
ENERGY-EFFICIENT MEMORY SYSTEM DESIGN WITH SPINTRONICS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Ashish Ranjan

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Anand Raghunathan, Chair

School of Electrical and Computer Engineering

Dr. Byunghoo Jung

School of Electrical and Computer Engineering

Dr. Kaushik Roy

School of Electrical and Computer Engineering

Dr. Vijay Raghunathan

School of Electrical and Computer Engineering

Approved by:

Dr. Pedro Irazoqui

Head of the School Graduate Program

iii

To my parents and my siblings for their endless love and encouragement, who

always supported me through every path I ever took.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to express my heartfelt gratitude to my advisor

Prof. Anand Raghunathan for his constant motivation, inspiration, and numerous

insightful suggestions during the entire phase of my PhD life at Purdue. His guid-

ance always helped me steer my research in the right direction and he has been an

extraordinary influence in shaping my thought process. He always challenged me to

push my boundaries and constantly encouraged me to fearlessly pursue those ideas.

Apart from the technical aspects of research, he also made me realize the importance

of intuitively communicating and presenting my ideas to others. I am thankful to

him for all of his mentoring over the years and hope to carry his lessons in my life

beyond graduate school.

Next, I would like to thank Prof. Vijay Raghunathan, Prof. Kaushik Roy and

Prof. Byunghoo Jung for their guidance and expert advice throughout my PhD. Their

thoughtful suggestions and feedbacks were immensely helpful towards improving my

ideas. I am especially thankful to Prof. Vijay Raghunathan for all the brainstorming

sessions and productive discussions that provided me deeper insights into my propos-

als. I express my deepest appreciation for his frequent availability, and his willingness

to share his perspective on those ideas.

My sincere thanks to the alumni and current members of Integrated Systems Lab-

oratory – Swagath Venkataramani, Shubham Jain, Vivek Joy Kozhikkottu, Ranghara-

jan Venkatesan, Jacques Pienaar, Shankar Ganesh Ramasubramaniam, Sanchari Sen,

Younghoon Kim, and Jacob Stevens, for their support and friendship in the past six

years. I truly value all of our discussions, both on academic and personal fronts, and

appreciate their numerous insights. I also express my gratitude to my collaborators

Arnab Raha, Xuanyao Fong, Zoha Pajouhi, and Mei-Chin Chen with whom I had the

opportunity to work on a wide range of projects that helped me develop a broader

v

perspective to my dissertation. I would also like to thank my friends Mohit Singh,

Sambit Mishra and Sayan Basak, who made my stay at Purdue not only enjoyable,

but a memorable one.

Special thanks to my parents for their unconditional love and their unwavering

support through every step of my PhD journey. This journey wouldn’t have been

possible without their encouragement, and I sincerely thank them for their endless

patience. To my siblings, Anay Raj, Amit Wats, and Smita Bhushan, and my sister-

in-law Rani Roy, I can’t thank all of you enough, for inspiring me to always chase my

dreams. I am especially grateful to my brother Anay Raj for always believing in me

and constantly motivating me to deliver my best. The following pages of my thesis

are solely dedicated to all of them for their love and sacrifices.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

ABSTRACT . xiv

1 INTRODUCTION . 1

1.1 CMOS Scaling Challenges . 3

1.1.1 Higher leakage and power density 3

1.1.2 Increased process variations . 4

1.1.3 Reliability concerns . 6

1.2 Emerging Memory Technologies . 7

1.2.1 Spin Transfer Torque Magnetic RAM (STT-MRAM) 7

1.2.2 Domain Wall Memory (DWM) 8

1.2.3 Comparison of different memory technologies 9

1.3 Thesis Contributions . 10

1.3.1 Approximate Memory Subsystem 11

1.3.2 Reconfigurable Cache Architecture with DWMs 13

1.4 Thesis Organization . 14

2 RELATED WORK . 15

2.1 Spin Transfer Torque Magnetic RAM (STT-MRAM) 15

2.1.1 Device and circuit techniques 15

2.1.2 Architectural techniques . 16

2.2 Phase Change Memory (PCM) . 16

2.2.1 Device and circuit techniques 17

2.2.2 Architectural techniques . 17

2.3 Domain wall memory (DWM) . 18

vii

Page

2.3.1 Device and circuit level . 18

2.3.2 DWM Architectures . 18

2.4 Thesis contributions . 19

3 BACKGROUND . 22

3.1 STT-MRAM . 22

3.1.1 Read and write operation . 22

3.1.2 STT-MRAM array . 23

3.2 Domain Wall Memory . 24

3.2.1 Logical view of a multi-bit DWM cell 24

4 APPROXIMATE MEMORY COMPRESSION 26

4.1 Introduction . 26

4.2 Motivation and Background . 29

4.3 Approximate Memory Compression . 32

4.3.1 Approximate Compression Scheme 32

4.3.2 Quality-aware Memory Controller 34

4.3.3 Software Support for Approximate Memory Compression 37

4.4 Experimental Methodology . 39

4.4.1 Experimental setup . 40

4.4.2 Benchmark applications . 41

4.5 Experimental Results . 42

4.5.1 System performance benefits . 42

4.5.2 Memory energy improvements 43

4.5.3 FPGA prototype system results 46

4.5.4 Comparison with a uniform approximation scheme 48

4.5.5 Comparison with a lossless compression scheme 49

4.5.6 QCF in action: Case study . 49

4.6 Summary . 50

viii

Page

5 APPROXIMATE MEMORY DESIGN FOR ENERGY-EFFICIENT SPIN-
TRONIC MEMORIES . 52

5.1 Introduction . 52

5.2 Case for Quality-configurable memories 55

5.3 Quality configurable spintronic memory 58

5.3.1 Approximation techniques . 59

5.3.2 Quality-configurable array design 62

5.4 STAxPad: Scratchpad with QcMem 64

5.4.1 Vector processor architecture 64

5.4.2 Quality-aware load/store instructions 65

5.4.3 Auto-tuning instruction-level quality fields 68

5.5 STAxCache: Cache design with QcMem 71

5.5.1 Quality Table . 71

5.5.2 Retention Approximations in STAxCache 72

5.5.3 Quality-aware cache controller 75

5.5.4 Cache insertion and replacement policy 77

5.5.5 ISA extension . 78

5.5.6 Software support for STAxCache 78

5.6 Experimental Methodology . 81

5.7 Experimental Results . 83

5.7.1 Energy benefits of STAxPad . 83

5.7.2 Energy benefits of STAxCache 85

5.7.3 Impact on system performance with STAxCache 86

5.7.4 Comparison with uniform approximation 87

5.7.5 Comparison with a single approximation scheme 88

5.7.6 Energy vs. quality trade-off . 88

5.8 Summary . 89

6 RECONFIGURABLE CACHE ARCHITECTURE USING DWM TAPES . . 91

ix

Page

6.1 Introduction . 91

6.2 DyReCTape Architecture . 93

6.2.1 Reconfiguration mechanism . 94

6.2.2 Reconfiguration policy . 96

6.2.3 Data migration logic . 98

6.2.4 Victim cache . 102

6.3 Experimental Methodology . 102

6.4 Experimental Results . 103

6.4.1 Performance evaluation . 103

6.4.2 Energy comparison . 105

6.4.3 Comparison of static vs. reconfigurable DWM cache 106

6.5 Summary . 107

7 CONCLUSION . 108

7.1 Thesis Summary . 108

REFERENCES . 111

VITA . 121

x

LIST OF TABLES

Table Page

4.1 System configuration . 40

4.2 Application benchmarks for approximate memory compression 42

5.1 MTJ device parameters . 82

5.2 STAxCache system configuration . 82

5.3 Application benchmarks for approximate storage 83

6.1 DyReCTape system configuration . 103

xi

LIST OF FIGURES

Figure Page

1.1 Memory capacity trends across computing platforms 2

1.2 Fraction of leakage power with different technology generations 4

1.3 Transitor count and clock frequency trend in Intel microprocessors [5] . . . 5

1.4 ION and IOFF variation for 150nm technology (Source: Intel) 6

1.5 STT-MRAM bit-cell . 8

1.6 Domain Wall Memory . 8

1.7 Comparison of emerging memory technologies [6, 8] 9

1.8 Sources of intrinsic application resilience [10] 10

1.9 Approximate memory system: Concept . 11

3.1 STT-MRAM bit-cell array . 23

3.2 Multi-bit DWM cell . 24

3.3 Logical view of a multi-bit DWM cell . 25

4.1 DRAM sub-array . 30

4.2 Motivation for approximate memory compression 31

4.3 Approximate memory compression: Overview 32

4.4 Approximate compression scheme . 33

4.5 Approximate decompression scheme . 34

4.6 Address mapping in the proposed design 36

4.7 Modified application with the runtime quality control framework (QCF)
for approximate memory compression . 38

4.8 Timeline for different phases in QCF . 39

4.9 FPGA prototype system for the proposed scheme 41

4.10 System performance improvements across different memory technologies
with approximate memory compression . 43

xii

Figure Page

4.11 Main memory energy benefits across various memory technologies with
approximate memory compression . 44

4.12 Main memory energy breakdown across different memory technologies
with approximate memory compression . 44

4.13 Runtime breakdown for the DIGIT application executing on a DDR3
DRAM system . 46

4.14 System performance improvement in the FPGA prototype with approxi-
mate memory compression . 46

4.15 DRAM energy savings in the proposed FPGA system 47

4.16 DRAM energy breakdown in the proposed FPGA system 48

4.17 Memory traffic benefits over uniform approximation 49

4.18 Memory traffic reduction over a lossless compression scheme 50

4.19 Output quality vs. time for the OCR benchmark 51

5.1 Energy comparison SRAM vs. STT-MRAM 56

5.2 Fraction of instructions subject to controlled approximations for two dif-
ferent applications. 57

5.3 Variation in the fraction of resilient blocks in a cache over time with image
segmentation application. 58

5.4 Read decision and disturb trade-off for an STT-MRAM bit-cell 59

5.5 Energy vs. error probability trade-off for an STT-MRAM bit-cell 60

5.6 Quality-configurable memory array . 63

5.7 Vector processor architecture for STAxPad evaluation 65

5.8 Example illustrating qField mapping to bit groups 66

5.9 Conceptual overview of quality translation in a QcMem array 67

5.10 STAxCache organization . 72

5.11 Timeline showing refresh operations . 74

5.12 Read quality modulation . 76

5.13 Write quality modulation . 77

5.14 K-means clustering application for STAxCache 79

5.15 Improvement in system energy with STAxPad 84

xiii

Figure Page

5.16 STAxPad energy breakdown . 85

5.17 Improvement in energy using STAxCache 86

5.18 Energy breakdown for STAxCache . 87

5.19 Performance trend with STAxCache . 87

5.20 Benefit of significance-based approach . 88

5.21 Comparison of energy benefits over skipping scheme 89

5.22 Energy vs. quality trade-off for two applications by varying instruction-
level error bounds . 89

6.1 Average latency vs. area trade-off . 92

6.2 DyReCTape organization . 94

6.3 Reconfiguration overview . 96

6.4 Reconfiguration policy . 98

6.5 Timeline for reconfiguration during cache shrink 100

6.6 Timeline for reconfiguration during cache expand 101

6.7 Flowchart for overall L2 access . 102

6.8 Performance trends for different baselines 104

6.9 Energy comparison for different baselines 105

6.10 DyRecTape comparison against static DWM cache 106

xiv

ABSTRACT

Ranjan, Ashish Ph.D., Purdue University, December 2018. Energy-efficient Memory
System Design with Spintronics. Major Professor: Anand Raghunathan.

Modern computing platforms, from servers to mobile devices, demand ever-increasing

amounts of memory to keep up with the growing amounts of data they process, and

to bridge the widening processor-memory gap. A large and growing fraction of chip

area and energy is expended in memories, which face challenges with technology

scaling due to increased leakage, process variations, and unreliability. On the other

hand, data intensive workloads such as machine learning and data analytics pose in-

creasing demands on memory systems. Consequently, improving the energy-efficiency

and performance of memory systems is an important challenge for computing system

designers.

Spintronic memories, which offer several desirable characteristics – near-zero leak-

age, high density, non-volatility and high endurance – are of great interest for design-

ing future memory systems. However, these memories are not drop-in replacements

for current memory technologies, viz. Static Random Access Memory (SRAM) and

Dynamic Random Access Memory (DRAM). They pose unique challenges such as

variable access times, and require higher write latency and write energy. This dis-

sertation explores new approaches to improving the energy efficiency of spintronic

memory systems.

The dissertation first explores the design of approximate memories, in which the

need to store and access data precisely is foregone in return for improvements in

energy efficiency. This is of particular interest, since many emerging workloads ex-

hibit an inherent ability to tolerate approximations to their underlying computations

and data while still producing outputs of acceptable quality. The dissertation pro-

xv

poses that approximate spintronic memories can be realized either by reducing the

amount of data that is written to/read from them, or by reducing the energy con-

sumed per access. To reduce memory traffic, the dissertation proposes approximate

memory compression, wherein a quality-aware memory controller transparently com-

presses/decompresses data written to or read from memory. For broader applicability,

the quality-aware memory controller can be programmed to specify memory regions

that can tolerate approximations, and conforms to a specified error constraint for

each such region. To reduce the per-access energy, various mechanisms are identified

at the circuit and architecture levels that yield substantial energy benefits at the cost

of small probabilities of read, write or retention failures. Based on these mechanisms,

a quality-configurable Spin Transfer Torque Magnetic RAM (STT-MRAM) array is

designed in which read/write operations can be performed at varying levels of accu-

racy and energy at runtime, depending on the needs of applications. To illustrate the

utility of the proposed quality-configurable memory array, it is evaluated as an L2

cache in the context of a general-purpose processor, and as a scratchpad memory for

a domain-specific vector processor.

The dissertation also explores the design of caches with Domain Wall Memory

(DWM), a more advanced spintronic memory technology that offers unparalleled

density arising from a unique tape-like structure. However, this structure also leads

to serialized access to the bits in each bit-cell, resulting in increased access latency,

thereby degrading overall performance. To mitigate the performance overheads, the

dissertation proposes a reconfigurable DWM-based cache architecture that modu-

lates the active bits per tape with minimal overheads depending on the application’s

memory access characteristics. The proposed cache is evaluated in a general purpose

processor and improvements in performance are demonstrated over both CMOS and

previously proposed spintronic caches.

In summary, the dissertation suggests directions to improve the energy efficiency

of spintronic memories and re-affirms their potential for the design of future memory

systems.

1

1. INTRODUCTION

The proliferation of several applications ranging from recognition, vision, machine

learning, search, data-driven inference, information analytics etc., has resulted in an

explosion in the creation and consumption of various forms of digital data across

the entire spectrum of computing platforms from mobile and wearable devices to

servers [1, 2]. These workloads process large amounts of data, which require real-

time analytics to derive value from them, placing significant demands on the memory

subsystems. Moreover with every processor generation, we are also noticing a growing

trend in the number of processor cores executing these applications. Feeding data to

10s-1000s of such cores requires even larger memories. Fig. 1.1 illustrates the growing

trend observed in both on-chip and off-chip memory capacity over the years, across

different computing platforms including general purpose processors, System-on-Chips

(SoCs) and GPUs. Specifically, if we observe the cache trends in Intel processors (top

left in Fig. 1.1), both the absolute number of cache transistors and the fraction of chip

area dedicated to caches is increasing with each processor generation. Similar trends

have been observed for on-chip memories in GPUs, and SoCs. Fig. 1.1 (bottom right)

also presents the unabated growth observed in DRAM capacity over the years.

CMOS based memory technologies, viz. SRAM, embedded-DRAM, and DRAM,

have been the workhorses of memory design for several decades. The continued scal-

ing of transistor dimensions and supply voltage in these memory technologies have led

to higher density (offering larger capacity for memories), lower dynamic power con-

sumption and higher performance. However, these memory technologies face growing

design challenges such as increased process variations, higher leakage energy, increased

unreliability etc., in the nanometer regime as CMOS scales towards its fundamental

limits. These design challenges along with an ever-increasing demand for memories

2

G80 GT200 GF104
GK 104

GK 110

GM204

GP104

Radeon
7970

Radeon
290X

0

4

8

12

2005 2008 2011 2014 2017

To
ta

l o
n

-c
h

ip
 m

e
m

o
ry

ca

p
ac

it
y

(M
B

)

Nvidia GPUs

AMD GPUs

Cache trends in Intel processors

0.0

0.5

1.0

1.5

2.0

2.5

2000 2003 2006 2008 2011

C
ap

ac
it

y
(G

b
)

Memory trend in SoCs (Source: Infineon)

On-chip memory trend in GPUs

Lee et al., HPCA 2013

DRAM chip trends

0

20

40

60

80

100

0

500

1000

1500

2000

2500

1992 1997 2002 2007 2012 2017

%
 c

h
ip

 t
ra

n
s.

 in
 c

ac
h

e

C
ac

h
e

 T
ra

n
si

st
o

rs

(M
ill

io
n

)

Cache transistors

% chip transistors
in cache

0

20

40

60

80

100

1999 2002 2005 2008 2011 2014

A
re

a
P

o
rt

io
n

% Memory Area % Other Area

Fig. 1.1.: Memory capacity trends across computing platforms

have fueled the quest for alternative memory technologies that can either complement

or potentially replace the current memory systems.

Several memory technologies such as Phase Change Memory (PCM), Ferroelectric

RAM (FeRAM) etc. have emerged as promising candidates in this quest for potential

CMOS replacements. Spintronic memories are one such emerging alternative that

have demonstrated great potential and garnered significant interest in recent years,

with several prototype demonstrations and early commercial offerings [3, 4]. Unlike

traditional charge-based devices, spintronic devices manipulate the spin orientation

of electrons in a ferromagnetic material to represent and process information. These

devices possess several favorable characteristics that are beneficial to memory design:

(i) non-volatility, that results in ultra-low leakage energy, (ii) high density, that en-

ables larger memory capacity, and (iii) high endurance. However, these memories

have certain limitations, such as higher write latency and write energy etc., owing

to the fundamentally different storage and switching mechanisms that these memory

3

technologies employ. Therefore, they are not drop-in replacements for current CMOS

memory technologies. This dissertation explores suitable optimizations at the cir-

cuit and architecture-level for spintronic memories that exploit the strengths of these

memories while mitigating their drawbacks.

The following sections present an overview of the current scaling challenges in

CMOS technology, a summary of the spintronic memory technologies that have shown

great promise in recent years, and a brief description of the thesis contributions.

1.1 CMOS Scaling Challenges

Moore’s law of transistor scaling for CMOS technology has resulted in ever-

increasing transistor performance, higher density and lower energy consumption.

However, continued technology scaling in the deep nanometer regime has presented

several roadblocks such as higher leakage energy, increased process variations, new

reliability issues, etc.

1.1.1 Higher leakage and power density

As transistors continue to scale down into the nanometer regime, the leakage en-

ergy of these transistors has been rapidly increasing. Traditionally, the leakage in

a CMOS transistor is dominated by sub-threshold static leakage current from the

source, gate-oxide leakage current and gate induced drain leakage current (GIDL).

Each of these components have exponentially increased over the years. Sub-threshold

leakage current(Isub), a function of the inverse of the threshold voltage (VT), is in-

creasing due to shorter effective channel length and longer transistor width with every

technology generation. Similarly, the tunneling current flowing through the gate is

on the rise, due to aggressive reduction in the gate oxide thickness. Fig. 1.2 sum-

marizes the increasing trend in leakage power witnessed over the years. As shown in

figure, the leakage power contributes a substantial fraction (∼40%) of the total power

consumption in modern computing platforms.

4

0%

10%

20%

30%

40%

50%

1.5 0.7 0.35 0.18 0.09 0.045
L

e
a

k
a

g
e

 P
o

w
e

r
(%

 o
f

T
o

ta
l)

 

Technology (µm) 

Source: A. Grove, IEDM 2002

Fig. 1.2.: Fraction of leakage power with different technology generations

Another major challenge to the scaling of CMOS transistors is the growing power

density of computing systems. This is primarily due to an increased number of tran-

sistors per chip without a proportional decrease in power per transistor. Fig. 1.3

shows the increasing trends in transistor count and clock frequency for various Intel

microprocessors. With the decline of “classical” scaling of supply voltage (also known

as Dennard scaling) due to increased short channel effects, the power density on the

chip no longer remains constant. The slow down in supply voltage scaling implies

an increase in the power density of the chip with each generation. This eventually

results in higher on-chip temperature, mandating the need for new cooling mecha-

nisms to mitigate these concerns. Eventually, these trends led to the saturation of

clock frequencies and the use of multi-cores or parallelism to achieve performance

improvements.

1.1.2 Increased process variations

Process variations mainly arise due to limitations of the chip fabrication process,

i.e., lithographic process, and often cause key process parameters such as effective

channel length, gate oxide thickness, etc. to drift from their designed values. Con-

sequently, these variations can impact several important transistor characteristics

such as threshold voltage, causing the switching characteristics of transistors to vary

5

Fig. 1.3.: Transitor count and clock frequency trend in Intel microprocessors [5]

substantially. As CMOS transistors scale to the nanometer regime, the impact of vari-

ations is becoming higher. Fig. 1.4 demonstrates the impact of process variations on

the ON and OFF currents of nearly identical transistors in a modern CMOS process

technology node. As shown in the figure, the ON current varies by over 2× across

transistors manufactured in the same process technology while the leakage (OFF)

current drifts by almost 100×.

The increase in process variations has mandated designers to over-design their

systems such that they operate correctly under different conditions of variations. With

shrinking transistor dimensions, the corresponding guard-band required to mitigate

the impact of variations is also increasing. This has resulted in a growing concern

across the semiconductor industry that the additional guard-bands introduced in the

chip design process could eventually negate all the benefits of transistor scaling.

6

N
o

rm
a
li

z
e
d

 I
O

N
 

Normalized IOFF 

Fig. 1.4.: ION and IOFF variation for 150nm technology (Source: Intel)

1.1.3 Reliability concerns

There are several physical failure mechanisms that can impact the reliability of

CMOS transistors. Some of them include Hot Carrier Damage (HCD), Time Depen-

dent Dielectric Breakdown (TDDB), Negative Bias Temperature Instability (NBTI),

etc. HCD and NBTI result in drastic variation in the transistor threshold voltage

over prolonged periods. On the other hand, TDDB causes wearing-out of the insulat-

ing properties of the CMOS transistor’s gate, which eventually leads to a conducting

path between the gate and the CMOS substrate.

The continued scaling of transistor dimensions has further led to an increase in the

above discussed physical failures thereby degrading the reliability of these transistors.

Over the years, the fraction of chip area occupied by memories is steadily increas-

ing due to increasing data set sizes and growing number of cores. Thus, the above

discussed scaling challenges translate to diminishing benefits with every technology

node, presenting a major roadblock to continued scaling of CMOS memories.

7

1.2 Emerging Memory Technologies

Many research efforts have been aimed at finding alternate memory technologies

that can address the limitations of traditional CMOS memories in recent years. Sev-

eral promising candidates have emerged from this quest. The following paragraphs

provide a brief description of some of the promising memory technologies and also

present a comparison of their key characteristics.

1.2.1 Spin Transfer Torque Magnetic RAM (STT-MRAM)

STT-MRAM is a non-volatile memory technology that manipulates the spin ori-

entation of electrons in a ferro-magnetic material such as CoFeB to represent and

process data. Fig. 1.5 shows the structure of a standard STT-MRAM bit cell. It con-

sists of an access transistor and a magnetic tunnel junction (MTJ), which is in turn

composed of a pinned layer and a free layer separated by a tunneling oxide (i.e. MgO).

The pinned layer has a fixed magnetization while the free layer can be programmed

to change its magnetization orientation. The relative orientation of the free layer and

the pinned layer determines the logic state of the data stored in the bit-cell (assuming

logic “0” when parallel, i.e. low resistance and “1” when anti-parallel, i.e. high re-

sistance). STT-MRAMs possess several characteristics that favor memory design: (i)

ultra-low leakage energy as a consequence of non-volatility, (ii) high density, and (iii)

high endurance or life cycle. Although STT-MRAMs have near-zero leakage energy

compared to CMOS memories, their overall energy efficiency is still limited by read

and write operations. Reads are bottlenecked by the need to perform single-ended

sensing, while the commonly used write mechanism of spin transfer torque switching

requires large currents, leading to energy inefficient writes.

8

BL

WL

SL

Pinned layer

Free layer

Tunneling oxide

Fig. 1.5.: STT-MRAM bit-cell

1.2.2 Domain Wall Memory (DWM)

DWM is an advanced spintronic memory technology which is highly promising due

to its unparalleled density when compared to other spintronic memories such as STT-

MRAM [6,7]. DWMs have a unique tape like structure that achieves very high density

by packing several (∼10-100) bits into the domains of a ferromagnetic nanowire [6],

as shown in Fig. 1.6. A key feature of DWMs is that the bits stored in the nanowire

can be shifted by applying a current pulse. However, this structure also introduces

serialized accesses to the bits in each bit-cell via shift operations, resulting in higher

access latency. For instance, our evaluations show that the performance bottleneck

due to the shift operations can be as high as 37% for an iso-area DWM-based cache

compared to a 2MB SRAM-based cache in 32nm technology.

Ferromagnetic nanowire

Fixed domain

MTJ

Ishift right Ishift left

Fig. 1.6.: Domain Wall Memory

9

1.2.3 Comparison of different memory technologies

Fig. 1.7 shows a comparison of some of the key metrics for different memory

technologies based on [6]. Spintronic memories, i.e. STT-MRAM and DWM possess

several desirable features such as near-zero leakage power, high density and access

latencies closest to SRAM and DRAM memories, thereby making them lucrative for

future memories. Notably, DWM offers extremely high density and outperforms even

other emerging memory technologies such as PCM and FeRAM etc. Moreover, these

spintronic memories have much smaller access latencies compared to other traditional

non-volatile memory technologies such as flash memories. On the other hand, the

write energy (and write latency) of these spintronic memories is substantially higher

than SRAM and DRAM, posing a major challenge to the design of future spintronic

memory subsystem. For example, our evaluations reveal that the write latency for an

iso-capacity spintronic cache can be as high as 2.2× compared to a 2MB SRAM-based

cache in 45nm technology.

SRAM STT-MRAM

FLASH-NOR

FLASH-NAND

DRAM

FeRAM

PCRAM

DWM

1 10 100 1000

R
ea

d
+W

ri
te

 T
im

e

Cell Size (F2)

1ms

1ns

10ns

100ns

1us

10us

100us

Idle Power
Low
High

Write Energy
Low

Medium

High

Fig. 1.7.: Comparison of emerging memory technologies [6, 8]

10

1.3 Thesis Contributions

Many emerging applications that drive the demand for memory also exhibit in-

trinsic resilience, i.e., an ability to tolerate approximations in the underlying compu-

tations or data while still producing results of acceptable quality [9]. This intrinsic

resilience stems from several factors as shown in Fig. 1.8:

� The algorithms are designed to handle noisy/redundant real-world inputs, and

therefore are inherently robust to errors in the underlying computations.

� The computation patterns in these applications are often statistical and iterative

in nature where errors tend to self-heal (or cancel) over time with multiple

iterations.

� The usage model of many applications is such that the user is conditioned to

accept less-than-perfect outputs, or a range of outputs is considered identical

due to a lack of golden answer.

Intrinsic

Application

Resilience

‘Noisy’ Real
World Inputs

Redundant
Input Data

Perceptual
limitations

Statistical
Probabilistic

Computations

Self-Healing
algorithms

No Golden
Outputs

Fig. 1.8.: Sources of intrinsic application resilience [10]

11

1.3.1 Approximate Memory Subsystem

Approximate computing exploits this resilience to improve energy and perfor-

mance through techniques at various levels of the computing system stack [10, 11].

Adopting this approach, the dissertation explores the design of approximate spin-

tronic memories, wherein the need to store and access data precisely is relaxed for

improvements in energy efficiency. Fig. 1.9 provides a high-level overview of an ap-

proximate memory system. The key idea behind the approach is to either (i) reduce

the amount of data that is written to/read from these memories through approximate

memory compression, or (ii) reduce the energy consumed per read/write access using

a quality-configurable memory design. The following paragraphs briefly describe the

two approaches.

CPU
Core

DMA

I/O
Accelerators
Video/Image

On-chip
Memory

Off-chip Memory

Controller

CPU
Core

Approximate Memory
Compression

Quality-
configurable

Spintronic
Memory

Approximations 

E
n
e
rg
y

Approximations 

R
d
/W
r
Q
u
al
it
y

approximations

DRAM

approximations

Fig. 1.9.: Approximate memory system: Concept

Approximate Memory Compression

The thesis presents approximate memory compression, a technique that leverages

the intrinsic resilience of emerging workloads to reduce memory traffic. To realize

12

approximate memory compression, the memory controller is enhanced to be aware

of memory regions that contain approximation-resilient data, and to transparently

compress/decompress the data written to/read from these regions. To provide con-

trol over approximations, the quality-aware memory controller conforms to a specified

error constraint for each approximate memory region. The proposed quality-aware

memory controller is exposed to the application by: (i) a software interface that can

identify data structures that are resilient to approximations, and (ii) a runtime quality

control framework that automatically determines the error constraints for the identi-

fied data structures such that a given target application-level quality is maintained.

To demonstrate the feasibility of the proposed concepts, a hardware prototype was

also implemented using the Intel UniPHY-DDR3 memory controller and Nios-II pro-

cessor, a Hynix DDR3 DRAM module, and a Stratix-IV FPGA development board.

Across a wide range of machine learning benchmarks, approximate memory compres-

sion on average obtains 2.0× benefit in main memory energy for an STT-MRAM

based DDR3 memory. It also achieves 9.3% improvement in execution time for a

small (0.3%) loss in output quality.

Approximate Memory Design with STT-MRAMs

To improve the read and write energy efficiency of STT-MRAMs, the dissertation

identifies a combination of different approximation techniques at the circuit and ar-

chitecture levels that yield significant energy benefits for small probabilities of errors

in reads, writes, and retention. Based on these mechanisms, a quality-configurable

memory array is designed in which data can be stored to varying levels of accuracy

depending on the application requirements.

The proposed array is evaluated in two different memory designs: (i) STAxPad,

a scratchpad in the memory hierarchy of a domain-specific vector processor, and (ii)

STAxCache, a last-level cache architecture in a general purpose processor, that re-

tains the full flexibility of a conventional cache, while allowing for different levels of

13

approximation to different parts of a program’s memory address space. To expose

STAxPad to applications, quality-aware load/store instructions are introduced within

the ISA of the vector processor. The thesis also introduces a simple interface that al-

lows the programmer to specify the quality requirements for different data structures,

and new instructions in the ISA to expose this information to STAxCache.

The thesis adopts a device-to-architecture modeling framework to evaluate the

proposal. Our experiments reveal 1.67× improvement in STAxPad energy and 1.44×

improvement in STAxCache energy for negligible (< 0.5%) loss in application quality

across a range of machine learning benchmarks.

1.3.2 Reconfigurable Cache Architecture with DWMs

The dissertation also explores the design of caches with DWMs. A key challenge

to performance of a DWM-based cache is the inherent tape-like structure of DWM

that leads to serialized access to the bits stored in each bit-cell, resulting in increased

access latency. Prior efforts address this challenge either by limiting the number of

bits per tape, in effect sacrificing the density benefits of DWM, or through cache

management policies that can only partly alleviate the shift overhead.

This thesis makes a key observation that there exists significant heterogeneity

in sensitivity to cache capacity and access latency across different applications, and

across distinct phases of an application. Moreover, the DWM tapes offer a natural

mechanism to trade-off density for access latency by limiting the number of domains

of each tape that are actively used to store cache data. Based on this insight, the

thesis presents DyReCTape, a dynamically reconfigurable cache that packs maxi-

mum bits per tape and leverages the intrinsic capability of DWMs to modulate the

active bits per tape with minimal overhead. DyReCTape uses a history-based re-

configuration policy that tracks the number of shift operations incurred and miss

rate to appropriately tailor the capacity and access latency of the DWM cache. The

thesis further proposes two performance optimizations to DyReCTape: (i) a lazy

14

migration policy to mitigate the overheads of reconfiguration, and (ii) re-use of the

portion of the cache that is unused (due to reconfiguration) as a victim cache to re-

duce the number of off-chip accesses. We evaluate DyReCTape using applications

from the PARSEC and SPLASH benchmark suites. Our experiments demonstrate

that DyReCTape achieves 19.8% performance improvement over an iso-area SRAM

cache and 11.7% performance improvement (due to a 3.4× reduction in the number

of shifts) over a state-of-the-art DWM cache.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides a brief overview

of the previous research efforts related to memory design with emerging technologies

and presents the thesis contributions in their context. Chapter 3 provides back-

ground information related to the structure and operation of two spintronic memory

technologies, viz., STT-MRAM and DWM. Chapter 4 describes the concept of ap-

proximate memory compression, the design of a quality-aware memory controller, and

the proposed software framework for its broader applicability. Chapter 5 presents the

various mechanisms to reduce per-access energy for spintronic memories, and details

two different memory designs, viz., STAxPad and STAxCache. Chapter 6 presents

DyReCTape, the dynamically reconfigurable DWM-based cache architecture. Fi-

nally, Chapter 7 concludes this dissertation with a brief description of key directions

for future research.

15

2. RELATED WORK

Many emerging memory technologies such as PCM, STT-MRAM etc., have been well

researched over the years to replace CMOS memories. Several research efforts have

demonstrated the potential of STT-MRAM and PCM by realizing them as lower

level cache and main memory respectively [12–20]. While these emerging memory

technologies promise high density and near-zero leakage, they also have severe limi-

tations such as high write energy and high write latency. Furthermore, PCMs also

suffer from limited endurance problem. Several techniques have been proposed at

the device, circuit and architecture level to mitigate these drawbacks. Over the years

few other technologies such as domain wall memory have also attracted significant

interest as a promising candidate for replacing CMOS-based memories [6, 8, 21–26].

In this chapter, we describe some of the research efforts that employ these emerging

technologies in the context of both on-chip and off-chip memories.

2.1 Spin Transfer Torque Magnetic RAM (STT-MRAM)

Prior research efforts have explored techniques spanning devices, circuit and ar-

chitecture level in order to achieve energy-efficient STT-MRAMs. We next provide

an overview of some of these techniques at the various levels of design abstraction.

2.1.1 Device and circuit techniques

At the device level, researchers have proposed different device structures such as

dual-pillar MTJ, tilted MTJ, dual-barrier MTJ etc., in order to address the write-

inefficiency of STT-MRAMs [27–29]. At the circuit level, schemes such as 2T-1R

bit-cell with dual source line, bit-line voltage clamping, co-design of bit-cell access

16

transistor and the supply voltage etc. have been proposed to improve energy efficiency

of STT-MRAMs [30–32]. Few other research efforts have analyzed the impact of

process variations and also focused on improving the read latency with efficient read

sensing schemes with STT-MRAMs [30, 33, 34]. Besides, [35] proposed multi-level

STT-MRAMs in order to enhance the bit-cell density.

2.1.2 Architectural techniques

At the architecture level, [12, 36, 37] addressed the write-inefficiency of STT-

MRAMs using a hybrid CMOS-spintronic cache organization that selectively directs

write-intensive memory blocks to the CMOS memory, while retaining the remaining

blocks in STT-MRAM memory. Another approach focused on eliminating redundant

writes to memory, either by comparing the previously stored data before performing

writes [38] or by tracking dirty data at a finer granularity [39], in order to minimize

the write energy. A third approach proposed volatile spintronic memories [40, 41],

wherein the non-volatility of STT-MRAMs was relaxed for smaller write energy and

suitable refresh techniques were proposed to avoid data retention errors. Some other

efforts [42, 43] have utilized dynamic reconfiguration of hybrid caches to address the

write inefficiencies of STT-MRAMs, whereas [35] proposed a set-remapping scheme

as a mechanism to achieve energy-efficient encoding of bits to various resistance levels

in a multi-level STT-MRAM-based cache. In order to address the write latency of

STT-MRAMs, [44] proposed the use of read-preemptive write buffers.

2.2 Phase Change Memory (PCM)

In this section, we focus our discussion to prior works that utilize PCMs for

memories.

17

2.2.1 Device and circuit techniques

At the device level, various structures such as µ-trench, wall, cross spacer, edge,

etc. have been proposed to mitigate the high write current for PCMs [45–50]. In order

to address the limited endurance problem, [51] proposed adding suitable amount of

doping material to the phase change material. At the circuit level, [52] proposed fine-

grained current regulation and voltage upscaling to lower the RESET current and

consequently improve the overall lifetime of PCMs.

2.2.2 Architectural techniques

In order to address the limited endurance, [53–55] proposed lowering the number

of bits written to phase change memory through suitable architectural schemes. [53]

proposed eliminating redundant bit-writes by comparing the new value to be written

against the value stored in the cell, while [54] proposed further enhancements to it

by either writing the new data word or the “flipped” value such that it increases the

redundant bits. In [55], the authors explored static and dynamic profiling methods

to identify frequent data blocks written to the PRAM memory and subsequently

used existing compression techniques to minimize the write intensity of those blocks.

Another approach to address the lower endurance was proposed in [18] where the

authors utilized different wear-leveling policies to spread out the write intensity evenly

among all the PCM cells. On the other hand, in order to mitigate the high write

energy for PCMs, [56] proposed the concept of approximate memories that consume

lower write energy but at the cost of errors. Specifically, it proposed the following:

(i) lowering the number of programming pulses used to write PCMs, trading-off write

errors for energy, and (ii) using worn-out blocks that have exhausted error correction

resources by performing partial error correction on the most significant bits.

18

2.3 Domain wall memory (DWM)

Domain wall memory (DWM) is a spintronic memory technology that offers very

high density and improved energy efficiency compared to STT-MRAM, PCM and

other emerging memory technologies. This has kindled great interest in using DWMs

to realize caches both in the context of general purpose processors [8, 23, 24, 26, 57]

and domain specific accelerators such as GPUs [21,25,58]. In this section, we describe

the prior research efforts related to DWMs.

2.3.1 Device and circuit level

DWM was first explored in the context of secondary storage [6] mainly due to

its promising density. Considering its attractive benefits of both density and energy,

researchers have investigated DWMs at the device and circuit level [22–24, 59, 60].

Multiple prototypes of DWM have also been demonstrated [61,62]. [22, 59] proposed

physics-based models that capture the domain wall dynamics, whereas [60] proposed

a multi-level cell that uses domain wall magnets in order to improve the read/write

performance, density and write energy of traditional spin-based memories.

2.3.2 DWM Architectures

Recent efforts [8, 23–26, 57] have explored the applicability of DWM for on-chip

memories. [8,23,24,57] explored DWM-basedcaches in the context of general purpose

processors with fixed numbers of bits on a tape and proposed cache management

policies to mitigate the performance penalty due to serialized memory access. Sub-

sequently, [26] presented several layout strategies along with way-based mapping and

resizing for DWM-based cache architecture. In [63], the authors analyzed the benefits

of DWM-based main memory. In addition, DWMs have also been explored in the

context of graphics processors [25, 58] and accelerators [21]. [21] proposed the use

of DWMs to realize a FIFO for recognition and mining processor, while [58] pre-

19

sented novel architectural schemes such as register remapping for GPGPU register

files in order to overcome the shift latency. [25] explored DWMs in order to realize

on-chip caches for GPGPUs and proposed techniques such as warp-based prediction

to address their variable access latencies.

2.4 Thesis contributions

The primary contributions of this dissertation are different from and complemen-

tary to the earlier efforts in the following aspects:

Approximate memory compression: In the context of CMOS-based on-chip

memories, [64] proposed specific extensions to the load/store queue for handling vari-

able precision across the memory hierarchy. [65,66] explored a cache architecture that

stores similar data values at the same cache location, thereby increasing the effective

cache capacity, whereas [67] proposed skipping cache loads on misses to mitigate the

miss penalty. [68] explored voltage scaling to achieve leakage energy benefits in cache.

All these efforts require significant changes to the processor or the cache hierarchy. In

contrast, our proposal transparently applies to all components that use the memory

controller to access memory, making it applicable across a broad class of computing

platforms.

For DRAMs, [69–73] proposed techniques such as modulating the refresh rate

to obtain energy benefits at the cost of retention errors. These techniques target

refresh/idle energy and are complementary to our proposal, which focuses on reducing

the overall read/write energy.

Approximate memory design for energy-efficient spintronic memories: Prior

efforts have explored approximations for both off-chip and on-chip memories. [69,72]

proposed relaxing refresh rate for DRAMs to reduce refresh power at the cost of

retention errors. On the other hand [56] proposed (i) lowering the number of pro-

gramming pulses used to write phase change memories, trading-off write errors for

20

energy, and (ii) using worn-out blocks that have exhausted error correction resources

by performing partial error correction on the most significant bits.

In the context of CMOS on-chip memories, [68] proposed supply voltage modu-

lation per cache way to obtain leakage benefits at the cost of failures. [74] explored

scaling the supply voltage in an application-specific hybrid SRAM array to achieve en-

ergy benefits at the cost of errors. [65] explored a complementary approach of storing

similar values as a single cache block to reduce the overall cache energy, whereas [67]

proposed skipping cache loads on a miss to lower the cache miss penalty.

Our work differs from these efforts on multiple key fronts. First, a large majority

of the above approximation mechanisms are not directly applicable to STT-MRAMs,

requiring the exploration of new mechanisms that manifest specific energy-error trade-

offs unique to STT-RAMs. Second, our proposal of quality-configurable memory ar-

rays is unique in that it allows the quality of read/write operations to be controlled

by specifying acceptable error constraints for groups of bits within the word. This

allows us to regulate the numerical significance of the errors incurred during approx-

imate memory operations, enabling better control over the quality-energy trade-off.

Third, unlike most of the efforts [56, 69] that involve software directly managing ap-

proximations to these memories through load/store instructions or type qualifiers, our

work also explores approximate storage in an STT-MRAM cache requiring the cache

hardware to dynamically regulate the quality of memory accesses. This involves fun-

damentally different trade-offs because the same cache region often requires different

data storage accuracies at different times. Finally, in contrast to [68] that reduces the

cache capacity visible to both accurate and resilient data by enforcing a way-based

quality, we perform quality regulation per cache line without limiting associativity.

Reconfigurable cache design using DWM tapes: Reconfigurable caches have

been extensively researched in the context of CMOS-based caches. Most of the efforts

have targeted optimizing energy consumption with minimal impact on system perfor-

mance. [75] proposed dynamically reconfiguring the associativity of caches, while [76]

used associativity, capacity and line size reconfiguration for achieving energy effi-

21

ciency. Our work explores a dynamically reconfigurable architecture to address the

unique challenge posed by DWM-based caches, i.e., performance penalty due to shifts.

The unique structure of DWM provides a natural knob to vary cache capacity and la-

tency at run-time by modulating the bits per tape. However, as shown in our results,

such a scheme also requires a suitable reconfiguration policy and optimizations that

mitigate the reconfiguration overheads in order to achieve improved performance.

22

3. BACKGROUND

This chapter provides relevant background information on two spintronic memory

technologies – STT-MRAM and DWM, that have been investigated in this disserta-

tion.

3.1 STT-MRAM

Fig. 3.1 (inset) shows the structure of a standard STT-MRAM bit cell. It consists

of an access transistor and a storage element, i.e. magnetic tunnel junction (MTJ).

MTJ is composed of a pinned layer and a free layer separated by a thin tunneling

oxide. The pinned layer has a fixed magnetization while the magnetic orientation

of the free layer can be varied using spin-polarized current. The relative orientation

of the free layer and the pinned layer determines the resistance offered by the MTJ,

which in turn represents the logic state of the data stored in the bit-cell. In our case,

we assume logic “0” with low resistance state when the two layers are parallel and

“1” when they are anti-parallel.

3.1.1 Read and write operation

A read operation is performed by enabling the word line (WL), applying a bias

voltage (<< VDD) from the bit line (BL) to source line (SL), and sensing the current

flowing through the MTJ. This current is compared against a global reference value

to determine whether the logic state is high or low. If the current is higher (lower)

than the reference, the MTJ is in the low (high) resistance state, and hence the read

value is a “0” (“1”). The read current is typically substantially lower than the critical

switching current of the MTJ so that the logic state stored in the MTJ is not disturbed

23

- +
SA

Iref

RDEN

BL Driver

VDD VDD

GND

VDD WREN

SL0

WLn

BL0

WLn-1

WL0

Peripherals

BLn SLn

SL Driver

GND

VDD

ADDR

DOUT

WREN

RDEN

W
rite

 ‘0
’

BL

WL

SL

W
ri
te

 ‘
1
’

Peripherals SL

BL

Fig. 3.1.: STT-MRAM bit-cell array

during the read operation. During the write operation, a current greater than the

critical switching current is passed through the bit-cell. The current direction (also

shown in Figure 3.1) is determined by the logic value to be written into the bit-cell.

MTJs require increasing currents for lower switching durations [77]. Typically, the

large switching currents required to achieve acceptable write latencies poses a major

challenge in the design of energy efficient on-chip spintronic memories.

3.1.2 STT-MRAM array

Fig. 3.1 shows a portion of an STT-MRAM memory array along with its peripheral

circuitry. A write driver (BL driver) or read biasing circuit with sense amplifier are

selected by an analog mulitplexer to drive each bit line for write and read operations,

respectively. The row decoder is used to turn on the appropriate word line, whereas

the column decoder turns on the appropriate bit and source lines, depending on the

address being accessed.

24

3.2 Domain Wall Memory

WWL

SL

SWL

Read-write port

Shift port

Shift port

WL

RWL

BL

SWL
Ferromagnetic nanowire

Fixed domain

MTJ

Fig. 3.2.: Multi-bit DWM cell

Fig. 3.2 shows the structure of a multi-bit DWM cell consisting of a ferromagnetic

nanowire, a read/write port, and shift ports. The ferromagnetic wire consists of mul-

tiple free domains, each of which can be programmed to store a bit. The read/write

port is made up of a magnetic tunneling junction (MTJ), two fixed domains, and 3

access transistors. The MTJ is formed by a free domain of the nanowire and a fixed

ferromagnet, separated by a tunneling oxide, and is used to sense the data stored in

the free domain during the read operation. The fixed domains have opposite spin

polarizations and are used to write to the free domain between them by shifting in

the appropriate direction. The two access transistors at the extrema of the nanowire

constitute the shift ports, which are used to inject a current pulse for moving the do-

mains, thereby shifting the bits along the nanowire. Note that, a few extra domains

on either end are reserved in order to ensure that there is no data loss as a result of

shift operations.

3.2.1 Logical view of a multi-bit DWM cell

Fig. 3.3 shows a logical view of the multi-bit DWM cell with the ferromagnetic

nanowire represented as a tape storing multiple bits and the read-write port shown as

a tape head. In order to access a bit stored in the tape, we need to shift the head to

25

Read/Write
Tape head

0x0 0x1 0x2 0x7 Location

Shift enable

0x3 0x4 0x5 0x6

Data

Shift
Controller

Address

0

1

1

1

0

0

0

1

Fig. 3.3.: Logical view of a multi-bit DWM cell

the desired location on the tape via the shift controller and then perform the required

operation. Therefore, the access latency for a given bit stored in such a structure is

variable and depends on the number of shift operations performed. In fact, packing a

larger number of bits in the tape leads to an increase in the number of shifts, resulting

in higher access latencies. On the other hand, storing a smaller number of bits reduces

the access latency at the cost of reduced cache capacity. DWM, therefore, presents

an interesting trade-off between latency and capacity.

26

4. APPROXIMATE MEMORY COMPRESSION

4.1 Introduction

Modern computing systems, from servers to mobile devices, expend significant

time and energy in moving data between processors and memory. Designers have

explored larger on-chip caches, faster off-chip interconnects, 3D integration, and a

host of other circuit and architectural innovations to address the processor-memory

gap [78–81]. Yet, data-intensive workloads such as search, data analytics, and machine

learning continue to pose increasing demands on off-chip memory systems, creating

the need for new techniques to improve their energy efficiency and performance [1].

Many emerging applications that drive the demand for memory also exhibit in-

trinsic resilience, i.e., an ability to tolerate approximations in the underlying compu-

tations or data while producing outputs of acceptable quality [9]. Approximate com-

puting exploits this intrinsic resilience to improve energy and performance through

techniques at various levels of the computing system stack, including software, ar-

chitecture, and circuits [10, 11, 82, 83]. Adopting this approach to improve memory

system energy efficiency, we propose approximate memory compression wherein data

is transparently compressed (by introducing approximations within the memory con-

troller) when it is written to off-chip memory and decompressed when it is read back

on-chip. The reduced off-chip memory traffic leads to improvements in energy and

performance, whereas the approximations made during compression potentially im-

pact application output quality. We propose a set of hardware and software enhance-

ments to realize this concept and demonstrate its utility across prevalent and emerging

main memory technologies (DDR3 DRAM, LPDDR3 DRAM and STT-MRAM). To

illustrate the feasibility of the proposal, we also design an FPGA prototype system

27

and perform measurements on the prototype system that reaffirm the benefits of

approximate memory compression.

The majority of previous efforts in approximate computing focus on approximating

logic while keeping memory accesses accurate. Efforts that have explored approxima-

tions in the memory subsystem [56,64–73] differ from ours in their scope or the level

of the memory hierarchy they target. Some of these efforts [64–68] focus on approx-

imations within on-chip caches (e.g., by merging cache lines with similar values or

by returning approximate values upon cache misses). These techniques do not utilize

any approximations when it eventually becomes necessary to access off-chip memory,

which is the focus of this work. Other efforts improve the energy efficiency of emerging

non-volatile memories [56, 84–86] using techniques such as reduced read/write dura-

tions or voltages. A final group of efforts [69–73] focus solely on reducing idle/refresh

energy in DRAMs. Our proposal of approximate compression is complementary to

these approaches, because it focuses on reducing the memory traffic and, therefore,

can be used transparently in conjunction with most of them. Since our hardware

changes are restricted to the memory controller, the proposed concept is easily ap-

plicable across a wide range of system architectures from general-purpose processors

to accelerators and SoCs. While accurate or lossless memory compression has been

explored in general-purpose processors [87–91] and embedded systems [92–94], we

go beyond these efforts by rethinking memory compression from the perspective of

approximate computing.

To enable approximate compression, we enhance the memory controller to trans-

parently perform compression and decompression of data in a quality-aware man-

ner while writing to/reading from off-chip memory. A key challenge in approximate

computing is to perform approximations in a controlled manner so as to maintain

application-level quality. Towards this end, we introduce a software interface that

allows programmers to identify data structures that are amenable to approxima-

tions, thereby exposing specific memory regions to the proposed memory controller

for approximate compression. We develop a runtime framework that automatically

28

determines numerical error constraints for the identified memory regions in order

to maintain a desired application quality. Finally, the memory controller uses a fine-

grained, dynamic precision scaling mechanism that exploits the varying opportunities

present in different memory regions while adhering to their error constraints.

In summary, the key contributions of our work are:

� We propose approximate compression in main memories to improve energy and

performance.

� We suggest a hardware design to realize approximate memory compression, in

which a quality-aware memory controller transparently compresses and decom-

presses selected approximate memory regions while adhering to specified error

constraints.

� To enable applications to utilize approximate compression, we propose an appli-

cation programming interface to expose approximation-tolerant memory regions

to the memory controller and a runtime framework to dynamically modulate

the error constraints for each region.

� We demonstrate the applicability of the proposed approach in the context of

an x86-based general-purpose processor system integrated with three different

main memory technologies, i.e., DDR3, LPDDR3, and DDR3 STT-MRAM. Our

experiments on a wide range of machine learning benchmarks achieve significant

benefits in memory energy (1.18× for DDR3, 1.52× for LPDDR3, and 2.0×

for STT-MRAM based DDR3) and execution time (5.2% for DDR3, 5.4% for

LPDDR3, and 9.3% for STT-MRAM based DDR3) for a negligible loss (0.3%)

in application-level quality.

� To illustrate the feasibility of the proposed concepts in hardware, we also realize

a prototype using the Intel UniPHY-DDR3 memory controller, Intel Nios II pro-

cessor, and a Hynix DDR3 DRAM module on a Stratix-IV FGPA development

board. Our measurements on 8 specific machine learning benchmarks reveal a

29

1.28× improvement in DRAM energy and a 11.5% improvement in execution

time for ∼0.7% loss in application quality.

The rest of the chapter is organized as follows. Section 5.2 motivates the need

for approximate memory compression. Section 4.3 describes the proposed approx-

imate memory compression and the suitable hardware and software enhancements.

Section 6.3 details the experimental methodology, and the results are presented in

Section 5.7. Section 5.8 concludes the paper.

4.2 Motivation and Background

Approximate compression reduces off-chip memory traffic and is applicable to

various memory technologies. For our exposition, we consider three different main

memory technologies, viz., DDR3 DRAM, LPDDR3 DRAM, and STT-MRAM based

DDR3 memory.

Main memory organization. DRAM is the state-of-the-art memory technology for

main memory design. A DRAM subsystem has a hierarchical structure, comprising of

one or more dual-inline memory modules (DIMMs), each of which is in turn composed

of several DRAM chips. In order to increase memory parallelism, DRAM chips may

be grouped to form a rank. Each chip consists of multiple banks that can be accessed

in parallel. A DRAM bank comprises of several sub-arrays with each sub-array being

organized as a two-dimensional array of DRAM bit-cells, as shown in Fig. 4.1. Each

sub-array also includes an array of row buffers that can hold data equivalent to an

entire row of the sub-array.

Fig. 4.1 (inset) shows a DRAM bit-cell that consists of an access transistor and

a capacitor. The logic state of the cell is determined by the charge stored in the

capacitor, i.e., fully-charged state represents “1” and discharged state represents “0”.

A read (or write) operation on the DRAM cell is performed by pre-charging the bitline

(BL) to VDD/2 and subsequently activating the corresponding wordline (WL). This

results in a charge flow from the capacitor to the bitline (or vice versa). The charge

30

Row buffer

Column Mux

Bitline

Wordline

WL

B
L

DRAM bit-cell
R

o
w

 d
e

co
d

e
r

Fig. 4.1.: DRAM sub-array

sharing between the capacitor and the bitline causes for a change in the bitline voltage

which is then sensed by a sense amplifier to drive the bitline with logic “0” or “1”

depending on the logic state of the cell.

To maintain data integrity, DRAM systems require periodic refresh operations,

which consume significant energy. Spin-Transfer Torque Magnetic RAM (STT-MRAM),

has recently emerged as an alternative non-volatile memory technology for main mem-

ory design [3, 95]. In contrast to DRAMs, STT-MRAMs are non-volatile, i.e., the

data is retained even when no power is supplied. As a result, STT-MRAMs do not

require refresh operations periodically, eliminating the refresh energy overheads in

main memory. While prior efforts on approximate memory have targeted reducing

refresh energy in DRAM, we focus on reducing the access (read/write) energy making

it applicable across all memory technologies.

Motivation. Fig. 4.2 motivates approximate memory compression by quantifying

the potential for reductions in memory traffic across a suite of machine learning

benchmarks (workload details are provided in Section 6.3). These benchmarks use

multi-dimensional arrays of native data types (i.e., char, short, int, etc.). The base-

line implementations were already optimized to use the smallest data types possible

without impacting application quality. Next, we identified data structures amenable

to approximation, and for each such data structure, determined a maximum permis-

31

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

Fr
ac

ti
o

n
 o

f
re

si
lie

n
t

d
at

a

Bitwidth

IMGSEG

EYE

MLP-C

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
ed

 d
at

a
tr

af
fi

c Original Traffic Reduced Traffic

(b) Bitwidth distribution for resilient data(a) Opportunity to reduce memory traffic

Fig. 4.2.: Motivation for approximate memory compression

sible error magnitude for its elements such that application quality was maintained

within 1% of the baseline. Using techniques described in this paper, the precision

of each 32-byte memory block was reduced to the minimum that satisfied the error

magnitude. With this approach, we observed (Fig. 4.2(a)) that it is possible to lower

memory traffic by up to 3.5× (2.5× on average). Fig. 4.2(b) presents, for three rep-

resentative benchmarks, the distribution of bitwidths to which elements in various

memory blocks can be compressed.

These results underscore the significant opportunity available for reducing mem-

ory traffic by approximating data structures in a fine-grained manner, well below the

precision granularities supported in software. However, the key challenges in tapping

this potential are: (i) how do we support fine-grained approximation in hardware?,

(ii) how will the reduced precision translate to reduced off-chip memory traffic?,

and (iii) how can applications benefit from approximate memory compression with-

out significant increase in programming complexity? We address these challenges by

enhancing the memory controller to transparently perform fine-grained, dynamic pre-

cision scaling and packing/unpacking of memory blocks, and by proposing a software

abstraction and runtime framework to minimize programmer effort.

32

Fig. 4.3.: Approximate memory compression: Overview

4.3 Approximate Memory Compression

Fig. 4.3 provides an overview of a system with approximate memory compres-

sion, with the accompanying hardware and software enhancements. A quality-aware

memory controller interfaces to a standard memory (e.g., DRAM) and provides the

ability to compress and decompress different memory regions to different accuracy

levels. The software enhancements consist of an interface to specify approximation-

tolerant memory regions and a runtime quality control framework that regulates ac-

curacy constraints on each of these memory regions to meet a given application-level

quality. In this section, we discuss the approximate compression scheme followed by

a description of the hardware and software enhancements.

4.3.1 Approximate Compression Scheme

Consider a block to be written to memory that comprises a set of fixed-size scalar

elements (e.g., 8-bit, 16-bit or 32-bit). Let us also suppose that an accuracy constraint

is provided for this block that specifies the maximum error that may be incurred in

each element during compression. For example, Fig. 4.4 shows an 8-byte uncom-

pressed memory block that consists of eight unsigned 1-byte integers, and the max-

imum error magnitude that may be incurred in compressing each element is 2. The

33

proposed approximate compression scheme analyzes the values in the uncompressed

memory block to determine two key parameters — the number of MSB bits (M) and

LSB bits (L) that may be truncated while satisfying the specified accuracy constraint.

Such a bi-directional precision scaling scheme exploits both the lower numerical sig-

nificance of LSBs and the higher likelihood of MSBs being zero or sign-extended1.

Since most applications demonstrate significant heterogeneity in the values of M and

L across memory blocks, we determine the values of M and L at runtime in the mem-

ory controller on a per-block basis, and embed them as a header in the compressed

memory block itself. In addition, we also store two padding bits (PL and PM) that

are used to fill in the LSB and MSB values during decompression. In the example

of Fig. 4.4, the 1-byte elements can be compressed to 4-bits each, with an additional

byte to store the header (M , L, PM , PL). Consequently, the entire block can be

compressed to 5 bytes, resulting in a savings of 3 bytes. In practice, memory accesses

cannot be performed in fractional block sizes; therefore, we compress n blocks to k

blocks where n and k are integers2 and n > k.

Fig. 4.4.: Approximate compression scheme

To decompress a compressed block, we use the header to determine the (M , L,

PM , PL) parameters used in compression. Accordingly, the compressed data elements

1For signed data values, we exclude the sign bit from being truncated.
2We found that n ≤ 8 and k ≤ 2 captures most of the opportunity while limiting the complexity of
the compression and decompression logic.

34

are padded with L LSBs of value PL and M MSBs of value PM (excluding the sign

bit for signed data). Fig. 4.5 shows the decompression of the compressed block from

Fig. 4.4. In this case, 2 LSBs and MSBs for each element are set to “0” to obtain the

uncompressed block.

Fig. 4.5.: Approximate decompression scheme

4.3.2 Quality-aware Memory Controller

Fig. 4.3 presents the design of a quality-aware memory controller that realizes the

approximate compression scheme described above. The controller is enhanced with:

(i) A Quality table that specifies approximate memory regions and their associated

error constraints, (ii) A Precision control unit that performs the compression and

decompression, and (iii) An Address mapping table that converts the addresses of

uncompressed memory blocks3 to the addresses of compressed blocks in main memory.

In the following paragraphs we discuss these components in detail.

Quality table. In order to perform compression in a quality-constrained manner,

the memory controller requires a mechanism to identify the memory blocks that are

amenable to approximation. We propose a small, fully-associative quality table for

this purpose. As shown in Fig. 4.3, each entry in the quality table includes: (i) an

approximate memory region, or a memory address range that stores approximation-

3The processor and other hardware components that are behind the memory controller are oblivious
to the compression.

35

resilient data (ii) the data type associated with the specified address range, e.g.,

signed 8-bit, unsigned 16-bit etc., and (iii) the error constraint (e.g., maximum error

magnitude) for memory locations within the range. On each write, the memory block

address is compared with the address ranges present in the quality table. In case of

a match, the corresponding error constraint and data type are used to compress the

memory block. If no matching entry exists, the block is written to memory as is.

For a read request, in case of a match, the quality table indicates the data type of

the elements in the compressed block. The data type is then used to appropriately

decompress the block read from memory. Since the quality table has a very small

number of entries (8 in our implementation), it does not introduce significant area,

power, or performance overheads.

Precision control unit. The precision control unit (PCU) performs compression

and decompression of memory blocks using the proposed scheme. The PCU takes the

data type and error constraint from the quality table, and a read/write control signal

(RdWr) as inputs.

During a write operation, the PCU determines the number of MSB bits (M) and

LSB bits (L) that can be dropped for each element in the uncompressed block without

violating the error constraint. It also determines the padding values (PL and PM)

to be used for the LSB and MSB bits. The PCU includes a small write buffer (8

entries in our implementation) that holds memory blocks that need to be written to

main memory. The PCU packs multiple consecutive blocks into a smaller number of

compressed blocks depending on the compression ratio achieved by the chosen (M ,

L) and, subsequently, issues writes to main memory.

During reads, the PCU uses the compression parameters (M , L, PM , PL) from

the header within the compressed block, as well as the data type of the elements in

the block (from the quality table). The compressed block is decompressed using the

technique described in Section 5.5.2. The resulting decompressed blocks are stored in

a small fully-associative read buffer (8 entries in our implementation). During sub-

sequent read operations, the incoming address is compared with all the read buffer

36

entries in parallel for a hit/miss. If this results in a buffer hit, the matching un-

compressed block is directly read from the buffer, thereby avoiding a main memory

access.

Address mapping table. A key challenge with the proposed compression scheme

is that it modifies the addresses at which blocks are stored in memory. This is

further complicated by the fact that different compression ratios may be used for

different blocks based on their error constraints and data values. We enhance the

address generation logic already present in memory controllers with an address map-

ping mechanism that seamlessly translates an uncompressed main memory address

to the corresponding compressed location in main memory. Specifically, we introduce

an address mapping table as shown in Fig. 4.3, in which each entry consists of: (i)

the start and end address of a contiguous uniformly compressed region (CUCR) in

which memory blocks are compressed with the same ratio, and (ii) the compression

ratio for the CUCR.

Fig. 4.6.: Address mapping in the proposed design

Fig. 4.6 illustrates the proposed address mapping scheme. Blocks B0, B1, ...,

B2k−1 form a CUCR with a compression ratio of 2, while blocks B2k, B2k+1, ...,

BM−1 have a compression ratio of 3. When compressed block C0 (corresponding to

B0 and B1) is written to memory, an entry is created in the address mapping table

with the address of the first and the last uncompressed block (0x10 and 0x11) and a

compression ratio of 2 (i.e., n = 2 and k = 1). If successive addresses are compressed

with the same ratio, the address mapping table entry is simply extended (in the

37

example, this happens until location 0x200 for B2k−1). However, if the address is not

contiguous with an existing range in the table, or if the compression ratio is different

(in the example, block Ck corresponding to uncompressed blocks B2k, B2k+1, B2k+2

has a compression ratio of 3), a new entry is allocated in the table. Fig. 4.3 lists the

address mapping table entries at the end of compression for all the blocks illustrated

in this example. Note that the start address of each CUCR is the same as its physical

main memory address. For any block within the CUCR, its offset from the start

address is simply scaled by the compression ratio. Therefore, compression results in

unused locations in the compressed address space (shaded in gray) at the end of each

CUCR4.

During memory reads, the address mapping table entries are compared with the

incoming read address to obtain the CUCR address range and the compression ratio.

The CUCR start address and the compression ratio are used along with the input

read address to compute the physical main memory address.

4.3.3 Software Support for Approximate Memory Compression

In order to minimize the programmer effort required to utilize approximate mem-

ory compression, we propose a simple interface that can be used to identify data

structures that are resilient to approximation, and a runtime quality control frame-

work (QCF) that automatically determines the data structure-level error constraints

so as to maintain the target application quality.

Identifying approximate memory regions. Most workloads contain a mix of

resilient data structures that can be approximated and sensitive data structures that

cannot tolerate approximations. Therefore, it is essential to identify and selectively

approximate the former. Adopting a similar philosophy to many previous efforts in

approximate computing, we introduce a function set approximate memory that the

programmer can call (as shown in Fig. 4.7) to indicate a memory region that can be

4Our objective is to reduce memory traffic rather than overall memory footprint. This allows us to
greatly simplify the address translation between compressed/uncompressed blocks.

38

Fig. 4.7.: Modified application with the runtime quality control framework (QCF) for

approximate memory compression

approximated. This function creates an entry in the quality table, which is exposed to

software through memory-mapped registers in the quality-aware memory controller.

Runtime Quality Control Framework. Fig. 4.7 shows the structure of an appli-

cation modified to utilize the proposed QCF. The programmer initializes the QCF by

calling function init qcf to register the application kernel (app kernel), a quality

function (Q fn) written by the programmer that evaluates quality by comparing two

arrays of outputs produced by app kernel, and the target application-level quality

constraint (Q target). In addition, as discussed above, the programmer identifies

memory regions that can be approximated by calling set approximate memory. The

application also reports each input processed by the application kernel to the QCF

by calling the set processed input function, details of which are shown in the right

half of Fig. 4.7.

The QCF modulates the error constraints for the approximate memory regions

by interleaving two phases: (i) an exploration phase, in which it dynamically learns

new values of the error constraints for each memory region, and (ii) an exploitation

phase, where the system operates with the learned error constraints to improve mem-

ory system efficiency. Fig. 4.8 summarizes the operation of these phases over time

at a high-level. The exploration phase, realized within the set processed input

function as shown in Fig. 4.7, is periodically invoked at a specified learning in-

39

Initialize QCF and
set approximate
memory regions

Exploration phase
• Re-execute app kernel with no approximation
• Evaluate app-specified quality-function
• Adjust DS-level accuracy constraints in Q-table

Exploitation phase
• Execute with approximate compression

Learning intervalInputs

Fig. 4.8.: Timeline for different phases in QCF

terval (LEARN INTVL). For each input processed during this phase, the QCF re-

executes app kernel without any approximation (i.e., setting the error constraints

to 0 for all approximate memory regions), and records the output produced with

and without approximation. At the end of the exploration phase (when train inp

= NUM LEARN INP), Q fn is called to compare the recorded outputs and evaluate

application-level quality. The evaluated quality (Qtrain) is compared against two

thresholds (LT and UT) derived from the specified target quality (Q target) to de-

termine whether quality needs to be improved or relaxed. Specifically, the error

constraints are reduced or tightened by δ, the smallest granularity at which precision

scaling is beneficial for approximation. The QCF ranks approximate memory regions

based on their access counts (tracked by the memory controller) and employs a greedy

approach to select a memory region and tighten or loosen its error constraints. To

avoid oscillatory behavior of reduction and increase in error constraint for a region,

the QCF caps how often the constraint for each approximate memory region may be

updated.

4.4 Experimental Methodology

In this section, we describe the experimental setup and application benchmarks

used to evaluate the proposed approximate memory compression technique.

40

4.4.1 Experimental setup

To evaluate the proposed technique, we simulate a general-purpose processor sys-

tem integrated with different main memory technologies. We also designed an FPGA

prototype system to demonstrate the feasibility of the proposed concepts in hardware.

Table 4.1.: System configuration

Processor Core x86, in-order processor, 2 GHz

L1 I/D-cache 32KB/32KB, direct-mapped, 32B line size

L2 unified cache 256KB, 8 way-set associative, 32B line size

Cache latency L1: 2-cycle, L2: 6-cycle

Memory Cntrl.
close-page policy, FR-FCFS with queuing model,

16-entries RD and WR queues

Memory Params

1 channel, 64-bit I/O

DDR: DDR3-1600, 4Gb, 1KB page-size

LPDDR: LPDDR3-1600, 4Gb, 1KB page-size

STT-MRAM: DDR3-1600, 256Mb, 512 bit page-size

General-purpose processor system. We model the proposed quality-aware mem-

ory controller in NVMain [96], which is then integrated as a model for the main

memory system in the gem5 architectural simulator [97]. Table 5.2 shows the system

configuration used in the evaluation. The DDR3 and LPDDR3 timing and power

parameters for the evaluation were obtained from Micron‘s datasheets [98, 99]. We

also estimate the benefits of our proposal with STT-MRAM, an emerging non-volatile

memory technology for main memory design, using the timing and power character-

istics of the recently offered 256Mb DDR3 Spin-Torque MRAM module from Ever-

spin [100]. The energy and performance overheads of the proposed hardware enhance-

ments were also reflected in our experiments.

41

Multimeter

Stratix IV
GX FPGA

SODIMM
DDR3 DRAM

Current Sensing
SODIMM Extender

Fig. 4.9.: FPGA prototype system for the proposed scheme

FPGA prototype. Fig. 4.9 shows the prototype system using a Stratix-IV GX

FPGA development board. It consists of a Nios-II processor [101] running at 266.67

MHz that interfaces with a Hynix 1GB DDR3 DRAM module through a high-

performance UniPHY DDR3 DRAM controller [102]. The off-chip memory access

latency in our system was 100 processor cycles. We modified the UniPHY DRAM

controller to implement the proposed approximate memory compression technique.

The area and power overheads for the proposed enhancements in the memory con-

troller were found to be ∼3.9% and ∼4.3%, respectively. To measure the power

consumed by the DRAM, we used an SODIMM extender with an in-built current

sensing resistor and measured the voltage drop across the resistor using a high pre-

cision multimeter. We utilized a performance counter in the Nios-II processor to

measure application execution time.

4.4.2 Benchmark applications

Table 5.3 lists the benchmarks, the associated algorithm, and the datasets used in

our experiments along with the metric used to evaluate output quality in each case.

42

Table 4.2.: Application benchmarks for approximate memory compression

4.5 Experimental Results

This section presents the results of various experiments that demonstrate the

benefits of the proposed approximate compression scheme across a range of system

architectures.

4.5.1 System performance benefits

Fig. 4.10 summarizes the improvements in application execution time achieved us-

ing the proposed quality-aware memory controller in the x86 processor-based system

across different main memory technologies. In our evaluation, we consider three dif-

ferent baseline main memories: (i) a DDR3 DRAM system, (ii) an LPDDR3 DRAM,

and (iii) an STT-MRAM DDR3 main memory. The execution time for each bench-

mark is normalized to the corresponding baseline design with no memory compression.

43

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
. E

xe
cu

ti
o

n
 t

im
e


DDR3 LPDDR3 STT-MRAM DDR3

DIGIT IMGSEG REAL EYE OCR CLAS MLP-C LeNet-5 HDR Text-CL GeoMean

Baseline

Fig. 4.10.: System performance improvements across different memory technologies

with approximate memory compression

Across all benchmarks, approximate memory compression lowers the execution time

by up to 8.5% (5.2% on average) for a negligible loss (average 0.3%) in application-

level quality compared to the baseline DDR3-based system. For the LPDDR3 and

the STT-MRAM DDR3 system, the average performance benefits further increase to

5.4% and 9.3%, respectively. The benefits in performance are primarily due to the

reduction in main memory traffic, resulting in less data being written to or read from

main memory. Note that, the extent of performance improvement for each application

depends on its memory latency sensitivity and also the total memory intensity. For

instance, the benefits in performance for a subset of compute-intensive benchmarks

(DIGIT, IMGSEG and LeNet-5) are much lower than the other benchmarks across

different memory technologies. The benefits for the STT-MRAM DDR3 system is

higher since the memory latency is higher in case of STT-MRAMs.

4.5.2 Memory energy improvements

Fig. 4.11 illustrates the main memory energy savings obtained using approximate

memory compression over the three baseline memory systems. For the DDR3 system,

we achieve energy benefits ranging from 1.06× to 1.34× (average of 1.18×) for an

average 0.3% loss in output quality. The energy benefits further extend to 1.16×–

44

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
. D

R
A

M
 E

n
er

gy
  DDR3 LPDDR3 STT-MRAM DDR3

DIGIT IMGSEG REAL EYE OCR CLAS MLP-C LeNet-5 HDR Text-CL GeoMean

Baseline

Fig. 4.11.: Main memory energy benefits across various memory technologies with

approximate memory compression

2.57× (average of 1.52×) and 1.24×–3.88× (average of 2.0×), for the LPDDR3

and STT-MRAM systems, respectively.

Fig. 4.12.: Main memory energy breakdown across different memory technologies

with approximate memory compression

We next present a breakdown of different energy components, viz., read, write and

idle energy5, that contribute to the main memory energy. Fig. 4.12 shows the main

memory energy breakdown for each benchmark across the three memory technologies,

i.e., DDR3, LPDDR3 and STT-MRAM DDR3, with and without memory compres-

sion. For the baseline DDR3 system, read, write and idle energies respectively consti-

tute 13.8%, 0.1%, and 86.1% of the total DRAM energy consumption. In this case,

the idle energy is substantially higher primarily due to the high background/steady-

state power consumption of the DDR3 DRAM module. In contrast, the LPDDR3 and

the STT-MRAM based main memories that consume much less standby power com-

5The idle energy comprises of both refresh energy and the background peripheral circuit energy.

45

pared to DDR3 DRAM, have the read, write and idle energy fractions as 47.3%, 0.1%,

52.6% and 86.9%, 6.1%, 7.1%, respectively, across all benchmarks. Note that, the

idle energy fraction in STT-MRAM based DDR3 is even lower due to the non-volatile

nature of DRAM cells, resulting in the refresh energy being completely eliminated

for the STT-MRAM based DRAM module. On the other hand, the write energy

fraction in STT-MRAM DDR3 is much higher because of the high write energy in

STT-MRAMs. On average, we achieve 2.5× and 1.7×, reduction in read and write

energy, across all memory technologies. The read and write energy benefits are pre-

dominantly due to fewer read and write accesses to main memory with approximate

memory compression. The average idle energy benefits vary across memory technolo-

gies, with 1.07× for the STT-MRAM based DDR3 system, 1.1× for the standard

DDR3 memory system, and 1.18× for the LPDDR3 system. The improvements in

idle energy are largely dependent on the reduction in execution time. However, it also

depends on the fraction of the runtime spent in the memory state when any bank

is open (active-idle) and when all the banks are closed (precharge-idle). This is be-

cause DDR3 and LPDDR3 memories have considerable difference in their active-idle

and precharge-idle power with the active-idle power being significantly higher than

the precharge-idle power. Hence, for a subset of benchmarks, i.e., DIGIT, OCR,

LeNet-5 and HDR, the benefits in idle energy extend even beyond the reduction in

execution time due to a reduced number of main memory accesses arising from the

proposed memory compression approach. Consequently, a higher fraction of the total

runtime is spent in the precharge-idle state, which in turn lowers the total idle energy.

Fig. 4.13 presents a breakdown of the execution time spent in different memory states

(active-idle, precharge-idle, and RD/WR), for one such application, corresponding to

both the cases, i.e., with no memory compression and when subject to approximate

memory compression. As shown in the figure, the ratio of runtime spent in active-idle

and precharge-idle states dramatically changes from 3.3 to 0.3 as as result of the

proposed memory compression, leading to significant benefits in idle energy.

46

23.22%

76.53%

0.25%

75.73%

22.99%
1.28%

Active-Idle

Precharge-Idle

RD/WR

Fig. 4.13.: Runtime breakdown for the DIGIT application executing on a DDR3

DRAM system

4.5.3 FPGA prototype system results

We next present the energy and performance results measured on the FPGA

prototype system designed to demonstrate the feasibility of the proposed concepts.

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e


Baseline Design ~0.7% Quality loss ~2% Quality loss

DIGIT OCR EYE IMGSEG MLP-P MLP-C HDR LeNet-5 GeoMean

Fig. 4.14.: System performance improvement in the FPGA prototype with approxi-

mate memory compression

Execution time benefits. Fig. 4.14 shows the normalized execution time of the

benchmarks for different application-level output quality constraints, using the pro-

posed design. The execution times are normalized to a baseline design with a memory

controller that does not perform memory compression. As shown in the figure, ap-

proximate memory compression results in a reduction of up to 15.4% (average of

47

11.5%) in execution time for a small degradation in output quality (average 0.7%).

Relaxing the quality target to an average 2% degradation, results in a reduction of

up to 17.9% (average of 12.8%) in execution time. The execution time benefits are

higher than the x86 processor-based system discussed above since the NIOS-II core

only supports an L1 data and instruction cache in contrast to the x86 processor with

two levels of cache hierarchy, leading to increased memory latency sensitivity of ap-

plications in this case. Note that the reduction in execution time directly translates

to a reduction in full-system energy consumption.

DRAM Energy Benefits. Fig. 4.15 plots the normalized DRAM energy consump-

tion for the two application-level quality targets. The energy values are normalized

to the baseline design described above. As shown, approximate memory compression

results in energy improvements of 1.23× to 1.38× (average of 1.28×) for an average

0.7% loss in output quality. For a more relaxed quality target (2% average degradation

in output quality), we observe energy benefits of up to 1.4× (average of 1.32×).

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
ed

 D
R

A
M

 E
n

er
gy

 

Baseline Design ~0.7% Quality loss ~2% Quality loss

DIGIT OCR EYE IMGSEG MLP-P MLP-C HDR CNN GeoMean

Fig. 4.15.: DRAM energy savings in the proposed FPGA system

DRAM Energy Breakdown. To provide further insight, we also show a breakdown

of the DRAM energy consumption into read, write, and idle energy. Fig. 4.16 illus-

trates this breakdown for our benchmarks at the two quality levels. We observe that

read, write, and idle contribute 16%, 0.2%, and 83.8% respectively, to the total DRAM

energy in our baseline design. The average read and write energy benefits from the

48

proposed approximate compression scheme are 5.03× and 1.85×, respectively, for

∼0.7% degradation in output quality. The read energy reductions are higher since

the benefits of approximate memory compression are amplified by the read buffer,

which enables decompressed data to be reused. Writes do not see this benefit, since

in our benchmarks writes exhibit much lower locality than reads. The idle energy

reduction is between 1.1× and 1.2×, which is directly proportional to the reduction

in execution time. Note that, the idle energy measurements in our case does not fully

reflect the fine-grained transition between the different memory states as discussed in

Section 4.5.2. For a more relaxed quality specification (∼2%), we obtain even higher

compression ratios, that translates to average benefits of 7.11×, 2.62×, and 1.15×

in read, write, and idle energy, respectively.

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
al

iz
ed

 D
R

A
M

 E
n

er
gy

 

Idle Rd Wr Idle Rd Wr Idle Rd Wr

DIGIT OCR EYE IMGSEG MLP-P MLP-C HDR LeNet-5

Baseline Design ~0.7% Quality loss ~2% Quality loss

Fig. 4.16.: DRAM energy breakdown in the proposed FPGA system

4.5.4 Comparison with a uniform approximation scheme

Next, we demonstrate the effectiveness of using fine-grained precision scaling for

compression at runtime, as proposed in this work, by comparing it with a simpler

design-time approach where all the memory blocks are uniformly approximated us-

ing precision scaling. Fig. 4.17 shows the normalized memory traffic and the loss

49

in application-level quality for different data structure (DS) level error bounds for

two different applications. As seen in the figure, we obtain a superior memory traf-

fic and application-level quality when compared to uniform approximation, clearly

demonstrating the benefits of the proposed approach.

0

1

2

3

4

5

6

7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.05 0.1 0.15 0.2
%

 a
p

p
lic

at
io

n
 q

u
al

it
y

lo
ss

 

N
o

rm
. m

em
o

ry
 t

ra
ff

ic
 

Max DS Error 

0

5

10

15

20

25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2.5 5 7.5

%
 a

p
p

lic
at

io
n

 q
u

al
it

y
lo

ss
 

N
o

rm
. m

em
o

ry
 t

ra
ff

ic
 

Max DS Error 

Uniform traffic
AxDRAM traffic
Uniform quality
AxDRAM quality

MLP-C EYE

Fig. 4.17.: Memory traffic benefits over uniform approximation

4.5.5 Comparison with a lossless compression scheme

Fig. 4.18 compares the normalized memory traffic observed using the proposed

scheme with a lossless bi-directional compression scheme discussed in Section 5.5.2,

wherein the error constraints were set to 0. Across all benchmarks, we obtain a 2.35×

reduction in memory traffic compared to the lossless scheme for an average 0.6% loss in

application-level quality, highlighting the ability of the proposed compression scheme

to achieve even higher compression ratios by exploiting the error-resilience of the

applications.

4.5.6 QCF in action: Case study

Fig. 4.19 shows a timeline with the proposed QCF in action for the OCR appli-

cation, wherein the DS-level error bound is self-tuned at runtime so as to maintain

the target application-level output quality. It also shows the evaluated quality for the

50

0

0.2

0.4

0.6

0.8

1

IMGSEG DIGIT OCR EYE MLP-P MLP-C HDR

N
o

rm
. m

e
m

o
ry

 t
ra

ff
ic

 

Lossless ~0.6% Quality loss

Fig. 4.18.: Memory traffic reduction over a lossless compression scheme

inputs processed during each exploration phase and the upper and lower threshold

used to determine the appropriate action, i.e., relax or tighten the DS-level error

constraint. In this case, we deliberately vary the application-level quality target from

95% to 85% (t = 110 in Fig. 4.19). The runtime framework is able to successfully

adapt to this change by suitably modulating the DS-level error constraints. It also

illustrates the ability of the framework to recover from an undershoot in quality (t =

130 in Fig. 4.19).

4.6 Summary

This chapter discussed approximate memory compression that exploits the error

resilience of applications to reduce memory traffic, and thereby improve energy and

performance. We designed a quality-aware memory controller that transparently re-

alizes approximate memory compression, making it applicable across a wide range

of computing systems. We utilized a dynamic, fine-grained precision scaling mech-

anism to achieve high compression while providing control over output quality. We

proposed a programmer interface and a runtime framework to enable applications to

use approximate memory compression. Our experiments on a diverse range of main

51

0.00

2.00

4.00

6.00

8.00

%
 D

S
Er

ro
r

0.60

0.70

0.80

0.90

1.00

1.10

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

%
O

u
tp

u
t

Q
u

al
it

y

Time 

95%
85%

0.84

0.89

0.94

0.99

1.04

R
ef

. I
/p

. Q
u

al
it

y
Train Qual.
U. Thresh.
L. Thresh.

Fig. 4.19.: Output quality vs. time for the OCR benchmark

memory systems along with measurements from an FPGA prototype suggest that

approximate memory compression achieves substantial improvements in performance

and energy.

52

5. APPROXIMATE MEMORY DESIGN FOR

ENERGY-EFFICIENT SPINTRONIC MEMORIES

5.1 Introduction

Spin transfer torque magnetic RAM (STT-MRAM) has gained significant inter-

est in recent years as a potential post-CMOS memory technology [3, 4, 103]. STT-

MRAMs offer high density and near-zero leakage, making them promising candidates

for on-chip memories. Although STT-MRAMs greatly reduce leakage energy com-

pared to CMOS memories, their overall energy efficiency is still limited by the energy

required for spin-transfer torque (STT) switching in writes and reliable single-ended

sensing during reads. Several promising research efforts have been devoted to im-

proving the energy efficiency of STT-MRAM at the device, circuit and architecture

levels [31, 32, 36–41, 103]. Representative techniques at the architecture level include

utilizing a hybrid STT-MRAM-CMOS memory hierarchy that directs frequently writ-

ten blocks to the CMOS region [36,37], and eliminating redundant writes by tracking

and updating only changed bits [38,39]. While we share the objective of these efforts,

we propose the use of a different approach – approximate storage – to achieve energy

efficiency for STT-MRAMs.

Several emerging applications that have fueled the demand for larger on-chip mem-

ories (multimedia, recognition, data mining, search, and machine learning, among

others) also exhibit intrinsic resilience to errors, i.e., the ability to produce results

of acceptable quality even with approximations to their computations or data [9].

Approximate computing exploits this characteristic of applications to derive energy

or performance benefits using techniques at the software, architecture, and circuit

levels [10, 11, 104, 105]. Most previous work in approximate computing focuses on

processing or logic circuits. Previous efforts on approximate storage [56,65,67–69,74]

53

can be classified based on the level of the memory hierarchy that they target. Some

focus on secondary storage and main memory [56, 69, 106] using techniques that are

complementary to our work. Others focus on application-specific memory designs [74].

A few efforts [65, 67, 68] explore approximate cache architecture with CMOS mem-

ories, using techniques such as skipping cache loads on misses. Complementary to

these efforts, we explore new approximate memory design techniques that exploit the

specific error-energy trade-offs that manifest in STT-MRAMs to improve energy effi-

ciency of both read and write operations. Further, we propose a quality-configurable

memory array, that allows reads and writes to be performed at varying quality levels

based on application requirements. We also illustrate its utility as a scratchpad in

the memory hierarchy of a domain-specific vector processor and as an L2 cache in the

context of a general purpose processor through suitable architectural and software

enhancements.

A key challenge in approximate computing is how to manage the approximations

so as to obtain the most favorable energy vs. application quality trade-off. To this

end, we explore a combination of various circuit- and architecture-level techniques

that yield significant energy benefits for small probabilities of read, write and reten-

tion errors. We explore: (i) Approximation through partial reads/writes, where reads

(or writes) are to selected least significant bits are ignored, (ii) Approximation through

lower read currents, wherein a lower read current is used for sensing, thereby trad-

ing off decision failures for read energy benefits, (iii) Approximation through skipped

writes, wherein writes to a cache block are skipped at run-time if they are similar

to its current contents, (iv) Approximations through incomplete writes, wherein the

write current, write duration or both are lowered, resulting in an increased probability

of write failures, and (v) Approximations through skipped refreshes, wherein refresh

operations to the low retention blocks are selectively skipped.

Next, employing the above mechanisms, we design a quality-configurable memory

array (QcMem), in which read and write operations to each word in the memory can

be performed at various predefined levels of quality at runtime. Towards this end, we

54

enhance QcMem with low-overhead circuits to dynamically modulate the read/write

current (and duration), and ignore read/write to each data bit.

To evaluate the benefits of QcMem, we suggest two different on-chip memory

designs. First, we propose STAxPad (Spintronic Approximate scratchpad), a scratch-

pad in the memory hierarchy of a domain-specific vector processor [105]. To expose

STAxPad to software, we enhance the load/store instructions in the ISA of the pro-

grammable vector processor with quality fields that denote the error tolerable during

their execution. We also develop an auto-tuning framework that utilizes gradient

descent search to determine the quality fields of the load/store instructions in a given

application program so as to minimize energy for a desired application output quality.

Finally, we propose STAxCache (Spintronic Approximate Cache), an STT-MRAM

based approximate L2 cache for general purpose processors that preserves the full

flexibility of a conventional cache, while enabling different levels of approximation

to different parts of a program’s memory address space. STAxCache utilizes a het-

erogeneous cache organization that is composed of low retention and high retention

cache ways, each of which is in turn designed using QcMem. We enhance the cache

replacement policy to exploit the heterogeneous cache ways for achieving lower write

energy. To provide control over the errors introduced during approximations, the

STAxCache architecture also consists of: (i) a quality table that captures the quality

requirements for the regions of address space and also tracks the number of refreshes

skipped for each region, (ii) a quality-aware cache controller that enforces the speci-

fied quality constraints. We introduce a software interface that enables programmers

to specify quality requirements with minimal effort, and ISA extensions that allow

these requirements to be conveyed to the underlying cache hardware.

In summary, the key contributions of this work are:

� We explore the use of approximate storage in STT-MRAMs to improve their

energy efficiency. We identify and characterize mechanisms at the circuit- and

architecture- level that enable disproportionate energy benefits at the cost of

small probabilities of read, write or retention errors.

55

� We utilize the above techniques to realize a quality-configurable memory (QcMem)

array, in which data can be stored at varying levels of accuracy based on the

application requirements. We demonstrate the utility of the proposed QcMem

array as a scratchpad in the context of a programmable vector processor and

as an L2 cache in the context of general purpose processors.

� We introduce extensions in the ISA and propose various mechanisms that expose

the QcMem array to software.

� We develop a device-to-architecture simulation framework to evaluate our pro-

posal. Our experiments on a wide range of machine learning benchmarks reveal

1.67× improvement in scratchpad energy and 1.44× improvement in cache en-

ergy over an iso-capacity STT-MRAM based on-chip memory for < 0.5% loss

in output quality.

The rest of the chapter is organized as follows. Section 5.2 motivates the need for

approximate storage in STT-MRAMs. Section 5.3 outlines the approximation tech-

niques explored and describes the design of QcMem. Section 5.4 details the proposed

ISA extensions and the auto-tuning framework for STAxPad. Section 5.5 describes the

STAxCache architecture, the ISA enhancements and the software support required

to expose it to programmer. Section 6.3 details the experimental methodology, and

the results are presented in Section 5.7. Section 5.8 concludes the chapter.

5.2 Case for Quality-configurable memories

Figure 5.1 compares the different energy components of an iso-capacity cache

(1MB) designed using SRAM and STT-MRAM [8, 39]. The energy components are

normalized to the corresponding energy components in SRAM. As shown in the fig-

ure, STT-MRAM greatly lowers the leakage energy compared to SRAM owing to the

non-volatile nature of STT-MRAM. However, the benefits in leakage energy do not

extend to the read and the write energy, thereby limiting the overall energy-efficiency

56

0 1 2 3 4

Leakage

Read
Energy

Write
Energy

Normalized Energy

STT-MRAM

SRAM

Fig. 5.1.: Energy comparison SRAM vs. STT-MRAM

of STT-MRAM. To address the read and write energy inefficiencies, we propose to use

approximate storage that trade-offs energy at the cost of approximations in read/write

operations. However, not all read/write operations can be approximated, therefore,

it is important to have control over the errors introduced during memory operations.

We next motivate the need for controlled approximations during read/write opera-

tions through two representative benchmarks – eye detection and optical character

recognition. These benchmarks were compiled to the ISA of a domain-specific vector

processor [105]. We employ an error injection framework similar to [9] in order to

identify the memory instructions amenable to approximation and introduce errors in

the read/written data. The errors introduced in each instruction were random in na-

ture yet bounded to be within a predetermined maximum error magnitude constraint.

Subsequently, for different application-level quality targets, the error magnitude con-

straint was varied to obtain the number of memory instructions in the benchmark

that can be approximated at runtime.

Figure 5.2 illustrates the fraction of vectored load/store dynamic instructions in

the ISA that can be executed in an approximate manner vs. the loss in application

output quality for different instruction-level error magnitude constraints. As shown in

the figure, we observe a significant increase in the fraction of instructions that can be

executed approximately with bounded instruction-level error magnitude for any given

57

0

20

40

60

80

0 2 4 6 8

%
 A

x.
 v

e
c.

 ld
/s

t
in

st
rs


% Loss in application quality 

< 0.05%

< 0.25%

< 1.5%

arbitrary

Eye Detection (GLVQ)

0

20

40

60

80

0 4 8 12

%
 A

x.
 v

e
c.

 ld
/s

t
in

st
rs


% Loss in application quality 

< 0.25%

< 2.5%

< 5%

arbitrary

Optical Character Recognition (KNN)

7x @ 1.5%

Fig. 5.2.: Fraction of instructions subject to controlled approximations for two differ-

ent applications.

application output quality. Specifically, for the eye detection benchmark, consider the

case when the loss in application quality is 1.5%. In this case, for an error magni-

tude constraint of < 0.05% at the instruction-level, the fraction of instructions that

can be approximated increases by 7× compared to the case when errors of arbitrary

magnitude are introduced. For this benchmark, with an instruction-level bound of <

0.05%, across different output quality targets, we observe an increase of 7×–10× in

the percentage of load/store instructions that can be executed approximately. Simi-

larly, for the optical character recognition benchmark case, we observe an increase of

10×–18× in the fraction of memory instructions that can be subject to approxima-

tions for an error bound of < 0.25% of the maximum value when compared to the

arbitrary error scenario. These results underscore the significance of introducing ap-

proximations in a controlled manner for maximizing the opportunity to approximate

memory instructions, which in turn reduces the overall memory access energy.

A key challenge for approximate storage in a cache is that data that can tolerate

varying levels of approximation (or no approximation at all) can be loaded into the

same cache line at different times. Figure 5.3 shows the fraction of error resilient

cache blocks that are observed over time for an image segmentation application when

executing on an x86 processor with a 2MB L2 cache. In this case, we utilize two levels

58

0.4

0.45

0.5

0.55

0.6

0.65

0 10 20 30 40 50 60 70 80 90 100

Fr
ac

ti
o

n
 o

f
re

si
lie

n
t

b
lo

ck
s


Time 

Fig. 5.3.: Variation in the fraction of resilient blocks in a cache over time with image

segmentation application.

of approximation, i.e., accurate and approximate, and dynamically capture the cache

utilization of the application during execution using a cycle-accurate simulator. We

observe a significant variation in the number of error-resilient blocks present in cache

at different times with the fraction of blocks varying from 47% to 62% in a given time

duration (e.g. between t = 10 and t = 20). Therefore, we require hardware-based

mechanisms that provide control over the approximations at runtime for such a cache

while still retaining the full flexibility of a conventional cache.

In this chapter, we address these challenges by designing a quality-configurable

spintronic memory that has the ability to modulate the extent to which read/write

operations are approximated at runtime, and by proposing mechanisms in hardware

and software to provide control over the approximations such that a beneficial energy

vs. quality trade-off is obtained at the application level.

5.3 Quality configurable spintronic memory

In quality configurable memories, each read and write operation can be performed

at different predefined levels of accuracy (and energy) based on the requirements

of the application. To enable quality configurable memory design in the context of

spintronic memories, we explore different circuit-level techniques that yield a favorable

59

energy vs. quality trade-off. These mechanisms are then utilized at the array-level

to realize quality configurable read/write operations. In this section, we describe the

approximation mechanisms and the array-level design in detail.

5.3.1 Approximation techniques

To obtain energy efficient reads and writes in STT-MRAM, we explore five dif-

ferent approximation mechanisms that are discussed in detail in the following para-

graphs.

1E-13

5E-12

3E-10

1E-8

6E-7

3E-5

2E-3

8E-2

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

16 32 64 128 256

Er
ro

r
p

ro
b

ab
ili

ty
 

Er
ro

r
p

ro
b

ab
ili

ty
 

(IAP + IP)/2 (µA) 

Decision failure Disturb failure

Disturb
errors

Decision
errors

Critical
switching

current (Ico)

Nominal
read (Inom)

I < Inom I > Inom

Fig. 5.4.: Read decision and disturb trade-off for an STT-MRAM bit-cell

Approximations through incorrect read decisions. The logic state stored in the

bit-cell is determined by measuring the effective resistance of the cell (MTJ + access

transistor). This is achieved by driving the voltage across BL and SL to a predefined

nominal value (Vread) and utilizing a sense amplifier to compare the current flowing

through the bit-cell with a reference current. Now, if Vread is decreased, the difference

in magnitude of current through the MTJ when a 0 vs. 1 is stored also decreases.

Consequently, with a reduced sensing margin, process variations in the MTJ or in

the access transistor have an increased chance of leading to incorrect values at the

60

sense amplifier output, resulting in an increased probability of read errors, as shown

in Figure 5.4. Further, decreasing Vread improves the energy consumption of the read

operation. Quantifying this trade-off, Figure 5.5(a) shows the energy vs. decision

error probability for an STT-MRAM bit-cell obtained by performing Monte-Carlo

simulations under process variations (σ/µ for tox = 2% and MTJ area = 5%) [107]

based on the modeling framework described in Section 6.3. We find that modulating

Vread yields considerable benefit in energy, e.g., over 2X improvement for an error

probability of ∼10−5.

1E-6

1E-5

2E-5

3E-5

4E-5

5E-5

6E-5

300 400 500 600

R
e

a
d

 e
rr

o
r

p
ro

b
.
 

Read energy (fJ) 

1E-7

1E-5

1E-3

1E-1

1 6 11 16 21 26 31

W
ri

te
 e

rr
o

r
p

ro
b

.


Write energy (pJ)  (a) (b)

Fig. 5.5.: Energy vs. error probability trade-off for an STT-MRAM bit-cell

Approximations through read disturbs. In contrast to the previous technique,

in this case, Vread is increased. This allows for the duration of read to be decreased,

resulting in improved performance. However, as shown in Figure 5.4, when the read

current (Iread) nears the critical switching current (Ico) of the MTJ, the value stored

in the bit-cell gets erroneously flipped with a probability (Pdisturb) given by Equa-

tion 5.1 [4].

Pdisturb = 1− exp (− tread/τ0 exp (∆ (1− Iread/Ico))) (5.1)

In Equation 5.1, τ0 refers to the attempt period (∼ 1ns) and ∆ is the thermal stability

factor of the MTJ. Although the above technique enables faster reads, we note that

read operations are seldom a performance bottleneck for STT-MRAM memories,

hence we typically operate in a regime of lower Vread, which results in lower energy

consumption.

61

Approximations through incomplete writes. The third mechanism focuses on

approximate writes, where we leverage the stochastic nature of STT switching. For

a successful write, a current higher than the critical switching current of the MTJ is

injected for a specific duration. If either the write current or duration is lowered, then

the stochastic nature of STT switching, captured analytically by the Sun model [108],

results in writes to fail with a probability given in Equation 5.2.

Pwrite = exp (− twr/〈tsw〉) (5.2)

In the above equation, twr is the write pulse duration, 〈tsw〉 is the average switching

delay of the bit-cell which is inversely proportional to the write current [4]. Leveraging

this insight, we propose lowering the write duration below 〈tsw〉 in order to obtain

approximate writes. Naturally, a lower write duration leads to improved write energy.

Figure 5.5(b) quantifies this trade-off by plotting the write energy vs. error probability

obtained through bit-cell simulations.

Approximations through skipped writes or partial reads/writes. This tech-

nique focuses on approximate reads as well as writes, wherein we either ignore an

entire write operation or specific bits (particularly, a few least significant bits or

LSBs) while reading/writing a memory word. Unlike SRAM, STT-MRAM does not

suffer from the half-select problem; therefore, bit lines and source lines corresponding

to the LSBs may be gated to achieve energy savings. During approximate reads, the

gated LSBs are simply set to 0 in the value returned from the bit-cell. In contrast, for

approximate writes, we first perform a read to compare the difference in magnitude

of the incoming data with the previously stored value. Depending on the error con-

straint, we either choose to skip the entire write operation while retaining the stale

value, or ignore write to LSBs, preserving the previously stored values to these bits,

in turn saving considerable energy.

Approximations through lower retention time. Another key design metric of

an STT-MRAM bit-cell is the retention time, which is the duration for which the data

stored in an idle bit-cell is retained. Lowering the retention time reduces the write

62

energy required to switch the MTJ, since it decreases Ico for the MTJ. However, it

also makes the bit-cell more prone to retention failures due to thermal disturbances.

5.3.2 Quality-configurable array design

In this section, we describe the quality configurable STT-MRAM based memory

array (QcMem) that utilizes the approximation mechanisms described above. Fig-

ure 5.6 shows the array-level view of the proposed design. A QcMem is associated

with an additional input (Q) that denotes the quality desired during each access. A

quality decoder interprets the quality input and generates control signals (QRD/QWR)

that regulate the overall quality of memory access. In order to regulate the quality,

the memory is provisioned to either access the different bits in a word with vary-

ing error probabilities or skip the access to these bits to allow partial read/write as

discussed above. Accordingly, as shown in Figure 5.6, the quality control signals for

each column (i) of the memory are generated individually by the quality decoder logic

(QRD[i]/QWR[i]) based on the quality input. Note that the quality control signal cor-

responding to each column is a multi-bit value i.e., each bit in the memory can be

either gated to enable partial read/write or accessed with multiple predefined error

probabilities. Towards this end, the peripheral circuits present in each column are

enhanced with low-overhead logic (< 0.5% of the total area) to gate the corresponding

bitline and sourceline of the bit-cell or modulate the bit-cell read current (or write

duration) as described below.

Peripherals for read quality configurability. Read peripherals in an STT-

MRAM array typically include a read bias circuit to drive the read voltage to the

desired value and a sense amplifier for comparing the resultant current. Figure 5.6

shows the transistor-level schematic of the read peripheral circuit enhanced to mod-

ulate the read current between two quality levels (i.e., accurate and approximate)

or skip the read. It consists of two current mirrors with differently sized transistors

and a gating transistor; one of the current mirrors is sized for nominal read current

63

Address

RD/WR

Q
u

ality
D

eco
d

er
A

d
d

ress D
eco

d
er

QWR

Q
C

 R
ead

/W
rite

Perip
h

erals

Bit[1]

SA

Q
C

 R
ead

/W
rite

Perip
h

erals

Bit[N-1]

QRD[N-1]

QWR[N-1]

SA

BL Driver

GND

VDD

RD WR

SL Driver

Iref

Bit[0]

QRD[0] QWR[0]

WLM

WL0

BL0 SL0

SA

Q>Counter Logic

qcWR

WRRD

QRD

VDD

Q[1] Q[1]

Q[1]
Q[1]

Q[1] Q [1]

qcRD Q[0]

Fig. 5.6.: Quality-configurable memory array

flowing through the MTJ while the other is downsized for a substantially lower read

current that results in an increased probability of read errors. The read peripheral

circuit is also provisioned with a gating transistor that skips the read to the bit. The

quality control signal (QRD) generated by the quality decoder dynamically selects

between the current mirrors or the gating transistor, resulting in the bit lines being

either clamped to different voltages or disabled altogether, during read operation.

This scheme can be easily extended to support additional quality levels for each bit

line by using additional current mirrors and enabling a subset of them based on the

desired quality.

64

Peripherals for write quality configurability. In the case of writes, the number of

cycles for which the write current is supplied to the bit-cell is modulated1. We achieve

this by using a counter and a comparator circuit whose threshold for comparison

(QWR) is determined by the quality decoder.

5.4 STAxPad: Scratchpad with QcMem

To evaluate the benefits of QcMem array at the application level, we integrate

it as a scratchpad in the memory hierarchy of a vector processor described in [105].

Vector processors can efficiently execute applications from several important domains

by exploiting their fine-grained data parallelism and regular data access patterns. The

following subsections describe the vector processor architecture and the architectural

enhancements required to utilize STAxPad.

5.4.1 Vector processor architecture

Figure 5.7 shows a block diagram of the processor architecture. It consists of

a three tiered hierarchy of processing elements: (i) 2D-array processing elements

(2d-PEs) arranged as a two dimensional array, (ii) 1D-array processing elements (1d-

PEs) located along the borders of the 2D array, and (iii) a scalar processing element

(scalar-PE).

The memory hierarchy of the vector processor is also shown in Figure 5.7. The

processor contains the following micro-architectural registers: (i) 2 sets of streaming

memory elements (SMs), which are First-in-First-out (FIFO) buffers of equal length,

used for feeding input data operands to the 2D- and 1D-processing elements, (ii)

One accumulator register in each 2d-PE that holds its result and can be scanned

out to memory, (iii) An accumulator and a register file in each 1d-PE, and (iv)

A general-purpose register file in the scalar PE. Besides these registers, the vector

processor has an on-chip data and instruction memory used to load (store) data

1When the number of cycles is zero, write to the bit is ignored.

65

SM SM SMScalar
Regs Ex. Unit

Scalar-PE

SM

Streaming Memory

INST.

MEM

Memory

Interface

SM

SM

ACC

1D-Regs

1d-PE
ACC

ALU

2d-PE

ALU

Decode & Control

STAxPad

qcStore 1D/2D-ACCQCMEM

qcLoad QCMEMSM

qcLoad QCMEM1D-REG

Load/Store QCMEMSCALAR-REG

1d-PE

Fig. 5.7.: Vector processor architecture for STAxPad evaluation

and instructions to (from) the processing elements. Figure 5.7 shows the load/store

instructions in the ISA of the vector processor. The ISA comprises of two classes

of memory instructions, viz. scalar load/store instructions to/from the scalar-PE

registers and vector load/store instructions to the SM, 1d- and 2d-PE registers. A

key feature of the architecture is that it provides a natural separation of computations

and data that are resilient to approximations from those that are not. The 1d- and

2d-PEs typically operate on data amenable to approximations, while the scalar PE is

used to perform control operations such as loop control, pointer arithmetic etc. that

need to be accurate. We leverage this property and approximate only the memory

regions accessed by the vector load/store instructions. Furthermore, we allow software

to specify which vector loads/stores may be approximated, and by how much.

5.4.2 Quality-aware load/store instructions

We introduce the notion of quality-aware memory instructions that expose the

inherent resilience of the applications to the QcMem. Towards this end, we extend

66

the vector load/store instructions with quality fields that are used to express the

required accuracy with which these memory instructions should be executed. We next

discuss the proposed instruction format and the manner in which approximations are

performed using these memory instructions.

1 1 1 0 0 1 0 0 qField

S0

S1

SN

Data

Vector

Fig. 5.8.: Example illustrating qField mapping to bit groups

Instruction format. We associate a quality field with every vector load/store in-

struction to indicate the maximum expected error rate2 that can be tolerated during

the corresponding read/write operations. For example, a vector load instruction is

represented as:

qcVecLoad destReg, address, length, qF ield (5.3)

The quality field (qF ield) is specified as a vector of expected error rate, wherein each

element represents an expected error rate for a group of bits within the data word.

The number of bit groups is an important design parameter. On one extreme highly

fine-grained quality configurability may be achieved by having each group contain

one bit. However, doing so presents significant control overheads to store and decode

the quality field within the instruction. Therefore, we perform bit-significance driven

approximation, wherein we group bits based on their significance and associate a

quality level with each group. Figure 5.8 shows an example illustrating how different

quality levels are associated to the various bit groups. In this example, the qF ield is

2While we consider the error metric as expected error rate for illustration, other metrics such as
expected error magnitude is also possible.

67

an 8-bit vector with each 2-bit group representing a different quality level (denoted by

the different shades in color). Consider a data vector comprising of scalar elements

S0, S1, ..., SN with each scaler element having a bitwidth of 12, being read using

the proposed load instruction. Accordingly, each quality level is associated with the

corresponding 3 bits of S0, S1, ..., and SN respectively, in a bit-significance manner

as shown in the figure. In our experiments, we use 4 bit groups in the quality fields

of load/store instructions.

K-bits

1 1 1 0 0 1 0 0

RD/WR

K-bits K-bits

qField

Quality

decoder

RD/WR 0 1

QRD,QWR[N-1:N-K]

HW/SW Interface

qc-Peripherals

Bit-cell N-1 N-K Bit 0Bit 1K-1N-2KN-K-1

RD/WR

QRD,QWR[(N-K)-1:N-2K]

QRD,QWR[K-1:0]

Fig. 5.9.: Conceptual overview of quality translation in a QcMem array

Quality translation in a QcMem array. Figure 5.9 provides a conceptual overview

of quality translation in the QcMem array. The quality decoder takes the quality field

(qF ield) and the read/write signal (RD/WR) as inputs and generates appropriate

quality control signals (QRD, QWR[N − 1: N −K], ..., QRD, QWR[K − 1: 0]) for each

group of K data bits. Depending on whether it is a read or write operation, the

quality translation in the decoder happens differently. This is because the energy vs.

quality trade-offs for both these operations vary significantly.

In summary, quality-aware load/store instructions are used to capture the qual-

ity requirements of memory operations at the instruction-level. Using appropriate

68

decoding logic, we translate these quality specifications into actual hardware knobs,

thereby enabling us to exploit the capabilities of QcMem arrays for energy efficiency.

5.4.3 Auto-tuning instruction-level quality fields

Most applications, including the ones that are highly amenable to approximate

computing, have a mix of sensitive data that is not tolerant to approximations, and

resilient data that may be approximated. The ability to distinguish between resilient

and sensitive data in memory is a major challenge in using approximate storage. Also,

the quality field for each quality-aware load/store instruction in a program needs to

be determined such that the energy benefits are maximized for a given output quality

constraint. We propose an automatic tuning framework in order to address these

challenges.

69

Algorithm 1 Tuning the quality knobs for approximation

Input: Application program and dataset: Prog, DataSet

Q-E trade-off curves for read/write: QEc

Application quality target: Qtarget

Output: Quality-fields for each memory instruction: QFields

1: Begin

2: MemInstlist: List of memory instructions in Prog

3: QFields = 100% ∀ instructions ∈ MemInstlist

4: while (MemInstlist 6= ∅) do

5: Elist ← Energy of instructions in MemInstlist

6: Icand = instruction with max(EList)

7: Icand.QField = QFields[Icand] // Get quality field

8: Icand.FOMlist: List of FOMs with Q-subfields relaxed

9: for each Qsub: m bits in Icand.QField do

10: QsubNew = get next qlevel(QEc, Qsub)

11: Ecurr = get energy(QEc, Qsub, LD/ST)

12: Enew = get energy(QEc, QsubNew, LD/ST)

13: FOM = (Ecurr − Enew)/(Qsub −QsubNew)

14: Icand.FOMlist = Icand.FOMlist ∪ FOM

15: end for

16: Icand.QField = update Q-subfield with max Icand.FOMlist

17: QFieldsnew = update Icand.QField in QFields

18: Qcurr = get app quality(Prog, DataSet, QFieldsnew)

19: if (Qcurr > Q target) then

20: QFields = QFieldsnew

21: else

22: remove Icand from MemInstlist

23: end if

24: end while

25: return QFields

26: End

70

Algorithm 1 uses a gradient descent approach to obtain the quality fields for all

the memory instructions. The inputs are the application program and dataset (Prog,

DataSet), the energy vs. quality trade-off curves for the different read and write

schemes (QEc), and a target quality constraint (Qtarget) that bounds the degradation

in application-level quality.

We first identify all the memory instructions in the application (MemInstlist)

and initialize their quality fields to 100% (lines 2-3). Next, the algorithm iteratively

finds out the appropriate quality fields for each instruction until none of the memory

instructions in the application can be further approximated (lines 4-24). In each

iteration, the following steps are performed. First, the energy consumed by each

memory instruction in the application is estimated based on the energy model of

the vector processor (line 5). We next identify the most energy-intensive memory

instruction (Icand) in the application (line 6) and introduce approximations in it.

Since, a set of bits (m bits) in the quality field determines the significance of the error

for a bit group (i.e. group of K data bits), we compute a figure of merit (FOM) for

each of them using the following parameters (line 13): (i) the additional benefits in

energy obtained by approximating the K bits (line 11 and 12), and (ii) the expected

error rate (line 10). Depending on the instruction type (load/store), these parameters

are directly obtained from the corresponding energy vs. quality trade-off curves. Next,

each set of m bits (Qsub fields) in the quality field of Icand is ranked using its figure

of merit (with the help of Icand.FOMlist) and the highest one is chosen for target

quality evaluation (line 16). If the quality constraint is met (line 19), the algorithm

updates the quality fields for the candidate instruction (line 20) and proceeds to the

next iteration (lines 4-24). On the other hand, if the target quality is violated, the

instruction is removed from the MemInstlist (line 22) and lines 4-24 are repeated.

Thus, the above approach enables us to automatically set the desired quality fields

for memory instructions so as to maximize the overall energy benefits under a given

output quality constraint.

71

5.5 STAxCache: Cache design with QcMem

In this section, we describe the spintronic approximate cache (STAxCache) ar-

chitecture that allows for different levels of approximation to different parts of a

program’s memory address space. Figure 5.10 provides an overview of the STAx-

Cache architecture. STAxCache consists of a data array realized using the proposed

QcMem array, and a tag array that is not subject to approximation3. The data

array is further composed of heterogeneous cache ways with varying retention levels

(ways with lower retention time offer more energy-efficient writes). To allow control

over which data is approximated and by how much, STAxCache also includes: (i)

A Quality table that captures the data structure-level quality specifications of the

application and (ii) A Quality-aware cache controller that regulates the quality of

each cache access based on the entries in the quality table. The following subsections

provide a detailed description of STAxCache.

5.5.1 Quality Table

STAxCache requires a mechanism to capture quality constraints in a manner that

can be related to cache block-level reads (or writes). To this end, we introduce a

quality table, as shown in Figure 5.10. Each entry in the quality table contains a

memory address range and the desired quality for accesses to addresses within the

range, e.g., permissible magnitude of error that may be incurred when a location in

the specified range is accessed. On each cache access, we compare the cache block

address with the address ranges present in the table. If there is a match, we utilize

the corresponding quality for reading (or writing) the block. We modulate the knobs

present in the QcMem to achieve the desired read/write quality. In order to avoid

significant impact on cache performance, we overlap the quality table look up and the

subsequent quality decoding operation with the translation lookaside buffer (TLB)

3We focus on data array since it consumes a dominant part of cache energy. Furthermore, it is
difficult to bound the impact of errors in the tag array.

72

Q
Q-decoder

V
A

D
D

R

-

RdWr

WrData
Q-knobs

Way:MWay:1

Q[R-1:0]Q[N:N-R]

==

Hit/Miss

TAG ARRAY

TLB

Low Retention waysHigh Retention ways

V
A

D
D

R

PA
D

D
R

qcRD/qcWR Peripherals

Way:N
==

Quality Table

StartAddr EndAddr QNref

RetRet

Quality-aware
cache controller

Q

SL0

WLn

BL0

WLn-1

BLn SLn

WL0

 Partial reads or lower Iread

 Skip/partial writes or lower twrite

 Skip refresh operations

Approximation
Techniques

Max

Min
approximation

Refresh

QCMEM

Fig. 5.10.: STAxCache organization

access and the following tag comparison operation. Our experiments indicate that the

overheads of the additional quality table access on the cache performance is negligible

(< 0.3%).

5.5.2 Retention Approximations in STAxCache

Since most applications contain a mix of resilient and sensitive data, simply re-

ducing the retention time for the entire cache is not acceptable. Therefore, we design

a hybrid QcMem data array that comprises of both high retention and low reten-

tion ways, as shown in Figure 5.10. While we found only two levels of retention to

be sufficient in practice (and desirable due to the lower design and manufacturing

complexity), the concept extends to a larger degree of heterogeneity.

73

Refresh requirements. Cache blocks stored in the low retention ways are subject

to a significant increase in the probability of errors beyond the retention time (TRet)

owing to the exponential nature of retention failures [109]. Simply allowing retention

errors is not always acceptable. While we preferentially allocate cache blocks with

lower quality requirements to the low retention ways, data with very tight quality

constraints (or data that cannot be approximated) may also be allocated to the

low retention ways to ensure high cache utilization and low misses. Moreover, the

lifetimes of cache blocks in low retention ways may vary considerably within and across

applications. This imposes the need for periodic refresh operations, particularly when

the lifetimes of the blocks are closer to (or exceed) TRet. Refreshing all the valid cache

blocks in the low retention ways after each Tret would ensure no retention errors,

but leads to a significant number of refreshes. STAxCache addresses this issue by

skipping refreshes for cache blocks that have been written due to a store instruction

in the recent past. To enable this, we extend the tag array with only one retention

bit per cache block to track the blocks stored in the low retention ways that have

been written to or “self-refreshed” since the last refresh operation. Let us consider

an example to demonstrate the proposed refresh mechanism. Figure 5.11(a) shows a

2-way set associative cache that consists of a high retention way and a low retention

way. For this example, we need one retention bit per block as shown in the figure.

Suppose at T = 0, two cache blocks (B0 and B1) are inserted in the low retention way.

At T = TRet/2, the retention bits associated with all the cache blocks are checked.

In case the bit is set to logic ‘0’, we update it to logic ‘1’, indicating that the block

is due for a refresh operation in the next update cycle, i.e., T = TRet, as shown in

Figure 5.11(a) for B0 and B1. Next, suppose a write operation is performed on B0

between T = TRet/2 and T = TRet. In this case, the retention bit is reset to logic ‘0’.

Hence, B0 no longer requires a refresh operation in the following update cycle. On

the other hand, if the retention bit is set to ‘1’, we perform the refresh operation for

B1, as shown in Figure 5.11(a) at T = TRet, and reset the bit to ‘0’.

74

 Q
 B1
 B2
 B3 N3

Nref AddrR

2 Q1

Q2

Q3

B0

N2

T = 0 T = TRet/2 T = TRet

0

1
0

0
0

Write

B0

0

1
0

1
0

0

1
0

1
0

T = TRet/2

Time

Ret Bit LowRet HighRet

T = TRet

0

1
0

1
0

Q Table
No refresh
for B1

>

NTh= 2

T = 2TRet

Refresh
for B1

>

Q Table

(a) Timeline for refresh operations before approximation

(b) Timeline for refresh operations after
approximation

0

0
0

0
0

NTh= 2

 Q
 B1
 B2
 B3

N2

N3

Nref AddrR

0 Q1

Q2

Q3

B1 B1

B0
0

1
0

1
0

B1

B0

B1

B0
B0

B1

B0

B1

B0

B1 B1

B0

Fig. 5.11.: Timeline showing refresh operations

Approximations through skipped refreshes. Despite exploiting the self-refreshes

to lower the refresh overheads, the energy consumed by the refresh operations still

constitute a significant fraction of the total cache energy. In order to minimize the

refresh energy further, we propose to skip refreshes to the blocks that are amenable

to approximations. However, it is critical to have control over the retention errors

introduced in the stored blocks as a result of the skipped refreshes. Towards this

end, we extend the quality table with an additional counter (NRef) for each entry

that tracks the number of refreshes skipped for a given address range on each update

cycle. Figure 5.11(b) illustrates the proposed concept through a timeline for the cache

organization discussed earlier. As shown in the figure, at T = TRet and T = 2TRet, the

addresses corresponding to B0 and B1 which are due for refresh (retention bits are

set to ‘1’), are compared against the address ranges in the quality table. In case of a

matching entry, the corresponding NRef is compared to a refresh threshold (NTh) that

is determined from the corresponding block-level quality constraint. If NRef exceeds

(or equals) NTh, we perform refreshes to each of the low retention blocks contained

in the address range (B1 at T = 2TRet), else we skip those refreshes (B1 at T = TRet

75

and T = 3TRet/2) and increment NRef by 1. If a matching range does not exist in

the table, the refresh operations are performed, as shown in the figure for B0 at T =

TRet and T = 2TRet.

5.5.3 Quality-aware cache controller

In this section, we describe the quality-aware cache controller (QACC) that uti-

lizes the QcMem array to achieve read and write energy efficiency while preserving

the quality constraints obtained from the quality table. Figure 5.10 provides an

overview of the proposed QACC. The cache controller involves an additional control

input (Q) that represents the desired quality for each cache access. QACC regulates

quality in a bit-significance driven manner by dividing each word in the cache block

into bit groups, and associating an approximation scheme for each group. This ap-

proach enables a fine grained control over the errors introduced during reads/writes.

Specifically, a quality decoder takes the quality signal (Q) from the quality table and

the read/write control signal (RdWr) as inputs and generates values of quality knobs

(Q[N − 1 : N − R], ..., Q[R − 1 : 0]) for each group of R bits of the words in the

block. The QACC also takes the refresh control signal (Refresh) and produces the

refresh threshold (Nth) based on the Q input, to determine when the refreshes can be

skipped as discussed above. Since the energy vs. quality trade-offs widely vary across

the different schemes, a systematic approach is required to obtain these knobs such

that the energy savings are maximized for a given quality bound. In the following

paragraphs, we describe how the quality knobs are obtained.

Read quality modulation. Figure 5.12 summarizes the approach used at design

time to obtain the read quality knobs. Consider the surface plot of the block-level

quality (Qblk) for the different quality (and energy) configurations of the two schemes

– partial read and reducing the read current (Q1/E1, Q2/E2), as shown in the figure.

However, for a given block-level quality Q, there exist several (Q1, Q2) configurations

that achieve the same quality (Q) although with significantly different energies, as

76

denoted by the Q plane. Therefore, we adopt a gradient descent approach to achieve

the configuration that maximizes the energy benefits for a given Q. In each iteration,

we rank the schemes based on the additional energy savings obtained by approximat-

ing a group of R bits (also referred as a bit group) for each word and the expected

error introduced in the process. The expected error is estimated using a distribution

of resilient data elements observed during reads. Next, we choose the scheme for the

bit group with the highest ratio of energy benefits and expected error, and proceed to

the next iteration until the block-level quality constraint is not violated. The above

steps are repeated for each quality level supported by the cache.

No

E
2


Q2 q2

Q1
q1

E
1


Perform a
gradient descent
on the Q plane

Q-knobs based
on (q1,q2)

Q-decoder

Yes

Cumulative data
distribution

Q
b

lk


q2q1
Q

E
n

e
r
g

y
 

Quality levels
exhausted?

Pick a quality level

No

1 1

00

Quality
constraint
violated?

Fig. 5.12.: Read quality modulation

Write quality modulation. Figure 5.13 illustrates how the quality knob is obtained

for writes in the proposed QACC. We utilize a hybrid design time/runtime approach

to obtain the write quality knobs in the proposed QACC. We first determine if

the block-level quality constraint is satisfied when a write to the block is skipped

77

altogether (i.e., the stale value is retained). If the constraint is not violated, we skip

the write operation; else, we utilize the pre-computed knobs obtained via a similar

approach as the one discussed for reads.

-WrData

OldData

No

Yes
Skip writes

Q-decoder

Look up for the quality knobs obtained
using the design-time approach

Q-decoder

Quality
constraint
violated?

1 1

00

0 0

00

Fig. 5.13.: Write quality modulation

5.5.4 Cache insertion and replacement policy

We introduce suitable enhancements to the cache insertion and replacement poli-

cies to exploit the heterogeneous cache ways for energy efficiency. Specifically, we

employ an insertion policy that is driven by the write intensity of the incoming block.

We utilize a software-based approach similar to [110] to identify the write intensive

blocks. The identified write intensive blocks are inserted in the low retention ways,

whereas the other blocks can be inserted either in a low retention or high retention

way depending on the block being evicted. We therefore introduce a modified least

recently used (LRU) policy that evicts the LRU block within the low retention ways

for a write intensive incoming block and uses the regular LRU policy for the remaining

blocks.

78

5.5.5 ISA extension

In order to expose the intrinsic resilience of applications to the STAxCache archi-

tecture, we introduce a new instruction in the ISA that is used to identify resilient

regions in the application’s memory space, and also specify the desired quality bounds

for them. Using this instruction, we update the proposed quality table, which is in

turn used to regulate the accuracy of cache accesses.

Instruction format. Equation 5.4 shows the instruction format of the proposed

instruction. As shown in the example, the instruction specifies the start and the end

addresses associated with the resilient memory region (provided through registers

RStAddr and REndAddr) along with the maximum error bound that can be tolerated

during read, write or refresh operations.

Format: Opcode Reg1, Reg2, Reg3

Example: ldQTable RStAddr, REndAddr, RQuality

(5.4)

5.5.6 Software support for STAxCache

To reduce the programmer effort required to utilize STAxCache, we propose a

software interface that identifies the data structures that are resilient to approxima-

tion within a program, and an auto-tuning framework that appropriately modulates

the data structure-level error constraints so as to achieve the target application qual-

ity. Note that the auto-tuning framework employed in Section 5.4.3 is not applicable

for STAxCache since we evaluated STAxPad in the context of a vector processor

memory hierarchy. In this design, the number of memory instructions amenable to

approximations were much smaller compared to the memory instructions for a gen-

eral purpose processor, thereby allowing an exhaustive exploration of the entire set

of memory instructions.

Interface for approximate memory regions. We propose a programmer interface

that can be used to specify resilient data within a program. Specifically, we introduce

79

new functions that capture the permissible error bound that can be tolerated in

various cache operations for a given address range. Figure 5.14 shows an example

code snippet that uses one such function to specify the data structure-level quality

requirements in a k-means clustering application. In this example, an input array

(points) is identified for approximations using the proposed function set axLevel.

The function set axLevel takes the start and the end address corresponding to the

points array and the tolerable error magnitude as inputs, and creates an entry in the

quality table using the proposed instruction. This enables a simple interface for the

programmer to specify quality targets for resilient data structures.

int main() {
 int* points = (int*) malloc (NUM_DATA * INT_SIZE);
 set_axLevel (points, (points + NUM_DATA), Q);
 read_points (points, NUM_DATA);
 int* means = (int*) malloc (NUM_MEANS * INT_SIZE);
 ……………………………..
 ……………………………..
 while (converges) {
 find_clusters (points, means, clusters);
 compute_means (points, means, clusters);
 }
}

 void set_axLevel(int startAddr, int endAddr, int err_mag) {
 __asm__ ("movl %1, %%eax ;
 movl %2, %%ebx ;
 movl %3, %%ecx;
 ldQTable %%eax, %%ebx, %%ecx"
 : /* no outputs */
 : "a" (startAddr) , "b" (endAddr), "c“ (err_mag)
); }

Fig. 5.14.: K-means clustering application for STAxCache

Auto-tuning Framework. Algorithm 2 provides a conceptual overview of the auto-

tuning framework that automatically achieves the appropriate quality constraints for

each data structure (DS) that is resilient to approximations. The proposed framework

takes as inputs the application program (Prog), a representative training dataset

80

(TrData), a target output quality (Qtarget), and a list of data structures that can be

approximated (DSlist).

Algorithm 2 Tuning the DS-level quality constraints

Input: Application program and training data: Prog, TrData

Application quality target: Qtarget

Error-resilient data structures: DSlist

Output: List of DS-level constraints: QDSlist

1: Begin

2: δ: Granularity at which DS quality is modulated

3: QDSlist = 100% ∀ data structures ∈ DSlist
4: Elist ← count accesses to each DS in DSlist

5: while (DSlist 6= ∅) do

6: DScand = DS with max(EList)

7: QDSlist[DScand] = QDSlist[DScand] - δ

8: Qapp = get app quality(Prog, TrData, QDSlist)

9: if (Qapp < Qtarget) then

10: QDSlist[DScand] = QDSlist[DScand] + δ

11: remove DScand from DSlist

12: end if

13: end while

14: return QDSlist

15: End

The algorithm iteratively obtains the DS-level quality constraints until none of

the resilient data structures can be approximated any further (lines 5-13), while si-

multaneously ensuring the output quality bound is satisfied. Elist records an estimate

of energy consumed by each DS by counting the corresponding number of accesses in

the program (line 4). In each iteration, the following steps are performed. First, the

most energy-intensive DS (DScand) is identified in the program (line 6). Next, the

81

quality of DScand is reduced by δ, the smallest granularity chosen to modulate the

DS-level quality (line 7). The resulting application with the modulated constraint is

then evaluated subject to the target quality constraint (line 8). If Qtarget is violated

(line 9), the algorithm reverts the current quality modulation (line 10) and removes

DScand from the DSlist (line 11).

Thus, the above approach minimizes the programmer effort by automatically set-

ting the appropriate data structure quality that yields energy benefits for each appli-

cation with a target output quality constraint.

5.6 Experimental Methodology

In order to evaluate the proposed concepts, we developed a device-circuit-architecture

modeling framework. In this section, we describe the modeling framework and the

application benchmarks used in our evaluations.

MTJ Device/Array-level modeling. The STT-MRAM bit-cell was characterized

in SPICE using a 32nm CMOS transistor model and a SPICE-compatible PMA MTJ

device model based on self-consistent solution of Landau-Lifshitz-Gilbert (LLG) mag-

netization dynamics and Non-Equilibrium-Green’s Function (NEGF) electron trans-

port [111] with the device parameters shown in Table 5.1 [112]. To estimate the

array-level latency and energy of the QcMem array, we use the bit-cell characteris-

tics as technology parameters in a modified version of CACTI [113] that is designed for

STT-MRAMs. In our analysis, we also consider the additional circuit-level overheads

of the quality-configurable peripherals.

STAxPad evaluation. In order to evaluate the benefits of the STAxPad at the

system-level, we utilized a cycle accurate simulator for the vector processor discussed

in section 5.4.1. We modified the simulator to model a 1MB on-chip QcMem array

and evaluated both the application energy benefits and the output quality. In order

to estimate the overall application energy (i.e., total processor and memory energy

expended while executing the application), we synthesized the RTL implementation

82

Table 5.1.: MTJ device parameters

Saturation Magnetization (Ms) 850 emu/cm3

Damping Factor (α) 0.028
Nominal MTJ Dimension 64nm x 64nm x 1nm

Oxide Thickness (tox) 1nm
Energy Barrier 64 KBT/16 KBT
Temperature 300K

Assumed Variation (σ/μ) tox = 2%, MTJ area = 5%, transistor VT = 5%

of the processor using Synopsys Design Compiler to a 45nm IBM technology library

and used Synopsys Power Compiler to estimate the power consumption of the mapped

netlist. We also obtained memory access traces from the simulator and used them

along with the read/write energies obtained from the modified CACTI tool to compute

the total memory energy.

Table 5.2.: STAxCache system configuration

Processor Core x86, out-of-order processor, 2 GHz

L1 I/D-cache 32KB/64KB, 2 way-set associative, 64B line size

L2 unified cache 8MB shared, 8 way-set associative, 64B line size

Cache latency L1: 2-cycle, L2 read: 10-cycle, L2 write: 15-cycle

STAxCache evaluation. We model the STAxCache architecture in the architec-

tural simulator gem5 [97] and use it to evaluate the energy benefits and the impact

on application-level quality. Table 5.2 shows the processor configuration used in our

evaluation. In our experiments, we consider 4 low retention ways (with an energy

barrier of 16 KBT) for the L2 cache. We use the cache access traces from the sim-

ulator along with the array-level energies obtained from the modified CACTI tool

to estimate the L2 cache energy. We also account for the overheads in energy and

latency associated with the proposed quality table hardware in our experiments.

83

Benchmark applications. Table 5.3 lists the applications, the underlying algorithm

and the datasets that were used to evaluate our proposal. The quality metric used to

evaluate the output quality in each benchmark is also provided.

Table 5.3.: Application benchmarks for approximate storage

Application Algorithm Dataset Quality metric

Digit Recognition (SVM) Support vector machines MNIST

Classification
accuracy

(fraction of
inputs

correctly
classified)

Text Classification (TEXT) Support vector machines REUTERS

Digit Classification (CNN) Convolutional neural networks MNIST
Character Recognition (OCR) K-nearest neighbors OCR digits

Web Page Classification (Web) K-nearest neighbors Web

Eye Detection (GLVQ)
Generalized learning
vector quantization

YUV faces

Protein Structure Classification
(MLP-P)

Multi-layer perceptron Protein

Object Recognition (MLP-C) Multi-layer perceptron CIFAR-10

Image Segmentation (IMGSEG)
K-means clustering

Berkley
dataset Mean cluster

radiusOptical Character Clustering
(DIGITS)

K-means clustering OCR digits

5.7 Experimental Results

This section presents the results of various experiments that quantify the benefits

of QcMem.

5.7.1 Energy benefits of STAxPad

Figure 5.15 illustrates the improvement in total application energy achieved us-

ing STAxPad in a vector processor memory hierarchy for different target output

quality (classification accuracy) constraints. The application energy is normalized

to the completely accurate case which has the normal memory array, in which no

additional peripheral logic is introduced for quality-configurability. Across all bench-

84

marks, QcMem achieves energy benefits ranging from 9%-30% for virtually no loss

(< 0.5%) in application quality. When the quality constraints are relaxed to < 2.5%

and < 7.5%, the energy benefits further increase to 10%-32% and 14%-34% respec-

tively. On average, STAxPad obtains 19.5%, 22.3% and 28% improvement in the

total application energy for the different quality constraints.

0

0.2

0.4

0.6

0.8

1

1.2

OCR GLVQ CNN SVM MLP-P TEXT WEB MLP-C GeoMean

N
o

rm
. E

n
er

gy
 

Original < 0.5% < 2.5% < 7.5%

Fig. 5.15.: Improvement in system energy with STAxPad

We next discuss the different application energy components that contribute to the

overall energy. Across all benchmarks, we found that the memory consumes 49.7% (on

average) of the total application energy, with the read and write energies being 28%

and 22%, respectively. Although write operations consume significantly higher energy

compared to reads in STT-MRAMs, the higher numbers of reads in our applications

results in the overall energies being comparable. Figure 5.16 shows the memory energy

and its read and write energy components for all benchmarks at various application

quality constraints. The energy is normalized to the memory energy consumption

in QcMem with no approximations introduced. Across all benchmarks, we achieve

40% improvement in memory energy on average for a negligible loss in classification

accuracy. Correspondingly, we obtain 1.48× and 1.76× improvement in read and

write energy, thereby demonstrating the effectiveness of the proposed techniques in

approximating both read and write operations. For relaxed constraints (< 2.5% and

< 7.5%), we obtain even more substantial improvements in the overall memory energy

85

(45% and 55% respectively). This corresponds to 1.62× and 1.7× improvement in

read energy and 1.88× and 2.37× improvement in write energy.

0

0.2

0.4

0.6

0.8

1

1.2
N

o
rm

. M
em

. E
n

er
gy

 

OCR GLVQ CNN SVM MLP-P TEXT WEB MLP-C

Orig <0.5% <2.5% <7.5% Read Write

Fig. 5.16.: STAxPad energy breakdown

5.7.2 Energy benefits of STAxCache

Figure 5.17 shows the normalized L2 cache energy obtained using the proposed

architecture at different application-level output quality targets. The L2 cache energy

is normalized to an accurate cache with heterogeneous ways4. The energy benefits

range from 1.15× to 1.84× for a negligible loss (< 0.5%) in application-level quality

over all benchmarks. For a more relaxed quality requirement (< 3.5% degradation in

application output quality), the benefits further extend to 1.5×-2.32×. On average,

STAxCache achieves 1.44× and 1.93× improvement in energy at the two quality

levels, respectively.

We next present a breakdown of the different energy components, viz. read, write,

refresh and leakage, that contribute to the overall cache energy. Figure 5.18 shows

the breakdown for all benchmarks at the two output quality constraints (< 0.5%

and 3.5% loss in quality). For the baseline, across all benchmarks, we observe that

the read, write, and refresh energies respectively constitute 26%, 61% and 10% of

4We focus on an STT-MRAM cache designed with low and high retention ways since it consumes
lower energy than a standard STT-MRAM cache.

86

0.3

0.5

0.7

0.9

1.1

0 1 2 3 4
N

o
rm

. C
ac

h
e

 E
n

e
rg

y


% Quality loss 

DIGITS IMGSEG
OCR CNN
GLVQ TEXT
SVM MLP-P

Fig. 5.17.: Improvement in energy using STAxCache

total cache energy, with refresh overheads being as high as 48% of the total energy

in some cases. On average, we achieve 1.03× and 1.56×, improvement in read and

write energy, for < 0.5% loss in output quality. Note that, for a subset of bench-

marks (DIGITS, IMGSEG, OCR, and GLVQ), the read energy increases beyond the

baseline. This is due to the write skipping approximation technique, that involves

an additional read operation. In these benchmarks, such read operations dominate

over the original reads, thereby increasing the total read energy, but enabling an

even higher savings in write energy. For a relaxed quality bound (< 3.5%), we ob-

tain greater benefits in read and write energy, 1.29× and 2.22×, respectively. For

benchmarks with significant refresh operations (CNN, IMGSEG), we achieve 1.68×

and 2.02× improvement in refresh energy for the tight and relaxed bounds respec-

tively, illustrating the effectiveness of the proposed design in mitigating the refresh

overheads through approximations.

5.7.3 Impact on system performance with STAxCache

Figure 5.19 compares the IPC (instructions per cycle) for STAxCache at both

output quality constraints to the baseline design having no approximations. On

average, STAxCache degrades cache performance by 1.9% and 1.7% over the baseline

87

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
.

C
ac

h
e

 E
n

e
rg

y


DIGITS IMGSEG OCR CNN GLVQ TEXT MLP-P SVM

Read WriteRefreshLeakageOrig < 0.5% < 3.5%

Fig. 5.18.: Energy breakdown for STAxCache

design for the two quality levels. This degradation in performance is mainly due

to two factors: (i) the additional latency for writes that are not skipped (since we

perform a read to check whether the write can be skipped), and (ii) the overheads of

accessing the quality table during each cache access and update cycle.

0.7

0.8

0.9

1

1.1

DIGITS IMGSEG OCR CNN TEXT MLP-P GLVQ SVM GeoMean

N
o

rm
. I

P
C

 

Original < 0.5% < 3.5%

Fig. 5.19.: Performance trend with STAxCache

5.7.4 Comparison with uniform approximation

We evaluate the effectiveness of providing fine-grained quality control for different

groups of bits within each word by comparing it against a simpler uniform approach

where all the data bits in a word are read/written with the same quality. Figure 5.20

shows the error vs. quality trade-offs obtained for three different applications when

executed on the vector processor-based platform. For all the applications, the energy

88

benefits obtained using the proposed significance-based quality specification frame-

work are substantially better than the uniform approach, underscoring the need for

the proposed quality controls.

0.7

0.8

0.9

1

0.00 0.02 0.13 1.00 8.00

N
o

rm
. E

n
e

rg
y


Quality loss 

uniform

significance

MLP-C

0.6

0.8

0.9

1.1

0.01 0.05 0.28 1.69 10.13
N

o
rm

. E
n

e
rg

y


Quality loss 

uniform

significance

GLVQ

0.8

0.9

1.0

1.1

0.00 0.01 0.06 0.50 4.00 32.00

N
o

rm
. E

n
e

rg
y


Quality loss 

uniform

significance

OCR

Fig. 5.20.: Benefit of significance-based approach

5.7.5 Comparison with a single approximation scheme

We next evaluate the effectiveness of utilizing a combination of approximation

techniques as in STAxCache. We compare it against the scheme that only uses partial

reads, along with skipped and partial writes. Figure 5.21 shows the energy and output

quality trade-off obtained with different data-structure level quality constraints for

two applications. We obtain a superior energy vs. output quality trade-off with a

combination of techniques, justifying the proposed approach.

5.7.6 Energy vs. quality trade-off

We now explore the application-level energy vs. quality trade-off that can be

achieved by varying the error bounds associated with the quality-aware load/store

instructions proposed in the context of the vector processor. Figure 5.22 shows the

Q − E trade-off for two applications – SVM and MLP-P. In both cases, we achieve

substantial improvements in energy at negligible loss in quality for smaller instruction-

level error bounds. However, beyond a point, the energy benefits taper down and

89

70

75

80

85

90

95

100

0.1

0.4

0.7

1

0 0.02 0.04 0.06 0.08

A
p

p
lic

at
io

n
 q

u
al

it
y


N
o

rm
. C

ac
h

e
 E

n
e

rg
y


Max DS error magnitude 

Energy (combination)
Energy (skipping)
Output Quality (combination)
Output Quality (skipping)

50

60

70

80

90

100

0.4

0.6

0.8

1

0 0.01 0.02 0.03 0.04

A
p

p
lic

at
io

n
 q

u
al

it
y


N
o

rm
 C

ac
h

e
 E

n
e

rg
y


Max DS error magnitude 

GLVQ DIGITS

Fig. 5.21.: Comparison of energy benefits over skipping scheme

further introducing errors in memory instructions results in a sharp degradation in

output quality.

0.6

0.7

0.8

0.9

1

1.1

0 0.05 0.1 0.15 0.2 0.25 0.3N
o

rm
.

En
er

gy
/A

cc
u

ra
cy

 

Norm. Instruction error 

Energy

Quality

0.6

0.7

0.8

0.9

1

1.1

0 0.05 0.1 0.15 0.2 0.25 0.3N
o

rm
.

En
e

rg
y/

A
cc

u
ra

cy
 

Norm. Instruction error 

Energy

Qualilty

SVM MLP-P

Fig. 5.22.: Energy vs. quality trade-off for two applications by varying instruction-

level error bounds

5.8 Summary

The energy-inefficiency of STT-MRAMs pose a major challenge to their adoption

as a potential post-CMOS memory technology. In this chapter, we utilized approxi-

mate storage that leverages the intrinsic resilience of applications to improve the read

90

and write energy efficiency of STT-MRAMs. We identified various mechanisms at

the circuit and architecture level that offer disproportionate energy benefits at the

cost of small read, write or retention errors. We used these mechanisms to design

a quality-configurable memory array that can store data at varying accuracy levels

based on the application requirements. We evaluate the proposed memory array as a

scratchpad for a vector processor and as an L2 cache for a general purpose processor.

Our experiments on a wide range of recognition and search applications show that

we can achieve substantial energy benefits for negligible loss in quality.

91

6. RECONFIGURABLE CACHE ARCHITECTURE

USING DWM TAPES

6.1 Introduction

In the past several decades, the integrated circuit industry has witnessed a con-

tinuous surge in the demand for on-chip memory due to increasing data-set sizes and

the widening processor-memory gap. A growing portion of chip area and energy con-

sumption is expended in caches. Consequently, emerging memory technologies such

as spintronic memories that promise high density and low leakage power are of great

interest in cache design.

As described in Chapter 1, DWM is a spintronic memory technology that achieves

very high density and improved energy efficiency compared to CMOS and other

emerging memory technologies [6,7]. This has kindled great interest in using DWMs

to realize caches both in the context of general purpose processors [8,23,24,26,57] and

domain specific accelerators such as GPUs [21,25,58]. DWMs have a unique tape-like

structure that achieves very high density by packing several (∼10s-100s of) bits into

the domains of a ferromagnetic nanowire [6]. However, this structure also leads to

serialized accesses to the bits in each bit-cell via shift operations, resulting in higher

access latency. Fig. 6.1 shows the trade-off between cache area and average access

latency with increasing bits per tape for PARSEC and SPLASH benchmarks. As the

number of bits per tape increases, we observe a significant reduction in cache area.

However, this also increases the number of shift operations, resulting in increased

average access latency. This increased access latency for larger number of bits per

tape is a major challenge in the design of DWM-based caches.

In this thesis, we propose DyReCTape, a reconfigurable DWM-based cache that

maximally exploits the density benefits of DWM while reducing the performance im-

92

0

0.1

0.2

0.3

0.4

0.5

0

2

4

6

8

1 4 16 64

C
ac

h
e

ar
ea

(N

o
rm

al
iz

e
d

)

 A
vg

. A
cc

e
ss

 la
te

n
cy

(N

o
rm

al
iz

e
d

)


No. of bits per tape 

 Avg. acess latency Cache areaAvg. access latency

Fig. 6.1.: Average latency vs. area trade-off

pact arising from shift operations. The DWM structure provides a natural mechanism

to reconfigure cache size by varying the active number of bits per tape. DyReCTape

leverages this unique capability of DWMs to dynamically modulate cache capacity

and latency in order to improve overall system performance. In doing so, it considers

the varying cache access patterns and sensitivity of applications to cache size and

latency.

The design of DyReCTape poses two challenges: (i) the reconfiguration mecha-

nism should track the performance sensitivity of applications to varying cache size as

well as shift latency, and should respond to the dynamically changing memory access

patterns within and across applications, and (ii) transitioning across different con-

figurations of varying cache sizes involves data migration that leads to considerable

energy and performance overheads. We address these challenges through suitable

optimizations in DyReCTape.

In summary, the key contributions of this work are as follows:

� We propose the concept of a dynamically reconfigurable DWM-based cache that

mitigates the performance penalty from shifts by modulating the bits per tape

based on workload characteristics.

93

� We present a reconfigurable cache architecture consisting of (i) an address

remapping scheme that seamlessly supports different logical-to-physical map-

pings of cache blocks for various cache configurations, and (ii) a history-based

reconfiguration policy that dynamically tracks cache statistics such as the in-

curred penalties due to shifts and misses, and based thereupon, adapts cache

capacity to the varying requirements within/across applications.

� We propose two key optimizations to further improve the performance of DyReC-

Tape: (i) In order to minimize the overheads associated with data migration

during reconfiguration, we propose a lazy migration policy by leveraging the

non-volatility of DWMs. (ii) In order to further boost the performance, we

utilize the inactive portion of cache after reconfiguration as a victim cache.

� We perform a detailed evaluation of DyReCTape using a device-to-architecture

modeling framework. Across benchmarks from the SPLASH and PARSEC

benchmark suites, DyReCTape achieves a 19.8% and 11.7% improvement in

performance on average over a traditional SRAM cache and a static DWM-based

cache, respectively.

The rest of the chapter is organized as follows. Section 6.2 describes the DyReC-

Tape architecture along with various optimizations explored to further improve

performance. Section 6.3 explains the experimental methodology used to evaluate

DyReCTape, and the results are presented in Section 6.4. Finally, Section 6.5 sum-

marizes the chapter.

6.2 DyReCTape Architecture

Fig. 6.2 shows the overall architecture of DyReCTape. We follow the basic

DWM-based cache organization described in [8,24] — the tag array is designed with

1-bit DWM cells to avoid variable latency tag lookups, and the multi-bit DWM-based

data array is organized into randomly addressable tape clusters [8]. We assume a bit-

94

interleaved mapping of cache blocks to each tape cluster, such that a cache block can

be accessed in parallel after the appropriate number of shift operations is applied to

all the tapes in a tape cluster. We refer the interested reader to [8, 24] for further

details, and focus on the architectural enhancements for reconfiguration.

For reconfiguration, DyReCTape also includes: (i) address remapping logic that

supports different logical-to-physical mappings for various cache configurations, (ii)

data migration logic that controls the movement of cache blocks while transitioning

across multiple cache configurations, and (iii) a reconfiguration controller, which uses

cache statistics such as number of shifts incurred and miss rate to initiate cache re-

configuration. In the following subsections, we provide a detailed description of the

DyReCTape architecture and different optimizations explored to maximize perfor-

mance.

Reconfig shift bits

RControl
Remap logic

==
Hit/Miss

Shift controller

Modified

Index bits

Shift R/W

Data

Hit/Miss

Clk

MigrateEn

Migration

controller

Clk

>

RControl

Thres

Reconfiguration

controller

Address remapping

logic

Data migration logic

MigrateEn

MigWindow

RControl

Tag+

Decode bits

Address
Tag bits

Tag+ Shift bits Decode bits

Index bits

Logical mapping

Migration Buffer

Acesses

Statistics

Data

array

Tag

array

Tape cluster

Migrate path

Fig. 6.2.: DyReCTape organization

6.2.1 Reconfiguration mechanism

DyReCTape involves dynamically varying the cache capacity by modulating the

bits per tape. Let us consider an example to demonstrate how the reconfiguration is

95

achieved. Fig. 6.3(a) shows a 32 entry direct-mapped cache that consists of 4 tape

clusters with each cluster storing 8 cache blocks (8 bits/tape). In order to access a

cache block in this design, the index bits are decomposed into decode and shift bits.

The decode bits are used to select the tape cluster to which a cache block is mapped,

and the shift bits are used to identify the location of the cache block within the tape

cluster. For this example, we need 2 decode bits for identifying the cluster number

and 3 shift bits for accessing the cache block within a cluster, which is also shown in

Fig. 6.3(a). Suppose we wish to reduce the cache capacity by half, i.e., reconfigure the

cache as a 16 entry direct-mapped cache, we reduce the number of cache blocks stored

per tape cluster to 4 (4 bits/tape). Fig. 6.3(b) shows the reconfigured cache state with

the inactive portion of the cache highlighted in gray. We choose such a reconfiguration

strategy because: (i) it lowers the number of shifts thereby improving cache latency,

and (ii) it retains the spatial locality associated with data blocks residing in the active

region of cache. We now require 2 decode bits and 2 shift bits for accessing a cache

block in the reconfigured state. Furthermore, determining hits/misses would require

a wider tag (Tag+) which is composed of the original tag bits and the MSB of the

original shift bits. In summary, it is necessary to have a suitable address remapping

scheme in order to access a cache block from different reconfigured states.

Address remapping logic: In this work, we devise an addressing mechanism that

can seamlessly support the different logical-to-physical mappings of cache blocks that

manifest under various cache capacity states in a reconfigurable cache. This logical

mapping is shown in Fig. 6.2. The address remapping logic automatically performs

such a translation of an input address depending on the current cache configuration.

As illustrated in Fig. 6.2, the inputs to the address remapping logic are the address

for the cache block to be accessed and a control signal indicating the current cache

configuration. It produces the modified index bits used to access the tag array, the

decode bits for choosing the tape cluster and the modified shift bits, used to access

the cache block in the reconfigured tape cluster. In this addressing scheme, we design

the tag array to support the widest tag possible, as determined by the smallest cache

96

capacity that is supported by DyReCTape, and use it to identify hits/misses for all

possible cache sizes. Note that, the area and energy overheads to enable a wider tag

array for our implementation are negligible and the redundant comparisons do not

impact the correctness of tag lookups.

(a) Before reconfiguration: 32 sets

(b) After reconfiguration: 16 sets

Fig. 6.3.: Reconfiguration overview

6.2.2 Reconfiguration policy

In this section, we describe the policy used to dynamically reconfigure the cache

capacity in DyReCTape. Our reconfiguration policy considers the following cache

statistics: (i) effective number of shifts, (ii) shift latency, (iii) miss latency, and (iv)

effective miss rate. We divide the program execution into intervals that contain equal

numbers of memory accesses, and compute the cumulative shift and miss penalties

97

in each interval in order to determine reconfiguration actions, i.e., expand or shrink.

Equation 6.1 and 6.2 shows the shift and miss penalties in the ith interval of program

execution.

CSPi =
∑

j
Hij ∗NSij

∗ Tshift (6.1)

CMPi =
∑

j
(1−Hij) ∗ Tmain (6.2)

In these equations, CSPi denotes the cumulative shift penalty due to shift operations

in the ith interval. Hij is a Boolean variable that indicates if the jth access in interval

i is a hit/miss, NSij
is the numbers of shifts incurred during the jth access and Tshift is

the time required to shift the tape by one position. CMPi represents the cumulative

miss penalty in the ith interval and Tmain is the main memory latency. We compare the

shift and miss penalties with a moving window average of their history to determine

whether they are increasing or decreasing.

Fig. 6.4 illustrates the reconfiguration policy, which is based on the increasing/de-

creasing trend of CSP and CMP. Suppose that the prior reconfiguration action was an

expand. If the increase in shift penalty outweighs the benefits of lower miss penalty

in the current interval, we infer it as a degradation in cache performance and revert

the expand action. On the other hand, if the decrease in cumulative miss penalty

outweighs the corresponding shift penalty, the expand action is repeated. The condi-

tions for improvement and degradation (shown in the table of Fig. 6.4) are exactly the

opposite for a prior shrink operation. Note that, due to time-varying memory access

characteristics, we might occasionally observe an effective increase or decrease in both

shift and miss penalties. We therefore introduce thresholds (α, β) to determine the

dominant factor amongst the two and use them to guide reconfiguration actions. In

scenarios where we cannot determine the dominating penalty, the prior configuration

is retained. In order to avoid frequent reconfiguration actions, we introduce three

confidence states associated with every increase/decrease action, viz. zero, weak and

strong. Depending on the history of improvements/degradation over their previous

98

average values, we transition into one of the three states, i.e., improvement leads

to an increase in confidence and degradation lowers the confidence in our current

reconfiguration action. Note that, reconfiguration actions are only performed in the

zero confidence or strong confidence states. Zero confidence states (Zero CE and CS)

cause an increase/decrease of cache size without any prior confidence while strong

confidence states (Strong CE and CS) result in reconfiguration actions based on prior

history of improvements. The actions are reversed only in the zero confidence states

when we observe a degradation in cache performance.

I/-

D/-

I/-
Weak

CE

Strong

CE

I/expand
D/-

-/-

Strong

CS

Weak

CS

-/-
I/shrink

Zero

CS

Zero

CE

D/expand

D/shrink

INIT

-/shrink
Expand

(Shrink)

(CSPi – Avg. CSP) ≥
α*(CMPi - Avg. CMP)

D (I)

(CSPi – Avg. CSP) ≤
β*(CMPi - Avg. CMP)

I (D)

Zero confidence in shrink Zero CS

Zero confidence in expand Zero CE

Weak confidence in shrink Weak CS

Weak confidence in expand Weak CE

Strong confidence in shrink Strong CS

Weak confidence in expand Strong CE

 I  Improvement D  Degradation

Fig. 6.4.: Reconfiguration policy

6.2.3 Data migration logic

Reconfiguration involves an increase or decrease in cache capacity, which imposes

the need for migration of cache blocks to ensure that they are stored at valid loca-

tions. We next discuss the different steps involved in this process and the proposed

optimizations to reduce the associated overheads.

In DyReCTape, reconfiguration results in two kinds of actions: (i) shrink or

decrease in bits per tape, and (ii) expand or increase in bits per tape. Shrink reduces

the cache capacity, thereby rendering a portion of the cache inactive. Suitable actions

99

are needed to handle the blocks that are present in the inactive portion. A naive

solution for this would require flushing all the dirty cache blocks in the inactive

portion to memory and subsequently invalidating them. On the other hand, those

blocks present in the active portion require no action since their logical mapping

remains valid. This naive scheme presents the following overheads: (i) heavy data

traffic to main memory while flushing the cache blocks, and (ii) increase in miss rate

due to the invalidated data.

Next when we consider the expand operation, it involves an increase in cache

capacity, thereby transitioning a portion of the cache from inactive to active state.

Therefore, a block that was previously stored at one location in the cache can get

mapped to a different location in the newly activated region of the cache. Addressing

this issue would require stalling all incoming cache accesses and pro-actively migrating

all the cache blocks to their respective valid locations in the expanded cache. This

unavailability of the cache for a large number of execution cycles leads to a significant

performance overhead.

Our experiments confirm that these overheads are indeed significant enough to

overshadow the performance improvements obtained as a result of reconfiguration.

In order to mitigate the performance overheads associated with shrink and expand

operations, we propose the concept of lazy data migration wherein data blocks are

migrated over a migration time window to the appropriate location after reconfigura-

tion. We next explain this scheme in detail for each of the two reconfiguration steps,

i.e., expand and shrink.

Lazy shrink: Fig. 6.5 demonstrates the lazy shrink policy with a timeline showing

the decrease in bits/tape (i.e. capacity) over the migration window (denoted Migra-

tionWindow). Before reconfiguration (at T = Tinitial), the cache utilizes N bits per

tape. At T = TReconfig, the reconfiguration action is initiated with a reduction in

bits per tape. This renders a part of the cache inactive for normal cache operations.

We note that the data already present in these locations can be retained without any

overhead due to the non-volatile nature of DWMs. Based on this observation, the

100

T = Tinitial T = TReconfig T = TReconfig + MigWindow

Flush remaining cache

blocks not migrated

Reconfiguration:

reduction of bits per tape

Active

Inactive-transition

Inactive

C
a
c
h

e
 s

iz
e

Bit 0

Time

No replacements in

the inactive cache

Lazy data migration

with two tag

comparisons

Bit 1

Bit N-1

Fig. 6.5.: Timeline for reconfiguration during cache shrink

lazy shrink policy does not immediately flush the cache blocks in the inactive region

after reconfiguration. Instead, the cache transitions lazily into the new reconfigured

state over the MigrationWindow (see region marked Inactive-transition in Fig. 6.5).

During the MigrationWindow, we perform the following actions upon each cache ac-

cess: (i) We check for a hit/miss in the active region, (ii) If this results in a miss, the

location in the inactive-transition region where the cache block would have resided be-

fore reconfiguration is checked. If the cache block is present in the inactive-transition

region, we migrate it to the corresponding location in the active region. If the cache

block is not present in either region, we declare a cache miss. At T = TReconfig +

MigrationWindow, the few remaining dirty blocks in the inactive-transition region

are flushed to main memory and the entire region is invalidated. In this way, the lazy

shrink policy mitigates the performance overhead associated with migrating a large

number of blocks at T = TReconfig at the cost of marginally higher hit latency during

the MigrationWindow. Our experiments suggest that the number of cache blocks that

needs to be flushed at T = TReconfig + MigrationWindow are much smaller (∼5%)

compared to the total dirty blocks at T = TReconfig.

101

T = Tinitial T = TReconfig T = TReconfig + MigWindow

Stall any cache access and

migrate blocks to valid sets

Active

Active-transition

Inactive

C
a

c
h

e
 s

iz
e

Time
Reconfiguration:

increase in bits per tape

Lazy data migration

of blocks accessed

with 2 tag compares

Bit 0

Bit 1

Bit N-1

Fig. 6.6.: Timeline for reconfiguration during cache expand

Lazy expand: Fig. 6.6 illustrates the lazy expand policy for increasing the cache

capacity. In this case, the newly activated portion of the cache is marked as active-

transition. Subsequently, for cache accesses within the MigrationWindow, the blocks

can be found at a location either in the active or active-transition region. Therefore,

we perform two tag comparisons in the same sequence as lazy shrink, and migrate

the data to its correct location (if required) during the MigrationWindow. At T =

TReconfig + MigrationWindow, we stall any further cache accesses and transfer the

few remaining data blocks that require migration from the active region to their valid

locations in the active-transition region. In this way, the performance overheads due

to data migration are significantly lowered.

Fig. 6.7 summarizes the different steps involved in a single cache access upon

reconfiguration. The key point to note is that alias locations, i.e., the location of

cache blocks before reconfiguration, are checked only during the MigrationWindow.

The other steps are similar to a routine cache access.

102

Tag hit?

L2 cache access

Yes No

L2 miss  access main memory

Look up alias

location
Tag hit?

Data array

access

No

Yes

Within

Migration

Window?

Yes

No

Fig. 6.7.: Flowchart for overall L2 access

6.2.4 Victim cache

When the cache is operating at less than maximum capacity, we propose to use

the inactive portion as a victim cache. This victim cache holds the evicted blocks

and improves the effective miss rate through reduction in conflict misses, resulting

in further improvement of system performance. This modifies the sequence of steps

upon a cache access as follows: (i) Upon a miss, we first check the victim cache, (ii)

if we find the block, we bring it into the active cache and hold any blocks evicted

during the process in the victim, else we go to main memory.

6.3 Experimental Methodology

In this section, we discuss the experimental setup used to evaluate DyReCTape.

The DWM device was modeled using a self-consistent physics-based device simulation

framework proposed in [59]. The device parameters were then used to obtain the read,

write and shift latency (and energy) for a DWM-based cache using DWM-CACTI [8].

In our experiments, a multi-bit cell capable of storing a maximum of 64 bits with

1 read/write port is considered. We modified gem5 [97] to model the DyReCTape

architecture and performed architectural simulations to evaluate it. Table 6.1 shows

the baseline system configuration. The 2MB SRAM L2 cache is replaced at iso-area by

DyReCTape with a maximum capacity of 64 MB. We chose a migration window of

103

Table 6.1.: DyReCTape system configuration

Processor Core Alpha, out-of-order processor, 4 cores at 2 GHz

L1 I/D-cache 16KB per core, 2 way-set associative, 64B line size

L2 unified cache 2MB shared, 16 way-set associative, 64B line size

Cache latency L1 cache: 2-cycle, L2 cache: 11-cycle

Main memory 2GB, 200-cycle

107 cycles with a sampling interval of 2000 accesses for dynamically reconfiguring the

L2 cache. We perform a full-system simulation in the regions of interest for caches for

various multi-threaded application benchmarks from PARSEC [114] and SPLASH-

2x [115]. We utilize the cache access traces along with the cache characteristics

from DWM-CACTI for estimating the energy consumed by DyReCTape. We use

CACTI [113] for the SRAM cache, and a modified CACTI [116] for STT-MRAM in

order to estimate the energy and access time. All memory technologies considered

for our evaluation are based on a 32nm technology node.

6.4 Experimental Results

This section presents the results of various experiments that demonstrate the ben-

efits of DyReCTape. with different baselines. We also demonstrate the effectiveness

of our reconfiguration scheme by comparing it against: (i) the optimal capacity point

for each benchmark obtained via a static sweep of cache capacities, and (ii) a naive

reconfigurable cache with no lazy migration.

6.4.1 Performance evaluation

Fig. 6.8 summarizes the improvements obtained in IPC (instructions per cycle)

across a wide range of benchmarks with DyReCTape. In this design, we consider

six different baseline L2 cache designs under iso-area conditions: (i) an SRAM cache,

104

0.45

0.70

0.95

1.20

1.45

N
o

rm
a

li
z
e

d

IP

C



DyReCTape static-DWM no-victim-DWM naive-recon-DWM zero-shft-DWM STT-MRAM SRAM

Fig. 6.8.: Performance trends for different baselines

(ii) an STT-MRAM cache, (iii) a static DWM-based cache (static-DWM) with 64MB

capacity, (iv) a reconfigurable DWM cache with a naive approach in which data at

invalid locations are flushed to memory or migrated to the correct location as soon as

the cache is reconfigured (naive-recon-DWM), (v) a reconfigurable DWM cache with

no victim cache for inactive portion (no-victim-DWM), and (vi) an “ideal” DWM

cache (zero-shft-DWM) which provides the maximum capacity and also incurs no

shift penalty. The IPC used for comparing these different baselines is normalized to

the static organization of DWM-based L2 with maximum capacity, i.e., 64MB.

On average, DyReCTape achieves 19.8% and 9% IPC improvement over the

SRAM and STT-MRAM designs. This is primarily because of two factors: (a) higher

cache capacity (32X and 8X w.r.t SRAM and STT-MRAM, respectively) due to the

density of DWM, and (b) the reconfigurable cache operating at more optimal latency

and capacity points for these benchmarks.

Across all benchmarks, DyReCTape obtains an 11.7% improvement (on average)

in IPC over a static organization of DWM-based cache with 64MB capacity. This

increase in performance is mainly because of our scheme that suitably reconfigures

the cache size to operate at the capacity/latency optimal point for performance,

thereby reducing the overall shift operations (3.4X on average). Fig. 6.8 also shows

that a naive reconfiguration which incurs the full transition overheads hardly obtains

any performance benefit (∼1%). This underscores the utility of the lazy migration

mechanism, which minimizes these transition overheads.

105

We also observe a 10.1% improvement in IPC from Fig. 6.8 over all the bench-

marks, when DyReCTape uses only the proposed reconfiguration scheme without

utilizing the inactive capacity as victim cache. The inclusion of victim cache provides

an additional benefit of 5.8% on average for a subset of benchmarks (ferret, x264,

vips, lu-contig and lu-noncontig) with substantial evictions. Note that, for some of

the benchmarks in this subset (ferret, vips, lu-contig and lu-noncontig), DyReC-

Tape outperforms even the DWM cache with no shift overheads, due to the use of a

victim cache that lowers the conflict misses.

Overall, DyReCTape achieves a performance within 3.5% of the ideal DWM-

based cache with no shift overheads (zero-shft-DWM), demonstrating the effectiveness

of the proposed reconfiguration scheme in minimizing shift operations by utilizing the

appropriate cache capacity for each application.

0.25

0.45

0.65

0.85

1.05

 E
n

e
rg

y
(N

o
rm

al
iz

e
d

)
 

DyRecTape SRAM STT-MRAM

7.6 1.6 1.5 3.8 1.6 3.5 4.0 8.0 1.9 2.9 2.5 2.6 4.4 2.4 3.0

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

DyReCTape

Fig. 6.9.: Energy comparison for different baselines

6.4.2 Energy comparison

Fig. 6.9 compares the energy consumed by DyReCTape with SRAM and STT-

MRAM iso-area L2 caches. DyReCTape achieves a reduction of 7.1X in cache energy

over SRAM. This is mainly due to the reduction in leakage energy because of the non-

volatile nature of DWM. Further benefits are achieved due to techniques that lower

their read/write energy [7]. In the case of STT-MRAM, we note an energy reduction

106

of 2.4X primarily because of lower write energy of DWMs due to the previously

proposed shift-based write mechanism [7].

6.4.3 Comparison of static vs. reconfigurable DWM cache

0.94

0.96

0.98

1.00

8 24 40 56

Bits per tape 

4

8

16

32

64

4.5 4.7 4.9 5.1 5.3

B
it

s
p

e
r

ta
p

e
 

Time (billion cycles) 

16

32

64

4.9 5.1 5.3 5.5

Time (billion cycles) 

(c) x264

(a) x264 (b) radiosity

(d) radiosity

1.00

1.04

1.08

1.12

1.16

8 24 40 56

N
o

rm
al

iz
e

d
 IP

C
 

Bits per tape 

static recon

Fig. 6.10.: DyRecTape comparison against static DWM cache

In this section, we demonstrate the effectiveness of the reconfiguration scheme

employed in DyRecTape against a static DWM cache of varying bits/tape. Note

that, we perform comparisons at iso-area, i.e. higher the bits/tape, greater would

be the cache capacity but with increasing shift penalty for the static case. For this

analysis, we study: (i) the impact of varying the bits/tape on IPC for a static DWM

cache, and (ii) the variation of bits/tape with DyRecTape over time. Fig. 6.10(a)

shows a continuous decrease in performance with increasing bits/tape for a latency

sensitive benchmark, x264. We also annotate the IPC achieved with DyRecTape in

the figure. In this case, the reconfiguration scheme outperforms even the static best

107

case, mainly because of its ability to adapt to cache capacity requirements by varying

the bits per tape across different program phases as shown in Fig. 6.10(c).

Fig. 6.10(b) shows a monotonically increasing trend in performance for radiosity, a

capacity sensitive benchmark. In this case, the scheme achieves the same performance

as the static best case. Since, this benchmark is extremely sensitive to capacity,

DyRecTape does not modulate the bits/tape much and maintains the maximum

possible capacity, as shown in Fig. 6.10(d).

In summary, DyRecTape either matches or exceeds the best-case static perfor-

mance, demonstrating that it is an effective approach to the design of DWM-based

caches.

6.5 Summary

Domain wall memory is a spintronic memory technology that provides superior

density and energy efficiency compared to other emerging memory technologies. How-

ever, realizing larger capacity with such memories is challenging owing to the unique

structure of DWM that requires shift operations for each access. The higher cache ac-

cess latency due to shifts hurts overall system performance. In this work, we proposed

DyReCTape, a DWM-based reconfigurable cache that dynamically tailors its cache

size to improve performance. We propose optimizations that mitigate the overheads

associated with reconfiguration. We performed architectural simulations on a wide

range of benchmarks, and demonstrate substantial benefits in performance compared

to a static DWM-based cache organization.

108

7. CONCLUSION

Computing platforms demand ever-increasing amounts of memory to keep up with

increasing data sets and feed the growing numbers of cores that are enabled by each

technology generation. Consequently, a large and growing portion of chip area and

energy consumption is expended in memories, which face challenges with technology

scaling due to increased leakage, process variations, and unreliability.

Spintronic memories that promise near-zero leakage and high density are of great

interest for designing future computing systems. However, spintronic memories pose

unique challenges such as high write latency and high write energy due to the fun-

damentally different storage and switching mechanisms that they employ. Therefore,

improving the energy-efficiency and performance of spintronic memory systems re-

mains an important challenge for designers.

7.1 Thesis Summary

To address these challenges, the thesis proposed various directions to improve the

efficiency of spintronic memory subsystems. It proposed the design of approximate

memory systems, wherein the accuracy of data written to or read from the memory

array is relaxed for benefits in energy and performance. It also explored the design

of efficient cache architectures for domain wall memories, an advanced spintronic

memory technology. The key contributions of the dissertation are summarized below.

� The thesis explored approximate memory compression to reduce the memory

traffic for STT-MRAM based main memory. It suggested a quality-aware mem-

ory controller design that transparently compresses/decompresses data written

to/read from approximation-tolerant memory regions, while conforming to a

specified error constraint for each region. A software interface was introduced

109

to identify the approximate-resilient memory regions, and a runtime quality con-

trol framework was proposed to automatically determine the error constraints

for the identified memory regions such that a specified target application-level

quality is maintained. The proposed concept was demonstrated by realizing an

FPGA prototype system across a wide range of machine learning applications.

� The dissertation addressed the key challenge of energy-inefficiency for each read

and write operation in spintronic memories. It identified various mechanisms at

the circuit and architecture levels that trade-off energy at the cost of small read,

write or retention error probabilities. Based on these mechanisms, a quality-

configurable memory array was designed, with enhancements restricted solely

to the peripheral circuits, while retaining the core array structure of a stan-

dard memory. The thesis proposed two different designs, STAxPad, a quality-

configurable scratchpad integrated in the memory hierarchy of a programmable

vector processor, and STAxCache, a quality-configurable cache architecture for

a general purpose processor. The corresponding ISAs were enhanced to ex-

pose the proposed designs to software. Across a wide range of applications, the

results demonstrate that quality-configurable spintronic memories can achieve

considerable improvement in energy with negligible quality loss.

� Finally, the thesis explored the design of caches with a more advanced spin-

tronic memory technology, viz. DWM. It presented DyReCTape, a reconfig-

urable cache that exploits the unparalleled density benefits of DWMs by packing

the maximum number of bits within each tape while simultaneously leveraging

the intrinsic capability of DWMs to modulate the active bits per tape at run-

time, depending on the requirements of the applications. It also proposed two

performance optimizations to DyReCTape: (i) a lazy migration policy to min-

imize the overheads of reconfiguration, and (ii) re-use of the unused portion of

the cache due to reconfiguration, as a victim cache to reduce the number of

off-chip accesses. DyReCTape was evaluated across a wide range of multi-

110

threaded workloads which demonstrated significant performance benefits over

both SRAM and prior spintronic cache designs.

In summary, the dissertation proposes various approaches to improve the energy

efficiency and performance of spintronic memories and re-affirms their potential as a

replacement for state-of-the-art memory technologies.

REFERENCES

111

REFERENCES

[1] Y.-K. Chen, J. Chhugani, P. Dubey, C. Hughes, D. Kim, S. Kumar, V. Lee,
A. Nguyen, and M. Smelyanskiy, “Convergence of recognition, mining, and
synthesis workloads and its implications,” Proceedings of the IEEE, vol. 96,
no. 5, pp. 790–807, 2008.

[2] P. Dubey, “A platform 2015 workload model recognition, mining and synthesis
moves computers to the era of tera,” White paper, Intel Corp., 2005.

[3] “http://www.everspin.com/.”

[4] D. Apalkov, A. Khvalkovskiy, S. Watts, V. Nikitin, X. Tang, D. Lottis, K. Moon,
X. Luo, E. Chen, A. Ong, A. Driskill-Smith, and M. Krounbi, “Spin-transfer
Torque Magnetic Random Access Memory (STT-MRAM),” J. Emerg. Technol.
Comput. Syst., vol. 9, no. 2, pp. 13:1–13:35, May 2013.

[5] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency in
software,” Dr. Dobb’s journal, vol. 30, no. 3, pp. 497 – 503, March 2005.

[6] S. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack mem-
ory,” Science, vol. 320, no. 5873, pp. 190–194, Apr 2008.

[7] S. Fukami, T. Suzuki, K. Nagahara, N. Ohshima, Y. Ozaki, S. Saito, R. Nebashi,
N. Sakimura, H. Honjo, K. Mori, C. Igarashi, S. Miura, N. Ishiwata, and T. Sug-
ibayashi, “Low-current perpendicular domain wall motion cell for scalable high-
speed MRAM,” in Proceedings of the IEEE Symposium on VLSI Technology,
Jun 2009, pp. 230 –231.

[8] R. Venkatesan, V. Kozhikkottu, C. Augustine, A. Raychowdhury, K. Roy, and
A. Raghunathan, “TapeCache: A high density, energy efficient cache based on
domain wall memory,” in Proceedings of the International Symposium on Low
Power Electronics and Design, Jul. 2012, pp. 185–190.

[9] V. Chippa, S. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and char-
acterization of inherent application resilience for approximate computing,” in
Design Automation Conference (DAC), 2013 50th ACM / EDAC / IEEE, 2013,
pp. 1–9.

[10] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate Computing and the Quest for Computing Efficiency,” in
Proceedings of the 52nd Annual Design Automation Conference, ser. DAC ’15.
New York, NY, USA: ACM, June 2015, pp. 120:1–120:6. [Online]. Available:
http://doi.acm.org/10.1145/2744769.2751163

[11] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A survey,”
IEEE Design & Test, vol. 33, no. 1, pp. 8–22, Feb 2016.

112

[12] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Design ex-
ploration of hybrid caches with disparate memory technologies,” ACM Trans.
Architecture and Code Optimization, vol. 7, no. 3, pp. 15:1–15:34, Dec. 2010.

[13] A. Smith and Y. Huai, “STT-RAM - A New Spin on Universal Memory,” Future
Fab Intl., vol. 23, July 2007.

[14] K. Lee and S. Kang, “Development of Embedded STT-MRAM for Mobile
System-on-Chips,” IEEE Trans. on Magnetics, vol. 47, no. 1, pp. 131 –136,
Jan. 2011.

[15] A. Nigam, C. W. Smullen, IV, V. Mohan, E. Chen, S. Gurumurthi, and M. R.
Stan, “Delivering on the promise of universal memory for Spin-Transfer Torque
RAM (STT-RAM),” in Proceedings of the 17th IEEE/ACM international sym-
posium on Low-power electronics and design, Aug. 2011, pp. 121–126.

[16] R. Desikan, C. Lefurgy, S. Keckler, and D. Burger, “On-chip MRAM as a High-
Bandwidth, Low-Latency Replacement for DRAM Physical Memories,” In IBM
Austin CASC, Tech. Rep., Sep. 2002.

[17] Y. Xie, “Modeling, architecture, and applications for emerging memory tech-
nologies,” IEEE Design and Test of Computers, vol. 28, no. 1, pp. 44 –51,
Jan-Feb 2011.

[18] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance
main memory system using phase-change memory technology,” in Proceedings of
the 36th annual international symposium on Computer architecture, ser. ISCA
’09, Jun. 2009, pp. 24–33.

[19] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: a hybrid PRAM and DRAM
main memory system,” in Proceedings of the 46th Annual Design Automation
Conference, ser. DAC ’09, Jun. 2009, pp. 664–469.

[20] H. Wong, S. Raoux, S. Kim, J. Liang, J. Reifenberg, B. Rajendran, M. Asheghi,
and K. Goodson, “Phase Change Memory,” Proc. of the IEEE, vol. 98, no. 12,
pp. 2201 –2227, Dec. 2010.

[21] R. Venkatesan, V. K. Chippa, C. Augustine, K. Roy, and A. Raghunathan,
“Domain-specific many-core computing using spin-based memory,” Nanotech-
nology, IEEE Transactions on, vol. 13, no. 5, pp. 881–894, Sept 2014.

[22] A. Iyengar and S. Ghosh, “Modeling and Analysis of Domain Wall Dynamics for
Robust and Low-Power Embedded Memory,” in Proceedings of the 51st Annual
Design Automation Conference, ser. DAC ’14, 2014.

[23] Z. Sun, W. Wu, and H. Li, “Cross-layer Racetrack Memory Design for Ultra
High Density and Low Power Consumption,” in Proceedings of the Design Au-
tomation Conference, Jun. 2013, pp. 1–6.

[24] R. Venkatesan, M. Sharad, K. Roy, and A. Raghunathan, “DWM-TAPESTRI
- An energy efficient all-spin cache using domain wall shift based writes,” in
Proceedings of the Design, Automation Test in Europe, 2013, pp. 1825–1830.

113

[25] R. Venkatesan, S. Ramasubramanian, S. Venkataramani, K. Roy, and A. Raghu-
nathan, “STAG: Spintronic-Tape Architecture for GPGPU cache hierarchies,”
in Proceeding of the 41st Annual International Symposium on Computer Archi-
tecture, Jun. 2014, pp. 253–264.

[26] Z. Sun, X. Bi, A. K. Jones, and H. Li, “Design Exploration of Racetrack
Lower-level Caches,” in Proceedings of the 2014 International Symposium on
Low Power Electronics and Design, 2014, pp. 263–266.

[27] N. Mojumder, S. Gupta, S. Choday, D. Nikonov, and K. Roy, “A Three-
Terminal Dual-Pillar STT-MRAM for High-Performance Robust Memory Ap-
plications,” IEEE TED, vol. 58, no. 5, pp. 1508 –1516, May 2011.

[28] N. Mojumder and K. Roy, “Switching current reduction and thermally induced
delay spread compression in tilted magnetic anisotropy spin-transfer torque
(STT) MRAM,” IEEE Trans. Magnetics, 2011.

[29] C. Augustine, A. Raychowdhury, D. Somasekhar, J. Tschanz, K. Roy, and
V. De, “Numerical analysis of typical STT-MTJ stacks for 1T-1R memory ar-
rays,” in Proc. IEDM, Dec. 2010, pp. 22.7.1 –22.7.4.

[30] J. Li, H. Liu, S. Salahuddin, and K. Roy, “Variation-tolerant Spin-Torque Trans-
fer (STT) MRAM array for yield enhancement,” in Proc. CICC, Sep. 2008, pp.
193 –196.

[31] Y. Kim, S. K. Gupta, S. P. Park, G. Panagopoulos, and K. Roy, “Write-
optimized reliable design of STT MRAM,” in Proceedings of the 2012 Inter-
national Symposium on Low Power Electronics and Design, ser. ISLPED ’12,
2012, pp. 3–8.

[32] S. Chatterjee, M. Rasquinha, S. Yalamanchili, and S. Mukhopadhyay, “A Scal-
able Design Methodology for Energy Minimization of STTRAM: A Circuit and
Architecture Perspective,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 19, no. 5, pp. 809–817, May 2011.

[33] J. Li, C. Augustine, S. Salahuddin, and K. Roy, “Modeling of failure probability
and statistical design of Spin-Torque Transfer Magnetic Random Access Mem-
ory (STT MRAM) array for yield enhancement,” in Proc. DAC, Jun. 2008, pp.
278 –283.

[34] Y. Chen and H. Li, “Emerging sensing techniques for emerging memories,” in
Design Automation Conference (ASP-DAC), 2011 16th Asia and South Pacific,
jan. 2011, pp. 204 –210.

[35] Y. Chen, W. F. Wong, H. Li, and C. K. Koh, “Processor caches with multi-level
spin-transfer torque RAM cells,” in Proc. ISLPED, Aug. 2011, pp. 73–78.

[36] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Hybrid cache
architecture with disparate memory technologies,” in Proceedings of the Inter-
national Symposium on Computer Architecture, Jun. 2009, pp. 34–45.

[37] B. Wang, B. Wu, D. Li, X. Shen, W. Yu, Y. Jiao, and J. Vetter, “Exploring hy-
brid memory for GPU energy efficiency through software-hardware co-design,”
in Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques, Sep. 2013, pp. 93–102.

114

[38] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Energy Reduction for STT-RAM
Using Early Write Termination,” in Proceedings of the 2009 International Con-
ference on Computer-Aided Design, ser. ICCAD ’09, 2009, pp. 264–268.

[39] S. P. Park, S. Gupta, N. Mojumder, A. Raghunathan, and K. Roy, “Future
cache design using STT MRAMs for improved energy efficiency: Devices, cir-
cuits and architecture,” in Proceedings of the Design Automation Conference,
Jun. 2012, pp. 492–497.

[40] A. Jog, A. K. Mishra, C. Xu, Y. Xie, V. Narayanan, R. Iyer, and C. R. Das,
“Cache revive: Architecting volatile STT-RAM caches for enhanced perfor-
mance in CMPs,” in Proceedings of the Design Automation Conference, Jun.
2012, pp. 243 –252.

[41] C. W. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. R. Stan, “Relaxing
non-volatility for fast and energy-efficient STT-RAM caches,” in Proceedings of
the International Symposium on High Performance Computer Architecture, Feb.
2011, pp. 50 –61.

[42] J. Zhao, C. Xu, and Y. Xie, “Bandwidth-aware reconfigurable cache design
with hybrid memory technologies,” in Computer-Aided Design (ICCAD), 2011
IEEE/ACM International Conference on, Nov 2011, pp. 48–55.

[43] Y.-T. Chen, J. Cong, H. Huang, B. Liu, C. Liu, M. Potkonjak, and G. Rein-
man, “Dynamically Reconfigurable Hybrid Cache: An Energy-efficient Last-
level Cache Design,” in Proceedings of the Design, Automation Test in Europe,
ser. DATE ’12, 2012, pp. 45–50.

[44] G. Sun, X. Dong, Y. Xie, J. Li, and Y. Chen, “A novel architecture of the 3D
stacked MRAM L2 cache for CMPs,” in Proc. HPCA, Feb. 2009, pp. 239 –249.

[45] F. Pellizzer, A. Pirovano, F. Ottogalli, M. Magistretti, M. Scaravaggi, P. Zu-
liani, M. Tosi, A. Benvenuti, P. Besana, S. Cadeo, T. Marangon, R. Morandi,
R. Piva, A. Spandre, R. Zonca, A. Modelli, E. Varesi, T. Lowrey, A. Lacaita,
G. Casagrande, P. Cappelletti, and R. Bez, “Novel u-trench phase-change mem-
ory cell for embedded and stand-alone non-volatile memory applications,” in
VLSI Technology, 2004. Digest of Technical Papers. 2004 Symposium on, Jun.
2004, pp. 18 – 19.

[46] F. Pellizzer, A. Benvenuti, B. Gleixner, Y. Kim, B. Johnson, M. Magistretti,
T. Marangon, A. Pirovano, R. Bez, and G. Atwood, “A 90nm phase change
memory technology for stand-alone non-volatile memory applications,” in VLSI
Technology, 2006. Digest of Technical Papers. 2006 Symposium on, 0-0 2006,
pp. 122 –123.

[47] A. Pirovano, F. Pellizzer, I. Tortorelli, R. Harrigan, M. Magistretti, P. Petruzza,
E. Varesi, D. Erbetta, T. Marangon, F. Bedeschi, R. Fackenthal, G. Atwood,
and R. Bez, “Self-aligned u-trench phase-change memory cell architecture for
90nm technology and beyond,” in Solid State Device Research Conference, 2007.
ESSDERC 2007. 37th European, sept. 2007, pp. 222 –225.

[48] G. Servalli, “A 45nm generation phase change memory technology,” in Electron
Devices Meeting (IEDM), 2009 IEEE International, Dec. 2009, pp. 1 –4.

115

[49] W. Chen, C. Lee, D. Chao, Y. Chen, F. Chen, C. Chen, R. Yen, M. Chen,
W. Wang, T. Hsiao, J. Yeh, S. Chiou, M. Liu, T. Wang, L. Chein, C. Huang,
N. Shih, L. Tu, D. Huang, T. Yu, M. Kao, and M.-J. Tsai, “A novel cross-spacer
phase change memory with ultra-small lithography independent contact area,”
in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, Dec. 2007,
pp. 319 –322.

[50] Y. Ha, J. Yi, H. Horii, J. Park, S. Joo, S. Park, U.-I. Chung, and J. Moon,
“An edge contact type cell for phase change ram featuring very low power
consumption,” in VLSI Technology, 2003. Digest of Technical Papers. 2003
Symposium on, Jun. 2003, pp. 175 – 176.

[51] C.-F. Chen, A. Schrott, M. Lee, S. Raoux, Y. Shih, M. Breitwisch, F. Bau-
mann, E. Lai, T. Shaw, P. Flaitz, R. Cheek, E. Joseph, S. Chen, B. Rajendran,
H. Lung, and C. Lam, “Endurance Improvement of Ge2Sb2Te5-Based Phase
Change Memory,” in Memory Workshop, 2009. IMW ’09. IEEE International,
may 2009, pp. 1 –2.

[52] L. Jiang, Y. Zhang, and J. Yang, “Enhancing phase change memory lifetime
through fine-grained current regulation and voltage upscaling,” in Low Power
Electronics and Design (ISLPED) 2011 International Symposium on, aug. 2011,
pp. 127 –132.

[53] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main
memory using phase change memory technology,” in In International Sympo-
sium on Computer Architecture, 2009.

[54] S. Cho and H. Lee, “Flip-n-write: A simple deterministic technique to improve
pram write performance, energy and endurance,” in Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on, Dec. 2009,
pp. 347 –357.

[55] G. Sun, D. Niu, J. Ouyang, and Y. Xie, “A frequent-value based PRAM memory
architecture,” in Proc. ASP-DAC, Jan. 2011, pp. 211 –216.

[56] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage in solid-
state memories,” in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-46, 2013, pp. 25–36.

[57] S. Motaman, A. Iyengar, and S. Ghosh, “Synergistic circuit and system design
for energy-efficient and robust domain wall caches,” in Proceedings of the 2014
International Symposium on Low Power Electronics and Design, 2014, pp. 195–
200.

[58] M. Mao, W. Wen, Y. Zhang, Y. Chen, and H. H. Li, “Exploration of
GPGPU Register File Architecture Using Domain-wall-shift-write Based Race-
track Memory,” in Proceedings of the Design Automation Conference, 2014, pp.
196:1–196:6.

[59] C. Augustine, A. Raychowdhury, B. Behin-Aein, S. Srinivasan, J. Tschanz,
V. K. De, and K. Roy, “Numerical analysis of domain wall propagation for
dense memory arrays,” in Proceedings of the International Electron Devices
Meeting, Dec 2011, pp. 17.6.1 –17.6.4.

116

[60] M. Sharad, R. Venkatesan, A. Raghunathan, and K. Roy, “Multi-level mag-
netic RAM using domain wall shift for energy-efficient, high-density caches,”
in Proceedings of the International Symposium on Low Power Electronics and
Design, Sep 2013, pp. 64–69.

[61] A. J. Annunziata, M. C. Gaidis, L. Thomas, C. W. Chien, C. C. Hung, P. Cheva-
lier, E. J. O’Sullivan, J. P. Hummel, E. A. Joseph, Y. Zhu, T. Topuria, E. Dele-
nia, P. M. Rice, S. S. P. Parkin, and W. J. Gallagher, “Racetrack memory cell
array with integrated magnetic tunnel junction readout,” in Proceedings of the
International Electron Devices Meeting, Dec. 2011, pp. 24.3.1 –24.3.4.

[62] E. R. Lewis, D. Petit, L.O’Brien, A. Fernandez-Pacheco, J. Sampaio, A.-V.
Jausovec, H.T.Zeng, D.E.Read, and R.P.Cowburn, “Fast domain wall motion
in magnetic comb structures,” Nature, vol. 9, no. 12, pp. 980–983, Dec 2010.

[63] Y. Wang and H. Yu, “An Ultralow-power Memory-based Big-data Comput-
ing Platform by Nonvolatile Domain-wall Nanowire Devices,” in Proceedings of
the 2013 International Symposium on Low Power Electronics and Design, ser.
ISLPED ’13, 2013, pp. 329–334.

[64] A. Jain, P. Hill, S. C. Lin, M. Khan, M. E. Haque, M. A. Laurenzano,
S. Mahlke, L.Tang, and J. Mars, “Concise loads and stores: The case for an
asymmetric compute-memory architecture for approximation,” in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
Oct 2016, pp. 1–13.

[65] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger, “Doppelgänger: A
Cache for Approximate Computing,” in Proceedings of the 48th International
Symposium on Microarchitecture, ser. MICRO-48. New York, NY, USA: ACM,
December 2015, pp. 50–61.

[66] J. S. Miguel, J. Albericio, N. E. Jerger, and A. Jaleel, “The Bunker Cache for
spatio-value approximation,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Oct 2016, pp. 1–12.

[67] J. S. Miguel, M. Badr, and N. E. Jerger, “Load Value Approximation,” in Pro-
ceedings of the 47th Annual IEEE/ACM International Symposium on Microar-
chitecture, ser. MICRO-47. Washington, DC, USA: IEEE Computer Society,
December 2014, pp. 127–139.

[68] M. Shoushtari, A. BanaiyanMofrad, and N. Dutt, “Exploiting Partially-
Forgetful Memories for Approximate Computing,” IEEE Embedded Systems
Letters, vol. 7, no. 1, pp. 19–22, March 2015.

[69] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving
dram refresh-power through critical data partitioning,” in Proceedings of the
Sixteenth International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XVI. New York, NY, USA:
ACM, 2011, pp. 213–224.

[70] A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan, “Quality configurable
approximate dram,” IEEE Transactions on Computers, vol. 66, no. 7, pp. 1172–
1187, July 2017.

117

[71] M. Jung, D. M. Mathew, C. Weis, and N. Wehn, “Efficient reliability manage-
ment in SoCs - an approximate DRAM perspective,” in 2016 21st Asia and
South Pacific Design Automation Conference (ASP-DAC), Jan 2016, pp. 390–
394.

[72] J. Lucas, M. A. Mesa, M. Andersch, and B. Juurlink, “Sparkk: Quality-Scalable
Approximate Storage in DRAM,” in Memory Forum, June 2014.

[73] K. Cho, Y. Lee, Y. H. Oh, G.-c. Hwang, and J. W. Lee, “edram-based tiered-
reliability memory with applications to low-power frame buffers,” in Proceedings
of the 2014 International Symposium on Low Power Electronics and Design, ser.
ISLPED ’14. New York, NY, USA: ACM, 2014, pp. 333–338.

[74] I. J. Chang, D. Mohapatra, and K. Roy, “A Priority-Based 6T/8T Hybrid
SRAM Architecture for Aggressive Voltage Scaling in Video Applications,”
IEEE Trans. on Circuits and Systems for Video Technology, vol. 21, no. 2,
pp. 101–112, Feb 2011.

[75] D. H. Albonesi, “Selective Cache Ways: On-demand Cache Resource Alloca-
tion,” in Microarchitecture, 1999. MICRO-32. Proceedings. 32 Annual Interna-
tional Symposisum on, ser. MICRO 32, 1999, pp. 248–259.

[76] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache for low energy
embedded systems,” ACM Trans. Embed. Comput. Syst., vol. 4, no. 2, pp. 363–
387, May 2005.

[77] C. Lin, S. Kang, Y. Wang, K. Lee, X. Zhu, W. Chen, X. Li, W. Hsu, Y. Kao,
M. Liu, W. Chen, Y. Lin, M. Nowak, N. Yu, and L. Tran, “45nm low power
CMOS logic compatible embedded STT MRAM utilizing a reverse-connection
1T/1MTJ cell,” in Electron Devices Meeting (IEDM), 2009 IEEE International,
Dec 2009, pp. 1–4.

[78] C. C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari, “Bridging the processor-
memory performance gap with 3D IC technology,” IEEE Design Test of Com-
puters, vol. 22, no. 6, pp. 556–564, Nov 2005.

[79] G. H. Loh, “3D-Stacked Memory Architectures for Multi-core Processors,” in
2008 International Symposium on Computer Architecture, June 2008, pp. 453–
464.

[80] J. T. Pawlowski, “Hybrid memory cube (HMC),” in Hot Chips, vol. 23, 2011.

[81] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory with
spin-transfer torque magnetic ram,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 26, no. 3, pp. 470–483, March 2018.

[82] S. Jain, S. Venkataramani, and A. Raghunathan, “Approximation through logic
isolation for the design of quality configurable circuits,” in 2016 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), March 2016, pp. 612–
617.

[83] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-simplify: A
unified design paradigm for approximate and quality configurable circuits,” in
Design, Automation Test in Europe Conference Exhibition (DATE), 2013, 2013,
pp. 1367–1372.

118

[84] A. Ranjan, S. Venkataramani, X. Fong, K. Roy, and A. Raghunathan, “Ap-
proximate Storage for Energy Efficient Spintronic Memories,” in Proceedings of
the 52nd Annual Design Automation Conference, ser. DAC ’15. New York,
NY, USA: ACM, June 2015, pp. 195:1–195:6.

[85] A. Ranjan, S. Venkataramani, Z. Pajouhi, R. Venkatesan, K. Roy, and
A. Raghunathan, “STAxCache: An approximate, energy efficient STT-MRAM
cache,” in Design, Automation Test in Europe Conference Exhibition (DATE),
2017, March 2017, pp. 356–361.

[86] A. M. H. Monazzah, M. Shoushtari, S. G. Miremadi, A. M. Rahmani, and
N. Dutt, “QuARK: Quality-configurable approximate STT-MRAM cache by
fine-grained tuning of reliability-energy knobs,” in 2017 IEEE/ACM Interna-
tional Symposium on Low Power Electronics and Design (ISLPED), July 2017,
pp. 1–6.

[87] S. Sardashti, A. Arelakis, P. Stenstrom, and D. A. Wood, A Primer on Com-
pression in the Memory Hierarchy. Morgan & Claypool Pubs., 2015.

[88] R. B. Tremaine, T. B. Smith, M. Wazlowski, D. Har, K.-K. Mak, and S. Ar-
ramreddy, “Pinnacle: IBM MXT in a memory controller chip,” IEEE Micro,
vol. 21, no. 2, pp. 56–68, Mar 2001.

[89] J. Dusser and A. Seznec, “Decoupled Zero-compressed Memory,” in Proceedings
of the 6th International Conference on High Performance and Embedded Archi-
tectures and Compilers, ser. HiPEAC ’11. New York, NY, USA: ACM, 2011,
pp. 77–86. [Online]. Available: http://doi.acm.org/10.1145/1944862.1944876

[90] G. Pekhimnko, V. Seshadri, Y. Kim, H. Xin, O. Mutlu, P. B. Gibbons,
M. A. Kozuch, and T. C. Mowry, “Linearly compressed pages: A low-
complexity, low-latency main memory compression framework,” in 2013 46th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
Dec 2013, pp. 172–184.

[91] M. Ekman and P. Stenstrom, “A Robust Main-Memory Compression Scheme,”
in Proceedings of the 32nd Annual International Symposium on Computer Ar-
chitecture, ser. ISCA ’05. Washington, DC, USA: IEEE Computer Society,
2005, pp. 74–85.

[92] H. Lekatsas, J. Henkel, S. Chakradhar, V. Jakkula, and M. Sankaradass, “CoCo:
a hardware/software platform for rapid prototyping of code compression tech-
nique,” in Proceedings 2003. Design Automation Conference, June 2003, pp.
306–311.

[93] H. Lekatsas and W. Wolf, “SAMC: a code compression algorithm for embed-
ded processors,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 18, no. 12, pp. 1689–1701, Dec 1999.

[94] L. Benini, D. Bruni, A. Macii, and E. Macii, “Hardware-assisted data compres-
sion for energy minimization in systems with embedded processors,” in Proceed-
ings 2002 Design, Automation and Test in Europe Conference and Exhibition,
ser. DATE, 2002, pp. 449–453.

119

[95] E. Kültürsay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu, “Evaluating
stt-ram as an energy-efficient main memory alternative,” in 2013 IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS),
April 2013, pp. 256–267.

[96] M. Poremba and Y. Xie, “NVMain: An Architectural-Level Main Memory Sim-
ulator for Emerging Non-volatile Memories,” in 2012 IEEE Computer Society
Annual Symposium on VLSI, Aug 2012, pp. 392–397.

[97] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-
tness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,
N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH
Comput. Archit. News’11, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[98] “Micron MT41J512M8 Datasheet,” https://www.micron.com/parts/dram/ddr3-
sdram.

[99] “Micron EDF8164A1MA Datasheet,” https://www.micron.com/products/dram/lpdram.

[100] “Everspin 256Mb DDR3 Spin-Torque MRAM (EMD3D256M08G1),”
https://www.everspin.com/ddr3-dram-compatible-mram-spin-torque-
technology-0.

[101] “Nios-II processor, Altera, March 2015.”

[102] “Introduction to UniPHY IP, Altera, December 2013.”

[103] X. Fong, Y. Kim, R. Venkatesan, S. H. Choday, A. Raghunathan, and K. Roy,
“Spin-Transfer Torque Memories: Devices, Circuits, and Systems,” Proceedings
of the IEEE, vol. 104, no. 7, pp. 1449–1488, July 2016.

[104] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan, “ASLAN:
Synthesis of Approximate Sequential Circuits,” in Proceedings of the Confer-
ence on Design, Automation & Test in Europe, ser. DATE ’14. 3001 Leuven,
Belgium, Belgium: European Design and Automation Association, 2014, pp.
364:1–364:6.

[105] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghu-
nathan, “Quality programmable vector processors for approximate computing,”
in Proceedings of the 46th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, ser. MICRO-46. New York, NY, USA: ACM, 2013, pp. 1–12.

[106] A. Ranjan, A. Raha, V. Raghunathan, and A. Raghunathan, “Approximate
memory compression for energy-efficiency,” in 2017 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), July 2017, pp.
1–6.

[107] X. Fong, Y. Kim, S. Choday, and K. Roy, “Failure Mitigation Techniques for 1T-
1MTJ Spin-Transfer Torque MRAM Bit-cells,” IEEE VLSI Systems’14, vol. 22,
no. 2, pp. 384–395, Feb 2014.

[108] J. Z. Sun, “Spin-current interaction with a monodomain magnetic body: A
model study,” Phys. Rev. B, vol. 62, pp. 570–578, Jul 2000.

120

[109] H. Naeimi, C. Augustine, A. Raychowdhury, L. Shih-Lien, and J. Tschanz,
“STTRAM Scaling and Retention Failure,” Intel Technology Journal, vol. 9,
no. 2, May 2013.

[110] Y. Li, Y. Zhang, Y. Chen, and A. K. Jones, “Combating Write Penalties Using
Software Dispatch for On-Chip MRAM Integration,” IEEE Embedded Systems
Letters, vol. 4, no. 4, pp. 82–85, Dec 2012.

[111] X. Fong, S. H. Choday, G. Panagopoulos, C. Augustine, and K. Roy, “Spice
models for magnetic tunnel junctions based on monodomain approximation,”
Aug 2016. [Online]. Available: https://nanohub.org/resources/19048

[112] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. Gan, M. Endo, S. Kanai,
J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy
CoFeB–MgO magnetic tunnel junction,” Nature materials, vol. 9, no. 9, pp.
721–724, April 2010.

[113] “CACTI, www.hpl.hp.com/research/cacti.”

[114] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite:
Characterization and Architectural Implications,” in Proceedings of the 17th
International Conference on Parallel Architectures and Compilation Techniques,
2008, pp. 72–81.

[115] SPLASH-2x, “http://parsec.cs.princeton.edu/doc/memo−splash2x−input.pdf.”

[116] X. Dong, X. Wu, G. Sun, Y. Xie, H. Li, and Y. Chen, “Circuit and microarchi-
tecture evaluation of 3d stacking magnetic ram (mram) as a universal memory
replacement,” in 2008 45th ACM/IEEE Design Automation Conference, June
2008, pp. 554–559.

VITA

121

VITA

Ashish Ranjan received the bachelor’s degree in electronics engineering from the

Indian Institute of Technology (BHU), Varanasi, India, in 2009. He is currently pur-

suing a Ph.D. degree in the School of Electrical and Computer Engineering, Purdue

University, West Lafayette, IN, USA.

Previously, Ashish was a senior member technical staff in the Design Creation

Division, Mentor Graphics Corporation, from 2009 to 2012. He was a visiting re-

searcher at Parallel Computing Lab, Intel Labs, Bangalore, India during Fall 2015.

He has also interned with the Exa-scale Computing Group at Intel Corporation, Hills-

boro, OR, USA during the summer of 2015. His primary research interests include

architectures for emerging memory technologies, domain-specific accelerators and ap-

proximate computing.

Ashish received the university gold medal (including 11 other medals and prizes)

from IIT-BHU and the Andrews Fellowship from Purdue’s Graduate School. His

research has received two best paper nominations from DATE 2017 and ISLPED

2014, and a best-in session award from TECHON 2016.

