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ABSTRACT

Gurunathan, Pradeep Kumar Ph.D., Purdue University, December 2018. Investi-
gation of Noncovalent Interactions in Complex Systems Using Effective Fragment
Potential Method. Major Professor: Lyudmila V. Slipchenko.

Computational Chemistry has proven to be an effective means of solving chemical

problems. The two main tools of Computational Chemistry - quantum mechanics and

molecular mechanics, have provided viable avenues to probe such chemical problems

at an electronic or molecular level, with varying levels of accuracy and speed. In this

work, attempts have been made to combine the speed of molecular mechanics and the

accuracy of quantum mechanics to work across multiples scales of time and length,

effectively resulting in simulations of large chemical systems without compromising

the accuracy.

The primary tool utilized for methods development and application in this work

is the Effective Fragment Potential (EFP) method. The EFP method is a computa-

tional technique for studying non-covalent interactions in complex systems. EFP is an

accurate ab initio force field, with accuracy comparable to many Density Functional

Theory (DFT) methods, at significantly lower computational cost. EFP decomposes

intermolecular interactions into contributions from four terms: electrostatics, polar-

ization, exchange-repulsion and dispersion.

In the first chapter, the possibility of applying EFP method to study large radical-

water clusters is probed. An approximate theoretical model in which the transition

dipole moments of excitations are computed using the information from the ground

state orbitals is implemented.

A major challenge to broaden the scope of EFP is to overcome its limitation in

describing only small and rigid molecules such as water, acetone, etc. In the second
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chapter, the extension of EFP method to large covalently bound biomolecules and

polymers such as proteins, lipids etc., is described. Using this new method, referred

to as BioEFP/mEFP, it is shown that the effect of polarization is non-negligible and

must be accounted for when modeling photochemical and electron-transfer processes

in photoactive proteins.

Another area of interest is the development of novel drug-target binding mod-

els, in which a chemically active part of the ligand is modified via functional group

modification, while the rest of the system remains intact. In the third chapter, the

development and application of a drug-target binding model is explained.

Lastly, in the fourth and final chapter, we show the derivation for working equa-

tions corresponding to the coupling gradient term describing the dispersion interac-

tions between quantum mechanical and effective fragment potential regions.

The primary focus of this work is to explore and expand the boundaries of mul-

tiscale QM/MM simulations applied to chemical and biomolecular systems. We be-

lieve that the work described here leads to exciting pathways in the future in terms of

modeling novel systems and processes such as heterogeneous catalysis, QSAR, crystal

structure prediction, etc.



1

1. CHARGE TRANSFER STATES OF HYDROXYL

RADICAL IN BULK WATER AND AT THE AIR-WATER

INTERFACE

The hydroxyl radical (OH•) is one of the most important oxidants in the atmosphere.

As OH• is attracted to water-containing aerosols, its chemistry and photochemistry

are strongly affected by interactions with water. The absorption spectrum of hydrated

OH• exhibits a broad charge transfer peak corresponding to the electron transfer

from nearby water molecules to the singly-occupied molecular orbital of the hydroxyl

radical, which results in a charge-separated pair of hydroxyl anion (OH−) and cationic

water (H2O
+). In the present work, we investigate the nature of charge transfer states

of the hydroxyl radical floated near a water-vacuum interface, using a combination

of Koopmans' theorem and hybrid QM/MM simulations based on the polarizable

effective fragment potential (EFP) method. Our results indicate that the charge

transfer to the hydroxyl radical preferentially happens from the interfacial water

molecules. These long-range charge transfer transitions occur within the UV range

accessible in the atmosphere and present intriguing implications such as increased

acidity of water surface and ionization of atmospheric aerosols.

1.1 Introduction

The existence of hydroxyl radical in the atmosphere and its importance for chem-

ical make-up of atmosphere have been recognized for over 40 years [1–5]. However,

high reactivity of the hydroxyl radical makes it difficult to monitor the kinetics and

thermodynamics of its reaction pathways, and hence a comprehensive understanding

of the underlying chemistry has been elusive [4, 6–8]. Even more challenging task is

to understand photochemical processes occurring in the atmosphere. For instance,
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Fig. 1.1. Representative image: Transfer of electron from a water molecule
to hydroxyl radicals situated in gas-phase, surface phase and in bulk phase.
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Fig. 1.2. Representative image of HOMO of hydroxyl radical situated in
bulk (left) and lone pair orbital of water situated at the surface.

the interaction of the hydroxyl radical with water has been of interest due to its

propensity to water-containing aerosols, however, the excited state properties of such

complexes have not been well studied [9–11].

Hydroxyl radical is known to interact with one or few water molecules forming

a cluster, or it may dissolve in a water droplet preferentially staying near droplet

surface [12–14]. While it might be expected that various water environments alter

the excited state properties of the hydroxyl radical, detailed understanding of these

phenomena is missing.

The absorption spectrum of hydroxyl radical in bulk water has two distinct char-

acteristic features, a relatively less bright, broad shoulder that is centered at around

340 nm, and a narrower, but brighter peak near 230 nm [15,16]. The broad shoulder

at 300-350 nm is thought to be due to the valence n → π∗ transition, which can be

observed in the gas phase excitation spectrum as well [16,17]. The peak at 230 nm is

assigned to charge transfer (CT) excitation, caused by the transfer of an electron from

surrounding water to the hydroxyl radical. This CT transition results in formation

of a positive hole on the surrounding water(s), and a hydroxide anion (OH−) [16].
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Earlier, we studied the interaction of hydroxyl radical with water clusters contain-

ing one to four water molecules, and their charge-transfer behavior [18]. We sampled

sufficient number of charge transfer states in these clusters to understand a transfor-

mation of the CT spectrum with increasing number of water molecules. Specifically,

we noticed that with the increase in size of water cluster, the number of CT states

and their density increase, while their excitation energy decreases. We also observed

a number of CT states in which the excitation is delocalized over more than one water

molecule and expands beyond the first hydration shell.

In the present work, we set a more challenging goal of modeling the CT spectra of

the hydroxyl radical solvated in a water environment mimicking atmospheric aerosols.

Specifically, we address the following questions:

1. Which water molecules contribute the most to the CT band? For example, are

the strongly-contributing water molecules located in the first hydration shell

of the hydroxyl radical or are they further separated? Are they involved in

H-bonding with the hydroxyl radical? How long-range are water-to-OH• CT

transitions?

2. What are the spectroscopic signatures unique to the hydroxyl radical situated

at the surface of water droplet and in bulk water?

To answer these questions, we performed hybrid quantum mechanics / Effective Frag-

ment Potential (QM/EFP) simulations on snapshots extracted from classical MD

trajectories from Ref. [12]. Four hydroxyl radicals are solvated in a periodic water

slab, such that solvation in both bulk water and at the vacuum-water interface are

explored. In QM/EFP simulations, the QM region includes all water molecules within

6 Å of the hydroxyl radical (i.e., approximately two full hydration shells), such that

long-range CT states, if present, are attainable. The EFP method provides polariz-

able embedding which has been shown to be essential in describing electronic states

with charge-transfer character [19,20].
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1.2 Methods and Computational details

Molecular dynamics (MD) simulations trajectories were obtained from the previ-

ous work by Roeselova et. al [12]. For the sake of completeness, a brief description

of these MD simulations is presented here. A rectangular periodic box of 3 x 3 x 10

nm was constructed with 864 water molecules and 4 hydroxyl radicals. Along the x

and y axes, the box is completely filled with water molecules, but a layer of vacuum

separates water slabs along the z-axis, such that an air-water interface is present along

z direction. Water molecules are described using POL3 water model, a polarizable

water model developed by Caldwell and Kollman [21]. The parameters corresponding

to the hydroxyl radical were developed by Roeselova et. al. [12]. After equilibration,

a 2 ns long NVE simulation was performed on the system.

We extracted 94 snapshots from the above trajectory, at 20 ps intervals. In every

snapshot, a single hydroxyl radical was randomly chosen for inclusion in the QM

region. The remaining three hydroxyl radicals are described as EFP fragments. The

hydroxyl radical in the QM part is then centered along the X and Y axes of the

box, leaving the z-axis intact. A sphere with radius of 0.6 nm is drawn from the

bond midpoint of the hydroxyl radical. All water molecules falling within this range

are included in the QM region, while all the other water molecules are described as

EFP fragments. Water molecules that have only one or two atoms situated within

the QM sphere are completely included in the QM region. Practically, a sphere of

0.6 nm ensures inclusion of about two shells of water molecules around the hydroxyl

radical. Even though inclusion of this number of water molecules into the QM region

is computationally challenging, this is necessary for exploring long-range nature of

the CT states.

The effective fragment potential (EFP) method [22–25] provides a robust descrip-

tion of the surroundings for a QM subsystem in a quantum mechanics / molecular

mechanics (QM/MM) type simulations. EFP is a polarizable model potential for de-

scribing non-covalent interactions [25]. EFP represents the interaction energy between
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species as a sum of electrostatic, polarization, dispersion and exchange-repulsion

terms, all of which are derived from first principles. Combined with QM, EFP pro-

vides explicit contributions from electrostatic and polarization terms of the environ-

ment [23]. Electrostatic term in EFP is represented by multipoles up to octopoles

centered at atoms and bond mid-points. Polarization is obtained from interactions of

the electric field with anisotropic polarizability tensors centered at localized molec-

ular orbitals of the fragments [26]. Both terms contribute to the QM Hamiltonian

through one-electron integrals, corresponding to polarization embedding [27].

The EFP parameters for water and hydroxyl radical were obtained using mixed-

basis set simulations [28]: 6-31G(d) for electrostatic multipoles and 6-31G(3df,2p)

for other parameters. Equation of motion coupled cluster for ionization potentials

(EOM-IP-CCSD) [29–31] calculations for a cluster containing one OH• and four wa-

ter molecules were performed in 6-31G basis in Q-Chem 4.2 package [32]. Calcu-

lations utilizing Koopmans' theorem [33] for all the snapshots were computed at

HF/6-31+G(d) level of theory using GAMESS-US package (v.2014R1) [34, 35]. The

absorption spectra for liquid phase simulations are obtained as averages of spectra

computed for individual snapshots. Gaussians with a full width at half maximum of

3.73 nm were used to broaden the charge transfer excitations to obtain the gaussian

broadened spectra.

1.3 Results and Discussions

To analyze the propensity of the hydroxyl radical to the vacuum-water interface,

the distribution of the number of the water molecules within 6 Å of OH•, correspond-

ing to water molecules included in the QM region, is plotted in a histogram as shown

in Figure 1.3. In several snapshots, the hydroxyl radical is surrounded by only a few

water molecules such that the hydroxyl radical is more exposed to the vacuum than

to the bulk. We refer to these snapshots (n<17) to as hydroxyl radicals in ’gas-phase

region’. In a few other snapshots, the hydroxyl radicals are buried deep within the
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Fig. 1.3. Distribution of snapshots containing OH• in gas-phase, at the
vacuum-water interface, and in bulk water. Top: Representative snap-
shots of hydroxyl radical in gas, surface and bulk phases. van der Waals
representation denotes the hydroxyl radical, thick bonds denote QM wa-
ters and dots denote the positions of EFP atoms of water.

water layer (n>34) and water molecules within the 6 Å sphere are not exposed to the

vacuum layer. Such snapshots are termed as hydroxyl radical in ’bulk region’. It is to

be noted that in the bulk region, the hydroxyl radicals are located at least two layers

of water molecules underneath the surface. The region that lies in between, referred

to as ’surface region’, comprises of structures in which the hydroxyl radicals are par-

tially exposed to the surface, or are not well buried inside the bulk water (18<n<34).

In these snapshots, there are at the most two hydration shells between the air-water

interface and the hydroxyl radical.
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As discussed in detail in Ref. [12], and is well reproduced by a selection of snapshots

for the present study, the hydroxyl radical is preferentially located in the interfacial

region. Indeed, the hydroxyl radical is situated in bulk water in less than 15% of all

the snapshots. In Ref. [12], the surface preference of hydroxyl radical is rationalized

using potential of mean force calculations. In the present work, we do not reinvestigate

the question of surface preference of the hydroxyl radical but rather focus on analysis

of the CT transitions specific to the hydroxyl radical in various water environments.

For computing CT states of the hydroxyl radical solvated by small water clusters

in Ref. [18], we used equation-of-motion coupled cluster method truncated at dou-

ble excitations for ionized potentials (EOM-IP-CCSD). In EOM-IP-CCSD, coupled

cluster equations are solved for a closed-shell anion, i.e., OH−(H2O)n, and ionized

states of the anion, i.e., electronic states of the neutral radical, are computed as

electron-removing excitations in the following step. As a result, the formalism is free

of spin-contamination and provides a balanced description of excited states in radi-

cals. However, it is practically not viable to employ correlated excited state methods

such as EOM-CCSD for computing clusters containing more than a dozen of water

molecules. To circumvent this issue, in the present work we obtain CT excitations in

hydroxyl radical - water droplets using the Koopmans' theorem applied to the anionic

system.

Koopmans' theorem [33] states that the ionization potential (IP) from a given

molecular orbital is equal to the negative of the orbital energy. Then, the excited

state energies in a radical molecule can be estimated as a difference in IPs of the

closed-shell anion. Specifically, excitations to a singly-occupied molecular orbital

(SOMO) of the radical are related to differences in IP from corresponding orbitals of

the anion, i.e., the highest occupied molecular orbital (HOMO) and other occupied

anion’s orbitals n:

Eneutral
n→SOMO ≈ IP anion

n − IP anion
HOMO ≈ −εanionn + εanionHOMO (1.1)
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Fig. 1.4. Hartree-Fock and EOM-IP-CCSD reference orbitals in the hy-
droxyl radical-water system. Note: Orbital energies and ordering are not
to scale.

In case of the OH-water system, n corresponds to a lone-pair orbital of one of

the surrounding water molecules and HOMO is a lone-pair orbital of OH−. Sim-

ilarly, in the EOM-IP-CCSD method, the excited state energies are computed as

differences in the ionization potentials corresponding to removing an electron from

different occupied orbitals. However, in EOM-IP-CCSD, ionized states are correlated

by contributions from other electronic transitions. Thus, Koopmans' theorem can be

considered as a frozen-orbital approximation to EOM-IP methodology for predicting

excited states of radical species.

Graphical representation of electronic states in OH• - (H2O)n cluster is shown in

Fig. 1.4. Thus, the IP excitations from OH− - (H2O)n cluster produce ground and

excited states of hydroxyl radical as well as CT states corresponding to water to OH•

excitations.

Using Koopmans' theorem, oscillator strengths of the excited states in the radical

can be obtained from transition dipole moments µ of involved Hartree-Fock (HF)

orbitals of the anion, i.e.:

µn→HOMO
α =

∫
drψ∗n(r) µ̂α ψHOMO(r) (1.2)

where µα is a projection of the transition dipole moment on a coordinate axis

α = x, y, z. ψn(r) and ψHOMO(r) are the Hartree-Fock orbitals of the anion. The
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oscillator strengths can be obtained from the transition dipole moments using the

following relation [36]:

fL =
2

3
(µn→HOMO

α )2∆E (1.3)

where ∆E = εHOMO − εn is the difference in orbital energies.

Obviously, Koopmans' approximation is only valid for singly-excited states domi-

nated by a single transition, which is the case for CT states in OH•-water systems, as

discussed below. The accuracy of CT excited state energies and oscillator strengths

using Koopmans' theorem (equations 1.1 - 1.3) and EOM-IP-CCSD is compared for

a single snapshot containing 4 water molecules interacting with one hydroxyl radical

(see Fig. 1.5).

The excitation energies and oscillator strengths obtained from Koopmans' theorem

and EOM-IP-CCSD calculations are plotted in 1.5. The first three states of the

system are the electronic states of the hydroxyl radical. They are not shown in

Fig. 1.5, as they are not relevant to this particular study. Out of those states, the

first two correspond to the near-degenerate components of Π state of the hydroxyl

radical and are formally obtained as ionization from one of the two lone pair orbitals

on the hydroxyl anion. The lowest of this pair of states is the ground state of the

system. The third state, corresponding to σ → LP excitation on the OH radical, is

due to ionization from σ orbital. The next eight states correspond to the excitation

of an electron from occupied LP orbitals of water molecules to the singly-occupied

lone-pair orbital of hydroxyl radical, obtained formally as ionization from LP orbitals

of waters. These excitations result in the formation of a positively charged hole

on water molecules, while the hydroxyl radical becomes negatively charged. As each

water molecule possesses two lone-pair orbitals, and four water molecules are included

in the calculation, eight charge-transfer states are observed. CT states originating

from σ-orbitals on waters as well as local electronic excitations on waters are higher

in energy than a manifold of H2OLP →OH•LP CT transitions. As energetically those
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Fig. 1.5. Comparison of excitation energies and oscillator strengths ob-
tained using EOM-IP-CCSD and Koopmans' Theorem (HF).

states fall into UV region dominated by absorption of water, they are less relevant

for atmospheric chemistry and are not discussed in this work.

As follows from Figure 1.5, excitation energies obtained from Koopmans' theorem

overestimate EOM-IP-CCSD energies in most cases but do not differ by more than

0.5 eV. The ordering of the CT states matches in both methods. A good agreement

between the two schemes can be rationalized by the observation that in EOM-IP-

CCSD, all CT states, i.e., ionized states from lone pairs on water molecules are

dominated by a single electron transition with amplitudes greater than 0.95. Thus,

correlation plays a relatively minor role in these CT states and the HF description of

the system is reliable.

Figure 1.5 also shows that the oscillator strengths obtained using HF orbitals are

underestimated in most cases as compared to the oscillator strengths from the EOM-

IP-CCSD method. However, barring a couple of states, oscillator strengths from both

methods show very similar trends. Thus, these results suggest that Koopmans' theo-
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Fig. 1.6. Excitation spectrum of hydroxyl radical in gas phase (green),
surface phase (blue), bulk phase (red), and the combined total excitation
spectrum of hydroxyl radical taken from all snapshots.

rem can be used as a viable alternative to EOM-IP-CCSD for a qualitative assessment

of the nature of the CT states in OH•-water complexes.

Now let’s turn to the analysis of the full system, in which hydroxyl radical is

solvated in a slab of water. Here we use QM/EFP in which the QM subsystem

consists of OH−-water cluster of 6 Å in radius and is described by the HF/6-31+G(d)

method with further application of Koopmans' theorem. Remaining waters (further

than 6 Å from the oxygen of the hydroxyl radical) are described as EFP fragments.

Figure 1.6 depicts the CT band of the absorption spectrum produced as an average

of 94 snapshots selected from the MD trajectory. Additionally, the total spectrum is

separated into contributions from snapshots in which the hydroxyl radical is located

in the gas phase, at the surface, and in the bulk.

The resulting CT spectrum is a broad band extending to 250 nm, with addi-

tional peaks red-shifted to as far as 290 nm. Taking into account that the Koop-

mans' theorem description of excitation energies is blue-shifted with respect to the

EOM-IP-CCSD description, it might be anticipated that, if EOM-IP-CCSD would be
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Fig. 1.7. Hydroxyl radical partially immersed in bulk. Hydroxyl radical
is highlighted in green, while the water molecules within a 6 Å radius are
represented in ball and stick representation. Water molecules beyond the
6 Å radius are represented with thin sticks.

Fig. 1.8. Contribution of surface waters and bulk waters to the CT spec-
trum of hydroxyl radical partially immersed in bulk.
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employed, the overall spectrum could additionally shift to the red by approximately

10-20 nm. As follows from Figure 1.6, the contributions from the gas-phase and bulk

phase hydroxyl radical to the total CT spectrum are lower as compared to the contri-

bution from the hydroxyl radical at the surface. However, this effect is primarily due

to the higher number of snapshots representing the hydroxyl radical in the surface

phase, as against the other two.

The most striking observation in this study is the presence of a few charge-transfer

excitations that extend as far as 290 nm, bordering the near-UV region. Interestingly,

these red-shifted excitations originate from snapshots in which the hydroxyl radical

is buried inside the bulk water.

To understand further the origin of such low-energy transitions, we considered a

representative snapshot (Fig. 1.7) in which a hydroxyl radical is located about two

water shells beneath the surface. The resulting CT spectrum is plotted in (Fig. 1.8).

In this case, we distinguished the contributions of waters in different regions of the

simulation cell. As can be seen in the Fig. 1.7, two water molecules at the surface with

dangling hydrogens are only partially hydrogen-bonded to other water molecules. We

term such water molecules as ’surface waters’. All the other water molecules in the

QM region are referred to as ’bulk waters’.

It can be seen that the surface waters contribute to low-energy region of the CT

spectrum. This is because the lone-pair orbitals on waters that lack stabilization due

to hydrogen bonding are more prone to donate the electron to the hydroxyl radical

than the bulk waters that are fully H-bonded to other water molecules. Thus, the

interplay of H-bond network, along with the position of the hydroxyl radical in the

water slab, seems to play a major role in low-energy CT transitions. Another striking

observation is that such low-energy transitions are intense, even though the initial

and final orbitals are situated far from each other. Thus, our analysis suggests that

distorted H-bonding network at the air-water interface leads to long-range photo-

activated charge transfer in near-UV range.



15

Fig. 1.9. Comparison of small and larger QM regions for hydroxyl radical
in gas phase.

1.3.1 Effect of cutoffs in modeling the system

This section analyzes validity of a selected model system (explicit QM water

droplet of 0.6 nm immersed in a bigger polarizable water droplet described by EFP

waters of the size of MD simulation unit cell) for predicting CT absorption spectrum.

The first test explores effect of diminishing the size of the QM region from 0.6 nm to

0.3 nm (Figs. 1.9 - 1.11 and Table 1.1). The second set of calculations tests how

description of classical waters (polarizable EFP waters versus non-polarizable waters

versus no waters) influences the CT spectrum (Fig. 1.12 - 1.14 and Table 1.2). For

both tests, we selected one snapshot from each gas phase, surface phase and bulk

phase subsets and conducted comparisons of produced CT spectra.

The biggest deviation in spectra is observed for the case of OH radical in bulk

water, where the intense peak at around 200 nm is present only in the spectrum with

larger QM region. The reason is that this peak is due to a transition from a water

molecule that is about 0.5 nm away from the midpoint of the hydroxyl radical. Hence,

it is essential to include a large shell of water into QM simulations in order to account

for long-range CT excitations.
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Fig. 1.10. Comparison of small and larger QM regions for hydroxyl radical
in surface phase.

Fig. 1.11. Comparison of small and larger QM regions for hydroxyl radical
in bulk phase.
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Table 1.1.
Comparison of CT transitions in surface phase hydroxyl radical

Surface Phase simulations

Peak in 0.3 nm cutoff (nm) Peak in 0.6 nm cutoff (nm)

248.7 260.0

221.0 221.0

180.1 194.7

158.9 162.8

119.8 119.8

112.7 107.4
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Fig. 1.12. Comparison of different levels of embedding for hydroxyl radical
in gas phase.

1.3.2 Comparison between polarizable embedding and electrostatic em-

bedding treatments

Figs. 1.12 - 1.14 compare spectra in which water environment is described at

different levels of embedding, i.e, polarizable embedding (with QM/EFP model),

electrostatic embedding (with QM/EFP electrostatic part only) and no embedding.

The lack of description of the water environment in no-embedding model produces

prominent red shifts in the CT excitations. This is particularly noticeable in the case

of the gas phase spectrum, where the first CT transition is red-shifted by over 15

nm. It can also be seen that the lack of polarization can also cause a red-shift to

the tune of about 15 nm, even though the discrepancies between spectra computed

with electrostatic and polarizable embeddings are modest. Overall, hydroxyl radical

in bulk phase produces the most complex spectra with varying effects of polarizable

embedding on different excitations.
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Fig. 1.13. Comparison of different levels of embedding for hydroxyl radical
in surface phase.

Fig. 1.14. Comparison of different levels of embedding for hydroxyl radical
in bulk phase.
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Table 1.2.
Comparison of different embedding levels in gas phase hydroxyl radical
CT spectrum

Gas Phase Simulations

QM/EFP (elec+pol) QM/EFP (elec) QM (no embedding)

201.6 217.9 275.6

178.7 182.3 213.8

161.7 168.2 174.0

154.1 156.2 170.7

152.0 155.1 163.4

151.5 148.1 150.0
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Fig. 1.15. Pz orbital of water hemibonded to hydroxyl radical in bulk

1.3.3 Contribution of hemibonded waters

Hemibonding can be qualitatively defined as the interaction due to a 2-center 3-

electron partial bond of the singly occupied pi-orbital of the hydroxyl radical and the

lone pair orbital of water [37]. Hemibonded complexes of hydroxyl radical and water

have been studied extensively [13, 37], and we probe the contribution of such hemi-

bonded waters to the total electronic spectrum obtained via QM/EFP simulations.

While hemibonded structures of water-hydroxyl radical clusters do not correspond to

global minimum geometries, they produce one of the numerous possible local min-

ima conformations. The occurrence and extent of hemibonding are largely dependent

on the applied computational method (correlated wave function methods vs DFT vs

classical force fields) [38, 39]. While hemibonded structures occur rarely along MD

trajectory, we selected two such snapshots for spectral analysis (see Figs. 1.15 and

1.16.

One interesting observation from the hydroxyl radical in bulk is the following:

while the hydroxyl radical is directly hydrogen bonded to two other water molecules,

the lowest CT excitation originates from the hemibonded water, although the intensity
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Fig. 1.16. Pz orbital of water hemibonded to hydroxyl radical on surface

Fig. 1.17. CT spectrum of one snapshot of hydroxyl radical in bulk water
(54 water molecules).
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Fig. 1.18. CT spectrum of one snapshot of hydroxyl radical in surface
water (29 water molecules).
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is fairly weak. On the other hand, with respect to the surface hydroxyl radical(Fig.

1.16), the lowest CT excitation originates from a directly hydrogen bonded water,

although the hemibonded water contributes to a very strong CT excitation pretty

close to the lowest CT excitation. Hence, with the limited number of snapshots

available, we can still deduce the low-lying and bright nature of CT states originating

from hemibonded waters. However, based on our analysis, CT excitations due to

hemiboned waters are found below 240 nm range and thus do not contribute to the

most red-shifted feature of the CT spectrum.

1.4 Conclusions

The question of how a single hydroxyl radical interacts with large water molecule

clusters is addressed here. Earlier MD simulations have given insights on the prefer-

ence of hydroxyl radicals in water. We have extended this study further to understand

the long-range charge transfer behavior of large clusters. We have made use of Koop-

mans' theorem to model the CT excitations of water molecules on hydroxyl radicals.

The CT contributions to gas-phase, surface and bulk hydroxyl radicals were differ-

entiated and studied in detail. We believe that the hydroxyl radical situated in bulk

is involved in a few bright CT excitations that are red shifted by about 30 nm as

compared to hydroxyl radicals situated in the surface and in the bulk. This leads

to the total CT spectrum of the hydroxyl radicals to be red-shifted very close to the

near-UV region of the spectrum. To further understand the role of water molecules,

we probed a single snapshot of hydroxyl radical immersed in the bulk. In this case,

we were able to distinguish the contributions of surface waters against the bulk wa-

ters. The surface waters contributed to a few bright CT transitions that were lower

in energy in comparison to the other CT excitations from the bulk water. We believe

that the roles of hydroxyl radical dissolved in bulk water and water molecules present

at the surface have a very interesting photochemical behavior that could be involved

in numerous atmospheric processes.
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2. DEVELOPMENT OF MACROMOLECULAR FORCE

FIELD (MEFP) AND APPLICATION TO SIMULATION

OF EXCITED STATES

The following chapter is published in a peer reviewed journal.

DOI: 10.1021/acs.jpcb.6b04166

The Effective Fragment Potential (EFP) approach, which can be described as a

non-empirical polarizable force field, affords an accurate first-principles treatment of

non-covalent interactions in extended systems. EFP can also describe the effect of

the environment on the electronic properties (e.g., electronic excitation energies, ion-

ization and electron-attachment energies) of the subsystem via the QM/EFP (quan-

tum mechanics/EFP) polarizable embedding scheme. The original formulation of the

method assumes that the system can be separated, without breaking covalent bonds,

into closed-shell fragments, such as solvent and solute molecules. Here we present

an extension of the EFP method to macromolecules (mEFP). Several schemes for

breaking a large molecule into small fragments described by EFP are presented and

benchmarked. We focus on the electronic properties of molecules embedded into a

protein environment and consider ionization, electron-attachment, and excitation en-

ergies (single-point calculations only). The model systems include chromophores of

green and red fluorescent proteins surrounded by several nearby amino-acid residues

and phenolate bound to the T4 lysozyme. All mEFP schemes show robust per-

formance and accurately reproduce the reference full QM calculations. For further

applications of mEFP we recommend either the scheme in which the peptide is cut

along the Cα-C bond giving rise to one fragment per amino-acid, or the scheme with

two cuts per amino-acid, along Cα-C and Cα-N bonds. When using these fragmen-

tation schemes, the errors in solvatochromic shifts in electronic energy differences
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(excitation, ionization, electron detachment, or electron attachment) do not exceed

0.1 eV. The largest error of QM/mEFP against QM/EFP (no fragmentation of the

EFP part) is 0.06 eV (in most cases, the errors are 0.01-0.02 eV). The errors in the

QM/MM calculations with standard point charges can be as large as 0.3 eV.

2.1 Introduction

Electronic processes in complex environments are at the heart of numerous phe-

nomena of fundamental and societal importance, such as catalysis, solar energy har-

vesting, and photovoltaics. Predictive computational modeling is instrumental for

advancing our mechanistic understanding of the redox and photo-induced processes

in condensed phase; it requires a combination of quantum mechanical methods and an

appropriate description of the environment (solvent, protein, molecular solids, etc).

The effect of the environment is multifaceted. First, it spatially confines the reacting

species: for example, the protein matrix controls the structures of reaction centers in

enzymes and restricts the range of motions of chromophores in photoactive proteins.

Second, the environment serves as a thermal bath. Third, the environment often

strongly perturbs the electronic structure of the system by local and long-range elec-

tric fields. Preferential stabilization of some electronic states relative to others leads

to solvatochromism, solvent-induced shifts of electronic excitation energies, which

can be as large as 1 eV [40, 41]. The effect on ionization/electron attachment ener-

gies (quantities determining the redox potentials) is even more pronounced — shifts

of several electron-volt in polar solvents and in proteins are rather common [42–44].

Fourth, the environment itself can be perturbed by the solute: the changes in elec-

tronic structure of an active center (for example, ionization) induce both structural

and electronic response of the solvent. In sum, even when the electronic processes are

confined to a well defined domain (such as, for example, solvated or protein-bound

chromophores), electronic interactions between the solute and the solvent need to be

carefully accounted for.
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Of course, full quantum mechanical (QM) treatment of the entire solvent-solute

system would correctly describe these effects. However, such brute-force approach is

impractical due to a steep computational scaling of electronic-structure methods [45].

For example, robust and reliable equation-of-motion coupled-cluster methods [46,47]

with single and double substitutions (EOM-CCSD) can only be applied for moderate-

size systems (20-30 heavy atoms), even when combined with efficient parallelization

and other algorithmic enhancements [48,49]. Low-cost time-dependent density func-

tional (TD-DFT) and scaled-opposite-spin configuration interaction singles with dou-

bles correction, SOS-CIS(D), methods [50–52] can treat considerably larger systems

(a hundred of heavy atoms), but not sufficiently large to model, for example, bulk

solvation or an entire protein.

To overcome this hurdle, one can employ a more approximate description of the

environment while treating the solute quantum mechanically. Several strategies of

various degree of sophistication have been developed towards this end. The simplest

one is to describe the solvent by a polarizable continuum model. Multiple flavors

of these methods exists [53–55]; some have been shown to be capable of capturing

solvatochromic effects [56] and yielding reasonably accurate redox potentials [57] in

aqueous solutions. However, the description of specific solvent-solute interactions

(such as hydrogen bonding) and inhomogeneous environments (such as proteins and

interfaces) are beyond the reach of these models because of their implicit solvent na-

ture. Thus, explicit solvent models, which are based on more detailed representation

of the solvent, are needed to tackle proteins, interfaces, and complex molecular solids.

A popular QM/MM approach [58–61] allows one to combine an arbitrary complex

QM treatment of the solute (reaction center) with an atomistic description of the

environment. The most common variants of QM/MM use standard (non-polarizable)

force fields in which charges on the MM atoms are fixed. Thus, electronic interactions

between the QM and MM parts are described as perturbation of the QM part by

the (fixed) electrostatic field of the environment. The electronic response of the

environment to the changes in electronic structure of the solute is neglected, which
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may introduce undesirable errors in relative state energies. Moreover, the charges

used in these force fields are known to be too large (to compensate for the lack of

polarization); this can lead, for example, to overestimation of reorganization energies

in electron-transfer calculations [62]. Finally, an empirical nature of the MM force-

fields limits their predictive power.

Effective Fragment Potential (EFP) approach [63–70] has been developed with

an aim to address these limitations of QM/MM. EFP is based on a rigorous rep-

resentation of different components of inter-molecular interactions (electrostatics,

polarization, dispersion, exchange-repulsion and optional charge-transfer) based on

perturbative expansion; it can be described as a non-empirical parameter-free polar-

izable force-field. In QM/EFP, the interactions between the QM and EFP subsystems

include both electrostatics and mutual polarization. The extension of EFP to elec-

tronically excited and ionized states [42, 71–73] includes polarization response of the

EFP environment to changes in the electronic distribution of the solute. The existing

implementations allow one to combine EFP with many popular electronic structure

methods including CC, EOM-CC, TD-DFT, CIS(D), and SOS-CIS(D).

EFP is similar to polarizable embedding (PE) approach [74–77]. The description

of electrostatics and polarization is nearly identical in EFP and PE; however, EFP

features more rigorous treatment of dispersion and exchange-repulsion. For modeling

intermolecular interactions, similar strategies based on multipolar expansion have

been utilized [78–80]. Detailed reviews of various flavors of fragment-based methods

can be found in Refs. 81,82.

The original formulation of the EFP method assumes that the system can be

separated, without breaking covalent bonds, into closed-shell rigid fragments, such

as solvent and solute molecules. In order to extend EFP to macromolecules, one

needs to figure out how to break large molecules into fragments that could then be

described by EFP. A similar problem often arises in traditional QM/MM calculations

when one needs to separate the QM part from the rest of the system by breaking

covalent bonds. These broken bonds need to be saturated (or capped) for subsequent
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calculations. Various approaches including hydrogen atom caps and frozen molecu-

lar orbitals have been developed [59, 83–86]. In the context of fragmentation-based

methods [82], schemes such as link atoms, molecular tailoring approach (MTA) [87]

and molecular fractionation with conjugate caps (MFCC) [88–90] have been used.

Flexible EFP schemes have also been proposed [91–94].

In this work, we break the protein into amino-acid fragments capped by hydrogen

link atoms [83]. We benchmark several schemes of breaking a macromolecule into the

effective fragments: breaking (i) along the peptide bond, (ii) along either the Cα-C

or Cα-N bonds, or (iii) along both the Cα-C and Cα-N bonds.

We focus on the electronic effects (such as excitation, ionization, and electron-

attachment energies) of molecules embedded in the protein matrix. Our goal here

is to enable single-point calculations of electronic properties and energy differences

rather than structure optimization. The test cases include excitation, ionization, and

electron-attachment energies of common chromophores in the presence of a protein

backbone.

The structure of the paper is as follows. The next section presents a brief overview

of the EFP scheme and then introduces different approaches for splitting macro-

molecules into effective fragments. Computational details are given in Sec. 2.3. Sec.

2.4 presents the results of benchmark calculations and discusses relative merit of

different fragmentation schemes. Our concluding remarks are given in Sec. 2.5.

2.2 Methodology

2.2.1 Effective Fragment Potential scheme: QM-EFP interactions

The EFP method [63–70] describes non-covalent interactions by using perturba-

tion theory starting from the non-interacting (unperturbed) fragments. The total

interaction energy (EEFP−EFP) between the effective fragments is decomposed into
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four contributions: electrostatic (Eelec), polarization (Epol), dispersion (Edisp), and

exchange-repulsion (Eexrep):

EEFP−EFP = Eelec + Epol + Edisp + Eexrep. (2.1)

The interactions between the QM part and the effective fragments are computed by

the polarization embedding approach in which the Coulomb and polarization parts

of the EFP sub-system contribute to the quantum Hamiltonian (H) via one-electron

terms:

Ĥ = Ĥ0 +
〈
p
∣∣∣V̂ Coul + V̂ pol

∣∣∣ q〉 p†q, (2.2)

where H0 is an unperturbed Hamiltonian of the QM part, V̂ Coul and V̂ pol are elec-

trostatic and polarization perturbations and |p〉, |q〉 are the atomic orbitals in the

QM part. The electrostatic and polarization terms are the most important ones,

as far as the effect of the EFP environment on the electronic properties of the QM

solute are concerned. In the discussion below, we focus on these terms; the com-

plete details of our EFP implementation including the treatment of dispersion and

exchange-repulsion contributions can be found in Refs. 66,67,69,70.

Both terms represent classic electrostatic interactions; V̂ Coul is a Coulomb po-

tential due to the fragments’ nuclear charges and their electron density represented

by the multipole expansion, whereas V̂ pol describes electrostatic field due to the in-

duced dipoles (thus, it depends on the polarizabilities of the fragments). The induced

dipoles are found by an iterative self-consistent procedure, such that the converged

dipoles are fully consistent with each other and with the electronic wave function of

the QM part.

Neglecting the dispersion and exchange-repulsion contribution terms, the total

ground-state (or, more precisely, reference-state) energy of the QM/EFP system is:

E
QM/EFP
ref = 〈Φref |Ĥ0 + V̂ Coul + V̂ pol

ref |Φref〉+ ECoul + Epol,ref , (2.3)

where Φref is the reference-state wave function, V̂ Coul and V̂ pol
ref are Coulomb and

polarization EFP contributions to the Hamiltonian. Subscript ref indicates that the
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induced dipoles correspond to the electronic density of the reference state, i.e., ground

electronic state in excited-state calculations, a closed-shell neutral state in the EOM-

IP calculations of radical-cations, etc. ECoul is the electrostatic fragment-fragment

interaction energy and Epol,ref is the self-consistent reference-state polarization energy

of the QM/EFP system; it is computed using converged induced dipoles of the frag-

ments and the fields due to the static fragment multipoles and the nuclei and electrons

of the quantum region. Note that the polarization contributions appear both in the

quantum Hamiltonian through V̂ pol and in the EFP energy as Epol,ref ; this is because

self-consistency precludes the separation of the QM-EFP and EFP-EFP polarization

contributions [63].

Electrostatics is the leading term in the total interaction energy in hydrogen-

bonded and polar systems. ECoul between the effective fragments consists of charge

- charge, charge - dipole, charge - quadrupole, charge - octupole, dipole - dipole,

dipole - quadrupole, quadrupole - quadrupole terms. At close separation between

the fragments (or between a fragment and the QM region), the charge penetration

may become significant; to correct classical multipoles for possible charge-penetration,

several types of damping functions can be used [95]. Here we employ an exponential

damping in which the charge-charge interaction energy is damped using the following

equation [96]:

f ch−chkl = 1− b2

b2 − a2
exp (−arkl)−

a2

a2 − b2
exp (−brkl), (2.4)

where rkl is the distance between multipole points k and l and damping parameters

a and b are for the multipole points k and l.

For the QM-EFP interactions, the electrostatic potential of the molecule (QM

part) at point x is expressed by the multipole expansion around k points located at

the atomic centers and bond midpoints:

V Coul
k (x) = qkT (rkx)−

x,y,z∑
a

µkaTa(rkx) +
1

3

x,y,z∑
a,b

Θk
a,bTa,b(rkx)−

1

15

x,y,z∑
a,b,c

Ωk
a,b,cTa,b,c(rkx),

(2.5)
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where q, µ, Θ and Ω are the net charge, dipole, quadrupole and octupole located at k

points, respectively. T are the electrostatic tensors of ranks zero to three. Interaction

of the QM electronic density with multipole charges are also augmented by gaussian-

type damping function, such that Eq. (2.5) becomes

V Coul
k (x) = (qnuck + qelek (1− exp (−αkr2kx))T (rkx)−

x,y,z∑
a

µkaTa(rkx)

+
1

3

x,y,z∑
a,b

Θk
a,bTa,b(rkx)−

1

15

x,y,z∑
a,b,c

Ωk
a,b,cTa,b,c(rkx) (2.6)

where qnuck is the nuclear charge and qelek is the electronic charge on multipole point k,

respectively. Thus, only the electronic charges are damped (smeared) by gaussians.

Damping parameters a, b, and α in Eqns. (2.4) and (2.6) are determined by mini-

mizing the difference between the electrostatic potentials from the damped multipole

expansion and the electronic wave function in the parameter-generating calculation

for each fragment.

Polarization is a many-body term, which is computed self-consistently because the

induced dipoles of one fragment depend on the static electric field and on the induced

dipoles of other fragments. Polarization energy of the QM-EFP system is computed

as

Epol,ref =
1

2

∑
k

(−µk(Fmult,k + F nuc,k) + µ̃kF ai,k), (2.7)

where µkand µ̃k are the induced and conjugated induced dipoles at the distributed

point, k (at the centers of the localized molecular orbitals); Fmult,k is the external

field due to the static multipoles and nuclei of other fragments; F nuc,k and F ai,k are

the fields due to the nuclei and electrons of the QM region (F ai,k is computed using

the reference-state density). The induced dipole at each polarizability point k is given

by

µk =
∑
k

αk(Fmult,k + F ind,k + F nuc,k + F ai,k), (2.8)

where F ind,k is the field due to other induced dipoles. The many-body contribution

is solved iteratively, as the induced dipole on a particular fragment depends on the
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values of the induced dipoles of all other fragments and the wave function of the QM

region. The distributed polarizabilities (αk) are located at the centers of the localized

molecular orbitals (LMO).

In order to avoid polarization collapse when effective fragments approach each

other (which is always the case in macromolecules, see below), the polarization damp-

ing functions are applied to the electric fields produced by multipoles and induced

dipoles in Eqns. (2.7) and (2.8): [95]

fpolkl = 1− exp (−
√
ckdlr

2
kl)(1 +

√
ckdlr

2
kl), (2.9)

where ck and dl are the damping parameters on polarizability points k and l, re-

spectively. The default values of the polarization damping parameters are 0.6 for

non-covalent neutral fragments and 0.1 for small anions and cations such as halide

and alkali ions. Appropriate values of the polarization damping parameters are ex-

plored in Sec. 2.4.

2.2.2 Breaking macromolecules into fragments

In its original formulation, the EFP method cannot be applied to macromolecules

such as biopolymers, peptides, proteins, lipids, or DNA, because it was designed as a

rigid-fragment model for treating interactions between (small) molecules in clusters

and liquids. The building block of EFP (the so called “fragment”) is a molecule rather

than an atom (as typical in classical force-fields). The EFP scheme does not include

covalent interactions between the fragments.

In order to enable conformational flexibility of macromolecules while keeping the

calculations affordable, the polymer chain should be split into small effective frag-

ments and the parameters for each of these fragments need to be generated. We

prepare the parameters for individual fragments using the following procedure. First,

we saturate the dangling bonds of each fragment using a capping group, to obtain

well-behaved closed-shell structures. In this work, we use hydrogens as the capping

groups. Once the parameters for the capped closed-shell molecule are generated, we
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remove the capping groups and the associated parameters (multipoles and polariz-

abilities) from the fragment. This scheme enables calculation of the electrostatic and

polarization energies in the macromolecule represented by effective fragments as well

as electrostatic polarizable embedding using QM/EFP. The specific details of the ap-

plication of this scheme to polypeptides (such as positions of the cuts) are discussed

below. Schemes for other macromolecules will be developed in future work, using

similar strategies.

There are different ways to break macromolecules such as proteins or DNA into

fragments, depending on the position of the cut between two covalently bound residues

[97]. For polypeptides, we consider the following cutting schemes (shown in Fig. 2.1):

• cutting along the peptide link;

• cutting along the Cα-C bonds;

• cutting along the Cα-N bonds;

• cutting along both the Cα-C and Cα-N bonds.

In the first three schemes, each fragment consists of a single amino-acid, whereas the

last one yields two fragments per amino-acid, one fragment containing the peptide

group and another containing the residue, see Fig. 2.1.

The advantage of fractioning the protein along the peptide bond is that it yields

“symmetric” fragments. However, in this scheme highly polarized bonds are broken,

which may lead to unphysical multipole and polarizability values. One may expect

that the fragments obtained by cutting either the Cα-C or Cα-N bonds produce a more

accurate representation of multipoles and polarizabilities near the cuts. Furthermore,

smaller fragments and cutting both the Cα-C and Cα-N bonds will aid future ex-

tension of this scheme to dynamics, as this scheme ensures flexibility along the two

most important degrees of freedom in proteins, dihedral φ and ψ angles defining the

conformation.

In all schemes, the capped fragments mimic the protein; however the neighboring

fragments have duplicated points (overlapping area) due to the hydrogen caps. The
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peptide bond, C-N Cα-C bond 

Cα-N bond Cα-C and Cα-N bond 

Fig. 2.1. Various cutting schemes for polypeptides.

multipole expansion points and polarizability expansion points are extended on each

isolated capped fragment by the standard procedure (see Section 2.3) and the mul-

tipoles and polarizabilities at the duplicated expansion points are removed. In order

to maintain the net integer charge on each fragment, the monopole expansion of each

cap is redistributed to the nearest atom [98]. This method is called Expand-Remove-

Redistribute (ERR, see Figure 2.2). Polarizability points located through the ’cut’

bonds are removed to avoid over-polarization of the neighboring fragments.

We have implemented the mEFP approach in libefp [69], which is interfaced with

the Q-Chem package [99,100].

2.3 Computational details

The benchmark set was chosen with the focus on electronic properties. In partic-

ular, we consider the effect of the protein scaffold on the electronically excited states

of chromophores and on their redox properties. We first quantify the effect of the

protein environment by comparing the properties of the bare chromophores (small

QM) with the full QM calculations. We then test different fragmentation strate-
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Fig. 2.2. The Expand-Remove-Redistribute procedure (ERR) for gener-
ating parameters of the effective fragments in a macromolecule.

gies and compare the results of QM/mEFP against full QM calculations and against

QM/EFP (when no breaking along covalent bonds in the EFP part is performend).

Finally, we consider QM/MM calculations with fixed point charges using standard

force-fields [101,102].

While setting up such benchmark calculations, one should keep in mind several

important points. The QM/MM and QM/mEFP calculations can only be compared

with the full QM calculation when the target electronic properties can be described

as the electronic properties of the QM region perturbed by the environment. In the

calculations of electronically excited states, that means that one should only consider

the states in which both the initial and the target molecular orbitals are confined

within the QM part. In calculations of ionization or electron attachment energies,

the spin density of the target state needs to be localized in the QM region. Within

Koopmans theorem, the HOMO (highest occupied molecular orbital) of the initial

state is representative of the density of the unpaired electron; however, we found sev-

eral examples where the shape of the HOMO is quite different from the spin-density

of the ionized/electron detached state. Since spin density represents the actual shape

of the hole (or the unpaired electron), one needs to always consider spin density,
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whereas the shape of the HOMO is only relevant for accessing the validity of Koop-

mans’ description of ionization. In a similar vein, one should consider spin density

when analyzing electron-attached states. In addition to the above consideration, one

should also assess whether the states in question are bound or unbound with respect

to electron ejection. This is particularly relevant for electron-attached states and

excited states of anionic systems.

The following model systems were used in the benchmark calculations:

1. GFP chromophore in its anionic (deprotonated) and neutral forms surrounded

by four nearby amino-acid residues (Fig. 2.3);

2. The anionic form of the mPlum chromophore with nearby amino-acids and one

water molecule (Fig. 2.3);

3. A phenolate molecule with four amino-acids from the T4 lysozyme M102E/L99A

mutant (Fig. 2.4).

GFP model systems. We constructed the model system as follows. We begin

from the X-ray structure of enhanced GFP (pdb id:1EMA). We added hydrogens

following the protonation states determined in Ref. 103. We then optimized the

structure using CHARMM27 force-field [101]. The parameters of the chromophore

are from Ref. 102. From the optimized structure, we extracted the model system

comprising the chromophore and four other amino-acid residues, VAL93, GLN94,

GLU95, and ARG96. Since these residues constitute a single sequence, we only

capped α-carbons of VAL93 and ARG96 (these capping hydrogens were not included

in the MM point charges in the QM/MM calculations). Also, two capping hydrogens

were added to the chromophore.

We constructed two model systems, one with the anionic (deprotonated) chro-

mophore, and another with the neutral chromophore. In the model system with the

anionic chromophore, GLU95 is deprotonated and ARG96 is protonated. The total

charge of the model system is -1 (negatively charged chromophore and GLU95, and

positively charged ARG96). The model structure is shown in Fig. 2.3.
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The model system with the neutral GFP chromophore was prepared following

the same protocol, except that GLU95 was protonated (this is necessary for finite-

cluster calculations to suppress the ionization and electronic excitation from the MO

localized on GLU95). The total charge of the the model system with the neutral GFP

chromophore is +1.

In small QM, QM/MM, and QM/EFP calculations, only the chromophore con-

stitutes the QM part. Vertical detachment and ionization energies (VDEs and VIEs,

respectively) and were calculated with ωB97X-D/aug-cc-pVDZ. We note that using

range-separated functional is important for these charged systems. Vertical excita-

tion energies were computed with SOS-CIS(D)/aug-cc-pVDZ. To investigate basis-set

effects, we also performed calculations with a smaller basis set, 6-31G(d).

mPlum model system. The mPlum model system features a larger anionic

chromophore, so one can assess whether the effect of the environment depends on the

extent of π-conjugation in the chromophore. The system was constructed from the

PDB ID:2QLG structure of mPlum following the protocol from Ref. 104. The model

system was extracted from the QM/MM optimized structure (as described in Ref.

104). The model system comprises the extended conjugated anionic chromophore

along with three amino-acids (ARG88-VAL89-MET90) and one water molecule. The

total charge of the system is zero. We rearranged the water molecule to facilitate

hydrogen bonding between phenolate’s oxygen of the chromophore and water (this

makes the radical-dianion state bound with respect to electron detachment). ARG89

and MET90 were capped with H-atoms at Cα.

In small QM, QM/MM, and QM/EFP calculations, only the chromophore con-

stitutes the QM part. VDE and excitation energies were calculated using the same

methods as in the GFP model systems, and the attachment (VEA) energies were

computed using ωB97X-D/aug-cc-pVDZ.

T4 lysozyme model system. The model system consists of the tyrosine residue

in an apolar cavity in the T4 lysozyme [105]. The following residues were retained
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from the crystal structure (3GUO): phenolate, ALA99, ILE100, GLU102 (protonated

at the side chain) and VAL103. We choose phenolate rather than phenol to ensure

the spin density to be localized in the QM region (phenolate). ALA99 and VAL103

were capped with hydrogens at the peptide bond (C-N). Hydrogen positions were

optimized by ωB97X-D/6-31+G(d). All residues except for the phenolate are neutral;

the total charge of the model system is -1. In small QM, QM/MM, and QM/EFP

calculations, only the phenolate constitutes the QM part. We computed VDE using

ωB97X-D/aug-cc-pVDZ.

Fig. 2.3. Left: Protonated GFP chromophore and the VAL93, GLN94,
GLU95, and ARG96 terapeptide string; GLU95 is protonated. The struc-
ture of the model system with the anionic chromophore is the same. Right:
Model mPlum system with a deprotonated extended chromophore. The
protein is represented by the ARG88, VAL89, and MET90 tripeptide
string and one water molecule.

2.3.1 QM/MM and QM/mEFP calculations

The EFP parameters for the peptide residues were prepared following the proce-

dure outlined in Sec. 2.2.2. In addition to the four fragmentation schemes described

above, we also considered the super-fragment scheme in which all covalently linked

peptides constitute a single EFP fragment. That is, in the GFP and mPlum model
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Fig. 2.4. Phenolate embedded into the apolar cavity consisting of four
amino-acids in the T4 lysozyme.

systems, all residues form one super-fragment; in the T4 lysozyme model system,

there are two super-fragments.

The EFP parameters for each isolated capped residue and super-fragments have

been generated using the MAKEFP job (RUNTYP=MAKEFP) of the GAMESS program

[106]. Only the parameters responsible for electrostatic and polarization (multipoles

expansion, damping parameters and static polarizabilities) were computed at the

Hartree-Fock level of theory and with the 6-31G(d) basis set. The 6-311++G(3df,2p)

basis set is usually recommended for computing polarization, dispersion and exchange-

repulsion terms.

Exponential electrostatic damping of charges (SCREEN2) is employed between

the fragments [95]; gaussian-type damping of charges (SCREEN) is used to miti-

gate the charge-penetration errors in the QM-EFP interactions [64]. Gaussian-type

polarization damping controlled by a damping parameter is employed between the

fragments, but not between the QM and EFP regions [95]. Effects of electrostatic

screening and polarization damping on the QM/EFP energies is discussed below. The
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(a) Neutral radical-anion state of deproto-

nated GFP chromophore

(b) Radical-cation state of neutral GFP

chromophore

(c) Neutral radical state of mPlum chro-

mophore

(d) Radical-anion state of mPlum chro-

mophore

(e) Neutral radical state of phe-

nolate in T4 lysozyme

Fig. 2.5. Spin densities of open-shell states for four model systems. In all
cases, the spin density is localized on the residue of interest constituting
the QM part.
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QM region is described at the same level of theory as in the full QM and QM/MM

calculations.

QM/MM calculations. In the QM/MM calculations, we tested three different

schemes. Following the same strategy as in QM/mEFP, we do not include the capping

H-atom in the MM part. We use CHARMM’s force-field parameters for the MM point

charges [101]. This creates an additional charge (e.g., +0.16 in the neutral GFP model

system) in the MM part, making the total charge of the MM subsystem non-integer.

There are several ways to handle this artifact of QM/MM. For example, we can add

an extra -0.16 charge to the next atom (Cα in our case), or we can distribute that

extra charge over the same residue. In QM/mEFP, the charge is added to the next

carbon (see Fig. 2.1). We compared these two schemes and the QM/MM calculations

with non-integer charges for protonated GFP model system:

1. QM/MM; scheme1: charge distributed over all atoms of the entire residue.

2. QM/MM; scheme2: charge added to the next atom.

3. QM/MM; scheme3: no re-distribution of charge; non-integer total MM charge.

Table 2.1 shows that all QM/MM calculations overestimate VDEs relative to full

QM. Importantly, scheme1 and scheme2 produce very similar IEs, which indicates

that IEs are not very sensitive to the details of charge redistribution, as long as the

total charge is conserved. Since QM/mEFP uses the protocol similar to scheme2, in

all QM/MM calculations reported below we employed scheme2.

2.4 Results

2.4.1 Electronic properties of model GFP chromophores

Table 2.2 summarizes the results for the GFP model system with the anionic chro-

mophore. The VDE of the bare chromophore is 2.70 eV. The environment strongly

stabilizes the anionic chromophore leading to the significant blue shift (1.65 eV) in
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Table 2.1.
Verticle ionization energies (VDEs) of the neutral GFP chromophore
surrounded by four nearby amino-acid residues computed with ωB97X-
D/aug-cc-pVDZ using three different QM/MM schemes.

Calculation VDE, eV Koopmans IP (DFT), eV

Full QM 9.887 10.095

scheme1 9.953 10.095

scheme2 9.943 10.068

scheme3 10.104 10.231

Table 2.2.
Electronic properties of the anionic GFP chromophore surrounded by four
nearby amino-acid residues.

Calculation VDE, eV Eex, eV (fL)

Small QM 2.70 2.76 (0.94)

Full QM 4.35 2.56 (1.52)

QM/MM 4.39 2.57 (1.45)

QM/EFP: superfragment 4.39 2.60 (1.45)

QM/mEFP: Cα-C 4.39 2.60 (1.45)

QM/mEFP: Cα-N 4.37 2.60 (1.45)

QM/mEFP: C-N 4.38 2.60 (1.45)

QM/mEFP: Cα-C and Cα-N 4.38 2.60 (1.45)

VDEs computed using ωB97X-D/aug-cc-pVDZ. Excitation energies computed with

SOS-CIS(D)/aug-cc-pVDZ; fl computed at the CIS level. The lowest bright state is

shown (see text).

VDE. The VDE value in the full QM calculation is 4.35 eV. As illustrated in Fig. 2.5,

the spin density in the full QM calculations is localized on the chromophore, which

means that QM/MM and QM/mEFP calculations with the QM part comprising the
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Table 2.3.
Electronic properties of the neutral GFP chromophore surrounded by four
nearby amino-acid residues.

Calculation VIE, eV Eex, eV (fL)

Small QM 7.40 3.80 (1.05)

Full QM 9.89 3.56 (1.09)

QM/MM 9.94 3.58 (1.08)

QM/EFP: superfragment 9.90 3.55 (1.03)

QM/mEFP: Cα-C 9.91 3.55 (1.03)

QM/mEFP: Cα-N 10.03 3.54 (1.04)

QM/mEFP: C-N 9.92 3.55 (1.03)

QM/mEFP: Cα-C and Cα-N 9.89 3.55 (1.04)

VIEs computed using ωB97X-D/aug-cc-pVDZ. Excitation energies computed with

SOS-CIS(D)/aug-cc-pVDZ; fL computed at the CIS level. The lowest bright state is

shown (see text).

chromophore can be directly compared to the full QM and small QM calculations.

The QM/MM calculations capture the effect of the stabilization of the anionic chro-

mophore reasonably well, yielding VDE of 4.39 eV, which is blue-shifted relative to

the full QM value by 0.04 eV. Similarly to QM/MM, the QM/mEFP and QM/EFP

VDEs and excitation energies are within 0.02-0.04 eV from the the full QM results.

Importantly, neither detachment nor excitation energies are sensitive to the choice of

the mEFP fragmentation schemes.

The analysis of the excited-state calculations requires care. There are several

types of excited states of chromophores in condensed phase [43,107–109]: (i) local ex-

citations in which both the electron and the hole are confined to the chromophore; (ii)

charge-transfer states in which the electron is transferred between the chromophore

and another neighboring group [108, 109]; (iii) charge-transfer-to-solvent states in

which the electron is transferred from the chromophore to a cavity forming states
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resembling solvated electrons [110, 111] (in finite clusters, one often observes surface

states in which the target orbital corresponds to an electron on the surface). In ad-

dition to these physical states, one should also be aware of pseudo-continuum states

corresponding to the electron detached from the system. In CIS calculations, these

artificial states will appear above the Koopmans IE/DE when the basis is sufficiently

diffuse [112, 113]; they may spoil the description of the bright states that lie above

the Koopmans onset.

Obviously, in the QM/MM and QM/EFP calculations with the QM part com-

prising the chromophore alone, only local excitations corresponding to bound excited

states can be described correctly. Thus, it is important to carefully analyze the char-

acter of the states in such calculations. Here we focus on the bright ππ∗ state of the

chromophore, which can be easily identified by its large oscillator strength and by

inspecting the target MO.

The Koopmans IE of the isolated anionic GFP chromophore is 2.86 eV (HOMO

energy, HF/aug-cc-pVDZ). Thus, all CIS excited states above this energy are embed-

ded in the electron-detachment continuum, which spoils their description [113, 114].

Full QM CIS and SOS-CIS(D) calculations yield two lowest states of different charac-

ter. One state is relatively dark and has charge-transfer character, whereas the other

state is bright and corresponds to the local ππ∗ excitation on the chromophore. We

carefully checked that nature of the HOMO and the target virtual orbital involved in

the bright transition remains the same among different schemes of calculation. Table

2.2 shows the energies of the bright state.

Table 2.3 summarizes the results for the GFP model system with the neutral

chromophore. The VDE of the bare chromophore is 7.40 eV. The interaction with

the neighboring residues leads to a blue shift of 2.5 eV (small QM versus full QM).

Relative to full QM, the QM/MM calculations overestimate the ionization energy by

0.05 eV. QM/mEFP with the double-fragmentation scheme performs well, matching

the blue shift in VDE. We also note that QM/mEFP with Cα-N fragmentation scheme

yields the largest deviation (+0.14 eV) relative to full QM.
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In this system, the lowest excited state is the bright ππ∗ state; as in the example

before, they are of the same character in different calculations). The effect of the

environment on the excitation energies is noticeable: the energy of the bright state

is red-shifted by 0.24 eV in the full QM calculation relative to the bare chromophore

(small QM). The QM/MM calculation overestimates the excitation energy by 0.02

eV. The QM/EFP super-fragment calculation underestimates the excitation energy by

0.01 eV. Different QM/mEFP schemes show similar performance; they underestimate

the full QM excitation energy by 0.01-0.02 eV.

Using the anionic and neutral forms of the GFP, we investigate the effects of elec-

trostatic and polarization damping on electronic properties. The results for VDEs

are collected in Table 2.4. In Tables 2.2 and 2.3 discussed above, the QM/mEFP

values were computed using polarization damping between the EFP fragments with

the default parameter value of 0.6 and electrostatic damping between the QM and

EFP regions given Eq. (2.6) with parameters precomputed as described in Section

2.3. In Table 2.4, the results with the default polarization and electrostatic damping

are compared with the values obtained with (i) reduced polarization damping param-

eter, which corresponds to a stronger damping of polarization energies between the

fragments, (ii) polarization completely turned off, which corresponds to electrostatic

embedding, and (iii) electrostatic QM-EFP damping turned off. Although the default

value of the polarization damping parameter is 0.6, we find that smaller values of this

parameter, i.e., stronger damping, are occasionally necessary for avoiding the polar-

ization catastrophe. In particular, this often happens for strongly-interacting ionic

species [115]. Although in the systems that we considered here, we did not encounter

difficulties converging polarization energies with the default damping values, we ex-

plore the effect of polarization damping on IEs/DEs, in case that the modification

of damping parameter is required in more complex systems. Note that polariza-

tion damping is applied only to fragment-fragment polarization; the QM→EFP and

EFP←QM polarization interactions are not damped.
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Comparing IEs computed with polarization turned-off entirely or partially, we ob-

serve several interesting effects. The first observation is that polarization of the envi-

ronment plays a more significant role in the anionic than in the neutral chromophore,

as illustrated by the VIE/VDE differences between the default and polarization-off

values in the superfragment calculations, which are 0.18 eV and 0.11 eV for the anionic

and neutral chromophores, respectively. The second observation is that polarization

effect is smaller in fragmented (mEFP) than in the superfragment (EFP) calculations.

For example, in the anionic form, the change in VDEs due to polarization decreases

from 0.18 eV in QM/EFP to 0.06-0.08 eV in QM/mEFP, and similarly in the neutral

form. This is an interesting observation, which suggests that neighboring fragments

“depolarize” each other. This effect occurs in QM/mEFP but not in super-fragment

calculations. (In superfragment calculations, the QM and EFP subsystems polarize

each other, but the EFP super-fragment does not polarize itself.) Finally, a moderate

decrease in polarization damping to 0.3 does not affect the results within 0.01 eV.

However, decreasing the damping parameter to 0.1 effectively supresses polarization,

i.e., these results become identical to those with the polarization turned off.

Electrostatic damping takes care of charge penetration energy; it has been explored

in detail for the EFP-EFP interactions [95,96]. The effect of the electrostatic damping

on the QM-EFP interactions is analyzed in this work for the first time. For both the

anionic and neutral chromophores, the QM-EFP electrostatic damping shifts energy

differences by 0.01-0.05 eV, improving the agreement between the QM/EFP results

and the reference QM data. Similar shifts are observed for different fragmentation

schemes.

To summarize, our analysis suggests that both electrostatic damping and po-

larization interactions are important for accurate description of VIEs/VDEs. For

example, for the Cα-C scheme in the anionic chromophore, the best (with default

electrostatic and polarization damping) QM/mEFP calculations underestimate VDE

by 0.09 eV, whereas switching off electrostatic damping and polarization increases

the errors further, by 0.04 eV and 0.07 eV, respectively. The Cα-C scheme in the
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neutral chromophore underestimates VDEs by 0.06 eV, and turning off electrostatic

damping and polarization introduces additional errors of 0.01 eV each.

Table 2.4.
VDE and VIE (in eV) of the anionic (top) and neutral (bottom) GFP
chromophore surrounded by four nearby amino-acid residues as a function
of electrostatic and polarization damping in the EFP region. ωB97X-D/6-
31G(d) is used in all calculations.

Calculation pol pol pol pol off eleca

damp=0.6 damp=0.3 damp=0.1 damp off

(default)

Anionic GFPb

QM/EFP: super-fragment 3.93 3.75 3.88

QM/mEFP: Cα-C 3.94 3.94 3.87 3.87 3.90

QM/mEFP: Cα-N 3.92 3.92 3.86 3.86 3.87

QM/mEFP: C-N 3.93 3.93 3.85 3.85 3.89

QM/mEFP: Cα-C and Cα-N 3.93 3.93 3.87 3.87 3.88

Neutral GFPc

QM/EFP: super-fragment 9.67 9.56 9.66

QM/mEFP: Cα-C 9.68 9.68 9.67 9.67 9.67

QM/mEFP: Cα-N 9.81 9.81 9.79 9.79 9.80

QM/mEFP: C-N 9.69 9.68 9.66 9.66 9.68

QM/mEFP: Cα-C and Cα-N 9.66 9.66 9.65 9.65 9.65
a Default polarization (with damp=0.6) is used.

b Full QM:VDE = 4.03 eV, QM/MM:VDE = 3.97 eV

c Full QM:VDE = 9.74 eV, QM/MM:VDE = 9.74 eV
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Table 2.5.
Electronic properties of the anionic mPlum chromophore surrounded by
four nearby amino-acid residues and water.

Calculation VDE, eV Eex, eV (fL) VEA, eV

Small QM 3.20 2.30 (1.51) 2.03

Full QM 5.57 2.65 (0.91) -0.21

2.81(0.64)

QM/MM 5.61 2.53 (1.53) -0.20

QM/EFP: super-fragment 5.60 2.53 (1.54) -0.22

QM/mEFP: Cα-C 5.63 2.52 (1.54) -0.24

pol off 5.51 2.51 (1.54) -0.08

QM/mEFP: Cα-N 5.61 2.53 (1.54) -0.22

pol off 5.52 2.51 (1.54) -0.07

QM/mEFP: C-N 5.59 2.52 (1.54) -0.21

pol off 5.52 2.51 (1.54) -0.08

QM/mEFP: Cα-C and Cα-N 5.61 2.53 (1.54) -0.22

pol off 5.51 2.51 (1.54) -0.07

VDE and VEA computed with ωB97X-D/aug-cc-pVDZ. Excitation energies com-

puted with SOS-CIS(D)/aug-cc-pVDZ; fl computed at the CIS level.

2.4.2 mPlum model system

Electronic properties for the mPlum model system are collected in Table 2.5. The

mPlum chromophore features an extended π-system in which the conjugation extends

beyond the imidazolinone ring and into the side-chain. The extended π-system is

responsible for red-shifted absorption relative to the GFP chromophore [107]. The

extended conjugation also leads to higher detachment energy of mPlum, as compared

to deprotonated GFP (Table 2.2); the reason for that was described by Ghosh et
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al. [116]. In this system, the chromophore is also anionic and the environment strongly

stabilizes its ground state. Thus, we observe similar trends in Tables 2.2 and 2.5.

We begin by considering the trends in VDE. From Table 2.5, we once again observe

that the protein environment affects the detachment energy significantly, resulting in

2.4 eV blue shift in full QM/MM relative to small QM. QM/MM captures the effect

of the environment well; VDE is overestimated by +0.04 eV relative to full QM.

QM/mEFP also performs very well. We note that within the same fragmentation

scheme, QM/mEFP overestimates VDE when polarization is on (highest deviation

+0.06 eV compared to full QM) and underestimates VDE with polarization switched

off (the largest deviation from the full QM result is -0.06 eV).

In the bare chromophore (small QM), the lowest excited state is the bright ex-

cited state of the π → π∗ character and Eex=2.30 eV. In the full QM calculations, we

observe two blue-shifted excited states of similar character (the oscillator strength of

the bright transition is distributed between the two). All QM/MM and QM/mEFP

calculations yield only one bright ππ∗ state (which is the lowest excited state) car-

rying large oscillator strength. The excitation energy is rather insensitive to the

fragmentation scheme (2.52-2.53 eV).

In this model system, we also consider electron-attached states. Although in the

bare chromophore, such radical-dianion state is not bound electronically (i.e., it has

positive electron affinity), it can be stabilized by interactions with the protein. In a

recent study of KillerRed (which has the same chromophore as mPlum) such dianion-

radical states were found to be stable [109]. Fig. 2.5(d) and Fig. 2.6 show spin

densities for the electron-attached states. As one can see from the data in Table

2.5, this state has similar character across different calculation schemes. In Fig. 2.6,

inclusion of water in the QM part of small QM and QM/MM calculations, does

not affect the spin density and thereby confirming the effect of water to be purely

electrostatic.

In this model system, the protein stabilizes the dianion state leading to 2.24 eV

change in VEA between the small QM and full QM calculations. The QM/MM and
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QM/mEFP results are within 0.01 eV of the full QM value. The effect of polarization

is more pronounced in the case of VEA: the effect of switching off polarization can

be as large as 0.14 eV.

(a) small QM (b) (small QM+water)

(c) QM/MM (d) (QM+water)/MM

Fig. 2.6. Spin densities on the electron-attached dianionic mPlum chro-
mophore model system in different calculations (see text and Table 2.5).

2.4.3 T4 lysozyme model system

Table 2.6 compares VDEs computed with small QM, QM/MM, full QM, QM/EFP

and QM/mEFP with different fragmentation schemes. In this system we observe that

QM/MM performs poorly and underestimates VDE by 0.33 eV, as compared to full

QM. On the other hand, the QM/mEFP schemes perform really well with the largest

error being -0.08 eV relative to full QM. It is also noteworthy that in QM/EFP and
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Table 2.6.
VDEs (eV) of the phenolate bound to the T4 lysozyme system, ωB97X-
D/aug-cc-pVDZ.

System VDE, eV Koopmans IE (DFT)

Small QM 2.12 2.14

Full QM 1.90 2.12

QM/MM 1.57 1.58

QM/mEFP: super-fragment 1.85 2.04

pol off 1.57 1.58

QM/mEFP: Cα-C 1.82 2.01

pol off 1.51 1.52

QM/mEFP: Cα-N 1.92 2.12

pol off 1.64 1.63

QM/mEFP: C-N 1.84 2.01

pol off 1.61 1.61

QM/mEFP: Cα-C and Cα-N 1.90 2.10

pol off 1.60 1.61

QM/mEFP polarization plays a significant role here. Indeed, when polarization is

turned off completely, the QM/EFP and QM/mEFP results change by 0.2-0.3 eV and

become very similar to the QM/MM data. A significant contribution of polarization

can be rationalized by the charge density of the phenolate being largely localized on

O− which leads to strong polarizing interactions with the GLU102 residue. Overall,

the scheme with two fragments per amino acid (Cα-C and Cα-N) shows the best

performance for this system: it reproduces the full QM result exactly.
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2.5 Conclusions

The extension of the EFP method to polypetides, called mEFP, has been de-

veloped and validated by computing excitation, ionization, and electron attachment

energies of three biologically relevant systems, GFP/mPlum chromophores and phe-

nolate in their natural surroundings. In the mEFP scheme, the polypeptide is split

into smaller fragments, and the EFP parameters for each fragment are computed inde-

pendently of other fragments. Four different fragmentation schemes have been tested;

the most consistent results were obtained with the schemes in which the polypeptide

is split either along Cα-C bond or along both Cα-C and Cα-N bonds.

In all systems considered here, QM/mEFP accurately reproduces excitation, ion-

ization and electron attachment energies, provided that the electronic process is lo-

calized in the QM subsystem. Discrepancies between the full QM calculations and

QM/mEFP calculations in all but one case do not exceed 0.1 eV. Polarization inter-

actions have a noticeable effect on electronic properties of biological chromophores.

Turning off polarization in QM/mEFP degrades the accuracy and leads to additional

errors of up to 0.3 eV. Short-range damping of electrostatic interactions between the

QM and EFP subsystems, which corrects classical multipole expansion for charge-

penetration energy, also brings the QM/mEFP results into a closer agreement with the

reference full QM values. In most cases, the errors of QM/mEFP against QM/EFP

(no fragmentation of the EFP part) are 0.01-0.02 eV; the largest error is 0.06 eV.

The QM/mEFP approach provides a rigorous way to incorporate polarization

embedding into studies of biological systems. The developed mEFP algorithm cab

be generalized to other polymers and flexible molecules, which will be exploited in

future studies.
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3. PREDICTION OF PREFERENTIAL

LIGAND-PROTEIN BINDING USING BIOMOLECULAR

EFFECTIVE FRAGMENT POTENTIAL METHOD

The primary objective of rational drug design is to estimate the affinity of a molecule

or a set of molecules to bind to a target both qualitatively and quantitatively. Molec-

ular mechanics based force fields are considered the methods of choice for computing

the drug-target binding by estimating the strength of intermolecular interactions,

mainly due to the speeds that can be achieved in screening a large number of com-

pounds as well as the ease in performing dynamics simulations. Such methods utilize

a local model in which the interactions that are localized to the drug binding pocket

are taken into account, while the interaction of the rest of the protein is usually

neglected. Here we propose an Effective Fragment Potential (EFP) method based

energy decomposition analysis scheme for application in quantifying the drug-target

interactions in proteins. We apply this scheme to understand the substituent effects

in a -chloro vs -methyl aryl substitution in factor Xa inhibitor drugs. Our results indi-

cate that the substituents are stabilized/destabilized due to interactions well beyond

the binding pocket. While the primary contributor to the stability of the substituent

functional group is electrostatic interactions, other terms such as exchange-repulsion

play an important role as well. The extended contact model presented here accounts

for interactions that are typically neglected in a local model, and we believe that this

extended contact model marks an improvement over the latter in terms of accurate

prediction of interaction energies.
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3.1 Introduction

Recent advances in computational chemistry have opened exciting applications

in drug discovery and have shortened the timeline for drugs to reach the market

[117–122]. Understanding the underlying chemistry of drug-target interactions en-

ables faster development of drugs, and computational chemistry has assisted medic-

inal chemists for decades in achieving this goal [123]. In the recent years, due to

major advances in supramolecular chemistry and crystallography, obtaining detailed

information on the 3D structures of large macromolecules have become routine [124].

Computational chemistry has played an important role in determining the viability

of ligand molecules to be used as drugs for a given target [125]. While molecular

mechanics (MM) methods have been widely employed in computer aided drug design

(CADD), due to the advent of high performance computing and faster, efficient codes,

quantum mechanical (QM) methods are gaining importance in this field [126–128].

In order to accurately predict the binding energy between two molecules in solvent

phase, many factors need to be considered: the interaction energy between the two

molecules, desolvation penalties due to the removal of solvent molecules occupied by

the ligand, other solvent effects, temperature corrections, etc [129, 130]. A simpler

means of modeling such a system involving a ligand-protein complex would be to

start from a well-studied ligand-protein system, followed by performing substitution

to the functional group(s) present in the ligand to measure the effects of substitution.

If the only goal is to estimate the relative binding energies, this approach is simpler

and faster.

In simulating the ligand-protein interactions, a common assumption made is to

account only for local interactions. This local model takes into account only the in-

teraction of the ligand with transferable contacts such as hydrogen bond interactions,

pi-pi interactions, ion-pi interactions, halogen bond interactions etc, and is usually

restricted to the drug binding pocket.
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Factor Xa is an activated form of thrombokinase, an enzyme that participates in

the blood coagulation cascade. Antithrombotic agents corresponding to this enzymes

have been developed and studied in detail [131, 132]. The active site of factor Xa

consists of four subpockets: S1 - S4. The S1 subpocket plays a major role in se-

lectivity and binding of the factor Xa. Earlier, Sherrill and coworkers [133] probed

the effect of functional group modification in the factor Xa ligand using state of the

art symmetry adapted perturbation theory (SAPT) methods. The interaction be-

tween neutral ligand and the anionic S1 pocket that comprises all the local contacts

was computed using Functional SAPT (F-SAPT) [134, 135] and cut-and-cap SAPT

(will be referred to as P-SAPT for simplicity) simulations truncated at the zero order

(SAPT0) [136,137]. The aim of the work was to understand the preferential binding of

Cl- substituted ligands as compared to Me- substituted ligands. To achieve this aim,

the interaction energies between all the sidechain residues and peptide backbone frag-

ments and the ligand were computed (∆ECl
int and ∆EMe

int ) in a completely interacting

system using F-SAPT and a pairwise interacting system using P-SAPT. Calculat-

ing the difference in binding energies(∆∆G) using quantum mechanical methods is a

computationally tedious process, hence the difference between the interaction energies

(∆∆Eint = ∆ECl
int−∆EMe

int ) can be used as an approximate measure of understanding

the former quantity. This approximation can be deemed valid because of two reasons:

1. The vdW radii of the two functional groups are similar if not the same, hence the

geometric effects due to substitution can be neglected; and 2. The polarities between

the two functional groups are not vastly different, hence the desolvation penalties

can be neglected as well. For ligand modifications involving substitution of vastly

different functional group, this approximation is expected to break down.

The effective fragment potential (EFP) method [22–25] is an ab-initio force field

used to describe the non-covalent interactions between fragments in an interacting

system of molecules, as well as to model effects of non-covalent interactions on prop-

erties of quantum-mechanical region. Recently, we extended this method to model

and simulate covalently bonded molecules such as amino acids, lipids etc. [138]. Our
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Fig. 3.1. Structure of the 3ENS-Cl molecule (red) bound to factor Xa.
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intention here is to compare the performance of the biomolecular effective fragment

potential method (BioEFP) with SAPT0 and to assess the validity of the local inter-

action model in predicting ligand-protein interactions.

3.2 Methods

3.2.1 Effective Fragment Potential Method

The Effective Fragment Potential method [22–25] describes the interactions be-

tween various interacting fragments using perturbation theory. The overall interac-

tion energy of a given system is the sum of electrostatics, polarization, dispersion and

exchange-repulsion terms, as given below:

EEFP−EFP = Eelec + Epol + Edisp + Eexrep. (3.1)

The electrostatic interactions are described by the means of a multipole expan-

sion, centered at all the atoms and the midpoints of the bonds connecting the atoms

in the fragment [139]. The electrostatic multipole expansion is truncated at the level

of octupoles. The electrostatic interaction energy is computed between all the multi-

pole expansion points of one fragment and the multipole expansion points of all other

fragments in the system. The electrostatic interaction energy term consists of charge-

charge, charge-dipole, charge-quadrupole, charge-octupole, dipole-quadrupole, and

quadrupole-quadrupole interaction terms. The parameters corresponding to the mul-

tipole expansion are obtained using Distributed Multipole Analysis (DMA) method

by Stone [140].

In order to tackle the poor description of short-range electrostatic interactions

due to charge penetration, we employ an exponential screening function that damps

the charge-charge interactions at close separations [141]. It must be noted that this

damping function does not significantly alter the electrostatic interactions at mid- and

long- range separations. A detailed description of this damping function is available

in ref. [141].
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The EFP method computes many-body polarization in a self-consistent, iterative

fashion. The static dipole-dipole anisotropic polarizability tensors are computed at

the centroids of the non-canonical localized molecular orbitals (LMOs) by solving for

the Coupled Hartree-Fock equations (CPHF).

The effective fragment potential method employs a rigorous approach towards

computing the dispersion energies. Dynamic polarizability tensors centered at LMO

centroids are computed at Time-dependent Hartree-Fock (TDHF) level.

The repulsive interactions that arise due to Pauli’s exclusion between two frag-

ments is described using the exchange-repulsion term in the effective fragment po-

tential method. It must be noted that the electostatics, dispersion and exchange-

repulsion terms in EFP are computed in a pairwise fashion, i.e., the interaction be-

tween two fragments is not altered by the introduction of a third fragment, which

is strictly not the case with wave function based methods. Earlier, Slipchenko et.

al., benchmarked the performance of EFP methods with respect to accurate quan-

tum mechanical methods and force fields, and found that EFP provides a balanced

description of electrostatic- as well as dispersion-dominant interactions [142].

3.2.2 Biomolecular Effective Fragment Potential Method (BioEFP)

The biomolecular effective fragment potential method (BioEFP), also known as

macromolecular effective fragment potential method (mEFP), is an offshoot of the

original implementation of the Effective fragment potential method (EFP) and is de-

signed for modeling large covalent molecules such as proteins, lipids, etc [138]. While

the original EFP method was constructed with an intent to describe the effect of sol-

vent environment on the properties of the solute, the BioEFP method extends the idea

to covalently-connected molecules by systematically fragmenting the macromolecule

into smaller fragments.

A protein is a chain of repeating residues connected by covalent bonds. By mak-

ing use of the idea of repeating residues, we can fragment the chain at designated
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bonds, cap them using capping fragments (hydrogens, in this case) and obtain the

parameters corresponding to the capped fragments. We then remove the parame-

ters that correspond to the capped atoms to obtain the parameters corresponding

to the uncapped fragments. Once the parameters corresponding to all the uncapped

fragments are obtained, we may perform an EFP simulation that corresponds to the

entire protein. A detailed summary of this procedure is available in chapter 3, as well

as in reference [138].

The electrostatics parameters corresponding to the capped atoms and the bond

midpoints connected to the capped atoms are removed. As a result of the removal

of these parameters, the total charge of the fragment is now non-zero (or non-integer

in the case of charged fragments). The excess charge resulting due to the removal of

capped atoms is then added and redistributed to the nearest neighboring atom using

the expand-remove-redistribute procedure [138]. Hence, the net charge of individual

fragments and the overall system remains the same before and after this procedure.

As described earlier, the polarization and dispersion parameters are centered at

the LMO centroids instead of the atoms themselves. Hence, removal of a capped atom

results in the removal of the closest LMO, which is usually the LMO that corresponds

to the sigma bond between hydrogen and the neighboring atom. This step is highly

necessary to avoid polarization collapse, as the sigma bond LMOs corresponding to

the capped hydrogens in neighboring fragments are positioned close to each other and

could potentially overpolarize each other. This could result in a larger than expected

or diverged polarization energy.

The only computed parameters corresponding to the exchange repulsion term

are the non-canonical localized molecular orbital coefficients, basis set coefficients

and the Fock matrix. The localized molecular orbitals are then constructed as a

linear combination of pre-defined atomic orbital basis functions. When fragmenting

the system for the purpose of computing parameters, one can remove the localized

molecular orbitals corresponding to the fragmented atoms and bonds, or keep them

as-is, since exchange-repulsion is computed in a pairwise fashion. While the former
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scenario could potentially underestimate the exchange-repulsion energies, the latter

could overestimate it. An alternate strategy could be to remove either the orbitals

corresponding to Cα carbon or the peptide carbon and maintain this consistency for

the entire protein. For the purpose of this study, we have decided not to modify the

exchange-repulsion parameters to maintain simplicity.

3.2.3 Prediction of Ligand-Target binding

The protein conformation was obtained from Ref. [133]. Briefly, the follow-

ing procedure describes the modification done by Sherrill et. al. to obtain the

protonated ligand-protein structure : The geometry for factor Xa (the protein) in

complex with methyl(2Z)-3-[(3-chloro-1H-indol-7-yl)amino]-2-cyano-3-[(3S)-2-oxo-1-

(2-oxo-2-pyrrolidin-1-ylethyl)azepan-3-yl]aminoacrylate (the drug containing Cl- func-

tional group) was obtained from RCSB database [143]. The Cl- functional group in

the ligand was replaced by a carbon atom to obtain the methylated form of the ligand.

Structures for both these analogues were prepared using the Protein Preparation Util-

ity in Maestro (Schrodinger), which provides a rational estimate of optimal torsions,

protonation states and the orientation of crystal water molecules. Following this, a

constrained optimization was performed, to avoid obvious clashes and to minimize

steric hindrances.

Earlier studies on the ligand indicate that following the substitution with the

methyl ligand, the electron density shifts from the chlorine group to the farther end

of the indole ring (Fig. 3.3). This would mean that the change in the nature of

stabilizing/destabilizing interactions are not localized to the functional group alone.

Further, it was shown that the single substitution enhanced the in-vitro IC50 (the

concentration of the inhibitor at which the binding is reduced by half) by roughly

50 times [143]. Major contributions to this enhanced efficacy were attributed to the

interactions with Tyr228, Asp189, Gly219 and Cys220 residues [143–145].
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Fig. 3.2. S1 binding pocket of the 3ENS-Cl ligand-protein system. The
pocket is shown in a ball and stick representation, while the ligand is
shown using thick sticks.
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Fig. 3.3. Electron density map of 3ENS ligands with Cl- and Me- substi-
tutions. Adapted from [133].
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Fig. 3.4. Cut-and-cap strategy used in BioEFP modeling of ligand-S1
pocket. Each amino acid residue is fragmented across two sites, resulting
in a sidechain fragment and a peptide fragment.
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For the purpose of this study, we considered two model systems: 1. A smaller

version of the ligand interacting with the fragments in the S1 pocket (to compare the

performance of EFP with SAPT methods); and 2. The unmodified ligand interacting

with all the fragments in the protein (to assess the validity of local model and compare

it with our extended model). The S1 pocket consists of fragments that directly

interact and bind with the ligand.

For the simulation of the S1 pocket with the ligand, only a small portion of the

drug molecule that directly interacts with the pocket is included. While it is possible

to include the whole drug molecule in the simulation, we decided to fragment the drug

molecule and cap it with a hydrogen atom. SAPT0 results available in the literature

were performed with this smaller version of the ligand, possibly due to practical

restrictions in the simulation time, and hence following a similar strategy would enable

a one-to-one comparison of our method with SAPT0. The amino acid residues were

fragmented in such a way that the parameters for the sidechain and peptide groups

were computed separately. In other words, the residues were fragmented along the Cα-

C bond as well as the Cα-N bond (Fig. 3.4). This effectively results in two fragments

per amino acid residue. The amino acid residues included in the S1 pocket are:

ASP189, ALA190, CYS191, GLN192, SER195, VAL213, SER214, TRP215, GLY216,

GLU217, GLY218, CYS220, GLY226, ILE227, and TYR228. All the fragmented

residues were capped with hydrogen atoms. The disulfide bond between the cysteine

residues were fragmented as well. As a result, the contribution of the disulfide bond

to the total interaction energy is not explicitly computed using a separate disulfide

fragment in BioEFP method. However, it must be noted that SAPT0 simulations

were computed in such a way that the cysteine residue interactions and disulfide

bond interactions were calculated separately. While it is not possible to directly

compare the interaction energy components corresponding to these fragments, the

sum of interaction energies due to the pair of cysteine EFP fragments can be compared

to the sum of interaction energies due to cysteine and disulfide SAPT fragments.
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All the EFP parameters were computed using HF/6-31G(d) basis set except for

the exchange repulsion term, which was computed using a larger basis set (HF/6-

31+G(d)) for better accuracy. All the EFP-EFP simulations were performed using

libefp package [146,147] using the pairwise energy decomposition feature implemented

recently. It must be noted that the electrostatics, dispersion and exchange repulsion

terms are pairwise additive, and are directly comparable to dimer interaction ener-

gies. The polarization term, however, is not pairwise additive, and hence must be

computed in a fully interacting system. The energy contributions due to polariza-

tion are then obtained from the converged induced dipole moments centered at the

localized molecular orbitals of each fragment.

To model the protein as a whole, we employed the following strategy: Both the

Cl- and Me- substituted ligands were modeled as is, with no fragmentation or mod-

ification. The Cl- functional group was replaced by a Me- group within the binding

pocket to obtain the conformation for the Me- substituted ligand-protein system. The

surrounding protein chain was fragmented along the Cα-C bond alone, resulting in

one effective fragment per amino acid residue. Thus, decomposing the energy terms

into peptide fragment and sidechain fragment contributions is not possible. However,

this fragmentation scheme is in line with the original BioEFP scheme and is expected

to produce accurate interfragment interaction energies and energy components.

3.3 Results and Discussion

In order to assess the performance of various interaction terms in the BioEFP

method, we compare them directly with P-SAPT or F-SAPT data from ref. [133].

Figure 3.5 shows the contribution of electrostatic interactions to the ∆(∆E) term.

Positive ∆(∆E) contributions indicate a preference of the methylated ligand over

the chlorinated ligand, while negative ∆(∆E) contributions indicate the opposite.

BioEFP correctly predicts the stronger preferential interactions due to peptide bond

contacts, especially due to residues 190, 215 and 219. Since the electrostatics term
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Fig. 3.5. Contribution of electrostatic interactions to ∆(∆E) term in the
small ligand - S1 pocket model.

in EFP is computed in a pairwise fashion, it is directly comparable to P-SAPT sim-

ulations. It can be seen that EFP predicts the electrostatic interaction energies to

within 0.5 kcal/mol in comparison to the P-SAPT simulations. The discrepancies

found in ∆(∆Eelec) in the CYS191, CYS220 and disulfide fragments are due to the

different fragmentation schemes employed in EFP and SAPT methods. Electrostatic

interactions are the major contribution to the preferential binding energies, in some

cases as high as 2 kcal/mol.

Figure 3.6 shows the contribution of polarization interactions to the ∆(∆E) term.

For polarization interactions, it is prudent to compare the EFP results with the F-

SAPT results, as both the methods obtain interaction energies in a ’fully interacting’

system. Again, the qualitative prediction of BioEFP method is reasonable, however,

the difference in interaction energies are less than 0.4 kcal/mol in most fragments.

In many cases, EFP seems to overestimate the stabilization/destabilization due to

binding energy differences, but the errors do not exceed 0.25 kcal/mol. Damping the

polarization using screening functions does not affect the results by much, and hence
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Fig. 3.6. Contribution of polarization interactions to ∆(∆E) term in the
small ligand - S1 pocket model.

it can be concluded that the polarization interactions do not contribute much to the

difference in binding energies, as predicted by SAPT results as well.

Figure 3.7 shows the contribution of dispersion interactions to the ∆(∆E) term.

For dispersion interactions, we revert back to comparing the EFP results with the P-

SAPT results, as both the methods obtain interaction energies in a pairwise manner.

The contribution of dispersion to the ∆(∆E) term is understandably low (less than

0.2 kcal/mol), as the substitution of Cl- with a Me- group does not significantly affect

the π−π interactions or CH-π interactions within the ligand-S1 pocket. This finding

is in line with what has been observed in earlier as well [133].

Figure 3.8 shows the contribution of exchange repulsion interactions to the ∆(∆E)

term. For the exchange-repulsion term, again we compare the EFP results with the P-

SAPT results, as both the methods obtain interaction energies in a pairwise manner.

Formally, the exchange-repulsion term decays in an exponential manner, and we can

assume that only the closest residues that directly interact with the indole ring would

contribute to this term. This is evident in the case of ALA190 and VAL213, which
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Fig. 3.7. Contribution of dispersion interactions to ∆(∆E) term in the
small ligand - S1 pocket model.
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Fig. 3.8. Contribution of exchange-repulsion interactions to ∆(∆E) term
in the small ligand - S1 pocket model.

is captured by EFP as well as SAPT methods. As explained earlier, the discrepancy

in DIS fragment interactions caused by fragmentation are captured in the two CYS

fragments.

Figure 3.9 shows the sum of all the interaction energy components to the ∆(∆E)

term. Figure 3.10 individual contributions of all the four terms that contribute to

the ∆(∆E). A point to note here is that while the ∆(∆Etotal) for a single fragment

could be negligible, but the contributions of individual interaction energy terms could

be non-negligible. Case in point: The contribution of ALA190 and VAL213 residues

to the ∆(∆E) is less than 0.5 kcal/mol, while the electrostatic contribution to these

residues are closer to 1 kcal/mol, which are then countered by other terms.

Another question we are trying to answer here is the validity of using the S1 pocket

as a representative model for simulating the ligand-protein interactions. Figure 3.11

shows the convergence of ∆(∆E) components as a function of distance between cen-

troids of individual residues in the S1 binding pocket. As one can expect, electrostatic

interaction term converges very slowly, as the formal decay of charge-dominant inter-
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Fig. 3.9. Contribution of total interaction energies to ∆(∆E) term in the
small ligand - S1 pocket model.

Fig. 3.10. Total interaction energies and energy component contributions
of individual fragments to ∆(∆E) term in the small ligand-S1 pocket
model.
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Fig. 3.11. Pairwise contributions to ∆(∆E) term in small ligand-S1 pocket
model as a function of distances between ligand and fragments.

actions as a function of distance is 1/r. Fragments such as Peptide226 and Peptide227

contribute well over 1 kcal/mol to the ∆(∆E) term, even though they are located

8-9 Å away from the ligand. This indicates that the ligand-S1 pocket may not be

representative of all the significant interactions in the ligand-protein system.

To test this hypothesis, we simulated the entire protein-ligand system using BioEFP.

Figure 3.12 shows individual fragment contributions to the ∆(∆E) term as a function

of the separation between these fragments and the ligand. We can observe that the

electrostatic contributions converge slowly, presenting a few interactions greater than

0.4 kcal/mol at distances beyond 1.5 nm. This is an indication that the substitu-

tion in the ligand is stabilized/destabilized by interactions with residues located well

beyond the pocket.

Finally, we test the performance of BioEFP method in accurately predicting the

preferential binding energies as a result of substitution. Table 3.3 lists the ∆∆G

computed using various methods and systems. While the F-SAPT method predicts

the total ∆∆G accurately to within 0.2 kcal/mol, P-SAPT underestimates the pref-

erential Cl-ligand binding by 1.1 kcal/mol due to accumulation of errors. BioEFP
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Fig. 3.12. Convergence of ∆(∆Eelec) term in the ligand - protein complex
as a function of distance.



74

Table 3.1.
Difference in binding energies between Cl- and Me- ligands, computed
using different methods.

Method ∆∆E (kcal/mol)

F-SAPT (small) [133] -2.464

P-SAPT (small) [133] -1.208

EFP (small) -3.314

EFP (large) -2.436

Experiment [133] -2.3

Fig. 3.13. Convergence of ∆(∆Etotal) term in the ligand - protein complex
as a function of distance. A running sum of the ∆(∆Etotal) term is plotted
(orange line).

overestimates the Cl-ligand binding by 1 kcal/mol for the smaller ligand-S1 pocket

model, and this can be attributed to the lack of convergence in ∆∆G components

for the smaller system. This is more evident in Fig. 3.13, where the presence of very

strong stabilizing interactions can be noticed at around 1 nm from the ligand. These

interactions are then countered by several destabilizing interactions beyond the 1 nm

sphere, and the ∆∆G converges at around 4 nm from the ligand.
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3.4 Conclusions

The performance of BioEFP as a tool for computing the intermolecular interac-

tion energies and binding energy differences is probed. The results presented here are

in good agreement with accurate first principles methods. Simulations of the ligand

in the whole protein indicate that the electrostatic energy differences due to varying

substituents do converge at distances far exceeding the size of the pocket previously

used for modeling ∆(∆G) in this system. Performing simulation of the ligand with

protein ensures that the interactions unaccounted for in the smaller system are now

properly accounted for. BioEFP provides a viable option for performing such simu-

lations at a much faster timeframe. Additional effects that need to be considered for

obtaining rigorous binding energy differences are solvent effects and configurational

sampling, which will be explored in future work.
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4. METHOD DEVELOPMENT: ANALYTIC GRADIENTS

OF THE QM/EFP DISPERSION TERM

Accurate modeling of dispersion interactions is essential for a proper and balanced

description of intermolecular interactions. Here we show the working equations for the

dispersion gradient term describing the coupling between quantum mechanical (QM)

and classical mechanical regions (described using effective fragment potential (EFP)

method). A detailed derivation of the equations governing the dispersion gradient is

presented here. These equations involve orbitals in the quantum mechanical region

and the dynamic polarizability tensors centered at the localized orbitals of the EFP

region. Until now, the development and application of molecular dynamics (MD)

and energy minimization (EM) routines involving EFP description was hindered due

to the lack of mathematical equations governing dispersion and exchange-repulsion

interactions. Once the codes corresponding to the equations are implemented, MD

and EM simulations at the full-embedding level can be performed with QM/EFP

methods.

4.1 Introduction

Electrostatic interactions involving charges, dipoles and higher order multipoles

account for the majority of interactions between molecular clusters of most types

- ions, polar molecules, biomolecular interactions, etc [139, 148–150]. Electrostatic

interactions are responsible for the molecules (or molecular clusters in general) to

exist in solid, liquid or gaseous phases [139]. However, molecules that do not have

dominant electrostatic interactions such as non-polar molecules do exhibit similar be-

havior [151–153]. This indicates that there are some intermolecular interactions that

are not particularly strong as simple electrostatic interactions, but do govern impor-
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tant physical and chemical properties in molecules. Van der Waals forces is the sum

of attractive and repulsive forces between two different atoms from same or different

molecule which are caused due to factors other than covalent, ionic and hydrogen

bonds [154, 155]. The van der Waals forces can be thought of as a superposition of

dispersion and repulsive interactions in a given system. It is highly vital to include

dispersion effects from the surrounding environment for accurate modeling of solute

properties in a solvent [155,156].

A detailed description of the effective fragment potential method [22]- [25] is given

in the earlier chapters (chapter 1 and 2). For the purpose of this study, we can start

by looking at the interaction terms [157] in the EFP method for a EFP/EFP type

simulation:

EEFP−EFP = Eelec + Epol + Edisp + Eex−rep + ECT (4.1)

For a hybrid, multiscale QM/EFP simulation, the total Hamiltonian is given by

[23]:

ĤTotal = ĤQM + ĤQM/EFP + EEFP (4.2)

where HQM/EFP is the coupling term that augments the original Hamiltonian

(HQM), resulting in the total Hamiltonian (HTotal) that now includes the perturbation

due to the environment.

In the current implementation of Effective Fragment Potential method, only the

electrostatics and polarization terms account for the QM/EFP energy contribution

in the ground and excited states. A framework for extending the dispersion [158]

and exchange-repulsion [159] interactions to ground state QM/EFP simulations were

published recently. Hence, at the polarizable embedding level, following the addition

of dispersion correction, the coupling term is now a sum of three contributions:

ĤQM/EFP = Ĥelec
QM/EFP + Ĥpol

QM/EFP + Edisp
EFP (4.3)
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where the diagonal QM/EFP dispersion term is given by:

Edisp,diag
QM−EFP = − 1

π

∑
j∈B

occ∑
k

vir∑
r

x,y,z∑
β

〈k|T jβ |r〉 〈r|T
j
β |k〉

∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjββ(iω)dω (4.4)

In this work, we present the development of the gradient term corresponding to

the above equation.

4.2 Theory

4.2.1 The QM/EFP dispersion term

In this section, the energy expression for QM/EFP dispersion term is explained

briefly. For a more detailed derivation and benchmarks, please refer to [158].

The dispersion interactions between two molecules A and B can be described using

the second order Rayleigh-Schrodinger Perturbation Theory (RSPT2) as follows [139]:

Edisp = −
∑

m 6=0,n 6=0

〈00| Ĥ ′ |mn〉 〈mn| Ĥ ′ |00〉
WA
m +WB

n −WA
0 −WB

0

(4.5)

where m and n are the electronic states of molecules A and B respectively; Ĥ ′

is the preturbed Hamiltonian that is expressed as a function of the charge density

operators for molecules A and B. The subscripts 0 correspond to the electronic

ground state of the molecules. W corresponds to the energy of the electronic state of

the molecule A or B. This expression can be then expanded using the electric field

expansion, and after assuming separability of the states on different molecules, we

get the following expression:

Edisp =
∑

m6=0,n 6=0

TABαβ T
AB
γδ

〈
0A
∣∣ µ̂Aα |m〉 〈m| µ̂Aγ ∣∣0A〉 〈0B∣∣ µ̂Bβ |n〉 〈n| µ̂Bδ ∣∣0B〉

EA
m0 + EB

n0

(4.6)

where Tαβ is the second order electrostatic tensor, µA/B are the dipole moment op-

erators corresponding to fragment A or B, EA
m0 is the excitation energy corresponding

to a m← 0 transition of molecule A.
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Further, by applying the McLachlan identity [160] and by utilizing a distributed

approach in which the dynamic polarizabilities are distributed at different points

throughout the molecule, the expression for EFP-EFP dispersion is obtained [161]:

Edisp
EFP−EFP = − 3

π

∑
k∈A

∑
j∈B

1

R6
kj

∫ ∞
0

αk(iω)αj(iω)dω (4.7)

where k and j are points centered at localized molecular orbitals in EFP fragments

A and B respectively. The dynamic polarizability tensor α at a given frequency ω is

given by:

ααβ(ω) = 2
∑
m

ωm0 〈0| µ̂α |m〉 〈m| µ̂β |0〉
h̄(ω2

m0 − ω2)
(4.8)

It must be noted that the dynamic polarizability tensor in 4.8 is anisotropic, while

the polarizability tensors in 4.7 utilizes isotropic approximation, and is hence a scalar

quantity.

Similarly, the energy expression for QM/EFP dispersion interactions is given by

[158]:

Edisp,anisotropic
QM−EFP = − 1

π

∑
j∈B

occ∑
k

vir∑
r

x,y,z∑
β

〈k|T jα |r〉 〈r|T
j
β |k〉

∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjαβ(iω)dω

(4.9)

where Tα is the electrostatic field tensor of order one, j are the localized molecular

orbital (LMO) expansion points in fragment B, k and r are occupied and virtual

orbitals in the QM region respectively, subscript α and β are the cartesian axes

corresponding to the electrostatic field tensor, α is the polarizability tensor at point

j ∈ B, and ωArk is the orbital energy difference between virtual orbital r and occupied

orbital k of the quantum mechanical region, depicted by A. It must be noted that

4.9 follows an orbital-based summation, while earlier equations make use of a sum-

over-states expansion.

By setting the off-diagonal terms of α to zero we obtain the isotropic expression

for the dispersion term, as given in 4.4. Following this, one can apply a spherical
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approximation in which the total polarizability computed at a point is approximated

as the sum of the diagonal terms (α = 1
3
(αxx + αyy + αzz), we obtain the following

expression:

Edisp
QM−EFP = − 1

π

∑
j∈B

occ∑
k

vir∑
r

x,y,z∑
β

〈k|T jβ |r〉 〈r|T
j
β |k〉

∫ ∞
0

ωArk
(ωArk)

2 + ω2
αj(iω)dω (4.10)

4.2.2 Definitions

In this section, some basic definitions for orbital derivatives and the resulting

expressions are explored briefly. The energy expression for second order perturbation

theory (MP2) is given by [162]:

EMP2 =
1

4

occ∑
ij

vir∑
ab

((ia||jb))T abij (4.11)

where the amplitude T abij is given by:

T abij = (ia||jb)/Dab
aj (4.12)

In the above equation, (Dab
ij = εi + εj − εa − εb).

Instantly, one can notice the similarities between equations 4.11 and 4.5, where the

numerator terms are one/two electron integrals, and the denominator term contain

orbital energies.

The derivative of a molecular orbital can be written as [163]:

∂ |p〉
∂x

= |p〉x =

(
AO∑
µ

Cµp |µ〉

)x

=
AO∑
µ

Cµp |µ〉x +
AO∑
µ

Cx
µp |µ〉

= |p〉(x) +
AO∑
µ

all∑
q

Ux
qpCµq |µ〉 = |p〉(x) +

all∑
q

Ux
qp |q〉 (4.13)

The above equation describes the derivative of a molecular orbital due to per-

turbation along x axis. The basis set expansion coefficients are depicted by C; the



81

superscript x indicates the derivative with respect to a nuclear derivative along the x-

direction, while the superscript in paranthesis (x) describes the derivatives of atomic

orbitals only. Separating the molecular orbital using LCAO-MO [164] approximation

and splitting the contributions into derivatives of orbital functions (|p〉(x) and the

derivatives of expansion coefficients (i.e. the orbital response - Ux
pq ) enables us to

simplify the problem and concentrate on the latter terms.

We can rewrite the two-electron integrals in MO basis into two-electron integrals

in AO basis as follows:

(pq|rs) =
∑
µνλσ

CµpCνqCλrCσs(µν|λσ)

The gradient for the above two-electron integral can be written as

(pq|rs)x = (pq|rs)(x) +
all∑
t

Ux
tp(tq|rs) +

all∑
t

Ux
tq(pt|rs) +

all∑
t

Ux
tr(pq|ts) +

all∑
t

Ux
ts(pq|rt)

(4.14)

Due to the orthonormality constraint in the overlap between two MOs (Spq = δpq)

the derivative of this constraint can be expressed the following way:

(Spq)
x = Ux

pq + Ux
qp + S(x)

pq = 0 (4.15)

Hence the orbital response involving the same MOs can be expressed as:

Ux
pp = −1

2
S(x)
pp (4.16)

From a mathematical point of view, the orbital derivatives are easy to derive

and are readily available in most quantum chemistry packages. However, the orbital

response term needs to be computed using coupled perturbed Hartree-Fock (CPHF)

method by solving for the coupled equations described below [165].

Ux
pq =

1

(εq − εp)
Qx
pq (4.17)
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The quantity Qx
pq is given by:

Qx
pq = (Bx

pq +
vir∑
c

occ∑
k

Ux
ckApqck) (4.18)

Apqck = 2(pq|ck)− (pc|qk)− (pk|qc) (4.19)

Bx
pq = F (x)

pq − S(x)
pq εq −

1

2

occ∑
kl

S
(x)
kl Apqlk (4.20)

F (x)
pq = H(x)

pq +
occ∑
k

[
(pq|kk)(x) − (pk|qk)(x)

]
(4.21)

For p = q, equation 4.18 can be simplified as Qx
pp = εxp . It can be seen that

the orbital response term is now expressed as a function of simpler overlap integral

derivatives, one electron Hamiltonian integral derivatives, and orbital energies, all of

which can be obtained by solving the coupled Hartree-Fock equations:

occ∑
i

vall∑
a

[δabδij(εi − εa)− Aaibj]Ux
ai = Bx

bj (4.22)

One can notice that the terms U and B are coupled to each other and need to

be solved for self consistently. For a more detailed derivation of the second order

perturbation theory gradient expression, please refer to [165].

4.2.3 The QM/EFP dispersion gradient term

We rewrite the energy expression for the diagonal QM/EFP dispersion energy

term from 4.9:

Edisp
QM−EFP = − 1

π

∑
j

∑
k

∑
r

∑
β

〈k|T jβ |r〉 〈r|T
j
β |k〉

∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjββ(iω)dω

(4.23)

The derivative of the above expression can be written as:
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d

dx
Edisp = Ex

disp = − 1

π

∑
j

∑
k

∑
r[∑

β

〈k|T jβ |r〉
x 〈r|T jβ |k〉

∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjββ(iω)dω (4.24a)

+
∑
β

〈k|T jβ |r〉 〈r|T
j
β |k〉

x

∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjββ(iω)dω (4.24b)

+
∑
β

〈k|T jβ |r〉 〈r|T
j
β |k〉

(∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjββ(iω)dω

)x]
(4.24c)

We can call 4.24a as Part A, 4.24b as Part B and 4.24c as Part C. One can note

that the parts A and B are derivatives on the field integrals, while the part C includes

derivative terms from both QM as well as EFP regions. Now, let us first consider

part A and expand the terms:

∑
β

〈k|Tβ |r〉x 〈r|Tβ |k〉
∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjαβ(iω)dω

=

(
〈k|Tβ |r〉(x) +

∑
t

Ux
tk 〈t|Tβ |r〉+

∑
t

Ux
tr 〈k|Tβ |t〉

)
(4.25a)

〈r|Tβ |k〉
∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjαβ(iω)dω

Let us call 4.25a as Part A1. It can be noticed that the rest of the terms in 4.25

are either derivatives of orbital basis functions or unmodified terms from the original

dispersion expression. The summation index t for the terms in part A1 includes all

molecular orbitals - occupied as well as virtual. We can now separate A1 into two

sets of occupied and virtual orbitals as follows:

∑
t

Ux
tk 〈t|Tβ |r〉+

∑
t

Ux
tr 〈k|Tβ |t〉
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=
occ∑
i

Ux
ik 〈i|Tβ |r〉+ (4.26a)

vir∑
c

Ux
ck 〈c|Tβ |r〉+

occ∑
i

Ux
ir 〈k|Tβ |i〉+

vir∑
c

Ux
cr 〈k|Tβ |c〉 (4.26b)

Let us call 4.26a as Part A1a and 4.26b as Part A1b. Now, let us combine part

A1a with rest of part A:

− 1

π

∑
j

∑
k

∑
r

∑
β

(
occ∑
i

Ux
ik 〈i|Tβ |r〉

)
〈r|Tβ |k〉

∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjββ(iω)dω

= − 1

π

∑
j

∑
k

∑
r

∑
β

(
occ∑
i

Ux
ik 〈i|Tβ |r〉

)
〈r|Tβ |k〉 Irk (4.27)

where the integral is represented in a simpler notation: Irk. From 4.15, we know

that (Spq)
x = Ux

pq + Ux
qp + S

(x)
pq = 0. This is now applied in the above equation to

expand as follows:

− 1

π

∑
j

∑
k

∑
r

∑
β

(
occ∑
i

Ux
ik 〈i|Tβ |r〉

)
〈r|Tβ |k〉 Irk

= − 1

π

∑
j

∑
k

∑
r

∑
β

(
occ∑
i

1

2

[
Ux
ik 〈i|Tβ |r〉−Ux

ki 〈i|Tβ |r〉−S
(x)
ik 〈i|Tβ |r〉

])
〈r|Tβ |k〉 Irk

(4.28)

Now, we can isolate the Ukk term by separating it into three parts:

− 1

π

∑
j

∑
k

∑
r

∑
β

1

2

[(
occ∑
i>k

Ux
ik 〈i|Tβ |r〉+

occ∑
i<k

Ux
ik 〈i|Tβ |r〉+ Ux

kk 〈k|Tβ |r〉

)
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−

(
occ∑
i>k

Ux
ki 〈i|Tβ |r〉+

occ∑
i<k

Ux
ki 〈i|Tβ |r〉+ Ux

kk 〈k|Tβ |r〉

)

−
occ∑
i

S
(x)
ik 〈i|Tβ |r〉

])
〈r|Tβ |k〉 Irk (4.29)

We can see that the terms highlighted in red cancel each other exactly. Now,

interchanging the indices i and k in the terms highlighted in blue results in:

− 1

π

∑
j

∑
k

∑
r

∑
β

1

2

[(
occ∑
i>k

Ux
ik 〈i|Tβ |r〉 〈r|Tβ |k〉 Irk +

occ∑
i>k

Ux
ki 〈k|Tβ |r〉 〈r|Tβ |i〉 Iri

)

−

(
occ∑
i>k

Ux
ki 〈i|Tβ |r〉 〈r|Tβ |k〉 Irk +

occ∑
i>k

Ux
ik 〈k|Tβ |r〉 〈r|Tβ |i〉 Iri

)

−
occ∑
i

S
(x)
ik 〈i|Tβ |r〉 〈r|Tβ |k〉 Irk

]
(4.30)

Collecting like terms, we get:

− 1

π

∑
j

∑
k

∑
r

∑
β

1

2

[(
occ∑
i>k

Ux
ik 〈i|Tβ |r〉 〈r|Tβ |k〉 Irk −

occ∑
i>k

Ux
ik 〈k|Tβ |r〉 〈r|Tβ |i〉 Iri

)

−

(
occ∑
i>k

Ux
ki 〈i|Tβ |r〉 〈r|Tβ |k〉 Irk −

occ∑
i>k

Ux
ki 〈k|Tβ |r〉 〈r|Tβ |i〉 Iri

)

−
occ∑
i

S
(x)
ik 〈i|Tβ |r〉 〈r|Tβ |k〉 Irk

]
(4.31)

Combining the terms containing the same field integrals and orbital responses, we

get:

− 1

π

∑
j

∑
k

∑
r

∑
β

1

2

[(
occ∑
i>k

Ux
ik 〈i|Tβ |r〉 〈r|Tβ |k〉 (Irk − Iri)

)

−

(
occ∑
i>k

Ux
ki 〈i|Tβ |r〉 〈r|Tβ |k〉 (Irk − Iri)

)
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−
occ∑
i

S
(x)
ik 〈i|Tβ |r〉 〈r|Tβ |k〉 Irk

]
(4.32)

Now, let us expand the Irk − Iri term:

Irk − Iri =

∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjββ(iω)dω −

∫ ∞
0

ωAri
(ωAri)

2 + ω2
αjββ(iω)dω (4.33)

Dividing and multiplying by common factors, we obtain:

=

∫ ∞
0

ωArk

[
(ωAri)

2 + ω2
]

[
(ωArk)

2 + ω2
][

(ωAri)
2 + ω2

]αjββ(iω)dω−
∫ ∞
0

ωAri

[
(ωArk)

2 + ω2
]

[
(ωAri)

2 + ω2
][

(ωArk)
2 + ω2

]αjββ(iω)dω

(4.34)

combining both the terms due to common denominator, we get:

=

∫ ∞
0

ωArk

[
(ωAri)

2 + ω2
]
− ωAri

[
(ωArk)

2 + ω2
]

[
(ωArk)

2 + ω2
][

(ωAri)
2 + ω2

] αjββ(iω)dω (4.35)

=

∫ ∞
0

ωArk(ω
A
ri)

2 + ωArkω
2 − ωAri(ωArk)2 − ωAriω2[

(ωArk)
2 + ω2

][
(ωAri)

2 + ω2
] αjββ(iω)dω (4.36)

=

∫ ∞
0

ωArkω
A
ri(ω

A
ri − ωArk)− ω2(ωAri − ωArk)[

(ωArk)
2 + ω2

][
(ωAri)

2 + ω2
] αjββ(iω)dω (4.37)

=

∫ ∞
0

(ωAri − ωArk)(ωAriωArk − ω2)[
(ωArk)

2 + ω2
][

(ωAri)
2 + ω2

]αjββ(iω)dω (4.38)

We can now rewrite ωri and ωrk in terms of orbital energies, which can be taken

out of the integral.:

= (εk − εi)
∫ ∞
0

((ωAriω
A
rk − ω2)[

(ωArk)
2 + ω2

][
(ωAri)

2 + ω2
]αjββ(iω)dω (4.39)

Combining 4.39 with 4.32, we get:
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− 1

π

∑
j

∑
k

∑
r

∑
β

1

2

[(
occ∑
i>k

Ux
ik 〈i|Tβ |r〉 〈r|Tβ |k〉

(εk − εi)
∫ ∞
0

((ωAriω
A
rk − ω2)[

(ωArk)
2 + ω2

][
(ωAri)

2 + ω2
]αjββ(iω)dω

)

−

(
occ∑
i>k

Ux
ki 〈i|Tβ |r〉 〈r|Tβ |k〉

(εi − εk)
∫ ∞
0

((ωAriω
A
rk − ω2)[

(ωArk)
2 + ω2

][
(ωAri)

2 + ω2
]αjββ(iω)dω

)

−
occ∑
i

S
(x)
ik 〈i|Tβ |r〉 〈r|Tβ |k〉

∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjββ(iω)dω

]
(4.40)

Now, we expand the orbital responses in terms of known quantities as described

in 4.17 - 4.21:

− 1

π

∑
j

∑
k

∑
r

∑
β

1

2

[(
occ∑
i>k

Qx
ik

(εi − εk)
〈i|Tβ |r〉 〈r|Tβ |k〉

(εk − εi)
∫ ∞
0

((ωAriω
A
rk − ω2)[

(ωArk)
2 + ω2

][
(ωAri)

2 + ω2
]αjββ(iω)dω

)

−

(
occ∑
i>k

Qx
ki

(εk − εi)
〈i|Tβ |r〉 〈r|Tβ |k〉

(εi − εk)
∫ ∞
0

((ωAriω
A
rk − ω2)[

(ωArk)
2 + ω2

][
(ωAri)

2 + ω2
]αjββ(iω)dω

)

−
occ∑
i

S
(x)
ik 〈i|Tβ |r〉 〈r|Tβ |k〉

∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjββ(iω)dω

]
(4.41)

The orbital energy difference term cancels out exactly, as given below:

− 1

π

∑
j

∑
k

∑
r

∑
β

1

2

[(
occ∑
i>k

Qx
ik 〈i|Tβ |r〉 〈r|Tβ |k〉

∫ ∞
0

((ωAriω
A
rk − ω2)[

(ωArk)
2 + ω2

][
(ωAri)

2 + ω2
]αjββ(iω)dω

)



88

+

(
occ∑
i>k

Qx
ki 〈i|Tβ |r〉 〈r|Tβ |k〉

∫ ∞
0

((ωAriω
A
rk − ω2)[

(ωArk)
2 + ω2

][
(ωAri)

2 + ω2
]αjββ(iω)dω

)

−
occ∑
i

S
(x)
ik 〈i|Tβ |r〉 〈r|Tβ |k〉

∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjββ(iω)dω

]
(4.42)

Let us introduce a shorter notation for the terms as below:

〈i|Tβ |r〉 = T irβ

∫ ∞
0

((ωAriω
A
rk − ω2)[

(ωArk)
2 + ω2

][
(ωAri)

2 + ω2
]αjββ(iω)dω = Jrk−ri

This simplifies 4.42 into the following form:

− 1

π

∑
j

∑
k

∑
r

∑
β

1

2

[(
occ∑
i>k

Qx
ikT

ir
β T

rk
β Jrk−ri

)
+

(
occ∑
i>k

Qx
kiT

kr
β T

ri
β Jrk−ri

)
−

occ∑
i

S
(x)
ik T

ir
β T

rk
β Irk

]
(4.43)

Similarly, after expanding part A1b which contains the summation of the orbital

responses involving virtual orbitals, we get the following expression:

− 1

π

∑
j

∑
k

∑
r

∑
β

1

2

[(
vir∑
c>r

Qx
cr 〈k|Tβ |c〉 〈r|Tβ |k〉

∫ ∞
0

((ωArkω
A
ck − ω2)[

(ωArk)
2 + ω2

][
(ωAck)

2 + ω2
]αjββ(iω)dω

)

+

(
vir∑
c>r

Qx
rc 〈k|Tβ |r〉 〈c|Tβ |k〉

∫ ∞
0

((ωAckω
A
rk − ω2)[

(ωAck)
2 + ω2

][
(ωArk)

2 + ω2
]αjββ(iω)dω

)

−
occ∑
i

S(x)
cr 〈k|Tβ |c〉 〈r|Tβ |k〉

∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjββ(iω)dω

]
(4.44)
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Simplifying the terms leads to the following expression:

− 1

π

∑
j

∑
k

∑
r

∑
β

1

2

[(
vir∑
c>r

Qx
crT

kc
β T

rk
β Jrk−ck

)
+

(
vir∑
c>r

Qx
rcT

kr
β T

ck
β Jrk−ck

)
−

vir∑
c

S(x)
cr T

kc
β T

rk
β Irk

]
(4.45)

Adding the parts A1a, A1b and the remaining terms in A1 results in the following

expression:

− 1

π

∑
j

∑
k

∑
r

∑
β

1

2

[(
occ∑
i>k

Qx
ikT

ir
β T

rk
β Jrk−ri

)
+

(
occ∑
i>k

Qx
kiT

kr
β T

ri
β Jrk−ri−

occ∑
i

S
(x)
ik T

ir
β T

rk
β Irk

)

+

(
vir∑
c>r

Qx
crT

kc
β T

rk
β Jrk−ck

)
+

(
vir∑
c>r

Qx
rcT

kr
β T

ck
β Jrk−ck −

vir∑
c

S(x)
cr T

kc
β T

rk
β Irk

)

+
vir∑
c

Ux
ckT

cr
β +

occ∑
i

Ux
irT

ki
β

]
(4.46)

From 4.18, we know that Qx
pq = Bx

pq +
∑vir

c

∑occ
k Ux

ckApqck. We can now use this

information in 4.46:

− 1

π

∑
j

∑
k

∑
r

∑
β

1

2

[(
occ∑
i>k

(
Bx
ik +

vir∑
b

occ∑
l

Ux
blAikbl

)
T irβ T

rk
β Jrk−ri

)

+

(
occ∑
i>k

(
Bx
ki +

vir∑
b

occ∑
l

Ux
blAkibl

)
T krβ T

ri
β Jrk−ri −

occ∑
i

S
(x)
ik T

ir
β T

rk
β Irk

)

+

(
vir∑
c>r

(
Bx
cr +

vir∑
b

occ∑
l

Ux
blAcrbl

)
T kcβ T

rk
β Jrk−ck

)

+

(
vir∑
c>r

(
Bx
rc +

vir∑
b

occ∑
l

Ux
blArcbl

)
T krβ T

ck
β Jrk−ck −

vir∑
c

S(x)
cr T

kc
β T

rk
β Irk

)

+
vir∑
c

Ux
ckT

cr
β +

occ∑
i

Ux
irT

ki
β

]
(4.47)
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By visual inspection, one can see that the solutions to parts A and B are exactly

the same, and hence the above equation is multiplied by a factor of 2.

parts(A+B) =

− 1

π

∑
j

∑
k

∑
r

∑
β

[(
occ∑
i>k

(
Bx
ik +

vir∑
b

occ∑
l

Ux
blAikbl

)
T irβ T

rk
β Jrk−ri

)

+

(
occ∑
i>k

(
Bx
ki +

vir∑
b

occ∑
l

Ux
blAkibl

)
T krβ T

ri
β Jrk−ri −

occ∑
i

S
(x)
ik T

ir
β T

rk
β Irk

)

+

(
vir∑
c>r

(
Bx
cr +

vir∑
b

occ∑
l

Ux
blAcrbl

)
T kcβ T

rk
β Jrk−ck

)

+

(
vir∑
c>r

(
Bx
rc +

vir∑
b

occ∑
l

Ux
blArcbl

)
T krβ T

ck
β Jrk−ck −

vir∑
c

S(x)
cr T

kc
β T

rk
β Irk

)

+
vir∑
c

Ux
ckT

cr
β +

occ∑
i

Ux
irT

ki
β

]
(4.48)

Part C of the dispersion energy gradient is expanded as follows:

− 1

π

∑
j

∑
k

∑
r

∑
β

T krβ T
rk
β

d

dx

(∫ ∞
0

ωArk
(ωArk)

2 + ω2
αjββ(iω)dω

)
(4.49)

Taking the derivative by parts, we obtain:

− 1

π

∑
j

∑
k

∑
r

∑
β

T krβ T
rk
β

(∫ ∞
0

(ωArk)
x

(ωArk)
2 + ω2

αjββ(iω)dω

−
∫ ∞
0

2(ωArk)
2(ωArk)

x

((ωArk)
2 + ω2)2

αjββ(iω)dω

)
(4.50)

= − 1

π

∑
j

∑
k

∑
r

∑
β

〈k|Tβ |r〉 〈r|Tβ |k〉

(∫ ∞
0

(ωArk)
x
[
ω2 − (ωArk)

2
]

((ωArk)
2 + ω2)2

αjββ(iω)dω

)
(4.51)

(ωArk)
x is not dependent on ω and hence can be separated out of the integral.
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= − 1

π

∑
j

∑
k

∑
r

∑
β

〈k|Tβ |r〉 〈r|Tβ |k〉 (ωArk)x
(∫ ∞

0

[
ω2 − (ωArk)

2
]

((ωArk)
2 + ω2)2

αjββ(iω)dω

)
(4.52)

From eq. 4.17, we know that (ωArk)
x = (εr− εk)x = (εxr − εxk) = (Qx

rr−Qx
kk). Hence,

the above equation can be rewritten as:

− 1

π

∑
j

∑
k

∑
r

∑
β

T krβ T
rk
β (Qx

rr −Qx
kk)

(∫ ∞
0

[
ω2 − (ωArk)

2
]

((ωArk)
2 + ω2)2

αjββ(iω)dω

)
(4.53)

Using eq. 4.17 - 4.20, we can simplify the above expression with known terms:

− 1

π

∑
j

∑
k

∑
r

∑
β

T krβ T
rk
β

((
Bx
rr +

vir∑
b

occ∑
l

Ux
blArrbl

)
−

(
Bx
kk +

vir∑
b

occ∑
l

Ux
blAkkbl

))

(∫ ∞
0

[
ω2 − (ωArk)

2
]

((ωArk)
2 + ω2)2

αjββ(iω)dω

)
(4.54)

Collecting all the three parts - A, B and C, we get:

parts(A+B + C) = Ex
disp =

− 1

π

∑
j

∑
k

∑
r

∑
β

[(
occ∑
i>k

(
Bx
ik +

vir∑
b

occ∑
l

Ux
blAikbl

)
T irβ T

rk
β Jrk−ri

)

+

(
occ∑
i>k

(
Bx
ki +

vir∑
b

occ∑
l

Ux
blAkibl

)
T krβ T

ri
β Jrk−ri −

occ∑
i

S
(x)
ik T

ir
β T

rk
β Irk

)

+

(
vir∑
c>r

(
Bx
cr +

vir∑
b

occ∑
l

Ux
blAcrbl

)
T kcβ T

rk
β Jrk−ck

)

+

(
vir∑
c>r

(
Bx
rc +

vir∑
b

occ∑
l

Ux
blArcbl

)
T krβ T

ck
β Jrk−ck −

vir∑
c

S(x)
cr T

kc
β T

rk
β Irk

)

+
vir∑
c

Ux
ckT

cr
β +

occ∑
i

Ux
irT

ki
β +T krβ T

rk
β

((
Bx
rr+

vir∑
b

occ∑
l

Ux
blArrbl

)
−

(
Bx
kk+

vir∑
b

occ∑
l

Ux
blAkkbl

))
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(∫ ∞
0

[
ω2 − (ωArk)

2
]

((ωArk)
2 + ω2)2

αjββ(iω)dω

)]
(4.55)

The off-diagonal terms highlighted in red above can be converted into a more

desirable format by changing the summation indices c, r → b and i, k → l:

vir∑
c

Ux
ckT

cr
β +

occ∑
i

Ux
irT

ki
β =

vir∑
b

Ux
blT

br
β +

occ∑
l

Ux
lbT

kl
β (4.56)

Further, we can utilize the expression 4.15 once again to convert terms that are

obtainable by solving the coupled HF equations:

vir∑
b

Ux
blT

br
β +

occ∑
l

Ux
lbT

kl
β =

vir∑
b

Ux
blT

br
β −

occ∑
l

(
Ux
blT

kl
β + S

(x)
lb T

kl
β

)
(4.57)

Inserting the newly obtained terms from 4.57 in 4.55, we get:

Ex
disp =

− 1

π

∑
j

∑
k

∑
r

∑
β

[(
occ∑
i>k

(
Bx
ik +

vir∑
b

occ∑
l

Ux
blAikbl

)
T irβ T

rk
β Jrk−ri

)

+

(
occ∑
i>k

(
Bx
ki +

vir∑
b

occ∑
l

Ux
blAkibl

)
T krβ T

ri
β Jrk−ri −

occ∑
i

S
(x)
ik T

ir
β T

rk
β Irk

)

+

(
vir∑
c>r

(
Bx
cr +

vir∑
b

occ∑
l

Ux
blAcrbl

)
T kcβ T

rk
β Jrk−ck

)

+

(
vir∑
c>r

(
Bx
rc +

vir∑
b

occ∑
l

Ux
blArcbl

)
T krβ T

ck
β Jrk−ck −

vir∑
c

S(x)
cr T

kc
β T

rk
β Irk

)

+
vir∑
b

Ux
blT

br
β −

occ∑
l

(
Ux
blT

kl
β + S

(x)
lb T

kl
β

)
+ T krβ T

rk
β

((
Bx
rr +

vir∑
b

occ∑
l

Ux
blArrbl

)

−

(
Bx
kk +

vir∑
b

occ∑
l

Ux
blAkkbl

))(∫ ∞
0

[
ω2 − (ωArk)

2
]

((ωArk)
2 + ω2)2

αjββ(iω)dω

)]
(4.58)
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For simplicity, the integral highlighted in red can be written as Qrk. Rewriting

the above equation in factors of Ubl, B
x and S(x) gives us:

− 1

π

∑
j

∑
k

∑
r

∑
β

[(
occ∑
i>k

(
(Bx

ik +Bx
ki)T

ir
β T

rk
β Jrk−ri + (Bx

cr +Bx
rc)T

kc
β T

rk
β Jrk−ck

))

+(Bx
rr −Bx

kk)T
kr
β T

rk
β Qrk − T rkβ Irk

(
occ∑
i

S
(x)
ik T

ir
β +

vir∑
c

S(x)
cr T

kc
β

)
−

occ∑
i

S
(x)
lb T

kl
β

+
vir∑
b

occ∑
l

Ux
bl

[
occ∑
i>k

T rkβ T
ir
β Jrk−ri(Aikbl + Akibl) +

vir∑
c>r

T rkβ T
ck
β Jrk−ck(Acrbl + Arcbl +

vir∑
b

T brβ

−
vir∑
b

T klβ + T krβ T
rk
β Qrk(Arrbl + Akkbl)

]
(4.59)

which is the final expression for the QM/EFP dispersion gradient term. While Bx

and S(x) terms are computed on the fly in a gradient simulation, the Ux
bl term must

be solved for using CPHF equations [166]. The Lagrangian term (highlighted in red

above) is solved in the following way:

∑
ai

Ux
aiLai ≡ LTU

x
(4.60a)

A′U
x

= Bx (4.60b)

Ux = (A′)−B
x

(4.60c)

LTU
x

= LT (A′)−B
x

= ZTB
x

(4.60d)

ZT = LT (A′)− (4.60e)

(A′)TZ = L (4.60f)∑
ai

Ux
aiLai =

∑
ai

Bx
aiZai (4.60g)

∑
ai

Bx
aiZai =

∑
ai

Bx
aiP

(disp)
ai (4.60h)

where P
(disp)
ai is the correction to the density matrix. The final Lagrangian equation

is given by:



94

vir∑
b

occ∑
j

[
Aaibj + δabδij(εb − εj)

]
P

(disp)
ai = −Lai (4.61)

4.3 Conclusions

Working equations corresponding to the diagonal QM/EFP dispersion gradient

term have been developed. Calculation of the gradient term involves evaluation of

field integrals, gradients corresponding to one-electron Hamiltonian terms, overlap

matrix and evaluation of Coupled Hartree-Fock equations at every step. Once the

codes corresponding to these equations are implemented, dynamics simulations at full

embedding level with QM/EFP can be performed.
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[144] H. Matter, M. Nazaré, S. Güssregen, D. W. Will, H. Schreuder, A. Bauer,
M. Urmann, K. Ritter, M. Wagner, and V. Wehner, “Evidence for c cl/c br
π interactions as an important contribution to protein–ligand binding affinity,”
Angewandte Chemie International Edition, vol. 48, no. 16, pp. 2911–2916, 2009.

[145] H. G. Wallnoefer, T. Fox, K. R. Liedl, and C. S. Tautermann, “Dispersion
dominated halogen–π interactions: energies and locations of minima,” Physical
Chemistry Chemical Physics, vol. 12, no. 45, pp. 14 941–14 949, 2010.

[146] I. A. Kaliman and L. V. Slipchenko, “Libefp: A new parallel implementation of
the effective fragment potential method as a portable software library,” Journal
of computational chemistry, vol. 34, no. 26, pp. 2284–2292, 2013.

[147] ——, “Hybrid mpi/openmp parallelization of the effective fragment potential
method in the libefp software library,” Journal of computational chemistry,
vol. 36, no. 2, pp. 129–135, 2015.

[148] S. Cabani, P. Gianni, V. Mollica, and L. Lepori, “Group contributions to the
thermodynamic properties of non-ionic organic solutes in dilute aqueous solu-
tion,” Journal of Solution Chemistry, vol. 10, no. 8, pp. 563–595, 1981.



107

[149] K. A. Sharp and B. Honig, “Electrostatic interactions in macromolecules: the-
ory and applications,” Annual review of biophysics and biophysical chemistry,
vol. 19, no. 1, pp. 301–332, 1990.

[150] V. Mohan, M. Davis, J. McCammon, and B. M. Pettitt, “Continuum model
calculations of solvation free energies: accurate evaluation of electrostatic con-
tributions,” The Journal of Physical Chemistry, vol. 96, no. 15, pp. 6428–6431,
1992.

[151] J. N. Israelachvili, Intermolecular and surface forces. Academic press, 2011.

[152] A. Nicholls, K. A. Sharp, and B. Honig, “Protein folding and association: in-
sights from the interfacial and thermodynamic properties of hydrocarbons,”
Proteins: Structure, Function, and Bioinformatics, vol. 11, no. 4, pp. 281–296,
1991.

[153] A. Buckingham, “Molecular quadrupole moments,” Quarterly Reviews, Chem-
ical Society, vol. 13, no. 3, pp. 183–214, 1959.

[154] A. D. McNaught and A. D. McNaught, Compendium of chemical terminology.
Blackwell Science Oxford, 1997, vol. 1669.

[155] O. Anatole von Lilienfeld and A. Tkatchenko, “Two- and three-body inter-
atomic dispersion energy contributions to binding in molecules and solids,” The
Journal of Chemical Physics, vol. 132, no. 23, pp. –, 2010. [Online]. Available:
http://scitation.aip.org/content/aip/journal/jcp/132/23/10.1063/1.3432765

[156] M. S. Gordon, D. G. Fedorov, S. R. Pruitt, and L. V. Slipchenko,
“Fragmentation methods: A route to accurate calculations on large systems,”
Chemical Reviews, vol. 112, no. 1, pp. 632–672, 2012. [Online]. Available:
http://pubs.acs.org/doi/abs/10.1021/cr200093j

[157] M. S. Gordon, M. A. Freitag, P. Bandyopadhyay, J. H. Jensen, V. Kairys,
and W. J. Stevens, “The effective fragment potential method: A qm-based
mm approach to modeling environmental effects in chemistry,” The Journal of
Physical Chemistry A, vol. 105, no. 2, pp. 293–307, 2001.

[158] L. V. Slipchenko, M. S. Gordon, and K. Ruedenberg, “Dispersion interactions in
qm/efp,” The Journal of Physical Chemistry A, vol. 121, no. 49, pp. 9495–9507,
2017.

[159] C. I. Viquez Rojas, J. Fine, and L. V. Slipchenko, “Exchange-repulsion energy
in qm/efp,” The Journal of chemical physics, vol. 149, no. 9, p. 094103, 2018.

[160] A. McLachlan, “Retarded dispersion forces between molecules,” Proc. R. Soc.
Lond. A, vol. 271, no. 1346, pp. 387–401, 1963.

[161] I. Adamovic and M. S. Gordon*, “Dynamic polarizability, dispersion coefficient
c6 and dispersion energy in the effective fragment potential method,” Molecular
Physics, vol. 103, no. 2-3, pp. 379–387, 2005.

[162] J. Pople, R. Krishnan, H. Schlegel, and J. S. Binkley, “Derivative studies in
hartree-fock and møller-plesset theories,” International Journal of Quantum
Chemistry, vol. 16, no. S13, pp. 225–241, 1979.



108

[163] Y. Yamaguchi, A new dimension to quantum chemistry: analytic derivative
methods in ab initio molecular electronic structure theory. Oxford University
Press, USA, 1994.

[164] L. Pauling, “The application of the quantum mechanics to the structure of
the hydrogen molecule and hydrogen molecule-ion and to related problems.”
Chemical Reviews, vol. 5, no. 2, pp. 173–213, 1928.

[165] C. M. Aikens, S. P. Webb, R. L. Bell, G. D. Fletcher, M. W. Schmidt, and
M. S. Gordon, “A derivation of the frozen-orbital unrestricted open-shell and
restricted closed-shell second-order perturbation theory analytic gradient ex-
pressions,” Theoretical Chemistry Accounts, vol. 110, no. 4, pp. 233–253, 2003.

[166] R. McWeeny, Methods of molecular quantum mechanics. Academic press, 1992.



VITA



109

VITA

I, Pradeep Kumar Gurunathan, was born in Madurantakam, a small rural town

in the state of Tamil Nadu in India. I went for elementary and secondary school

education at Buvana Krishnan Matriculation School in Kelambakkam, Tamil Nadu.

Following this, I went tp pursue high school studies in St. Patrick’s Anglo Indian

Higher Secondary School, Adyar, Tamil Nadu. I chose to go to Pondicherry Univer-

sity for a combined undergraduate-graduate program: five years Integrated Masters

program in Chemistry. I did my graduate research there under the guidance of Prof.

Binoy Krishna Saha on experimental and computational prediction of crystal co-

former stability in dimer complexes. This experience gave me a platform to continue

my further graduate studies in Purdue University.

At Purdue, I joined the research group of Prof. Lyudmila Slipchenko in Fall

2012. I started working on electronic structure investigation of atmospherically rel-

evant complexes in surfaces and in bulk. Slowly, I started diverting my interests to

biologically relevant applications. I tested and developed a variant of the Effective

Fragment Potential method applicable to biomolecules, named BioEFP. I have also

worked on machine-learning based parameter prediction models and a drug-target

binding model using BioEFP. Apart from my research, I have also worked and man-

aged at a student-run consulting club (PSC) at Purdue, helping a few local startups

with their initial development phases. As a teaching assistant, I have taught General

Chemistry (CHM115), Physical Chemistry lecture (CHM370). Physical Chemistry

laboratory (CHM376) and Computational Chemistry (CHM673) courses.

In the future, I can be reached at geepradeep@gmail.com.


