules. Three protein systems were generated, with the two water molecules both 

removed, or one of the water molecules kept, or both kept. Two types of restrained 

minimization were used: 1. hydrogens only and 2. converge heavy atoms to RMSD 0.3A. 

The reported problems from PPW were viewed and some bond orders were manually 

adjusted. 

Src kinase domain 

The protein was taken from the energy-minimized average of clus 2 (filename 

56.67_clus2_min.cor). The protein was originally prepared from the active form of Src 

kinase domain, PDB ID 1Y57. 

5.2.2 Ligand preparations 

L1 and L2 

The two ligands were built using the chemical building blocks in Maestro. The 

structures were built in 2D Sketcher then converted to 3D. The module LigPrep was used 

to generate possible ligand states at pH 7 using Epik. Tautomers were generated. All 

stereoisomers were generated, resulting in 8 conformers with 3 chiral carbons in each 

ligand. 16 ligands were generated after preparation, 8 steroisomers for each ligand. 

SSP peptide 

The peptide structure and coordinates was taken from file 56.67_clus2_min.cor with 

Src kinase domain as described in protein preparation. The CYP label at the end of the 

peptide was replaced with ALA as described in Chapter 4. Two runs of LigPrep were 

attempted. The input parameters are shown in Table 5.1. When chiralities are chosen to be 

determined (DETERMINE_CHIRALITIES) from 3D structure, only 4 ligands were output 
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from LigPrep. When all combinations of chiralities are generated, the output increased 

largely to 128. However, these structures do not retain the natural chiral structures. The 

ligands from the Run 1 were used for docking, although less structural variations are 

generated in this set. 

Table 5.1 Parameters used for ligand preparation. 

Parameter Run 1  Run 2 

FORCE_FIELD OPLS3 OPLS3 

EPIK yes yes 

USE_DESALTER no no 

GENERATE_TAUTOMERS no no 

DETERMINE_CHIRALLITIES yes no 

IGNORE_CHIRALITIES no no 

NUM_STEREOISOMERS 64 64 

 

5.2.3 Flexible molecule docking for L1 and L2 

In Glide, docking is a two-step process, grid generation and ligand docking.  

Grid generation 

The parameters are chosen as described here. For the receptor, the default Van der 

Waals radius scaling was used. For the binding site, the centroid of workspace ligand was 

chosen as the center of the enclosing box. For the ligand size, dock ligands similar in size 

to the workspace ligand was selected. Grids with multiple sizes was generated to evaluate 

its effect on ligand docking. The smallest side length is 24 Å, with the largest being 45 Å. 

No constraints or excluded volumes were used. The rotatable groups close to the binding 

pocket were allowed. Three grids were generated with different numbers of waters, one 

without water, one with one of the waters, and one with both waters. 

Ligand docking with and without core pattern 

The core constraints option in Glide chooses a chemical structure as a “core” pattern in 

a reference ligand. The reference ligand is usually in a known well-docked conformation. 

The core setting would restrict docking of the same core structure in the ligand within the 

specified distance to the reference core position. Structures that do not contain the core 

pattern will not be docked. 

We first docked the ligands without using core constraints. Standard precision (SP) 

mode was used. The ligand sampling was chosen to be flexible. Post-docking minimization 
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was performed. Extra precision (XP) mode was tested and lower docking scores were 

observed. The docking scores in XP mode were improved partially due to the difference in 

scoring functions and local optimizations, while the ligand binding mode remained similar. 

The XP mode is more time-consuming and therefore was not used in further runs.  

The core pattern was used to improve the docking results for in regular docking the 

phenyl group might not find the hydrophobic binding pocket. In this case, two cores were 

chosen using a well-docked ligand as the reference. The first is the phosphate group, and 

the tolerance was set to 1 Å. The second is the phenyl group, and the tolerance was set to 

3 Å. The phosphate group is well-docked in most cases with specific interactions, thus a 

lower tolerance was set. 

5.2.4 Docking with NOE constraints 

Grid generation with NOE constraints 

The grid was generated using the clus2 structure as a reference (cleft binding mode). 

The peptide center was used as the grid center. It is worth noting that for the two cleft and 

C-lobe binding modes, the peptides share a similar center, so only one grid was generated. 

The inner cubic box dimension was set to the defaulted 10 Å edge length.  

NOE positional constraints was set for the grid. NOE constraint sets a pair of atoms 

restrained to a certain distance. In Glide, the NOE positional constraints option sets the 

constraints between an atom in protein and a specified chemical group in ligand, and the 

choice of atoms is completed in two steps. The first step is to pick an atom in protein and 

define spherical shells around the atom in grid generation. The center of the sphere is 

defined as the centroid of the picked atom. The second step is in docking, where specified 

chemical groups of atoms in ligand should occupy the defined shells. We picked four atoms 

to define NOE constraints, ASP 386 OD1, ASP 386 OD2, Arg 388 NH2 and Arg 388 NE. 

The minimum and maximum distance are 1 Å and 3.5 Å respectively, creating a shell 

around the selected atom. The constraints are to keep the interactions with the tyrosine on 

the peptide in place. Docking a ligand with similar size to the picked ligand is chosen, 

ending up in a 39.18 Å edge length of the outer box. The rotatable groups close to the 

binding site were allowed to rotate. In the auto-generated input file tab, the PEPTIDE 

option was set to True.  
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Peptide docking 

9 runs were launched. The parameters are listed in Table 5.2. For precision, SP-peptide 

mode was used. Reward intramolecular hydrogen bonds was chosen. The output poses per 

ligand was set to 100. For some runs, the Glide funnel was made larger (MAXKEEP and 

MAXREF in Table 5.2) to retain more conformations in the earlier stages and potentially 

increase the number of output binding poses. The constraints and ligand features were 

adjusted to better find the protein-Tyr interaction. 

Table 5.2 The constraints and important parameters for docking. Ligand feature needs to 

be within the specified distance as set in the Grid constraints for the ligand to be kept 

through the Glide funnel. MAXKEEP: number of poses per ligand to keep in initial phase 

of docking. MAXREF: number of poses to keep per ligand for energy minimization.  

NO. 

run 

Constraints groups Ligand feature (in 

chemical identifier 

format) 

MAXKEEP MAXREF 

1 All 4 in one group O 100,000 1,000 

2 None  100,000 1,000 

3 All 4 in one group  O 100,000 1,000 

4 None  100,000 1,000 

5 Two in one group (386 

OD1 OD2)   

[H]cc(c[H])O[H] 100,000 1,000 

6 Two in one group (386 

OD1 OD2)   

cO[H] 100,000 1,000 

7 Two in one group (386 

OD1 OD2)   

cO[H]  1,000,000 10,000 

8 386OD2, 388NH2 cO[H] 1,000,000 10,000 

9 Two in one group (386 

OD1 OD2)   

cO[H] 1,000,000 10,000 

 

5.3 Results and Discussion 

5.3.1 Docking flexible ligands L1 and L2 to Src SH2 domain 

16 ligands were generated from LigPrep for L1 and L2, 8 for each, for each chiral center 

would have two possible conformations. We named the ligands 1RRR, 1RRS, 1RSR, 

1RSS, 1SRR, 1SRS, 1SSR, 1SSS for L1, and the same naming rule is applied to the 8 

ligands for L2.  

During docking, the conformations for each ligand are sampled internally, including 

different rotamer states. Users do not have access to the complete conformation sets 
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sampled. The numbers in the Glide funnel can be increased in each stage to retain more 

conformations, with a larger computation time cost.  

Three grids were generated with different numbers of water molecules. One without 

water, one with one water molecule, and the third one with two water molecules. The top 

2 scores for each ligand are listed in Table 5.3. The waters generally did not help with 

docking as shown from the binding poses. In some poses, the two water molecules did 

function as bridges between the protein and the ligand. This is shown as a lower docking 

score in the 2W grid compared with 0W grid. However, the two molecules obstructed 

ligand binding in many cases, for they are treated as part of the rigid receptor in Glide; in 

the table, the lowest ranked docking scores for 2W grid are higher than those in 0W grid. 

This obstruction becomes more significant when core constraints are applied to the ligands.  

For L1 and L2, the part which might interact with the water molecules is highly flexible, 

and the accurate interactions with the waters were rarely found. Therefore, the grid with no 

water molecules were used for further work.  

 

Table 5.3 SP scores with different numbers of water 

 

0W glide gscore 1W glide gscore 2W glide gscore 

name 1 2 name 1 2 name 1 2 

1SRS -9.1 -8.69 native -9.27 -8.45 native -9.37 -8.06 

1RSS -8.7 -8.54 1RRS -8.33 -8.33 2SRS -9.36 -8 

2SSS -8.49 -7.59 2RRS -8.15 -7.33 2RRS -8.96 -8.9 

2SRS -8.42 -8.33 1RSR -8.03 -7.48 2SSR -8.1 -7.94 

native -8.4 -8.36 2RSR -8 -7.71 1SSR -7.93 -7.24 

1RSR -8.34 -8.21 1SSS -7.93 -7.59 2RRR -7.89 -7.75 

2RRS -8.25 -8.18 2RSS -7.8 -7.48 1RRS -7.82 -7.32 

1SSR -8.17 -7.82 2SRS -7.75 -7.54 2RSS -7.81 -7.8 

1RRR -8.05 -8 2SSR -7.74 -7.71 1RRR -7.69 -7.26 

2SSR -7.9 -7.68 1RSS -7.54 -7.52 2RSR -7.65 -7.64 

2SRR -7.84 -7.83 1RRR -7.53 -7.48 1RSS -7.58 -7.33 

1SSR -7.81 N/A 1SRS -7.48 -7.35 2SRR -7.53 -6.64 

1RRS -7.74 -7.66 2SSS -7.45 -7.16 2SSS -7.49 -7.13 

2RSR -7.67 -7.6 2RRR -7.3 -7.2 1SSS -7.41 -7.17 

2RRR -7.67 -7.11 1SSR -7.29 -7.24 1SRS -7.4 -7.06 

1SSS -7.59 -7.57 1SRR -7.2 N/A 1RSR -6.92 -6.89 

2RSS -7.5 -7.17 2SRR -6.59 -6.41 1SRR -6.75 N/A 
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The Glide grid is structured as follows: two cubic boxes, the inner box and the outer 

box, share the same geometric center. The inner box size defines the volume that the ligand 

center explores during the exhaustive site-point search, and defines the volume in which 

the grid potentials are computed, all ligand atoms of a valid pose must be located within 

this outer box. The default edge length of the inner box is 10 Å, and the edge length of the 

outer box is the length of the reference ligand plus the side length of the inner box. How 

outer box edge length is calculated is not mentioned clearly in Glide manual but learned 

by testing with parameters. According to Glide manual, a grid should 1) cover the binding 

site 2) be large enough to hold the whole ligand, and a grid larger than needed would be a 

waste of computer time. The computation cost that associated with different grid size 

would be obvious in high-throughput screening where a large ligand library is involved.  

The grid size has an affect on the docking results when it is altered within a certain 

range. Schrödinger does not provide an explicit explanation for this affect. To our 

knowledge, the reasons for the variations are the numerical algorithms for both searching 

and scoring, including complex numerical algorithms, complex grid-based potentials and 

the practical limitations on ligand conformation sampling.  

A series of grid size was used to examine its effect on docking results. Our conclusion 

is that for flexible molecules, a larger grid might be required to get the optimal results. Our 

ligand length is approximately 19 Å, and we started with an outer box of side length 24 Å, 

which is theoretically large enough to hold the whole ligand. In the docking results, it is 

observed that the phosphate group always fit the pY pocket, but the phenyl side usually did 

not fit into the hydrophobic pocket. Close to the edge of the box, the last flexible bond on 

the phenyl side would rotate and fold phenyl inward to prevent fitting. One explanation is 

that the edge of the box is restricting the poses when the phenyl group is close to the edge. 

To test this interpretation, we increased the grid size gradually to 45 Å. The increase of the 

grid size alleviates the restriction on the phenyl side, but there still exists bad poses 

probably due to incomprehensive sampling. Another observation is that the distance 

between the phosphate and the grid border is smaller than the distance between the phenyl 

group and the other edge, which means the grid size do not fully account for the poor 

binding of the phenyl group.  
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A further explanation would be different functional groups have different priority in 

the scoring function. The phosphate-pY pocket interaction is much favored than the other 

interactions and contributed largely to the docking score, thus the poses with the phosphate-

pY interactions were always kept. The hydrophobic interaction does not contribute as much 

to the docking score and can be filtered out in favor of other interactions. The ligands are 

highly flexible and the three hydroxyl groups in the middle of the ligand can form 

interactions with the residues between the two binding pockets.  

The core settings are used to determine if the phenyl group is poorly docked is due to 

non-optimized Glide settings that the structures are lost in the funnel, or the conformations 

were not generated before entering the funnel. We defined two function groups in a well-

docked ligand as cores, the first is the phosphate group (core 1), and the second is the 

phenyl group (core 2). The use of phosphate group did not have an influence on the results, 

probably for that the phosphate always fits into the pY pocket in the output poses. For core 

2, we set tolerance to the reference ligand as 3 Å that only binding poses with phenyl within 

3 Å of the reference phenyl will be retained. Compared to the previous docking results, 

some docked poses with phenyl in the hydrophobic pocket were obtained. Because they 

appeared in the core-based docking, these conformations were pre-generated within Glide. 

It is very likely that the core setting changed how Glide ranks the output ligands rather than 

generate new conformations to satisfy the core restraints. 

Larger funnels were used in a 26 Å grid to test if the good ligand conformations are not 

generated or are filtered out in the funnel. We doubled the number of ligands for initial 

phase of docking from 5000 to 10000 and best poses for energy minimization from 500 to 

1000. A binding pose was found in this setting for a ligand, 2RSR, with no binding pose 

found in default settings. Surprisingly, the docking score (-8.483) is in the middle range of 

all the output poses, as opposed in the higher or worse range. This proves that the Glide 

funnel filters out some ligand conformations that would eventually yield good binding 

poses. However, this type of experiments is time-consuming. This run costs approximately 

three folds of time compared with the default setting. This shows that flexible molecule 

docking is more time consuming. 

The chiral centers in the ligands are associated with the binding affinity of the ligands. 

With different grid size settings, some ligands always find the same binding pose, while 
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some hardly yield any good poses. Two ligands (1SSS and 2RSR) did not yield binding 

poses with phenyl in the specificity pocket without core constraints. The scores of the two 

ligands with phenyl in the specificity pocket was obtained with the phenyl core constraints. 

The scores are -7.671 and -8.331 respectively. The latter score is in the middle range of all 

docking scores; even in this case, the phenyl group is close to the hydrophobic pocket 

without fitting into it. The ligand structure shows that the S conformation of the 2nd chiral 

center causes the phenyl to flip out rather than fit into the hydrophobic pocket.  

Glide results are dependent on initial ligand coordinates input. To test this, we altered 

only the ligand coordinates by randomly translating the ligands in space. No changes in 

bond angles/lengths was made. The output from the two runs were not identical. 

The final results are integrated from the runs with different grid sizes. We calculate the 

average scores for each ligand with binding poses that has the phenyl finding the specificity 

pocket. Only the top 2 scores for each ligand in each run are considered. Then we calculated 

the average docking scores for each ligand. The results are listed in  
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Table 5.4.  

Based on the docking score and visualization of the binding poses, we divide the ligands 

into three groups.  

Better: 2RRR, 2SRS, 1SRS, all three are easy to dock and have high scores. 

Average: 1RRS, 1SSR, 1RSS, 2RSS, 2SSR, 2SSS, 1RRR, 2RRS, 2RSR. 1RRS have 

less poses found and therefore is categorized into the average group.  

Worse: 2SRR, 1SRR, 1SSS. These three ligands have low docking scores, or no good 

binding pose was found. 

Two exceptions that are not grouped are 2RSR and 1RSR. For 2RSR, the binding pose 

was not obtained by changing grid size, but was found in a wider funnel with a mid-range 

score. 1RSR has only one pose identified by changing grid size; in larger grids, more poses 

were found with mid-range scores. 

 



120 

 

Table 5.4 The integrated results for docking ligands L1 and L2. The average docking score 

and the standard deviation for the scores are listed for each ligand. 

NO. Ligand Avg Score SD 

1 1RSR -8.9 0 

2 2RRR -8.78656 0.289387 

3 2SRS -8.65111 0.085792 

4 1RRS -8.64641 0.273335 

5 1SRS -8.64226 0.281581 

6 1SSR -8.51467 0.292235 

7 1RSS -8.43372 0.23577 

8 2RSS -8.43196 0.079796 

9 2SSR -8.42449 0.213615 

10 2SSS -8.37663 0.248248 

11 1RRR -8.36077 0.339145 

12 2RRS -8.2129 0.170084 

13 2SRR -8.00443 0.215023 

14 1SRR -7.13911 0.660343 

15 1SSS 
  

16 2RSR 
  

 

5.3.2 Src-SSP modeling using peptide docking 

In Glide, the peptide docking mode has different default values for several parameters 

to improve docking results for polypeptides. Three parameters are altered for the peptide 

docking mode (Table 5.5). Several other keywords are also set internally, including the 

maximum number of conformers, which is increased by a factor of 10; also, an increase 

about a factor of 3 is applied to the number of diameter directions. These parameter settings 

are designed to retain more ligand conformations in the Glide funnel.  

Table 5.5 The three parameters that differ in different docking modes. MAXKEEP: number 

of poses per ligand to keep in initial phase of docking. MAXREF: number of poses to keep 

per ligand for energy minimization. POSTDOCK_NPOSE: number of poses to use in post-

docking minimization.  

Parameter Default XP Peptide 

MAXKEEP 5000 5000 100,000 

MAXREF 400 800 1,000 

POSTDOCK_NPOSE 5 10 100 

 

The numbers of output and the docking score for the highest ranked ligand from each 

run are listed in Table 5.6. Docking without restraints yields ~100 docking poses per run. 



121 

 

Both C-lobe and cleft binding mode have been observed in the output binding poses. Two 

representative binding poses are shown in Figure 5.3. The docking scores for the two 

structures are -8.432 and -6.400 respectively. The scores are not very high, probably due 

to the weak interactions between the protein and the peptide. The C-lobe binding mode 

shows the C terminus of the peptide interacting with the C-lobe, while the cleft-binding 

mode shows the peptide residing entirely in the cleft. However, the Tyr in the peptide is 

not situated in between Asp 386 and Arg 388 in the two structures. Pose A has the Tyr 

flipping up interacting with a loop, while pose B has the Tyr interacting with only Asp 386 

but not Arg 388. 

To build binding poses with Tyr in place, we applied NOE constraints to the docking 

process. As shown in the table, adding constraints would greatly reduce the number of 

output, or even produce no output. No result was generated when both constraints for Asp 

386 and Arg 388 were used. The increase of the funnel size does not increase the numbers 

of output significantly. The highest scored binding pose is from Run 6, with Tyr interacting 

with Asp 386, and the peptide partially fit into the cleft. These results show that some 

peptide conformations might never be generated rather than being filtered out in an earlier 

stage of the Glide funnel. 
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Table 5.6 The number of output from the docking runs. 

NO. run 1 2 3 4 5 6 7 8 9 

NO. poses 0 91 6 97 0 4 0 1 0 

Top score N/A -8.50 -3.55 -8.50 N/A -6.35 N/A -5.80 N/A 

 

 

 

 

  

Figure 5.3 The two binding poses generated from docking without constraints. A: a pose 

close to a C-lobe binding mode. B: cleft-binding mode. 

A B 
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5.4 Conclusions 

In conclusion, grid size, Glide funnel width and restraints have been experimented for 

docking flexible ligands L1 and L2. A proper grid size is required to accommodate the 

ligand flexibility at two ends in a computationally efficient way. The grid size should be 

larger for docking flexible ligands. When the grid is small, the edge of the grid would 

restrain the position of the ligand, and the better poses can be filtered out during the early 

stages. This is different from small molecule docking where the ligands are mostly rigid. 

The Glide funnel width is a trade-off between accuracy and computational cost for flexible 

docking. In peptide docking mode, the Glide funnel is wider than the XP mode. The width 

should be further increased if no good poses are generated from the default peptide docking 

settings.  The restraints would improve the results when properly used, but the number of 

output would likely also be reduced with restraints in place. 

Two factors need to be considered for future improvement. One is to sample 

conformations comprehensively for flexible molecules. The current ligand sampling in 

Glide does not have priority settings for different bonds. The flexible bonds are treated 

equally that some conformations generated are not “drug-like” while the conformations 

that would fit the binding site are not sampled sufficiently. A temporary solution would be 

to increase the grid funnel size to retain more structures. The other option is to use Glide 

flexible docking protocol.  The protocol might only provide limited improvement for only 

side chain interactions are optimized, while the issue remains in the lack of ligand backbone 

conformation sampling. 

Also, the scoring function needs to be adjusted for flexible molecules. For small 

molecules that do not fit, a high penalty is applied to the scoring function for steric clashes. 

For flexible molecules, there are more interactions between the protein and the ligand 

which contribute to the total score, while important interactions might be lost in favor of a 

combination of several non-essential interactions. For the same reason, the Glide score 

range for flexible molecules is relatively narrow, even for very different poses. An example 

is for the worst scored poses where the phenyl does not find the hydrophobic pocket at all, 

the scores are around -7, while the best docking score is higher than -9. The current scoring 

function would call for a more careful manual examination of output binding poses when 

docking flexible molecules. 
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Several factors would affect docking results in Glide. Alterations in the initial ligand 

conformations, including bond lengths and angles, torsional differences, or the identical 

ligand conformation differ in absolute coordinates would all affect the results. In general, 

ligands that are good binders will be affected less than the poor binders. To eliminate input 

dependencies, one option is to use the "Regularize input geometries" feature of the Virtual 

Screening Workflow. This option converts the input ligands to unique SMILES and back 

to 3D.  

Glide gives good reproducibility with identical input. Two docking jobs with the exact 

same settings usually give identical results, same scores and same poses.  
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CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 

6.1 Conclusions 

In conclusion, we developed the methodology of using ABPO for conformational 

transitions in all-atom protein systems. We experimented the types of reduced variables 

that are suitable for each conformational transition. The dihedral angle reduced variables 

are efficient for loop movement, while distance-based reduced variables are generally 

required for transitions that involves breaking and formation of inter-residue interactions. 

A series of analysis was done to evaluate the convergence and the outputs of the 

simulations. The ABPO parameters were tested to get the Normalized RV plots are 

examined to evaluate both the quality of the RVs and convergence of the simulation.  

We obtained the conformational transition paths for the aforementioned protein 

systems. For the systems with simple transitions, the path can be easily described in terms 

of reduced variables. For large-scale transitions, the structures along the transition paths 

are analyzed to build the transition trajectory. The details and key events in the Src kinase 

conformational activation was described.  

The Src kinase domain-SSP protein-peptide interactions and behavior was studied by 

long equilibrium MD in both implicit and explicit solvent. The behavior of the peptide is 

affected by explicit water molecules, especially when the binding affinity is low. In the 

explicit water, using the modeling of the protein-peptide complex, the peptide might 

dissociate quickly. In implicit solvent, the protein-peptide interactions are more stable. 

Another phenomenon observed is that the peptide can flip from one binding site to the other 

site. In several simulations, the C-terminus of the peptide dissociates from the C-lobe and 

move up to the cleft. This is explained by the rotation of the peptide backbone atoms. Our 

simulation results suggest a possible cleft binding mode for Src substrate peptide, while a 

C-lobe binding mode is potentially possible.  

Flexible molecule docking was applied on Src kinase and regulatory domain SH2. The 

protein-ligand interactions were visualized and analyzed. Also, the peptide/flexible 

molecule docking protocol in with Glide was evaluated. Two issues identified are that the 
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ligand conformations are not sampled exhaustively with the increased number of flexible 

bonds, and the scoring functions have difficulty distinguishing good binding poses and 

those with many loose interactions. For the Src regulatory SH2 domain, the binding poses 

for L1 and L2 with designed purpose were obtained with top-ranked scores. For Src 

substrate binding, the cleft binding mode is possible from our results while there is still 

debate on the Src substrate binding mode.  

6.2 Future directions 

Currently ABPO utilized CHARMM ensemble module to accelerate sampling by 

launching multiple trajectories for each state. In this work, implicit solvent model FACTS 

is mostly used to quickly explore the possible sets of RVs and ABPO parameters. Several 

techniques to improve the simulation performance in explicit solvent has been advanced or 

developed in the past few years. The most notable are CHARMM DOMDEC[150] and  

CHARMM/openMM[151][152][153]. DOMDEC uses domain decomposition to 

accelerate the calculation of non-bonded forces, the most time-consuming step in 

calculating simulation trajectories. OpenMM utilizes GPU to do fast calculations. Both 

significantly boost the performance of CHARMM equilibrium explicit solvent simulations. 

We have tested the feasibility of doing ABPO simulations with explicit solvent, and the 

preliminary results for ERα LBD show similar profile for the RVs. However, the simulation 

speed is still traditional, as the ABPO implementation does not include any technique to 

enhance performance for explicit solvent. How to combine the power of the new techniques 

and ABPO to further accelerate the sampling can be an interesting topic. 

We used equilibrium simulations to study protein-peptide interactions. Although modeling 

protein-peptide interactions is not a topic of this work, the modeling does have a huge effect 

on the simulations and should be carefully performed before any simulations. Besides, the 

simulations can be improved by using a proper forcefield that better models both proteins 

and peptides. Also, the effect of explicit water molecules need to be considered. 

Docking flexible molecules can be difficult due to the increased degrees of freedom of 

the ligands. Current protocols (taking Glide as an example) focuses on improving the 

performance based on current framework. While some advancement is observed, problems 

like comprehensive conformation sampling of flexible molecule, retaining the “drug-like” 
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conformations in the funnel, and a scoring function that better describes protein-peptide 

interactions should be further researched. Also, special measurement or methods for 

flexible molecules might need to be developed to avoid the exponentially increased 

computational time with the number of flexible bounds and increased funnel width. 
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APPENDIX A. OTHER ATTEMPTED SYSTEMS 

Three other protein systems that have different conformational states have been 

examined for the possibility of using ABPO for the transition. The systems are adenosine 

kinase (ADK), nitrogen regulatory protein C (NtrC), and retinoid X receptor (RXR). Each 

system was prepared as described in Chapter 2, and a 10 ns equilibrium simulation was 

launched for each state. The conformational difference for the two states for the three 

systems are shown in Figure A1. 

Figure A1 The conformational transition of the three systems, illustrated in ribbon 

representation. A: ADK. Cyan: open form, PDB ID 4AKE. Orange: closed form, PDB ID 

1AKE. The protein has 214 residues in total, residues 160-214 are in transparent 

representation. B: NtrC. Cyan: the active conformation, PDB ID 1DC8. Orange: the 

inactive conformation, PDB ID 1DC7. C: RXR. Cyan: the apo form, PDB ID 1LBD. 

Orange: the agonist-bound form, PDB ID 1FM9. The receptor domain residues 227-458 

are included in the crystal structures. Residues 227-429 are shown in transparent, and 

residues 430-458 are shown in solid colors. 

 

The conformational transition of the open and closed states of ADK can be visualized 

as domain movement. ADK has three domains namely CORE, LID and AMP binding 

domain. From the open and closed conformation, the LID and AMP domains moves 

towards the CORE domain to form the closed three-domain conformation. The system has 

been chosen for preliminary examination for it is studied in several other methods for 

computational transitions. However, in our 10 ns simulations, we observed that the closed 

 

CORE

LID AMP

A B C
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state conformation already reached the open state at the end of the simulation. Therefore, 

we conclude that this system is not suitable for our path calculation purpose. 

NtrC conformational transition has been studied using the string method with an elastic 

network model[66]. Besides, TMD has been used to build a transition pathway for the 

system[154]. The conformational transition for the active and inactive conformation can 

be described in terms of a combination of helix movement and rotation. The equilibrium 

simulation was done for 15 ns for each state. We looked at the dihedral angles of the region 

that has structural difference. Only a few residues have distinct two-state - distributions 

while the other residues have largely overlapping distributions or intermediate sampling between 

the two states. To determine if NtrC is a two-state system, we computed the pairwise rms 

deviation as defined in [121]. For the 15 ns trajectory, each state has one single peak but 

the inactive form is forming another small peak from the main peak (Figure A2A). We 

extended the simulation for another 15 ns. In the pairwise RMSD for the 30 ns combined 

trajectory, the inactive form is observed to have two states (Figure A2B). We determined 

the system is not a good two-state model and did not further pursue the conformational 

transition.  

For the third system RXR, the apo form and the agonist bound form were compared. 

Upon agonist binding, the C-terminus helix partially unfolds and moves to another position 

to cover the ligand binding pocket. The structural change would be an interesting 

conformational change to evaluate, however, it is very likely that the extended form of the 

helix in the apo form is due to crystal stacking, and the physical apo form remains unknown. 

Due to this observation, we decided to not to use the apo form, and examined the transition 

between the agonist and antagonist-bound forms of steroid receptor as shown in Chapter 2. 
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Figure A2 The distributions of pairwise RMSD values calculated using all pairs of 

snapshots between the two trajectories as labeled. For every pair of snapshot, the RMSD 

value was computed over all heavy atoms following the superposition of the two protein 

structures. 

  

A: 15 ns B: 30 ns
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APPENDIX B. CHARMM EXECUTABLES BUILD COMMANDS 

For community clusters (Halstead as an example) with ABPO support. 

Note the version of the software packages might change. Check the available versions 

using “module avail” before installation.  

 

charmmcompile.sh 

#!/bin/csh 

module purge 

module load intel/16.0.1.150 impi/5.1.2.150 

rm -rf ./build/em64t_M ./lib/em64t_M ./exec/em64t_M ./tool/prefx_em64t_M 

setenv MPIIFORT YES 

./install.com em64t xxlarge FULL M E ABPO X86_64 IFORT 

 

For community clusters (Halstead as example) with DOMDEC support. 

charmmcompile.sh 

#!/bin/csh 

module purge 

module load intel/16.0.1.150 impi/5.1.2.150 

rm -rf ./build/em64t_M ./lib/em64t_M ./exec/em64t_M ./tool/prefx_em64t_M 

setenv MPIIFORT YES 

./install.com em64t xxlarge FULL M COLFFT DOMDEC X86_64 IFORT  

 

For local GPU with CHARMM openMM. 

charmmcompile.sh 

rm -rf ./build/gnu_M ./lib/gnu_M ./exec/gnu_M ./tool/prefx_gnu_M 

./install.com gnu openmm M  
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APPENDIX C. CHARMM INPUT SCRIPTS 

B.1 CHARMM input file for D-tensor evaluation for linear distance combination RVs in 

FACTS 

* abpo on src with linker active and inactive structure 

* 

 

if ?ABPO .ne. 1 then 

 echo "test not performed" 

 stop 

endif 

 

set toppar * ! set your toppar file path here 

set io * ! set you io directory path here 

 

! Read topol and param file 

read rtf card unit 11 name @toppar/top_all22_prot.rtf 

read para card unit 12 name @toppar/par_all22_prot_gbsw.inp 

! set up ensemble environment 

ensemble nensem 8 

set rep ?whoiam 

if @rep .lt. 4 then  

read psf card unit 13 name @io/1y57.psf 

read coor card unit 14 name @io/1y57.cor 

coor copy comp 

else  

read psf card unit 13 name @io/1y57.psf 

read coor card unit 14 name @io/2src.cor 

coor copy comp 

endif 
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! NBOND list  

set con 10 

set coff 12 

set cnb 14 

set cim 15 

 

!----- NON BONDED OPTIONS ------------------------ 

nbon inbf -1 elec atom cdie shif vdw vatom vswi - 

     eps 1.0 e14f 1.0 wmin 1.5 wrnmxd 0.5 - 

     nbxm 5 ctonnb @con ctofnb @coff cutnb @cnb 

 

scalar fbeta set 1.0 sele .not. hydrogen end 

energy 

 

scalar wmain = radius 

 

!----- IMPLICIT SOLVENT FACTS ------------------------------------- 

fact tcps 22 teps 1.0 tkps 8.0 gamm 0.015 - 

    conc 0.0 temp 298 tcil @cnb tcic @coff tavw 

 

shake fast bonh para 

 

!setup collective variables 

ensemble abpo setcv - 

dist NP 8 1 A 311  CA  A 260  NE1 - 

-1 A 255  CA  A 308  CA - 

-1 A 255  CA  A 311  CA - 

-1 A 255  CA  A 312  CA - 

-1 A 256  CA  A 311  CA - 

-1 A 256  CA  A 312  CA - 

-1 A 257  CA  A 311  CA - 
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-1 A 257  CA  A 312  CA - 

dist NP 6 -1 A 307  CA  A 295  CA - 

-1 A 307  CA  A 296  CA - 

-1 A 307  CA  A 297  CA - 

-1 A 307  CA  A 334  CA - 

-1 A 307  CA  A 335  CA - 

-1 A 307  CA  A 336  CA - 

dist NP 9 -1 A 310  CA  A 295  CA - 

-1 A 310  CD  A 295  CE - 

 1 A 310  CD  A 382  CA - 

 1 A 310  CA  A 382  CA - 

 1 A 310  CD  A 409  CZ - 

 1 A 310  CA  A 410  CA - 

-1 A 310  CD  A 403  CA - 

-1 A 310  CD  A 404  CA - 

-1 A 311  CA  A 325  CA - 

dist NP 5 1 A 406  CA  A 410  CA - 

 1 A 407  CA  A 410  CA - 

 1 A 407  CA  A 411  CA - 

 1 A 408  CA  A 411  CA - 

 1 A 409  CA  A 412  CA - 

dist NP 3 1 A 412  CA  A 417  CA - 

 1 A 413  CA  A 416  CA - 

 1 A 413  CA  A 417  CA - 

dist NP 6 1 A 414  CA  A 417  CA - 

 1 A 414  CA  A 418  CA - 

 1 A 415  CA  A 418  CA - 

 1 A 415  CA  A 419  CA - 

 1 A 415  CA  A 420  CA - 

 1 A 416  CA  A 419  CA - 

dist NP 3 1 A 413  CA  A 423  CA - 
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 1 A 415  CA  A 423  CA - 

 1 A 416  CA  A 424  CA - 

dist NP 5 1 A 410  CA  A 302  CA - 

 1 A 411  CA  A 278  CA - 

 1 A 411  CA  A 301  CA - 

 1 A 411  CA  A 302  CA - 

 1 A 412  CA  A 278  CA - 

dist NP 4 -1 A 410  CA  A 380  CA - 

-1 A 410  CA  A 381  CA - 

-1 A 410  CA  A 382  CA - 

-1 A 411  CA  A 381  CA - 

dist NP 4 1 A 416  CA  A 386  CA - 

 1 A 416  CA  A 388  CA - 

 1 A 416  CA  A 428  CA - 

 1 A 417  CA  A 385  CA - 

dist NP 5 -1 A 422  CA  A 437  CA - 

-1 A 422  CA  A 439  CA - 

-1 A 422  CA  A 433  CA - 

-1 A 423  CA  A 433  CA - 

-1 A 423  CA  A 429  CA - 

 

!evaluate the D matrix 

ensemble abpo dtns dsteps 1000000 dfrq 100 

dyna leap lang tbath 298 timestep 0.002 - 

   FIRSTT 298.0 FINALT 298.0 TSTRUC 298.0 TWINDH 5.0 TWINDL -5.0 - 

    nsavc 1000 nprint 1000 IPRFrq 5000  

 

stop 
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B.2 CHARMM input file for initiating ABPO in FACTS 

* abpo on src with linker active and inactive structure 

* 

 

if ?ABPO .ne. 1 then 

 echo "test not performed" 

 stop 

endif 

 

set toppar * 

set io * 

 

! Read topol and param file 

read rtf card unit 11 name @toppar/top_all22_prot.rtf 

read para card unit 12 name @toppar/par_all22_prot_gbsw.inp 

! set up ensemble environment 

ensemble nensem 16 

set rep ?whoiam 

if @rep .lt. 8 then  

read psf card unit 13 name @io/1y57.psf 

read coor card unit 14 name @io/1y57.cor 

coor copy comp 

else  

read psf card unit 13 name @io/1y57.psf 

read coor card unit 14 name @io/2src.cor 

coor copy comp 

endif 

 

! NBOND list  

 

set con 10 
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set coff 12 

set cnb 14 

set cim 15 

 

!----- NON BONDED OPTIONS ------------------------ 

nbon inbf -1 elec atom cdie shif vdw vatom vswi - 

     eps 1.0 e14f 1.0 wmin 1.5 wrnmxd 0.5 - 

     nbxm 5 ctonnb @con ctofnb @coff cutnb @cnb 

 

scalar fbeta set 1.0 sele .not. hydrogen end 

energy 

 

scalar wmain = radius 

 

!----- IMPLICIT SOLVENT FACTS ------------------------------------- 

fact tcps 22 teps 1.0 tkps 8.0 gamm 0.015 - 

    conc 0.0 temp 298 tcil @cnb tcic @coff tavw 

 

shake fast bonh para 

 

!setup collective variables 

ensemble abpo setcv - 

dist NP 8 1 A 311  CA  A 260  NE1 - 

-1 A 255  CA  A 308  CA - 

-1 A 255  CA  A 311  CA - 

-1 A 255  CA  A 312  CA - 

-1 A 256  CA  A 311  CA - 

-1 A 256  CA  A 312  CA - 

-1 A 257  CA  A 311  CA - 

-1 A 257  CA  A 312  CA - 

dist NP 6 -1 A 307  CA  A 295  CA - 
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-1 A 307  CA  A 296  CA - 

-1 A 307  CA  A 297  CA - 

-1 A 307  CA  A 334  CA - 

-1 A 307  CA  A 335  CA - 

-1 A 307  CA  A 336  CA - 

dist NP 9 -1 A 310  CA  A 295  CA - 

-1 A 310  CD  A 295  CE - 

 1 A 310  CD  A 382  CA - 

 1 A 310  CA  A 382  CA - 

 1 A 310  CD  A 409  CZ - 

 1 A 310  CA  A 410  CA - 

-1 A 310  CD  A 403  CA - 

-1 A 310  CD  A 404  CA - 

-1 A 311  CA  A 325  CA - 

dist NP 5 1 A 406  CA  A 410  CA - 

 1 A 407  CA  A 410  CA - 

 1 A 407  CA  A 411  CA - 

 1 A 408  CA  A 411  CA - 

 1 A 409  CA  A 412  CA - 

dist NP 3 1 A 412  CA  A 417  CA - 

 1 A 413  CA  A 416  CA - 

 1 A 413  CA  A 417  CA - 

dist NP 6 1 A 414  CA  A 417  CA - 

 1 A 414  CA  A 418  CA - 

 1 A 415  CA  A 418  CA - 

 1 A 415  CA  A 419  CA - 

 1 A 415  CA  A 420  CA - 

 1 A 416  CA  A 419  CA - 

dist NP 3 1 A 413  CA  A 423  CA - 

 1 A 415  CA  A 423  CA - 

 1 A 416  CA  A 424  CA - 
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dist NP 5 1 A 410  CA  A 302  CA - 

 1 A 411  CA  A 278  CA - 

 1 A 411  CA  A 301  CA - 

 1 A 411  CA  A 302  CA - 

 1 A 412  CA  A 278  CA - 

dist NP 4 -1 A 410  CA  A 380  CA - 

-1 A 410  CA  A 381  CA - 

-1 A 410  CA  A 382  CA - 

-1 A 411  CA  A 381  CA - 

dist NP 4 1 A 416  CA  A 386  CA - 

 1 A 416  CA  A 388  CA - 

 1 A 416  CA  A 428  CA - 

 1 A 417  CA  A 385  CA - 

dist NP 5 -1 A 422  CA  A 437  CA - 

-1 A 422  CA  A 439  CA - 

-1 A 422  CA  A 433  CA - 

-1 A 423  CA  A 433  CA - 

-1 A 423  CA  A 429  CA - 

 

! Run path optimization 

ensemble abpo opti - 

  bcyc 1 ecyc 40 temp 298 - 

  mnbl 30 bste 40000 minc 200 smoo 0.05 pred 2000 - 

  npnt 2000 moll 0.05 rtub 20 ftub 5.0 - 

  bfct 0.8  cvfr 1000 

! cfct doesn't exist! checked source code 

dyna leap lang tbath 298 timestep 0.002 - 

  nsavc 1000 nprint 1000 iprfrq 5000 - 

  FIRSTT 298.0 FINALT 298.0 TSTRUC 298.0 TWINDH 10.0 TWINDL -10.0 - 

 

stop 
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B.3 CHARMM commands for restarting ABPO 

! restart from cyc040  

! Run path optimization 

ensemble abpo opti - 

  rest bcyc 40 ecyc 70 temp 298 - 

  mnbl 30 bste 40000 minc 200 smoo 0.05 pred 2000 - 

  npnt 2000 moll 0.05 rtub 20 ftub 5.0 - 

  bfct 0.8  cvfr 1000 

! cfct doesn't exist! checked source code 

dyna leap lang tbath 298 timestep 0.002 - 

  nsavc 1000 nprint 1000 iprfrq 5000 - 

  FIRSTT 298.0 FINALT 298.0 TSTRUC 298.0 TWINDH 10.0 TWINDL -10.0 - 

 

stop 

 

 

B.4 CHARMM script for calculating protein-peptide interaction energy time series 

*FILENAME: interaction-energy.inp 

*PURPOSE: compute interaction energies from trajectory 

* 

 

!set file directories here 

set toppar * 

set io * 

set ofile * 

 

!read toppar for explicit water systems 

read rtf card name @toppar/top_all36_prot.rtf 

read para card flex name @toppar/par_all36_prot.prm 

stream @toppar/toppar_water_ions.str 

read psf card name @io/clus.psf 
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open unit 51 read unform name @io/analysis/md1_0.2ns.dcd 

! specify how we are going to read the trajectory 

traj firstu 51 nunit 1 skip 100000  ! use whole trajectory 

 

open write unit 21 form name @ofile/inte_A_B.dat 

write title unit 21 

* time prot-ligand 

* 

set con 8 

set coff 10 

set cnb 12 

set cim 13 

 

 

set t 0.2 ! keep track of time 

 

label loop 

! get next coordinate set according to specifications above 

traj read 

! we have to update lists every time, things can move a lot in 200ps 

update cutim @cim cutnb @cnb ctofnb @coff ctonnb @con cdie shif vdw vato vswi  

! protein ligand interaction 

inte sele segid A end sele segid B end 

set e1 ?ener 

write title unit 21 

* @t @e1  

* 

 

incr t by 0.2 

if t le 100 goto loop   
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APPENDIX D. A PRELIMINARY COMPARISON OF EXPLICIT 

SOLVENT SIMULATIONS BETWEEN CHARMM OPENMM AND 

DOMDEC 

Two types of methods are implemented in CHARMM to get better computational 

performance of equilibrium simulations in explicit solvent. One is CHARMM openmm 

that uses GPU for fast calculation of trajectories. The other is CHARMM DOMDEC that 

uses domain decomposition to update non-bonded list faster. We noticed in Chapter 4 that 

for the simulations in explicit solvent on GPU, a higher RMSD value is observed for 

protein systems compared with implicit solvent simulations. Here we compare the 

simulations of the active form of Src kinase domain in explicit solvent TIP3P using 

openmm and DOMDEC. The simulations are for 300 ns with openmm mixed precision on 

GPU, and 30 ns with DOMDEC on the cluster Halstead without GPU support. The 

DOMDEC simulation uses 64 hours on 80 cores (4 nodes, each with two 10-core Intel 

Xeon-E5 processors), while the openmm simulation takes ~155 hours. The speedup on 

GPU is significant while there is no direct comparison for GPU and the Halstead cluster 

have different hardware infrastructure. The newly developed DOMDEC method 

incorporates GPU support, and is not compared here. The scalability of openmm is not 

good on multiple GPUs. Typically, one simulation is performed on a single GPU. 

DOMDEC scales well to at least 160 cores as we have tested before and would potentially 

scale on more cores. 

The time profiles for protein backbone RMSD values are shown in Figure C1. The 

DOMDEC simulation has the backbone RMSD increase from 2 to 3 Å during the 30 ns 

time period. The openmm simulation has the RMSD increase to ~3.5 Å within the first 30 

ns and fluctuates around 3.5 Å. From our results, the RMSD in the openmm simulation is 

slightly higher, however, a longer DOMDEC simulation and more systems need to be 

examined for a complete comparison.  
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Figure C1 The protein backbone RMSD values for the active conformation of Src kinase 

domain. A: the simulation with DOMDEC on Halstead cluster. B: the simulation with 

openmm on GPU. 
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APPENDIX E. EXTRACTION OF STRUCTURES ALONG THE 

TRANSITION PATH 

To extract structures along the transition path, the frequency to save trajectories (NSAV) 

and the frequency to save RVs (CVFR) should be set the same. The ABPO module was 

altered to output the slice indexes corresponding to each frame in block***.cv. The 

subroutine update_lambda is changed to the following. 

      subroutine update_lambda(p, lambda, dist, global) 

      ! Update lambda to lambda(p), dist to distance(p, path(lambda(p))), 

      !  use global search if global is True 

         real(kind=chm_real), dimension(n_cv + 1) :: p 

         integer :: lambda 

         real(kind=chm_real) :: dist 

         logical :: global 

         real(kind=chm_real), dimension(n_cv) :: iD2_p 

         integer :: i 

         real(kind=chm_real) :: d, d_l, d_r 

          

         i = lambda 

         iD2_p = matmul(abpo_iD2, p(1:n_cv)) 

         if (global .or. i < 1 .or. i > n_point) then 

            lambda = 1 

            dist = fast_distance(p(1:n_cv), iD2_p, 1) 

            do i = 2, n_point 

               d = fast_distance(p(1:n_cv), iD2_p, i) 

               if (d < dist) then 

                  lambda = i 

                  dist = d 

               end if 

            end do 

         else 
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            d = fast_distance(p(1:n_cv), iD2_p, i) 

            if (i > 1) d_l = fast_distance(p(1:n_cv), iD2_p, i-1) 

            if (i == 1 .or. d_l > d) then 

               do 

                  if (i == n_point) exit 

                  d_r = fast_distance(p(1:n_cv), iD2_p, i+1) 

                  if (d_r > d) exit 

                  i = i + 1 

                  d = d_r 

               end do 

            else 

               do 

                  if (i == 1) exit 

                  d_l = fast_distance(p(1:n_cv), iD2_p, i-1) 

                  if (d_l > d) exit 

                  i = i - 1 

                  d = d_l 

               end do 

            end if 

            lambda = i 

            dist = d 

         end if 

         p(n_cv+1)=lambda 

end subroutine update_lambda 

 

A Python script (in Python 2) was used to extract structures and write out a trajectory 

along the transition path. The slice indexes of the extracted frames were also written to 

a .dat file. 

 

#!/usr/bin/env python 

import numpy as np 
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import MDAnalysis as mda 

import os 

from time import time 

from MDAnalysis.analysis.align import * 

 

rep = 16 

block = 4 

slicenum = 2000 

frame = 30 

cv = 12 

start_time=time() 

 

# Function to extract slice indexes for a block 

def convert(filename): 

    datalist = [] 

    data = np.zeros((frame, cv+1)) 

    f = open(filename, 'r') 

    for line in f: 

        temp = line.split() 

        for i in temp: 

            datalist.append(float(i)) 

    data = np.array(datalist).reshape(frame, cv+1) 

    sliceidx = data[:, cv].astype(int) 

    return sliceidx 

 

      # iterate the trajectories in all blocks and all reps in the cycle 

for i in range(rep): 

    for j in range(block): 

        psffile = '1y57.psf' 

        trajfile = 'rep' + str(i).zfill(3) + '/block' + str(j+1).zfill(3) + '.dcd' 

        cvfile = 'rep' + str(i).zfill(3) + '/block' + str(j+1).zfill(3) + '.cv' 
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        slice_idx = convert(cvfile) 

        u = mda.Universe(psffile, trajfile) 

        protein = u.select_atoms('protein') 

        m=0 

        for ts in u.trajectory: 

            tempname = 'slice' + str(slice_idx[m]).zfill(4) + '_temp.dcd' 

            if not os.path.isfile(tempname): 

                with mda.Writer(tempname, protein.n_atoms) as w: 

                    w.write(protein) 

            m+=1 

 

# Write out the combined trajectory along the transition path 

psffile = '1y57.psf' 

ref = mda.Universe('1y57_converted.pdb') 

counter = 0 

index = [] 

with mda.Writer('path_full.dcd', n_atoms=4309) as w2: 

    for k in range(slicenum): 

        trajfile = 'slice' + str(k+1).zfill(4) + '_temp.dcd' 

        if os.path.isfile(trajfile): 

            counter += 1 

            index.append([k+1, counter]) 

            u2=mda.Universe(psffile, trajfile) 

            rms_fit_trj(u2, ref, filename='temp.dcd') 

            u3=mda.Universe(psffile, 'temp.dcd') 

            for ts in u3.trajectory: 

                w2.write(u3.select_atoms('protein')) 

            os.remove('temp.dcd') 

 

# Write out the slice indexes for extracted frames 

with open('single_struc_index.dat', 'w') as f: 
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    for item in index: 

        f.write(str(item[0])+'  '+str(item[1])+'\n') 

print "Done!(%5.3f seconds)" % (time()-start_time) 
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