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ABSTRACT 

Moore, Trevor D. MSECE, Purdue University, December 2018. Reconstruction of 
High-Speed Event-Based Video using Plug and Play. Major Professor: Charles A. 
Bouman. 

Event-Based cameras, also known as neuromophic cameras or dynamic vision sen-

sors, are an imaging modality that attempt to mimic human eyes by asynchronously 

measuring contrast over time. If the contrast changes sufficiently then a 1-bit event is 

output, indicating whether the contrast has gone up or down. This stream of events 

is sparse, and its asynchronous nature allows the pixels to have a high dynamic range 

and high temporal resolution. However, these events do not encode the intensity of 

the scene, resulting in an inverse problem to estimate intensity images from the event 

stream. Hybrid event-based cameras, such as the DAVIS camera, provide a reference 

intensity image that can be leveraged when estimating the intensity at each pixel 

during an event. Normally, inverse problems are solved by formulating a forward 

and prior model and minimizing the associated cost, however, for this problem, the 

Plug and Play (P&P) algorithm is used to solve the inverse problem. In this case, 

P&P replaces the prior model subproblem with a denoiser, making the algorithm 

modular, easier to implement. We propose an idealized forward model that assumes 

the contrast steps measured by the DAVIS camera are uniform in size to simplify 

the problem. We show that the algorithm can swiftly reconstruct the scene inten-

sity at a user-specified frame rate, depending on the chosen denoiser’s computational 

complexity and the selected frame rate. 
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1. INTRODUCTION 

High-speed cameras are a marvel of engineering able to record dynamic scenes at 

thousands of frames per second and high-definition resolution. However, they are not 

without drawbacks; high-speed cameras generate large amounts of data, require well-

illuminated scenes, and they are expensive. Neuromorphic, or event-based, sensors 

are a new imaging modality that offer many advantages over traditional high-speed 

cameras: they generate less data, have a larger dynamic range, and they cost less. 

However, this system does have a drawback. Event-based cameras do not record scene 

intensity at high speed; instead, each pixel simply outputs whether the intensity it 

measures has gone up or down over time, which is referred to as an event. Thus, this 

imaging modality only measures the change in the scene, which gives it its advantages, 

but the drawback is that an intensity image cannot be directly estimated from the 

events, thereby precluding standard methods to display and analyze the events. 

To motivate this work further, let us make a more direct comparison. First, it 

must be stated that it is difficult to directly compare standard high-speed cameras 

with an event-based camera, due to their different data outputs. Event-based cameras 

do not have a frame rate and the number of events is dependent upon the activity in 

the scene. However, we must find some method to compare them in order to evaluate 

why we should consider using an event-based camera at all. The DAVIS camera has a 

single pixel bandwidth of 3kHz, while the interpixel bandwidth is around 1MHz. This 

means that if the scene changes at a rate greater than 3kHz then individual pixels will 

not be able to measure the change, but the pixel array can measure the change. An 

example of this is if an LED was in the field of view of the camera and filled just one 

pixel, if it was blinking at 6kHz the single pixel would miss some events, but if the 

LED was blinking at 6kHz and moving across the field of view fast enough then the 

array of pixels would measure each blink. In an attempt to make the comparison as 
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fair as possible, we will then consider a high-speed camera filming at the same rate as 

the maximum rate of a single pixel in the DAVIS camera. A high-speed camera with 

a resolution of 180x240 pixels, which is the same as the DAVIS cameras resolution, 

filming at 3kHz and 8-bit grayscale would create 123.6MB/s, uncompressed. At 10 

seconds of filming, that becomes 1.21GB of video that must then be compressed and 

saved. The DAVIS camera outputs both synchronously sampled intensity frames and 

asynchronous events. If we assume the DAVIS is measuring intensity frames with the 

Active Pixel Sensor(APS) at 20Hz then that creates 8.24MB of uncompressed data for 

the same 10 second period. But we must also include the events, which is a bit more 

challenging. The specifications of the camera state the maximum number of events 

output by the DAVIS camera is 12 million events per second, however, it is rarely the 

case that that many events occur. From the data sets used in this work, the average 

events per second was about 1.5 million. If we consider the spatiotemporal volume 

created by the 180x240x3000 pixels, this represents about 1% of the volume. Each 

event is an 8-byte word which indicates the pixel location, event time-stamp, and 

event polarity. This corresponds to 11.4MB/s or 114MB over 10 seconds. Combined 

with the data from the intensity images the DAVIS creates 122.2MB, which is about 

10% of the amount of data from a standard high-speed camera. It also has the added 

benefit of not requiring compression, since the DVS acts as an analog compression 

device that only outputs data when the scene changes sufficiently. 

This means the DAVIS camera could film 10 times as long and create the same 

amount of data as the high-speed camera, which is crucial when it is difficult to predict 

when the thing you want to film will happen. In addition, when reconstructing the 

high speed video, the entire volume does not need to be reconstructed, it can be 

windowed down to the point of interest. Furthermore, high-speed cameras have half 

the dynamic range of event-based cameras, meaning high dynamic range scenes, which 

would be saturated by high-speed cameras, can still be imaged and reconstructed 

using the DAVIS camera. The DAVIS camera is also a simple CMOS sensor which 
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does not require much power (180mA at 5VDC), which means it could be shrunk to 

the size of a cellphone camera sensor and have a comparable cost. 

All in all, this means the DAVIS camera has more robust operating conditions, 

creates a fraction of the data, can be miniaturized, and costs a fraction of high-

speed cameras. The only trade-off is the computation required to reconstruct the 

video from events. High-speed cameras are already used in many applications across 

various industries, but their limitations prevent wider adoption. With the advances 

offered by event-based cameras, it is possible that high-speed cameras could be in the 

pocket of everyone with a cellphone and could be used in industries and applications 

currently unimagined. 

This work endeavors to take the event stream and a reference intensity frame, 

measured by a DAVIS camera [1], and reconstruct high-speed video using the Plug 

& Play algorithm. The algorithm allows the user to choose a denoiser algorithm 

to replace the prior model of the MAP estimate, saving the user time and effort as 

the denoisers can be changed at will, rather than requiring an explicit prior model 

derivation [2]. This allows the user an easier method to solve inverse problems, while 

giving them more flexibility to trade image quality and computational complexity. 
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2. RELATED WORKS 

There has been a handful of attempts within the past few years to develop algorithms 

to estimate intensity images from event data to allow more conventional methods 

to display and process such data. Kim jointly estimated the motion of the event-

camera and the intensity image to create an intensity map of the space for use in 

self-localization and mapping [3], while Reinbacher formed the events into a 3D spatio-

temporal manifold and regularized the manifold to estimate the scene intensity purely 

from events [4]. However, without knowing the initial intensity of the scene it is chal-

lenging to estimate sharp edges and texture from noisy events, as seen in the figures 

presented by Reinbacher. On the other hand, Brandli realized the issue that stems 

from the absence of initial intensities and attempted to estimate the event intensities 

from the intensity frames of the DAVIS camera [5]. However, these intensity esti-

mates are noisy and the pixels do not see uniform change in intensity, which results 

in streaking effects and ghost images in the reconstructed images. Shedligeri took 

a different approach and used a neural network to warp one intensity image to the 

next by estimating the depth and pose of the camera using the events and intensity 

images then performed the warping operation. They were able to arbitrarily increase 

the frame rate by sampling the warped image periodically as it progresses from one 

intensity image to the next [6]. However, in high dynamic range environments, warp-

ing is not sufficient as the intensity image will be clipped at its maximal value while 

the event-camera detects edges in regions that are flat according to the active pixel 

sensor (APS) portion of the DAVIS camera. 



⎪⎪⎪⎪
⎪⎪⎪⎪
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3. THE EVENT CAMERA 

3.1 DAVIS Model 

To model the operation of the DAVIS camera we must first define some variables 

corresponding to the two sensors in each pixel, the Dynamic Vision Sensor (DVS) 

and the Active Pixel Sensor (APS). 

To start, let us define the unknown image that the DAVIS camera will sense as x̃. 

Let x̃s,n be the pixel at location s ∈ S in the sensor array and integer discrete time 

n ∈ Z, using some fixed sampling rate. Furthermore, let N = |S| be the number of 

pixels in S. As previously stated, an event camera asynchronously measures contrast 

over time and only indicates whether the intensity has gone up or down beyond the 

threshold intensity stored in the sensor. For this reason, the DVS portion of the 

camera measures x̃s,n and then converts it to the logarithmic domain, as temporal 

contrast can be measured by subtraction rather than multiplication. To denote this, 

let us define xs,n = log(x̃s,n). When measuring temporal contrast the DVS must 

store the log intensity after an event so that it may be compared to the current log 

intensity, which we will denote as xs,ni+r, where ni + r is the time after the refractory 

period, denoted r, of the i-th event occurred. If the absolute difference of xs,n and 

xs,ni is greater than the contrast sensitivity of the DVS, then an event occurs; let us 

denote this operation as G(Δ). Let us define G(Δ) as ⎧ 

1, Δ ≥ t⎪⎨ 
G(Δ) = −1, Δ ≤ −t ⎪⎩∅, otherwise 

Where Δ = xs,n − xs,ni and t is the contrast sensitivity of the camera. The output of 

G(Δ) is the polarity of the event. The event stream is a list of events that are output 
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sequentially from the camera as a 3-tuple, indicating the pixel position in the array, 

denoted as si, the discrete time of the event, denoted ni, and the polarity, denoted pi, 

where i is a natural number stating the event’s location in the list and pi ∈ {−1, 1}. 

This can be more succinctly written as {Ei} = {si, ni, pi}. 

To define the APS portion of the sensor let ỹ  be the image captured by the APS. 

ỹ  is measured at every T samples, where T is an integer. We use the APS to impose 

the constraint that x̃s,mT = ỹs,m, ∀m. Also, we assume that there is no lens blur or 

additive noise from the sensor.These definitions are visualized in 3.1. 

Using the events alone results in lower quality images, as scene texture that is 

not high contrast is lost, and a mechanical shutter to trigger all the pixels would be 

required, or sufficient time would need to pass in order to have an estimate of the 

initial scene intensity, which is impractical and leads to poorer performance. Instead, 

by combining an APS with the DVS in one pixel, as demonstrated by the DAVIS 

camera, it is possible to have an initial intensity frame, which we will leverage to 

estimate subsequent intensity frames from the event stream using Plug & Play. But 

first we must formulate the forward model, which is laid out in section 4.2. 

Fig. 3.1.: Model of the DAVIS Camera 
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3.2 Additional Camera Specifications 

To further expound the specifications of the DAVIS camera: the APS array out-

puts intensity frames synchronously (about 25 frames per second), the frames’ reso-

lution is 240x180, the frames are 8-bit grayscale images, and it has a dynamic range 

of about 55dB. The pixels are rather large at 18.5µm × 18.5µm. The DVS is asyn-

chronous, lending itself to its high dynamic range of about 130dB and its high tem-

poral resolution of about 1µs between pixels and 333.3µs within each pixel. The 

minimum contrast sensitivity is 11%, which means edges of contrast lower than that 

will not be captured. Each event is output into a list as an 8-byte word. The DAVIS 

camera draws about 0.9W when in operations, or 180mA at 5VDC, and has a small 

form factor of H 56mm x W 62mm x D 28mm. 

This is great news because the APS array is essentially sampling at a low temporal 

resolution to save on storage, and the DVS array fills in the gaps, outputting how the 

scene changed between samples with minimal data. However, for the DAVIS camera 

to be useful as a high speed camera, the intensities corresponding to the events 

must be estimated. Chapter 2 introduced some of the methods used to attempt to 

estimate intensities from events, but there is more that can be done to solve the 

inverse problem, namely Plug and Play. 
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4. INTENSITY IMAGE ESTIMATION FROM EVENTS 

Inverse problems are a generic class of problems where measurements are taken and 

used to estimate the input to a physical phenomenon or system. These phenomena 

and systems have equations that describe them. These problems are ill-posed and im-

possible to solve without imposing some assumptions and constraints on the solution. 

In the case of image processing, inverse problems are those which attempt to estimate 

the “true,” or unknown, image from imperfect measurements, such as reconstructing 

3D volumes measured by a MRI machine, removing noise and blur from a picture, or 

image super-resolution similar to the zoom and enhance trope seen in crime movies 

and television. Posed in a probabilistic framework, if we denote the measured data as 

y and the unknown data as x, we can try to maximize the probability of the unknown 

image given the measurements. This is known as the Maximum A Posteriori (MAP) 

Estimate and can be written 

x̂ = arg max p(x|y). 
x 

This equation is not very informative in itself, instead we will use Bayes’ Theorem, 

which results in 
p(y|x)p(x) 

x̂ = argmax . 
x p(y) 

In order to simplify things we take the negative log of this expression. This turns 

multiplication into addition and allows us to use standard optimization algorithms to 

minimize the expression. Furthermore, p(y) is not a function of x, thus it is only a 

constant term that ensures the cumulative distribution function is valid, which means 

we can drop it from the optimization problem. This results in 

x̂ = arg min {− log p(y|x) − log p(x)} , 
x 
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p(y|x) is referred to as the forward model and p(x) is referred to as the prior model. 

In plain English, the forward model explains how likely it is that the measured data 

resulted from the estimate of the unknown image. The prior model is formulated 

in such a way that assumptions about the characteristics of the unknown image 

are enforced by giving them a higher probability. An example of such, is that we 

assume real images do not look like white noise, they have smooth regions, patterned 

textures, and clear edges. Therefore, when minimizing this expression the optimal 

solution is one which balances fitting the data with conforming to our assumptions 

of how images look. For this application we will use the measurements from the 

DAVIS camera and solve the inverse problem to temporally super-resolve the data 

from about 25 frames per second to an arbitrarily high frame rate up to 1 million 

frames per second, theoretically. 

In practice, the intricacies and wide variety of real images makes it challenging 

to formulate a good prior model that encompasses all conceivable images. This mo-

tivated the development of the Plug and Play algorithm. We will use Plug and Play 

to reconstruct high-speed video from the DAVIS frames and events by formulating a 

forward model and picking an off-the-shelf denoiser. 

4.1 Plug and Play 

The Alternating Direction Method of Multipliers (ADMM) is a variant of the 

augmented Lagrangian method, also known as the method of multipliers, which is an 

algorithm for constrained optimization. The form of the equation is 

min f(x) + g(y), subject to x = y, 
x,y 
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f(·) and g(·) are proximal maps of the forward and prior models, respectively. The 

ADMM algorithm has only 3 steps that are iterated until the convergence criteria is 

met 
Algorithm 1: ADMM 

Initialize: σ2 > 0, v ← something, x ← v, u ← 0 

while not converged do 

x ← arg minx f(x) + σ
2 ||x − v + u||2 
2 

v ← arg minv g(v) + σ
2 ||v − x − u||2 
2 

u ← u + x − v 

end while 

The Plug and Play algorithm simply replaces the proximal mapping of the prior 

model with an off-the-shelf denoiser 

Algorithm 2: Plug & Play 
Input: Denoiser, λ p
Initialize: σ2 > 0, ρ ← 1, σH ← λ/ρ, v ← something, x ← v, u ← 0 

while not converged do 

x ← arg minx f(x) + σ
2 ||x − v + u||2 
2 

v ← DenoiserσH (x + u) 

u ← u + x − v 

end while 

With this algorithm we have the framework we need to estimate the event in-

tensities to reconstruct the video in high speed, however, to actually implement the 

reconstruction algorithm, the forward model must still be formulated and a denoiser 

must be chosen. 
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4.2 The Forward Model 

In order to formulate the forward model we must make a few more definitions in 

addition to those declared in section 3.1. Let us first reiterate the salient definitions 

then add a few more. Let us define the unknown image that the DAVIS camera will 

sense as x̃. Let x̃s,n be the pixel at location s ∈ S and integer discrete time n ∈ Z, 

using some fixed sampling rate. Let ỹ  be the image captured by the active pixel 

sensor (APS) portion of the DAVIS camera, and let ỹs,n be the intensity measured 

at pixel s ∈ S at time n = mT . From the list of events let us take pi for all i and 

let us sum the events for each pixel s ∈ S in the discrete time interval [Tn−1, Tn] and 

define this integer as ps,n. Due to the loss of information during the refractory period 

and the unknown contrast step size corresponding to each event, we have defined a 

simplified model, which we will refer to as the uniform quantization forward model. 

This model assumes that each event denotes a uniform step in contrast, thus, each 

event alters the quantization level of the image. Let us define the boundary between 

αps,n ˜quantization levels as q̃. At each pixel q̃s,n = qs,n−1. We have constrained the 

problem so that at time n = mT , x̃s,n = ỹs,n. For n =6 mT 

q̃s,n ≤ x̃s,n < q̃s,n
α 

However, because contrast is linear in the logarithmic domain, we will convert 

the linear domain variables into the logarithmic domain to improve computation 

and notational simplicity. Let us define the log domain of the unknown image as 

xs,n = log(x̃s,n), the log intensity image as ys,n = log ỹs,n and the log quantization 

boundaries qs,n = q̃s,n. This means that at each pixel qs,n = qs,n−1 + cps,n where 

c = log α and for n 6= mT 

qs,n − c ≤ xs,n < qs,n 

With these definitions in place, we may define the proximal map of the forward model � � 
1 

Fq,y(v − u) = arg min f(x, q, y) + ||x − v + u||2 , 
x 2σ2 



⎪⎪⎪⎪
⎪⎪⎪⎪
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f(x, q, y) = 0 when x is consistent with q and y measured by the DAVIS, and 

f(x, q, y) = ∞ if it is inconsistent. Next we define the set 

Q(q, y) = min{x ∈ R : f(x, q, y) < ∞}. 
x 

It follows that the proximal map has the form 

x = Fq,y(v − u) = min ||x − v + u||2 . 
x∈Q(q,y) 

This can be stated as Q(q, y) being the set of all possible images, v − u, that are con-

sistent with the DAVIS measurements, q and y, and x is the closest point in Q(q, y) 

to v − u. x can be computed at every pixel for every time n = mT as xs,n = ys,n. x 

can be computed at every pixel for every time n 6= mT as 

∗ xs,n ← vs,n − us,n 

xs,n ← clip(xs,n 
∗ , [qs,n − c, qs,n]). 

However, this does not work well because the events do not actually take uniform step 

sizes. The reason for this can be visualized in figure 4.2. Despite there being 2 up 

events and 3 down events the intensity has actually gone up from the intensity at the 

first event. The loss of information during the refractory period and the nonuniform 

quantization step sizes at each event are poorly modeled by clipping the pixels within 

their quantization boundaries. 

We compensate for this by adding a quadratic penalty term to the values outside 

of the quantization boundaries, which can be written as 

⎧ 
∗ xs,n ← vs,n − us,n 

∗ xs,n+σ
2qs,n ∗ 

1+σ2 , xs,n > qs,n⎪⎨ 
← ∗ ∗xs,n xs,n, qs,n − c ≤ xs,n ≤ qs,n 

∗⎪x +σ2(qs,n−c)⎩ s,n ∗ , x − cs,n < qs,n1+σ2 
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Fig. 4.1.: Proximal Mapping of the Forward Model 

Fig. 4.2.: Example of Intensity and Events from One Pixel 

Essentially this is a “soft clip,” as seen in 4.3, where the xs,n 
∗ pixels that fall in 

the range of the current and previous quantization levels keep their value, and values 
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Fig. 4.3.: Proximal Mapping of the Forward Model 

that fall outside the range are attenuated by a weighted average with the quantization 

boundary. This give the algorithm more freedom to compensate for the limitations 

of the uniform quantization model and results in a better reconstruction. 

4.3 Denoisers 

Denoising is a fundamental topic in image processing. Digital sensors suffer from 

many forms of noise that corrupt the image, making fine details hard to see and re-

sults in images that are unappealing to the common viewer. Thus, there has been 

a cornucopia of denoising algorithms and advances in hardware to mitigate the deli-

terious effects of noise on images. This bodes well for Plug & Play because there 

are many options available and gives the engineer a trade space they can optimize 

for their desired application. There are a few types of denoisers that can be divided 

into groups by how they perform the denoising operation. There is some overlap 

between the groups in the following statements and the denoisers mentioned are not 



15 

an exhaustive list, but the denoisers are grouped based upon the main intent of the 

author. The first denoiser taught to young electrical engineering students is the Lin-

ear Time-Invariant (LTI)/Linear Space-Invariant (LSI) filter. In the case of the LSI 

filter, a mask is convolved with the image to smooth it and reduce the high spatial 

frequency noise. However, these filters cannot discriminate between noise and edges, 

resulting in images that are blurry, which is visually unappealing. 

The next type of denoiser is the statistical filter. This includes a wide array of 

filters with different performance levels such as minimum mean square error (MMSE) 

filters like the Wiener filter, the median and weighted median filters, which, as the 

name suggests, finds the median of the pixels within the window. The non-local 

means filter is a more computationally expensive algorithm, which finds the weighted 

average for each pixel by weighing all other pixels in the image by their similarity to 

the pixel being processed [7]. Arguably the best off-the-shelf denoiser today is Block 

Matching and 3D Filtering (BM3D). As the name suggests the algorithm splits the 

image into blocks and matches them if the cost function is below the threshold. Once 

the image has been divided into 3D cubes of the blocks the cubes are then filtered by 

a Wiener filter and then recombined into the “true” image by a weighted average of 

the local estimates [8]. 

Edge-preserving filters are yet another type of denoiser. Anisotropic diffusion 

poses the image denoising problem in the form of a partial differential equation that 

is a general case of the heat equation. It is solved by iteratively applying an approxi-

mation of the diffusion equation to the image and the level of smoothing is controlled 

by the diffusion coefficient [9]. The bilateral filter performs a weighted average of 

neighboring pixels by their Euclidian distance from the pixel being updated and by 

the neighboring pixels’ similarity in intensity [10]. By considering both the distance 

and intensity the edges of the image are preserved. The guided filter formulates the 

problem as the optimization of the coefficients of an affine transform of the noisy 

image [11]. Because the solution is in the form of an affine transform the gradients 

of the noisy and denoised images are approximately the same, up to a scaling coeffi-
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cient. The recursive filter iteratively performs a weighted average between the noisy 

image and the last update of the denoised image [12]. By manipulating the recursion 

equation it can be seen that the weighting coefficient is essentially the same weight 

computed by the bilateral filter. 

In recent years with the growing success and interest in machine learning, specif-

ically deep learning, engineers have attempted and succeeded in developing state of 

the art denoisers from deep neural networks (DNN) [13]. The concept is fairly simple, 

give the computer thousands to millions of clean and degraded image pairs, and have 

the computer learn what noise “looks like” in the image. Then when a new noisy 

image is given to the DNN, it uses what it has learned about noise to quickly estimate 

the noise-free image. This has only become possible in the past few years with the 

development of powerful graphical processing units(GPUs) for HD gaming and 3D 

model rendering. Despite the state-of-the-art performance of deep learning, there are 

no free lunches. The drawback of this type of denoiser is the training involved. The 

plethora of image must be collected and labelled, then the training occurs, which 

depending on the architecture of the DNN, the amount of training data, and how 

many GPUs are used, can take hours to weeks of training. 

Clearly there are many options when it comes to denoising an image. This greatly 

benefits the Plug and Play algorithm, as the denoiser can be chosen specifically for 

certain types of noise found in the forward model, for restored image quality, or for 

computational ease. With the ability to drop any denoiser code into Plug and Play, 

the user now has a trade space to balance quality and performance, especially when 

considering implementation on embedded systems or real-time processing. In this 

application we will use a subset of the denoisers that are sensitive to the noise level 

and that have code which is readily available online to be downloaded and plugged 

in without any modifications to the code. 
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5. IMPLEMENTATION 

The algorithm was implemented in MATLAB r2017a/b and all of the denoisers were 

either from the image processing toolbox or toolboxes downloaded from the publisher 

of the denoiser. The data sets that were used to implement and test the algorithm 

are from the Event-Camera Dataset and Simulator [14], which will later be discussed 

at greater length. 

The data sets consist of a series of images from the APS, and a text file corre-

sponding to the list of events captured by the DVS. This data was downloaded and 

converted into a MAT-file to be easily loaded and manipulated in MATLAB. 

This algorithm gives a lot of leeway to the user to trade performance with compu-

tation, however, it comes at the additional cost of needing to hand-tune the hyperpa-

rameters. Without tuning the contrast step size, scaling the convergence constraint 

of the forward model, and setting the regularization level, the results can be visually 

unappealing and noisy, or over-regularized to the point of being nearly one gray level. 

5.1 Computational Complexity 

The computational complexity of the image can be estimated by inspecting algo-

rithm 3. There is a for loop that estimates each new frame with a while loop nested 

inside of it to perform the Plug & Play optimization. Within the while loop there 

can be a computationally simple or complex denoiser. All of the denoisers used are 

O(N) [12, 15], however denoisers such as NLM [7] and BM3D [8] have large con-

stant factors while light-weight filters such as the Wiener filter [16] and the guided 

filter [11] have small constant factors. Combining this complexity with the two loops 

for frames and optimization results in a complexity of O(mkN), where m is the num-

ber of frames being estimated, and k is the number of iterations until the image 
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Algorithm 3: DAVIS Reconstruction 
Input: y, p, m, T, λ, σ2, c, Denoiser p
Initialize: � > 0, ρ ← 1, σH ← λ/ρ, γ ← 2.4 

for all s ∈ S do 

qs,mT ← ys,m 

xs,mT ← ys,m 

end for 

for new frames n = mT + 1 : (m + 1)T do 

for all s ∈ S do 

vs,n ← ys,n−1 

end for 

u ← 0 

repeat 

x ∗ ← v − u 

for all s ∈⎧S do 
∗ xs,n+σ2qs,n ∗ , xs,n > qs,n⎪ 1+σ2⎨ 
∗ ∗xs,n ← x , qs,n − c ≤ x ≤ qs,ns,n s,n ⎪xs,n+σ2(qs,n−c)⎩ 

∗ 

, x ∗ < qs,n − c
1+σ2 s,n 

end for 

v ← DenoiserσH (x + u) 

u ← u + (x − v) 

until ||x − v|| < � or for 20 iterations 

end for � � 1 
exp(x)−1 γ 

x̃ ← 255 
e−1 

converges. However, to reduce complexity, the DAVIS reconstruction algorithm caps 

the optimization steps at 20 iterations, thereby making the complexity O(mN). Fur-

thermore, for reasonable reconstructions, the number of pixels should outnumber the 
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number of frames to be reconstructed, resulting in a linear time algorithm, O(N). 

Performance time is then based on the corresponding constant factors of the denoiser 

and the number of frames. 

5.2 Data Sets and Ground Truthing 

As previously mentioned, the data sets used are from the Event-Camera Dataset 

and Simulator [14] repository. The data sets were recorded and ground-truthed for the 

purposes of pose estimation, visual odometry, and SLAM, as that is a much larger 

area of research in event-based sensing compared to image reconstruction. There 

are currently no image reconstruction focused event-based data sets that have high-

speed video ground truth recordings. To further complicate matters, DVS’s have 

about twice the dynamic range of APS cameras, therefore multiple high-speed cam-

eras would need to share an aperture and record simultaneously at different contrast 

levels to capture the entire dynamic range of the DVS. This becomes an issue in 

high-contrast environments, for example, when the sun is behind buildings in the 

background. APS pixels sensing the background region will be saturated, but the 

DVS can still sense the edges of the the buildings. This is demonstrated by the 

“outdoors running” data set. 

Without a high-speed video ground truth, the next option is to consider the APS 

frames from the DAVIS as a makeshift ground truth. To clarify, the proposed algo-

rithm will take ỹs,n−1, ∀s ∈ S as the input, where n − 1 = mT , estimate the desired 

number of frames up to time (m+1)T and then perform a PSNR calculation between 

ỹs,n and the final frame estimate x̃s,n, ∀s ∈ S. This is the metric we will use to assess 

the reconstruction quality of the proposed algorithm. However, as previously stated, 

ỹ  can be saturated in high-contrast environments and reconstructions will be penal-

ized for showing structures that the APS cannot see. Furthermore, the APS can only 

record at about 25 frames per second, and fast movement of objects in the scene or 

rapid camera movement will cause motion-blur, which is unacceptable for the ground 
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truth. This is clearly a problem for evaluating the performance of the algorithm, but 

it does not make it impossible. 

Therefore, for the purpose of quantifying the performance of the proposed DAVIS 

reconstruction algorithm, the data set, and frames to be reconstructed within the 

data set, must be carefully chosen to avoid the aforementioned issues. One option 

is to use a simulation of a scene and the camera with no noise, thus rendering ỹ  the 

same as x̃. Another option is to use a simplistic data set that does not present issues 

to ground-truthing. The “shapes translation” data set was selected to benchmark 

the proposed algorithm for this reason, as there are no dynamic range mismatch 

issues, as well as there being minimal to no motion-blur, depending on the frames 

being reconstructed. The proposed algorithm can handle any scenery, motion, and 

dynamic range, the simplistic data set used is purely due to a lack of high-speed video 

ground truth data. To reinforce this assertion we also performed a reconstruction 

of the “outdoors running” data set to qualitatively assess the performance of the 

reconstruction algorithm. 

5.3 Results 

The first assessment of the algorithm used a synthetic data set titled “simula-

tion 3walls.” As the name implies, the data set is a simulation of two walls with a 

mountain terrain texture and a floor with a cartoon city area rug. The contrast step 

size, noise level, and the scaling term that forces ADMM to converge were all hand-

tuned for maximum PSNR. The temporal resolution of the video was super-resolved 

by 5 times the original sample rate to test the algorithm’s ability to upsample the 

video. We estimated x̃s,n where n = frame70 and compared it to the corresponding 

APS frame ỹs,n. From figure 5.1, we see that all of the algorithms resulted in a PSNR 

in the 25 to 26dB range, with the best performance coming from BM3D at 26.2dB, 

while the much simpler average of qs,(m+1)T −1 and qs,(m+1)T had a PSNR of 26.18dB. 
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They all suffered from the same streaking artifact, which is caused by the uniform 

quantization level assumption. 

(a) “Ground Truth” ỹs,n, n = mT 

. 

(b) Averaged x̃s,n, n = mT , PSNR = 

26.19dB 

(c) Wiener Filter x̃s,n, n = mT , PSNR = 

25.99dB, λ=2e-6 

(d) Guided Filter x̃s,n, n = mT , PSNR = 

25.99dB, λ=2e-6 

Fig. 5.1.: Reconstruction of Synthetic Data Set “simulation 3walls” 
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(e) Recursive Filter x̃s,n, n = mT , PSNR = 

25.85dB, λ=1.7e-7 

(f) TV Deconvolution x̃s,n, n = mT , PSNR 

= 26.1dB, λ=2.1e-5 

(g) NLM Filter x̃s,n, n = mT , PSNR = 

25.83dB, λ=5e-8 

(h) BM3D Filter x̃s,n, n = mT , PSNR = 

26.2dB, λ=1.1e-7 

Fig. 5.1.: Reconstruction of Synthetic Data Set “simulation 3walls” 

In figure 5.2 we see a marked improvement over the synthetic data set. Again, the 

contrast step size, noise level, and the scaling term that forces ADMM to converge 

were all hand-tuned for maximum PSNR, and the video was super-resolved by 5 times 

the original sample rate. With the noise from the DAVIS camera, and imperfect edge 

alignment that sometimes misses events that would be expected to actually occur, the 

averaged case results in far more noise and streaking artifacts than the reconstructed 

frames. The frame reconstructed for quality assessment was n = 1234. The pieces of 
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tape on the corners of the pages and the shadows from the pages not lying flat are 

not high enough contrast and do not create events, so they are filtered out as noise, 

but the shapes are kept intact. There are still some slight blurring artifacts from the 

uniform quantization assumption, but all in all, the Plug & Play algorithm performs 

high quality reconstructions. 

(a) “Ground Truth” ỹs,n, n = mT 

. 

(b) Averaged x̃s,n, n = mT , PSNR = 

20.45dB 

(c) Wiener Filter x̃s,n, n = mT , PSNR = 

23.25dB, λ=4e-5 

(d) Guided Filter x̃s,n, n = mT , PSNR = 

24.93dB, λ=1.3e-4 

Fig. 5.2.: Reconstruction of Real Data Set “shapes translation” 
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(e) Recursive Filter x̃s,n, n = mT , PSNR = 

23.22dB, λ=1.51e-5 

(f) TV Deconvolution x̃s,n, n = mT , PSNR 

= 24.55dB, λ=8e-5 

(g) NLM Filter x̃s,n, n = mT , PSNR = 

25.85dB, λ=5.25e-5 

(h) BM3D Filter x̃s,n, n = mT , PSNR = 

26.38dB, λ=1.3e-4 

Fig. 5.2.: Reconstruction of Real Data Set “shapes translation” 

To assess the reconstruction algorithm in a more realistic environment we recon-

structed a high dynamic range scene of the DAVIS camera filming an urban envi-

ronment while being held by a jogging researcher. No PSNR is given because the 

“ground truth” does not include the buildings being reconstructed in the background 

as those pixels are saturated in the APS. 
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(a) “Ground Truth” ỹs,n, n = mT (b) Averaged x̃s,n, n = mT 

(c) Wiener Filter x̃s,n, n = mT , λ=3e-6 (d) Guided Filter x̃s,n, n = mT , λ=4e-6 

Fig. 5.3.: Reconstruction of Real Data Set “outdoors running” 
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(e) Recursive Filter x̃s,n, n = mT , λ=5e-7 (f) TV x̃s,n, n = mT , λ=2.5e-5 

(g) NLM Filter x̃s,n, n = mT , λ=4e-7 (h) BM3D Filter x̃s,n, n = mT , λ=2e-7 

Fig. 5.3.: Reconstruction of Real Data Set “outdoors running” 

5.4 Observations 

It is apparent that the DAVIS reconstruction algorithm adds no improvement over 

hand-tuning the contrast step-size and computing the average between the last two 

frames estimates in the simulated data set. In fact, for the simulated data set, it is 

a waste of time and performs worse than the average of the quantization boundaries. 

This is likely due to the absence of noise in the simulation and there are no false 

positive events or false negative events. It is also possibly due to the simulation being 
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fairly homogeneous in contrast step sizes throughout the image and the denoiser adds 

too much bias to the low contrast textured regions, for which the DVS does not output 

events. Another possibility is that the model of the camera used in the simulated data 

does not fully represent the physics of the camera. 

Reconstructing the shapes is far more successful for the proposed algorithm. All of 

the denoisers were quite successful at removing the motion blur seen in the averaged 

estimate as well as the noise from the imperfect contrast step sizes and noise. The 

edges of the paper and the tape were removed in all of the reconstructed estimates due 

to those edges not being strong enough to trigger events from the DVS, which resulted 

in them being washed out into the background. Computational complexity does not 

guarantee better PSNR, but it trends that way, except in the case of the recursive 

filter in figure 5.2. Performance would likely be further improved by implementing 

a spatio-temporal filter that takes the previous frames into account when estimating 

the current frame. 

Qualitatively, the reconstruction of the “outdoors running” scene in figure 5.3 is 

quite successful. The algorithm manages to perform a high dynamic range recon-

struction of the side of the building on the left-hand side and the buildings in the 

background, which are saturated in the frames ỹs,n−1 and ỹs,n. There is some slight 

blurring of the high contrast edges of the buildings due to the quantization step size 

not being large enough in those regions, but the semantics of the scene are not lost, 

and playback of the reconstructed video shows the scene panning as the camera moves 

from the jogging motion. This is a scene in which previously proposed algorithms 

would likely fail, either due to the lack of intensity information in the case of pure 

event reconstruction, or due to the background being saturated and not reconstructed 

in the case of the warping algorithm. 

There are a few shortcomings with the proposed algorithm. Hand-tuning hyperpa-

rameters can be time consuming and the hyperparameters must be tuned differently 

not just between data sets, but also between frames if the scene changes drastically. 

A brute-force fix would be to have a hyperparameter vector that is iterated over until 
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the settings that maximizes the PSNR is found. This is possible for data sets with 

ground truth, but tuning the parameters for a new recording would not be possible 

in this way. Additionally, using a spatial filter makes the reconstruction sensitive to 

the new frame rate. As the frame rate increases, the regularization must be scaled 

down, otherwise each successive frame will be more biased than the last, and the final 

frame could come out as a gray image if overly regularized. 

There are many options when considering future work. One first order of busi-

ness is to develop a robust data set with high-speed camera ground-truthing to better 

enable measuring performance and apples-to-apples comparisons of image reconstruc-

tion techniques. An adaptive control of the weight σ2 in the uniform quantization 

forward model would better allow the model to constraint events in neighborhoods 

of lower contrast to the quantization boundaries, while high contrast neighborhoods 

would be given more leeway when reconstructing the intensity. Developing a forward 

model that takes into account the refractory period of the DVS and determining the 

contrast step size for each event would remove the streaking artifact from the uniform 

quantization assumption. Automatic hyperparameter tuning would potentially save 

time, and would be necessary if ever developed to the point of regular consumers using 

it. As previously stated, spatiotemporal filters are an obvious next step to improve 

the proposed algorithm. With the development of color DAVIS cameras, research 

can be done to reconstruct color images from events, perhaps by using the XYZ color 

space and performing the reconstruction on the luminance channel. It is important 

to note that these cameras are still more of a test unit than a commercial camera. 

They have relatively low resolution and large pixel areas. There is still much improve-

ment that can be done on the sensors themselves to make them more comparable to 

cell phone cameras in size, resolution, and cost, which means they could ultimately 

replace those sensors and add more capabilities. 
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6. SUMMARY 

Event-based cameras offer a new imaging modality that has the ability to generate 

high-speed video at a fraction of the cost and data of current high-speed cameras. 

This ability comes at the cost of computation, which is cheap in comparison. We 

successfully proposed and demonstrated reconstruction of temporally super-resolved 

video, at a user-desired framerate. This was done with reference intensity images and 

asynchronous 1-bit events using the Plug & Play algorithm and an idealized forward 

model to perform the reconstruction from the data sets. The Plug & Play algorithm 

offers greater flexibility in quality and computation than Maximum A Posteriori es-

timates because it does not require the formulation of a prior model, and instead 

utilizes an off-the-shelf denoiser in the split variable optimization of ADMM. The 

research area is still new and there are many directions for further work to take to 

make event-based cameras the next standard in imaging. 
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