
EMBARRASSINGLY PARALLEL STATISTICS AND ITS APPLICATIONS:

DIVIDE & RECOMBINE METHODS FOR PARALLEL COMPUTATION OF

QUANTILES AND CONSTRUCTION OF K-D TREES FOR BIG-DATA

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Aritra Chakravorty

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2018

Purdue University

West Lafayette, Indiana

ii

iii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. William S. Cleveland, Chair

School of Statistics

Dr. Patrick J. Wolfe

School of Statistics

Dr. Mark D. Ward

School of Statistics

Dr. Ryan Hafen

School of Statistics

Approved by:

Dr. Hao Zhang

Head of the School Graduate Program

iv

To my parents.

v

ACKNOWLEDGMENTS

First and foremost I would like to thank my advisor Prof. William S. Cleveland for

guiding me through my research. I’m extremely grateful to my committee members

Dr. Patrick J. Wolfe, Dr. Mark D. Ward and Dr. Ryan Hafen for their support and

valuable contribution to my research. I thank my parents Mr. Dibakar Chakravorty

and Mrs. Reeta Chakraborty for being supportive and encouraging me throughout

this journey. They have been the kind guiding force behind all of my academic and

personal achievements. I have to specially thank Mr. Dave LeFevre and Mr. Douglas

Crabill from Purdue IT support for helping me in my need. I am in debt to almost

every faculty members and office staffs of Purdue Statistics for their help and kindness.

I thank all the past and present student in Prof. Cleveland’s research group. They

have been extremely kind and helpful. I’m very grateful to my professors, seniors,

friends and juniors from the extended ISI Kolkata family in Purdue, to my amazing

roommates in Faith-West from PBFI and my friends in Crosswalk from SLCF in

Purdue, to all amazing people from my days in Purdue Philharmonic and Symphony

Orchestra, to all my senors and friends from Purdue University Tagore Society and

all my friends and family. They made my stay at Purdue very memorable

vi

TABLE OF CONTENTS

Page

LIST OF FIGURES . viii

SYMBOLS . x

ABBREVIATIONS . xi

ABSTRACT . xii

1 Introduction: . 1
1.1 D&R implementation with Map-Reduce: 1
1.2 Numerical accuracy in D&R and EPS 2

2 Embarrassingly Parallel Statistics . 5
2.1 Definitions and Examples . 5
2.2 The Class of EP statistics . 7
2.3 Function Spaces . 8

3 The EP-Fourier-Quantile Algorithm . 13
3.1 Basic idea . 13
3.2 Exact D&R method . 16
3.3 Time-complexity of EP-FQ: Comparison with Binning 17
3.4 Chebyshev’s Transformation and the EP-FQCh algorithm 20
3.5 2-way Fourier-Chebyshev method: EP-FQCh2 algorithm 29
3.6 General p-way Fourier-Chebyshev method: EP-FQChp algorithm . . . 40
3.7 Performance Study . 44

3.7.1 Data generation . 44
3.7.2 Accuracy comparison . 45
3.7.3 Runtime comparison . 66

3.8 Discussion . 67

4 The EP-Fourier-KD-tree Algorithm . 69
4.1 Cannonical construction of KD-tree . 69
4.2 Basic idea . 71

4.2.1 Fourier expansion: . 73
4.2.2 Approximation: . 76

4.3 Stochastic Properties of the Error term 77
4.4 KD-Tree construction algorithms . 79

4.4.1 EP-FKD0 algorithm . 80
4.4.2 EP-FKD algorithm . 82

vii

Page
4.5 Performance Study . 84

4.5.1 Data generation . 84
4.5.2 Accuracy comparison . 85
4.5.3 Runtime comparison . 93

5 Recommendations and Scope: . 97

REFERENCES . 98

A Proofs and verifications: . 99

B Algorithms: . 119
B.1 Algorithm: EP-FQ0 . 120
B.2 Algorithm: Binning . 121
B.3 Algorithm: EP-FQCh1 . 122
B.4 Algorithm: EP-FQCh2 . 123
B.5 Algorithm: EP-FQChp . 124
B.6 Algorithm: EP-FQCh type A recursion 124
B.7 Algorithm: EP-FQCh type B recursion 125
B.8 Algorithm: EP-FQCh type C recursion 125
B.9 Algorithm: EP-FQCh type D recursion 125
B.10 Algorithm: Computing summands for EP-FKD0 126
B.11 Algorithm: EP-FKD0 . 126
B.12 Algorithm: Computing summands for EP-FKD 127
B.13 Algorithm: EP-FKD . 128

C R functions used in illustrations: . 129

D C++ functions used in R scripts: . 133

viii

LIST OF FIGURES

Figure Page

3.1 Accuracy of Cosine/Sine statistics: EP-FQCh1 28

3.2 Accuracy of Cosine/Sine statistics: EP-FQCh2 39

3.3 Accuracy for Normal(0,1) data: xy-plot of error differences 46

3.4 Accuracy for Normal(0,1) data: QQ-plot of errors 47

3.5 Accuracy for Uniform(0,1) data: xy-plot of error differences 48

3.6 Accuracy for Uniform(0,1) data: QQ-plot of errors 49

3.7 Accuracy for Chi-Squared(4) data: xy-plot of error differences 50

3.8 Accuracy for Chi-Squared(4) data: QQ-plot of errors 51

3.9 Accuracy for Chi-Squared(8) data: xy-plot of error differences 52

3.10 Accuracy for Chi-Squared(8) data: QQ-plot of errors 53

3.11 Accuracy for Chi-Squared(16) data: xy-plot of error differences 54

3.12 Accuracy for Chi-Squared(16) data: QQ-plot of errors 55

3.13 Accuracy for Beta(1,4) data: xy-plot of error differences 56

3.14 Accuracy for Beta(1,4) data: QQ-plot of errors 57

3.15 Accuracy for Beta(1,8) data: xy-plot of error differences 58

3.16 Accuracy for Beta(1,8) data: QQ-plot of errors 59

3.17 Accuracy for Beta(1,16) data: xy-plot of error differences 60

3.18 Accuracy for Beta(1,16) data: QQ-plot of errors 61

3.19 Accuracy for t(4) data: xy-plot of error differences 62

3.20 Accuracy for t(4) data: QQ-plot of errors 63

3.21 Accuracy for t(8) data: xy-plot of error differences 64

3.22 Accuracy for t(8) data: QQ-plot of errors 65

3.23 Run-time for Quantile computations . 66

4.1 Canonical KD-tree construction . 70

ix

Figure Page

4.2 Accuracy in KD-tree construction by EP-FKD: ρ = 0, p = 2 86

4.3 Accuracy in KD-tree construction by EP-FKD: ρ = 0.25, p = 2 87

4.4 Accuracy in KD-tree construction by EP-FKD: ρ = 0.5, p = 2 88

4.5 Accuracy in KD-tree construction by EP-FKD: ρ = 0.75, p = 2 89

4.6 Accuracy in KD-tree construction by EP-FKD: ρ = 0, p = 3 90

4.7 Accuracy in KD-tree construction by EP-FKD: ρ = 0.25, p = 3 91

4.8 Accuracy in KD-tree construction by EP-FKD: ρ = 0.5, p = 3 92

4.9 Accuracy in KD-tree construction by EP-FKD: ρ = 0.75, p = 3 93

4.10 Run-time for KD-tree construction by EP-FKD: p = 2 94

4.11 Run-time for KD-tree construction by EP-FKD: p = 3 95

x

SYMBOLS

R Set of real-numbers

C Set of complex-numbers

N Set of integers

Z+ Set of positive natural numbers

L2(S) Set of L2 integrable functions on set S

Lp(S) Set of Lp integrable functions on set S

i Unit of complex numbers

{{Ai,j}} A matrix whose (i, j)th entry is Ai,j

At Transpose of the matrix A

Ai,. ith row of A.

A.,j jth column of A.

‖H‖ Norm of H.

〈G,H〉 Inner-product of G and H.

EP (.) Expectation wrt measure P .

xi

ABBREVIATIONS

D&R Divide and Recombine

EPS Embarrassingly Parallel Statistics

SEP Strongly Embarrassingly Parallel

WEP Weakly Embarrassingly Parallel

SOT Sum of Transformations

EPF Embarrassingly Parallel Functions

STF Sum of Transformation Functions

FAS Finitely Additively Separable

EP-FQ Embarrassingly Parallel Fourier Quantile

EP-FQCh Embarrassingly Parallel Fourier Quantile with Chebyshev’s trans-

formation

EP-FKD Embarrassingly Parallel Fourier KD-tree

xii

ABSTRACT

Chakravorty, Aritra PhD, Purdue University, December 2018. Embarrassingly Paral-
lel Statistics and its Applications: Divide & Recombine Methods for Parallel Compu-
tation of Quantiles and Construction of K-D Trees for Big-Data . Major Professor:
William S. Cleveland.

In Divide & Recombine (D&R), data are divided into subsets, analytic methods

are applied to each subset independently, with no communication between processes;

then the subset outputs for each method are recombined. For big data, this provides

almost all of the analytic tasking needed when data are analyzed. It also provides

high computational performance because typically most of the computation is em-

barrassingly parallel, the simplest parallel computation.

Another kind of tasking must address computational performance and numeric

accuracy: the computing of functions of all of the data, or “statistics”. For data big

and small, it is often important to compute such statistics for all of the data, which

can be summaries of the data, such as sample quantiles of continuous variables, or

can process the data into a form that helps analysis, such as dividing the data into

representative subsets. Development of computational methods to compute these

statistics can be challenging.

D&R can be a very effective framework for computing statistics. To support

this, we introduce the concept of embarrassingly parallel (EP) statistics, both weak

and strong. The concept of EP statistics is not entirely new, but has had little

development. The existing methodology is mainly sums of sums. For example, this is

done when computing the necessary statistics for least squares where sums of products

and cross productions are carried out on subsets then summed across subsets. Our

treatment of EP statistics has taken the concept much further. The outcome is ability

to use EP statistics in conjunction with the use a Fourier series to approximate an

xiii

optimization criteria. The series terms, which are strongly EP statistics, are summed

across subsets, and the result is optimized. These are EP-F computational methods.

We have so far developed two EP-F computational methods for two widely used

statistic computations. EP-F-Quantile is for quantiles of big data, and EP-F-KDtree

is for KD-trees. Speed and accuracy of EPF-Quantile are compared with that of the

well-known binning method, which also can be formulated in terms of EP statistics.

EPF-KDtree is the first parallel KD-tree computational method of which we are

aware. EP and EPF computational methods have potentially many other applications

to computing statistics.

xiv

1

1. INTRODUCTION:

Divide and Recombine(D&R) as discussed in [1] is a statistical approach to big data.

A statistical division method divides the data into subsets that are written to disk

with the same data structures Then, each of a collection of analytic methods is applied

to each subset, and the outputs are data structures that are the same as one another.

The subset analytic computations have no communication among them making them

embarrassingly parallel, the simplest parallel computation. Finally, a recombination

method is applied to the outputs for each method to get a final D&R result. The

recombination step does have communication between the processes, but typically

has a component of embarrassingly parallel computation.

1.1 D&R implementation with Map-Reduce:

DeltaRho software (www.deltarho.org) implements D&R. At the front end, a data

analyst programs in the R language.The DeltaRho front end R package, datadr makes

programming D&R easy. It can run on a multicore machine and manage the back-

end parallel computations and database management. It can also run on a cluster

and use the Hadoop parallel, distributed computational environment to manage the

computations with Map-Reduce and the database with the Hadoop Distributed File

System (HDFS). Hadoop keeps track of subsets and outputs and runs the R/datadr

code for division, applications of methods, and recombinations. Communication be-

tween datadr and Hadoop is achieved by the DeltaRho RHIPE software, the R and

Hadoop Integrated Programming Environment.

D&R with DeltaRho does not require the highly limiting requirement that the

data reside memory to get high computational performance. In fact, data-sets can

have a memory size bigger than the physical memory size. The methods presented in

2

this paper, including EP-FQ, are implemented as part of an R package, drEP, which

uses datadr extensively.

1.2 Numerical accuracy in D&R and EPS

D&R is extremely fast and efficient in dealing with large data. But there is

an issue regarding numerical accuracy in D&R output, depending on the analytic

method we need to perform during the analytic stage of D&R. We are comparing the

D&R output to the the output value we had obtained if we had chosen to apply the

analytic method on the entire data in memory without dividing. For some analytic

methods, the D&R output can be numerically very inaccurate compared to the in-

memory output. The accuracy also depends on the way we choose to partition data

into subsets.

Let us illustrate with an easy example, suppose the data is {Y,X}: 100 observa-

tions of the pair of variables {y, x}. For D&R method, we divide it in two subsets

{Y1, X1} and {Y2, X2}, each subset having 50 observations. If the analytic method is

to compute mean of Y , for D&R output we take the average of subset means Ȳ1 and

Ȳ2. Note that we have Ȳ = Ȳ1+Ȳ2
2

, so, in this specific situation D&R is numerically

accurate for computing means. Observe that the D&R output is invariant w.r.t. the

way we divide the data into subsets

But if the analytic method is to calculate the coefficient of logistic regression of y

given x. If the analytic method is applied on entire data {Y,X}, we get an estimator

of logistic regression coefficient β̂L(X, Y). If we perform D&R, the analytic method is

applied to the subset and we get an estimator of logistic regression coefficient for each

subset: β̂L(X1, Y1) and β̂L(X2, Y2). Here, the recombination step gets difficult if we

want numeric accuracy. In general, β̂L(X, Y) 6= β̂L(X1,Y1)+β̂L(X2,Y2)
2

. In fact, we can’t

find a recombination function f that will satisfy β̂L(X, Y) = f(β̂L(X1,Y1)+β̂L(X2,Y2)
2

) for

any {X, Y }. So, whatever recombination method we choose, it will not be numerically

3

completely accurate, it will also depend on the way of partitioning the data. We may

ensure statistical accuracy with small random error by carefully choosing f .

In this thesis, we try to identify exactly numerically accurate analytic methods

by introducing the concept of Embarrassingly Parallel statistics. Also we present

algorithms that systematically controls the numeric error for analytic methods that

do not belong to this set. Two algorithms: EP-FQ and EP-FKD are presented in

later sections illustrating this mechanism.

4

5

2. EMBARRASSINGLY PARALLEL STATISTICS

To understand the intuition behind Embarrassingly Parallel Statistics, recall the ex-

ample we discussed in last section. When the analytic method for D&R is: computing

mean of a variable, the D&R output stays invariant w.r.t. the choice of partitioning

the data. So, irrespective of how we divide the data into subsets, in this process,

the collection of subset outputs of the analytic method, are mapped to a singular

value for a given data. Keeping this property of D&R computation of mean, we now

formally define our concept in focus.

2.1 Definitions and Examples

Let X be an N × d matrix whose rows are N i.i.d. observations (realizations) of a

d-dimensional random variable x̃. We divide the observations into R disjoint subsets

with Mr observations for r = 1, . . . , R. So the rth subset is an Mr × d matrix Xr.

Let T (.) be a numeric scalar or vector-valued statistic that is applied to X and

Xr. T (.) is defined to be a Strongly Embarrassingly Parallel(SEP) statistic if there

exists a function f(.) such that T (X) = f(T (X1), T (X2), · · · , T (XR)).

T (.) is defined to be a Weakly Embarrassingly Parallel(WEP) statistic if it is not

a SEP statistic, but can be written as a function of one or more SEP statistics.

D&R has associated with it a notion of statistical accuracy. If an analytic method

is applied to each of the Xr and then recombined, we want to chose division and

recombination methods that provide a statistical accuracy as high as possible and as

close as possible to the accuracy that we could have gotten had we been able to apply

the method to X directly. Statistical accuracy is closely related to numeric accuracy

and it is the concept for EPS. We want to compute statistics from X, for example,

quantiles, and seek to use operations based on Xr to get approximations of the values

6

for X whose numeric accuracy is as high as possible. The reason is that quantiles

serve as a numeric description of the properties of observed values of a variable. Now

a statistic that serves as a summary where numeric accuracy is important, can also

be used for tasks that require its statistical accuracy to be considered. We now give

few examples with d = 1 to illustrate EP statistic.

Example 2.1.1. Let N(.) be a statistic whose output is the sample sizes of different

set of observations. Then we have N(X) =
∑R

r=1 T (Xr) = f(M1, . . . ,MR), where

f(.) is a function of numeric variables that sums its arguments. So N(.) is a SEP

statistic.

Example 2.1.2. If T (.) is the summing function f(.) in Example 2.1.1, then clearly

T (.) is a SEP statistics where, T (X) = f(T (X1), . . . , T (XR)).

Example 2.1.3. Let T (.) be the sample maximum, then T (X) = f(T (X1), . . . , T (XR)),

so T (.) is a SEP statistic and f(.) = T (.).

Example 2.1.4. Let Xr and Yr denote data in rth subset for r = 1, 2, · · · , R; X and

Y denote the combined data. Consider the linear regression model: y = xβ′ + ε, ε ∼
N(0, σ2). We know the LS estimate for β is β̃ = (XX′)−1XY′. Now this is WEP

statistics. Because if you consider the statistics T1(X,Y) = XY′ and T2(X) = XX′,

then, T1(X,Y) = XY′ =
∑R

r=1 XrY
′
r = f(T1(X1,Y1), . . . , T1(XR,YR)) and T2(X) =

XX′ =
∑R

r=1 XrX
′
r = f(T2(X1), . . . , T2(XR)), again f(.) is the function that sums its

arguments. This makes both T1(X,Y) and T2(X) SEP statistics, and since β̂ can be

expressed in terms of T1(X,Y) and T2(X), it is a WEP statistic.

Example 2.1.5. Let T (X) be the sample median. It is not SEP or WEP statistic,

because we cannot write T (X) = f(T (X1), T (X2), . . . , T (Xr)), for any function f(.),

neither can we express T (.) in terms of finitely many SEP statistics. The subset

medians do not contain sufficient information to determine the median of all of the

data.

7

2.2 The Class of EP statistics

SEP and WEP statistics are candidates for easy, fast computation using D&R.

Identification of cases and classes of SEP statistics and WEP statistics provides infor-

mation about the use of D&R EP statistics in practice.Suppose the random variable

x̃ has a probability density p(x̃; β) where β is a finite number of parameters. Suppose

the rows of X are observed values of independent realizations of x̃.

Theorem 2.2.1. Any Minimal Sufficient Statistic for a parametric model is SEP

statistic.

(See Appendix A for proof.)

A class of distributions is an L-parameter exponential family if the densities have

the form p(x̃; β) = h(x̃)exp
(∑L

l=1 ηl(β)τl(x̃) − A(β)
)
. If the rows of X are observed

values of x̃ having density p(x̃; β) and {η1(β), η2(β), . . . , ηL(β)} is a linear independent

set, then the L dimensional statistic: Tm(X) =
(∑

x∈X τ1(x), . . . ,
∑

x∈X τL(x)
)

is

minimal sufficient statistic for β. Observe that the individual co-ordinate statistics

have a general form T (X) =
∑

x∈X τ(x), for a transformation τ(.).

A statistic T (.) is defined to be a Sum of Transformations (SOT) statistic if there

exists a transformation τ(.) such that T (X) =
∑

x∈X τ(x). We say T (.) is induced by

τ(.).

Theorem 2.2.2. An SOT statistic is a SEP statistic.

(See Appendix A for proof.)

Clearly, the class of SOT statistics is a subset of the class of SEP statistics,

minimal sufficient statistics for any exponential family distribution belongs to this

set. But it doesn’t include all possible SEP statistics. For example, let x’s are i.i.d.

U(0, β), which doesn’t belong to exponential family of distributions. An application

of theorem 2.2.1 implies that the minimal sufficient statistics for β, Tm(X) = max(X)

is SEP statistic, which was verified in example 2.1.3, but it is not SOT. In the next

section we generalize the concept of EP statistics to functions.

8

2.3 Function Spaces

Now, we extend the concept of EP statistics to complex valued functions involving

a variable β. Assume a general data-point x is an observation of the random variable

x̃. This random variable has a sample space X and let P(X) be the power set of X.

P(X) is the set of samples of x̃. Also assume x̃ is related to a parameter-variable β

belonging to the parameter space Θ. Consider a function F (X, β) having both X and

β as arguments, F (X, β) : P(X)×Θ 7→ C.

A function F (X, β) is defined to be an Embarrassingly Parallel Function(EPF)

if given β, F (X, β) is a SEP statistics, i.e., there exists a function fβ() (which may

depends on β), such that F (X, β) = fβ(F (X1, β), F (X2, β), · · · , F (Xr, β)), for any

β.

Note that the function fX,F (), defined by fX,F (β) = F (X, β) for β ∈ Θ is a member

of CΘ: Set of functions from Θ to C, and for a fixed F , the set SF = {fX,F () : X ∈ X}
is a function space. We consider functional operators defined on this function-space

and conditions that would make them WEP statistics.

A function F (X, β) is defined to be a Sum of Transformation(STF) Function if

there exists a function H(x, β) : X×Θ 7→ C such that F (X, β) =
∑

x∈XH(x, β). We

say F (X, β) is induced by H(x, β).

Then, we have:

Theorem 2.3.1. A STF is an EPF.

(See Appendix A for proof.)

Example 2.3.2. Consider the case where x s are i.i.d. observations of random

variable x̃ with density p(x̃, β).The log-likelihood function l(X, β) is STF as l(X, β) =∑
x∈X l(x, β). Here H(x, β) = l(x, β) = log p(x, β).

For the next 3 examples, let all x’s are i.i.d. observations of real random variable

x̃, related to β, assume X ⊆ R and Θ ⊆ R.

9

Example 2.3.3. Assume that Θ = (a, b) ⊂ R. Let H(x, β) = 1{x≤β}, so that

F (X, β) =
∑

x∈X 1{x≤β}. Note that F (X) is maximized by any member β̂ ∈ [max(X), b).

So if we consider the functional operator on SF : T(fX,F) = inf β̂∈Θ{β̂ : fX,F (β̂) =

maxβ∈Θ fX,F (β)}, we can see that T(fX,F) = max(X). It was previously shown to be

SEP statistics.

Example 2.3.4. Assume that Θ = R and again let H(x, β) = 1{x≤β}, so that

F (X, β) =
∑

x∈X 1{x≤β}. Suppose X has N(X) observations and if we consider the

functional operator on SF : T(fX,F) = inf β̂∈Θ{β̂ :
fX,F (β̂)

N(X)
= p}, we can see that

T(fX,F) = Qp(X) which is the pth sample-quantile. It is not WEP statistics, we can’t

sort X and compute quantiles by D&R.

Example 2.3.5. Assume that Θ = R and let H(x, β) = |x− β| , so that F (X, β) =∑
x∈X |x − β|. Consider the functional operator on SF : T(fX,F) = inf β̂∈Θ{β̂ :

fX,F (β̂) = minβ∈Θ fX,F (β)}, we can see that T (X) = T(fX,F) =median(X). Me-

dian is a quantile and non-WEP statistics.

From these examples we can see that in general we can’t tell if any arbitrary

functional operator on the function space SF will be a WEP statistics. But if we

assume some restrictions on the structure of F , we can actually ensure that an ar-

bitrary functional operator on the function space SF to be WEP statistics. We first

introduce a new class of functions.

A function H(x, β) is defined to be an Finitely Additively Separable (FAS) if

there exists J pair of maps {f1(x), g1(β)}, · · · , {fJ(x), gJ(β)}, here fj(x) : X 7→
C, gj(β) : Θ 7→ C, for j = 1, · · · , J and J constants η1, · · · , ηJ such that H(x, β) =∑J

j=1 ηjfj(x)gj(β).

Example 2.3.6. Assume that X = R and Θ = R and let H(x, β) = (x − β)T , so

that H(x, β) =
∑T

t=0

(
T
t

)
xtβT−t.Take J = T + 1, fj(x) = xj−1, gj(x) = (−β)T−j+1

and ηj =
(
T
j−1

)
, so that we have, H(x, β) =

∑J
j=1 ηjfj(x)gj(β) and it is FAS.

Theorem 2.3.7. Any arbitrary functional operator on the function space SF for a

STF F (X, β) induced by a FAS is WEP statistics.

10

(See Appendix A for proof.)

In most situations H(x, β) is not Finitely Additively Separable, suppose in such

a situation, we approximate H(x, β) by a FAS function HJ(., .) with respect to some

distance. Here HJ(., .) can be written as sum of product of no less than J number of

pairs {fj(x), gj(β)}. Let F (X, β) is induced by H(x, β) and FJ(X, β) is induced by

HJ(x, β) for any J . Then we propose to approximate the functional operator T(fX,F)

by the functional operator T(fX,FJ).

In these paper, we will consider Lp approximation of H(x, β) by HJ(x, β). Specifi-

cally we will investigate the L2 convergence properties ofHJ(X, β) toH(x, β), because

for any interval S ⊆ R, L2(S) is the only Hilbert-Space among Lp(S) spaces and has

mathematical properties that we can exploit.

Let us consider the spaces L2(X), L2(Θ) and L2(X×Θ) simultaneously. Note that

fg ∈ L2(X × Θ) whenever f ∈ L2(X) and g ∈ L2(Θ). This is the reason the classes

of functions ζ0 ⊆ ζ1 ⊆ ζ2 ⊆ · · · defined by:

ζJ =
{ J∑

j=1

fjgj

∣∣∣ fj ∈ L2(X) and gj ∈ L2(Θ), 0 ≤ j ≤ J
}

(2.1)

form a family of subsets in L2(X × Θ). For convenience, we also consider the one

element set ζ0 containing the zero function of L2(X × Θ). The following theorem

shows the existence of a L2 approximation:

Theorem 2.3.8. Suppose that H ∈ L2(X × Θ) is a non-zero function (i.e.H /∈ ζ0)

and put

ω =

 J if H ∈ ζJ/ζJ−1

∞ if H /∈ ζJ for any J ∈ N
(2.2)

Then there exist two orthogonal systems {uj}ωj=1 ⊂ L2(X), {vj}ωj=1 ⊂ L2(Θ) and a

non-increasing sequence {ηj}ωj=1 of positive reals such that

H(x, β) =
ω∑
j=1

ηjūj(x)vj(β) for almost all (x, β) ∈ (X×Θ). (2.3)

11

The subtotals of the extension form above are the best L2-approximation of the func-

tion H in the sense that

‖H −
J∑
j=1

ηjūjvj‖ = ρJ(H) =

√√√√‖H‖2 −
J∑
j=0

η2
j for any n < ω (2.4)

Finally, the numbers ηj satisfy

ω∑
j=1

η2
j = ‖H‖2 (2.5)

This result also gives a mechanism to approximate a general H(x, β) by sum of

separable functions if H(x, β) ∈ L2(X×Θ), we may consider any orthogonal systems

in X and in Θ and see if H(x, β) can be expressed as 2.3. For example, the functions

{Uj(z) = ei 2πjz : j ∈ Z+} is an orthonormal basis of L2(0, 1), this is the basis for

Fourier series expansion. We now give an example that will finaly lead us to EP-FQ

algorithm:

Example 2.3.9. Recall example 2.3.5, we know
∑

x∈X |x − β|is minimized for β̂ =

median(X). Suppose x is scaled to the interval (−π
2
, π

2
) by a linear transformation, so

the sample-space becomes X = (−π
2
, π

2
). Now since the median also lies in the same

interval, we have Θ = (−π
2
, π

2
). Since both −π

2
< x < π

2
and −π

2
< β < π

2
, we have,

−π < |x− β| < π. Remember, if −π < z < π, then we have the Fourier expansion of

|z| as |z| = π
2
− 4

π

∑∞
j=1

cos
(

(2j−1)z
)

(2j−1)2
. If we replace z with x− β in this expression, we

get: |x− β| = π
2
− 4

π

∑∞
j=1

cos
(

(2j−1)(x−β)
)

(2j−1)2
. Let H(x, β) = π

2
− |x− β|, then we have,

H(x, β) = 4
π

∑∞
j=1

cos({2j−1}(x−β)
(2j−1)2

. Since, H is bounded in X × Θ, H ∈ L2(X × Θ).

H is not finitely separable, hence ω = ∞ for H. By theorem 2.3.8, we should be

able to find orthognal systems {uj}∞j=1 ⊂ L2(X), {vj}∞j=1 ⊂ L2(Θ) and non-increasing

sequence {ηj}∞j=1 such that 2.3 holds for H. Let {u2j−1(x) = e−i(2j−1)x√
π

, u2j(x) =

ei(2j−1)x√
π
}; {v2j−1(x) = e−i(2j−1)β√

π
, v2j(x) = ei(2j−1)β√

π
for all j ∈ Z+. Then by the lemma

in Appendix A, {uj(x) : j ∈ Z+} and {vj(β) : j ∈ Z+} are orthonormal basis

in L2(X) and L2(Θ) respectively. Now, we have ū2j−1(x)v2j−1(β) + ū2j(x)v2j(β) =

ei(2j−1)x√
π

. e
−i(2j−1)β√

π
+ e−i(2j−1)x√

π
. e
i(2j−1)β√

π
= 2cos({2j−1}(x−β)

π
. If we replace 2cos({2j−1}(x−β)

π
by

12

ū2j−1(x)v2j−1(β)+ū2j(x)v2j(β) in the Fourier expression of |x−β|, we have H(x, β) =∑∞
j=1 ηjūj(x)vj(β) for all (x, β) ∈ (X × Θ); here η2j−1 = η2j = 2

(2j−1)2
, also, observe

that ηj’s are positive and non-increasing.

Observe that for the Hilbert Space L2(X×Θ), the inner-product 〈·, ·〉 between two

elementsH1(x, β) andH2(x, β) is defined as: 〈H1,H2〉 =
∫ π

2
π
2

∫ π
2
π
2
H1(x, β)H̄2(x, β)dxdβ

and ‖H‖2 = 〈H,H〉. So, the partial sums of Fourier Series of |x − β| provides the

best L2 approximation to it, and the L2 error goes to 0 if we increase the number of

Fourier terms. We know that Fourier Series of |z| uniformly converges to its limit.

So the L∞ error also goes to 0 if we increase the number of Fourier terms. This is a

much stronger result. We have the following result as a corollary of 2.3.8

Corollary 2.3.10. Consider the situation in theorem 2.3.8, if equation 2.3 holds for

all (x, β) ∈ X×Θ, then we have ‖H −∑J
j=1 ηjūjvj‖∞ → 0 if

(a)uj(x) and vj(β) are uniformly bounded ∀j.
(b)
∑∞

j=1 ηj <∞.

13

3. THE EP-FOURIER-QUANTILE ALGORITHM

For big data, the simple expedient of computing quantiles by sorting all of the values

of a continuous variable, which is used for small data, can be impractically expensive

or simply not feasible. Using an approach that computes quantiles on subsets and

then recombines the quantile outputs creates accuracy problems. In this section we

will describe an application of the concept of EP statistics: Embarrassingly-Parallel

Fourier-Quantile or EP-FQ algorithm to get fast and accurate approximate quantiles

for Big-Data.

EP-FQ uses a Fourier series to approximate an optimization criterion for quan-

tiles. The series terms, which are strongly EP, are summed across subsets, and the

result is optimized. Binning, another D&R method, is widely used for computing

quantiles. It, too, can be formulated in terms of EP statistics. It creates equal-length

intervals spanning the range of all of the data. The subset computation is to count

the numbers of values in each bin. The recombination is to add up counts for each

interval across subsets; then each quantile is computed by interpolation. In Sec-

tion 3.7, the computational performance and accuracy of these two quantile methods

are compared. In datadr binning is implemented by the function drQuantile(), and

EP-FQ is implemented in the R package drEP. There are number of other quantile

computational methods that are discussed in Section 3.8.

3.1 Basic idea

Remember, sample-median or more generally any sample-quantile is not an EP

statistic. In EP-FQ algorithm we approximate sample-quantiles by a sequence of

WEP statistics with strong control over the approximation, in a sense that these se-

quence of WEP statistics are best L2 approximations with respect to an optimization

14

criteria. Quantiles corresponding to any arbitrary set of f-values can be computed

by a single D&R step in EP-FQ method. However the initial version of EP-FQ is

slow and we modify EP-FQ multiple times in later sections, using recursive relations

involving Chebyshev’s polynomials to get faster version of EP-FQ.

We assume all observations in the data X are i.i.d. observations of a real valued

random variable x̃. Denote the P th sample quantile of the data X as QP (X). First,

note that,QP (X) is the minimizer of the objective function: F (X, β) = 1
N(X)

∑
x∈X |x−

β|P , wrt β. Here, |z|P = (1 − P)z− + Pz+, where, z− and z+ are the negative and

the positive part of z respectively. Now we know, z− = (|z|−z)
2

and z+ = (|z|+z)
2

. So,

we have |z|P = (1− P) (|z|−z)
2

+ P (|z|+z)
2

= |z|
2

+ z
2
(2P − 1). We assume that, there are

real numbers m and M , such that, all the observations lie inside (m,M).(we can take

m = min(X)− δ,M = max(X) + δ for a small δ > 0.) Then linearly transform X if

necessary to ensure that the transformed observations lie inside (−1, 1). Without loss

of generality, let QP (X) is the P th sample quantile of this transformed data(we can

get back the original sample quantiles easily by inverse linear transformations). Since

all observations lie inside (−1, 1), we can say that QP (X) will also lie in (−1, 1), so

that, we can obtain QP (X) by minimizing F (X, β) with respect to β in the interval

(−1, 1), i.e.

QP (X) = argminβ∈(−1,1)
1

N(X)

∑
x∈X
|x− β|P (3.1)

In this interval we have, |x−β| < π for all x ∈ X (their difference can be at-most

2) and we consider Fourier series expansion of |x− β| around 0:

|x− β|

=
π

2
−
∞∑
j=1

4

π(2j − 1)2
cos
(
(2j − 1)(x− β)

)
=
π

2
− 4

π

∞∑
j=1

cos
(
(2j − 1)x

)
cos
(
(2j − 1)β

)
(2j − 1)2

− 4

π

∞∑
j=1

sin
(
(2j − 1)x

)
sin
(
(2j − 1)β

)
(2j − 1)2

(3.2)

15

This means,

|x− β|P

=
π

4
− 2

π

∞∑
j=1

cos
(
(2j − 1)x

)
cos
(
(2j − 1)β

)
(2j − 1)2

− 2

π

∞∑
j=1

sin
(
(2j − 1)x

)
sin
(
(2j − 1)β

)
(2j − 1)2

+
(x− β)

2
(2P − 1)

(3.3)

Now let us introduce the sequence of Statistics:

C̄j(X) =
1

N(X)

∑
x∈X

cos(jx).

S̄j(X) =
1

N(X)

∑
x∈X

sin(jx).

X̄ =
1

N(X)

∑
x∈X

x.

(3.4)

Then, from 3.3 we have the expression,

fP ;X(β)

=
π

4
− 2

π

∞∑
j=1

C̄2j−1(X)cos
(
(2j − 1)β

)
(2j − 1)2

− 2

π

∞∑
j=1

S̄2j−1(X)sin
(
(2j − 1)β

)
(2j − 1)2

+
(X̄− β)

2
(2P − 1)

(3.5)

In EP-FQ algorithm, we approximate fP ;X(.) with fJ0P ;X(.) for a large integer J0,

here

fJ0P ;X(β)

=
π

4
− 2

π

J∑
j=1

C̄2j−1(X)cos
(
(2j − 1)β

)
(2j − 1)2

− 2

π

J∑
j=1

S̄2j−1(X)sin
(
(2j − 1)β

)
(2j − 1)2

+
(X̄− β)

2
(2P − 1)

(3.6)

J0 should be chosen for desired accuracy. From example 2.3.9 we realize that

fJ0P ;X(.) is the best L2 approximation to fP ;X(.), in-fact we have for any P or X,

16

|fJ0P ;X(β) − fP ;X(β)| < 2
π

∑∞
j=J0+1

1
(2j−1)2

= O(1
J0

), which is tail sum of a convergent

series. So we have uniform convergence of the sequence of functions fJ0P ;X(β) to its

limit function fP ;X(β) for any P or X. This is a powerful property, implying, no

matter how big or skewed the data is, we have a sequence of optimization criterion

that approaches the actual optimization criterion at a fixed rate and we can pick an

integer J0, large enough to guarantee an error bound for the optimization criteria.

We can minimize this infinitely differentiable function fJ0P ;X(β), or maximize the

following equivalent function fJ0
P ;X(β)to get the quantile estimate Q̂J0

P (X) for any P .

fJ0
P ;X(β) =

2

π

J∑
j=1

C̄2j−1(X)cos
(
(2j − 1)β

)
+ S̄2j−1(X)sin

(
(2j − 1)β

)
(2j − 1)2

+ βP (3.7)

We can observe that C̄j(X) and S̄j(X) are EP statistics and they can be com-

puted by Divide and Recombine, also this terms are division independent. After

the D&R step, for each quantile P we have to solve an optimization problem to get

corresponding Q̂J0
P (X).

3.2 Exact D&R method

In this section we describe D&R implementation of EP-FQ algorithm. Recall that

Map-Reduce model for distributed large data-set stored in Hadoop Distributed File

System(HDFS), is a simple and fast framework to implement general D&R algorithm,

and we use this model to implement EP-FQ via R package datadr. In D&R step

of EP-FQ we compute statistics C̄j(X) and S̄j(X) for j = 1, · · · , J0, J0 is a large

integer. Note that, C̄j(X) =
Cj(X)

N(X)
, S̄j(X) =

Sj(X)

N(X)
, where Cj(X) =

∑
x∈X cos(jx),

Sj(X) =
∑

x∈X sin(jx) and N(X) =
∑

x∈X 1. Observe that these are all Sum of

Transformation(and hence SEP) statistics.

The division method[D] divides the data in subsets and stores in HDFS. In EP-

FQ we compute EP statistics independent of the division method used, and the the

D&R output we get in EP-FQ would be same for any division of the data. Data X is

divided in R subsets X1, · · · , XR. The observations are all real-valued and the data

17

structure in each subset are real numeric vectors. For the Map-Reduce model, initial

Map inputs are R number of key-value pairs {1,X1}, · · · , {R,XR}.
Afterwards, an analytic method[A] is applied to subset data, this part of D&R

is Embarrassingly parallel, computation is done within the subsets and without any

interaction between the subsets and carried out in Map stage of Map-Reduce model.

In a general rth subset Xr, for each observation x of Xr, we compute J0 Cosines:

cos(x), · · · , cos
(
(2J0−1)x

)
and J0 Sines: sin(x),· · · ,sin

(
(2J0−1)x

)
and add up these

terms to get C1(Xr), · · · ,C2J−1(Xr) and S1(Xr),· · · ,S2J−1(Xr). Also we count N(Xr),

the number of observations in Xr. These are values for Map output key-value pair,

we assign the numbers 0, · · · , 2J0 as keys. So, for the rth subset, the Map output or

the intermediate key-value pairs of Map-Reduce model are {0, N(Xr)}, {1, C1(Xr)},
{2, S1(Xr)}, · · · ,{2J0 − 1, C2J0−1(Xr)}, {2J0, S2J0−1(Xr)}.

Finally, for the recombination method[R], since X is a disjoint union of X1, · · · ,
XR, we have for j = 1, · · · , J0, Cj(X) =

∑
x∈X cos(jx) =

∑
x∈∪Rr=1Xr

cos(jx) =∑R
r=1

∑
x∈Xr

cos(jx) =
∑R

r=1Cj(Xr). Similarly, Sj(X) =
∑R

r=1 Sj(Xr) and N(X) =∑R
r=1N(Xr). So, in the Reduce stage of Map-Reduce model, for each key 0, · · · , 2J0,

we add corresponding values from the set of all intermediate key-value pairs. Final

Map-Reduce output is the set of key-value pairs {0, N(X)},{1, C1(X)}, {2, S1(X)},
· · · ,{2J0 − 1, C2J0−1(X)}, {2J0, S2J0−1(X)}.

We read the Map-Reduce output key-value pairs in the front-end machine to get

our D&R output N(X), C1(X), S1(X), · · · , C2J0−1(X)}, S2J0−1(X)}. After the D&R

step, for each quantile p we maximize the optimization criteria in equation 3.7 to get

corresponding Q̂J0
p (X).

3.3 Time-complexity of EP-FQ: Comparison with Binning

Let N = N(X), the sample size of data X. The exact computation of sample

quantiles requires sorting entire data, an efficient sorting algorithm has O(N logN)

time complexity, and can’t be carried out in parallel. EP-FQ is serial O(N) algorithm,

18

as in EP-FQ we compute Sum of Transformations. The only instance, we require

interaction among observations, is when we take the the sums, which makes parallel

Map-Reduce implementation feasible.

Binning method is another fast, accurate O(N) algorithm to compute approximate

quantiles and it can be implemented in parallel by D&R with Map-Reduce. We look

at the range of data and divide it in a number of bins. Suppose we have nBins

bins (b0, b1], (b1, b2], · · · , (bnBins−1, bnBins). We tabulate the number of observations

in each of these bins, i.e. for each r = 1, · · · , nBins, we compute SEP statistic

Br(X) =
∑

x∈X I(br−1 < x ≤ br). We get cumulative frequency counts at the bin-

points, then we approximate quantile values by interpolation.

We need to know whether EP-FQ beats Binning in run-time with comparable

accuracy. The post D&R steps in both of these methods(serial optimization for

EP-FQ and cumulative frequency interpolation for Binning) take fixed amount of

run-time, independent of the sample size N = N(X). So we should focus on run-time

of D&R steps to compare time-complexity.

Note in D&R step, both these algorithms involve serial computation of a number

of SEP Sum of Transformations. For comparable accuracy, we have 2J0 +1 < nBins.

EP-FQ beats Binning in Reduce step because in EP-FQ, there will be less number of

intermediate key-value pairs to sum up in Reduce step than Binning.

So, we need to compare average Map-time of EP-FQ and average Map-time in

Binning. To compare average Map-time we introduce concept of in memory compu-

tation. Suppose we assume that the data X is small enough to fit in memory of a

CPU processor. Let, t̃F (X) = Run-time to compute SEP statistics N(X), C2j−1(X)

and S2j−1(X), for j = 1, · · · , J0 and t̃B(X) = Run-time to compute all nBins SEP

bin-counts Br(X) for r = 1, · · · , nBins in the processor. Now, given data X, t̃F (X)

and t̃B(X) are random variables, and we can stochastic-ally compare them to judge

which algorithm has faster average Map-time. We will compare in R and the data

and parameters we are going to use is as follows:

19

1 #Input−Data
x . raw <− sample (1 : 10ˆ7 ,10ˆ7) # x . raw i s the data , f o r

3 # runtime comparison we
use the same standerd

5 # data x . raw : a random
premutation o f numbers

7 # (1 , 2 , . . . , 1 0 ˆ 7) .

9 x . range <− range (x . raw) # x . raw i s bounded by the
numbers x . range [1] and

11 # x . range [2] (f o r g ene ra l
data , i f i t ’ s not g iven

13 # we get x . range by a
prev ious D&R step) .

15

#Binning−Var iab l e s
17

nBins <− 10000 # Number o f b ins f o r the
19 # Binning method .

21 de l t a <− d i f f (x . range) / (nBins − 1) # Fixed bin width .

23 cuts <− seq (x . range [1] − de l t a / 2 , x . range [2] + de l t a / 2 , by = de l t a) # Bin boundar ies .

25 #EP.FQ−Var iab l e s

27 J0 <− 100 # Number o f terms f o r
EP.FQ.

29

A <− 2/(x . range [2]−x . range [1])
31 B <− −(x . range [2]+x . range [1]) /(x . range [2]−x . range [1]) # A & B are numbers s . t .

−1 < A∗(x . raw) + B < 1 .
33

#Final−Data f o r EP.FQ
35

X <− A∗x . raw+B

1

For this X, Binning with nBins = 10, 000 and EP-FQ with J0 = 100 terms

provides comparable accuracy, if we decrease J0, EP-FQ becomes less accurate. In

the R package datadr, there is an implementation of Binning method in the function

drQuantile(). In the R package drEps, there is an implementation of EP-FQ in the

function drQ(). To make our comparison, we are going to use Map-expressions from

scripts of these functions. See the R function map.bin() in Appendix C for Binning

Map implementation and the R function map.EP-FQ0() in Appendix C for EP-FQ

Map implementation. All the SEP statistics are serially computed in C++ for loop,

which is fast. Here is the run-time for these two methods in one of the run for data

X, in a Intel Core i7CPU 2.67GHz processor

20

> s t a r t . time <− proc . time ()
> l s b <− map . bin (x . raw)
> end . time <− proc . time ()
> end . time−s t a r t . time
user system e lapsed
5 .092 0 .404 5 .496
>
> s t a r t . time <− proc . time ()
> l s f 0 <− map .EP.FQ0(X)
> end . time <− proc . time ()
> end . time−s t a r t . time
user system e lapsed
61 .324 0 .000 61 .329
>

1

We experiment with the same data X and parameters for 1000 different runs and

observed that, Mean(t̃F (X)

t̃B(X)
) > 10. So, we can say that Binning beats EP-FQ in

memory. We can justify heuristically, Binning uses binary search to assign each x to

one of the bins, if there are nBins bins then average assignment takes O(log nBins)

operations for each x, where as EP-FQ requires computation of J0 Cosines and J0

Sines for each x, requiring O(J0) operations. We will try to modify EP-FQ in next

few sections to have comparable run-time at the Map stage.

3.4 Chebyshev’s Transformation and the EP-FQCh algorithm

We know, for a large integer J0, computation of C̄j(X) and S̄j(X) for j =

1, 2, · · · , J0 by D&R is very time consuming, as we need to perform J0 Cosine and J0

Sine operations for each x. We propose a faster alternative in this section, but first,

we need the following identities:

cos
(
(2j − 1)x

)
= T2j−1

(
cos(x)

)
sin
(
(2j − 1)x

)
= (−1)jT2j−1

(
sin(x)

) (3.8)

Here Tj(t) is the jth order Chebyshev’s polynomial. In mathematics the Cheby-

shev polynomials [2], named after Pafnuty Chebyshev, are a sequence of orthogonal

polynomials which can be defined recursively. The Chebyshev polynomials of the

first kind are defined by the recurrence relation T0(t) = 1; T1(t) = t; and Tj+1(t) =

21

2tTj(t)−Tj−1(t) for j > 0. Any odd degree Chebyshev’s polynomial T2j−1(t) is a linear

combination of t, t3, · · · , t2j−1. For example: T3(t) = 4t3− 3t;T5(t) = 16t5− 20t3 + 5

etc. From 3.8, we realize that,
∑

x∈X cos
(
(2j−1)x

)
can be written as a linear combi-

nation of
∑

x∈X cos(x),
∑

x∈X cos3(x), · · · , ∑x∈X cos2j−1(x). Equivalently, C̄2j−1(X)

can be written as a linear combination of C̄1(X),C̄3(X), · · · , C̄2j−1(X) if we define:

C̄j(X) =
1

N(X)

∑
x∈X

cosj(x) (3.9)

For the Sine terms observe that:

sin2j−1(x) = sin(x)−
j−1∑
j′=1

sin(x) cos2j′(x);∀j > 1 (3.10)

So from 3.8 and 3.9, we realize that,
∑

x∈X sin
(
(2j−1)x

)
can also be written as a

linear combination of
∑

x∈X sin(x),
∑

x∈X sin(x) cos2(x), · · · , ∑x∈X sin(x) cos2j−2(x).

Equivalently, S̄2j−1(X) can be written as a linear combination of S̄1(X), SC
2
(X), · · · ,

SC
2j−2

(X) if we define:

SC
j
(X) =

1

N(X)

∑
x∈X

sin(x) cosj(x) (3.11)

D&R step:

In the Fourier-Chebyshev method we propose to compute 2J0 number of SEP

statistics: C̄1(X), C̄3(X), · · · , C̄2J−1(X) and S̄1(X), SC
2
(X), · · · , SC2J−2

(X) by

a single D&R step. This is fast because, for each observation x, as opposed to J0

Cosine and J0 Sine operations, we need to perform only one Cosine operation (which

is cos(x)), we can get sin(x) from cos(x) as, sin(x) =
√

1− cos2(x) for x ∈ (−1, 1),

and then, we multiply both cos(x) and sin(x), by the same number cos2(x), J − 1

times in a loop to get summands for all SEP statistics. This loop multiplication

is extremely fast, see the R function map.EP-FQCh1() in Appendix C for a map

implementation of the Fourier-Chebyshev method.

22

Fourier-Chebyshev method is much faster than the previously discussed Fourier

method. For comparison again we pick the same X, keep nBins = 10, 000, but

increase J0 from 100 terms to 300 terms.

Here is the run-time for these two methods:

> s t a r t . time <− proc . time ()
> l s f 1 <− map .EP.FQCh1(X)
> end . time <− proc . time ()
> end . time−s t a r t . time
user system e lapsed
5 .448 0 .164 5 .630
>

1

So that we know EP-FQCh is faster and it also beats Binning in run-time.

Now lets find out how to efficiently compute C̄1(X), C̄3(X), · · · , C̄2J−1(X) and

S̄1(X), S̄3(X), · · · , S̄2J−1(X) from the D&R output C̄1(X), C̄3(X), · · · , C̄2J−1(X) and

S̄1(X), SC
2
(X), · · · , SC2J−2

(X). We will call this linear transformation procedure

EP-FQCh recursion of type A, we’ll see it is actually a recursive procedure.

We can derive two set of equations from the recursive relation for Chebyshev’s

polynomials Tj+1(t) = 2tTj(t)− Tj−1(t):

t2mT2j+1(t) = 2t2m+1T2j(t)− t2mT2j−1(t)

t2m+1T2j(t) = 2t2m+2T2j−1(t)− t2m+1T2j−2(t)
(3.12)

Recursion for Cosine terms:

Let us define: γmj (X) = 1
N(X)

∑
x∈X cosm(x) Tj

(
cos(x)

)
for m, j ∈ N. Observe

that, by assumption of Chebyshev polynomials, T0

(
cos(x)

)
= 1 and T1(cos(x)) =

cos(x), then, we have, γm0 (X) = 1
N(X)

∑
x∈X cosm(x) = C̄m(X) and γm−1

1 (X) =

1
N(X)

∑
x∈X cosm(x) = C̄m(X). From the output of the D&R step, we already have:

γ2j−1
0 (X) and γ2j−2

1 (X) available to us for j = 1, · · · , J0. We collect C̄1(X) = γ0
1(X)

and write these statistics as 2 rows of the matrix:

23

Γ
(A)
0 (X) =

γ1
0(X) γ3

0(X) · · · γ2J−1
0 (X)

γ0
1(X) γ2

1(X) · · · γ2J−2
1 (X)

Now in 3.12, if we replace t with cos(x) and take a sum over all x, we get:

γ2m
2j+1(X) = 2γ2m+1

2j (X)− γ2m
2j−1(X)

γ2m+1
2j (X) = 2γ2m+2

2j−1 (X)− γ2m+1
2j−2 (X)

(3.13)

these two equations form the basic building relations for an recursive process that

we are going to call EP-FQCh type A recursion.

In the first step of EP-FQCh type A recursion, we compute γ1
2(X), γ3

2(X), · · · ,
γ2J−3

2 (X) in terms of γ2
1(X), γ4

1(X), · · · , γ2J−2
1 (X) and γ1

0(X), γ3
0(X), · · · , γ2J−3

0 (X),

using the 2nd equation of 3.13. In terms of the matrix Γ
(A)
0 (X), we shift each element

in 2nd row to left and apply the equation to columns 2, · · · , J0 to get new set of

statistics as follows:

γ1

0(X) γ3
0(X) · · · γ2J−3

0 (X) γ2J−1
0 (X)

γ0
1(X) γ2

1(X) γ4
1(X) · · · γ2J−2

1 (X)

↓ ↓ · · · ↓
γ1

2(X) γ3
2(X) · · · γ2J−3

2 (X)

Then, we discard the first row of Γ

(A)
0 (X) and add these new set of statistics as

the new row to get the matrix:

Γ
(A)
1 (X) =

γ0
1(X) γ2

1(X) · · · γ2J−4
1 (X) γ2J−2

1 (X)

γ1
2(X) γ3

2(X) · · · γ2J−3
2 (X)

First, observe that the 2nd row of Γ

(A)
1 (X) is incomplete as its J0th element

is missing. In the second step of EP-FQCh type A recursion, we compute γ0
3(X),

γ2
3(X), · · · , γ2J−4

3 (X) in terms of γ1
2(X), γ3

2(X), · · · , γ2J−3
2 (X) and γ0

1(X), γ2
1(X), · · · ,

γ2J−4
1 (X), using the 1st equation of 3.13. In terms of the matrix Γ

(A)
1 (X), we apply

the equation to columns 1, · · · , J − 1 to get new set of statistics as follows:

24

γ0

1(X) γ2
1(X) · · · γ2J−4

1 (X) γ2J−2
1 (X)

γ1
2(X) γ3

2(X) · · · γ2J−3
2 (X)

↓ ↓ · · · ↓
γ0

3(X) γ2
3(X) · · · γ2J−4

3 (X)

After second step we collect C̄3(X) = γ0

3(X). We again discard the first row of

Γ
(A)
1 (X) and add these new elements as the new row to get the matrix:

Γ
(A)
2 (X) =

γ1
2(X) γ3

2(X) · · · γ2J−3
2 (X)

γ0
3(X) γ2

3(X) · · · γ2J−4
3 (X)

These two steps make one recursion of EP-FQCh type A recursion.We now de-

scribe a general recursion. At the end of the j − 1th recursion we have the matrix:

Γ
(A)
2j−2(X) =

γ1
2j−2(X) γ3

2j−2(X) · · · γ2J−2j+1
2j−2 (X)

γ0
2j−1(X) γ2

2j−1(X) · · · γ2J−2j
2j−1 (X)

In the first step of a general jth recursion, we compute γ1

2j(X), γ3
2j(X), · · · ,

γ2J−2j−3
2j (X) in terms of γ0

2j−1(X), γ2
2j−1(X), · · · , γ2J−2j

2j−1 (X) and γ1
2j−2(X), γ3

2j−2(X),

· · · , γ2J−2j−1
2j−2 (X), using the 2nd equation of 3.13 as follows:

γ1

2j−2(X) γ3
2j−2(X) · · · γ2J−2j−1

2j−2 (X) γ2J−2j+1
2j−2 (X)

γ0
2j−1(X) γ2

2j−1(X) γ4
2j−1(X) · · · γ2J−2j

2j−1 (X)

↓ ↓ · · · ↓
γ1

2j(X) γ3
2j(X) · · · γ2J−2j−1

2j (X)

Again, we discard the first row of Γ

(A)
2j (X) and add these new elements as the new

row to get the matrix:

Γ
(A)
2j−1(X) =

γ0
2j−1(X) γ2

2j−1(X) · · · γ2J−2j−2
2j−1 (X) γ2J−2j

2j−1 (X)

γ1
2j(X) γ3

2j(X) · · · γ2J−2j−1
2j (X)

25

And like before, in the second step of jth recursion, we compute γ0
2j+1(X), γ2

2j+1(X),

· · · , γ2J−2j−2
2j+1 (X) in terms of γ1

2j(X), γ3
2j(X), · · · , γ2J−2j−1

2j (X) and γ0
2j−1(X), γ2

2j−1(X),

· · · , γ2J−2j−2
2j−1 (X), using the 1st equation of 3.13 as follows:

γ0

2j−1(X) γ2
2j−1(X) · · · γ2J−2j−2

2j−1 (X) γ2J−2j
2j−1 (X)

γ1
2j(X) γ3

2j(X) · · · γ2J−2j−1
2j (X)

↓ ↓ · · · ↓
γ0

2j+1(X) γ2
2j+1(X) · · · γ2J−2j−2

2j+1 (X)

After second step we collect C̄2j+1(X) = γ0

2j+1(X). We again discard the first row

of Γ
(A)
2j−1(X) and add these new elements as the new row to get the matrix:

Γ
(A)
2j (X) =

 γ1
2j(X) γ3

2j(X) · · · γ2J−2j−1
2j (X)

γ0
2j+1(X) γ2

2j+1(X) · · · γ2J−2j−2
2j+1 (X)

If we repeat this recursion J − 1 times we will get C̄1(X), C̄3(X), · · · , C̄2J−1(X)

at the end. See Appendix B.6 for an algorithmic flow-chart for EP-FQCh type A

recursion.

Recursion for Sine terms:

Similarly, for Sine terms, we can also define: δmj (X) = 1
N(X)

∑
x∈X sinm(x)Tj

(
sin(x)

)
for m, j ∈ N. Observe that, unlike the Cosine terms, we don’t directly get δ3

0(X),

· · · , δ2J−1
0 (X) and δ2

1(X), δ4
1(X), · · · , δ2J−2

1 (X) from the output of D&R step.

Now recall equation 3.10, if we take a summation over all x ∈ X, we get:

δ2j+1
0 (X) = δ2j

1 (X) = S̄1(X)−
k∑
k=1

SC
2l

(X). (3.14)

Using equation 3.14, we can compute δ0
3(X), · · · , δ0

2J−1(X) and δ1
2(X), · · · , δ1

2J−2(X)

by a series of recursive steps.

First, note that for the Sine terms also, we can have recursive relations like 3.13:

26

δ2m
2j+1(X) = 2δ2m+1

2j (X)− δ2m
2j−1(X)

δ2m+1
2j (X) = 2δ2m+2

2j−1 (X)− δ2m+1
2j−2 (X)

(3.15)

So, if we start with the matrix

S̄0(X) =

δ1
0(X) δ3

0(X) · · · δ2J−1
0 (X)

δ0
1(X) δ2

1(X) · · · δ2J−2
1 (X)

and apply EP-FQCh type A recursion J − 1 times, at the end, we will get the set of

statistics δ0
1(X), δ0

3(X), · · · , δ0
2J−1(X).

A general jth recursive step would look like:

First step:

δ1

2j−2(X) δ3
2j−2(X) · · · δ2J−2j−1

2j−2 (X) δ2J−2j+1
2j−2 (X)

δ0
2j−1(X) δ2

2j−1(X) δ4
2j−1(X) · · · δ2J−2j

2j−1 (X)

↓ ↓ · · · ↓
δ1

2j(X) δ3
2j(X) · · · δ2J−2j−1

2j (X)

Second Step:

δ0

2j−1(X) δ2
2j−1(X) · · · δ2J−2j−2

2j−1 (X) δ2J−2j
2j−1 (X)

δ1
2j(X) δ3

2j(X) · · · δ2J−2j−1
2j (X)

↓ ↓ · · · ↓
δ0

2j+1(X) δ2
2j+1(X) · · · δ2J−2j−2

2j+1 (X)

at the end of second step of the jth iteration, we collect S̄2j+1(X) = (−1)jδ0

2j+1(X).

So, after J − 1 iterations we will get S̄1(X), S̄3(X), · · · , S̄2J−1(X).

After the D&R step, for each quantile p we maximize the optimization criteria

in equation 3.7 to get corresponding Q̂J0
P (X). For an algorithmic flow chart, see

Appendix B.3.

27

Limitations:

EP-FQCh algorithm should not be used to calculate quantiles for large data,

because it is extremely inaccurate, and, in this section, we will explain why. A

processor is limited in precision, whenever try to compute Cosine of any x using a

programming language, we round it to certain decimal places. So, for most values of

x, instead of cos(x), we actually get a round-off value cos(x) + ε
(

cos(x)
)
. When we

compute C̄2j−1(X) by D&R, we make an error(say ε
(
C̄2j−1(X)

)
) to get C̄2j−1(X) +

ε
(
C̄2j−1(X)

)
as the D&R output.

Chebyshev’s polynomials have the explicit expression for odd index 2j − 1

T2j−1(x) =
2j − 1

2

j−1∑
j′=0

(−1)j
′ (2j − j′ − 2)!

(j′)!(2j − 2j′ − 1)!
(2x)2j−2j′−1 (3.16)

If we replace x with cos(x), and then take a sum over x ∈ X, we get

C̄2j−1(X) =

j−1∑
j′=0

(
(−1)j

′
22j−2j′−2 (2j − 1)(2j − j′ − 2)!

(j′)!(2j − 2j′ − 1)!

)
C̄2j−2j′−1(X) (3.17)

We use EP-FQCh type A iteration instead of directly using 3.17 to get C̄2j−1(X),

because transformation is fast, as it requires less operations. But from this expression

we realize that, we make error ε
(
C̄2j−1(X)

)
while computing C̄2j−1(X) (in EP-FQCh

we don’t compute C̄2j−1(X) directly), here

ε
(
C̄2j−1(X)

)
=

j−1∑
j′=0

(
(−1)j

′
22j−2j′−2 (2j − 1)(2j − j′ − 2)!

(j′)!(2j − 2j′ − 1)!

)
ε
(
C̄2j−2j′−1(X)

)
(3.18)

Even though ε
(
C̄2j−1(X)

)
is small for each j, the weighted error ε

(
C̄2j−1(X)

)
is

not small, in fact it grows exponentially with j. The error ε
(
S̄2j−1(X)

)
for Sine term

S̄2j−1(X) also increases exponentially.

Here is plot to visualize how the average error increases as we increase the index

j in EP-FQCh1 method for the test-data we introduced in section 3.2.

28

Accuracy:EP−FQCh1

index j

lo
g1

0(
A

ve
ra

ge
 P

re
ci

si
on

 E
rr

or
)

−15

−10

−5

0

5

5 10 15 20 25

Cosine Terms

5 10 15 20 25

Sine Terms

Figure 3.1. Accuracy of Cosine/Sine statistics: EP-FQCh1

The Average Precision Error is ε
(
C̄2j−1(X)

)
and ε

(
S̄2j−1(X)

)
for jth Cosine and

Sine term respectively. From this plots but we can say that for this X, due to

exponential increasing nature of the error terms, after 15 terms error becomes too

large and it does not makes sense to perform EP-FQCh1 method for good accuracy.

As a rule of thumb we observed that, log(ε
(
C̄2j−1(X)

)
) ∝ j. With only 15 terms

29

we do not get convergence for Fourier series and the approximate quantiles becomes

numerically inaccurate.

3.5 2-way Fourier-Chebyshev method: EP-FQCh2 algorithm

Now, we know that regular EP-FQCh algorithm is not so accurate, suppose instead

of just one Cosine operation for each observation x, we allow two Cosine operations

for each x. Remember, our goal is to compute C̄1(X), C̄3(X), · · · , C̄2J0−1(X) and

S̄1(X), S̄3(X), · · · , S̄2J0−1(X) fast and accurately for a large number J0. Let us first

fix integers J and K, such that J0 = J ×K.

In this section, we will introduce EP-FQCh2 algorithm which is a 2-way modi-

fication of EP-FQCh algorithm. We will see, if we allow two Cosine operations for

each observation x, then, we can perform fast and accurate D&R computation of all

the 2JK Fourier coefficients. First, we define 2-way generalizations of the statistics

introduced in last section. For {j, k} ∈ N2, define:

C̄j,k(X) =
1

N(X)

∑
x∈X

(
cosj(x). cosk(2Jx)

)
SC

j,k
(X) =

1

N(X)

∑
x∈X

(
sin(x). cosj(x). cosk(2Jx)

)
S̄j,k(X) =

1

N(X)

∑
x∈X

(
sinj(x). cosk(2Jx)

) (3.19)

D&R step:

In Ep-FQCh2 algorithm, we compute two J × K matrices of SEP statistics:

C̄J,K(X) = {{C̄2j−1,k−1(X)}} and SC
J,K

(X) = {{SC2j−2,k−1
(X)}} in a single D&R

step. We will show in this section, that, we can get C̄1(X),C̄3(X),· · · ,C̄2J0−1(X) and

S̄1(X),S̄3(X),· · · ,S̄2J0−1(X) from C̄J,K(X) and SCJ,K(X) respectively, by series of

linear transformations.

30

This D&R step is still pretty fast, because for each observation x, we are comput-

ing two Cosines: cos(x) and cos(2Jx). We get sin(x) =
√

1− cos2(x) for x ∈ (−1, 1).

Then we multiply both cos(x) and sin(x) in a for-loop by the multiplier cos2(x), J−1

times, and then in a second for-loop we multiply all these 2J numbers by cos(2Jx),

K − 1 times to get summands for all the SEP statistics. Again, a for-loop multipli-

cation with constant multiplier is extremely fast. See the R function map.EP-FQ2()

in Appendix C for a in-memory implementation of EP-FQCh2 algorithm.

This in-memory computation is still fast as we can see from the following run-time

comparisons:

> J = 8
> K = 16
> s t a r t . time <− proc . time ()
> l s f 2 <− map .EP.FQCh2(X)
> end . time <− proc . time ()
> end . time−s t a r t . time
user system e lapsed
2 .488 0 .044 2 .534
>

1

We will explain later the choice of parameters J = 8, K = 16 is actually good

choice for accuracy. We can see that in-memory run-time is good and beats binning.

For this choice of J and K, we compute 8× 16 = 128 Cosine and Sine terms.

Transformations for Cosine terms:

We can get the statistics C̄1(X), C̄3(X), · · · , C̄2J0−1(X) from the matrix C̄J,K(X)

by three consecutive linear transformations.

We define γm,nj,k (X) = 1
N(X)

∑
x∈X

(
cosm(x). Tj

(
cos(x)

)
. cosn(2Jx). Tl(cos(2Jx))

)
,

and, to make everything consistent, let ΓJ,K
0,0 (X) = C̄J,K(X) = {{C̄2j−1,k−1(X)}}.

Again remember, by definition, T0

(
cos(x)

)
= 1 and T1

(
cos(x)

)
= cos(x), and if

we keep k fixed, then γ2j−1,k−1
0,0 (X) = 1

N(X)

∑
x∈X

(
cos2j−1(x). 1. cosk−1(2Jx). 1

)
=

C̄2j−1,k−1(X) and γ2j−2,k−1
1,0 (X) = 1

N(X)

∑
x∈X

(
cos2j−2(x). cos(x). cosk−1(2Jx). 1

)
=

31

C̄2j−1,k−1(X). So, from the output of the D&R step, for each k = 1, 2, · · · , K, we

have the statistics γ2j−1,k−1
0,0 (X) and γ2j−2,k−1

1,0 (X) available to us for j = 1, · · · , J .

Transformation 1: We run an iterative transformation on the D&R output, over

the first index j, keeping the second index k fixed , for k = 1, · · · , K. From the

D&R output, we collect γ0,0
1,k−1(X) in transformation output and write all statistics in

a 2-row matrix:

Γ
(A)
0,k (X) =

γ1,0
0,k−1(X) γ3,0

0,k−1(X) · · · γ2J−1,0
0,k−1 (X)

γ0,0
1,k−1(X) γ2,0

1,k−1(X) · · · γ2J−2,0
1,k−1 (X)

From Chebyshev’s recursion Tj+1(t) = 2tTj(t)−Tj−1(t), we can derive the following

recursive relations involving the pair of real numbers t and s,

t2mT2j+1(t)sk−1 = 2t2m+1T2j(t)s
k−1 − t2mT2j−1(t)sk−1

t2m+1T2j(t)s
k−1 = 2t2m+2T2j−1(t)sk−1 − t2m+1T2j−2(t)sk−1

(3.20)

In equation 3.18, we replace t with cos(x) and s with cos(2Jx), then take a sum

over all x ∈ X, we get:

γ2m,k
2j+1,0(X) = 2γ2m+1,k

2j,0 (X)− γ2m,k
2j−1,0(X)

γ2m+1,k
2j,0 (X) = 2γ2m+2,k

2j−1,0 (X)− γ2m+1,k
2j−2,0 (X)

(3.21)

If we examine the terms we can see that, the statistic γm,kj,0 (X) is a weighted

version of the statistic γmj (X) introduced in section 3.4, as for each term x ∈ X, the

sum γmj (X) has a corresponding summand cosm(x)Tj
(

cos(x)
)
. This summand gets

weighted by a factor cosk(2Jx) in the sum γm,kj,0 (X). Observe this weight does not

depend on m or j. Also, for fixed k, equation 3.21 is a weighted version of equation

3.13.

Remember EP-FQCh type A iteration introduced in section 3.4: we apply EP-

FQCh type A iteration to the set of statistics γ1
0(X), γ3

0(X),· · · ,γ2J0−1
0 (X), we get

32

the set of statistics γ0
1(X),γ0

3(X),· · · ,γ0
2J0−1(X) as output. Then for a fixed k, we

can expect that, if we apply EP-FQCh type A recursion to the set of statistics

γ1,k
0,0 (X), γ3,k

0,0 (X), · · · ,γ2J0−1,k
0,0 (X) (these are weighted versions of the set of statis-

tics γ1
0(X), γ3

0(X), · · · , γ2J0−1
0 (X)), we will get the set of statistics γ0,k

1,0 (X), γ0,k
3,0 (X),

· · · , γ0,k
2J0−1,0(X) as output.

For a fixed k, a general jth iteration step consists of 2 steps:

First step:

γ1,k

2j−2,0(X) γ3,k
2j−2,0(X) · · · γ2J−2j−1,k

2j−2,0 (X) γ2J−2j+1,k
2j−2,0 (X)

γ0
2j−1,0(X) γ2,k

2j−1,0(X) γ4,k
2j−1,0(X) · · · γ2J−2j,k

2j−1,0 (X)

↓ ↓ · · · ↓
γ1,k

2j,0(X) γ3,k
2j,0(X) · · · γ2J−2j−1,k

2j,0 (X)

Second step:

γ0,k

2j−1,0(X) γ2,k
2j−1,0(X) · · · γ2J−2j−2,k

2j−1,0 (X) γ2J−2j,k
2j−1,0 (X)

γ1,k
2j,0(X) γ3,k

2j,0(X) · · · γ2J−2j−1,k
2j,0 (X)

↓ ↓ · · · ↓
γ0,k

2j+1,0(X) γ2,k
2j+1,0(X) · · · γ2J−2j−2,k

2j+1,0 (X)

After jth iteration, we collect γ0,k−1

2j+1,0(X) in transformation output and get the

matrix

Γ
(A)
2j,k(X) =

γ1,k−1
2j,0 (X) γ3,k−1

2j,0 (X) · · · γ2J−2j−1,k−1
2j,0 (X)

γ0,k−1
2j+1,0(X) γ2,k−1

2j+1,0(X) · · · γ2J−2j−2,k−1
2j+1,0 (X)

for next iteration.

After J − 1 iteration we get γ0,k−1
1,0 (X), γ0,k−1

3,0 (X), · · · , γ0,k−1
2J−1,0(X) in transforma-

tion output. If we apply EP-FQCh type A iteration along all columns of the ma-

trix ΓJ,K
0,0 (X) (i.e. for k = 1, · · · , K), we will get the J × K matrix Γ0,K

J,0 (X) =

{{γ0,k−1
2j−1,0(X)}} as output.

33

Transformation 2: Now, we run another iterative transformation on the out-

put of transformation 1, but this time over the second index k, while we keep the

first index j fixed , for j = 1, · · · , J . Again note that, T0

(
cos(2Jx)

)
= 1 and

T1

(
cos(2Jx)

)
= cos(2Jx). If we keep j fixed, then for k > 1, γ0,k−1

2j−1,0(X) = 1
N(X)

∑
x∈X(

1. T2j−1

(
cos(x)

)
cosk−1(2Jx). 1

)
= 1

N(X)

∑
x∈X

(
1. T2j−1

(
cos(x)

)
cosk−2(2Jx).

cos(2Jx)
)

= γ0,k−2
2j−1,1(X). So, from the output of transformation 1, we have the sets

γ0,0
2j−1,0(X), · · · , γ0,K−1

2j−1,0(X) and γ0,1
2j−1,0(X), · · · , γ0,K−2

2j−1,0(X) for j = 1, · · · , J and for

each j, we write these two sets as a 2-row statistics matrix:

Γ
(B)
j,0 (X) =

γ0,0
2j−1,0(X) · · · γ0,K−2

2j−1,0(X) γ0,K−1
2j−1,0(X)

γ0,0
2j−1,1(X) · · · γ0,K−2

2j−1,1(X)

For this j, we collect γ0,0

2j−1,0(X) and γ0,0
2j−1,1(X) in the transformation output. From

Chebyshev’s recursive relation, we can derive another iterative relation in t and s if

we allow s to be the recursion variable:

T2j−1(t)snTk(s) = 2T2j−1(t)sn+1Tk−1(s)− T2j−1(t)slTk−2(s) (3.22)

Now, in equation 3.22, again we replace t with cos(x) and s with cos(2Jx) and

take a sum over all x ∈ X to get:

γ0,n
2j−1,k(X) = 2γ0,n+1

2j−1,k−1(X)− γ0,n
2j−1,k−2(X). (3.23)

This equation gives us another iterative process that we are going to call EP-

FQCh type B iteration. For a fixed j, in the first step of EP-FQCh type B iteration,

we compute γ0,0
2j−1,2(X) , γ0,1

2j−1,2(X), · · · , γ0,K−3
2j−1,2(X) from γ0,1

2j−1,1(X), γ0,2
2j−1,1(X), · · · ,

γ0,K−3
2j−1,1(X) and γ0,0

2j−1,0(X), γ0,1
2j−1,0(X), · · · ,γ0,K−2

2j−1,0(X), using the relation in 3.23. In

the matrix Γ
(B)
j,0 (X), we shift each element in the 2nd row to left and then apply the

relation to columns 2, · · · , K − 2 to get a new set of statistics as:

34

γ0,0

2j−1,0(X) γ0,1
2j−1,0(X) · · · γ0,K−3

2j−1,0(X) γ0,K−2
2j−1,0(X) γ0,K−1

2j−1,0(X)

γ0,0
2j−1,1(X) γ0,1

2j−1,1(X) γ0,2
2j−1,1(X) · · · γ0,K−2

2j−1,1(X)

↓ ↓ · · · ↓
γ0,0

2j−1,2(X) γ0,1
2j−1,2(X) · · · γ0,K−3

2j−1,2(X)

We collect γ0,0

2j−1,2(X) in transformation output, then, we discard the first row of

Γ
(B)
j,0 (X) and add these new statistics in a new row to get the statistics matrix

Γ
(B)
j,1 (X) =

γ0,0
2j−1,1(X) · · · γ0,K−3

2j−1,1(X) γ0,K−2
2j−1,1(X)

γ0,0
2j−1,2(X) · · · γ0,K−2

2j−1,2(X)

For this fixed j, we start the kth step of the iteration with 2-row statistics matrix:

Γ
(B)
j,k−1(X) =

γ0,0
2j−1,k−1(X) · · · γ0,K−k−1

2j−1,k−1(X) γ0,K−k
2j−1,k−1(X)

γ0,0
2j−1,k(X) · · · γ0,K−k−1

2j−1,k (X)

In kth step, we compute γ0,0

2j−1,k+1(X), γ0,1
2j−1,k+1(X), · · · , γ0,K−k−2

2j−1,k+1(X) from γ0,1
2j−1,k(X),

γ0,2
2j−1,k(X), · · · , γ0,K−k−1

2j−1,k (X) and γ0,0
2j−1,k−1(X), γ0,1

2j−1,k−1(X), · · · , γ0,K−k−2
2j−1,k−1(X), using

the relation in 3.23. Again, for the matrix Γ
(B)
j,k−1(X), we shift each element in the

2nd row to left and then apply the relation to columns 2, · · · , K − k − 2 to get new

set of statistics:

γ0,0

2j−1,k−1(X) γ0,1
2j−1,k−1(X) · · · γ0,K−k−2

2j−1,k−1(X) γ0,K−k−1
2j−1,k−1(X) γ0,K−k

2j−1,k−1(X)

γ0,0
2j−1,k(X) γ0,1

2j−1,k(X) γ0,2
2j−1,k(X) · · · γ0,K−k−1

2j−1,k (X)

↓ ↓ · · · ↓
γ0,0

2j−1,k+1(X) γ0,1
2j−1,k+1(X) · · · γ0,K−k−2

2j−1,k+1(X)

After k iteration, we collect γ0,0

2j−1,k+1(X) in transformation output, then, again,

we discard the first row of Γ
(B)
j,k−1(X) and add these in new row to get the statistics

matrix

Γ
(B)
j,k (X) =

 γ0,0
2j−1,k(X) · · · γ0,K−k−2

2j−1,k (X) γ0,K−k−1
2j−1,k (X)

γ0,0
2j−1,k+1(X) · · · γ0,K−k−2

2j−1,k+1(X)

35

We perform K − 2 iterations and after these iterations, we will have γ0,0
2j−1,0(X),

γ0,0
2j−1,1(X), · · · , γ0,0

2j−1,K−1(X). See Appendix B.7 for an algorithmic flow -chart of

EP-FQCh type B iteration. We apply EP-FQCh type B iteration along the rows of

the matrix Γ0,K
J,0 (X) (i.e. for j = 1, · · · , J) and we get the J ×K matrix Γ0,0

J,K(X) =

{{γ0,0
2j−1,k−1(X)}}.

Transformation 3: Observe that: γ0,0
2j−1,k−1(X) = 1

N(X)

∑
x∈X

(
T2j−1

(
cos(x)

)
Tk−1

(
cos(2Jx)

))
= 1

N(X)

∑
x∈X

(
cos
(
(2j − 1)x

)
cos
(
2(k − 1)Jx

))
. For simplic-

ity, let us introduce the statistics: C̄2j−1,k−1(X) = 1
N(X)

∑
x∈X

(
cos
(
(2j − 1)x

)
cos
(
2(k − 1)Jx

))
. Also, we denote the output of transformation 2 as J ×K matrix

C̄J,K(X) = {{C̄2j−1,k−1(X)}} (= Γ0,0
J,K(X)).

Introduce the vector valued statistics: C̄.,k(X) =
(
C̄1,k(X), C̄3,k(X), · · · , C̄2J−1,k(X)

)t
.

So the columns of Γ0,0
J,K(X) are C̄.,0(X), C̄.,1(X), · · · , C̄.,(K−1)(X). Also for any two

integers j1 < j2, introduce the statistics: C̄j1
j2

(X) =
(
C̄2j1−1(X), C̄2(j1+1)−1(X), · · · ,

C̄2j2−1(X)
)t

. First realize, C̄.,0(X) = C̄1
J(X). Let Rev(v) is the vector whose elements

are elements of the vector v in reverse order.

Now remember sum of Cosine formula, for k > 0 and 1 ≤ j ≤ J , we have:

cos
(
(2kJ + 2j − 1)x

)
+ cos

(
(2kJ − 2j + 1)x

)
= 2 cos(2kJx) cos

(
(2j − 1)x

)
(3.24)

If we take sum over all x ∈ X, we have:

C̄2kJ+2j−1(X) + C̄2kJ−2j+1(X) = 2C̄2j−1,k(X) (3.25)

Equivalently, we have:

C̄2kJ+2j−1(X) = 2C̄2j−1,k(X)− C̄2(k−1)J+2(J+1−j)−1(X) (3.26)

For a given k, this relation holds for j = 1, · · · , J , and in terms of vectors:

C̄kJ+1
(k+1)J(X) = 2C̄.,k(X)−Rev

(
C̄

(k−1)J+1
kJ (X)

)
(3.27)

Using the relation in 3.27 we develop an iterative transformation: EP-FQCh type

C iteration to get all the Cosine terms. We have the statistics matrix Γ0,0
J,K(X), we

36

start with the first column C̄.,0(X) = C̄1
J(X) and using 3.27 we iteratively compute

C̄kJ+1
(k+1)J(X) for k = 1, · · · , K − 1. The final output is the vector valued statistics:

C̄1
JK(X) =

(
C̄1
J(X), C̄J+1

2J (X), · · · , C̄
(K−1)J+1
KJ (X)

)
=
(
C̄1(X), · · · , C̄2J0−1(X)

)
, con-

sisting of all Cosine terms. See Appendix B.8 for an algorithmic flow-chart for EP-

FQCh type C iteration.

Transformations for Sine terms:

Similarly, we can get the set of statistics S̄1(X), S̄3(X), · · · , S̄2J0−1(X) from the

statistics matrix SC
J,K

(X) by four consecutive similar linear transformations. We

perform an initial transformation to get the statistics matrix S̄J,K(X) from SC
J,K

(X).

Transformation 1: If we fix k, and multiply both sides of equation 3.10 by cos(2Jx)k−1

we get:

sin2j−1(x) cos(2Jx)k−1 = sin(x) cos(2Jx)k−1 −
j−1∑
j′=1

sin(x) cos2j′(x) cos(2Jx)k−1

(3.28)

We take a sum over all x ∈ X to get:

S̄2j−1,k−1(X) = SC
0,k−1

(X)−
j∑

j′=1

SC
2j′,k−1

(X) (3.29)

We use the relation in 3.29, for each pair {j, k}; j = 1, · · · , J ; k = 1, · · · , K to get

the J×K statistics matrix S̄J,K(X) = {{S̄2j−1,k−1(X)}}. We define for {m,n, j, k} ⊂
N, the statistic δm,nj,k (X) = 1

N(X)

∑
x∈X

(
sinm(x). Tj

(
sin(x)

)
. cosn(2Jx). Tl

(
cos(2Jx)

))
,

and again, to keep everything consistent, define: ∆J,K
0,0 (X) = S̄J,K(X) = {{S̄2j−1,k−1(X)}}.

Transformation 2: This step is very similar to Transformation 1 for Cosine statis-

tics. We apply EP-FQCh type A iteration along the columns of the matrix ∆J,K
0,0 (X),

and end up with J ×K statistics matrix ∆0,K
J,0 (X) = {{δ0,k−1

2j−1,0(X)}}.

37

Transformation 3: This step is also similar to Transformation 2 for Cosine statis-

tics. We apply EP-FQCh type B iteration along the rows of the matrix ∆0,K
J,0 (X) to

get the J ×K statistics matrix ∆0,0
J,K(X) = {{δ0,0

2j−1,k−1(X)}}.

Transformation 4: Now observe that: δ0,0
2j−1,k−1(X) = 1

N(X)

∑
x∈X

(
T2j−1

(
sin(x)

)
Tk−1

(
cos(2Jx)

))
= 1

N(X)

∑
x∈X (−1)j−1

(
sin
(
(2j−1)x

)
cos
(
2(k−1)Jx

))
. For Sine

terms, if we introduce the statistics: S̄2j−1,k−1(X) = 1
N(X)

∑
x∈X

(
sin
(
(2j − 1)x

)
cos
(
2(k − 1)Jx

))
, then, for the statistics matrix ∆0,0

J,K(X), we have ∆0,0
J,K(X) =

{{δ0,0
2j−1,k−1(X)}} = {{(−1)j−1 S̄2j−1,k−1(X)}}. We multiply, the jth row of ∆0,0

J,K(X)

by (−1)j−1 for j = 1, · · · , J , to get the matrix S̄J,K(X) = {{S̄2j−1,k−1(X)}}. Also, in-

troduce vector statistics: S̄.,k(X) =
(
S̄1,k(X), S̄3,k(X), · · · , S̄2J−1,k(X)

)t
and S̄j1j2(X) =(

S̄2j1−1(X), S̄2(j1+1)−1(X), · · · , S̄2j2−1(X)
)t

for integers j1 < j2. Again, S̄.,0(X) =

S̄1
J(X).

From sum of Sines formula, for k > 0 and 1 ≤ j ≤ J , we have:

sin
(
(2kJ + 2j − 1)x

)
− sin

(
(2kJ − 2j + 1)x

)
= 2 sin

(
(2j − 1)x

)
cos(2kJx) (3.30)

Taking sum over x ∈ X, we have:

S̄2kJ+2j−1(X)− S̄2kJ−2j+1(X) = 2S̄2j−1,k(X) (3.31)

Equivalently, we have:

S̄2kJ+2j−1(X) = 2S̄2j−1,k(X) + S̄2(k−1)J+2(J+1−j)−1(X) (3.32)

Given k, this relation holds for j = 1, · · · , J , and in terms of vectors:

S̄kJ+1
(k+1)J(X) = 2S̄.,k(X)−Rev

(
S̄

(k−1)J+1
kJ (X)

)
(3.33)

So, using the relation in 3.33 we develop EP-FQCh type D iteration to get all

the Sine terms. We have the statistics matrix ∆0,0
J,K(X), we start with the column

S̄.,0(X) = S̄1
J(X) and using3.33 we iteratively compute S̄kJ+1

(k+1)J(X) for k = 1, · · · , K−
1. The final output is the vector valued statistics: S̄1

JK(X) =
(
S̄1
J(X), S̄J+1

2J (X), · · · ,

38

S̄
(K−1)J+1
KJ (X)

)
=
(
S̄1(X), · · · , S̄2J0−1(X)

)
, having all Sine statistics as its elements.

See Appendix B.9 for an algorithmic flow-chart for EP-FQCh Type D iteration.

After the D&R step, for each quantile p we maximize the optimization criteria

in equation 3.7 to get corresponding Q̂J0
P (X). See Appendix B.4 for an algorithmic

flow-chart for EP-FQCh2 algorithm.

Now let us see how accurate the 2-fold Fourier method can be. We get accurate

quantiles if the number of terms increase, so if J and K both increases, then we would

expect higher accuracy. However, remember from the discussion in last section, that

if J and K increases, then even if we compute the statistics C̄j,k(X) accurately by

D&R, there will be small errors. which get weighted by exponentially large factors,

when we try to compute the statistics C̄j,k(X) by linear transformations.

As a rule of thumb we observed that, maxj,k log(ε
(
C̄2kJ2j−1(X)

)
) ∝ 2J+K. With

the constraint that 2J + K cannot be large, J ×K takes the maximum value when

2J = K, and JK should be larger for higher accuracy. So for optimum choice we

should have 2J = K.

Here is the plot to visualize how the average error increases as we increase gen-

eral the index for 2-fold Fourier method for the same data mentioned as the global

variables.

39

Accuracy:EP−FQCh2

index j

lo
g1

0(
A

ve
ra

ge
 P

re
ci

si
on

 E
rr

or
)

−16

−14

−12

−10

−8

0 10 20 30 40 50

Cosine Terms

0 10 20 30 40 50

Sine Terms

Figure 3.2. Accuracy of Cosine/Sine statistics: EP-FQCh2

We can see some improvement from the output for EP-FQCh1, though it is difficult

to quantify the change just by looking at this plot. Remember that EP-FQCh2 beats

Binning in in-memory run-time.

40

3.6 General p-way Fourier-Chebyshev method: EP-FQChp algorithm

2-way Fourier-Chebyshev method doesn’t beat Binning in both accuracy and run-

time. (we are skipping results, the reader can verify it). However, the idea of 2-

way Fourier-Chebyshev method, can be further generalized to general p-way Fourier-

Chebyshev method, which beats Binning in both accuracy and run-time. In general

p-way Fourier-Chebyshev method we perform p Cosine operation for each x.

We want to compute J0 Cosine and Sine statistics, first we pick p integers J1, · · · , Jp
such that J0 = J1 × · · · × Jp. Let K1 = 1, K2 = 2J1, K3 = 2J1J2, · · · , Kp =

2J1J2 · · · Jp−1. Also, let j denotes the integer vector (j1, · · · , jp)′ ∈ Np and for this

j, let j−1 denotes the integer vector (j2, · · · , jp)′ ∈ Np−1. We now introduce SEP

statistics:

C̄j(X) =
1

N(X)

∑
x∈X

(p∏
t=1

cosjt(Ktx)
)

SC
j
(X) =

1

N(X)

∑
x∈X

(
sin(x)

p∏
t=1

cosjt(Ktx)
)

S̄j(X) =
1

N(X)

∑
x∈X

(p∏
t=1

sinjt(Ktx)
)

(3.34)

Let J is the vector (J1, · · · , Jp) and the set J is defined as: J =
∏p

t=1{1, · · · , Jt}.
Also let 0 is the vector (0, · · · , 0)(can be of arbitrary length). In the first step of

EP-FQChp algorithm, we compute the p dimensional statistics matrices: C̄J(X) =

{{C̄2j1−1,j2−1,··· ,jp−1(X)}}, j ∈ J for Cosines, and SC
J

(X) = {{SC2j1−2,j2−1,··· ,jp−1
(X)}},

j ∈ J for Sines in a single D&R step, as all of these 2J0 statistics are SEP. This is

still a fast D&R step, for each observation x, we compute p cosine terms cos(K1x)(=

cos(x)), cos(K2x), · · · , cos(Kpx), and again we get sin(x) =
√

1− cos2(x) for x ∈
(−1, 1), then we get summands for all SEP statistics via p for loops, which are fast.

Afterwards, we get the Cosine and Sine statistics from C̄J(X) and SC
J

(X) respec-

tively through two sequence of transformations.

41

Transformations for Cosine terms:

Again, we can get the statistics C̄1(X), C̄3(X), · · · , C̄2J0−1(X) from the p dimen-

sional statistics array C̄J,K(X) by three consecutive linear transformations. Again,

we define γmj (X) = 1
N(X)

∑
x∈X

(∏p
t=1 cosmt(Ktx).Tjt

(
cos(x)

))
for j,m ∈ Np and

for consistency, define: ΓJ
0 (X) = C̄J(X) = {{C̄2j1−1,j2−1,··· ,jp−1(X)}}.

Transformation 1: Now, like 3.21, for fixed j−1 = j2, · · · , jp, we can establish the

iterative relation:

γ
2m1,j−1

2j1+1,0 (X) = 2γ
2m1+1,j−1

2j1,0
(X)− γ2m1,j−1

2j1−1,0 (X)

γ
2m1+1,j−1

2j1,0
(X) = 2γ

2m1+2,j−1

2j1−1,0 (X)− γ2m1+1,j−1

2j1−2,0 (X)
(3.35)

So, if we apply EP-FQCh type A iteration along the first co-ordinate of ΓJ
0 (X),

we will get the p dimensional statistics array Γ
0,J2,··· ,Jp
J1,0,··· ,0 (X) = {{γ0,j2−1,··· ,jp−1

2j1−1,0,··· ,0 (X)}},
for j ∈ J.

Transformation 2: Now, consider a coordinate t, such that t > 1 and let et is the

unit vector along t. If we keep jt′ constant for t′ 6= t, then similar to equation 3.22,

we have another iterative relation:

γmj+et(X) = 2γm+et
j (X) + γmj−et(X) (3.36)

So, if we let t = 2, and apply EP-FQCh type B recursion along second co-

ordinate of Γ
0,J2,··· ,Jp
J1,0,··· ,0 (X), we get p dimensional statistics array Γ

0,0,J3,··· ,Jp
J1,J2,0,··· ,0(X) =

{{γ0,0,j3−1,··· ,jp−1
2j1−1,j2−1,0,··· ,0(X)}} for j ∈ J. Afterwards, if we let t = 3, and apply EP-FQCh

type B recursion along third co-ordinate of Γ
0,0,J3,··· ,Jp
J1,J2,0,··· ,0(X), we get p dimensional statis-

tics array Γ
0,0,0,J4,··· ,Jp
J1,J2,J3,0,··· ,0(X) = {{γ0,0,0,j4−1,··· ,jp−1

2j1−1,j2−1,j3−1,0,··· ,0(X)}} for j ∈ J. If we repeat this

procedure another p − 3 times for t = 4, · · · , p; we get the p dimensional statistics

array Γ0
J(X) = {{γ0,0,··· ,0

2j1−1,j2−1,··· ,jp−1(X)}}.

42

Transformation 3: Observe that:

γ0,0,··· ,0
2j1−1,j2−1,··· ,jp−1(X) =

1

N(X)

∑
x∈X

T2j1−1

(
cos(x)

) p∏
t=2

Tjp−1

(
cos(2Kpx)

)
=

1

N(X)

∑
x∈X

cos
(
(2j1 − 1)x

) p∏
t=2

cos
(
(jp − 1)Kpx

) (3.37)

For convenience, we call this statistics C̄2j1−1,j2−1,··· ,jp−1(X) and also let C̄J(X) =

{{γ0,0,··· ,0
2j1−1,j2−1,··· ,jp−1(X)}}(= Γ0

J(X). Now, remember the Sum of Cosines identity in

equation 3.24, if we replace J with J1, j with j1 and k with j2, multiply both sides

with
∏p

t=3 cosjt(Ktx), then take a sum over x ∈ X, we get

C̄2J1j2+2j1−1,j3−1,··· ,jp−1(X) + C̄2J1j2−2j1+1,j3−1,··· ,jp−1(X) = 2C̄2j1−1,j2−1,··· ,jp−1(X)

(3.38)

So, we apply EP-FQCh type C recursion along the first two co-ordinates of C̄J(X)

to get p − 1 dimensional array statistic C̄J1J2,J3,··· ,Jp(X) = {{C̄2j1−1,j3−1,··· ,jp−1(X)}},
here (j1, j3, · · · , jp) ∈ {1, · · · , J1J2} ×

∏p
t=3{1, · · · , Jt}. Again, we apply EP-FQCh

type C recursion on the resulting array C̄J1J2,J3,··· ,Jp(X) to get the p−2 dimensional ar-

ray statistic C̄J1J2J3,J4··· ,Jp(X){{C̄2j1−1,j4−1,··· ,jp−1(X)}}, once again, (j1, j4, · · · , jp) ∈
{1, · · · , J1J2J3}×

∏p
t=4{1, · · · , Jt}. If we repeat this process p−3 times, each time ap-

plying EP-FQCh type C recursion on the resulting array, eventually at the end, we will

have the statistics vector C̄(X) = {C̄2j−1(X)}, j = 1, · · · , J0, where, J0 = J1J2 · · · Jp.

Transformations for Sine terms:

We get statistics S̄1(X), S̄3(X), · · · , S̄2J0−1(X) from the p dimensional statistics

array SC
J,K

(X) by four consecutive linear transformations.

Transformation 1: If we replace j = j1 in 3.10, multiply both sides with
∏p

t=2 cosjt(Ktx),

then take a sum over x ∈ X, we get

43

S̄2j1−1,j2−1,··· ,jp−1(X) = SC
0,j2−1,··· ,jp−1

(X)−
j1∑
j′=1

SC
2j′,j2−1,··· ,jp−1

(X) (3.39)

For the Sine terms, in Step 1 we get the statistics S̄2j1−1,j2−1,··· ,jp−1(X) from

D&R output statistic SC
2j1−2,j2−1,··· ,jp−1

(X) for j ∈ J using equation 3.39. We

define δmj (X) = 1
N(X)

∑
x∈X

(
sinm1(x).Tj1

(
sin(x)

)∏p
t=2 cosmt(Ktx).Tjt

(
cos(x)

))
for

j,m ∈ Np and again, for consistency, define: ∆J
0 (X) = S̄J(X) = {{S̄2j1−1,j2−1,··· ,jp−1(X)}}.

Transformation 2: Again, for fixed j−1 = j2, · · · , jp, we have iterative relations:

δ
2m1,j−1

2j1+1,0 (X) = 2δ
2m1+1,j−1

2j1,0
(X)− δ2m1,j−1

2j1−1,0 (X)

δ
2m1+1,j−1

2j1,0
(X) = 2δ

2m1+2,j−1

2j1−1,0 (X)− δ2m1+1,j−1

2j1−2,0 (X)
(3.40)

We apply EP-FQCh type A iteration along the first co-ordinate of ∆J
0 (X) to get

the statistics array ∆
0,J2,··· ,Jp
J1,0,··· ,0 (X) = {{δ0,j2−1,··· ,jp−1

2j1−1,0,··· ,0 (X)}}, for j ∈ J.

Transformation 3: For t > 1 we have iterative relation:

δmj+et(X) = 2δm+et
j (X) + δmj−et(X) (3.41)

We apply EP-FQCh type B recursion along the co-ordinates 2, · · · , p of ∆
0,J2,··· ,Jp
J1,0,··· ,0 (X)

iteratively to get p dimensional statistics array ∆0
J(X) = {{δ0,0,··· ,0

2j1−1,j2−1,··· ,jp−1(X)}}.

Transformation 4: Finally, observe:

δ0,0,··· ,0
2j1−1,j2−1,··· ,jp−1(X) =

1

N(X)

∑
x∈X

T2j1−1

(
sin(x)

) p∏
t=2

Tjp−1

(
cos(2Kpx)

)
=

1

N(X)

∑
x∈X

(−1)j1−1 sin
(
(2j1 − 1)x

) p∏
t=2

cos
(
(jp − 1)Kpx

)
(3.42)

44

So, we multiply δ0,0,··· ,0
2j1−1,j2−1,··· ,jp−1(X) by (−1)j1−1 for j ∈ J to get the p dimensional

array S̄J(X) = {{sin
(
(2j1 − 1)x

)∏p
t=2 cos

(
(jp − 1)Kpx

)
}}. In the Sum of Sines

identity in equation 3.24, we replace J with J1, j with j1 and k with j2, multiply

both sides with
∏p

t=3 cosjt(Ktx), then take a sum over x ∈ X, we get

S̄2J1j2+2j1−1,j3−1,··· ,jp−1(X)− S̄2J1j2−2j1+1,j3−1,··· ,jp−1(X) = 2S̄2j1−1,j2−1,··· ,jp−1(X)

(3.43)

We apply EP-FQCh type D recursion along the first and second co-ordinates of

S̄J(X), to get p−1 dimensional array statistic S̄J1J2,J3,··· ,Jp(X) = {{S̄2j1−1,j3−1,··· ,jp−1(X)}},
here (j1, j3, · · · , jp) ∈ {1, · · · , J1J2} ×

∏p
t=3{1, · · · , Jt}. Repeat this process another

p− 2 times, each time applying EP-FQCh type D recursion on the resulting array to

get final statistics vector S̄(X) = {S̄2j−1(X)}, j = 1, · · · , J0, J0 = J1J2 · · · Jp.
Again for optimum result, we have the choice 2J1 = J2 = · · · = Jp. After the

D&R step, for each quantile p we maximize the optimization criteria in equation 3.7

to get corresponding Q̂J0
P (X). For an algorithmic flow chart, see Appendix B.5.

3.7 Performance Study

3.7.1 Data generation

In this section we are going to demonstrate relative performances of EP-FQChp

and Binning method, when computing a set of sample quantiles for a very large data.

Realize that it is impossible to know exact sample quantiles for any arbitrarily large

simulated data that is bigger than memory and stored in a cluster. We can’t compare

accuracy if we don’t know the exact sample quantiles, both EP-FQChp and Binning

gives approximate sample quantiles as output.

To deal with this problem, we don’t simulate randomly but generate large data

in a way, so that we already know the exact quantile values. We choose an invertible

continuous distribution function F (x) and a very large integer N . Our data X is a

permutation of the numbers F−1(1
N+1

), F−1(2
N+1

), · · · , F−1(N
N+1

). These N numbers

45

are population qunatiles of F , for N equidistant f-values in (0, 1). Then, for a large N ,

the P th sample quantile QP (X) ≈ F−1(P), so, we know the exact sample quantiles

of X. The permutation step is required for fair run-time comparison, as Binning is

much faster for sorted data.

We generate data for 10 distributions, eg Normal(0,1),Uniform(0,1),Chi-Squared(4),

Chi-Squared(8),Chi-Squared(16),Beta(1,4),Beta(1,8),Beta(1,16),t(4) and t(8), to demon-

strate relative performance of EP-FQ and Binning. For each distribution, we simulate

N = 179×173×100, 000(≈ 3 billion) observations. We divide the data into 179 blocks

in HDFS, each block contains 173 subsets, and each subset has 100, 000 observations.

This generation process creates blocks of size 127.3 MB, so we are close to the range

of it Cloudera recommended block size for optimum Hadoop job. The Hadoop cluster

we use has 200 nodes and number of blocks is chosen to be 200 − 1 = 199, so that

each container gets one process to run at a time.

3.7.2 Accuracy comparison

For P th sample quantile QP (X) of data X, let the EP-FQ approximate quantile

is Q̂F
P (X) and the Binning approximate quantile is Q̂B

P (X). Let us define the EP-FQ

error for P th quantile: εFP (X) = log10 |Q̂F
P (X)−QP (X)| and the Binning error for P th

quantile: εBP (X) = log10 |Q̂B
P (X)−QP (X)|. (We consider error in log10-scale because

there errors are extremely small and difficult to compare in original scale.)

We need to compare these two variables. To numerically compare these two

variables we take their difference εBP (X)− εFP (X) and plot against values of P . If it is

positive, then Binning error is bigger and EP-FQ is more accurate. So beside plotting

this difference, we also write down the number of times EP-FQ is more accurate. We

call this number Fourier Success Rate or FSR.

To judge whether statistically the variable εFP (X) is bigger than εBP (X) we look at

their pairwise QQ-plot.

46

Comparison of Accuracy : Normal(0,1)

X = Population Quantiles of Normal(0,1) distribution

p(f−Values)

lo
g

1
0
(|

Q
pB
(X

)−
Q

p
(X

)|
)

−
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−4

−2

0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9329/9999

J = (2,4,4,4)

nBins = 10,000

fSR = 9329/9999

J = (3,6,6)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9329/9999

J = (3,6,6,6)

nBins = 10,000

fSR = 9329/9999

J = (4,8,8)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9329/9999

J = (4,8,8,8)

nBins = 10,000

fSR = 9329/9999

J = (5,10,10)

nBins = 10,000

fSR = 8677/9999

J = (2,4,4,4)

nBins = 20,000

fSR = 8677/9999

J = (3,6,6)

nBins = 20,000

fSR = 8677/9999

J = (3,6,6,6)

nBins = 20,000

fSR = 8677/9999

J = (4,8,8)

nBins = 20,000

fSR = 8677/9999

J = (4,8,8,8)

nBins = 20,000

−4

−2

0

2

4

6
fSR = 8677/9999

J = (5,10,10)

nBins = 20,000
−4

−2

0

2

4

6
fSR = 7993/9999

J = (2,4,4,4)

nBins = 30,000

fSR = 7993/9999

J = (3,6,6)

nBins = 30,000

fSR = 7994/9999

J = (3,6,6,6)

nBins = 30,000

fSR = 7993/9999

J = (4,8,8)

nBins = 30,000

fSR = 7993/9999

J = (4,8,8,8)

nBins = 30,000

fSR = 7993/9999

J = (5,10,10)

nBins = 30,000

fSR = 7265/9999

J = (2,4,4,4)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 7265/9999

J = (3,6,6)

nBins = 40,000

fSR = 7265/9999

J = (3,6,6,6)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 7265/9999

J = (4,8,8)

nBins = 40,000

fSR = 7265/9999

J = (4,8,8,8)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

−4

−2

0

2

4

6
fSR = 7265/9999

J = (5,10,10)

nBins = 40,000

Figure 3.3. Accuracy for Normal(0,1) data: xy-plot of error differences

47

X = Population Quantiles of Normal(0,1) distribution

Quantiles of log10(|Qp

B
(X)−Qp(X)|)

Q
u

a
n

ti
le

s
 o

f
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−8

−6

−4

−8 −6 −4

J = (2,4,4,4)

nBins = 10,000

J = (3,6,6)

nBins = 10,000

−8 −6 −4

J = (3,6,6,6)

nBins = 10,000

J = (4,8,8)

nBins = 10,000

−8 −6 −4

J = (4,8,8,8)

nBins = 10,000

J = (5,10,10)

nBins = 10,000

J = (2,4,4,4)

nBins = 20,000

J = (3,6,6)

nBins = 20,000

J = (3,6,6,6)

nBins = 20,000

J = (4,8,8)

nBins = 20,000

J = (4,8,8,8)

nBins = 20,000

−8

−6

−4

J = (5,10,10)

nBins = 20,000

−8

−6

−4

J = (2,4,4,4)

nBins = 30,000

J = (3,6,6)

nBins = 30,000

J = (3,6,6,6)

nBins = 30,000

J = (4,8,8)

nBins = 30,000

J = (4,8,8,8)

nBins = 30,000

J = (5,10,10)

nBins = 30,000

J = (2,4,4,4)

nBins = 40,000

−8 −6 −4

J = (3,6,6)

nBins = 40,000

J = (3,6,6,6)

nBins = 40,000

−8 −6 −4

J = (4,8,8)

nBins = 40,000

J = (4,8,8,8)

nBins = 40,000

−8 −6 −4

−8

−6

−4

J = (5,10,10)

nBins = 40,000

Figure 3.4. Accuracy for Normal(0,1) data: QQ-plot of errors

48

Comparison of Accuracy : Uniform(0,1)

X = Population Quantiles of Uniform(0,1) distribution

p(f−Values)

lo
g

1
0
(|

Q
pB
(X

)−
Q

p
(X

)|
)

−
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 7733/9999
J = (2,4,4,4)

nBins = 10,000

fSR = 9587/9999
J = (3,6,6)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9891/9999
J = (3,6,6,6)

nBins = 10,000

fSR = 8709/9999
J = (4,8,8)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9929/9999
J = (4,8,8,8)

nBins = 10,000

fSR = 9981/9999
J = (5,10,10)

nBins = 10,000

fSR = 7719/9999
J = (2,4,4,4)

nBins = 20,000

fSR = 9579/9999
J = (3,6,6)

nBins = 20,000

fSR = 9881/9999
J = (3,6,6,6)

nBins = 20,000

fSR = 8709/9999
J = (4,8,8)

nBins = 20,000

fSR = 9915/9999
J = (4,8,8,8)

nBins = 20,000

0

5

10fSR = 9981/9999
J = (5,10,10)

nBins = 20,000

0

5

10 fSR = 7719/9999
J = (2,4,4,4)

nBins = 30,000

fSR = 9563/9999
J = (3,6,6)

nBins = 30,000

fSR = 9863/9999
J = (3,6,6,6)

nBins = 30,000

fSR = 8681/9999
J = (4,8,8)

nBins = 30,000

fSR = 9915/9999
J = (4,8,8,8)

nBins = 30,000

fSR = 9981/9999
J = (5,10,10)

nBins = 30,000

fSR = 7703/9999
J = (2,4,4,4)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9543/9999
J = (3,6,6)

nBins = 40,000

fSR = 9863/9999
J = (3,6,6,6)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 8681/9999
J = (4,8,8)

nBins = 40,000

fSR = 9915/9999
J = (4,8,8,8)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10fSR = 9977/9999
J = (5,10,10)

nBins = 40,000

Figure 3.5. Accuracy for Uniform(0,1) data: xy-plot of error differences

49

X = Population Quantiles of Uniform(0,1) distribution

Quantiles of log10(|Qp

B
(X)−Qp(X)|)

Q
u

a
n

ti
le

s
 o

f
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−15

−10

−5

−15 −10 −5

J = (2,4,4,4)

nBins = 10,000

J = (3,6,6)

nBins = 10,000

−15 −10 −5

J = (3,6,6,6)

nBins = 10,000

J = (4,8,8)

nBins = 10,000

−15 −10 −5

J = (4,8,8,8)

nBins = 10,000

J = (5,10,10)

nBins = 10,000

J = (2,4,4,4)

nBins = 20,000

J = (3,6,6)

nBins = 20,000

J = (3,6,6,6)

nBins = 20,000

J = (4,8,8)

nBins = 20,000

J = (4,8,8,8)

nBins = 20,000

−15

−10

−5

J = (5,10,10)

nBins = 20,000

−15

−10

−5

J = (2,4,4,4)

nBins = 30,000

J = (3,6,6)

nBins = 30,000

J = (3,6,6,6)

nBins = 30,000

J = (4,8,8)

nBins = 30,000

J = (4,8,8,8)

nBins = 30,000

J = (5,10,10)

nBins = 30,000

J = (2,4,4,4)

nBins = 40,000

−15 −10 −5

J = (3,6,6)

nBins = 40,000

J = (3,6,6,6)

nBins = 40,000

−15 −10 −5

J = (4,8,8)

nBins = 40,000

J = (4,8,8,8)

nBins = 40,000

−15 −10 −5

−15

−10

−5

J = (5,10,10)

nBins = 40,000

Figure 3.6. Accuracy for Uniform(0,1) data: QQ-plot of errors

50

Comparison of Accuracy : Chi-Squared(4)

X = Population Quantiles of Chi−Squared(4) distribution

p(f−Values)

lo
g

1
0
(|

Q
pB
(X

)−
Q

p
(X

)|
)

−
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−4

−2

0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 8406/9999

J = (2,4,4,4)

nBins = 10,000

fSR = 9234/9999

J = (3,6,6)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9288/9999

J = (3,6,6,6)

nBins = 10,000

fSR = 8840/9999

J = (4,8,8)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9288/9999

J = (4,8,8,8)

nBins = 10,000

fSR = 9285/9999

J = (5,10,10)

nBins = 10,000

fSR = 7143/9999

J = (2,4,4,4)

nBins = 20,000

fSR = 8542/9999

J = (3,6,6)

nBins = 20,000

fSR = 8632/9999

J = (3,6,6,6)

nBins = 20,000

fSR = 7924/9999

J = (4,8,8)

nBins = 20,000

fSR = 8643/9999

J = (4,8,8,8)

nBins = 20,000

−4

−2

0

2

4

6fSR = 8639/9999

J = (5,10,10)

nBins = 20,000
−4

−2

0

2

4

6 fSR = 6035/9999

J = (2,4,4,4)

nBins = 30,000

fSR = 7811/9999

J = (3,6,6)

nBins = 30,000

fSR = 7902/9999

J = (3,6,6,6)

nBins = 30,000

fSR = 7029/9999

J = (4,8,8)

nBins = 30,000

fSR = 7895/9999

J = (4,8,8,8)

nBins = 30,000

fSR = 7897/9999

J = (5,10,10)

nBins = 30,000

fSR = 5025/9999

J = (2,4,4,4)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 7099/9999

J = (3,6,6)

nBins = 40,000

fSR = 7216/9999

J = (3,6,6,6)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 6280/9999

J = (4,8,8)

nBins = 40,000

fSR = 7225/9999

J = (4,8,8,8)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

−4

−2

0

2

4

6fSR = 7224/9999

J = (5,10,10)

nBins = 40,000

Figure 3.7. Accuracy for Chi-Squared(4) data: xy-plot of error differences

51

X = Population Quantiles of Chi−Squared(4) distribution

Quantiles of log10(|Qp

B
(X)−Qp(X)|)

Q
u

a
n

ti
le

s
 o

f
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−8

−6

−4

−2

−8 −6 −4 −2

J = (2,4,4,4)

nBins = 10,000

J = (3,6,6)

nBins = 10,000

−8 −6 −4 −2

J = (3,6,6,6)

nBins = 10,000

J = (4,8,8)

nBins = 10,000

−8 −6 −4 −2

J = (4,8,8,8)

nBins = 10,000

J = (5,10,10)

nBins = 10,000

J = (2,4,4,4)

nBins = 20,000

J = (3,6,6)

nBins = 20,000

J = (3,6,6,6)

nBins = 20,000

J = (4,8,8)

nBins = 20,000

J = (4,8,8,8)

nBins = 20,000

−8

−6

−4

−2

J = (5,10,10)

nBins = 20,000

−8

−6

−4

−2

J = (2,4,4,4)

nBins = 30,000

J = (3,6,6)

nBins = 30,000

J = (3,6,6,6)

nBins = 30,000

J = (4,8,8)

nBins = 30,000

J = (4,8,8,8)

nBins = 30,000

J = (5,10,10)

nBins = 30,000

J = (2,4,4,4)

nBins = 40,000

−8 −6 −4 −2

J = (3,6,6)

nBins = 40,000

J = (3,6,6,6)

nBins = 40,000

−8 −6 −4 −2

J = (4,8,8)

nBins = 40,000

J = (4,8,8,8)

nBins = 40,000

−8 −6 −4 −2

−8

−6

−4

−2

J = (5,10,10)

nBins = 40,000

Figure 3.8. Accuracy for Chi-Squared(4) data: QQ-plot of errors

52

Comparison of Accuracy : Chi-Squared(8)

X = Population Quantiles of Chi−Squared(8) distribution

p(f−Values)

lo
g

1
0
(|

Q
pB
(X

)−
Q

p
(X

)|
)

−
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−2

0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9287/9999

J = (2,4,4,4)

nBins = 10,000

fSR = 9296/9999

J = (3,6,6)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9295/9999

J = (3,6,6,6)

nBins = 10,000

fSR = 9296/9999

J = (4,8,8)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9295/9999

J = (4,8,8,8)

nBins = 10,000

fSR = 9295/9999

J = (5,10,10)

nBins = 10,000

fSR = 8511/9999

J = (2,4,4,4)

nBins = 20,000

fSR = 8519/9999

J = (3,6,6)

nBins = 20,000

fSR = 8519/9999

J = (3,6,6,6)

nBins = 20,000

fSR = 8524/9999

J = (4,8,8)

nBins = 20,000

fSR = 8519/9999

J = (4,8,8,8)

nBins = 20,000

−2

0

2

4

6fSR = 8519/9999

J = (5,10,10)

nBins = 20,000

−2

0

2

4

6 fSR = 7754/9999

J = (2,4,4,4)

nBins = 30,000

fSR = 7763/9999

J = (3,6,6)

nBins = 30,000

fSR = 7763/9999

J = (3,6,6,6)

nBins = 30,000

fSR = 7760/9999

J = (4,8,8)

nBins = 30,000

fSR = 7763/9999

J = (4,8,8,8)

nBins = 30,000

fSR = 7763/9999

J = (5,10,10)

nBins = 30,000

fSR = 7107/9999

J = (2,4,4,4)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 7115/9999

J = (3,6,6)

nBins = 40,000

fSR = 7115/9999

J = (3,6,6,6)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 7118/9999

J = (4,8,8)

nBins = 40,000

fSR = 7115/9999

J = (4,8,8,8)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

−2

0

2

4

6fSR = 7115/9999

J = (5,10,10)

nBins = 40,000

Figure 3.9. Accuracy for Chi-Squared(8) data: xy-plot of error differences

53

X = Population Quantiles of Chi−Squared(8) distribution

Quantiles of log10(|Qp

B
(X)−Qp(X)|)

Q
u

a
n

ti
le

s
 o

f
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−8

−7

−6

−5

−4

−3

−8 −7 −6 −5 −4 −3

J = (2,4,4,4)

nBins = 10,000

J = (3,6,6)

nBins = 10,000

−8 −7 −6 −5 −4 −3

J = (3,6,6,6)

nBins = 10,000

J = (4,8,8)

nBins = 10,000

−8 −7 −6 −5 −4 −3

J = (4,8,8,8)

nBins = 10,000

J = (5,10,10)

nBins = 10,000

J = (2,4,4,4)

nBins = 20,000

J = (3,6,6)

nBins = 20,000

J = (3,6,6,6)

nBins = 20,000

J = (4,8,8)

nBins = 20,000

J = (4,8,8,8)

nBins = 20,000

−8

−7

−6

−5

−4

−3

J = (5,10,10)

nBins = 20,000

−8

−7

−6

−5

−4

−3

J = (2,4,4,4)

nBins = 30,000

J = (3,6,6)

nBins = 30,000

J = (3,6,6,6)

nBins = 30,000

J = (4,8,8)

nBins = 30,000

J = (4,8,8,8)

nBins = 30,000

J = (5,10,10)

nBins = 30,000

J = (2,4,4,4)

nBins = 40,000

−8 −7 −6 −5 −4 −3

J = (3,6,6)

nBins = 40,000

J = (3,6,6,6)

nBins = 40,000

−8 −7 −6 −5 −4 −3

J = (4,8,8)

nBins = 40,000

J = (4,8,8,8)

nBins = 40,000

−8 −7 −6 −5 −4 −3

−8

−7

−6

−5

−4

−3

J = (5,10,10)

nBins = 40,000

Figure 3.10. Accuracy for Chi-Squared(8) data: QQ-plot of errors

54

Comparison of Accuracy : Chi-Squared(16)

X = Population Quantiles of Chi−Squared(16) distribution

p(f−Values)

lo
g

1
0
(|

Q
pB
(X

)−
Q

p
(X

)|
)

−
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−4

−2

0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9210/9999

J = (2,4,4,4)

nBins = 10,000

fSR = 9210/9999

J = (3,6,6)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9210/9999

J = (3,6,6,6)

nBins = 10,000

fSR = 9210/9999

J = (4,8,8)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9210/9999

J = (4,8,8,8)

nBins = 10,000

fSR = 9210/9999

J = (5,10,10)

nBins = 10,000

fSR = 8408/9999

J = (2,4,4,4)

nBins = 20,000

fSR = 8408/9999

J = (3,6,6)

nBins = 20,000

fSR = 8409/9999

J = (3,6,6,6)

nBins = 20,000

fSR = 8408/9999

J = (4,8,8)

nBins = 20,000

fSR = 8408/9999

J = (4,8,8,8)

nBins = 20,000

−4

−2

0

2

4

6fSR = 8408/9999

J = (5,10,10)

nBins = 20,000

−4

−2

0

2

4

6 fSR = 7655/9999

J = (2,4,4,4)

nBins = 30,000

fSR = 7655/9999

J = (3,6,6)

nBins = 30,000

fSR = 7655/9999

J = (3,6,6,6)

nBins = 30,000

fSR = 7655/9999

J = (4,8,8)

nBins = 30,000

fSR = 7655/9999

J = (4,8,8,8)

nBins = 30,000

fSR = 7655/9999

J = (5,10,10)

nBins = 30,000

fSR = 6852/9999

J = (2,4,4,4)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 6852/9999

J = (3,6,6)

nBins = 40,000

fSR = 6851/9999

J = (3,6,6,6)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 6852/9999

J = (4,8,8)

nBins = 40,000

fSR = 6852/9999

J = (4,8,8,8)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

−4

−2

0

2

4

6fSR = 6852/9999

J = (5,10,10)

nBins = 40,000

Figure 3.11. Accuracy for Chi-Squared(16) data: xy-plot of error differ-
ences

55

X = Population Quantiles of Chi−Squared(16) distribution

Quantiles of log10(|Qp

B
(X)−Qp(X)|)

Q
u

a
n

ti
le

s
 o

f
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−8

−7

−6

−5

−4

−3

−8 −7 −6 −5 −4 −3

J = (2,4,4,4)

nBins = 10,000

J = (3,6,6)

nBins = 10,000

−8 −7 −6 −5 −4 −3

J = (3,6,6,6)

nBins = 10,000

J = (4,8,8)

nBins = 10,000

−8 −7 −6 −5 −4 −3

J = (4,8,8,8)

nBins = 10,000

J = (5,10,10)

nBins = 10,000

J = (2,4,4,4)

nBins = 20,000

J = (3,6,6)

nBins = 20,000

J = (3,6,6,6)

nBins = 20,000

J = (4,8,8)

nBins = 20,000

J = (4,8,8,8)

nBins = 20,000

−8

−7

−6

−5

−4

−3

J = (5,10,10)

nBins = 20,000

−8

−7

−6

−5

−4

−3

J = (2,4,4,4)

nBins = 30,000

J = (3,6,6)

nBins = 30,000

J = (3,6,6,6)

nBins = 30,000

J = (4,8,8)

nBins = 30,000

J = (4,8,8,8)

nBins = 30,000

J = (5,10,10)

nBins = 30,000

J = (2,4,4,4)

nBins = 40,000

−8 −7 −6 −5 −4 −3

J = (3,6,6)

nBins = 40,000

J = (3,6,6,6)

nBins = 40,000

−8 −7 −6 −5 −4 −3

J = (4,8,8)

nBins = 40,000

J = (4,8,8,8)

nBins = 40,000

−8 −7 −6 −5 −4 −3

−8

−7

−6

−5

−4

−3

J = (5,10,10)

nBins = 40,000

Figure 3.12. Accuracy for Chi-Squared(16) data: QQ-plot of errors

56

Comparison of Accuracy : Beta(1,4)

X = Population Quantiles of Beta(1,4) distribution

p(f−Values)

lo
g

1
0
(|

Q
pB
(X

)−
Q

p
(X

)|
)

−
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−4

−2

0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 6120/9999
J = (2,4,4,4)

nBins = 10,000

fSR = 8727/9999
J = (3,6,6)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9226/9999
J = (3,6,6,6)

nBins = 10,000

fSR = 6985/9999
J = (4,8,8)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9285/9999
J = (4,8,8,8)

nBins = 10,000

fSR = 9349/9999
J = (5,10,10)

nBins = 10,000

fSR = 3705/9999
J = (2,4,4,4)

nBins = 20,000

fSR = 7596/9999
J = (3,6,6)

nBins = 20,000

fSR = 8444/9999
J = (3,6,6,6)

nBins = 20,000

fSR = 4912/9999
J = (4,8,8)

nBins = 20,000

fSR = 8544/9999
J = (4,8,8,8)

nBins = 20,000

−4

−2

0

2

4

6
fSR = 8651/9999

J = (5,10,10)

nBins = 20,000
−4

−2

0

2

4

6
fSR = 2432/9999

J = (2,4,4,4)

nBins = 30,000

fSR = 6655/9999
J = (3,6,6)

nBins = 30,000

fSR = 7723/9999
J = (3,6,6,6)

nBins = 30,000

fSR = 3566/9999
J = (4,8,8)

nBins = 30,000

fSR = 7855/9999
J = (4,8,8,8)

nBins = 30,000

fSR = 7997/9999
J = (5,10,10)

nBins = 30,000

fSR = 1761/9999
J = (2,4,4,4)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 5877/9999
J = (3,6,6)

nBins = 40,000

fSR = 7131/9999
J = (3,6,6,6)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 2684/9999
J = (4,8,8)

nBins = 40,000

fSR = 7281/9999
J = (4,8,8,8)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

−4

−2

0

2

4

6
fSR = 7463/9999

J = (5,10,10)

nBins = 40,000

Figure 3.13. Accuracy for Beta(1,4) data: xy-plot of error differences

57

X = Population Quantiles of Beta(1,4) distribution

Quantiles of log10(|Qp

B
(X)−Qp(X)|)

Q
u

a
n

ti
le

s
 o

f
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−10

−8

−6

−4

−10 −8 −6 −4

J = (2,4,4,4)

nBins = 10,000

J = (3,6,6)

nBins = 10,000

−10 −8 −6 −4

J = (3,6,6,6)

nBins = 10,000

J = (4,8,8)

nBins = 10,000

−10 −8 −6 −4

J = (4,8,8,8)

nBins = 10,000

J = (5,10,10)

nBins = 10,000

J = (2,4,4,4)

nBins = 20,000

J = (3,6,6)

nBins = 20,000

J = (3,6,6,6)

nBins = 20,000

J = (4,8,8)

nBins = 20,000

J = (4,8,8,8)

nBins = 20,000

−10

−8

−6

−4

J = (5,10,10)

nBins = 20,000

−10

−8

−6

−4

J = (2,4,4,4)

nBins = 30,000

J = (3,6,6)

nBins = 30,000

J = (3,6,6,6)

nBins = 30,000

J = (4,8,8)

nBins = 30,000

J = (4,8,8,8)

nBins = 30,000

J = (5,10,10)

nBins = 30,000

J = (2,4,4,4)

nBins = 40,000

−10 −8 −6 −4

J = (3,6,6)

nBins = 40,000

J = (3,6,6,6)

nBins = 40,000

−10 −8 −6 −4

J = (4,8,8)

nBins = 40,000

J = (4,8,8,8)

nBins = 40,000

−10 −8 −6 −4

−10

−8

−6

−4

J = (5,10,10)

nBins = 40,000

Figure 3.14. Accuracy for Beta(1,4) data: QQ-plot of errors

58

Comparison of Accuracy : Beta(1,8)

X = Population Quantiles of Beta(1,8) distribution

p(f−Values)

lo
g

1
0
(|

Q
pB
(X

)−
Q

p
(X

)|
)

−
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−5

0

5

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 3878/9999
J = (2,4,4,4)

nBins = 10,000

fSR = 8119/9999
J = (3,6,6)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9035/9999
J = (3,6,6,6)

nBins = 10,000

fSR = 5172/9999
J = (4,8,8)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9188/9999
J = (4,8,8,8)

nBins = 10,000

fSR = 9338/9999
J = (5,10,10)

nBins = 10,000

fSR = 1770/9999
J = (2,4,4,4)

nBins = 20,000

fSR = 6747/9999
J = (3,6,6)

nBins = 20,000

fSR = 8238/9999
J = (3,6,6,6)

nBins = 20,000

fSR = 2669/9999
J = (4,8,8)

nBins = 20,000

fSR = 8442/9999
J = (4,8,8,8)

nBins = 20,000

−5

0

5

fSR = 8728/9999
J = (5,10,10)

nBins = 20,000
−5

0

5

fSR = 1170/9999
J = (2,4,4,4)

nBins = 30,000

fSR = 5599/9999
J = (3,6,6)

nBins = 30,000

fSR = 7517/9999
J = (3,6,6,6)

nBins = 30,000

fSR = 1630/9999
J = (4,8,8)

nBins = 30,000

fSR = 7843/9999
J = (4,8,8,8)

nBins = 30,000

fSR = 8199/9999
J = (5,10,10)

nBins = 30,000

fSR = 845/9999
J = (2,4,4,4)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 4618/9999
J = (3,6,6)

nBins = 40,000

fSR = 6710/9999
J = (3,6,6,6)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 1175/9999
J = (4,8,8)

nBins = 40,000

fSR = 7052/9999
J = (4,8,8,8)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

−5

0

5

fSR = 7443/9999
J = (5,10,10)

nBins = 40,000

Figure 3.15. Accuracy for Beta(1,8) data: xy-plot of error differences

59

X = Population Quantiles of Beta(1,8) distribution

Quantiles of log10(|Qp

B
(X)−Qp(X)|)

Q
u

a
n

ti
le

s
 o

f
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−10

−8

−6

−4

−10 −8 −6 −4

J = (2,4,4,4)

nBins = 10,000

J = (3,6,6)

nBins = 10,000

−10 −8 −6 −4

J = (3,6,6,6)

nBins = 10,000

J = (4,8,8)

nBins = 10,000

−10 −8 −6 −4

J = (4,8,8,8)

nBins = 10,000

J = (5,10,10)

nBins = 10,000

J = (2,4,4,4)

nBins = 20,000

J = (3,6,6)

nBins = 20,000

J = (3,6,6,6)

nBins = 20,000

J = (4,8,8)

nBins = 20,000

J = (4,8,8,8)

nBins = 20,000

−10

−8

−6

−4

J = (5,10,10)

nBins = 20,000

−10

−8

−6

−4

J = (2,4,4,4)

nBins = 30,000

J = (3,6,6)

nBins = 30,000

J = (3,6,6,6)

nBins = 30,000

J = (4,8,8)

nBins = 30,000

J = (4,8,8,8)

nBins = 30,000

J = (5,10,10)

nBins = 30,000

J = (2,4,4,4)

nBins = 40,000

−10 −8 −6 −4

J = (3,6,6)

nBins = 40,000

J = (3,6,6,6)

nBins = 40,000

−10 −8 −6 −4

J = (4,8,8)

nBins = 40,000

J = (4,8,8,8)

nBins = 40,000

−10 −8 −6 −4

−10

−8

−6

−4

J = (5,10,10)

nBins = 40,000

Figure 3.16. Accuracy for Beta(1,8) data: QQ-plot of errors

60

Comparison of Accuracy : Beta(1,16)

X = Population Quantiles of Beta(1,16) distribution

p(f−Values)

lo
g

1
0
(|

Q
pB
(X

)−
Q

p
(X

)|
)

−
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−4

−2

0

2

4

6

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 2254/9999

J = (2,4,4,4)

nBins = 10,000

fSR = 7381/9999

J = (3,6,6)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 8849/9999

J = (3,6,6,6)

nBins = 10,000

fSR = 3371/9999

J = (4,8,8)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9038/9999

J = (4,8,8,8)

nBins = 10,000

fSR = 9267/9999

J = (5,10,10)

nBins = 10,000

fSR = 1108/9999

J = (2,4,4,4)

nBins = 20,000

fSR = 5593/9999

J = (3,6,6)

nBins = 20,000

fSR = 7810/9999

J = (3,6,6,6)

nBins = 20,000

fSR = 1475/9999

J = (4,8,8)

nBins = 20,000

fSR = 8176/9999

J = (4,8,8,8)

nBins = 20,000

−4

−2

0

2

4

6fSR = 8590/9999

J = (5,10,10)

nBins = 20,000

−4

−2

0

2

4

6 fSR = 740/9999

J = (2,4,4,4)

nBins = 30,000

fSR = 4111/9999

J = (3,6,6)

nBins = 30,000

fSR = 6862/9999

J = (3,6,6,6)

nBins = 30,000

fSR = 990/9999

J = (4,8,8)

nBins = 30,000

fSR = 7279/9999

J = (4,8,8,8)

nBins = 30,000

fSR = 7843/9999

J = (5,10,10)

nBins = 30,000

fSR = 585/9999

J = (2,4,4,4)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 3197/9999

J = (3,6,6)

nBins = 40,000

fSR = 6038/9999

J = (3,6,6,6)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 748/9999

J = (4,8,8)

nBins = 40,000

fSR = 6575/9999

J = (4,8,8,8)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

−4

−2

0

2

4

6fSR = 7208/9999

J = (5,10,10)

nBins = 40,000

Figure 3.17. Accuracy for Beta(1,16) data: xy-plot of error differences

61

X = Population Quantiles of Beta(1,16) distribution

Quantiles of log10(|Qp

B
(X)−Qp(X)|)

Q
u

a
n

ti
le

s
 o

f
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−10

−8

−6

−4

−2

−10 −8 −6 −4 −2

J = (2,4,4,4)

nBins = 10,000

J = (3,6,6)

nBins = 10,000

−10 −8 −6 −4 −2

J = (3,6,6,6)

nBins = 10,000

J = (4,8,8)

nBins = 10,000

−10 −8 −6 −4 −2

J = (4,8,8,8)

nBins = 10,000

J = (5,10,10)

nBins = 10,000

J = (2,4,4,4)

nBins = 20,000

J = (3,6,6)

nBins = 20,000

J = (3,6,6,6)

nBins = 20,000

J = (4,8,8)

nBins = 20,000

J = (4,8,8,8)

nBins = 20,000

−10

−8

−6

−4

−2
J = (5,10,10)

nBins = 20,000
−10

−8

−6

−4

−2
J = (2,4,4,4)

nBins = 30,000

J = (3,6,6)

nBins = 30,000

J = (3,6,6,6)

nBins = 30,000

J = (4,8,8)

nBins = 30,000

J = (4,8,8,8)

nBins = 30,000

J = (5,10,10)

nBins = 30,000

J = (2,4,4,4)

nBins = 40,000

−10 −8 −6 −4 −2

J = (3,6,6)

nBins = 40,000

J = (3,6,6,6)

nBins = 40,000

−10 −8 −6 −4 −2

J = (4,8,8)

nBins = 40,000

J = (4,8,8,8)

nBins = 40,000

−10 −8 −6 −4 −2

−10

−8

−6

−4

−2
J = (5,10,10)

nBins = 40,000

Figure 3.18. Accuracy for Beta(1,16) data: QQ-plot of errors

62

Comparison of Accuracy : t(4)

X = Population Quantiles of t(4) distribution

p(f−Values)

lo
g

1
0
(|

Q
pB
(X

)−
Q

p
(X

)|
)

−
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−4

−2

0

2

4

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 135/9999

J = (2,4,4,4)

nBins = 10,000

fSR = 1123/9999

J = (3,6,6)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 8388/9999

J = (3,6,6,6)

nBins = 10,000

fSR = 163/9999

J = (4,8,8)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9130/9999

J = (4,8,8,8)

nBins = 10,000

fSR = 9251/9999

J = (5,10,10)

nBins = 10,000

fSR = 66/9999

J = (2,4,4,4)

nBins = 20,000

fSR = 557/9999

J = (3,6,6)

nBins = 20,000

fSR = 6954/9999

J = (3,6,6,6)

nBins = 20,000

fSR = 93/9999

J = (4,8,8)

nBins = 20,000

fSR = 8231/9999

J = (4,8,8,8)

nBins = 20,000

−4

−2

0

2

4
fSR = 8390/9999

J = (5,10,10)

nBins = 20,000

−4

−2

0

2

4
fSR = 43/9999

J = (2,4,4,4)

nBins = 30,000

fSR = 409/9999

J = (3,6,6)

nBins = 30,000

fSR = 5873/9999

J = (3,6,6,6)

nBins = 30,000

fSR = 69/9999

J = (4,8,8)

nBins = 30,000

fSR = 7462/9999

J = (4,8,8,8)

nBins = 30,000

fSR = 7683/9999

J = (5,10,10)

nBins = 30,000

fSR = 37/9999

J = (2,4,4,4)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 263/9999

J = (3,6,6)

nBins = 40,000

fSR = 4793/9999

J = (3,6,6,6)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 33/9999

J = (4,8,8)

nBins = 40,000

fSR = 6535/9999

J = (4,8,8,8)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

−4

−2

0

2

4
fSR = 6759/9999

J = (5,10,10)

nBins = 40,000

Figure 3.19. Accuracy for t(4) data: xy-plot of error differences

63

X = Population Quantiles of t(4) distribution

Quantiles of log10(|Qp

B
(X)−Qp(X)|)

Q
u

a
n

ti
le

s
 o

f
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−6

−4

−2

0

2

−6 −4 −2 0 2

J = (2,4,4,4)

nBins = 10,000

J = (3,6,6)

nBins = 10,000

−6 −4 −2 0 2

J = (3,6,6,6)

nBins = 10,000

J = (4,8,8)

nBins = 10,000

−6 −4 −2 0 2

J = (4,8,8,8)

nBins = 10,000

J = (5,10,10)

nBins = 10,000

J = (2,4,4,4)

nBins = 20,000

J = (3,6,6)

nBins = 20,000

J = (3,6,6,6)

nBins = 20,000

J = (4,8,8)

nBins = 20,000

J = (4,8,8,8)

nBins = 20,000

−6

−4

−2

0

2
J = (5,10,10)

nBins = 20,000
−6

−4

−2

0

2
J = (2,4,4,4)

nBins = 30,000

J = (3,6,6)

nBins = 30,000

J = (3,6,6,6)

nBins = 30,000

J = (4,8,8)

nBins = 30,000

J = (4,8,8,8)

nBins = 30,000

J = (5,10,10)

nBins = 30,000

J = (2,4,4,4)

nBins = 40,000

−6 −4 −2 0 2

J = (3,6,6)

nBins = 40,000

J = (3,6,6,6)

nBins = 40,000

−6 −4 −2 0 2

J = (4,8,8)

nBins = 40,000

J = (4,8,8,8)

nBins = 40,000

−6 −4 −2 0 2

−6

−4

−2

0

2
J = (5,10,10)

nBins = 40,000

Figure 3.20. Accuracy for t(4) data: QQ-plot of errors

64

Comparison of Accuracy : t(8)

X = Population Quantiles of t(8) distribution

p(f−Values)

lo
g

1
0
(|

Q
pB
(X

)−
Q

p
(X

)|
)

−
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−4

−2

0

2

4

6

8

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9122/9999
J = (2,4,4,4)

nBins = 10,000

fSR = 9121/9999
J = (3,6,6)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9121/9999
J = (3,6,6,6)

nBins = 10,000

fSR = 9121/9999
J = (4,8,8)

nBins = 10,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 9122/9999
J = (4,8,8,8)

nBins = 10,000

fSR = 9123/9999
J = (5,10,10)

nBins = 10,000

fSR = 8279/9999
J = (2,4,4,4)

nBins = 20,000

fSR = 8287/9999
J = (3,6,6)

nBins = 20,000

fSR = 8287/9999
J = (3,6,6,6)

nBins = 20,000

fSR = 8287/9999
J = (4,8,8)

nBins = 20,000

fSR = 8287/9999
J = (4,8,8,8)

nBins = 20,000

−4

−2

0

2

4

6

8fSR = 8287/9999
J = (5,10,10)

nBins = 20,000

−4

−2

0

2

4

6

8 fSR = 7402/9999
J = (2,4,4,4)

nBins = 30,000

fSR = 7403/9999
J = (3,6,6)

nBins = 30,000

fSR = 7403/9999
J = (3,6,6,6)

nBins = 30,000

fSR = 7404/9999
J = (4,8,8)

nBins = 30,000

fSR = 7403/9999
J = (4,8,8,8)

nBins = 30,000

fSR = 7405/9999
J = (5,10,10)

nBins = 30,000

fSR = 6580/9999
J = (2,4,4,4)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 6581/9999
J = (3,6,6)

nBins = 40,000

fSR = 6582/9999
J = (3,6,6,6)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

fSR = 6582/9999
J = (4,8,8)

nBins = 40,000

fSR = 6583/9999
J = (4,8,8,8)

nBins = 40,000

0.0 0.2 0.4 0.6 0.8 1.0

−4

−2

0

2

4

6

8fSR = 6583/9999
J = (5,10,10)

nBins = 40,000

Figure 3.21. Accuracy for t(8) data: xy-plot of error differences

65

X = Population Quantiles of t(8) distribution

Quantiles of log10(|Qp

B
(X)−Qp(X)|)

Q
u

a
n

ti
le

s
 o

f
lo

g
1

0
(|

Q
pF
(X

)−
Q

p
(X

)|
)

−8

−6

−4

−8 −6 −4

J = (2,4,4,4)

nBins = 10,000

J = (3,6,6)

nBins = 10,000

−8 −6 −4

J = (3,6,6,6)

nBins = 10,000

J = (4,8,8)

nBins = 10,000

−8 −6 −4

J = (4,8,8,8)

nBins = 10,000

J = (5,10,10)

nBins = 10,000

J = (2,4,4,4)

nBins = 20,000

J = (3,6,6)

nBins = 20,000

J = (3,6,6,6)

nBins = 20,000

J = (4,8,8)

nBins = 20,000

J = (4,8,8,8)

nBins = 20,000

−8

−6

−4

J = (5,10,10)

nBins = 20,000

−8

−6

−4

J = (2,4,4,4)

nBins = 30,000

J = (3,6,6)

nBins = 30,000

J = (3,6,6,6)

nBins = 30,000

J = (4,8,8)

nBins = 30,000

J = (4,8,8,8)

nBins = 30,000

J = (5,10,10)

nBins = 30,000

J = (2,4,4,4)

nBins = 40,000

−8 −6 −4

J = (3,6,6)

nBins = 40,000

J = (3,6,6,6)

nBins = 40,000

−8 −6 −4

J = (4,8,8)

nBins = 40,000

J = (4,8,8,8)

nBins = 40,000

−8 −6 −4

−8

−6

−4

J = (5,10,10)

nBins = 40,000

Figure 3.22. Accuracy for t(8) data: QQ-plot of errors

66

3.7.3 Runtime comparison

Comparison of Run-time:

Here is a plot demonstrating run-time for EP-FQ and Binning methods

Elapsed Time in seconds

M
e

th
o

d
 U

s
e

d

3−fold − 3,6,6
3−fold − 4,8,8

3−fold − 5,10,10
4−fold − 2,4,4,4
4−fold − 3,6,6,6
4−fold − 4,8,8,8
nBins = 10,000
nBins = 20,000
nBins = 30,000
nBins = 40,000

0 500 1000 1500 2000 2500

Normal(0,1) Uniform(0,1)

0 500 1000 1500 2000 2500

Chi−Squared(4)
3−fold − 3,6,6
3−fold − 4,8,8

3−fold − 5,10,10
4−fold − 2,4,4,4
4−fold − 3,6,6,6
4−fold − 4,8,8,8
nBins = 10,000
nBins = 20,000
nBins = 30,000
nBins = 40,000

Chi−Squared(8) Chi−Squared(16) Beta(1,4)
3−fold − 3,6,6
3−fold − 4,8,8

3−fold − 5,10,10
4−fold − 2,4,4,4
4−fold − 3,6,6,6
4−fold − 4,8,8,8
nBins = 10,000
nBins = 20,000
nBins = 30,000
nBins = 40,000

Beta(1,8) Beta(1,16) t(4)
3−fold − 3,6,6
3−fold − 4,8,8

3−fold − 5,10,10
4−fold − 2,4,4,4
4−fold − 3,6,6,6
4−fold − 4,8,8,8
nBins = 10,000
nBins = 20,000
nBins = 30,000
nBins = 40,000

t(8)

Binning
Fourier

Figure 3.23. Run-time for Quantile computations

67

3.8 Discussion

A number of methods have been implemented for computing quantiles for Big

Data. The GK algorithm [3]is a deterministic ε approximation method that computes

quantiles with a summary size bounded in 1
ε

log εN , realize that the summary grows

as N gets bigger, and in EPS-FQ we will see that the summary does not depend on

N , which is a strong property. Z.huang et all [4] developed a sampling algorithm

for sensor networks, but for sampling algorithms there is some sampling error, big

data is always finite sample and local information is important. Another sampling

algorithm is Random Mergeable Summaries [5]. The Q-digest algorithm developed

by Shrivastava et all [6] is another deterministic quantile computation method for

Big Data, however it only works for integers and have a fixed universe. Ted Dunning

further developed this algorithm in his t-digest algorithm, which assigns weight on

the accuracy, making it more accurate near quantile values close to zero or one. At

the median it becomes highly inaccurate, which is not always desired for example we

might be interested to construct KD tree for distributed data, and we need accurate

median computation. So we are looking for algorithm that can be carried out in

parallel with minimal interaction, uses information from all of the data equally, the

summary data structure does not grow with N and there is a way to control the

accuracy and EP − FQ serves the purpose. It has been proved theoretically by

Manku et all [7] that exact quantile computation requires O(N logN) computation

time, it is not possible to have a linear exact algorithm for quantile computation.

68

69

4. THE EP-FOURIER-KD-TREE ALGORITHM

In machine learning, a KD-tree or K Dimensional tree [8] is a data structure that

partitions a k-dimensional space based on the data. KD-trees have several applica-

tions, like range search in a statistical decision tree, clustering, construction of nearest

neighbors, local regression etc. The KD-tree is a actually a generalization of binary

tree in which every node is a k-dimensional point. Like binary trees, every non-leaf

node divides the space into two parts, known as half-spaces. This node acts as a

boundary point for the two half-spaces. Points to the left of this boundary along a

specific chosen co-ordinate are represented by the left sub-tree of that node and points

right of this boundary are represented by the right sub-tree. So, for example, if for

a particular node or boundary the x coordinate is chosen, all points in the sub tree

with a smaller x value than the node will appear in the left sub-tree and all points

with larger x value will be in the right sub-tree.

4.1 Cannonical construction of KD-tree

The canonical method of KD-tree construction involves computation of median

in each level of construction. As we move down the levels, we choose data variables

periodically to select the splitting planes. For example, in a 3-dimensional tree, the

root would have an x-aligned plane, the root’s immediate children would have y-

aligned planes, the root’s grandchildren would all have z-aligned planes and again

the root’s great-grandchildren would all have x-aligned planes, and so on. We split

planes along the median of the selected variable for canonical construction. Note

that, we read the entire data into the algorithm up-front as we require the medians.

Choosing the medians as splitting planes constructs a balanced KD-tree, each leaf

node is approximately the same distance from the root.

70

Figure 4.1. Canonical KD-tree construction

This figure illustrates construction of a KD-tree in 2 dimensional data. Initially

at level 1, all data-points lie in the big-rectangle . First cut is made at the median of

x co-ordinates of the points and the cut produces two new rectangles. Then, at level

2, we look at all points on the left rectangle and the second cut is made at the median

of y co-ordinate of the points present in this rectangle. Similarly we divide the right

rectangle. At level 3, again we choose coordinate x to make the split. Observe that in

71

this process, the rectangle or cell-counts are almost equal in each level, which makes

the KD-tree balanced.

Building a balanced KD-tree from N points has the worst-case complexity of

O(N log2N) if an O(N logN) sort like Heap-sort/Merge-sort is used to find the me-

dian at each level of construction. If an O(N) median of medians algorithm is used

then the worst case complexity is O(N logN). If we choose to presort these N points

in each of p dimensions using an O(N logN) sort, then the worst-case complexity

becomes O(pN logN). However, for distributed big data the problem becomes much

more challenging, as it is impractical to implement these sorting algorithms by D&R.

In this chapter we provide aO(N) D&R algorithm to find an approximate balanced

KD-tree. The splitting median-points or the cell-boundaries are approximated and

the cell-counts still stays almost equal, which serves the purpose of a balanced KD-

tree.

4.2 Basic idea

In this section, we try to understand KD-tree construction procedure in terms

of boundary points or vertices and neighborhood or cells. Let us consider the usual

construction algorithm of a KD-tree. It is a recursive algorithm, in each recursion, we

get a new level or set of nodes, from the previous level or set of nodes. These nodes

can be also thought in terms vertices of neighborhoods. Suppose we are at a certain

level d of the KD-tree, and we want to get the vertices for the next level. We have a

number of neighborhoods in this level, and if we get the new vertices corresponding

to each of these neighborhoods, we can easily get all the sub-neighborhoods for the

next level d+ 1.

First, let us figure out how to get the vertex along which we divide a neighbor-

hood. Let a general neighborhood at depth d is (a,b) =
(
(a1, · · · , ap), (b1, · · · , bp)

)
.

Suppose, at depth d we want divide the data along the variable xt. Then, we have

to get the median mt(a,b) along the variable xt for all the observations x, that lie

72

inside this interval. To get this median, we have to minimize
∑ |xt − m| w.r.t. m

subject to a ≤ x ≤ b (We are considering coordinate -wise inequality.)

Equivalently we have to minimize
∑

x∈X |xt−m|
∏p

l=1 I(al ≤ xl ≤ bl) w.r.t. m. If

we define,

It(m, a,b,x) = |xt −m|
p∏
l=1

I(al ≤ xl ≤ bl) (4.1)

then we can get mt(a,b) as:

mt(a,b,X) = arg max
m∈(at,bt)

FX,t,a,b(m) (4.2)

Where,

FX,t,a,b(m) =
∑
x∈X

It(m, a,b,x) (4.3)

We consider the average absolute difference fX,t,a,b(m), instead of the total ab-

solute difference FX,t,a,b(m), It is easy to maximize for really big data. fX,t,a,b(m)

always lies inside [0, 1], as opposed to FX,t,a,b(m) which grows with N(X).

fX,t,a,b(m) =
1

N(X)

∑
x∈X

It(m, a,b,x) (4.4)

We will still have,

mt(a,b,X) = arg max
m∈(at,bt)

fX,t,a,b(m) (4.5)

With this split of (a,b) at the median mt(a,b,X), we get two disjoint neighbor-

hoods (aleft,bleft) and (aright,bright) whose union is (a,b). Here aleft = a; bleftl = bl

for 1 ≤ l ≤ p, l 6= t and bleftt = mt(a,b,X). Similarly, arightl = al for 1 ≤ l ≤ p, l 6= t;

arightt = mt(a,b,X) and bright = b.

We start with a single neighborhood (−1,1) =
(
(−1, · · · ,−1), (1, · · · , 1)

)
at level

1, and we split along x1 at the median value m0
1(X) = m1(−1,1,X). In general, we

cycle through all the co-ordinates, suppose at level d we pick the co-ordinate xt, we

start with 2d number of neighborhoods and we split each of these neighborhood (a,b)

73

in two sub-neighborhoods along xt at the median value mt(a,b,X). At level d we get

2d median values md
1(X), · · · ,md

2d
(X). So, we will have 2d splits at level d, resulting

in 2d+1 neighborhoods at level d+ 1. If we continue and construct a KD-tree of depth

D, we will compute 2D− 1 conditional median statistics m0
1(X); m1

1(X), m1
2(X); · · · ;

mD−1
1 (X), · · · ,mD−1

2D−1(X) along the construction process. Observe that these 2D − 1

statistics gives us all the information’s we need to construct a KD-tree. These are

not EP statistics, can’t be computed in parallel by D&R.

In this paper, we propose an approximation algorithm EP-KD to construct ap-

proximate KD-tree. We propose to approximate md
k(X) by Jth term of a sequence of

WEP statistics {m̂d
k,j(X)}∞0 , bigger J gives more accuracy. Here m̂d

k,J(X) is minimizer

of an objective function which approximates fX,t,a,b(m) by taking Jth partial sum of

Fourier series expansion of each product term in It(m, a,b,x). Observe, for any such

general neighborhood (a,b), we have, −1 ≤ a ≤ 1 and −1 ≤ b ≤ 1 coordinate-wise.

Also we are only considering at < m < bt, when we define fX,t,a,b(m). So that xt−m
can only take value in (−2, 2), and |xt−m| < π. Also by similar argument, |x−a| < π

and |x− b| < π coordinate-wise.

4.2.1 Fourier expansion:

Now consider Fourier expansion of the function f(z) = |z|

|z| = π

2
− 4

π

∞∑
j=1

cos
(
(2j − 1)z

)
(2j − 1)2

(4.6)

If we substitute z = xt −m, we have

|xt −m| =
π

2
−
∞∑
j=1

4

π(2j − 1)2
cos
(
(2j − 1)(xt −m)

)
=
π

2
.1 +

∞∑
j=1

(
− 4 cos

(
(2j − 1)m

)
π(2j − 1)2

)
. cos

(
(2j − 1)xt

)
+
∞∑
j=1

(
− 4 sin

(
(2j − 1)m

)
π(2j − 1)2

)
. sin

(
(2j − 1)xt

)
(4.7)

74

For convenience, let us define: f0(m) = π
2

and

f2j−1(m) = −4 cos
(

(2j−1)m
)

π(2j−1)2

f2j(m) = −4 sin
(

(2j−1)m
)

π(2j−1)2
for j ∈ Z+.

Also define: c0(xt) = 1 and

c2j−1(xt) = cos
(
(2j − 1)xt

)
c2j(xt) = sin

(
(2j − 1)xt

)
for j ∈ Z+.

Then we have:

|xt −m| =
∞∑
j=0

fj(m)cj(xt). (4.8)

Now partial sums of Fourier expansion of f(z) = |z| converges uniformly to its

limit for any z ∈ (−π, π), which implies that for the above expression, partial sums

of sequence of functions
∑2J

j=0 cj(xt)fj(m) converges point-wise and uniformly to its

limit |xt −m| for any m ∈ (−1, 1) and xt ∈ (−1, 1).

For the indicator functions, first observe that if al < bl, then I(al ≤ xl ≤ bl) =

I(al ≤ xl) − I(bl ≤ xl). The idea is to approximate these terms by partial sum

of Fourier-series expansion, but, if al = −1, then we already know that for any

xl ∈ (−1, 1), we have al < xl, and in that case I(al ≤ xl) becomes a constant(=1)

which is independent of xl. Then, it does not makes sense to approximate it with

a Fourier-series. Similarly if bl = 1, then I(bl ≤ xl) = 0. So, we consider a little

modification of above expression as follows,

I(al ≤ xl ≤ bl) = I(al = −1).I(bl = 1).1 + I(al > −1).I(bl = 1).I(al < xl)

+ I(al = −1).I(bl < 1).I(xl < bl) + I(al > −1).I(bl < 1).I(al < xl < bl)

=
(
1− I(al > −1)

)(
1− I(bl < 1)

)
+ I(al > −1)

(
1− I(bl < 1)

)
I(al < xl)

+
(
1− I(al > −1)

)
I(bl < 1)

(
1− I(bl < xl)

)
+ I(al > −1)I(bl < 1)

(
I(al < xl)− I(bl < xl)

)
= 1− I(al > −1) + I(al > −1)I(al < xl)− I(bl < 1)I(bl < xl)

(4.9)

Again consider Fourier expansion of the function g(z) = I(0 ≤ z)

75

I(z > 0) =
1

2
+

2

π

∞∑
j=1

sin
(
(2j − 1)z

)
(2j − 1)

(4.10)

We replace z with xl−al and xl−bl and substitute in 4.8, I(al < xl) = I(0 < xl−al)
and I(bl < xl) = I(0 < xl − bl), we have

I(al ≤ xl ≤ bl) = 1− I(al > −1) + I(al > −1)I(al < xl)− I(bl < 1)I(bl < xl)

= 1− I(al > −1) + I(al > −1)I(0 < xl − al)− I(bl < 1)I(0 < xl − bl)

= 1− I(al > −1) +
I(al > −1)

2
+
∞∑
j=1

2I(al > −1)

π(2j − 1)
sin
(
(2j − 1)(xl − al)

)
− I(bl < 1)

2
−
∞∑
j=1

2I(bl < 1)

π(2j − 1)
sin
(
(2j − 1)(xl − bl)

)
=
(
1− I(al > −1)

2
− I(bl < 1)

2

)
.1

+
∞∑
j=1

2I(bl < 1) sin
(
(2j − 1)bl

)
− 2I(al > −1) sin

(
(2j − 1)al

)
π(2j − 1)

. cos
(
(2j − 1)xl

)
+
∞∑
j=1

2I(al > −1) cos
(
(2j − 1)al

)
− 2I(bl < 1) cos

(
(2j − 1)bl

)
π(2j − 1)

. sin
(
(2j − 1)xl

)
(4.11)

And, again for convenience, we define:

g0(m) =
(
1− I(al>−1)

2
− I(bl<1)

2

)
and

g2j−1(al, bl) =
2I(bl<1) sin

(
(2j−1)bl

)
−2I(al>−1) sin

(
(2j−1)al

)
π(2j−1)

g2j(al, bl) =
2I(al>−1) cos

(
(2j−1)al

)
−2I(bl<1) cos

(
(2j−1)bl

)
π(2j−1)

for j ∈ Z+.

Then we have:

I(al ≤ xl ≤ bl) =
∞∑
j=0

cj(xl)gj(al, bl). (4.12)

However, for a given neighborhood (al, bl), the above series expansion of I(al ≤
xl ≤ bl) does not converges to its value uniformly for all xl ∈ (−1, 1). For the indicator

function g(z) = I(z < 0), partial sums of Fourier expansion converges point-wise to

its limit except at z = 0, and also we do not have uniform convergence of the Fourier

series for I(z > 0). In the next section, we will see if we stay away from 0, partial

76

sums of Fourier expansion of I(0 < z) converges uniformly to its value in the interval

(−π, π) \ (−δ, δ) for any δ > 0.

For a general set S, let us introduce notations S1 = S and S0 = Φ(Null set). For

a general interval (al, bl) ⊆ [−1, 1] of xl and any δ > 0, define sets

P(al,bl) = (−1, 1) \
(
{al}I(al>−1) ∪ {bl}I(bl<1)

)
U δ

(al,bl)
= (−1, 1) \

(
(al − δ, al + δ)I(al>−1) ∪ (bl − δ, bl + δ)I(bl<1)

) (4.13)

Define,P(a,b) = ×pl=1P(al,bl) and U δ
(a,b) = ×pl=1U

δ
(al,bl)

Then from the equations

4.1,4.7 and 4.11, for x ∈ P(a,b), we have the series expansion:

It(m, a,b,x) =
∞∑
j=0

(
cj(xt)fj(m)

) p∏
l=1

(∞∑
j=0

cj(xl)gj(al, bl)
)

(4.14)

Also, in the next section, we will see that, given any δ > 0, the series expansion

in 4.14 converges uniformly to its limit for x ∈ U δ
(a,b).

4.2.2 Approximation:

We approximate It(m, a,b,x) with IJt (m, a,b,x), we consider Jth partial sum for

Fourier expansions of |xt −m| and I(al < xl < bl) for 1 ≤ l ≤ p,

IJt (m, a,b,x) =
(2J∑
j=0

cj(xt)fj(m)
) p∏
l=1

(2J∑
j=0

cj(xl)gj(al, bl)
)

(4.15)

Let NJ = {0, 1, · · · , 2J}, and let j = {j1, · · · , jp} denote a general index element

of N[p]
J = NJ × · · · × NJ(p times). Define c

[t]
k,j(x) = ck(xt)

∏p
l=1 cjl(xl) and gj(a,b) =∏p

l=1 gjl(al, bl).

Then,

IJt (m, a,b,x) =
2J∑
j=0

∑
j∈N[p]

J

ck(xt)fk(m)

p∏
l=1

cjl(xl)gjl(al, bl)

=
∑

{k,j}∈N[p+1]
J

c
[t]
k,j(x)fk(m)gj(a,b)

(4.16)

77

Define the error in approximation as eJt (m, a,b,x) = It(m, a,b,x)−IJt (m, a,b,x).

The approximation of Ft(m, a,b,X) will be F J
t (m, a,b,X) defined as:

F J
t (m, a,b,X) =

∑
x∈X

IJt (m, a,b,x) =
∑
x∈X

∑
{k,j}∈N[p+1]

J

c
[t]
k,j(x)fk(m)gj(a,b)

(4.17)

This is a finite sum and we can exchange summation to get:

F J
t (m, a,b,X) =

∑
{k,j}∈N[p+1]

J

fk(m)gj(a,b)
∑
x∈X

c
[t]
k,j(x) (4.18)

Let C
[t]
k,j(X) =

∑
x∈X c

[t]
k,j(x) and C̄

[t]
k,j(X) =

C
[t]
k,j(X)

N(X)
, then

F J
t (m, a,b,X) =

∑
{k,j}∈N[p+1]

J

fk(m)gj(a,b)C
[t]
k,j(X) (4.19)

and

fJt (m, a,b,X) =
1

N(X)
F J
t (m, a,b,X) =

∑
{k,j}∈N[p+1]

J

fk(m)gj(a,b)C̄
[t]
k,j(X) (4.20)

Define the total error eJt (m, a,b,X) and the average error ēJt (m, a,b,X) as

eJt (m, a,b,X) = Ft(m, a,b,X)− F J
t (m, a,b,X)

ēJt (m, a,b,X) = ft(m, a,b,X)− fJt (m, a,b,X)
(4.21)

4.3 Stochastic Properties of the Error term

In these section, we assume that all the x observations are i.i.d. realizations of a

p variate random variable x̃ for x ∈ X. In this section we will show that, if x̃ has a

density, then the expected value of eJt (m, a,b, x̃) approaches 0, if we keep increasing

J . We assume that t, m, a and b are given and constant in this section.

Also for reference let us write down Jth partial sums the Fourier series expansion

of f(z) = |z| and g(z) = I(z > 0) as mentioned in equations 4.8 and 4.12, we define

78

|z|[J] =
π

2
− 4

π

J∑
j=1

cos
(
(2j − 1)z

)
(2j − 1)2

IJ(0 < z) =
1

2
+

2

π

J∑
j=1

sin
(
(2j − 1)z

)
(2j − 1)

(4.22)

Also, define

|z −m|[J] =
2J∑
j=0

fj(m)cj(z)

I [J](a < z < b) =
2J∑
j=0

gj(m)cj(z)

(4.23)

We need a few lemmas for the final result

Lemma 4.3.1. The sequence of functions |z|[J] converge uniformly to the limit |z| in

the interval [−π, π], and hence are uniformly bounded in the interval [−π, π].

Corollary 4.3.2. Given m ∈ (−1, 1), the sequence of functions |z −m|[J] converges

uniformly to its |z −m| limit in (−1, 1).

Lemma 4.3.3. The sequence of functions I [J](0 < z) converge uniformly to the limit

I(0 < z) in the interval [−π,−δ)⋃(δ, π], for any 0 < δ < π.

Corollary 4.3.4. Given −1 < a < b < 1, the sequence of functions I [J](a < z < b)

converges uniformly to its limit I(a < z < b) in [(−1, 1)\{(a−δ, a+δ)
⋃

(b−δ, b+δ)}],
for any 0 < δ < 1.

Lemma 4.3.5. The sequence of functions I [J](0 < z) are uniformly bounded in the

interval [−π, π].

Remember the functions It(m, a,b,x) and IJt (m, a,b,x) defined in 4.1 and 4.16.

We have:

It(m, a,b,x) = |xt −m|
p∏
l=1

(
I(al < xl < bl)

)
(4.24)

79

and

IJt (m, a,b,x) = |xt −m|[J]

p∏
l=1

I[J](al < xl < bl) (4.25)

Consider p dimensional variable z. Let E ⊂ Rp, and let FJ(z) and GJ(z) are two

sequences of real-valued functions converging uniformly to their limiting real-valued

functions F (z) and G(z), on E. We need the following lemma from Real Analysis:

Lemma 4.3.6. If FJ(z) and GJ(z) are uniformly bounded in E, then, their product

FJ(z)GJ(z) uniformly converges to the function F (z)G(z) on E.

For δ > 0, let Na,b
δ be defined as the interval: Na,b

δ =
(
a−δ, a+δ)∪(b−δ,b+δ)

)
∈

E = (−1, 1)p.

Theorem 4.3.7. For any given m, a and b; FJ(x) = IJt (m, a,b,x) uniformly con-

verges to F (x) = It(m, a,b,x) on E −Na,b
δ for δ > 0.

Theorem 4.3.8. Let eJt (m, a,b,x) = It(m, a,b,x)−IJt (m, a,b,x). Let P : B(−1, 1)p 7→
[0, 1], be a Probability-Measure absolutely continuous with respect to the Lebesgue mea-

sure λ on B(−1, 1)p. Then EP (eJt (m, a,b,x))→ 0 as J →∞.

Suppose x̃ is a bounded random variable. Then we have the following theorem:

Theorem 4.3.9. ēJt (m, a,b,X) = 1
N(X)

∑
x∈X e

J
t (m, a,b,x) → 0, almost surely in

E.

4.4 KD-Tree construction algorithms

Recall our data X is a distributed Big-Data, divided in R subsets X1, · · · ,XR

and we are trying to construct a KD tree from this data. The data is multivariate,

an observation x has p coordinates: x = (x1, · · · , xp).
Remember, the equivalent version of canonical KD-tree construction procedure in

section 4.2, we start with the interval ((−1, · · · ,−1), (1, · · · , 1)) and at dth step we

divide 2d−1 intervals obtained from previous step along a coordinate xt at the median

of xts for each of these intervals. We get the medians by minimizing equation 4.5 and

80

as seen in section 4.2if we have the medians m0
1(X); m1

1(X), m1
2(X); · · · ; mD−1

1 (X),

· · · , mD−1
2D−1(X), then we can construct the whole KD tree, we need to compute 2D−1

medians to construct KD-tree of depth D.

For large, distributed data, it is not easy to optimize the function in equation

4.5. An iterative D&R procedure will be very time consuming, we have to read the

same data over and over for each iteration. As an alternative, we can use the EP-

FQ method or Binning method as described in chapter 3.3 to get the medians for

distributed data. Then, we have to perform a 2 map-reduce step to add each new

level, during the construction of the KD-tree. First D&R step to divide the data in

neighborhoods (except 1st level, because every data point lie inside
(
(−1, · · · ,−1),

(1, · · · , 1)
)

at the beginning) and second D&R step to calculate medians. Then the

KD-tree construction is an iterative procedure consisting 2D−1 D&R steps (2D steps

if the data requires scaling).

4.4.1 EP-FKD0 algorithm

Now, we know that, we can accurately approximate ft(m, a,b,X) by fJt (m, a,b,X).

We choose J w.r.t. our desired accuracy. Then we can get an approximate conditional

median as:

m̂J
t (a,b,X) = arg min

m∈(at,bt)

fJt m, a,b,X(m) = arg min
m∈(at,bt)

1

N(X)

∑
x∈X

IJt (m, a,b,x) (4.26)

From equation 4.20, we have

m̂J
t (a,b,X) = arg min

m∈(at,bt)

∑
{k,j}∈N[p+1]

J

fi(m)Gj(a,b)C̄t
k,j(X) (4.27)

Ct
k,j(X) is SOT (and hence SEP) statistic for any {t, k, j}. Hence C̄t

k,j(X) =
Ctk,j(X)

N(X)
is WEP statistic for any {t, k, j} and they all can be computed by a single D&R

step. In this section we describe D&R implementation of this idea which we are going

to call the EP-FKD0 algorithm. First, we fix an integer J . Again, we use Map- Reduce

81

to implement EP-FKD0 via R package datadr. In D&R step of EP-FKD0 we compute

statistics N(X) and Ct
k,j(X) for t = 1, · · · , p and {k, j} ∈ N[p+1]

J . The number of SEP

statistics we compute in D&R step of EP-FKD0 is n{EP−FKD0} = (2J + 1)p+1 + 1.

The division method[D] divides the data in subsets and stores in HDFS. In EP-FQ

we compute EP statistics independent of the division method used, and the the D&R

output we get in EP-FQ would be same for any division of the data. Entire data X

is divided in R subsets X1, · · · , XR. The observations are p-dimensional vectors and

the data structure in each subset are numeric matrices. For the Map-Reduce model,

initial Map inputs are R number of key-value pairs {1,X1}, · · · , {R,XR}.
Afterwards, an analytic method[A] is applied to subset data, this part of D&R

is Embarrassingly parallel, computation is done within the subsets and without any

interaction between the subsets and carried out in Map stage of Map-Reduce model.

In a general rth subset Xr, for each observation x of Xr, we compute n{EP−FKD0}

summands: ctk,j(x) for t = 1, · · · , p and {k, j} ∈ N[p+1]
J and take a sum over all x in

Xr to get subset statistics Ct
k,j(Xr) for t = 1, · · · , p, {k, j} ∈ N[p+1]

J . When we are

computing these summands, we need to make sure the computation is memory-space

efficient and non repetitive. (See the Appendix B.10 for an efficient simultaneous

computation of these summand terms). We also count N(Xr), the number of ob-

servations in Xr. These are values for Map output key-value pair, we assign the

tuple {t, k, j} as key. So, for the rth subset, the Map output or the intermediate

key-value pairs of Map-Reduce model are {{t, k, j}, Ct
k,j(Xr)} for t = 1, · · · , p and

{k, j} ∈ N[p+1]
J .

Finally, for the recombination method[R], since X is a disjoint union of X1, · · · ,
XR, for t = 1, · · · , p and {k, j} ∈ N[p+1]

J , we have, Ct
k,j(X) =

∑
x∈X ctk,j(x) =∑

x∈∪Rr=1Xr
ctk,j(x) =

∑R
r=1

(∑
x∈Xr

ctk,j(x)
)

=
∑R

r=1C
t
k,j(Xr). Similarly, N(X) =∑R

r=1N(Xr). So, in the Reduce stage, for each key {t, k, j}, we add corresponding

values from the set of all intermediate key-value pairs. Final Map-Reduce output is

the set of key-value pairs {{t, k, j}, Ct
k,j(Xr)} for t = 1, · · · , p and {k, j} ∈ N[p+1]

J .

82

We read the Map-Reduce output key-value pairs in the front-end machine to get

our D&R output Ct
k,j(Xr)} for t = 1, · · · , p and {k, j} ∈ N[p+1]

J . Then, m̂J
0,1(X);

m̂J
1,1(X), m̂J

1,2(X); · · · ; m̂J
D−1,1(X), · · · , m̂J

D−1,2D−1(X) can all be computed in post

reduce optimization. For each J , The collection of approximate conditional median

values corresponds to a KD-tree, and this sequence of KD-tree is our approximation to

the actual KD-tree. We will provide simulation studies to demonstrate how accurate

these approximate KD-trees are if we keep increasing J .

See Appendix B.11 for an algorithmic flow chart of EP-FKD0.

4.4.2 EP-FKD algorithm

In this section we briefly discuss how we can improve the run-time of EP-FKD,

while keeping the accuracy unchanged. For real variable z ∈ (−1, 1), unknown

parameter m ∈ (−1, 1) and interval [a, b] ⊆ [−1, 1], let us define IJ(z,m, a, b) =

|z −m|[J]I [J](a < z < b). Then we have the following lemma:

Lemma 4.4.1.

IJ(z,m, a, b) =
J∑
j=0

ωj(m, a, b)cj(z) +
4J−2∑
j=0

ξJj (m, a, b)ζj(z)

IJt (x,m, a,b) =
∑
j∈N[p]

J

ωjt(m, at, bt)gj-t(a,b)cj(x)

+
∑

j∈N[p,t]
J

ξJjt(m, at, bt)gj-t(a,b)ζ
[J,t]
j (x)

Where,

ζ0(z) = 1; ζ2j−1(z) = cos(2jz); ζ2j(z) = sin(2jz);ω0(m, a, b) =
π

4
;

ω2j−1(m, a, b)

=
sin
(
(2j − 1)b

)
I(b < 1)− sin

(
(2j − 1)a

)
I(a > −1)

(2j − 1)
− 2 cos

(
(2j − 1)m

)
π(2j − 1)2

;

ω2j(m, a, b)

=
cos
(
(2j − 1)a

)
I(a > −1)− cos

(
(2j − 1)b

)
I(b < 1)

(2j − 1)
− 2 sin

(
(2j − 1)m

)
π(2j − 1)2

;

83

ξJ0 (m, a, b) =
J∑
k=1

Ck,k(m, a, b)

ξJ2j−1(m, a, b);

=

j∑
k=max{1,j−J+1}

Ak,j−k+1(m, a, b) + I(j < J)

J−j∑
k=1

(
Ck+j,k(m, a, b) + Ck,k+j(m, a, b)

)
ξJ2j(m, a, b);

=

j∑
k=max{1,j−J+1}

Bk,j−k+1(m, a, b) + I(j < J)

J−j∑
k=1

(
Dk+j,k(m, a, b)−Dk,k+j(m, a, b)

)
here,

Aj,k(m, a, b)

=
8
(

sin
(
(2j − 1)m+ (2k − 1)a

)
I(a > −1)− sin

(
(2j − 1)m+ (2k − 1)b

)
I(b < 1)

)
π2(2j − 1)2(2k − 1)

;

Bj,k(m, a, b)

=−
8
(

cos
(
(2j − 1)m+ (2k − 1)a

)
I(a > −1)− cos

(
(2j − 1)m+ (2k − 1)b

)
I(b < 1)

)
π2(2j − 1)2(2k − 1)

;

Cj,k(m, a, b)

=−
8
(

sin
(
(2j − 1)m− (2k − 1)a

)
I(a > −1)− sin

(
(2j − 1)m− (2k − 1)b

)
I(b < 1)

)
π2(2j − 1)2(2k − 1)

;

Dj,k(m, a, b)

=
8
(

cos
(
(2j − 1)m− (2k − 1)a

)
I(a > −1)− cos

(
(2j − 1)m− (2k − 1)b

)
I(b < 1)

)
π2(2j − 1)2(2k − 1)

From the second identity in lemma 4.4.1 and equation 4.20, we have:

m̂J
t (a,b,X)

= arg min
m∈(at,bt)

∑
x∈X

(∑
j∈N[p]

J

ωjt(m, at, bt)gj-t(a,b)cj(x) +
∑

j∈N[p,t]
J

ξJjt(m, at, bt)gj-t(a,b)ζ
[J,t]
j (x)

)
(4.28)

84

Interchanging summations, we get

m̂J
t (a,b,X)

= arg min
m∈(at,bt)

(∑
j∈N[p]

J

ωjt(m, at, bt)gj-t(a,b)cj(x) +
∑

j∈N[p,t]
J

ξJjt(m, at, bt)gj-t(a,b)ζ
[J,t]
j (x)

)
(4.29)

We optimize the right side of equation 4.29 w.r.t. m, as opposed to the right side of

equation 4.29. In EP-FKD, we compute p dimensional statistics matrices {{cj(X)}}
for j ∈ N[p]

J and {{ζ [J,t]
j (X)}} for j ∈ N[p,t]

J , t = 1, · · · , p. All these statistics are

SOT(hence SEP) statistics and can be computed in one single D&R step.

Realize that the number of SEP statistics we compute in this process is nEP−FKD =

(2J + 1)p + p ∗ (4J − 2) ∗ (2J + 1)p−1 = (2J + 1)p−1
(
2J + 1 + p ∗ (4J − 2)

)
We have

nEP−FKD < nEP−FKD0. The details of the D&R procedure of EP-FKD is exactly

similar to the D&R procedure of EP-FKD0, and we are skipping it. See Appendix

B.13 for algorithmic flow-chart of EP-FKD and see Appendix B.12 for efficient com-

putation of summand terms in EP-FKD.

4.5 Performance Study

4.5.1 Data generation

In this section, we are going to demonstrate accuracy and run-time of EP-FKD

algorithm for constructing KD-tree of simulated data. For data, we simulate obser-

vations from multivariate normal distribution with zero means and equi- correlated

correlation matrix. So all x ∈ X are i.i.d. ∼ Np(µ,Σ
[r]). Here, µp×1 = 0′p and

Σ
[r]
p×p = (1− r)Ip + rJp, here r is the common correlation between each pair of vari-

ables. We take p = 2, 3 and r = 0, 0.25, 0.5, 0.75 for our simulation. We simulate as

distributed sequence-files and store the data in HDFS.

For each combination of p and r, we simulate N = 199×159×199×159(≈ 1 billion)

observations. We divide the data into 199 blocks in HDFS, each block contains 159

85

subsets, and each subset has 159×199 random observations. This simulation process

creates blocks of size 85.4 MB for p = 2 and 125.7 MB for p = 3, so we are within the

range of it Cloudera recommended block size for optimum Hadoop job. The cluster

we use has 200 nodes and number of blocks is chosen to be 200 − 1 = 199, so that

each container gets one process to run at a time.

In the R package drEP we have function drKDtree() which implements EP-FKD

to construct KD-tree for distributed data, which we use for demonstration.

4.5.2 Accuracy comparison

For a distributed big data, it is difficult to judge accuracy in terms of cell bound-

aries. The exact KD-tree construction is impractical and simply not feasible. So, we

judge accuracy in terms of cell-counts. Even if the conditional median calculations

are not very accurate, the approximate KD-tree serves the purpose of dividing data

into equal subsets, if the cell counts are close to each other. We construct KD-tree for

each combination of p and r, and make a QQ-plot to see distributions of cell counts

at each level from 6 to 13 (KD-tree depth from 5 to 12.)

86

Equi-correlated Bi-variate Standard Normal

Data X = i. i. d. observations of x~ ~ N2 (mu = 0 , Sigma = I2), r = 0

Normal Quantiles

Q
u

a
n

ti
le

s
 f
o

r
lo

g
2
(C

e
ll−

c
o

u
n

ts
)

5
1
0

1
5

2
0

−4 −2 0 2 4

d = 12

J = 10

1
0

1
5

2
0

d = 11

J = 10

1
6

1
8

2
0

−4 −2 0 2 4

d = 10

J = 10

1
9

2
0

2
1

2
2

d = 9

J = 10

2
1
.5

2
2
.0

2
2
.5

−4 −2 0 2 4

d = 8

J = 10

2
2
.4

2
2
.8

2
3
.2

d = 7

J = 10

2
3
.6

2
4
.0

−4 −2 0 2 4

d = 6

J = 10

2
4
.6

2
4
.8

2
5
.0

d = 5

J = 10

1
7
.0

1
8
.0

d = 12

J = 20

1
8
.4

1
8
.8

1
9
.2

d = 11

J = 20

1
9
.6

1
9
.9

2
0
.2 d = 10

J = 20

2
0
.7

2
0
.9

2
1
.1 d = 9

J = 20

2
1
.8

0
2
1
.9

0

d = 8

J = 20

2
2
.8

5
2
2
.9

5

d = 7

J = 20

2
3
.8

6
2
3
.9

2

d = 6

J = 20

2
4
.8

8
2
4
.9

2

d = 5

J = 20

1
7
.6

1
8
.0

d = 12

J = 30

1
8
.7

1
8
.9

1
9
.1

d = 11

J = 30

1
9
.8

0
1
9
.9

0
2
0
.0

0 d = 10

J = 30

2
0
.8

0
2
0
.9

0

d = 9

J = 30

2
1
.8

5
2
1
.9

5 d = 8

J = 30

2
2
.8

4
2
2
.9

0

d = 7

J = 30

2
3
.8

6
2
3
.9

0
2
3
.9

4 d = 6

J = 30

2
4
.8

8
2
4
.9

1

d = 5

J = 30

1
7
.7

1
7
.9

d = 12

J = 40

1
8
.7

5
1
8
.9

0

d = 11

J = 40

1
9
.8

0
1
9
.9

0

d = 10

J = 40

2
0
.8

0
2
0
.9

0

d = 9

J = 40

2
1
.8

5

d = 8

J = 40

2
2
.8

4
2
2
.8

8
2
2
.9

2

d = 7

J = 40

2
3
.8

7
2
3
.9

0

d = 6

J = 40

2
4
.8

8
2
4
.9

0

d = 5

J = 401
7
.8

0
1
7
.9

5

d = 12

J = 50

−4 −2 0 2 4

1
8
.8

0
1
8
.9

0
1
9
.0

0 d = 11

J = 50

1
9
.8

5
1
9
.9

5

d = 10

J = 50

−4 −2 0 2 4

2
0
.8

4
2
0
.9

0
2
0
.9

6 d = 9

J = 50

2
1
.8

8
2
1
.9

2
2
1
.9

6 d = 8

J = 50

−4 −2 0 2 4

2
2
.8

8
2
2
.9

1
2
2
.9

4 d = 7

J = 50

2
3
.8

9
2
3
.9

1

d = 6

J = 50

−4 −2 0 2 4

2
4
.8

9
0

2
4
.9

0
5

d = 5

J = 50

Figure 4.2. Accuracy in KD-tree construction by EP-FKD: ρ = 0, p = 2

87

Data X = i. i. d. observations of x~ ~ N2 (mu = 0 , Sigma=0.75I2+0.25J2), r = 0.25

Normal Quantiles

Q
u

a
n

ti
le

s
 f
o

r
lo

g
2
(C

e
ll−

c
o

u
n

ts
)

5
1
0

1
5

2
0

−4 −2 0 2 4

d = 12

J = 10

1
0

1
5

2
0

d = 11

J = 10

1
2

1
4

1
6

1
8

2
0

2
2

−4 −2 0 2 4

d = 10

J = 10

1
4

1
6

1
8

2
0

2
2

d = 9

J = 10

2
1
.0

2
2
.0

−4 −2 0 2 4

d = 8

J = 10

2
2
.5

2
3
.0

2
3
.5 d = 7

J = 10

2
3
.6

2
4
.0

−4 −2 0 2 4

d = 6

J = 10

2
4
.6

2
4
.8

2
5
.0

d = 5

J = 10

1
7
.0

1
8
.0

d = 12

J = 20

1
8
.0

1
9
.0

d = 11

J = 20

1
9
.6

2
0
.0

d = 10

J = 20

2
0
.6

2
0
.9

d = 9

J = 20

2
1
.7

5
2
1
.9

0

d = 8

J = 20

2
2
.8

0
2
2
.9

0

d = 7

J = 20

2
3
.8

6
2
3
.9

2

d = 6

J = 20

2
4
.8

6
2
4
.9

0
2
4
.9

4

d = 5

J = 20

1
7
.6

1
8
.0

d = 12

J = 30

1
8
.6

1
8
.9

1
9
.2 d = 11

J = 30

1
9
.7

5
1
9
.9

0

d = 10

J = 30

2
0
.7

5
2
0
.9

0

d = 9

J = 30

2
1
.8

0
2
1
.9

0

d = 8

J = 30

2
2
.8

4
2
2
.9

0

d = 7

J = 30

2
3
.8

4
2
3
.9

0

d = 6

J = 30

2
4
.8

6
2
4
.9

0

d = 5

J = 30

1
7
.7

1
7
.9

1
8
.1 d = 12

J = 40

1
8
.7

1
8
.9

d = 11

J = 40

1
9
.8

0
1
9
.9

0

d = 10

J = 40

2
0
.8

0
2
0
.9

0

d = 9

J = 40

2
1
.8

5
2
1
.9

5 d = 8

J = 40

2
2
.8

4
2
2
.9

0

d = 7

J = 40

2
3
.8

7
2
3
.9

0

d = 6

J = 40

2
4
.8

7
2
4
.9

0

d = 5

J = 40

1
7
.8

0
1
7
.9

5

d = 12

J = 50

−4 −2 0 2 4

1
8
.8

0
1
8
.9

0
1
9
.0

0 d = 11

J = 50

1
9
.8

5
1
9
.9

5 d = 10

J = 50

−4 −2 0 2 4

2
0
.8

4
2
0
.9

0

d = 9

J = 50

2
1
.8

8
2
1
.9

2

d = 8

J = 50

−4 −2 0 2 4

2
2
.8

8
2
2
.9

2

d = 7

J = 50

2
3
.8

9
2
3
.9

1

d = 6

J = 50

−4 −2 0 2 4

2
4
.8

9
0

2
4
.9

0
5

d = 5

J = 50

Figure 4.3. Accuracy in KD-tree construction by EP-FKD: ρ = 0.25,
p = 2

88

Data X = i. i. d. observations of x~ ~ N2 (mu = 0 , Sigma=0.5I2+0.5J2), r = 0.5

Normal Quantiles

Q
u

a
n

ti
le

s
 f
o

r
lo

g
2
(C

e
ll−

c
o

u
n

ts
)

5
1
0

1
5

2
0

−4 −2 0 2 4

d = 12

J = 10

5
1
0

1
5

2
0

d = 11

J = 10

1
0

1
5

2
0

−4 −2 0 2 4

d = 10

J = 10

1
2

1
6

2
0

d = 9

J = 10

2
0

2
1

2
2

2
3

−4 −2 0 2 4

d = 8

J = 10

2
1
.0

2
2
.0

2
3
.0

d = 7

J = 10

2
3
.6

2
4
.0

−4 −2 0 2 4

d = 6

J = 10

2
4
.6

2
4
.9

2
5
.2 d = 5

J = 10

1
4

1
6

1
8

d = 12

J = 20

1
5

1
6

1
7

1
8

1
9

d = 11

J = 20

1
9
.2

1
9
.8

2
0
.4 d = 10

J = 20

2
0
.4

2
0
.8

2
1
.2

d = 9

J = 20

2
1
.6

2
1
.8

2
2
.0

d = 8

J = 20

2
2
.7

2
2
.9

d = 7

J = 20

2
3
.8

0
2
3
.9

0

d = 6

J = 20

2
4
.8

4
2
4
.9

0

d = 5

J = 20

1
7
.2

1
7
.8

1
8
.4 d = 12

J = 30

1
8
.2

1
8
.6

1
9
.0

d = 11

J = 30

1
9
.7

1
9
.9

2
0
.1

d = 10

J = 30

2
0
.7

2
0
.9

d = 9

J = 30

2
1
.8

5
2
1
.9

5

d = 8

J = 30

2
2
.8

5
2
2
.9

5 d = 7

J = 30

2
3
.8

4
2
3
.9

0

d = 6

J = 30

2
4
.8

6
2
4
.9

0

d = 5

J = 30

1
7
.6

1
7
.8

1
8
.0

1
8
.2 d = 12

J = 40

1
8
.7

1
8
.9

1
9
.1

d = 11

J = 40

1
9
.8

0
1
9
.9

5

d = 10

J = 40

2
0
.8

0
2
0
.9

0
2
1
.0

0 d = 9

J = 40

2
1
.8

5
2
1
.9

5 d = 8

J = 40

2
2
.8

4
2
2
.9

0

d = 7

J = 40

2
3
.8

6
2
3
.9

0

d = 6

J = 40

2
4
.8

7
2
4
.9

0

d = 5

J = 40

1
7
.8

1
8
.0

d = 12

J = 50

−4 −2 0 2 4

1
8
.8

1
9
.0

d = 11

J = 50

1
9
.8

0
1
9
.9

0

d = 10

J = 50

−4 −2 0 2 4

2
0
.8

5
2
0
.9

5 d = 9

J = 50

2
1
.8

4
2
1
.9

0

d = 8

J = 50

−4 −2 0 2 4

2
2
.8

4
2
2
.8

8
2
2
.9

2

d = 7

J = 50

2
3
.8

8
2
3
.9

0
2
3
.9

2 d = 6

J = 50

−4 −2 0 2 4

2
4
.8

9
2
4
.9

1

d = 5

J = 50

Figure 4.4. Accuracy in KD-tree construction by EP-FKD: ρ = 0.5, p = 2

89

Data X = i. i. d. observations of x~ ~ N2 (mu = 0 , Sigma=0.25I2+0.75J2), r = 0.75

Normal Quantiles

Q
u

a
n

ti
le

s
 f
o

r
lo

g
2
(C

e
ll−

c
o

u
n

ts
)

0
5

1
0

1
5

2
0

−4 −2 0 2 4

d = 12

J = 10

5
1
0

1
5

2
0

d = 11

J = 10

5
1
0

1
5

2
0

−4 −2 0 2 4

d = 10

J = 10

1
2

1
6

2
0

d = 9

J = 10

1
4

1
6

1
8

2
0

2
2

2
4

−4 −2 0 2 4

d = 8

J = 10

1
6

1
8

2
0

2
2

2
4

d = 7

J = 10

2
3
.0

2
4
.0

−4 −2 0 2 4

d = 6

J = 10

2
4
.4

2
4
.8

2
5
.2

d = 5

J = 10

1
2

1
4

1
6

1
8

2
0 d = 12

J = 20

1
2

1
4

1
6

1
8

2
0

d = 11

J = 20

1
8

1
9

2
0

d = 10

J = 20

1
9
.0

2
0
.0

2
1
.0

d = 9

J = 20

2
1
.4

2
1
.8

2
2
.2

d = 8

J = 20

2
2
.6

2
2
.9

d = 7

J = 20

2
3
.7

2
3
.9

d = 6

J = 20

2
4
.7

5
2
4
.8

5
2
4
.9

5 d = 5

J = 20

1
6

1
7

1
8

d = 12

J = 30

1
7

1
8

1
9

d = 11

J = 30

1
9
.4

1
9
.8

2
0
.2

d = 10

J = 30

2
0
.6

2
1
.0

d = 9

J = 30

2
1
.8

2
2
.0

d = 8

J = 30

2
2
.8

0
2
2
.9

0
2
3
.0

0 d = 7

J = 30

2
3
.8

6
2
3
.9

2

d = 6

J = 30

2
4
.8

6
2
4
.9

2

d = 5

J = 30

1
7
.5

1
8
.0

d = 12

J = 40

1
8
.5

1
9
.0

d = 11

J = 40

1
9
.7

1
9
.9

2
0
.1

d = 10

J = 40

2
0
.8

2
1
.0

d = 9

J = 40

2
1
.8

0
2
1
.9

0

d = 8

J = 40

2
2
.8

5
2
2
.9

5

d = 7

J = 40

2
3
.8

2
2
3
.8

8
2
3
.9

4 d = 6

J = 40

2
4
.8

4
2
4
.9

0

d = 5

J = 40

1
7
.6

1
8
.0

d = 12

J = 50

−4 −2 0 2 4

1
8
.6

1
9
.0

d = 11

J = 50

1
9
.7

5
1
9
.9

0
2
0
.0

5 d = 10

J = 50

−4 −2 0 2 4

2
0
.8

0
2
0
.9

5

d = 9

J = 50

2
1
.8

5
2
1
.9

5

d = 8

J = 50

−4 −2 0 2 4

2
2
.8

4
2
2
.9

0

d = 7

J = 50

2
3
.8

6
2
3
.9

0
2
3
.9

4 d = 6

J = 50

−4 −2 0 2 4

2
4
.8

8
2
4
.9

2

d = 5

J = 50

Figure 4.5. Accuracy in KD-tree construction by EP-FKD: ρ = 0.75,
p = 2

90

Equi-correlated Tri-variate Normal

Data X = i. i. d. observations of x~ ~ N3 (mu = 0 , Sigma = I3), r = 0

Normal Quantiles

Q
u

a
n

ti
le

s
 f
o

r
lo

g
2
(C

e
ll−

c
o

u
n

ts
)

1
6

1
7

1
8

1
9

−4 −2 0 2 4

d = 12

J = 8

1
8

1
9

2
0

d = 11

J = 8

1
9
.0

2
0
.0

2
1
.0

−4 −2 0 2 4

d = 10

J = 8

2
0
.5

2
1
.0

2
1
.5

d = 9

J = 8

2
1
.4

2
1
.8

2
2
.2

−4 −2 0 2 4

d = 8

J = 8

2
2
.6

2
3
.0

d = 7

J = 8

2
3
.6

2
3
.9

2
4
.2

−4 −2 0 2 4

d = 6

J = 8

2
4
.7

2
4
.9

2
5
.1 d = 5

J = 8

1
7
.0

1
8
.0

1
9
.0

d = 12

J = 10

1
8
.5

1
9
.5

d = 11

J = 10

1
9
.5

2
0
.0

2
0
.5

d = 10

J = 10

2
0
.4

2
0
.8

2
1
.2

d = 9

J = 10

2
1
.4

2
1
.8

2
2
.2

d = 8

J = 10

2
2
.6

2
3
.0

d = 7

J = 10

2
3
.7

2
3
.9

2
4
.1

d = 6

J = 10

2
4
.8

2
5
.0

d = 5

J = 10

1
7
.5

1
8
.0

1
8
.5

d = 12

J = 12

1
8
.2

1
8
.8

1
9
.4

d = 11

J = 12

1
9
.4

1
9
.8

2
0
.2

d = 10

J = 12

2
0
.6

2
1
.0

d = 9

J = 12

2
1
.6

2
1
.8

2
2
.0

d = 8

J = 12

2
2
.7

2
2
.9

2
3
.1 d = 7

J = 12

2
3
.8

2
4
.0

d = 6

J = 12

2
4
.8

0
2
4
.9

0
2
5
.0

0 d = 5

J = 12

1
7
.4

1
7
.8

1
8
.2

d = 12

J = 14

1
8
.4

1
8
.8

1
9
.2

d = 11

J = 14

1
9
.6

2
0
.0

d = 10

J = 14

2
0
.6

2
0
.8

2
1
.0

d = 9

J = 14

2
1
.7

2
1
.9

d = 8

J = 14

2
2
.7

5
2
2
.9

0

d = 7

J = 14

2
3
.8

0
2
3
.9

0
2
4
.0

0 d = 6

J = 14

2
4
.8

4
2
4
.9

0
2
4
.9

6 d = 5

J = 14

1
7
.6

1
8
.0

d = 12

J = 16

−4 −2 0 2 4

1
8
.6

1
8
.8

1
9
.0

d = 11

J = 16

1
9
.6

1
9
.8

2
0
.0

d = 10

J = 16

−4 −2 0 2 4

2
0
.7

2
0
.9

d = 9

J = 16

2
1
.7

5
2
1
.9

0

d = 8

J = 16

−4 −2 0 2 4

2
2
.8

0
2
2
.9

0

d = 7

J = 16

2
3
.8

8
2
3
.9

2

d = 6

J = 16

−4 −2 0 2 4

2
4
.8

8
2
4
.9

0
2
4
.9

2 d = 5

J = 16

Figure 4.6. Accuracy in KD-tree construction by EP-FKD: ρ = 0, p = 3

91

Data X = i. i. d. observations of x~ ~ N3 (mu = 0 , Sigma=0.75I3+0.25J3), r = 0.25

Normal Quantiles

Q
u

a
n

ti
le

s
 f
o

r
lo

g
2
(C

e
ll−

c
o

u
n

ts
)

8
1
0

1
4

1
8

−4 −2 0 2 4

d = 12

J = 8

1
0

1
4

1
8

d = 11

J = 8

1
2

1
6

2
0

−4 −2 0 2 4

d = 10

J = 8

2
0
.0

2
1
.0

d = 9

J = 8

2
1
.5

2
2
.0

2
2
.5

−4 −2 0 2 4

d = 8

J = 8

2
2
.5

2
3
.0

d = 7

J = 8

2
3
.6

2
3
.9

2
4
.2

−4 −2 0 2 4

d = 6

J = 8

2
4
.7

2
4
.9

2
5
.1 d = 5

J = 8

1
6

1
7

1
8

1
9

d = 12

J = 10

1
7
.0

1
8
.0

1
9
.0

2
0
.0 d = 11

J = 10

1
8
.5

1
9
.5

2
0
.5

d = 10

J = 10

2
0
.4

2
0
.8

2
1
.2

d = 9

J = 10

2
1
.4

2
1
.8

2
2
.2

d = 8

J = 10

2
2
.6

2
3
.0

d = 7

J = 10

2
3
.7

2
3
.9

2
4
.1

d = 6

J = 10

2
4
.7

2
4
.9

d = 5

J = 10

1
7
.0

1
8
.0

d = 12

J = 12

1
8
.0

1
9
.0

d = 11

J = 12

1
9
.0

1
9
.5

2
0
.0

d = 10

J = 12

2
0
.4

2
0
.8

2
1
.2 d = 9

J = 12

2
1
.6

2
2
.0

d = 8

J = 12

2
2
.6

2
2
.8

2
3
.0

d = 7

J = 12

2
3
.7

2
3
.9

d = 6

J = 12

2
4
.7

5
2
4
.9

0

d = 5

J = 121
7
.2

1
7
.8

1
8
.4

d = 12

J = 14

1
8
.4

1
8
.8

1
9
.2

d = 11

J = 14

1
9
.4

1
9
.8

2
0
.2

d = 10

J = 14

2
0
.5

2
0
.7

2
0
.9

2
1
.1

d = 9

J = 14

2
1
.6

2
1
.8

2
2
.0

d = 8

J = 14

2
2
.7

2
2
.9

d = 7

J = 14

2
3
.8

0
2
3
.9

5

d = 6

J = 14

2
4
.8

5
2
4
.9

5

d = 5

J = 14

1
7
.4

1
7
.8

1
8
.2

d = 12

J = 16

−4 −2 0 2 4

1
8
.6

1
9
.0

d = 11

J = 16

1
9
.6

2
0
.0

d = 10

J = 16

−4 −2 0 2 4

2
0
.7

2
0
.9

d = 9

J = 16

2
1
.7

2
1
.9

d = 8

J = 16

−4 −2 0 2 4

2
2
.7

5
2
2
.8

5
2
2
.9

5

d = 7

J = 16

2
3
.8

4
2
3
.9

0

d = 6

J = 16

−4 −2 0 2 4

2
4
.8

6
2
4
.9

0
2
4
.9

4 d = 5

J = 16

Figure 4.7. Accuracy in KD-tree construction by EP-FKD: ρ = 0.25,
p = 3

92

Data X = i. i. d. observations of x~ ~ N3 (mu = 0 , Sigma=0.5I3+0.5J3), r = 0.5

Normal Quantiles

Q
u

a
n

ti
le

s
 f
o

r
lo

g
2
(C

e
ll−

c
o

u
n

ts
)

5
1
0

1
5

2
0

−4 −2 0 2 4

d = 12

J = 8

1
0

1
5

2
0

d = 11

J = 8

1
2

1
4

1
6

1
8

2
0

−4 −2 0 2 4

d = 10

J = 8

1
9
.0

2
0
.0

2
1
.0

2
2
.0 d = 9

J = 8

2
0
.0

2
1
.0

2
2
.0

−4 −2 0 2 4

d = 8

J = 8

2
1
.5

2
2
.5

2
3
.5

d = 7

J = 8

2
3
.6

2
3
.8

2
4
.0

2
4
.2

−4 −2 0 2 4

d = 6

J = 8

2
4
.7

2
4
.9

2
5
.1

d = 5

J = 8

1
0

1
2

1
4

1
6

1
8

2
0 d = 12

J = 10

1
2

1
4

1
6

1
8

2
0

d = 11

J = 10

1
2

1
4

1
6

1
8

2
0

d = 10

J = 10

2
0
.5

2
1
.0

2
1
.5

d = 9

J = 10

2
1
.2

2
1
.8

2
2
.4

d = 8

J = 10

2
2
.4

2
2
.8

2
3
.2

d = 7

J = 10

2
3
.6

2
3
.8

2
4
.0

2
4
.2 d = 6

J = 10

2
4
.7

2
4
.9

2
5
.1 d = 5

J = 10

1
6

1
7

1
8

1
9

d = 12

J = 12

1
7

1
8

1
9

d = 11

J = 12

1
8
.0

1
9
.0

2
0
.0

d = 10

J = 12

2
0
.4

2
0
.8

2
1
.2

d = 9

J = 12

2
1
.4

2
1
.8

2
2
.2

d = 8

J = 12

2
2
.6

2
3
.0

d = 7

J = 12

2
3
.7

2
3
.9

2
4
.1

d = 6

J = 12

2
4
.7

5
2
4
.9

0
2
5
.0

5 d = 5

J = 12

1
7
.0

1
8
.0

d = 12

J = 14

1
8
.0

1
9
.0

d = 11

J = 14

1
9
.0

2
0
.0

d = 10

J = 14

2
0
.4

2
0
.8

2
1
.2

d = 9

J = 14

2
1
.6

2
2
.0

d = 8

J = 14

2
2
.6

2
2
.8

2
3
.0

d = 7

J = 14

2
3
.8

2
4
.0

d = 6

J = 14

2
4
.8

0
2
4
.9

0
2
5
.0

0 d = 5

J = 14

1
7
.5

1
8
.0

1
8
.5 d = 12

J = 16

−4 −2 0 2 4

1
8
.2

1
8
.8

1
9
.4 d = 11

J = 16

1
9
.4

1
9
.8

2
0
.2

d = 10

J = 16

−4 −2 0 2 4

2
0
.6

2
0
.9

d = 9

J = 16

2
1
.6

2
1
.8

2
2
.0

d = 8

J = 16

−4 −2 0 2 4

2
2
.7

2
2
.9

d = 7

J = 16

2
3
.8

0
2
3
.9

0
2
4
.0

0 d = 6

J = 16

−4 −2 0 2 4

2
4
.8

5
2
4
.9

5

d = 5

J = 16

Figure 4.8. Accuracy in KD-tree construction by EP-FKD: ρ = 0.5, p = 3

93

Data X = i. i. d. observations of x~ ~ N3 (mu = 0 , Sigma=0.25I3+0.75J3), r = 0.75

Normal Quantiles

Q
u

a
n

ti
le

s
 f
o

r
lo

g
2
(C

e
ll−

c
o

u
n

ts
)

0
5

1
0

1
5

2
0

−4 −2 0 2 4

d = 12

J = 8

0
5

1
0

1
5

2
0

d = 11

J = 8

0
5

1
0

1
5

2
0

−4 −2 0 2 4

d = 10

J = 8

1
2

1
6

2
0

d = 9

J = 8

1
4

1
8

2
2

−4 −2 0 2 4

d = 8

J = 8

1
4

1
6

1
8

2
0

2
2

2
4

d = 7

J = 8

2
3
.6

2
4
.0

−4 −2 0 2 4

d = 6

J = 8

2
4
.7

2
4
.9

2
5
.1

d = 5

J = 8

0
5

1
0

1
5

2
0

d = 12

J = 10

5
1
0

1
5

2
0

d = 11

J = 10

1
0

1
4

1
8

2
2

d = 10

J = 10

1
6

1
8

2
0

2
2

d = 9

J = 10

1
6

1
8

2
0

2
2

d = 8

J = 10

2
1
.5

2
2
.5

2
3
.5

d = 7

J = 10

2
3
.7

2
4
.0

d = 6

J = 10

2
4
.7

2
4
.9

2
5
.1

d = 5

J = 10

1
0

1
4

1
8

d = 12

J = 12

1
0

1
4

1
8

d = 11

J = 12

1
2

1
4

1
6

1
8

2
0

d = 10

J = 12

2
0
.0

2
1
.0

d = 9

J = 12

2
1
.0

2
2
.0

d = 8

J = 12

2
2
.5

2
3
.0

2
3
.5 d = 7

J = 12

2
3
.6

2
3
.8

2
4
.0

2
4
.2

d = 6

J = 12

2
4
.7

2
4
.9

2
5
.1 d = 5

J = 12

1
0

1
2

1
4

1
6

1
8

d = 12

J = 14

1
2

1
4

1
6

1
8

2
0

d = 11

J = 14

1
2

1
4

1
6

1
8

2
0

d = 10

J = 14

2
0
.2

2
0
.8

2
1
.4

d = 9

J = 14

2
1
.4

2
1
.8

2
2
.2

d = 8

J = 14

2
2
.6

2
3
.0

d = 7

J = 14

2
3
.7

2
3
.9

2
4
.1

d = 6

J = 14

2
4
.8

2
5
.0

d = 5

J = 14

1
5

1
6

1
7

1
8

1
9

d = 12

J = 16

−4 −2 0 2 4

1
6

1
7

1
8

1
9

2
0

d = 11

J = 16

1
8

1
9

2
0

d = 10

J = 16

−4 −2 0 2 4

2
0
.4

2
0
.8

2
1
.2

d = 9

J = 16

2
1
.6

2
2
.0

d = 8

J = 16

−4 −2 0 2 4

2
2
.6

2
3
.0

d = 7

J = 16

2
3
.7

2
3
.9

2
4
.1 d = 6

J = 16

−4 −2 0 2 4

2
4
.7

5
2
4
.9

0

d = 5

J = 16

Figure 4.9. Accuracy in KD-tree construction by EP-FKD: ρ = 0.75,
p = 3

4.5.3 Runtime comparison

Here are two plots demonstrating run-time for KD-tree construction for EP-FKD

method for dimensions p = 2 and p = 3, for equi-correlated multivariate Normal data.

94

Run−time for KD−tree construction, p=2

Elapsed time in seconds

N
u

m
b

e
r

o
f

F
o

u
ri

e
r

T
e

rm
s
 J

10

20

30

40

50

500 1000 1500

r=0 r=0.25

r=0.5

500 1000 1500

10

20

30

40

50

r=0.75

Figure 4.10. Run-time for KD-tree construction by EP-FKD: p = 2

95

Run−time for KD−tree construction

Elapsed time in seconds

N
u

m
b

e
r

o
f

F
o

u
ri

e
r

T
e

rm
s

8

10

12

14

16

1000 2000 3000 4000 5000 6000

r=0 r=0.25

r=0.5

1000 2000 3000 4000 5000 6000

8

10

12

14

16

r=0.75

Figure 4.11. Run-time for KD-tree construction by EP-FKD: p = 3

96

97

5. RECOMMENDATIONS AND SCOPE:

We now present a list of some recommended areas to explore in future and potential

applications of Embarrassingly Parallel Statistics:

1.Application of Quantiles and KD-tree construction have a lot of imme-

diate applications viz local regression, near-exact replicate division of a distributed

big-data, K-nearest neighbor search for big data. Any rank based statistics for big-

data can be approximated by D&R

2. MLE estimation for complex likelihoods: If a complex log-likelihood

function l(x, β) is L2 integrable then, from 2.3.8, we know it can be approximated by

FAS functions. So D&R MLE estimation can be carried out.

3. SVM: The hinge loss function is L2 integrable with some constraints, can be

approximated by FAS and can led to D&R SVM algorithm.

4. Quantile Regression: Again one may try to approximate the loss function

by FAS and D&R implementation. etc.

REFERENCES

98

REFERENCES

[1] Saptarshi Guha, Ryan Hafen, Jeremiah Rounds, Jin Xia, Jianfu Li, Bowei Xi,
and William S. Cleveland. Large complex data: divide and recombine (d&r) with
rhipe. Stat, 1(1):53–67, 2012.

[2] Xingxing Lv and Shimeng Shen. On chebyshev polynomials and their applications.
Advances in Difference Equations, 2017, 12 2017.

[3] Michael Greenwald and Sanjeev Khanna. Space-efficient online computation of
quantile summaries. Proceedings of the ACM SIGMOD International Conference
on Management of Data, 30, 11 2001.

[4] Zengfeng Huang, Lu Wang, Ke Yi, and Yunhao Liu. Sampling based algorithms
for quantile computation in sensor networks. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’11, pages
745–756, New York, NY, USA, 2011. ACM.

[5] Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Zhewei
Wei, and Ke Yi. Mergeable summaries. In Proceedings of the 31st ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS ’12, pages
23–34, New York, NY, USA, 2012. ACM.

[6] Nisheeth Shrivastava, Chiranjeeb Buragohain, Divyakant Agrawal, and Subhash
Suri. Medians and beyond: New aggregation techniques for sensor networks.
CoRR, cs.DC/0408039, 2004.

[7] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Approximate
medians and other quantiles in one pass and with limited memory. In Proceedings
of the 1998 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’98, pages 426–435, New York, NY, USA, 1998. ACM.

[8] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching. Commun. ACM, 18(9):509–517, September 1975.

[9] Jaromr Simsa. The best l2-approximation by finite sums of functions with sepa-
rable variables. Aequationes mathematicae, 43(2-3):248–263, 1992.

APPENDICES

99

A. PROOFS AND VERIFICATIONS:

100

A.1. Proof of Theorem 2.2.1

Proof. Let Tm(.) be the Minimal Sufficient Statistic for parameter β of the parametric

model x̃ ∼ p(x; β). Then Tm(Xr) Minimal Sufficient Statistic of rth subset Xr for

β and Tm(X) Minimal Sufficient Statistic of the entire data X for β . Consider the

vector valued statistic T1(X) = {Tm(X1), · · · , Tm(XR)}. As all x ∈ X are i.i.d.,

by factorization theorem T1(X) is a Sufficient Statistic of X for β. Hence, from the

definition of Minimal Sufficiency, Tm(X) should be a function of T1(X). So there exists

a function f(.) such that Tm(X) = f(Tm(X1), · · · , Tm(XR)), i.e. Tm(.) is SEPS.

A.2. Proof of Theorem 2.2.2

Proof. Suppose T (.) is SOT and is induced by τ(.). Since X is disjoint union of

X1, · · · ,Xr, we have, T (X) =
∑

x∈X τ(x) =
∑

x∈∪Rr=1Xr
τ(x) =

∑R
r=1

∑
x∈Xr

τ(x) =∑R
r=1 T (Xr) = f(T (X1), · · · , T (Xr)), here f(.) is the function that sums its argu-

ments and T (.) is SEPS.

A.3. Proof of Theorem 2.3.1

Proof. Suppose F (., .) is STF and is induced by H(., .). Again, as X is a disjoint

union of X1, · · · ,Xr, we have, F (X, β) =
∑

x∈XH(x, β) =
∑R

r=1

∑
x∈Xr

H(x, β) =∑R
r=1 F (Xr, β) = fβ(F (X1, β), F (X2, β), · · · , F (Xr, β)), for any β ∈ Y, fβ(.) is the

function that sums its arguments and hence F (., .) is EPF.

A.4. Proof of Theorem 2.3.7

Proof. Let F (X, β) is induced by H(x, β) and H(x, β) =
∑L

l=1 ηlfl(x)gl(β). Then, we

have F (X, β) =
∑

x∈XH(x, β) =
∑

x∈X
∑L

l=0 ηlfl(x)gl(β) =
∑L

l=0 ηlFl(X)gl(β), here

Fl(.) is SOT induced by fl(.) for l = 1, · · · , L. Given a β, F (X, β) is dependent on X

through the values of the statistics F1(X), · · · , FL(X). So the set SF is characterised

by the set of SEP statistics F1(X), · · · , FL(X) and any arbitrary funtional operator

on SF would be a function of them, hence WEP.

101

Now, we state a result from 2.3.8 is an application of this result. Let (X, µ)

and Y, λ are assumed to be two fixed measure spaces with σ-additive and σ-finite

measures µ and λ respectively. L2(X) denotes the space of all real- or complex-valued

measurable functions f : X 7→ K (K = R or K = C) satisfying
∫
X |f |2dµ <∞, which

is a Hilbert space with the inner product 〈f1, f2〉 =
∫
X f1f̄2dµ. Since we will consider

the spaces L2(X), L2(Y) and L2(X×Y) simultaneously, we use a subscript to denote

norm in a space H as ‖ ‖H .

Note that fg ∈ L2(X×Y) whenever f ∈ L2(X) and g ∈ L2(Y). This is the reason

the classes of functions ζ0 ⊆ ζ1 ⊆ ζ2 ⊆ · · · defined by:

ζJ =
{ J∑

j=1

fjgj

∣∣∣ fj ∈ L2(X) and gj ∈ L2(Y), 0 ≤ j ≤ J
}

form a family of subsets in L2(X × Y). For convenience, we also consider the one

element set ζ0 containing the zero function of L2(X × Y). The following theorem

shows the existence of a L2 approximation:

A.5. Theorem: Suppose that h ∈ L2(X × Y) is a non-zero function (i.e. h /∈ ζ0)

and put

ω =

 J if h ∈ ζJ/ζJ−1

∞ if h /∈ ζJ for any J ∈ N

Then there exist two orthonormal systems {uj}ωj=1 ⊂ L2(X), {vj}ωj=1 ⊂ L2(Y) and a

non-increasing sequence {ηj}ωj=1 of positive reals such that

H(x,y) =
ω∑
j=1

ηjūj(x)vj(y) for almost all (x,y) ∈ (X× Y).

The subtotals of the extension form above are the best L2-approximation of the

function H in the sense that

‖H −
J∑
j=1

ηjūjvj‖ = ρJ(H) =

√√√√‖H‖2 −
J∑
j=0

η2
j for any n < ω

Finally, the numbers ηj satisfy
ω∑
j=1

η2
j = ‖H‖2

102

Theorem 2.3.8 follows from [9], if we take X to be the data space with x as a

general observation and Y = Θ, the parameter space with y = the parameter β. Here

µ and λ are regular Lebesgue measures in X and Θ respectively.

A.6. lemma: The set of functions Uj(t) = ei(2j−1)t√
π

for j ∈ N is an orthonormal

system in (−π
2
, π

2
).

Proof. Let j, k ∈ N, then 〈Uj, Uk〉 =
∫ π

2

−π
2

Ūj(t)√
π
.Uk(t)√

π
dt = 1

π

∫ π
2

−π
2
e−2i(j−k)tdt. If j = k,

then 〈Uj, Uj〉 = 1
π

∫ π
2

−π
2
e0dt = 1 for j ∈ N. If j 6= k, then 〈Uj, Uk〉 = 1

π

∫ π
2

−π
2

cos
(
2(j −

k)t
)
dt − i

π

∫ π
2

−π
2

sin
(
2(j − k)t

)
dt = 1

2π

∫ π
−π cos

(
(j − k)t

)
dt (as sin

(
2(j − k)t

)
is odd

function) =

[
sin
(

(j−k)t
)

(j−k)

]π
−π

= 0. So, for j ∈ N, Uj(t) = ei(2j−1)t√
π

is an orthonormal

system in (−π
2
, π

2
).

A.7. lemma: The following identities hold for j ∈ N:∫ π
2

−π
2

∫ π
2

−π
2

|x− β| cos
(
(2j − 1)(x− β)

)
dx dβ = 0∫ π

2

−π
2

∫ π
2

−π
2

|x− β| sin
(
(2j − 1)(x− β)

)
dx dβ = 0

Proof. For the first identity, we have,∫ π
2

−π
2

∫ π
2

−π
2

|x− β| cos
(
(2j − 1)(x− β)

)
dx dβ

=

∫ π
2

−π
2

∫ π
2

−π
2

|x− β|
(

cos
(
(2j − 1)x

)
cos
(
(2j − 1)β

)
+ sin

(
(2j − 1)x

)
sin
(
(2j − 1)β

))
dx dβ

=

∫ π
2

−π
2

∫ π
2

−π
2

|x− β| cos
(
(2j − 1)x

)
cos
(
(2j − 1)β

)
dx dβ

+

∫ π
2

−π
2

∫ π
2

−π
2

|x− β| sin
(
(2j − 1)x

)
sin
(
(2j − 1)β

)
dx dβ

103

Now,∫ π
2

−π
2

∫ π
2

−π
2

|x− β| cos
(
(2j − 1)x

)
cos
(
(2j − 1)β

)
dx dβ

=

∫
−π
2
≤β<x≤π

2

|x− β| cos
(
(2j − 1)x

)
cos
(
(2j − 1)β

)
dx dβ

+

∫
−π
2
≤x<β≤π

2

|x− β| cos
(
(2j − 1)x

)
cos
(
(2j − 1)β

)
dx dβ

=2

∫
−π
2
≤β<x≤π

2

|x− β| cos
(
(2j − 1)x

)
cos
(
(2j − 1)β

)
dx dβ (by symmetry)

=2

∫ π
2

−π
2

cos
(
(2j − 1)β

)(∫ π
2

β

x cos
(
(2j − 1)x

)
dx

)
dβ

−2

∫ π
2

−π
2

β cos
(
(2j − 1)β

)(∫ π
2

β

cos
(
(2j − 1)x

)
dx

)
dβ

=2

∫ π
2

−π
2

cos
(
(2j − 1)β

)(
− (−1)j π

2

(2j − 1)
− β sin

(
(2j − 1)β

)
(2j − 1)

− cos
(
(2j − 1)β

)
(2j − 1)2

)
dβ

−2

∫ π
2

−π
2

β cos
(
(2j − 1)β

)(
− (−1)j

(2j − 1)
− sin

(
(2j − 1)β

)
(2j − 1)

)
dβ

=− π(−1)j

(2j − 1)

∫ π
2

−π
2

cos
(
(2j − 1)β

)
dβ − 2

(2j − 1)

∫ π
2

−π
2

β sin
(
(2j − 1)β

)
cos
(
(2j − 1)β

)
dβ

− 2

(2j − 1)2

∫ π
2

−π
2

cos2
(
(2j − 1)β

)
dβ +

2(−1)j

(2j − 1)

∫ π
2

−π
2

β cos
(
(2j − 1)β

)
dβ

+
2

(2j − 1)

∫ π
2

−π
2

β sin
(
(2j − 1)β

)
cos
(
(2j − 1)β

)
dβ

=− π(−1)j

(2j − 1)

∫ π
2

−π
2

cos
(
(2j − 1)β

)
dβ − 2

(2j − 1)2

∫ π
2

−π
2

cos2
(
(2j − 1)β

)
dβ

=
2π

(2j − 1)2
− π

(2j − 1)2
=

π

(2j − 1)2
.

104

Similarly, we also have,∫ π
2

−π
2

∫ π
2

−π
2

|x− β| sin
(
(2j − 1)x

)
sin
(
(2j − 1)β

)
dx dβ

=2

∫
−π
2
≤β<x≤π

2

|x− β| sin
(
(2j − 1)x

)
sin
(
(2j − 1)β

)
dx dβ

=2

∫ π
2

−π
2

sin
(
(2j − 1)β

)(∫ π
2

β

x sin
(
(2j − 1)x

)
dx

)
dβ

−2

∫ π
2

−π
2

β sin
(
(2j − 1)β

)(∫ π
2

β

sin
(
(2j − 1)x

)
dx

)
dβ

=2

∫ π
2

−π
2

sin
(
(2j − 1)β

)(
− (−1)j

(2j − 1)2
+
β cos

(
(2j − 1)β

)
(2j − 1)

− sin
(
(2j − 1)β

)
(2j − 1)2

)
dβ

−2

∫ π
2

−π
2

β sin
(
(2j − 1)β

)(cos
(
(2j − 1)β

)
(2j − 1)

)
dβ

=− (−1)j

(2j − 1)2

∫ π
2

−π
2

sin
(
(2j − 1)β

)
dβ − 2

(2j − 1)

∫ π
2

−π
2

β sin
(
(2j − 1)β

)
cos
(
(2j − 1)β

)
dβ

− 2

(2j − 1)2

∫ π
2

−π
2

sin2
(
(2j − 1)β

)
dβ +

2

(2j − 1)

∫ π
2

−π
2

β sin
(
(2j − 1)β

)
cos
(
(2j − 1)β

)
dβ

=− (−1)j

(2j − 1)2

∫ π
2

−π
2

sin
(
(2j − 1)β

)
dβ − 2

(2j − 1)2

∫ π
2

−π
2

sin2
(
(2j − 1)β

)
dβ

=0− π

(2j − 1)2
= − π

(2j − 1)2
.

Now, substitute the terms to get:∫ π
2

−π
2

∫ π
2

−π
2

|x− β| cos
(
(2j − 1)(x− β)

)
dx dβ =

π

(2j − 1)2
− π

(2j − 1)2
= 0.

105

Now, for the second identity,∫ π
2

−π
2

∫ π
2

−π
2

|x− β| sin
(
(2j − 1)(x− β)

)
dx dβ

=

∫
−π
2
≤β<x≤π

2

|x− β| sin
(
(2j − 1)(x− β)

)
dx dβ

+

∫
−π
2
≤x<β≤π

2

|x− β| sin
(
(2j − 1)(x− β)

)
dx dβ

=

∫
−π
2
≤β<x≤π

2

|x− β| sin
(
(2j − 1)(x− β)

)
dx dβ

+

∫
−π
2
≤−β<−x≤π

2

| − x + β| sin
(
(2j − 1)(−x + β)

)
d(−x) d(−β)

=

∫∫
−π
2
≤β<x≤π

2

|x− β| sin
(
(2j − 1)x

)
cos
(
(2j − 1)β

)
dx dβ

−
∫∫

−π
2
≤β<x≤π

2

|x− β| sin
(
(2j − 1)x

)
cos
(
(2j − 1)β

)
dx dβ = 0

A.8. Verification of the two conditions in theorem 2.3.8 for example 2.3.9

Proof. In example 2.3.9 we had H(x, β) = π
2
− |x− β|, u2j−1(x) = e−i(2j−1)x√

π
, u2j(x) =

ei(2j−1)x√
π

, v2j−1(β) = e−i(2j−1)β√
π

, v2j(β) = ei(2j−1)β√
π

, η2j−1 = 2
(2j−1)2

and η2j = 2
(2j−1)2

for

j ∈ Z+. So, we have:

106

〈H, η2j−1ū2j−1v2j−1〉 =

∫ π
2

−π
2

∫ π
2

−π
2

H(x, β)η2j−1ū2j−1(x)v2j−1(β)dx dβ

=
2

π(2j − 1)2

∫ π
2

−π
2

∫ π
2

−π
2

(
π

2
− |x− β|)e−i(2j−1)(x−β)dx dβ

=
1

(2j − 1)2

∫ π
2

−π
2

∫ π
2

−π
2

e−i(2j−1)(x−β)dx dβ − 2

π(2j − 1)2

∫ π
2

−π
2

∫ π
2

−π
2

|x− β|e−i(2j−1)(x−β)dx dβ

=
1

(2j − 1)2

(∫ π
2

−π
2

e−i(2j−1)xdx
)(∫ π

2

−π
2

ei(2j−1)βdβ
)

− 2

π(2j − 1)2

∫ π
2

−π
2

∫ π
2

−π
2

|x− β| cos
(
(2j − 1)(x− β)

)
dx dβ

+
2

π(2j − 1)2

∫ π
2

−π
2

∫ π
2

−π
2

|x− β| sin
(
(2j − 1)(x− β)

)
dx dβ

=
1

(2j − 1)2
.
2(−1)j−1

2j − 1
.
2(−1)j−1

2j − 1
+ 0 + 0 (from previous lemma A.5)

=
4

(2j − 1)4
= η2

2j−1

We can similarly show 〈H, η2jū2jv2j〉 = η2
2j. So, 〈H, ηjūjvj〉 = η2

j for j ∈ Z+. We

also have 〈ηjūjvj, H〉 = 〈H, ηjūjvj〉 = η2
j for j ∈ Z+. Also, for j, k ∈ Z+ we have:

〈ηjūjvj, ηkūkvk〉 =

∫ π
2

−π
2

∫ π
2

−π
2

ηjūj(x)vj(β)ηkūk(x)vk(β)dx dβ

=ηjηk

(∫ π
2

−π
2

ūj(x)uk(x)dx
)(∫ π

2

−π
2

vj(β)v̄k(β)dβ
)

= ηjηkδjk

107

Now, let us verify the first condition 2.4 in theorem 2.3.8. We have:

‖H −
J∑
j=1

ηjūjvj‖2 = 〈H −
J∑
j=1

ηjūjvj, H −
J∑
j=1

ηjūjvj〉

=〈H,H〉 − 〈H,
J∑
j=1

ηjūjvj〉 − 〈
J∑
j=1

ηjūjvj, H〉+ 〈
J∑
j=1

ηjūjvj,

J∑
j=1

ηjūjvj〉

=‖H‖2 −
J∑
j=1

〈H, ηjūjvj〉 −
J∑
j=1

〈ηjūjvj, H〉+
J∑
j=1

J∑
k=1

〈ηjūjvj, ηkūkvk〉

=‖H‖2 −
J∑
j=1

η2
j −

J∑
j=1

η2
j +

J∑
j=1

〈ηjūjvj, ηjūjvj〉

=‖H‖2 −
J∑
j=1

η2
j −

J∑
j=1

η2
j +

J∑
j=1

η2
j = ‖H‖2 −

J∑
j=1

η2
j

So, LHS = ‖H −∑J
j=1 ηjūjvj‖ =

√
‖H‖2 −∑J

j=1 η
2
j = RHS, and the first condition

is verified. For the second condition in 2.5, observe that:

LHS = ‖H‖2 = 〈H,H〉 =

∫ π
2

−π
2

∫ π
2

−π
2

H(x, β)2dx dβ

=

∫ π
2

−π
2

∫ π
2

−π
2

(π
2
− |x− β|

)2
dx dβ

=

∫ π
2

−π
2

∫ π
2

−π
2

(π2

4
− π|x− β|+ (x− β)2

)
dx dβ

=
π4

4
+ π

∫ π
2

−π
2

x2dx + π

∫ π
2

−π
2

β2dβ − 2
(∫ π

2

−π
2

xdx
)(∫ π

2

−π
2

βdβ
)
− 2π

∫∫
−π
2
≤β<x≤π

2

|x− β|dx dβ

=
π4

4
+ π.

π3

12
+ π.

π3

12
− 2.0.0− 2π

∫ π
2

−π
2

(∫ π
2

β

xdx
)
dβ + 2π

∫ π
2

−π
2

β
(∫ π

2

β

dx
)
dβ

=
π4

4
+
π4

6
+
π4

6
− π4

3
− π4

6
=
π4

12

RHS =
∞∑
j=1

η2
j =

∞∑
j=1

(η2
2j−1 + η2

2j) =
∞∑
j=1

(
(

2

(2j − 1)2
)2 + (

2

(2j − 1)2
)2
)

=8
∞∑
j=1

1

(2j − 1)4
= 8
(∞∑
j=1

1

(2j − 1)4
+
∞∑
j=1

1

(2j)4

)
− 8

∞∑
j=1

1

(2j)4

=8
∞∑
j=1

1

j4
− 8

24

∞∑
j=1

1

j4
= 8
(
1− 1

24

) ∞∑
j=1

1

j4
= 8
(15

16

)(π4

90

)
=
π4

12

108

So LHS = RHS, and the second condition is also verified.

A.9. Proof of Corollary 2.3.10

Proof. We have almost surely

|H −
J∑
j=1

ηjūjvj| = |
∞∑

j=J+1

ηjūjvj| < sup
j∈Z+,x∈X

|uj(x)| sup |vj(β)|
∞∑

j=J+1

ηj

A.10. Proof of lemma 4.3.1

Proof. We already have point-wise convergence of |z|[J] to the limit |z| for each z ∈
[−π, π], now consider the tail sum eJ(z) = |z| − |z|[J](z), we have:

|eJ(z)| = ||z| − |z|[J](z)| = | 4
π

∞∑
j=J+1

cos
(
(2j − 1)z

)
(2j − 1)2

|

≤ 4

π

∞∑
j=J+1

| cos
(
(2j − 1)z]|

(2j − 1)2
=

4

π

∞∑
j=J+1

1

(2j − 1)2

∑∞
j=J+1

1
(2j−1)2

is the tail sum of a convergent series, given ε > 0 we can choose J large

enough to ensure 4
π

∑∞
j=J+1

1
(2j−1)2

< ε. This implies |eJ(z)| < ε for all z ∈ [−π, π] for

large J . So, |z|[J] uniformly converges to f(z).

Also, we note the functions |z|[J] are all bounded functions, as they converges

uniformly, they are uniformly bounded.

A.11. Proof of Corollary 4.3.2

Proof. Since m ∈ (−1, 1) and z ∈ (−1, 1), we have z−m ∈ (−2, 2) ⊂ [−π, π]. So the

result follows from previous lemma.

A.12. Proof of lemma 4.3.3

Proof. We already have point-wise convergence of I [J](0 < z) to the limit g(z) for

each z ∈ [−π, π], now consider the sum EJ(z) =
∑J

j=1 sin
(
(2j − 1)z

)
= sin(2Jz)

2 sin(z)
.

109

We have |EJ(z)| = | sin(2Jz)|
2| sin(z)| ≤ 1

2| sin(δ)| , for all z ∈ [−π,−δ)⋃(δ, π], for any J . Now

consider the Cauchy tail sum eJ,K(z) = I [K](0 < z)− I [J](0 < z) for J < K, we have:

eJ,K(z) =
2

π

L∑
j=J+1

sin
(
(2j − 1)z

)
(2j − 1)

=
2

π

K∑
j=J+1

Ej(z)− Ej−1(z)

(2j − 1)

=
2

π
[

K∑
j=J+1

Ej(z)

(2j − 1)
−

K∑
j=J+1

EJ(z)

(2j + 1)
− EJ(z)

(2J + 1)
+

EK(z)

(2K + 1)
]

=
2

π
[

K∑
j=J+1

Ej(z){ 1

(2j − 1)
− 1

(2j + 1)
} − EJ(z)

(2J + 1)
+

EK(z)

(2K + 1)
]

This means:

|eK,Lg (z)| ≤ 1

π| sin(δ)| [
K∑

j=J+1

{ 1

(2j − 1)
− 1

(2j + 1)
}+

1

(2J + 1)
+

1

(2K + 1)
]

=
1

π| sin(δ)| [
1

(2J + 1)
− 1

(2K + 1)
+

1

(2J + 1)
+

1

(2K + 1)
] =

2

(2J + 1)π| sin(δ)|

Given ε > 0 we can choose J large enough to ensure 2
(2J+1)π| sin(δ)| < ε. This implies

|eJ,Kg (z)| < ε for all z ∈ [−π,−δ)⋃(δ, π], for large J and K > J . So, by Cauchy

criterion I [J](0 < z) uniformly converges to I(0 < z).

A.13. Proof of Corollary 4.3.4

Proof. Since −1 < a < b < 1 and z ∈ [(−1, 1) − {(a − δ, a + δ)
⋃

(b − δ, b + δ)}], we

have z − a ∈ (−2,−δ)⋃(δ, 2) ⊂ [−π,−δ)⋃(δ, π], similarly z − b ∈ [−π,−δ)⋃(δ, π].

Also observe that ga,b(z) = g(z − a) − g(z − b).So the result follows from previous

lemma.

A.14. Proof of lemma 4.3.5

Proof. Because I [J](0 < z) is an odd function we have,|I [J](0 < −z)| = |I [J](0 < z)|,
so it suffice to show that I [J](0 < z) is uniformly bounded in the interval [0, π]. Now,

for z ∈ [0, π], we have the inequality 2
π
≤ sin(z)

z
≤ 1. The left hand inequality comes

from the fact that the function c(z) = sin(z)
z

has its maxima at z = π
2

where its value

is 2
π

and the right hand inequality is a standard trigonometric fact that holds for any

110

z. Let j0 is biggest integer such that 2j0 − 1 < 1
z
. Then z < 1

2j0−1
and z ≥ 1

2j0+1
.

Observe if j < j0, then (2j − 1)z < (2j0 − 1)z < 1 < π, so that
sin
(

(2j−1)z
)

(2j−1)z
≤ 1 or

sin
(

(2j−1)z
)

(2j−1)
≤ 1

z
. On the other way, if j > j0 then 1

2j−1
≤ 1

2j0+1
.Given that, we have:

I [J](0 < z) =
1

2
+

2

π

J∑
j=1

sin
(
(2j − 1)z

)
(2j − 1)

=
1

2
+

2

π
[

j0∑
j=1

sin
(
(2j − 1)z

)
(2j − 1)

+
J∑

k=j0+1

sin
(
(2j − 1)z

)
(2j − 1)

]

This means:

|I [J](0 < z)| ≤ 1

2
+

2

π
[|z|

j0∑
j=1

|sin
(
(2j − 1)z

)(
(2j − 1)z

) |+ | J∑
j=j0+1

sin
(
(2j − 1)z

)
(2j − 1)

|]

<
1

2
+

2

π
[z

j0∑
j=1

1 +
1

(2j0 + 1)
|

J∑
j=j0+1

sin
(
(2j − 1)z]|]

=
1

2
+

2j0z

π
+

2

π(2j0 + 1)
|

J∑
j=j0+1

sin
(
(2k − 1)z]|

<
1

2
+

2j0

π(2j0 − 1)
+

2z

π
|EJ(z)− Ej0(z)|

<
1

2
+

2

π
+

2z

π
.

2

sin(z
2
)

=
1

2
+

2

π
+

4

π
.

2
sin(z

2
)

z
2

≤ 1

2
+

2

π
+

4

π
.
2
2
π

=
9

2
+

2

π
.

So the sequence of functions I [J](0 < z) is uniformly bounded by the number

9
2

+ 2
π
.

A.15. Proof of Theorem 4.3.7

Proof. From Corollary 4.3.2 we know F 0
J (x) = |xt − m|[J] converges uniformly to

F 0(x) = |xt − m| on E and is uniformly bounded. From Corollary 4.3.4 we know

F l
J(x) = I [J](0 < xl − al) − I [J](0 < xl − bl) converges uniformly to F l(x) = I(0 <

xl − al)− I(0 < xl − bl) on E −Na,b
δ and from lemma 4.3.5 is uniformly bounded on

111

E. Note that F (x) =
∏p

l=0 F
l(x) and FJ(x) =

∏p
l=0 F

l
J(x). So by using lemma 4.3.6

p times, we get FJ(x) = IJt (m, a,b,x) uniformly converges to F (x) = It(m, a,b,x)

on (E −Na,b
δ)

⋂
E = E −Na,b

δ .

A.16. Proof of Theorem 4.3.8

Proof. Let ε > 0 given. From previous lemma 4.3.1 and 4.3.3, we know that IJt (m, a,b,x)

is uniformly bounded on (−1, 1)p, also It(m, a,b,x) is bounded for being an indica-

tor function. So that their difference zJ = eJt (m, a,b,x) is also uniformly bounded

in (−1, 1)p. Let this bound is M , so, |zJ | < M , for any J and any x ∈ (−1, 1)p.

Now since P is absolutely continuous with respect to λ, there exist a η > 0, so that

if λ(A) < η, then, P (A) < ε
2M

for any A ∈ B(−1, 1)p. Now pick a δ such that

λ(Na,b
δ) = (2δ)p < η. Set A = Na,b

δ , so that we have, P (A) < ε
2M

. Next, because of

uniform convergence on E−A, by Theorem 4.3.7, we can choose a J large enough to

have |zJ | = |It(m, a,b,x)− IJt (m, a,b,x)| < ε
2
, for any x ∈ E − A. Then we have:

|EP (zJ)| = |
∫
E

zJdP | = |
∫

E−A

zJdP +

∫
A

zJdP | ≤ |
∫

E−A

zJdP |+ |
∫
A

zJdP |

≤
∫

E−A

|zJ |dP +

∫
A

|zJ |dP <

∫
E−A

ε

2
dP +

∫
A

MdP

=
ε

2
.P (E − A) +M.P (A) ≤ ε

2
.1 +M.P (A) <

ε

2
+M.

ε

2M
< ε

and so, EP (zJ)→ 0 as J →∞.

A.17. Proof of Theorem 4.3.9

Proof. Since, EP (|zJ)|) < M , an application of Kolmogorov’s SLLN yields the result.

A.18. Proof of lemma 4.4.1

112

Proof. We have IJ(x,m, a, b) = |x−m|[J]I [J](a < x < b), here

|x−m|[J] =
2J∑
j=0

fj(m)cj(x)

I [J](a < x < b) =
2J∑
j=0

gj(a, b)cj(x)

Then,

IJ(x,m, a, b)

=f0(m)g0(a, b) +
2J∑
j=1

(
f0(m)gj(a, b) + fj(m)g0(a, b)

)
cj(x)

+RJ(x,m, a, b)

Here:

RJ(x,m, a, b)

=
J∑
k=1

(
f2j−1(m) cos

(
(2j − 1)x

)
+ f2j(m) sin

(
(2j − 1)x

))
×
(
g2j−1(a, b) cos

(
(2j − 1)x

)
+ g2j(a, b) sin

(
(2j − 1)x

))
So,

RJ(x,m, a, b)

=
J∑
j=1

J∑
k=1

(
f2j−1(m)g2k−1(a, b)× 2 cos

(
(2j − 1)x

)
cos
(
(2j − 1)x

))
+

J∑
j=1

J∑
k=1

(
f2j−1(m)g2k(a, b)× 2 cos

(
(2j − 1)x

)
sin
(
(2k − 1)x

))
+

J∑
j=1

J∑
k=1

(
f2j(m)g2k−1(a, b)× 2 sin

(
(2j − 1)x

)
cos
(
(2k − 1)x

))
+

J∑
j=1

J∑
k=1

(
f2j(m)g2k(a, b)× 2 sin

(
(2j − 1)x

)
sin
(
(2k − 1)x

))
or,

113

RJ(x,m, a, b)

=
J∑
j=1

J∑
k=1

f2j−1(m)g2k−1(a, b)
(

cos
(
2(j + k − 1)x

)
+ cos

(
2(j − k)x

))
+

J∑
j=1

J∑
k=1

f2j−1(m)g2k(a, b)
(

sin
(
2(j + k − 1)x

)
− sin

(
2(j − k)x

))
+

J∑
j=1

J∑
k=1

f2j(m)g2k−1(a, b)
(

sin
(
2(j + k − 1)x

)
+ sin

(
2(j − k)x

))
+

J∑
j=1

J∑
k=1

f2j(m)g2k(a, b)
(
− cos

(
2(j + k − 1)x

)
+ cos

(
2(j − k)x

))
Interchanging the terms,

RJ(x,m, a, b)

=
J∑
j=1

J∑
k=1

(
f2j−1(m)g2k−1(a, b)− f2j(m)g2k(a, b)) cos

(
2(j + k − 1)x

))
+

J∑
j=1

J∑
k=1

(
f2j−1(m)g2k(a, b) + f2j(m)g2k−1(a, b)) sin

(
2(j + k − 1)x

))
+

J∑
j=1

J∑
k=1

(
f2j−1(m)g2k−1(a, b) + f2j(m)g2k(a, b)) cos

(
2(j − k)x

))
+

J∑
j=1

J∑
k=1

(
f2j(m)g2k−1(a, b)− f2j−1(m)g2k(a, b)) sin

(
2(j − k)x

))
or,

114

RJ(x,m, a, b)

=
J∑
j=1

J∑
k=1

Aj,k(m, a, b) cos
(
2(j + k − 1)x

)
+

J∑
j=1

J∑
k=1

Bj,k(m, a, b) sin
(
2(j + k − 1)x

)
+

J∑
j=1

J∑
k=1

Cj,k(m, a, b) cos
(
2(j − k)x

)
+

J∑
j=1

J∑
k=1

Dj,k(m, a, b) sin
(
2(j − k)x

)
Here,

Aj,k(m, a, b) = f2j−1(m)g2k−1(a, b)− f2j(m)g2k(a, b)

Bj,k(m, a, b) = f2j−1(m)g2k(a, b) + f2j(m)g2k−1(a, b)

Cj,k(m, a, b) = f2j−1(m)g2k−1(a, b) + f2j(m)g2k(a, b)

Dj,k(m, a, b) = f2j(m)g2k−1(a, b)− f2j−1(m)g2k(a, b)

Lets simplify these expressions we have:

Aj,k(m, a, b) = f2j−1(m)g2k−1(a, b)− f2j(m)g2k(a, b)

=− 4 cos
(
(2j − 1)m

)
π(2j − 1)2

.
2
(
− sin

(
(2k − 1)a

)
I(a > −1) + sin

(
(2k − 1)b

)
I(b < 1)

)
π(2k − 1)

+
4 sin

(
(2j − 1)m

)
π(2j − 1)2

.
2
(

cos
(
(2k − 1)a

)
I(a > −1)− cos

(
(2k − 1)b

)
I(b < 1)

)
π(2k − 1)

=
8
(

sin
(
(2j − 1)m+ (2k − 1)a

)
I(a > −1)− sin

(
(2j − 1)m+ (2k − 1)b

)
I(b < 1)

)
π2(2j − 1)2(2k − 1)

115

Bj,k(m, a, b) = f2j−1(m)g2k(a, b) + f2j(m)g2k−1(a, b)

=− 4 cos
(
(2j − 1)m

)
π(2j − 1)2

.
2
(

cos
(
(2k − 1)a

)
I(a > −1)− cos

(
(2k − 1)b

)
I(b < 1)

)
π(2k − 1)

+
4 sin

(
(2j − 1)m

)
π(2j − 1)2

.
2
(
− sin

(
(2k − 1)a

)
I(a > −1) + sin

(
(2k − 1)b

)
I(b < 1)

)
π(2k − 1)

=−
8
(

cos
(
(2j − 1)m+ (2k − 1)a

)
I(a > −1)− cos

(
(2j − 1)m+ (2k − 1)b

)
I(b < 1)

)
π2(2j − 1)2(2k − 1)

Cj,k(m, a, b) = f2j−1(m)g2k−1(a, b) + f2j(m)g2k(a, b)

=− 4 cos
(
(2j − 1)m

)
π(2j − 1)2

.
2
(
− sin

(
(2k − 1)a

)
I(a > −1) + sin

(
(2k − 1)b

)
I(b < 1)

)
π(2k − 1)

−4 sin
(
(2j − 1)m

)
π(2j − 1)2

.
2
(

cos
(
(2k − 1)a

)
I(a > −1)− cos

(
(2k − 1)b

)
I(b < 1)

)
π(2k − 1)

=−
8
(

sin
(
(2j − 1)m− (2k − 1)a

)
I(a > −1)− sin

(
(2j − 1)m− (2k − 1)b

)
I(b < 1)

)
π2(2j − 1)2(2k − 1)

Dj,k(m, a, b) = f2j(m)g2k−1(a, b)− f2j−1(m)g2k(a, b)

=− 4 sin
(
(2j − 1)m

)
π(2j − 1)2

.
2
(
− sin

(
(2k − 1)a

)
I(a > −1) + sin

(
(2k − 1)b

)
I(b < 1)

)
π(2k − 1)

+
4 cos

(
(2j − 1)m

)
π(2j − 1)2

.
2
(

cos
(
(2k − 1)a

)
I(a > −1)− cos

(
(2k − 1)b

)
I(b < 1)

)
π(2k − 1)

=
8
(

cos
(
(2j − 1)m− (2k − 1)a

)
I(a > −1)− cos

(
(2j − 1)m− (2k − 1)b

)
I(b < 1)

)
π2(2j − 1)2(2k − 1)

Then,

RJ(x,m, a, b)

=
J∑
j=1

J∑
k=1

(Aj,k(m, a, b) cos
(
2(j + k − 1)x

)
+Bj,k(m, a, b) sin

(
2(j + k − 1)x

)
+

J∑
j=1

J∑
k=1

(Cj,k(m, a, b) cos
(
2(j − k)x

)
+Dj,k(m, a, b) sin

(
2(j − k)x

)

116

or

RJ(x,m, a, b)

=
J∑
j=1

J∑
k=1

Aj,k(m, a, b) cos
(
2(j + k − 1)x

)
+Bj,k(m, a, b) sin

(
2(j + k − 1)x

)
+

J∑
j=1

J∑
k=j+1

Cj,k(m, a, b) cos
(
2(j − k)x

)
+Dj,k(m, a, b) sin

(
2(j − k)x

)
+

J∑
k=1

Ck,k(m, a, b)

+
J∑
j=1

j−1∑
k=1

Cj,k(m, a, b) cos
(
2(j − k)x

)
+Dj,k(m, a, b) sin

(
2(j − k)x

)
Let RJ(x,m, a, b) = RJ

1 (x,m, a, b) + RJ
2 (x,m, a, b) + RJ

3 (m, a, b) + RJ
4 (x,m, a, b),

where

RJ
1 (x,m, a, b)

=
J∑
j=1

J∑
k=1

Aj,k(m, a, b) cos
(
2(j + k − 1)x

)
+Bj,k(m, a, b) sin

(
2(j + k − 1)x

)
=

J−1∑
j=1

(j∑
k=1

Ak,j−k+1(m, a, b) cos(2jx) +Bk,j−k+1(m, a, b) sin(2jx)
)

+
2J−1∑
j=J

(j∑
k=j−J+1

Ak,j−k+1(m, a, b) cos(2jx) +Bk,j−k+1(m, a, b) sin(2jx)
)

RJ
2 (x,m, a, b)

=
J∑
j=1

J∑
k=j+1

Cj,k(m, a, b) cos
(
2(j − k)x

)
+Dj,k(m, a, b) sin

(
2(j − k)x

)
=

J−1∑
j=1

(J−j∑
k=1

Ck,k+j(m, a, b) cos(2jx)−Dk,k+j(m, a, b) sin(2jx)
)

RJ
3 (m, a, b) =

J∑
k=1

Ck,k(m, a, b)

117

RJ
4 (x,m, a, b)

=
J∑
j=1

j−1∑
k=1

Cj,k(m, a, b) cos
(
2(j − k)x

)
+Dj,k(m, a, b) sin

(
2(j − k)x

)
=

J−1∑
j=1

(J−j∑
k=1

Ck+j,k(m, a, b) cos(2jx) +Dk+j,k(m, a, b) sin(2jx)
)

Let ζ2j−1(x) = cos(2jx) and ζ2j(x) = sin(2jx) for j ∈ Z+. Also let ξ0(m, a, b),

ξ2j−1(m, a, b) and ξ2j(m, a, b) denote the constant term and the coefficients of ζ2j−1(x)

and ζ2j(x) in the series expression of RJ(x,m, a, b). Then we have:

ξ0(m, a, b) =
J∑
k=1

Ck,k(m, a, b)

For 1 ≤ j ≤ J − 1

ξ2j−1(m, a, b)

=

j∑
k=1

Ak,j−k+1(m, a, b) +

J−j∑
k=1

Ck,k+j(m, a, b) +

J−j∑
k=1

Ck+j,k(m, a, b)

ξ2j(m, a, b)

=

j∑
k=1

Bk,j−k+1(m, a, b)−
J−j∑
k=1

Dk,k+j(m, a, b) +

K−j∑
k=1

Dk+j,k(m, a, b)

For J ≤ j ≤ 2J − 1

ξ2j−1(m, a, b) =

j∑
j−J+1

Ak,j−k+1(m, a, b)

ξ2j(m, a, b) =

j∑
j−J+1

Bk,j−k+1(m, a, b)

So we have,

IJ(x,m, a, b) = ωJ0 (m, a, b) +
J∑
j=1

ωj(m, a, b)cj(x) +
4J−2∑
j=1

ξj(m, a, b)ζ
J
j (x)

118

Here

ωJ0 (m, a, b) = f0(m)g0(a, b) +
J∑
k=1

Ck,k(m, a, b)

=
π

4
−

J∑
k=1

8
(

sin
(
(2k − 1)(m− a)

)
I(a > −1)− sin

(
(2k − 1)(m− b)

)
I(b < 1)

)
π2(2k − 1)3

ω2j−1(m, a, b) = f0(m)g2j−1(a, b) + f2j−1(m)g0(a, b)

=
π

2
.
2
(

sin
(
(2j − 1)b

)
I(b < 1)− sin

(
(2j − 1)a

)
I(a > −1)

)
π(2j − 1)

− 4 cos
(
(2j − 1)m

)
π(2j − 1)2

.
1

2

=
sin
(
(2j − 1)b

)
I(b < 1)− sin

(
(2j − 1)a

)
I(a > −1)

(2j − 1)
− 2 cos

(
(2j − 1)m

)
π(2j − 1)2

ω2j(m, a, b) = f0(m)g2j(a, b) + f2j(m)g0(a, b)

=
π

2
.
2
(

cos
(
(2j − 1)a

)
I(a > −1)− cos

(
(2j − 1)b

)
I(b < 1)

)
π(2j − 1)

− 4 sin
(
(2j − 1)m

)
π(2j − 1)2

.
1

2

=
cos
(
(2j − 1)a

)
I(a > −1)− cos

(
(2j − 1)b

)
I(b < 1)

(2j − 1)
− 2 sin

(
(2j − 1)m

)
π(2j − 1)2

ξJ2j−1(m, a, b)

=

j∑
k=max{1,j−J+1}

Ak,j−k+1(m, a, b) + I(j < J)

J−j∑
k=1

(
Ck+j,k(m, a, b) + Ck,k+j(m, a, b)

)

ξJ2j(m, a, b)

=

j∑
k=max{1,j−J+1}

Bk,j−k+1(m, a, b) + I(j < J)

J−j∑
k=1

(
Dk+j,k(m, a, b)−Dk,k+j(m, a, b)

)

119

B. ALGORITHMS:

120

B.1 Algorithm: EP-FQ0

Algorithm B.1 Map-Reduce algorithm for EP-FQ0 method of computing approximate quantiles

Input: A distributed Data-Frame(DDF) that has x as a component.
Output: A list of Quantiles.

1: procedure DR-EP.FQ-0(conn,J0,p)
2: (conn = HDFS Connection to the DDF, J0 = Number of terms, Pr = A vector of f-values)
3: Get M = Max(X) + δ, m = Min(X) − δ, N(X) = Sample Size.
4: Here δ is a very small number. (Need a pre-map-reduce step if any of them are not given).
5: Get the scaling parameters A = −M+m

M−m , B = 2
M−m .

6: Map()
7: Input : keys = Map-keys(index), values = Map-Values(Data-Frame)
8: Initialize 2J0 length vector c = 0.
9: Start with the 0 length null vector V .

10: for Each Map-key in the Mapper do
11: Trnasform x column of the corresponding Map-value(usually a data frame) as x̂ = Ax +B
12: Concatenate with x̂ with V .
13: end for
14: for Each element of v of V do
15: for j = 1, 2, · · · , J0 do
16: c(2j-1) = c(2j-1)+cos

(
2j-1)v

)
.

17: c(2j) = c(2j)+sin
(
2j-1)v

)
.

18: end for
19: end for
20: for j = 1, 2, · · · , 2J0 do
21: Collect(key = j, value = c(j))
22: end for
23: end Map()
24: Reduce()
25: Input : key = Reduce-key(An integer j), values = Reduce-Values(real numbers)
26: Initialize real number s = 0.
27: for Each Reduce-Values v do
28: Set s = s+ v
29: end for
30: collect(key = Reduce-key(j), value = s

N(X)
)

31: Collect(key = 0, value = subset-size N)
32: end Reduce()
33: Execute a Map-Reduce job and read all the key-value pairs.
34: Get all terms corresponding to odd indices as keys, divide by N and store in a J0 length vector C̄.
35: Get all terms corresponding to even indices as keys and store in a J0 length vector S̄.

36: Let fP (β) = π
2

∑J0
j=1

C̄(j)cos
(
(2j−1)β

)
+S̄(j)sin

(
(2j−1)β

)
(2j−1)2

+ pβ

37: for Each P in Pr do
38: Get Q̂P by maximizing the function fP (β) w.r.t. β.
39: end for
40: Return((Q̂P −B)/A for all P)
41: end procedure

1

121

B.2 Algorithm: Binning

Algorithm B.2 Map-Reduce algorithm for Binning method of computing approximate quantiles

Input: A distributed Data-Frame that has X as a component(like a DDF object in R package Datadr).
Output: A list of Quantiles.

1: procedure drQuantileBinning(conn = HDFS Connection to the DDF, nBins = Number of Bins, p = A vector of f-values)
2: Get M = maximum(X), m = minimum(X).(Perform a pre map-reduce step if any of these are not given).
3: Set δ = M−m

nBins
.

4: Get the vector Cut, it is a sequence of monotonically increasing cut points staring from m− δ
2
and ending at M + δ

2
.

5: There are nBins+ 1 number of cut points and nBins bins of width δ. For simplicity, denote the bins by bin-index b.
6: Map()
7: Input : keys = Map-keys(index), values = Map-Values(Data-Frame)
8: Initialize nBins length vector f = 0.
9: Start with the 0 length null vector V .

10: for Each Map-key in the Mapper do
11: Concatenate x column of the corresponding Map-value(usually a data frame) with V .
12: end for
13: Initialize size(V) length vector B = 0.
14: for Each element of v of V do Use a binary search procedure over the bins to get the bin B(v) that v corresponds to.
15: end for
16: From the vector B, count and tabulate frequency count f(b) for each bin b; 1 ≤ b ≤ nBins.
17: for b = 1, 2, · · · , nBins do
18: Collect(key = b, value = f(b))
19: end for
20: end Map()
21: Reduce()
22: Input : key = Reduce-key(A bin b), values = Reduce-Values(Integers)
23: Initialize real number s = 0.
24: for Each Reduce-Values v do
25: Set s = s+ v
26: end for
27: collect(key = Reduce-key(k), value = s)
28: end Reduce()
29: Execute a Map-Reduce job and read all the key-value pairs.
30: Get total frequency count T (b) for each bin b; 1 ≤ b ≤ nBins.
31: for Each p in P do
32: Get Qp from F , by calculating cumulative frequency and interpolation.
33: end for
34: Return(Qp for all p)
35: end procedure

1

122

B.3 Algorithm: EP-FQCh1

Algorithm B.3 Map-Reduce algorithm for EP-FQCh1 method of computing approximate quantiles

Input: A distributed Data-Frame(DDF) that has x as a component.
Output: A list of Quantiles.

1: procedure DR-EP.FQ-CH1(conn,J0,p)
2: (conn = HDFS Connection to the DDF, J0 = Number of terms, p = A vector of f-values)
3: Get M = Max(X) + δ, m = Min(X) − δ.
4: Here δ is a very small number. (Need a pre-map-reduce step if any of them are not given).
5: Get the scaling parameters A = −M+m

M−m , B = 2
M−m .

6: Map()
7: Input : keys = Map-keys(index), values = Map-Values(Data-Frame)
8: Initialize 2J0 length vector C = 0 and J0 length vectors c = 0 and s = 0.
9: Start with the 0 length null vector V .

10: for Each Map-key in the Mapper do
11: Trnasform x column of the corresponding Map-value(usually a data frame) as x̂ = Ax +B
12: Concatenate with x̂ with V .
13: end for
14: for Each element of v of V do
15: c0 = cos(v).

16: s0 =
√

1 − c20.

17: for j = 1, 2, · · · , J0 do
18: c(j) = c(j) + c2j−1

0 .

19: s(j) = s(j) + s0 × c2j−2
0 .

20: end for
21: end for
22: Combine and store c and s in the big vector C.
23: for j = 1, 2, · · · , 2J0 do
24: Collect(key = j, value = C(j))
25: Collect(key = 0, value = subset-size N)
26: end for
27: end Map()
28: Reduce()
29: Input : key = Reduce-key(An integer j), values = Reduce-Values(real numbers)
30: Initialize real number s = 0.
31: for Each Reduce-Values v do
32: Set s = s+ v
33: end for
34: collect(key = Reduce-key(j), value = v)
35: end Reduce()
36: Execute a Map-Reduce job and read all the key-value pairs.
37: Collect value N for key = 0.
38: Initialize J0 length vectors C̄ = 0,SC = 0 and S̄ = 0.
39: Collect values with keys = 1, · · · , J0 as keys, divide by N and store in J0 length vector C̄.
40: Apply Chebyshev’s type A recursion (algorithm B.6) on C̄ to get new C̄.
41: Collect values with keys = J0 + 1, · · · , 2J0 as keys, divide by N and store in J0 length vector SC.
42: Set S̄(1) = SC(1).
43: for j = 2, · · · , J0 do
44: S̄(j) = S̄(1) −∑j

j′=2
SC(j)

45: end for
46: Apply Chebyshev’s type A recursion (algorithm B.6) on S̄ to get new S̄.
47: Multiply odd terms of S̄ with −1 to get new S̄.

48: Let fP (β) = π
2

∑J0
j=1

C̄(j)cos
(
(2j−1)β

)
+S̄(j)sin

(
(2j−1)β

)
(2j−1)2

+ pβ

49: for Each P in Pr do
50: Get Q̂P by maximizing the function fP (β) w.r.t. β.
51: end for
52: Return((Q̂P −B)/A for all P)
53: end procedure

1

123

B.4 Algorithm: EP-FQCh2

Algorithm B.4 Map-Reduce algorithm for EP-FQCh2 method of approximating quantiles

Input: A distributed Data-Frame(DDF) that has x as a component.
Output: A list of Quantiles.

1: procedure DR-EP.FQ-CH2(conn,J ,K,p)
2: (conn = HDFS Connection to the DDF, J,K = Parameters of EP.FQCh2, p = A vector of f-values)
3: Get M = Max(X) + δ, m = Min(X) − δ.
4: Here δ is a very small number. (Need a pre-map-reduce step if any of them are not given).
5: Get the scaling parameters A = −M+m

M−m , B = 2
M−m .

6: Map()
7: Input : keys = Map-keys(index), values = Map-Values(Data-Frame)
8: Initialize 2JK length vector C = 0 and J ×K dimentional matrices c = 0 and s = 0.
9: Start with the 0 length null vector V .

10: for Each Map-key in the Mapper do
11: Transform x column of the corresponding Map-value(usually a data frame) as x̂ = Ax +B
12: Concatenate with x̂ with V .
13: end for
14: for Each element of v of V do
15: c1 = cos(v).
16: c2 = cos(2Jv).

17: s1 =
√

1 − c20.

18: for j = 1, · · · , J do
19: for k = 1, · · · ,K do
20: c(j, k) = c(j, k) + c2j−1

1 ck−1
2 .

21: s(j, k) = s(j) + s1c
2j−2
1 ck−1

2 .
22: end for
23: end for
24: end for
25: Combine and store c and s in the big vector C.
26: for j = 1, 2, · · · , 2JK do
27: Collect(key = j, value = C(j))
28: Collect(key = 0, value = subset-size N)
29: end for
30: end Map()
31: Reduce()
32: Input : key = Reduce-key(An integer j), values = Reduce-Values(real numbers)
33: Initialize real number s = 0.
34: for Each Reduce-Values v do
35: Set s = s+ v
36: end for
37: collect(key = Reduce-key(j), value = s)
38: end Reduce()
39: Execute a Map-Reduce job and read all the key-value pairs.
40: Collect value N for key = 0.
41: Initialize J ×K dimentional matrices Γ̄ = 0, SC = 0 and ∆̄ = 0.
42: Collect values with keys = 1, · · · , JK as keys, divide by N and store in J ×K dimentional matrix Γ̄.
43: Apply Chebyshev’s type A recursion (algorithm B.6) along the rows of Γ̄ to get new Γ̄.
44: Apply Chebyshev’s type B recursion (algorithm B.7) along the columns of Γ̄ to get new Γ̄.
45: Apply Chebyshev’s type C recursion (algorithm B.8) on the matrix Γ̄ to get vector C̄.
46: Collect values with keys = JK + 1, · · · , 2JK as keys, divide by N and store in J ×K dimentional matrix SC.
47: for k = 1, · · · ,K do
48: Set ∆̄(1, k) = SC(1, k).
49: for j = 2, · · · , J do
50: ∆̄(j, k) = ∆̄(1, k) −∑j

j′=2
SC(j′, k)

51: end for
52: end for
53: Apply Chebyshev’s type A recursion (algorithm B.6) along the rows of ∆̄ to get new ∆̄.
54: Apply Chebyshev’s type B recursion (algorithm B.7) along the columns of ∆̄ to get new ∆̄.
55: Multiply odd rows of ∆̄ with −1 to get new ∆̄.
56: Apply Chebyshev’s type D recursion (algorithm B.9) on the matrix ∆̄ to get vector S̄.

57: Let fP (β) = π
2

∑JK
j=1

C̄(j)cos
(
(2j−1)β

)
+S̄(j)sin

(
(2j−1)β

)
(2j−1)2

+ pβ

58: for Each P in Pr do
59: Get Q̂P by maximizing the function fP (β) w.r.t. β.
60: end for
61: Return((Q̂P −B)/A for all P)
62: end procedure

1

124

B.5 Algorithm: EP-FQChp

Algorithm B.4 Map-Reduce algorithm for EP-FQCh2 method of approximating quantiles

Input: A distributed Data-Frame(DDF) that has x as a component.
Output: A list of Quantiles.

1: procedure drQuantileFourier(conn = HDFS Connection to the DDF, J1, J2, · · · , Jp = Parameters of p-fold fourier method, pr = A vector of f-values)
2: (conn = HDFS Connection to the DDF, J1, J2, · · · , Jp = Parameters of EP.FQChp, Probs = A vector of f-values)
3: Get M = Max(X) + δ, m = Min(X)− δ.
4: Here δ is a very small number. (Need a pre-map-reduce step if any of them are not given).
5: Get the scaling parameters A = −M+m

M−m , B = 2
M−m .

6: Let NJ = {1, · · · , J1} × {1, · · · , J2} × · · · × {1, · · · , Jp}.
7: Let J0 = J1.J2. · · · .Jp.
8: Map()
9: Input : keys = Map-keys(index), values = Map-Values(Data-Frame)

10: Initialize 2J1J2 · · · Jp length vector C = 0 and p dimentional arrays c = 0 and s = 0, with dimension J1, J2, · · · , Jp.
11: Start with the 0 length null vector V .
12: for Each Map-key in the Mapper do
13: Concatenate x column of the corresponding Map-value(usually a data frame) with V .
14: end for
15: for Each element of v of V do
16: c1 = cos(v), c2 = cos(2J1v), c3 = cos(2J1J2v), · · · , cp = cos(2J1J2 · · · Jp−1v).

17: s1 =
√

1− c21
18: for Every index j ∈ NJ do

19: c(j) = c(j) + c2j1−1
1 cj2−1

2 · · · cjp−1
p .

20: s(j) = s(j) + s1c
2j1−2
1 cj2−1

2 · · · cjp−1
p .

21: end for
22: end for
23: Combine and store c and s in the big vector C.
24: for j = 1, 2, · · · , 2J0 do
25: Collect(key = j, value = C(j))
26: Collect(key = 0, value = subset-size N)
27: end for
28: end Map()
29: Reduce()
30: Input : key = Reduce-key(An integer j), values = Reduce-Values(real numbers)
31: Initialize real number s = 0.
32: for Each Reduce-Values v do
33: Set s = s+ v
34: end for
35: collect(key = Reduce-key(j), value = s)
36: end Reduce()
37: Execute a Map-Reduce job and read all the key-value pairs.
38: Get all terms corresponding odd indices as keys and store in a J1 × J2 × · · · × Jp dimentional array Ĉ.

39: Apply algorithm A (algorithm B.6) along 1st co-ordinate of the array Ĉ.
40: Apply algorithm B (algorithm B.7) along 2nd, 3rd, · · · , pth co-ordinate of the output matrix,
41: Apply algorithm C (algorithm B.8) on the output matrix recursively to get J0 length vector C̄.

42: Get all terms corresponding to even indices as keys, divide by N and store in a J1 × J2 × · · · × Jp dimentional array Ŝ.

43: Apply algorithm A (algorithm B.6) along 1st co-ordinate of the array Ĉ.
44: Apply algorithm B (algorithm B.7) along 2nd, 3rd, · · · , pth co-ordinate of the output matrix,
45: Multiply the 1st co-ordinate even entries of the output matrix by −1
46: Apply algorithm D (algorithm B.9) on the output matrix recursively to get J0 length vector S̄.

47: Let fP (β) = π
2

∑J0
j=1

C̄(j)cos
(
(2j−1)β

)
+S̄(j)sin

(
(2j−1)β

)
(2j−1)2

+ pβ

48: for Each P in Pr do
49: Get Q̂P by maximizing the function fP (β) w.r.t. β.
50: end for
51: Return((Q̂P −B)/A for all P)
52: end procedure

1

B.6 Algorithm: EP-FQCh type A recursion

Algorithm B.6 EP-FQCh type A recursion

Input: A vector Cin of length J0.
Output: A vector Cout of length J0.

procedure EP-FQCh.type-A(Numeric vector Cin)
Introduce numeric vector Even,Odd,Cout.
Even = C(1, 2, · · · , J0− 1);Odd = C(1, 2, · · · , J0).
for j = 1, 2, · · · , J0 do

Ĉ(j) = Odd(1).
Even = 2 ∗Odd(2, 3, · · · , J0)− Even(1, 2, · · · , J0− 1).
Odd = 2 ∗ Even(1, 2, · · · , J0− 1)−Odd(1, 2, · · · , J0− 1).

end for
Return(vector Cout)

end procedure

1

125

B.7 Algorithm: EP-FQCh type B recursion

Algorithm B.7 EP-FQCh type B recursion

Input: A vector Cin of length J0.
Output: A vector Cout of length J0.

procedure EP-FQCh.type-B(Numeric vector Cin)
Introduce numeric vector Old,New,Temp,Cout.
Set Old = Cin[1, 2, · · · , J0];New = Cin[2, 3, · · · , J0];Cout[1] = Cin[1];Cout[2] = Cin[2].
for j = 3, 4, · · · , J0 do

Temp = New
New = 2 ∗New[2, 3, · · · , J0]−Old[1, 2, · · · , J0− 1].
Old = Temp.
Cout[j] = New[1].

end for
Return(vector Cout)

end procedure

1

B.8 Algorithm: EP-FQCh type C recursion

Algorithm B.8 EP-FQCh type C recursion

Input: A matrix Ain of dimension J and K.
Output: A vector Cout of length JK.

procedure EP-FQCh.type-C(Numeric Matrix Ain)
Introduce numeric vector Cout,Add.
Set Cout = Ain[., 1];
Set Add = Ain[., 1];
for k = 2, 3, · · · ,K do

Add = 2 ∗Ain[., k]− reverse(Add).
Cout = append(Cout, Add).

end for
Return(vector Cout)

end procedure

1

B.9 Algorithm: EP-FQCh type D recursion

Algorithm B.9 EP-FQCh type D recursion

Input: A matrix Ain of dimension J and K.
Output: A vector Sout of length JK.

procedure EP-FQCh.type-D(Numeric Matrix Ain)
Introduce numeric vector Sout,Add.
Set Sout = Ain[., 1];
Set Add = Ain[., 1];
for k = 2, 3, · · · ,K do

Add = 2 ∗Ain[., k] + reverse(Add).
Sout = append(Sout, Add).

end for
Return(vector Sout)

end procedure

1

126

B.10 Algorithm: Computing summands for EP-FKD0

Algorithm Algorithm to get all summands for EP-FKD0

Input: A p dimensional vector x = (x1, x2, · · · , xp) and an integer J .
Output: A p+ 2 dimensional array C(x) = {{Ct,k,j(x)}}, dimensions of C are {p, 2J + 1, · · · , 2J + 1(p+ 1 times)}.

First compute the p× (2J + 1) matrix L = {{l(t, j) = cj(xt)}}.
Set C = L.
for Each row l(t, .) of L do do

Set C = Outer
(
C, l(t, .)

)
.(Outer(., .) is outer product of two arrays)

end for
Return(C)

1

B.11 Algorithm: EP-FKD0

Algorithm Map-Reduce algorithm: EP-FKD0

Input: A distributed Data-Frame(like a DDF object in R package ”Datadr”).
Output: A list of neighborhoods.

procedure EP-FKD0(conn = HDFS Connection to the DDF, J = Number of terms in Fourier Series, D = depth of KDTree)
Get p = Number of Variables
Scale all the variables in the range (-1,1).(Have to do a pre-Map-Reduce to get the range of the data if range is not given)
Map()
Input : keys = Map-keys(index), values = Map-Values(Data-Frame)
initialize p + 2 dimensional array V = 0, dimensions of V are {p, 2J + 1, · · · , 2J + 1(p + 1 times)}.
for Each Map-key in the Mapper do

for Each row x of the data-frame Map-Value of that Map-key do
Calculate the matrix M , such that, Mt,k,j = {{Ct,k,j(x)}} using algorithm B.10.
Set V = V + M

end for
end for
for Each p + 2 tuple {t, k, j} do

Collect
(

key = {t, k, j}, value = V
(
t, k, j

))

end for
Collect(key = 0, value = Number of rows of the data-frame Map-Value)
end Map()
Reduce()
Input : key = Reduce-key(either 0 or a p + 2 dimensional index), values = Reduce-Values(real numbers)
Initialize real number s = 0.
for Each Reduce-Values v do

Set s = s + v
end for
collect(key = Reduce-key(either 0 or a p + 1 dimensional index), value = s)
end Reduce()
Execute a Map-Reduce job and read all the key-value pairs.
Initialize p + 2 dimensional array C̄ = 0, dimensions of C̄ are {p, 2J + 1, · · · , 2J + 1(p + 1 times)}.
Get the value N corresponding to the key 0.
for Each p + 2 tuple {t, k, j} do

Get the value v corresponding to the key {t, k, j}.
Set C̄[t, k, j] = v

N
end for
Start with the list of 1 neighborhood L =

(
a = (−1,−1, · · · ,−1),b = (1, 1, · · · , 1)

)

for d = 1, 2, · · · , D do
for each neighborhood

(
a,b

)
of L do

Set t = (d− 1) mod p + 1
Set mt

d = arg max
m∈(at,bt)

F (m) where F (m) =
∑

{t,k,j}
fk(m)Gj(a,b)C̄

(
t, k, j

)

Set aleft = a,bleft = b,aright = a,bright = b,aright(t) = mt
d,bleft(t) = mt

d

Replace
(
a,b

)
with the collection

((
aleft,bleft

)
;
(
aright,bright

))
in L

end for
end for
Return(L)

end procedure

1

127

B.12 Algorithm: Computing summands for EP-FKD

Algorithm Algorithm to get all summands for EP-FKD

Input: A p dimensional vector x = (x1, x2, · · · , xp) and an integer J .
Output: (1) A p dimensional array C(x) = {{Cj(x)}}, dimensions of C are {2J + 1, · · · , 2J + 1(p times)};
(2) p number of p dimensional arrays Ξt(x) = {{Ξt

j(x)}}, dimensions of Ξt are {2J + 1, · · · , 2J + 1, 4J − 2(tth co-ordinate), 2J + 1, · · · , 2J + 1}
Compute the p× 2J + 1 matrix L = {{l(t, j) = cj(xt)}}.
Compute the p× 4J − 1 matrix M = {{m(t, j) = ξj(xt)}}.
Set C = l(1, .)(First row of L).
for t = 2, · · · , L do do

Set C = Outer
(
C, l(t, .)

)
.(Outer(., .) is outer product of two arrays)

end for
for Each row m(t, .) of M do do

Set Ξt = Outer
(
C
(
(1 : 2J + 1), · · · , (1 : 2J + 1), 0(tth co-ordinate), (1 : 2J + 1), · · · , (1 : 2J + 1)

)
,m(t, .)

)
.

end for
Return(C and Ξt for each t)

1

128

B.13 Algorithm: EP-FKD

Algorithm Map-Reduce algorithm: EP-FKD

Input: A distributed Data-Frame(like a DDF object in R package ”Datadr”).
Output: A list of neighborhoods.

procedure EP-FKD(conn = HDFS Connection to the DDF, J = Number of terms in Fourier Series, D = depth of KDTree)
Get p = Number of Variables
Scale all the variables in the range (-1,1).(Have to do a pre-Map-Reduce to get the range of the data if range is not given)
Map()
Input : keys = Map-keys(index), values = Map-Values(Data-Frame)
initialize p dimensional array U = 0, dimensions of U are {2J + 1, · · · , 2J + 1(p times)}.
initialize p number of p dimensional array V t = 0, dimensions of V t are {2J + 1, · · · , 2J + 1

(
(p− 1) times

)
, 4J − 1}.

for Each Map-key in the Mapper do
for Each row x of the data-frame Map-Value of that Map-key do

Calculate the matrices M,Nt, t = 1, · · · , p, such that, Mj = {{Cj(x)}}, Nt
j = {{Ξt

j(x)}}, using algorithm B.12.
Set U = U +M
for t = 1, · · · , p do do

Set V t = V t +Nt

end for
end for

end for
for Each p tuple j ∈ N[p]

J do

Collect
(

key = j, value = U(j)
)

end for
for t = 1, · · · , p do do

for Each p tuple j ∈ N[p,p]
J do

Collect
(

key =
(
t, j
)
, value = V t(j)

)

end for
end for
Collect(key = 0, value = Number of rows of the data-frame Map-Value)
end Map()
Reduce()
Input : key = Reduce-key(either 0 or an index vector), values = Reduce-Values(real numbers)
Initialize real number s = 0.
for Each Reduce-Values v do

Set s = s+ v
end for
collect(key = Reduce-key(either 0 or an index vector), value = s)
end Reduce()
Execute a Map-Reduce job and read all the key-value pairs.
Get the value N corresponding to the key 0.
Initialize p dimensional array C̄ = 0, dimensions of C̄ are {2J + 1, · · · , 2J + 1(p times)}.
for Each p tuple j ∈ N[p]

J do
Get the value v corresponding to the key j.
Set C̄

(
j
)

= v
N

end for
for t = 1, · · · , p do

Initialize p dimensional array Ξ̄t = 0, dimensions of Ξ̄t are {2J + 1, · · · , 2J + 1
(
(p− 1) times

)
}.

for Each p tuple j ∈ N[p,p]
J do

Get the value v corresponding to the key j.
Set Ξ̄

(
j
)

= v
N

end for
end for
Start with the list of 1 neighborhood L =

(
a = (−1,−1, · · · ,−1),b = (1, 1, · · · , 1)

)

for d = 1, 2, · · · , D do
for each neighborhood

(
a,b

)
of L do

Set t = (d− 1) mod p+ 1
Set mt

d = arg max
m∈(at,bt)

F (m) where

F (m) =
∑

j∈N[p]
J

ωjt (m,at, bt)gj-t
(a,b)C̄(j) +

∑
j∈N[p,p]

J

ξJjt (m,at, bt)gj-t
(a,b)Ξ̄t(j)

Set aleft = a,bleft = b,aright = a,bright = b,aright(t) = mt
d,bleft(t) = mt

d

Replace
(
a,b

)
with the collection

((
aleft,bleft

)
;
(
aright,bright

))
in L

end for
end for
Return(L)

end procedure

1

129

C. R FUNCTIONS USED IN ILLUSTRATIONS:

130

1 map . bin <− f unc t i on (x) {
x <− x [! i s . na (x)]

3 i f (l ength (x) > 0) {
cutTab <− as . data . frame (t ab l e (cut (x , cuts , l a b e l s = FALSE)) , responseName = ”Freq” , s t r i ng sAsFac to r s = FALSE)

5 cutTab$Var1 <− as . i n t e g e r (cutTab$Var1)
l s <− l i s t ()

7 i f (nrow (cutTab) == 0) {
warning (”data out s id e s p e c i f i e d range ”)

9 } e l s e {
f o r (i in 1 : nrow (cutTab)) {

11 l s [[i]]<− l i s t (l i s t (i , cutTab$Var1 [i]) , cutTab$Freq [i])
}

13 }
}

15 r e turn (l s)
}

1

function map.bin()

1 map .EP.FQ0 <− f unc t i on (x) {
x <− x [! i s . na (x)]

3 i f (l ength (x) > 0) {
x <− A∗x+B

5 c <− ftQ (x , J0)
l s <− l i s t ()

7 f o r (i in 1 :2∗ J0) {
l s [[i]]<− l i s t (l i s t (i) , c [i])

9 }
}

11 r e turn (l s)
}

1

function map.EP.FQ0() The R function map.EP.FQ0() makes a call to the

C++ function ftQ(), see Appendix D

1 map .EP.FQCh1 <− f unc t i on (x) {
x <− x [! i s . na (x)]

3 i f (l ength (x) > 0) {
x <− A∗x+B

5 c <− ftQ1 (x , J0)
l s <− l i s t ()

7 f o r (i in 1 :2∗ J0) {
l s [[i]]<− l i s t (l i s t (i) , c [i])

9 }
}

11 r e turn (l s)
}

1

function map.EP.FQCh1() The R function map.EP.FQCh1() makes a call to

the C++ function ftQ1(), see Appendix D

131

1 map .EP.FQCh2 <− f unc t i on (x) {
x <− x [! i s . na (x)]

3 i f (l ength (x) > 0) {
x <− A∗x+B

5 c <− ftQ2 (x , J ,K)
l s <− l i s t ()

7 f o r (i in 1 :2∗ J∗K) {
l s [[i]]<− l i s t (l i s t (i) , c [i])

9 }
}

11 r e turn (l s)
}

1

function map.EP.FQCh2() The R function map.EP.FQCh2() makes a call to

the C++ function ftQ2(), see Appendix D

132

133

D. C++ FUNCTIONS USED IN R SCRIPTS:

134

1 NumericVector ftQ (NumericVector x , i n t J0) {

3 i n t i , j , I ;
NumericVector C(2∗ J0) ;

5 double xx , cc ;

7 f o r (i = 0 ; i < x . s i z e () ; i++){
xx = x [i] ;

9 cc = 2∗xx ;
I = 0 ;

11 f o r (j = 0 ; j < J0−1; j++){
C[I] += cos (xx) ;

13 I +=1;
C[I] += s in (xx) ;

15 I +=1;
xx += cc ;

17 }
C[I] += cos (xx) ;

19 I +=1;
C[I] += s in (xx) ;

21 }
r e turn C;

23 }

1

function ftQ()

1 NumericVector ftQ1 (NumericVector x , i n t J0) {

3 i n t i , j , I ;
NumericVector C(2∗ J0) ;

5 double c , s , c1 , s1 , t ;

7 f o r (i = 0 ; i < x . s i z e () ; i++){
c1 = cos (x [i]) ;

9 t = c1∗ c1 ;
c = c1 ;

11 s1 = sq r t (1− t) ∗ ((x [i] < 0) ? −1 : (x [i] > 0)) ;
s = s1 ;

13 I = 0 ;
f o r (j = 0 ; j < J0−1; j++){

15 C[I] += c ;
c ∗= t ;

17 I +=1;
C[I] += s ;

19 s ∗= t ;
I +=1;

21 }
C[I] += c ;

23 I +=1;
C[I] += s ;

25 }
r e turn C;

27 }

1

function ftQ1()

135

1 NumericVector ftQ2 (NumericVector x , i n t J , i n t K) {

3 i n t i , j , k , I ;
NumericVector C(2∗J∗K) ;

5 double c , s , c1 , s1 , c2 , t , u ;

7 f o r (i = 0 ; i < x . s i z e () ; i++){
c1 = cos (x [i]) ;

9 t = c1∗ c1 ;
c = c1 ;

11 s1 = sq r t (1− t) ∗ ((x [i] < 0) ? −1 : (x [i] > 0)) ;
s = s1 ;

13 c2 = cos (2∗J∗x [i]) ;
u = 1 ;

15 I = 0 ;
f o r (k = 0 ; k < K−1; k++){

17 f o r (j = 0 ; j < J ; j++){
C[I] += c ;

19 c ∗= t ;
I +=1;

21 C[I] += s ;
s ∗= t ;

23 I +=1;
}

25 u ∗= c2 ;
c = c1∗u ;

27 s = s1 ∗u ;
}

29 f o r (j = 0 ; j < J−1; j++){
C[I] += c ;

31 c ∗= t ;
I +=1;

33 C[I] += s ;
s ∗= t ;

35 I +=1;
}

37 C[I] += c ;
I +=1;

39 C[I] += s ;
}

41 r e turn C;
}

1

function ftQ2()

