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ABSTRACT

Liu, Ke M.S., Purdue University, December 2018. Pattern Exploration from Citizen
Geospatial Data. Major Professor: Jie Shan.

Due to the advances in location-acquisition techniques, citizen geospatial data has

emerged with opportunity for research, development, innovation, and business. A va-

riety of research has been developed to study society and citizens through exploring

patterns from geospatial data. In this thesis, we investigate patterns of population

and human sentiments using GPS trajectory data and geo-tagged tweets. Kernel

density estimation and emerging hot spot analysis are first used to demonstrate pop-

ulation distribution across space and time. Then a flow extraction model is proposed

based on density difference for human movement detection and visualization. Case

studies with volleyball game in West Lafayette and traffics in Puerto Rico verify the

effectiveness of this method. Flow maps are capable of tracking clustering behaviors

and direction maps drawn upon the orientation of vectors can precisely identify lo-

cation of events. This thesis also analyzes patterns of human sentiments. Polarity

of tweets is represented by a numeric value based on linguistics rules. Sentiments

of four US college cities are analyzed according to its distribution on citizen, time,

and space. The research result suggests that social media can be used to understand

patterns of public sentiment and well-being.
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1. INTRODUCTION

1.1 Background

Advances in location-acquisition and mobile computing techniques have generated

a massive amount of geospatial data. More now than ever before, exploring patterns

within geospatial data is a priority of geographers, economists, and regional scien-

tists. Geospatial data contains information that identifies geographical location and

characteristics of natural or constructed features and boundaries on the surface of the

earth [1]. Examples of geospatial data include satellite images, site addresses, and

Global Positioning System (GPS) coordinates of a smart phone. Geospatial data is

distinguished from traditional data in several ways. First, geospatial data is typically

multidimensional [2]. The coordinates are often selected such that one of the numbers

represents a vertical position and two or three numbers represent a horizontal posi-

tion. For example, any place on the surface of the earth can be identified by a unique

set of longitude and latitude values. Sometimes, time is considered to be a dimension

of geospatial data to emphasize features that vary over time, such as time-dependent

changes of vegetation cover. The second distinguishing factor of geospatial data is

that the data are autocorrelated. Tobler’s first law of geography states that every-

thing in space is related but nearby things are more related than distant things [3].

For example, measurements made at locations that are nearby (i.e., in close physical

proximity) tend to be closer in value as compared to measurements made at locations

farther apart. Consequently, certain standard statistical methods cannot be applied

to geospatial data since they do not account for the independence assumption. An-

other distinguishing factor of geospatial data is spatial heterogeneity. Geospatial data

contain distance and topological information associated with Euclidean space. Every
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location is unique due to its situation with respect to the rest of the spatial system,

which implies that variation in spatial data is a function of the associated location [4].

There are many different forms and formats of geospatial data. Geospatial data

can be discrete, continuous, accurate, fuzzy, and of various shapes. Sources of geospa-

tial data include GPS, aerial photographs, land surveys, and location-aware tech-

nology sources. The increased use of embedded devices and advances in capturing

techniques have led to an increased volume and density of geospatial data related to

individual position and human activity. Human related data is called citizen geospa-

tial data. For example, ride sharing systems such as Uber gather vast amounts of taxi

trajectories. By embracing new approaches, citizen geospatial data now represents

an opportunity for exploring the natural world and human society. Since information

available on the Internet is constantly growing, a respectable amount of geospatial

data are derived from review sites, forums, blogs, and social media. These geospatial

data contain abundant semantic information such as public opinion about products,

services, brands, or politics.

Geospatial social media data have three main features different than normal

geospatial data. First, social media data are individual specific, which means that

the contribution of different people to the collective data varies vastly based on the

willingness of people to share information with the public. People have different

habits regarding the use of social media. Some people frequently update their home-

page while other people prefer to view content posted by others. Some people treat

social media as a place for sharing opinions, while some people look for business op-

portunities via expanding their network. The second feature specific to geospatial

social media data is the use of event-oriented social media data. Unlike methods

that actively collect data, the volume and distribution of social media data is not

regular. The frequency and explosiveness of posts not only depend on headcount,

but also on the event, the time, and location. This feature emphasizes its association

with human life and society. Third, social media is associated with an abundant

amount of information that other sources cannot provide. Nowadays, most social me-
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dia platforms allow people to post words, articles, pictures, and videos. These types

of information are embedded in social media data and may reveal hidden patterns of

human behavior. Twitter is one of the most popular social media software, as many

celebrities, politicians, and bloggers use this platform to make announcements and

share opinions. Twitter tightly follows social topics because people join discussions

and exchange information via this app. People also use Twitter to initiate slogans,

commercials, and social activities. As a result, Twitter contains immense amounts of

energy emanating from human sentiment, social events, and public attention. This

information can be very useful for commercial applications such as marketing analysis,

public relations, product reviews, product feedback, and customer service.

Thanks to the rapid growth in the size of geospatial data, geospatial data mining

has emerged as one of the most active areas of research over the past several decades.

Distribution of a variety of objects such as people, vehicles, and animals has been a

well-studied topic. A spatial distribution is defined as a perceptual structure, place-

ment, or arrangement of objects on Earth. Spatial distribution is typically expressed

by selecting a variable and plotting incidents of that variable on a map. A good ex-

ample is Dr. John Snow’s map of the 1854 Broad Street cholera outbreak in London.

This map provides convincing evidence of the miasma theory of virus transmission.

However, dot maps have disadvantages. For example, inappropriate size and spacing

of dots can transmit biased information and mislead readers. Maps may be inef-

fective for communicating the message of interest if there are too many dots. As a

result, these problems were addressed by the development of advanced visualization

techniques such as heat maps and cluster maps. In addition, a set of spatial anal-

ysis theories and tools were developed for better describing and quantifying spatial

characteristics. The goal of geospatial data mining is to reveal non-trivial patterns

that were previously unknown. A spatial pattern can be a frequent arrangement,

regularity, major direction, prediction, or composition that opposes randomness and

causality. The tasks of geospatial data mining are diverse. For example, the goal of

clustering is to assign objects into groups based on their attributes. Some tasks find
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association rules that are used to correlate events that are likely to occur together or

correlate events ordered in time. There are also some tasks that focus on the temporal

pattern of geospatial data such as fitting regression models for a time series.

1.2 Related Work

Geospatial data mining is usually performed with two types of approaches [2]. One

common approach uses statistics to test a hypothesis, such as Moran’s I, Geary’s C,

Getis’s G, the standard deviational ellipse for autocorrelation [5] [6], a hidden Markov

model, or a belief network. With such an approach, some forms of a statistical model

are fitted to the data and then the resulting values will indicate if it is sufficiently rea-

sonable or not to believe the expected patterns exist in this data. Another approach

uses computational models to explore frequently occurring phenomena or anomalous

patterns. This approach is usually associated with a specific topic and a descriptive

and exploratory analysis of the results. For example, geographically weighted regres-

sion is a regression method designed for capturing spatial dependency in regression

analysis [7]. Geospatial big data has become an important asset for analysis, decision-

making, and resource management, but has also increased the complexity of creating

responsive and scalable geospatial applications. Thus, research contributions lie in

improved data simplification methods and spatial database organization strategies

for advancing the query, analysis, and computation capacity of geospatial databases.

The increased amounts of geospatial information being generated also highlights the

need for techniques that will facilitate the discovery and visualization of patterns,

anomalies, events, and interactions over space and time.

In recent years, many statistical techniques and machine learning tools have been

developed for conducting geospatial data analysis. However, integrating the dimen-

sion of time into spatial analysis is challenging. Previous research focused on statis-

tical representation of spatio-temporal patterns. The Mann-Kendall trend test was

proposed by Mann and Kendall to analyze time series trends. The power and sig-
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nificance of this test are not subject to the actual distribution of the data [8] [9].

Hamed investigated the Mann-Kendall trend statistic for persistent data with exact

distribution. The Mann-Kendall test is applied to a group of river flow time series

to confirm the effectiveness of scaling small samples [10]. Fuentes-Vallejo et al. stud-

ied cases of Dengue Fever in Girardot that included space (Getis-Ord index) and

space-time (i.e., Kulldorffs scan statistics) analyses [11]. Li et al. reviewed spatial

and temporal distribution of Twitter and Flickr use with socioeconomic factors [12].

Mitra et al. developed a data-driven discrete model based on a Markov random field.

This method characterizes seasonal evolution of India monsoon rainfall and showed

robustness with real data [13]. Yang et al. provided a two-phase algorithm for detec-

tion of asynchronous periodic patterns in time series data. This algorithm solves the

problem patterns being only present within a subsequence or occurrences are shifted

due to disturbance [14]. Li et al. examined using a Gaussian mixture model and

kernel density estimation (KDE) to annotate mobility data. The results show that

KDE is more capable of capturing the locality of word distribution [15].

Multivariate data visualization is a challenging research problem of great impor-

tance. An example of recent work in spatio-temporal interactions is VIST-STAMP,

which performs multivariate clustering and abstraction with Self Organizing Map

(SOM) [16]. Maciejewski et al. presented a tool to detect hot spots using kernel

density estimated heat maps linked with temporal analysis views [17]. In the early

1970s, Hgerstrand introduced space-time cube by developing a graphic view of time

as an additional spatial dimension [18]. This space-time model was first proposed for

the visualization of movement in geographical space. Gatalsky et al. described an im-

plementation of the space-time cube technique and showed its usefulness in detecting

spatio-temporal clusters of earthquake series in Marmara, Turkey [19]. Bogucka et

al. extended the cube concept to visualize cultural landscapes [20]. Kraak et al. and

Huisman et al. explored the storytelling capability of space-time cube with historical

events [21] [22].
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Movement and mobility are important aspects of human behavior. Kim et al.

proposed a gravity-based flow extraction model, which can effectively identify hu-

man movement from spatio-temporal data without using trajectory information [23].

Then, the spatio-temporal patterns are visualized by employing flow visualization

techniques. Liu et al. showed how to estimate population-based vector fields using

vector kernel density [24]. Transport systems are represented as vector fields for visu-

alizing relationships between population demand and transport systems. Shen et al.

represented mobility events in an area over time as an event video and built a deep

neural network for mobility event prediction [25]. This model simultaneously takes

into account all correlated spatial and temporal mobility patterns. Zheng et al. used

machine learning to infer transportation mode. Their method first detects change

points, then employs an inference model and finally implements a post-processing

algorithm based on conditional probability [26]. Li et al. proposed a two-stage al-

gorithm, termed Periodica, for mining periodic behaviors of the movement of ob-

jects [27]. The first stage combines Fourier transform and auto-correlation to capture

reference locations. In the second stage, a probabilistic model is used to characterize

the periodic behaviors.

In the past few years, there has been immense growth in the use of micro-blogging

platforms such as Twitter. Sentiment analysis is a growing area of natural language

processing for learning the polarity of words and phrases [28] [29] [30]. Wilson et al.

illustrated a new phrase-level sentiment analysis approach that conducts subjectivity

classification followed by polarity classification [31]. Kouloumpis et al. evaluated the

feasibility of using informal and creative language, such as hashtag and emoticon, as

training data in microblogging [32]. Nasukawa et al. focused on detecting favorable

or unfavorable attitudes toward specific subjects [33]. Another genre of sentiment

analysis focuses on societal meaning of opinions from social media. Ozturk et al.

performed a comparative sentiment analysis of public attitudes toward the Syrian

refugee crisis. The results indicated a different sentiment attitude between Turkish

tweets and English tweets [34]. Bertrand et al. generated a sentiment map of New
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York City, showing that public sentiment is highest in public parks and is lowest

at transportation hubs [35]. Froehlich used a newspaper headline data set to study

the public attitude toward aquaculture [36]. These headlines were manually assigned

either a 1, -1, or 0 to represent positive, negative, and neutral sentiment, respectively.

They found an expanding positive trend of general aquaculture coverage, while marine

and offshore appeared more negative.

1.3 Overview of the Thesis

This thesis is divided into six chapters. Chapter 1 provides an introduction of

this thesis and reviews previous work. Chapter 2 introduces the main methods used

in this research. KDE is first introduced as an effective method for exploring spatial

distribution. Subsequent sections propose two flow extraction models based on re-

sults from the KDE. Next, Moran’s I and Getis Ord Gi* statistics are illustrated to

study spatial autocorrelation. The final section of Chapter 2 presents the theory of a

sentiment analyzer, which is used to quantify sentiment polarity of text.

In subsequent chapters, the application of the above methods to explore patterns

of human mobility and sentiment are described. In Chapter 3, two citizen geospatial

data sets and the test area are introduced. Chapter 4 discusses spatio-temporal

patterns of human mobility. A two-step statistical test is employed on GPS trajectory

data to identify emerging hot spots and cold spots. Multiple visualization techniques

are developed with flow extraction models to explore population movement related to

events and traffic patterns. Chapter 5 surveys the sentiment of tweets. Each tweet is

scored with a polarity value by computer. This chapter explores patterns of polarity

that reveal fluctuations in human emotion across citizens, time, and space.

In Chapter 6, we review the contributions of this thesis and list possible directions

of future research.
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2. METHODOLOGY

This chapter introduces methods used in this thesis, including KDE, flow extraction

methods based on density difference and a gravity model, and Getis-Ord Gi* and

Moran’I for spatial autocorrelation. The concept of a sentiment analyzer is illustrated

at the end of this chapter.

2.1 Kernel Density Estimation

Heat map is one of the most effective technique to visualize spatial distribution

of sparse data. Instead of mapping out the location of individual geographic inci-

dent, heat map highlights area with high occurrence rate. Heat maps are usually

represented as a raster grid with color ramp, in which the hue encodes count, prob-

ability,density, etc. Bivariate kernel density estimation is one of the most frequent

methods to accomplish the conversion from sparse point data to heat map.

Kernel density estimation (KDE), also termed as the Parzen-Rosenblatt window

method, is a non-parametric approach for estimating probability density function of

a dataset [37]. Intuitively, KDE has the effect of smoothing out each data point into

a smooth bump, whose shape is determined by the kernel function K(x). KDE sums

over all these bumps to obtain a density estimator. At regions with many observations,

because there are many bumps around, KDE yields a large value. Otherwise, when

only a few bumps contribute to the density estimate, the density value from summing

over the bumps will be low [38]. Because non-parametric estimator does not assume

any underlying distribution, KDE does not calculate parameters for fixed functional

form based on the data sample.

Suppose X1, ..., Xn are random samples from an unknown continuous distribution.

The frequency density of a histogram is the number of cases per unit of the variable
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on the horizontal axis. Let the bin center be x and bandwidth be h, the frequency

density is

p̂(x) =
Fn(x+ h/2)− Fn(x− h/2)

h

Fn(x) =
1

n

n∑
i=1

1(Xi ≤ x)
(2.1)

where 1A =

1 X ∈ A

0 X /∈ A
is an indicator function. Equation 2.1 can also be written

as

p̂(x) =
1

n

n∑
i=1

1(x− h
2
≤ Xi ≤ x+ h

2
)

h
(2.2)

p̂(x) =
1

nh

n∑
i=1

K(
x−Xi

h
) (2.3)

where K is the uniform distribution U(−0.5, 0.5).

KDE smooths frequencies over the bins by replacing the above uniform distribu-

tion with a kernel function. Formally, a univariate KDE can be expressed as

f̂(x) =
1

nh

n∑
i=1

K(
x−Xi

h
) (2.4)

where X1, X2, ..., Xn ∈ IR are independent, identically distributed random samples

with density function p. Positive number h is the smoothing bandwidth that controls

the amount of smoothing. K : IRd → IR is the kernel function. A kernel is a special

type of probability density function (PDF) with the following properties [39]:

(a) K(u) is symmetric about the origin,
∫
uK(u)du = 0

(b) K(x) ≥ 0 and
∫
K(u)du = 1

(c)
∫
u2K(u)du > 0 and K(u) has finite second moment.

The main role of kernel function is to confer differentiability and smoothness

properties on the resulting estimate [40]. The choice of the kernel function is not

crucial to the accuracy of kernel density estimators [41]. There are a range of kernel
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functions: uniform, triangular, biweight, triweight, normal, and others. Gaussian

kernel is the most commonly used one and we use this kernel function throughout:

K(u) =
1√
2π
e−

1
2
u2

(2.5)

An analogous estimator for multi-dimensional data is the multivariate kernel den-

sity estimator. For a random sample X1,X2, ...,Xn,

f̂(x) =
1

n

n∑
i=1

KH(x−Xi)

KH(x) = |H|−1/2K(H−1/2x)

(2.6)

where x = (x1, x2, ..., xd)
T and Xi = (Xi1, Xi2, ..., Xid)

T , i = 1, 2, ..., n. H is the

symmetric and positive definite d × d bandwidth matrix. Kernel function K is a

symmetric multivariate probability density function. A multivariate normal kernel is

expressed as:

KH(x) = (2π)−d/2|H|−1/2e−
1
2
xTH−1x (2.7)

The usefulness of KDE has been limited by the difficulty in finding an optimal

data-driven bandwidth and a great number of bandwidth selection techniques have

been developed. The measurement of the performance of f̂ is the mean integrated

squared error (MISE) criterion [41],

MISE(H) = E

∫ d

IR

( ˆf(x; H)− f(x))2dx (2.8)

The choice of H is usually based on minimization of MISE over the space of all

symmetric, positive definite d× d matrices:

HMISE = argmin
H

MISE(H) (2.9)

Plug-in selector is such a data-driven bandwidth selector for multivariate KDE.

This method is first introduced by Wand and Jones [41], which minimizes asymptotic

MISE under the assumption that f is multivariate normal distribution and K is

Gaussian.
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2.2 Flow Extraction Methods

This section introduces the work flow used to extract movement trajectory from a

geospatial data set using two flow extraction models. Mobility information in a given

space is represented by a vector field, which is a common and effective means to depict

spatial interactions. A vector field refers to an assignment of a vector to each point in

a subset of space. This definition is first introduced in physics to represent force fields

and velocity fields. Each vector has a magnitude and a direction, which features flow

passing through the corresponding point [42]. Depending on the research subject,

magnitude could indicate volume, force, velocity, or any value with physical meaning.

In the flow extraction model, the magnitude of the vector reflects the volume of flow.

2.2.1 Gravity Based Flow Extraction Model

Kim et al. presented a gravity-based flow extraction model, which effectively visu-

alizes spatio-temporal patterns in data [23]. This model is essentially based on KDE

and simulates Newton’s universal law of gravitation, which measures the attraction

of two objects based on their mass and distance apart. Newton’s gravity model has

been successfully applied in human geography to estimate the amount of interaction

between two cities. Newtons gravity-based flow extraction model is expressed as:

Flow(x, y, t) =
W∑

p=−W

W∑
q=−W

T∑
r=−T

(KDE(x, y)|t)a0 · (KDE(xp, yq)|tr)a1
d2ij


p

q

r

 (2.10)

where W is the kernel size in the spatial axes and T is the kernel size along the

time axis. a0 and a1 in the function are control parameters and dij is the Euclidean

distance between (x, y) and (xp, yq). This gravity-based model replaces mass in the

original gravity model with the probability density estimated by KDE. This model

sums multiple vector fields along the time axis to determine the mobility status at

a time stamp instead of during a period of time. In this model, KDE(x, y)|t is the
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probability density of cell (x, y) at time t, whose value does not change with p, q, and

r. KDE(x, y)|t does not affect the direction of the vector, but only its magnitude.

Thus, we can move this item before the summation signs without affecting the result.

From this perspective, the function of this model is to sum all unit vectors from

(x, y, t) to every point in a space-time cube and assign a weight to the unit vectors

based on their probability densities. Thus, the resulting vector will point to the

direction with the highest probability density sum over the time series.

2.2.2 Flow Extraction from Density Difference

As an alternative to the gravity-based flow extraction model, the density difference-

based flow extraction model is built upon the difference of spatial distribution between

two time stamps. This model assumes that when objects increase or decrease at a

location, they either come from or go to surrounding cells. Spatial distribution in

this model is denoted by a matrix of probability density, which can be estimated

and smoothed by KDE and visualized as a heat map. For example, Figure 2.1(a)

and 2.1(b) are heat maps of population at start time t1 and end time t2, respec-

tively. Figure 2.1(c) shows the KDE difference between the start time and end

time. Since the population at location k decreased between the two time stamps,

this imposes an incoming flow to location i with a direction from k to i. The mag-

nitude of this flow is the KDE difference at location k. In the same way, an existing

flow from i to j is formed due to an increasing population at j, with a length of

KDE(xj, yj)|t2 −KDE(xj, yj)|t1. The final flow vector at i is the sum of flows im-

posed by all surrounding cells. To restrict the range of surrounding cells, a parameter

window of size W is introduced into the model. This parameter decides the furthest

cells to be taken into consideration. In other words, neighbors within a specified

distance are weighted based on their KDE difference. Therefore, cells outside the
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(a) Heat map at t1 (b) Heat map at t2

(c) KDE|t2 −KDE|t1

Fig. 2.1.: Flow extraction from density difference

specified distance have no influence on calculations since their weight is zero. The

formula for calculating flow vector [u, v]T at any location i is given byu
v

 =
W∑

p=−W

W∑
q=−W

KDE(xj, yj)|t2 −KDE(xj, yj)|t1
dij

p
q

 (2.11)
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where (p, q) is the vector from (xi, yi) to (xj, yj).

This flow extraction model can be rewritten as a form of convolution to generate

a vector field of the entire area. The calculation is divided into two parts along the

x-axis and y-axis, as shown in (2.12).

U = (KDE|t2 −KDE|t1) ∗ kernelp/kerneld

V = (KDE|t2 −KDE|t1) ∗ kernelq/kerneld
(2.12)

U is a matrix of all x coordinates in a vector field and V is the matrix for y. The

calculations are implemented with kernels of (2W + 1)× (2W + 1) matrix. Table 2.2

is a mask of (p, q), whose origin is at the center. The element of the mask is given

by its coordinates relative to the origin. The kernels of p and q can be obtained by

splitting this mask according to the x-axis and y-axis. A kernel of distance can also

be derived from this kernel through an element-wise calculation
√
p2 + q2.

Table 2.1.: Kernels of W = 2

Table 2.2.: Kernel (p, q)

(−2, 2) (−1, 2) (0, 2) (1, 2) (2, 2)

(−2, 1) (−1, 1) (0, 1) (1, 1) (2, 1)

(−2, 0) (−1, 0) (0, 0) (1, 0) (2, 0)

(−2,−1) (−1,−1) (0,−1) (1,−1) (2,−1)

(−2,−2) (−1,−2) (0,−2) (1,−2) (2,−2)

Table 2.3.: Kernel d

2
√

2
√

5 2
√

5 2
√

2
√

5
√

2 2
√

2
√

5

2 1 0 1 2
√

5
√

2 2
√

2
√

5

2
√

2
√

5 2
√

5 2
√

2

Table 2.4.: Kernel p

−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2

−2 −1 0 1 2

Table 2.5.: Kernel q

2 2 2 2 2

1 1 1 1 1

0 0 0 0 0

−1 −1 −1 −1 −1

−2 −2 −2 −2 −2
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2.3 Spatial Autocorrelation

Spatial autocorrelation is a multi-directional and multi-dimensional concept in

geo-statistics, which makes it useful for finding patterns in complicated data sets.

Spatial autocorrelation examines the independence of observations made at different

locations and measures the correlation of a variable with itself through space. There

are two types of spatial autocorrelation: positive and negative. When similar values

occur near one another, this variable shows positive spatial autocorrelation. In con-

trast, negative spatial autocorrelation occurs when dissimilar values occur near one

another.

2.3.1 Moran’s I

Moran’s I is an inferential statistic whose null hypothesis states that the attribute

being analyzed is randomly distributed among the features in the study area [5] [43].

Moran’s I is a weighted product-moment correlation coefficient, expressed as:

I =
n
∑n

i=1

∑n
j=1wi,jzizj

S0

∑n
i=1 z

2
i

S0 =
n∑

i=1

n∑
j=1

wi,j

(2.13)

where zi is the deviation of an attribute for feature i from its mean xi − X̃, wi,j is

the spatial weight between feature i and j that indicates geographic proximity, and n

is equal to the total number of features. Values of I greater than 0 indicate positive

spatial autocorrelation; values less than 0 indicate negative spatial autocorrelation. A

z-score and p-value are computed with the Moran’s I index to evaluate the significance

of that index. Only when the p-value is statistically significant (p-value≤ 0.05) can

the null hypothesis be rejected. If the z-score is positive, the spatial distribution of

high and low values in the data set is more spatially clustered than would be expected

if the underlying spatial processes were random. If the z-score is negative, the data
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are clustered in a competitive way. For example, high values may be repelling high

values or negative values may be repelling negative values.

2.3.2 Getis-Ord Gi*

The Getis-Ord Gi* statistic measures the intensity of clustering of high or low

values of a feature relative to its neighboring features:

G∗
i =

∑n
j=1wi,jxj − X̄

∑n
j=1wi,j

S

√
[n

∑n
j=1 w

2
i,j−(

∑n
j=1 wi,j)2]

n−1

S =

√∑n
j=1 x

2
j

n
− (X̄)2

X̄ =

∑n
j=1 xj

n

(2.14)

where xj is the attribute value of j and wi,j is calculated based on the conceptual-

ized spatial relationship. In this formula, the sum of a feature and its neighbors is

compared proportionally to the sum of all features. Gi* is essentially a z-score and p-

value, which reflect whether the attribute value of a feature is different than expected

and whether that difference is too large to be the result of random chance. A value

of Gi* near zero implies that the observed spatial events are randomly distributed.

Conversely, positive and negative Gi* statistics with large absolute values correspond

to the clusters of high-valued and low-valued events, respectively. When using Gi*

statistic to identify hot spots and cold spots, features with a statistically significant

positive z-score are hot spots and those with statistically significant negative z-score

are cold spots.

2.4 Sentiment Analysis

Sentiment is the attitude or emotional reaction of a speaker. Classifying a sentence

as expressing a positive, negative, or neutral opinion is known as polarity classifica-

tion. Polarity is a float value falling in the range of −1.0 to 1.0. Zero indicates a
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neutral attitude, while scores greater than or less than zero represent positive and

negative sentiments, respectively. The magnitude of positive or negative polarity rep-

resents the intensity of emotion. For example, polarity for “good” is 0.7 and polarity

for “great” is 0.8. Although the two words both convey an attitude of praise, the

emotion of “great” is stronger than “good”. Natural language processing researchers

have proposed and developed many sentiment analysis algorithms, which can be clas-

sified into two types: rule-based systems and automatic systems. Rule-based systems

perform sentiment analysis based on a set of manually crafted rules such as stemming,

tokenization, part of speech tagging, and parsing. Automatic systems rely on ma-

chine learning techniques to learn from data. The prerequisite of sentiment analysis

is to have a tool which automates the process of handling semantic information and

calculating polarity. A python library “TextBlob” serves as a rule-based sentiment

analyzer and the implementation is dictated as follows.

This sentiment analyzer first designs a parser to retrieve syntactic and seman-

tic information from text in an efficient way. The parser is required to handle the

following tasks:

1. Tokenization. A tokenizer divides text into a sequence of tokens, which roughly

correspond to words. This step splits punctuation marks from words and finds

sentence periods.

2. Tagging. Based on their use and functions, words are categorized into several

types or parts of speech based on English grammar, such as nouns and verbs.

This tagging tool applies a universal tagset proposed by Petrov et al., which

consists of twelve categories that exists across languages [44].

3. Semantic role labeling. This task assigns labels to words or phrases in a sentence

that indicate their semantic role in the sentence. Compared with tagging, role

labeling has more specific categories [45]. For example, given the sentence “The

boy hit that ball.”, the task would be to recognize the different roles of “”boy”

and “ball”. In this sentence, “boy” is the subject and “ball” is the object.
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4. Lemmatization. Words usually have different forms, based on grammatical

usage. Lemmatization refers to the process of finding the base form of a word.

For example, the base form of “was” is “be”.

The parser is based on Brill’s algorithm, which automatically acquires a lexicon of

known words and a set of rules for tagging unknown words from a training corpus [46].

Lexical rules are used to tag unknown words, based on the word morphology (i.e.,

prefix, suffix). Contextual rules are used to tag all words according to the role of

the word in the sentence. Named entity rules are used to discover proper noun

phrases such as a persons name, organizations, and locations. The parser separates

and segments a sentence into its subconstituents of semantically related words. The

output of this process is a list of multi-token sequences called phrase chunk.

Calculation of polarity is executed at the chunk level. The polarity of a sentence

is obtained by averaging each non-zero polarity of a phrase chunk. This sentiment

analyzer uses a sentiment lexicon to discern objective facts within a context. Words

in this lexicon are tagged per sense. Each sense has scores for polarity and intensity.

Polarity is a float value within (−1.0, 1.0), indicating whether a sense is negative or

positive. Intensity represents the effect of this word in modifying the next word, which

is between 0.5 and 2. For a known word, polarity is used to calculate the average

of all its senses in the lexicon. For example, ”good” appears twice in this lexicon

with different meanings and the value used to calculate polarity is their average 0.7.

Since numerous grammar combinations exist in the English language, this program

provides solutions on a case-by-case basis. An adjective may be preceded by a modifier

to change its intensity. Typical words used as modifiers are ”very”, ”many”, and

”super”. In this case, polarity is multiplied by the intensity of the modifier. Thus,

the polarity of ”very good” is 0.7 × 1.3 = 0.91. When an adjective is preceded by a

word of negation, such as “not”, sentiment is switched from one side to the opposite

side. This program handles this situation by multiplying the original polarity by

−0.5. As a result, polarity of “not good” is supposed to be −0.5 × 0.7 = −0.35. A

more complex function is provided when a phrase has both a preceding modifier and a
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Table 2.6.: Sentiment lexicon

Word Sense Polarity Intensity

good
having desirable or positive qualities

especially those suitable for a thing specified
0.7 1.0

good tending to promote physical well-being 0.7 1.0

very used as intensifier 0.2 1.3

negation, which is −0.5×polarity divided by the intensity of the modifier. Other than

these three common cases, additional solutions are implemented to solve complicated

situations and corner cases.

Let the sentence “There was a very adorable cat sitting on that beautiful mat” be

an example. According to Figure 2.2, the parser first assigns each word in the sentence

to a part-of-speech tag. Next, the sentence is divided into phrase chunks: “There”,

“was”, “a very adorable cat”, “sitting”, “on that”, and “beautiful mat”. The program

calculates the polarity of “a very adorable cat” as being 1.3 × 0.5 = 0.65 because of

“very” (intensity: 1.3) and “adorable” (polarity: 0.5). The polarity of “beautiful

mat” is 0.85, which is the same as the polarity of “beautiful” in the lexicon. The

sentiment assessment for the rest of the phrase chunks is zero. Thus, the entire

sentence is given by (0.65 + 0.85)/2 = 0.75. Examples of some tweets are listed in

Table 2.8.

Fig. 2.2.: Sentence parser
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Table 2.7.: Sentence parser annotation

Tag Description

EX existential there

VBD verb, past tense

DT determiner

RB adverb

IN conjunction, subordinating or preposition

NN noun, singular or mass

VBG verb, gerund or present participle

JJ adjective

VP verb phrase

NP noun phrase

PP prepositional phrase

O not part of a chunk
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Table 2.8.: Polarity of tweets

Tweet Polarity

Purdue you failed us all -0.5

Just look at that smile!!! :D 0.585938

#Boilermaker class of 2017 0
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3. TEST AREA AND DATA

Two types of citizen geospatial data were used in the study: GPS records of human

trajectory over time and geo-tagged tweets collected via Twitter API.

3.1 GPS Trajectory Data

GPS trajectory data are a set of GPS records provided by SafeGraph [47]. Posi-

tions are collected based on the GPS device of Android or iOS mobile applications.

Each GPS point is associated with longitude, latitude, epoch, horizontal accuracy, and

user id. GPS trajectory data correspond to two areas: 1) West Lafayette, Indiana

and 2) Puerto Rico. A summary of both areas is shown in Table 3.1.

Table 3.1.: GPS TRAJECTORY DATA SETS

Puerto Rico West Lafayette

Start time Aug 24, 2017, 20:00:00 Aug 21, 2017, 20:00:00

End time Sep 29, 2017, 19:59:59 Aug 31, 2017, 19:59:59

# points 65,519,491 2,530,355

# users 168,377 21,473

Average # points per user 389 118

Projected coordinate system

NAD83(NSRS2007)

Puerto Rico and Virgin Is.

(EPSG:4437)

NAD83 Indiana West

(EPSG:26974)

In this data set, horizontal accuracy varies from several meters to one kilometer.

The first step of data pre-processing is to remove points with a horizontal accuracy of
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100 meters or greater from the data sets. Next, points in both data sets are projected

onto a local coordinate system, as shown in Table 3.1. In some cases, the data are

not regular, based on when the phone captures and sends a GPS signal, whether the

phone is powered on, and whether location services are on. This situation was verified

in Figure 4.1, which is a histogram of the number of points per user in Puerto Rico in

a period of 36 days. A long tail in the distribution of the number of users as a function

of the number of points can be observed, where 35,488 users have less than 10 points

and more than 1,000 users have greater than 6,000 points. User variation in point

count may bias the study results, especially in group behavior research. Users in the

right tail tend to make higher contributions to group movement patterns than users

with few records. To avoid such an imbalance, a clean-up mechanism is introduced

to remove redundant data points from the data set so that the interval between two

consecutive records of any user never exceeds one hour.

Fig. 3.1.: Number of points against number of users
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3.2 Twitter Data

Public conversations have been happening on the Twitter platform since early

2006. Twitter offers a variety of tools and APIs to collect tweets and user information.

A Python wrapper of Twitter’s streaming API, Tweepy, is used to download Twitter

messages in real time. A geocode parameter is specified by a bounding box to query

tweets that fall into that area. This Twitter data set contains tweets collected from

2014 to 2017. The research area corresponds to four US Midwestern college cites:

1) West Lafayette, Indiana (Purdue University); 2) Bloomington, Indiana (Indiana

University); 3) Ann Arbor, Michigan (University of Michigan); 4) Columbus, Ohio

(The Ohio State University). In this data set, each tweet is attached to coordinates,

user id, time of posting, text of tweet, and other related information. For convenience,

latitude and longitude are projected onto the Universal Transverse Mercator (UTM)

coordinate system. Since Twitter’s streaming API has download rate limiting and

access levels, the collected data represent a sample of total tweets. Table 3.2 lists the

number of tweets collected from 2014 to 2017.
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Table 3.2.: Twitter data sets

Area 2014 2015 2016 2017

West Lafayette

# tweets 65594 50735 15193 9804

# users 3193 4352 2537 1620

Average # tweets per user 205.43 116.58 59.89 60.52

Ann Arbor

# tweets 411037 214471 103211 53001

# users 22328 13951 8260 5336

Average # tweets per user 184.09 153.73 124.95 99.33

Bloomington

# tweets 440323 117270 37609 22472

# users 11561 7824 4681 2817

Average # tweets per user 380.87 149.88 80.34 79.77

Columbus

# tweets 3904281 1364573 523468 362904

# users 71889 51620 29051 19936

Average # tweets per user 543.10 264.35 180.19 182.03
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4. PATTERNS OF HUMAN MOBILITY

This chapter uses GPS trajectory data to study human mobility patterns in West

Lafayette and Puerto Rico. In particular, mobility regarding to events and traffics is

investigated.

4.1 Density Maps

West Lafayette is home to Purdue University. This city often holds sports games

that are attended by people from all around Indiana. According to the West Lafayette

event calendar, there was a volleyball game between Purdue University and Alabama

University on August 26, 2017. The match started at 3:00 PM and was played in

Holloway Gymnasium of Purdue University. This chapter focuses on patterns during

two time periods: 14:00 to 15:00 (one hour prior to the start of the match) and 16:00

to 17:00 (one hour after the match started).

Fig. 4.1.: Map of West Lafayette
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Heat Maps

One approach to simultaneously analyze spatial and temporal patterns of a geospa-

tial data set is to apply animation control on the distribution map followed by visu-

alization of each time step of the data. Mapping heat maps from geospatial data can

be accomplished using KDE. The KDE-based implementation of a heat map is used

to generate a raster graph, in which each pixel value reflects the density characteristic

at the cell’s location. An appropriate cell size assures that inside-cell variability is

negligible so that the cells property can be represented by a single value. Heat maps

of Purdue University are generated with GPS trajectory data of West Lafayette. Heat

maps of six time steps in one hour are selected to display. Each pixel corresponds

to a 100m×100m square area of earth. A pixel value in a heat map represents the

population density evaluated by KDE at the center of each cell. When searching for

points stamped exactly at a certain moment in the data set, there may be no point or

only a few of such points. Therefore, it is necessary and beneficial to include points

around the time of interest. Points in the range of five minutes before and after each

time step are used to represent status at the time of interest. For example, a heat

map 4.3(a) is actually created with points from 16:00 to 16:10. Spatial change in one

hour is represented by heat maps of a time series of every 10 minutes.

Hot spot is a common concept in spatial statistics, which indicates places with

high value or density. A counterpart of this concept, termed cold spot, represents

sparse areas on a map. KDE-based heat maps in Figure 4.2 and Figure 4.3 effectively

convey information of a hot spot in West Lafayette. According to scatter plots, points

are mostly located in the campus area, which contains many educational buildings

and school facilities. This area is acknowledged as the most populated area of West

Lafayette. Bright yellow circuit outlines the area on the map that contains the largest

population. Dark blue marks the locations of population clusters. From 14:00 to

15:00, the spatial pattern of the population experienced a slight change. A hot spot

formed near the lower right corner and grew denser. This hot spot moved upward to
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(a) 14:05 (b) 14:15

(c) 14:25 (d) 14:35

(e) 14:45 (f) 14:55

Fig. 4.2.: Heat maps of one hour before the volleyball game
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(a) 16:05 (b) 16:15

(c) 16:25 (d) 16:35

(e) 16:45 (f) 16:55

Fig. 4.3.: Heat maps of one hour after the volleyball game
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the location of Holloway Gymnasium from 14:15 to 14:25, where the density and size

of this cluster reached its peak at 14:25. Afterwards, the cluster stayed at the same

location and faded slightly. During the one-hour period after the game, the heat map

started with a hot spot located at the Holloway Gymnasium. The size of this hot

spot expanded in the next twenty minutes and turned into three small clusters at

16:35. Then, the three small clusters merged back into a large cluster and extended

along the diagonal. At the end of this one-hour period, a dumbbell-shaped cluster

was formed at the right bottom corner. Two ends of the dumbbell were located in the

downtowns of West Lafayette and Lafayette. This observation can be explained as the

gradual exiting of audiences from the town after the volleyball match. In summary,

heat maps visually reproduce movement of hot spots and distortion of clusters.

Emerging Hot Spot Analysis

Viewing heat maps at each time interval is a naive way to identify spatio-temporal

patterns. Such an approach requires much human involvement and the explanation of

results is subjective. Hence, spatial statistics were developed to study entities based

on their topological, geometric, or geographic properties. The emerging hot spot

analysis method is used in this section to evaluate spatio-temporal patterns using

a combination of statistical measurements: Getis-Ord Gi* statistic and the Mann-

Kendall trend test. This process assigns a subcategory to each location of a hot spot

to characterize its temporal trend using GPS trajectory data in West Lafayette.

Emerging hot spot analysis is conducted based on a space-time cube packed by

bins containing both temporal and spatial components. Each bin has a fixed position

in space and time and its value is calculated by aggregating all points within the

same time and distance interval. In this study, the space interval of a bin is 100

meters and the time interval is 5 minutes. Getis-Ord Gi* statistic measures the

clustering intensity of high or low values in a bin relative to its neighboring bins

in the time slice. The z-score and p-value reflect whether a bin’s sum is different
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than what is expected and whether this difference is too large to be the result of

random chance. A high z-score and a small p-value (p-value≤0.05) indicate spatial

clustering of high values. A low negative z-score and small p-value (p-value≤0.05)

indicate spatial clustering of low values. For statistically significant positive/negative

z-scores, the higher the magnitude of the z-score, the greater the clustering intensity

of hot/cold spots. Applying the Getis-Ord Gi* statistic to the cube generates a p-

value and z-score for each bin and tags it with one of the three categories: hot spot,

not significant, and cold spot.

The Mann-Kendall test is a common method for examining the existence of a

trend. The Mann-Kendall test computes the difference between later-measured values

and all earlier-measured values, sign(yj, yi), where j > i and integer values of 1, 0,

or -1 are assigned to positive differences, no differences, and negative differences,

respectively [48]. The test statistic, S, is then computed as the sum of the integers:

S =
n−1∑
i=1

n∑
j=i+1

sign(yj, yi) (4.1)

Based on the variance of the values in the bin time series, the number of ties, the

number of time periods, and the observed sum is compared to the expected sum

(zero) to determine if the difference is statistically significant. The Mann-Kendall

trend test is performed independently on every bin time series. Each pair of time

steps was compared over the 12 time slots, generating the Mann-Kendall statistic

with associated trend z-score and p-value for each bin.
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(a) 2 PM to 3 PM

(b) 4 PM to 5 PM

Fig. 4.4.: Emerging hot spot analysis before and after the volleyball game
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Table 4.1.: Emerging hot spot category

Pattern category Definition

New
A location that is a statistically significant hot spot only

for the last five minutes.

Consecutive

A location with a single uninterrupted run of statistically significant

hot spot bins in the final time-step intervals. The location has never

been a statistically significant hot spot prior to the final hot spot

run and less than 11 of the 12 intervals (< 90%) of all bins are

statistically significant hot spots.

Intensifying

A location that has been a statistically significant hot spot for more

than 11 of the 12 intervals (> 90%), including the last five minutes.

In addition, the intensity of clustering of high counts in each

time step is increasing.

Persistent

A location that has been a statistically significant hot spot for more

than 11 of the 12 intervals (> 90%), with no discernible trend

indicating an increase or decrease in the intensity of clustering

over time.

Sporadic
A location that is an on-again then off-again hot spot. Less than

11 of the 12 intervals have been statistically significant hot spots.

The emerging hot spot analysis employed ArcGIS as the computational environ-

ment. Five hot spot patterns were detected on maps and are explained in Table 4.1.

Figure 4.4(a) shows that, during the hour before the game, the campus of Purdue

University was not a hot spot at the beginning but became a hot spot after a while.

Some on-campus residential areas and commercial areas were identified as hot spots

from time to time. Only a few cells were constantly hot spots during the entire one-

hour prior to the game. On the second map, the location of the Holloway Gymnasium
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became a cluster of persistent hot spots, meaning that this area was a hot spot for

more than 90% of the total time. To the lower left of this area is an area of an

intensifying hot spot. This area not only is a hot spot for the majority of the time

but also displayed an upward trend throughout the hour. Some new hot spots appear

near the downtown area of West Lafayette and Lafayette. The rest of the Purdue

University campus was covered by sporadic spots.

4.2 Flow Maps

Before Volleyball Game

Figure 4.5 shows heat maps of West Lafayette at 2:00 PM and 3:00 PM, based

on GPS trajectory data of West Lafayette. The heat maps were produced with KDE

using plug-in bandwidth selector and Gaussian kernel. The pixel size is 100 meters

and the value of each cell is the estimated probability density at the center. Since

there were only a handful of points stamped at exactly 2:00 PM, we use points from

half hour before to half hour after the game to represent the status of 2:00 PM.

Similarly, all points between 2:30 PM and 3:30 PM were used to draw the 3:00 PM

heat map. These two heat maps do not have any visually observable differences. At

both moments, most points cluster in the Purdue campus and the downtown area

of West Lafayette, forming an irregular shaped distribution. The rest of the points

scatter around the map and reveal some small hot spots near the road network.

Using a window size W = 20, the difference-based flow extraction model is applied

to the heat maps to calculate vector field. Figure 4.7(a) is the vector field map. Next,

a python function ”streamplot” is used to extract streamlines from the vector field

and draw the flows and arrows shown in Figure 4.6. According to the flow map, the

campus of Purdue University does not have the most population mobility even though

this area is the most populated area on the heat maps. The most intense population

movement happened near the Sagamore Parkway. The right side of 4.6 lists three

local patterns on the flow map. (b) indicates a trend of population aggregation
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Fig. 4.5.: Probability density before and after volleyball game

around the stadium and flows are mainly from the north and east. (c) shows that,

near the northwest corner of the map, there are flows that come from every direction

and converge on an apartment community. Flows in (d) form a border along the

Sagamore Parkway. Flows above this highway point north and flows below it are

directed to the south. This phenomenon indicates that a significant number of people

chose to exit this highway near this area during this one-hour period, driving either

north or south.

To better identify the area in which the population diverges and converges, a

direction map was drawn based on the vector field, as shown in Figure 4.7(b). Vectors
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Fig. 4.6.: Density difference-based flow map before volleyball game

on the map are classified into four categories according to their orientation: northwest,

southwest, northeast, and southeast. Four colors on the map represent four directions.

There are two patterns that are especially important. The first of these denotes

converging flows in Figure 4.8(a). The map is roughly divided into four parts: top
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left, bottom left, top right, and bottom right. Each part is occupied by vectors from

the corresponding direction. For example, a continuous and integral area painted

with grey is located at the top right of the map. This indicates that the direction

of population flow in this area is from northeast to southwest. Similarly, all the

vectors on the map point to the center of the map such that the intersection of the

four colors represents the end point of converging flows. This center is where the

population increases the most and is a place that commonly holds events. Figure

4.8(a) is a zoom-in view of the direction map from Figure 4.7(b). The exact location

of the stadium is marked by a red circle, which confirms that people gathered at the

stadium before the game. An opposite pattern is Figure 4.8(b), which identifies the

divergent area. Either pattern can be converted from the other one through a 180-

degree rotation. Vectors point to the surrounding area and flows diverge the center

of the pattern. As a result, the intersection of this pattern is the point that loses the

most population during this period. We define the point identified by Figure 4.8(a)

as the convergent point and Figure 4.8(b) as the divergent point.

Window size is a critical parameter in the flow extraction model that may influence

the vector field. Figure 4.9 shows flow maps with W = 10 and W = 50 using the

density difference-based method. With a smaller window size, more convergent points

and divergent points are detected. Detection of additional convergent and divergent

points is sometimes not significant. In contrast, latent and subtle patterns may

be generalized when a larger window size is used. For example, latent and subtle

patterns above the Sagamore Parkway appear on the map with W = 10. However,

these patterns are replaced by straight south-north direction flows in Figure 4.9(b).

In addition, the length of flow is usually longer with a larger window size. Thus, it is

concluded that a smaller window size correlates with a more detailed flow map.
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(a) Vector map (b) Direction map

Fig. 4.7.: Density difference-based vector map and direction map before volleyball

game

After Volleyball Game

Figure 4.10 shows the flow map and direction map corresponding to one-hour after

the volleyball game using the density difference-based method. On the flow map, not
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(a) Convergent area (b) Divergent area

Fig. 4.8.: Convergent area and divergent area identified by direction map

as many subtle patterns are observed as compared to the flow map corresponding to

before the volleyball game. Only one divergent pattern was observed in the campus

area. According to the direction map, this divergent area is a line along Northwestern

Avenue rather than being point-shaped. Holloway Gymnasium is the most northwest

point in the divergent area. Near the southeast corner of the map, there are many

flows crossing the river and leaving West Lafayette during this hour. The pattern in

Figure 4.6 (d) does not exist on this map any more. Another newly formed divergent

area sits near the intersection of Linberg Road and Highway 231. At the intersection

of Highway 52 and Sagamore Parkway, there is a point of convergence.

Gravity Based Flow Extraction Model

Figure 4.11 shows flow maps created with the gravity-based flow extraction model.

For both moments, the window size in the space dimension is still 20. In the time

sequence, the window size is T = 3, which indicates that three time steps before and

after the time of interest are taken into consideration. The time interval between two

consecutive time steps is ten minutes. For example, Figure 4.11(a) is the flow map at
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(a) W = 10 (b) W = 50

Fig. 4.9.: Density difference-based flow maps before volleyball game with different

window sizes

15:00, which is made by KDEs at 14:30, 14:40, 14:50, 15:00, 15:10, 15:20, and 15:30.

For each moment, KDE is calculated based on points ranging from five minutes before

the volleyball game to five minutes after. Surprisingly, the flow map at 3:00 PM and

the one at 5:00 PM present similar patterns. Changes in population movement in the
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(a) Flow map (b) Direction map

Fig. 4.10.: Density difference-based flow map and direction map after volleyball game

time interval between before and after the volleyball game were not observed. Flows in

the campus area stand out with similar converging pattern on both maps. In previous

work, this method successfully extracted a movement path when clusters shifted from

one location to another or when significant dispersion or concentration were observed

to occur in clusters [23]. However, when the time series change is too subtle to
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(a) Before volleyball game (b) After volleyball game

Fig. 4.11.: Flow maps with gravity-based flow extraction model

drastically affect spatial distribution, the gravity-based flow extraction model may

fail to extract the correct movement direction. This phenomenon results from this

model being density-based instead of density difference-based. Flows extracted with

this model always point to the direction with the highest probability density sum

over time series. This nature of the gravity-based model makes it less sensitive to
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spatial change. When there is no dramatic spatial change over time, this model is

indicating that people tend to leave sparse areas and travel to populated areas. Thus,

it is concluded that the density difference-based model outperforms the gravity-based

model when processes geospatial data with slight spatial distribution changes.

Traffic Patterns in Puerto Rico

Puerto Rico is an unincorporated territory of the United States located in the

northeast Caribbean Sea. Puerto Rico has a land area of 8,870 square kilometers and

a population of 3,337,177 people. The most populous city is the capital, San Juan,

with approximately 371,400 people. This case study experiment was conducted using

the GPS trajectory data of Puerto Rico. A normal Monday was selected for the

study of movement pattern in the context of a day. Figure 4.12 demonstrates the

population flows from 7:00 AM to 10:00 AM. In this map, the most noticeable trend

is that the population converged in San Juan’s metropolitan area in the northeast

area of the map. Eight of Puerto Rico’s top ten largest cities are in this area, including

San Juan, Bayamn, and Carolina. Two additional populous cities are located in the

south (Ponce) and west (Mayagez) of the island. They are also convergent area in

the morning. In the afternoon, these cities turn into a divergent area. A trend of

leaving is discerned for these places. The length of vectors is demonstrated on maps

in Figure 4.14 and Figure 4.15. These maps demonstrate locations with the greatest

and least change in population and reflect human mobility. Although the flow maps

corresponding to the two selected times show opposite patterns, their mobility maps

indicate that large cities have the largest population movements.

4.3 Summary

This chapter demonstrates analyzing mobility patterns regarding a volleyball game

at Purdue University and traffic patterns in Puerto Rico. The GPS trajectory data

set is used for demonstration. The volleyball game at Purdue University was intro-
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Fig. 4.12.: Density difference-based flow map of Puerto Rico, 7 AM to 10 AM, Aug

28, 2017

Fig. 4.13.: Density difference-based flow map of Puerto Rico, 4 PM to 7 PM, Aug 28,

2017

duced first. Heat maps of a time series were generated based on probability density

calculated by KDE to track the formation and movement of population clusters. The

results show that a cluster that originated in the downtown area moved toward the

gym before the game and reappeared in the downtown area at the end of the second

one-hour period. The emerging hot spot analysis studied the patterns from another
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Fig. 4.14.: Density difference-based mobility map of Puerto Rico, 7 AM to 10 AM,

Aug 28, 2017

Fig. 4.15.: Density difference-based mobility map of Puerto Rico, 4 PM to 7 PM, Aug

28, 2017

perspective. This method provides a more objective and informative presentation by

assigning each cell a hot spot subclass: new, consecutive, intensifying, persistent, or

sporadic. The assignment is determined by its spatial measurement of the Getis-Ord

Gi* statistic across the time slice and temporal measurement of the Mann-Kendall

test over the time series. The difference-based flow extraction model can extract pop-
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ulation flow without using trajectory information. This model adds up vectors from

itself to neighboring cells weighted by KDE difference. This section walks through

this flow extraction model step-by-step using the case of the volleyball game. The

concept of direction map is introduced to identify exact locations of divergent and

convergent areas. This case study shows that the stadium attracted people from all

directions before the game. The context within which cells are considered for compu-

tation is determined by a window size parameter. Flow maps with different window

sizes deliver different visual effects and level of detail. A gravity-based flow extrac-

tion model is also implemented and compared with the proposed model. This case

reveals the weakness of the gravity model when dealing with geospatial data that

experience trivial changes along the time line. Another case study aimed to discover

daily traffic patterns in Puerto Rico. It is concluded that people travel to big cities

in the morning and leave these cities in the afternoon. In the future, we are hopeful

that the visualization technique can be further improved. Due to the continuity of

KDE, some flows on maps of Puerto Rico appear on the water. Such faults can be

eliminated through referring to territory boundary.
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5. PATTERNS OF HUMAN SENTIMENTS

Popular social media platforms such as Twitter have permitted users to send messages

containing information about location, which creates approximately seven million geo-

tagged tweets every day [49]. Scientists are able to access these data via APIs and

track commuter patterns, as well as the volume, speed, and occupancy rates of the

traffic. The objective of this chapter is to analyze temporal, spatial, and user patterns

of tweet sentiment. Every tweet in a Twitter data set is scored with a polarity value

according to the rules described in Chapter 2.

5.1 Citizen Sentiment Patterns

This section analyzes the distribution of citizen-based sentiment in different years

and cities. Figure 5.1 contains histograms of average sentiment polarity per user in

different years in West Lafayette. In these histograms, only those users who posted

more than five tweets in a given year are counted. These plots indicate that, in all

years, users with positive average sentiment polarity represent the majority of all

users. The mean value of average sentiment polarity per user increased from 2014 to

2017.

Figure 5.2 is a histogram showing the percentage of positive and negative tweet

sentiment polarity per user. Percentages equal to zero are excluded from the plot.

It can be seen that bins of positive polarity percentage distribute more right than

bins of negative polarity percentage. This pattern demonstrates that more people

tweet with positive emotion with respect to both count and emotion intensity. Figure

5.3 shows histograms of average sentiment polarity per user in 2016 in Bloomington,

Columbus, and Ann Arbor. The same conclusion also applies for these three study

areas: the average sentiment polarity of most users is positive.
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(a) (b)

(c) (d)

Fig. 5.1.: Histograms of average sentiment polarity per user in West Lafayette

5.2 Temporal Patterns

In Figure 5.4(a), each point is the average of polarity of all tweets posted in the

corresponding weekday and year. Similarly, hourly and monthly average polarity are

calculated and plotted in Figure 5.4(b) and 5.4(c) to illustrate temporal distribution

in West Lafayette. It is interesting to note that a yearly difference in sentiment exists
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Fig. 5.2.: Histogram of positive and negative polarity percentage per user in West

Lafayette, 2016

on no matter what scale. Figure 5.4(a) shows a year-by-year increase in average

polarity since there exists a gap between every two consecutive years. Especially, the

leap between lines of 2015 and 2016 is not negligible, which separates 2016 and 2017

from 2014 and 2015. Difference between 2016 and 2017 is indefinite since their lines

tangle with each other in Figure 5.4(b) and 5.4(c). With this knowledge, it would

be useful to examine the correctness of these yearly differences using statistical tests.

The task of this statistical test is to determine the years in which the sample differ;

in other words, which pair of two years has a significantly different polarity mean.

The pairwise comparison test compares all possible pairs from a set. In this

case, four groups generate six pairs. The Tukey test, also called the Tukey’s Honest

Significant Difference (HSD) test, is a post-hoc test based on the studentized range

distribution [50]. A post-hoc test is supposed to be performed after an analysis

of variance (ANOVA) test, whose purpose is to determine whether there are any
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(a) (b)

(c)

Fig. 5.3.: Histograms of average sentiment polarity per user in 2016 in Bloomington,

and Ann Arbor, and Columbus

statistically significant differences between the means of two or more independent

groups. Specifically, it tests the null hypothesis:

H0 : µ1 = µ2 = µ3 = ... = µk (5.1)
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(a) (b)

(c)

Fig. 5.4.: Temporal distribution of polarity in West Lafayette

where µ is the group mean and k is the number of groups. If, however, the one-way

ANOVA returns a statistically significant result, we accept the alternative hypothesis

so that there are at least two groups whose means are statistically significantly dif-

ferent from each other. Table 5.1 is the one-way ANOVA table of polarity in West
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Table 5.1.: ANOVA table

Source Sum of squares Degrees of freedom F p-value

Between 149.007598 3.0 558.917515 0.000000

Within 12558.564334 141319.0

Total 12707.571932 141322

Lafayette, in which the treatment is year. The resultant p value is less than 0.05,

which means that the hypothesis is rejected and the average polarity of these four

years are not all the same.

Tukey test is set up to test if pairs of means are different. The hypothesis H0 :

µi = µj refers to µi and µj of any pair. To test all pairwise comparisons, Tukey

test calculates Honest Significant Difference (HSD) for each pair of means using the

following formula:

q =
µi − µj√

MSW

nh

(5.2)

where µi−µj is the difference between the pair of means and µi should be larger than

µj. MSW is the mean square within and n is the number in the group or treatment

when sample sizes are equal. The Tukey-Kramer method modifies the Tukey HSD

test by replacing
√

MSW

nh
with

√
2MSW

ni+nj
in the above formulas. This method tolerates

unequal sample size and is more common. If q is larger than the tabulated value, the

two means are significantly different. A confidence interval can be estimated by

µi − µj ± a

√
2MSW

ni + nj

(5.3)

Accordingly, if the calculated confidence interval contains 0, the difference between

the means is not statistically significant. Table 5.3 shows the results from applying

Tukey’s test on the West Lafayette data set. The only two years that do not have

significantly different means are 2016 and 2017.
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Table 5.2.: Tukey’s test for polarity mean in West Lafayette

Group 1 Group 2 Difference Lower bound Upper bound Reject

2014 2015 0.0192 0.0146 0.0237 True

2014 2016 0.0868 0.0799 0.0937 True

2014 2017 0.0956 0.0873 0.1039 True

2015 2016 0.0677 0.0606 0.0747 True

2015 2017 0.0765 0.068 0.0849 True

2016 2017 0.0088 -0.0011 0.0187 False
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The relation between average polarity and percentage of positive polarity can be

positive or negative. Specifically, a higher average polarity can result from more

positive polarity in the data. It is also possible that the absolute value of positive

polarities is larger than negative ones in general. Thus, the percentage of positive

polarity is another key factor for comparing sentiment. Figure 5.5 indicates that the

weekday distribution of positive polarity percentage is visually similar to the figure

of mean in West Lafayette. A new data set is computed through mapping all positive

polarity values to 1, otherwise 0. In this case, the mean value of the new data becomes

the percentage of positive polarity of the original data. Performing Tukey’s test on

the new data set outputs Table 5.2 with the same result. This result indicates that,

among all years, only 2016 and 2017 did not have a significantly different percentage

of positive polarity. Thus, the conclusion drawn from previous plots is verified by a

statistical test: tweet sentiment of 2016 in West Lafayette is close to 2017 and higher

than in 2015 and 2015 is higher than 2014.

Fig. 5.5.: Weekday pattern of positive polarity percentage in West Lafayette

In addition to West Lafayette, the procedure was also applied to the other three

study areas. Since the results of mean and percentage of positive polairty are not

different in West Lafayette, only the mean will be considered in the following work.
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Table 5.3.: Tukey’s test for percentage of positive polarity in West Lafayette

Group 1 Group 2 Difference Lower bound Upper bound Reject

2014 2015 0.0121 0.0048 0.0195 True

2014 2016 0.0762 0.0651 0.0874 True

2014 2017 0.0922 0.0788 0.1056 True

2015 2016 0.0641 0.0527 0.0755 True

2015 2017 0.0801 0.0664 0.0937 True

2016 2017 0.016 -0.0001 0.032 False
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Table 5.4.: Tukey’s test result for polarity mean of Bloomington, Ann Arbor, and

Columbus

ANOVA p < 0.05

Tukey’s test 2015 2016 2017

2014 True True True

2015 True True

2016 True

ANOVA and Tukey’s test result for all these areas are the same for the three areas and

are shown in Table 5.4. There was a statistically significant difference between groups

as determined by one-way ANOVA. According to Tukey’s test, there are no two years

whose means are not statistically significantly different. Their weekday patterns show

a yearly difference and contain specific information about pairwise relation. Plots of

Columbus and Bloomington are very similar to West Lafayette, showing that the

polarity mean increases from 2014 to 2017 and there is also a big gap between 2015

and 2016. However, Ann Arbor does not have the same yearly trend. Although 2014

is the lowest, the big gap appears below 2015 and above 2014, which groups 2015,

2016, and 2017 together. Year 2016 instead of 2017 has the highest mean polarity

and year 2016 is between 2015 and 2017 and closer to 2015.
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(a) (b)

(c)

Fig. 5.6.: Weekday pattern of polarity in Bloomington, Ann Arbor, and Columbus

Besides yearly difference, tweet sentiment along the time line may reveal additional

information. The pattern along the time line is built based on dates in the range

from January 16, 2014 to December 16, 2017. For each day, average polarity is

represented by the mean of all tweets posted from 15 days before to 15 days after the

corresponding date. In other words, values on the y-axis indicate average polarity of
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a month centered at the corresponding date. This convolution method can smooth

out the curve and provides a more accurate representation of sentiment change over

time. Figure 5.7 is the plot of time series distribution of four study areas. Patterns

of West Lafayette, Bloomington, and Columbus are close, smooth, and steady most

of the time. The plot indicates that there was fluctuation of emotion in 2014 in

West Lafayette. From April to July 2014, the sentiment average of West Lafayette is

comparably high and decreases steeply after August of the same year. The data set

shows that the number of tweets from August to October was significantly low due

to data collection (August: 336, September: 112, October: 27). It is inappropriate

to draw a decisive comment about this phenomenon in case the results were biased

by small-size sampling. Patterns of Bloomington and Columbus have a trend that

increases over the entire time period. This increasing trend is three-step, where May

2015 and July 2016 are two turning points. In this plot, the line of Ann Arbor is

prominent with many ups and downs. The middle part of the line is obviously higher

than the other three starting around May 2015 till March 2017. The line goes up

sharply and then drops down to near 0.2 in August 2015 and increases again before

reaching its peak near October 2015. After that, the values stay at a high level and

reduce gradually.
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Table 5.5.: Global Moran’s I result

Moran’s Index z-score p-values

0.061633 138.395739 0.000000

Fig. 5.7.: Sentiment polarity distribution over time

5.3 Spatial Patterns

This section analyzes spatial distribution of tweet sentiment. Specifically, this

section examines if spatial autocorrelation exists in tweet polarity. It is assumed that

people would be happier at some location and be in a bad mood at other locations

due to characteristics and functions of different places.

Global Moran’s I simultaneously measures overall spatial autocorrelation based

on tweet locations and polarity. This statistic evaluates whether the spatial pattern

of tweet sentiment is clustered, dispersed, or random. Spatial cluster means that high

values cluster near other high values and low values cluster near other low values. If

tweet sentiment clusters spatially, the Moran’s Index will be positive. Given Table
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5.5, there is a less than a 5% likelihood that this clustered pattern could be the result

of random chance. Thus, overall, tweet sentiment is spatially autocorrelated.

Getis-Ord Gi* statistic was introduced in the second chapter, which identifies

statistically significant spatial clusters of high values and low values. In Figure 5.8,

tweets are assigned to seven classes based on the resultant z-score and p-value. A

Gi* value close to zero is identified as not being significant on the map, implying that

the occurrence of this tweet polarity is a random event. If a z-score is statistically

significantly positive, the corresponding tweet is a hot spot and the larger the z-score

is, the more intense the clustering of high values. Conversely, if a z-score is statistically

significantly negative, the point will be classified as a cold spot. On the map, many

points are not significant, meaning that they are neither a hot spot cluster nor a cold

spot. Some red and blue points cluster around the Purdue campus and the downtown

of West Lafayette, representing hot and cold spot clusters. Figure 5.9 zooms into

area of Purdue University campus, giving a clearer view of cluster distribution. Blue

circles and red circles mark clusters of cold spots and hot spots, respectively. Cold

spot clusters are found around educational buildings, including buildings that house

engineering departments and the undergraduate library. One hot spot cluster appears

around an on-campus residential area at the center of the map. Another hot spot

cluster is located near the Wabash Landing plaza, which is a commercial area for

recreational activities. Figure 5.10 also shows that local autocorrelation exists in

Columbus. This result verifies that tweet sentiment is locally autocorrelated. Thus,

there are places where people tend to tweet more positive or negative statements.

5.4 Summary

This chapter places emphasis on semantic information of tweets, where sentiment

of tweets is the object of study. Polarity, a float value from −1 to 1, is a numeric

representation of tweet sentiment. Sign and magnitude of the value work together

to indicate sentiment polarity and intensity. This value is calculated using natural
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Fig. 5.8.: Hot spot analysis of West Lafayette in 2016

language processing techniques based on linguistic rules. Based on the calculated

polarity of tweets, distribution of tweet sentiment is viewed from perspectives of user,

time, and space. The first section analyzed sentiment distribution among users. His-

tograms of polarity average against number of users were generated, which supported
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Fig. 5.9.: Hot and cold clusters of West Lafayette in 2016

the conclusion that most Twitter users post more positive statements. Temporal

plots of sentiment reveal possible yearly differences. Tukey’s test and ANOVA were

used to test the means and percentages of positive polarity. The result showed that

yearly difference does exist in all study areas with variation in the trend. Then, a

time series plot was generated with a convolution method. This plot demonstrated a

more detailed overview of temporal change, where Ann Arbor showed a unique and

more irregular pattern than the other three. The last section of this chapter focused

on spatial distribution of Twitter sentiment. Moran’s I and Getis-Ord G* statistics

were employed to verify the existence of overall and local spatial autocorrelation.
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(a)

(b)

Fig. 5.10.: Hot and cold clusters of Columbus in 2016
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6. CONCLUSION

Describing and understanding patterns from geospatial data raises important and

complex questions. This thesis explored human behavioral patterns based on citizen

geospatial data. Population and sentiment were two study objects in this work. Data

used for research included GPS trajectory data and social media posts collected from

Twitter.

Mobility patterns associated with a volleyball game at Purdue University were

explored. Spatio-temporal patterns before and after the event were analyzed using

KDE-based heat maps of a time series and emerging hot spot analysis. These two ap-

proaches consistently indicated that a population cluster formed around the stadium

before the game. Flow extraction models based on density difference and the gravity

model were applied to GPS trajectory data to simulate a vector field representation

of population movement. A density difference-based model effectively demonstrated

a reverse in the direction of the flow as the game progressed. Direction maps gener-

ated based on the orientation of vectors precisely identified the location of the event.

However, with the gravity-based flow extraction model, no trend was found that in-

dicated that people left the stadium after the volleyball game. Application of the

density difference-based flow extraction model on Puerto Rico indicated that human

mobility is greater near big cities. This trend showed that citizens converged in San

Juans metropolitan area in the morning and left this area in the afternoon.

This thesis also studied sentiment patterns of geo-tagged tweets. Each tweet was

converted to a numeric value according to linguistic rules to indicate the sentiment

conveyed by the tweet. Patterns of sentiment polarity were expanded according to

user, time, and space. User patterns were analyzed by plotting histograms of aver-

age polarity per user. It was concluded that people tend to express more positive

statements on Twitter rather than negative ones. The temporal pattern of the data
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showed statistically different average polarity over four years. A time series plot de-

tected unique trends in Ann Arbor as compared to the other three college cities. A

spatial pattern study focused on spatial association of tweet sentiment. With Moran’s

I and Getis-Ord Gi* statistics, tweet sentiment demonstrated both overall and local

spatial autocorrelation.

There are several areas in which this research could be improved. First, one

limitation of this research concerns the visualization of flows. On the flow maps

of Puerto Rico, many flows were drawn on the sea. It would be useful to include

the territory and land use information to adjust the result. Although transforming a

vector field to flow map is beyond the scope of this thesis, a more effective visualization

method should be tried in the future. Second, another limitation of the flow extraction

model is that the model does not consider trajectory information. Points in the

GPS data set are associated with a user id. Tracking the trajectory of a frequent

user is closer to the truth of individual movement. Extraction and generalization

of this information would be a great benefit to the flow extraction model. Another

improvement concerns the sentiment of tweets. Since the aim of this research was to

study happiness patterns of citizens, only tweets posted by individuals were supposed

to be considered. A more complicated preprocessing should be implemented to filter

out tweets posted by robots. A thorough explanation as to the representativeness of

tweets and reasons for the detected patterns remain to be identified.
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[34] N. Öztürk and S. Ayvaz, “Sentiment analysis on twitter: A text mining approach
to the syrian refugee crisis,” Telematics and Informatics, vol. 35, no. 1, pp. 136–
147, 2018.

[35] K. Z. Bertrand, M. Bialik, K. Virdee, A. Gros, and Y. Bar-Yam, “Sentiment
in new york city: A high resolution spatial and temporal view,” arXiv preprint
arXiv:1308.5010, 2013.

[36] H. E. Froehlich, R. R. Gentry, M. B. Rust, D. Grimm, and B. S. Halpern, “Pub-
lic perceptions of aquaculture: evaluating spatiotemporal patterns of sentiment
around the world,” PloS one, vol. 12, no. 1, p. e0169281, 2017.

[37] J. S. Simonoff, Smoothing methods in statistics. Springer, 2012.

[38] Y.-C. Chen, “A tutorial on kernel density estimation and recent advances,” Sep
2017. [Online]. Available: https://arxiv.org/abs/1704.03924

[39] V. A. Epanechnikov, “Non-parametric estimation of a multivariate probability
density,” p. 153158, 1969.

[40] J. S. Racine, “Nonparametric econometrics: A primer,” Foundations and Trends
in Econometrics, vol. 3, no. 1, p. 188, 2007.

[41] M. P. Wand and M. C. Jones, “Multivariate plug-in bandwidth selection,” pp.
97–116, 1994.



69

[42] A. Galbis and M. Maestre, “Vector analysis versus vector calculus,” Universitext,
2012.

[43] H. Li, C. A. Calder, and N. Cressie, “Beyond moran’s i: testing for spatial
dependence based on the spatial autoregressive model,” Geographical Analysis,
vol. 39, no. 4, pp. 357–375, 2007.

[44] S. Petrov, D. Das, and R. McDonald, “A universal part-of-speech tagset,” arXiv
preprint arXiv:1104.2086, 2011.

[45] D. Gildea and D. Jurafsky, “Automatic labeling of semantic roles,” Computa-
tional linguistics, vol. 28, no. 3, pp. 245–288, 2002.

[46] E. Brill, “A simple rule-based part of speech tagger,” in Proceedings of the third
conference on Applied natural language processing. Association for Computa-
tional Linguistics, 1992, pp. 152–155.

[47] “Safegraph,” https://www.safegraph.com/.

[48] T. Tech, “Statistical analysis for monotonic trends,” 2011.

[49] L. Sloan and J. Morgan, “Who tweets with their location? understanding the
relationship between demographic characteristics and the use of geoservices and
geotagging on twitter,” PloS one, vol. 10, no. 11, p. e0142209, 2015.

[50] J. W. Tukey, “Comparing individual means in the analysis of variance,” Biomet-
rics, pp. 99–114, 1949.


