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ABSTRACT 
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Committee Chair: Dr. Owen Jones and Dr. Brad Kim 

 

The House Cricket (Acheta domesticus) is a promising alternative to traditional protein 

sources, as these insects produce over 12 times the mass of protein for a given mass of food/water 

when compared to cattle, while also producing lower amounts of greenhouse gases and NH3 

emissions (Kim et al. 2017, Hanboonsong, Jamjanya and Durst 2013, Van Huis 2013). 

Additionally, previous studies have demonstrated significant emulsification and gelling properties 

of insect flours, such as from cricket, which has been attributed to the functional properties of the 

protein (Kim et al. 2017).  Ground cricket flours contain significant quantities of both protein and 

fibrous polysaccharides, particularly chitin.  Since chitin particles are also capable of preparing 

emulsions as a Pickering stabilizer, there remains a question on the relative role of the protein and 

chitin components in crickets for stabilizing emulsion products. Relative contributions of each 

component was identified by first isolating the water-soluble protein and water-insoluble chitin 

fractions from ground cricket flour and then determining their interfacial properties and stability 

of prepared oil-in-water emulsions. Dynamic interfacial tension measurements indicated 

significant surface activity of the protein fraction, while there was minimal evidence of significant 

surface pressure development in the presence of 5-10 μm chitin particles.  10 % (w/w) canola oil-

in-water emulsions were prepared with 0.5-2% (w/w) of the water-soluble protein fraction and 

5.29% (w/w) canola oil-in-water emulsions were prepared with 0.688% of the chitin fraction. 

Stability of the emulsions against creaming was between 75% and 90% for emulsions stabilized 
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by the protein fraction over three weeks of storage and between 93% and 96% for emulsions 

stabilized by chitin over 24 hours of storage. Significant fractions of precipitate- and oil-layers 

found in chitin-stabilized dispersions was attributed to the presence of large chitin particles (79 

µm volume weighted mean diameter) and inefficient adsorption to droplet interfaces during 

homogenization, respectively. Volume-weighted mean diameter of emulsified oil droplets 

remained at 17-24 µm among protein-stabilized (>1.5 wt%) emulsions over three weeks of storage 

but only 60 µm over 24 hours among chitin-stabilized emulsions.  Light micrographs of emulsion 

droplets showed successful adsorption of chitin fractions to oil droplets in the emulsion layer, 

verifying their potential as Pickering stabilizers.  These findings demonstrated that both water-

soluble protein and chitin particles obtained from ground cricket flours are legitimate emulsion 

stabilizers, yet the chitin fraction is much less effective without a more intensive approach to 

reduce their particle size.   



12 

 

 INTRODUCTION AND OBJECTIVES 

1.1 Introduction 

Edible insects are a major source of nutrition throughout the world, with over 1900 species of 

insects being consumed as human food. When compared to traditional livestock, edible insects 

contain a larger amount of protein per kilogram of body weight. Additionally, the protein of most 

edible insect species is a complete protein, meaning that they contain all of the essential amino 

acids. The use of edible insects as a source of ingredients for food products would have beneficial 

impacts in both sustainability and in the environment. With a projected global population of 9.5 

billion by 2050 and increased demand for animal-derived protein, alternate sources of protein are 

heavily sought after. The use of edible insects as this source of protein would decrease the 

greenhouse gas emissions of the agricultural industry as well as slow the destruction of 

undeveloped land. Insects also contain a significant amount of the polysaccharide-based structural 

material, chitin, which typically ends up within protein-rich ground insect products. The use of 

edible insect proteins, along with this chitin, is a logical choice for a stabilizer to be used in other 

food products. 

Emulsions are a colloid system where the continuous and dispersed phases are immiscible, 

meaning they are inherently unstable. The use of a stabilizer to prevent aggregation and creaming 

increases the products quality. Cricket protein can be used to stabilize emulsions by absorbing onto 

the interface of the system, creating a barrier, and lowering the interfacial tension. The chitin from 

crickets can be used as a Pickering stabilizer, where it absorbs onto the interface and creates a 

barrier to protect the dispersed droplets from flocculation and coalescence. Cricket protein and 

chitin are readily available materials that are being underutilized in the food industry. They have 

the capability of being a natural food ingredient that can stabilize food emulsions while 
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maintaining the clean food label that is demanded by consumers. Current research shows 

promising results for the emulsifying properties of insect proteins and whole insect powder, but 

there is a lack of information on the relative contributions of the fractions that make up the insects. 

Knowledge of stabilizing properties of the fractions, as well as the requirements of purification, is 

limited and must be further researched to determine usefulness of insect fractions as stabilizers in 

the food industry. Filling in these gaps, while not necessarily providing enough evidence to justify 

immediate use in food products, will provide useful information for furthering the research on the 

effectiveness of insect fractions. 

1.2 Objectives 

The main objective of this research was to determine the relative contribution of isolated 

protein and chitin from whole cricket flour to ingredient-related functional attributes with potential 

utility in emulsified food products. The specific goals of this research were to i) determine the 

relative surface activity of the isolated protein and chitin, ii) assess if this surface activity translated 

into being an effective emulsifier, and iii) determine the long-term stability of emulsions made 

with cricket protein and chitin. It is hypothesized that the cricket protein will significantly increase 

the surface pressure of a model heptane-water interface, while both cricket protein and chitin will 

show positive emulsion stabilizing abilities.  

.  
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 BACKGROUND 

2.1 Edible Insects 

2.1.1 Insects as an Alternative Protein-Rich Food Ingredient 

Much of the world’s population consumes insects as part of their normal diet. Especially in 

developing countries, approximately 1900 species of insects are consumed as human food (Van 

Huis 2013). This practice is not due to lack of other suitable food sources, but to the availability 

of insects and their exceptional nutritive properties. In developed countries, it is the visual features 

of the insects that keep most people from including insects in their diets, so called “yuck factor” 

(Megido et al. 2016). But if this fear were conquered it would be beneficial. Most insects 

commonly consumed as part of a diet are shown to contain all of the essential amino acids, 

specifically lysine, threonine, and methionine, the common limiting amino acids (Van Huis 2013). 

Additionally, they contain favorable proportions of saturated to unsaturated fats, on a level 

comparable with poultry and fish (DeFoliart 1991). Furthermore, it is estimated that insects 

commonly contain a higher amount of the micronutrients iron, zinc, and calcium when compared 

to the rest of the diet of developing countries (Christensen et al. 2006, Oliveira et al. 1976). 

 In addition to the increased population mentioned previously, the global demand for 

animal-derived protein is expected to double by 2050 due to the increased income that much of 

the world is experiencing (Henchion et al. 2017). As incomes rise, individuals replace lower 

quality foods with more expensive sources of nutrition, such as meat, eggs, and dairy products 

(Drewnowski and Popkin 1997). A rising demand for animal-proteins and a slowing trend in 

productivity points towards an estimated increase of 30-50% in the price of meat (Van Huis 2013). 

Moreover, this increase in demand raises concerns for sustainability as agricultural production, 

specifically the raising of livestock, is one of the largest contributors to greenhouse gas emissions 
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in the world. Beef production has the highest single environmental impact with 14.8 kg in CO2 

equivalents produced for every 1 kg of beef (Van Huis 2013). Furthermore, the need for increased 

production of animal protein means there will be an increased production for animal feed, resulting 

in overutilized soil and expansion into current natural lands (Henchion et al. 2017). These natural 

lands are currently combatting the massive CO2 emissions caused by livestock production. 

Converting these lands to fields for feed production would have negative ecological and 

environmental impacts (van Zanten et al. 2016). 

 As a response to this impending future where there is a shortage of animal protein, 

increased prices for meat, and a rapidly deteriorating environment, commercially reared edible 

insects are starting to be considered as a partial dietary substitute for traditional livestock meat. 

Besides many species being complete proteins, edible insects offer many advantages over 

traditional livestock. Insects produce lower amounts of both greenhouse gases and ammonia per 

kilogram compared to cattle, pigs, and chickens (Van Huis 2013). This will help alleviate some of 

the damage done by the greenhouse effect by lowering overall input. Edible insects also require 

less total space for production. They require less space for feed as crickets have a feed to liveweight 

ratio of 1.7, while cattle’s ratio is 10. But when this ratio is changed to feed to edible weight, the 

ratios change to 2.1 and 25, respectively (Van Huis 2013). Due to the overall smaller size of the 

insects compared to traditional livestock and a smaller amount of feed required, edible insects are 

able to provide 100 people with animal protein with only 40 m3 of space (Van Huis 2013). 

 On major way that insects could be utilized in the food industry is through incorporation 

into products as a food ingredient. Current research has shown that insect proteins and their 

hydrolysates have the potential of usefulness, especially in the area of emulsion stability. Tropical 

banded cricket protein hydrolysates have been proven to have some effectiveness in emulsions 
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stability (Hall et al. 2017). Analysis of whole giant African cricket has also given evidence of the 

usefulness of insect protein as an emulsifier, but it did have low stability during storage 

(Adebowale, Adebowale and Oguntokun 2005). Additionally, moth larva and silkworm have 

shown to have effective emulsification properties and stability (Omotoso 2015). These studies 

have all shown a potential usefulness for insect proteins as emulsifiers, but there is very little 

fundamental evidence of how and why these insect proteins will provide stable emulsions, 

therefore the functionality of the proteins must be further investigated to determine the true 

potential of insects and insect proteins as food ingredients. 

2.1.2 Insect Biology and Major Components 

Much like traditional livestock differ in composition when compared across species, so do 

edible insects. Their major components, as well as their fractions of protein, fat, and carbohydrates, 

differ wildly. Edible insects can be broken down into four groups, differentiated by their order: 

Lepidoptera (butterflies, moths, caterpillars), Coleoptera (beetles), Orthoptera (grasshoppers, 

locusts, crickets), and Isoptera (termites). There are general trends that exist for percentages of 

fractions within orders, but exceptions exist. The order Lepidoptera is characterized by containing 

a larger amount of protein than other orders, with percentages well over 50% (Amadi and Kiin-

Kabari 2016). Coleoptera is characterized by having a larger moisture content (Amadi and Kiin-

Kabari 2016). While Orthoptera and Isoptera have a relatively balanced distribution across all of 

their fractions. Specifically, when looking at the house cricket (Acheta domesticus) of the order 

Orthoptera, values for its fractions show a large amount of crude protein (62%) which qualifies as 

a complete protein as it contains all of the essential amino acids. It also contains a balanced 

caparison for fats (7.5%), ash (4.6%), crude fiber (7.0), and water (5.2%) (Nakagaki, Sunde and 

DeFoliart 1987), These values differ greatly when compared to the results for the order Orthoptera 
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in the previous study. The house cricket also contains high levels of zinc and iron, both deficient 

minerals in developing countries (Christensen et al. 2006).  

 How these fractions are utilized in the insect also determines its effectiveness as an edible 

insect. Much of the crude fiber of the house cricket is in the form of chitin. This makes up the 

cuticle of the insect. Within this cuticle is also unavailable protein. These proteins are utilized by 

the insect to harden the cuticle by linking the chitin fibers together (Jonas-Levi and Martinez 2017). 

The rest of the protein is available for digestion by the human body. The lipid profile of Acheta 

domesticus is most made up mostly of palmitic acid, stearic acid, oleic acid, and linoleic acid. A 

large majority of the lipids are unsaturated fats with only oleic and linoleic acids comprising over 

60% of all lipids for every stage of life for both male and female house crickets (Grapes, Whiting 

and Dinan 1989). 

2.2 Insect Fractions as Emulsion Stabilizer 

2.2.1 Emulsion Theory 

An emulsion is a mixture of two immiscible liquids, usually oil and water, with one of the 

liquids being dispersed as small droplets within the other (McClements 2015). The emulsion is 

defined by which liquid is the dispersed phase and which is the continuous phase. An emulsion 

with dispersed oil droplets in a water continuous phase would be an oil-in-water emulsion, and 

dispersed water droplets in oil would be a water-in-oil emulsion. Due to the fact that emulsions 

consist of immiscible liquids, they are inherently unstable. This causes a constant battle between 

emulsifiers and the laws of thermodynamics as an emulsion always wants to destabilize to 

minimize interfacial area. The most common mechanisms by which an emulsion destabilizes are 

creaming, flocculation, and coalescence. Creaming is a gravitation separation defined by the 

upward movement of droplets due to the difference in density of oil and water. Flocculation and 
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coalescence are both forms of droplet aggregation but differ in that during flocculation the 

aggregated droplets retain their integrity while during coalescence the droplets merge to form a 

larger droplet. 

 To stabilize an emulsion, small-molecular surfactants and commonly used to reduce the 

interfacial tension between the dispersed and continuous phases. Additionally, particulate matter 

with intermediate hydrophobicity between the phases can also be used (Pickering 1907). The 

particles absorb onto the interface and create a barrier that increases stability to coalescence. In the 

case of both approaches, the continuous phase of the emulsion is usually determined by the relative 

wettability of the stabilizer (Finkle, Draper and Hildebrand 1923). A particle stabilizer typically 

does not have any effect on the surface pressure of the interface, where a traditional surfactant 

reduces the interfacial tension by an appreciable amount (McClements 2015). 

2.2.2 Emulsions in Foods 

Emulsions are a fundamental component of foods that are consumed by billions of people 

across the world. Many natural and processed food are or contain emulsions. Milk, salad dressings, 

mayonnaise, and butter are just a few examples of everyday products that many people do not 

realize are emulsions. The appeal of emulsions for food products lies in their versatility. Emulsions 

allow you to alter the texture of a product by controlling the oil or water in a product to modify 

characteristics, such as creaminess or mouthfeel (Benjamins et al. 2009). They also can be used as 

delivery systems. They can transport flavors, colors, nutraceuticals, vitamins, and many other 

useful proponents (McClements 2015). The goal of emulsion based delivery systems is to 

encapsulate, protect, and release these ingredients to serve a purpose, such as improving the 

product or targeted delivery (McClements 2015). 
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 Many products that naturally contain both water and oils undergo homogenization to 

maintain a more uniform appearance as well as to increase the stability of the product. For example, 

milk traditionally undergoes homogenization to minimize the size of the oil droplets to create a 

uniform taste of the product, as well as to extend the shelf life (Yamada et al. 1997, Pereda et al. 

2007). Without this homogenization, the oil droplets would likely aggregate and rise to the surface 

of the product, and this physical destabilization defines the predicted shelf life of pasteurized milk 

rather than the microbiological safety. 

 One common feature that is found in all emulsion food products is the inclusion of some 

form of stabilizer, whether it is natural or added. In foods these stabilizers are generally surfactants, 

which stabilize by lowering the interfacial tension, and thickening agents, which stabilize through 

increased viscosity (McClements 2004, Dickinson 2009). Hydrocolloids are traditionally used as 

thickening agents in food products but must have higher concentrations as low concentrations tend 

to destabilize the emulsions. Hydrocolloids are used in products such as chocolate milk, carbonated 

soft drinks, and salad dressings (Dickinson 2009). They increase the viscosity of the system and 

control the kinetics of phase separation by the creation of a gel-like network of interconnected 

emulsion droplets (Dickinson 2009). Surfactants found stabilizing food emulsions range from fats 

to proteins, such as lecithin and sodium caseinate. Sauces and cream liqueurs are examples of 

products stabilized by surfactants (Kralova and Sjöblom 2009). These emulsions are generally 

stabilized by reducing the interfacial tension between the dispersed and continuous phases at the 

interface (Kralova and Sjöblom 2009). 

2.2.3 Proteins’ Use as an Emulsifier 

Proteins used as emulsifiers stabilize by adsorbing to a surface, lowering the interfacial 

tension, and forming a protective coat (McClements 2015). The proteins diffuse through the 
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continuous phase and adsorb to the interface of the immiscible fluids. By adsorbing, the protein 

lowers the interfacial tension at the interface and improves stabilization creating a protective 

membrane around the oil droplets that hinders interaction between separate droplets. The greater 

the binding of protein to the interface, the greater the overall stabilization of the emulsion 

(McClements 2004). 

 Protein concentration is extremely important when it comes to emulsions stabilization 

because it affects so many different components. If there is insufficient protein, it increases the 

likelihood that there will be dispersed droplets surrounded by membranes that contain gaps 

(McClements 2004). The gaps cause the droplet to be susceptible to coalescence if it comes into 

contact with a gap of another droplet. Moreover, it could also limit the effectiveness of 

homogenization by limiting the ability of oil droplets to decrease to a size necessary for emulsions 

stability (Pandolfe 1995). Regardless of the capabilities of the homogenizer, if the protein 

concentration is too low, not enough protein will adsorb onto the interface and effective 

membranes will not develop (McClements 2004). But when a protein is in excess, the droplet size 

then becomes more dependent on the capabilities of the homogenizer rather than the concentration 

of the surfactant (Pandolfe 1995). Some proteins are capable of forming multiple layers when in 

excess and thus provide a stronger barrier to prevent aggregation of the dispersed droplets. 

 Influences of aqueous phase composition also have an effect on stabilized interfaces. 

Proteins used as surfactants are usually thin and electrically charged, which aids in preventing 

flocculation due to electrostatic repulsion (McClements 2004).This, however, also makes them 

very sensitive to changes in pH and ionic strength. As the pH of the system nears the isoelectric 

point of the protein, the emulsions tend to flocculate. High ionic strengths also increase 

flocculation due to lowering the electrostatic repulsion between the droplets which no longer 
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allows them to resist attractive interactions, such as van der Waals or hydrophobic (McClements 

2004). 

2.2.4 Chitins’ Use as an Emulsifier 

Aside from traditional surfactants, another way to keep an emulsion stable is through 

particle stabilization. Commonly, this form of stability is referred to as Pickering stabilization, 

named after a pioneer of particle stabilization, S.U. Pickering, for his work published in 1907 

(Pickering 1907). The basic principle of Pickering stabilization is that a solid non-dissolved 

particle that demonstrates some surface activity is aiding in the stabilization by absorbing onto the 

interface of the immiscible liquids and acting as a barrier to prevent coalescence of the dispersed 

droplets (Pickering 1907). The level of protection from destabilization depends on the density of 

packing and the level of energy required to remove the particles from the interface (Dickinson 

2012). The particles themselves can also have an effect of the type of emulsion. Just as traditional 

surfactants can be considered hydrophilic or hydrophobic, so can particles used for stabilization. 

They can determine if an emulsion will be oil-in-water or water-in-oil (Binks 2002). Other factors 

that will affect the efficiency of the barrier properties of the particles are the size of the particles 

and by which phase the particles are wetted. It is desired for the particles to be wetted by the 

continuous phase of the emulsion, in which case the particles tend to stay on the outer surface of 

the dispersed droplets. Wetting by the dispersed phase causes the particles to migrate into the 

droplets where they are not creating an effective barrier to coalescence (Dickinson 2012, Leal-

Calderon and Schmitt 2008). Particle material plays a large role in the effectiveness of stabilization 

because it greatly effects the contact angle of absorption onto the interface of the droplets. The 

energy of attachment, which dictates the level of effectiveness by which a material can create a 

barrier, is related to both contact angle as well as the tension of the interface. If the contact angle 
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is altered away from the ideal 90°, the level of attachment decreases which allows for easier 

destabilization of the absorbed barrier (Binks 2002). 

 Chitin and chitosan, both in bulk and in the form of nanoparticles/nanocrystals, exhibit 

properties that give reason to believe they maintain some functionality in emulsion stability. Bulk 

chitin exhibits both hydrophobic and hydrophilic moieties which gives indication that they would 

be able to absorb at the oil-water interface found in emulsions (Magdassi and Neiroukh 1990). To 

increase the functionality of chitin, it is generally converted to its acid soluble derivative – chitosan. 

This is achieved by a deacetylation reaction (Zhang et al. 2015). Chitin nanocrystals on the other 

hand contain positive charges at their surface due to the protonation of the amino groups that occurs 

during the acid-hydrolysis that takes place to process them (Tzoumaki et al. 2011). This increases 

their interaction with the water phase of the emulsion due to the polarity of water. Also, the non-

spherical shape of chitin nanocrystals have shown an ability to stabilize emulsions that were unable 

to be stabilized by spherical particles due to the differing aspect ratio (Tzoumaki et al. 2011).  

Bulk chitin has shown the ability to stabilize 10% paraffin oil emulsions, with exceptional stability 

of the emulsions as low as 1% chitin showing only ~1% oil separation over the course of 30 days 

(Magdassi and Neiroukh 1990). Chitin nanocrystals exhibited lower stability showing small signs 

of destabilization at 1% chitin nanocrystals in an emulsion prepared with 10% corn oil (Tzoumaki 

et al. 2011). Chitin has been shown to exhibit evidence of oil sorption properties. It is benefitted 

by the addition of acid and follows a pseudo-secord-order and intra-particle diffusion kinetic model 

(Elanchezhiyan, Sivasurian and Meenakshi 2014). 

2.3 Objectives and Hypothesis 

The overall objective of this research is to determine the relative contributions of cricket 

protein and chitin extracted from whole cricket powder to ingredient-related functional attributes 
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with potential utility in food systems, such as emulsion stability. It is hypothesized that the protein 

will show evidence of altering surface pressure at the water-oil interface, as well as provide 

substantial stabilization to an emulsion in storage. The chitin is expected to show limited effect on 

surface pressure of the water-oil interface but provide evidence of some ability to bind onto the 

interface and provide some stabilization to the emulsion by creating a barrier at the interface. The 

experimental design will test the ability of these materials to alter surface pressure, giving evidence 

of absorption onto the interface, as well as monitor their ability to stabilize emulsions during 

storage, giving a direct insight into their utility as an emulsifier. If the hypothesis is correct, further 

investigation into the emulsification properties of insect powders could soon lead into their 

utilization in the food industry. 
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 ANALYTICAL METHODS 

3.1 Interfacial Tension and Surface Pressure 

Droplet Shape Analysis (DSA) is useful technique when the effects of materials and 

substances on the interface are being investigated. DSA is most commonly used for measurements 

of surface tension, interfacial tension, and contact angles (Chen et al. 1998). It provides an 

advantage over other techniques as it can be used for both liquid-gas and liquid-liquid interfacial 

tension measurements. Additionally, DSA requires a small sample size when compared to other 

techniques. Droplet shape analysis uses the measurable shape of the drop and the known force of 

gravity to calculate the surface tension (Chen et al. 1998).  

The different ways to measure using DSA is with a pendant drop and a sessile drop. Sessile 

drop analysis is performed by placing a drop of a liquid onto a surface. The three-phase contact 

angle formed by the droplet phase, surrounding phase, and surface is measured and used to 

determine the surface energies of the surface and/or  droplet phase (Murphy 2017). Pendant drop 

analysis is used to determine the interfacial tension between a droplet and the continuous phase.  

Components of pendant drop analyzers include a syringe with a known end diameter, a 

camera, a light source, one liquid for liquid-gas measurements and two liquids for liquid-liquid 

measurements (Krüss 1997). The light source is used to illuminate the sample and contrast the 

droplet. The camera sends the acquired images to an attached computer where necessary 

calculations are made. The syringe must have a known end diameter because this allows the 

computer to relate pixels to real-world distances (Krüss 1997). It is important to know the density 

of both of the continuous and droplet phases, whether they be liquid or gas. If the droplet phase is 

denser than the surrounding phase, a conventional needle is used (Krüss 1997). If the droplet phase 

is less dense than the surrounding phase, then a J-hook needle is used, which forces the use of an 
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inverted pendant drop test (Krüss 1997). Additionally, the difference in density is considered when 

the measurements are made. This difference, acting as gravity or buoyancy, causes the drops to 

elongate. Interfacial tension acts on the droplet to keep the shape spherical, therefore minimizing 

the surface area of the droplet. If the difference in density and the dimensions of the droplet are 

known, it is possible to determine the surface tension of the droplet by use of the Young-Laplace 

equation (Berry et al. 2015): 

𝛥𝑃 ≡  𝛾(
1

𝑅₁
+

1

𝑅₂
) (2.1) 

Where ΔP is the Laplace pressure, γ is the interfacial tension and R₁ and R₂ are the principle radii 

of curvature of the droplet (Noordmans and Busscher 1991). The Laplace pressure is defined by 

the difference in pressure between the inside and outside of the droplet which is caused by the 

presence of a curved interface (Murphy 2017). The Laplace pressure can also be defined as (Berry 

et al. 2015): 

𝛥𝑃 ≡  𝛥𝑃₀ - Δpgz (2.2) 

 Where ΔP₀ is the reference pressure at the drop apex, Δp is the density difference between 

the droplet phase and the continuous phase, g is the acceleration due to gravity, and z is the vertical 

distance from the reference point. Due to the axisymmetric nature of the droplet, the Laplace 

Young equation can use cylindrical coordinates r (horizontal) and z (vertical, the tangent angle φ, 

and the arc length from the droplet apex s. The observed droplet shape profile can be used to 

determine the Bond number B₀, the ratio of the gravitational and interfacial forces (Berry et al. 

2015): 

𝐵0 ≡  
𝛥𝑝𝑔𝑅₀2

𝛾
 (2.3) 

 Where R₀ is the radius at the drop apex. Droplet area (Ad) and volume (Vd) can also be 

determined by the following equations (Berry et al. 2015, Murphy 2017): 
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𝐴𝑑 = 2𝜋 ∫ 𝑟 ̅ 𝑑𝑠̅ ̅ (2.4) 

𝑉𝑑 =  𝜋 ∫ �̅�2𝑠̅𝑖𝑛𝜑 𝑑𝑠̅̅  (2.5) 

3.1.1 Interfacial Tension Measurements 

3.1.1.1 Dynamic Interfacial Tension 

 As a surfactant is introduced to an interface it binds itself and alters the interfacial tension 

of the system. The measurement and characterization of this binding over time is referred to as 

dynamic interfacial tension. At initial moments in the measurement, there are little or no surface-

active agents present at the interface. Results at such early measurements times should be identical 

to a system with no surface-active agents present at all. As surface-active agents migrate and 

adsorb to the interface from the surrounding phase, a significant fraction of the interfacial area is 

covered, lowering the interfacial tension. Surface Pressure is generally used to define this change 

in interfacial tension and is calculated by: 

𝛱 =  𝛾 − 𝛾₀ (2.6) 

 Where γ₀ is the initial interfacial tension. It is important to determine the surface pressure 

of a system to determine the potential effectiveness of a material as a surfactant. 

3.1.1.2 Determination of Protein Saturation at the Interface 

Certain destabilization mechanisms are dependent upon the interfacial tension of the 

emulsified droplets, while homogenization to prepare stable emulsions is assisted by the ability of 

surfactants to reduce the tension. When a surfactant is introduced to the interface, it adsorbs and 

lowers the interfacial tension, assisting in the creating of stable emulsions (McClements 2015). 

But assuming that there is no multi-layer packing occurring, the measure of how much the 

interfacial tension can be lowered is finite (McClements 2004). This point is referred to as 

saturation. Once saturation is reached, excess protein in the continuous phase will not contribute 
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to a further reduction in the interfacial tension. The Langmuir adsorption model is a well-known 

mathematical description of small molecules binding to an available surface. It operates on a few 

assumptions: i) the surface of the binding site is homogenous, ii) the surfactant adsorbs into an 

immobile state, iii) all binding sites are equal,  iv) binding sites can bind only one unit of surfactant, 

and v) there are no interactions between units of surfactant (Masel 1996). The Langmuir equation 

allows for the prediction of the equilibrium surface pressure at any given concentration when the 

equilibrium surface pressure of a small number of concentrations is known: 

𝛤 =
𝐵𝐶2

𝑎+𝐶2
 (2.9) 

 Where Γ is the surface pressure, B and a are fitting parameters describing the saturation 

and binding properties, and C2 is the concentration of surfactant in molar-basis. When a and B are 

known this equation relates surface pressure with concentration. 

3.2 Measurements of Emulsion Stability 

The efficiency of a surfactant or Pickering stabilizer is ultimately determined by the stability 

it offers to the emulsion, specifically, the ability of the material to keep the dispersed phase from 

creaming, flocculating, or coalescing. Some examples of techniques to characterize stability of 

emulsions over time are the creaming index, the emulsifying capacity, the emulsion stability index, 

and scattering-based determination of the size distribution among the dispersed phase droplets. 

 Creaming index is a simple method used to determine the level of creaming that takes place 

in an emulsion over time. As the emulsion destabilizes, the dispersed phase starts to physically 

separate from the continuous liquid phase of the emulsion due to their difference in density. If the 

dispersed phase is relatively less dense, it will migrate upwards and float at the top of the emulsion. 

This is a precursor to coalescence, where the dispersed droplets merge into larger droplets, 
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eventually progressing towards the full separation of a discrete upper liquid. The creaming index 

is the measure of the height of the emulsified layer compared to the total height of the emulsified 

and creamed layer (Yasumatsu et al. 1972). 

𝑒𝑚𝑢𝑙𝑠𝑖𝑓𝑖𝑒𝑑 𝑙𝑎𝑦𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡

𝑡𝑜𝑡𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑚𝑢𝑙𝑠𝑖𝑓𝑖𝑒𝑑 𝑙𝑎𝑦𝑒𝑟 𝑎𝑛𝑑 𝑐𝑟𝑒𝑎𝑚𝑒𝑑 𝑙𝑎𝑦𝑒𝑟
× 100 (2.10) 

 Emulsifying capacity of a water-soluble emulsion, such as cricket protein, is defined as the 

maximum amount of oil that can be dispersed in an aqueous solution containing a specific amount 

of emulsifier without the emulsion breaking down or inverting into a water-in-oil emulsion 

(Sherman 1995). It is measured by titrating oil into a continuously agitated emulsifier solution. 

The measurement ends when the emulsion destabilizes or inverts (McClements 2007). 

Emulsifying capacity relates to creaming index, emulsion stability index, and the particle size 

determination method for emulsion stability by giving an indication of the minimum concentration 

that can be used to accurately measure destabilization of an emulsion over time. 

 Emulsion stability index (ESI) is a measure of the change in particle size of an emulsion 

after storied for a specified length of time (McClements 2007). The procedure includes measuring 

the mean droplet diameter over time. These measurements are then used to determine the ESI by 

use of an equation: 

𝐸𝑆𝐼 =  
𝑑(0)𝑡

𝑑(𝑡)−𝑑(0)
 (2.11) 

 Where d(0) is the initial mean droplet diameter and d(t) is the mean droplet diameter at 

time t (McClements 2007). The ESI over time of an emulsion gives numerical evidence of the 

stability of the emulsion. This method is comparable to the creaming index because both methods 

show a numerical trend of the stabilization of the sample. It also is comparable to the particle size 

determination method because the ESI is calculated by determination of mean droplet diameter. 

Both methods utilize particle sizing to determine stability. 
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 Measuring the size of the dispersed phase droplets over time is another approach to 

determine efficiency of an emulsifier. Over time, the emulsion will start to destabilize, and the 

droplet size of the dispersed phase will disproportionate and possibly coalesce. This causes the 

average size of the droplets to increase proportionally with the rate of emulsion destabilization. A 

unimodal size distribution of the droplets that increases over time would give reason that the 

surfactant indicates an unstable emulsion susceptible to flocculation or coalescence. A bimodal 

size distribution of the droplets is most likely caused by insufficient emulsifier content. In this 

outcome, only a fraction of the droplets were relatively destabilized. If there is an increasing 

difference in the peaks of the curves with stabilized smaller droplets, it supports that only the 

droplets that are more stable had full absorption onto the interface and the destabilized droplets 

had gaps which allowed aggregation to take place. If the larger droplets are increasing and size 

and the smaller droplets are decreasing, this would be due to disproportionation. 

3.3 Confocal Laser Scanning Microscopy (CLSM) 

CLSM is a light microscopy technique that can be used to clearly view a thin optical section 

of a three-dimensional fluorescent sample, as well as reconstruct the sample to view internal 

characteristics and properties (Fjne 2005). Light from the fluoresced point passes through an 

aperture and is detected; light from out of focus planes are blocked. This level of precision is due 

to the inclusion of an optical pinhole that sits in front of the detector and blocks any light that is 

not focused. This allows for an image that is a very clear cross-section of the sample (Fjne 2005).  

Other advantages of confocal microscopy is that it improves resolution and decreases noise, but 

these come at the cost of longer exposure times and the need for more advance photodetectors due 

to the reduced intensity that results from the block light (Inoué 2006). The high level of precision 

and clarity that come with confocal microscopy requires great care to preserve the sample; over-
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exposure to light can lead to photobleaching, which reduces fluorescence and optical contract. The 

level of clarity can also be reduced by motion which can be overcome by use of fixatives  or by 

increasing the viscosity of the suspended phase (Inoué 2006). If a sample contains multiple 

components, such as lipids and polysaccharides, confocal imaging makes it possible to 

differentiate between the components by use of fluorescent dyes without compromising the sample. 

3.4 Protein Determination Methods 

3.4.1 Nitrogen Combustion 

Traditionally, Kjeldahl’s method proposed in 1883 is used to determine the nitrogen 

content of a sample (Hansen 1989). This is a go-to method when nitrogen content is sought, usually 

to ultimately determine crude protein content. But the catalysts commonly used are toxic and offer 

waste problems that make the method cumbersome and difficult. Alternatively, combustion of the 

sample can be used to determine nitrogen content. The sample is destroyed in pure oxygen at 950-

1000°C which yields products of CO2, H2O, O2, NOx, and N2 which are collected in a gas ballast 

volume and mixed. To achieve accurate results of nitrogen content, it is important to remove all 

other products. A portion of the mixture is passed through a series of filters which leaves just the 

helium carrier and N2 to be measured by a thermal conductivity cell. The H2O is absorbed by two 

filters, one containing iron chips and the other magnesium chloride. The CO2 is removed by a filter 

containing sodium hydroxide. The NOx is reduced by a filter with copper turnings and N-catalyst. 

The results are corrected by a blank value and the instrument is calibrated with nicotinic acid. The 

N2 that remains is measured by a thermal conductivity cell. This measurement can then be 

calculated into percent nitrogen which can be used to determine crude protein content based on 

ratios of the nitrogen content of protein (Hansen 1989). Commonly 6.25 is used but recent studies 
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have shown that different species of animals typically require the use of a different ratio to 

determine true protein content (Jonas-Levi and Martinez 2017, Janssen et al. 2017). 

3.4.1.1 Effect of Chitin and other Fractions on Percent Nitrogen Content 

Most reported protein contents of edible insects are overestimation due to the common 

practice of using the percent nitrogen to protein content ratio of 6.25. This ratio is based on the 

idea that proteins are composed of about 16% nitrogen (Jonas-Levi and Martinez 2017). When 

used for traditional livestock, it gives a relatively accurate protein content. The fundamental error 

in the practice of using this ratio for edible insects is that it overlooks the obvious, insects contain 

chitin. The presence of chitin is important because of the incluision of nitrogen in its makeup. 

The exoskelative of insects, known as the cuticle, is composed mainly of chitin fibres which 

contain glucosamines and N-acetylglucosamine, both of which contain nitrogen atoms (Jonas-

Levi and Martinez 2017). Additionally, not all proteins appear to be digestible due to the 

interaction with the cuticle. Some proteins link the chitin fibers and thus disclude themselves 

from being available to to animals by reacting with quinones in the chitin (Andersen, Hojrup and 

Roepstorff 1995). This could explain why protein yield in isolation procedures is generally 

reported in literature as lower than expected. Furthermore, when an insect sample is then 

combusted to determine percent nitrogen, this nitrogen is recorded and allows for the protein 

content to be overestimated. New ratios have been determined based on the amino acid profile, 

chitin content, and calculated non-protein nitrogen (Janssen et al. 2017). These results give a 

more accurate ratio of 4.76 ± 0.09 for whole insect powders as they contain a larger amount of 

chitin and non-protein nitrogen. After purification and extraction, this ratio increase to 5.60 ± 

0.24 (Janssen et al. 2017). 
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3.4.2 Protein Determination by Ultra-Violet Absorption Methods 

A quick method of determining protein concentration is by measuring the absorbance of the sample 

at 280nm. The downside of this method is that it is susceptible to interference or false positives. 

Proteins strongly absorb light at ultra-violet 280nm because of tryptophan and tyrosine residues in 

the proteins (Chang 2010). This absorption is specifically due to the aromatic rings present in these 

amino acids (Murphy 2017). The levels of tryptophan and tyrosine are relatively constant within a 

particular source, this allows the absorption to be used to determine protein content. The accuracy 

of this measurement though, relies on having a known extinction coefficient for the exact protein 

that is being measured or being able to accurately measure the coefficient if a clean sample with a 

known concentration is available. An extinction coefficient is a measure of how strong a substance 

absorbs light at a particular wavelength. Using an extinction coefficient of a different protein can 

result in over-or-under-estimation of the protein content. 

 Another method developed on the basis of absorption is the Bicinchoninic Acid (BCA) 

Protein Assay. Traditionally, Bovine Serum Albumin (BSA) is used as the protein source to create 

the standard curve. A pure BSA source is diluted in a serious of serial dilutions and is reacted with 

the BCA working reagent. After the reaction has had ample time to occur, the absorbance of the 

solutions is read at 562nm. This creates the standard curve which is used to determine the unknown 

concentration of a sample. The unknown sample is reacted with the BCA agent in the same fashion 

as the BSA. The absorbance at 562nm is also ready and compared against the standard curve. The 

concentration of protein can then be compared to the amount of sample used to determine purity 

(Krieg et al. 2005). 
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3.5 Determination of Ash Content by Dry Ashing Method 

Determination of ash content is necessary to determine the relative amounts of inorganic 

matter in a sample. Dry ashing requires the use of a muffle furnace at temperatures between 500°C 

and 600°C (Marshall 2010). The principles behind the method is the vaporization of water and 

volatiles and the burning of organic substances. The organic substances are turned into CO2 and 

oxides of N2 upon incineration (Marshall 2010). These gases along with the vaporized substances 

are vented away from the sample leaving only inorganic materials which is referred to as ash. 
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 MATERIALS AND METHODS 

4.1 Materials 

Griopro® 100% Cricket Powder was purchased from All Things Bugs LLC. (Midwest City, 

OK). This is the only source of starting material and was bought in bulk so as to avoid any deviation 

in results due to different growing conditions or other factors that could change the properties of a 

single batch. The powder was then dried overnight in an oven to remove any moisture before 

further steps were taken. Petroleum ether was purchased from Fisher Chemical (Lot 176076). 

Concentrated HCl was purchased from Sigma-Aldrich (St. Louis, MO) and diluted to the desired 

concentration. NaOH was also purchased from Sigma-Aldrich (St. Louis, MO) in anhydrous form 

and was hydrated to desired concentration. The Na2CO3•H20 was purchased from Fischer 

Scientific (Chicago, IL) and was hydrated to desired concentration. Pure canola oil used for 

emulsions was cleaned using Florisil purchased from Fischer Scientific (Chicago, Illinois). 

Ultrapure water (σ ≥ 18 mΩ-cm) used for all solutions was obtained from a water filtration system 

(Barnstead E-pure, Thermo Scientific, Waltham, MA). 

4.1.1 Defatted Whole cricket Flour 

The method developed to defat the cricket powder was developed from the American Oil 

Chemists’ Society Procedure for Rapid Determination of Oil/Fat Utilizing High-Temperature 

Solvent Extraction (Am 2009). The modified method was less labor intensive and produced better 

results. The whole cricket powder was stirred in petroleum ether for 8 hours. The ratio of cricket 

powder to petroleum ether was set at 1g:20mL. This was based off the ratio used for the Soxhlet 

method. After 8 hours, the solution was vacuum filtered and left to dry overnight in a vacuum oven 

set to 77⁰C. It was then sealed and stored in a desiccator at 22°C. 
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4.1.2 Extracted Protein 

Protein was extracted from defatted whole cricket powder based on an established 

procedure (Zhang et al. 2000) with some modification.  In brief, Ultrapure water was added to the 

defatted cricket powder at a ratio of 1g powder:20mL water. The pH was adjusted to 9.5 using 1.0 

N NaOH. It was sealed and stirred for 18hrs to allow the protein to fully solubilize according to 

previous studies that have used this cricket powder (Kim et al. 2017). This slurry was then 

centrifuged at 9,000 RPM (14,334 x G) on a Beckman Avanti J-25I centrifuge for 30 minutes. The 

supernatant was collected and centrifuged again at 16,000 RPM (35,267 x G) for 1 hour, while the 

pellet was sealed and stored for later use at -40°C. The new supernatant was then collected and 

filtered using 0.45μm disc filters to remove any remaining non-solubilized proteins or 

contaminants. The filtered solution was frozen and lyophilized on a Labconco Freezone6 

(Labconco Corporation; Kansas City, MO). The lyophilized protein was sealed and stored in a 

desiccator at 22°C.  

4.1.3 Isolated Chitin 

 The stored pellet from the protein isolation was then subjected to a series of three refluxes 

(Figure 4.1) in different chemicals based upon an existing method used to isolate chitin from 

insects (Zhang et al. 1999). First, the pellet was stirred with 1 N HCl (Sigma-Aldrich) and then 

refluxed for 20 minutes at 100⁰C. This was to remove the catechols that were present in the pellet. 

After 20 minutes, this was centrifuged, and the supernatant was poured off and the pellet was 

neutralized with ultrapure water. This was then centrifuged, and the pellet was used for the next 

step while the supernatant was discarded. This pellet was mixed with 1 N NaOH (Sigma-Aldrich) 

and refluxed for 28 hours at 85⁰C, this was done to remove any polysaccharides and colors that 

were present. This was then centrifuged and neutralized like the previous step. Finally, the pellet 
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after neutralization was mixed with 0.4% Na2CO3 for 20 hours at 115⁰C. This ultimate step was 

used to completely remove any proteins that had remained in the sample until this point. This was 

then centrifuged and neutralized. The final pellet after neutralization was then dried down 

overnight under vacuum at 77⁰C, then sealed and stored in a desiccator at 22°C to be used in the 

future. 
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Figure 4.1: Setup for isolation of chitin (oil bath with a round bottom flask connected to a 

distilling column). 

 

 In order to produce a powder of homogenous and small particle size, the isolated chitin 

was milled initially with a CyclotecTM 1093 Mill (Foss; Hillerød, Denmark). The ground chitin 

was then further processed with a Retsch ball mill (Retsch; Haan, Germany) using multiple 

quarter-inch diameter stainless steel spheres to further reduce the particle size to a desired 1-5 
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micrometers. Particle size of the chitin was determined by a Morphologi G3-ID (Malvern, 

Worcestershire, England). This is a particle sizer with a dry dispersion unit that uses visual imaging 

to determine particle size by converting number mean to volume weighted mean. There is a margin 

of error introduced due to assumption of spherical particles. 

4.2 Preparation of Samples 

4.2.1 Preparation of Emulsions 

 Emulsions were prepared using Pure Canola Oil, ultrapure water, and either cricket protein 

or chitin. For the cricket protein emulsions (Figure 4.2), isolated protein powder was dispersed in 

ultrapure water and stirred until fully dissolved to reach final concentrations of 0.5% (wt/wt), 1% 

(wt/wt), 1.5% (wt/wt), and 2% (wt/wt). Oil (20g) was added to these solutions to reach a final 

mixture of 200g with a 10% oil content. Mixtures were stirred with a stir bar for 15 minutes to 

allow for initial mixing and then homogenized using an Ultra-Turrax Tissue Tearor (Sigma-

Aldrich; St. Louis, MO) for 60s at 24,000 rpm to create an initial emulsion. Initial emulsions were 

further homogenized using a GEA Panda homogenizer (GEA; Columbia MD) operating at 10,000 

PSI. These emulsions were then sealed and stored at 22°C for further testing.  
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Figure 4.2: Emulsions Prepared Using 0.5%, 1%, 1.5%, and 2% Cricket Protein and 10% Oil. 

 

 

For chitin emulsions (Figure 4.3), chitin was added in excess (1-2%) and the emulsions 

were prepared similarly to the protein emulsions but were not homogenized with the GEA Panda 

homogenizer to avoid damaging the machinery with the insoluble chitin particles. Prepared 

emulsions were allowed to settle for an hour before a top oil layer was manually removed with a 

glass pipette. The remaining emulsified layer was transferred to a new container to be sealed and 

stored at 22°C for future testing. 
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Figure 4.3: Emulsions Prepared Containing 1.56% Cricket Chitin and 5.29% Oil. 

4.3 Analysis 

4.3.1 Determining the Interfacial Tension of Chitin 

Measurements to determine the interfacial tension of the isolated and ground chitin were 

performed on a Krüss Droplet Shape Analyzer (DSA30b; Krüss GMbH; Hamburg, Germany). 

Interfacial tension is measured to assess the potential of a material to absorb onto the interface of 

two immiscible liquids and alter the surface pressure of that interface. Knowing the change in 

interfacial tension gives a good indication on the effective of the material as an emulsifier. Droplets 

of ultrapure water were dispensed into air at room temperature from a stainless-steel needle (Krüss; 

Hamburg, Germany) with a measured diameter of 0.503 mm. The interfacial tension of the protein 

was measured at four different concentrations (0.0% wt/wt, 0.01% wt/wt, 0.05% wt/wt, 0.1% 

wt/wt). Samples were prepared by adding the appropriate amount of chitin to 25mL of ultrapure 

water. These solutions were allowed to stir until visual homogeneity was reached. The tests were 
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run for at least 300 minutes to determine the interfacial tension and allow for equilibrium, with 

measurements being taken at 1 second intervals. Surface pressure was calculated from interfacial 

tension by: 

𝛱 =  𝛾 –  𝛾₀  (4.1) 

 Where γ is the interfacial tension at a given time and γ₀ is the measured interfacial tension 

of ultrapure water in air. 

4.3.2 Determining the Interfacial Tension of Protein 

Measurements to determine the interfacial tension of the isolated cricket protein were 

performed on a Krüss Droplet Shape Analyzer (DSA30b; Krüss GMbH; Hamburg, 

Germany)(Figure 4.4). Interfacial tension is measured to assess the potential of a material to absorb 

onto the interface of two immiscible liquids and alter the surface pressure of that interface. 

Knowing the change in interfacial tension gives a good indication on the effective of the material 

as an emulsifier. Droplets of n-heptane were dispensed into 25 mL of aqueous phase using a J-

shaped stainless-steel needle (Krüss; Hamburg, Germany) with a measured diameter of 0.910 mm. 

The interfacial tension of the protein was measured at six different concentrations of protein 

previously dispersed within the aqueous phase (0.0% wt/wt, 0.1% wt/wt, 0.2% wt/wt, 0.4% wt/wt, 

0.6% wt/wt, 0.8% wt/wt). Tests were run for at least 60 minutes to determine the interfacial tension 

and allow for equilibrium, with measurements being taken at 1 second intervals. Surface pressure 

was calculated from interfacial tension by: 

𝛱 =  𝛾 –  𝛾0  (4.1) 

 Where γ is the interfacial tension at a given time and γ₀ is the interfacial tension of the 0.0% 

protein solution at the same given time. 
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Figure 4.4: DSA30 (Droplet Shape Analyzer with syringe, J-hook needle, and glass cuvette). 

 

4.3.2.1 Determination of Protein Saturation at the Interface 

 Equilibrium surface pressures were measured from pendant droplets after 60 minutes in 

the presence of 0.01%-0.08% cricket protein solutions. Equilibrium surface pressures were used 

to determine the fitting parameters B and a, describing sorption, from the Langmuir equation: 

𝛤 =
𝐵𝐶2

𝑎+𝐶2
 (4.2) 

 This equation was discussed in Section 3.1.1.2. It was used to determine surface pressures 

are various concentrations. The predicted saturation point can be determined by: 

𝛤𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐵𝑅𝑇 (4.3) 
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 Where 𝛤𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is the surface pressure at the point of saturation, B is the inverse of the 

intercept of the plot for Langmuir fitting parameters, R is the gas constant, and T is temperature. 

All units are standardized. This was used to determine the predicted saturation point where 

additional cricket protein would have no effect on the surface pressure. 

4.3.3 Oil Droplet Size Determination 

Oil droplet sizes were determined among prepared emulsions during storage using multi-

angle static light scattering (Malvern Mastersizer 2000; Malvern, Worcestershire, England)(Figure 

4.5). Oil droplet size during storage was measured as it is a direct measurement on the instability 

of an emulsion. It is a clear indication on the effectiveness of a material as an emulsion stabilizer. 

Directly prior to analysis, emulsion samples were vortexed for 25 seconds to ensure homogeneity. 

Sample aliquots were added to a continuously agitated liquid cell until the obscuration of the laser 

reached a level of 12-13%. Measurements were taken every day until emulsions displayed 

significant instability. Average droplet size was presented as either the Sauter Mean Diameter or 

the Volume Weighted Mean. The lens was cleaned periodically to remove any oil residue that 

could distort accurate measurements of obscuration and size. 
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Figure 4.5: Malvern Mastersizer 

4.3.4 Creaming Index 

Stability of the emulsions was also determined through measuring the creaming index of 

the emulsions. 12mL of the emulsion samples were pipetted into test tubes and sealed. The tubes 

were suspended in a custom-made apparatus (Figure 4.6) and imaged with a digital camera. 
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Figure 4.6: Apparatus used to hold tubes for creaming index measurements 

 

Obtained images were analyzed with ImageJ (National Institutes of Health; Bathesda, 

Maryland) to accurately measure the emulsion layer height and total height of the samples. There 

was an incomplete separation of the serum layer, so creaming index was determined by: 

 
𝑒𝑚𝑢𝑙𝑠𝑖𝑓𝑖𝑒𝑑 𝑙𝑎𝑦𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡

𝑡𝑜𝑡𝑎𝑙 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑒𝑚𝑢𝑙𝑠𝑖𝑓𝑖𝑒𝑑 𝑙𝑎𝑦𝑒𝑟 𝑎𝑛𝑑 𝑐𝑟𝑒𝑎𝑚𝑒𝑑 𝑙𝑎𝑦𝑒𝑟
× 100 (4.4) 

By this definition, 100% was a fully emulsified sample with no creaming. When used with 

an oil droplet size determination test, creaming index gives a fairly direct indication on the ability 

of a material to stabilize an emulsion long term. 

4.3.5 Confocal Microscopy 

 Confocal Microscopy was used to identify the location of chitin in prepared emulsions. A 

Nikon A1-Rsi confocal microscope (Nikon Instruments Inc.; Melville, NY) was used to capture 

the images of the chitin stabilized oil droplets. 15μL of 0.1% Nile Red dye (Sigma-Aldrich; St. 
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Louis, MO), to visualize lipids, and 15μL of 0.4% Trypan Blue dye (Sigma-Aldrich; St. Louis, 

MO), to visualize chitin, was added to 50μL of emulsion sample. This was mixed and allowed to 

sit at 22°C for 60 minutes to allow for proper association between the dyes and their respective 

components. 15μL of this mixture was then pipetted onto a glass slide and covered with a #1.5 

glass cover slip. Nile Red was excited using a 561nm laser and Trypan Blue was excited using a 

640nm laser and imaged using a 60x oil immersion objective lens. 

4.3.6 Ash Content Determination 

To determine the effectiveness of the protein isolation procedure and to identify the present 

fractions in the samples, the ash content of the whole cricket powder and of the protein extract 

were measured. Porcelain crucibles and lids were dried in a furnace over at 550°C to remove any 

moisture. The mass was measured and recorded, and the crucibles and lids were stored in a 

desiccator. Triplicates of both the whole cricket powder and protein extract were weighed to 

approximately 2.5000g into a tared crucible and the mass was recorded. They were placed in a 

desiccator to transfer to the muffle furnace. The crucibles with lids and samples were placed in a 

muffle furnace set to 550°C for 15 hours to fully incinerate the samples. After 15 hours the muffle 

furnace was turned off and the samples were allowed to cool to workable temperature for six hours. 

After six hours they were removed from the oven and placed in a desiccator to be transferred to 

the scale. The mass of the crucible + lid + ashed sample was recorded in whole for all samples. 

Calculations were made to determine the weight of the remaining ash: 

𝑀𝑎𝑠̅𝑠̅𝑎𝑠ℎ = 𝑚𝑎𝑠̅𝑠̅𝑡𝑜𝑡𝑎𝑙 − 𝑚𝑎𝑠̅𝑠̅𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 − 𝑚𝑎𝑠̅𝑠̅𝑙𝑖𝑑 (4.5)  

This was used to determine the percent ash content in both the whole cricket powder as well as the 

protein extract: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑎𝑠̅ℎ 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 = (
𝑚𝑎𝑠𝑠𝑎𝑠ℎ

𝑚𝑎𝑠𝑠𝑠𝑎𝑚𝑝𝑙𝑒
)  × 100 (4.6) 
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4.3.7 Nitrogen Combustion 

To determine the crude protein content of the samples, the percent nitrogen content of 

whole cricket powder, protein extract, and defatted protein extract were measured. Approximately 

0.2500 grams of sample were measured in duplicate into clay boats. The mass was recorded, and 

the samples were loaded onto a LECO nitrogen analyzer (LECO Corporation, St. Joseph, Michigan, 

USA). After analysis of the samples percent nitrogen content was determined and used for 

determination of crude protein content. 

4.3.8 Determination of Crude Protein Content 

 In order to determine the true protein content of the whole cricket powder and the protein 

extract, it was necessary to calculate the crude protein content within the samples. Results from 

the nitrogen combustion measurements were used to perform the calculations. Two values were 

calculated for each sample, one using the traditional ratio of 6.25 and the second using newer more 

accurate ratios, 4.78 for whole cricket powder and 5.60 for extracts, that help give a more truthful 

value (Janssen et al. 2017). 

𝑚𝑎𝑠̅𝑠̅𝑝𝑟𝑜𝑡𝑒𝑖𝑛 = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 × 𝑟𝑎𝑡𝑖𝑜 (4.7) 

4.4 Statistical Analysis 

All experiments were performed in triplicate and reported as the mean and standard 

deviation, unless otherwise stated. Significance testing was conducted using single or multiple 

comparison ANOVA and Tukey’s method to determine significant differences. 
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 RESULTS AND DISCUSSION 

5.1 Isolation of Water-soluble Protein and Chitin from Whole Cricket Powder 

In order to test the functionality of the cricket protein and chitin, it was necessary to obtain 

extracted samples of these fractions. To do this, the lipid fraction was removed by petroleum ether, 

which accounted for 16.81% ± 0.408 of the total weight. This extracted lipid was less than reported 

values of 22% (w/w) fat that was described on the nutritional label for the purchased whole cricket 

powder but much greater than the reported 3.6% ± 0.4 (w/w) fat content from a previous study (Yi 

et al. 2013).  

Protein was extracted from the defatted powder with a content of 20.729% ± 1.35 (w/w) in 

relation to the defatted powder. The sample contained all of the water-soluble proteins, but none 

of the bound proteins in the cuticle. A water-soluble extract is more reasonable as opposed to the 

full system of protein due the inability to extract the bound chitin without denaturing the protein. 

The means by which to remove the protein from the cuticle would put the protein under conditions 

which could portentially alter their ability to function as an emulsifier. This would make the effort 

and time necessary to extract the proteins useless. Again, this content was lower than the reported 

protein content on the nutritional label, which stated 67g of protein per 100 g of whole cricket 

powder. However, the measured percentage was very near to the reported isolated protein fraction 

of 21.5% ± 0.5 from a previous study (Yi et al. 2013). Chitin was isolated from the remaining 

precipitate with a content of 5.137% ± 0.299 (w/w) in relation to the defatted cricket powder. No 

comparable data in the literature provided an estimate of the expected amount of chitin within 

Acheta domesticus or associated powder products. Reports for other insects, including other cricket 

species, found as much as 15.3 ± 3.6% (Barker, Fitzpatrick and Dierenfeld 1998) or as little as 

0.014% chitin contents (Rumpold and Schlüter 2013).



 

 

4
9
 

5.2 Analysis of Cricket Protein Extract 

 

Table 5.1: Summary of Ash and Protein Content Determination Results for Whole Cricket Powder, Protein Extract, and Defatted 

Protein Extract. 

1: Converted from Nitrogen Content using the ratio 6.25 

2: Converted from Nitrogen Content using the ratios 4.78 (whole cricket powders) and 5.60 (extract, defatted extract) 

3: Determined by direct absorption measurements at 280nm using the  extinction coefficient for Bovine Serum Albumin  
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Figure 5.1: Infrared Spectra of Protein Isolate 

 

Infrared spectroscopy analysis (Figure 5.1) of the extract found peaks in the Amide I, 

Amide II, and Amide III regions, at 1650cm-1, 1600cm-1, and 1400cm-1, respectively. Existence 

of C=O bonds (1650cm-1), CN bonds (1550cm-1), CH stretching (1400cm-1), and PO2 stretching 

(1240cm-1) strongly suggested the identity protein in the sample. Peaks were also found in the C-

H methylene region at 2924 cm-1 that typically suggest the inclusion of lipids in the sample.  

Protein concentration of the whole cricket powder and protein extract was determined by 

nitrogen combustion and spectrophotometry of prepared solutions. Nitrogen contents of the 

whole cricket powder and extract were found to be 10.9535 ± 0.2906% and 8.9464 ± 0.3181%, 

respectively (Table 5.1). To verify that lipids were not present in significant concentrations, the 

protein extract was rinsed several additional times with petroleum ether; the nitrogen content did 

not significantly change. Using revised estimates for the correct nitrogen-to-protein ratio of 

insect ingredients (Janssen et al. 2017), the determined protein contents of whole cricket flour, 
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the protein extract, and the further defatted protein extract were 52.14 ± 1.38%, 50.10 ± 1.78%, 

and 53.81 ± 0.08%. Protein content of the protein extract by direct absorption of UV light at 

280nm was 88.425 ± 0.036%. However, this value was likely inaccurate because there was no 

literature value for the extinction coefficient of the insect protein and the value for Bovine Serum 

Albumin was utilized.  

Ash content of the whole cricket powder was found to be 4.3670 ± 0.0166%, while ash 

content of the protein extract was significantly increased to 25.7096 ± 0.4847% (Table 5.1). This 

is most likely due to fractionation taking place during the extraction procedure. This also can 

explain the lower than expected protein content of the extract. During the extraction procedure, 

the protein fractions with low solubility most likely did not fully solubilize and were separated 

into the pellet during centrifugation. This removed them from the collected portion that was 

measured to determine protein content. But the majority of the ash from the whole cricket 

powder solubilized and remained in the supernatent fluid after centrifugation and was not filtered 

out before lyophilzation. By removing a portion of the protein and all other insoluble fractions, 

the percent of ash increased from less than 5% to over a quarter of the sample. 
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5.3 Analysis of Stabilizing Ability 

5.3.1 Effects of Concentration of Protein on Surface Pressure 

 

Figure 5.2: Dynamic Surface Pressure (Π) of Hexane Droplets in Water with Increasing Content 

of Water-Soluble Cricket Proteins. 

 

In order to determine the potential effectiveness of the cricket protein, the surface activity 

of the protein was determined between concentrations of 0.01% to 0.08% (Figure 5.2). Higher 

concentrations of cricket protein showed a higher overall surface pressure at equilibrium. 

Moreover, the time taken to approach the equilibrium surface pressure decreased with 

concentration. This showed that as the concentration of the surfactant in the continuous phase 

increased, the absorption onto the interface occurred more readily allowing the surface pressure to 

reach equilibrium more quickly. When compared with whey protein isolates (WPI), cricket protein 

has a much greater increase in surface pressure when it absorbs onto the interface. WPI yields an 

increase in surface pressure of <5 mN/m even at concentrations of 10% protein (Davis and 

Foegeding 2007). Cricket proteins at concentrations as low as 0.08% have yielded increases in 
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surface activities ~29 mN/m. This higher surface activity gives reason to believe that cricket 

protein has the potential to be a more effective emulsion stabilizer than WPI. 

5.3.2 Determination of Protein Saturation at the Interface 

 

Figure 5.3: Reciprocal Plot of the Equilibrium Surface Pressure of Cricket Protein Solutions as a 

Function of Concentration to Obtain Langmuir Sorption Model Fitting Parameters. 

 

 In order to determine the saturation surface load of the cricket protein on a model emulsion 

droplet, the concentration dependent equilibrium surface pressure , obtained from the data of 

Figure 5.2, was fit with the Langmuir sorption model  (Figure 5.3).  A linear correlation was found 

for the equilibrium surface pressures at added concentrations of 0.02-0.08 wt%.  Using equations 

3.2 and 3.3, the predicted surface pressure at full interfacial saturation would be 32.05 mN/m, 

corresponding to a concentration of the isolated cricket protein fraction slightly in excess of 1% 

(w/w). It should be stated that the reliability of the parameters is quite low given the few data 

points measured and the measurement of concentrations well below the 1% (w/w) predicted for 
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interfacial saturation. Measuring a wider range of concentrations, especially higher concentrations, 

would greatly increase the accuracy of the results. 

5.3.3 Stability of Cricket Protein and 10% Oil Emulsions 

 

Figure 5.4: Comparison of Oil Droplet Size Over Time in Emulsions Using 10% Oil and 

Different Concentrations of Cricket Protein - D[4,3] 

 

 

Figure 5.5: Comparison of Oil Droplet Size Over Time in Emulsions Using 10% Oil and 

Different Concentration of Cricket Protein - D[3,2] 
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 In order to assess the effectiveness of the cricket protein as an emulsifier, emulsions were 

created using the cricket protein at concentrations between 0.5% and 2%. These emulsions were 

then measured over time to determine the size of the oil droplets within the emulsion. The size of 

the oil droplets was displayed as Volume Weighted Mean D[4,3] (Figure 5.4) and Sauter Mean 

Diameter D[3,2] (Figure 5.5). All concentrations showed a near linear increase in size over time 

when displayed as D[4,3]. Lower concentrations showed a greater rate of droplet growth during 

storage, and resistance to this droplet growth increased with greater concentration of cricket 

protein. There was less difference in the average sizes of oil droplets at higher protein 

concentrations, giving evidence that the higher concentrations studied here were sufficient to 

stabilize the emulsions. Though the Sauter Mean Diameter (D[3,2]) results appeared to show 

greater stability over time when compared to the results displayed as Volume Weighted Mean 

D[4,3], this can be credited to how the results are weighted. D[3,2] relies more heavily on the 

surface area of the droplets and D[4,3] is weighted more towards the volume of the droplets. As 

the size of the droplets increased, they increased in both volume and surface area, but the ratio of 

surface area to volume is 3/r where r is the radius. This explains why the D[4,3] results had a 

greater increase in size over time when compared to the D[3,2], because as sphere size increased, 

volume increased at a greater rate than surface area. When compared with whey-protein isolate 

(WPI) stabilized emulsions, initial particle size was much larger. With an average particle size of 

2.58 μm (d[3,2]), cricket protein stabilized emulsions had initial oil droplets over 4 times larger 

than WPI stabilized emulsions (d[3,2] ≈ 0.6 μm) (Demetriades, Coupland and McClements 1997). 
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5.3.4 Physical Separation of Cricket Protein Emulsions during Storage 

 

Figure 5.6: Creaming Stability Index of Emulsions (10% oil content) stabilized with Different 

Concentrations of Cricket Protein 

 

Creaming stability index is a widely accepted way to measure the stability of an emulsion, 

which ultimately helps determine the effectiveness of an emulsifier. Over the course of 24 days, 

creaming stability index of emulsions stabilized by 0.5%, 1.5%, or 2% cricket protein showed no 

significant difference after the initial measurement at day 0, with days 1 through 24 being 

significantly similar, while the 1% cricket protein emulsions showed significant differences over 

time as creaming increased. No noticeable difference in the creaming stability index was noted 

during the observed period (Figure 5.6). This observation was most likely caused by insufficient 

absorption of protein onto the interface of the oil and water. The oil droplets that were not fully 

saturated aggregated and creamed out. This left only the fully stabilized oil droplets in the 

emulsified layer and resulted in the observed stabilization over the course of days 1 through 24. 

When compared to WPI stabilized emulsions, the stability of the cricket protein stabilized 

emulsions was much greater. After 24 hours of storage WPI stabilized emulsions reported a 
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creaming stability index of 0 (Demetriades et al. 1997), where cricket protein stabilized emulsions 

reported a creaming stability index of ~75. This gives some evidence that cricket protein has a 

higher capacity for stability than WPI. But to fully determine the level of stability and initial 

destabilization, the level of creaming should be measured more thoroughly over the course of the 

first twenty-four hours. 

5.3.5 Effect of Concentration of Cricket Protein on Solution Viscosity 

 

Figure 5.7: Kinematic Viscosity of Cricket Protein Solutions at Increasing Concentrations 

 

 To be classified as a true traditional surfactant, a material must adsorb to a surface, form a 

protective coat, and lower the interfacial tension (McClements 2015). This altered tension 

increases the surface pressure and increases the stability of an immersed droplet in a solution. It 

had been proven that the cricket protein possessed this property and was corroborated by the 

determination of oil droplet sizes over time, but it was necessary to determine the effect that 

increased viscosity will have on the stability of the emulsions. In order to rule out that increased 

concentrations of cricket protein increased the viscosity to the point that it added stabilization to 
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an emulsion outside of the interaction at the interface, the kinematic viscosity of cricket protein 

solutions were measured at the concentrations used for the emulsions, from 0% to 2% (Figure 5.7). 

There was no statistical difference at α=0.05 in viscosity over the entire range of concentrations 

and the measured viscosity is essentially that of water. The protein was not contributing anything 

to the viscosity profile, which provides further evidence that the increased stability in emulsions 

is due to the cricket proteins ability to decrease pressure at the interface of the immiscible liquids 

of the emulsion. 

5.3.6 Stability of Cricket Chitin and 5.29% Oil Emulsions 

 

Figure 5.8: Comparison of Oil Droplet Size Over Time in Emulsions Containing 5.29% Oil and 

Cricket Chitin - D[4,3] 
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Figure 5.9: Comparison of Oil Droplet Size Over Time in Emulsions Using 5.29% Oil and 

Cricket Chitin - D[3,2] 

 

In order to assess the effectiveness of the chitin fraction of crickets as a Pickering stabilizer, 

emulsions were created using excess concentrations of cricket chitin. The size of formed oil 

droplets was displayed as Volume Weighted Mean D[4,3] (Figure 5.8) and Sauter Mean Diameter 

D[3,2] (Figure 5.9). D[4,3] of the emulsions increased linearly over time except for the 25th hour, 

which showed a greater increase in size than was expected. Similarly, D[3,2] of the emulsions 

showed a linear increase over time until the final measurement at 24 hours where there was an 

increase in size uncharacteristic of the trend. As was identified with the cricket protein emulsions, 

the results displayed as D[3,2] appeared to show a greater degree of stability when compared to 

those displayed as D[4,3], but this is simply due to how the measurements are weighted and the 

relationship between surface area and volume. When compared to soy protein isolate nanoparticles 

(SPINP), another particle stabilizer, chitin stabilized much smaller oil droplets. SPINP emulsions 

had an initial average oil droplet size of 60-70 μm (Liu and Tang 2013), where the chitin stabilized 
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emulsions had an initial average oil droplet size of 3.33 μm. This provides some evidence that 

chitin is a practical Pickering stabilizer with promising functionality. 

5.3.7 Physical Separation of Chitin Chitin Emulsions During Storage 

 

Figure 5.10: Creaming index of emulsions (5.29% oil content) stabilized by Cricket Chitin 

during storage 

 

To assess the emulsification abilities of the cricket chitin, the creaming index of emulsions 

prepared with isolated cricket chitin was measured over time from hour 0 through hour 24 (Figure 

5.10). Upon settling after homogenization, 10g of oil separated and the oil content decreased from 

10% to 5.29%. Settling also showed a decrease in chitin content from 2% to 1.56%, as 0.7916g of 

the original 3.60g of chitin settled of the emulsion. Over the course of the time measured, the 

cricket chitin emulsion showed a significant difference at α=0.05 as the creaming stability index 

decreased over time. Unlike as was observed with the cricket protein emulsions, there was no rapid 

decrease in creaming stability index after the initial 24 hours. The creaming stability index of the 

cricket chitin stabilized emulsions showed a slow but steady decrease over time, indicating a high 

capacity for emulsion stability as very little creaming took place, but a constant destabilization. 
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5.4 Microscopic Analysis 

 

Figure 5.11: Chitin Stabilized Oil Droplets under Light Microscope 

 

 Due to the nature of Pickering stabilization, the material creating the barrier at the interface 

is solid and therefore visible if viewed with a microscopy technique capable of visualizing those 

solid particles (Pickering 1907). In order to verify that the emulsions prepared with cricket chitin 

as the sole stabilizer were being stabilized by chitin, oil droplets were isolated from the separated 

emulsion and evaluated under a light microscope (Figure 5.11). From the images it was clearly 

seen that the oil droplets were surrounded and stabilized by chitin fragments. The droplets were 

able to be identified as oil and not just a coagulation of chitin due to the diffusion of light through 

the droplet, if it were just a grouping of chitin, the light would be blocked and not transmitted 

through the sphere. The main question that needed to be answered was if the chitin was capable of 

being broken down enough to stabilize oil droplets in a fully stable emulsion. Figure 5.11b 

provides evidence of chitin stabilized oil droplets that fit within the range of the size of the oil 

droplets when the emulsion was still considered stable (<50μm). 

A B 
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5.4.1 Confocal Microscope Analysis of Chitin Emulsion Oil Droplets 

 

Figure 5.12: Confocal Laser Scanning Micrographs of Oil Droplets (Stained with Nile Red) and 

Two Chitin Fragments (Stained with Trypan Blue) Obtained from the Same Stabilized 

Emulsions of 1.56% Cricket Chitin and 5.29% Oil. 

 

 When confocal imaging was used to find evidence of chitin stabilized oil droplets, 

the expectation was to find an oil droplet surrounded by fragments of chitin. When in fact, 

the opposite was discovered. The images show chitin fragments stabilizing oil droplets by 

giving them a surface to adhere and stay immobile (Figure 5.12). This provides evidence 

that the chitin particles have affinity with the oil phase. This affinity with the oil phase 

implies a potential surface activity of the chitin particles and functionality for emulsification, 

which agreed with the observed stability of emulsions prepared with chitin particles 

(Figure 5.10 and 5.11). 
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 CONCLUSIONS 

Crickets are a reliable source for isolation of protein and chitin. The isolation of a pure sample, 

although challenging, is possible and reproducible under the right conditions. Percent yields for 

protein fractions are lower than expected but most likely due to protein binding the chitin particles 

and becoming unavailable. This causes an overestimation when the traditional ratio of percent 

nitrogen content to protein content is used. Ultraviolet-visible spectroscopy methods also 

overestimate the protein due to an unknown extinction coefficient for Acheta domesticus. 

 Cricket protein displayed an ability to increase the surface pressure of a system at low 

concentration. This was corroborated by its ability to stabilize emulsions during storage. The 

protein acted as a traditional surfactant, binding to the interface, creating a barrier and decreasing 

the interfacial tension. The saturation point of the protein was found to be within usable limits for 

food products, making it a reasonable option as a food ingredient. There was no increase in 

viscosity in solution as concentration increased that was aiding in the stabilization of the emulsion. 

Further purification of the protein extract will only increase the emulsifying properties of the 

protein, most likely increasing long term stability of sample emulsions. This would also allow for 

smaller portions of cricket protein to be used for full stabilization of an emulsion, increasing its 

usefulness as an added ingredient without altering other qualities of the product. 

 Cricket chitin presented evidence of Pickering Stabilization by adsorbing to the interface 

of oil droplets in an emulsion and creating a barrier. The chitin displayed an ability to emulsify a 

fraction of the oil phase with good stability over a 24 hour period, although its emulsification and 

stabilizing capabilities were much less when compared to the water-soluble cricket protein. This 

difference in capacity for stabilization can partially be explained by the significant fraction of large 

chitin particles present in the samples; such large chitin particles would have been less effective 



64 

 

as emulsion stabilizers due to their long adsorption times and inability to stabilize droplets with 

large interfacial curvature. If particle size of the chitin was further reduced, emulsification 

properties should increase because more of the chitin would participate in stabilizing the emulsion 

droplets.  More research will need to be conducted to fully understand the practicality of the chitin 

fraction as an emulsifying component. 

 Overall, crickets are a viable source for natural and food-grade emulsifiers. Both cricket 

protein and chitin showed evidence of being able to stabilize emulsions over a period of time 

without rapid or drastic destabilization. They prevented major flocculation, coalescence, and 

creaming over the course of the storage. The protein displayed an ability for long term stabilization 

of a product without agitation to promote break up of aggregation. These results were also 

supported by its ability to decrease the interfacial tension of an emulsion system. The chitin gave 

promising evidence of its ability to stabilize an emulsion over time. Further research is needed to 

fully understand the necessary processing needed to utilize the chitin to its maximal stabilizing 

potential.  
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