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Topographic depressions are naturally occurring low land areas surrounded by areas of high 

elevations, also known as “pits” or “sinks”, on terrain surfaces. Traditional watershed modeling 

often neglects the potential effects of depressions by implementing removal (mostly filling) 

procedures on the digital elevation model (DEM) prior to the simulation of physical processes. 

The assumption is that all the depressions are either spurious in the DEM or of negligible 

importance for modeling results. However, studies suggested that naturally occurring depressions 

can change runoff response and connectivity in a watershed based on storage conditions and their 

spatial arrangement, e.g., shift active contributing areas and soil moisture distributions, and timing 

and magnitude of flow discharge at the watershed outlet. In addition, recent advances in remote 

sensing techniques, such as LiDAR, allow us to examine this modeling assumption because 

naturally occurring depressions can be represented using high-resolution DEM. This dissertation 

provides insights on the effects of depressions on overland flow processes at multiple spatial scales, 

from internal depression areas to the watershed scale, based on hydrologic connectivity metrics. 

Connectivity describes flow pathway connectedness and is assessed using geostatistical measures 

of heterogeneity in overland flow patterns, i.e., connectivity function and integral connectivity 

scale lengths. A new algorithm is introduced here to upscale connectivity metrics to large gridded 

patterns (i.e., with > 1,000,000 cells) using GPU-accelerated computing. This new algorithm is 

sensitive to changes of connectivity directions and magnitudes in spatial patterns and is robust for 

large DEM grids with depressions. Implementation of the connectivity metrics to overland flow 

patterns generated from original and depression filled DEMs for a study watershed indicates that 

depressions typically decrease overland flow connectivity. A series of macro connectivity stages 

based on spatial distances are identified, which represent changes in the interaction mechanisms 

between overland flow and depressions, i.e., the relative dominance of fill and spill, and the relative 

speed of fill and formation of connected pathways. In addition, to study the role of spatial 
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resolutions on such interaction mechanisms at watershed scale, two revised functional connectivity 

metrics are also introduced, based on depressions that are hydraulically connected to the watershed 

outlet and runoff response to rainfall. These two functional connectivity metrics are sensitive to 

connectivity changes in overland flow patterns because of depression removal (filling) for DEMs 

at different grid resolutions. Results show that these two metrics indicate the spatial and statistical 

characteristics of depressions and their implications on overland flow connectivity, and may also 

relate to storage and infiltration conditions. In addition, grid resolutions have a more significant 

impact on overland flow connectivity than depression removal (filling).  



14 

 

 INTRODUCTION 

This introduction provides the background and research need for this study which focuses on the 

effects of topographic depressions on overland flow connectivity and streamflow discharge 

response at multiple spatial scales. The objectives of this Ph.D. dissertation are also included, and 

each subsequent chapter addresses one key objective, presented in the form of a manuscript 

submitted (or to be submitted) to a scientific journal.  

1.1 Background 

In digital elevation models (DEMs), topographic depressions are a single cell or group of cells that 

are surrounded by neighboring cells of higher elevations. In distributed or semi-distributed 

watershed modeling, overland flow routing across a terrain, typically represented by a DEM, 

cannot be interrupted by depressions. Otherwise, flow routing would converge towards 

depressions and cannot be routed out of these depressions until they are filled, and only loops 

internally (Martz and Garbrecht, 1998; Rieger, 1998; Burrough et al., 2015). Thus, depressions 

may lead to incorrect derivation of hydrologic parameters, such as flow accumulation, upslope 

contributing areas and flow directions, and may prevent or delay flow from reaching the watershed 

outlet. However, almost all DEMs include depressions. Typically, these depressions are removed 

before any model computation, based on the implicit assumption that depressions are artifacts 

rooted in the uncertainty of elevation data collection and DEM interpolation methods, rather than 

natural occurrences on the terrain surface (Marks et al., 1984; O’Callaghan and Mark, 1984; 

Jenson and Domingue, 1988, Hutchinson, 1989).  

 

The assumption that depressions are artifacts was a reasonable and pragmatic approach when 

DEMs and the original data used to derive DEMs, e.g., contour maps, were at relatively coarse 

spatial resolutions, e.g., > 30 m horizontal accuracy (Moore et al., 1988; Jenson, 1991). Previous 

works have argued that few naturally-occurring depressions have a spatial scale of > 100 m2, 

except in glaciated or karst terrain (Tarboton et al., 1991; Ford, 1997), and this approach avoided 

significant problems in model development and applications. However, recent advances in remote 

sensing techniques have significantly reduced the gap between DEM resolution and the scale of 
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naturally-occurring depressions. For example, Light Detection and Ranging (LiDAR) on an 

airborne platform uses highly accurate laser altimetry to collect elevations for terrain surfaces with 

horizontal resolutions of < 1 m at watershed scales, up to thousands of square kilometers (Antolín 

and Brovelli, 2007; Shan and Toth, 2008). LiDAR elevation data provide information on naturally-

occurring depressions at scales of several square meters and above. With such data, the assumption 

that depressions are all artifacts is no longer justified, and it is possible to include depression 

storage in watershed models. Depression storage plays a crucial role in overland flow processes 

and in the distributions of water and water-mediated pollutants and sediments (e.g., Ahmed et al., 

2011; Darboux et al., 2002; Einsiedl, 2005). Removal of depressions may significantly alter 

distributions of terrain attributes, such as elevation, slope and profile curvature, which relate to 

topographic derivatives used in model computations (Lindsay and Creed, 2005).  

 

In addition, depression removal methods have impacts on the accuracy of hydrologic derivatives 

from DEMs (Woodrow et al., 2016). Depression filling based on the D8 flow algorithm proposed 

by Jenson and Domingue (1988) has been widely used by modelers because of its efficiency and 

availability in GIS and terrain processing software packages, such as ArcGIS, QGIS and 

SAGAGIS (Conrad et al., 2015; QGIS Development Team, 2015; ESRI Environmental Systems 

Research Institute, 2016). However, filling often generates large flat areas and unrealistic straight 

flow lines, and may produce significant changes of terrain morphology (Martz and Garbrecht, 

1999; Planchon and Darboux, 2001; Nardi et al., 2008). Breaching and other depression removal 

methods have been shown to be a better alternative because they produce more minimal changes 

to the original DEMs and a higher likelihood of maintaining naturally occurring depressions 

(Tianqi et al., 2003; Lindsay, 2016). Land evolution process models based depression removal 

have been compared with traditional morphologic only depression removal methods and may yield 

a better physical representation of slopes and flow directions (Grimaldi et al., 2007).  

 

Despite growing awareness of the impact of depression removal on characteristics of topography 

and key hydrologic derivatives, little work to date has focused on the direct effects of depression 

removal on surface water processes and watershed responses. Incorporating depressions, e.g., 

depression storage capacity, in a watershed model, even if only empirically, may reduce modeling 

uncertainty and simplify calibration parameters (Amoah et al., 2013). Depressions may cause 
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significant changes in surface water budgets and sedimentation at the watershed scale by trapping 

water and sediments, which may explain gaps between field or plot and watershed scale 

measurements (Almendinger et al., 2014). These prior works have exclusively focused on 

modeling outputs, e.g., discharge at the watershed or field outlets, and have not investigated in 

detail the spatial and temporal distributions of the hydrologic processes that drive these outputs. 

Indeed, weather and surface-water flow data are not traditionally measured simultaneously and 

continuously over an entire watershed domain (Beven and Westerberg, 2011). Rather most data 

come from measurements conducted on a “point” basis, which are sparsely located within or at the 

field, plot, subwatershed and watershed boundaries or outlets. Therefore, much modeling efforts 

has focused on interpreting the dynamics and processes that convert and fit the input parameters 

(weather data, topography, and other landscape characteristics) to the observations obtained at the 

outlet, typically flow data. Depending on the intended uses of the modeling, this approach is 

suitable for projects in which the goal is estimation, conceptualization and calibration of runoff 

and streamflow discharge under storms of various magnitudes (K. Ajami et al., 2004; Barco et al., 

2008; Easton et al., 2008) or predicting the long-term effects of changes in a watershed 

environment, such as land use changes (Bhaduri et al., 2001; Tang et al., 2005; Gassman et al., 

2009). However, depressions are complex topographic features which are spatially distributed in 

a non-uniform manner and that can change over time as a result of erosion and sedimentation 

(Weng, 2002; Trevisani and Rocca, 2015). To study the impact of depressions on watershed 

hydrological processes, a “white box” approach is needed that explicitly captures the spatial and 

temporal effects of depressions on hydrologic processes across multiple scales and the connections 

between these scales. 

 

Some field and plot scale studies have approached the impact of complex topographic features in 

surface water models using connectivity characteristics for spatially explicit flow patterns. For 

example, microtopographic characteristics such as slope and roughness because of depressions 

have been investigated  in terms of depression storage filling states and the ratio of connected areas 

in flow patterns (the relative surface connection function, RSCf) (Antoine et al., 2009; Peñuela et 

al., 2015). The role of depression storage on overland flow transfer and triggering behavior has 

been also examined in terms of water percolation on a rough surface using a simplified empirical 

modeling approach to explicitly simulate overland flow patterns and connectivity variability at a 
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plot scale (Darboux et al., 2002a). The concept of connectivity has been central to the study of 

hydrologic  responses pattern heterogeneity, e.g., flow transfer in surface or subsurface connected 

structures  (Western et al., 2001; Knudby and Carrera, 2005; Ali and Roy, 2010; Renard and Allard, 

2013). Definitions of connectivity vary in the current literature, but typically include three key 

aspects: landscape features (e.g., topography), hydrologic processes (e.g., surface or subsurface 

flow) and linkages (Ali and Roy, 2009). Landscape features and linkages determine the structure 

of connectivity while the interaction between hydrologic processes and the structure determine the 

function of the connectivity (Turnbull et al., 2008). Overland flow processes on topography can 

be reflected on changes in spatial pattern, which is interpreted through the variability of 

connectivity. Surface and subsurface flow pattern connectivity is highly non-linear with frequent 

state changes at the grid cell scale, because of random distributions of soil wetness conditions or 

rapid formation of hydraulic connectedness (Lehmann et al., 2007; Peñuela et al., 2015). Runoff 

generations where fill and spill occurs because of depressions is also highly non-linear, which 

often shows a threshold behavior (e.g., Darboux et al., 2002). To quantify the connectivity state 

changes in hydrologic patterns, traditional geostatistics have be previously tested, e.g., these based 

on variogram analysis, but often failed to represent connectivity instead of only spatial correlations.  

A two-point connectivity function originally proposed by (Allard, 1993) has been successfully 

used to study connectivity patterns for soil moisture, overland flow and subsurface flow (Western 

et al., 2001; Meerkerk et al., 2009; Renard and Allard, 2013). The advantage of this type of 

connectivity statistic is that it explicitly accounts for linked pathways and directions in hydrologic 

patterns. However, the current implementation of this type of connectivity statistic has been limited 

to plot or field scales that have a small number of cells, in part because of computational limits.  

 

This PhD study is a first attempt to investigate the effects of depressions on connectivity and runoff 

response for single storm events using spatially and temporally explicit overland flow patterns 

from an internal depression to a watershed scale. The statistical concept of connectivity metrics 

used here is similar to Western et al., 2001, but a new algorithm is created to make the 

implementation to large grids and spatial scales feasible, including a 2D omnidirectional and a 3D 

topographically-determined directional connectivity function. In addition, connectivity metrics 

which are sensitive to changes in grid resolutions and runoff response at watershed outlet are also 

introduced. This study is designed to contribute to more complete understanding of feedback 
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mechanisms between small-scale topographic features, i.e., depressions, and overland flow 

processes in a watershed.  

1.2 Objectives 

1. Create a new and accelerated algorithm for computing two-point connectivity statistics for 

overland flow patterns. This algorithm should be capable of processing patterns on large 

grids, i.e., with > 1,000,000 cells, within a timeframe of minutes to days (depending on the 

grid size), and improvement of current conceptual basis for quantifying connectedness in 

a hydrologic pattern. Apply a directional filter to the 2D omnidirectional connectivity 

function to separate the flow pathway directions based on cardinal and intercardinal 

directions. Develop a more robust version of the 3D topographically-determined (3D) 

directional connectivity for complex morphologic features, i.e., topographically with 

depressions. The issue of over dispersion or convergence should be eliminated by 

introducing a more constrained routing method. Then test the robustness and the sensitivity 

of the new algorithm using overland flow patterns on a hypothetical landscape. (Chapter 2)  

 

2. Investigate the role of topographic depressions on connectivity based directly on spatially 

and temporally explicit overland flow pathway patterns across multiple scales in a 

watershed for single storm events. Generate the overland flow patterns from high-

performance and fully distributed 2D hydraulic models using observed hydroclimatic and 

topographic datasets for the study watershed. Specifically, identify possible threshold 

behaviors that define watershed connectivity states changes and the role of depressions on 

overland flow processes in such changes. Investigate whether there are changes in spatial 

distributions of connectivity related to that of depressions in a watershed. (Chapter 3) 

 

3. Investigate whether grid resolution significantly changes overland flow and runoff 

response (at watershed outlet) to depressions and possible threshold behavior, based on 

connectivity, and the spatial and statistical distributions of depression characteristics, e.g., 

depression storage volumes and drainage areas. (Chapter 4) 
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4. Summarize the major findings of this Ph.D. work on spatial and temporal explicit overland 

flow response to depressions based on changes in connectivity states (pattern heterogeneity) 

and dependency in scales. Discuss limitations of this work and implications for future 

research. (Chapter 5)  
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 A GPU-ACCELERATED SPATIAL PATTERN 

ANALYSIS ALGORITHM FOR LARGE-SCALE, HIGH-RESOLUTION 

2D/3D HYDROLOGIC CONNECTIVITY METRICS USING ARRAY 

VECTORIZATION AND NEURAL NETWORK CONVOLUTIONS IN 

A MACHINE LEARNING FRAMEWORK 

Manuscript submitted to Water Resources Research  

2.1 Abstract 

The connectivity function measures the probability of the “connectedness” between any two points 

based on their lag-distances. “Connectedness” is defined as the existence of linked flow pathways 

between the two points. Watershed-scale connectivity function improve our understanding of 

hydrologic behaviors and the rainfall-runoff models. However, previous research has primarily 

focused on plot or field scale connectivity function because of limited data availability or 

computational constraints. Advances in remote sensing and high-performance computing 

techniques provide the potential to analyze high-resolution hydrologic patterns across broad spatial 

scales. Based on the concept of connectivity function, we propose a new algorithm for large-scale, 

high-resolution spatial grids. The key innovations include: 1) Parallelization of the computation 

by implementing array vectorization instead of single-cell based recursions;  2) Incorporation of a 

cardinal/diagonal/secondary intercardinal directions indicator for inspecting the general trend of 

connectivity patterns; 3) Improvement of the topographic connectivity by using efficient neural 

network convolutions operator to determine the flow directions and examine the impact of surface 

morphologic features, such as flat areas and surface depressions, on the linked pathways. We 

implemented and tested the algorithm in the MXNet environment, a widely-used machine learning 

framework with Python binding, to leverage its GPU accelerated high-performance computing 

capacity. Results suggested that the algorithm can be used on large grids (> 1,000,000 cells) and 

is sensitive to the connectivity states changes of hydrologic patterns and also robust to complex 

surface topography. We hope that our algorithm paves the way for investigating large-scale and 

system-wise connectivity behaviors in watershed hydrology. 
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2.2 Introduction 

In watershed hydrology, connectivity is generally viewed in terms of pathways of water and water-

mediated substances, such as pollutants and sediments, between spatial locations in a watershed 

during a finite temporal interval (Bracken and Croke, 2007). Research to date has focused on three 

connectivity types: terrain connectivity, soil moisture connectivity, and flow process connectivity 

(Ali and Roy, 2010), and connectivity analysis has been recognized as a promising approach to 

improving our understanding of watershed-scale hydrologic behavior. For example, runoff 

response and transfer of water-mediated substances have a positive correlation with the magnitude 

of connectivity (Tockner et al., 1999; Heathwaite et al., 2005; Knösche, 2006).  Recent works on 

connectivity are based on landscape features and topographic gradients, and are interpreted using 

pattern analysis techniques, geostatistics, percolation theory or graph theory (Knudby and Carrera, 

2005; Aurousseau et al., 2009; Gascuel-Odoux et al., 2009; Janzen and McDonnell, 2015). 

Connectivity has been considered as a potential alternative framework for interpreting watershed 

runoff generation mechanisms. Phillips et al. (2011) suggest that watershed models would better 

describe the physical process controls and have a higher model accuracy if model 

conceptualization is based on the connectedness of linear or non-linear temporal and spatial 

network for a large number of small-scale reservoirs, and constrained by landscape and 

environmental factors such as topography, soil moisture content, and vegetation. 

  

Previous works on algorithms of hydrologic connectivity have primarily used the connectivity 

function, also known as “the Integral Connectivity Scale Lengths (ICSLs)”, to quantify and 

characterize connectivity direction and magnitude for spatial patterns in soil moisture, overland 

flow, and subsurface flow (Trinchero et al., 2008; Meerkerk et al., 2009; Ali and Roy, 2010; 

Renard and Allard, 2013). ICSLs measure connectivity between two locations, either omni-

directionally or in directionally specific ways, that incorporate geometrically determined 

trajectories such as pathways on surface topography or in subsurface material (Western et al., 2001; 

Renard and Allard, 2013). ICSLs have also been applied to watersheds in various hydroclimatic 

regimes (e.g., Ali and Roy, 2010). The use of ICSLs in spatial pattern analysis has a close 

counterpart in traditional geostatistical techniques that are based on spatial continuity, i.e., the 

experimental variogram (Cressie, 1993). Spatial continuity examines the correlation strength of 

relevant spatial data at pairs of locations separated by lag-distances based on a search radius, 
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regardless of their “connectedness”. ICSLs are also lag-distance based metrics, but with a specific 

emphasis on the connectedness in a pattern. ICSLs explicitly describe the spatial variability of 

connectedness based on the lag-distances (within a tolerance range) in the spatial pattern domain 

and measures the probability for multiple paired locations (cells) connected by a continuous 

pathway of locations instead of only between one particular pair of locations as in variogram based 

continuity (Western et al., 2001). One of the most attractive aspects of the ICSL approach is 

simplicity: it collapses the spatial connectivity states of the target spatial domain across different 

lag-distances into a simple indicator value: A fully connected pattern has an ICSL value equivalent 

to the maximum lag distance measured the pattern domain, while a fully disconnected pattern has 

an ICSL value of zero. This is not without its own bias but it provides modelers with a direct and 

intuitive way of measuring and comparing the connectivity within or between hydrologic systems.  

 

Theoretically, ICSLs can be “scaled up” from a plot or field scale to a watershed scale simply by 

extending the spatial coverage of the patterns being computed. For spatial continuity, however, a 

complex trial and error process is often needed that consists of shifting the search radius to 

determine the optimum threshold of the kernel window that is the most representative of the pattern 

(Cressie, 1993; Trevisani et al., 2009). In addition, directional indictors can be added more 

efficiently and flexibly to ICSLs, e.g., based on surface or subsurface topography, to demonstrate 

the impedance effects (physical constraints) on the connected pathways, instead of cardinal 

directions only in spatial continuity. Thus, ICSLs can potentially be computed in one-, two- or 

three spatial dimensions, instead of one or two dimensions only for continuity matrices. ICSLs can 

also capture temporal variability of connectivity states during hydrologic events, i.e., storms and 

flooding, by converting temporal “snapshots” of the relevant patterns (such as overland flow, 

surface runoff pathways or inundation patterns) into a series of integrated indicator values within 

the event duration. 

  

Research to date in quantifying hydrologic connectivity has almost exclusively focused on plot or 

field scale connectivity patterns derived from gridded lattice structures without georeferencing and 

with restricted spatial resolution (e.g., 500m) or sampling points (e.g., 15m/point) (Western et al., 

2001; Ali and Roy, 2010). Few attempts have been made to scale up ICSLs computations to 

watershed-scales and high-resolution gridded patterns  
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(Knudby and Carrera, 2005; Meerkerk et al., 2009; Ali and Roy, 2010). High resolution 

connectivity studies at a watershed scale can provide the critical information on hydrologic 

processes and controls for rainfall-runoff modeling and water resources management practice that 

may have been missed in work using much smaller and coarser spatial and temporal resolutions. 

The only published work to date which applies ICSLs on a watershed-scale that we are aware of 

is Ali et al. 2010 and their study area was a small-scale watershed (0.051 km2). The two most 

likely reasons for the lack of work to date on connectivity of high-resolution hydrologic gridded 

patterns and large spatial scales include: 1) Sample collection for hydrologic patterns 

encompassing large spatial and temporal scales requires considerable time and resources; 2) 

Analyses of large amounts of spatial data require considerable computational capacity that may be 

beyond the reach of projects with modest resources. 

 

Contemporary advances in GIS (Geographic Information System), remote sensing, and high-

performance computing techniques provide ways to reduce or eliminate several limitations with 

implementing ICSLs and providing high resolution watershed-scale data (DeVantier and Feldman, 

1993; Correia and Rego, 1998; Siart et al., 2009; Vieux, 2016). Satellite imagery from the 

Worldview sensor or airborne Light Detection and Ranging (LiDAR) point clouds collected by 

Leica-Geosystems LiDAR sensors, can provide elevation measurements for digital elevation 

model (DEM) generation at spatial resolutions of < 2m and areal scales of > 1000km2 (Gehrke et 

al., 2008; Saldaña et al., 2012; Hu et al., 2016). Overland flow patterns and inundation extents 

have also been collected through high-resolution aerial imagery in real time (Schumann et al., 

2007; Patro et al., 2009). In addition, in-situ hydrologic data acquisition at watershed scales has 

become increasingly automated, allowing denser sampling in space and time, and telemetry allows 

rapid and frequent transmission of data (Shaw et al., 2010). These diverse data sets can be 

integrated within a GIS to extend our current understanding of connectivity to a watershed or even 

at larger spatial or temporal scales, because the locations of nodes (elements) on the squared lattice-

based patterns can be transformed and georeferenced into a 2D/3D projected coordinate system, 

which is managed and utilized by a GIS. This allows for high-resolution and spatially and 

temporally distributed overland flow patterns covering an entire watershed at timescales down to 

hours or minutes and differentiating areas such as hillslopes, floodplains, and stream channels, 

which is critical for connectivity studies. 
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Here we present the results of work to overcome practical and computational limitations of ICSLs 

algorithms in the current literature. Our algorithm is based on the mathematical concept of ICSLs 

proposed by Western et al. 2001, Meekerk et al. 2009 and Ali et al. 2010. We created a new 

programming workflow and boosted the computational efficiency by introducing array 

vectorization and neutral network convolution operators. Array vectorization eliminate any single-

cell based loops and greatly boosted the computational and memory use efficiency. Neural network 

convolutions can efficiently generate flow directional grid in short amount of time for large scale 

and high-resolution DEM. We also made major improvements to incorporate additional directional 

indicators for the watershed hydrologic patterns. These includes: 1) incorporate a 

cardinal/diagonal/secondary intercardinal direction indicator that allows the model to represent the 

evolving trends of connectivity directions in hydrologic patterns spatially and temporally at a large 

spatial scale; 2) revise the topographically-determined connectivity by allowing a multiple flow 

direction routing method and computation of connectedness for topography with “difficult” 

surface morphologic features, including flat areas and surface depressions. Therefore, the effects 

of impedance (constraint) for connected water flow pathways because of these flat areas and 

surface depressions can be explicitly quantified. We believe that this new ICSLs algorithm will be 

more realistic and robust in reflecting actual flow pathways for various surface morphologic 

scenarios than the original implementation. 

  

We implemented our enhanced algorithm in a machine learning framework, MXNet (Chen et al., 

2015), which is widely used in machine learning and deep learning applications, such as ecological 

pattern analysis, geological features classification and spatial object recognition (Chen et al., 2017; 

Díez Hermano, 2017; Li et al., 2018). Note that the primary reason for using MXNet is not to 

directly adopt a machine learning method, but rather leverages heavily parallel GPU computational 

capacity for time efficiency, i.e., to allow for applications to large-scale spatial patterns with cell 

numbers > 1,000,000. Our algorithm is generic (imperative) in style so that it can be adapted to 

different programming languages. Currently, the algorithm is designed to run on a single GPU 

device. To test our algorithm, we implemented the Python-MXNet code on a hypothetical 

landscape of 25 km2 with gridded raster datasets for high-resolution (2m and 5m) surface overland 

flow patterns and DEMs. 
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2.3 The Algorithm 

 Detailed review of current ICSLs concept and the need for a new algorithm 

The omnidirectional ICSLs (OMNI) or omnidirectional connectivity function τ(h±r) (Allard, 1994; 

Western et al., 2001) represents the probability that any pair of cells (elements or locations) with 

lag-distances hs within a tolerance range ±r are connected by contiguous neighboring cells. This 

is based on spatial patterns of hydrologic characteristics or states of interest, such as soil moisture 

conditions or surface flow pathways (e.g., Fig. 2.1a). τ(h±r) is computed by labeling each 

individual cell on a 2D gridded pattern as “high” or “low” based on a predefined threshold k (Fig. 

2.1b). The threshold can either be time-variant based on specific percentiles of multivariate 

distributions of the variables of interest, or time-invariant based on a fixed physical indicator, such 

as a percentage of volumetric soil moisture (Anderson et al., 2006a; Ali and Roy, 2010). Here we 

use a time-invariant threshold as a demonstration. Our example is an overland flow depth pattern 

with a 0.1m depth threshold to differentiate between very shallow sheet flow and 

concentrated/channel flow (USDA-NRCS, 1986). Cells labeled as “high” are connected if any of 

their eight neighboring cells in horizontal, vertical and diagonal directions are also labeled “high”, 

which indicates a physically active status of flow such as concentrated/channel flow sufficient to 

affect watershed-scale hydrologic responses. The algorithm then randomly “scans” and pairs any 

two cells labeled “high” in the spatial pattern to test for connectivity until all possible pairs are 

found. A pair of cells is connected if there is a linked pathway of contiguous “high” cells between 

them (e.g., cell A and B in Fig 1b). τ(h) calculates the probability that any randomly paired cells x 

and x+h separated by a lag distance h (with tolerance range ±r) are connected. It is omnidirectional 

because the pathways connecting between x to x+h are always valid regardless of their trajectories 

and impedance factors, e.g., terrain morphological barriers. Let G be all the cells in the spatial 

pattern and Z be the regions where all cells are “high”, the connectivity function is:  

𝜏(ℎ) = 𝑃(𝑥 ↔ 𝑥 + ℎ | 𝑥 ∈ 𝑍, 𝑥 + ℎ ∈ 𝐺) (1) 

OMNI is computed as the integral area under the curve of the connectivity function across different 

lag-distances (Fig. 2.1d). At a watershed scale, OMNI represents the connectivity states for the 

measured hydrologically relevant patterns, such as overland flow pathways, at a particular time.  
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Figure 2.1. Example of flow pathway pattern and computation of connectivity function on a 

15x15 gridded domain. Positive values indicate flow depth (unit in cm) and -1 indicates cells of 

“NoData”. (a) The original spatial pattern; (b) A threshold of k=0.1 is applied to the pattern so 

each cell of the pattern is categorized into “high” – above or equal to the threshold (in light blue) 

and “low” below the threshold (in yellow). The pair of cells A and B (in red) are connected in the 

domain by a contiguous pathway of “high” cells based on eight neighboring cells. Domain outlet 

is marked as dark blue; (c) Each connected region is given a unique index number, and any pair 

of cells of the same index number are connected; the cells of “low” (in yellow) are converted to 

0s; (d) Connectivity function graph and the omnidirectional connectivity (OMNI) for the flow 

pattern. OMNI is the area under curve and computed by adding the total area of a series of 

trapezoids (yellow, green, orange and cyan). 
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In this paper, we believe that a spatial direction indicator is also needed to describe the anisotropy, 

similar to a directional experimental variogram, i.e., directionally-biased spatial trends of flow 

resistance/assistance that characterize topographic patterns in high-resolution DEMs. Directions 

of connectivity patterns can be incorporated into OMNI based on the Cardinal/ordinal/secondary 

intercardinal directions (CARD) for the connected trajectories, similar to the “directions” defined 

in the directional variogram. CARD measures the general trend of cardinal directions of the 

connected pairs in addition to the probability of connectivity measured by OMNI, which also 

captures and quantifies the spatial anisotropy of the entire pattern. TOPO is computed in the same 

manner as OMNI but adds a physical constraint to the connected trajectories between the paired 

locations based on topography, i.e., trajectories of linked flow pathways connecting two paired 

locations x and x+h must follow either a one-way continuously downslope or upslope routing 

direction on the DEM, otherwise they are not valid (Fig. 2.2a). In work to date, two alternatives 

for computing the downslope or upslope flow pathways (a simplified flow routing method) are 

available: 1) Assign the two steepest gradients from the eight neighboring cells as the downslope 

or upslope directions (Western et al., 2001); 2) Treat all lower/higher elevation cells among the 

eight neighboring cells as down/upslope (Meerkerk et al., 2009; Ali and Roy, 2010). However, 

these flow direction assignments are likely to either underestimate or overestimate flow directions 

by creating unrealistically condensed flow, or overly dispersed flow paths. In addition, neither of 

these methods can adequately detect and process down/upslope directions on complex surface 

morphologic features, including flat areas and surface depressions. These features may still 

connect flow, depending on the large-scale topographic gradient, but are excluded in the current 

TOPO algorithm (Fig. 2.2b).  

 

Therefore, a more robust flow routing algorithm is needed for a more accurate estimation of TOPO. 

In our work we use the Triangular Multiple Flow Direction (MD∞) (Seibert and McGlynn, 2007). 

MD∞ allows the assignment of flexible and multiple flow directions with a dispersion control 

parameter, i.e., an exponential weighting function, instead of restricted one flow direction (Quinn 

et al., 1991; Seibert and McGlynn, 2007). Flow directions of MD∞ are also not restricted to flow 

directions at two contiguous neighboring cells. Flat areas and surface depressions that are 

identified can be processed further based on the large-scale topographic trend of the DEM, which 

determines whether flow is possible between the paired cells. 
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Figure 2.2 Two scenarios of determining the connectivity between point A and B based on a side 

view of a topography section. A and B are connected in OMNI because contiguous cells of 

“high” exist between them. However, their connectivity in TOPO is different. (a) A and B are 

not connected in TOPO because B is not at the one-way downslope flow direction of A 

(blocked), even if the depression is filled; (b) A and B are connected in TOPO because the large-

scale gradient between A and B permit the flow from A to B when the depression is filled.  

If so, the flow will be routed (or switch “on”) outside these problematic features and connected to 

flow lines from nearby regions and eventually connected to the other cell in a pair. Otherwise, flow 

directions remain “unresolved” (or switch “off”) and the paired cells are not connected. This 

functionality is useful for connectivity studies associated with the impedance effects of “difficult” 

topographic features, i.e., surface depressions and flat areas, at larger spatial gradient. Note that 

we do not ensure the accuracy of routing pathways within surface depressions and flat areas in this 

paper since our goal is to validate the linkage between pairs of cells and compute connectivity 

function rather than model the physical flow mass and momentum transverse along the pathways. 

2.4 OMNI 

 Step 1: Initializing variables and settings 

The algorithm requires user input for several variables as predefined parameters (Table 2.1). 

 Variable broadcdp is the computation depth which determines the number of cells extracted from 

the gridded patterns that are included in one iteration of computation for lag-distances between 

paired cells. The reason for limiting the total number of cells in one iteration is to avoid GPU 

memory overload. The recommended value of broadcdp is between 5,000 and 7,000 based on the 

memory capacity of the GPU card (Table 2.2). Variable resolution is the spatial resolution, i.e., 

cell size, of the gridded patterns. Variable threshold is used for categorizing the value of each cell 
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in the patterns in to “high” and “low”. Variable hmin and ht are the minimum lag-distance and the 

tolerance range. The exact values of hmin, ht, and threshold depend on the objective of the 

connectivity computation and the hydrologically relevant patterns that are being evaluated. In this 

paper, we use surface flow pathways as an example. The recommended values are hmin=68m, 

ht=±22m (225 ft ± 75 ft) and threshold=0.1m for overland flow patterns, as a way of separating 

very shallow sheet flow from concentrated or channel flow based on horizontal flow travel 

distances (NRCS, 1986). Variable Imax is the maximum possible lag distance and is estimated 

automatically based on the spatial dimension of the gridded pattern as the hypotenuse length of 

the domain’s enclosing shape (rectangle). The information for the domain’s shape can be found in 

the metadata of the raster data, which shows the spatial coordinates of the four corners of the 

domain. Therefore, the length at NE-SW or NW-SE directions, i.e., the maximum possible distance 

lmax of the domain can also be computed. Then, lmax is divided by a series of range bins of equal 

interval. The total number of range bins nbin are defined by the lag distance h and the tolerance ht, 

such that: 

 𝑛𝑏𝑖𝑛  =
𝑙𝑚𝑎𝑥

ℎ𝑚𝑖𝑛 + 2|ℎ𝑡|
(𝑅𝑜𝑢𝑛𝑑𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟) (2) 

Note that nbin must be a constant for all the patterns computed because the values of OMNI 

computed for the same spatial pattern based on different nbin are not directly comparable.  

Table 2.1 Variables used in the computation of connectivity function 

Variable name Explanation Recommended Value 

broadcdp 
Computational depth (number of elements 

included in one iteration) 
See Table 2 

threshold 

The threshold to separate the input pattern into 

“high” and “low”, i.e., eligible and not eligible 

for connection 

Based on the physical character for 

the input hydrologic relevant 

patterns 

hmin 
The minimal lag-distance measured (sensitivity) 

for the pattern connectivity 

Based on the physical character for 

the input hydrologic relevant 

patterns 

ht 

Lag-distance tolerance range, usually the 

accuracy or uncertainty of the lag-distance h 

allowed in the computation 

Based on the physical character for 

the input hydrologic relevant 

patterns 

resolution 
Spatial resolution of the input pattern grid (in 

raster format) 

Refer to the GIS raster file’s 

metadata 

NoData 
Missing data value of the input pattern grid (in 

raster format) 

Refer to the GIS raster file’s 

metadata 

seriesname The pattern grid file names 
Name of watershed or location + 

time of the input pattern 
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Table 2.2 Recommended variable “broadcdp” values for tested GPU cards. Note that these are 

based on single precision (32-bit float point) computation 

GPU card  Recommended “broadcdp” value 

K80/Titan Z 5000 

GTX 1080 Ti  6200 

Tesla P100 (12G) 6500 

Tesla V100 7500 

 

 Step 2: Reading the gridded patterns into CPU memory as NumPy arrays and data 

preprocessing 

The gridded patterns of surface flow pathways in GIS raster data format are read as 2D NumPy 

arrays into CPU memory and their original spatial arrangement of cells is preserved as the array 

index locations (Cartesian coordinates). Note that the positive of the x and y axis is in a NumPy 

array index is toward S and E respectively (Fig. 2.3a). The variable threshold is applied to the 

NumPy arrays so cells above the threshold are assigned the value of 1s (“high” for concentrated 

and channel flow) and cells below the threshold are assigned the value of 0s (“low” for very 

shallow sheetflow). Cells of missing data value or “Nodata” are assigned the value of 1s. In the 

original algorithm proposed by Western et al. (2001), searching for the paired cells and computing 

their pair-wise lag-distances requires loops for each cell. This may be intuitive but significantly 

reduces the efficiency of the algorithm and is also not memory optimized for a large number of 

cells. In this paper, we assume that any connected pairs can only be found within a spatial clustered 

region, i.e., each cell is connected to another cell at least with one of the eight neighboring cells. 

Therefore, we reduce the computational intensity of the pairing process by limiting the searching 

boundary to each spatial clustered region assigned a unique region index. The clustered regions 

are generated using the SciPy module function “label” in Python. We firstly define the kernel shape 

of the eight neighboring cells in terms of which one(s) are defined as “connected” in a grid. Then, 

SciPy module function “label” scans the cells of 1s to group connected cells (with a value of “high” 

or 1) using sequential integers as the region index starting from 1 to t. Then, cells of 1s are replaced 

by the regional index number (e.g., Fig. 2.1c). The preprocessing of the NumPy array is completed 

and to simplify the later description, we name the processed array Array 0. 
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Figure 2.3 (a) The 16 Cardinal, Original and Secondary intercardinal directions; (b) The axis 

orientation of the NumPy (and MXNet) Array. The Cartesian coordinates is labeled in each cell 

and separated by the comma as x,y (in form of tuples). 

 Step 3:  Extracting eligible location indices from the NumPy array and converting to 

MXNet GPU array to compute the pair-based lag distances 

The lag-distances between pairs of cells are computed as Euclidean distances. This requires the 

Cartesian coordinates for both cells in a pair in Array 0. We extract the coordinates of Array 0 

using NumPy function “where” for cells of ts (in Z) and cells of 0s (in G-Z). To efficiently compute 

the lag-distances between any random pair of cells (in G, regardless of the connectedness) and 

between connected pair of cells (in Z) in the pattern domain, we use the array vectorization instead 

of loops. The most efficient way of vectorizing NumPy arrays is “broadcasting”, i.e., scalar-based 

matrix operations between arrays of different dimensions (shapes). Array broadcasting between 

two arrays is equivalent to generate the full permutations between the elements of each array, i.e., 

each element in one array is paired with each element in another array, regardless of the 

redundancy in order. Array broadcasting can also be achieved in MXNet and it further leverages 

the highly paralleled computation capacity on a GPU card to significantly accelerate the 

computation. GPU memory is usually more limited compared with CPU (system) memory. 

Therefore, we extract the index coordinate array of Array 0 and slice it into smaller “chunks” 

before converted to MXNet GPU array. 

 

In the algorithm implementation, the Cartesian coordinates of Array 0 are extracted into two 

NumPy arrays, based on their values: one array represents cells with value > 0 (in Z and named as 
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Array 1) and the other represents cells with value = 0 (in G-Z and named as Array 2). Note that 

we made some minor modifications to accommodate for the difference in the axis orientations of 

the MXNet GPU array compared with the commonly used 2D Cartesian coordinate system (e.g., 

Fig 2.3b). For any 2D NumPy or MXNet array, the coordinates in the first dimension are always 

the row index number and the coordinates in the second dimension are always the column index 

number in a tuple, i.e., (row#, column#). Also, the origin of the coordinates is set at the top left 

corner. Array 1 and Array 2 are divided into small segments and assigned a unique segment index 

before being converted GPU arrays to prevent the GPU memory from overflow and to facilitate 

further manipulations. The length of these segments, i.e., the number of the array elements “sliced” 

in each iteration, is equal to broadcdp. We name the nth segment of Array 1 as SnA1, and the mth 

segment of Array 2 be SmA2. SnA1 and SmA2 are then transferred into MXNet GPU arrays and 

being vectorized (broadcast), which generates two-elements permutations. Because each element 

of SnA1 or SmA2 represents the locations of cells within the clustered regions in Array 0 (> 0) or 

the “low” regions in Array 0 (=0), this pairing procedure is similarly as recursively searching the 

paired locations between Array 1 (cells in Z) and Array 2 (cells in G excluding Z, or G-Z) without 

loops. Similarly, cells of Array 1 are separated into groups of different spatial clustered regions as 

Array 1t, where t is the clustered region index number. Each Array 1t is segmented and searched 

with itself again to compute the total pairs within Z, where the cell values are > 0 (cells in the 

clustered regions). We add additional logic to determine if two segments from Array 1, namely 

SnA1 and SnA1’, are identical to exclude the redundant element-wise pairing between the same pair 

of switched order, e.g., (x,y) and (y,x). SnA1 and SnA1’ are identical only if their segment index 

numbers are the same. If this condition is met, i.e., n=n’, the searching process only include the 

two-element combinations instead of permutations between SnA1 and SnA1’. The procedure above 

is based on Western et al. 2001 to generate the pairs between Z and G: one location is the cells 

with value “high” in Array 1 (1s, in Z) and the other location is the cells with value “high” or “low” 

in Array 1 or Array 2 (1s and 0s, in G). In this paper, we separate G into Z and G-Z because the 

redundancy in permutation can be eliminated between two segments SnA1 and SnA1’ in Z. The goal 

of this step is to collect all the possible random and connected pairs and their corresponding lag-

distances. The lag-distances are computed as Euclidean distances using MXNet hypotenuse 

function “broadcast_hypot” with: 

𝐻 = ℎ𝑦𝑝𝑜𝑡((𝑥𝑎1 − 𝑥𝑎2), (𝑦𝑎1 − 𝑦𝑎2)) (3) 
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which is equivalent to 𝐻 = √(𝑥𝑎1 − 𝑥𝑎2)2 + (𝑦𝑎1 − 𝑦𝑎2)2. 

where xa1 and ya1 are row# and column# of SnA1; and xa2, ya2 are row# and column# of SmA2 (or 

SnA1’). Note that we only use the relative scale and distance in the pairing and computation process 

based on the 2D array coordinates. In both NumPy and MXNet, the arrays being vectorized need 

to have the same shape (lengths in each dimension) on at least one axis (along a particular 

dimension). Therefore, to ensure that the number of elements for at least one axis is equal, we 

expanded the shape of SnA1 and SmA2 by adding another axis of size 1. Assume that the shape of 

SnA1 and SmA2 are (n,1) and (m,1), the broadcasted array H includes all the possible distances 

computed based on the paired locations, in terms of all the possible permutations (combinations) 

for the elements between SnA1 and SmA2. Then we collapse (flatten) H to the first axis, i.e., convert 

H to a one dimensional array of shape (n*m,), so that all the possible distance h1, h2,..hn*m (hn*n’) 

between the paired locations can be assigned into different range bins. We repeat the vectorization 

process above between two segments from Array 1 and Array 2 (or Array 1) respectively until all 

the segments of Array 1 and Array 2 have been included. This is achieved by generating the 

permutations between the indexed segments of Array 1 and Array 2, i.e., we match two segments 

from Array 1 and Array 2 as 1&1, 1&2, 2&1, 1&3, 3&1, …, n&m, where n and m are the total 

number of segments in Array 1 and Array 2. The total counts of collected lag-distances tcG and the 

mean of lag-distances ldG,mean in each range bin is recorded. The above procedure extracts all the 

possible pairs of cells in the patterns in region G for each lag-distance range bin, regardless of the 

connectedness. In each iteration between SnA1 and SmA2, the accumulated total lag-distance 

ldG=tcG*ldG,mean is also computed for each range bin. 

 

Similarly, we slice Array 1t based on broadcdp within each spatial clustered region where the 

elements equal to 1, 2, … and t (t is the max index number assigned for the clustered regions) and 

generate n segments for each region. These segments are indexed and the permutations between 

any two segments are generated, i.e., 1&2, 1&3, 1&4, 2&3, …, a&a, where n is the total number 

of segments in Array 1i. Then, we determine if the index number of the two segments are equal, 

e.g., 1&1, 2&2, …, a&a. If this condition is met, permutations are reduced to combinations. This 

is achieved by sequentially exclude the previously paired elements from further pairing between 

the two segments. Otherwise, the element-based broadcasting is still permutations, the same as the 

segment pairing process between Array 1 and Array 2 above. We iterate this starting from spatial 



38 

 

clustered region 1 until t has been reached and compute the combinations between two segments 

from the same clustered region t. The total counts of lag-distances tcZ and the mean lag-distances 

between connected pairs ldz,mean in each range bin is collected and returned. The above procedure 

extracts the connected pairs labeled “high” in each range bin, i.e., the pairs are in the same spatial 

clustered region (with the same region index number).  

 

Now, this step completes the collection of all the possible lag-distances and the corresponding 

counts in each range bin. The detailed illustration for the entire array manipulation process, 

including the pairing between two segments and between elements of paired segments in this step, 

can be found in Fig. 2.4. 

 

 Computing the connectivity function and OMNI 

In each range bin, we assign the aggregated values for the total number of pairs (regardless of 

their connectedness) and the accumulated total lag distances in each range bin as 𝑇𝐶𝐺 =

 ∑ 𝑡𝑐𝐺
𝑛×𝑚
1  and 𝐿𝐷𝐺 = ∑ 𝑙𝑑𝐺,𝑚𝑒𝑎𝑛

𝑛×𝑚
1 , where n and m are the total number of segments in Array 

1 and Array 2. Similarly, for each range bin, we assign the total number of connected pairs as 

𝑇𝐶𝑍 = ∑ 𝑡𝑐𝑧
𝑡×𝑎
1 , where a is the total number of segments in Array 1t, and t is the total number of 

spatial clustered regions. The probability of the connectedness in each range bin is calculated as 

P = TCZ/TCG and the average lag-distance for each range bin is calculated as lmean=LDG/TCG. 

Then, P is plotted against the average lag distance for each range bin and connected as a line 

graph (Fig. 2.1d). The area under the curve is the integral of the connectivity function: OMNI. 

We treat the shape under the connectivity function as a series of trapezoids which have their 

parallel sides touching each other and the total area of these trapezoids is OMNI (Fig. 2.1d). 
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Figure 2.4 Programming flow chart illustrates the computational steps for array 

manipulation (step 2 and 3 in OMNI), based on the flow pattern in Figure 1c as an 

example. Array 0 (Figure 1c): 2D array of shape 15x15. Array 1 (Region Z): Cells of 

Array 0 where > 0. Array 2 (Region G-Z): Cells of Array 0 where =0. t is the maximum 

index number of the clustered regions. In this example, t=4. Stars (*) indicate the paired 

tuples for computational operator (for Euclidean distance). 
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2.5 CARD 

CARD is computed by appending a cardinal direction indicator for the connected paired cells in 

the step of calculating mean lag-distances of connected pairs. The direction is computed by the 

slope of a line connecting the paired locations (Fig. 2.5) and then converted to degrees [-90,90] 

based on the inverse tangent function. To remove negative values, we added 90 degrees to all the 

results so the range becomes [0,180]. Note that the degree values should be interpreted as the 

counterclockwise deviation from the N-S direction and 0 degrees is equivalent to 180 degrees (Fig. 

2.5). We computed the average cardinal directions in degrees for all the connected paired locations 

and then categorized the mean value of these directions for each corresponding lag-distance range 

bin as the general direction trend, into the 16 cardinal/ordinal/secondary intercardinal directions. 

Therefore, the directional trend for the connected pairs in each lag distances range bin can be 

plotted in addition to P in connectivity function τ(h). All the tabulated connectivity function values 

τ(h), i.e., average lag-distances, probability of connectivity, the cardinal direction for each range 

bin, OMNI and computational time are written to .csv files. 

 

Figure 2.5 Directions and orientation of CARD in the array coordinate. The connected direction 

between paired two points: A and B is calculated by 𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛√(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2. β is 

the output direction rotated counterclockwise for 90 degree. 

2.6 TOPO 

TOPO follows the same procedures of OMNI except that before it proceeds to step 3, a flow 

pathway verification step is added to ensure that the connected pathways are topographically valid, 

i.e., the connected pathways between any pair of locations are only counted as connected if they 
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follow the downslope flow routing directions on the topography. Thus, TOPO requires a DEM 

representing the terrain topography of the same spatial domain and at the same projected 

coordinate system. If the trajectories of the linked pathways between the connected pairs on the 

flow pattern (generated from Step 3) completely follow (overlap) any of the topographically 

determined flow pathways without interruption, then we define these pairs as being 

topographically connected. Since this step is between step 2 and step 3 in computing OMNI, it is 

named step 2.5. 

 Step 2.5: Validating the topographic determined flow pathways 

The DEM in raster format is converted to a MXNet GPU array which is named Array DEM. The 

flow direction grid including the downslope directions for each cell in Array DEM are generated 

based on the method of Seibert and McGlynn, (2007) and stored in an indicator grid Array d. We 

use MD∞ instead of D∞ because its workflow is more suitable for adopting the convolution 

operator. To increase the computational efficiency, we limit the tracing of downslope flow 

accumulation areas within each spatial clustered region in Array 1t only. The same locations of 

Array 1t and Array DEM are identified based on their spatial overlay in the same projected 

coordinate system. The lag distances are computed similar as OMNI except that one cell of the 

pairs is always fixed and is the cell where the downslope tracing starts. Flats and the lowest point(s) 

in surface depressions are identified simultaneously with computation of flow direction grid based 

on MD∞. Then, the complete spatial coverage for each surface depressions is delineated using an 

upslope contribution area searching routine. Note that large GPU memory may be required to 

generate the flow direction grid and the flats/surface depressions grid depending on the spatial 

scale and resolution of the DEM. We precompute these grids based on the DEM data using a GPU 

card with sufficient amount of memory, e.g., from a server platform or cloud environment, and 

save them on disk before precedes to further steps. The detailed programming procedure for TOPO, 

including the modified CARD, is described below. 

 

First, the flow direction grid and computing downslope accumulation areas in each spatially 

clustered region are generated. The DEM raster file of the same spatial domain as the flow pattern 

is read into memory as a NumPy array using the Gdal geospatial library and converted to a MXNet 

GPU array: Array DEM. Two additional GPU arrays are also generated to store the value of 
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Cartesian coordinates of the Array DEM as Array X (along rows) and Array Y (along columns). 

Then, for each cell M, eight triangular facets based on the centers of eight neighboring cells are 

defined, starting from E (0 degree) and rotating counterclockwise back to E (360 degree, see Fig. 

2.6a), the same as in D∞ and MD∞ (Tarboton, 1997; Seibert and McGlynn, 2007). The eight facets 

and neighboring cells are indexed by eight integer numbers in a counterclockwise sequence as 

facet 0 to facet 7 and neighbor 0 to neighbor 7 (Fig. 2.6b). Three empty Python lists of length 8 

are initiated to store the Arrays of difference between the values of centered cells (M) and two 

contiguous neighboring cells for each of the eight triangular facets, e.g., P1 and P2 in facet 2, based 

on the Array X, Array Y and Array DEM. We name the arrays dxi, dyi and dzi, where i is the 

neighboring cell index number from 0 to 7. For example, dx2 indicates the difference of the x axis 

for the neighboring cell to the east: dx2=xM-xP1 (Fig. 2.6b). 

 

Figure 2.6 a) The definition of connected cells included from the eight neighboring cells of M. In 

this paper, we define the cells can be connected from all eight neighboring cells, i.e., shaded cells 

P0, P1 ... P7, in a counterclockwise sequence starting from E. b) Definition of eight triangular 

facets in a counterclockwise sequence starting from E, represented by the yellow triangles. (The 

facet index is indicated in yellow text with black background). 

Instead of looping through each cell of M in Array X, Array Y and Array Z to compute the dxi, dyi 

and dzi, we use the neutral network convolutions based on kernel weighted operators in MXNet. 

Convolutions are often used as an efficient and optimized approach in machine learning algorithms 

for image processing of large amount of data. Convolution operator is based on a 3x3 kernel 

window, i.e., a square of total 9 cells of specific configuration, as a “weight” and implements the 

computation procedure for each cell of Array X, Array Y and Array DEM from the top left to the 

lower right (except the cells at the edges). We designed a series of 8 kernel structures and each one 

corresponds to only one neighboring cell (Table 2.3). For example, for weighted kernel 0, it 

computes the dxi for the cell on the east (Fig. 2.7). The values of the dxi is computed as 0x0+0x-

1+0x0+1x0+1x1+1x0+2x0+2x0+2x0=1. 
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Table 2.3 Weighting kernels used in MXNet GPU array convolution operator. Note that the 

brackets represent each row of the 9x9 kernel window. Each column of the kernel window is 

separated by comma (,). 

 

 

Figure 2.7 Example of convolution operator in MXNet for neighbor 0 (East) at location M (1,1), 

in green. The computation procedure is 0×0+0×-1+0×0+1×0+1×1+1×0+2×0+2×0+2×0=0. This 

generates the result at the centered cell M and recorded in a separated array as dxi 

A similar convolution procedure is implemented on Array Y and Array DEM and the results are 

stored at each cell locations in Array dxi, Array dyi and Array dzi. Then, for each triangular facet, 

we compute the normal vector between the centered cell M and the two contiguous neighboring 

cells as defined in Seibert and McGlynn, 2007: 

𝑛𝑗 = [

𝑛𝑥𝑗
𝑛𝑦𝑗
𝑛𝑧𝑗

] = [

𝑑𝑧𝑖𝑑𝑦𝑖+1 − 𝑑𝑧𝑖+1𝑑𝑦𝑖
𝑑𝑧𝑖𝑑𝑥𝑖+1 − 𝑑𝑧𝑖+1𝑑𝑥𝑖
𝑑𝑦𝑖𝑑𝑥𝑖+1 − 𝑑𝑦𝑖+1𝑑𝑧𝑖

] (4) 

where j represents the facet index number from 0 to 7. nxj, nyj and nzj are stored separately in three 

GPU arrays. Next, the flow directions and the slopes for each triangular fact are computed based 

on nxj, nyj and nzj and stored in GPU array dj and sj for each centered cell M, as in Seibert and 

McGlynn, 2007: 

Weighting kernel series Corresponding Neighboring Cell Kernel window structure 

Weight[0] E [0,  0,  0] [0,  1, -1] [0,  0,  0] 

Weight[1] N-E [0,  0, -1] [0,  1,  0] [0,  0,  0] 

Weight[2] N [0, -1,  0] [0,  1,  0] [0,  0,  0] 

Weight[3] N-W [-1,  0,  0] [ 0,  1,  0] [ 0,  0,  0] 

Weight[4] W [ 0,  0,  0] [-1,  1,  0] [ 0,  0,  0] 

Weight[5] S-W [ 0,  0,  0] [ 0,  1,  0] [-1,  0,  0] 

Weight[6] S [ 0,  0,  0] [ 0,  1,  0] [ 0, -1,  0] 

Weight[7] S-E [ 0,  0,  0] [ 0,  1,  0] [ 0,  0, -1] 
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𝑑𝑗 =

{
  
 

  
 

0      𝑛𝑥𝑗 = 0 𝑎𝑛𝑑 𝑛𝑦𝑗 ≥ 0

𝜋      𝑛𝑥𝑗 = 0 𝑎𝑛𝑑 𝑛𝑦𝑗 ≤ 0

𝜋

2
− 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑛𝑦𝑗

𝑛𝑥𝑗
)        𝑛𝑥𝑗 > 0

3𝜋

2
− 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑛𝑦𝑗

𝑛𝑥𝑗
)       𝑛𝑥𝑗 < 0

(5) 

𝑠𝑗 = −𝑡𝑎 𝑛

(

 𝑎𝑟𝑐𝑐𝑜𝑠

(

 
𝑛𝑧𝑗

√𝑛𝑥𝑗
2 + 𝑛𝑦𝑗

2 + 𝑛𝑧𝑗
2

)

 

)

 (6) 

Note that the convolutions cannot apply to the edge of Array X, Y and DEM, i.e., the arrays dj and 

sj have the dimension of only that of Array X, Y and DEM minus 2. We extend the shape of Array 

X, Y and DEM by appending zeros to the edges so the dimensions of dj and sj are consistent with 

Array X, Y and DEM. This implicitly assumes that the flow directions on the edge of the DEM 

are always out of the domain. The edge appending can be achieved by using a “pad” parameter in 

the convolutions operator. Similar to Seibert and McGlynn 2007, we made further modifications 

for these cases when the flow direction of the facet computed, dj, is not within 45 degrees of the 

corresponding facet or both the elevation of neighboring cells on the facet (e.g., p1 and p2) are 

higher than the centered cell M. For the former case, the flow direction dj is assigned to the largest 

gradient of the two from M toward p1 or p2, i.e., the maximum of dzi and dzi+1, and the slope sj is 

assigned as the corresponding slope between M and p1 or p2. For the later case, both of the 

directions are eliminated and dj and sj at the corresponding locations of centered cells M are 

converted to -999, which represents “NoData”. The last step of updating dj is to ensure that for the 

downslope directions directly pointing towards the centers neighboring cells, i.e., π/4 or (j+1)π/4, 

only the adjacent facets with the same directions, i.e., dj=dj+1 or dj=dj-1 are maintained. Otherwise 

these values in dj are eliminated and converted to -999 as “NoData”. 

 

After the flow direction grids are computed, downslope flow accumulation areas are delineated 

within each of the spatial clustered region of Array 1t. One cell within the spatially-clustered region 

is assigned as the starting cell kn and the downslope accumulation areas Cn are traced based on the 

flow direction indicated by dj. The cells in Cn are marked as 1 in a MXNet GPU Array Flowdown 

(anywhere else are 0s). Array Flowdown is sent back to CPU as NumPy array and the coordinates 

of the cells where the value are 1s are extracted to compute the connectivity function in a similar 
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manner as described in Step 4. Note that for TOPO, one cell in the connectivity function 

computation is always the starting location. Thus, no combinations between two segments of Array 

1t are searched but we simply match the starting cells and all the cells in one segment of Array 1t. 

This process repeats for all the cells in the same clustered region x. The rational is that because 

any pair of cells within the same spatial clustered region are connected, any other locations within 

Cn paired with the starting cell kn and also within the same spatial clustered region are also 

topographically connected. Therefore, the algorithm we designed can efficiently count the pairs 

and compute the lag distances between kn and any other locations within Cn by limiting the pairing 

process within the spatial clustered regions. Note that we do not apply any weight on the flow 

directions because MD∞ and D∞ are identical in most cases. 

 

To delineate Cn using a memory and stack efficient way in TOPO, we assume that the traverse of 

flow cascading downslope in Cn on the topography is equivalent to the “tree branches” rooted at 

the starting (upslope) location kn. This allows us to use a parallel, non-recursive strategy, i.e., the 

“breadth first search” (BFS) method. BFS searches all the neighboring cells at the current depth 

(the closest neighbors at one-cell distance), and then the neighbors at a two-cell distance, until all 

the tree branches (downslope cells) are visited (Fig. 2.8). This is implemented by creating a stack 

Figure 2.8 Example of the “Breadth first search” method for identifying flow downslope traversed 

cells. The blue arrows represent the computed flow directions in dj for each cell. The flow 

directions for blank cells are undetermined. We start from location “0” and trace flow downslope. 

The numbers are the sequence of identified downslope cells. Each color represents one step: 

yellow – step 1, grass green – step 2, orange – step 3, red – step 4, purple –step 5, gray – step 6, 

blue – step 7 and dark gold –step 8. 



47 

 

control list and a marker list. The stack control list is used to append new locations that need to be 

processed to search for downslope cells, i.e., in the current eight neighbors, and to remove the 

locations that have already been processed. It is also used to indicate the termination of the iteration 

when no cell (location) remains in the stack list. The marker list is used to exclude the locations 

already visited in the previous iterations and avoid repeated searching.  

 

Because TOPO includes a full plane direction from the starting cell Kn towards the other cell in a 

pair instead of a half plane and omnidirectional direction connecting a pair, we modified the flow 

direction indicator of CARD to better differentiate the directions on the connected pathways and 

reflect the impedance of topography. Therefore, the range of CARD in TOPO is [0,360) degrees 

and we assume that the vector pointing toward East is zero degree. In the algorithm 

implementation, the flow direction indicator CARD in TOPO is computed as:   

𝑑𝑑𝑖𝑟 =

{
  
 

  
 

0      𝑑𝑥𝑖 = 0 𝑎𝑛𝑑 𝑑𝑦𝑖 ≥ 0

𝜋      𝑑𝑥𝑖 = 0 𝑎𝑛𝑑 𝑑𝑦𝑖 ≤ 0

3𝜋

2
− 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑑𝑦𝑖

𝑑𝑥𝑖
)        𝑛𝑥𝑖 > 0

𝜋

2
− 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑑𝑦𝑖

𝑑𝑥𝑖
)        𝑛𝑥𝑖 < 0

(7) 

Then, the histogram of CARD values is computed for each lag-distance range bin based on the 16 

cardinal/ordinal/secondary intercardinal directions. 

 Dealing with surface depressions and flat areas in the DEM 

MD∞ cannot derive correct flow directions in surface depressions (pits) or flat areas (areas of equal 

elevation), but it can help identify and label cells in these areas for further processing. The TOPO 

algorithm is designed compute the connectivity states based on existing flow patterns, either from 

observations or modeling, instead of physically simulating water mass, momentum and energy 

transfer. Therefore, to simplify the computation of TOPO, we made two assumptions: 1) the water 

flow has sufficient mass, momentum and energy to transfer through these surface depressions and 

flat areas if their pathways are already on the flow pattern; 2) the starting point Kn in TOPO can 

only connect cells within Cn of same or lower elevations. We created a two-step process to 

delineate these surface depression catchments based on the parameters obtained in MD∞. First, 

the lowest point(s) of surface depressions are identified in these cells based on the total counts of 
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negative and zero values in z component of the normal vector nzj, which represents the elevation 

difference between the eight neighboring cells P0, P1 and Pi (i=7) and the centered cell M. Positive 

means Pi is higher than M, negative means Pi is lower than M and zero means Pi is the same 

elevation as M. Therefore, if the sum of negative counts of nzj is 8, i.e., no downslope directions, 

then we determine that the cell(s) are the lowest point(s) in the surface depressions. If the sum of 

zero counts of nzj is ≥1, then we determine that the cell(s) are the flat areas (including these in 

depression catchments). To differentiate the flat areas which may be inside a depression catchment, 

these identified flat areas are grouped into separated spatial regions based on their elevations and 

their neighboring connectedness, i.e., a flat area “patch” includes cells of the same elevations and 

also does not overlap with any other patches. If all the cells in a particular flat area patch do not 

intercept any a positive value in nzj, then this patch is in a depression catchment. Next, the boundary 

of the surface depressions is delineated by using an upslope direction searching method, i.e., 

reversely finding the upslope cells of these lowest point(s) or flats based on nzj. We use the BFS, 

similar as that for downslope direction computation, but is a complete upslope “climbing” process 

without excluding any “ineligible” upslope cells. This step stops when there is no more upslope 

direction exist. The edges of the aggregated upslope contributing area for all the lowest point(s) is 

the preliminary boundary of the surface depression catchments. We name these boundary cells as 

bi. Then if cell(s) of lower elevations (pi) exist outside of the boundary, the pour points are 

determined as the cell(s) of lowest elevations of bi that are adjacent to pi. If cell(s) of lower 

elevations (pi) only exist inside of the boundary, the pour points are determined as the cell(s) of 

lowest elevations of bi. Each delineated surface depression catchment is indexed and accompanied 

by its spatial coverage and pour point locations in two Python lists. 

 

Next, in each spatial clustered region of Array 1t, we search the downslope accumulation area Cn 

(store in array Flowdown and labeled with 1) from the starting point kn. If any surface depression(s) 

catchment intercepts with Flowdown where the cell values are 1s, a further step is needed to 

determine if the surface depression(s) can or cannot block the further downslope flow cascading 

for Kn. This is determined by comparing the elevation of pour point(s) hbi and the start point hkn. 

If hkn ≥ hbi, then the downslope flow cascading continues until intercept with other depression 

catchment(s) or the edge of the spatial clustered region. Flow connects from Kn to the entire 

depression area and then continues to cascade downslope from the pour point. Otherwise (hkn < 
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hbi), the downslope accumulation for the starting point kn ceases in the depression catchment area. 

Finally, the downslope accumulation areas of the pour point(s) are also included in Cn and the cells 

of array Flowdown in these areas are updated to 1s. Once this downslope searching procedure is 

completed, the starting point kn is paired with every cell in array Flowdown where the value is > 

0 for the lag distance computation. Therefore, the topographic determined pathways can represent 

the “on” or “off” states for the connectivity between any pair of cells based on the large-scale 

gradient (see illustrations in Fig. 2.2). This approach allows us to flexibly determine the aggregated 

effects, i.e., the magnitude of resistance, of surface depressions on connected pathway(s). 

2.7 Test results and discussions 

The new OMNI, CARD and TOPO connectivity algorithm has been tested on a hypothetical 

landscape with spatial resolutions of 2m and 5m. The “hydrologically relevant” data used in the 

test are the pattern of flow depths in a landscape domain of size 5,000 m x 5,000 m. The total 

number of cells for the 2m and 5m resolution domain are 6,125,625 and 980,100 respectively. 

Three hypothetical flow patterns at 2m and 5m resolutions have been tested to demonstrate the 

robustness and sensitivity of the OMNI, CARD and TOPO algorithm (Fig. 2.9a-c). Each pattern 

represents a time snapshot of overland flow for this domain. The total counts of “high” cells for 

pattern 1, pattern 2 and pattern 3 at 5 m resolution are 505,600, 537,606 and 66,079 respectively, 

and at 2 m resolution are 3,142,400, 3,343,734 and 412,942 respectively. The rests are the “low” 

cells for each pattern. In pattern 1, the “high” cells are located in circular patches (diameter of 

200m) and are uniformly distributed in the domain but isolated from each other (Fig. 2.9a), 

representing a landscape with internal drainage catchments. In pattern 3, we use a series of 10 

yellow lines representing a landscape with connected overland flow pathways. Each line is at 

different directions, i.e., of bearing angels from 0 to 90 degrees from N-S direction, and lag-

distances, i. e., from 1745 m (Line 1 and Line 10 at 0 or 85 degrees) to 6745 m (Line 6 at 45 

degrees) (Fig. 2.9c and Table 2.4). All of these flow lines connected at the cell with coordinate of 

(4900,100) at the SW corner of the domain. These flow lines are used to demonstrate the scenario 

of fully connected pattern as the comparison to pattern 1. In pattern 2, these flow lines connect the 

isolated patches at different directions, representing a landscape with connected flow pathways 

between the isolated “high” regions (patches). We use two colors (blue and yellow) in pattern 1 

and pattern 2 to label the regions of isolated drainage sinks and the connected flow pathways.  
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Figure 2.9 Test Patterns and DEM for connectivity metric OMNI, CARD and TOPO in a square 

shaped domain of 5000m x 5000m at 5m and 2m resolution. The blue circle (in a and b) and the 

yellow lines (in b and c) represent “high” regions (Z) of isolated water patches and the 

connectivity pathways in between. The diameter of each circle is 200m and they are uniformly 

distributed in the domain. The origin of these flow lines is at the location x=100 and y=100. The 

length of each line and bearing (from N-S direction) is listed in Table 2. DEM used for testing 

TOPO is presented in d. Note that in a-c, “low” regions are the areas in blank (white).  
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In Figures 2.9a to c, blue and yellow regions are the “high” areas which indicate that flow depth 

is above a predefined threshold, e.g., 0.1m, and the white regions indicate areas of “low” areas. 

The elevations in the DEM for the landscape are presented in Figure 2.9d. Note that to demonstrate 

the capacity of TOPO in dealing with surface depressions and flat areas, the areas of blue circular 

patches in pattern 1 or 2 are located in the depression catchments of cylinder shapes with bottom 

elevation of 20m. Areas of white in pattern 1 or 2 (“low” cells) are contiguous flat regions in the 

DEM with elevation of 50m. Note that no pour point exists outside these depression catchments. 

 

The 5m test results of OMNI for pattern 1 (isolated circular patches) show that the lag-distances 

for connected pairs are limited to 350 m, which only includes the pairs of cells within the patches 

(diameter 200m, and blank space or “low” region between patches of 50m) (Table 2.5). In contrast, 

the 5m test results for pattern 2 (patches connected with flow lines) show the lag-distances for 

connected pairs from 350m to 7,000m. In each lag-distance range, the connectivity probability P 

is between 3% to 25% (Table 2.6). P reaches the maximum of 24.7% at 6,650-7,000m and the 

minimum of 3.3% at 3,850-4,550m. This is because the length of Line 10 is at 6,750m which 

connects the most of the cells in “high”, and no flow line is between 3,850 and 4,550m. Also, P 

slightly decrease and then increases with the lag-distance. This is because more isolated patches 

are being connected at larger lag-distances than the smaller lag-distances by these flow lines, e.g., 

line 6 connects 20 isolated patches while line 1 only connects 6. Meanwhile, for the lag-distance 

in between the two extremes, i.e., lag-distance range bin 0 and 20, the proportion of white or “low” 

areas included in the computation also increases and reaches the maximum at around 3,850-

4,550m (bin 12 to 13). This is also the lag-distance range with the lowest probability of 

connectedness. In addition, P for pattern 2 is always higher than that for pattern 3 because the 

yellow flow lines connect the isolated water patches approximately in a uniform manner at 

different lag distances. Similarly, the results of CARD for pattern 1 is also limited to the 350 m 

and include only one radius of the isolated patches, as expected (Table 2.5). An exact 90-degree 

means that the connected direction is the average between uniform distribution of [0-180], which 

indicates no particular direction can be identified. In other lag-distance ranges, the directions 

remain exactly zeros (the initial values). The average flow directions for pattern 2 starts from 86 

at a lag distance of 350 and decreases to 45 at a lag distance of 7000m (Table 2.6). This is because 

as the lag-distances increase, directions of the flow lines connecting the patches shift from N-S or 
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E-W (86 or 0) directions to N-E direction (45 degrees) (line 6). A similar trend can be found in 

pattern 3, where the directions shift from 77 to 45 degrees (Table 2.7). The 2 m resolution patterns 

provide similar results to the 5 m resolution patterns (Table 2.5-2.7). OMNI captures the increasing 

connectivity trend of the patterns: 2, 47 and 84 for pattern 1, 3 and 2 respectively (Table 2.8). 

 

TOPO and CARD algorithm for pattern 2 at 5m resolution based on the hypothetical DEM has 

been tested for the landscape domain (Fig. 2.9d) as the demonstration for its capacity of dealing 

with flat areas and surface depressions, and its sensitivity for topographic determined flow 

directions. TOPO for pattern 2 is 47 which is slightly larger than half of OMNI for pattern 2 (84) 

(Table 2.8). This indicates that the surface depressions significantly reduce the connectivity for 

pattern 2. The connectivity function τ(h) of TOPO is always lower than OMNI (Table 2.6 and 2.9), 

which indicates the impedance effects of the surface depressions on connected flow pathways. The 

magnitude of the difference between τ(h) of TOPO and OMNI decreases as the lag-distance 

increases. This is because surface depressions can only impede the flow pathways within these 

isolated circular areas. The largest lag-distance range of 6650-7000m identifies the existence and 

the correct spatial directions of the longest flow line: Line 6. This is confirmed by the non-zero 

τ(h) values in the range of 6650-7000m and the NE and SW directions (Table 2.9). Note that τ(h) 

for NE is always lower than SW for the lag-distances above 4,900m. This may relate to the non-

uniform weight of flow lines pattern, because the origin of all these lines are located at SW corner 

of the domain. Relatively fewer number of pairs can have lag-distance above 4,900m excepts those 

on flow line 5, 6 and 7 with one cell of the pairs at the NE part of the domain. For these pairs, the 

major trend of the connectivity directions is towards SW instead of NE based on how they connect 

on line 5, 6 or 7 and other shorter flow lines. τ(h) for NE becomes approximately equal as SW in 

the range bin 4,550 to 4,900m, and then start to lower than SW below lag-distance 4,550m and 

continue to decrease. This is because pairs with lag-distances lower than 4,550m have at least one 

cell located at SW part of the domain, i.e., the probability of one cell located at SW increase with 

the decrease of lag-distance. Also, the range bin 5600-5,950m and 4,550-4,900m detect the 

existence of flow line 5 & 7 and 4 & 8, for both their lengths and connectivity directions. For 

example, P shifts from 0 to 0.003 at range bin 5600-5,950m at ENE/WSW and NNE/SSW direction 

respectively. Other shorter flow lines, i.e., line 1, 2, 3, 9 and 10, are not so obviously identified 

because their lengths are not exclusively represented. 
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Table 2.4 Lengths and the bearings for the flowlines in pattern 3 

Line index Distance 

(m) 

Bearing from N-S direction 

(degree) 

Full Plane direction from E (degree) 

counterclockwise 

Line 1 1745 0 90 & 270 

Line 2 2745 5 85 & 275 

Line 3 3745 15 75 & 285 

Line 4 4745 25 65 & 295 

Line 5 5745 35 55 & 305 

Line 6 6745 45 45 & 315 

Line 7 5745 55 35 & 325 

Line 8 4745 65 25 & 335 

Line 9 3745 75 15 & 345 

Line 10 2745 85 5 & 355 

 



 

 

Table 2.5 Connectivity function curve tabular results for test pattern 1. 

Range bin index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Lag-distance 

ranges (m) 
0-350 

350-

700 

700-

1050 

1050-

1400 

1400-

1750 

1750-

2100 

2100-

2450 

2450-

2800 

2800-

3150 

3150-

3500 

3500-

3850 

3850-

4200 

4200-

4550 

4550-

4900 

4900-

5250 

5250-

5600 

5600-

5950 

5950-

6300 

6300-

6650 

6650-

7000 

Average lag 

distances (m) 
90.874 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Connected 

Probability 

5m Resolution 

0.0583 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Connected 

Probability 

2m Resolution 

0.0587 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Average 

connected 

directions 

5m resolution 

90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Average 

connected 

directions 

2m Resolution 

90 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

CARD N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Table 2.6 Connectivity function curve tabular results for test pattern 2. 

Range bin 

index 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Lag-distance 

ranges (m) 
0-350 

350-

700 

700-

1050 

1050-

1400 

1400-

1750 

1750-

2100 

2100-

2450 

2450-

2800 

2800-

3150 

3150-

3500 

3500-

3850 

3850-

4200 

4200-

4550 

4550-

4900 

4900-

5250 

5250-

5600 

5600-

5950 

5950-

6300 

6300-

6650 

6650-

7000 

Average lag 

distances (m) 

188.57

9 

545.11

5 

884.91

3 

1230.9

55 

1577.8

48 

1925.1

95 

2273.3

81 

2620.5

27 

2968.8

81 

3316.5

78 

3664.5

52 

4017.0

20 

4364.7

24 

4712.0

92 

5060.1

16 

5406.5

87 

5751.6

20 

6097.2

11 

6428.3

02 

6717.4

31 

Connected 

Probability 

5mResolution 

0.145 0.091 0.090 0.082 0.074 0.069 0.062 0.056 0.049 0.041 0.036 0.033 0.033 0.036 0.053 0.069 0.087 0.118 0.182 0.247 

Connected 

Probability 

2m Resolution 

0.145 0.091 0.090 0.082 0.074 0.069 0.062 0.056 0.049 0.041 0.036 0.033 0.033 0.036 0.053 0.069 0.087 0.118 0.183 0.246 

Average 

connected 

directions 

5m resolution 

86.465 87.878 88.863 85.949 83.998 82.480 79.669 74.937 69.488 61.539 52.988 46.847 44.494 44.942 45.083 45.148 45.378 45.672 45.509 45.112 

Average 

connected 

directions 

2m Resolution 

86.468 87.878 88.863 85.950 84.001 82.482 79.672 74.939 69.489 61.542 52.991 46.849 44.501 44.945 45.088 45.148 45.378 45.672 45.509 45.112 

CARD N N N N N N N NNE NNE NNE NE NE NE NE NE NE NE NE NE NE 
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Table 2.7 Connectivity function curve tabular results for test pattern 3. 

Range bin index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Lag-distance  

ranges (m) 

0-350 350-

700 

700-

1050 

1050-

1400 

1400-

1750 

1750-

2100 

2100-

2450 

2450-

2800 

2800-

3150 

3150-

3500 

3500-

3850 

3850-

4200 

4200-

4550 

4550-

4900 

4900-

5250 

5250-

5600 

5600-

5950 

5950-

6300 

6300-

6650 

6650-

7000 

Average lag 

distances (m) 

206.90

9 

526.45

3 

858.39

6 

1195.3

22 

1533.1

14 

1870.8

61 

2210.4

61 

2547.2

72 

2886.4

51 

3224.4

91 

3561.7

06 

3903.7

39 

4240.5

98 

4578.2

55 

4919.1

58 

5253.6

84 

5588.4

88 

5932.0

14 

6258.6

22 

6535.7

95 

Connected 

Probability 

5m Resolution 

0.089 0.068 0.060 0.052 0.046 0.041 0.038 0.033 0.030 0.026 0.023 0.021 0.021 0.021 0.029 0.035 0.036 0.048 0.084 0.192 

Connected 

Probability 

2m Resolution 

0.089 0.068 0.060 0.052 0.046 0.041 0.038 0.033 0.030 0.026 0.023 0.021 0.021 0.021 0.029 0.035 0.036 0.048 0.085 0.189 

Average 

connected 

directions 

5m resolution 

77.894 87.699 88.125 84.268 81.537 79.623 75.514 70.615 66.052 59.067 53.201 46.529 44.589 44.653 44.589 44.746 44.737 44.930 45.212 45.425 

Average 

connected 

directions 

2m Resolution 

77.891 87.679 88.138 84.293 81.555 79.646 75.533 70.634 66.059 59.071 53.198 46.533 44.600 44.671 44.605 44.757 44.739 44.935 45.217 45.425 

CARD N N N N N N NNE NNE NNE NNE NE NE NE NE NE NE NE NE NE NE 

 

Table 2.8 OMNI and TOPO connectivity metrics computation results for test patterns 1-3. Note that for TOP, only pattern 2 at 5 m 

resolution has been tested.  

Pattern and resolution  Computing time (sec) OMNI Computing time (sec) TOPO 

Pattern 1 5m resolution 8,555 1.818 -- -- 

2m resolution  123,035 1.956 -- -- 

Pattern 2 5m resolution 7,597 84.577 123,889 48.895 

2m resolution 109,255 84.681 -- -- 

Pattern 3 5m resolution 6,891 47.400 -- -- 

2m resolution 99,171 47.568 -- -- 
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Table 2.9 Topographic determined connectivity function curve tabular results or test pattern 2 (5m resolution). Columns in bold 

represent the lag-distance range bins which include the lengths for the flow lines. Rows in bold represent the bearings for the flow 

lines categorized into 16 cardinal/ordinal/secondary intercardinal direction 

Range bin index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Flow Lines in 

range bin 

    1    2, 10   3, 9   4, 8   5, 7   6 

Lag-distance 

ranges (m) 

0-350 350-

700 

700-

1050 

1050-

1400 

1400-

1750 

1750-

2100 

2100-

2450 

2450-

2800 

2800-

3150 

3150-

3500 

3500-

3850 

3850-

4200 

4200-

4550 

4550-

4900 

4900-

5250 

5250-

5600 

5600-

5950 

5950-

6300 

6300-

6650 

6650-

7000 

Average lag 

distances (m) 

188.57

9 

545.11

5 

884.91

3 

1230.9

55 

1577.8

48 

1925.1

95 

2273.3

81 

2620.5

27 

2968.8

81 

3316.5

78 

3664.5

52 

4017.0

20 

4364.7

24 

4712.0

92 

5060.1

16 

5406.5

87 

5751.6

20 

6097.2

11 

6428.3

02 

6717.4

31 

E Line 10 0.071 0.075 0.083 0.091 0.088 0.091 0.100 0.083 0.075 0.070 0.049 0.027 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

ENE Line 8,9 0.034 0.080 0.087 0.094 0.098 0.096 0.108 0.117 0.119 0.148 0.156 0.156 0.165 0.126 0.071 0.033 0.003 0.000 0.000 0.000 

NE Line 5,6,7 0.037 0.085 0.087 0.088 0.092 0.104 0.113 0.127 0.135 0.152 0.177 0.198 0.223 0.266 0.286 0.355 0.397 0.344 0.166 0.118 

NNE Line 3,4 0.031 0.078 0.086 0.087 0.094 0.096 0.100 0.113 0.131 0.129 0.132 0.127 0.115 0.086 0.060 0.027 0.003 0.000 0.000 0.000 

N Line 1,2 0.020 0.055 0.063 0.071 0.071 0.079 0.074 0.071 0.061 0.051 0.032 0.017 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

NNW 0.019 0.048 0.048 0.047 0.043 0.042 0.037 0.031 0.020 0.008 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

NW 0.017 0.044 0.040 0.036 0.030 0.024 0.022 0.015 0.012 0.006 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

WNW 0.016 0.040 0.038 0.031 0.027 0.026 0.023 0.019 0.018 0.010 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

W Line 10 0.047 0.043 0.044 0.045 0.040 0.039 0.041 0.037 0.038 0.036 0.026 0.025 0.007 0.006 0.000 0.000 0.000 0.000 0.000 0.000 

WSW Line 8,9 0.108 0.055 0.048 0.048 0.055 0.059 0.062 0.072 0.082 0.090 0.110 0.111 0.121 0.125 0.127 0.084 0.029 0.000 0.000 0.000 

SW Line 5,6,7 0.104 0.060 0.054 0.051 0.056 0.066 0.072 0.081 0.097 0.124 0.162 0.196 0.212 0.250 0.320 0.415 0.550 0.656 0.834 0.882 

SSW Line 3,4 0.112 0.056 0.045 0.048 0.056 0.064 0.065 0.076 0.086 0.094 0.103 0.119 0.132 0.135 0.135 0.086 0.018 0.000 0.000 0.000 

S Line 1,2 0.100 0.066 0.065 0.066 0.064 0.049 0.051 0.049 0.045 0.041 0.031 0.023 0.008 0.006 0.000 0.000 0.000 0.000 0.000 0.000 

SSE  0.103 0.069 0.067 0.061 0.057 0.048 0.032 0.028 0.025 0.013 0.006 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

SE  0.094 0.072 0.068 0.061 0.061 0.053 0.038 0.024 0.017 0.008 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

ESE  0.105 0.077 0.079 0.073 0.067 0.063 0.062 0.055 0.040 0.019 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

All Directions 0.097 0.037 0.035 0.033 0.029 0.026 0.024 0.021 0.020 0.018 0.016 0.016 0.018 0.022 0.036 0.052 0.072 0.108 0.178 0.245 

Diff with pattern 

2  

-0.048 -0.054 -0.055 -0.049 -0.045 -0.043 -0.038 -0.035 -0.029 -0.023 -0.020 -0.017 -0.015 -0.014 -0.017 -0.017 -0.015 -0.010 -0.004 -0.002 
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The computing time of OMNI for test patterns 1, 2, and 3 were 8,555, 7,597, and 6,891 seconds at 

5 m resolution and 123,035, 109,255, and 99,171 seconds at 2m resolution respectively. The 

computing time of TOPO for test pattern 2 is 123,889 seconds at 5m resolution. TOPO provides a 

more realistic and robust way of measuring hydrologic pattern connectivity determined by 

topography, including the complex features such as surface depressions and flat areas. The trade-

off is that TOPO takes significant more time to than OMNI. Note that the computational time is 

not linearly related to the total grid size because it is also significantly affected by the spatial 

configuration of the pattern in “high” (Z) and “low” (G-Z). Therefore, all three patterns at the same 

spatial resolution with the same total number of cells, but the computational time for each pattern 

is different. 

2.8 Conclusions 

This paper demonstrates an efficient algorithm of computing hydrologic connectivity for large-

scale and high-resolution patterns in a reasonable timeframe. The workflow of this algorithm is 

fully automated and requires minimum user interference. Also, it is easy to implement the code on 

various platforms and hardware configurations. The probability of connectedness P between any 

pair of cells can be plotted against the lag-distances as the connectivity function graph as τ(h) (see 

example in Fig. 2.1d), which provides a spatially explicit representation of hydrosystem level 

connectivity status for each time snapshot. We hope this algorithm paves the way of investigating 

large-scale, e.g., watershed scale, connectivity using high resolution spatial data. 

 

The emergent characters of the watershed hydrologic processes can only be revealed at large scale 

and depends on the variability of the complex “connectedness” between these small-scale factors 

spatially and temporally. The landscape factors, e.g., surface depressions, may also be contributing 

to the shifts in connectivity at watershed scale. These small-scale factors are often considered the 

source of high uncertainly in the hydrologic models (e.g., Antoine et al., 2009; Bracken et al., 

2013). Connectivity at hydrosystem level reflects the complex aggregation of feedback/interaction 

dynamics between these small-scale factors, but it has been difficult to find a unified indicator to 

inspect the relationships they have with the physical processes. The new OMNI, TOPO, and 

CARD algorithm provide a connectivity metric to intuitively and directly compare the aggregated 

and large-scale effects of small-scale factors contributing to the watershed hydrologic processes 



59 

 

and their interactions with the landscape in a short timeframe. We will implement OMNI, TOPO 

and CARD connectivity metrics in a real-world watershed and demonstrate the effect of small-

scale morphological features, such as surface depressions, on the overland flow and runoff 

response by the changes of hydrosystem level or large-scale connectivity status, e.g., watershed 

scale, as a case study.  

 

Although our algorithm makes the computation of large grid connectivity feasible within a 

reasonable timeframe, a major limitation of the current algorithm is that the computational time is 

not a simple linear function of the number of cells in the grid. This can reduce computational speed 

when a complex and high-resolution pattern is being analyzed. Also, this algorithm does not 

account for the actual water mass transfer between the paired locations. Future work to improve 

the algorithm will focus on 1) Incorporate water and water mediated substances transfer between 

any pair of cells as a physically restrictive condition to determine the material connectedness; 2) 

Parallelization of the algorithm across multiple GPUs to obtain the higher computational speed 

increases; 3) Incorporate a network distance based lag-distance computation so that the subsurface 

flow connectivity can also be estimated, where the trajectories of the pathways cannot be measured 

in a 2D only Euclidean space. 

2.9 Code availability and Test Data 

OMNI-CARD, and TOPO-CARD algorithm is developed and implemented in MXNet – a machine 

learning framework with Python binding (Version > 1.2.0). Computer code is under Apache 2.0 

license and separated into two scripts: one for OMNI-CARD and one for TOPO-CARD, and can 

be accessed from the author’s GitHub repository at the link below:    

https://github.com/codefortheplanet/Connectivity_Algorithm 

Instructions regarding the use of the computer code and test datasets can also be found in the 

repository.  

  

https://github.com/codefortheplanet/Connectivity_Algorithm
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 THE EFFECTS OF TOPOGRAPHIC DEPRESSIONS ON 

MULTI-SCALE OVERLAND FLOW CONNECTIVITY: A HIGH-

RESOLUTION SPATIAL AND TEMPORAL PATTERN ANALYSIS 

APPROACH BASED ON CONNECTIVITY STATISTICS 

Manuscript submitted to Hydrological Processes 

3.1 Abstract 

In watershed modeling, the traditional practice of arbitrarily filling topographic depressions in 

digital elevation models (DEMs) has raised concerns because of the advancement of high-

resolution remote sensing techniques, including aerial laser altimetry (LiDAR), which can identify 

real depressions that impact overland flow. We examined the connectivity statistics approach, i.e., 

connectivity function and Integral connectivity scale lengths, for quantifying the effects of 

depressions on overland flow processes across spatial scales. Connectivity statistics are 

implemented using GPU-accelerated computing techniques. We compared connectivity of 

overland flow patterns for five storm events between LiDAR-derived DEMs with (original) and 

without (filled) depressions. At least four macro connectivity stages were identified which 

correspond to connectivity states at different spatial scales: internal, local, partial watershed, and 

full watershed. These connectivity stages represent different overland flow response mechanisms, 

based on the states of depression storage capacity and connectedness between depressions. Results 

indicate that depressions can change the probability that any two points (grid locations) in a 

watershed are connected from -18% to +5%. Watershed-scale connectivity is less likely to occur 

when depressions are present, and vice versa for local-scale connectivity. The shapes of 

connectivity function plots are mostly convex, but concave sections also appear during the rising 

limb of most events, linked to shifts in the relative speed between filling and formation of 

connected pathways and the locations of depressions. Spatial distributions of connectivity changes 

indicate that increased connectivity is typically located in floodplain areas adjacent to the stream 

channel, i.e., the “riparian zone”, while decreased connectivity are typically located in the hillslope 

areas. Therefore, this study suggests that depressions are “nontrivial” in watershed modeling and 

their impacts on overland flow should not be neglected. Connectivity statistics at large spatial 
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scales provide new insights for characterizing the accumulative effects of interactions mechanisms 

between overland flow and small-scale topographic features. 

3.2 Introduction 

In hydrologic modeling, topography is a key input and has a significant impact on 

hydrologic/hydraulic features in both surface and subsurface rainfall-runoff models. Digital 

elevation models (DEMs) are the numerical representation of topography in a structural grid or 

triangular irregular network (TIN) format and have been extensively used as a fundamental input 

in watershed modeling (see examples in Cormen et al., 2001; Correia and Rego, 1998; DeVantier 

and Feldman, 1993; Miller and Semmens, 2002; Xu et al., 2014; Zhang and Montgomery, 1994). 

Initially, topography was estimated from paper contour maps and manually imported into 

computers because of the lack of highly accurate terrain survey techniques (Moore et al., 1988; 

Jenson, 1991). DEMs derived from these spatially coarse datasets typically include topographic 

depressions, termed “pits” or “sinks”, that appeared as a single or contiguous set of cells of low 

elevations surrounded by neighboring cells of higher elevations (Jenson and Domingue, 1988; 

Martz and Garbrecht, 1998; Rieger, 1998). Depressions are problematic in distributed models 

because flow is “trapped” and no outward flow direction is available to route and accumulate flows 

downslope, until the depressions are completely filled with additional rainfall and overflow 

(Arnold, 2010). To simplify analysis for practical purposes, early modeling work treated all 

depressions in DEMs as artifacts. The assumption was that all of these depressions resulted from 

inaccurate elevation measurements in the original contour maps or bias of interpolation methods 

(Band, 1986; Lindsay and Creed, 2005; Vaze et al., 2010). In addition, it was noted that the scale 

of naturally occurring depressions is typically much less than that of the DEM spatial resolution 

(O’Callaghan and Mark, 1984; Jenson and Domingue, 1988; Hutchinson, 1989). Thus, depressions 

are completely removed in DEM data preprocessing prior to modeling, which has been an 

“acceptable necessity” (Hutchinson, 1989; Jenson and Domingue, 1988; O’Callaghan and Mark, 

1984; Wechsler, 2007). 

 

In recent decades, the spatial resolution of elevation data has greatly improved along with lower 

costs and easier accessibility, e.g., online data repositories including aerial laser altimetry (LiDAR) 

and satellite radar altimetry (Toutin, 1995; Hirano et al., 2003; Berry et al., 2007; Lemmens, 2008; 
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Shan and Toth, 2008). It is now possible to capture high-resolution (horizontal < 1 m) surface 

topography based on spatially dense point clouds (> 10 points/1 m2) at a watershed scale (10-1000 

km2) or structural grid data (with a horizontal resolution of 30 m) at intercontinental or global 

scales (Farr and Kobrick, 2000; Shan and Toth, 2008; Siart et al., 2009). Although high-resolution 

elevation data are also not free from errors (Van Genderen, 2011), with data scales consistent with 

the scales of real depressions, the assumption that all surface depressions are spurious and mere 

artifacts because of measurement error or interpolation bias is clearly no longer justifiable (Lindsay 

and Creed, 2006). Removal (filling) of depression comes with the risk of eliminating naturally 

occurring depressions and “overly” smoothing the topography. Indeed, depressions can play a 

crucial role in surface or subsurface flow processes (Tockner et al., 1999; Darboux et al., 2002a; 

Einsiedl, 2005; Ahmed et al., 2011). Elimination or an overly simplified representation of 

depressions for high-resolution DEMs is problematic in modeling, because of a major impact on 

connectivity and runoff response, even at plot and field scales, i.e., through spatially and 

temporally changes of flow depth, velocity and direction, and distribution distance/timing of runoff 

responses at the field or plot outlet (Zhang and Cundy, 1989; Dunkerley, 2003; Antoine et al., 

2009). The widely used “quick fix”, using a constant water storage parameter for treating 

depressions, is not sufficient: runoff may occur, and the active contributing area may increase even 

before the surface storage capacity is fully filled (I. D. Moore and C. L. Larson, 1979; Antoine et 

al., 2009). Depressions can potentially increase storage capacity and roughness of topography and 

delay the overland flow response (Martin and Valeo, 2008). Incorporating rill/depression storage 

in plot scale topography has been shown to significantly increase the accuracy of runoff initiation 

timing and residence time distributions for surface and subsurface flow (Frei and Fleckenstein, 

2010). Soil moisture is also likely to change because depressions change the water potential at a 

local scale (Lane et al., 2004). 

 

However, depressions are complex morphological features that have been difficult to dynamically 

and explicitly incorporate into watershed modeling conceptualization, instead of statistical and 

implicit estimations (Mekonnen et al., 2016; Nasab et al., 2017). The concept of “connectivity” 

which has been introduced to hydrology from other disciplines, e.g., ecology, and provides an 

alternative way to examine the emergent effects of plot or field scale depressions, including their 

spatial arrangements, on hydrologic responses at larger spatial scales, e.g., hillslope or watershed. 
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Although no unified definition of connectivity currently exists, the most consistent description is 

that “Connectivity is the linkages (or connectedness) between structural patterns of landscape units 

and their interaction with functional patterns of watershed processes such as runoff response, and 

fluxes of water or water mediated substances and energy transfer within the spatial and temporal 

extent of a hydrologic system, e.g., a watershed” (Bracken et al., 2013). Connectivity has been 

recognized as a promising way to improve our current understanding of hydrologic processes, 

which can only be seen at the watershed scale as the dynamic and cumulative effects of small-

scale process interactions and feedback (Antoine et al., 2009; Bracken et al., 2013). Depressions 

have been shown to have a strong correlation with hydrologic connectivity, depending on their 

unique spatial configurations (Antoine et al., 2009, 2011a; Peñuela et al., 2016). Overland flow 

transfer distance or “connectivity length” has been computed using a water “walker” conditional 

function on each cell of a series of field plots of random crater-like and low-relief DEMs, from the 

most upslope location to the field outlet (Darboux et al., 2002a). Connectivity has also been 

measured based on the spatial configurations of microtopographic depression structures and their 

storage changes during fill and spill (Antoine et al., 2009; Tromp-Van Meerveld and McDonnell, 

2006). The characteristics of stream network connectivity has been used to represent topographic 

driven watershed runoff responses (Jencso and McGlynn, 2011).  

 

To date, however, few attempts have been made to directly incorporate connectivity into 

interpreting hydrologic processes based on observations or modeling outputs. Rather, much of the 

work to date has been focused on the development of the statistical model of connectivity, e.g., 

patterns of soil moisture or properties, without explicitly identifying the interaction mechanism 

between structural factors and flow processes, e.g., impacts of changes of topographic features on 

surface and subsurface flow connection , and almost exclusively focused on the plot or field scale 

(Western et al., 2001; Zehe et al., 2007; Meerkerk et al., 2009; Renard and Allard, 2013). In 

addition, few published works have provided a clear quantification of hydrologic connectivity at 

a watershed-scale using high resolution spatial data (e.g., Ali and Roy, 2010). The most possible 

explanation is that for flow connectivity at larger spatial scales and higher resolutions, many of the 

approaches used at field or plot scales would be extremely computationally intensive for modeling 

and/or impractical to collect observed data in the field.   
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This study is a first attempt to investigate the role of depressions on connectivity at multiple spatial 

scales, from an internal depression scale (~5 m2) to a watershed scale (~75 km2) using spatially 

and temporarily explicit overland flow patterns for single storm events. The patterns at high-

resolution (5 m spatial scale and 60 min temporal snapshots) are generated using 2D hydraulic 

models with a direct rainfall method (DRM) and high-performance computing techniques. DRM 

has been widely used in flood modeling for planning and emergency response, but has been used 

far less in hydrologic modeling. DRM has also been used as an efficient alternative to provide a 

comparison of key hydrologic process parameters, e.g., overland flow networks, time of 

concentration, which may highlight the need for further calibration in traditional watershed 

modeling (Taaffe et al., 2011; Hall, 2015). A detailed description of DRM and model settings are 

included in the Appendix A. In this study, we analyze the effects of depressions on overland flow 

pattern connectivity at for several storm events of different annual exceedance probability (AEP) 

by running simulations with and without depressions using DRM. Connectivity concept is based 

on the two-point statistics proposed by Western et al., 2001, which explicitly account for the 

connectedness between paired locations of heterogeneous hydrologic patterns. We create a new 

implementation to upscale the connectivity measures to large grids. The high-resolution view of 

connectivity at larger spatial scales provides us with an unprecedented opportunity to answer the 

following questions: 1) Do depressions play a major role in overland flow connectivity at the 

multiple spatial scales? 2) What are the implications of connectivity on the feedback dynamic from 

small-scale processes, e.g., depression filling (as sink) and spilling (as sources)? 3) What is the 

temporal variability of connectivity on the cumulative spatial scales for a single storm event? 4) 

What are the other implications that connectivity can be represented in terms of the overland flow 

processes? 5) What are the spatial distributions of connectivity changes caused by depressions, 

and what are the potential practical implications for watershed modeling?  

3.3 Materials and Methods 

 Overview 

We first provide a detailed description of a study watershed, including its hydrologic 

characteristics, instrumentation, and data availability. Then, we describe the DRM implementation, 

including the rationale for modeling approach selection, parameterization and calibration. Finally, 
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we give a brief description of the theoretical background of connectivity statistics. The workflow 

of this paper includes five major steps: 1) Spatial data preprocessing for LiDAR point clouds, land 

use, and soil map. 2) DRM parameterization, modeling, and calibration: The DRM is implemented 

in a 2D hydraulic modeling software package, TUFLOW. 3) Flow pattern filtering and 

thresholding: Map outputs from TUFLOW are used as flow patterns and labeled into binary “high” 

or “low” cells. 4) Connectivity statistics computation: we created a new algorithm for the τ(h) and 

ICSLs to quantify connectivity states. 5) Results analysis: we compared the computed τ(h) and 

ICSLs between flow patterns generated based on a) an original DEM and, b) the original DEM 

after modification by a depression-filling algorithm. 

 Watershed description 

The Goodwater Creek Experimental Watershed (GCEW), located in northeastern Missouri, has a 

total area of approximately 75 km2 and is a subwatershed of the Salt River Basin, a 6,400 km2 

headwater source tributary to Mark Twain Lake (E J Sadler et al., 2015, Fig. 3.1a-b). Mark Twain 

Lake is the major reservoir for the local regions public water supply (Lerch et al., 2008). GCEW 

has flat and gentle rolling topography with slopes of mostly 0 – 3% (Long-Branch and South Fork 

Salt River Project data). The major soil types are Wisconsin and Illinoian loess overlaying pre-

Illinoian glacial till. Argillic horizons of 40% - 60% smectitic clays are formed by illuviation of 

high clay content loess. The claypan layer is approximately 50-60 cm below soil surface (Soil 

Survey Staff, 2016). Soil texture is dominated by clay loam and silty clay loam, with hydrologic 

soil groups of C and D (Steiner et al., 2009). Land use is mostly agriculture, and the major crops 

include soybean, corn, and sorghum (Baffaut et al., 2015). The city of Centralia has approximately 

2/3 of its urban area located at the south end of GCEW (~ 4 km2) (Long-Branch and South Fork 

Salt River Project data). Annual precipitation is approximately 1,000 mm and 30% becomes 

streamflow. Runoff accounts for 85% of the total streamflow. Subsurface drainage is not used in 

this area because of the practical issues of installing drainage in or below a claypan layer (Baffaut 

et al., 2015). In a field study of GCEW, we found three major types of surface depressions, 

including both artificial and natural occurrence (Fig. 3.2a-c): 1) Ponds and wastewater treatment 

lagoons; 2) Ditches by railroad and road embankments; 3) Small depressions (puddles) in low land 

areas, mostly located at the riparian zone, which is immediately adjacent to the stream. Formation 

of naturally occurring depressions (puddles) in these areas are likely linked to bank erosion and 
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sediment deposition processes. Also, frequent bank failure causes detachment of root balls of 

woody plants from the soil surface, which can also generate depressions. Accessible locations of 

artificially and naturally occurring depressions at GCEW that are identified in the LiDAR-derived 

DEM are verified in this field study.   

 Hydrological and meteorological data 

The USDA-ARS established hydroclimatic instrumentation at GCEW in 1969 and has been 

recording long-term flow, weather, and water quality data since then (Sadler et al., 2015b, 2015a; 

Fig. 3.1a). Continuous 5-minute stream flow data for the GCEW watershed are recorded at three 

weirs on the main stream channel of Goodwater Creek. Plot and field scale runoff measurements 

are also available (Baffaut et al., 2015). Currently, 9 rain gauges are in use at GCEW. Weather 

station records include solar radiation, air and soil temperature, saturated and actual vapor pressure, 

wind speed and direction, and precipitation. Both the breakpoint and daily data are available for 

all the hydroclimatic records and can be accessed from the USDA-ARS STEWARDS (Sustaining 

the Earth’s Watersheds – Agricultural Research Database System) 3.0 data portal (Steiner et al., 

2009, also see weblink in Table 3.1).  

 

Figure 3.1 (a) Location of GCEW and instrumentation (Raingauges, weather stations and 

streamflow weir locations), and (b) location of Salt River Basin in Missouri. 

Goodwater creek experimental watershed 

Salt River Basin 

Mark Twain Lake 

a 

b 
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Figure 3.2 Three major types of depressions in GCEW. (a) Pond and wastewater lagoon on each 

side of a road and DEM at the same location; (b) Ditch by a road embankment and DEM at the 

same location; (c) Small depression (puddle) in low land areas at the riparian zone covered by 

vegetation and DEM at the same location.  

In this study, the breakpoint data were aggregated into 15 min intervals as model inputs for single 

event simulation. Breakpoint flow weir data were aggregated into hourly intervals for model 
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calibration. We selected five events for this study that included three groups of annual exceedance 

probability (AEP): high (1% to 5%), medium (5% to 20%) and low (20% to 50%), based on a 

flood frequency analysis for each hydrologic year (from the beginning of April to the end of 

March). 

 Spatial data 

We derived a DEM for GCEW using a high-resolution LiDAR point cloud (nominal post-spacing 

= 0.5 m) from the Long-Branch and South Fork Salt Creek Watershed Project data repository 

(USDA-NRCS, 2012). We did not use a DEM grid from the USGS National Elevation Dataset 

(NED) because NED currently does not have complete 1 m or 1/9 arcsecond (~3 m) DEM spatial 

coverage for the GCEW area (5 m resolution grid was used here and more details are included in 

section 3.3.5). In a preliminary study, we also found that the large number of small depressions in 

the riparian zone were mostly being filled in the NED. Therefore, in this study, we directly used 

LiDAR data to generate a DEM with no artificial modification of the measured elevations (except 

filtering out the nonground returns) to maximize the preservation of any real depression. In this 

study, the DEM was generated from LiDAR point cloud data using Natural Neighbor interpolation 

(implemented in ArcGIS) to preserve local-scale depressions while not creating spurious 

topographic features that are not already present in the data (ESRI, 2016; Sibson, 1981). We use 

this LiDAR-derived DEM to test the effects of depression removal on modeled overland flow 

patterns. A robust filtering algorithm is required to preprocessing LiDAR data that can separate 

ground from nonground signal returns and noise with minimal error (Liu, 2008; Shan and Toth, 

2008). Robust Hierarchical Filtering (RHF) is a well-established approach for extracting ground 

return signals from complex landscapes, especially below vegetation cover (Pfeifer and 

Mandlburger, 2008). RHF was implemented using the SCOP++ software package (Pfeifer, 2001; 

Trimble Navigation Limited, 2016). The baseline values of Manning’s roughness coefficient n for 

each land use type was assigned based on NLCD land use classification, and soil water physical 

characteristics , including USDA soil types, saturated hydraulic conductivity, suction head, and 

porosity, were estimated based on USDA soil texture classification retrieved from gSSURGO 

database (Homer et al., 2015b; Soil Survey Staff, 2016). In situ and spatial data sources and their 

corresponding modeling parameters for DRM implemented in TUFLOW are included in Table 3.1. 
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Table 3.1 Hydrological and spatial datasets and corresponding sources used In DRM implementation 

Dataset 
Parameter in 

DRM modeling 
Source Link 

Precipitation Precipitation 
USDA-ARS STEWARD 

3.0 Portal 
 

https://www.nrrig.mwa.ars.usda.gov/stewards/

stewards.html  

Stream stage 

and discharge 

Hydrograph 

calibration 
 

LiDAR DEM grid 
Long-Branch and South 

Fork Salt River Project 
http://www.msdis.missouri.edu/data/lidar/  

Land use 

classification 

Manning's n 

coefficient 

National Land Cover 

Dataset (NLCD) 
https://www.mrlc.gov/  

Soil water 

physical 

parameters 

Green-Ampt 

infiltration 
gSSURGO database 

https://www.nrcs.usda.gov/wps/portal/nrcs/det

ail/soils/survey/geo/?cid=nrcs142p2_053628  

 DRM implementation 

After initial testing, we selected flow patterns at 5 m resolution to balance a predictable and 

practical connectivity statistics computational time with the maximum possible spatial resolution 

and model accuracy (best match to observed flow records). The original 1 m LiDAR-derived DEM 

was interpolated to 5 m using a triangular irregular network (TIN) transformation algorithm in 

TUFLOW. Rainfall is distributed across the watershed domain using nine Thiessen polygons based 

on the locations of the rain gauges. We used the Green-Ampt model as the infiltration loss method 

(Green and Ampt, 1911). Manning’s roughness coefficients are used as bed resistance in 

TUFLOW. The computational time step was set to adaptive (for automatic adjustment), and the 

initial time step was 0.5 s. The results were calibrated based on measured streamflow discharge 

hydrographs at the watershed outlet. In addition, 5 locations were found where deep concentrated 

flow occurs adjacent to road embankments in the modeling results. We verified the presence of 

culverts at 3 corresponding locations depending on land accessibility in a field study (coordinates 

in Lat, Lon: 39°12'50.99"N, 92° 8'43.43"W; 39°17'36.37"N, 92° 7'17.34"W; and 39°12'44.33"N, 

92° 9'10.11"W), and then manually added these culverts to the model. For the connectivity 

statistics computation, we used hourly time snapshots of flow depth patterns grids for the 5 storm 

events. Note that we used both original (DEMOri) and depression-filled (DEMFill) DEMs in the 

TUFLOW modeling to generate overland flow patterns. The DEM filling method used is based on 

Planchon and Darboux, 2002, which applies a uniformly distributed water level to the entire DEM, 

https://www.nrrig.mwa.ars.usda.gov/stewards/stewards.html
https://www.nrrig.mwa.ars.usda.gov/stewards/stewards.html
http://www.msdis.missouri.edu/data/lidar/
https://www.mrlc.gov/
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053628
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053628
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which is then gradually drained out to and left in the areas of depressions (Fig. 3.3a-b). Depression 

filling was implemented in ArcGIS 10.5 (ESRI Environmental Systems Research Institute, 2016).   

 

Figure 3.3 3D overlay of original DEM (top) and depression filled DEM (bottom). Surface 

depressions presented here include (a) wastewater treatment lagoon and (b) pond. Note that the 

internal areas of the depressions are filled with flat surfaces and the edges are smoothed (marked 

by red circles). 

 Connectivity metrics 

The connectivity function τ(h) and ICSLs are connectivity statistics for multiple two-point 

(locations) connectedness based on percolation theory and are used to characterize the connectivity 

of hydrologic patterns, e.g., overland and subsurface flow pathways, antecedent soil moisture 

patterns, and saturated thalwegs (Meerkerk et al., 2009; Western et al., 2001 Grayson et al., 1997; 

James and Roulet, 2007). τ(h) is a lag distance dependent geostatistic that describes the probability 

of any pair of locations being connected, on the condition that a continuous pathway exists in the 

pattern between these pairs (Ali and Roy, 2010). τ(h) requires that a physical threshold is applied 

to the pattern and that cell values are labeled into two states: “high” (valid) and “low” (low). 

Connected pairs of locations are identified as those that have a continuous pathway with all “high” 

cells between them. Note that areas without valid data (missing or no data) are omitted from the 

calculation. The connected probability for each pair of at lag distance h within a tolerance ±ht is 

calculated as the ratio between the number of connected pairs and the total number of pairs within 

h±ht regardless of the connectedness. One of ICSLs, an omnidirectional connectivity (OMNI), 

assume that the pathways connecting the paired locations are always valid regardless of their 

trajectories. If G is all the cells in the spatial pattern (excluding the no data cells), Z are the regions 
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where all cells are labeled “high” and h represents the lag distances between any pair of locations, 

then Western et al., (2001) proposed that the connectivity function at lag distance h within a 

tolerance ±ht is: 

τ(h) = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥 ↔ 𝑥 + (ℎ ± ℎ𝑡)| 𝑥 ∊ 𝑍, 𝑥 + (ℎ ± ℎ𝑡) ∊ 𝐺) (1) 

OMNI is calculated by integrating all the lag distances in the connectivity function τ(h) as: 

OMNI = ∫ τ(h)𝑑ℎ
∞

0

(2) 

Note that the lag distances are measured as Euclidean distance. The maximum possible lag 

distances hmax are determined as the maximum distance within the watershed boundary, i.e., the 

largest possible distance for any paired location within the flow pattern domain. Then, hmax is 

binned into a series of distance range bins, and the number of range bins nbin is defined by the 

maximum lag distance hmax and the tolerance ht: nbin = hmax/(h+2ht) rounded to the closet integer. 

In each range bin, a is the total number of pairs that have a lag distance of h within that range, 

and b is the total number of pairs from a that are connected. The connected probability is 

calculated as P = b/a. P is plotted on the vertical axis against lag distance h as a line graph as 

shown in Fig. 3.4. The area under the curve is the integral of the connectivity function: OMNI, 

which describes the connectivity states across different lag distances of flow patterns at a 

particular time point, i.e., a time “snapshot”. Alternatively, to describe the temporal variations of 

connectivity states during an entire storm event across all lag distances, OMNI is plotted on the 

vertical axis against time (at hourly interval, see Fig. 3.5a-e).  

 

Figure 3.4 Connectivity function τ(h) and the integrated connectivity scale lengths (ICSLs). 
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a 

Figure 3.5 OMNI(t) (solid line) and connectivity extent range counts extτ(t) (dash line) plots for 

the selected 5 storm events at GCEW: (a) Event 1: Jun 20, 1981 (AEP 5-20%); (b) Event 2: Jul 

04, 1998 (AEP 20-50%); (c) Event 3: Jun 03, 2001 (AEP 20-50%); (d) Event 4: Jun 10, 2006 

(AEP 1-5%); and (e) Event 5: Sep 03, 2008 (AEP 20-50%). Rainfall hyetographs and stream 

discharge hydrographs are stacked on time axis as comparison.  

b 
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Figure 3.5 continued  
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The effects of depressions can be reflected in the difference in τ(h) graph between the original and 

depression filled DEM and also in temporal variations in OMNI(t). To simplify the discussion in 

this paper, we name the connectivity range bins using their sequential positions on the τ(h) graph, 

i.e., the 1st range bin (#1) represents the lag-distance range from 0 m to 701 m, and the 2nd range 

bin (#2) represents the lag-distance range from 701 m to 1402 m, and so on. We created a new 

algorithm to make the computation for large numbers of grid cells feasible (8,913,300 cells at 5 m 

resolution). Note that in this study, to explicitly account for the effects of depressions (and 

depression removal) on multi-scale connectivity, we used differences in the connectivity function 

plot τ(h) between a filled DEM (DEMFill) that has minimum amount of depressions, and the 

original DEM (DEMOri) that preserves all the depressions captured in the LiDAR data: 

∆τ(h)=τfill(h)-τori(h) for each hourly snapshot of flow depth patterns. Detailed rationale and 

description of this new algorithm and a link to the source code repository are included in Appendix 

A.  

 Thresholding overland flow patterns 

The threshold of “high” and “low” states for overland flow depth patterns is dependent on the 

DRM implementation in 2D hydraulic modeling. The Manning’s roughness coefficient n is 

assumed constant and is used as an estimation of bed friction term in the momentum equation of 

SWE (see details in Appendix A). However, for very shallow flow depth D, n cannot be treated as 

a constant because the hydraulic resistance significantly increases with decreasing flow depth, 

especially when D/k < 4, where k is roughness height (e.g., Anderson et al., 2006; Charbeneau et 

al., 2009; Allan, 2014). The average roughness height of the original LiDAR-derived DEM is 

0.0263 m, so assigning a constant Manning’s n value as the unifying bed resistance parameter may 

not be reasonable when D < 0.105 m. In addition, only concentrated flow and channel flow are 

likely to impact connectivity in overland flow patterns at a watershed scale, so only these are set 

as “high” in the connectivity statistics computation (e.g., Meerkerk et al., 2009). Commonly 

accepted shallow concentrated flow depths are between 3 cm and 15 cm without a well-defined 

channel, which is also the transition depth to open channel flow (USDA-NRCS, 2004). We 

conducted a one-way ANOVA test for the sensitivity of OMNI to the threshold of flow depths, 

including 2, 4, 6, 8, 10, 12, 14, 16, and 18 cm. No statistically significant difference was found 

between these flow depths and variability in OMNI for the test patterns at a 95% confidence 
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interval level. Therefore, we selected 10 cm as the threshold separating “high” and “low” states to 

eliminate cells with high uncertainty because of the DEM accuracy and limitations in DRM model 

parameterization. 

3.4 Results and discussion 

 Role of surface depressions on overland flow connectivity across spatial scales 

The sign and magnitude of ∆τ(h) indicates shifts of interaction mechanisms between depressions 

and overland flow, and shifts of magnitude in the impacts of depressions on connectivity 

probability between any two points (cells) (x↔x+h), respectively, and at different spatial scales, 

denoted by lag-distances. Statistics shows that 98.3% of depressions at GCEW have a surface area 

between 25 m2 to and 350 m2 (1 to 14 grid cells), and 95.7% have a storage volume below 11.27 

m3. Thus, the distribution of the depression characteristics is highly skewed towards the low 

surface areas and volumes. In this study, the concept of depression hierarchy is also discussed and 

refers to the nested topological relationship between depressions of different scales (Fig. 3.7a-e). 

Depression hierarchy often relates to the spatial and temporal sequence of depression filling, 

merging, spilling and splitting process and thus directly changes the overland flow pathway 

connectivity (Chu et al., 2013; Wu et al., 2018). Surface areas are the most likely indicators of the 

nested hierarchy of depressions.  

 

The magnitude of ∆τ(h) ranges from -0.05 to 0.18, i.e. that depressions can decrease connectivity 

probability P up to 18% or increase it up to 5%. ∆τ(h) plots for the 5 storm events are mostly 

positive at different spatial scales and points in time, which demonstrates that the connectivity 

probability between any two locations is mostly higher for flow patterns on DEMFill. This is to be 

expected because overland flow must fill the depressions before the connected flow pathways and 

extent becomes prevalent, and so overland flow mass and momentum are reduced, i.e., from the 

losses to depression storage, extended ponding time and surface roughness, which lead to 

decreasing the spatial extent of connected flow pathways. Interestingly, negative values of ∆τ(h) 

occur between lag distances of 9,816 m and 15,425 m for event 1 and 4, and also between 0 m and 

1,402 m for event 4. In these cases, the presence of depressions is increasing the connectivity 

probability. Most of these negative ∆τ(h) occur during the recession phase of events.  
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Figure 3.6 Difference of the connectivity 

function τ(h) plots between the filled DEM 

and the original DEM ∆τ(h)=τfill(h)-τori(h) for 

individual temporal snapshots at hourly 

intervals for each storm event (a-e: event 1-5). 

Lightness gradient of the blue represents the 

relative time points during the event from dark 

(start) to light (end). 

b 

c 

e 
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Figure 3.7 Hierarchical structure of depressions with nested topology on a cross section of a 

topography. The process of fill, merge, and spill are also included. Blue arrows represent the 

dominate filling process and orange arrows represent the dominate spilling process. (a) Base 

topography; (b) Depressions in the 4th hierarchy (Blue); (c-d) Depressions in the 3rd hierarchy 

(Yellow); (e) Depressions in the 2nd hierarchy (Green); and (f) Depressions in the 1st hierarchy 

(Blue). Split of the water levels at connected flow extent indicate the changes of hierarchy. 

Depressions at higher hierarchy usually have larger surface areas.    

We inspected the overland flow patterns of DRM for these cases and found that two explanations 

could contribute depends on the lag-distance: 1) For large lag distance, e.g., 9,816 m to 15,425 m,  

when spill of overland flow from depressions (spill dominated, SD) is a dominant source of water, 

a larger extent of connected flow pathways is maintained for a longer period than the case when 

there are minimum amount depressions (DEMFill); 2) For small lag distance, e.g., 0 to 1402 m, 

connected overland flow pathways are also maintained at larger extent for a longer period on 

DEMOri than these on DEMFill, which relate to both the SD process and the extended ponding time 
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of depressions. We included the overland flow patterns of fill-dominate (FD) and SD processes 

for event 1 and event 4 at several locations in the Appendix B. 

 Macro connectivity stages represented spatially based on ∆τ(h)  

Spatially, the magnitude of ∆τ(h) is negatively correlated with lag-distances: ∆τ(h) is the highest 

at the lowest possible lag distance range (0 m to 701 m), and decrease to zero at the largest 

possible lag distances within the watershed (14,721 m to 18,230 m). The speed of decrease 

(slope of ∆τ(h)) differs and four different situations are identified and labeled as α, β, γ, δ (Fig 

3.6a-e and Table 3.2; but group δ rarely occurs and so is not included in the trend summary data). 

These situations relate to macro connectivity stages at the watershed scale, and thresholds 

between these stages can also be identified from the temporal variability of the connected pattern 

extent (extτ(t), see Fig. 3.5a-e bottom panels). Note that the connected pattern extent is defined as 

the maximum number of range bins that the connected overland flow pattern “snapshot” can 

reach spatially, given that τ(h) > 0. The stage changes are signified by a stepwise shape in extτ(t) 

with each stage accompanied by a rapid increase/decrease and then a period of stability: Stage α: 

No significant overland flow pathways have been developed, and only water storage and internal 

flows within depressions are connected. Stage β: overland flow pathways only connect 

depressions at the local scale and are mostly within the floodplain. Stage γ: overland flow 

pathways connect many depressions at the watershed scale, including both across the floodplain 

and along part of the channels, and the drainage from these connected depressions reaches the 

watershed outlet. Stage δ: overland flow pathways connect almost all depressions at the 

watershed scale, including both the floodplain and channels, and drainage from all surface 

depressions reaches the watershed outlet. The lag-distances of macro connectivity increases from 

α, β, γ, to δ. The transition from stage α to β occurs between 701 m and 1,402 m which, for 

GCEW, is the average distance between the hillslope area and the floodplain adjacent to the 

stream channel. The transition from stage β to γ occurs between 7,712 m and 8,640 m which, for 

the study watershed is the average distance from the hillslope area plus half the length of the 

main stream channel. The transition from stage γ to δ occurs between 14,724 m and 17,280 m 

which, for the study watershed, is the average distance from the hillslope area plus the total 

length of the main stream channel. Note that all of the distances are estimated in 2D Euclidean 

space. 
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Table 3.2 Representation of different slope trend on ∆τ(h) plots for each macro connectivity 

stages (median values). Note that Group 4 (Stage δ) is omitted because of insufficient data points   

 Group 1 (Stage α) Group 2 (Stage β) Group 3 (Stage γ) 

Event 1 -0.0214 -0.00182 -0.00105 

Event 2 -0.0179 -0.000894 -0.00319 

Event 3  -0.0486 -0.00136 -0.00268 

Event 4 0.0267 -0.000601 -0.00135 

Event 5 -0.0150 -0.000704 -0.00112 

 

Typically, macro connectivity stages during a storm event would occur sequentially 

α→β→γ→δ→γ→β→α, but a storm event does not necessarily represent all stages, depending on 

the amount of rainfall amount, and the presence/absence of depressions. The stage transition 

sequence for event 1 is α→β→γ→β→γ→δ.  For events 2 to 5 the sequence is 

α→β→γ→δ→γ→β. These sequences apply to the overland flow patterns on both DEMori and 

DEMfill, with the exception of event 3, which the overland flow patterns on DEMOri is 

α→β→γ→β with only a short appearance of stage γ and no stage δ. Event 3 has the smallest 

accumulated rainfall of 35.58 mm among the 5 storm events. This suggests that storm of lower 

rainfall amount is more sensitive to the presence of depressions and can have an impact on the 

sequence of macro connectivity stages. For all 5 storm events, stages α and δ are very short 

duration because these stages occur when there is relatively low (< 2 mm/h) or high (> 18 mm/h) 

rainfall intensity, which relate to the start or the peak of a storm event. Note that small amount of 

water still retains in the stream channels and isolated depressions at the end of each storm event 

after the spill and split process, so the connectivity stage does not return to α.   

 

In each macro connectivity stage, the impacts that depressions have can also be differentiated 

and reflected on the ∆τ(h) plots: the magnitude of ∆τ(h) differs significantly at the transition from 

stage α to β, especially in the rising limbs. In stage α, depressions typically decrease the 

connectivity probability (|∆τ(h)|) by a magnitude of 0.1, and in stage β by a magnitude of 0.01. 

Because the scales of most depressions are below 720 m, at the lag distance range bin #1 (< 720 

m and in stage α), depressions dominantly play the role of sinks. The magnitude of ∆τ(h) rapidly 

reduces between range bins #2 and #3, between 720 m – 2160 m (stage β), especially in the 

rising limbs, because the depressions are not being connected by extensive overland flow 
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pathways across larger spatial scales yet, with or without depressions. Conversely, in a storm’s 

late phase (recession limb) the difference in ∆τ(h) between stage α and β is much smaller,  

because during the late phase, 1) most of the local depression storage areas are “filled” and 

connected at a larger spatial extent; 2) The role of depressions has been reversed, i.e., from fill-

dominated (sinks) (FD) to spill-dominated (sources) (SD) and hence connectivity is less sensitive 

to the decline in rainfall and upslope overflow. For example, the negative sign of ∆τ(h) from 

t=42 h to t=68 h and t=64 h to t=72 h in event 4 and 5 means that the overland flow patterns 

generated from the DEMFill have less connectivity probability than those generated from the 

DEMOri for lag distances smaller than 1402 m. Between these durations, most of the surface 

depressions are filled and connected, and the depressions transitioned from FD→SD. Therefore, 

depressions increase the overland flow connectivity in this situation, and the magnitude of such 

increase is higher than that for the removal of depressions, which is the most obvious within 

local scale. This finding is consistent with other studies that have described how, in recession 

limbs, flow is slowly draining (spill) out of low laying areas (mostly depressions) (e.g., Trigg et 

al., 2013). 

 Macro connectivity stages represented temporally based on OMNI(t), the spatial extent and 

their potential correlation with rainfall and streamflow discharge  

To investigate temporal changes in connectivity behavior, we examined OMNI(t), connectivity 

extent extτ(t) (the number of lag distance range bins in connectivity function τ(h) that are not zeros), 

stream discharge hydrographs at the watershed outlet, and rainfall hyetographs (Fig. 3.5a-e, 1st and 

2nd panel). The connectivity extent for overland flow patterns on DEMFill is primarily greater than 

or equal to that for DEMOri, i.e., connected overland flow pathways typically reach a larger spatial 

extent when depressions are removed (filled) (Fig. 3.5a-e, bottom panel). Connectivity extent is 

an indicator of macro connectivity threshold behavior as discussed above. The transition between 

connectivity stages can be identified by stepwise changes in extτ(t): a rapid increase or decrease in 

stage changes from low to high (α→β→γ(→δ)) or high to low ((δ→)γ→β→α). A relatively stable 

phase follows stage changes during high to low, but not during low to high. Early in a storm event, 

depressions mainly act as “sinks” and the overland flow pathways between these depressions have 

not yet been formed and there is minimal impact of rainfall intensity on OMNI. The transition 

α→β→γ(→δ) occurs in early phase of a storm event (rising limb) and corresponds to a switch 

from “isolated filling” (IF) to “connected filling” (CF) based on the hierarchical structure of 
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depressions, i.e., with the increase of connectivity spatial scales, flow pathways begin to connect 

between depressions in a lower hierarchy (already filled) while depressions at a higher hierarchy 

are still being filled. The transition of (δ→)γ→β→α occurs in late phase of a storm event (falling 

limb) and corresponds to a mixed phase of both 1) FD→SD and 2) CF→IF. Because statistics 

indicate that the majority of depressions are in lower hierarchy, the spatial extent of connected 

pathways expands rapidly during the transitions of α→β→γ(→δ). However, such expansion is 

stabilized for a certain duration once the macro connectivity stages enter the transitions of 

(δ→)γ→β→α when depressions are connected across all levels of the hierarchy. Depressions then 

becomes “sources” instead of “sinks”, i.e., FD→SD, and the spill of water generate overflow and 

maintains the connected overland flow pathways for a longer period even if rainfall is declining 

and ceases.  Any additional rainfall or increase in intensity is highly effective in generating excess 

runoff and expanding the spatial extent of connected overland flow pathways. Only after the 

“sources” are depleted, the effects of elimination of rainfall begin to become identifiable and 

represented by the sharp decreases in connectivity extent, and eventually lead to the transition from 

CF→IF.  

 

Note that the transition of FD→SD can occur in either stage α or γ, but the magnitude of impact 

on OMNI(t)ori or OMNI(t)fill are different in these two cases. For example, in event 4, the 

negative values of ∆τ(h) occur at t=42 to 68 h and t=27 to 28 h. However, the magnitude of ∆τ(h) 

is lower in stage γ (-0.01 during t = 27 to 28 h) compared with stage β (-0.05 during t = 42 to 68 

h) (Fig. 3.6d). This is because the effect of SD is more marked when connected pathways are 

restricted within high proximity to the depressions and so creating new pathways because of spill 

process can significantly increase connectivity. This effect is less obvious at the partial watershed 

scale because 1) a larger lag distances and thereafter a lager connected extent is expected from the 

spill; 2) lower floodplain areas and stream flow are also been included in the connectivity 

computation, which “dilutes” the effect of SD.   

 ∆τ(h) plots shapes and the interaction between overland flow and depressions at multiple 

spatial scales 

∆τ(h) plots predominately have a convex shape, which means that the magnitude of connectivity 

probability increases because of removal (filling) of depressions is initially high, when depressions 
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of low hierarchy are being filled during the internal and local scale (stage α and β) early in a storm, 

and then the magnitude of connectivity probability increases is reduced during partial and full 

watershed scale (stage γ and δ).  Formation of connected overland flow pathways is much easier 

in internal/local scale than the partial/full watershed scale for overland flow on both DEMOri and 

DEMFill because of the highly skewed statistics of the scales of depressions and the predominate 

presence at lower hierarchy discussed above. However, some ∆τ(h) plots have concave sections 

(marked in red, Fig. 3.6a-c, e), which means that magnitude of connectivity probability increases 

from removal (filling) of depressions are larger at the partial watershed scale than at the local scale. 

Interestingly, all of these cases correspond to the start of stream flow discharge and are at a point 

near the maximum of extτ(t). Thus, the concave shape may relate to a shift in the relative speed of 

depression filling and extending connected flow pathways because of the hierarchical structure of 

naturally occurring depressions and the connectedness between depressions. At the start of stream 

flow discharge, overland flow on DEMOri are at the transition of IF→CF, which means that 

depressions at a lower hierarchy have mostly been filled and the extension of the connected flow 

pathways is occurring faster than the filling within the lag-distances range of stage β. Therefore, 

mass and momentum losses to depressions is being compensated and ∆τ(h) between DEMOri and 

DEMFill is lower at stage α and β. At partial or complete watershed scale (stage γ or δ), mass and 

momentum losses to depressions for overland flow on DEMOri are being accumulated because of 

the larger travel distances for overland flow. Thus, the effects of depressions become prominent 

and ∆τ(h) increase. The thresholds for the start of concave sections are between stage β and stage 

γ (8412 m to 9113 m) for events 1 to 5, corresponding to the average distance between the 

watershed boundary and the floodplain areas immediately adjacent to the stream channels, i.e., the 

riparian zone. For example, in event 1, the rankings of ∆τ(h) at hours t=44 and 45 have changed 

from 9 and 11 in stage β to 1 and 2 in stage γ, respectively. We found that depressions are spatially 

concentrated in these areas. Because the connected overland flow pathways between any two 

points (x↔x+h) must extend cross this area to have a lag-distance in stage δ and γ, a significant 

increase of mass and momentum losses occurs and causes the significant increase of ∆τ(h).  

 Spatial distributions for the depression related changes of connectivity magnitude  

Both OMNI(t) and ∆τ(h) are predominately higher for overland flow patterns generated from 

DEMFill than that of DEMOri. We inspected the corresponding spatial locations of the temporally 
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aggregated magnitude of connectivity changes based on the snapshots within the watershed 

boundary and found that the increases of connectivity are mostly located in floodplain areas with 

a close proximity to the stream channel, e.g., the riparian zone. This is expected because 1) terrain 

LiDAR signal reflection in the riparian zone is susceptible to the high noise of the canopy tops and 

the accuracy of the filtering algorithm is lower and 2) the filling of depressions overly smoothed 

or “flattened” these areas so that the flow pathways are easier to connect. In contrast, on hillslope 

parts of the watershed, we found less overall connectivity for overland flow patterns on DEMFill 

than that on DEMOri. The most likely explanation is that the SD phase dominates in these areas for 

the majority of the event snapshots. 

3.5 Conclusions 

Connectivity at large scale is vital for understanding the aggregated effects of small-scale factors 

and their feedbacks on physical processes. In this study, we demonstrate that the connectivity 

statistics, i.e., connectivity function τ(h) and the omnidirectional integrated connectivity scale 

lengths (OMNI-ICSLs), are important indicators of overland flow response mechanisms to 

depressions across multiple spatial scales in a spatially and temporally explicit manner, and their 

potential correlations with rainfall and streamflow discharge. To achieve this, we implemented a 

new algorithm for τ(h) and OMNI for overland flow patterns generated using 2D hydraulic 

modeling on a low-relief agricultural watershed. We found that: 

 

(1) Depressions mostly decrease, but in some cases can increase overland flow connectivity, 

based on the probability that any two points (locations), i.e., x↔x+h, are connected within 

the watershed boundary. The magnitude of such increase/decrease is between -18% and 

+5%, depending on the spatial scale between these two points and stage during a storm 

event. Depressions tend to decrease local connectivity (within depression areas) at 

maximum magnitude and then gradually reduce at larger spatial scales until reaching 

watershed scale. For the most duration of storm events, depressions decrease the 

connectivity because depressions in a DEM are acting as sinks of water and increasing 

infiltration losses by extended ponding time, and thus results in decreased the connected 

overland flow pathway. Depressions increase connectivity occasionally during the late 

phase (recession limb) of relatively high magnitude storm events (AEP < 20%), when 
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depressions are acting as sources of water. This also explains why the magnitude of ∆τ(h) 

is lower in the recession limb than that in rising limb, because depression sources initially 

delay the impact of a cease in rainfall and overflow from upslope areas.  

 

(2) A single event storm has four macro connectivity stages based on the spatial scales which 

also determine different magnitude of impacts on overland flow connectivity: An internal 

stage (connections within depression areas, stage α, < 701 m), localized stage (stage β, < 

7,712 m or 8,640 m), partial watershed connected stage (stage γ, < 14,724 m or 17,280 m) 

and full watershed connected stage (stage δ, < 21,045 m). However, the thresholds 

separating these stages are determined by rainfall amount/intensity and other topographic 

features in addition to depressions. The significance of depressions is the most prominent 

for low magnitude rainfall events at GCEW because of the presence of numerous small-

scale depressions. Stage α and stage δ only occur in a short duration for any storm events 

because of they require very low and high storm intensity. The transitions between stages, 

i.e., α→β→γ(→δ) and (δ→)γ→β→α, mostly occur at early phase (rising limb) and late 

phase (recession limb) of the storm events respectively, and progress at different speed 

because of the highly skewed distributions towards depressions of lower hierarchy and the 

shits from fill dominate (FD) to spill dominate (SD) for the interaction between overland 

flow and depressions.  

 

(3) At the same point in time, OMNIs(t) are always higher for the overland flow patterns 

generated from DEMFill than that of DEMOri, i.e., depressions reduce the probability of 

connectivity at integrated spatial scales.  

 

(4) In most cases, ∆τ(h) plots show a convex shape with the maximum at connectivity stage α 

and decreasing to zero at stage δ. This is expected because the sensitivity of overland flow 

to depressions are most prominent at stage α, i.e., more prone to the shifts between FD and 

SD. However, for events 1 to 4, the ∆τ(h) plots include concave sections at stage γ and δ. 

This increase in the expansion of the overland flow extent may link to the condensed 

distribution of small-scale depressions at riparian zone and occurs at the transition of 

IF→CF, corresponding to the start of increase in streamflow discharge. At GCEW, 

connectivity has been overestimated by depressions removal in these areas. 
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(5) The spatial distributions of connectivity increases/decrease because of removal (filling) of 

depressions are not uniform within a watershed. Increases in connectivity are mostly 

located in the floodplain immediately adjacent to stream, i.e., the “riparian zone”, as this is 

an area where depressions mostly occur at GCEW. The decrease in connectivity are mostly 

located in hillslope areas because of the higher likelihood of SD condition.  

 

This work shows that the common practice of depression removal (filling) in watershed modeling 

can have significant implications for simulated overland flow processes at multiple spatial scales 

based on high-resolution and LiDAR-derived DEMs. Depressions may change spatial 

heterogeneity of overland flow patterns through different interaction mechanisms, i.e., fill and spill. 

The impacts of depressions depend on macro connectivity stages which are based on connectivity 

extents (lag distance ranges). In this study, we also demonstrated that other functional connectivity 

factors, such as rainfall intensity, may have more control on the macro connectivity stages than 

depressions alone. Other landscape features, such as vegetations and land use patterns, may also 

have impacts on the connectivity of overland flow. Future work needs to include more structural 

and functional connectivity factors in the analysis and their corresponding implications for 

overland flow processes. In addition, this work used a separate 2D hydraulic modeling approach 

to generate the overland flow pattern. A more efficient approach would incorporate a simple 

estimation of excess and losses relationship between the paired locations directly (e.g., Ali et al., 

2018) in the connectivity metrics, without the need for a fully distributed modeling for overland 

flow. 
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 IMPACTS OF TOPOGRAPHIC DEPRESSIONS ON 

WATERSHED-SCALE HYDROLOGIC RESPONSE: CONNECTIVITY 

AND GRID RESOLUTION 

4.1 Abstract 

To investigate how topographic depression removal (filling) and grid resolution affects hydrologic 

response at the watershed scale, we used revised versions of two functional connectivity indicators 

typically used at field or plot scales: the Relative Surface Connectivity Function (RSCf) and 

Normalized Runoff Connectivity Function (NRCf). The revised indicators provide good estimates 

of geostatistical characteristics of depressions and their correlations with connectivity states for 

single storm events of different magnitudes, based on maximum depression storage, similarity 

between the function plots, e.g., shapes and slopes, and discontinuity in the trends. Depression 

removal (filling) changes these characteristics and shifts the interaction between depressions and 

overland flow process. In addition, we observed that the effects of grid resolution are even more 

significant than depression removal during three rainfall storm events of different magnitude for 

the study area, Goodwater Creek Experimental Watershed in northeastern Missouri.  

4.2 Introduction 

Topography is a key parameter in any hydrologic/hydraulic model application because of its 

impact on key physical processes (DeVantier and Feldman, 1993; Zhang and Montgomery, 1994; 

Correia and Rego, 1998; Miller and Semmens, 2002; Aryal and Bates, 2008; Beven, 2012). 

Topography physically determines flow routing and other hydraulic structures, such as channel 

morphology, and these are significant controls on mass, momentum and energy transfer, wave 

form movement and resistance (Tarboton et al., 1991; Horritt and Bates, 2002a; Wallin and 

Johansson, 2002; Metz et al., 2011). The numerical representation of topography is a DEM (digital 

elevation model) which provides a mathematical estimation of the terrain morphology. DEM 

quality has a direct impact on model performance.  

 

In the early days of hydrologic/hydraulic modeling, the impact of DEM quality was rarely 

investigated because modelers typically only had access DEMs estimated from the elevations of 
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spatially coarse contour maps with high uncertainty. Also, modeling at that time was for coarse 

estimation of hydrologic response at watershed outlet aggregated from large spatial scales. It was 

reasonable to assume that “imperfections” in the DEMs were either error in field surveys or from 

biased interpolation process (O’Callaghan and Mark, 1984; Band, 1986; Lindsay and Creed, 2005). 

The most prevalent form of DEM “imperfection” are topographic depressions: single cell or 

contiguous regions of low elevations, also called “pits” or “sinks”. Flow cannot be routed out of 

these regions until they are filled, and interruptions in flow routing become problematic in 

modeling because of  overconcentrated flow near depressions, changes of soil moisture content 

distribution and significantly reduced flow discharge at watershed outlets (Lane et al., 2004). 

Therefore, for simplification and practical expediency, early modeling treated all surface 

depressions as artifacts. Depressions are removed in data preprocessing (hydrologic conditioning) 

(O’Callaghan and Mark, 1984; Jenson and Domingue, 1988; Hutchinson, 1989), and this was 

viewed as an “acceptable necessity” in the hydrologic modeling community (Wechsler, 2007). 

 

Recent advances in remote sensing techniques have significantly improved the spatial resolution 

of DEMs from sensors on multiple platforms, such as spaceborn stereo images, airborn laser 

altimetry (LiDAR), and spaceborn radar altimetry (Toutin, 1995; Hirano et al., 2003; Berry et al., 

2007; Shan and Toth, 2008). These techniques produce high-resolution data for surface topography 

using spatially dense elevation measurements (Siart et al., 2009). Because DEMs have resolutions 

comparable to the scales of real topographic depressions, it is no longer appropriate to assume that 

all the depressions are artifacts, and this brings the tradition of depression removal into question 

(Lindsay and Creed, 2006). Real depressions can play a critical role in watershed-scale hydrologic 

process and response. For example, depression storage filling and spilling dynamics not only 

determine the distribution, direction and magnitude of overland flow, but also water mediated 

substances and sediments (e.g., Ahmed et al., 2011; Darboux et al., 2002a; Einsiedl, 2005). The 

current “fix” to account for depressions by applying a constant storage value and reduction in the 

water budget before runoff occurs does not explicitly include the impacts of depression 

characteristics and the spatial arrangements that are now widely available and thus less realistic. 

In fact, runoff can occur before depression storage is completely filled, and the active contributing 

area may increase simultaneously (I. D. Moore and C. L. Larson, 1979; Antoine et al., 2009) on 

surfaces of varying roughness (Darboux et al., 2002b). The spatial configuration of depressions 
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also has strong correlation with hydrologic connectivity, and can cause a non-negligible impact on 

the distribution and timing of catchment runoff responses (Zhang and Cundy, 1989; Dunkerley, 

2003; Antoine et al., 2009). The variability of connectivity states (by functional indicators) has 

been related to the delay effects of depressions on overland flow because of the transitions from 

graduate filling of depressions to the “breakthrough” value when most of depressions are 

connected and significantly increase the hydrograph at outlet (Antoine et al., 2009; Peñuela et al., 

2016). 

 

Hydrologic/hydraulic model performance can also be impacted by the spatial resolution of DEMs. 

Models using DEMs with higher spatial resolutions often represent hydrologic features more 

accurately, e.g., stream morphology or topographic index, but do not necessarily produce a closer 

match with observations than models using lower resolution DEMs (Wolock and Price, 1994; 

Ghaffari, 2011; Yang et al., 2014). In addition, higher DEM resolutions also increase the model 

computational intensity, which may make a model simulation too expensive or unachievable. A 

balanced approach would be to find the maximum resolution that can be modeled, with the 

minimum loss of performance. Prior work has suggested that 10 m might be the optimal resolution 

for deriving hydrologic parameters from DEM in watershed modeling (see examples in Zhang and 

Montgomery, 1994; Hancock, 2005; Yang et al., 2014). The spatial resolution of DEMs is a 

confounding factor that interacts with depressions in terms of impacts on hydrologic connectivity 

and watershed flow process. The storage capacity and spatial configurations (topologic 

relationships) of depressions may be significantly different for DEMs of different resolutions. For 

example, Alvarez-Mozos et al., (2011) found that the maximum depression storage (DSmax) had a 

nonmonotonic response to shifts of DEM resolution, slopes, and tillage density in an agricultural 

watershed. Changes in depression characteristics may lead to changes in spatial distributions of 

drainage and flow pathways, and thus shift hydrologic connectivity (Yang and Chu, 2013). 

Changes in DEM resolution and connectivity eventually lead to changes in runoff response, which 

have been found at inter-rill, hillslope, and field scales (Darboux et al., 2002b; Antoine et al., 

2011b; Yang and Chu, 2015). 

 

However, prior work has not explicitly quantified the impacts of depressions and their interactions 

with DEM resolution on hydrologic response at a watershed scale, using high-resolution DEM 
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data. Work to date has focused on theoretically generated or field measured DEMs at plot or field 

scales. One reason that evaluating the impact of depressions and DEM resolution on watershed 

hydrology has been challenging is because it requires a fully distributed and robust modeling 

approach which is sensitive to changes in detailed morphology in a high-resolution DEM without 

issues such as instability or mass balance inaccuracy. In addition, the DEM generation process 

should be aimed at preserving the original terrain surface morphology, including depressions, to 

the maximum possible degree. With such a DEM and modeling, it is possible to examine the 

impacts of depressions, and the interactions with DEM resolution on spatial and temporal patterns 

of overland flow and connectivity at a watershed scale. 

 

Therefore, the goal of this study is to investigate the impact of surface depressions on hydrologic 

responses at the watershed scale and the role of DEM spatial resolution in changing these responses. 

Specific objectives of this study include investigating: 

 

1) The correlation between DEM resolution and the characteristics of depressions, i.e., spatial 

distributions and geomorphologic characters (surface drainage areas, storage volumes); 

2) The effects of depression storage on watershed scale hydrologic responses using DEMs of 

different grid resolution, i.e., surface drainage areas and streamflow discharge, based on 

connectivity, and the potential threshold behavior. 

4.3 Materials and Methods 

 Data resolution and model selection 

High-resolution surface elevation data at GCEW were accessed from LiDAR data repository of 

Long-Branch and South Fork Salt River Project and used to generate the DEM for hydrologic 

modeling. However, the large number of DEM grid cells (> 1,000,000) generated is impractical to 

use in traditional fully distributed hydrologic models because of extremely high computing costs 

and long run times. An alternative approach to address this issue involves recent advances in the 

field of computational hydrology, particularly 1D/2D hydraulic modeling based on Shallow Water 

Equations (SWEs) combined with high-performance computing. Software packages for 

hydrologic modeling (e.g., MIKE FLOOD and TUFLOW), have recently introduced “heavily 
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paralleled” computation (Syme, 2001; Patro et al., 2009) that leverages the highly parallel 

computational capacity of GPU devices to significantly reduce modeling time without making any 

simplifications regarding the numerical solution schemes. SWEs can still be fully resolved for each 

cell but at < 1/100th of the time as traditional CPU computation (Huxley and Syme, 2016). Another 

advantage of these modeling packages is that they incorporate a “Direct Rainfall Method” (DRM) 

to simplify the conceptualization of watershed modeling and implementation of SWEs (Caddis et 

al., 2008; Clark et al., 2008; Hall, 2015). In the DRM, rainfall is directly “mapped” onto the 

topography and converted to overland flow. Then, flow is completely routed on the topography in 

the entire watershed domain to the outlet without any lumping assumptions. In addition, the 

computational cost is relatively low because high capacity GPU devices are widely available. 

Details of DRM are provided in Appendix A.  

 Experimental design  

The first step is DEM and high-resolution flow pattern generation. In this study, to efficiently 

upscale the overland flow simulation to a watershed scale within a reasonable time frame, we 

implemented DRM in the TUFLOW high performance computing (HPC) version to generate 

spatially explicit overland flow patterns at GCEW. The LiDAR point cloud elevation data (point 

density 3.89/m2) was filtered and then used to generate a 1m DEM based on the Natural Neighbor 

method to maximize the preservation of local-scale depressions and implemented in ArcGIS 

(Sibson, 1981; ESRI; 2016). The 1 m DEM was resampled using a triangular irregular network 

(TIN) interpolation method in TUFLOW to produce lower resolution (2m, 5m, 10m) DEMs. Other 

spatial and hydrologic data, i.e., NLCD land use classifications, SSURGO soil survey mapping 

and observed rainfall records at GCEW are used as input parameters for DRM to generate overland 

flow patterns (Homer et al., 2015a; Sadler et al., 2015a; Soil Survey Staff, 2015). Depression-

filled DEMs were also used as a comparison with the original DEMs for each spatial resolution, 

and depression filling was implemented in ArcGIS 10.5 (ESRI Environmental Systems Research 

Institute, 2016) DRM was implemented in TUFLOW.  

 

Next, we analyzed structural characteristics of surface depressions, including drainage areas, 

storage volume and total numbers of depressions, in terms of their statistical variability at different 

spatial resolutions. These indicators are computed based on DEMs exported from TUFLOW 
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resampled DEMs at 3 different resolutions: 2 m, 5 m and 10 m. We used the ArcHydro add-on in 

ArcGIS to obtain these structural characteristics for each depression and then analyzed their 

distributions at the watershed scale using SPSS (ESRI Environmental Systems Research Institute, 

2016; IBM SPSS Inc., 2017). Because these lower resolution DEM grids (2 m, 5 m and 10 m) 

resampled by TUFLOW were based on the 1 m grid instead of the original LiDAR data, we created 

a test set of lower resolution grids which were directly interpolated from the LiDAR data for a sub-

region of the study area, and compared the statistical distribution of the drainage areas and storage 

volumes of the depressions between these two set of data. These two datasets are very similar 

(Figure 4.1a-b), and so we concluded that DEM grids generated by TUFLOW at 2 m, 5 m and 10 

m resolution, which were resampled from the 1 m resolution grid, have depressions of similar 

drainage areas and storage volumes to grids interpolated directly from the LiDAR data.  

 

Figure 4.1 Box plots of the storage volume (a) and drainage area (b) for depressions in DEMs 

directly interpolated (labeled “Direct”, in read) from LiDAR data and TUFLOW resampled 

(labeled “Resample”, in blue) from 1 m resolution grid. The difference between these two 

interpolation methods are minor. Note that the direct interpolation method is Natural Neighbor, 

and TUFLOW uses a TIN based interpolation method to downgrade the resolution.  

Last, TUFLOW modeling results in the form of spatially explicit overland flow extent for each 

hourly time “snapshot”, were used to examine potential threshold behavior represented by 

connectivity changes, and any variability in the hydrograph at the watershed outlet, corresponding 

to the changes of the interaction mechanism between depressions and overland flow. We used a 

revised version of two functional connectivity indicators: Relative Surface Connection function 

(RSCf) and Normalized Runoff Connection Function (NRCf) to capture the filled depression 

storage, discharge at outlet  and the connected flow extents in a spatially and temporally explicit 

Resample Resample Resample Resample Resample Resample 
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manner (Antoine et al., 2009; Grimm and Chu, 2018). Changes in RSCf and NRCf may also 

correspond to changes triggered by thresholds in the timing and magnitude of runoff response. All 

of these analyses include a comparison of the TUFLOW modeling results using both the original 

DEMs and DEMs with depressions removed (filled).  

 

Note that in this study we implemented DRM in TUFLOW as a practical and feasible alternative 

to lumped and semi-distributed models for overland flow pattern generation. DRM was originally 

designed to simulate flooding and inundation extent, and so focuses on water mass and momentum 

conservations for overland flow based on topography. Subsurface flow processes and the interface 

with surface flow are not represented in DRM, and so this approach is most appropriate for 

watersheds where surface water is the main contributor to overland and streamflow discharge. In 

addition, slope gradients at large scale should be low to minimize the impact of distortions to 

overland flow patterns except depressions. In this study, GCEW meets these restrictions: minimal 

groundwater interaction because of a claypan layer (very low hydraulic conductivity and as an 

impervious layer) under shallow soil depths (50cm to 60cm) in low-relief topography (0% - 3%). 

 Watershed description and hydrologic datasets 

The 75 km2 Goodwater Creek Experimental Watershed (GCEW) is a subwatershed of the 6,400 

km2 Salt River Basin (E J Sadler et al., 2015). Topography in GCEW has slopes of mostly 0 – 3% 

(Long-Branch and South Fork Salt River Project data). Soil in GCEW typically has high clay 

content and the major soil types are clay loam and silty clay loam, with hydrologic soil groups of 

C and D (Steiner et al., 2009).  GCEW located in continental climate zone with a strong seasonality.  

Artificial subsurface drainage is installed because of the claypan layer (Baffaut et al., 2015). In a 

field study of GCEW, we found three major types of depressions: 1) Ponds and wastewater 

treatment lagoons; 2) Ditches by railroad and road embankments; 3) Small depressions (puddles) 

in low areas, mostly in the riparian zone. Bank erosion and bank failure often lead to the 

detachment of root balls of woody plants, leading to small depressions in the riparian zone. Other 

mechanisms to produce small depressions in the riparian zone include scour and deposition by 

overbank flow. For those small depressions included in the riparian zone in the DEM that were not 

visible in the field, they are most likely errors related to high frequency noise in LiDAR data 

caused by canopy tops. We obtained stream flow and rain gauge data (Baffaut et al., 2015) from 
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the USDA-ARS STEWARDS (Sustaining the Earth’s Watersheds – Agricultural Research 

Database System) 3.0 data portal (Steiner et al., 2009). We selected three events of annual 

exceedance probability (AEP) at high (1% to 5%), medium (5% to 20%) and low (20% to 50%), 

respectively. Further details regarding the watershed environment and hydrologic datasets are 

provided in Chapter 3. 

 Spatial Data 

A DEM for GCEW was derived from the high-resolution LiDAR point cloud (nominal post-

spacing = 0.5 m) downloaded the Long-Branch and South Fork Salt Creek Watershed Project data 

repository (USDA-NRCS, 2012). The DEMs from USGS National Elevation Dataset (NED) were 

not used because (1) No complete coverage of 1 m or 1/9 arcsecond (~3 m) DEMs for GCEW was 

available (5 m NED only available in Alaska. Lower resolutions, e.g., > 10 m are not used here. 

More details regarding grid resolution can be found in section 4.3.5); (2) Small depressions in the 

riparian zone were found mostly being smoothed in NED. In this study, we aimed to preserve the 

real depressions detected by the original LiDAR data without any artificial modifications. A robust 

LiDAR filtering algorithm was required which can separate ground returns from nonground 

returns and noise with minimal error (Liu, 2008; Shan and Toth, 2008). We used the Robust 

Hierarchical Filtering (RHF) algorithm which is especially suitable for terrain surface with 

vegetation cover (Pfeifer and Mandlburger, 2008). We used SCOP++ software package to 

implement RHF (Pfeifer, 2001; Trimble Navigation Limited, 2016). NLCD land use types were 

used to assign Manning’s roughness coefficient n , and USDA soil texture types in gSSURGO 

were used to estimate soil water physical characteristics (Homer et al., 2015b; Soil Survey Staff, 

2017). 

 DEM and grid resolution 

In this study, a sufficient DEM resolution is needed to capture rapid surface morphological changes, 

especially the edge of high slope change areas such as depressions and channel edges (Hall, 2015; 

Huxley and Syme, 2016). In GCEW, the channel width of the main stream is between 8 and 20 m. 

Therefore, any resolution above 10 m can’t be used for the entire watershed (less than 2 grids cover 

the channel width) and so we used a 1D/2D link approach instead: 1D model for stream channel 
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area using a 1 m grid, linked to 2D model using a coarser resolution grid for floodplain and 

hillslope areas.  

 

Widely used hydrologic/hydraulic models were run with a variety of grid resolutions (Table 4.1). 

For 1D/2D hydraulic models, DEM resolutions are mostly between 1m and 60m. For lumped and 

semi-distributed hydrologic models, DEM resolutions are mostly between 30m and 50m and are 

spatially lumped to some degree, e.g., aggregated homogenous hydrologic response units (HRU), 

upslope drainage area and/or landscape discretization based on hydrologic similarity. Lumped or 

semi-distributed models are often used for larger scale watersheds between 100 km2 and 1000km2 

(Campling et al., 2002; K. Ajami et al., 2004; Barco et al., 2008; Goderniaux et al., 2009; Kiesel 

et al., 2010) and 1D or 2D hydraulic models are often used for smaller scale watersheds between 

1km2 and 100km2 (Horritt and Bates, 2002b; Phillips et al., 2005; Carrivick, 2006; Pappenberger 

et al., 2007; Hunter et al., 2008; Erpicum et al., 2010; Fabio et al., 2010; Kalyanapu et al., 2011; 

Smith et al., 2012; Yang et al., 2014; Jarihani et al., 2015). The exceptional cases where 1D/2D 

hydraulic models are used for large scale watersheds use lower grid resolution, e.g., 90m (Wilson 

et al., 2007; Patro et al., 2009). Overall, most works use DEMs at resolutions between 10m and 

50m. Studies have shown that peak discharge, peak height, travel time, terminal water storage and 

flood extent, are not sensitive to grid resolution greater than 30m  (Jarihani et al., 2015) or between 

30m and 50m (Horritt et al., 2006; Wu et al., 2008). However, model sensitivity to resolutions 

finer than 10m has rarely been discussed in current literature and the spatial scales for 66.7% 

depressions are between 1m to 10m at GCEW. Therefore, we examined resolution effects on 

overland flow using grid sizes of 2m, 5m, and 10m here.  Note that the 1 m resolution grid is not 

used here because of the practical issues of long simulation time and large memory requirement 

(> 100 GB).  

 Connectivity metrics 

To quantify the effects of depressions on overland flow connectivity and watershed scale runoff 

response, as well as their interactions with DEM resolutions, connectivity metrics are needed to 

interpret the spatial and temporal variability of overland flow patterns and streamflow discharge 

at the watershed outlet. The metrics should be sensitive to grid resolution changes.   



 

 

Table 4.1 Grid resolutions for selected hydrologic/ hydraulic modeling publication 

Model 

conceptualization 

Grid Size m Total simulation  

area km2  

or length km 

No. of cells Model  Article  

Fully Distributed  30m 480km2 533333 HydroGeoSphere  Goderniaux et al. 2009 

Semi distributed  
 

30m 1645km2 18277777 SAC-SMA (Sacramento soil moisture accounting model) Ajami et al. 2004 

Semi distributed  
 

25m 50 km2 80000 SWAT (Soil and Water Assessment Tool) Kiesel et al. 2010 

Semi distributed  
 

50m 379km2 151600 TOPOMODEL Campling et al. 2002 

Lumped  
 

30m 217 km2 241111 SWMM (Storm Water Management model) Barco et al., 2008 

2D Hydraulic modeling 4m 1.65km2 100000 XP-SWMM and TUFLOW Classic Philips et al. 2005 

1D Hydraulic modeling 30 - 50m 60km 1200 to 12107 HEC-RAS, TELEMAC-2D and LISFLOOD-FP Horritt and Bates 2002 

2D 10m  500km2 5000000 SOBEK Carrivick 2006 

2D 30m 16000km2 8710000 TUFLOW GPU Jarihani et al. 2015 

2D 9.36m 62km2 708864 Flood2D GPU Kalyanapu et al. 2010 

1D   50m 20km 73472 LISFLOOD-FP Smith et al. 2012 

2D 1- 60m 320 km2 32000000 to 

88889 

HSPF (Hydrological Simulation Program – Fortran) Yang et al. 2014 

2D 1 - 4m 1.256km2 450000 WOLF2D Erpicum et al. 2010 

2D 50m  ~5km2 2000 LISFLOOD-FP 2D Pappenberger et al. 2007 

2D 25m  ~29km2 87945 Using Aronica et al. (1998) Fabio et al. 2010 

1D/2D  90m 6800km2 839506 MIKE Flood Patro et al. 2009 

1D   90m 260km 414000 LISFLOOD-FP Wilson et al. 2007 

2D 2m 0.4km2 100000 TUFLOW Classic, DIVAST-TVD, TRENT, JFLOW, and 

LISFLOOD-FP 

Hunter et al. 2008 

 

1
0
4
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In Chapter 3, we used the two-point connectivity statistics, the connectivity function τ(h) and 

integral connectivity scale lengths (ICSLs), as the connectivity metrics. However, in a preliminary 

test we found that these metrics are not sensitive to the connectivity changes at different grid 

resolutions between overland flow patterns generated from original and depression removed (filled) 

DEMs. Therefore, connectivity is represented based on a revised version of the relative surface 

connection function (RSCf) which has been used to describe the effects of the depression storage 

on overland flow connectivity at plot and field scales (Antoine et al., 2009; Peñuela et al., 2013, 

2016). RSCf measures the surface areas which are hydraulically connected to the outlet (SA in m2) 

as a function of depression storage capacity being filled (DS in m3/m3) at a certain time point and 

is sensitive to grid resolution changes because both SA and DS change with resolution. The effects 

of depressions on watershed runoff response at the outlet is represented based on a revised version 

of the Normalized Runoff Connectivity Function (NRCf), which measures the accumulated 

overland runoff (CR, in mm) at an outlet as a function of depression storage capacity being filled 

(Grimm and Chu, 2018). Note that to eliminate dependency on the spatial scale of the modeling 

domain, SA, DS and CR are normalized by the area of the domain (AD in m2), the maximum 

storage capacity (DSmax in m3) and the accumulated rainfall (CP in mm) respectively, as C=SA/AD, 

D=DS/DSmax, and Q=CR/CP.  

 

However, the original formulation of RSCf and NRCf for the plot or field scale is not realistic or 

reasonable at the watershed scale, including the assumption of 1) no infiltration and 2) 

instantaneous transfer of overland flow to watershed outlet. Therefore, we revised the RSCf and 

NRCf by 1) replacing D=DS/DSmax with Di=DVconnected/DSmax, where DVconnected is the total storage 

capacity (volumes in m3) being hydraulically connected to the watershed outlet by overland flow 

pathways, regardless of their deficit status; 2) replacing C=SA/AD by Ci=CDA/AD, where CDA is 

the depression drainage area connected to the outlet. Thus, the uncertainty of overland flow extent 

in DRM can be greatly reduced because we only consider the drainage area of the depressions 

instead of the exact area of overland flow extent, which may subject to variability of rainfall 

applied on the topography in DRM implementation. The metrics are named RSCfi and NRCfi. 

RSCfi represents the depression drainage areas that are being hydraulically connected to the 

watershed outlet (as the proportion of total watershed area) as a function of the total depression 

storage (as the proportion of total depression storages) being included in these connected areas, 
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based on the spatial coverage of overland flow extent (connected to the watershed outlet) at any 

given time. NRCfi describes the accumulated streamflow discharge (normalized by the 

accumulated rainfall amount) at the watershed outlet as a function of the total depression storage 

(as the proportion of total depression storages) being included in the hydraulically connected areas, 

based on the spatial coverage of overland flow extent (connected to the watershed outlet) at any 

given time. This is implemented by overlaying the TUFLOW generated overland flow extents of 

each hourly time snapshot on the grid of depressions and their drainage areas and finding the 

accumulated total storage and drainage areas at the spatial intersection. 

4.4 Results and discussion 

Three thresholds have been discussed in RSCf: the initial ratio of surface connected (C0), the 

connectivity threshold (CT) and the maximum ratio of depression storage (Dmax). C0 occurs where 

the overland flow area already connected to the outlet prior to the storm event, CT occurs where a 

sharp increase in C in response to a small increase in depressions D=DS/DSmax (slope = 1), Dmax 

occurs where the maximum depression storage that are filled during a storm event  (Peñuela et al., 

2015, 2016). For RSCfi, C0 at the start of each storm event is always zero because the DRM we 

used in this study assumes no upstream inflow boundary for 1D stream channel area in TUFLOW. 

CTs are not observed in our RSCfi function plots (Fig. 4.1a-c). The lack of obvious CT means that 

the threshold of “volume to breakthrough” is not applicable for RSCfi at a watershed scale because 

the overland flow transition time is not negligible, so overland flow waves propagation are  

discretized in more detail this study and cannot be assumed to reach the watershed outlet in one 

time step as previous works at field or plot scales (e.g., Antoine et al., 2011). RSCfi function plots 

for all storm events at 2 m resolution show trends of smooth convex shapes based on DEMOri and 

more “flattened” shapes with lower slopes based on DEMFill. The convex shapes of RSCf function 

plots for overland flow patterns on DEMOri indicate a relatively well-connected topography with 

large numbers of small-scale depressions (Antoine et al., 2009; Appels et al., 2011, 2016; Peñuela 

et al., 2015), although with a slightly slower initial increase (before Di = 0.025) in connected 

overland flow pathways than that of DEMFill (Peñuela et al., 2016). At GCEW, the 2 m resolution 

DEM shows that 66.7% of depressions have a surface area between 1 m2 to and 12 m2 (1 to 3 grid 

cells), and 94.8% have a storage volume below 1m3. These depressions are predominantly low in 

the hierarchy, i.e., they are filled first, then the overflow is merged into or connected with 
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depressions higher in the hierarchy with significantly higher volumes. Once these small-scale 

depressions have been filled, the extent of connected overland flow pathways rapidly expands and 

thus there is a rapid increase in connectivity (after Di = 0.025) which is higher than that of DEMFill. 

Note that a rapid increase in connectivity would not be immediately apparent on the streamflow 

hydrograph because of the delayed flow transfer time at the watershed scale.  

 

We found that removal (filling) of depressions generates large numbers of flat areas which reduce 

the storage volumes of depressions high in the hierarchy and increase drainage areas to these 

depressions because of merging of depressions low in the hierarchy (Fig. 4.2a-b and Table 4.4). A 

slightly faster initial increase of Ci (before Di = 0.025) is expected than that for DEMOri because of 

reduced storage volumes, but this trend reverses after Di=0.025, where the speed of Ci increase is 

lower than that for DEMOri. Overland flow on DEMFill have less mass and momentum losses, and 

can hydraulically connect more depressions to the watershed outlet. However, such overland flow 

extent increases on DEMFill are slower than DEMOri (when a threshold amount depression storage 

Di=0.025 are connected) because of the higher magnitude of infiltration on the larger and merged 

drainage areas (for depressions mostly located in the low land areas, e.g., the riparian zone), which 

delays the filling of depression storage and thus changes the convex shapes of RSCfi function plots 

towards lower gradient and “flatter” shapes. This trend is more significant at 2 m resolution than 

5 m and 10 m resolution.  In addition, significant residuals occur in the RSCfi function plots based 

on DEMFill (not on DEMOri) at both 2 m and 5 m resolution, and the magnitude of residuals 

increases is higher at 2 m than 5 m resolution. For DEMFill, depressions higher in the hierarchy 

often have larger surface areas but not necessarily larger storage volumes because some of these 

depressions are filled and merged, i.e., depression storage volumes have been disproportionally 

filled with increase of drainage areas. Therefore, there is an increase in the variability of drainage 

areas for the depression storage. At a 10m resolution, the difference between the shapes of the 

RSCfi trends is not significant (while it was for 2 m and 5 m resolution), and the trends are parallel 

with consistent larger gaps (not presented at 2 m or 5 m resolutions). This may be related to the 

artificially increased storage volume and overly “smoothed” surface topography at 10 m resolution, 

so that the small-scale depressions (these low in hierarchy) are eliminated. Thus, depressions with 

large drainage areas and lower proximity (these high in hierarchy) are retained and DEM grids are 

not sufficiently sensitive to the difference in the speed of initialization of connected overland flow   
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Figure 4.2 RSCfi function plots for the three storm events at 2 m, 5 m and 10 m grid resolutions. 

(a) Event 1 in 1981, (b) Event 2 in 2006 and (c) Event 3 in 2008 
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Figure 4.3 Correlations between depression storage volume and drainage area based on DEMOri 

(Orange square) and DEMFill (Green triangle). (a-b) 2 m resolution; (c-d) 5 m resolution; (e-f) 10 

m resolution. Distortion of drainage areas are disproportionally small for depressions of large 

storage volume, and the degree of this distortion is increased after depression removal (filling).   
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paths and the structural connectivity characteristics (e.g., well-connected or not) between DEMOri 

and DEMFill.  

 

Dimax increases with higher accumulated rainfall amounts for both DEMOri and DEMFill (Table 4.2). 

This means more depressions are being hydraulically connected to the watershed outlet for larger 

storm events. In this study, we assume that there is no erosion and thus the surface topography is 

static, which means that with more rain then more water is filling any depression storage and 

generating runoff. In this case, overflow from depressions becomes more frequent which expands 

the connected overland flow extent. However, the increase in Ci is much less than that of Dimax, 

regardless of the presence/absence of depressions (Fig. 4.1a-c). This indicates that, in general, 

depressions with larger storage volumes at GCEW have a much lower surface drainage areas, i.e., 

drainage areas of large volume depressions are proportionately smaller (Fig. 4.2a-f). The 

relationship between DA and DS matches previous work that established a the power-law 

relationship between surface drainage area and volume for depressions in naturally occurring 

topography (Abedini et al., 2006; Le and Kumar, 2014). For all the three storm events and spatial 

resolutions, Dimax is higher for DEMFill than DEMOri because the removal (filling) of depressions 

reduces storage volumes mostly for depressions of large storage volume and thus the total storage 

capacity. In addition, Dimax increases with a decrease in grid resolution for both DEMOri and 

DEMFill. This is because depression storage volumes are artificially boosted in areas that are 

hydraulically connected to the watershed outlet at larger grid resolutions. Note that the magnitude 

of Dimax increases RSCfi do not reflect the storage deficit because the exact percentage of 

depressional storage being filled is unknown.   

Table 4.2 Maximum depression storage volumes (Dimax) for DEMOri and DEMFill at different grid 

resolutions and cumulative rainfall amounts for each storm event. 

DSmax DEMOri DEMFill 

Resolution 

1981 2006 2008 1981 2006 2008 

2 m 0.10 0.11 0.06 0.56 0.56 0.32 

5 m 0.54 0.54 0.49 1.00 0.69 0.54 

10 m 0.82 0.79 0.51 0.93 0.94 0.78 

Cumulative Rainfall (mm) 143 115 61 143 115 61 

 

The Dimax increase is larger for DEMOri than that for DEMFill with the increase of grid resolutions. 

Peñuela et al. (2013) examined border effects of changing width or length for a rectangular plot 

Event year 
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scale on overland flow connectivity for different types of microtopography (crater, river, and 

random), and found that the sensitivity of the response is significantly different between width and 

length changes. In this study, because we only consider the watershed outlet as a border, changes 

of the grid resolution with a uniform increase/decrease of the width/length of cells can be 

considered as either width or length changes depending on the connectivity types of topography. 

GCEW has an eastern preferential flow direction at the watershed scale based on the spatial aspect 

of DEM (Fig. 4.3), while the dominant direction of the overland flow pathways, including stream 

flow, is North. In DEMFill, preferential flow directions at the watershed scale are less obvious 

because of large flat areas (Fig. 4.3). Therefore, the DEMs used in this study are a typical “river” 

type topography where the directions of preferential flow and the overland flow pathways are not 

compatible. Note that we consider the increase of grid resolution as similar to the decrease of both 

widths and lengths because of the similar effects of decreasing surface continuity in Peñuela et al., 

2013. Increasing the grid resolution leads to a change in the weight of overland flow process 

between connectivity-driven and overflow-driven, i.e., more overflow is needed to connect the 

overland flow pathways to the watershed outlet to compensate for the loss of connected structural 

flow paths, thus a lower portion of total depression storage is being filled in the connected flow 

areas. Therefore, higher grid resolution is associated with lower Dimax. Removal (filling) of 

depressions create large flat areas which dilute border effects (reduce the incompatibility between 

the directions of preferential and structural flow paths) so Dimax decreases more slowly.  

 

Figure 4.4 Distributions of downslope directions at GCEW for DEMori and DEMfill based on aspect 

analysis in ArcGIS. The dominant direction is East which is perpendicular to the direction of major 

stream channels: North. Removal (Filling) of depressions “dilutes” the difference between 

downslope directions because there is a significant increase in flat area extents. 
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NRCfi function plots show two separated decreasing trends with obvious gaps, which represents a 

sudden “jump” to a higher NRCfi for all events, regardless of DEMOri or DEMFill (Fig. 4.4a-c). If 

infiltration excess is the major runoff generation process, NRCfi trends should monotonically 

decrease with Di because the larger the depression storage volume that is included in the connected 

overland flow extent, the more rainfall will be contributing to filling depressions and the higher is 

the loss to infiltration. One explanation for the sudden “jump” is that this when the soil is fully 

wetted and depressions are filled within the connected area, so that any additional rainfall on the 

domain will rapidly increase the NRCfi, i.e., the overland drainage system changes from fill 

dominated and high infiltration capacity (no ponding) to spill dominated and low infiltration 

capacity (with significant ponding). The decrease (slope) of NRCfi plots for DEMOri and DEMFill 

are very similar regardless of the spatial resolution, but to reach a similar magnitude of NRCfi 

(normalized discharge at the watershed outlet), a lower value of Di (less depressions are included 

in the connected areas) is needed for DEMOri than DEMFill. This is expected because the total (and 

average) volumes of depression storage have been significantly decreased for DEMFill (Table 4.3). 

In addition, the gaps between these two trends show large discontinuity for Di at 10 m resolution, 

which is not realistic because of the continuous extension of the overland flow extent in the storm 

events. Similar to RSCifs, NRCfis for DEMFill are more linear than DEMOri, but this is less 

pronounced.  

 

In the past, watershed modeling often treated depression storage as a single and constant loss term, 

and as a function of total retention or excess rainfall instead of explicitly accounting for their spatial 

complexity, e.g., distributions and topological relationships. Thus, these approaches implicitly 

assume a spatial uniform distribution of depressions within a watershed boundary. The results of 

our study indicate that this assumption is not reasonable for either DEMFill or DEMOri given the 

statistical characteristics of depressions and the spatial non-linear RSCfi and NRCfi functional 

plots for single storm events. Moreover, grid resolution changes the spatial and statistical 

characteristics and functional connectivity for depressions at watershed scale. Therefore, for event-

based simulations, a cautious selection of spatial resolution is vital in the parameterization, even 

if the only modeling goal is to simulate the streamflow discharge at the watershed outlet. In this 

study, a grid resolution smaller than 10 m is recommended. 
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Table 4.3 Statistical characteristics for depressions in DEMori and DEMfill.   

 2m 5m 10m 

Total number of depressions in DEMori 371,984 82,885 14,444 

Total volume of depressions in DEMori (m3) 424,071 1,267,141 1,403,643 

Average of DA in DEMori   193 865 4952 

Average of DS in DEMori   1 15 97 

Total number of depressions in DEMFill 154,091 45,709 8,729 

Total volume of depressions in DEMFill (m3) 34,077 139,032 658,863 

Average of DA in DEMFill   464 1564 8174 

Average of DS in DEMFill .22 3 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 

b 
Figure 4.5 NRCfi function plots for the 

three storm events at 2 m, 5 m and 10 m 

grid resolutions. (a) Event 1 in 1981, (b) 

Event 2 in 2006 and (c) Event 3 in 2008. 
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4.5 Conclusions 

Depressions change watershed scale connectivity and overland flow responses, and the effects of 

such changes in a model depends on the gird resolution of the DEM. This study demonstrated that 

revised functional connectivity indicators, RSCfi and NRCfi function plots, are important 

indicators for those changes and their interaction with grid resolution, without the need of an 

explicit computation of storage deficit at every modeling time step, which is not practical at 

watershed scale models based on high-resolution spatial discretization. Specifically, we found that: 

 

The revised relative surface connection function (RSCfi) for hydraulically connected drainage 

areas and depression storages is a functional connectivity indicator which represents the 

characteristics of spatial and statistical distributions for depressions, i.e., relative scales and 

relative topologic hierarchy, thus can be used to determine the change of topographic 

connectedness for overland flow based on connected depression storage at watershed scale. The 

convex shapes of RSCfi function plots (especially at 2 m resolution) for DEMOri indicate a well-

connected topography with large amount of small depressions, which is confirmed with the 

statistical characteristics of depressions. Removal (filling) of depressions flattens these 

depressions and results in a modified topography that has smaller total storage volumes. Thus, 

RSCfis for DEMFill are more flattened and with lower slopes, reflecting a higher total depression 

storage volume in the overland flow extent that are connected to the watershed outlet but with a 

slower extension of the connected overland flow pathways. RSCfi for DEMFill also demonstrates 

the removal (filling) of depressions disproportionally reduce the depressions (high in the hierarchy) 

storage volumes to a higher degree because of the large “flattened” areas, while retains similar 

drainage areas as those in the original DEM.  

 

In addition, larger storm events tend to increase the ratio of total depression storages (indicated by 

Dimax) in the overland flow extents that are hydraulically connected to the watershed outlet. 

However, RSCfi shows that the degree of increase for storage volumes is much higher than the 

increase for the drainage areas, regardless of DEMOri or DEMFill. This indicates that depressions 

with larger storage volumes at GCEW have a much lower total connected drainage area. 

Alternatively, changes of Dimax may also be linked to the connectivity types of the topography 

(river type for the study watershed), based on relative degree of overland flows mechanism on 
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topography, i.e., between connectivity-driven and overflow-driven. Under larger storm events and 

higher grid resolutions, the degree of increase of Dimax is larger than Ci. Note that a lower grid 

resolution means higher degree of continuity for the DEM (“smooth”). Therefore, the increase of 

connectivity-driven mechanism leads to a higher ratio of total depression storage Dimax that are 

being connected in the topographic structure but with less magnitude of increase of the overland 

flow extent connected to the outlet.  

 

The revised normalized runoff connectivity function (NRCfi) for stream discharge and depression 

storages is a functional connectivity indicator which represents the remaining rainfall (stream flow 

discharge out of topography) after the losses to the depression storage and infiltrations in the 

hydraulically connected drainage areas. Slopes of NRCfi determine the speed of rainfall that are 

being infiltrated and filled to depression storage based on a spatial explicit coverage of the overland 

flow extent. NRCfi function plots show a more linear trend for DEMFill than for DEMOri, indicating 

that the uncertainty of streamflow discharge because of depression storage is reduced after 

depressions have been filled. In addition, the “jumps” in the relative stream flow discharge that 

breaks the continuous trend of NRCfi function plots in to two parallel trends may indicate the 

thresholds of the fully filled depressions and the high ponding condition with in the overland flow 

extent connected to the watershed outlet. NRCfi function plots for both DEMOri or DEMFill also 

indicate that the discharge at 10 m resolution is unrealistic because of the sudden depression 

storage increase represented by the large gaps in Di appeared between the two parallel trends. 

Therefore, to better represent the role of depressions on overland flow in watershed modeling, a 

grid resolution of less than 10 m is recommended.  

 

Future work is needed to confirm the impact of grid resolution on the interaction between 

depressions and overland flow at watershed scales in different watershed environments, and to 

investigate the role of depressions on functional connectivity for subsurface flow processes. A 

high-performance, fully distributed and coupled modeling approach may be required that 

encompasses a complete surface-subsurface processes, where the contribution of subsurface flow 

to the watershed runoff response is not negligible.  
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 CONCLUSIONS, IMPLICATIONS, AND               

FUTURE WORK 

This Ph.D. study applied a spatial pattern and connectivity approach to investigate the impact of 

topographic depressions and topographic depression removal (filling) on overland flow response 

across multiple spatial scales. A new algorithm for a widely used two-point connectivity statistic 

was created to enable upscaling to large grids (i.e., with > 1,000,000 cells) and generate results 

within minutes or days (depending on the grid size), using GPU-accelerated computing techniques. 

A directional filter for the cardinal and intercardinal directions were incorporated to the 2D 

omnidirectional connectivity function. In addition, a more sensitive and robust algorithm for 3D 

directional connectivity function was proposed which is able to compute connectedness of 

overland flow patterns under the topographic constraint represented by a DEM with depressions. 

Hypothetical and real landscapes were used in the connectivity analysis for a theoretical test and a 

case study, respectively. The case study focused on a low-relief agricultural watershed of 75 km2, 

located in Northern Missouri. Surface water is the major focus of this study. DEM was computed 

directly from aerial LiDAR point cloud data. Spatial patterns of overland flow (depth) at hourly 

interval for single storm events were generated using a high-performance 2D hydraulic model with 

input parameters that included DEM, rainfall, and soil survey data. The connectivity algorithm 

was then implemented on the overland flow patterns for the study area to derive the variability of 

connectivity at different spatial scales and time points. Two other functional connectivity 

indicators which are sensitive to the effects of depressions and changes of grid resolutions were 

also introduced to further explore the role of depressions on overland flow connectivity as a 

function of resolution. Major findings of this research include: 

1. The connectivity function τ(h) and integral connectivity scale lengths (ICSLs, including 

Omnidirectional and Directional metrics: OMNI, CARD and TOPO) provide a simple and 

effective way of measuring connectivity for hydrologic patterns at multiple spatial scales 

and time points. τ(h) and ICSLs can be used as a unified connectivity indicator to directly 

compare hydrologic patterns generated under a wide range of watershed environments and 

hydroclimatic regimes.  
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2. Removal (filling) of topographic depressions increases overland flow pattern connectivity 

in most cases, and the degree of increase depends on the spatial scales (represented by lag 

distances) of the locations being considered. Maximum connectivity increases are typically 

found at small scales (low lag distances), in particular at scales on the order of the scales 

of depressions. As the scale increases, the difference in connectivity caused by depressions 

rapidly decreases. Thus, four macro connectivity stages are identified to differentiate 

different levels of changes in connectivity related to depressions. Fill and spill processes 

associated with depressions also have an impact on the degree of the connectivity changes, 

with spill process maintaining or increasing connectivity, and fill process delaying or 

reducing connectivity. Fill often occurs in the early phase (rising limb) of a storm event 

and increases connectivity changes between overland flow pattern based on original and 

depression removed DEM. In contrast, spill often occurs in the late phase (falling limb) of 

a storm event and reduces connectivity changes and at some cases even reverses the role 

of depressions by slightly increasing connectivity. In addition, a period of rapid increase 

of connectivity at large distances in the late phase was found to be associated with the 

relative speed of fill and formation of connected pathways for depressions and their 

condensed locations in floodplain areas immediately adjacent to stream. 

3. Topological characteristics, i.e., the hierarchical structures of depressions, are linked to the 

speed of transition between the macro connectivity stages mentioned above.  

4. Changes of connectivity because of depressions removal (filling) are not uniformly 

distributed in the study watershed. Increase of connectivity are spatially concentrated in 

the riparian zone (areas of floodplain immediately adjacent to the stream), where a large 

number of small depressions are found. Depression removal created large smoothed 

(flattened) topography in riparian zone and it is possible that connectivity is overestimated.   

5. The revised relative surface connection function (RSCfi), describes depression drainage 

areas as a function of storage volumes, can be used to identify detailed characteristics of 

spatial and statistical distributions for depressions, i.e., scales, spatial uniformity, and 

topologic hierarchy. RSCfi can also identify connectivity types related to the relative 

degree of overland flow connectedness on topography between connectivity-driven and 

overflow-driven at a watershed scale. The revised normalized runoff connectivity function 
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(NRCfi), describes normalized stream discharge as a function of storage volumes, may 

relate to the threshold of fully filled depression storage and highly ponding condition at a 

watershed scale. A grid resolution below 10 m is recommended to better represent the 

interaction mechanisms between depressions and overland flow in modeling.  

Depressions change overland flow timing and magnitude in response to rainfall events, and this 

change may only be seen through an explicit quantification of connectivity for a hydrologic system 

based on spatio-temporal variability of process patterns. This study indicates that the interaction 

mechanism between depressions and overland flow, e.g., fill and spill, and the hierarchical 

structures of depressions, provides the physical foundation for connectivity changes in overland 

flow patterns. These changes are a direct indicator for heterogeneity of multi-scale functional 

responses, e.g., overland flow, which cannot be reflected in implicit analysis, such as single point 

stage or discharge at a watershed outlet. Note that overland flow connectivity changes because of 

depressions are most sensitive at small lag-distance, e.g., hillslope scale, but the impacts are 

spatially aggregated and extended to watershed scale. Modelers should be cautious about the 

“unintended consequences” of the blind removal of depressions because of changes in response 

heterogeneity. For example, a filled DEM can compensate the uncertainty of other modeling inputs 

or calibration parameters e.g., underestimated rainfall, baseflow or soil moisture condition at 

hillslope scale, which may provide a false impression of high model accuracy. The calibrated 

parameters may not be robust for storm events of significantly higher/lower magnitude or other 

initial watershed conditions because of the heterogeneous shifts in the connected depressions that 

are being included the overland flow patterns and their interaction mechanisms. Changes of 

connectivity internally in a hydrologic system because of depression removal also has implications 

on the transfer of water flux, energy and water mediated substances based on the connectedness of 

the overland flow pathways, which are critical for ecological and environmental functions and 

related decision-making in a watershed. 

  

Future research to build on the work presented here should focus on eliminating the need for 

computationally intensive and fully distributed 2D hydraulic modeling as the prerequisite for 

generating overland flow patterns, because of the extensive simulation time required on a high-

resolution DEM grid. An alternative approach could create a simplified mass and momentum 
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computational scheme for excesses and losses between the two connected points into the 

connectivity metrics, or could involve development and implementation of more efficient ways of 

collecting overland flow data across large spatial scales, e.g., real-time water surface detection 

based on remotely sensed radar data. Connectivity is a critical predictor for water transfer and 

water mediated substances transfer in the riparian zone, but the results of this work indicates that 

connectivity may be overestimated in highly vegetated riparian zones because of increased DEM 

errors. This needs to be examined in more detail, and coupled to explicit modeling of 

biogeochemical or sedimentation processes depending on connected flow pathways and 

depressions storage, so the effects of connectivity overestimation and possible implications for 

watershed management practices, i.e., the assimilation and transformation of point and non-point 

source pollution for downstream water quality control, can be better understood. Therefore, it 

would be an important first step to include the interaction mechanisms between overland flow and 

depressions directly into watershed modeling conceptualization based on connectivity. Moreover, 

filling is the only method that has been used in this study to remove depression in DEM, and other 

depression removal methods and their corresponding effects on overland flow could also be 

investigated. Finally, more detailed work is needed to confirm an optimum resolution below 10 m 

and to investigate the impacts of subsurface flow processes on connectivity.  
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APPENDIX A. DIRECTION RAINFALL METHOD, 2D HYDRAULIC 

MODEL SELECTION AND THE GPU-ACCELERATED CONNECTIVITY 

FUNCTION ALGORITHM 

A.1 Brief introduction to the direct rainfall method (DRM) 

A.1.1 Origin  

Hydrologic and hydraulic modeling both follow the same workflow. Two key stages are typically 

included: 1) Hydrologic models transfer a rainfall hyetograph to a runoff hydrograph by 

subtracting losses and propagating the peaks and shapes (Hawkins et al., 2008; Douglas-Mankin 

et al., 2010) and then, 2) the runoff hydrograph is routed as overland and channel flows using 

hydraulic models, either empirically lumped, i.e., linear or nonlinear storage changes based on the 

continuity equation, or physically based using distributed routing methods, i.e., dynamic unsteady 

flow equations based on conservation laws of mass, momentum and energy, until the flow reaches 

the watershed outlet (Ponce and Yevjevich, 1978; Refsgaard and Storm, 1995; Singh, 1995; 

Rehman et al., 2003). Note that all rainfall-runoff models, are essentially simplified and numerical 

representations of a much more complex reality. The simplification approach largely depends on 

modelers’ own understanding of the hydrological processes watershed or studied region, often 

through knowledge, experience, and/or experiments, which is termed “model conceptualization” 

(Moradkhani and Sorooshian, 2009; Beven, 2011). In addition, specific model applications play a 

large part in decisions around model conceptualization (Moradkhani and Sorooshian, 2009). For 

hydraulic modeling, conceptualizing the hydrologic model component (in the 1st step mentioned 

above) is often a time consuming and labor-intensive endeavor in terms of finding a useful 

abstraction of reality, while projects are usually under significant budget and time constraints 

(Hunter et al., 2007). For example, such hydrologic models may need to include different runoff 

generation mechanisms and be robust in different geographic and climate regimes (Boughton and 

Droop, 2003). In addition, these hydrologic models often require extensive model calibration to 

derive useful parameters (Eckhardt and Arnold, 2001). If the majority of these conceptualizations 

and calibrations can be eliminated, this will save a significant amount of project expense and time. 

For this purpose, hydraulic modelers focused on engineering applications created the so-called 

“Direct Rainfall Method (DRM)” to eliminate major conceptualization tasks, and have used this 

approach to solve engineering problems for more than a decade (Taaffe et al., 2011; Hall, 2015).  
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A.1.2 Definition of DRM 

DRM, also known as "rainfall on grid", partially or completely removes the need to use the 

hydrologic model component by applying rainfall directly to the computational grid. In practice, 

this means that the rainfall term is added directly to the shallow water equations (SWEs) (Rehman, 

2011). DRM then directly routes overland flow on terrain topography based on hydrodynamics 

instead of linear or nonlinear storage functions, and can be directly applied without relying on the 

lumping schemes based on hydrologic similarity, e.g., hydrological response units (HRUs) (Singh, 

1995; Rehman, 2011). DRM calculates rainfall losses using identical models as in lumped or 

distributed hydrologic models, e.g., Green-Ampt for infiltration (Green and Ampt, 1911) and 

Penman-Monteith for evapotranspiration (Priestley and Taylor, 1972), but the loss function is 

applied simultaneously with overland flow hydrodynamics instead of being directly removed from 

rainfall before it is applied to the computational grid (Taaffe et al., 2011). Additionally, surface 

runoff in the form of dynamic unsteady flow is routed through the entire watershed based on 

topography, including floodplains and main stream channels. Thus, detailed information of flow 

rate, water depth, and velocity at each grid in the modeling domain are available, which is similar 

to flood inundation models but at higher spatial and temporal resolutions(Rehman et al., 2003). 

Currently, high-resolution remote sensing data, e.g.,  LiDAR point clouds from the Leica scanner, 

can generate a DEM for use in DRM at a spatial resolution of approximately 0.5 m for large-scale 

watersheds with a vertical accuracy of ±0.05 m (Popescu, 2007; Collin and Hench, 2012). This 

allows for a sufficient representation of small morphologic features in topography, e.g., 

depressions, and thus can be incorporated into modeling using DRM for flow and drainage 

connectivity study (Jones et al., 2008). 

 

DRM requires flow routing in the entire modeling domain, e.g., a watershed, and might also apply 

to higher spatial and temporal resolutions than a typical flood inundation model. The 

computational intensity is much higher, and a longer run time is expected. This may seem to 

“counteract” the time saved by eliminating hydrologic components (Taaffe et al., 2011). However, 

this issue is largely diminished by the recent emergence of high-performance computing 

techniques, especially Graphic Processing Unit (GPU) acceleration (Kalyanapu et al., 2011; 

Vacondio et al., 2014; Le et al., 2015). GPU accelerated computation has been used in a wide 

range of disciplines in addition to computational hydrology, including machine learning/deep 
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learning, and big data analysis (Bleiweiss, 2008; Napoli et al., 2014; Abadi et al., 2016). GPU uses 

heavily paralleled computational units on a single device and can simulate large models (> 

1,000,000 cells) within a reasonable timeframe, here defined as a modeling run time at the scale 

between 0.001 to 1 of the actual simulated event time duration, depending on the spatial resolution 

of computational units (usually from 100 m to 1 m) and the number of parallel GPU devices 

(Huxley and Syme, 2016). DRM was originally designed to speed up flood modeling practice for 

both fast decision-making, such as in emergency response, hydraulic design of flood prevention 

and dam breaking experiments reduce costs and time. In the research presented here we use DRM 

to aid in better understanding of watershed hydrologic processes, especially unsolved questions 

related to hydrologic connectivity across the watershed. 

A.1.3 Comparison with lumped or semi-distributed hydrologic models  

The appeal of DRM includes 1) a better representation of minor or ephemeral flowpaths than 

conventional lumped hydrologic models; 2) flow depth, velocity, and discharge at every 

computational cell for each timestep is available in the entire modeling domain; 3) flows cross 

watershed boundary can also be simulated (Caddis et al., 2008). High-resolution, spatially and 

temporally explicit overland flow patterns for stream channels, riparian zones, and floodplain areas 

on a watershed scale are key to improving our understanding of hydrologic connectivity, similarity 

and the “scaling issue” for complex environmental systems on a heterogeneous landscape 

(Lexartza-Artza and Wainwright, 2009; Beven, 2012). This approach is particularly suitable for 

the purpose of this study: quantifying variability of connectivity and continuity using those patterns 

based on watershed topography. In addition, although many software packages (of different 

computational capacity) that can implement DRM exist, the results of these packages will have 

less variations than lumped or distributed hydrologic models because their conceptualizations are 

essentially the same: all based on SWEs but only differing in their numerical solution schemes 

(Caddis et al., 2008; Rehman, 2011). The "scaling" issue of measured hydrologic data in a 

heterogeneous landscape can be better represented and investigated because DRM uses such a 

unified model conceptualization. In contrast, lumped or distributed models are based on different 

model conceptualization and use coarse spatial discretization, which would make it difficult to 

separate the uncertainty from the input data versus model conceptualization.  
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Most importantly, DRM enabled us to investigate the effect of depressions through the DRM 

dynamic loss function (Taaffe et al., 2011). For lumped or semi-distributed hydrologic models, 

water loss are assumed to be constant or linearly correlated with rainfall or storage amount, and 

subtracted from rainfall before any further modeling computation is for the overland flow (e.g., 

Mishra, S.K. and Singh, 2003). However, for DRM, part of the water loss occurs simultaneously 

with overland flow modeling and directly on the surface topography, i.e., when water enters and 

is "retained" in these depressions. Part of the "trapped" water will not be routed to the watershed 

outlet. Thus, depressions act as part of the loss function, while the remaining “run-on” overflow 

continues to move across the modeling domain. 

A.1.4 Comparison with fully distributed hydrologic models 

Some fully coupled and distributed hydrologic models also use SWEs, for surface water or 

overland flow component, e.g., MIKE SHE, HydroGeoSphere and Vflo (Abbott et al., 1986; Vieux 

and Ceo, 2002; Brunner and Simmons, 2012). However, these fully distributed models mostly 

make approximations of SWEs to reduce the computational intensity, assuming that one or more 

terms in the momentum equation can be neglected (Singh, 1996). The approximation was the same 

for the 1D/2D hydraulic models created before the mid-1990s but today’s hydraulic models rarely 

use such an approximation because of the need to reduce error at higher spatial resolution and the 

improvement of computer processing power. For a fully distributed hydrologic model, however, 

simplified SWEs are more practical in terms of computational feasibility because they also include 

other components in the hydrologic cycle, e.g., subsurface flow and groundwater flow in addition 

to surface water flow, and the interface between these components (Singh, 1995). The two most 

commonly used SWE approximations are Kinematic wave or diffusion wave. Kinematic wave or 

diffusion wave approximations can potentially cause limitations under a wide range of flow 

conditions (De Roo et al., 2000), because they only consider downstream or downslope wave 

movement. Therefore, turbulence at a downstream boundary is not represented (Tayfur et al., 

1993). Although diffusive waves can be an alternative in these situations, prior research has found 

that convergence is often an issue even at small time step (Vieira, 1983). 

 

In addition, fully distributed models require a large number of modeling parameters which means 

intensive in-situ data collection, and pre- and post-processing work. These  are usually beyond a 
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project budget and time frame, especially for large watersheds (Refsgaard and Storm, 1995). The 

consequence of “overparameterization” often leads to a “blind” selection of parameters, blur their 

physical basis and thus weaken the importance of a few determinant physical parameters (Beven, 

1996). Another issue is that different parameter sets can reach a similar goodness of fit to 

observations but the quality of these sets cannot be verified and compared against the 

characteristics of physical processes, a problem termed “equifinality” (Beven, 2006).  These issues 

also create challenges for communicating with water resource management practitioners and 

policy makers outside of the hydrologic community (Tang et al., 2005). In contrast, DRM uses 

readily available data – topography, soil, land use and meteorological data (groundwater level is 

optional but might be needed for watersheds with shallow or perched water tables). Meanwhile, 

the model conceptualization and parameterization are unified and the results are easily 

communicated within or outside of the hydrologic community. 

A.1.5 Potential limitation and precautions of using DRM 

DRM is not a "panacea" nor was DRM designed to completely replace conventional lumped or 

distributed hydrologic models. DRM mostly focuses only on surface water dynamics (some may 

include subsurface water as well) and do not explicitly simulate dynamics in other components of 

hydrologic cycle, e.g., groundwater, assuming the interaction with these components are static. 

DRM also cannot avoid some of the common pitfalls of lumped or fully distributed models. For 

example, Manning's roughness coefficient n is used to describe flow resistance and is difficult to 

measure directly in the field, so the assignment of n values is always subjective (Ferguson, 2010; 

Rehman, 2011). The uncertainty of n values can be aggravated at the watershed scale and even 

more so for a very shallow depth of overland flow. If the flow depth is comparable to the roughness 

height, n is no longer a constant (Anderson et al., 2006; Charbeneau et al., 2009; Allan, 2014). In 

this study, n values are determined from different land use types in the NLCD land use data. NLCD 

data are derived from Landsat imagery, and the understory vegetation at ground level is often not 

captured, while flow resistance for different understory vegetation is the actual indicator of 

Manning's n (Vieux, 2001). However, field estimation of Manning’s n for each of the different 

land use types for a large-scale watershed is usually not feasible because of time and budget 

limitations. Additionally, DRM is based on hydraulic models originally intended for flood 

modeling use only. Therefore, watershed to be studied should meet the following assumptions: 1) 
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Overland flow routing in stream channels and floodplains mainly depends on surface topography; 

2) overland flow is the main contributor to runoff and streamflow, and subsurface flow is negligible; 

and 3) groundwater table does not have significant spatial and temporal fluctuations, and there is 

no horizontal groundwater movement (Warren and Bach, 1992; WBM, 2017). The hydrological 

characteristics of the GCEW watershed meet these criteria, so DRM can be used in this study (see 

detailed GCEW descriptions in the main text). 

A.2 DRM implementation: 2D distributed model selection 

In this study, to obtain high-resolution temporally and spatially explicit overland flow patterns at 

the watershed scale to test for the effects of depressions, a highly efficient and robust distributed 

modeling method is required. Because the depth to the impervious layer (claypan) is shallow (50 

cm to 60 cm) at GCEW, and to simplify model conceptualization, we did not use fully coupled 

and distributed models. Instead, we only focused on surface topography and infiltration-dominated 

overland flow. In addition, because of the watershed scale and high-resolution DEM data, the 

selected model should have a high-computational capacity. Thus, we adopted DRM 

implementation in a 2D hydraulic modeling package – TUFLOW (Syme, 2001).  We used the 

TUFLOW HPC version in our work because of three unique features: 1) the TUFLOW HPC 

version dynamically and fully solves the shallow water equations (SWEs) on a uniform Cartesian 

gird without making any simplifying assumptions (WBM, 2017); 2) the TUFLOW HPC version 

is suitable for large-scale watershed simulation based on a high-resolution DEM because of its 

highly parallel algorithm, which is capable of leveraging the computational capacity of both CPU 

and GPU devices (Collecutt et al., 2014); 3) the TUFLOW HPC version can reasonably simulate 

supercritical flows and capture hydraulic shocks due to the rapid change of small-scale topographic 

structures, especially at the edges of depressions where rapid gradient shifts occur. This is because 

the latest TUFLOW solution scheme is based on the 2nd order explicit finite volume and adopts 

the total variation diminishing (TVD) approach (Collecutt and Syme, 2017). The assumption that 

the variability of spatially and temporally explicit overland flow patterns and the discharge 

hydrograph at the watershed outlet are sensitive to depressions and can be simulated and tested by 

implementing DRM in TUFLOW. 

A.3 Additional details regarding the algorithm for τ(h) and ICSLs 
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The algorithm of connectivity function τ(h) and integral connectivity scale lengths ICSLs proposed 

by Western et al., 2001 used a recursive programming approach to searching for connected pairs 

and downslope accumulation areas, beginning with “seed” (center) cells to neighboring cells and 

then repeating the searching process for neighbors of the neighboring cells, and so on, i.e., the cell 

location(s) from the previous recursive function is used as the input for the next recursive function. 

This algorithm is sufficient for grids with a small number of cells. However, the high-resolution 

spatial patterns in this paper have a large number of cells (> 1,000,000). The original algorithm 

accumulates extreme complexity for the recursions and terminates the connectivity computation 

because it exceeds the recursion upper limit allowed for any programming language. To compute 

τ(h) and ICSLs more efficiently and upscale to larger grids, we created a new strategy for the 

algorithm implementation: each cell of input overland flow pattern grids is processed 

simultaneously as arrays by applying an element-wise operation instead of extracting value from 

and looping through individual cell. We assume that the connected pairs can only be found in the 

contiguous “high” regions or connected components, i.e., the spatial clusters of cells with the label 

“high” connected through the eight neighboring cells. Therefore, we label these clustered regions 

first and then make full combinations of the cells in each clustered region to make the pairing. 

Acceleration can then be achieved by adopting an efficient matrix multiplication and vectorization 

procedure. The algorithm for ICSLs is implemented in MXNet with Python binding for leveraging 

the parallel computational capacity on both the CPU and GPU devices.  In this chapter, we 

calculated one of the connectivity metrics ICSLs, i.e., OMNI, for the overland flow patterns from 

the 5 storm events at hourly time intervals. The spatial resolution of the computational grid is 5 m, 

and the total grid size of the watershed domain (including the cells of “no data”) is 8,913,300. 
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APPENDIX B. ILLUSTRATIONS OF FILL DOMINATED (FD) AND SPILL 

DOMINATED (SD) OVERLAND FLOW PROCESSES 

This appendix provides supporting information to illustrate overland flow patterns in fill 

dominated (FD) and spill dominated (SD) conditions for event 4 (Fig. B.1) and event 1 (Fig. B.2) 

mentioned in the main text. Surface roughness height is measured by the roughness indicator 

MAD (Median Absolute Differences) on a 3x3 neighborhood. MAD is a robust metric for 

evaluating surface roughness characteristics and especially suitable for highly non-stationary 

spatial data, e.g., surface morphology, at high resolution (Trevisani and Rocca, 2015). MAD is 

an improved metric compared to the traditional variogram analysis approach. 

 

B.1 References 

Trevisani S, Rocca M. 2015. MAD: robust image texture analysis for applications in high 

resolution geomorphometry. Computers & Geosciences 81: 78–92 DOI: 

10.1016/j.cageo.2015.04.003 

  



139 

 

 

  

Figure B.1 MAD roughness distribution map (Omnidirectional magnitude) at an example 

location in a riparian zone close to the stream for (a) original DEM and (b) depression removed 

(filled) DEM. The spatial density of low surface roughness areas (in green) is significantly 

increased after depression removal. Flow depth patterns (c-h) for event 4 at the same location. 

Patterns of FD process (τ(h) > 0) generated on DEMOri (c) and DEMFill (d) at t = 24 h. Patterns 

of SD process (τ(h) < 0) generated on DEMOri (c) and DEMFill (d) at t = 36 h. Patterns of SD 

process (τ(h) < 0) generated on DEMOri (e) and DEMFill (f) at t = 62 h. OMNI(t) and the 

difference of OMNI(t) between patterns on DEMOri and DEMFill. ∆OMNI(t) has been calculated 

for each pattern. Overland flow connectivity (visualized as connected extent of blue and green 

cells) between patterns at same time point for FD and SD processes are different and can be 

measured by changes in OMNI(t). For FD process, ∆OMNI(t) is the highest (positive), while for 

SD process, ∆OMNI(t) is reversed (negative) at t = 36 h and t = 62 h.  Note that the gray color 

represents the hillside of DEM on which the flow depth pattern is overlaid.  
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Figure B.1 MAD roughness distribution map (Omnidirectional magnitude) for (a) original DEM 

and (b) depression removed (filled) DEM at an example location near a wastewater treatment 

lagoon and a pond. Surface roughness is mainly reduced at the edges of lagoons, ponds, and 

roads. Flow depth patterns (c-h) for event 1 at the same location. Patterns of FD process (τ(h)>0) 

generated on DEMOri (c) and DEMFill (d) at t = 42 h. Patterns of SD process (τ(h) < 0) generated 

on DEMOri (c) and DEMFill (d) at t = 51 h. Patterns of SD process (τ(h) < 0) generated on 

DEMOri (e) and DEMFill (f) at t = 54 h. OMNI(t) and the difference of OMNI(t) between patterns 

on DEMOri and DEMFill. ∆OMNI(t) has been calculated for each pattern. Orange arrows 

represent the directions and magnitude (head and shaft lengths) of flow velocity. Locations of 

significant flow velocity differences are circled in red, which are related to changes in fill and 

spill processes for depressions in different hierarchy level (marked in squared textbox: 1 - 3) 

between patterns on DEMOri and DEMFill. Overland flow connectivity (visualized as connected 

extent of blue and green cells) between patterns at same time point for FD and SD processes are 

different and can be measured by changes in OMNI(t). For FD process, ∆OMNI(t) is the highest, 

while for SD process, ∆OMNI(t) reduces at t = 51 h and t = 54 h. Note that gray color represents 

the hillside of DEM on which the flow depth pattern is overlaid.  
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