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ABSTRACT

Bynum, Michael L. PhD, Purdue University, December 2018. Modeling and Opti-
mization Techniques for Critical Infrastructure Resilience. Major Professor: Carl D.
Laird.

The resilience of critical infrastructure, such as water distribution systems and

power systems, is critical for both the economy and public safety and health. How-

ever, methods and tools for evaluating and improving the resilience of these systems

must be able to address the large network sizes, nonlinear physics, discrete deci-

sions, and uncertainty. This dissertation focuses on the development of modeling and

optimization techniques that address these difficulties, enabling the evaluation and

improvement of power and water distribution system resilience.

In Part I, we present novel stochastic optimization models to improve power sys-

tems resilience to extreme weather events. We consider proactive redispatch, trans-

mission line hardening, and transmission line capacity increases as alternatives for

mitigating the effects of extreme weather. Our model is based on linearized or ”DC”

optimal power flow, similar to models in widespread use by independent system oper-

ators (ISOs) and regional transmission operators (RTOs). Our computational exper-

iments indicate that each of these strategies can play a major role in power systems

resilience.

We then extend the resilience formulations to investigate the role chemical process

facilities, as industrial energy consumers, can play in improving electric grid resilience

through demand response (DR). For process facilities to effectively negotiate demand

response (DR) contracts and make investment decisions regarding flexibility, they

need to quantify their additional value to the grid. We also reformulate the DR

problems using the more accurate nonlinear alternating current power flow model to
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investigate the effect of the linear DC approximation. Our numerical results demon-

strate that the linearized model often underestimates the amount of DR needed,

motivating scalable solution algorithms for Mixed-Integer Nonlinear Programming

(MINLP) problems in power systems.

An important step in many MINLP algorithms is the global solution of a Nonlin-

ear Programming (NLP) subproblem. For power systems applications, this involves

global solution of NLP’s containing the alternating current (AC) power flow model.

This thesis presents several advances to aid in global optimization of AC power flow

equations. We show that a strong upper bound on the objective of the alternating

current optimal power flow (ACOPF) problem can significantly improve the effective-

ness of optimization-based bounds tightening (OBBT) on a number of relaxations.

Furthermore, we investigate the effect of the reference bus on OBBT. We find that,

if reference bus constraints are included, relaxations of the rectangular form signifi-

cantly strengthen existing relaxations and that the effectiveness of OBBT at a given

iteration is directly related to the distance of the corresponding bus from the reference

bus.

Ultimately, with OBBT alone, we are able to reduce the optimality gap to less than

0.1% on all but 5 NESTA test cases with up to 300 buses. However, the compuational

expense required for OBBT grows rapidly with the size of the network. We present

a decomposition algorithm based on graph partitioning to drastically improve this

performance. Our numerical results demonstrate that our decomposed bounds tight-

ening (DBT) algorithm results in variable bounds nearly as tight as those obtained

with traditional, full-space OBBT. Furthermore, the compuatational expense of the

DBT algorithm scales far more favorably with problem size, resulting in drastically

reduced wallclock times, especially for large networks.

In Part II, we describe the Water Network Tool for Resilience (WNTR), an new

open source Python package designed to help water utilities investigate resilience

of water distribution systems to hazards and evaluate resilience-enhancing actions.

The WNTR modeling framework is presented and a case study is described that
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uses WNTR to simulate the effects of an earthquake on a water distribution sys-

tem. The case study illustrates that the severity of damage is not only a function of

system integrity and earthquake magnitude, but also of the available resources and

repair strategies used to return the system to normal operating conditions. While

earthquakes are particularly concerning since buried water distribution pipelines are

highly susceptible to damage, the software framework can be applied to other types

of hazards, including power outages and contamination incidents.



1

1. INTRODUCTION1

1.1 The Importance of Critical Infrastructure Resilience

The United States Presidential Policy Directive 21 (PPD-21) originally outlined

the nation’s need for secure and resilient critical infrastructure and identified 16 crit-

ical infrastructure sectors, including the electric power sector and the water sector

[The White House, 2013]. Subsequently, national focus on improving critical infras-

tructure resiliency has only increased. In particular, the resilience of electric power

systems and water distribution systems is vital for both the economy and public

health and safety. Physical components of these systems may be damaged by natural

disasters (e.g., earthquakes and hurricanes) and by intentional acts (e.g., perpetrated

by nation-state actors), ultimately impacting the ability to deliver power and/or clean

water to consumers. The annual cost of power outages due to severe weather in the

United States alone between 2003 and 2012 is estimated to be between 18 and 33

billion USD [Executive Office of the President, 2013].

Informally, resilience refers to the ability of a system to withstand and quickly

recover from adverse events [Watson et al., 2014]. Here, we specifically focus on re-

1Part of this chapter is reprinted from “Evaluating Demand Response Opportunities for Power
Systems Resilience Using MILP and MINLP Formulations” by Bynum, M., Castillo, A., Watson,
J.P., and Laird, C.D., to appear in AIChE Journal, 2018.
c©2018 IEEE Part of this chapter is reprinted with permission from “Tightening McCormick Relax-
ations Toward Global Solution of the ACOPF Problem” by Bynum, M., Castillo, A., Watson, J.P.,
and Laird, C.D., IEEE Transactions on Power Systems, 2018. In reference to IEEE copyrighted
material which is used with permission in this thesis, the IEEE does not endorse any of Purdue
University’s products or services.
Part of this chapter is reprinted from “13th International Symposium on Process Systems Engineer-
ing (PSE 2018)”, Volume 44, Bynum, M., Castillo, A., Watson, J.P., and Laird, C.D., “Strengthened
SOCP Relaxations for ACOPF with McCormick Envelopes and Bounds Tightening”, pages 1555–
1560, 2018, with permission from Elsevier.
Part of this chapter is reprinted with permission from “A Software Framework for Assessing the
Resilience of Drinking Water Systems to Disasters with an Example Earthquake Case Study” by
Klise, K.A., Bynum, M., Moriarty, D., and Murray, R., Environmental Modelling & Software, 2017.
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silience to severe weather events, e.g., hurricanes and ice storms. A necessary first

step toward improving resilience to such events is estimating the impact of these

events on power and water distribution systems. Such estimation involves weather

forecasting, predicting the effect of severe weather conditions on system components,

and modeling the performance (operations) of the systems given sets of damaged com-

ponents [Panteli and Mancarella, 2015, Ouyang and Duenas-Osorio, 2014, Guikema

et al., 2010, Panteli et al., 2017a].

Panteli et al. [2017b] describe the concept of a “resilience trapezoid” toward eval-

uation and quantification of critical infrastructure resilience. The resilience trapezoid

highlights the performance of a system during an adverse event (Phase I), immedi-

ately following an adverse event (Phase II), and during the restoration process (Phase

III). Panteli et al. [2017b] subsequently introduced the ΦΛEΠ resilience metric sys-

tem based upon the different phases of the resilience trapezoid. The ΦΛEΠ resilience

metric system is composed of four components:

• Φ: The slope of system performance during Phase I

• Λ: The amount by which performance drops from Phase I to Phase II (i.e., the

baseline performance minus the post-disturbance performance)

• E: The duration of Phase II

• Π: The slope of the system performance during Phase III

The resilience trapezoid and ΦΛEΠ metric system provides a conceptual frame-

work for categorizing different approaches to improving resilience. In the remainder

of this chapter, we review existing approaches for improving the resilience of power

and water distribution systems within the context of the resilience trapezoid, review

limitations in current methods and tools for evaluating and improving resilience, and

outline the rest of this dissertation.
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1.2 Existing Methods and Software Tools for Evaluating and Improving Critical
Infrastructure Resilience

In this section, we review existing methods and tools for evaluating and improving

the resilience of power and water distribution systems.

1.2.1 Power Systems

In the context of power systems operations, the primary considerations for Phase

I of the resilience trapezoid (during an adverse event) are minimization of unserved

demand due to component damage and the prevention of cascading outages (i.e.,

blackouts). Cascading outages are complex phenomena due to the complex interac-

tions between system components, component failures, and protection schemes. Many

different failure types may contribute to a blackout, including cascading overloads,

transient instabilities, and voltage collapse [Baldick et al., 2008]. Typical mitigation

strategies include remedial action schemes such as generation trip, brake insertion,

fast valve/gen ramp, HVDC ramp, islanding, intentional load shed, excitation forcing,

shunt capacitor/reactor switching, and series capacitor/reactor switching [Vaiman

et al., 2013]. Chen et al. [2001] propose a decision-event tree to help operators re-

spond rapidly to an event and prevent cascading outages. Wide area monitoring and

backup protection systems have also been proposed for preventing blackouts [Tan

et al., 2002, Zima and Andersson, 2004]. Song and Kezunovic [2007] present an early

detection scheme that uses the vulnerability index, margin index, and power flow

solutions to predict possible failures. Cascading outages may also be prevented by

partitioning the network into islands by minimal cut sets [Wang and Vittal, 2004] and

using graph partitioning methods in the context of mixed-integer linear programming

(MILP) models [Fan et al., 2012].

Extensive research has been conducted to develop improved strategies for post-

blackout restoration (Phase III). Wang et al. [2016b] divide restoration into three

stages (preparation, system restoration, and load restoration) and provide a review
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of research conducted to address each stage. Preparation primarily involves identifi-

cation of the status of various system components [Adibi and Fink, 1994b]. System

restoration deals with restarting generators and reconnecting and synchronizing the

power grid. For example, Sun et al. [2011] propose a MILP model to determine an

optimal generator restart sequence in order to maximize system generation capability.

Load restoration (also known as distribution system restoration) deals with scheduling

load pickup while maintaining system frequency. This process must be coordinated

with generation capability [Wang et al., 2016b, Adibi and Fink, 1994b].

Effectively improving the performance of power systems in Phase II (i.e., increas-

ing the post-disturbance system performance) can be challenging. Many hardening

options are available to achieve this goal, including hardening transmission lines, ele-

vating substations, the addition of distributed generation, the introduction of storage

devices, and system network reconfiguration (e.g., switching) [Panteli et al., 2017b].

Computational approaches are generally required to rigorously select from among

these various options. Zare et al. [2017] introduce a stochastic MILP optimization

model for switch placement in power distribution systems in order to isolate faulted

areas; network flows are not considered. In general, determining which option, or

combination of options, to employ is computationally challenging, driving research

toward more efficient approaches. Panteli et al. [2017b] propose hardening transmis-

sion lines according to each corridor’s Resilience Achievement Worth (RAW) index.

Wang et al. [2018] perform Monte Carlo sampling to assess line outage impacts on gen-

eration unit scheduling. However, such heuristic approaches to improving resilience

generally do not provide optimal solutions. They may provide significantly worse-

than-optimal solutions in the presence of a diverse set of strategies and large system

sizes.

Alternatively, rigorous optimization approaches based on mathematical program-

ming can provide optimal solutions in these contexts, although the computational

challenges can be significant. This difficulty is illustrated in the body of literature on

bi-level and tri-level optimization models and corresponding solution algorithms for
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critical infrastructure defense planning [Wu and Conejo, 2017, Salmeron et al., 2004,

Alguacil et al., 2014]. These models consider critical infrastructure defense strategies

in the context of an intelligent adversary, and focus on mitigating worst-case impacts

to a power system. For example, Shao et al. [2017] and Wang et al. [2013] use sim-

ilar strategies to mitigate the impact of component failures (contingencies) within

the context of long-term (i.e., investment) and short-term (i.e., operations) planning,

respectively. The former introduces a two-stage tri-level optimization model and im-

poses an upper limit on load shed. The latter introduces a two-stage robust optimiza-

tion model to minimize a linear combination of operating cost and load shed, focusing

again on the worst-case loss induced by component failure. Both of these models are

solved using decomposition strategies in which the model is partitioned into a MILP

master problem and bi-level subproblems. The bi-level subproblems (which are typi-

cally more computationally demanding) are used to find the worst-case contingencies,

which are iteratively integrated into the master problem. Hardening strategies recom-

mended by such models are designed to be effective against an omniscient adversary

with full knowledge of the power system under consideration, e.g., a nation state

actor.

1.2.2 Water Distribution Systems

Depending on their location and vulnerability, drinking water utilities are taking

steps to enhance their resilience to earthquakes, floods, drought, hurricanes, winter

storms, forest fires, tornadoes, contamination incidents, terrorist attacks, and other

types of hazards [Critical Infrastructure Partnership Advisory Council (CIPAC), 2009,

American National Standards Institute (ANSI), 2010, US Environmental Protection

Agency (USEPA), 2014, 2015b, 2016]. Resilience is defined by the National Academies

of Science as the ability to prepare and plan for, absorb, recover from, and successfully

adapt to adverse events [National Academy of Sciences (NAS), 2012]. The ability to

maintain drinking water service during and following such hazardous incidents is

critical to ensure the well-being and continuity of daily life. Water system resilience
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is important not only for individuals, but also for hospitals, schools, nursing homes,

fire stations, restaurants, and for other industries that rely on water.

Natural disasters and other types of hazards have resulted in different types of

water service disruptions: pipe breaks and leaks; power outages; failure of reservoirs,

tanks, pumps, treatment plants, and other infrastructure; reduced water quality;

loss of access to facilities and supplies; as well as financial, social, environmental

and human health consequences [Critical Infrastructure Partnership Advisory Coun-

cil (CIPAC), 2009, US Environmental Protection Agency (USEPA), 2015c, Eidinger

and Davis, 2012]. Following large disruptive incidents like earthquakes, affected com-

munities have experienced power outages and water service outages lasting from hours

to weeks. For example, the 1994 magnitude 6.7 Northridge Earthquake, located out-

side Los Angeles, California, damaged seven reservoirs, over 60 transmission mains,

and 1,000 distribution pipes. The quantity of water delivered was restored to pre-

earthquake volumes after seven days, and the quality of water was restored and boil-

water orders were lifted after 12 days. However, it took nine years to complete all

repairs and restore full functionality of the water system [Davis, 2014]. Even though

evidence shows that seismic-resistant pipes have a high survival rate following an

earthquake [Eidinger and Davis, 2012], these upgrades have not been widely imple-

mented because of the high cost for pipe replacement.

General guidance is available on water system resilience to disasters [Critical In-

frastructure Partnership Advisory Council (CIPAC), 2009, American National Stan-

dards Institute (ANSI), 2010, US Environmental Protection Agency (USEPA), 2014,

2015b, 2016]; however, robust software tools to support utility-specific resilience as-

sessment are not available. With such tools, water utilities could estimate potential

damages to their system, understand the multitude of disruptions that could unfold

over time, investigate redundancies, evaluate preparedness, and prioritize specific mit-

igation strategies, such as pipe replacement or adding redundancy to supply systems

[American National Standards Institute (ANSI), 2010, US Environmental Protection

Agency (USEPA), 2015c]. Systems modeling tools have the potential to meet this
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need by combining disaster damage models with hydraulic and water quality mod-

els of water distribution systems. Additionally, systems modeling could incorporate

changes in customer behavior during disasters (e.g., water usage), as well as utility

response actions. This type of simulation approach could allow a water utility to

design more effective mitigation activities before a disaster occurs.

Existing hydraulic and water quality modeling software tools were not designed

to handle sudden failures resulting in inadequate pressure or rapid changes in system

operation. Moreover, they were not designed to handle situations when sections of

a water system become isolated, tanks or reservoirs drain, or the system operational

rules cannot be met. For example, commonly used demand-driven (DD) hydraulic

simulators, like EPANET [Rossman, 2000], assume customer demands are always met

even if the pressure is insufficient to provide the demand. In reality, disasters can

lead to situations where pressure in the system is unusually low and customer demand

would not be met.

Several alternatives to DD simulators have been discussed in the literature. Wag-

ner et al. [1988] presented pressure-driven demand (PDD) hydraulic equations for

water distribution systems in which the demand supplied to a node is a function of

the pressure at that node [Muranho et al., 2014]. During low-pressure conditions,

customers receive a fraction of their expected demand. PDD simulators include Wa-

terNetGen [Muranho et al., 2014, 2012], which is an open source software tool, and

WaterGEMSTM [Wu et al., 2008], which is a commercial software tool. Quasi-PDD

simulators (or semi-PDD) run DD simulations in an iterative manner and nodes are

switched between constant-demand nodes, zero-demand nodes, and (sometimes) emit-

ters depending on the domain in which the pressure falls [Trifunovic, 2012, Pathirana,

2010, Yoo et al., 2015]. When considering disaster scenarios, the difference between

using DD and PDD simulation can be drastic [Laucelli et al., 2012].

After a large-scale disruption, water demand in the network can change dramat-

ically. Structural damage and emergency operational changes can result in isolated

sections of the network or low pressure conditions that reduce the amount of water
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delivered to customers. Policy changes, including do-not- drink orders, boil-water or-

ders, or water conservation efforts, also decrease customer demand. When planning

for an adequate drinking water supply during emergencies, water utilities need to

account for the minimum acceptable water use per capita, the anticipated time scale

of the disruption, the population impacted, and water quality standards that need

to be upheld [US Environmental Protection Agency (USEPA), 2015a]. If acceptable

water volume and quality cannot be delivered, potable water alternatives would have

to be considered. Customer behavior can also change during emergencies, either tem-

porarily increasing demand (e.g., filling up bathtubs to stockpile water) or decreasing

demand (e.g., relying on bottled water because of a lack of confidence in the deliv-

ered water). These changes in customer demand can impact resilience; for example,

conservation might increase water availability for firefighting.

Several tools have been developed to estimate the hydraulic performance of a wa-

ter distribution system after an earthquake [Yoo et al., 2015, Mani et al., 2013, Shi

and O’Rourke, 2008, Markov et al., 1994]. These tools use attenuation models and

fragility curves developed by the American Lifeline Alliance to estimate network dam-

age based on earthquake magnitude and location [American Lifelines Alliance (ALA),

2001a,b, 2005]. Attenuation models calculate peak ground acceleration (PGA) and

peak ground velocity (PGV) as a function of earthquake magnitude, location and

depth. Fragility curves determine the probability of damage as a function of ground

movement. These models are generally built on empirical data from recent earth-

quakes, which includes information such as the characteristics of damaged pipes and

the measured PGA. The Graphical Interactive Serviceability Analysis of Life-Lines

subjected to Earthquakes (GISALLE) tool quantifies water service availability after

an earthquake and uses the Loma Prieta Earthquake as the basis for a stochastic

parametric study [Markov et al., 1994]. The Graphical Iterative Response Analysis

for Flow Following Earthquakes (GIRAFFE) software builds upon GISALLE to in-

clude upgrades to the way low pressure conditions are handled when modeling pipe

failure and includes a seismic wave model to estimate joint damage [Shi and O’Rourke,
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2008]. Mani et al. [2013] include pipe leak models developed by Shi and O’Rourke

[2008] and use the Tehran water distribution network as a case study. The Reliabil-

ity EVAluation model for Seismic hazard for water supply NETwork (REVAS.NET)

tool includes earthquake attenuation models and probabilistic scenarios with different

repair strategies [Yoo et al., 2015]. Guidotti et al. [2016] extend previous work by

including a general procedure for modeling resilience of critical network infrastruc-

ture. This work includes methods that account for dependencies between networks,

such as the water distribution systems and the electric power network. The general

procedure can be applied to a wide range of hazards and recovery actions. To date,

these research efforts use quasi-PDD hydraulic simulations.

Several studies have simulated the damage to the Los Angeles Department of

Water and Power caused by the 1994 Northridge Earthquake in California and the

restoration activities that followed [Tabucchi, 2007, Romero et al., 2010, Shi and

O’Rourke, 2008]. These tools combine GIRAFFE with the capability to demonstrate

restoration actions, such as sending crews to investigate, isolate, and repair pipe

breaks. Other modeling tools were developed to help the East Bay Municipal Water

District in Northern California manage earthquake response in real-time, prioritize

transmission line upgrades, and assess interdependencies with the electricity sector

[Irias et al., 2011]. These tools combine real-time USGS ShakeMap data on ground

movement after an earthquake [Wald et al., 2006] with a customized software tool to

rapidly predict damage to specific water utility assets [Irias et al., 2011].

1.3 Research Problem Statement and Scope of Work

As we have seen, extensive research has been done on estimating the effects of

natural disasters and severe weather events on physical components of both power

systems and water distribution systems. Similarly, extensive work has been done on

modeling, evaluating, and, in some cases, optimizing recovery strategies. However,

although it is widely recognized that planning and investment before an event can sig-

nificantly mitigate the effects of the event, existing techniques for effectively directing
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resources toward this end are limited. Existing methods either are not computation-

ally efficient enough for large scale implementation, do not incorporate network effects

(e.g., power flow through a transmission network), are heuristic in nature (leading to

sub-optimal solutions), or do not addequately account for uncertainty. Furthermore,

there is a lack of software tools for performing resilience analyses from start to end

in a flexible and programmatic way.

In this dissertation, we present modeling and optimization techniques to address

these limitations. In particular, we focus on optimization-based strategies for demon-

strably improving the resilience of power systems to extreme weather events through

proactive planning and investment. We also present an open source Python package,

WNTR, designed to enable water utilities and researches the ability to analyze the

resilience of water distribution systems.

1.4 Thesis Outline

This dissertation is divided into two parts. In Part I, we present novel stochastic

optimization models to improve power systems resilience to extreme weather events.

We begin in Chapter 2 by reviewing power systems models. In Chapter 3, we consider

proactive redispatch, transmission line hardening, and transmission line capacity in-

creases as alternatives for mitigating expected load shed due to extreme weather.

Our model is based on linearized or ”DC” optimal power flow, similar to models

in widespread use by independent system operators (ISOs) and regional transmission

operators (RTOs). Our computational experiments indicate that proactive redispatch

alone can reduce the expected load shed by as much as 25% relative to standard eco-

nomic dispatch. This resiliency enhancement strategy requires no capital investments

and is implementable by ISOs and RTOs solely through operational adjustments. We

additionally demonstrate that transmission line hardening and increases in transmis-

sion capacity can, in limited quantities, be effective strategies to further enhance

power grid resiliency, although at significant capital investment cost. We perform a

cross validation analysis to demonstrate the robustness of proposed recommendations.
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Our proposed model can be augmented to incorporate a variety of other operational

and investment resilience strategies, or combination of such strategies.

We then extend the resilience formulations to investigate the role chemical pro-

cess facilities, as industrial energy consumers, can play in improving electric grid

resilience through demand response. While peak shaving is commonly used to reduce

power costs, chemical process facilities that can reduce power consumption on demand

during emergencies (e.g., extreme weather events) bring additional value through im-

proved resilience. For process facilities to effectively negotiate demand response (DR)

contracts and make investment decisions regarding flexibility, they need to quantify

their additional value to the grid. We present a grid-centric mixed-integer stochastic

programming framework to determine the value of DR for improving grid resilience

in place of capital investments that can be cost prohibitive for system operators.

In Chapter 4, we reformulate the DR problems using the nonlinear alternating

current power flow model to investigate the effect of the linear DC approximation. Our

numerical results with both models demonstrate that DR can be used to reduce the

capital investment necessary for resilience, increasing the value that chemical process

facilities bring through DR. However, the linearized model often underestimates the

amount of DR needed in our case studies, motivating scalable solution algorithms for

Mixed-Integer Nonlinear Programming (MINLP) problems in power systems.

An important step in many MINLP algorithms is the global solution of a Nonlin-

ear Programming (NLP) subproblem. For power systems applications, this involves

global solution of NLP’s containing the alternating current (AC) power flow model. In

Chapter 5, we show that a strong upper bound on the objective of the alternating cur-

rent optimal power flow (ACOPF) problem can significantly improve the effectiveness

of optimization-based bounds tightening (OBBT) on a number of relaxations. We ad-

ditionally compare the performance of relaxations of the ACOPF problem, including

the rectangular form without reference bus constraints, the rectangular form with

reference bus constraints, and the polar form. We find that relaxations of the rect-

angular form significantly strengthen existing relaxations if reference bus constraints
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are included. Overall, relaxations of the polar form perform the best. However, nei-

ther the rectangular nor the polar form dominates the other. Ultimately, with these

strategies, we are able to reduce the optimality gap to less than 0.1% on all but 5

NESTA test cases with up to 300 buses by performing OBBT alone.

The primary disadvantage to OBBT is that it is computationally expensive, espe-

cially for large problems. To partially mitigate this computational burden, we propose

a decomposition algroithm based on graph partitioning in Chapter 6. The algorithm

begins by forming a graph of the problem from the variables (nodes) and constraints

(edges). We then partition the graph into two graphs with roughly equal numbers of

nodes (variables). This is done recursively with the resulting graphs until the final

“leaf” problems are sufficiently small. Each graph produced in this process corre-

sponds to a set of variables and constraints. Many small bounds tightening problems

may then be solved with the individual (and small) leaf problems efficiently. In order

to retain feasibility information from the constraints contained in other graphs, a few

large bounds tightening problems are solved with the larger graphs on variables in

the constraints that were removed in order to partition the graph. The algorithm is

tested on several instances from version 17.08 of the Power Grid Lib - Optimal Power

Flow repository [IEEE PES Task Force on Benchmarks for Validation of Emerging

Power System Algorithms, 2017]. Our numerical results demonstrate that the decom-

position algorithm produces bounds nearly as tight as those obtained with traditional

OBBT but with drastically improved computational performance.

In Part II, we describe the Water Network Tool for Resilience (WNTR), an new

open source Python package designed to help water utilities investigate resilience

of water distribution systems to hazards and evaluate resilience-enhancing actions.

The WNTR modeling framework is presented and a case study is described that

uses WNTR to simulate the effects of an earthquake on a water distribution sys-

tem. The case study illustrates that the severity of damage is not only a function of

system integrity and earthquake magnitude, but also of the available resources and

repair strategies used to return the system to normal operating conditions. While
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earthquakes are particularly concerning since buried water distribution pipelines are

highly susceptible to damage, the software framework can be applied to other types

of hazards, including power outages and contamination incidents.



Part I

Models and Algorithms for

Improving Power Systems

Resilience

14
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2. MODELING POWER SYSTEMS

In this Chapter, we briefly review power systems modelling. We first revew the

alternating current power flow (ACPF) equations and then describe a common linear

approximation, typically referred to as the DC power flow (DCPF) equations.

2.1 Alternating Current Power Flow Equations

An electric grid may be modeled as a graph of nodes and edges where the nodes

represent buses (e.g., generating stations, substations) and edges represent transmis-

sion elements (e.g., lines, transformers). Generators, which may be found at one or

more buses, induce sinusoidal voltage waveforms in the network (i.e., the voltage is

not constant). The voltages induced by generators produce current waveforms so

that power may be transmitted by transmission lines from the generators to energy

consumers. At steady state, these waveforms become phasors (i.e., the amplitude and

frequency are constant). Thus, the voltage, current, and power phasors may be mod-

eled with complex numbers with either real and imaginary components or magnitudes

and angles.

Power flow through a grid is governed by Ohm’s Law for AC circuits, Joule’s First

Law, and Kirchhoff’s circuit laws. Kirchhoff’s Current Law (KCL) states that the

total current entering a bus must equal the total current leaving the bus. Kirchhoff’s

Voltage Law (KVL) states that the voltage differences around any cycle in the net-

work must sum to zero. Joule’s First Law relates the power flow on a transmission

line to the current and voltage. The extension of Ohm’s Law to AC systems relates

the current on a transmission line to the voltage difference along the line and the

admittance of the line. The admittance of a transmission line is a complex physical

property of the line with real and imaginary components, referred to as the conduc-
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tance and susceptance, respectively. The conductance represents the ease at which

electric current passes and is determined as:

Gl = Rl/(R
2
l +X2

l ) (2.1)

where Rl is the line resistance and Xl is the line reactance. The susceptance represents

the ease at which electric current changes and is determined as:

Bl = −Xl/(R
2
l +X2

l ). (2.2)

The physical properties of the line may also be expressed in terms of the impedance,

which is the inverse of the admittance. Impedance has real and imaginary components

resistance and reactance.

With these definitions, the ACPF equations describing power flows on transmis-

sion line l from bus b toward bus n are given by,

pl,b,n = Cα,p
l,b,nv

2
b + Cβ,p

l,b,nvbvn cos(θb − θn) + Cγ,p
l,b,nvbvn sin(θb − θn) (2.3.1)

ql,b,n = Cα,q
l,b,nv

2
b + Cβ,q

l,b,nvbvn cos(θb − θn) + Cγ,q
l,b,nvbvn sin(θb − θn) (2.3.2)

where p is the real component of power flow, q is the imaginary (or reactive) com-

ponent of power flow, v is the voltage magnitude, and θ is the voltage angle. Let Tl

and Θshift
l be the transformer tap ratio for branch l and the transformer phase shift

for branch l, respectively. The coefficients C are

Cα,pl,b,n ≡


Gl

(Tl)2
if there is a transformer on branch l by bus b

Gl otherwise

(2.4.1)
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Cβ,pl,b,n ≡



BlTl sin(Θshift
l )−GlTl cos(Θshift

l )

(Tl)2
if there is a transformer on branch l by bus b

−BlTl sin(Θshift
l )−GlTl cos(Θshift

l )

(Tl)2
if there is a transformer on branch l by bus n

−Gl otherwise

(2.4.2)

Cγ,pl,b,n ≡



−BlTl cos(Θshift
l )−GlTl sin(Θshift

l )

(Tl)2
if there is a transformer on branch l by bus b

−BlTl cos(Θshift
l ) +GlTl sin(Θshift

l )

(Tl)2
if there is a transformer on branch l by bus n

−Bl otherwise

(2.4.3)

Cα,ql,b,n ≡


−Bl − 0.5Bc

l

(Tl)2
if there is a transformer on branch l by bus b

−Bl − 0.5Bc
l otherwise

(2.4.4)

Cβ,ql,b,n ≡



BlTl cos(Θshift
l ) +GlTl sin(Θshift

l )

(Tl)2
if there is a transformer on branch l by bus b

BlTl cos(Θshift
l )−GlTl sin(Θshift

l )

(Tl)2
if there is a transformer on branch l by bus n

Bl otherwise

(2.4.5)

Cγ,ql,b,n ≡



BlTl sin(Θshift
l )−GlTl cos(Θshift

l )

(Tl)2
if there is a transformer on branch l by bus b

−BlTl sin(Θshift
l )−GlTl cos(Θshift

l )

(Tl)2
if there is a transformer on branch l by bus n

−Gl otherwise

(2.4.6)

CT
l,b,n ≡

−Θshift
l if there is a transformer on branch l by bus b

Θshift
l otherwise

(2.5)
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Note that Equations (2.3) could also be written in terms of the real and imaginary

components of the voltages. More detailed reviews of power flow formulations may

be found in the literature [Zimmerman et al., 2011, Cain et al., 2012].

2.2 The DC Approximation

A linear approximation of the ACPF equations (Equations (2.3)), referred to as the

DC approximation, is commonly used. This linearization assumes that the resistance

of each transmission line is much less than its reactance, the voltage magnitude at

each bus is close to nominal (i.e., 1 in the per unit system), and the voltage angle

difference between interconnected buses is small [Zimmerman and Murillo-Sanchez,

2015]. These assumptions result in the following linear angle-to-power relationship to

define the real power flow on line l:

pl =
1

XlTl

(
θb − θn −Θshift

l

)
(2.6)

where Xl, Tl, and Θshift
l are the reactance, transformer tap ratio, and transformer

phase shift of branch l, respectively, and θb and θn are the voltage angles at the

“from” and “to” buses of branch l, respectively. The real power flow pl is limited by

− Smax
l ≤ pl ≤ Smax

l (2.7)

where Smax
l is the transfer capacity of line l. Additionally, the power transfer between

interconnected buses b and n can be limited by the maximum voltage angle difference

Θmax
(b,n) in

−Θmax
(b,n) ≤ θb − θn ≤ Θmax

(b,n) (2.8)
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Buses may have shunts, loads, and/or generators. An energy balance at each bus

b requires

∑
g∈Gb

pGg +
∑
l∈Linb

pl −
∑
l∈Loutb

pl = PL
b +GS

b (2.9)

where Gb is the set of generators at bus b, Linb is the set of all transmission lines with

bus b as its “to” bus, Loutb is the set of all transmission lines with bus b as its “from”

bus, pGg is the real component of the power generated at generator g, PL
b is the real

component of the power demand at bus b, pl is the real component of the power

flowing along transmission line l, and GS
b is the shunt conductance at bus b.
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3. STOCHASTIC MIXED INTEGER LINEAR PROGRAMS FOR IMPROVING

POWER SYSTEMS RESILIENCE TO EXTREME WEATHER1

Despite ongoing investments in grid modernization, the U.S. electric grid remains

vulnerable to a range of events [U.S. Department of Energy, 2015]. More recently,

disruptions to the U.S. electric grid have resulted in an estimated annual cost of

$18-70 billion in security, health and safety, and economic consequences [Executive

Office of the President, 2013]. Natural disasters, although infrequent, can have major

impacts on the electric grid through direct damage of infrastructure, or indirectly

through interdependent infrastructures such as gas and water. Also, the increasing

reliance on renewable generation contributes to the increasing uncertainty on the

“threats to, vulnerabilities of, and potential consequences from all hazards on critical

infrastructures” [The White House, 2013]. Depending on the geographical location,

such natural disasters include tornadoes, wildfires, hurricanes, and earthquakes, and

can result in significant infrastructure damage. The impact of such disasters has

demonstrated the need for resiliency, which is the ability to harden the system against

– and quickly recover from – low-frequency, high-consequence events.

To improve power systems resilience to extreme weather events, we propose a novel

optimization model that explicitly considers a range of possible component outages

due to extreme weather events. Specifically, we introduce a two-stage stochastic MILP

optimization model – based on linearized or “DC” power flow, of the type widely used

in power systems operations – whose solution determines optimal dispatch and / or

investment planning in the first stage (pre-storm) to minimize the expected load

shed due to system component damage from different realizations of a second-stage

1Part of this chapter is reprinted from “Evaluating Demand Response Opportunities for Power
Systems Resilience Using MILP and MINLP Formulations” by Bynum, M., Castillo, A., Watson,
J.P., and Laird, C.D., to appear in AIChE Journal, 2018.
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extreme weather event. We demonstrate the utility of our stochastic MILP model

on both small (30 bus) and large (2383 bus) benchmark power systems. We also

perform a cross validation analysis that demonstrates our model can yield a near-

optimal solution (with respect to out-of-sample performance) considering less than

0.001% of all possible outage realizations.

The remainder of this chapter is organized as follows. In the following section, we

present our stochastic MILP model for improving power system resiliency to sampled

extreme weather outage scenarios by optimally dispatching generators proactively.

We then describe, in Section 3.2, strategies for generating extreme weather outage

realizations (i.e., scenarios) and briefly discuss data challenges associated with these

strategies. Sections 3.3 and 3.4 detail extensions for long term planning and com-

putational results obtained with our stochastic MILP model considering both small

and large benchmark power systems. In Section 3.5, we present cross validation re-

sults illustrating the robustness of our solutions, which can be obtained using only a

small fraction of all probable component outage scenarios. Finally, in Section 3.6, we

extend the formulation to consider the role large industrial consumers may play in

electric grid resilience through demand response.

3.1 A Resilient Dispatch Formulation

We now present our two-stage stochastic LP model to optimally dispatch genera-

tors in preparation for extreme weather events. The first decision stage of the model

captures steady state power system operations prior to the event. The second decision

stage represents post-event steady-state operation following a number of component

outages due to the event. For simplicity, we only consider transmission line outages;

the model can be generalized to consider bus and generator outages as well. Any first

stage (proactive dispatch) decisions must be made before any uncertainty is revealed,

and are therefore non-anticipative. Uncertainty is revealed between decision stages

one and two. Decisions (reactive dispatch and load shed) in stage two are known as

recourse decisions, as they are made following realization of any potential uncertain-
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ties – in our case, component outages. As described previously, this uncertainty is

captured via a finite number of discrete scenarios, each with a (potentially distinct)

probability of occurrence.

Generator ramping rates are the key linkage between the first and second decision

stages; operational characteristics of thermal generators dictate that they can only

feasibly change power output levels at a limited rate. In this context, the optimization

objective is to identify a first stage dispatch that minimizes the expected load-shed

across the set of extreme event scenarios S. The second stage decisions can be viewed

loosely as a ”play book” – if a scenario s ∈ S is realized, then the optimal action to

minimize load shed is to re-dispatch according to the recourse pGg values.

Our model, which we refer to as the Resilient Dispatch Formulation (RDF), is

min
∑
s∈S

Ωs

(∑
b∈B

pL,shedb,s + α
∑
g∈G

pG,curg,s

)
(3.1.1)

s.t.∑
g∈Gb

pGg,0 +
∑
k∈Kin

b

pk,0 −
∑
k∈Kout

b

pk,0 = PL
b +GS

b ∀b ∈ B (3.1.2)

PG,min
g ≤ pGg,0 ≤ PG,max

g ∀g ∈ G (3.1.3)

pk,0 =
1

XkTk
(θb,0 − θn,0 −Θshift

k ) ∀(k, b, n) ∈ L (3.1.4)

− Smax
k ≤ pk,0 ≤ Smax

k ∀k ∈ K (3.1.5)

−Θmax
(b,n) ≤ θb,0 − θn,0 ≤ Θmax

(b,n) ∀(b, n) ∈ A (3.1.6)

− PG,R
g ≤ pGg,0 − pGg,s ≤ PG,R

g ∀g ∈ G ∀s ∈ S (3.1.7)

θref,0 = 0 (3.1.8)∑
g∈Gb

(
pGg,s − pG,curg,s

)
+
∑
k∈Kin

b

pk,s −
∑
k∈Kout

b

pk,s

= PL
b − p

L,shed
b,s +GS

b ∀b ∈ B,∀s ∈ S (3.1.9)

PG,min
g ≤ pGg,s ≤ PG,max

g ∀g ∈ G,∀s ∈ S (3.1.10)

pk,s =
1

XkTk
(θb,s − θn,s −Θshift

k ) ∀(k, b, n) ∈ L\Ls,∀s ∈ S (3.1.11)



24

pk,s = 0 ∀k ∈ Ks ∀s ∈ S (3.1.12)

− Smax
k ≤ pk,s ≤ Smax

k ∀k ∈ K,∀s ∈ S (3.1.13)

−Θmax
k ≤ θb,s − θn,s ≤ Θmax

k ∀(b, n) ∈ As,∀s ∈ S (3.1.14)

θref,s = 0 ∀s ∈ S (3.1.15)

0 ≤ pL,shedb,s ≤ PL
b ∀b ∈ B,∀s ∈ S (3.1.16)

0 ≤ pG,curg,s ≤ pGg,s ∀g ∈ G,∀s ∈ S (3.1.17)

where constraints (3.1.2) – (3.1.6) are related to first stage decisions and are denoted

by the index 0, constraints (3.1.9) – (3.1.17) are related to second stage decisions and

are denoted by scenario s, and constraint (3.1.7) enforces the ramping capability for

all generators from the nominal operating state in the first stage to the outage state

in the second stage.

The objective function, (3.1.1), is to minimize the sum of the load shed and the

over-generation. The over-generation term is needed for feasibility (e.g., generators

may become islanded). Constraints (3.1.2) and (3.1.9) represent the nodal real power

balance at every bus. Constraints (3.1.3) and (3.1.10) limit the real power output at

each generator. Constraints (3.1.4) and (3.1.11) determine the real power flow on each

line k between interconnected buses b and n, where L\Ls denotes all transmission

lines that are in service in scenario s. For the transmission line outages in scenario

s, constraint (3.1.12) enforces zero real power flow. Constraints (3.1.5) and (3.1.13)

limit the real power flow on each transmission line, and constraints (3.1.6) and (3.1.14)

limit the voltage angle difference between connected buses. Since an infinite number

of solutions exist for equivalent voltage angle differences θb − θn over all (b, n) ∈ A,

constraints (3.1.8) and (3.1.15) set the voltage angle at the reference bus (denoted

with subscript “ref”) to determine a single solution. For each adverse weather event

scenario s, constraint (3.1.16) limits the nonnegative load shed below the specified

load, PL
b , and constraint (3.1.17) limits the nonnegative curtailment needed below the

generator’s operating level, pGg,s. The generator curtailment constraint approximates
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the more realistic model in which generators either shut-down or operate at an output

between the minimum operating level (MOL), PG,min
g , and its maximum capacity,

PG,max
g .

The RDF is applicable for hours to days before a severe weather event to obtain a

resilient dispatch for a given weather forecast that is used to construct scenarios (see

Section 3.2). The resilient dispatch may be less efficient than the economic dispatch

used in standard operating conditions. However, the RDF operates the generators

in a state that enables transition to contingency states with as little load shedding

and generator curtailment as possible. Additionally, because the problem is entirely

continuous and linear, it may be solved efficiently with commercial solvers such as

Gurobi [Gurobi Optimization, 2016] and CPLEX [ILOG, 2009] in the short time frame

between weather forecasts and actual weather events.

3.2 Scenario Construction

We construct a set of relevant probabilistic scenarios that capture transmission

line outages (e.g., due to damage or de-energization) associated with extreme weather

event(s) of interest. These scenarios are used as a key input to our stochastic MILP

optimization model, and explicitly represent uncertainty regarding future possible

realizations of component damage associated with adverse weather conditions. We

note that these scenarios can be associated with a specific operational event (e.g., an

oncoming hurricane) or a set of adverse events common to a specific region (e.g., ice

storms and high winds), when considering system planning.

Ideally, such scenarios would be obtained from statistical models representing sys-

tem component outages, constructed (e.g.,) using historical component failure data.

For the synthetic test systems we consider here, we instead construct scenarios by

first sampling the number of transmission line outages from a negative binomial dis-

tribution, and then determine which lines were not in service by sampling from a

uniform distribution.
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3.3 Extensions for Long Term Investments

The RDF can be extended to consider many possible long term planning in-

vestments for improved grid resilience. Possible investments for improving resilience

include hardening transmission lines, elevating substations, increasing transmission

capacity, placing switches for transmission switching, and many others. All of these

could be modeled within a stochastic programming framework. We demonstrate the

extensibility of the RDF with the following two examples: (1) transmission line hard-

ening and (2) increasing transmission capacity.

3.3.1 Transmission Line Hardening

Transmission lines can be hardened to severe weather. A few possible hardening

strategies include burying transmission lines underground, installing guy wires, and

upgrading crossarm materials [Wang et al., 2016b]. However, it is unreasonable to

harden every component in the network. Therefore, it is important to understand the

priority of lines to be hardened and the impact of this investment on grid resiliency.

Therefore, we augment the RDF in (3.1) to optimally determine the set of branches

to harden for a given budget. We introduce a binary variable, δk, to indicate whether

a transmission line is hardened (δk = 1) or not (δk = 0). The assumption is that once

a line is hardened, it becomes invulnerable to the current weather event. We replace

constraints (3.1.11) – (3.1.14) as follows:

pk,s =
1

XkTk
(θb,s − θn,s −Θshift

k ) ∀(k, b, n) ∈ L\Ls,∀s ∈ S (3.2.1)

−M(1− δk) ≤ pk,sXkTk−

(θb,s − θn,s −Θshift
k ) ≤M(1− δk)

∀(k, b, n) ∈ Ls,∀s ∈ S (3.2.2)

− Smax
k ≤ pk,s ≤ Smax

k ∀k ∈ K\Ks,∀s ∈ S (3.2.3)

− Smax
k δk ≤ pk,s ≤ Smax

k δk ∀k ∈ Ks,∀s ∈ S (3.2.4)

−Θmax
(b,n) ≤ θb,s − θn,s ≤ Θmax

(b,n) ∀(b, n) ∈ As, ∀s ∈ S (3.2.5)
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−Θmax
(b,n) −M(1− δk) ≤ θb,s − θn,s ∀(k, b, n) ∈ Ls,∀s ∈ S (3.2.6)

θb,s − θn,s ≤ Θmax
(b,n) +M(1− δk) ∀(k, b, n) ∈ Ls,∀s ∈ S (3.2.7)∑

k∈K

δk ≤ C (3.2.8)

δk ∈ {0, 1} ∀k ∈ K (3.2.9)

Constraint (3.2.1) is the real power flow for in-service lines, and constraint (3.2.2)

enables real power flow for transmission line outages that have been hardened using

Big-M notation. Constraint (3.2.4) enforces the transfer capacity limits on hardened

lines, and otherwise prevents power flow on lines that remain in an out of service

state. In other words, constraint (3.2.2) results in an unconstrained voltage angle

difference when constraint (3.2.4) is inactive. Then constraint (3.2.5) enforces the

voltage angle difference limits between connected buses, and constraints (3.2.6) -

(3.2.7) only enforce this limit when there exists a hardened line out of the set of

outages for interconnections between buses b and n in scenario s. Constraint (3.2.8)

limits the number of hardened transmission lines to C. Constraint (3.2.9) defines the

first-stage binary variable δk.

3.3.2 Increasing Transmission Capacity

An alternative hardening investment is to increase the pre-existing transmission

capacity. In this case, we introduce a binary variable, γk, to represent whether the

capacity of the corresponding transmission line has been increased (γk = 1) or not

(γk = 0). Constraint (3.1.13) is replaced by the following:

− Smax
k (1− γk)− ΛSmax

k γk ≤ ps,k ∀k ∈ K ∀s ∈ S (3.3.1)

ps,k ≤ Smax
k (1− γk) + ΛSmax

k γk ∀k ∈ K ∀s ∈ S (3.3.2)∑
k∈K

γk ≤ C (3.3.3)

γk ∈ {0, 1} ∀k ∈ K (3.3.4)
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where Λ is the factor by which the transmission capacity will be increased. Con-

straints (3.3.1)-(3.3.2) enforce the nominal capacity limits when γk = 0, and increases

the limits by a factor of Λ when γk = 1. Constraint (3.3.3) limits the number of

transmission lines for which the thermal limits can be increased. Constraint (3.3.4)

defines the first-stage binary variable γk.

3.4 Computational Results

We present results for each of the stochastic programming formulations (RDF,

THF, and TCP) for two standard test cases from the publicly available Matpower

software package for power flow analysis: case30 and case2383wp [Zimmerman and

Murillo-Sanchez, 2015]. The network sizes for the test cases are summarized in Table

3.1. One hundred scenarios were used for case30, and fifty scenarios were used for

Table 3.1.: Summary of network sizes

case30 case2383wp
# of Buses 30 2383
# of Generators 6 327
# of Transmission Lines 41 2896

case2383wp. The number of transmission line outages in each scenario was drawn

from a negative binomial distribution, and the transmission lines that were out of

service were drawn from a uniform distribution. The resulting problem sizes for the

Resilient Dispatch Formulation (RDF), Transmission Hardening Formulation (THF),

and Transmission Capacity Formulation (TCF) are given in Table 3.2.

The stochastic programming formulations were modeled with Pyomo [Hart et al.,

2017] and solved with CPLEX [ILOG, 2009]. The THF and TCF formulations

for case30 were solved to less than a 0.01% optimality gap. The THF problems

for case2383wp were solved to less than a 2% gap, and the TCF formulations for

case2383wp were solved to less than a 4% gap. The weight α on the generator cur-

tailment term in the objective was 0.01. The value of Λ used in the TCF formulation
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Table 3.2.: Problem size statistics

Test Case Formulation
Continuous
Variables

Binary
Variables

Equality
Con-

straints

Inequality
Con-

straints

case30 RDF 9,677 0 6,662 8,664
case30 THF 14,579 41 10,762 11,613
case30 TCF 13,777 41 10,762 10,189
case2383wp RDF 390,755 0 267,767 341,639
case2383wp THF 537,401 2,896 412,567 347,950
case2383wp TCF 535,555 2,896 412,567 344,820

was 2. Due to a lack of ramp rate data for the synthetic test cases, a correlation was

developed between the maximum power output of the generator and the ramp rate

using real proprietary utility data. The correlation was then used to estimate ramp

rates for these cases. A conservative 5-minute ramp rate was used in order to limit

the overall change of the state of the grid during the severe weather event because

the system dynamics were not modeled.

The results are presented in Figures 3.1 and 3.2; incremental variants variants

are shown in Figures 3.3 and 3.4. The left and right panels illustrate results for the

THF and TCF formulations, respectively. The y-axis indicates the expected load

shed E
(
pL,shed

)
across all scenarios, i.e.,

E
(
pL,shed

)
=
∑
s∈S

Ωs

∑
b∈B

pL,shedb,s

in the objective function (3.1.1). The asterisk represents the baseline, which is the

case where no preparation is done before the severe weather event. Rather, the

generator outputs in the first stage are fixed (as determined by economic dispatch),

and the expected load shed is simply the evaluation of the effect of each scenario on

the system. Note that when the number of lines hardened is zero, this corresponds
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to the RDF solution (redispatch only). The same is true for the TCF figure (i.e.,

optimal value at zero is the RDF solution).

The RDF results in Figures 3.3 and 3.4 indicate that simply redispatching genera-

tors before a severe weather event reduces the expected load shed by 25.0% and 16.6%

for case30 and case2383wp, respectively. We note that the incremental reduction in

expected load shed is calculated as the percentage with respect to the baseline load

shed. This substantial reduction in load shed does not require any capital invest-

ments and therefore is immediately implementable by the system operator through

operational adjustments.

The THF results indicate that line hardening can be very effective, with higher

marginal gains from the initial investments. The left panels of Figures 3.3 and 3.4

show the incremental reduction in expected load shed decreasing with increasing

number of lines hardened. For case30, the first two transmission lines hardened each

reduce the expected load shed by over 13%. After the first two, there is a significant

drop to about 7% followed by a continued gradual decline. Then for case2383wp,

hardening just one transmission line reduces the expected load shed by 10%, followed

by a significant decrease in which each transmission line hardened after the fifth

decreases the expected load shed by less than 1.5%.

The TCF results indicate a slightly less effective strategy, as illustrated in the

right panels of Figures 3.3 and 3.4. Our results for case30 indicate that doubling the

transmission capacity of three transmission lines results in over 9% total reduction

in expected load shed. For case2383wp, doubling the transmission capacity of five

transmission lines results in approximately a 4.4% reduction in expected load shed.

Increasing the capacity of transmission lines is clearly less effective than hardening

per transmission line. Depending on the cost of increasing the transmission capacity

of each of these lines, this could be combined with RDF and THF strategies for

improved resilience.
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Figure 3.1.: The left and right panels illustrate results for THF and TCF, respectively,
for case30. The y-axis indicates the expected load shed across all scenarios. The
asterisk represents the baseline, which is the case where no preparation is done before
the severe weather event. The points at zero hardened lines (or zero transmission
lines with increased capacity) correspond to the RDF solution.

Figure 3.2.: The left and right panels illustrate results for THF and TCF, respectively,
for case2383wp. The y-axis indicates the expected load shed across all scenarios. The
asterisk represents the baseline, which is the case where no preparation is done before
the severe weather event. The points at zero hardened lines (or zero transmission
lines with increased capacity) correspond to the RDF solution.

3.5 Out-of-Sample Cross Validation

Even for a small test network such as case30, including all possible scenarios in

the stochastic programming formulation is intractable. On average, the scenarios for

case30 contained 7 transmission line outages. Over 22 million scenarios would be

necessary to consider every combination of 7 outages. To demonstrate that only a
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Figure 3.3.: Incremental reduction in expected load shed for each additional hardened
line (left) and each additional line with increased capacity (right) for case30.

Figure 3.4.: Incremental reduction in expected load shed for each additional hardened
line (left) and each additional line with increased capacity (right) for case2383wp.

small fraction of all possible scenarios is needed to obtain a high quality solution, a

cross validation case study was performed with case30.

A set of 10 randomly sampled scenarios (different from the one hundred scenar-

ios used above) was used to solve the RDF and THF problems. The solution was

then used to evaluate the performance of the first stage solution on the original 100

scenarios used in Section 3.4. This process was then repeated with 30 and then 100

randomly sampled scenarios. The results are shown in Figure 3.5. Both the line

labeled “True Scenarios” and the line in Figure 3.1 detail results when the stochastic

programming problems are solved with the original 100 scenarios and the load shed



33

in the second stage is evaluated on the same 100 scenarios. This quantity represents

the best possible performance.

Figure 3.5 shows that when only 10 scenarios are used to determine how to dis-

patch the generators in the first stage, the performance of the original 100 scenarios

in the second stage is actually worse than the baseline. This is still true even after

four transmission lines have been hardened, illustrating just how critical scenario se-

lection is. The 30 scenario case performs significantly better, and the 100 scenario

case performs almost as well as using the “True Scenarios.” Thus, we obtained a high

quality solution with less than 0.001% of all possible scenarios.

3.6 The Role of Energy Consumers

Resilience integrates risk management requirements before, during, and after an

event [Preston et al., 2016]. Several papers have investigated various investment and

recovery strategies for improving electric grid resilience [Hoffman et al., 2010, Bi-

enstock and Mattia, 2007, Carrión et al., 2007, Adibi and Fink, 1994a, Lindemeyer

et al., 2001, Castillo, 2014]. However, these actions alone may be insufficient or pro-

hibitively expensive. More recently, utilities have leveraged DR resources to address

many electric grid needs including improved system reliability, economic dispatch,

wholesale price mitigation, and ancillary services [Henrikson and Brief, 2008]. There-

fore, DR can be utilized to defer or offset the need for generation, transmission, and

distribution infrastructure investments to improve resilience. In emergency events,

system operators can offer pricing benefits to industrial-scale customers if they can

absorb loss or reduction of power. Such interruptible load management can improve

the reliability of the electric grid by not treating load at each bus as a fixed quantity

but a decision variable in the system operator’s optimization routine.

Chemical process facilities, as large industrial electricity consumers, have an op-

portunity to serve as active participants to improve system resilience through DR.

This can reduce the likelihood of system blackout (which could significantly impact

the process facility). Furthermore, DR can bring additional value since it may allow
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Figure 3.5.: Cross validation results for case30. The line labeled “True Scenarios”
shows the expected load shed when the solution to the stochastic programming prob-
lem is evaluated on the same 100 scenarios used to solve the stochastic program-
ming problem. The remaining lines show the expected load shed when the stochastic
programming problem is solved with a different set of scenarios than those used to
evaluate the expected load shed.

the grid operator to forgo significant capital investment in the grid to meet resilience

targets. This presents an economic opportunity for process facilities if they can over-

come the operational challenges associated with increased flexibility. The additional

value they bring needs to be understood and quantified by the process facility oper-

ator so they can effectively negotiate DR constracts and make investment decisions

regarding potential retrofit and operational changes to support the required flexibility.

Numerous studies have investigated the opportunity for interruptible load during

peak operations and for congestion management [Bingyuan et al., 2005, Na et al.,

2010]. Aalami et al. [2010] focus on economic incentives for interruptible and cur-

tailable DR programs that incorporate penalty mechanisms for non-compliant par-

ticipants. Other studies [Mitra et al., 2012, 2013, Zhang et al., 2015a, Ashok and

Banerjee, 2001] have formulated detailed industrial customer facility models without
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the electric grid physics. These studies generally apply either model-based [Zhang

et al., 2009] or data-driven [Zhang et al., 2015b] approaches to define the feasible

region for each operating mode as a union of convex subregions in the facility’s pro-

duction space. For example, Zhang et al. [2016] propose a mode-based plant model

formulation for the scheduling of continuous industrial processes to provide inter-

ruptible load as operating reserve and solve the problem as a MILP. Vujanic et al.

[2012] use robust optimization to operate a batch plant as a DR resource, assuming

a fixed capacity of interruptible load. It is clear that there can be financial benefits

in operating process facilities to reduce electricity consumption during peak usage

periods. However, DR programs also present an opportunity to simultaneously im-

prove grid resilience and provide economic benefit to process facilities that have (or

can be retrofitted to provide) the ability to rapidly change electricity consumption in

response to requests from power system operators.

In this section, we present a framework to quantify the value of DR for improving

system resilience due to weather-related events. Specifically, we formulate a stochastic

programming problem to investigate the tradeoff between infrastructure investment

(i.e., hardening a line to prevent damage in a weather-related event) and mitigation

benefits provided by DR. Weather events are modeled using a set of discrete scenarios

with random transmission line outages. The formulations include parameters for the

number of allowed demand response buses (selected from a subset of the overall

network buses) and the maximum percentage of load reduction. The goal of the

optimization problems is to determine the minimum number and selection of hardened

lines along with the selection of demand response nodes required to ensure system

feasibility over the line-outage scenarios. We demonstrate this framework on several

test cases. Our numerical results indicate, for these test cases, that a modest amount

of DR can significantly reduce the capital investment required to make the electric grid

resilient. This suggests that there may be opportunities for flexible process systems

and system operators — i.e., ISO and RTO — or electric utilities to work together

toward both improving electric grid resilience and mutual financial benefit.
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3.6.1 Problem Formulation

Since the system constraints for ACPF in the transmission network are nonconvex

and nonlinear, the resulting MINLP would be too large for efficient solution of realistic

grid networks with current off-the-shelf tools. As in the previous sections, we use the

DCPF-based model which enables representation of the problem as an MILP, and

solutions on large networks with this approximation are tractable. We perform the

tradeoff analysis on larger cases using the MILP formulation, and, in the next chapter,

compare results from the MILP formulation and the full MINLP formulation on two

smaller test cases to assess the impact of the approximation on the conclusions of the

analysis.

The stochastic programming formulation based on the linearized DCPF model is

shown below in disjunctive form.

min |Y |true (3.4.1)

s.t.∑
g∈Gb

pGs,g −
∑

{(l,i,j)∈K | i=b}

ps,l,i,j = pLs,b +GShb ∀ b ∈ B, ∀ s ∈ S (3.4.2)


XH
s,l,b,n

ps,l,b,n = 1
XlT

m
l

(
θb, s− θn, s+ CTl,b,n

)
−Θmax

b,n ≤ θs,b − θs,n ≤ Θmax
b,n

∨

¬XH

s,l,b,n

ps,l,b,n = 0


∀ (l, b, n) ∈ K,∀ s ∈ S (3.4.3) XD

s,b

(1−∆b)P
L
b ≤ pLs,b ≤ PLb

∨ ¬XD
s,b

pLs,b = PLb


∀ b ∈ B, ∀ s ∈ S (3.4.4)

XH
s,l,b,n is true ∀ {(l, b, n) ∈ K | l 6∈ LDs },∀ s ∈ S (3.4.5)

Yl ⇔ XH
s,l,b,n ∀ {(l, b, n) ∈ K | l ∈ LDs },∀ s ∈ S (3.4.6)

XD
s,b is false, ∀ {b ∈ B | b 6∈ BDR} (3.4.7)

Zb ⇔ XD
s,b ∀ b ∈ BDR, ∀ s ∈ S (3.4.8)
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|Z|true ≤ Nz (3.4.9)

PG,min
g ≤ pGs,g ≤ PG,max

g ∀ g ∈ G,∀ s ∈ S (3.4.10)

− Smax
l ≤ ps,l,b,n ≤ Smax

l ∀ (l, b, n) ∈ K,∀ s ∈ S (3.4.11)

θs,ref = 0 ∀ s ∈ S (3.4.12)

XH
s,l,b,n ∈ {true, false} ∀ (l, b, n) ∈ K,∀ s ∈ S (3.4.13)

XD
s,b ∈ {true, false} ∀ b ∈ B, ∀ s ∈ S (3.4.14)

Zb ∈ {true, false} ∀ b ∈ BDR (3.4.15)

Yl ∈ {true, false} ∀ l ∈ L (3.4.16)

The coefficients in the constraints are available from the network data for the particu-

lar case study being considered, or computed from equations in Chapter 2. Here Yl is

true if line l is selected for hardening. The objective function (3.4.1) seeks to minimize

the number of lines selected for hardening, represented by |Y |true, which is defined

as the count of the number of Yl variables that are true (i.e., |{l ∈ L | Yl is true}|).

Equation (3.4.2) is the power balance at the bus nodes, including any connected

generators or transmission lines, as well as demand loads and bus shunts.

The set L refers to all the transmission lines, and LDs is the set of lines that

are damaged in scenario s. Unless these lines are selected for hardening, these lines

will be removed for scenario s in the model. Following this, the equations in (3.4.3)

represent the disjunctions to account for line hardening. The boolean variable XH
s,l,b,n

is true if line l either was not damaged in scenario s as indicated in (3.4.5), or was

damaged in scenario s but selected for hardening, as enforced in (3.4.6). If the line

is present in scenario s, then the power flow ps,l,b,n is computed and the phase angle

constraints are enforced across the line. Otherwise if the line is not present, then the

power flow in the line is forced to be zero (i.e., ps,l,b,n = 0) and there is no restriction

on phase angle difference bounds between the (unconnected) buses.

The disjunction (3.4.4) along with equations (3.4.7) and (3.4.8) encapsulate the

selection of nodes where DR is allowed. Here, Zb is false (no DR) if bus b is not a

candidate for DR or not selected for DR, and true if bus b is a candidate for DR that is
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then selected as an interruptible load. The set BDR ⊆ B is the set of candidate buses

that can be selected for DR. If the node is selected for DR, then XD
s,b is true for the

corresponding bus and all scenarios (by equation (3.4.8)), and the system operator

is allowed (by disjunction (3.4.4)) to request a load reduction up to a value of ∆bP
L
b

with 0 ≤ ∆b ≤ 1. Otherwise, the requested load, PL
b , must be satisfied. Equation

(3.4.9) limits the number of DR nodes selected to be no more than Nz using the same

definition for the count as that used in the objective function.

Then equations (3.4.10) and (3.4.11) represent the generator limits and line ther-

mal limits respectively. The line thermal limits can be included for all buses in B

since the power flow is forced to be zero if a line is damaged (and not selected for

hardening). Equation (3.4.12) fixes the angle of the reference bus to be zero; the

selection of reference bus is arbitrary, but necessary to ensure uniqueness of voltage

angle.

This optimization problem is converted from disjunctive form to a large-scale

MILP using the big-M method for the disjunctions. It can then be used to compute

the minimum number of hardened lines required to ensure feasible operation across

all weather-event scenarios. By adjusting the values for ∆b, the allowable fractional

reduction in load, and Nz, the allowable number of demand response nodes selected,

we can determine the reduction in required hardened lines as a function of these

parameters. This enables a tradeoff assessment of the impact of different demand

response contracts on the infrastructure investment required to maintain reliability

under the scenario set.

3.6.2 Numerical Results

We now evaluate the tradeoff between increased DR capabilities and capital in-

vestment in infrastructure for improving resilience to weather-related events. The

DCPF-based problem formulation is a stochastic programming problem that seeks

to find solutions that provide feasible operation across all of the scenarios. Numer-

ous studies have focused on electric grid resilience to the worst case scenario [Wu
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and Conejo, 2017, Salmeron et al., 2004, Alguacil et al., 2014], but this approach is

not representative of naturally occurring, severe weather events. Different types of

natural disasters have different impact regions, predictability, geographical span, and

impact duration [Wang et al., 2016a, Guikema et al., 2006, Hines et al., 2008]. There-

fore a range of forecasting models have been proposed in the literature to model grid

component damage and outage duration, as well as a range of simulation and opti-

mization models to address service restoration, corrective actions, and preparedness

planning. When historical data is available, it can be used to generate representative

scenarios regarding transmission element failure due to weather-related events.

In the absence of system-specific data, we consider failure of transmission lines

only, and characterize scenarios according to the set of transmission lines that are

damaged (no power transfer occurs across the line - it is essentially removed from the

network model). We formulate scenarios by randomly selecting a set of transmission

lines to be out of service for each weather-event scenario. Note that the formula-

tion could be adapted to consider failure of other transmission elements, including

generators and substations.

We first use the DCPF-based stochastic programming formulation to compute the

minimum number of hardened transmission lines that are required to ensure feasible

operation across all the scenarios. In this analysis, the maximum required fractional

load reduction for DR nodes, ∆b is varied from 0 to 1, and the number of optimally

selected DR node locations Nz is varied from 0 to 10. This provides us with a set of

tradeoff curves that provide the minimum required capital investment (in terms of the

number of required hardened lines) as a function of the number of demand response

contracts and the load reduction fraction. Three test cases are considered from ver-

sion 17.08 of the Power Grid Lib - Optimal Power Flow repository [IEEE PES Task

Force on Benchmarks for Validation of Emerging Power System Algorithms, 2017]:

1) pglib opf case118 ieee, 2) pglib opf case162 ieee dtc, and 3) pglib opf case300 ieee.

For each problem, we considered 100 scenarios with 10 randomly selected branch out-

ages per scenario. Note that branches with only one path between the correspond-
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ing pair of buses were excluded since such a branch would likely always need to be

hardened. All problem formulations and solution strategies were implemented using

Pyomo, a Python-based algebraic modeling language [Hart et al., 2017]. The DC

formulation (3.4) is an MILP following big-M transformation of the disjunctions, and

the extensive form is solved directly using Gurobi 7.5.2. The results of this trade-

off analysis are presented in Figure 3.6. The y-axis shows the minimum number of

branches that need to be hardened in order to maintain feasibility. Each group of

columns represents a specific value of ∆b. Within each group of columns, Nz varies

from 0 to 10 by 2. The particular value of Nz associated with each column can be

seen both in the legend and above the column. The problems were typically solved

in under 5 minutes, although most problems took less than 1 minute.

As expected, the minimum number of hardened branches needed to maintain fea-

sibility decreases both as Nz increases and as ∆b increases. All three test cases show

similar trends, indicating that demand response can have a significant impact on re-

silience. With ∆b=0.25, only two DR contracts are required to reduce the objective by

11%, 25%, and 21% for cases pglib opf case118 ieee, pglib opf case162 ieee dtc, and

pglib opf case300 ieee, respectively. Increasing ∆b to 0.5 results in reductions of 21%,

31%, and 25%, respectively. Even more dramatic cost reductions are possible in other

cases. For example, with a 50% maximum load reduction, 10 DR contracts can reduce

the required number of hardened lines from 32 to 17 (pglib opf case162 ieee dtc). If

fully interrupable load is a possibility, even more reduction can be realized across

these test cases.

The extreme weather events in question typically only occur once every 5-10 years.

If chemical, petroleum, and manufacturing plants have the ability to operate flexibly

in these rare times, the capital investment needed to make the grid more resilient

can be reduced dramatically. As a result, the plants with demand response contracts

could gain significant financial benefits in terms of electricity cost reduction with only

very rare interruptions in operations. Of course, DR and transmission line hardening

are not the only ways of making the electric grid more resilient, and real systems
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(a) pglib opf case118 ieee

(b) pglib opf case162 ieee dtc

(c) pglib opf case300 ieee

Figure 3.6.: The value of DR on resilience as a function of the number of demand
response contracts (Nz) and the allowable fraction of DR (∆b) with 100 scenarios.
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should consider other options along with system specific models and parameters in a

more detailed decision making process.

The results we have shown so far only consider the DC model, which is a linear

approximation of the true system and does not consider reactive power at all. In the

following section, we further validate the value of demand response by both comparing

solutions obtained with the DC and AC models and evaluating the the DC solutions

on an AC model.

3.7 Summary

In this chapter, we presented stochastic programming formulations for improving

power systems resilience to extreme weather events. The key contributions are listed

below.

• We presented a stochastic linear program for proactively dispatching generators

in order to minimize the expected load shed across a set of probablistic scenarios.

This formulation utilizes operational changes only and can be implemented

without any investment cost. For the test cases in this work, redispatching

generators proactively can reduce the expected load shed by as much as 25%.

• We presented two extensions to the stochastic programming formulation to con-

sider resilience enhancing investment strategies. We considered both hardening

transmission lines and increasing transmission line capacity. Our numerical re-

sults demonstrated that both can be very effective, with higher marginal gains

from the initial investments. For example, hardening just one transmission line

in case2383wp can reduce the expected load shed by over 10% and doubling

the capacity of just 5 lines can reduce the expected load shed by approximately

4.4%.

• We performed an out-of-sample cross validation to demonstrate that high qual-

ity solutions can be obtained with very small fractions of all possible scenarios.
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• We also extended the stocastic programming formulation to consider demand

response for improving resilience, demonstrating the value chemical process fa-

cilities, as large industrial energy consumers, can bring to electric grid resilience.

We found that, for the test cases considered, a modest amount of demand re-

sponse could significantly reduce the capital investment needed to mitigate the

effects of extreme weather events. For example, for the largest test case, the

addition of only two demand response contracts (each requiring only a 25%

reduction in consumed load) is sufficient to ensure feasible operation across all

scenarios while reducing the required number of hardened lines by 21%.
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4. THE EFFECT OF THE DC APPROXIMATION1

The problem formulations presented in Chapter 3 are based on an extensively used

linear approximation of the ACPF equations, resulting in a large-scale MILP problem.

In this chapter, we investigate the effects of this linear approximation by formulating

and solving the demand response problems presented in section 3.6 with the noncon-

vex ACPF equations. We compare the results obtained with the DC approximation

and the full ACPF-based MINLP for a few small test cases. We also evaluate the

solutions obtained with the linear DC approximation on the nonlinear AC problem

with several larger test cases.

4.1 A Stochastic Mixed Integer Nonlinear Programming Formulation

The formulation below includes the full nonlinear form of the ACPF equations,

resulting in a stochastic MINLP. In this formulation, both real and reactive power

are represented, and the voltage magnitude is not assumed to be uniform across the

network. The following variable transformation, introduced by Jabr [2006], facilitates

both the MINLP formulation and its relaxation.

αs,b ≡ v2s,b (4.1.1)

βs,b,n ≡ vs,bvs,n cos(θs,b − θs,n) (4.1.2)

γs,b,n ≡ vs,bvs,n sin(θs,b − θs,n). (4.1.3)

1Part of this chapter is reprinted from “Evaluating Demand Response Opportunities for Power
Systems Resilience Using MILP and MINLP Formulations” by Bynum, M., Castillo, A., Watson,
J.P., and Laird, C.D., to appear in AIChE Journal, 2018.
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With this variable transformation, an MINLP representation of the resilience DR

formulation is,

min |Y |true (4.2.1)

s.t.∑
g∈Gb

pGs,g −
∑

{(l,i,j)∈K|i=b}

ps,l,i,j = pLs,b +GShb αs,b ∀ b ∈ B,∀ s ∈ S (4.2.2)

∑
g∈Gb

qGs,g −
∑

{(l,i,j)∈K|i=b}

qs,l,i,j = qLs,b −BSh
b αs,b ∀ b ∈ B,∀ s ∈ S (4.2.3)


XH
s,l,b,n

ps,l,b,n = Cα,pl,b,nαs,b + Cβ,pl,b,nβs,b,n + Cγ,pl,b,nγs,b,n

qs,l,b,n = Cα,ql,b,nαs,b + Cβ,ql,b,nβs,b,n + Cγ,ql,b,nγs,b,n

− tan(Θmax
b,n )βs,b,n ≤ γs,b,n ≤ tan(Θmax

b,n )βs,b,n


∨

¬XH

s,l,b,n

ps,l,b,n = 0

qs,l,b,n = 0


∀ (l, b, n) ∈ K,∀ s ∈ S (4.2.4)

XH
s,l,b,n is true ∀ {(l, b, n) ∈ K | l 6∈ LDs },∀ s ∈ S

(4.2.5)

Yl ⇔ XH
s,l,b,n ∀ {(l, b, n) ∈ K | l ∈ LDs },∀ s ∈ S

(4.2.6)

βs,b,n = βs,n,b ∀ (b, n) ∈ A,∀ s ∈ S (4.2.7)

γs,b,n = −γs,n,b ∀ (b, n) ∈ A,∀ s ∈ S (4.2.8)

β2s,b,n + γ2s,b,n = αs,bαs,n ∀ (b, n) ∈ A,∀ s ∈ S (4.2.9)

θs,b − θs,n = arctan

(
γs,b,n
βs,b,n

)
∀ (b, n) ∈ A,∀ s ∈ S (4.2.10)

θs,ref = 0 ∀ s ∈ S (4.2.11)

p2s,l,b,n + q2s,l,b,n ≤ (Smax
l )2 ∀ (l, b, n) ∈ K,∀ s ∈ S (4.2.12)

(V min
b )2 ≤ αs,b ≤ (V max

b )2 ∀ b ∈ B,∀ s ∈ S (4.2.13)

PG,min
g ≤ pGs,g ≤ PG,max

g ∀ g ∈ G,∀ s ∈ S (4.2.14)

QG,min
g ≤ qGs,g ≤ QG,max

g ∀ g ∈ G,∀ s ∈ S (4.2.15)
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
XD
s,b

(1−∆b)P
L
b ≤ pLs,b ≤ PLb

(1−∆b)Q
L
b ≤ qLs,b ≤ QLb

∨

¬XD

s,b

pLs,b = PLb

qLs,b = QLb

 ∀ b ∈ B,∀ s ∈ S (4.2.16)

XD
s,b is false, ∀ {b ∈ B | b 6∈ BDR} (4.2.17)

Zb ⇔ XD
s,b ∀ b ∈ BDR, ∀ s ∈ S (4.2.18)

|Z|true ≤ Nz (4.2.19)

XH
s,l,b,n ∈ {true, false} ∀ (l, b, n) ∈ K, ∀ s ∈ S (4.2.20)

XD
s,b ∈ {true, false} ∀ b ∈ B,∀ s ∈ S (4.2.21)

Zb ∈ {true, false} ∀ b ∈ BDR (4.2.22)

Yl ∈ {true, false} ∀ l ∈ L (4.2.23)

Again the objective function (4.2.1) seeks to minimize the number of lines selected for

hardening. Constraints (4.2.2) and (4.2.3) are the real and reactive power balances.

If a branch is out of service and not hardened, the real and reactive power flows are

forced to zero on the branch by constraints in disjunction (4.2.4). If the branch is

hardened or not damaged, then constraint (4.2.4) relates the real and reactive power

flows to the new variables αs,b, βs,b,n, and γs,b,n and enforces the angle difference

limits through these variables. Equations (4.2.5) and (4.2.6) ensure that the boolean

variables XH
s,l,b,n are true for all branches without an outage, true for all hardened

branches, and false otherwise. The definitions in (4.1) could be substituted directly

into the power flow equations to obtain the standard polar form, howeer, as discussed

in [Kocuk et al., 2016], equations (4.2.7) - (4.2.10) provide an alternate form in the

transformed variables. Constraints (4.2.12) - (4.2.15) enforce thermal, voltage, and

generator limits, respectively. The disjunction in (4.2.16) is identical to that used

in the DC formulation except that it applies to the reactive power load as well.

Constraints (4.2.17) - (4.2.23) are also identical to those used in the DC formulation.
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4.2 MISOCP Relaxation

The resilience formulation proposed in the previous section is a large-scale stochas-

tic MINLP which is very difficult to solve. We will discuss the algorithm used to solve

it in detail in Section 4.3. However, a key component is a convex relaxation of (4.2).

There have been a number of relaxations in the literature in the context of ACOPF,

including the SOC relaxation [Jabr, 2006, Kocuk et al., 2016], the QC relaxation

[Hijazi et al., 2017], and McCormick relaxations of the rectangular form [Bynum

et al., 2018b,a]. These relaxations have been used in algorithms for global solution

of ACOPF [Liu et al., 2017a, Kocuk et al., 2017b, Lu et al., 2018] and problems

including discrete decisions like optimal transmission switching [Kocuk et al., 2017a]

and unit commitment [Liu et al., 2018]. The algorithm we use to solve this prob-

lem is based on the SOC relaxation, which may be obtained from (4.2) by dropping

(4.2.10) - (4.2.11), relaxing (4.2.9) with a convex SOC inequality, and converting the

disjunctions to Big-M constraints. The resulting MISOCP relaxation is,

min
∑
l∈L

yl (4.3)

s.t.∑
g∈Gb

pGs,g −
∑

{(l,i,j)∈K | i=b}

ps,l,b,n = pLs,b +GShb αs,b ∀ b ∈ B,∀ s ∈ S (4.4)

∑
g∈Gb

qGs,g −
∑

{(l,i,j)∈K | i=b}

qs,l,b,n = qLs,b −BSh
b αs,b ∀ b ∈ B,∀ s ∈ S (4.5)

ps,l,b,n = Cα,pl,b,nζs,l,b + Cβ,pl,b,nηs,l,b,n + Cγ,pl,b,nφs,l,b,n ∀ {(l, b, n) ∈ K | l ∈ LDs }, ∀ s ∈ S (4.6)

qs,l,b,n = Cα,ql,b,nζs,l,b + Cβ,ql,b,nηs,l,b,n + Cγ,ql,b,nφs,l,b,n ∀ {(l, b, n) ∈ K | l ∈ LDs }, ∀ s ∈ S (4.7)

ps,l,b,n = Cα,pl,b,nαs,b + Cβ,pl,b,nβs,b,n + Cγ,pl,b,nγs,b,n ∀ {(l, b, n) ∈ K | l 6∈ LDs }, ∀ s ∈ S (4.8)

qs,l,b,n = Cα,ql,b,nαs,b + Cβ,ql,b,nβs,b,n + Cγ,ql,b,nγs,b,n ∀ {(l, b, n) ∈ K | l 6∈ LDs }, ∀ s ∈ S (4.9)

αs,byl ≤ ζs,l,b ≤ αs,byl ∀ l ∈ Lb ∩ LDs , ∀ b ∈ B, ∀ s ∈ S (4.10)

αs,b(yl − 1) + αs,b ≤ ζs,l,b ≤ αs,b(yl − 1) + αs,b ∀ l ∈ Lb ∩ LDs , ∀ b ∈ B, ∀ s ∈ S (4.11)
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βs,b,nyl ≤ ηs,l,b,n ≤ βs,b,nyl ∀ {(l, b, n) ∈ K | l ∈ LDs }, (b, n) ∈ A, ∀ s ∈ S (4.12)

βs,b,n(yl − 1) + βs,b,n ≤ ηs,l,b,n ∀ {(l, b, n) ∈ K | l ∈ LDs }, (b, n) ∈ A, ∀ s ∈ S (4.13)

ηs,l,b,n ≤ βs,b,n(yl − 1) + βs,b,n ∀ {(l, b, n) ∈ K | l ∈ LDs }, (b, n) ∈ A, ∀ s ∈ S (4.14)

γs,b,nyl ≤ φs,l,b,n ≤ γs,b,nyl ∀ {(l, b, n) ∈ K | l ∈ LDs }, (b, n) ∈ A, ∀ s ∈ S (4.15)

γs,b,n(yl − 1) + γs,b,n ≤ φs,l,b,n ∀ {(l, b, n) ∈ K | l ∈ LDs }, (b, n) ∈ A, ∀ s ∈ S (4.16)

φs,l,b,n ≤ γs,b,n(yl − 1) + γs,b,n ∀ {(l, b, n) ∈ K | l ∈ LDs }, (b, n) ∈ A, ∀ s ∈ S (4.17)

ηs,l,b,n = ηs,l,n,b ∀ {(l, b, n) ∈ K | l ∈ LDs }, (b, n) ∈ A, ∀ s ∈ S (4.18)

φs,l,b,n = −φs,l,n,b ∀ {(l, b, n) ∈ K | l ∈ LDs }, (b, n) ∈ A, ∀ s ∈ S (4.19)

η2s,l,b,n + φ2s,l,n,b ≤ ζs,l,bζs,l,n ∀ {(l, b, n) ∈ K | l ∈ LDs }, (b, n) ∈ A, ∀ s ∈ S (4.20)

βs,b,n = βs,n,b ∀ {(l, b, n) ∈ K | l 6∈ LDs }, (b, n) ∈ A, ∀ s ∈ S (4.21)

γs,b,n = −γs,n,b ∀ {(l, b, n) ∈ K | l 6∈ LDs }, (b, n) ∈ A,∀ s ∈ S (4.22)

β2s,b,n + γ2s,b,n ≤ αs,bαs,n ∀ {(l, b, n) ∈ K | l 6∈ LDs }, (b, n) ∈ A,∀ s ∈ S (4.23)

p2s,l,b,n + q2s,l,b,n ≤ (Smax
l )2 ∀ (l, b, n) ∈ K,∀ s ∈ S (4.24)

(V min
b )2 ≤ αs,b ≤ (V max

b )2 ∀ b ∈ B, ∀ s ∈ S (4.25)

PG,min
g ≤ pGs,g ≤ PG,max

g ∀ g ∈ G,∀ s ∈ S (4.26)

QG,min
g ≤ qGs,g ≤ QG,max

g ∀ g ∈ G,∀ s ∈ S (4.27)

− tan(Θmax
b,n )ηs,l,b,n ≤ φs,l,b,n ∀ {(l, b, n) ∈ K | l ∈ LDs }, (b, n) ∈ A, ∀ s ∈ S (4.28)

φs,l,b,n ≤ tan(Θmax
b,n )ηs,l,b,n ∀ {(l, b, n) ∈ K | l ∈ LDs }, (b, n) ∈ A, ∀ s ∈ S (4.29)

− tan(Θmax
b,n )βs,b,n ≤ γs,b,n ∀ {(l, b, n) ∈ K | l 6∈ LDs }, (b, n) ∈ A, ∀ s ∈ S (4.30)

γs,b,n ≤ tan(Θmax
b,n )βs,b,n ∀ {(l, b, n) ∈ K | l 6∈ LDs }, (b, n) ∈ A, ∀ s ∈ S (4.31)

(1−∆b)P
L
b zb + PLb (1− zb) ≤ pLs,b ∀ b ∈ B,∀ s ∈ S (4.32)

pLs,b ≤ PLb ∀ b ∈ B,∀ s ∈ S (4.33)

(1−∆b)Q
L
b zb +QLb (1− zb) ≤ qLs,b ∀ b ∈ B,∀ s ∈ S (4.34)

qLs,b ≤ QLb ∀ b ∈ B,∀ s ∈ S (4.35)∑
b∈B

zb ≤ Nz (4.36)

zb ∈ {0, 1} ∀ b ∈ B (4.37)
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yl ∈ {0, 1} ∀ l ∈ L (4.38)

Rather than applying a Big-M transformation directly to the constraints in (4.2.4), we

use a similar approach to that proposed by Kocuk et al. [2017a]. Because we typically

have tight bounds on α, β, and γ, we introduce the new variables ζ, η, and φ and

relate them to α, β, and γ through constraints (4.10) - (4.17). These constraints

ensure that ζ, η, and φ are all equal to zero for branches that are out of service but

not hardened. Thus, the power flows on transmission lines that are out of service but

not hardened are also zero by constraints (4.6) and (4.7). For transmission lines that

are hardened, constraints (4.10) - (4.17) ensure that ζ, η, and φ equal α, β, and γ,

respectively. Note that this formulation could be written without η or φ. However,

including these variables allows extensions which include other relaxations (e.g., the

QC relaxation of (4.1)). The next section describes how this MISOCP relaxation is

used to solve the original MINLP.

4.3 Solution Approach

All problem formulations and solution strategies were implemented using Pyomo,

a Python-based algebraic modeling language [Hart et al., 2017]. The AC formulation

(4.2) is a stochastic MINLP that is challenging to solve. Here, we use a tailored multi-

tree solution approach similar to those presented by Liu et al. [2018] and Kocuk

et al. [2017a] The algorithm involves three main steps. First, the MISOCP (4.3)-

(4.38) relaxation is solved with Gurobi 7.5.2 to obtain a lower bound and a candidate

integer solution. Second the integer variables are fixed in the MINLP, and an NLP

is solved with Ipopt [Wächter and Biegler, 2006] (using the HSL linear solver MA27

[HSL]) to obtain an upper bound on the objective if the problem is feasible. Third,

if the gap between the upper and lower bounds is not small enough, a “no-good”

cut [DAmbrosio et al., 2010] is added to the MISOCP in order to remove already

visited integer solutions from the feasible region. Given a candidate integer solution
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Xk = {xk1, xk2, ..., xkN}, I = {1, 2, ..., N}, I1 = {i ∈ I|xki = 1}, I0 = {i ∈ I|xki = 0},

the “no-good” cut

∑
i∈I1

xi −
∑
i∈I0

xi ≤ |I1| − 1 (4.39)

ensures that the same integer solution (Xk) is not obtained in subsequent iterations.

The three steps are then repeated. In the worst case, the “no-good” cuts guarantee

enumeration of all possible integer solutions. As described by both Liu et al. [2018]

and Kocuk et al. [2017a], if the NLP subproblems are solved to global optimality,

then the algorithm will converge to global optimality for the original MINLP. In this

work, we do not solve the NLP subproblems to global optimality, so the algorithm is a

heuristic with regards to optimality of the discrete decisions. Additionally, when the

integer variables are fixed in the AC DR formulation, the objective is fixed. Therefore,

the NLP subproblem reduces to a feasibility check. Note that proving infeasibility of

the NLP subproblem still requires global optimization techniques. We terminate the

algorithm when Ipopt finds a feasible solution to one of the NLP subproblems. Note

that, in many cases, the algorithm converges in one iteration without any integer

cuts, and the globally optimal solution is obtained. Additionally, when the algorithm

does not converge on the first iteration, we can still compute an optimality gap using

the upper bound from the best feasible solution and the lower bound obtained before

any integer cuts are added. In the case study, pglib opf case14 ieee,[IEEE PES Task

Force on Benchmarks for Validation of Emerging Power System Algorithms, 2017] 83

of the 87 problems were provably solved to global optimality. For further algorithm

details, see the above references. The following section presents results for both the

AC and DC DR formulations and compares the results.

4.4 A Comparison of AC and DC Solutions

We used two approaches to evaluate the accuracy and effectiveness of the DC

model on the AC system. First, we solved the demand response problem with both
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models and compared the solutions. For this, we used pglib opf case14 ieee and

pglib opf case30 as, both with 30 scenarios. Figures 4.1 and 4.2 show the minimum

number of hardened branches for both the AC and DC models as functions of Nz and

∆b. In both cases, the DC model tends to underestimate the number of branches that

need to be hardened to maintain feasibility, but the overall trends are quite similar.

We also compared the integer solutions of the two models for pglib opf case14 ieee.

The detailed results are in Tables 4.1 and 4.2. Table 4.3 summarizes these results.

First, we define two sets. The set DR∗DC is the union of the sets of buses selected for

DR by the DC model across all values of ∆b and Nz. The set DR∗AC is the union of

the sets of buses selected for DR by the AC model across all values of ∆b and Nz.

Table 4.3 the shows the intersection of these two sets, the buses unique to DR∗DC , and

the buses unique to DR∗AC . As the tables show, there is strong agreement between

the AC and DC solutions. In fact, all of the buses selected by the DC model were

also selected by the AC model. There was only one bus selected by the AC model

and not the DC model.

Second, for each integer solution obtained with the DC model, we evaluated the

fraction of AC-feasible scenarios (that is, fraction of scenarios that were feasible when

evaluated using the AC model). Table 4.4 summarizes the results. The table shows

the the fraction of AC-feasible scenarios averaged over all values of ∆b and Nz. Note

that we did not include pglib opf case300 ieee because there were several scenarios

for which Ipopt neither converged to an optimal solution nor converged to a point of

local infeasibility. Case pglib opf case162 ieee dtc also had a few scenarios for which

Ipopt obtained neither of these two convergence criteria, but it was less than 0.3%

of the scenarios. Therefore, we simply discarded these scenarios when computing the

fraction of AC-feasible scenarios. Again, a problem may be feasible even if Ipopt

converges to a point of local infeasibility. However, for simplicity, we are using this

criterion as an approximation. Future work could use global optimization techniques

to prove infeasibility. The average fraction of feasible scenarios was over 85% for all
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(a) DC results

(b) AC results

Figure 4.1.: Comparison of DC and AC results for pglib opf case14 ieee. Each figure
shows the minimum number of demand response contracts as a function of ∆b and
Nz.
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(a) DC results

(b) AC results

Figure 4.2.: Comparison of DC and AC results for pglib opf case30 as. Each figure
shows the minimum number of demand response contracts as a function of ∆b and
Nz.
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Table 4.1.: Integer Solutions DC - pglib opf case14 ieee

∆b Nz Branches Hardened Demand Response Buses

0 0 1, 6, 18, 19 -
0.05 1-10 1, 6, 18, 19 -
0.1 1-10 1, 6, 18, 19 -
0.15 1-4 1, 6, 18, 19 -
0.15 5-10 3, 18, 19 2, 3, 9, 13, 14
0.2 1 1, 6, 18, 19 -
0.2 2-10 6, 18, 19 3, 9
0.25 1 1, 6, 18, 19 -
0.25 2-10 6, 18, 19 3, 9
0.5 1-10 6, 18, 19 3
0.75 1-10 6, 18, 19 3
1 1-3 18, 19 3
1 4-10 18 3, 12, 13, 14

Table 4.2.: Integer Solutions AC - pglib opf case14 ieee

∆b Nz Branches Hardened Demand Response Buses

0 0 1, 6, 11, 17, 19 -
0.05 1-10 1, 6, 11, 17, 19 -
0.1 1-10 1, 6, 11, 17, 19 -
0.15 1-10 1, 6, 11, 17, 19 -
0.2 1-5 1, 6, 11, 17, 19 -
0.2 6-10 6, 11, 17, 19 2, 3, 6, 9, 13, 14
0.25 1-2 1, 6, 11, 17, 19 -
0.25 3-10 6, 17, 18, 19 2, 3, 9
0.5 1-2 3, 11, 17, 19 3
0.5 3-10 3, 11, 19 3, 13, 14
0.75 1-2 3, 11, 13, 19 3
0.75 3-10 3, 11, 19 9, 13, 14
1 1 13, 18, 19 3
1 2-3 13, 18 3, 12
1 4-10 18 3, 12, 13, 14

test cases except pglib opf case162 ieee dtc. These are quite high and indicate high

quality solutions even for the true AC system.
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Table 4.3.: Comparison of DR locations selected by DC and AC models for
pglib opf case14 ieee across all values of ∆b and NZ .

Model DR Buses

DR∗DC ∩ DR∗AC 2, 3, 9, 13, 14, 12
DR∗DC\DR∗AC -
DR∗AC\DR∗DC 6

Table 4.4.: Average fraction of AC-feasible scenarios when implementing DC solution

Test Case Average fraction of AC-feasible scenarios

pglib opf case14 ieee 0.9
pglib opf case30 as 0.86
pglib opf case118 ieee 0.89
pglib opf case162 ieee dtc 0.67

Finally, Figure 4.3 plots the fraction of AC-feasible scenarios and the minimum

number of hardened branches as a function of Nz for the four test cases with ∆b=0.2.

The results for pglib opf case118 ieee behave as expected. The fraction of AC-feasible

scenarios generally increases as Nz increases. However, there are cases where the

fraction of AC-feasible scenarios can decrease with an increase in Nz. The reason

for this relates back to Figures 4.1 and 4.2. The DC model often underestimates

the amount of DR needed and/or the number of branches that need hardened. In

some cases, the DC formulation results in a lower number of hardened branches and

smaller fraction of DR than what is actually required to ensure AC-feasibility. An

implementation of such a solution in the AC system may decrease capital investment,

but it may also not provide the expected resilience. Because of this, it is important to

continue development of MINLP strategies that can address AC power flow problems

at scale.
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(a) pglib opf case14 ieee

(b) pglib opf case30 as

Figure 4.3.: Fraction of scenarios feasible when integer solutions obtained with the
DC model are evaluated with the AC model (∆b = 0.2). The solid lines show the
minimum number of hardened branches and the dashed lines show the fraction of
feasible scenarios, both as a function of Nz.
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(c) pglib opf case118 ieee

(d) pglib opf case162 ieee dtc

Figure 4.3.: Fraction of scenarios feasible when integer solutions obtained with the
DC model are evaluated with the AC model (∆b = 0.2). The solid lines show the
minimum number of hardened branches and the dashed lines show the fraction of
feasible scenarios, both as a function of Nz.
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4.5 Summary

In this chapter, we extended the resilience formulations presented in Chapter 3

by incorporating higher fidelity (but nonconvex) AC power flow constraints in or-

der to investigate the effect of the linear DC power flow approximation. Our key

contributions are listed as follows.

• We formulated the demand response problem presented in Section 3.6 with the

actual nonlinear AC power flow equations, resulting in a stochastic MINLP.

• We solved the stochastic MINLP using a tailored multi-tree approach involving

a sequence of MISOCP relaxations of the MINLP to find candidate integer

solutions and NLP subproblems to check feasibility.

• We were able to solve the stochastic MINLP for a few small test cases, and

we compared the results with the solution to the linear approximation. Our

results with both formulation indicate that there is significant value in the use

of demand response for improved resilience. Furthermore, both formulations

found similar optimal locations for demand response contracts.

• We also evaluated each integer solution obtained with the DC model on the

AC model to compute the fraction of feasible scenarios. This allowed the com-

parison of results for larger test cases. We found that the linear model often

underestimates the amount of demand response necessary to ensure resilience of

the AC system, demonstrating the need for improved scalability of algorithms

for solving MINLP’s based on AC power flow eqations.
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5. RELAXATIONS AND REFINEMENT TECHNIQUES FOR AC

CONSTRAINED POWER FLOW PROBLEMS1

The alternating current optimal power flow (ACOPF), also referred to as the OPF,

is a fundamental problem for reliable and efficient operation of the electric grid and

is the basis of more complex operations problems such as unit commitment. Global

optimization of the OPF guarantees revenue adequacy of the locational marginal

prices (LMPs) by closing the duality gap. Moreover, OPF problems with discrete

decision variables, including unit commitment, are modeled as mixed integer nonlinear

programming (MINLP) problems, where global solution of the nonlinear ACOPF is

a required subproblem for many algorithms. Therefore, efficient global optimization

of the ACOPF problem is a critical step towards incorporating higher fidelity models

into practical grid operations.

Kocuk et al. [2016] proved that the second order cone (SOC) relaxation is tighter

than a linear McCormick relaxation of the rectangular OPF (RM) under certain as-

sumptions on variable bounds. As a result, they initially strengthen the SOC relax-

ation with arctangent constraints, cycle constraints, and semidefinite programming

(SDP) cuts, and later with matrix minor reformulations [Kocuk et al., 2017b]. How-

ever, we demonstrate that a quadratic form of the RM relaxation, in combination with

explicit reference bus constraints and optimization-based bounds tightening (OBBT)

[Caprara and Locatelli, 2010], can also be quite effective in practice for improving

1 c©2018 IEEE Part of this chapter is reprinted with permission from “Tightening McCormick Relax-
ations Toward Global Solution of the ACOPF Problem” by Bynum, M., Castillo, A., Watson, J.P.,
and Laird, C.D., IEEE Transactions on Power Systems, 2018. In reference to IEEE copyrighted
material which is used with permission in this thesis, the IEEE does not endorse any of Purdue
University’s products or services.
Part of this chapter is reprinted from “13th International Symposium on Process Systems Engineer-
ing (PSE 2018)”, Volume 44, Bynum, M., Castillo, A., Watson, J.P., and Laird, C.D., “Strengthened
SOCP Relaxations for ACOPF with McCormick Envelopes and Bounds Tightening”, pages 1555–
1560, 2018, with permission from Elsevier.
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the performance of the existing SOC [Jabr, 2007] and quadratic convex (QC) [Hijazi

et al., 2017] OPF relaxations since this produces tighter bounds on the variables than

those assumed in Theorem 3.1 of [Kocuk et al., 2016]. Specifically, we extend our

findings in [Bynum et al., 2018a] and demonstrate that neither the RM nor the QC

(with McCormick envelopes, reference bus constraints, and OBBT) relaxation domi-

nates the other, and, between the two approaches, we close 91% of the NESTA archive

[Coffrin et al., 2014] test cases up to 300 buses. This result requires no branching or

piecewise refinement, and therefore is a promising foundation for future work. The

remainder of this chapter first reviews these relaxations, and then presents significant

improvements to the numerical results reported in[Kocuk et al., 2016] and [Coffrin

et al., 2015].

5.1 A Review of Convex Relaxations for the ACOPF Problem

We use lower case symbols to represent variables, upper case symbols to represent

parameters, and upper case script symbols to represent index sets. The sets G, Gb,

and B represent the sets of all generators, generators connected to bus b, and buses,

respectively. The set A contains all connected bus pairs. The set K is a set of

three-tuples containing both (transmission line index, “from” bus, “to” bus) and

(transmission line index, “to” bus, “from” bus) 3-tuples for each transmission line.

Finally, Kb = {(l, i, j) ∈ K | i=b}. The superscripts G, D, and Sh represent gen-

eration, demand, and shunt, respectively. The parameters Cα,p
l,b,n, Cβ,p

l,b,n, Cγ,p
l,b,n, Cα,q

l,b,n,

Cβ,q
l,b,n, and Cγ,q

l,b,n are functions of branch characteristics [Momoh, 2001].

We explore three relaxations with the following base formulation in (5.1) for co-

optimizing real and reactive power, p and q, respectively.

min
∑

g∈G
[A2

g(p
G
g )2 + A1

gp
G
g + A0

g] (5.1.1)∑
g∈Gb

pGg −
∑

(l,i,j)∈Kb

pl,i,j = pLb +GSh
b αb ∀b ∈ B (5.1.2)



63

∑
g∈Gb

qGg −
∑

(l,i,j)∈Kb

ql,i,j = qLb −BSh
b αb ∀b ∈ B (5.1.3)

pl,b,n = Cα,p
l,b,nαb + Cβ,p

l,b,nβb,n + Cγ,p
l,b,nγb,n ∀(l, b, n) ∈ K (5.1.4)

ql,b,n = Cα,q
l,b,nαb + Cβ,q

l,b,nβb,n + Cγ,q
l,b,nγb,n ∀(l, b, n) ∈ K (5.1.5)

p2l,b,n + q2l,b,n ≤ (Smax
l )2 ∀(l, b, n) ∈ K (5.1.6)

(V min
b )2 ≤ αb ≤ (V max

b )2 ∀b ∈ B (5.1.7)

PG,min
g ≤ pGg ≤ PG,max

g ∀g ∈ G (5.1.8)

QG,min
g ≤ qGg ≤ QG,max

g ∀g ∈ G (5.1.9)

tan(Θmin
b,n )βb,n ≤ γb,n ≤ tan(Θmax

b,n )βb,n ∀(b, n) ∈ A (5.1.10)

βb,n = βn,b, γb,n = −γn,b ∀(b, n) ∈ A (5.1.11)

The rectangular OPF (i.e., where vr and vj represent the real and imaginary compo-

nents of the nodal voltages, respectively) is defined with the following substitutions

for α, β, and γ:

αb → (vrb)
2 + (vjb)

2 ∀ b ∈ B (5.2.1)

βb,n → vrbv
r
n + vjbv

j
n ∀ (b, n) ∈ A (5.2.2)

γb,n → vjbv
r
n − vrbvjn ∀ (b, n) ∈ A (5.2.3)

with vr, vj ∈ [−V max, V max]. The polar OPF (i.e., v and θ represent nodal voltage

magnitude and angle, respectively) is defined with the following substitutions into

(5.1):

αb → v2b ∀ b ∈ B (5.3.1)

βb,n → vbvn cos(θb − θn) ∀ (b, n) ∈ A (5.3.2)

γb,n → vbvn sin(θb − θn) ∀ (b, n) ∈ A. (5.3.3)

Constraints (5.1.2) and (5.1.3) enforce power balances, (5.1.4)-(5.1.5) compute power

flows, (5.1.6) enforces thermal limits, (5.1.7) enforces voltage magnitude bounds,



64

(5.1.8) and (5.1.9) enforce generator limits, and (5.1.10) limits the voltage angle

difference for interconnected buses.

The solution to both forms of the OPF problem is non-unique without fixing a

reference voltage angle at one of the buses. In the polar form, this reference bus

constraint is

θref = 0. (5.4)

In rectangular form, there is a domain reduction for vrref :

vjref = 0 (5.5.1)

V min
ref ≤ vrref ≤ V max

ref . (5.5.2)

The choice of reference bus does not impact the optimal solution of the ACOPF

problem, but it may impact the quality of the relaxation [Bynum et al., 2018a, Bien-

stock and Munoz, 2014]. For comparison purposes, we used the reference bus location

specified in the test cases.

5.1.1 Second-Order Cone Programming Relxation

There is a SOC equality relationship amongst α, β, and γ that may be relaxed to

the following convex inequality:

β2
b,n + γ2b,n ≤ αbαn ∀ (b, n) ∈ A. (5.6)

The SOC problem [Jabr, 2007] is given by (5.1) and (5.6).

5.1.2 McCormick Relxations of the Rectangular Form

McCormick envelopes can be applied to (5.2), yielding
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αb = v̂rb + v̂jb , βb,n = v̂rbv
r
n + v̂jbv

j
n, γb,n = v̂jbv

r
n − v̂rbv

j
n (5.7.1)

(vrb)
2 ≤ v̂rb ≤ (V r,max

b + V r,min
b )vrb − V

r,max
b V r,min

b (5.7.2)

(vjb)
2 ≤ v̂jb ≤ (V j,max

b + V j,min
b )vjb − V

j,max
b V j,min

b (5.7.3)

v̂rbv
r
n ∈MCC(vrb , v

r
n), v̂jbv

j
n ∈MCC(vjb , v

j
n) (5.7.4)

v̂jbv
r
n ∈MCC(vjb , v

r
n), v̂rbv

j
n ∈MCC(vrb , v

j
n) (5.7.5)

where x̂y ∈ MCC(x, y) denotes the McCormick envelopes for the bilinear term xy.

The RM problem is given by (5.1) and (5.5)-(5.7).

5.1.3 Quadratic Relxations of the Polar Form

The QC formulation [Hijazi et al., 2017] is a quadratic convex relaxation of the

polar form in (5.3):

v2b ≤ αb ≤ (V max
b + V min

b )vb − V max
b V min

b (5.8.1)

βb,n ∈MCC(v̂bvn, ĉosθb,n), γb,n ∈MCC(v̂bvn, ŝinθb,n) (5.8.2)

v̂bvn ∈MCC(vb, vn) (5.8.3)

ĉosθb,n ∈ CR(θb,n), ŝinθb,n ∈ SR(θb,n) (5.8.4)

θb,n = θb − θn (5.8.5)

Θmin
b,n ≤ θb,n ≤ Θmax

b,n , V
min
b ≤ vb ≤ V max

b . (5.8.6)

Here, ĉosx ∈ CR(x) and ŝinx ∈ SR(x) denote relaxations of the cosine and sine

functions, respectively [Hijazi et al., 2017]. Additionally, when Θmin
b,n ≥ 0 (Θmax

b,n ≤ 0),

the sine function is concave (convex) and requires two linear over (under) estimators;

this is the linear variant of S-CONV in [Coffrin et al., 2015]. The QC problem is given

by (5.1), (5.4), (5.6), and (5.8).
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5.2 Numerical Results

To analyze the strength of the different relaxations, we iteratively solve the spec-

ified relaxation and perform OBBT to compute valid bounds for the specified convex

relaxation R of the ACOPF feasible region by minimizing (for the lower bound) and

maximizing (for the upper bound) each variable, i.e.,

min /max{xi|x ∈ R, f(x) ≤ UB}. (5.9)

Here, f(x) denotes the objective function in (5.1.1) and UB denotes the objective

value of the best-known solution to the NLP. Note that any of the relaxations may

define R. A more efficient approach to OBBT is to optimize only over a subset of

the constraints in R (e.g., corresponding to a subset of the network [Kocuk et al.,

2016]). However, this can lead to weaker bounds. Our bounds tightening procedure is

similar to the minimal continuous constraint relaxation network algorithm presented

in [Coffrin et al., 2015] but includes the UB constraint.

To evaluate the impact of the UB constraint, we implement OBBT with and

without the UB constraint, denoted as OBBT(UB) and OBBT, respectively. All problems

were modeled with Pyomo [Hart et al., 2017] and solved with IPOPT [Wächter and

Biegler, 2006] using the linear solver MA27 [HSL, 2007]. OBBT was performed in

parallel on a cluster with 24 64-GB-RAM nodes and 16 2.6 GHz Intel Sandy Bridge

cores per node. We used 12 processes per node. The relaxations compared and

summary results are as follows:

Relaxation Description Cases Closed2

SOC Eqs (5.1), (5.6) 16%
RMo Eqs (5.1), (5.6)-(5.7) & OBBT(UB) 16%
RMr Eqs (5.1), (5.5)-(5.7) & OBBT 52%
RMro Eqs (5.1), (5.5)-(5.7) & OBBT(UB) 67%
QCr Eqs (5.1), (5.4), (5.6), (5.8) & OBBT 67%
QCro Eqs (5.1), (5.4), (5.6), (5.8) & OBBT(UB) 90%
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We note that because the reference bus selection does not result in further domain

reduction for polar OPF, QCo was omitted.

Detailed results are reported in Tables 5.1 - 5.6 for the NESTA archive [Coffrin

et al., 2014], including the optimality gap, wallclock time, and total iterations. We

define a single iteration as performing OBBT once on all appropriate variables. Our

stopping criteria are as follows: (1) optimality gap less than 0.1%, (2) wallclock time

exceeds one hour, or (3) optimality gap improved less than 0.1% in 20 iterations

of OBBT. For (3), the gap and wallclock time reported were obtained by the last

iteration prior to stalling.

Our major findings are that the OBBT(UB) significantly improves performance

across relaxations, and neither the RMro nor the QCro dominates the other. Overall,

the QCro formulation performs best. However, the RMro formulation can significantly

2Percentage of 58 NESTA cases with less than 0.1% optimality gap.
2Initializing the NLP from the updated solution to the relaxation and recomputing the UB between
iterations of OBBT results in an optimality gap reduction from 0.5% to less than 0.1% for both RMro

and QCro.

Table 5.1.: Optimality Gaps for relaxations of NESTA archive standard operating
conditions cases up to 300 buses. Highlighting indicates cases not closed to less than
0.1% gap. Cases are not shown if the SOC relaxation gap is below 0.1%. c©2018
IEEE

Case Optimality Gap(%)

SOC RMo RMr RMro QCr QCro

3 lmbd 1.3 1.3 0.5 0.0 0.2 0.0
5 pjm 14.5 14.5 5.0 0.1 9.3 5.7
6 c 0.3 0.3 0.1 0.0 0.1 0.1
6 ww 0.6 0.6 0.1 0.1 0.0 0.0
14 ieee 0.1 0.1 0.1 0.1 0.0 0.0
29 edin 0.1 0.1 0.1 0.1 0.1 0.1
30 fsr 0.4 0.4 0.4 0.1 0.1 0.1
30 ieee 15.9 15.9 0.1 0.0 0.0 0.1
118 ieee 1.8 1.8 1.6 0.7 0.5 0.1
162 ieee dtc 4.0 4.0 4.0 4.0 0.7 0.1
189 edin 0.2 0.2 0.2 0.2 0.2 0.1
300 ieee 1.2 1.2 1.2 1.2 0.2 0.0
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Table 5.2.: Optimality Gaps for relaxations of NESTA archive congested operating
conditions cases up to 300 buses. Highlighting indicates cases not closed to less than
0.1% gap. Cases are not shown if the SOC relaxation gap is below 0.1%. c©2018
IEEE

Case Optimality Gap(%)

SOC RMo RMr RMro QCr QCro

3 lmbd api 3.3 3.3 0.1 0.1 0.1 0.0
4 gs api 0.7 0.7 0.1 0.0 0.0 0.1
5 pjm api 0.3 0.3 0.1 0.0 0.0 0.0
6 c api 0.3 0.3 0.1 0.0 0.1 0.0
14 ieee api 1.3 1.3 0.2 0.0 0.3 0.1
24 ieee rts api 20.8 20.8 2.0 0.6 0.3 0.1
29 edin api 0.4 0.4 0.4 0.4 0.1 0.1
30 as api 4.8 4.8 0.3 0.1 0.0 0.0
30 fsr api 46.0 46.0 41.6 41.2 2.4 0.1
30 ieee api 1.0 1.0 0.1 0.1 0.1 0.0
39 epri api 3.0 3.0 0.3 0.1 0.1 0.0
57 ieee api 0.2 0.2 0.1 0.1 0.0 0.1
73 ieee rts api 14.4 14.4 14.4 14.4 0.2 0.0
89 pegase api 20.4 20.4 20.2 20.2 18.9 9.1
118 ieee api 43.9 43.9 26.9 26.4 9.3 8.7
162 ieee dtc api 1.3 1.3 1.0 0.9 0.1 0.1
189 edin api 5.7 5.7 5.5 2.9 0.3 0.1
300 ieee api 0.7 0.7 0.7 0.7 0.1 0.0
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Table 5.3.: Optimality Gaps for relaxations of NESTA archive small angle difference
operating conditions cases up to 300 buses. Highlighting indicates cases not closed
to less than 0.1% gap. Cases are not shown if the SOC relaxation gap is below 0.1%.
c©2018 IEEE

Case Optimality Gap(%)

SOC RMo RMr RMro QCr QCro

3 lmbd sad 4.3 4.3 0.1 0.0 0.0 0.0
4 gs sad 4.9 4.9 0.0 0.0 0.0 0.0
5 pjm sad 3.6 3.6 0.0 0.0 0.0 0.0
6 c sad 1.4 1.4 0.0 0.0 0.0 0.0
6 ww sad 0.8 0.8 0.0 0.0 0.0 0.0
9 wscc sad 1.5 1.5 0.0 0.0 0.0 0.0
24 ieee rts sad 11.4 11.4 0.1 0.0 0.1 0.0
29 edin sad 34.7 34.7 2.4 0.52 1.2 0.52

30 as sad 9.2 9.2 0.2 0.1 0.1 0.0
30 fsr sad 0.6 0.6 0.2 0.0 0.1 0.0
30 ieee sad 5.8 5.8 0.1 0.1 0.0 0.0
39 epri sad 0.1 0.1 0.0 0.0 0.0 0.0
57 ieee sad 0.1 0.1 0.1 0.1 0.1 0.1
73 ieee rts sad 8.4 8.4 2.6 2.0 0.1 0.0
89 pegase sad 0.3 0.3 0.3 0.1 0.1 0.1
118 ieee sad 12.8 12.8 5.1 1.5 1.4 0.1
162 ieee dtc sad 7.1 7.1 7.1 7.1 0.5 0.0
189 edin sad 2.3 2.3 2.2 1.8 1.0 0.8
300 ieee sad 1.3 1.3 1.3 1.3 0.2 0.0
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Table 5.4.: Computational Performance for relaxations of NESTA archive standard
operating conditions cases up to 300 buses. Highlighting indicates cases not closed
to less than 0.1% gap. Cases are not shown if the SOC relaxation gap is below 0.1%.
c©2018 IEEE

Case Wallclock Time(s) / # Iterations

SOC RMo RMr RMro QCr QCro

3 lmbd 0/0 0/0 1/4 1/3 1/3 1/3
5 pjm 0/0 0/0 3/6 35/84 3/6 7/15
6 c 0/0 0/0 4/9 2/3 1/2 1/1
6 ww 0/0 0/0 1/1 1/1 1/1 1/1
14 ieee 1/0 2/0 3/1 3/1 4/1 3/1
29 edin 3/0 4/0 38/9 16/3 4/0 4/0
30 fsr 1/0 2/0 2/0 16/7 8/3 6/2
30 ieee 1/0 1/0 18/8 12/5 8/3 6/2
118 ieee 4/0 7/0 217/10 253/18 59/2 83/3
162 ieee dtc 7/0 12/0 13/0 13/0 430/7 488/8
189 edin 5/0 9/0 9/0 9/0 10/0 46/1
300 ieee 14/0 23/0 22/0 23/0 290/2 284/2
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Table 5.5.: Computational Performance for relaxations of NESTA archive congested
operating conditions cases up to 300 buses. Highlighting indicates cases not closed
to less than 0.1% gap. Cases are not shown if the SOC relaxation gap is below 0.1%.
c©2018 IEEE

Case Wallclock Time(s) / # Iterations

SOC RMo RMr RMro QCr QCro

3 lmbd api 0/0 0/0 2/7 1/3 2/6 1/3
4 gs api 0/0 0/0 1/3 1/3 1/3 1/2
5 pjm api 0/0 0/0 1/2 1/2 1/2 1/2
6 c api 0/0 0/0 3/5 1/2 2/3 1/2
14 ieee api 0/0 1/0 9/8 8/7 4/3 5/4
24 ieee rts api 1/0 1/0 21/10 27/13 8/3 8/3
29 edin api 7/0 5/0 5/0 5/0 25/3 35/3
30 as api 1/0 2/0 25/11 25/11 9/3 8/3
30 fsr api 1/0 1/0 57/25 63/28 27/11 27/11
30 ieee api 1/0 1/0 27/12 18/8 11/4 11/4
39 epri api 1/0 2/0 63/24 45/17 7/2 7/2
57 ieee api 1/0 3/0 61/13 25/5 16/2 9/1
73 ieee rts api 3/0 5/0 5/0 5/0 29/2 40/3
89 pegase api 5/0 11/0 179/10 208/11 1663/24 3604/55
118 ieee api 4/0 8/0 1102/75 1074/74 318/10 301/11
162 ieee dtc api 7/0 12/0 824/24 785/23 799/13 433/7
189 edin api 5/0 9/0 276/9 746/28 83/2 85/2
300 ieee api 14/0 23/0 23/0 23/0 346/2 291/2
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Table 5.6.: Computational Performance for relaxations of NESTA archive small angle
difference operating conditions cases up to 300 buses. Highlighting indicates cases not
closed to less than 0.1% gap. Cases are not shown if the SOC relaxation gap is below
0.1%. c©2018 IEEE

Case Wallclock Time(s) / # Iterations

SOC RMo RMr RMro QCr QCro

3 lmbd sad 0/0 0/0 1/3 1/3 1/1 1/1
4 gs sad 0/0 0/0 1/2 1/2 1/1 1/1
5 pjm sad 0/0 0/0 2/3 2/3 1/1 1/1
6 c sad 0/0 0/0 2/4 2/3 1/1 1/1
6 ww sad 0/0 0/0 1/1 1/1 1/1 1/1
9 wscc sad 0/0 0/0 3/3 2/3 2/1 1/1
24 ieee rts sad 1/0 2/0 17/8 15/7 8/3 6/2
29 edin sad 3/0 5/0 72/14 78/14 40/4 33/4
30 as sad 1/0 2/0 19/8 17/7 6/2 6/2
30 fsr sad 1/0 1/0 20/8 14/6 6/2 6/2
30 ieee sad 1/0 1/0 12/5 10/4 6/2 6/2
39 epri sad 1/0 2/0 25/9 17/6 2/0 2/0
57 ieee sad 1/0 3/0 25/5 16/3 3/0 3/0
73 ieee rts sad 3/0 4/0 124/16 169/21 28/2 28/2
89 pegase sad 5/0 9/0 57/3 162/10 91/2 43/1
118 ieee sad 4/0 8/0 516/34 520/33 113/4 248/9
162 ieee dtc sad 7/0 13/0 13/0 13/0 674/11 563/9
189 edin sad 5/0 9/0 155/5 214/8 46/1 46/1
300 ieee sad 14/0 23/0 23/0 23/0 162/1 281/2
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tighten the SOC relaxation and may be improved by adjusting the location of the

reference bus [Bienstock and Munoz, 2014]. This is left for future work. Across all

relaxations tested, only 5 cases did not solve to less than a 0.1% optimality gap.

This is a significant improvement to the results reported in [Kocuk et al., 2016] and

[Coffrin et al., 2015]. Note that this advancement requires no branching or piecewise

refinement, which is a promising foundation for future work on the global optimization

of the OPF. We recognize that the full OBBT approach considered here will not scale

well to larger cases, and integration of these techniques (and those described in [Kocuk

et al., 2016] and [Coffrin et al., 2015]) within a scalable global optimization framework

is left for future work.

5.3 The Impact of the Reference Bus

Figure 5.1 shows the importance of the reference bus. The figure shows the variable

bound ranges for the real and imaginary components of the voltages averaged over

all buses of the same shortest path in terms of the number of transmission lines from

the reference bus. The iteration count for OBBT is shown on the x-axis. The figure

shows the first four iterations of bounds tightening for nesta case24 ieee rts api. As

shown in the figure, before any bounds tightening is performed, the reference bus

is the only bus with good bounds on the voltage. After one iteration of bounds

tightening, the bounds on the voltages at buses connected directly to the reference bus

are tightened dramatically. On the second iteration of bounds tightening, the bounds

on the voltages at buses a distance of 2 from the reference bus are tightened more

than the bounds on variables at other buses. The trend continues through all four

iterations of bounds tightening shown. In this figure, it is clear that the effectiveness

of bounds tightening at a given iteration is directly related to the distance of the

corresponding bus from the reference bus.
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Figure 5.1.: Impact of the reference bus on bounds tightening for
nesta case24 ieee rts api. The abscissa shows the iteration count, and the
ordinate shows the average range between the upper and lower variable bounds.

5.4 Summary

In this chapter, we focused on relaxations and refinement techinques for AC-

constrained power flow problems. Our key contributions are listed below.

• We demonstrate that relaxations fo the rectangular form of the ACOPF problem

can significantly strengthen existing relaxations if reference bus constraints are

properly incorporated.

• We illustrate that, for relaxations of the rectangular form, the effectiveness of

optimization-based bounds tightening at a given iteration is directly related to

the distance of the corresponding bus from the reference bus.

• We are able to reduce the optimality gap to less than 0.1% on all but 5 NESTA

test cases with up to 300 buses with optimization-based bounds tightening alone.
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6. DECOMPOSING OPTIMIZATION-BASED BOUNDS TIGHTENING

PROBLEMS VIA GRAPH PARTITIONING

Mixed-integer nonlinear programming (MINLP) encompasses a wide range of impor-

tant optimization problems [Puranik and Sahinidis, 2017]. Common algorithms for

global solution of both nonlinear programming (NLP) problems and MINLPs include

branch-and-bound (B&B) methods and multitree methods (e.g., outer-approximation)

[Dakin, 1965, Land and Doig, 1960, Belotti et al., 2013]. B&B techniques involve the

solution of convex relaxations of the original problem to obtain lower bounds on the

objective and local solutions to obtain upper bounds on the objective. The algorithm

progressively refines these bounds by branching on variables to divide the feasible

region into smaller sub-regions [Puranik and Sahinidis, 2017]. Outer-approximation

(OA) methods typically solve mixed-integer linear programs (MILPs) globally to ob-

tain lower bounds, pushing the branching requirements to an efficient MILP solver

[Liu et al., 2017a].

Both of these algorithms rely heavily on bounds tightening (BT) for accelerating

convergence. Also referred to as domain reduction, BT can strengthen convex relax-

ations for the lower bounding problems, reduce the number of nodes visited in B&B

trees, and reduce the required number of binary variables needed in MILP relaxations

for OA. For example, turning off domain reduction techniques in BARON, an MINLP

B&B solver [Tawarmalani and Sahinidis, 2004], results in a 47% increase in compu-

tational time and an 802% increases in number of nodes explored for problems in

MINLPLib [Bussieck et al., 2003, Puranik and Sahinidis, 2017].

Many BT techniques for MINLPs exist. Consider the following MINLP:

min f(x) (6.1.1)
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s.t. (6.1.2)

hc(x, y) ≤ 0 ∀c ∈ C (6.1.3)

xv ≤ xv ≤ xv ∀v ∈ Vx (6.1.4)

yv ∈ {0, 1} ∀v ∈ Vy (6.1.5)

where C is the set of constraints, Vx is the set of continuous variables, and Vy is the

set of binary variables. For simplicity, we assume f(x) is convex. Also consider the

following convex relaxation of Problem (6.1):

min f(x) (6.2.1)

s.t. (6.2.2)

gc(x, y) ≤ 0 ∀c ∈ C (6.2.3)

xv ≤ xv ≤ xv ∀v ∈ Vx (6.2.4)

0 ≤ yv ≤ 1 ∀v ∈ Vy (6.2.5)

where C is the set of constraints comprising a convex relaxation of the original set of

constraints. Here, each constraint, gc, is convex. We have allowed for the introduction

of auxiliary variables through the new set of continuous variables, Vx.

An effective but computationally expensive approach to bounds tightening is

optimization-based bounds tightening (OBBT) [Puranik and Sahinidis, 2017]. OBBT

typically involves solving two convex optimization problem for each variable (or a sub-

set of the variables):

min /maxxi (6.3.1)

s.t. (6.3.2)

(6.2.3), (6.2.4), (6.2.5) (6.3.3)

f(x) ≤ U (6.3.4)
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Here, U is the best-known feasible solution to Problem (6.1). If the optimal objec-

tive of the minimization problem is larger than the current lower bound, xi, for the

corresponding variable, then the lower bound can be updated. A similar argument

holds for the upper bound and the maximization problem.

A very efficient approach to BT is feasibility-based bounds tightening (FBBT)

and extensions [Puranik and Sahinidis, 2017, Belotti et al., 2010]. FBBT is typically

performed by forming a directed acyclic graph (DAG) from the constraints of Problem

(6.1) and using interval arithmetic to propagate bounds through the graph [Moore

et al., 2009]. FBBT is usually less effective than OBBT because only one constraint

is considered at a time [Puranik and Sahinidis, 2017]. Belotti et al. [2010] present a

linear program (LP) which converges to the fixed-point of the FBBT algorithm if the

DAG were formed from a linear relaxation of Problem (6.1), enabling bounds updates

for all variables with the solution of one LP.

Ryoo and Sahinidis [1995] utilize the lagrange multipliers from the solution of

Problem (6.2) to tighten bounds. Let L and U be the optimal objective value of

Problem (6.2) and a valid upper bound for Problem (6.1), respectively. If a variable

xi is at its upper bound, xi, with an optimal multiplier value λ∗ > 0 at the solution

of Problem (6.2), then the lower bound may be updated as follows

xi = xi −
U − L
λ∗

(6.4)

A similar argument holds if the variable is at its lower bound at the solution of

Problem (6.2) [Ryoo and Sahinidis, 1995]. This approach is also very efficient because

it only requires the solution of Problem (6.2), which is typically solved at every node

of the B&B tree. For a more thorough review of BT methods, see [Puranik and

Sahinidis, 2017].

OBBT has been shown to be very effective for refinement of optimal power flow

(OPF) problems. Coffrin et al. [2015] demonstrate that OBBT is very effective on

polar relaxations of the optimal power flow problem. Relaxations of the rectangular
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form, tightened with OBBT, can also be quite effective if reference bus constraints are

incorporated [Bynum et al., 2018b]. In fact, Bynum et al. [2018a] demonstrate that the

effectiveness of OBBT at a given iteration is directly related to the topological distance

of the corresponding variable from the reference bus. Multiple global optimization

algorithms have been written for the OPF problem which rely heavily on OBBT [Liu

et al., 2017a, Kocuk et al., 2017b, Lu et al., 2018].

Despite the effectiveness of OBBT on OPF problems, the approach is very com-

putationally expensive, especially for large problems. To mitigate the high compu-

tational cost, several more efficient approaches to BT for OPF problems have been

proposed. Chen et al. [2016] present closed-form bound tightening methods by writing

the first order necessary conditions for minimizing or maximizing a variable subject

to a small subset of constraints. Kocuk et al. [2016] use an efficient form of OBBT

for the OPF problem where, for each variable, a small optimization problem is solved

by only considering a small portion of the electric grid and the corresponding con-

straints. In other words, a valid form of Problem (6.3) is solved for each variable, but

only a carefully selected subset of the constraints are included. There is a tradeoff

between the strength of the bounds obtained and the computational effort required

because, as the size of the network considered is reduced, information on feasibility

of the remainder of the network is lost.

In this chapter, we propose a decomposed bounds tightening (DBT) algorithm

based on graph partitioning, extending the BT ideas presented by Kocuk et al. [2016].

The main idea is to solve a few large optimization problems (corresponding to Problem

(3)) and many small optimization problems. As discussed in more detail below, by

solving a few large bounds tightening problems, we retain feasibility information

from parts of the network not considered when solving the small bounds tightening

problems. Although the algorithm is general, we demonstrate the effectiveness of the

algorithm on OPF test cases because OBBT is known to work well for these problems

and the power systems networks have a graph structure which is favorable for our

graph-partitioning-based algorithm.
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The remainder of this chapter is outlined as follows. In the following section we

present our proposed DBT algorithm in detail. We then present a mixed-integer linear

programming (MILP) formulation that can be used to perform the graph partitioning

step of the DBT algorithm. We then describe the application of our algorithm to the

OPF problem and the details of our implementation. Finally, we present numerical

results and summarize the chapter.

6.1 Decomposed Bounds Tightening Algorithm

In this section, we present our decomposed bounds tightening (DBT) algorithm.

The basis of the algorithm is that small optimization problems can be solved effi-

ciently. One way to solve small BT problems is to solve the OBBT problems (6.3)

but with most of the constraints discarded. Although this does improve computa-

tional performance, it produces weaker bounds because the feasible region has been

enlarged. The DBT algorithm attempts to retain information from the removed con-

straints by first solving a few large OBBT problems with all of the constraints. This

idea will be explained further after a few definitions and a more formal description of

the algorithm.

Consider a graph, G0, defined by Eq. (6.2.3) where the set of nodes, V0, represents

variables. The set of edges, E0, is defined by the set of constraints. For each constraint,

there is an edge in G0 for every pair of variables in the constraint. The algorithm

begins by partitioning G0 into two sub-graphs, Ga and Gb, of approximately equal

numbers of variables (nodes) by removing a set of constraints. At this point, bounds

tightening can be performed by solving optimization problems defined by Ga or Gb.

These optimization problems will be approximately half of the size of Problem (6.3)

and, therefore, can be solved more efficiently. For example, Ga will have a set of

nodes (variables), Va, and a set of edges (constraints), Ea. Let Ca be the set of
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constraints defining the set of edges Ea. For each variable, i, in Vax, the following

bounds tightening problems can be solved.

min /maxxi (6.5.1)

s.t. (6.5.2)

gc(x, y) ≤ 0 ∀c ∈ Ca (6.5.3)

xv ≤ xv ≤ xv ∀v ∈ Vax (6.5.4)

0 ≤ yv ≤ 1 ∀v ∈ Vay (6.5.5)

However, the resulting bounds will not be as tight as solving Problem (6.3) because

Problem (6.5) contains a subset of the constraints from Problem (6.3). In order to

retain information from the constraints in Gb, we first perform bounds tightening on

the variables associated with the constraints removed in order to partition G0. These

bounds tightening problems, hopefully very few in number, are solved with all of the

constraints in Eq. (6.2.3).

Depending on the original size of the problem, bounds tightening problems asso-

ciated with Ga and Gb may still be large. To address this, the graph partitioning may

be continued recursively until the bounds tightening problems are sufficiently small.

This process produces a binary tree of graphs. Each graph represents a set of edges

(constraints) and nodes (variables). A graph is at stage s if s partitions were needed

to generate the graph. A graph is a leaf if it is not partitioned. Finally, G0 is referred

to as the root graph.

Algorithm 1 presents the DBT algorithm in more detail. The algorithm begins

by defining G0, s, Ts, Vmax, and N which represent the graph defined by the original

convex relaxation (Eq. (6.2.3)), the partitioning stage, the set of graphs at stage

s, the maximum number of nodes (variables) in the leaf graphs, and the maximum

number of bounds tightening iterations, respectively. The purpose of the first while

loop is to partition the graphs until the leaf graphs have less than Vmax nodes. The
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Algorithm 1: Decomposed Bounds Tightening

Initialize:

1. G0 = (V0, E0) is the graph of the convex relaxation of the original optimization
problem. The set of nodes, V0, represents variables. For each constraint, there
is an edge for every pair of variables in the constraint.

2. s = 0, Ts = {G0}
3. Maximum number of variables in leaves, Vmax

4. Maximum number of bounds tightening iterations, N

while Ts 6= Ø do
Ts+1 = Ø;
foreach Gi = (Vi, Ei) ∈ Ts do

if |Vi| > N then
Partition Gi into two graphs, Ga and Gb, by removing a set of
constraints;
Ts+1 = Ts+1 ∪ {Ga, Gb};

else
Gi is a leaf;

end

end
s = s+ 1;

end
S = s;
n = 0;
while n < N do

s = 0;
while s < S do

foreach Gi = (Vi, Ei) ∈ Ts do
if Gi is a leaf then

Perform OBBT on each relevant variable in Vi subject to the
constraints in Gi;

else
Perform OBBT on each variable involved in the constraints
removed in order to partition Gi;

end

end
Update any relaxations that depend on the bounds of the tightened
variables;
s = s+ 1;

end
n = n+ 1;

end
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purpose of the second while loop is to perform bounds tightening. Bounds tightening

starts at stage 0 and proceeds with increasing stage. At each stage s and for each

graph in Ts, bounds tightening problems are defined by the variables and constraints

in the graph. If the graph is not a leaf, BT problems are solved for each variable

involved in the constraints removed in order to partition the graph. If the graph is a

leaf, then BT problems are solved for any variables whose bounds affect the tightness

of the relaxation. After performing bounds tightening, any relaxations that depend

on variable bounds should be updated with the new bounds.

6.2 Graph Partitioning

We formulated a MIP to partition the graphs. Balanced graph partitioning is a

well-studied topic with many well-established algorithms. We formulate a custom

MILP to account for the fact that the partitioning is done by removing constraints

but there may be multiple edges in the graph for a single constraint. The binary

variable zc takes a value of 0 if constraint c is being removed in order to partition

the graph and 1 otherwise. The binary variable yi is 1 if node i (variable i from

the convex relaxation of the original global optimization problem) is connected to an

arbitrary reference node, ref , and 0 otherwise. Any node connected to the reference

node will be placed in graph Ga, and any node not connected to the reference node

will be placed in graph Gb. The value of yref is fixed to 1. The binary variable xi,j is

1 if nodes i and j are directly connected through a constraint (edge). The set K is the

set of all pairs of nodes connected directly through a constraint (i.e., pairs of nodes

with an edge between them). The set Kc is the set of pairs of nodes in constraint c.

The set Vi is the set of nodes directly connected to node i through a constraint. The

MILP is presented below.

max
∑
c∈C

zc (6.6.1)

s.t. (6.6.2)
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xi,j ≥ zc ∀(i, j) ∈ Kc ∀c ∈ C (6.6.3)

yi ≥ xi,jyj ∀j ∈ Vi ∀i ∈ V (6.6.4)

yi ≤
∑

{j∈Vi|(i,j)∈K}

xi,jyj +
∑

{j∈Vi|(j,i)∈K}

xj,iyj ∀i ∈ V (6.6.5)

∑
i∈V

yi ≥ 0.375|V| (6.6.6)

∑
i∈V

yi ≤ 0.625|V| (6.6.7)

yref = 1 (6.6.8)

zc ∈ {0, 1} ∀c ∈ C (6.6.9)

xi,j ∈ {0, 1} ∀(i, j) ∈ K (6.6.10)

yi ∈ {0, 1} ∀i ∈ V (6.6.11)

For convenience, the formulation is nonlinear as written. However, an exact trans-

formation to an MILP is possible by linearization of the bilinear terms with Mc-

Cormick Envelopes. The objective is to minimize the number of constraints removed

in order to partition the graph. Constraint (6.6.3) ensures that two nodes are con-

nected if any constraint containing both of the corresponding variables is not removed.

Constraints (6.6.4) - (6.6.5) serve to identify whether or not a node is connected to

the reference node. The idea is that node i is connected to the reference node if any

node directly connected to node i is connected to the reference node. In a sense, this

is a recursive constraint. Constraints (6.6.6) and (6.6.7) ensure that the two resulting

graphs are roughly equal in size.

We note that a more effective formulation would minimize the number of variables

involved in removed constraints. For simplicity of implementation (as described in

detail later), we use Problem (6.6).
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6.3 Application to Optimal Power Flow

We test the DBT algorithm on several instances of the alternating current op-

timal power flow (ACOPF) problem (a continuous, nonconvex NLP) from version

17.08 of the Power Grid Lib - Optimal Power Flow repository [IEEE PES Task Force

on Benchmarks for Validation of Emerging Power System Algorithms, 2017]. The

ACOPF problem seeks to minimize the operating cost of the system while satisfy-

ing customer power demand. The problem is defined by a set of buses connected

by a set of transmission lines. Each bus may have a generator and/or load. The

constraints describing power flow on the transmission lines are nonlinear and non-

convex. We utilize the Quadratic Convex (QC) relaxation [Hijazi et al., 2017] of the

polar form of the ACOPF problem strengthened with a second-order cone (SOC) con-

straint [Jabr, 2006]. For ease of implementation, we solve the partitioning problems

with graphs defined by the buses and transmission lines rather than the variables

and constraints. We partitioned the graphs by removing transmission lines. We sub-

sequently removed the constraints associated with those removed transmission lines

and performed bounds tightening on the variables in those constraints.

All models were implemented with Pyomo [Hart et al., 2017]. Pyomo Blocks

allowed the model to be constructed with the same binary tree structure as the tree

resulting from partitioning the graphs. The NLPs were solved with Ipopt [Wächter

and Biegler, 2006] to obtain an upper bound. The SOC relaxations were solved with

Gurobi [Gurobi Optimization, 2016] to obtain lower bounds. The bounds tightening

problems were also solved with Gurobi.

6.4 Results

We compare three versions of bounds tightening for the ACOPF Problem, includ-

ing traditional OBBT with all variables and constraints (Full Space), our proposed

decomposed bounds tightening algorithm (Decomposed), and a version where we only

perform BT with the leaf graphs (Leaves). The computational results are summarized
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in Figure 6.1. Figure 6.1 shows the time required to complete one iteration of BT for

each of the test cases. The figure shows that there is not a significant computational

difference between the three methods for small cases. However, as the number of

buses grows, the computational expense of the Full Space method grows very quickly.

In comparison, the Decomposed and Leaves methods both scale remarkably well.

Figures 6.2 - 6.8 show detailed results for each of the test cases. The figures

show time on the x-axis and percent gap on the y-axis. The figures are ordered with

increasing problem size. For the smaller problems, all three method typically perform

similarly. However, as the problem size increases, the differences become dramatic.

Typically, the Decomposed and Leaves methods initially perform similarly, both far

more effective than the Full Space method. However, as BT proceeds, the Leaves

method stalls at optimality gaps much larger than either the Decomposed or Full

Space Methods. In contrast, the DBT algorithm obtains optimality gaps nearly as

small as the Full Space method.

One exception to the trends observed above is pglib opf case162 ieee dtc. For

this test problem, the Full Space method clearly outperforms both the Decomposed
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and Leaves methods. One possible explanation for this is presented in Table 6.1.

Table 6.1 shows the number of branches required to partition the root graph for

each test case. The number of branches required to partition the root graph for

pglib opf case162 ieee dtc is drastically higher than that for the other test problems.

For the DBT algorithm this leads to significant increases in computation expense due

to an increase in the number of large BT problems that must be solved. Additionally,

an increase in the number of branches removed likely corresponds to less effective

bounds tightening. This highlights the importance of effective partitioning for the

DBT algorithm.

6.5 Summary

In this chapter, we proposed a decomposition algorithm for bounds tightening

based on graph partitioning. The algorithm solves many small optimization problems

to tighten bounds and a few large problems in order to retain feasibility information

lost through the graph partitioning. Our numerical results on several instances of the

ACOPF problem demonstrate that our algorithm produces variable bounds nearly

as tight as those obtained with traditional optimization-based bounds tightening.

Moreover, our algorithm scales much more favorably with problem size, resulting in

drastically reduced computational expense.

Table 6.1.: Number of branches removed in order to partition the root graph.

Test Case Number of Branches Removed

pglib opf case30 ieee 4
pglib opf case57 ieee sad 5
pglib opf case73 ieee rts api 4
pglib opf case118 ieee 4
pglib opf case162 ieee dtc 16
pglib opf case240 pserc 7
pglib opf case300 ieee 4
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7. WATER NETWORK TOOL FOR RESILIENCE1

7.1 Modeling Framework

This chapter presents a comprehensive software framework for assessing the re-

silience of drinking water systems to disasters, including earthquakes. The software

improves upon currently available capabilities by fully integrating hydraulic and wa-

ter quality simulation, damage estimates and response actions, and resilience metrics

into a single platform. This software is available as an open source software package

called the Water Network Tool for Resilience (WNTR, pronounced winter). In the

rest of this chapter, the relevant literature is reviewed, the WNTR software framework

is described in detail and then an earthquake case study is presented to demonstrate

the capabilities in WNTR. While the case study focuses on earthquakes, the software

framework is general and can be applied to a wide range of disruptive incidents and

repair strategies.

The United States Environmental Protection Agency, in partnership with Sandia

National Laboratories, developed WNTR to integrate critical aspects of resilience

modeling for water distribution systems into a single software framework. WNTR

provides a flexible platform for modeling both disruptive incidents and repair strate-

gies in water distribution systems. WNTR advances previous research by making

major improvements to hydraulic simulations including PDD, the ability to add and

repair leaks, and the ability to change operations and/or response strategies in the

middle of a simulation. Additionally, WNTR combines damage and response mod-

els into a single framework, allowing for a seamless evaluation of response and/or

1Part of this chapter is reprinted with permission from “A Software Framework for Assessing the
Resilience of Drinking Water Systems to Disasters with an Example Earthquake Case Study” by
Klise, K.A., Bynum, M., Moriarty, D., and Murray, R., Environmental Modelling & Software, 2017.
Note that this work was done in collaboration with both Sandia National Laboratories and the U.S.
Environmental Protection Agency.
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mitigation strategies to minimize overall consequences to the water utility. The pri-

mary modeling components in WNTR include: (1) disaster models (e.g., attenuation

models to predict ground movement after an earthquake), (2) fragility curves used

to assign the probability of damage to network components, (3) flexible controls to

change the status and operation of network components, (4) models to estimate leaks

in the network, (5) PDD hydraulic simulation to model the network during low pres-

sure conditions, (6) resilience metrics to evaluate the effect of the disruption and

repair strategies, and (7) the ability to perform Monte Carlo simulations.

WNTR is a Python package, which requires Python (2.7, 3.4, or 3.5) along

with several Python package dependencies, including NetworkX, Pandas, Matplotlib,

NumPy, and SciPy. A water network model can be constructed within WNTR or

created from an EPANET formatted water network model input file. Connectivity

of the water network (i.e., the network layout) is stored as a NetworkX data object

[Hagberg et al., 2008]. The NetworkX package facilitates use of numerous methods to

analyze the structure of complex networks. Results from hydraulic and water quality

simulations are stored as Pandas data objects [McKinney, 2012], which allows for

powerful time series analysis of node and link attributes, such as pressure and flow.

WNTR includes high-quality graphics capabilities, including network graphics and

animation, using Matplotlib [Hunter, 2007]. A dependence on NumPy and SciPy

[Walt et al., 2011] enables efficient numerical computation, and working within the

Python environment facilitates simulations run in loops or in parallel using standard

Python methods [Python Software Foundation, 2016]. In addition to the features

listed above, WNTR is compatible with all unit conventions of EPANET formatted

water network model input files.

WNTR integrates these components into a single easy-to-use software platform

for evaluating resilience of water distribution systems. Leveraging the object-oriented

programming capabilities of Python, WNTR easily performs many complex analyses.

Note that the object-oriented EPANET Python package, OOPNET, makes use of

similar Python packages to facilitate scientific computing but currently only uses
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EPANET for hydraulic simulations, limiting the tool to DD hydraulic simulations

[Steffelbauer and Fuchs-Hanusch, 2015]. WNTR can perform DD simulations using

EPANET or PDD simulations using WNTRs own hydraulic solver. The program

interface is flexible and allows users to make changes to the network structure and

operations, and add disruptive events and recovery actions.

7.1.1 Software Availability

WNTR can be installed through the U.S. Environmental Protection Agency GitHub

organization at https://github.com/USEPA/WNTR. The software was made publi-

cally available in October 2016. The GitHub site includes links to software documen-

tation, software testing results, and contact information. The software documentation

includes Python code to demonstrate the application program interface (API) and

code structure. Python distributions, such as Anaconda, are recommended to help

users manage the Python environment.

7.1.2 Earthquake Attenuation Models

WNTR includes attenuation models that describe how seismic waves diminish

as they travel away from the epicenter. The energy associated with a seismic wave

is commonly measured in terms of PGA and PGV. Attenuation models are often

developed using data from a particular earthquake and depend on the local geology.

Many models exist and choosing an appropriate model for a particular study area can

be difficult. Infrastructure damage is associated with both PGA and PGV. Pump

and tank damage is often estimated using PGA, whereas PGV is frequently used to

estimate repair rate for pipes. Repair rate is defined as the number of repairs needed

per km of pipe. Correction factors can be applied to the repair rate to account for

variation in pipe material and soil type. The PGA attenuation models in WNTR

include:

PGA = 403.8× 100.265M (R + 30)−1.218 (7.1)

https://github.com/USEPA/WNTR
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ln(PGA) = 0.4 + 1.2M − 0.76 ln(D) + 0.0094D (7.2)

log(PGA) = −1.83 + 0.386M − log(R)− 0.0015R (7.3)

where M is the earthquake magnitude (unitless), R is the distance to the epicenter

(km), and D is the distance to the focus (km) [Kawashima et al., 1984, Baag et al.,

1998, Lee and Cho, 2002]. These are the same PGA models used in REVAS.NET.

The PGV attenuation models in WNTR include:

PGV = 100.848+0.775M+1.834(R+17) (7.4)

PGV = 10−0.285+0.711M−1.85(R+17) (7.5)

where Eq (7.4) is for rock and Eq (7.5) is for soil [Yu and Jin, 2008]. Since attenu-

ation models are commonly developed for a particular earthquake and site, analysts

often use the average of several models to capture general trends [American Lifelines

Alliance (ALA), 2001a, Yoo et al., 2015]. PGV is used to compute a pipe repair rate.

The following linear and power law repair rate (RR) models from [American Lifelines

Alliance (ALA), 2001a] are included in WNTR:

RR = 0.00187PGV (7.6)

RR = 0.00108PGV 1.173 (7.7)

To include pipe and soil characteristics in the calculation, RR is multiplied by a

correction factor [Isoyama et al., 2000], which is a function of pipe diameter, pipe

material, topography, and liquefaction potential. A weight is assigned to different

categories. Correction factor (C) is computed as follows:

C = CdCmCtCl (7.8)

where Cd is the correction factor for pipe diameter (unitless), Cm is the correction

factor for pipe material (unitless), Ct is the correction factor for topography (unit-
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less), and Cl is the correction factor for liquefaction potential (unitless). By default,

WNTR uses the categories and weights supplied in [Isoyama et al., 2000] but users

can customize categories and weights by modifying input to the code. Additional

models for PGA, PGV, RR, and C can be added by the user or included in a future

release of the software. Users can also import data from external sources, such as

USGS ShakeMap.

7.1.3 Fragility Curves

Fragility curves define the probability of exceeding a damage state as a function of

environmental change. Fragility curves are commonly used to predict network damage

after an earthquake caused by ground motion. Fragility curves are closely related to

survival curves, which are used to define the probability of component failure due to

age. Network components can have multiple damage states, for example, a pipe can

be subject to major or minor leaks. To estimate damage caused by an earthquake,

fragility curves are defined as a function of PGA, PGV, or RR. The American Lifelines

Alliance reports [American Lifelines Alliance (ALA), 2001a,b] include seismic fragility

curves for water system components. Damage to above ground pumps, tanks, and

tunnels is often estimated using PGA, while damage to below ground pipes is often

estimated using PGV and RR [American Lifelines Alliance (ALA), 2001a,b]. WNTR

includes methods to define fragility curves (or survival curves) with multiple damage

states using a wide array of statistical distributions. The fragility curves are then used

to assign a probability of damage for each network component. The damage state

is determined stochastically by selecting a uniform random variable for each network

component and the water network model is adjusted accordingly to reflect the damage

state that is selected. Fragility curves can also be used to estimate damage from other

types of disasters, for example, fragility curves can be defined as a function of flood

stage, wind speed, or temperature. FEMA’s HAZUS software can also be used to

estimate damage to water distribution systems from earthquakes and floods [Federal
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Emergency Management Agency (FEMA), 2003a,b]. The output from HAZUS can

be used in WNTR to adjust model components and reflect damage states.

7.1.4 Flexible Controls

Similar to EPANET, network controls in WNTR include time-based and condi-

tional rules that govern how the network is operated. In EPANET, these controls

can be used to change link status (open, closed, or active) or settings (pump speed or

control valve setting). WNTR extends the controls available in EPANET to include

a wide range of component status and settings. For example, conditional controls can

be defined to simulate cascading failures where pipe leaks start when pressures exceed

a critical threshold. Time-based and conditional controls can also be used to start

and stop leaks and power outages or to stop the hydraulic simulation. Hydraulic

simulations can also be paused while controls are changed and the simulation can

then be restarted.

7.1.5 Leak Model

Leaks can cause large changes in network hydraulics. WNTR can be used to

explicitly model water lost due to a leak between the time when it starts and the

time when repair crews can isolate the leak by using available valves. WNTR can

simulate leaks at junctions and tanks or at any location along a pipe by splitting the

pipe into two sections and adding a junction connecting the two new pipe sections.

Pipe breaks can be modeled by removing the existing pipe, adding two new junctions

with leaks, and adding two new pipes connecting the new junctions to the network.

In this case, the two new junctions are not connected to each other (preventing flow

between the two junctions that were connected by the original pipe). In WNTR,

leaks are modeled with a general form of the equation proposed by Crowl and Louvar

[2001] where the mass flow rate of fluid through the hole, dleak, is expressed as:

dleak = CdA
√

2ρpα (7.9)
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where Cd is the discharge coefficient (unitless), A is area of the hole (m2), ρ is the

density of the fluid (kg/m3), and p is the gauge pressure inside the pipe (Pa). The

default discharge coefficient is 0.75 (assuming turbulent flow [Lambert, 2000]), but

the user may specify other values if needed. The value of α is set to 0.5 (assuming

large leaks out of steel pipes [Lambert, 2000]). As described by Lambert [2000],

the primary factors affecting Cd and α are flow regime, pipe material, and orifice

shape (longitudinal, round, circumferential). Additionally, both Cd and A may vary

with pressure. Future development of WNTR could include extension of Eq (7.9) to

account for these factors. For example, a linear model may be used to describe the

area as a function of pressure as in [Cassa et al., 2010].

7.1.6 Pressure-Driven Demand Hydraulics

WNTR uses a PDD model proposed by Wagner et al. Wagner et al. [1988]:

d =


0 p ≤ P0

Df

√
p−P0

Pf−P0
P0 ≤ p ≤ Pf

Df p ≥ Pf

(7.10)

where d is the actual demand delivered to customers (m3/s), Df is the customers

expected demand (m3/s), p is the pressure (Pa), Pf is the pressure above which the

customer should receive the expected demand (Pa), and P0 is the pressure below which

the customers cannot receive any water (Pa). Pf and P0 can be defined at each node

and can be modified by the user. The set of nonlinear equations describing network

pressures and flows comprising the hydraulic model, including (7.10), is solved directly

using a Newton-Raphson algorithm. However, Newton-Raphson algorithms do not

guarantee convergence if the derivatives of the equations of interest are not Lipschitz

continuous [Kelley, 2003]. The derivative of the PDD equation above is not Lipschitz

continuous or even continuous; therefore, a cubic Hermite spline is applied when p is

near P0 and Pf to enforce continuity.
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7.1.7 Resilience Metrics

Resilience is the ability of a system to minimize disruption and return to normal

function after a disaster. Metrics that quantify resilience need to account for sys-

tem function before, during, and after the disruption. Numerous resilience metrics

have been suggested [US Environmental Protection Agency (USEPA), 2015c], includ-

ing metrics that compute redundancy, robustness, reliability, rapidity, adaptability,

and resourcefulness. For water distribution systems, these metrics generally fall into

four categories: topographic, hydraulic, water quality/security, and economic. While

some metrics define resilience as a single quantity, other metrics are a function of

time, space, or both. For this reason, state transition plots [Barker et al., 2013],

network graphics, and network animation are useful ways to visualize resilience met-

rics. When quantifying resilience, it is important to understand which metric best

defines resilience for a particular disaster or response scenario. For example, topo-

graphic metrics are useful when studying the effect of adding redundant pipes while

hydraulic metrics are useful when studying the effect of pipe breaks. Numerous re-

silience metrics can be computed using WNTR. These metrics include shortest path

lengths [Hagberg et al., 2008], articulation points [Hagberg et al., 2008], Todini re-

silience index [Todini, 2000], and water service availability [Davis, 2014], among oth-

ers. Some metrics can also be converted to capture statistics about the population

served. For example, WNTR can be used to compute the number of people that are

impacted by water service availability less than a critical threshold.

The metrics used in the case study below include water service availability and

population impacted. Water service availability is computed as follows:

WSAt =

(∑
n∈N

Vnt

)
/

(∑
n∈N

V̂nt

)
(7.11)

where WSAt is the water service availability of the network (unitless) at time t, N

is the set of network nodes, Vnt is the actual water volume (m3) received at node

n at time t, V̂nt is the expected water volume (m3) received at node n at time t.
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Resilience metrics, like WSA, that depend on expected water demand can be influ-

enced by changes in customer behavior after a disaster. Water conservation efforts,

for example, change the expected demand of customers. It is important to model

expected customer behavior after disasters to account for the impact this might have

on resilience.

Population at each node is computed as follows:

popn =
qn
R

(7.12)

where popn is the population at node n, qn is the average water volume consumed per

day (m3/day) at node n under normal conditions, R is the average volume of water

consumed per capita per day (m3/day). For this study, R is set to 0.76 m3/day (200

gallons/day). This calculation does not account for population movement throughout

the day.

The population at a given node is impacted by the disruption if they receive

less than a fixed percentage of their expected water volume. Population impacted is

computed as follows:

PIt =
∑
n∈N

popnδnt (7.13)

where

δnt =

1 ifVnt/V̂nt < τ

0 otherwise

(7.14)

where PIt is the population impacted at time t, dnt is a binary variable that is set to

1 if Vnt/V̂nt is less than a threshold, τ and set to zero otherwise. The threshold is set

to 80% in the case study below.
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7.1.8 Monte Carlo Simulation

To address the uncertainty associated with modeling potential disasters, Monte

Carlo techniques can be used to simulate multiple realizations or outcomes of a given

scenario. WNTR has the capability to allow characteristics of a disaster scenario to

be drawn from statistical distributions. As mentioned above, fragility curves provide

probabilities of the location and severity of a disruption. The duration of the disrup-

tion can also be drawn from statistical distributions. Distributions can be a function

of component properties (e.g., pipe age, material, or joint type), environmental change

(e.g., PGA, PVG, or RR), or available resources (e.g., number of repair crews avail-

able). WNTR is compatible with many statistical distributions and random selection

methods that can be used for stochastic simulation. WNTR also includes the ability

to pause the hydraulic simulation, change network operations, and then restart the

simulation. The water network model and simulation results can also be saved to files

and reloaded for future analysis. These features are helpful when evaluating various

response action plans and when simulating long periods with different time resolu-

tion. Standard Python tools can also be used to run simulations in parallel [Python

Software Foundation, 2016].

7.2 Earthquake Case Study

The following case study demonstrates multiple capabilities of WNTR that can

be used to evaluate disruptive incidents and repair strategies after an earthquake.

Figure 7.1 shows the network model of a real water distribution system that is used

for the case study [Watson et al., 2009]. The system serves approximately 152,000

customers and has one reservoir, two valves, 34 tanks, 61 pumps, 3,323 nodes, and

3,829 pipes. The pipes are made of cast iron, ductile case iron, and polyethylene and

the soil type in the region has various degrees of liquefaction potential (Figure 7.1).

The spatial distribution of these properties was used to determine pipe fragility, as

described below.
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Figure 7.1.: Water distribution network model showing A) pipe material and B)
liquefaction potential.
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An earthquake was assumed to have occurred at 6:00 AM along an N-S fault that

parallels a valley on the west side of the network (Figure 7.2). In the model, this was

24 hours after the start of the simulation. The earthquake epicenter was assumed to

have occurred at the south, central, or north part of the city, with magnitudes of 6.0,

6.5, or 7.0. The hydraulic response of the network was simulated for 14 days after

the earthquake. PDD hydraulic simulations were run using a minimum and nominal

pressure of zero and 25 psi, respectively. In the simulations, ground movement from

the earthquake damaged pipes and tanks, pumps stopped operating due to either

direct damage or power outages, and damaged natural gas pipelines cause fires. Given

the disorder that ensues after an earthquake, especially after large earthquakes, it was

assumed that repairing network components and fighting fires was not possible for

the first 12 hours after the earthquake occurs (note that 12 hours might be too long

in some cases and this value can be adjusted). After that period, fire crews were

scheduled to fight fires and repair crews were scheduled to fix damaged components

in the network. Three repair strategies including water conservation and seismic-

resistant pipes were simulated. Network resilience was quantified using two metrics,

water service availability and population impacted, computed using Eqs. (7.11) and

(7.13), respectively. To incorporate uncertainty in outcomes, 50 realizations of each of

the 27 scenarios were run (three earthquake locations, three earthquake magnitudes,

and three repair strategies).

7.2.1 Earthquake Damage

For this case study, network component damage includes tank and pipe leaks, and

pump failure. For each tank, pump, and pipe, fragility curves were used to define the

probability of damage as shown in Figure 7.3. For tanks, the fragility curves in Figure

7.3A included four damage states (DS): DS1 resulted in a leak with diameter 0.05

m, 0.25 m for DS2, 0.5 m for DS3, and 1 m for DS4. For pumps, there was a single

damage state, DS1, associated with pump shut off (Figure 7.3B). For pipes, there

were two damage states: DS1 resulted in a minor leak for which the leak diameter
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Figure 7.2.: Water distribution network model showing the fault line (dashed red
line), node elevation, and epicenter of three earthquakes. (For interpretation of the
refer- ences to colour in this figure legend, the reader is referred to the web version
of this article.)
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was drawn from a uniform distribution with a minimum of 0.01 m and a maximum of

0.05 m, while DS2 represented a major leak with a diameter from 0.05 m to 0.15 m

(Figure 7.3C). Leaks were added to the midpoint of the pipe, and were constrained

to not to exceed 75% of the pipe diameter.

For each scenario and realization, PGA, PGV, and RR was computed for each

network component. Here, PGA was computed using the average of Eqs. (7.1), (7.2),

and (7.3). As an example, Figure 7.4A shows the spatial distribution of PGA for

a magnitude 6.5 earthquake at the central location. PGV was computed using the

average of Eqs. (7.4) and (7.5). RR was computed using Eq. (7.6) from PGV and a

correction factor that was computed using Eq. (7.8) with the default weights defined

in [Isoyama et al., 2000].

The damage state for each component was then determined stochastically based

on the PGA or RR calculated for the component and a uniform random variable

selected for that component. The fragility curve incorporates both of these values:

PGA or RR determines the x-axis value while the random variable determines the

y-axis value. The intersection point of these values determines the damage state

for a particular component for a single realization. The water network model was

then adjusted to reflect the selected damage: if a pump was damaged, a control was

added that changed its status to off; new nodes were added to the network model to

represent leaks. As an example, the location of pipe and tank damage resulting from

a magnitude 6.5 earthquake at the central location is shown in Figure 7.4B.

While damage to other network components such as reservoirs, turbines, and

treatment plants were not included in this study, similar methods could be used

to define the probability of damage to these components and the network could be

modified accordingly.

Fires are important to include when modeling the effects of an earthquake because

water utilities are responsible for maintaining enough capacity to fight fires. For this

case study, the locations of fires were randomly distributed throughout the network.

Typical firefighting demands and durations [International Code Council (ICC), 2012]
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Figure 7.3.: Fragility curves for A) tank, B) pump, and C) pipe damage.
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Figure 7.4.: A) PGA and B) location of pipe damage (in red) and tank damage
(in blue) for a magnitude of 6.5 earthquake at the central epicenter location. The
yellow star indicates the location of the central epicenter. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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were added to the network model to simulate the water withdrawal needed to fight

one fire every 12 hours over the full duration of the simulation. For each fire, demand

was selected from a uniform distribution with a minimum of 1500 gallons/min and

a maximum of 8000 gallons/min. Duration was selected from a uniform distribution

with a minimum of two hours and a maximum of four hours.

7.2.2 Repair Strategies

Three repair strategies were considered in this case study. For all strategies, re-

pairs began 12 hours after the earthquake. There were five repair crews to fix pipe

damage, two repair crews to fix tank damage, one repair crew to fix pump dam-

age, and one firefighting crew. In the first repair strategy (RS1), customer expected

demand continued at their normal rate after the earthquake. In the second repair

strategy (RS2), customer expected demand was reduced by 40% for 14 days after the

earthquake. This was done to simulate the impact of water conservation after the

disaster. In the third strategy (RS3), the utility retrofitted pipes near the fault zone

to be seismic-resistant and customer expected demand continued at their normal rate

after the earthquake. In this case, pipes in the partial liquefaction zone (Figure 7.1),

did not sustain damage after the earthquake.

The pipe and tank repair crews fixed one leak every 12 hours. Within the first six

hours, the leaks were isolated using valves at the nearest junctions, and the leak was

fixed within the next six hours. After the leak was repaired, the pipe was opened.

To stagger repairs, the exact time of isolation and repair were drawn from a uniform

distribution within the first or second six-hour period. Repairs were prioritized based

on the largest cumulative leak volume at the time of each repair. As leak rates

can increase or decrease through time as the pressure fluctuates, this prioritization

changed throughout the simulation. Within WNTR, the simulation was paused every

12 hours, the cumulative leak rates were computed, and the largest five pipe leaks

and largest two tank leaks were scheduled for repair.
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The single pump repair crew fixed one pump every eight hours. In this network,

the reservoir is near the lowest point in the network, and pumps are critical to deliver

water to customers in the upper sections of the network. For this reason, pump repairs

were prioritized based on pipe distance to the reservoir, with the closest pump fixed

first. Since this prioritization does not include feedback from the simulation, the

simulation does not have to be paused to schedule pump repairs.

For this case study, there was one fire crew to fight a fire every 12 hours, and

the fires were fought in a random order. If the pressure was not sufficient to pull

the required water volume, the hydraulic simulation continued to try to extract the

expected demand for the duration of the fire. The difference between the expected

and actual demand was recorded for each fire to measure water service availability

for firefighting.

The earthquake damage and repair strategies used in this case study were based

on reasonable assumptions. These parameters can all be adjusted within WNTR to

customize analysis for a specific water utility and disaster scenario.

7.2.3 Case Study Results

Figure 7.5 shows the results of a single realization of a magnitude 6.5 earthquake

at the central location with RS1. For this realization, 239 pipes were damaged, 7

tanks were damaged, and 14 pumps lost power. Figure 7.5 shows the leak rates on all

239 damaged pipes and the tank levels for all 34 tanks as a function of time. As Figure

7.5A shows, the leak rates were high until the pipes were repaired. However, as the

network was repaired and pressures increased, new leaks were sometimes discovered

and subsequently repaired, as shown with the leak highlighted in red in Figure 7.5A.

That particular leak was fixed 9.1 days after the earthquake. Figure 7.5B shows how

tank levels (from both damaged and non-damaged tanks) varied as components were

repaired. In that figure, tank levels from damaged tanks are highlighted in red. Once

the tank was repaired, the tank level is shown in gray. Figure 7.5B also shows that
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some tanks that were not damaged by the earthquake can drain due to damage at

other locations in the network.

Figure 7.5.: (A) Leak rate and (B) tank level as a function of time for a single
realization of a magnitude 6.5 earthquake at the central location using no conservation
(RS1). In A), a particular leak is shown in red illustrating the possibility of a leak
becoming more prominent as the system is restored. In B), damaged tanks are shown
in red up until the time they are repaired, tanks are refilled as the system is restored.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Figure 7.6, Figure 7.7, and Figure 7.8A show the results for 50 realizations of

the same earthquake magnitude (6.5), location (central), and repair strategy (RS1).

For each realization, different network components were damaged as defined by the

probability distribution functions in the fragility curves and by different fire demands

assigned to different locations. Similarly, pipes and tanks were repaired in a different

order according to the prioritization for leak repair and fires were fought in a random

order. Figure 7.6 shows the water service availability of the network over time, reflect-

ing the proportion of customer expected demand that was actually delivered for the

entire network. As the customer expected demand vary on a diurnal cycle, so does

the water service availability. A day after the earthquake, water service availability

varied from about 45% to more than 60%, showing the potential range in outcomes

for the same scenario. The median value (in black) reached a low of 54% and slowly

returned to full service at 6.58 days after the earthquake. The median value was used

here to compute a recovery time, defined as the time when the system could deliver

90% of the pre-earthquake water volume to customers.

Figure 7.6.: Water service availability for a magnitude 6.5 earthquake at the central
location using no conservation (RS1). Light gray is the 5th-95th percentile, dark gray
is the 25th-75th percentile, and the black line is the median. Threshold for recovery
time shown as a dotted line.
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Figure 7.7.: Firefighting capacity for a magnitude 6.5 earthquake at the central lo-
cation using no conservation (RS1). Light gray is the 5th-95th percentile, dark gray
is the 25th-75th percentile, and the black line is the median. Firefighting capacity is
computed every 12 h (indicated by x’s) at the location of a particular fire.
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Figure 7.8.: Population impacted (A) without conservation (RS1), (B) with conser-
vation (RS2), and (C) with seismic-resistant pipes (RS3) for 50 realizations of a mag-
nitude 6.5 earthquake at the central location. Light gray is the 5th-95th percentile,
dark gray is the 25th-75th percentile, and the black line is the median. Threshold for
recovery time shown as a dotted line.
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Figure 7.7 shows the firefighting capacity for the same 50 realizations. Firefighting

capacity is defined as the water service availability at the nodes where fire demand

was added to the system. The quantity is computed at the same frequency as the fires

occur, which is 12 hours in this case. The results show that firefighting capacity varies

widely and slowly recovered over the 14 day simulation. After one day, firefighting

capacity varied from about 15%-85% for the 25th to 75th percentile scenarios, but

ranged from about 75%-100% by the end of the 14 days.

Figure 7.8 shows the population impacted for each of the 50 realizations. With no

conservation efforts (RS1) between 70,000 and 100,000 people were impacted a day

after the earthquake, receiving less than 80% of their expected water volume. Based

on the median value of the 50 realizations, almost 90,000 people were impacted. The

recovery time was defined as the time when less than 10% of the population was

impacted. For RS1, it took 7.08 days to meet this level. Figure 7.8B shows the same

results when water conservation efforts were in place (RS2) immediately following

the earthquake. This shows that the population impacted was much lower with

conservation strategies in place. Based on the median value, approximatly 53,000

people were impacted, and the time to recovery was reduced to 4.04 days. Figure

7.8C shows results when pipes were retrofitted to be seismic-resistant near the fault

line. These results show dramatic reduction in the number of people impacted and the

time to recovery, median result indicate that less than 26,000 people were impacted

and the time to recovery was just 1.58 days after the earthquake.

Table 7.1 and Table 7.2 summarize the minimum water service availability, max-

imum population impacted, and time to recovery for each magnitude, location, and

repair strategy. These values were computed using the median value for each scenario

over all 50 realizations. As expected, water service availability decreased and popula-

tion impacted increased as the earthquake magnitude increases. Unsurprisingly, the

location of the earthquake also had an impact on water service availability and popu-

lation impacted. Earthquakes at the northern location, further from the city, had less

of an impact than earthquakes occurring in the city. Given RS1 conditions, earth-
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quakes of magnitudes 6.5 or greater at the south and central locations impacted the

network almost equally. To further illustrate this point, Figure 7.9 shows the distri-

bution of maximum population impacted over all 50 realizations when the earthquake

was located at the north, central, and southern epicenter and RS1 is used. This com-

parison shows that while location can have a large influence on population impacted,

the results can vary widely depending on the specific network damage and response

strategy. Table 7.1 and Table 7.2 also illustrate that both water conservation and

earthquake resistant pipes in the liquefaction area helped to increase overall water

service availability and decrease population impacted. Under most scenarios the use

of earthquake resistant pipes was slightly more effective than water conservation, how-

ever, earthquake resistant pipes were significantly better for earthquakes occurring

the central location near the retrofitted pipes.

Figure 7.9.: Effect of location of the earthquake on maximum population impacted
for a 6.5 magnitude earthquake at the central location and no conservation (RS1).
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Table 7.1.: Minimum water service availability (WSA) and recovery time for each earthquake magnitude, location, and
repair strategy. Values are computed using the median of the 50 realizations. A recovery time of 0 means that the median
value never went below 90% water service availability.

Repair Strategy Magnitude South Location Central Location North Location

Minimum
WSA

Recovery
Time in
Days

Minimum
WSA

Recovery
Time in
Days

Minimum
WSA

Recovery
Time in
Days

RS1 (Pipe, tank,
pump repair &
firefighting)

6.0 0.88 1.04 0.85 1.08 0.98 0.00
6.5 0.53 6.04 0.54 7.00 0.65 4.04
7.0 0.28 14.00+ 0.27 14.00+ 0.35 14.00+

RS2 (RS1 with 40%
water conservation)

6.0 0.98 0.00 0.97 0.00 1.00 0.00
6.5 0.66 3.08 0.67 4.00 0.79 1.58
7.0 0.37 14.00+ 0.35 14.00+ 0.45 9.04

RS3 (RS1 with
seismic-resistant
pipes)

6.0 1.00 0.00 1.00 0.00 1.00 0.00
6.5 0.83 1.08 0.87 1.08 0.93 0.00
7.0 0.45 6.04 0.50 6.04 0.60 4.04
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Table 7.2.: Maximum population impacted and recovery time for each earthquake magnitude, location, and repair strategy.
Values are computed using the median of the 50 realizations. A recovery time of 0 means that the median value never went
above 10% population impacted.

Repair Strategy Magnitude South Location Central Location North Location

Max Pop.
Impacted

Recovery
Time in
Days

Max Pop.
Impacted

Recovery
Time in
Days

Max Pop.
Impacted

Recovery
Time in
Days

RS1 (Pipe, tank,
pump repair &
firefighting)

6.0 27,142 1.04 33,902 1.08 2,548 0.00
6.5 90,736 6.04 89,387 7.00 71,520 4.04
7.0 127,398 14.00+ 129,232 14.00+ 118,908 14.00+

RS2 (RS1 with 40%
water conservation)

6.0 4,378 0.00 4,260 0.00 302 0.00
6.5 57,167 3.08 53,492 4.00 32,260 1.58
7.0 104,194 14.00+ 105,814 14.00+ 89,560 9.04

RS3 (RS1 with
seismic-resistant
pipes)

6.0 551 0.00 1,060 0.00 646 0.00
6.5 36,984 1.08 25,940 1.08 13,971 0.00
7.0 104,518 6.04 93,146 6.04 73,782 4.04
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Overall, these results indicate that this network could expect to withstand a mag-

nitude 6.0 earthquake with only 2-15% reduction in water service availability, and

less than 34,000 customers impacted. In contrast, a magnitude 7.0 earthquake could

be expected to affect more than 85% of customers, result in a minimum water service

availability of 0.27-0.35, and require more than 14 days to recover. This case study

is intended to illustrate how water utilities could use WNTR to evaluate disruption

and resilience enhancing actions following an earthquake. Similar analysis could be

used to evaluate other types of disruptions and utility specific data could be used to

validate the model.

7.3 Summary

In this chapter, we presented an open-source software package, WNTR, for eval-

uating and improving the resilience of water distribution systems. Our key contribu-

tions are listed below.

• WNTR integrates hydraulic and water quality simulation, a wide range of dam-

age and response options, and resilience metrics into a single framework, allow-

ing for a seamless evaluation of water network resilience.

• WNTR can help water utilities estimate potential damages, understand how

damage to infrastructure would occur over time, evaluate preparedness strate-

gies, prioritize response actions, and identify worst-case scenarios, efficient re-

pair strategies, and best practices for maintenance and operations.

• We presented an earthquake case study to demonstrate how WNTR can be

used to perform a resilience analysis from start to end. The case study included

estimating physical damage to the water distribution system components, eval-

uation of hdyraulic performance, and implementation and comparison of repair

strategies.
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8. SUMMARY

Critical infrastructure resilience is vital for both the economy and public safety and

health. In this thesis, we focus on developing effective models, algorithms, and soft-

ware for evaluating and improving the resilience of power systems and water distri-

bution systems. In this chapter, we summarize the major contributions of this work

and propose future work.

8.1 Thesis Summary and Contributions

8.1.1 Stochastic Programming Formulations for Improving Power Systems Resilience
to Extreme Weather

Chapter 3, focuses on stochastic programming formulations for improving power

systesm resilience to extreme weather events. We first propose a stochastic linear

programming problem which seeks to dispatch generators proactively in order to

minimize the expected load shed given a set of probablistic scenarios involving trans-

mission line failures. We then extend the formulation to consider hardening invest-

ments (introducing discrete decisions) and perform out-of-sample cross validation to

demonstrate the robustness of the formulations. Finally, we consider the role chemi-

cal process facilities, as large industrial consumers, can play in electric grid resilience

through demand response.

Our proposed stochastic programming models for enhancing power systems re-

silience to extreme weather events show promise, based on results obtained using syn-

thetic and real world test systems. Specifically, relatively simple operational changes

can significantly reduce the impact of extreme weather events. For the test cases

considered in this work, redispatching generators before a severe weather event can

reduce the expected load shed by as much as 25%. Transmission line hardening and
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increasing transmission capacity can also be very effective, with higher marginal gains

from the initial investments. Hardening just one transmission line in case2383wp can

reduce the expected load shed by over 10%, and doubling the capacity of just 5 lines

can reduced the expected load shed by approximately 4.4%.

Our out-of-sample cross validation demonstrated that high quality solutions can

be obtained with very small fractions of all possible outage scenarios. Specifically, we

solved the stochastic resilience problem with one set of scenarios and evaluated the

solution on an independent set of “true” scenarios. For case30, only 100 scenarios

were needed to obtain solutions nearly identical to those obtained when solving the

problem directly with the “true” scenarios. With an average of 7 transsmission line

outages per scenario, this is less than 0.001% of all possible scenarios.

By extending the stochastic programming framework to estimate the value of de-

mand response capabilities we were able to consider the role chemical process facilities

can play in electric grid resilience. We formulated a stochastic MILP that seeks to

determine the minimum number of hardened transmission lines required to ensure

feasible operation across a set of weather-related failure scenarios. For all three test

cases considered, we found that a modest amount of demand response could signifi-

cantly reduce the capital investment needed to mitigate the effects of extreme weather

events. On the largest test case, the addition of only two demand response contracts

(each requiring only a 25% drop in consumed load) is sufficient ensure feasible oper-

ation across all scenarios while reducing the required number of hardened lines (e.g.,

the required capital investment) by 21%.

8.1.2 The Effect of the DC Power Flow Approximation

All of the results presented in Chapter 3 were obtained with an MILP formulation

based on the linear DC approximation for the alternating current (AC) power flow

equations. While this approximation is widely used in power systems analysis, it can

underestimate the impact of thermal limits and other system constraints. In Chapter
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4, we investigate the effect this approximation has on the solution of our resilience

formulations.

First, we formulate and solve the demand response problem presented in section

3.6 with the actual nonlinear AC power flow equations. Because this formulation (an

MINLP) cannot be efficiently solved for large-scale problems, we compare the results

from the DC and AC formulations on a set of smaller test cases. We use a tailored

multi-tree approach that solves a sequence of MISOCP relaxations of the MINLP to

find candidate integer solutions and NLP subproblems to check feasibility. Using this

approach, results with the smaller test cases show that both the DC approximation

and the nonlinear AC formulation have similar trends, indicating that there is value in

the use of demand response for improved resilience. Furthermore, they also find sim-

ilar optimal locations for demand response contracts. For case pglib opf case14 ieee,

every bus selected for demand response by the DC model was also selected for de-

mand response by the AC model (cumulative across all values of ∆b and Nz). Only

one bus was selected for demand response by the AC model and not the DC model.

We also evaluated each integer solution obtained with the DC model on the AC

model to compute the fraction of AC-feasible scenarios. We found that the linear

model often underestimates the amount of demand response or hardened lines nec-

essary to ensure resilience of the AC system, demonstrating a need for improved

scalability of algorithms for solving MINLPs based on AC power flow equations.

8.1.3 Relaxations and Refinement Techniques for AC Constrained Power Flow Prob-
lems

Many algorithms for the solution of mixed-integer nonlinear programming prob-

lems require the global solution of nonlinear programming subproblems. Therefore,

Chapter 5 focuses on relaxations and refinement techniques for AC constrained power

flow problems. We demonstrate that, by properly incorporating reference bus con-

straints, relaxations of the rectangular form of the ACOPF problem can signifi-

cantly strengthen existing relaxations. We also illustrate that the effectiveness of
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optimization-based bounds tightening (OBBT) at a given iteration is directly related

to the distance of the corresponding bus from the reference bus. Ultimately, we are

able to reduce the optimality gap to less than 0.1% on all but 5 NESTA test cases

with up to 300 buses.

8.1.4 Decomposed Bounds Tightening

Althought OBBT is extrememly effective for tightening ACOPF relaxations, the

computational expense of OBBT grows quickly with the number of buses in the

network. Therefore, we propose a decomposed bounds tightening algorithm based on

graph partitioning. Our numerical results demonstrate that our algorithm produces

variable bounds nearly as tight as those obtained with traditional OBBT but with a

significantly reduced computational expense, especially for large problems.

8.1.5 Water Network Tool for Resilience: A Python Package

Drinking water systems are subject to a wide range of hazardous incidents that can

disrupt service to customers and damage critical infrastructure. Chapter 7 introduces

WNTR, a new open source Python package developed in collaboration with Sandia

National Laboratories and the U.S. Environmental Protection Agency. WNTR is de-

signed to help water utilities and researchers investigate resilience of water distribution

systems to a wide range of hazardous scenarios and to evaluate resilienceenhancing

actions. Unlike current modeling tools, WNTR integrates hydraulic and water quality

simulation, a wide range of damage and response options, and resilience metrics into a

single framework, allowing for a seamless evaluation of water network resilience. The

software can help water utilities estimate potential damages, understand how damage

to infrastructure would occur over time, evaluate preparedness strategies, prioritize

response actions, and identify worse case scenarios, efficient repair strategies, and

best practices for maintenance and operations.
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While a few modeling tools have been developed that focus on evaluating the

resilience of water networks after an earthquake, WNTR was designed to simulate a

wide range of disaster scenarios, including earthquakes, contamination incidents, and

power outages. The software includes methods to predict infrastructure damage using

fragility or survival functions, and other approaches can be added using the flexible

Python environment. WNTR allows the user to change features of the network model

to reflect damage, and initiates leaks in pipes or tanks as necessary. By simulating

hydraulics using PDD the effects of pipe breaks or damaged tanks on system pressures

and delivered water volumes is more accurately predicted. Moreover, WNTR allows

for simulation to continue even when parts of the water system are isolated and

unable to provide water to customers. In this way, WNTR is able to estimate the

performance of a drinking water system during extreme failures which is a significant

advancement from current modeling tools. WNTR also provides more flexibility by

allowing the user to change system controls and model components mid-simulation.

In this work, several response strategies were demonstrated including fixing pipe

leaks, repairing tanks, restoring power to pumps, fighting fires, and implementing

conservation strategies. WNTR can also be used to simulate the response to con-

tamination events by, for example, flushing contaminated water from hydrants or

instituting do-not-drink orders. Mitigation strategies, such as installing online mon-

itoring early warning systems, can also be modeled within WNTR. Optimization of

response and mitigation strategies is an area of ongoing research that could be added

to WNTR in the future.

WNTR contains a wide variety of metrics that can serve as indicators of resilience,

including topographic, hydraulic, and water quality measures, some of which are

measured at the node or pipe level and some at the system-level. In this work, two

metrics were used: water service availability and population impacted. These are

system-level metrics reflecting the ability of the entire water system to withstand

and recover from disasters. These types of metrics can be used to compare a water

systems resilience across different types of disasters, and to measure improvements
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in resilience based upon newly implemented mitigation actions or planned response

strategies. In this context, it is important to consider how different system functions

recover (i.e. firefighting capacity, water availability, water quality) when customers

are asked to conserve resources. Further research is needed to assess the most useful

resilience metrics for water systems and to fully understand how systems-level metrics

embody resilience characteristics.

8.2 Recommendations for Future Work

Designing and retrofitting critical infrastructure systems to be resilient while min-

imizing costs remains a challenging problem. This dissertation was dedicated to mod-

eling and solution methods for this problem. However, we also developed the following

recommendations for future work.

8.2.1 Stochastic Programming Formulations for Improving Power Systems Resilience
to Extreme Weather

We have seen that several resilience enhancement strategies can, independently,

significantly improve power systems resilience to extreme weather events. However,

integrating several strategies and optimizing over them simultaneously presents both

data and modeling challenges. First, more accurate cost models are needed for the

various hardening approaches. Additionally, as more resilience enhancement strate-

gies are integrated into a single stochastic MILP, the number of binary variables

increases, increasing the need for formulations with tight continuous relaxations.

There are many resilience enhancement strategies that were not considered in this

dissertation. Such actions include transmission switching (i.e., network reconfigura-

tion), investments in hardening current substations and generators, and development

of new facilities including storage and microgrids. For example, recent studies have

demonstrated that microgrids can prevent cascading outages (Phase I) [Chen et al.,

2010], mitigate performance degradation (Phase II) [Wang and Wang, 2015, Liu et al.,

2017b], and improve restoration (Phase III) [Castillo, 2013].
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Furthermore, the size of the stochastic programming problem increases with the

product of the network size and the number of scenarios, making the solution of large

scale systems computationally challenging. When the extensive form cannot be solved

directly in the time allotted, stage-based or scenario-based decomposition methods

such as progressive hedging [Rockafellar and Wets, 1991] or Benders decomposition

[Benders, 1962] can be applied.

8.2.2 Solution Techniques for ACPF-based MINLP’s

The results in Chapter 4 demonstrated the need for scalable algorithms for solving

MINLP’s based on the AC power flow equations. The results in Chapter 5, along with

other literature, demonstrate the effectiveness of optimization based bounds tighten-

ing (OBBT) for refining relaxations of the ACOPF problem. However, traditional

OBBT is a very expensive refinement technique, especially for large problems. Thus,

in Chapter 6, we proposed a decomposed bounds tightening (DBT) algorithm which

is far more effecient and nearly as effective as traditional OBBT. Despite this, there

is a great deal of room for improvement. First, bounds tightening alone does not

guarantee convergence. The DBT algorithm needs to be integrated into a branch and

bound or an outer-approximation algorithm with finite convergence guarantees. Ad-

ditionally, the DBT algorithm should be integrated with other domain reduction such

as feasibility-based bounds tightening which is more efficient but typically less effec-

tive. Integrating these domain reduction techniques in effective ways is a challenging

problem.

8.2.3 Water Distribution System Resilience

In Chapter 7, we presented a Python package, WNTR, for evaluating an improving

the resilience of water distribution systems (WDS). However, WNTR does not do any

optimization to design or retrofit WDS’s for improved resilience. Utilizing stochastic

optimization techniques (as was done for power systems resilience) is challenging
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because WDS’s typically do not operate at steady state. Thus, dynamics must be

introduced into the optimal resilience formulations. Additional complications involve

discrete switches that are part of typical WDS operation. For example, pumps may

be turned on if a tank level gets too low or off if the suction pressure gets too low.

Finally, there is no well-established linear approximation to the hydraulic equations

in WDS models (such as the linear DC approximation for power systems). Thus,

determining how to improve WDS resilience is a challenging problem. Research needs

to be done to develop models of the appropriate fidelity for obtaining robust resilience

enhancement strategies.
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