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ABSTRACT

Kang, Xuejiao. Ph.D., Purdue University, December 2018. Fault Tolerance in Linear
Algebraic Methods using Erasure Coded Computations . Major Professor: Ananth
Grama.

As parallel and distributed systems scale to hundreds of thousands of cores and

beyond, fault tolerance becomes increasingly important – particularly on systems

with limited I/O capacity and bandwidth. Error correcting codes (ECCs) are used

in communication systems where errors arise when bits are corrupted silently in a

message. Error correcting codes can detect and correct erroneous bits. Erasure codes,

an instance of error correcting codes that deal with data erasures, are widely used in

storage systems. An erasure code adds redundancy to the data to tolerate erasures.

In this thesis, erasure coded computations are proposed as a novel approach to

dealing with processor faults in parallel and distributed systems. We first give a brief

review of traditional fault tolerance methods, error correcting codes, and erasure

coded storage in Chapter 1. The benefits and challenges of erasure coded compu-

tations with respect to coding scheme, fault models and system support are also

presented.

In the first part of my thesis, I demonstrate the novel concept of erasure coded

computations for linear system solvers. Erasure coding augments a given problem

instance with redundant data. This augmented problem is executed in a fault obliv-

ious manner in a faulty parallel environment. In the event of faults, we show how

we can compute the true solution from potentially fault-prone solutions using a com-

putationally inexpensive procedure. The results on diverse linear systems show that

our technique has several important advantages: (i) as the hardware platform scales

in size and in number of faults, our scheme yields increasing improvement in resource
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utilization, compared to traditional schemes; (ii) the proposed scheme is easy to code

as the core algorithm remains the same; (iii) the general scheme is flexible to accom-

modate a range of computation and communication trade-offs.

We propose a new coding scheme for augmenting the input matrix that satisfies

the recovery equations of erasure coding with high probability in the event of random

failures. This coding scheme also minimizes fill (non-zero elements introduced by

the coding block), while being amenable to efficient partitioning across processing

nodes. Our experimental results show that the scheme adds minimal overhead for

fault tolerance, yields excellent parallel efficiency and scalability, and is robust to

different fault arrival models and fault rates.

Building on these results, we show how we can minimize, to optimality, the over-

head associated with our problem augmentation techniques for linear system solvers.

Specifically, we present a technique that adaptively augments the problem only when

faults are detected. At any point during execution, we only solve a system with the

same size as the original input system. This has several advantages in terms of main-

taining the size and conditioning of the system, as well as in only adding the minimal

amount of computation needed to tolerate the observed faults. We present, in de-

tails, the augmentation process, the parallel formulation, and the performance of our

method. Specifically, we show that the proposed adaptive fault tolerance mechanism

has minimal overhead in terms of FLOP counts with respect to the original solver

executing in a non-faulty environment, has good convergence properties, and yields

excellent parallel performance.

Based on the promising results for linear system solvers, we apply the concept of

erasure coded computation to eigenvalue problems, which arise in many applications

including machine learning and scientific simulations. Erasure coded computation is

used to design a fault tolerant eigenvalue solver. The original eigenvalue problem is

reformulated into a generalized eigenvalue problem defined on appropriate augmented

matrices. We present the augmentation scheme, the necessary conditions for augmen-

tation blocks, and the proofs of equivalence of the original eigenvalue problem and the



xiii

reformulated generalized eigenvalue problem. Finally, we show how the eigenvalues

can be derived from the augmented system in the event of faults.

We present detailed experiments, which demonstrate the excellent convergence

properties of our fault tolerant TraceMin eigensolver in the average case. In the

worst case where the row-column pairs that have the most impact on eigenvalues

are erased, we present a novel scheme that computes the augmentation blocks as the

computation proceeds, using the estimates of leverage scores of row-column pairs as

they are computed by the iterative process. We demonstrate low overhead, excellent

scalability in terms of the number of faults, and the robustness to different fault

arrival models and fault rates for our method.

In summary, this thesis presents a novel approach to fault tolerance based on

erasure coded computations, demonstrates it in the context of important linear al-

gebra kernels, and validates its performance on a diverse set of problems on scalable

parallel computing platforms. As parallel systems scale to hundreds of thousands of

processing cores and beyond, these techniques present the most scalable fault tolerant

mechanisms currently available.
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1 BACKGROUND AND INTRODUCTION

In this chapter, we provide a brief review of the state of the art in fault tolerance

techniques and three related, yet critically distinct concepts – error correcting codes,

erasure coded storage, and our proposed erasure coded computations. Then, we will

introduce fault tolerant linear algebraic methods based on erasure coded computa-

tions. We conclude by summarizing the organization of this dissertation.

1.1 Background on Fault Tolerance Techniques

Techniques for fault tolerance can be classified into two broad categories – system-

supported methods and algorithm-based methods. System-supported methods in-

clude checkpoint-restart, active replicas, and deterministic replay [1–4]. Checkpoint-

restart techniques periodically save application state into persistent storage (either

disks or in-memory). This requires identification of consistent checkpoints, along

with capacity for persistent storage in terms of space and bandwidth (to store check-

points). Scalable systems with hundreds of thousands of cores and beyond are often

constrained in all of these resources. Without significant rollbacks, it is hard to find

the restart point from the consistent checkpoints, particularly in scalable parallel

programs that attempt to minimize global synchronizations.

Active replicas execute computations at multiple sites – these replicas are moni-

tored for potential faults, and a consensus protocol identifies fault-free executions. In

general, a computation must be executed on k + 1 replicas to tolerate k faults. As k

increases, replicated execution involves significant resource overhead. The most com-

mon instantiation of deterministic replay is in MapReduce environments [5]. Maps

are scheduled at different execution units and are monitored for successful comple-

tion. If a map task times out, it is rescheduled at an alternate execution unit. The
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presence of intermediate reduce points ensures that maps have to be replayed only

back to the previous reduce point. Such techniques depend on two critical aspects–

periodic reduce phases that act as consistent checkpoints (global synchronizations),

so that maps are only rescheduled from the last reduce point, and committing output

of reduce phases to persistent storage (typically to a redundant distributed file sys-

tem). The two overheads of these schemes are also apparent. First, the makespan of

jobs increases as faults increase, since the runtime system must reschedule maps, thus

slowing down the entire computation. Second, the overhead of committing output of

reduce phases may itself be significant.

Algorithm-based fault tolerance (ABFT) methods modify the base algorithm to

embed redundant computations, so as to render the overall computation resilient to

faults [6–13]. ABFT methods must typically be supplemented by correctness proofs,

limits on fault tolerance, and bounds on computational overhead. The fault tolerant

linear solver proposed by Chen et al. [10] views the faulty solver as a preconditioner

for an outer solver, which validates the solution of the potentially faulty inner solver.

The eigenvalue solver of Chen [11] relies on checksum coding along with fault location

and reconfiguration to detect an erroneous signal. Different error detection methods

that utilize properties of eigenvalue systems have been proposed. The checksum rows

and columns added to detect soft errors are used in conjunction with a checkpoint

procedure for rolling back state to the last correct state. In contrast, our method does

not require checkpoint and restart procedure. By carefully reformulating the problem

and suitably coding the input matrix, our method runs in a completely fault oblivious

manner. A checksum method for QR decomposition (which can be used to solve

eigenvalues) was proposed by Luk and Park [13]. Although this method does not need

to roll back computation to correct errors, it can only detect and correct one transient

error. ABFT techniques often have advantages over system-supported methods in

terms of resource overheads. However, they must be specifically designed for each

algorithm, leverage specific aspects of the algorithm as well as fault characteristics of

underlying platforms, and typically require intricate correctness proofs.
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1.2 Error Correcting Codes, Erasure Coded Storage and Computations

Figure 1.1.: Example of Hamming Code.

Error correcting codes (ECCs) are widely used in communication and storage

systems, where noise may exist [14]. Hamming Codes [15] and low density parity

codes (LDPC) [16] are commonly used instances of ECCs. An example of Hamming

Code is shown in Figure 1.1 (from left to right: hamming code, bi-partite graph

representation, parity-check equations and matrix). The code can detect and correct

one bit error by computing H×c (H is the parity check matrix and c is the codeword).

For example, if we receive a codeword c =
[
1 1 0 0 1 0 0

]T
, applying H to

c will give us s =
[
1 0 1

]T
, which is the same as the second column of H . This

implies that the location of the error is at the second bit (therefore flip the bit to

correct). Compared to Hamming codes, LDPC is a sparse code, where very few bits

are set to 1 relative to the number of bits in the original word. The sparsity property

of LDPC makes it attractive for use in Fault Tolerant Storage.

Erasure Coded Storage (ECS) Consider a code that augments m units of data

with k redundant units, for a total of n = k + m stored items. If such a code is

capable of correcting k errors, then the code is space-optimal and is referred to as
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Maximum Distance Separable (MDS) [17]. Figure 1.2 presents two examples of an

MDS systematic code. The data vector is premultiplied by a distribution matrix

to compute an augmented vector. We can recover the data vector from a single

element erasure by solving the linear system corresponding to the remaining rows of

the distribution vector, since they are linearly independent.

In general, a coding matrix (referred to as a distribution (or coding) matrix) has

m + k rows and m columns, with the property that any subset of m rows is linearly

independent. The distribution matrix is multiplied by the data vector (of dimension

m) to yield an n = m + k items coded vector. If k elements of the coded vector are

erased, one can recover the data vector by solving the linear system corresponding to

the remaining m rows of the distribution matrix.

For example, the left distribution coding matrix in Figure 1.2 can help us tolerate

one failure (k = 1). If one element of coded vector is erased, we can recover the

data vector by subtracting the sum of all other non-faulty original rows from the

redundant rows. By contrast, although the coding matrix on the right in Figure 1.2

has two redundant rows in coded data vector, it can only tolerate one fault. Any

erasure of the odd numbered rows can be recovered from the first redundant row by

linear operation, while any erasure of the even numbered rows can be recovered from

the second redundant row.

Distribution (Coding) Matrix

Data Vector

Distribution (Coding) Matrix

Data Vector

Coded Data Vector

Coded Data Vector

Figure 1.2.: Basic principles of erasure coding.
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Erasure Coded Computation (ECC) While similar in spirit, our proposed con-

cept of erasure coded computations in linear algebra has several significant differences

from error correcting codes (ECCs) and erasure coded storage (ECS). First, unlike

ECCs and ECS schemes, erasure coded computations aim to code the results of a

computation in a fault tolerant manner, as opposed to the data. Second, data struc-

tures used are not linear bit strings (or blocks), but rather sparse matrices. Third,

recovery is numerical in nature; i.e., we do not need to perform our computations

over a finite field; instead, we use real arithmetic, which can greatly relieve the algo-

rithmic burden of coding/decoding. Finally, erasure coded computations must deal

with failure modes other than erasures. All of these issues pose significant challenges,

which are the foci of recent work [18].

Basic Kernels of ECC We illustrate the idea for erasure coded computations in

a simple form for a sparse matrix-vector product (mat–vec). We assume that this

matrix is partitioned row-wise across processing nodes.

Figure 1.3 shows an example of such a matrix, partitioned across eight nodes. Fig-

ure 1.3(a) shows the sparse matrix and its (sparse) graph representation; Figure 1.3(b)

illustrates the augmentation process when the given sparse matrix is premultiplied

by a distribution matrix (also called the coding matrix), resulting in a new matrix

with one extra row, which is the sum of all other rows shown in Figure 1.3(c); Fig-

ure 1.3(d) presents the graph view of the augmented matrix with a new node added;

Figure 1.3(e) illustrates that using an alternate distribution matrix allows us to con-

trol the fills in the augmentation rows. The augmented block now consists of two

(sparse) rows. This computation is still resilient to one process failure. The augmen-

tation block can itself be distributed among processors for load balance. Consider the

first simple case of coding the mat-vec using a parity distribution matrix (Figure 1.2).

We multiply the distribution matrix by the given sparse matrix (Figure 1.3(b)) to get

an augmented matrix, in which the first m rows remain unchanged because of the

identity block of rows in the distribution matrix, whereas the last (augmented) row is
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the negative sum of all other rows. In a graph view, this augmentation corresponds

to the addition of a new node (node 9) that is connected to all other nodes in the

original graph with a negative weight. The operation is now executed using nine pro-

cessing nodes (as opposed to the original case of eight nodes). If one of the processes

has a fail-stop failure, the corresponding vector element is lost. However, due to the

structure on the row-sums, the missing element can be inferred because the sum of

the output vector must be zero.

In linear algebraic techniques, we aim to encode the input problem by a coding

(distribution) matrix and input the coded data into traditional methods based on

the concept of erasure coded computations. The true solution can be extracted by

a decoding procedure, which does not involve complicated/expensive computations

under a potentially faulty environment. Hence, for traditional methods, the process

is fault oblivious, and does not require rollbacks or restarts.

1.3 Benefits and Challenges in ECC

In Section 1.2, we show three related, yet critically distinct concepts – error cor-

recting codes, erasure coded storage, and the proposed erasure coded computations.

In this section, we will show the benefits and challenges, including the design of the

coding schemes, the fault models, and the system support, of erasure coded compu-

tations.

We note several important points related to this general scheme of fault oblivious

computations: (i) Tolerating a single fault using traditional replication requires twice

as much computer power and tolerating a single fault using deterministic replay dou-

bles the makespan of the job, while our proposed scheme achieves fault tolerance to

a single fault by increasing the computation only fractionally, depending on the code

used. We show that the encoding, the execution, and the decoding procedures for

our technique introduce little overhead in terms of excess computation and commu-

nication during a parallel execution. We show that our linear solvers are particularly
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Figure 1.3.: Illustration of the concept of erasure coded computations
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attractive for systems with high fault rates, since they do not require checkpoints,

are adaptive, in the sense that augmented blocks are introduced into the input ma-

trix only when faults are detected, and that the recovery procedure, in the event of

faults, is computationally simple and inexpensive [18–20]. (ii) The benefits of our

scheme are significantly amplified as higher levels of fault tolerance are desired. (iii)

Controlling fill in augmentation rows and associated communication overhead can be

achieved using suitable codes. (iv) Load balancing considerations can be achieved by

distributing the augmentation rows across processes. These benefits are validated by

our recent work [19–21], which successfully solves the following challenges.

Deriving Sparse Erasure Coding Schemes The example in Figure 1.3 illus-

trates two codes – a parity code and a block parity code. In erasure coded storage,

Vandermonde and Cauchy matrices are often used for generating codes [22,23]. While

space efficient, these codes induce significant communication overhead in our setting.

For instance, a Vandermonde matrix induces a dense augmentation block. The block

parity code illustrated in Figure 1.3 induces augmentation blocks with O(n) non-zeros

(when using n processing nodes), assuming an O(1) non-zeros in each row of the input

matrix. While this is more desirable than the O(r) communication and computation

of the Vandermonde block (here r is the number of rows in the input matrix), the

dense block imposes constraints on scaling.

Sparse matrices are generated from different applications ranging from mechanical

engineering to biology systems. We need to solve these sparse matrices using linear

algebraic methods. The dense coding matrix also imposes computation overheads for

these problems, since the original problems are sparse. Hence, a sparse distribution

(coding) matrix is more desirable. Sparse coding matrices should satisfy the proper-

ties required by the coding and decoding procedure. We tackle this problem using

distribution matrices similar to structured low density parity codes (LDPC) [16].

These codes are described in Chapter 2.
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ECC under Different Fault Models We have, thus far, considered only fail-stop

failures [24]; i.e., in the event of a fault, a process will change to a state that permits

other components to detect that a failure has occurred and then stops. Indeed,

there are other fault models as well, ranging from transient (soft) faults to Byzantine

behavior [25, 26]. Soft/transient faults manifest themselves in the form of erroneous

data, which show up silently without any indication from the hardware/operating

system. In the Byzantine model, a component can exhibit arbitrary and malicious

behavior, perhaps involving collusion with other faulty components.

Our proposed method can be extended to these other fault classes using an ap-

plication provided local fault detection scheme. These schemes are presented in the

form of asserts (predicates whose violation signifies an error). When such a fault is

locally detected, the process is killed and other processes are notified of the failure –

thus emulating a fail-stop failure. Asserts work similarly when Byzantine failures are

detected. Thus, a combination of tolerance to fail-stop failures with user-specified

predicates for local fault detection allows us to handle a broader class of faults. Our

methods are tested under different fault arrival models and fault rates for fail-stop

failures. The results demonstrate the robustness of our methods, as shown in Chap-

ter 2, Chapter 3 and Chapter 4.

Systems Support for ECC There are important issues related to system sup-

port and programming models that are associated with the proposed fault oblivious

paradigm. Specifically, a single process failure often causes the entire program to

crash. In yet other scenarios, a crashed process can cause group communication op-

erations (reductions, broadcasts, etc.) to block. These kinds of behaviors would not

allow the leveraging of our proposed scheme. Specifically, we assume that the faulty

processes simply drop out of the ensemble, while the remaining processes continue.

In this dissertation, we do not undertake the task of developing such software in-

frastructure. Rather, to demonstrate the feasibility and performance of our erasure

coded computations, we code it entirely using asynchronous non-blocking communi-
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cation operations. In other words, we simply ignore the faulty process, and it does

not affect the operations on other processes. Although this is not a direct comparison

with their synchronous counterparts, it allows us to demonstrate the performance and

fault tolerance characteristics of our method.

1.4 Related Research

Our approach is best characterized as adapting the ideas (erasure coded storage)

behind fault tolerant storage to linear algebraic problems to achieve fault tolerant

computation. Our work can be considered as a hybrid of algorithm-based methods

and system-supported methods, in which the original problem is modified for fault

tolerance, and then executed by a standard algorithm in a fault oblivious manner

to compute a solution. Compared to a checkpoint-restart method, our method does

not need consistent checkpoints and significant rollback to find the restart point. In

comparison to active replica, which needs k replicas to tolerate k faults, our method’s

resource overhead is low and does not need replicated executions. MapReduce, for

example, has drawbacks of staged execution and increased job makespan, particularly

when the number of faults is large. Our method does not need to rollback to restart

from the point of last fault, and does not incur significant overhead with increasing

number of faults.

In the context of linear system solvers using erasure coded computations, the re-

sults most closely related to ours originated by the work of Huang and Abraham [12].

They added a checksum row and column to detect soft errors in a variety of dense

matrix computations. Their result motivated a line of research [6, 8–10, 27, 28] on

generalizing the concept, dealing with fail-stop failures, and parallel computation.

However, the focus of their work on iterative methods for linear systems involves effi-

ciently emulating a checkpoint-restart system, where efficiently computed checksums

are used instead of the checkpoints [28]. The solver restarts when faults are detected.

Their efficiency is significantly degraded when the number of faults increases, or when
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the system’s fault rate is high. Our method simultaneously encodes the entire prob-

lem. The whole execution is fault oblivious and there is no restart. We exploit coding

schemes in iterative algorithms differently, where we establish a general faremwork of

erasure coded computations in iterative methods. This involves concepts related to

the Kruskal rank [6, 29]. Prior work on fault tolerant iterative methods using coding

involves some similar ideas, but in the context of algorithms that restore the state on

a per-iteration basis, instead of solution recovery after the entire computation, as in

our case. Alternative hybrid strategies for solving linear systems of equations with

faults include the selective reliability framework, where algorithms are programmed

to be tolerant to faults in certain regions of the computations [7]. In the context

of linear solvers, these methods prescribe a set of critical work that must be done

reliably and other sections of fault tolerant work that could proceed with a variety

of soft errors. For instance, in linear system solvers, residual computations must be

done reliably to gauge convergence, whereas preconditioning applications can tolerate

a variety of faults. This setting then involves flexible Krylov subspace methods, such

as flexible GMRES [30–33]. Generating synthetic but realistic soft errors [34] is a

challenge for such methods. In comparison, our erasure coded approach only requires

the encoding and final decoding to be reliable. The scope of critical work on encoding

and decoding is small compared to the whole iterative procedure. Selective reliability

for standard iterative methods usually requires sequences of reliable and fault tolerant

sections of code.

In the context of eigenvalue solvers using erasure coded computations, the results

most closely related to ours originated in the work [11–13]. The eigenvalue solver of

Chen [11] relies on checksum coding, along with fault location and reconfiguration

on detecting an erroneous signal. Different error detection schemes are implemented

based on checksum rows and the property of problems and algorithms. When a fault

is detected, the solver will roll back state to the last correct state. This approach

involves consistent checkpoints and rollback procedures. Consistent checkpoints need

significant bandwidth to I/O or extra memory for in-memory checkpoints. The roll-
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back procedure decreases efficiency of the whole program, especially for the system

with high fault rates.

In contrast, our method does not require checkpoints and rollback. A check-

sum method for QR decomposition (which can be used to solve for eigenvalues) was

proposed by Luk and Park [13]. Although this method does not need to rollback com-

putation to correct errors, it can only detect and correct one single (transient) error

of the ideal case that only a single element of the matrix is changed at the kth step of

the computation. This is a very limited single transient error model. However, in a

real system, it is very common that one or more processors become faulty and several

faults happen at different stages of the execution. Even for an instantaneous fault

model, where faults happen instantaneously, more than one fault may happen across

multiple processors. In contrast, with precomputed coded blocks, we can tolerate as

many faults as the size of coded block faults. Moreover, our method is robust to

different fault models including the instantaneous model and the exponential model,

where faults arrive randomly, following an exponential distribution. This is especially

useful and applicable to real distributed systems with high fault rates.

1.5 Our Fault Oblivious Linear Algebraic Algorithms based on ECC

The concept of fault oblivious execution was introduced based on erasure coded

computations [18]. Fault oblivious executions suitably augment the input to a parallel

program and execute the program on this augmented input in a potentially faulty

environment. For a class of faults (fail-stop), the program executes obliviously of

the faults (i.e., stopped processes are not restarted), and generates an augmented

output. The true output of the program is generated from an inexpensive operation

on the augmented output of the faulty execution. This technique is different from

traditional system-supported fault tolerance methods, for which resource overheads

are a big concern. However, as shown in Section 1.3, erasure coded computations also
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pose challenges including coding schemes, robustness to different fault models, and

system requirements. We will present solutions for these problems in Chapter 2.

Based on the concept of erasure coded computations, the erasure coded linear

system Ãx̃ = b̃ is constructed, given the original system Ax∗ = b (x∗ is the true

solution of original linear system) and a coding matrix E as follows: A AE

ETA ETAE


︸ ︷︷ ︸

Ã

x∗

0


︸ ︷︷ ︸
x̃

=

 b

ETb


︸ ︷︷ ︸

b̃

(1.1)

The augmented system (Ãx̃ = b̃) is solved in a potential faulty environment to

tolerate faults and the true solution of original system (Ax = b) is recovered from x̃.

Properties of the augmented system will be shown in Chapter 2.

We address issues that arise in coding and executing erasure coded computations

in distributed environments, including the sparsity of the erasure code and the par-

titioning considerations of augmented parts, when using a conjugate gradient (CG)

solver [35]. We describe the construction of the sparse coding matrix E and prove the

Kruskal rank property [29] of the proposed coding matrix E. Compared to other fault

tolerant algorithms, our erasure coded fault tolerant scheme separates fault tolerance

from the algorithm itself, and enables the use of a simple distributed algorithm.

The details of parallel implementation, including matrix reordering, augmentation

block partitioning, and erasure of data on a distributed platform are also presented.

Our experimental results demonstrate the following, in the context of a distributed

erasure coded conjugate gradient solver: (i) the overhead of input augmentation is low

– orders of magnitude smaller than corresponding overhead for replicated execution;

(ii) the conditioning of the augmented system is comparable to the original system as

evidenced by its convergence rates; (iii) the increase in the number of iterations due

to errors is low, as evidenced in comparison to a regular solver; (iv) the augmented

input solver yields excellent parallel performance in the presence of errors; (v) the

augmented input solver is robust to different fault arrival rates; and (vi) for three

different fault arrival models – uniform, instantaneous, and random, our fault tolerant
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solver yields excellent performance on convergence. All of these results are validated

on small to medium sized systems through an MPI-based implementation.

The distributed fault tolerant linear system solver in Chapter 2 shows good perfor-

mance in convergence, time overhead, parallel performance and robustness to different

fault arrival models. The solver assumes an estimated maximum number of faults and

augments the system prior to execution for this worst-case estimation. The overhead

of this augmentation is paid in the solver, even if fewer faults are encountered. Hence,

in the worst case scenario when there are no faults during execution, the computa-

tional overhead for the augmentation parts is paid at each iteration even when they

do not contribute to the final results.

In Chapter 3, we propose an adaptive augmentation approach that augments the

input matrix only when faults are encountered. When a set of rows is erased during

execution, the same number of precomputed augmentation rows will be added to

the input matrix. Consequently, the system being solved is identical in size to the

input matrix. We will show how we can minimize the overhead associated with the

augmentation in detail. The augmented system in Chapter 2 can be written as follows:
A11 A12 Z1

A12
T A22 Z2

Z1
T Z2

T ETAE




xc

xf

xr

=


bc

bf

ET b



Here A =

 A11 A12

A12
T A22

, E =

E1

E2

 and

 Z1 =A11E1 + A12E2

Z2 =AT
12E1 + A22E2

. The size of

matrix E is n× k, which lets us handle up to k erasures. Here xc and xf correspond

to the correct (fault free) and faulty parts, respectively, and xr is the redundant part

for the augmented system (xc is an (n−k)×1 vector, xf and xr are k×1 vectors). In

comparison, the adaptive fault tolerant linear system solver in this chapter will solve

the following system when faults happen:A11 Z̃1

Z̃
T

1 Ẽ
T
AẼ

xc

xr

=

 bc

Ẽ
T
b

−
A12

Z̃
T

2

xf . (1.2)
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Here Z̃1, Z̃2, Ẽ
T
AẼ

T
, Ẽ

T
b are the submatrices selected from the precomputed

coding data (Z1, Z2, E
TAE and ETb) respectively when an erasure occurs. This

system has a number of desirable properties – (i) the method is computationally op-

timal in the sense that the system size stays the same as the input system, especially

when the number of faults that occurred during execution is much less than k; (ii)

the convergence property is maintained; i.e., the system is always full rank and if

the input is symmetric positive definite (SPD), the coded system is also SPD; and

(iii) the coded block adds negligible computational and parallel overhead to the base

solver. We present, in detail, the augmentation process and the parallel formulation.

The experimental results on sparse matrices show that the proposed adaptive fault

tolerance mechanism has minimal overhead in terms of FLOP counts with respect to

the original solver executing in a non-faulty environment, has good convergence prop-

erties, and yields excellent parallel performance under different fault arrival models

and rates.

Building on the erasure coded linear system solver, we apply the concept of era-

sure coding computations to an eigenvalue solver for Ax = λx. There are three major

differences between linear systems and eigenvalue systems. First, compared to the n

unknowns in a linear system of the same dimension, an eigenvalue system has n + 1

unknowns (an n−vector and a scalar λ); second, naively adding a coding block to a

given matrix A changes its eigenvalues; lastly, there are no known computationally

inexpensive ways of recovering the original eigenvalues from the perturbed eigenval-

ues. To address this, we transform the original eigenvalue problem to an equivalent

(in terms of eigenvalues) generalized eigenvalue problem Ãx̃ = λB̃x̃, where Ã is an

augmented form of input matrix A and B̃ is a suitably constructed sparse matrix as

follows:  A AE

ETA ETAE


︸ ︷︷ ︸

Ã

x

0


︸︷︷︸
x̃

=λ

 I E

ET ETE


︸ ︷︷ ︸

B̃

x

0


︸︷︷︸
x̃

. (1.3)
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We prove that the eigenvalues of the original problem (Ax = λx) and the new gen-

eralized eigenvalue problem (Ãx̃ = λB̃x̃) are identical in exact arithmetic. We char-

acterize the impact of faults on the solution of the generalized eigenvalue problem,

and present the reconstruction of the eigenvalues in the event of faults (recovery pro-

cedure). The properties of the generalized eigenvalue system inspires a perturbation

and purification approach to construct a robust eigensolver.

We solve the reformulated generalized eigenvalue problem using TraceMin [36,37],

which can simultaneously compute the top k smallest (largest) eigenvalues and cor-

responding eigenvectors of large sparse generalized eigenvalue problem Ax = λBx.

We refer to this variant as the fault oblivious TraceMin algorithm. Our experimental

results on sparse matrices show that our solver has excellent convergence properties

(eigenvalues are very close to those of the original system) in the event of random

faults (a set of randomly chosen row-column pairs are erased). We also evaluate

the performance of our eigensolver under the worst case scenarios. It is well known

that different rows of a matrix have different impacts on the eigenspectrum of the

matrix [38, 39]. One way to characterize the importance of a row-column pair with

respect to its eigenspectrum is using leverage scores [40–42]. We construct worst case

scenarios for our solver by erasing row-column pairs with the top k highest leverage

scores obtained from a prior SVD decomposition. We notice that our fault tolerant

scheme needs more iterations to converge. This is due to the fact that our coding

scheme is oblivious to leverage scores, which are not considered during construction

of augmentation blocks. Since it is infeasible to precompute the leverage scores before

constructing our coding blocks, we estimate the leverage scores from eigenvectors as

the TraceMin computation proceeds, and dynamically update the code based on the

estimated leverage scores. We demonstrate that by using this adaptive scheme, we can

handle the worst case scenarios with minimal convergence degradation. We perform

experiments to compare our erasure coded eigensolver against the base eigensolver in

terms of: (i) the average case convergence rate; (ii) the worst case convergence prop-

erties; (iii) the effectiveness (in terms of convergence) of our updated algorithm using
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adaptive coding technique on the worst case; (iv) the impact of using approximations

of leverage scores (as opposed to exact leverage scores) to establish bounds; and (v)

the impact of different fault arrival models (instantaneous versus random arrivals) and

fault rates. Our experimental results show that our solver has fast convergence, can

effectively handle worst case erasures, and is robust to different fault arrival models

and fault rates.

We discuss avenues for future work in Chapter 5 and summarize this dissertation

in Chapter 6.
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2 DISTRIBUTED FAULT TOLERANT LINEAR SYSTEM SOLVER

A version of this chapter has been published in the 2017 IEEE 37th International Con-

ference on Distributed Computing Systems (ICDCS) [19](DOI: 10.1109/ICDCS.2017.261).

In this chapter, our idea of erasure coded computations is applied to a linear system

solver. We code the original system including the matrix A and right-hand-side vec-

tor b based on erasure coded computations. A solver will run on the coded system.

Details of the erasure coded linear system solver will be given in Section 2.1. To

minimize the fill in augmentation rows, we design a novel sparse coding matrix E,

which satisfies the recovery-at-random property. The structure of E and the proof of

its properties are shown in Section 2.2. The partitioning considerations for data are

given in Section 2.4 to achieve better parallel performance. The experimental results

in Section 2.5 demonstrate that our distributed fault tolerant linear solver converges

under non-faulty and faulty environments, exhibits good speedup and low computa-

tional overheads on distributed platforms, and adapts to different fault arrival rates

and different fault arrival models.

2.1 Erasure Coded Linear System Solver

We now summarize the work in [18] that describes how to extend the idea of

erasure coded computations to solving a linear system of equations. This forms the

basis for the distributed solver proposed in this chapter. Let x∗ be the true solution

of the original linear system

Ax∗ = b (2.1)
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We set k ≤ n to be the allowed number of faults. The encoding matrix E is an n-by-

k matrix that has the property that any subset of k rows are linearly independent.

This condition is equivalent to stating that ET should have Kruskal rank k [29].

Given matrices A and E, the augmented or encoded system Ã, the solution to the

augmented system x̃, and the augmented right-hand-side b̃, are given by:

Ã=

 A AE

ETA ETAE

 x̃=

x∗

0

 b̃=Ãx̃ =

 b

ETb


With these augmented structures (Ã is (n+ k)× (n+ k) symmetric matrix and b̃ is

n+ k vector), we solve:

Ãx̃ = b̃ (2.2)

Computing the new blocks of this system (such as AE, ETA and ETAE) must be

done reliably through some type of existing fault tolerance scheme, although this is

a small amount of work. When ET has Kruskal rank k, Gleich et al. [18] prove a

number of properties of E including the null space basis of Ã (the null space of Ã

is

 E

−Ik

) and the symmetric positive semi-definiteness (SPSD). These properties

guarantee that solution recovery is possible. In particular, let

y

z

be any solution

of the augmented system, where y ∈ <n and z ∈ <k, then it can be written asy

z

 =

x∗

0

+

 E

−Ik

 a for a unique a ∈ <k. To recover x∗ in the presence of errors,

we can use y = x∗ + Ea and z = −a. These two equations lead to x∗ = y + Ez for

recovery [18]. This gives us a straightforward recovery algorithm. The solver needs

a condition on matrix E such that: (i) there is always a solution to the augmented

system for any faults as long as the number of faults is less than or equal to k (the

column size of E); (ii) given any solution obtained from the augmented system with

faults, we can extract a solution for the original system (Ax = b) from it. This

condition is equivalent to a full Kruskal rank of matrix ET [29]. The vandermond

matrix [23] is a matrix with full Kruskal rank and the random matrix used in [18]
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also satisfies the full Kruskal rank requirement with probability tends to 1. The main

drawback of these coding schemes is that the matrices are dense, which will increase

the fills of (1, 2), (2, 1), (2, 2) blocks of Ã. For a linear system with sparse matrix,

computations resulting from the augmented parts can be as comparably expensive as

the computation corresponding to the (1, 1) block of Ã. With increasing number of

faults (k), the computation overhead will skyrocket and the scheme is infeasible for a

large distributed system with high fault rates. Hence, we use a sparse coding scheme

that satisfies the random-recovery-property.

2.2 Coding Matrix

Having established the algebraic basis for our method (Section 2.1), we now focus

on the problem of developing a suitable coding matrix E designed to work with

distributed sparse matrices. This poses two challenges: first, the matrix E must

satisfy certain algebraic properties of Kruskal rank in order to utilize the existing

theory. Second, it must simultaneously minimize fills in the augmented matrix Ã

for performance, both in terms of operation counts and communication. In order to

achieve these dual objectives, we weaken the requirements on Kruskal rank k. In

the proofs from Gleich et al. [18], having Kruskal rank k is necessary to guarantee

that any possible subset of components can fail and we can always recover the true

solution. This is obviously the ideal scenario. However, it is a worst-case analysis. In

this chapter, we relax the requirement to meet only the recovery-at-random property.

Definition A n-by-k matrix E satisfies the recovery-at-random property if a random

subset of k rows (selected uniformly with replacement) is rank k with probability

≥ 1− 1/nc, c > 1.

We construct a matrix E by setting p successive elements in each row to non-zero

elements. These p non-zero elements are selected in a staggered manner, i.e., the first

p elements in Row 1, one zero followed by p non-zero elements in Row 2, two zeros
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followed by p non-zero elements in Row 3, and so on. More generally, for the ith row,

the j = (i− 1 + s) mod k elements for s ranging from 1 to p are set to random reals

in the range (0, 1). An example with k = 6, p = 3 is:

E =



• • • 0 0 0

0 • • • 0 0

0 0 • • • 0

0 0 0 • • •

• 0 0 0 • •

• • 0 0 0 •

• • • 0 0 0


This choice of matrix E satisfies the recovery-at-random property and it is inspired

by low density parity check (LDPC) codes which are a class of linear block codes [16].

LDPC codes have the characteristic of their parity-check matrix which contains only

a few 1s in comparison to the amount of 0s, while still have the capacity very close

to the theoretical maximum of allowing noise [14]. We will prove the property of our

choice of matrix E by the following proposition and theorems.

Proposition 2.2.1 Let E′ be a submatrix of E formed by selecting any p rows of

matrix E. The matrix E′T has rank p (alternately, any p rows of matrix E are

linearly independent).

Case 1
• • • 0 0 0

0 • • • 0 0

0 0 • • • 0


Case 2

• • • 0 0 0

• • • 0 0 0

• • • 0 0 0


Combination of Case 1 and Case 2

• • • 0 0 0

0 • • • 0 0

0 • • • 0 0


Proof. We consider different cases as shown above: (i) all rows of matrix E′ have dis-

tinct non-zero structure; in this case, all rows of E′ are trivially linearly independent;

and (ii) all rows of matrix E′ have the same non-zero structure; i.e., the non-zeros form
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a p×p non-zero block in matrix E′. In this case, we know that the p×p block of ran-

domly generated entries is non-singular with probability tends to 1; and (iii) some rows

have the same non-zero structure and some rows have distinct non-zero structures;

this case is the combination of the above two cases. The rows with identical non-zeros

structure have full rank as the number of non-zeros on each row is larger than the

number of rows, and rows with distinct non-zeros will be linearly independent as in

the first case. Therefore, all rows of matrix E′ are linearly independent in this case as

well. Hence, the matrix E′ has rank p, which means any p rows of matrix E are lin-

early independent. �

Proposition 3.1 shows that any submatrix of p rows of matrix E has full rank.

We need that any submatrix of k rows of matrix E must have rank k. Clearly, there

exist degenerate cases where this is not true – specifically, if we select k rows, each

with the same non-zero structure, we end up with a submatrix of rank p, which is

less than k. It is important to note that this row-selection process is determined by

the location of failures in the system. We show in Theorem 3.2 that such degenerate

selections are highly unlikely.

Theorem 2.2.1 The probability that a random set of k rows of matrix E is linearly

dependent is less than ( e
p+1

)p+1.

Proof. Note that there are k distinct non-zero structures in the n rows of matrix E.

Furthermore, since rows are uniformly assigned one of these k distinct row structures,

the probability that a row has a specific row structure is 1/k and the probability that

p+ 1 rows have the same row structure is ( 1
k
)p+1. Since there are

(
k
p+1

)
ways to select

p + 1 rows out of the selected block of k rows, the probability that a selected block

of k rows is linearly dependent is given by:

Pr(F ) ≤
(

k

p+ 1

)
·
(

1

k

)p+1
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Here the random variable F representing the k rows of matrix E that are linearly

dependent. For
(
k
p+1

)
, we have the following inequality based on Stirling approxima-

tion [43]:(
k

p+ 1

)
=

k!

(p+ 1)!(k − p− 1)!

=
(k/e)k

√
2πk

(p+1
e

)p+1
√

2π(p+ 1)(k−p−1
e

)k−p−1
√

2π(k − p− 1)

=
kk
√
k

(p+ 1)p+1(k − p− 1)k−p−1
√

2π
√

(p+ 1)(k − p− 1)

≤ kk

(p+ 1)p+1(k − p− 1)k−p−1

Based on the inequality, we can get the upper bound of Pr(F ) as follows:

Pr(F ) ≤
(

k

p+ 1

)
·
(

1

k

)p+1

≤ kk

(p+ 1)p+1(k − p− 1)k−p−1
·
(

1

k

)p+1

≤ kk−p−1

(p+ 1)p+1(k − p− 1)k−p−1

≤ (
k

k − p− 1
)k−p−1

1

(p+ 1)p+1

≤ ((1 +
p+ 1

k − p− 1
)
k−p−1
p+1 )p+1 1

(p+ 1)p+1

≤ (
e

p+ 1
)p+1

As p increases, it is easy to see that this probability rapidly approaches 0. Stated

otherwise, matrix E satisfies recovery-at-random for p chosen as a suitable function of

n. �

We now focus on the problem of selecting the smallest value of p in our coding

matrix E to guarantee that we are unlikely to have too many rows with the same non-

zero pattern. We investigate the expected maximum number of rows that share the

same non-zero structure. If this expected number exceeds p, our recovery-at-random

condition fails. Therefore, we must select p greater than this expected maximum

number.
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Theorem 2.2.2 The expected maximum number of rows from among k randomly

selected rows of matrix E that have the same nonzero structure is O( ln k
ln ln k

).

Proof. Define a random variable M to be the maximum number of rows that

have the same non-zero structure when we select k rows uniformly at random from

matrix E and Pr(M = t) be the probability that the random variable takes value

t. For a given non-zero structure, we fashion each row selection as a Bernoulli trial,

with success corresponding to the selection of the specified row structure, and failure

otherwise. Since there are k distinct row structures, all with identical probability of

selection, the probability of exactly t successes is given by the Bernoulli distribution

as
(
k
t

)
( 1
k
)
t
(1− 1

k
)
k−t

. Since there are k different row structures from which we select

the one common structure, the probability:

Pr(M = t) =

(
k

1

)(
k

t

)(
1

k

)t(
1− 1

k

)k−t
≤ k

(
e

t

)t
For t = c ln k

ln ln k
, where c is some constant, we can show Pr(M = t) ≤ 1

k2
as follows:

Pr(M = t) ≤ k
(e
t

)t
= k

(
e ln ln k

c ln k

)( c ln k
ln ln k)

≤ exp

(
ln k +

c ln k

ln ln k
(ln ln ln k − ln ln k)

)
= exp

(
(1− c) ln k +

c ln k ln ln ln k

ln ln k

)
For sufficiently large k, we have ln ln k ≥ 2 ln ln ln k. Therefore,

Pr(M = t) ≤ exp
((

1− c

2

)
ln k
)

=
1

k(c/2−1)
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For c = 4, we have Pr(M = t) ≤ 1
k

and for c = 6, we have Pr(M = t) ≤ 1
k2

.

Hence, the expected maximum number of rows sharing a row structure E(M) from

k randomly selected rows of matrix E is given by:

E(M) =
k∑
t=1

t · Pr(M = t)

=

c ln k
ln ln k∑
t=1

t · Pr(M = t) +
k∑

t= c ln k
ln ln k

t · Pr(M = t)

≤
c ln k
ln ln k∑
t=1

c ln k

ln ln k
· Pr(M = t) +

k∑
t= c ln k

ln ln k

k · Pr(M = t)

=
c ln k

ln ln k

c ln k
ln ln k∑
t=1

Pr(M = t) + k
k∑

t= c ln k
ln ln k

Pr(M = t)

≤ c ln k

ln ln k
× 1 + k

k∑
t= c ln k

ln ln k

Pr(M = t)

≤ c ln k

ln ln k
+ k · 1

kc/2−1

≤ O(
ln k

ln ln k
). �

The last two inequalities hold as k · 1
kc/2−1 ≤ 1

kc/2−2 ≤ 1 when c ≥ 4, and the last

inequality holds based on k · 1
kc/2−1 ≤ 1. Theorems 3.2 and 3.3 provide bounds on

values of p for a given value of k. In our experiments, we select k = 4, 8, 16, and

the number of non-zeros per row p = min (k, 5). For these selections, our choice of p

exceeds the expected number of rows that share the same row structure.

2.3 Parallel implementation of erasure coded CG

Gleich et al. show that Ã is symmetric-positive-semi-definite when A is symmetric

positive definite and we can apply CG in this setting when A and b are consistent [18,

44]. This requires the following two-term recurrence form of CG [45]. The augmented

matrix Ã and the augmented vectors are distributed among multiple processes by
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Algorithm 1 Fault Oblivious CG with a two-term recurrence.

1: Let x0 be the initial guess and r0 = b− Ax0, β0 = 0.

2: for t = 0, 1, . . . until convergence do

3: βt=

0 t = 0 or after a fault

〈rt, rt〉/〈rt−1, rt−1〉 t > 0

4: pt = rt + βtpt−1

5: qt = Apt

6: αt = 〈rt, rt〉/〈qt, pt〉

7: xt+1 = xt + αtpt

8: rt+1 = rt − αtqt
9: end for

rows. The operations of Algorithm 1 affected by faults in a distributed environment

are the aggregation operations – inner products and matrix-vector multiplication. Let

the index set associated with process i be Ii, then [n+k] =
⋃
i Ii and the set of faulty

indices is Ft =
⋃
i∈Pt Ii. Pt is the set of indices of erased rows from process P at time

t.

• Inner products 〈rt, rt〉 and 〈qt,pt〉. The viable processes carry out the all-reduce

operation by skipping the faulty components Ft in the vectors.

〈rt, rt〉 = 〈(rt)[n+k]\Ft , (rt)[n+k]\Ft〉

〈qt,pt〉 = 〈(qt)[n+k]\Ft , (pt)[n+k]\Ft〉

• Matrix-vector multiplication qt = Apt. A viable process carries out its local

aggregation operation for computing AIi,:pt by skipping the faulty components

Ft in pt.

AIi,:pt = AIi,[n+k]\Ft(pt)[n+k]\Ft

Another technical issue we need to consider when faults happen is the update

to the search direction pt. Here, when we observe a fault, we truncate the update

p̌t = rt + βtpt−1 to be pt = rt. This corresponds to a reset of the Krylov process.
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We now consider the recovery of the solution to the original (raw) system (2.1).

Suppose the erasure-coded CG converges on the augmented system (2.2) after T

iterations. Let the returned approximate solution be x̃ =

x

r

. We can recover the

intended solution to the original (raw) system (2.1) through the equationx∗

0

 = x̃ +

 E

−Ik

 r.

which means x∗ = x + Er.

2.4 Partitioning Considerations

Even with the sparse matrix E described in Section 2.2, the augmentation blocks

((1, 2), (2, 1), (2, 2) blocks) in Ã potentially introduce dense blocks if not suitably

computed. For this reason, we use a two-step process. In the first step, we reorder the

input matrix (Figure 2.1(a)) using a traditional matrix/graph partitioning technique

such as Metis (Figure 2.1(b)) [46]. We then use this reordered matrix to compute

Ã (Figure 2.1(c)). The resulting matrix is then reordered once again to partition

Ã across various nodes in a parallel/distributed platform (Figure 2.1(d)) manually,

which means we distribute the augmentation part into each processor according to

Round-Robin strategy [47]. The first reordering minimizes non-zeros in Ã, and the

second partitioning step minimizes communication for the solver applied to Ã and

balances the computation load for each processor.

2.5 Experimental Results

We report comprehensive results from our MPI implementation tested on up to 16

processing cores on four selected matrices. We benchmark the parallel performance

of our solver on a 192 core (8 sockets) Intel(R) Xeon(R) Platinum 8168 processor

operating at 2.70GHz.
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(a) original matrix (b) original reordered matrix

(c) augmented matrix (d) augment reordered matrix

Figure 2.1.: Illustration of computing and repartitioning augmented matrix Ã.

Input Matrices, Augmented Systems, and Execution Parameters We select

matrices from the University of Florida Matrix Collection for our experiments [48].

Matrix sizes and number of non-zeros are summarized in Table 2.1.
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Table 2.1.: Matrices Used in Testing

Matrix Rows Non-zeros

bcsstk18 11,948 149,090

consph 83,334 6,010,480

inline 1 503,712 36,816,170

ldoor 952,203 42,493,817

All of the test matrices are symmetric positive definite (SPD), i.e., both CG on

the original and augmented system converge on these matrices. The right-hand-side

vectors b are firstly normalized (which means ||b||2 = 1). Hence, the final relative

error rtol = ||Ax−b||2
||b||2 equals to ||Ax− b||2 which is the same as the residual. During

CG, we monitor residual ||r||2 = ||Ax − b||2 at each step and set the termination

condition as ||r||2 < 10−06 for all matrices. We also set the maximum number of itera-

tions for CG as 10000. All matrices are first reordered using Metis [46]. To construct

the augmented system, we first build a suitable encoding matrix E as described in

Section 2.2, and use this coding matrix to generate the augmented system. After gen-

erating the augmented system, we will manually distribute the augmentation parts

to each processor based on a Round-Robin scheme [47].

We test the solver with a number of different fault models. In our initial set of

experiments we use an instant fault arrival model – faults arrive at iteration 1000 in-

stantaneously (all faults happen at the same time). Faults are distributed uniformly

across processors. Once faults happen, the search direction of CG is set as the resid-

ual from the last iteration before faults happened. We also test it with a uniform

fault arrival model, which means faults happen every certain number of iterations.

Different fault arrival rates (fault steps) are tested to show the effect of fault step on

convergence. Later in this section, we describe experiments with an alternate fault
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model (random faults following exponential distribution) and quantify its effect on

convergence.

2.5.1 Convergence of Raw System and Augmented System

Our first set of experiments is designed to compare the convergence rates of the

original system and the augmented system. Figure 2.2 to Figure 2.5 show convergence

of CG for the matrices for the original and augmented system without and with faults

happening during execution. Here, K is the size of the redundant part which is also

the number of faults which will happen during execution. K = 0 represents the

original system with no faults happening. In the situation where faults happen, the

faults happen at the 1000th iteration instantaneously.

Without faults To evaluate the convergence of the augmented system, we execute

the solver on the augmented matrix under the situation that there are no faults

happening. The relative residual for the augmented system is computed with respect

to the original system. Figure 2.2 and Figure 2.3 plot the results.
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Figure 2.2.: Convergence of original and augmented system on small

matrices(fault-free).
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Figure 2.3.: Convergence of original and augmented system on large

matrices(fault-free).

We note from these experiments that the augmented system can always achieve the

same level of relative error as the original system. For matrices bcsstk18, inline 1

and ldoor, the augmented systems with K = 4 converge even faster than the original

system. With a larger number of faults (K = 8), the augmented systems give the

same level of relative error with acceptable (less than 50% more iterations required by

original system) convergence delay. This implies that the input augmentation does

not adversely or significantly impact convergence of the base iterative solver.

With faults To evaluate the convergence of the solution to the original system,

we execute the solver on the augmented matrix, except, in this case a number of

faults happen during the execution. This set of results demonstrates how well the

augmented system converges to the true solution. Figure 2.4 and Figure 2.5 plot the

convergence. For matrices bcsstk18, inline 1 and ldoor, we can achieve nearly the

same level of relative tolerance as the original system. For matrix consph, although

we have small delay of convergence, we can still reach the same level of relative error

as the original system without faults. The convergence of the solution with respect to



32

0 2000 4000 6000 8000 10000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e 

Er
ro

r

bcsstk18
K=0
K=4
K=8

0 2000 4000 6000 8000 10000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 consph
K=0
K=4
K=8

Figure 2.4.: Convergence of original and augmented system on small

matrices(faulty).
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Figure 2.5.: Convergence of original and augmented system on large

matrices(faulty).

the original system is comparable to the base (error free solver applied to the original

system) method.
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2.5.2 Parallel Performance of the Solver on Augmented Systems

In this section, we will show the parallel performance of our fault tolerant solver on

a distributed platform. The tests were done on the platform with Intel(R) Xeon(R)

Platinum 8168 CPU @ 2.70GHz with 384 cores.
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Figure 2.6.: Parallel performance of small matrices with K = 16.

Figure 2.6 and Figure 2.7 plot speedups from parallel execution of the solver on

the original and augmented systems. For the augmented systems, we use K = 16 for

all experiments. We notice here that in all cases, the solver yields good speedups;

however, we also notice that the augmented system yields superior speedups compared

to the original system. This can be explained by the fact that the augmented system

is slightly larger, and therefore, has more computation associated with it. This,

combined with similarly low communication overhead, yields excellent speedups for

the augmented systems.

Besides the parallel performance, we also show the time overheads of our solver

with different sizes of augment parts. Figure 2.8 and Figure 2.9 show the time mag-
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Figure 2.7.: Parallel performance of large matrices with K = 16.
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Figure 2.8.: Time overhead of augmented system on small matrices.

nification of the augmented system with different augmented sized compared to the

original system. As the augmented size increases, the running time also increases.
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Figure 2.9.: Time overhead of augmented system on large matrices.

The increased time comes from computation overheads caused by the augmentation

parts and the convergence delay (more iterations are needed to achieve the same level

of relative errors). However, the increase in runtime is much lower, compared with

the use of active replicas, for instance. With K = 16, the time magnification is just

around 2.0, which is much smaller than the time of 16 needed by the active replicas

method.

2.5.3 Convergence of Different Fault Arrival Rates

All of our previous results assumed a simple fault arrival model in which faults

arrived instantaneously. In reality, the faults may come at different times and one by

one. In the next set of results, we vary the fault arrival rate (number of iterations

between two consecutive faults) and test the convergence property of our solver.

Figure 2.10 to Figure 2.13 plot the convergence rate of the solver for varying

fault arrival rates with number of faults K = 4 and K = 8 on small and large

matrices. We observe faster convergence when arrival rate is slow (fault step between
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Figure 2.10.: Convergence of different fault rate on small matrices(K=4)
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Figure 2.11.: Convergence of different fault rate on large matrices(K=4)

two consecutive faults is large), and vice versa. This can be explained by the fact

that as faults happen, we set the search direction of CG as the previous residual.

Consequently, the higher the fault rate, the more frequently we change the search

direction and the associated Krylov subspace.



37

0 2000 4000 6000 8000 10000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e 

Er
ro

r

bcsstk18
original
step=100
step=200
step=500
step=1000

0 2000 4000 6000 8000 10000
Iterations

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100 consph
original
step=100
step=200
step=500
step=1000

Figure 2.12.: Convergence of different fault rate on small matrices(K=8)
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Figure 2.13.: Convergence of different fault rate on large matrices(K=8)

2.5.4 Convergence of Different Fault Arrival Models

In Section 2.5.1 and Section 2.5.3 we present the results from the instant fault

arrival model and uniform fault arrival model (faults happen at a fixed rate), respec-

tively. We now investigate alternate fault arrival patterns and evaluate their impact



38

on the convergence of the solver. We specifically experiment with three fault patterns

– instantaneous (all faults happen at the same time), uniform (faults happen at a uni-

form rate), and random (faults happen at random intervals with a defined mean and

variance). Instantaneous faults happen when partitions of machines fail (or multicore

nodes fail), resulting in multiple instantaneous failures. Uniform faults correspond to

a single core fault. The exponential distribution is the most commonly used random

fault arrival model [49]. It assumes the time to failure to be exponentially distributed.

The probability distribution function (PDF) of the time (τ) to failure is given by:

Pe(t < τ) = 1− e−reτ (2.3)

Here re is the failure rate. In each of our experiments, faults are initiated at iteration

1000 and the mean of the random fault arrival model (for exponential distribution,

the mean of the distribution equals 1
rate parameter

, hence, the mean number of iterations

between two consecutive faults is 1
re

) is set as 1000, which means the fault rate = 1
1000

.

The convergence for different numbers of faults – K = 4 and K = 8 are tested.
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Figure 2.14.: Convergence of different fault arrival models on small matrices(K=4)
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Figure 2.15.: Convergence of different fault arrival models on large matrices(K=4)
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Figure 2.16.: Convergence of different fault arrival models on small matrices(K=8)

Our results in Figure 2.14 to Figure 2.17 show that the best convergence rate is

achieved for the random fault arrival model. Under this model, the solver achieves

lower relative error or faster convergence rate. The corresponding rate for instanta-

neous arrivals is close to the random arrival case. These results show that our method

is particularly attractive for realistic fault arrival models.
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Figure 2.17.: Convergence of different fault arrival models on large matrices(K=8)

2.6 Conclusion

Fault tolerance is an important problem for scalable parallel and distributed sys-

tems. We show how to take recently proposed erasure coding computation schemes

and adapt them to a scenario suitable for distributed computation. This involves cre-

ating a new encoding matrix that satisfies the recovery equations for almost all sets of

failing components. We show how to reorder and partition matrices to realize better

parallel performance on up to 16 cores. The convergence under a faulty/non-faulty

environment shows the effectiveness of our proposed scheme. The high speedup and

low time overheads prove the applicability of our scheme on large distributed systems.

Performance with different fault arrival models and fault arrival rates further show

the robustness of our proposed scheme. These advantageous properties motivate us

to apply this scheme to other problems such as eigenvalue problems, graph analyses,

and other machine learning kernels.



41

3 ADAPTIVE FAULT TOLERANT LINEAR SYSTEM SOLVER

Our past work estimates maximum number of faults and augments the system prior

to execution for this worst case estimate. The overhead of this augmentation is paid

in the solver, even if fewer faults are encountered. In this chapter, we significantly

improve the performance by developing an adaptive augmentation technique. This

technique augments the input matrix only when faults are encountered. As a result,

the system dimension remains n (the dimension of the input matrix) throughout the

execution. We demonstrate a range of desirable features of our adaptive augmentation

technique in this chapter.

We call this method as Adaptive Erasure Coded Computation(AECC). AECC

coded rows and columns are added only when faults are detected. This leads to

a number of desirable properties – (i) the method is computation-optimal in the

sense that the system size stays the same as the input system; (ii) the convergence

properties are maintained; i.e., the system is always in full rank and if the input is

symmetric positive definite (SPD), the coded system is also SPD; and (iii) the coded

block adds negligible computational and parallel overhead to the base solver. We

argue that a combination of these properties makes AECC an ideal fault tolerant

solver.

We present a detailed theoretical framework underlying AECC in Section 3.1,

coding and solution reconstruction techniques in Section 3.2; the parallel formulation

of the AECC solver and the running time overhead are also shown. We support our

theoretical results through a parallel implementation, and validate all of the desirable

features of our AECC solver in Section 3.3.
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3.1 Adaptive Linear System Solver

In Chapter 2, given a linear system Ax = b, we first construct a coding matrix E,

so that ET has Kruskal rank k, to tolerate a maximum of k faults. Note that Kruskal

rank of k implies that any subset of k columns of ET is guaranteed to be linearly inde-

pendent. Such coding matrices can be constructed using traditional coding schemes,

from Vandermonde matrices to sparse low density parity codes (LDPC) [16,23]. With

matrices A and E, the augmented or encoded system Ã, a solution to the augmented

system x̃, and the augmented right-hand-side b̃, are given by:

Ã=

 A AE

ETA ETAE

 x̃=

x∗

0

 b̃=Ãx̃ =

 b

ETb


Chapter 2 demonstrates that erasure coded linear system solvers with suitably

chosen coding matrices are significantly more efficient than state of the art fault tol-

erance techniques, particularly when the number of faults is large. Note that the

solver operates on the augmented system of size (n + k) × (n + k). For large values

of k (large distributed systems or high fault rate systems), the computation overhead

can be significant, particularly when the augmentation blocks have significant number

of fills. This overhead is incurred by the solver, independent of the number of faults

encountered in the execution, since the value of k is chosen based on the worst case

estimate of number of faults. For linear system with sparse left-hand-side, the com-

putation overheads produced by the large augmentation blocks may be a dominating

factor of the whole computation.

The underlying principle of our new adaptive solver is to add redundant blocks

into the matrix only as errors are encountered. The solver only ever operates on

n× n matrices, which are guaranteed to be symmetric positive definite (SPD) if the

input matrix is symmetric positive definite. Redundant blocks (AE,ETA,ETAE)

are precomputed and stored, but only utilized in the event of faults. We now describe

our adaptive fault tolerant solver built using a conjugate gradient solver.
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We assume that the original matrix A and right-hand-side vector b are initially

distributed among multiple processes by rows. This assumption does not restrict

parallelization to 1D; rather, the assumption is merely for exposition. The solver runs

on the input system until a fault occurs. As stated, we assume a fail-stop failure model

(other fault models can be reduced to fail-stop models through predicated checks

to detect failures), in which other processors can detect the identity of the failed

processor. This is typically implemented in systems through periodic heartbeats.

When a fault happens, the rows (and columns) assigned to the processor are erased.

These erased blocks are compensated for by the addition of an identical number of

rows (and columns) selected from the precomputed coding blocks [ETA,ETAE]. We

elaborate on this selection strategy in the next section. For now, we assume that the

coding blocks are dense and that the selection of which rows-columns to add from

the coding blocks is arbitrary.

We describe the overall algorithm/method here. Without loss of generality, we

permute the system with some permutation matrix such that the erased rows corre-

spond to a block: A11 A12

AT
12 A22

xc

xf

=

bc

bf


where xc is the correct (faulty-free) part of solution vector with size (n − k) × 1,

while xf corresponds to the faulty part with size k × 1. When we lose elements to

erasures, we lose the rows associated with A12
T and A22 along with the elements of

bf . We also assume that other processors have cached the most recent values from

xf so that this information is not lost. We assume that the precomputed matrices

Z1,Z2,E
TAE and vector ETb involved in block partitioned form of the augmented

system (2.2) are available:
A11 A12 Z1

A12
T A22 Z2

Z1
T Z2

T ETAE




xc

xf

xr

=


bc

bf

ET b





44

Here,

 Z1 =A11E1 + A12E2

Z2 =AT
12E1 + A22E2

and E=

E1

E2

. We never form this matrix explicitly,

however. The size of this augmented system is (n + k) × (n + k), which will let us

handle up to k erasures.

When an erasure occurs, then m ≤ k rows of the system are lost. We select an

arbitrary set of m rows-columns from the precomputed coding data corresponding to

an n×m matrix Ẽ. (In the event of a sequence of erasures, then a column can only

be selected once.) Let Z̃1, Z̃2, Ẽ
T
AẼ

T
, Ẽ

T
b be the data selected. Then we form

and solve the new system:A11 Z̃1

Z̃
T

1 Ẽ
T
AẼ

xc

xr

=

 bc

Ẽ
T
b

−
A12

Z̃
T

2

xf . (3.1)

Given solution of this problem, we can recreate the true solution as x∗ = xc +E ∗ xr

[18].

The full methodology and algorithm is described in Algorithm 2. Note that in

Algorithm 2 above, Steps 3 to 9 correspond to the standard CG method. Step 10

corresponds to the adaptive fault tolerance mechanism. After erasures, we need

to update the corresponding right-hand-side vector b to account for the fault. To

compute b(cur), we use the saved vector xf . Then we reset the Krylov subspace

process for this new system to ensure that the computed recurrences represent the

changes to the system.

How this differs from reforming the original system. One subtle aspect of

this idea is that the precomputed coding data allows us to easily lookup data that

will render the system non-singular and equivalent for any possible erasure. In con-

trast, without this information, we would have to recreate precisely those elements

of the matrix A that were erased. Given that forming linear systems can itself be a

complicated process where we are unlikely to maintain random-access to all the data

in future, this represents a distinct advantage to our approach.
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Algorithm 2 Adaptive Fault Oblivious CG.

1: (Reliably) Compute and save the entries Z1,Z2,E
TAE,ETb for an n×k coding

matrix E.

2: Let A(cur) = A and b(cur) = b

3: Let x0 be the initial guess, r0 = b(cur) −A(cur)x0, and β0 = 0.

4: for t = 1, . . . until convergence do

5: pt =

rt−1 t = 1 or after a fault

rt−1 + 〈rt−1,rt−1〉
〈rt−2,rt−2〉pt−1 t > 1

6: qt = A(cur)pt

7: αt = 〈rt−1, rt−1〉/〈qt,pt〉

8: xt = xt−1 + αtpt

9: rt = rt−1 − αtqt
10: When there are m faults detected, create a new system with m unused columns

of coding data. Let Z̃1, Z̃2, Ẽ
T
AẼ, Ẽ

T
b correspond the columns used.

A(cur) ←

A1,1 Z̃1

Z̃
T

1 Ẽ
T
AẼ


b(cur) ←

 bc −A1,2xf

Ẽ
T
b− Z̃

T

2 xf


xt =

xc

0


rt = b(cur) −A(cur)xt

11: end for
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3.2 Coding Matrix

The structure and numerical properties of the coding matrix E have significant

impact on the performance of our method. The simplest coding matrix, one that is

often used in redundant storage, is a Vandermonde matrix. However, this matrix is

dense, leading to dense augmentation blocks. This increases both FLOP counts, as

well as communication overhead in computing the matrix vector products in CG. Fur-

thermore, Vandermonde matrices are ill-conditioned, and they significantly degrade

convergence of the augmented system. An alternate choice for a coding matrix is a

random dense matrix. It is known that a random dense matrix has full rank with

probability 1. Such matrices also have the adverse effect of making the augmentation

blocks dense.

An alternate coding structure, also used in Chapter 2 is to use a structured sparse

matrix. We construct a matrix E by setting s successive elements in each row to

non-zero elements. These s non-zero elements are selected in a staggered manner,

i.e., the first s elements in Row 1, one zero followed by s non-zero elements in Row

2, two zeros, followed by s non-zero elements in Row 3, and so on. More generally,

for the ith row, the j = (i − 1 + v) mod k elements for v ranging from 1 to s are

set to random reals in the range (0, 1). This matrix is illustrated in Figure 3.1(a).

Furthermore, owing to its structure and sparsity, it does not induce dense blocks into

the augmented matrix. Please note that the relative dimensions of matrices A and E

in Figure 3.1 are selected for illustration purposes. The choices of values of k and s

relative to the size of the matrix nmake the augmentation blocks appear dense. In real

experiments, the augmentation blocks constitute a small fraction of the total matrix,

and are much sparser. In Figure 3.1(c), we show how parts of the augmentation

blocks are swapped in, to compensate for erasures. Finally, Figure 3.1(d) illustrates

the compensated matrix.

Using a sparse coding matrix has important implications for the adaptive fault

tolerant solver. Recall that coding rows (or blocks) are added only as faults are
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detected. If the coding blocks are dense, we can select arbitrary columns from AE,

corresponding to columns of the Z matrices from the last section, to compensate

for erasures. However, if the coding blocks are sparse, we cannot arbitrarily select

columns from the coding blocks because column j of E may not involve row or column

i from the matrix A. Consequently, we need to ensure that if an element xi is erased,

then the column j we select from AE must have a non-zero entry Ei,j. This is easily

done, since by assumption, all processors are aware of the indicies of erased elements

and the elements of E are structured.

Again, let us reiterate that we do not add the erased row itself because then we

would have to maintain multiple copies of the matrix (one more than the number

of node failures we wish to tolerate) in order to be able to replace erased rows with

original rows in the matrix. In contrast, using coded rows, we can significantly reduce

the storage requirement for coded blocks. Note that this reduction in required memory

is identical to that of storing erasure coded data in storage systems, as compared to

replication. Since solvers typically operate at the limit of memory (or a meaningful

fraction thereof) for scaling, it is unrealistic to assume any significant replication for

tolerating faults.

3.3 Experimental Validation

We present a comprehensive experimental validation of our proposed adaptive

fault tolerance scheme. We aim to demonstrate the following key aspect of our scheme:

(i) the adaptive fault tolerant linear solver converges to solution at low relative resid-

ual; (ii) the number of iterations and time of our fault tolerant solver do not increase

much, compared to state of the art techniques; and (iii) the parallel communications

induced by our augmentation rows is small – leading to highly efficient and scalable

performance.

We select a few matrices from the University of Florida Matrix Collection for our

experiments – cbuckle and gyro m are used to test the convergence of adaptive fault
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(a) Input matrix A (left) and Coding matrix E

(right)

(b) Augmented System (Input matrix with cod-

ing blocks)

(c) Compensation of erasures in input matrix

from coding blocks

(d) Compensated matrix (of same size) after era-

sures

Figure 3.1.: Illustration of the coding and compensation process for erasures.
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tolerant linear solver; consph and ldoor are used to evalute the parallel scalability

and robustness under different fault arrival models. The matrix sizes and sparsities

are shown in Table 3.1.

Table 3.1.: Matrices Used in Testing.

Matrix Rows Nonzeros

cbuckle 13,681 676,515

gyro m 17,361 340,431

consph 83,334 6,010,480

ldoor 952,203 42,493,817

All of the test matrices are symmetric positive definite (SPD). Hence, both CG

on the original and augmented system converge on these matrices. The right-hand-

side vector b is initialized as b = Ae, where e is the column vector with all 1s

and normalized (i.e., ||b||2 = 1). Therefore, the relative residual norm ||Ax−b||2
||b||2 is

equal to the absolute residual norm ||r||2 = ||Ax − b||2 for our problems. During

the execution, we compute the residual at each iteration and set the termination

condition as ||r||2 < 10−6 for all matrices. The maximum number of iterations of CG

is set to 10000. Of our test matrices, only ldoor does not achieve a residual of 10−6

before reaching the iteration bound, for either the fault-free or faulty cases.

For parallel performance, the matrices are first reordered using Metis [46]. To

construct the augmented system, we precompute an encoding matrix E as described

in the previous section, and use this matrix to generate the augmented system.

In our tests, we use two different fault arrival models – faults arriving instanta-

neously and faults arriving at different points in time according to an exponential

distribution. An exponential distribution is the most commonly used fault arrival

model [49] as shown in Eq. 2.3. We define orig iter as the number of iterations the

original system needs to converge to a residual norm of less than 10−6 or to reach the

iteration bound. Different fault rates (re) ranging from 1
orig iter

to 3
orig iter

are tested.
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Note that for an exponential distribution, the mean number of iterations between two

consecutive faults is 1
re

. This means the average number of faults in orig iter iter-

ations is 1, 2, and 3 for re = 1
orig iter

, 2
orig iter

and 3
orig iter

, respectively. However,

since the number of iterations to convergence may be increased by the addition of

coding rows, the actual number of faults (even on average) may be higher. In our

tests, we set the first fault to happen at orig iter

1+orig iter/re
. This is to ensure that the fault

process starts. Otherwise, in some runs, there are no faults at all for the exponential

fault process.

3.3.1 Convergence Rates

Our first set of experiments focus on the convergence rate of the adaptive linear

system solver in the presence of faults. We plot convergence rates and compare them

with the no-fault case. The relative error is calculated with respect to the original

system.
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Figure 3.2.: Convergence Rate of cbuckle and gyro m with different fault rates.

Figure 3.2 shows the convergence rate of the adaptive fault tolerant linear solver

with different fault rates. For the test matrices, cbuckle and gyro m, we observe
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that our solver can reach the same relative error as original system (without any

faults), while tolerating a number of faults. As the fault rate increases, the solver

needs more iterations to converge. However, we note that the overhead in terms of

increased iterations is significantly lower than that of using comparable fault tolerance

techniques based on replicated execution or deterministic replay.

0 2000 4000 6000 8000
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

100

Re
la

tiv
e 

Er
ro

r

consph
no faults
rate=1/orig_iter
rate=2/orig_iter
rate=3/orig_iter

0 2000 4000 6000 8000 10000
Iterations

10 6

10 5

10 4

10 3

10 2

10 1

100 ldoor
no faults
rate=1/orig_iter
rate=2/orig_iter
rate=3/orig_iter

Figure 3.3.: Convergence Rate for consph and ldoor with different fault rates.

Figure 3.3 shows the convergence of the solver on larger matrices, consph and

ldoor, for different fault rates. We observe that our solver achieves good convergence

rates for both matrices with different fault rates. Furthermore, we note that the

convergences of the faulty and no-fault cases are very close with each other – indicating

that using the system after it has been augmented does not impact solver convergence

adversely.

3.3.2 Parallel Performance

We now evalute the parallel performance and the time overhead of our augmented

system solver. We benchmark the parallel performance of our solver on a 192 core (8

sockets) Intel(R) Xeon(R) Platinum 8168 processor operating at 2.70GHz. We use
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MPI to implement our solver. We simulate faults in the system by inducing a selected

number of erasures. Processes communicate via non-blocking communications, and

processors where faults have been induced stop communicating from the time of

induced fault. In our experiments, we use two fault models – exponential fault model

and instantaneous fault model. Upon detecting a fault, the solver updates the erased

rows, and continues with the solve, as described in our Algorithm 2. We report on

the parallel performance for different sizes of augmenting blocks (varying number of

faults, K = 0, 1, 2, 4. Here, K = 0 corresponds to the original system without faults

during execution). Here, parallel speedup is defined as the ratio of the time taken by

one processor (to convergence or to reach the iteration bound) to the corresponding

time taken by the parallel execution. Since we aim to quantify the parallel overhead

of the coding blocks, both serial and parallel executions are assumed to have the same

number of faults.

Exponential Fault Model For the exponential fault model, we use the fault ar-

rival rate= 2
orig iter

for all matrices. Figure 3.4 shows the speedup for large matrices

with different number of faults. With increasing number of processors, the speedup

increases nearly linearly for all augmentation sizes. Note that the speedup starts to

saturate for matrix consph as the number of processors increases. However, this sat-

uration also happens for K = 0, indicating that our augmentation blocks introduce

negligible parallel overhead (over and above the base solver).
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Figure 3.4.: Parallel Performance of consph and ldoor for exponential fault model

Instantaneous Fault Model For the instantaneous fault model, all faults happen

at the same time – we select this to be orig iter

3
for all matrices. This point is the same

as the occurrence of the first fault in exponential fault model with fault rate= 2
orig iter

.
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Figure 3.5.: Parallel performance of consph and ldoor for instantaneous fault model.
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Figure 3.5 shows the speedup of large matrices with different number of faults

under the instantaneous fault model. We observe near linear speedup for our solver

– and most importantly, the speedup is very close to the base solver with no faults

– indicating that under this fault model as well, we do not introduce any significant

parallel overhead..

3.3.3 Time Overheads

We finally analyze the time overhead of the augmented system solver with respect

to original system. We let a fixed number of faults happen during execution(K =

1, 2, 4) and calculate the ratio of the solution time of the augmented system with

faults to that of the original system with no faults. As stated before, solution time

corresponds to either the time to convergence or that to reach the iteration bound.

Since we are interested in quantifying the computation overhead of our coding block,

all results here are obtained on a single core. Ideally, we want this ratio to be as close

to 1 as possible.
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Figure 3.6.: Time overhead with different number of faults under different fault mod-

els.
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Figure 3.6 shows the time overhead of our solver for different numbers of faults.

As expected, With increasing number of faults, more time is needed to converge.

This time overhead comes from two factors – the impact of denser coding rows in

the augmentation blocks, and the increased number of iterations to convergence. We

observe for our test matrices that the time overhead for each case tested is less than a

factor of 1.2. This is highly efficient, particularly when the number of faults increases,

especially in comparison to competing replicated execution or deterministic replay

schemes. Compared to the results in Figure 2.8 (matrix consph), the time overhead

for K = 4 decreased from 1.5 to less than 1.1. This proves the effectiveness of reducing

computation using Adaptive Erasure Coded Computations(AECC). For different fault

arrival model where the fault happens one after another, the time overhead is similar

to that of instantaneous fault arrival model. This demonstrates the applicability of

our solver to real practice large distributed systems.

3.4 Conclusion

In this chapter, we presented an adaptive fault tolerant linear system solver capa-

ble of scaling to large number of processors and associated faults. The solver works

by augmenting the input matrix by erasure coded blocks when faults are detected.

We derived constraints on coding blocks, and presented sparse coding techniques that

satisfy these constraints with high probability. Our proposed technique has the fol-

lowing significant advantages: (i) coding blocks are only used when faults are detected

– at any time, the linear system is always identical in size to the input system; (ii)

the convergence properties of the augmented system closely follow those of the orig-

inal (input) matrix; and (iii) the parallel performance of the solver scales well with

increasing numbers of processes. We evaluted the effect of fault rates and fault arrival

patterns (instantaneous versus exponential) and showed that our scheme is robust to

a wide range of fault characteristics.
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4 ERASURE CODED FAULT TOLERANT EIGENVALUE SOLVER

In this chapter, we present a novel erasure coded computation scheme for solving

eigenvalue problem, Ax = λx. Unlike linear systems, naively adding a coding block

to a given matrix A changes its eigenvalues, and there are no known computationally

inexpensive ways of recovering the original eigenvalues from these perturbed eigenval-

ues. To address this, we transform the original eigenvalue problem to an equivalent

(in terms of eigenvalues) generalized eigenvalue problem Ãx̃ = λB̃x̃, where Ã is an

augmented form of input matrix A and B̃ is a suitably constructed sparse matrix.

We present detailed proofs of the equivalence of eigenvalues of the original problem

and the new generalized eigenvalue problem. We characterize the impact of faults

on the solution of the generalized eigenvalue problem, and present the procedure to

recover the eigenvalues of the original problem in the event of faults.

We solve the reformulated generalized eigenvalue problem using TraceMin [36,

37] and show that our solver has excellent convergence properties (eigenvalues are

very close to those of the original system) in the event of random faults (a set of

randomly chosen row-column pairs are erased). We also evaluate the performance

of our eigensolver in worst case scenarios. It is well known that, different rows of a

matrix have different impact on the eigenspectrum of the matrix [38,39]. One way to

characterize the importance of a row-column pair with respect to its eigenspectrum

is using leverage scores [40–42]. We construct worst case scenarios for our solver by

erasing row-column pairs with the top k highest leverage scores. In this case, we note

that our fault tolerance scheme has increased overheads in terms of convergence rate.

This is due to the fact that our coding scheme is oblivious to leverage scores. Since

it is infeasible to compute leverage scores a-priori in order to construct our coding

blocks, we present a novel adaptive scheme, where leverage scores are estimated from

the eigenvectors as the TraceMin computation proceeds, and the code is suitably



57

updated. We demonstrate that using this adaptive scheme, we can handle worst case

scenarios with minimal convergence overheads.

The rest of this chapter is organized as follows. We present our erasure coded

eigensolver in Section 4.1, along with details of the coding matrix and transformed

generalized eigenvalue system, and the properties of the generalized eigenvalue sys-

tem, and prove the equivalence of the original system and the augmented (generalized)

system. We present the implementation details in Section 4.2, along with details of

the perturbation and purification strategy. In Section 4.3, we present our experimen-

tal results on convergence rate and robustness including (i) average case convergence

rate of base algorithm; (ii) worst case convergence properties of the base algorithm

and the adaptive coding technique; (iii) the impact of using approximations of lever-

age scores (as opposed to exact leverage scores) to establish bounds; and (iv) the

impact of different fault arrival models (instantaneous v.s. random arrivals). We

draw conclusions and summarize our contributions in Section 4.4.

4.1 Formulating the Erasure Coded Eigensolver

Given an eigenvalue problem:

Ax = λx (4.1)

where A is an n×n matrix, λ is the eigenvalue, and x is the corresponding eigenvector

with size n×1, we aim to formulate an erasure coded eigenvalue problem such that the

solution is computed either directly, or through an inexpensive computation, yields

the dominant eigenvalues of the given problem (Eq. 4.1). Eq. 4.1 can also be written

as Ax = λBx where B equals to the identity matrix In×n. The erasure coded

formulation must be capable of executing in a parallel environment with faults in the

form of erasures (corresponding to fail-stop failures in parallel platforms).

Our solution reformulates the given problem as the following generalized eigen-

value problem:

Ãx̃ = λB̃x̃, (4.2)
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where

Ã=

 A AE

ETA ETAE

 B̃=

 I E

ET ETE

 x̃=

x

r


Here, E is the coding matrix of dimension n × k, x and r are n × 1 vector and

k × 1 vector, respectively. The coding matrix E must satisfy certain conditions with

respect to its Kruskal Rank [29] and must be as sparse as possible to minimize fills

in the augmentation blocks (the (1,2), (2,1), and (2,2) blocks in matrices Ã and B̃).

We describe these later in this chapter.

Multiplying the row block of Eq. 4.2, we have

A(x + Er) = λ(x + Er) (4.3)

and

ETA(x + Er) = λET (x + Er) (4.4)

Let v ≡ x + Er. Then Eq. 4.3 becomes Av = λv, which is the standard eigenvalue

problem (Eq. 4.1). Here v is an eigenvector of A and λ is the corresponding eigenvalue.

The generalized eigenvalue system has the same eigenvalues as the original eigenvalue

system. However, as we show in the next section, it can recover the true eigenvector

of Eq. 4.1 when faults happen during the execution. We formalize this in the following

theorem:

Theorem 4.1.1 Given eigenvalue problem Ax? = λx?, we can construct the gener-

alized eigenvalue system Ãx̃ = λB̃x̃ such that x? = x + Er, where E is the coding

matrix and x̃=

x

r

 is the eigenvector of the generalized eigenvalue system.

We will prove the theorem based on the properties of the generalized eigenvalue

system in Section 4.1.1 and equivalence of original eigenvalue system and generalized

eigenvalue system in Section 4.1.2.
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4.1.1 Properties of Generalized Eigenvalue System

We state and prove a number of important properties of the generalized eigenvalue

system (Eq. 4.2). These properties provide the basis for the solution recovery method

in faulty execution environments. They are also useful in characterizing failure modes

and motivate efficient algorithms for recovery. We provide details on implementation

strategies and algorithms in Section 4.2.

Theorem 4.1.2 The generalized eigenvalue system Ã and B̃ has null space

 E

−Ik

.

Proof: From construction of the generalized system, Ã and B̃ have rank n. There-

fore, the null space must have rank k. The matrix

 E

−Ik

 has rank k. Furthermore,

we have

Ã

 E

−Ik

 = 0, and B̃

 E

−Ik

 = 0.

It therefore follows that

 E

−Ik

 is the null space for Ã and B̃. �

Theorem 4.1.3 If

y

z

 is a solution to the generalized eigenvalue system in Eq. 4.2,

the component y is uniquely determined once z is specified. Furthermore, if z = 0,

then y = x∗.

Proof: It is obvious that

x∗

0

 is a solution for the generalized eigenvalue system

in Eq. 4.2 by substituting it in the equation. As proved in Theorem 4.1.2, Ã and

B̃ have null space

 E

−Ik

, then any solution of the generalized eigenvalue system in
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Eq. 4.2 can be written as:

 y

z

 =

 x∗

0

+

 E

−Ik

 a (4.5)

for some unique vector a. The equation holds since:

Ã

 y

z

 = Ã

( x∗

0

+

 E

−Ik

 a

)
= λB̃

( x∗

0

+

 E

−Ik

 a

)
= λB̃

 y

z


Therefore, we can let a = −z, and y is determined as y = x∗ − Ez, which implies

that x∗ = y + Ez. This provides the basis for recovery of solution. If z = 0, then we

have y = x∗. �

Theorem 4.1.4 If matrix A is SPD,the generalized eigenvalue system Ã and B̃ is

SPSD (Symmetric Positive Semi-Definite).

Proof: We express Cholesky factorization of Ã and B̃ as follows: if the Cholesky

factorization of matrix A is given A = LLT , then

Ã=

 L

ETAL−T

 L

ETAL−T

T

and B̃ has the Cholesky factorization:

B̃=

 I

ET

 I

ET

T

For any non-trivial vector

g1

g2

, we have

g1

g2

T Ã
g1

g2

 =

g1

g2

T  L

ETAL−T

 L

ETAL−T

T g1

g2


= (gT1L + gT2E

TAL−T )(LTg1 + L−1AEg2)

= gT1Ag1 + gT1AEg2 + gT2E
TAg1 + gT2E

TAEg2

= (g1 + Eg2)
TA(g1 + Eg2)

≥ 0 (The quality holds when g1 +Eg2 = 0.)

(4.6)
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Hence, Ã is symmetric positive semi-definite (SPSD). We can prove B̃ is also SPSD

using the similar way. Later we will show how we perturb this SPSD system into a

SPD system and use TraceMin for solving the generalized eigenvalue problem. �

4.1.2 Faulty Execution and Solution Recovery from Generalized Eigenvalue System

Without loss of generality, we permute the input system A and B as A = A11 A12

A12
T A22

 and B =

 B11 B12

B12
T B22

 with some permutation matrix such that

the erased rows correspond to the row block [A12,A22] and [B12,B22], then the gen-

eralized eigenvalue system can be written as:
A11 A12 Z1

A12
T A22 Z2

Z1
T Z2

T R




c

f

r

=λ


B11 B12 Q1

B12
T B22 Q2

Q1
T Q2

T S




c

f

r

 (4.7)

Here, c is the correct (fault-free) part of the eigenvector with size (n − k) × 1, f is

the part that encounters faults (erasures, or fail-stop failures) with size k × 1, and r

(size is k × 1) is the redundant part. We can write E as

E1

E2

, then we have



Z1 = A11E1 + A12E2

Z2 = A12
TE1 + A22E2

R = ETAE

Q1 = B11E1 + B12E2

Q2 = Y 12
TE1 + Y 22E2

S = ETBE

(4.8)

When faults happen, the generalized eigenvalue system is reduced to the following

n× n system: A11 Z1

Z1
T R

 c

r

=λ

 B11 Q1

Q1
T S

 c

r

+

 λB12 −A12

λQ2
T −Z2

T

 f (4.9)
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Following from the results of Gleich et al. [18], the purified system Eq. 4.9 has a

solution when the coding matrix E has Kruskal rank k. We also need to show that ifc

r

 is the solution of the purified system, then


c

f

r

 is the solution of the generalized

eigenvalue system.

Theorem 4.1.5 If

c

r

 is the solution of the purified system, then


c

f

r

 is the solution

of the generalized eigenvalue system.

Proof: The purified system gives us

A11c + Z1r− λB11c− λQ1r=λB12f − λA12f (4.10)

Z1
Tc + Rr− λQ1

Tc− λSr=λQ2
T f − λZ2

T f (4.11)

From equations: Eq. 4.11-E1
T× Eq. 4.10, we get:

E2
TA12c + E2

TZ2r− λE2
TB12c− λE2

TQ2r=E2
T (λB22 −A22)f (4.12)

Since E2 is k × k and the kruskal rank of E is k, E2 is rank k and nonsigular. Ee

can multiply the pseudo-inverse of E2 to the left side of Eq. 4.12 and get:

A12c + +A22f + Z2r = λB12c + λB22f + λQ2r, (4.13)

which is the second row block of Eq. 4.7. �

Theorem 4.1.6 In the event of up to k faults, the eigenvalues of eigensystem in

Eq. 4.2 are identical to the eigenvalues of the original system.

Proof: When faults happen, we will solve the purified system A11 Z1

Z1
T R

 c′

r′

=λ
′

 B11 Q1

Q1
T S

 c′

r′

 (4.14)
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λ
′

is the eigenvalue for the purified system and

c′

r′

 is the eigenvector of correspond-

ing eigenvalue. According Eq. 4.14 and Eq. 4.8, we have the following equations:

A11c
′ + (A11E1 + A12E2)r

′=λ
′
[B11c

′ + (B11E1 + B12E2)r
′] (4.15)

(ET
1A11 + ET

2A
T
12)c

′ + ETAEr′=λ
′
[(ET

1B11 + ET
2B

T
12)c

′ + ETBEr′] (4.16)

Eq. 4.16 - ET
1× Eq. 4.15 gives us

ET
2A

T
12c
′ + ETAEr′ − (ET

1A11E1 + ET
1A12E2)r

′

=λ
′
[ET

2B
T
12c
′ + ETBEr′ − (ET

1B11E1 + ET
1B12E2)r

′]

As  ETAE = ET
1A11E1 + ET

1A12E2 + ET
2A

T
12E1 + ET

2A22E2

ETBE = ET
1B11E1 + ET

1B12E2 + ET
2B

T
12E1 + ET

2B22E2

,

thus Eq. 4.16 - ET
1× Eq. 4.15 becomes

ET
2 (AT

12c
′ + AT

12E1r
′ + A12E2r

′)=λ
′
ET

2 (BT
12c
′ + B12E1r

′ + B22E2r
′) (4.17)

Multiplying pesuo-inverse of ET
2 , we will have

AT
12c
′ + AT

12E1r
′ + A12E2r

′=λ
′
(BT

12c
′ + B12E1r

′ + B22E2r
′) (4.18)

Let t1 ≡ c′ + E1r
′ and t2 ≡ E2r

′, then we can write Eq.4.15 as

A11t1 + A12t2 =λ
′
(B11t1 + B12t2) (4.19)

and Eq.4.18 as

A12t1 + A22t2 =λ
′
(B12t1 + B22t2) (4.20)

Combing Eq.4.19 and 4.20, we can get the following eigenvalue system: A11 A12

A12
T A22

 t1

t2

=λ
′

 B11 B12

B12
T B22

 t1

t2

 (4.21)

According to Eq.4.7, Eq.4.21 corresponds to the original egienvalue system and λ
′

is

the eigenvalue of original system in Eq.4.1. Hence, we have λ = λ
′
, which means the

eigenvalues of eigensystem in Eq.4.2 are identical to the eigenvalues of the original

system in the event of up to k faults. �



64

4.1.3 Encoding Matrix

Following the result of Gleich et al. [18], we require the matrix E to have full

Kruskal rank (Kruskal rank is k) [29]. We use a dense random matrix as our choice of

E. This coding matrix has full Kruskal rank with probability tends to 1. We note that

for scalable parallel execution, one would select matrix E to be sparse [19]. However,

our purpose here is to demonstrate convergence and fault tolerance properties of our

eigensolver – leaving issues of parallel performance and coding matrix design to future

work.

4.2 Implementation Details

We provide details of implementation of our erasure coded eigensolver. We use the

TraceMin algorithm, with a few modifications, for solving the generalized eigenvalue

problem. As shown in Section 4.1, the generalized eigenvalue problem has a null space

of dimension k. To avoid the case that the intermediate eigenvectors fall into the null

space, perturbation and purification are introduced in Section 4.2.1. The resulting

erasure coded TraceMin algorithm is shown in Algorithm 3.

4.2.1 Perturbation and Purification

Since Ã and B̃ are SPSD, intermediate eigenvectors may fall in the null space of

Ã and B̃. To avoid this problem, we add perturbation to the augmented systems

and perform purification once the trace is sufficiently reduced [50].

Perturbation

Since we have

Ã=

 A AE

ETA ETAE

 , B̃=

 I E

ET ETE


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We can get the perturbed augment system

Ãp=

A AE

ET εIk + ETAE

 , B̃p=

 I E

ET εIk + ETE

 (4.22)

For the augmented system, we perturb the lower-right k × k block. The pertur-

bation is 10−06 × I, where I is a k × k identity matrix. After perturbation, Ãp and

B̃p are SPD, and trace minimization can be used to solve the generalized eigenvalue

problem.

Purification

During execution, we monitor the trace at each iteration, and purification is per-

formed when the relative difference of two consecutive trace values is less than 10−03.

For the system Ãpx̃ = λB̃px̃, from TraceMin, we obtain the eigenpair (µ,u), which

approximates the true eigenpairs of A (Av = λv). Therefore, we have

A(u + δu)=(µ+ δµ)(u + δu) (4.23)

Furthermore, we have

uT δµ=0 (4.24)

Combining Eq. 4.23 and Eq. 4.24, we get the linear system:A− µIn −u

−uT 0

δu
δµ

=

−(Au− µu)

0

 (4.25)

After computing δu and δµ using symmetric linear system solver [30, 44], we

update the approximation of the eigenpairs and continue the TraceMin procedure.

Since purification is performed infrequently (once during entire execution), it does

not add significant running time overhead to the solution procedure.

4.2.2 Erasure Coded TraceMin

Our erasure coded TraceMin based eigensolver is shown in Algorithm 3. The

algorithm also provides details on how to deal with faults.
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Algorithm 3 Fault Oblivious Trace Minimization

1: Choose a block size s = 2p and an n× s random matrix V1 of full rank such that

V T
1 B̃pV1 = I.

2: for t = 0, 1, . . . until convergence do

3: Compute Wt = ÃpVt and the interaction matrix Ht = V T
t Wt.

4: Compute the eigenpairs of (Yt,Θt) for Ht.

5: Check the trace and do the purification (only once during the whole algorithm)

if the purification condition is satisfied. Update the eigenpairs if the purification

executed.

6: Sort the eigenvalue in ascending order and rearrange the corresponding eigen-

vectors.

7: Compute the corresponding Ritz Vectors Xt = VtYt.

8: Compute the residual Rt = ÃpXt − B̃pXtΘt.

9: Test for Convergence.

10: Solve the following linear system approximately via the CG to get ∆t. Ãp B̃pXt

XT
t B̃p 0

∆t

Lt

=

ÃpXt

0

 (4.26)

11: B̃p-orthonormalize Xt − ∆t into Vt+1 by the Gram-Schmidt process with re-

orthogonalization.

12: end for

13: return Θ.
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Compared to original TraceMin algorithm, our fault oblivious TraceMin adds pu-

rification procedure in Step 5. This helps us avoid the null space of the generalized

system, and is only executed once during the entire execution. It does not incur

significant time overhead. Assuming that the augmented matrices Ãp, B̃p, and the

augmented eigenvectors X̃k are distributed among multiple processes by rows, the

operations of Algorithm 3 affected by faults in a distributed environment are the

matrix-matrix and matrix-vector products. Let the index set associated with process

i be Ii, then [n+ k] =
⋃
i Ii (n is the size of original input matrix and k is the size of

augmentation part), and the set of faulty indices at time (iteraition) t is Ft =
⋃
i∈Pt Ii

(Pt is the set of faulty indices for process P at time (iteration) t).

The viable processes carry out the all-reduce operation by skipping the faulty com-

ponents Ft in the matrix.

• The Matrix-Matrix Operation:

(Ãp,V t) =
(

(Ãp)[n+k]\Ft , (V t)[n+k]\Ft

)
(Ãp, X̃ t) =

(
(Ãp)[n+k]\Ft , (V t)[n+k]\Ft

)
(B̃p, X̃ t) =

(
B̃p)[n+k]\Ft , (X t)[n+k]\Ft

)
• The Matrix-Vector Operation in Step 10:

(Ãp,∆t) =
(

(Ãp)[n+k]\Ft , (∆t)[n+k]\Ft

)

4.3 Experimental results

We present detailed experimental evaluation of our fault tolerant eigensolver. We

demonstrate the following key aspects of our solver: (i) our solver is highly effective in

tolerating faults as it introduces minimal convergence overhead both in average case,

where a randomly selected set of row-column pairs deleted, as well as in the worst case,
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where row-column pairs with top k highest leverage scores are deleted. (ii) focusing

on the worst case, we analyze two coding schemes – the first scheme is oblivious

to leverage scores of row-column pairs when the code is constructed; the second

scheme updates the code, as we get successively refined estimates of leverage scores

through the iterative TraceMin procedure. We show that our adaptive code yields

much better performance compared to the leverage-score-oblivious coding scheme.

(iii) recognizing the superiority of the adaptive coding scheme, we characterize the

loss in performance from the use of the approximated leverage scores, as compared to

exact leverage scores (recall that it is not feasible to compute exact leverage scores a-

priori for constructing the code). We show that the use of the approximated leverage

scores adds minimal overhead, compared to use of the exact leverage scores; (iv)

finally, we consider different fault arrival models – instantaneous, where all faults

arrive simultaneously, and the random model, where faults arrive according to an

exponential distribution with prescribed mean. We show that our method is robust

to different fault arrival models and fault rates.

4.3.1 Input Matrices and Execution Parameters

For our experimental studies, we use two matrices from the University of Florida

Matrix Collection [48]. The details of these matrices are shown in Table 4.1. The

matrices selected are SPD, sufficiently ill conditioned so as to require a larger number

of TraceMin iterations to converge (otherwise the fault tolerance problem may not be

vital), and have distinct non-zero structure and application of origin.

Table 4.1.: Matrices Used in Testing

Matrix Rows Nonzeros Kind

minsurfo 40,806 203,622 Optimization Problem

s3dkq4m2 90,449 4,427,725 Structural Problem
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Experimental Setup

• To evaluate the convergence, we monitor the quantity ||r1||2
λ1

(here, r1 = Ãpx1−

λ1B̃px1 is the residual for the first eigenpair – λ1 and x1, which are the smallest

eigenvalue and corresponding eigenvector, respectively). The stopping criteria

is set to 10−8 for all matrices.

• To characterize the accuracy of our results (the eigenvalues computed by our

fault tolerant eigensolver), we first compute the normalized error for each eigen-

value ti =
augλi−origλi

origλi
. Here, origλi and augλi correspond to eigenvalues of the

original system and those computed by our method on the augmented system,

respectively. The 2-norm of the vector with the first ten normalized error compo-

nents t = [t1, t2, · · · , t10] is used to compute the final relative error rtol = ||t||2.

• To test the robustness of our fault tolerant eigensolver, we add augmented blocks

of different sizes to the original system, and simulate different number of faults.

Here, K = 0 corresponds to the original system; K = d corresponds to an

augmented block size of d, and d faults happen during the execution. In our

experiments, we set d = 1, 8, 16 for convergence tests.

• To characterize average case and worst case performance, we simulate erasures

of row-column pairs in different ways. Average case is simulated by erasing

a random set of row-column pairs. To evaluate the worst case performance,

we rely on leverage scores of row-column pairs [42]. Leverage scores can be

computed using an SVD decomposition [40, 41]. For matrix A = UΣV (A is

an n × n matrix and U ,Σ, and V are matrices corresponding to the SVD

decomposition of A), the leverage score for each row of A is given by:

l(i) =
n∑
j=1

U(i, j)2

For characterizing worst case performance of our method, the k rows with high-

est leverage scores are erased.
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• We use two different fault arrival models – faults arriving instantaneously and

faults arriving at different points in time according to an exponential distri-

bution. An exponential distribution is the most commonly used fault arrival

model [49] as shown in Eq. 2.3. To simulate the real practice scenario, the num-

ber of iterations is used to represent time τ . We use orig iter to represent the

number of iterations the original system needs to converge (achieve the termi-

nation condition). Different fault rates(re) ranging from 1
orig iter

to 4
orig iter

are

tested. Note that for an exponential distribution, the mean number of iterations

between two consecutive faults is 1
re

. This means the average number of faults

in orig iter iterations is 1 and 2 for re = 1
orig iter

and 2
orig iter

, respectively.

However, since the number of iterations to convergence may be increased by the

addition of coding rows, the actual number of faults (even on average) may be

higher. In our tests, we set the first fault to happen at iteration orig iter

1+orig iter/re
.

This is to ensure that the fault process starts, otherwise, in some runs, there

are no faults at all for the exponential fault process.

4.3.2 Effectiveness of basic erasure coded eigensolver

In our first set of experiments, we erase a specified number of row-column pairs

from the augmented matrix and compare the convergence rate of our method with

the case in which there are no erasures. This corresponds to the average-case fault

tolerance behavior for our method. We set the augmentation block sizes to be K =

1, 8, and 16. In each case, we assume instantaneous faults, and report results for

different fault points (iteration count at which faults occur). When faults happen,

the relative error increases, and then reduces in the following iterations. This is due

to the fact that the corresponding components of the eigenvectors are erased from

intermediate computations. However, as evident from Figures 4.1 and 4.2 our solver

rapidly recomputes these components and the convergence tracks the non-fault case

closely. The following observations can be made from the figures: (i) the overhead in
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Figure 4.1.: Effectiveness of basic algorithm with instantaneous fault model

(minsurfo).

terms of iterations to converge for our method is minimal; and (ii) the performance of

our method scales very well in terms of increasing number of faults. Note that these

excellent results for the average case performance are aided by the fact that random

erasures in matrices do not perturb eigenvalues significantly, with high probability.

This motivates our next set of experiments on the worst case behavior of our method.
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Figure 4.2.: Effectiveness of basic algorithm with instantaneous fault model

(s3dkq4m2).

4.3.3 Worst Case behavior of basic erasure coded eigensolver

In this set of experiments, we erase K row-column pairs with the largest leverage

scores. Note that leverage scores indicate the importance of a row-column pair with

respect to the eigenvalues of the matrix.

From our results in Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4, we observe

the following phenomena: (i) erasing K rows and columns with highest leverage scores
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Figure 4.3.: Worst case Performance of basic algorithm with instantaneous fault

model (minsurfo).

has a more significant impact on the intermediate eigenvalues than random erasures;

(ii) our solver is able to achieve convergence even under the worst case fault model,

although, the performance in terms of convergence rate is not as good as that of

the average case; (iii) the iteration overhead in all cases, even for K = 16 is within

a factor of two of the non-faulty case; and (iv) the error increases with increasing

number of faults (i.e., with increasing K). Our results demonstrate the robustness of

our solver in this worst case experiment.
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Figure 4.4.: Worst case Performance of basic algorithm with instantaneous fault

model (s3dkq4m2).

4.3.4 Estimated Leverage Score Updating Method

Recognizing the relative loss of performance in worst case erasures, we implement

an adaptive coding scheme that relies on the estimation of leverage scores. Since

computing exact leverage scores requires the computation of an SVD [40, 41], we

approximate leverage scores using the eigenvectors estimated during TraceMin exe-
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cution. Coding blocks are periodically updated using the estimation of leverage scores

got from the previous iteration. The coding matrix E is adaptively updated as follows

E(i, :) = E(i, :) ∗ l(i)
l̄

Here E(i, :) is the ith row of coding matrix E, l(i) is the leverage score of ith row and

l̄ is the average leverage score of all rows. By doing this, we will assign high weights

to the rows with high leverage scores, and low weights to the rows with low leverage

scores.
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Figure 4.5.: Effectiveness of updated algorithm with instantaneous fault

model(minsurfo).
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For erasures occured in high leverage scores rows, the adaptive coding scheme can

better compensate the erasures as it assigns higher weights to the corresponding rows

in coding matrix E. This is different from the static coding scheme, which assigns

static weight to each row no matter where the erasures happen. The results of this

adaptive augmentation scheme are presented in Figure 4.5 and Figure 4.6. These

plots show excellent performances of our adaptive coding schemes, particularly in

comparison with the static coding technique.
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Figure 4.6.: Effectiveness of updated algorithm with instantaneous fault

model(s3dkq4m2).
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4.3.5 Comparative Performance Benefit of Estimated Leverage Score Based Adap-

tive Coding Scheme

We compare the performance of the non-adaptive and adaptive coding schemes.

We test different fault rates for K = 16 with the basic and adaptive coding schemes.

Results in Figure 4.7 and Figure 4.8 show that the adaptive coding scheme always

yields lower relative error than the static (non-adaptive) algorithm and converges

faster.
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Figure 4.7.: Comparison of Basic Algorithm and Updated Algorithm(minsurfo)
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Figure 4.8.: Comparison of Basic Algorithm and Updated Algorithm(s3dkq4m2)

4.3.6 Comparison of Exact and Estimated Leverage Score Updating

We notice the infeasibility of computing the exact leverage scores. Instead we

rely on estimated leverage scores to adaptively update our coding matrix. We now

assess the loss in performance due to this approximation. In this set of experiments,

we compare results obtained from coding matrices using estimated leverage scores as

compared to those using the exact leverage scores computed a priori using an SVD

decomposition.
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Figure 4.9.: Effect Comparison of Real and Estimated Leverage Score(minsurfo)

Figure 4.9 and Figure 4.10 show convergence rates while using the exact and the

estimated leverage scores under different fault rates for K = 16. For the matrix

minsurfo, the relative error curves for the two cases are nearly overlapping. For

matrix s3dkq4m2, with increasing fault rates, the augmented system using the exact

leverage scores converges faster than that using the estimated leverage scores. How-

ever, both of them achieve similar levels of relative error. These results demonstrate

the effectiveness of the estimated leverage scores as a proxy for the exact leverage

scores while constructing/updating augmentation blocks.
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Figure 4.10.: Effect Comparison of Real and Estimated Leverage Score(s3dkq4m2)

4.3.7 Time Overheads of Erasure Coded Eigensolver

In this part, we analyze the time overhead of the generalized eigenvalue system

with respect to the original system. We let a fixed number of faults happen during

the execution (K = 1, 8, 16) and calculate the ratio of the solution time for the

generalized eigenvalue system with faults to the original eigenvalue system without

faults. Solution time corresponds to the time needed to converge to 10−7. Since we

are interested in quantifying the computation overhead of our coding block, all results
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here are obtained on a single CPU core. Ideally, we want this ratio to be as small as

possible.

Figure 4.11 shows the time overheads of erasure coded eigensolver. With increasing
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Figure 4.11.: Time Magnification of Different number of faults.

number of faults, the time overhead increases. This comes from two reasons: (1) the

dense blocks in the generalized eigenvalue system; and (2) the number of iterations to

converge. When the number of faults increases, the size of dense blocks increases and

it brings more non-zeros, and thus the number of iterations to converge also increases.

Time overhead of minsurfo is larger than that of matrix s3dkq4m2 as the sparsity

of minsurfo is higher than that of s3dkq4m2. Hence, the added dense blocks play a

more important role during computation.

4.3.8 Impact of Different Fault Arrival Model

We evaluate the effectiveness of our adaptive coding scheme under the exponential

fault arrival model. In this model, faults arrive randomly following an exponential

distribution. We test different fault arrival rates ranging from 1
orig iter

to 4
orig iter

.
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In this experiment, rows with the top-k largest leverage scores are erased one at

a time until convergence (or reaching maximum iteration bound). Figure 4.12 and

Figure 4.13 demonstrate excellent convergence properties of our eigensolver. We also

note that the exponential fault model is easier to handle than the instantaneous fault

model.
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Figure 4.12.: Exponential Fault Arrival Model(minsurfo).
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Figure 4.13.: Exponential Fault Arrival Model(s3dkq4m2).

4.4 Conclusions

In this chapter, we presentd a novel erasure coded fault tolerant eigenvalue solver.

We demonstrated that our solver introduced minimal overhead in terms of iterations

to convergence for instantaneous and random faults. Motivated by the loss of perfor-

mance in worst case erasures, we presented an adaptive coding scheme that updates

the augmentation blocks using successively refined estimates of eigenvectors, as our it-

erative computation proceeds. We demonstrate excellent robustness and performance
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of this solver across a range of fault rates and arrival models. Our methods provide

the basic computational substrate for massively parallel eigenvalue computations in

potentially faulty environments. The success on eigenvalue problem further proves

the applicability of erasure coded computations in linear algebraic methods.
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5 PLAN OF RESEARCH

In this chapter, we discuss future research directions based on current results, further

improvement of erasure coded solvers, the application of current solvers in differ-

ent domains, and the development of erasure coded computations for other linear

algebraic problems.

Distributed Fault Tolerant Eigensolver In Chapter 4, the effectiveness of era-

sure coded computation for eigensolvers is demonstrated. Besides the fault tolerance

property shown in Chapter 4, the challenges for distributed fault tolerant eigensolver

include good parallel performance (speedup), minimal time overheads, and the ro-

bustness to different fault arrival models and fault rates on distributed platforms.

The results in Chapter 2 showed the effectiveness of the sparse coding matrix in dis-

tributed computation and applying sparse coding matrix to our eigensolver is effective

in improving parallel performance and reducing time overhead.

Adaptive Fault Tolerant Eigensolver For the erasure coded eigensolver in Chap-

ter 4, we augmented the input matrix before importing it to TraceMin. The com-

putation overhead is paid at each iteration even if there are no faults happen during

the execution. The adapative linear solver in Chapter 3 gives an adaptive scheme

for updating input matrix according the current situation (faulty or non-faulty) and

input matrix is augmented only when faults are encountered. The results on the

linear solver show that the adaptive scheme has good convergence rate and parallel

performance, and lower overhead. We plan to develop a similar adaptive scheme for

the fault tolerant eigensolver. The challenges for an adaptive fault tolerant eigen-

solver include a correctness proof of equivalent eigenvalues of the original system
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and the adaptive system, demonstration of convergence rates, and evaluation of the

robustness for different fault arrival models and fault rates.

Applications of Fault Tolerant Linearsolver and Eigensolver In many appli-

cations such as Newton method for optimization and Principal Component Analysis

(PCA) [51, 52], the linear system (f ′′(x)δx = f ′(x), f ′(x) and f ′′(x) are first order

and second order derivation of f(x), where we want to get the root of it (f(x) = 0))

needs to be solved in Newton iterations, and the top k largest eigenvalues (principal

components) are needed for PCA. We plan to apply our fault tolerant linear solver

to the Newton method and fault tolerant eigensolver to the PCA method. The chal-

lenges include the augmentation strategy of the input matrix, and the development

of recovery operation for execution under potentially faulty environments.

Erasure Coded Matrix Decomposition LU decomposition and QR decomposi-

tion [53,54] are widely used in linear system solvers and linear least square problems,

respectively. Singular Value Decomposition [40, 41] is useful in signal processing and

statistics. The success of linear solver and eigensolver based on erasure coded com-

putations motivates us to apply the concept of erasure coded computations to matrix

decomposition procedures. Based on erasure coded computation, we plan to augment

the input matrix and perform decomposition on the augmented matrix. Then the de-

composition results for the input matrix can be recovered from the decomposition

results of the augmented matrix through inexpensive operations. The challenges for

erasure coded decomposition include construction of the augmented matrix, the proof

of properties of the augmented matrix, and the feasibility of recovery.
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6 SUMMARY

In this dissertation, we show how the concept of erasure coded computation, which

is derived from the erasure coded storage, can be used to tolerate faults. The erasure

coded computation is applied to linear algebraic problems– solving a system of linear

equations and computing eigenvalues.

Error correcting codes and the erasure coded storage are introduced and used

to motivate the concept of erasure coded computation (ECC). The challenges and

benefits of erasure coded computation are presented for general problems.

The erasure coded linear system is introduced in Chapter 2. To achieve good par-

allel performance and minimize the fill in augmentation rows, we present a sparse cod-

ing scheme and prove necessary properties of the coding matrix (random-at-recovery

property). For distributed implementation, we consider a balanced partition of ma-

trices across different processes. Our experimental results on the convergence rates,

speedup, time overhead and robustness under different fault arrival models and dif-

ferent fault arrival rates show the effectiveness of the distributed fault tolerant linear

system solver.

Based on the distributed fault tolerant linear system solver, we present an adap-

tive fault tolerant linear system solver (ADLS) in Chapter 3. The solver runs on

the original system until faults happen. The erased rows are then replaced by the

precomputed augmentation blocks. This guarantees that the size of system we solve

remains the same, and that there is no null space of the system. Another benefit of

the adaptive linear solver is the number of computations during the execution. Since

we execute on the original system, and only replace erased rows by augmentation rows

when faults happen, any increase in computation is a result of increased iterations

to convergence. We evaluated the solver for its convergence rates on small and large
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matrices, its parallel performance, and its time overhead under different fault arrival

models and fault arrival rates.

Success in the erasure coded linear solver motivated us to apply the concept of

erasure coded computations to the eigenvalue problem. We proposed the erasure

coded eigensolver in Chapter 4. The solver first reformulated the original eigenvalue

system to a generalized eigenvalue system. Properties of the generalized eigenvalue

system are shown and equivalence of the original eigenvalue system and the gener-

alized eigenvalue system are proved. We introduced a perturbation and purification

procedure in the erasure coded trace minimization algorithm. From the experimental

results, we demonstrated the effectiveness of our solver under random case and the

worst case, when the rows with top leverage scores are erased. We also presented

an adaptive coding scheme and illustrated the importance of updating coding matrix

based on the estimated leverage scores obtained from the trace minimization algo-

rithm. The robustness of the erasure coded eigensolver under different fault arrival

models and fault arrival rates was also presented and validated.
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