
3D INVERSE HEAT TRANSFER METHODOLOGIES FOR 

MICROELECTRONIC AND GAS TURBINE APPLICATIONS 

by 

David Gonzalez Cuadrado 

 

A Dissertation 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Doctor of Philosophy 

 

School of Mechanical Engineering 

West Lafayette, Indiana 

December 2018 

  



ii 

 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Guillermo Paniagua, Co-Chair 

School of Mechanical Engineering 

Dr. Amy Marconnet, Co-Chair 

School of Mechanical Engineering 

Dr. Nicole Key 

School of Mechanical Engineering 

Dr. Carl Wassgren 

School of Mechanical Engineering 

Dr. John Clark 

Propulsion Directorate, Air Force Research Laboratory, Wright-Patterson AFB 

 

Approved by: 

Dr. Jay Gore 

Head of the Graduate Program 

  



iii 

 

To my grandparents Donato, Matilde, Jose, and Dionisia: without their sacrifices throughout 

life, I would not be able to write these lines.  

 



iv 

 

ACKNOWLEDGMENTS 

This can be a chapter by itself, and a lengthy one, but I will make it short.  

I would like to thank my advisors Guillermo Paniagua and Amy Marconnet, for all their technical 

contributions, personal support and trust through the whole PhD adventure. Also, I would like to 

express my gratitude to the Cooling Technologies Research Center for the financial support and 

all its members for the valuable advices and suggestions to improve the quality of this work. 

Also, I would like to show my appreciation towards all the members of the jury for the valuable 

advice and suggestions for improvement on the work and final dissertation: Prof. Nicole Key, Prof. 

Carl Wassgren and Dr. John Clark.  

I feel very grateful to the research teams I have been a part of in the last four years. Each and every 

one of the members of the MTEC and PETAL laboratories have made me a better researcher and 

a better person; thanks to their advice, constructive criticism, and suggestions through the countless 

meetings we have had. 

None of this would have been the same without my “battle-mates” that have been around giving 

support, advice, and disagreements since the day I arrived at Purdue: Pramod, Calvin and Hiral. 

A more than special thanks goes to all my friends at Purdue and inside of the research team, 

especially to James, Francisco, Cis, Jorge Saavedra and Jorge Sousa, who shared my journey from 

Europe to discover the wonders of America with good and bad moments through these years.  

Also, I would like to thank my friends from Spain, who now are all around the world and I want 

them to know that the travel towards this objective would have been more painful and less 

enjoyable without their continuous presence in my life.  

I would like to express my gratitude to my family, especially to my brother Miguel, and my parents 

Miguel Angel and Maria de los Angeles. Fifty years ago, my family was a rural family, struggling 



v 

 

to survive and to provide a future to the following generations. Now, I am here writing these lines 

thanks to their effort, tears, sweat and values. I worked to complete this document, but they worked 

more to give me the opportunity to do it. And I want everyone that reads this to know that what is 

achieved within this document is more than just four years of David’s work, it is an achievement 

of more than fifty years of sacrifice and selfless efforts from my grandparents and parents.  

Finally, I cannot complete this thesis without mentioning Valeria, who in a way is part of the 

previous paragraph since she is family to me. She has stood by me in the bad and worse moments 

and she has laughed and enjoyed with me the good and better ones. I look forward to continuing  

like this, and I would like to thank her for being there for me; not only for the support during the 

PhD years, but for her support throughout life. 

There are countless other names I could wish I had time to mention who have helped me a great 

deal over the years. I hope you all know that you are in my mind and I am grateful for all you have 

done for me. 

 

 



vi 

 

TABLE OF CONTENTS 

TABLE OF CONTENTS ............................................................................................................ vi 

LIST OF TABLES ...................................................................................................................... ix 

LIST OF FIGURES ......................................................................................................................x 

NOMENCLATURE ............................................................................................................... xviii 

ABSTRACT ............................................................................................................................. xxii 

 INTRODUCTION ..............................................................................................1 

1.1 Research Objectives ..........................................................................................................1 

1.2 Research Methodology .....................................................................................................4 

1.3 Dissertation Guideline ......................................................................................................6 

 A REVIEW OF INVERSE HEAT CONDUCTION METHODS ......................9 

2.1 Sensitivity Coefficient Definition ...................................................................................12 

2.2 Challenges of the Inverse Heat Transfer Methods ..........................................................18 

2.3 Inverse Heat Transfer Classifications .............................................................................21 

2.4 Fitting Methodologies .....................................................................................................25 

2.4.1 The Levenberg-Marquardt Method & Digital Filter Method ..................................26 

2.4.2 Transfer Function Methods ......................................................................................32 

2.5 Optimization Methodologies ..........................................................................................35 

2.5.1 Deterministic Optimization Methods ......................................................................37 

2.5.2 Stochastic Optimization Methods ............................................................................37 

2.5.3 Hybrid Optimization Methods .................................................................................40 

2.6 Comparison Between Fitting Methods And Optimization Methods ..............................41 

2.7 Conclusions .....................................................................................................................45 

 DEVELOPMENT OF TRANSIENT 3D IHT METHODOLOGIES ...............47 

3.1 Conjugate Gradient Method with the Adjoint Problem ..................................................47 

3.1.1 Whole Domain Estimation ......................................................................................52 

3.1.2 Sequential Estimation ..............................................................................................54 

3.1.3 Noise Effect in Conjugate Gradient Method ...........................................................57 

3.1.4 Uncertainty Evaluation ............................................................................................59 

3.2 Digital Filter Method ......................................................................................................60 



vii 

 

3.2.1 Non-iterative Non-linear Digital Filter Method Improvement ................................66 

3.2.2 Uncertainty Evaluation ............................................................................................68 

3.3 Conclusions .....................................................................................................................70 

 SENSOR OPTIMIZATION IN MICROELECTRONICS USING IHTM .......72 

4.1 Conductive Heat Transfer Numerical Evaluation ...........................................................73 

4.1.1 Conjugate Gradient Method Evaluation ..................................................................76 

4.1.2 Digital Filter Method Evaluation .............................................................................78 

4.2 Conjugate Heat Transfer Numerical Evaluation .............................................................80 

4.2.1 Conjugate Gradient Method Evaluation ..................................................................82 

4.2.2 Digital Filter Method Evaluation .............................................................................83 

4.3 Experimental Validation .................................................................................................85 

4.3.1 Conjugate Gradient Method Validation ...................................................................97 

4.3.2 Digital Filter Method Validation .............................................................................98 

4.3.3 Digital Filter Method with Non-iterative Non-linear Correction ............................99 

4.4 Sensor Location Optimization Technique ....................................................................103 

4.4.1 Kriging Interpolation Combined with Genetic Algorithm Optimization ..............103 

4.5 Conclusions ...................................................................................................................112 

 DIGITAL FILTER INVERSE METHOD APPLIED TO GAS TURBINE 

CASING  .........................................................................................................................114 

5.1 Numerical Evaluation ...................................................................................................115 

5.1.1 High Frequency Phenomena Retrieval ..................................................................125 

5.1.1.1 Numerical Analysis ..........................................................................................125 

5.1.1.2 Practical Implementation ..................................................................................131 

5.1.2 Prediction of the Upstream Conditions Based on IHTM.......................................132 

5.2 Experimental Evaluation of the IHTM in Turbine Casing ...........................................134 

5.2.1 Blowdown Wind Tunnel Design ...........................................................................135 

5.2.2 Facility Calibration Strategy ..................................................................................139 

5.2.3 Annular Test Section Design .................................................................................145 

5.2.4 Infrared Thermography Experimental Setup .........................................................152 

5.2.4.1 Instrumentation .................................................................................................154 

5.2.5 Experimental campaign .........................................................................................159 



viii 

 

5.2.6 Digital Filter Method Validation ...........................................................................166 

5.3 Conclusions ...................................................................................................................178 

 CONCLUSIONS .............................................................................................180 

REFERENCES .........................................................................................................................185 

APPENDIX A. UNCERTAINTY ANALYSIS PROCEDURE ...............................................205 

APPENDIX B. EXPERIMENTAL DATA IN MICROELECTRONICS APPLICATION .....208 

APPENDIX C. INVERSE METHOD AND KRIGING INTERPOLATION 

OPTIMIZATION MATLAB GUI FOR SIMPLE 3D GEOMETRIES ....................................219 

APPENDIX D. INFRARED WINDOW MATERIAL SELECTION ......................................228 

APPENDIX E. EXPERIMENTAL DATA IN GAS TURBINE APPLICATION ...................233 

VITA .........................................................................................................................................254 

PUBLICATIONS ......................................................................................................................255 

  



ix 

 

LIST OF TABLES 

Table 3-1. Conjugate Gradient Method uncertainty analysis based on the numerical 

assessment. ..................................................................................................................................59 

Table 3-2. Uncertainty analysis of the Digital Filter Method .....................................................69 

Table 4-1. Uncertainty analysis of the heat flux computation using the non-linear inverse 

method.......................................................................................................................................102 

Table 4-2. Uncertainty calculation of the power in the experiments. .......................................103 

Table 5-1. Uncertainty analysis for the turbine casing inverse heat transfer analysis ..............124 

Table 5-2. Root Mean Square Error (RMSE) relative to the two non-dimensional numbers 

using the different sampling distributions.................................................................................144 

Table 5-3. Turbine application experimental campaign tests. ..................................................160 

Table A-1. Uncertainty analysis of the heat flux computation using the non-linear inverse 

method.......................................................................................................................................206 

 

 

 

 

  



x 

 

LIST OF FIGURES 

Figure 1-1. Schematic of the research directions. .........................................................................4 

Figure 1-2. Research methodology for microelectronic application. ...........................................6 

Figure 2-1. Sensitivity coefficient for the temperature increase with respect to the heat flux. 

At a particular point, there is a delay in the temperature response due to the finite speed of 

thermal diffusion. The peak magnitude shifts depending on the time of application of the 

heat flux pulse. Also the peak magnitude and location is modified with the size of the non-

dimensional timestep, since at smaller timesteps the energy provided to the system is smaller.

.....................................................................................................................................................15 

Figure 2-2. Classification of inverse heat transfer methods based on the methods used to 

solve the inverse problem. ..........................................................................................................23 

Figure 2-3. Schematic of the digital filter method and Levenberg-Marquardt method 

procedures to solve non-linear inverse problems and the relation between them. The DFM 

can be used to provide an initial value of heat flux for the Levenberg-Marquardt Method, 

but the computation of the direct problem will provide new values of temperature and the 

sensitivity coefficients can be re-computed till we reach convergence. .....................................29 

Figure 2-4. (a) Four imposed transient heat flux profiles and (b) predictions of the heat flux 

profiles using analytical estimation of the sensitivity coefficients using the Digital Filter 

Method. Note that the imposed heat flux is input into a 2D analytical solution to extract 

temperatures that are fed into a 1D solution with the Digital Filter Method. Reproduced 

from [89] with permission. .........................................................................................................31 

Figure 2-5. Schematic of the transfer function method in frequency domain procedure to 

determine the heat flux in inverse heat transfer problems. .........................................................34 

Figure 2-6. Application of the transfer function method using a) a 1D numerical model of a 

flat plate using the simulated temperature readings from three different planes as input to 

the inverse method and b) a 3D inverse heat flux estimation using a temperature reading 

from an experimental setup consisting of a cutting tool of high speed steel during machining. 

Reproduced from [93] with permission. .....................................................................................35 



xi 

 

Figure 2-7. Genetic algorithm optimization procedure to calculate the heat flux in inverse 

heat transfer problems. ................................................................................................................39 

Figure 2-8. Example of hybrid optimization methodology procedure [62]. ...............................41 

Figure 2-9. Comparison between steepest descent method and conjugate gradient method. 

Reproduced from [80] with permission. .....................................................................................42 

Figure 3-1. Conjugate gradient method with the adjoint problem procedure to determine the 

heat flux for an inverse heat transfer problem. ...........................................................................49 

Figure 3-2. Whole domain estimation solution when applying a sinusoidal heat flux input 

into a stack of slabs of different materials. .................................................................................53 

Figure 3-3. Temperature response to a pulse of heat flux in a slab (top). Whole domain 

estimation schematic (bottom left) and Sequential estimation schematic (bottom right). ..........55 

Figure 3-4. Calculated heat flux with the inverse heat transfer methodology using whole 

estimation method (left), sequential method with 3 future steps(center) and 2 future steps 

(right). .........................................................................................................................................56 

Figure 3-5. a) Computation of the conjugate gradient method with 0.5K of random level of 

noise. b) Computation of the conjugate gradient method with 1K of random level of noise. ....58 

Figure 3-6. Results of the heat flux for a given distribution of temperature for different 

values of regularization coefficients. ..........................................................................................65 

Figure 3-7. Non-linear non-iterative process with temperature adaptive sensitivity 

coefficient estimation. .................................................................................................................67 

Figure 4-1. Sketch of the simulated microchip with the sources of heat flux and the 

temperature reading location.......................................................................................................72 

Figure 4-2. (top) Schematic of the complete experimental test fixture and (bottom) the 

COMSOL model used for the inverse method and Kriging model.  (bottom inset) 

Approximate verification model to prove the simplified geometry............................................74 

Figure 4-3. Sketch of the “reduced chip” structure including the geometry of the real 

microchip with 100 heaters. ........................................................................................................75 

Figure 4-4. Temperature distribution within the chip for the reduced chip and the simplified 

reduced chip model at t=1.5s and t=5s. ......................................................................................75 

Figure 4-5. Analyzed model with the imposed heat flux in all the heaters. ...............................77 



xii 

 

Figure 4-6. Computed temperature (left) and estimated heat flux (right) by the conjugate 

gradient method after 2, 6 and 9 iterations in the center (top) and the corner (bottom) of the 

analyzed chip. .............................................................................................................................77 

Figure 4-7(a) Imposed heat flux in the numerical experiment for the corner and center 

heaters. (b) Temperature increase over time at the top surface in the corner and center 

locations of the microchip. ..........................................................................................................79 

Figure 4-8. Comparison between the imposed heat flux and the heat flux estimated with the 

inverse 3D methodology. ............................................................................................................80 

Figure 4-9. Microchip with four heaters (left) velocity field in the fluid domain (top right) 

and temperature field in the solid and fluid domains (bottom right). .........................................81 

Figure 4-10. Imposed heat flux in ten timesteps in two of the heaters of the test article. ..........82 

Figure 4-11. Computation of the heat flux in all the nodes of the heater 3 in the first four 

iterations of the conjugate gradient method. ...............................................................................83 

Figure 4-12. Location of the different heaters (left) and comparison between the imposed 

heat flux and computed heat flux (right) with the digital filter method. .....................................84 

Figure 4-13. Microchip with 25 independent heaters used for the experimental validation of 

the inverse methodology. The system consists of a grid with 25 independently controlled 

heaters and 26 embedded temperature sensors. ..........................................................................85 

Figure 4-14. a) Microchip in the experimental setup, b) COMSOL model of the microchip 

with subdivisions in the top surface marking the approximate size of the pixels for IR 

thermal measurements, and c) Fluent model of the microchip for conjugate heat transfer 

analysis. Divisions shown here outline the 25 different heaters elements. .................................86 

Figure 4-15. Numerical validation of the inverse methodology in Ansys Fluent including 

conjugate heat transfer. (a) The imposed and retrieved heat fluxes in selected four heaters 

agree well. (b) Top view of the 5x5 heater grid with the four selected heaters labeled. A heat 

flux is imposed on heater 1, while all remaining heaters are off for the duration of the 

simulations. .................................................................................................................................87 

Figure 4-16. Experimental procedure. ........................................................................................88 

Figure 4-17. Thermocouple calibration. .....................................................................................89 

Figure 4-18. RTD calibration. .....................................................................................................90 

Figure 4-19. Heaters calibration. ................................................................................................91 



xiii 

 

Figure 4-20. Experimental setup to measure the top surface temperature of the chip in the 

specified field of view of the IR microscope. .............................................................................92 

Figure 4-21. Different experiments performed with the 5x5 heaters test article. .......................93 

Figure 4-22. Experiments performed to validate the methodology. Each small inset indicates 

which heat sources were on (red) for each experiment and the black box indicates the field 

of view of the infrared microscope. The thermal images are from one frame of the thermal 

movie and show the spatial variation in temperature of the die. ................................................94 

Figure 4-23. Infrared images of the experiment 4 and experiment 6 at second 50 of the 

transient experiment. ...................................................................................................................95 

Figure 4-24. Thermal response during Experiment 1 with a 15x15 grid of sensors in order 

to validate the data with the inverse methods. ............................................................................96 

Figure 4-25. Comparison of the imposed heat flux and the computed heat flux with the 

Conjugate Gradient Method after 11 iterations in the center(top) and corner (bottom) of the 

experimental chip. .......................................................................................................................97 

Figure 4-26. Comparison of the imposed heat flux and the computed heat flux using Digital 

Filter Method. .............................................................................................................................99 

Figure 4-27. Validation of the inverse methodology for the experiment 1. (a) Temperature 

maps at selected times. Note that the temperature is fairly uniform at each time step. (b) 

Sketch of the 5x5 heater grid with the 9 active heaters indicated in red. The black outline 

indicates the field of view. (c - d) Heat flux in the center (blue) and (red) corner heater within 

the field of view as extracted from the inverse method. Panel (c) shows the results for natural 

convection with the Comsol model and panel (d) shows the results under forced convection 

using the Fluent model. .............................................................................................................100 

Figure 4-28. Experimental validation for experiments 3 and 4 at t=40s demonstrating ability 

to spatially resolve heat flux. (a) Schematic of active heaters and observed temperature map 

at t = 40s. (b) Imposed and retrieved heat fluxes in each heater at t=40s. ................................101 

Figure 4-29. Temperature maps in the plane where the temperature sensors should be 

located at t=1.5s and t=2.7s. .....................................................................................................108 

Figure 4-30. Location of the optimal points inside of the microchip envelope for the case 

run with 8 sensors. ....................................................................................................................108 



xiv 

 

Figure 4-31. Kriging interpolation results for the temperature maps using the optimal 

location for the sensors. ............................................................................................................109 

Figure 4-32. Number and location sensor optimization strategy coupled with an inverse 

method assessment. ...................................................................................................................110 

Figure 4-33. Example of the scatter sensor optimization technique using the experimental 

data from the Experiment 1.......................................................................................................111 

Figure 5-1. Schematic of the inverse heat transfer procedure applied to the turbine casing. ...116 

Figure 5-2: Computational domain with details of solid and fluid domain. .............................117 

Figure 5-3. Numerical domain used in Numeca for the computation of the conjugate heat 

transfer in the casing of the turbine blade. ................................................................................118 

Figure 5-4. a)  Transient evolution of the heat flux applied in the conjugate heat transfer 

simulation in two different points of the domain. b) Spatial distribution of heat flux at t=4.5s 

in the overtip region in the conjugate heat transfer calculation. ...............................................120 

Figure 5-5. Temperature distribution in the outer wall of the casing at t=3s and t=5s for the 

baseline case of casing thickness (0.5mm) and tip clearance (1% of the blade span). .............121 

Figure 5-6. a) Comparison between the transient evolution of imposed heat flux and the 

retrieved heat flux. b) Spatial distribution of the imposed heat flux at t=1s in the simulation. 

c) Spatial distribution of the retrieved heat flux at t=1s in the simulation. ...............................122 

Figure 5-7. a) Imposed heat flux extracted from the conjugate heat transfer simulation with 

a clearance of 0.25% the blade span. b) Retrieved heat flux from the inverse method in the 

case of 0.25% of the blade span. c) Imposed heat flux extracted from the conjugate heat 

transfer simulation with a clearance of 0.55% the blade span. d) Retrieved heat flux from 

the inverse method in the case of 0.55% of the blade span. .....................................................123 

Figure 5-8. Numerical heat transfer simulation imposing fluctuations of heat flux in a thin 

layer of aluminum. ....................................................................................................................127 

Figure 5-9: Temperature fluctuation damping through Aluminum (dashed lines) and Copper 

(solid lines) for different thicknesses and frequencies. .............................................................128 

Figure 5-10. Inner and outer T vs time signals for a frequency of 1 kHz (a) Al, 500 μm 

thickness and (b) Al 0.5 cm thickness ......................................................................................130 

Figure 5-11. Averaged heat flux evolution at different upstream pressure conditions. ............133 

Figure 5-12. Pressure prediction based on the inverse heat transfer procedure. .......................133 



xv 

 

Figure 5-13. Schematic of the layout of the Purdue Experimental Turbine Aerothermal 

Laboratory. ................................................................................................................................135 

Figure 5-14 . Temperature achieved after the mixer with several hot to cold flow ratios. .......136 

Figure 5-15. Min-max temperature difference along the length of the piping downstream of 

the mixer. ..................................................................................................................................138 

Figure 5-16. a) Reynolds number per meter and b) Mach number maps achieved in the test 

section in all the span of the sonic valve and with a maximum massflow of 15 kg/s. .............140 

Figure 5-17. a) Comparison between the Re/m map and the Kriging meta-model in function 

of the massflow and the throat area with the representation of the points resulted from the 

optimization methodology. b) Comparison between the Mach number map and the Kriging 

meta-model in function of the massflow and the throat area with the representation of the 

points resulted from the optimization methodology. c) Root mean squared error of the Mach 

number and Re/m number using 20, 36 and 50 points in the Kriging interpolation 

optimization methodology. .......................................................................................................143 

Figure 5-18. a) Sampling comparison between the Kriging optimization result and the Latin 

Hypercube approach. b) Re/m error comparison between the surface generated with the 

Latin Hypercube sampling and the Kriging interpolation optimization. c) Mach error 

comparison between the surface generated with the Latin Hypercube sampling and the 

Kriging interpolation optimization. ..........................................................................................145 

Figure 5-19. a) Annular test section measurement planes. b) Velocity profile at two axial 

locations. c) Stage velocity triangles. d) Absolute-relative velocities of a rotor row with a 

pre-swirler; e) Velocity triangle in a stationary rotor row with rotating pre-swirler; f) 

Reverse rotation. .......................................................................................................................147 

Figure 5-20. Annular test section: a) Overall layout of the optical windows; b) frontal view 

of the test section; c) meridional view; d) supersonic configuration. .......................................150 

Figure 5-21. Left) Mach-Re limits in subsonic operation. Right) Operational range in 

subsonic conditions. ..................................................................................................................151 

Figure 5-22. Left) Mach-Re limits in supersonic operation. Right) Operational range in 

supersonic conditions. ...............................................................................................................152 

Figure 5-23. Meridional cut of the annular test section under investigation. ...........................153 



xvi 

 

Figure 5-24. Infrared access in the turbine annular cascade to perform infrared 

thermography of the inner casing of the rotor. .........................................................................154 

Figure 5-25. Measurement planes in the experimental setup of the annular the test section. ..155 

Figure 5-26. a) Instrumented annular test section ready to be set into the wind tunnel. b) 

Detail of the thermocouple probe already in the test section. c) Detail of the total pressure 

probe already in the test section. d) Total pressure rake and e) Total temperature rake. .........156 

Figure 5-27. Instrumentation used for the validation of the inverse heat transfer 

methodology composed by a) surface thermocouples in the inner surface of the measured 

intake and b) Infrared camera configuration to measure the outer temperature of the same 

turbine intake. ...........................................................................................................................157 

Figure 5-28. Test section instrumented,  installed and ready for the experiments. ..................158 

Figure 5-29. a) Gas temperature measured by one of the total pressure probes in the test 

section during the baseline experiment and b) gas to wall temperature ratio during the same 

experiment.................................................................................................................................161 

Figure 5-30. a) Total pressure measurement in the annular test section in plane 1 during the 

experiment 5. b) Massflow measurement during the same experiment in the venturi located 

upstream of the test section. ......................................................................................................162 

Figure 5-31. a) Static pressure readings in the plane 1 in the hub of the flowpath. b) Static 

pressure readings in the plane 2 in the shroud of the flowpath. c) Uniformity in the 

circumferential direction of the static pressure in the hub of the plane 1. ................................164 

Figure 5-32. a) Surface thermocouples located inside of the test section. b) Temperature 

comparison between the Thermocouple 6 and the thermocouple 10 located in the same axial 

position in the experiment 1. c) Temperature comparison between the thermocouple 6 and 

the thermocouple 10 located in the same axial position in the baseline case. ..........................165 

Figure 5-33. Comsol model with the boundary conditions applied during the calculation. .....166 

Figure 5-34. a) Surface thermocouples in the inner flowpath and b) inner metal temperature 

in the different axial locations over the measured surface. .......................................................168 

Figure 5-35. Calibration IR camera and IR transparent window set up. ..................................169 

Figure 5-36. IR images taken during the experiment 1. ...........................................................170 



xvii 

 

Figure 5-37. a) IR image of the region of interest. b) Spatial behavior of the temperature in 

the region inside the window. c) Temperature measured in the inner and outer surface of the 

shroud, used to compute the heat flux with the 1D heat conduction code................................171 

Figure 5-38. a) Temperature map in time and space for the calculation of the 1D heat 

conduction with the thermocouples in location 1. b) Heat flux computed with the 1D heat 

conduction code with the temperature from the thermocouple at location 1. ...........................172 

Figure 5-39. Comparison between the heat flux computed by the inverse heat conduction 

method and the heat flux through the casing. ...........................................................................174 

Figure 5-40. a) Heat flux comparison between the inverse method solution and the imposed 

heat flux in the upstream axial location in function of the difference between the gas 

temperature and the wall temperature. b) Heat flux comparison between the inverse method 

solution and the imposed heat flux in the downstream axial location in function of the 

difference between the gas temperature and the wall temperature. ..........................................175 

Figure 5-41. a) Heat flux comparison between the inverse method solution and the imposed 

heat flux in the upstream axial location in function of the gas to wall temperature ratio. b) 

Heat flux comparison between the inverse method solution and the imposed heat flux in the 

downstream axial location in function of the gas to wall temperature ratio. ............................176 

Figure 5-42.a) Heat flux comparison between the inverse method solution and the imposed 

heat flux in the upstream axial location in function of the convective heat transfer coefficient. 

b) Heat flux comparison between the inverse method solution and the imposed heat flux in 

the downstream axial location in function of the convective heat transfer coefficient. ...........177 

Figure 5-43. a) Heat flux comparison between the inverse method solution and the imposed 

heat flux in the upstream axial location in function of the massflow. b) Heat flux comparison 

between the inverse method solution and the imposed heat flux in the downstream axial 

location in function of the massflow. ........................................................................................177 

Figure 6-1. Comparison summary of the different analyzed methodologies. ...........................182 

 

 

 

 

  



xviii 

 

NOMENCLATURE 

Roman Symbols 

ATM  Atmospheric 

C  Covariance 

Cp = Heat capacity [J/kg K] 

d  Model order 

E  Error 

F = Temperature factor 

G  Green Function 

h  Tip gap height [m] 

H = Hessian matrix 

k  Number of independent variables 

k = Conductivity [W/m K] 

M  Mach number 

P  Pressure [Pa] [bar] 

q = Heat flux [W/m2] 

R  Radius [m] 

Re  Reynolds Number 

t  Time [s] 

t  t-statistics 

T = Calculated temperature [K] 

u  Rotational velocity magnitude [m/s] 

v  Absolute velocity magnitude [m/s] 



xix 

 

w  Relative velocity magnitude [m/s] 

X = Sensitivity coefficient matrix 

Y = Measured temperature [K] 

   

 

Greek symbols 

α Regularization parameters 

α Thermal diffusivity [m2/s] 

α Absolute flow angle 

β Relative flow angle  

ρ Density [kg/m3] 

λ Weights in Kriging method 

σ Standard deviation 

γ Required precision 

ω Angular velocity [rad/s] 

 

Subscripts 

0 = Total quantity 

1 = Plane 1: stator inlet 

2  Plane 2: rotor inlet 

3  Plane 3: rotor outlet 

i = Particular time step 

j = Particular space location 

m = Total number of temperature measurements 



xx 

 

M  Particular sensor measurement 

n = Total number of  time steps 

p = Total number of heat sources 

r  Relative 

s  space 

t  time 

 

Acronyms 

BFGS Broyden-Fletcher-Goldfarb-Shanno method 

CFV Critical Flow Venturi 

CGM Conjugate Gradient Method 

DFM Digital Filter Method 

FOV Fast Opening Valve 

GA Genetic Algorithm 

HP High Pressure 

IHCP Inverse Heat Conduction Problem 

IHTM Inverse Heat Transfer Method 

IR Infrared 

LHS Latin Hypercube Sampling 

LP Low Pressure 

PETAL Purdue Experimental Turbine Aerothermal  Laboratory 

RMS Root Means Square 

RPM Revolutions Per Minute 

RTD Resistance Temperature Detector 



xxi 

 

SWG Shock Wave Generator 

TC Thermocouple 

TRL Technology Readiness Level 

 

 

 

  



xxii 

 

ABSTRACT 

Author: Gonzalez Cuadrado, David. PhD 

Institution: Purdue University 

Degree Received: December 2018 

Title: 3D Inverse Heat Transfer Methodologies for Microelectronic and Gas Turbine 

Applications 

Committee Chair: Guillermo Paniagua, Amy Marconnet 

 

 

The objective of this doctoral research was to develop a versatile inverse heat transfer approach, 

that would enable the solution of small scale problems present in microelectronics, as well as the 

analysis of the complex heat flux in turbines. An inverse method is a mathematical approach which 

allows the resolution of problems starting from the solution. In a direct problem, the boundary 

conditions are given, and using the governing physics principles and equations you can calculate 

the solution or physical effect. In an inverse method, the solution is provided and through the 

physical equations, the boundary conditions can be determined. Therefore, the inverse method 

applied to heat transfer means that we know the variation of temperature (effect) over time and 

space. With the temperature input, the geometry, thermal properties of the test article and the heat 

diffusion equation, we can compute the spatially- and temporally-varying heat flux that generated 

the temperature map.  

This doctoral dissertation develops two inverse methodologies: (1) an optimization methodology 

based on the conjugate gradient method and (2) a function specification method combined with a 

regularization technique, which is less robust but much faster. We implement these methodologies 

with commercial codes for solving conductive heat transfer with COMSOL and for conjugate heat 

transfer with ANSYS Fluent.  
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The goal is not only the development of the methods but also the validation of the techniques in 

two different fields with a common purpose: quantifying heat dissipation. The inverse methods 

were applied in the micro-scale to the dissipation of heat in microelectronics and in the macro-

scale to the gas turbine engines.  

In microelectronics, we performed numerical and experimental studies of the two developed 

inverse methodologies. The intent was to predict where heat is being dissipated and localized hot 

spots inside of the chip from limited measurements of the temperature outside of the chip. Here, 

infrared thermography of the chip surface is the input to the inverse methods leveraging thermal 

model of the chip. Furthermore, we combined the inverse methodology with a Kriging 

interpolation technique with genetic algorithm optimization to optimize the location and number 

of the temperature sensors inside of the chip required to accurately predict the thermal behavior of 

the microchip at each moment of time and everywhere.  

In the application for gas turbine engines, the inverse method can be useful to detect or predict the 

conditions inside of the turbine by taking measurements in the outer casing. Therefore, the 

objective is the experimental validation of the technique in a wind tunnel especially designed with 

optical access for non-contact measurement techniques. We measured the temperature of the outer 

casing of the turbine rotor with an infrared camera and surface temperature sensors and this 

information is the input of the two methodologies developed in order to predict which the heat flux 

through the turbine casing. A new facility, specifically, an annular turbine cascade, was designed 

to be able to measure the relative frame of the rotor from the absolute frame. In order to get 

valuable data of the heat flux in a real engine, we need to replicate the Mach, Reynolds, and 

temperature ratios between fluid and solid. Therefore, the facility can reproduce a large range of 

pressures and flow temperatures. Because some regions of interest are not accessible, this research 
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provides a significant benefit for understanding the system performance from limited data. With 

inverse methods, we can measure the outside of objects and provide an accurate prediction of the 

behavior of the complete system. This information is relevant not only for new designs of gas 

turbines or microchips, but also for old designs where due to lack of prevision there are not enough 

sensors to monitor the thermal behavior of the studied system.  
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 INTRODUCTION 

1.1 Research Objectives 

While numerous numerical solvers have been developed to predict temperature distributions and 

heat flows in real systems given boundary conditions and material properties for a given 

geometry (i.e., the forward problem), experimental characterization often relies upon limited 

temperature sensors and boundary conditions, material properties, or geometrical parameters 

may not be well characterized. In this case, the unknown information (e.g.¸ boundary conditions) 

can be retrieved from limited data (e.g., temperature measurements) given with inverse methods 

algorithms.  

Inverse methods applied to heat transfer are particularly interesting for fields where the 

dissipation of heat constitutes a problem for placement of the sensors or their survivability. On 

one hand, in fields such as microelectronics, due to compactness of the current and future 

generation of microprocessors, inverse heat transfer methods can predict the thermal behavior of 

the chips using few temperature measurements outside of the system. This prediction can be used 

for design purposes, optimizing the location of the temperature sensors for instance, or during 

operation using real-time inverse methods, it can be used for active thermal management of the 

complete system.  

On the other hand, in propulsion applications the survivability of the sensors is compromised 

due to the harsh environments they are subjected to. Inverse heat transfer methodologies allow 

the determination of the internal conditions of the flow, based on measurements from outside of 
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the system. It ensures the survival of these instruments and prevents aerothermal distortion 

caused by routing the instrumentation into the test article. 

This thesis addresses the following key points: 

a) Evaluation of the feasibility of using inverse methods applied to heat transfer in complex 

3D geometries: 

Many studies have been performed using inverse methodologies applied to different fields, 

including heat transfer research. The objective of this part of my thesis is to evaluate different 

algorithms that can be applied to solve inverse problems for complex 3D geometries. This 

means that not only analytical solutions are applied in the methodology, but we combine the 

inverse methods with numerical models to solve the heat conduction equation.  

b) Development of two different inverse methodologies for heat transfer problems for 

conductive heat transfer and for conjugate heat transfer: 

Two different methods were selected and developed based on the evaluation of past research: 

(1) the conjugate gradient method with a whole domain estimation algorithm and a sequential 

time estimation and (2) a function specification method with a regularization technique. The 

objective of this method development is to test the robustness and computation efficiency of 

both methods. The first method was selected for its robustness and the second, for its 

computational efficiency. At the same time, they were evaluated with two different 

commercial solvers for the forward problem providing a pure conductive routine and a 

conjugate heat transfer routine.  

c) Application of the inverse methodologies to microelectronics: 

In this phase, we apply to our inverse methods to a microscale application. The goal is to 

verify if the inverse methods based on a model of a real microchip can accurately predict the 

hotspots happening inside of the chip. All this evaluation is made at the microchip card scale. 
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Finally, with the information provided with the inverse methodology about hotspots inside of 

the chip, we optimize the number and location of the temperature sensors for any kind of chip 

required to predict the complete thermal behavior of the assessed microelectronic card in time 

and in space.  

d) Application of the inverse methodologies to gas turbine casing: 

In this application, we target macroscale systems. The ultimate goal is to predict the heat flux 

through the casing of the turbine rotor based on temperature measurements taken outside. 

This methodology can be used to retrieve other operating conditions inside of the engine based 

on the retrieved heat flux. The advantage of this technique is the use of external measurement 

techniques, which benefit the acquisition of data for two main reasons: the sensors are not 

intrusive, so they do not disturb the flow and the sensors are protected from the harsh 

conditions of the flow. An experimental validation of the methodologies for this application 

will be performed in a turbine test rig.  

Figure 1-1 summarizes the complete research proposal starting with the development of the two 

methodologies based on the literature survey. Then we apply these methodologies to two 

different fields in which the heat management plays a major role. These objectives are related to 

the research methodology explained in the following subsection for each one of the parts. 
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Figure 1-1. Schematic of the research directions. 

1.2 Research Methodology 

In order to accomplish the four objectives explained in the previous subsection we followed the 

following research approach. 

a) Development of 3D transient inverse methods: 

An intensive literature survey through all the algorithms employed in the resolution of inverse 

heat transfer problems is conducted. The outcome is summarized in the implementation of 

two different methods based on (1) an optimization technique for robustness and (2) on a 

more computationally efficient function specification method combined with regularization 

techniques. For the implementation of these methodologies, we combined two commercial 

software programs: (1) Matlab for implementation of the inverse methods and (2) multi-
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physics software to solve the heat transfer phenomena in complex 3D geometries. The specific 

multi-physics software depends on the type of heat transfer that needs to be solved and 

different approaches are needed in order to establish communication between Matlab and the 

solver. For conductive heat transfer, COMSOL Multiphysics is used for the heat transfer 

analysis. In the case of the conjugate (i.e., combined conduction and convection) heat transfer 

applications, the chosen software is ANSYS Fluent.  

This development also includes an evaluation of the robustness and computational efficiency 

of the different methods. The evaluation was performed with a basic model of a microchip in 

order to couple it with the following section.  

b) Inverse heat transfer methods applied to microchips:  

Using the developed inverse methods, we evaluate the heat generation inside of the microchip 

based on external measurements of temperature and then optimize the location of the sensors 

inside of the microchip. The methodology to perform this work is summarized in the Figure 

1-2. The inverse methodology is applied to find the heat generated inside of the microchip 

and the solution of the inverse method is the input for an optimization technique based on 

genetic algorithms that coupled with a Kriging interpolation is providing the optimize location 

of the temperature sensors. In this case, experimental data taken from a real microchip with 

heat generators is used for the validation of the methodology. 
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Figure 1-2. Research methodology for microelectronic application. 

c) Inverse heat transfer method applied to gas turbines: 

The validation of the method for a macroscale application is performed in the rotor casing of 

a turbine facility. For this, a turbine cascade wind tunnel was specially designed for optical 

measurements. The experimental validation of the methodology uses infrared thermography 

to measure the temperature of the outer casing of the turbine stage and with this information 

retrieve the heat flux through the casing of the turbine rotor.  

1.3 Dissertation Guideline 

This dissertation is divided in 6 chapters in which the methodology and application of the 

doctoral are detailed. Chapter 2 is an overview of the different inverse methodologies employed 
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for heat transfer research. It discusses and describes the most important and common 

methodologies, classifying them by solving methods.  

Chapter 3 details the two methodologies that have been developed and applied in this work: the 

digital filter method and the conjugate gradient method with a sequential estimation. A 

comparison between the results obtained with the Digital Filter Method and with the Conjugate 

Gradient Method is included. Additionally, an explanation of an improved Digital Filter Method 

developed in this work to account for temperature dependent properties and boundary conditions 

is detailed in this paragraph with some preliminary results. 

Chapter 4 emphasizes the application of the method in microelectronics, evaluating the 

robustness to noisy inputs, the comparison between the two methodologies, the implementation 

for conductive and conjugate heat transfer models, and the experimental validation of the 

methodologies. At the end of the chapter, Kriging interpolation optimization for limited sensor 

placement is detailed and the results are discussed and evaluated.  

Chapter 5 focuses on the gas turbine application, with special attention to the design of the wind 

tunnel and test section developed for optical measurement techniques. The improved Digital 

Filter Method is evaluated using several numerical experiments. The inlet conditions of the 

experiments are retrieved only by measuring the heat flux in the outer surface of the engine. Also, 

the inverse method is validated with several experiments in the wind tunnel at different gas to 

wall temperature ratios and mass flows. A detailed analysis of the experiments and the results of 

the inverse methodology is included in this chapter, concluding that the inverse method can 

predict in time and in space the behavior of the heat flux, and it can be related to the inlet 

conditions of the experiment.  

Chapter 6 contains all the conclusions extracted from the presented doctoral dissertation. Special 

remarks have been made in the effectiveness of each method for each type of application and 
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guidelines for the implementation of this inverse methodology in real machinery have been 

provided.  

Additionally five different appendix have been included, divided by topics. In the Appendix A, 

the uncertainty evaluation is explained. Appendix B contains the complete experimental results 

used for the validation of the inverse methodologies. Appendix C details the Matlab GUI created 

for the combination of the inverse method with the sensor optimization technique. The selection 

of the Infrared transparent window is included in the Appendix D and the Appendix E itemizes 

all the experimental data gather during the gas turbine application measurement campaign.  
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 A REVIEW OF INVERSE HEAT CONDUCTION 

METHODS 

It is relatively straightforward to determine temperature distributions given information about 

geometry, boundary, conditions, and material properties by solving (analytically or numerically) 

the heat diffusion equation for conduction or coupled heat, mass, and momentum transfer 

problems for conjugate heat transfer problems. But the inverse problem, i.e., determining an 

unknown heat transfer coefficient given a measured temperature, is ill posed and motivates the 

developments of computational algorithms to estimate the unknown parameters. Experimentally, 

numerous sensors exist ranging from thermocouples to infrared detectors to observe temperature 

profiles, but measuring heat fluxes, heat generation, and convection coefficients is not always as 

straight forward.  

In any system, a “cause” (e.g., distribution and magnitude of heat generation) under certain 

“conditions” (e.g., specific material properties) give as a result a “change” or “effect” in the 

system (e.g., increased temperatures). When one of these elements (the “cause”, “conditions”, 

or “effect”) is unknown and we want to know it, we have, literally, a “problem”. In the direct 

problems we know the “cause” and the “conditions” and our unknown is the “effect”. These 

problems, due to the nature of the physics behind them, are normally well-posed and have a 

unique solution, a unique “effect”. However, if the unknown is the “cause” or the “conditions”, 

the nature of the problem changes since the calculation is starting from the solution and it 

becomes an ill-posed problem. These are the so called inverse problems.  

In the inverse problems we are not looking for the solution to the problem, i.e., we are not looking 

for the effect. Instead, we measure the “effect” (e.g., the temperature distribution) and use that 
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as the starting point of the inverse problems to retrieve the “cause” and “conditions” of the 

problem (e.g., boundary conditions or material properties). For a well-posed problem  [1]: 

a. the solution exists, 

b. the solution is unique, 

c. the solution's behavior changes continuously with the initial conditions. 

But inverse problems are generally ill-posed, which means that they do not satisfy all these 

properties. Even though the solution always exists, it may be not unique and any small change 

in the “effect” can propagate numerically and change completely the solution. As an example, 

there are different combination of boundary conditions that can cause the same effect in the 

system. Thus, the solution of an inverse problem is not unique. Also, when there is noise involved 

in the measurements or any oscillation in the “effect” this is understood in the problem as 

something due to changes in the boundary conditions, which leads to non-continuous behavior 

of the initial conditions of the problem. 

Methods to solve inverse problems have been used continuously in research in all fields, 

sometimes even without notice or classifying it as an inverse method. Any time that we are 

applying “reverse engineering”, we are applying some kind of inverse method to solve a problem. 

This technique was used, for example, in the definition of the International Gravity Formula and 

to compute the standard acceleration of gravity by Newton [2]. Based on observation and 

repetition of experiments, he could define a model with a constant that was previously unknown. 

Therefore, starting from the “effect” he could compute which were the “causes” and the 

“conditions” of the problem. But the field of solving inverse problems was truly opened after the 

Second World War when Swedish mathematicians found an article from the Soviet-Armenian 

physicist Viktor Ambartsumian published in 1929 [3][4][5]. In his article,  Ambartsumian was 
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asking if based on the eigenvalues of a matrix, one could find the form of the equations that 

yielded the eigenvalues. Ambartsumian thoughts were more related with the definition of 

physical laws from the experimental data, i.e., starting from observations of the phenomena, is 

it possible to define a physical law that explains the observed effect in the system? In the cases 

that are analyzed subsequently in this chapter, the physical law is defined (the heat diffusion 

equation) and the boundary conditions of the problems are unknown.  

This literature review is focused in the application of the inverse methods in the particular field 

of heat transfer. Therefore, the physical law for how heat is spread through a solid is defined: the 

heat diffusion equation. But the boundary conditions or material properties are unknown, which 

is common and often due to inaccessibility or lack of relevant experimental data. In that case, 

the only option is the measure the temperature map and use inverse methodologies to retrieve 

the heat flux (“cause”) or thermo-physical properties of the material (“conditions”) of the heat 

problem. Inverse methods have been widely used for the following topics inside of the field of 

heat transfer: 

- Estimation of thermo-physical properties of materials [6][7][8][9][10][11][12]. 

- Estimation of bulk radiation properties and radiation boundary conditions 

[13][14][15][16]. 

- Solidification and change of physical state [17][18][19].  

- Estimation of heat flux in ducts [20][21][22]. 

- Conductance during solidification process [23][24]. 

- Contact resistance [25]. 

- Estimation of reaction function [26][27]. 
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- Estimation of the boundary shapes of bodies [28][29]. 

These problems are solved using different inverse heat transfer techniques, which will be 

introduced and detailed in following sections of this chapter. All of them have something in 

common: they require the determination of a sensitivity coefficient which relates the effect with 

the cause. The sensitivity coefficient is the derivative of the computed parameter with respect to 

the parameter that is causing it. Therefore, in heat transfer, the sensitivity coefficient is the 

derivative of the temperature with respect to the heat flux that created that temperature increase. 

In the next section, we explain the term and we give insights about its calculation. 

As we will detail in the Section 2.3, inverse methodologies can be classified in a variety of 

different ways. The classification and simplification that is introduced in this dissertation groups 

them by nature of the solving methodologies: optimization techniques and fitting techniques. All 

optimization methodologies can be used to compute the cause of an event, if the objective 

function of the optimization is well defined. The fitting techniques rely on the solution of a 

system of equations, in time domain or frequency domain, provided the relation between the 

cause (heat flux) and the effect (increase of temperature), which is the sensitivity coefficient or 

matrix of coefficients.  

2.1 Sensitivity Coefficient Definition 

The evaluation of the sensitivity coefficient provides a valuable knowledge about the 

performance of the inverse problem. The sensitivity coefficient can be understood in layman 

terms as the quantification of the effect in the measured parameter due to a variation in a “cause”. 

In this research, we use an unknown heat flux as the “cause” in order to simplify the formulation, 

but any other parameter such as thermal conductivity, density, or thermal diffusivity could be 
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the “cause” under evaluation. Therefore, in heat transfer terms for this problem, the sensitivity 

coefficient relate to the heat flux is the effect in the temperature due to variations in the heat flux, 

which is similar to the concept of thermal resistances but evaluated at every position and time 

within the domain. Mathematically it is expressed as the derivative of the temperature with 

respect to the heat flux at a particular location and for a 1D problem with a single heat source 

can be represented as: 

𝑋𝑗𝑀(𝑥𝑗, 𝑡𝑖) =  
𝜕𝑇(𝑥𝑗 , 𝑡𝑖)

𝜕𝑞𝑀
 (1) 

Therefore, 𝑋𝑗𝑀 represents the measured effect (temperature) at the location 𝑥𝑗 at the time 𝑡𝑖 due 

to the heat flux component 𝑞𝑀, where the subscript M represents the time step when the heat flux 

was applied. 𝑋𝑗𝑀 is the sensitivity coefficient that measures the sensitivity of the temperature 

measurement 𝑇(𝑥𝑗 , 𝑡𝑖) to changes in the value of 𝑞𝑀 . Small values of the sensitivity coefficient 

imply that large changes in the heat flux yield small changes in temperature. This is one of the 

main challenges of the inverse methodologies, since the calculation of the heat flux is highly 

dependent on the temperature measurement. Note that equation 1 is a simplified version of the 

coefficient assuming 1D temperature locations and only one heat source in transient operation. 

If we add a 2D grid of temperature sensors and more than one heat source the matrix size grows 

exponentially, as well as the number of unknowns in the problem. Considering the whole 

structure of a real system, equation 1 generates a Jacobian matrix known as Sensitivity Matrix 

[30].  

In problems where the parameters or boundary conditions values differ in orders of magnitude, 

the effect of the searched parameter can vary over orders of magnitude as well. This creates 

difficulties in the evaluation of the linear dependence between the cause and the effect. A 
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solution for this is to use dimensionless sensitivity coefficients (Equation (2)) and dimensionless 

distance and time constants (Equation (3) and (4), respectively). 

𝑋+ = 𝑇+ = 
𝑇 − 𝑇0
𝑞𝑐𝐿/𝑘

=
𝑘 𝜕𝑇

𝐿 𝜕𝑞𝑐
 (2) 

𝑥+ =
𝑥

𝐿
 (3) 

𝑡+ =
𝛼 𝑡

𝐿2
 (4) 

Here, k is the thermal conductivity, L is a characteristic length scale for the problem, t is the 

characteristic time for the problem, 𝛼 is the thermal diffusivity of the material, 𝑞𝑐 is the heat flux 

applied in the pulse and 𝑇0 is the initial temperature of the system. 

These are the expression of the common non-dimensional numbers in the inverse heat transfer 

problem evaluated using sensitivity coefficients, but they can vary depending on the analytical 

solution of the problem, since, for example, for lumped capacitance problems they can be 

expressed in a different way [6]. Also, we can define a dimensionless timestep similar to 

Equation (4) but substituting the time t by the timestep ∆𝑡. It is remarkable that the dimensionless 

time is the same as the well-known Fourier number (Fo) that characterizes the transient behavior 

in heat conduction.  

The shape and value of the sensitivity coefficient changes with the problem, boundary conditions, 

and length scales of the time step. The location of the peak is influenced by the size of the 

timestep. In order to obtain the sensitivity coefficient represented in Figure 2-1, we need to apply 

a pulse of heat flux in a particular timestep. When dealing with smaller timesteps, the amount of 
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energy transmitted to the test article (or model) is smaller and therefore the peak is lower. At the 

same time, due to the adimensionalization in time, the peak appears before, only because it is 

expressed in terms of t+. In terms of t, the peak would appear before for larger timesteps.  

 

Figure 2-1. Sensitivity coefficient for the temperature increase with respect to the heat flux. At 

a particular point, there is a delay in the temperature response due to the finite speed of thermal 

diffusion. The peak magnitude shifts depending on the time of application of the heat flux 

pulse. Also the peak magnitude and location is modified with the size of the non-dimensional 

timestep, since at smaller timesteps the energy provided to the system is smaller.    

There are different ways to compute the sensitivity factor depending on the complexity of the 

system. The first method is based on the analytic solution. This method works well for 

conductive problem with simple geometries and with information about the boundary conditions. 

We solve the temperature distribution by solving heat diffusion equation with the known 



   16 

 

boundary conditions and then we derive the temperature result with respect to the unknown 

parameter (boundary condition or any thermal property) to get the sensitivity coefficient with 

respect to the aforementioned parameter. 

To illustrate the calculation using the analytic solution method we have chosen the solution of 

the semi-infinite solid in which we apply a uniform heat flux 𝑞"𝑠 [31]: 

𝑇(𝑥, 𝑡)  −  𝑇0 = 
2 𝑞"𝑠 (

𝛼 𝑡
𝜋 )

1
2

𝑘
exp (

−𝑥2

4 𝛼 𝑡 
) −  

 𝑞"𝑠𝑥

𝑘
 𝑒𝑟𝑓𝑐 (

𝑥

2√𝛼 𝑡
). 

(5) 

The sensitivity coefficient is calculated deriving the Equation (5), so the sensitivity coefficient 

with respect to the boundary condition 𝑞"𝑠 at the any location x and at a time t is 

𝑋𝑞𝑠(𝑥, 𝑡) =
𝜕𝑇(𝑥, 𝑡)

𝜕𝑞"𝑠
= 
2 (
𝛼 𝑡
𝜋 )

1
2

𝑘
exp(

−𝑥2

4 𝛼 𝑡 
) −  

 𝑥

𝑘
 𝑒𝑟𝑓𝑐 (

𝑥

2√𝛼 𝑡
) 

(6) 

The sensitivity coefficient depends on position and time after the applied heat flux. We can 

observe that this coefficient does not depend on the magnitude of 𝑞"𝑠 and therefore the inverse 

problem is linear. 

A second methodology involves solving the Boundary Value problem. It consists in deriving the 

heat diffusion equation with respect to the searched parameter or function and adapting the 

boundary conditions to the differentiation. Normally, the result is a PDE of the same kind as the 

heat diffusion equation and, therefore, we can solve it in the same way [30]. The Conjugate 

Gradient Method uses this approach to compute the sensitivity problem. The following problem 

(in the left column) considers a slab of thickness L with a planar heat source in the middle of the 
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slab that yields the sensitivity coefficient problem (in the right column) where the subscript j 

counts the number of parameters to be determined by the inverse method. 

Forward problem definition Sensitivity coefficient definition 

𝜕𝑇(𝑥, 𝑡)

𝜕𝑥2
+ 𝐶𝑗 𝑞𝑗(𝑡)𝛿(𝑥 − 0.5) =

𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
 0 < 𝑥 < 𝐿, 𝑡 > 0 (7) 

𝜕𝑋𝑗(𝑥, 𝑡)

𝜕𝑥2
+ 𝐶𝑗 (𝑡)𝛿(𝑥 − 0.5) =

𝜕𝑋𝑗(𝑥, 𝑡)

𝜕𝑡
 (11) 

𝜕𝑇(0, 𝑡)

𝜕𝑥
= 0 𝑥 = 0, 𝑡 > 0 (8) 

𝜕𝑋𝑗(0, 𝑡)

𝜕𝑥
= 0 (12) 

𝜕𝑇(𝐿, 𝑡)

𝜕𝑥
= 0 𝑥 = 𝐿, 𝑡 > 0 (9) 

𝜕𝑋𝑗(𝐿, 𝑡)

𝜕𝑥
= 0 (13) 

𝑇(𝑥, 0) = 0 0 < 𝑥 < 𝐿, 𝑡 = 0 (10) 𝑋𝑗(𝑥, 0) = 0 (14) 

Another method to compute the sensitivity coefficient is using the finite difference 

approximation. Using different schemes to compute the derivative with respect to the searched 

parameter, we can compute the sensitivity coefficient. For instance, using the forward difference 

scheme the sensitivity coefficient would be computed as 

𝑋𝑖𝑗 =
𝑇𝑖(𝑞1, 𝑞2, 𝑞𝑗 , … , 𝑞𝑁 + 𝛾 𝑞1, 𝑞2, 𝑞𝑗, … , 𝑞𝑁) − 𝑇𝑖(𝑞1, 𝑞2, 𝑞𝑗 , … , 𝑞𝑁) 

𝛾𝑞𝑗
 (15) 

where N is the total number of parameters to estimate and 𝛾 is a parameter that oscillates between 

10-5 and 10-6, obtained empirically [6], that increments the heat fluxes a small step. This method 

is the computationally most expensive of the three approaches since it requires N additional 
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direct solutions for the forward and backward schemes and 2N additional direct solutions for 

more complex schemes like the central differences scheme.  

The first two methodologies to compute the sensitivity coefficient can be applied in 1D and 2D 

simple problems in which the analytical solution is known. If complex 3D problems are targeted 

the only way to compute the sensitivity coefficient  is the finite difference approximation.  

All these methods can be extended to problems with multiple temperature sensors and multiple 

unknown parameters. 

2.2 Challenges of the Inverse Heat Transfer Methods 

The main challenge related with inverse methodologies for heat transfer is related to the ill-posed 

nature of the problem. Recall that Hadamard [1] defined a well-posed problem as the one that (a) 

has solution, (b) this solution is unique and (c) the behavior of the solution changes continuously 

with the boundary and initial conditions. The inverse problem has several solutions for the same 

boundary conditions and it is extremely sensitive to the errors in the measurements, therefore it 

is ill-posed. Understanding this concept is central to properly analyzing inverse method solutions, 

keeping in mind the limitations that these facts imply.  

Particularly in conductive heat transfer, we have to take into account two other concepts for the 

inverse calculation of the boundary conditions or inverse parameter. First, the effect of the 

boundary conditions damps and lags through the solid. Specifically, the magnitude of the 

temperature increase diminishes with the distance from the source (damping) and this 

temperature increase is delayed in time depending on the distance from the boundary conditions 

(lagging). Thus, the sensitivity coefficient depends on space and time. These effects are mainly 

related with the thermal properties of the material. Materials with larger thermal diffusivity have 
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smaller damping and lagging. This has implications in the selection of location of the sensors. If 

the sensor is too far away from the point of applied heat flux, the temperature increase will fall 

within the uncertainty of the measurements and, therefore, it will be practically impossible to 

have reliable information of the solution to the inverse problem. In heat transfer problems with 

oscillating thermal transients, higher frequencies of oscillation yield smaller the depths at which 

the effect of the oscillating heat source is felt within the solid. To give an order of magnitude 

from the analytical solution in a semi-infinite body [6], for a steel slab, applying heat fluxes at a 

frequency of 1Hz, the metal slab will not experience any significant temperature fluctuation 

beyond 0.82 cm from the heating source. If we increase the frequency even further to 100 Hz, 

this distance is reduced by one order of magnitude to 0.08 cm. This effect can be observed not 

only on the damping, but also on the lagging. For the case of the 1 Hz heat frequency the time 

lag at x=0.82 cm is 0.73 s. Hence, lagging and damping constitute a major limitation for these 

kinds of problems. 

The sensitivity coefficients are another important source of uncertainty in inverse heat transfer 

calculations due to the important role they play in the computation. This coefficient measures 

the effect in the measured temperature due to variations in the searched parameter. If its value is 

too small, the inverse calculation will be extremely difficult since we have |𝑋𝑇𝑋| ≈ 0, which is 

an ill-conditioned matrix and thus any column of 𝑋 can be expressed as a linear combination of 

different columns in the system [7]. Physically, this means that there will be a large range of 

values of the parameter (or function) that you want to estimate that will give the same 

temperature response. It is recommended to maximize  |𝑋𝑇𝑋| and have linearly independent 

rows in the matrix to reduce the range of the solution. 
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Close related to the previous problem, we find that the computation and sensitivity matrix 

module are very sensitive to the size of the timestep. Timewise variations of the sensitivity 

coefficient should be analyzed in order to choose the best temperature measurement location and 

measurement time steps to apply the inverse method. Normally, they will be correlated to the 

maximization of |𝑋𝑇𝑋| and the larger independent sensitivity coefficients.  

Taking into account all these challenges, the objective function that must be minimized when 

searching for an unknown parameter, 𝑞𝑐, in order to properly solve the heat diffusion equation 

is related to the measured temperature Y and the calculated temperature T: 

𝑆(𝑞𝑐) =  ∑ ( 𝑇𝑖(𝑞𝑐) − 𝑌𝑖)
2𝑀

𝑖=0 . (16) 

In this function, the 𝑌𝑖  is the measured temperature at time i, and M is the total number of 

measurements in time. By varying the unknown parameter, 𝑞𝑐 , we modify the value of the 

calculated temperature  𝑇𝑖(𝑞𝑐) at time i using the sensitivity coefficients to minimize the 

objective function 𝑆(𝑞𝑐). If we consider that N is the total number unknown parameters (heat 

flux in time and space in this case), then M ≥ N in order to have enough equations to solve all 

the unknowns. This objective function can also be expressed in matricial form as 

𝑆(𝑞𝑐) =  [𝑌 − 𝑇(𝑞𝑐)]
𝑇[𝑌 − 𝑇(𝑞𝑐)]. (17) 

As the superscript T denotes transpose matrix, Equations (16) and (17) are equivalent and are 

used interchangeably.  
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2.3 Inverse Heat Transfer Classifications 

Inverse methods can be classified in different ways depending on the purpose of the calculation. 

These classifications help to identify which method or methods are suitable for a particular 

problem, since the computational time can be greatly reduced knowing the characteristics of the 

problem. Figure 2-2 illustrates a simplification of the different numerical methods that are used 

to solve the inverse problems. 

The first classification the solution method for the heat diffusion equation. Broadly speaking, 

solution methods include using Duhamel’s Theorem [6] or difference methods (including finite 

difference approaches, finite element methods, and control volume approaches)[32][33]. The 

difference approaches can handle easily non-linear solutions of the heat diffusion equation, while 

solutions based on Duhamel’s Theorem is restricted to linear solutions. In linear problems, the 

properties of the materials and boundary conditions do not depend on the temperature of the test 

article, while in non-linear problems there is a dependency on temperature. Not all the inverse 

heat conduction algorithms are suitable to calculate non-linear problems. Particularly, solutions 

based in the Duhamel’s Theorem and the solutions performed using Laplace transforms fail to 

handle non-linear problems. Other methods based on function specification and regularization 

methods can be applied to both non-linear and linear heat diffusion equations. But solutions 

based on Duhamel’s Theorem are typically faster since they do not require an iterative 

calculation. 

Next, we can classify the methodology depending on the algorithm used to solve the problem. 

Many algorithms have been used to solve inverse problems: integral equation approaches ([34]-

[41]), series solution approaches ([42]-[45]), polynomial approaches ([46]-[48]), space marching 

techniques with noise filtering ([49]-[51]), hyperbolization methods of the heat equation ([52]-
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[54]), iterative filtering techniques [55], and regularization techniques ([56]-[70]) amongst them 

the Tikhonov’s regularization technique ([4],[71]-[75]). Since the number of methods is so large, 

we group them in two main groups: problems solved using fitting techniques (i.e., calculating 

the best estimator of a system of equations) and optimization techniques [66][62], where we 

minimize an objective function based in the difference between the measured and the calculated 

temperature map. Fitting methodologies can be iterative or simple calculations solving a system 

of equations once, while the optimization methods involve always an iterative procedure. The 

function specification method [6][7] and the Marquardt-Levenberg methodologies [81][82][83] 

are in the first group. These methods can be combined with a regularization technique in order 

to reduce the divergence of the method and converge in a more physical solution. The second 

group, optimization techniques, include deterministic and stochastic methods and includes the 

Conjugate Gradient Method coupled with Adjoint and Sensitivity problems [109][131][132][133] 

which it is one of the most robust methods to solve complex 3D inverse heat transfer problems. 

Recently, there has been a tendency to use approaches with more complex mathematical 

methodologies such as using lattice-Boltzmann approaches combined with Proper Orthogonal 

Decomposition (POD) ([76]-[79]). These methods can produce low-order, high quality 

approximations of the field under certain assumptions and have been applied for estimation of 

estimation of both boundary heat flux [20][21][22] and thermal properties 

[6][7][8][9][10][11][12]. The following sections explain in more detail the two main categories 

of algorithms.  



    

 

 

 

 

Figure 2-2. Classification of inverse heat transfer methods based on the methods used to solve the inverse problem. 
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Further, the method of solution of the Inverse Heat Conduction Problem (IHCP) can be also 

classified depending on the use of the time domain during the calculation. The calculation of the 

inverse method can be performed using the information of the temperature in the sensors (a) in 

the same moment when the heat flux is applied (i.e., Stolz method  [32]), (b) in the moment when 

it is applied plus some of the future time steps (i.e., sequential methods)[33], or (c) using the 

whole domain estimation, in which all the time steps are considered in the calculation of the heat 

flux at a particular time.  The first method, called Stolz method [32], is extremely sensitive to 

measurement errors since it is based in a direct correspondence between the measurement of the 

sensor at the present time and the value of the heat flux at the same time. Sequential methods use 

only few of the future time steps are typically more robust, being less sensitive to the effect of 

the error in the measurements. Therefore, we can compute the inverse calculation with much 

smaller time steps. The whole domain methods are suitable for even smaller time steps since 

they are even less sensitive to the measurement error, but we are penalized in the computational 

cost with respect to the “sequential” methods. Most of the algorithms introduced in this research 

can be modified for use in both sequential and whole domain estimations.  

In order to evaluate the inverse heat conduction methods, Beck [6] and Ozisik [24] [30] 

established a set of criteria for evaluating methods to solve IHCPs: 

1. Low difficulty of programming and moderate computational cost 

2. Easy to adapt to different geometries using different coordinate systems. 

3. Calculated temperatures and heat flux must be accurate if the temperature measurement 

is accurate. 

4. Insensitive to measurement errors. 
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5. The stability of the method must be guaranteed for small and large time steps. 

6. The starting time of the application of the heat flux should not be required prior 

knowledge for the calculation. 

7. Handle all kind of materials including isotropic and anisotropic thermal properties. 

8. The method can allow for more than one heating plane within the system. 

9. Temperature distribution measured with one or more temperature sensors.  

10. Contact resistances can be included in the calculations. 

11. Errors need to be evaluated on a statistical basis. 

2.4 Fitting Methodologies 

As described in the previous section, we broadly classify inverse methods into two categories: 

fitting methods and optimization methods. Fitting methods typically fit for the temperature 

difference between the calculated and the measured temperatures in one calculation, without the 

need of any iterative process. However, when there are non-linear features in the heat conduction 

calculation we can implement an iterative procedure based in a least square estimation as well. 

All the methodologies based on fitting require a definition of the sensitivity coefficient. We 

summarize three fitting methods: the Levenberg-Marquardt method, the digital filter method, 

and the transfer function method. These methods were selected as they are the most commonly 

used in the literature. They are completely different one from each other, giving a great diversity 

of in the example of the fitting methods  
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2.4.1 The Levenberg-Marquardt Method & Digital Filter Method 

The basic algorithm that describes this approach was introduced by Levenberg and Marquardt 

[81][83]  for parameter and function estimation. This algorithm was initially developed to solve 

non-linear estimation problems, but it is used in this case to solve ill-conditioned linear problems. 

The estimation of the heat flux for this method is based on the minimization of the ordinary least 

squares norm: 

𝑆(𝑞𝑐) =  ∑ ( 𝑌𝑖 −  𝑇𝑖(𝑞𝑐))
2𝑀

𝑖=1 , (18) 

where S is the objective function, 𝑌𝑖  is the measured temperature, 𝑇𝑖(𝑞𝑐)  is the estimated 

temperature, and M is the number of measurements. We can highlight the correlation between 

the Equation (16) and the Equation (18), which therefore can be written in matricial form in the 

same way that Equation (17).  

In order to minimize the above objective function, we need to compute the derivatives with 

respect to all the parameters we need to estimate and equate this to zero. The gradient of the 

objective equation with respect to the vector of heat flux needs to be equal to zero: 

∇𝑆(𝑞𝑐) = −2 [
𝜕𝑇𝑇(𝑞𝑐)

𝜕𝑞𝑐
]

⏟    
𝑋𝑇

[𝑌 − 𝑇(𝑞𝑐)] = 0. 
(19) 

The sensitivity matrix 𝑋, also known as Jacobian matrix, is the transpose of the first term between 

brackets in the Equation (19), so that equation can be expressed using the sensitivity matrix as 

−2 𝑋𝑇[𝑌 − 𝑇(𝑞𝑐)] = 0 (20) 

If the sensitivity matrix of coefficients does not depend on the temperature, i.e., we are solving 

a linear problem, the solution for the Equation (20) can be expressed as  
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𝑞𝑐 = (𝑋
𝑇𝑋)−1𝑋𝑇 𝑌. (21) 

Equation (21) constitutes the main core of this method and provides the best estimator of the 

linear problem solution using least squares.  

There have been two main expansions of this equation over the years in order to accommodate 

the solution for non-linear problems and to avoid the non-singularity of the matrix 𝑋𝑇𝑋 due to 

the ill-condition nature of the problem. The non-linear estimation of the heat flux requires an 

iterative procedure. For this iterative process, the temperature vector is linearized using a Taylor 

series expansion around the solution of the heat flux at the previous iteration. The Equation (22) 

linearizes the temperature behavior under non-linear conditions, where k is the current iteration. 

𝑇(𝑞𝑐)  =   𝑇(𝑞𝑐
𝑘) + 𝑋𝑘(𝑞𝑐 − 𝑞𝑐

𝑘) (22) 

When we substitute the new value of 𝑇(𝑞𝑐) described in Equation (22) into Equation (20), the 

best estimator of the 𝑞𝑐 is written as the iterative Gauss method which is an approximation of 

the Newton-Raphson method. 

𝑞𝑐
𝑘+1 = 𝑞𝑐

𝑘 + [(𝑋𝑘)𝑇𝑋𝑘]−1(𝑋𝑘)𝑇 [𝑌 −   𝑇(𝑞𝑐
𝑘)]  (23) 

The stopping criteria for this iterative estimation can follow different standards. Three criteria 

widely accepted were introduced by Dennis and Schanabel [86]: 

𝑆(𝑞𝑐
𝑘+1) <  휀1, (24.a) 

‖(𝑋𝑘)𝑇 [𝑌 −   𝑇(𝑞𝑐
𝑘)]‖ <  휀2, and (24.b) 

‖𝑞𝑐
𝑘+1 − 𝑞𝑐

𝑘‖  <  휀3 . (24.c) 

The parameters 휀1, 휀2 , 휀3 are tolerances set by the user based in the uncertainty of the 

temperature measurements and the standard deviation of the estimated heat flux [87]. These 
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criteria is not always suitable for any problem and it may be adapted depending on the problem 

and the degree of accuracy required in the solution. For example, the criteria described in the 

Equation (24.b) will fail when the function describes a maximum or a saddle point and criteria 

in Equation (24.c) may not give the final solution if the calculation stalls for few iterations before 

advancing to a minimum [7][85]. This iterative procedure can be understood as well as an 

optimization methodology, as described in the next section. 

The second modification of the Levenberg-Marquardt method consists of eliminating or 

minimizing the ill-condition of the matrix (𝑋𝑇𝑋)−1  that needs to be transposed. If the 

determinant of that matrix is 0 or very small we are not able to use the procedure to determine 

the desired parameter. A regularization term is included inside of the ill-conditioned matrix to 

alleviate this problem, especially in the first guess of the unknown parameters in the iterative 

process when the matrix is very ill-posed: 

𝑞𝑐
𝑘+1 = 𝑞𝑐

𝑘 + [(𝑋𝑘)𝑇𝑋𝑘 + 𝜇𝑘Ω𝑘]−1(𝑋𝑘)𝑇 [𝑌 −   𝑇(𝑞𝑐
𝑘)] , (25) 

where 𝜇𝑘 is the damping parameter and Ω𝑘 is a diagonal matrix. A common practice is to start 

with large values of 𝜇𝑘  in comparison with the determinant of the matrix (𝑋𝑘)𝑇𝑋𝑘  and then 

reduce it as the iteration process advances. In this way, the method migrates from a Steepest 

Descent Method to the above described Gauss Method. 



    

 

 

Figure 2-3. Schematic of the digital filter method and Levenberg-Marquardt method procedures to solve non-linear inverse problems 

and the relation between them. The DFM can be used to provide an initial value of heat flux for the Levenberg-Marquardt Method, but 

the computation of the direct problem will provide new values of temperature and the sensitivity coefficients can be re-computed till 

we reach convergence.   
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Figure 2-3 illustrates the steps to complete the estimation of the heat flux using the Levenberg-

Marquardt method, in its direct approach and in its iterative approach. The direct approach is the 

Digital Filter Method and the iterative method approach takes into account the temperature 

computed in the previous iteration in order to compute the non-linearity provided by the 

temperature dependent thermal properties. 

As aforementioned, the Levenberg Marquardt Method is called by some researchers Digital Filter 

Method and this is the nomenclature that we have adopted in this doctoral dissertation. In this 

method the sensitivity coefficients in the X matrix can be obtained as explained in the previous 

section. The solution proposed in the Digital Filter Method is a non-iterative solutions that 

combines the Levenberg-Marquardt method with a regularization divided in a spatial term and a 

time term [88][89]. Therefore, the equation that needs to be fit is 

𝑆 = (𝑌 − 𝑇)𝑇(𝑌 − 𝑇) + 𝛼𝑡[𝐻𝑡𝑞]
𝑇[𝐻𝑡𝑞]  + 𝛼𝑠[𝐻𝑠𝑞]

𝑇[𝐻𝑠𝑞]. (26) 

The solution to this is obtained applying the same principles that in the Levenberg-Marquardt 

method: 

𝑞𝑐  = [𝑋
𝑇𝑋 + 𝛼𝑡𝐻𝑡

𝑇𝐻𝑡 + 𝛼𝑠𝐻𝑠
𝑇𝐻𝑠]

−1
𝑋𝑇 𝑌. (27) 

The expressions 𝛼𝑡𝐻𝑡
𝑇𝐻𝑡   and 𝛼𝑠𝐻𝑠

𝑇𝐻𝑠  are the transient and spatial regularization terms, 

respectively. Inside of these terms, the coefficients 𝛼𝑠  and 𝛼𝑡 are the regularization parameters 

with values between 0 and 10-4. The solution is very sensitive to the value of these regularization 

coefficients, which depend on the geometrical features and the previous information of the 

transient and spatial distribution of heat flux. The matrix 𝐻𝑠 and 𝐻𝑡 are the structures that define 
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the order of the regularization and modifying its internal arrangement adjusts the regularization 

order based on the geometrical relations between the analyzed points: 

𝐻𝑡 = [

−𝐼 𝐼 0 ⋯ 0
0 −𝐼 𝐼 ⋯ 0
⋮
0

⋮
0

⋮ ⋱ ⋮
⋯ ⋯ 0

] , where  𝐼 = [

1 0 0 ⋯ 0
0 1 0 ⋯ 0
⋮
0

⋮
0

⋮ ⋱ ⋮
⋯ ⋯ 1

] 

𝐻𝑠 = [

ℎ𝑠 0 0 ⋯ 0
0 ℎ𝑠 0 ⋯ 0
⋮
0

⋮
0

⋮ ⋱ ⋮
⋯ ⋯ ℎ𝑠

], where  ℎ𝑠 = [

−1 1 0 ⋯ 0
0 −1 1 ⋯ 0
⋮
0

⋮
0

⋮ ⋱ ⋮
⋯ ⋯ 0

]. 

(28 

a,b,c,d) 

The distributions shown in the Equation (28), correspond to first order regularization terms, both 

in space and in time. Najafi et al. [89] used this method to retrieve distributions of heat flux in a 

simple 2D geometry. He calculated the sensitivity matrix analytically which allows a quick 

estimation of the imposed heat flux. 

 

Figure 2-4. (a) Four imposed transient heat flux profiles and (b) predictions of the heat flux 

profiles using analytical estimation of the sensitivity coefficients using the Digital Filter Method. 

Note that the imposed heat flux is input into a 2D analytical solution to extract temperatures that 

are fed into a 1D solution with the Digital Filter Method. Reproduced from [89] with permission. 

Computational efficiency is the main benefit of using the Levenberg-Marquardt method. Since we 

simply have to solve a system of equations described by the sensitivity coefficient matrix, using 
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the non-iterative procedure with regularization and preconditioning, the problem can be evaluated 

in nearly real time with a good accuracy. 

2.4.2 Transfer Function Methods 

Transfer function methods solve the heat conduction equation in the frequency domain, so the 

equation needs to be transformed in order to solve it. They are used broadly in problems with 

analytical solution.  

Analytically, the heat diffusion equation can be solved in different ways including using Fourier 

transforms, Laplace transforms, or Green functions based on the response of the system to a pulse 

of heat. In the last few decades, the evolution of fast inverse methods has shifted towards the 

frequency domain ([90]-[93]). Calculations in the frequency domain may be easier for complex 

problems since convolution in the time domain transforms in a simple multiplication in the 

frequency domain. 

First consider a transfer function method based on Green Functions and Laplace transforms 

(therefore limited to linear problems). Briefly, the effect on the temperature due to a heat pulse at 

a particular location and time is evaluated for the future timesteps giving as a result that the 

temperature is the convolution of the effect (sensitivity coefficients) with the applied heat flux. 

This approach is well described by Fernandes et al. [93] for both 1D and 3D cases. 

Describing the method in more detail for a 1D case, we need to solve the heat diffusion equation, 

knowing the boundary or boundaries where the heat flux is applied. The integral solution of the 

direct problem based on the Green’s function approach corresponds to  

𝑇(𝑥, 𝑡) = 𝑇0 +  𝛼 ∫ 𝐺(𝑥, 𝑡|0, 𝜏) 
𝑞(𝜏)

𝑘

𝑡

0
 𝑑𝜏, (29) 
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where 𝐺(𝑥, 𝑡|0, 𝜏)  is the Green function at the initial time that solve the equation. For a flat plate 

with heat one heat source, based on the analytical solution of the Green’s function, we can 

substitute 𝐺(𝑥, 𝑡|0, 𝜏)  in Equation (29) and the solution of the temperature is 

𝑇(𝑥, 𝑡) = 𝑇0 + 
𝛼 

𝑘 𝐿
∫ 𝑞(𝜏)𝑑𝜏 + 

2𝛼

𝑘𝐿

𝑡

0
∑ 𝑒−(

𝑚𝜋

𝐿
)
2
𝛼𝑡cos (

𝑚𝜋𝑥

𝐿
) ∫ 𝑒

(
𝑚𝜋

𝐿
)
2
𝛼𝜏 

𝑡

0
𝑀
𝑚=1 𝑞(𝜏) 𝑑𝜏. (30) 

This is the direct solution of the variation of temperature in a flat plate, where M is the number of 

eigenvalues needed to converge. In order to use this analytical solution in an inverse procedure, 

we need to analyze the response of the system to the application of an impulse of heat. Based on 

the theory of dynamic systems, the response (temperature rise) is related to the input (heat flux) 

by the convolution integral (Equation (31)). Then the transfer function is expressed as the Laplace 

transform of the response taking into account that the impulse is stated as the Dirac Delta function, 

𝑞(𝑡) =  𝛿(𝑡). 

𝑇(𝑥, 𝑡) = ℎ(𝑥, 𝑡) ∗ 𝑞(𝑡)  =  𝑇0 +  𝛼 ∫  ℎ(𝑥, 𝑡 − 𝜏) 𝑞(𝜏)
𝑡

0

 𝑑𝜏 (31) 

𝑇(𝑥, 𝑡) = ℎ(𝑥, 𝑡) ∗ 𝛿(𝑡) =  𝑇0 +  𝛼 ∫  ℎ(𝑥, 𝑡 − 𝜏) 𝛿(𝜏)
𝑡

0

 𝑑𝜏 = ℎ(𝑥, 𝑡) (32) 

The transfer function ℎ(𝑥, 𝑡) is related to the Green’s function by the factor 
𝛼 

𝑘 
. As we can solve 

the problem in the frequency domain by taking the Laplace transform, the computation of the heat 

flux is simplified to  

𝑞(𝑠) =
1

𝐻(𝑥, 𝑠)
· 𝑇(𝑥, 𝑠)   (33) 
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in the frequency domain and is   

𝑞(𝑡)  =
1

ℎ(𝑥, 𝑡)
∗ 𝑇(𝑥, 𝑡)  (34) 

in the time domain. 

Therefore, solving these simple equations, we estimate the heat flux that generates the temperature 

increase. The transfer function ℎ(𝑥, 𝑡) is similar to that of the Digital Filter Method. They are based 

on the same principles, but in this case, the calculation is entirely in the frequency domain before 

inversing the Laplace transform to the time domain. Moreover, this method is purely linear, 

without a possibility to include any non-linearity in the heat diffusion equation. Figure 2-5 shows 

an outline of the Transfer Function Method for solving IHCPs. 

 

Figure 2-5. Schematic of the transfer function method in frequency domain procedure to 

determine the heat flux in inverse heat transfer problems. 

Figure 2-6 shows examples of the 1D and 3D solutions provided by this method.  Note that the 

agreement between the simulated heat flux and that computed by the 1D analytical solution is 

better when using data from measurement planes closer to the heat source. In experimental 

applications (Figure 2-6b), the estimation is noisier due to the noisy nature of the input temperature 

signal. There are some corrections that can be made in the method to reduce the error in the 

estimated heat flux using the temperature sensors further from the heat source. Specifically, this 
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correction uses the negative gradient of the sensitivity coefficient in time, neglecting the 

contribution of the positive gradient at the as a result of the application of the pulse. 

 

Figure 2-6. Application of the transfer function method using a) a 1D numerical model of a flat 

plate using the simulated temperature readings from three different planes as input to the inverse 

method and b) a 3D inverse heat flux estimation using a temperature reading from an 

experimental setup consisting of a cutting tool of high speed steel during machining. Reproduced 

from [93] with permission. 

The Levenberg-Marquardt, digital filter, and transfer function methods are all fitting 

methodologies that are completely different amongst them. The fitting methodologies can go from 

iterative to non-iterative solved in the frequency domain. There is a large diversity of method that 

fall in the fitting methodologies. Beyond these approaches, the next section focuses on iterative 

methods for solving the IHCPs which are equivalent to optimization methodologies. 

2.5 Optimization Methodologies 

Nowadays, many methods used to solve inverse heat transfer methods are adaptations of 

optimization techniques ([62], [94]-[107]). Colaço et al. [62] recently reviewed optimization 

methodologies applied in inverse problem for heat transfer. Even though the algorithms of inverse 

problems and the optimization problems are similar, the problems are conceptually different, and 
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several key differences exist. While inverse methods are focused on the estimation of unknown 

parameters or functions for a physical problem, optimization techniques only consider 

minimization of a cost function, looking for the values of the inputs that result in the minimum 

value of the objective function and this can yield non-physical solutions. Additionally, for general 

optimization problems, the stability and uniqueness of the solution is not an important issue as 

long as the solution is feasible and of practical implementation. However, in inverse problems, the 

application of regularization techniques to minimize the instabilities generated by noisy data is 

common and, in most of cases, necessary due to the ill-conditioned nature of the problem. The link 

between inverse problems and optimization problems is the objective function itself (defined by 

Equation (16)). Since it should be minimized, researchers and mathematicians saw a niche for the 

application of optimization techniques in this field.  

Optimization methods are divided in three categories depending on the mathematical algorithm 

used to compute the heat flux (or the parameter of interest): deterministic methods, stochastic 

methods, and hybrid methods. In this literature, we introduce some of the most used optimization 

techniques in inverse problems emphasizing the Conjugate Gradient Method due to its robustness 

as a deterministic method and the Genetic Algorithm and Particle Swarm as stochastic methods. 

Many other approaches exist and there is extensive literature detailing the different methods 

[112][113][114].  

Deterministic methods apply an iterative procedure in order to achieve a minimum in the objective 

function. Basically, all deterministic methods use the gradient of the function to search for the 

minimum in the objective function and ensure convergence. 
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2.5.1  Deterministic Optimization Methods 

This category includes all the methodologies that use the computation of the temperature gradient 

in space and time, and therefore the gradient of the objective function of an iteration to compute 

the value of heat flux in the following iteration. As aforementioned, deterministic methods apply 

an iterative procedure in order to achieve a minimum in the objective function. Basically, all 

deterministic methods use the gradient of the function to search for the minimum in the objective 

function and ensure convergence. The relation between one iteration and the next is based on 

identifying the ideal direction of descent and choosing the size of the step to follow in this direction. 

The Levenberg-Marquardt iterative method (described in the previous section), the Newton-

Raphson method, a variation of this method called Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

method ([104]-[108]), other Quasi-Newton Methods [110][111], the Steepest Descent Method, 

and the Conjugate Gradient Method belong to this category of deterministic methods.  

The simplest method is the Steepest Descent Method. In this method we compute the gradient of 

the objective function by transforming the function to find the saddle point. It uses the Laplace 

method to deform an integral contour in the complex plane to find the saddle point and therefore 

the gradient of the objective function. The mathematical procedures used to calculate the gradient, 

the direction of descent, and the step size vary between these methods. 

2.5.2 Stochastic Optimization Methods 

The main difference between the deterministic and stochastic optimization methods is that the 

deterministic methods are based on the relation of the objective function with the parameter that 

we are estimating, while the stochastic methods do not have a mathematical basis behind the 

calculation. Amongst the stochastic optimization methods, genetic algorithm optimization 

[112][113][114][115], the differential evolution algorithm [116], the Particle Swarm 
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algorithm[117][118][119], and the Simulated Annealing algorithm[120][121] are commonly used 

in IHCPs. The second and third are variations of the genetic algorithm based on the behavior of 

nature and Darwin’s Theory of Evolution of Species. On the other hand, the simulated annealing 

algorithm is based on the thermodynamic cooling of a material transitioning from a liquid state to 

a solid state. If the cooling is too fast or too slow the crystals formed during the solidification will 

have a high internal energy state. We could argue that in the case of the deterministic methods, the 

liquid is cooling too fast and may be falling in a local minimum of the equation. The simulated 

annealing algorithm allows the movement in all regions and directions of the objective function, 

being slower, but avoiding solution that fall in a local minimum. In this review, we will describe 

the basics of the genetic algorithm optimization technique as an example of a stochastic method.  

Genetic algorithms are based on the way a population of individuals would reproduce or mutate. 

It is a global optimization method where natural selection is applied to an initial population of 

individuals obtained normally using design of experiments. Each one of the individuals is defined 

by a collection of finite parameters called genes. Each gene is unique and therefore each individual 

is unique. The individuals perform better or worse for the objective function and based on the 

suitability of each individual to minimize the objective function, there are three different processes 

that may happen to the population in the next generation: selection, crossover, and mutation. The 

process of selection is basically the selection of the individuals that are going to reproduce. The 

selection is based on the fitness of each individual, which is directly related to the value of the 

objective function for each individual. The smaller the value of the objective function, the larger 

the fitness parameter and the higher the probability of reproduction for the given individual. Based 

on this fitness parameter, individuals are paired and they reproduce to create new individuals for 

the next generation. Once the individuals are chosen for reproduction, we apply crossover. It 
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consists of combining the “genes” of the parent individuals. The level of crossover is generally 

determined by the user by setting a crossover coefficient between 0 and 1. If the coefficient is 

larger than 0.5, the gene is replaced by the gene of the parent. We can introduce more randomness 

in the process and, at the same time, avoid that the good individuals of previous iterations disappear. 

The last step is mutation where the bits in the gene are changed from 0 to 1 or vice versa. Thanks 

to the mutation, more randomness is included in the population in order to avoid local minimums. 

The main drawback is that if we abuse the mutation step, the process will need a lot of 

iterations/populations to reach convergence. The process to run inverse methods using genetic 

algorithm optimization is detailed in Figure 2-7. 

 

Figure 2-7. Genetic algorithm optimization procedure to calculate the heat flux in inverse heat 

transfer problems. 

Inverse problems are ill-posed problems, which means that there are matrices used for the objective 

function that are very ill-conditioned. In these cases of very ill-conditioned matrix, the solution of 

the genetic algorithm optimization is highly dependent on the design of experiments or the 
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individuals of the first population. So it is extremely important to include the widest range of 

individuals in the initial population. 

2.5.3 Hybrid Optimization Methods 

Hybrid methods combine stochastic and deterministic method for better and faster convergence of 

the inverse method. The process tries to combine the strong points of each of the methodologies, 

using the stochastic methods to avoid falling in local minimums, looking for the global minimum, 

and, once it is localized, switching to a deterministic method for a faster convergence.  

Few researchers have used hybrid methods due to the difficulty of the combination of the 

approaches and because two or more optimization methodologies (combined) need to be 

programmed. Colaço and Dulikravich [122], [123], [124], [125] developed different 

methodologies to optimize different aspects during the solidification of composite materials. Their 

method combines three different optimization methods for inverse methods: almost all the 

optimization is carried out with a Particle Swarm method that then is combined with a Differential 

Evolution method and finished with a BFGS method. The optimization starts with the Particle 

Swarm method and when some percentile of the particle finds a minimum, it switches to the 

Differential Evolution method to check if there is any improvement in the objective function. If 

any improvement is detected, the algorithm returns to the Particle Swarm method since that means 

that there is another region that could be a global minimum. If there is no improvement through 

the differential evolution method, the algorithm switches to a BFGS method to determine in a 

faster and more precise way where the minimum is located inside of the evaluated region. Finally, 

the solution is checked with the Particle Swarm method in order to determine if there is any 

modification of the location of the minimum and the procedure is repeated in an iterative way to 
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verify. Figure 2-8 depicts the global procedure of the hybrid method combining a Particle Swarm 

method, a Differential Evolution method and a BFGS deterministic method. 

 

Figure 2-8. Example of hybrid optimization methodology procedure [62]. 

2.6 Comparison Between Fitting Methods And Optimization Methods 

After describing the most important methods that have been used in inverse methods, it is 

remarkable to say that there is not a single method that overcomes all the problems derived from 

the ill-posed nature of IHCPs and out-performs the rest of the methods. Different methods are 

appropriate depending on the characteristics of the problem, the boundary conditions which are 

applied in the studied case, and the expected computational time versus precision that is demanded 

in the solution. In this section, we detail some comparisons found in the literature between the 

different methods described above and we draw conclusions about which methods are more 

suitable for each inverse problem. The conjugate gradient method seems to be the most common 

method in literature due to its robustness and fast convergence. Generally, it is combined with an 

adjoint problem and a sensitivity problem in order to compute the direction of search and the search 
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step. It is computationally more expensive that the steepest descent method, but it typically gives 

more accurate results for the same number of iterations. 

 

Figure 2-9. Comparison between steepest descent method and conjugate gradient method. 

Reproduced from [80] with permission. 

The work of Alifanov [80] compares the steepest descent method with the conjugate gradient 

method for the case of a slab of material with a sinusoidal heat flux in time applied on one side 

and the temperature distribution measured on the opposite side. Figure 2-9b) depicts the results in 

a slab of b = 2mm and the measurements taken at a distance b of the application of the heat flux. 

The Fourier number (Fo) at the location of measurement is 0.01 and the real analytical solution is 

represented in the legend with 1. The first guess is made with null heat flux and then after the 1st, 

the 9th, and the 50th iteration with the conjugate gradient method we obtain what is depicted in 2, 

3, and 4, respectively. The solution 5 is the 50th iteration using the steepest descend method. 

Clearly, the conjugate gradient methods offers a more precise approximation to the exact value 

than the steepest descent method for the same number of iterations. 

Figure 2-9c) shows the results of the same problem now in absolute values and including varying 

thermo-physical properties of the material of the slab. In this case, 1 is the solution of the steepest 
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descend method after the 50th iteration, 2 is the solution of the conjugate gradient method after 

the 50th iteration, and 3 is the solution of the conjugate gradient method after 50 iterations 

assuming that the thermal diffusivity of the material is constant at every temperature. From this 

result, we can extract two main conclusions: 1) with temperature dependent properties, the steepest 

descent method requires more iterations to get good agreement than with constant material 

properties and 2) the effect of any variation of the thermal properties is important for the 

calculation since if it is not taken into account the calculation diverges and the estimation of the 

heat flux is wrong. 

Ozisik [30] also compared different inverse techniques applying a square function of heat flux to 

a slab and using errorless temperature measurements in the computation (σ = 0.0). In this case, the 

Levenberg-Marquardt method is compared with the conjugate gradient method combined with the 

adjoint problem. Ozisik shows the comparison where we observe that with the Levenberg-

Marquardt method, we cannot retrieve the imposed heat flux accurately, showing a sinusoidal 

wave as a solution of the problem. However, the conjugate gradient method tracks the magnitude 

and the shape of the imposed heat flux with some spurious oscillations due to the effect of the 

applied regularization technique. In the case of the Levenberg-Marquardt method, the 

regularization obscures fast changes in heat flux.  

The conjugate gradient method do not deal with the regularization and it can predict better sudden 

changes in heat flux. As it would be demonstrated in the following sections the regularization 

parameters play an important role in the retrieval of the time and spatial distribution of heat flux. 

Colaço [62] developed both stochastic and deterministic techniques and compared them under the 

same conditions. In this case, they focused on the spatial variation more than on temporal 

variations of the searched parameters, which are the diffusivity and the source term in the heat 
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diffusion equation for a control volume approach. The exact values of temperature are also 

obtained using analytical solutions. Colaço shows the results the inverse calculation for the 

conjugate gradient method and the hybrid method combining the Particle Swarm method, the 

Differential Evolution method, and the BFGS method, respectively. The calculation was 

performed in the same way that Ozisik made the comparison between the Conjugate Gradient 

Method and the Levenberg Marquardt Method. A square function of heat flux was tried to be 

retrieved using both methodologies. We observe that for small number of sensors, the conjugate 

gradient method works better, but for larger number of sensors, there is a significant improvement 

in the solution with the hybrid method. Also we observe that sudden changes of heat flux are very 

difficult to retrieved with any of the assessed methodologies, therefore in the analysis of the 

selected methodologies the assessment is done with sinusoidal functions of heat flux, in time and 

in space.  

It is remarkable that all these methods need to include a regularization technique inside of the 

objective function in order to drive the solution to a physical solution of the heat flux.  

The conjugate gradient method is the most used method in literature for its robustness and the 

capability of computing large number of parameters in time and in space in an accurate way. It has 

been compared with different methods including deterministic, stochastic, and hybrid approaches, 

and, in most cases, it outperforms the other methods even though the application of the adjoint and 

sensitivity problems is not the most efficient computationally, since it can take 10% more of time 

than the steepest descent method [126].  
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2.7 Conclusions 

Inverse methods have been used throughout history to solve for unknowns in physical laws. They 

have been applied to different fields and this literature review focuses on different techniques that 

have been developed for the determination of unknown parameters in heat transfer problems, 

commonly heat flux distribution. The sensitivity coefficient is used by all methods in order to 

compute the unknown parameters. Based on how the sensitivity parameter varies, some of the 

inverse methodologies are more attractive and robust than others.  

We have divided these methods in two main branches depending on the nature of the evaluated 

methods: fitting methodologies and optimization methodologies. Optimization methodologies are 

normally iterative and therefore they can include non-linearity in the equation, while fitting 

methodologies can be solved in one iteration, are able to handle linear approximations, and are 

considerably faster than any iterative procedure. Optimization methodologies applied to inverse 

methods are commonly used for its flexibility and because they are studied in depth in other field. 

Any optimization technique can be used as an inverse method if the objective function is well 

defined. This is a very robust technique that provides very accurate and physical solutions when 

combining the objective function with a regularization technique.  

In the fitting methodologies, the digital filter method and the transfer function method are 

highlighted in this chapter. The most important feature of these methods is the reduced 

computational effort required to get realistic and accurate results.  

This chapter explains key aspects of the fundamentals of the several inverse methods applied to 

heat transfer problems and highlights the pros and cons of each one of them based on different 

applications. Based on the assessment performed by other researchers and the classification of the 

methodologies performed in this chapter, a fitting methodology and a deterministic optimization 
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methodology were selected to be modified and improved through the work presented in this 

doctoral dissertation. The fitting inverse methodology chosen is the Digital Filter Method and the 

Optimization Technique adopted is the Conjugate Gradient Method with Adjoint Problem to solve 

the direction of descent.   
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 DEVELOPMENT OF TRANSIENT 3D IHT 

METHODOLOGIES 

The criteria to select the investigated methodologies is based on the requirements of the different 

applications. On one hand, the methodology needs to be very robust when different temperature 

distributions and noise conditions are applied. On the other hand, for some applications, such as 

active thermal management in microchips, we need methods that are fast, even if some accuracy 

is sacrificed, and can predict general distributions of heat flux given the temperature maps. 

Therefore, based on the literature, we investigate the Conjugate Gradient Method, which is a very 

robust optimization method, and the Digital Filter Method, a fitting methodology that is combined 

with a regularization technique in order to improve the ill-condition nature of the solved system of 

equations.  

3.1 Conjugate Gradient Method with the Adjoint Problem 

One of the most robust and computationally efficient deterministic methods is the Conjugate 

Gradient Method (CGM). There are different ways to solve inverse problems using conjugation 

coefficients. The main difference of the conjugate gradient method compared to the steepest 

descent method is the use of the directions of descent from previous iterations to determine the 

direction and the step of the next iteration in the objective function. In this method we use an 

adjoint problem to compute the gradients. The adjoint equation is a linear differential equation 

derived from the main equation we need to minimize, from which the gradient or direction of 

descent can be efficiently calculated. Therefore, the calculation of the new direction of descent is 

based on  
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𝑞𝑘+1 = 𝑞𝑘 + 𝛽𝑘 𝑑𝑘  and (35) 

𝑑𝑘 = −∇(𝑞𝑘) + 𝛾𝑘𝑑𝑘−1, (36) 

where 𝛾𝑘 is the conjugation coefficient and 𝛽𝑘 is the step in the direction of descent and k is the 

iteration number. These coefficients vary with each iteration and are expressed as: 

𝛾𝑘 =
∫ ∫ (𝑑′𝑘)

2
 𝑑𝑆1 𝑑𝑡𝑆1

𝑡𝑓

𝑡=0

∫ ∫ (𝑑′𝑘−1)
2
 𝑑𝑆1 𝑑𝑡𝑆1

𝑡𝑓
𝑡=0

  and (37) 

 𝛽𝑘 = 
∫ ∑ [𝑇𝑚(𝑡)− 

𝑀
𝑚=1

𝑡𝑓

𝑡=0
𝑌𝑚(𝑡)] ∆𝑇𝑚(𝑡)𝑑𝑡

∫ ∑ [𝑀
𝑚=1

𝑡𝑓
𝑡=0

∆𝑇𝑚(𝑡)]2𝑑𝑡
, (38) 

where m is the timestep when the heat flux has been applied and the M is the total number of 

timesteps. 𝑌𝑚(𝑡) is the temperature measured with the sensor and the 𝑇𝑚(𝑡) is the temperature 

computed by the inverse method with the boundary conditions applied in the previous iteration. In 

these equations, we established that the surface where we apply the heat flux is S1 and the surface 

of the test article where we measure is S2. This is the main structure of the conjugate gradient 

algorithm. Different methods using the conjugate gradient vary in the specifics of the computation 

of the direction of descent and the gradient of the objective function, but all of them follow the 

same basic structure as outlined here and illustrated in Figure 3-1: 

1. Solve the direct problem: With an initial guess of heat flux, the heat diffusion equation is 

solved (forward or direct problem) to determine the initial difference between the computed 

temperature map and the measured temperature map. 
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2. Evaluate convergence: Based on the comparison between the measured and the calculated 

data, we evaluate the convergence criteria determine if another iteration is required. The 

convergence criteria (discussed in previous sections) varies depending on the judgment of the 

researcher and the conditions of the experiment. 

3. Solve the adjoint problem: We compute the direction of descent in this step by solving the 

aforementioned Equations (41)-(47). The solution of this adjoint problem provides the input to the 

sensitivity problem. 

4. Evaluate the sensitivity problem: Applying the increment of heat flux provided by the 

adjoint problem, we evaluate the search step needed for the next iteration of heat flux, as it can be 

observed in Equations (48)-(52).  

5. Begin next iteration of the heat flux calculation: With the direction of descent and the 

search step identified, we compute the new value of heat flux and return to step 1. 

 

Figure 3-1. Conjugate gradient method with the adjoint problem procedure to determine the heat 

flux for an inverse heat transfer problem. 

The adjoint problem combined with the sensitivity problem can provide the information needed to 

compute the coefficients 𝛾𝑘 and 𝛽𝑘 and therefore calculate the new heat flux in each iteration. The 
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adjoint problem is based in the multiplication of the heat diffusion equation by a Lagrange 

multiplier 𝜆 and then the resulting formula is integrated in time and in space. The direction of 

descent is calculated with the following equations: 

𝑑𝑘[𝑞(𝑆1, 𝑡)] = ∫ ∫ [𝑇 − 𝑌]2 𝛿(𝑥 − 𝑥𝑚)𝛿(𝑦 − 𝑦𝑚)𝛿(𝑧 − 𝑧𝑚) 𝑑𝑆2 𝑑𝑡
𝑆2

𝑡𝑓

𝑡=0

+  ∫ ∫ 𝜆 [ 
𝑑2𝑇

𝑑𝑥2
+ 
𝑑2𝑇

𝑑𝑦2
+ 
𝑑2𝑇

𝑑𝑧2
− 
𝑑𝑇

𝑑𝑡
]𝑑Ω 𝑑𝑡

Ω

 
𝑡𝑓

𝑡=0

 

(39) 

 Δ𝑑𝑘[𝑞(𝑆1, 𝑡)] = ∫ ∫ 2[𝑇 − 𝑌]  𝛿(𝑥 − 𝑥𝑚)𝛿(𝑦 − 𝑦𝑚)𝛿(𝑧 − 𝑧𝑚) 𝑑𝑆2 𝑑𝑡
𝑆2

𝑡𝑓

𝑡=0

+  ∫ ∫ 𝜆 [ 
𝑑2Δ𝑇

𝑑𝑥2
+ 
𝑑2Δ𝑇

𝑑𝑦2
+ 
𝑑2Δ𝑇

𝑑𝑧2
− 
𝑑Δ𝑇

𝑑𝑡
]𝑑Ω 𝑑𝑡

Ω

 
𝑡𝑓

𝑡=0

 

(40) 

where Equation (40) is the derivative of Equation (39). If we allow the derivative Δ𝑑𝑘 to go to 

zero, the integrands will vanish and the remaining adjoint problem to be solved to get the values 

of 𝜆 becomes the following set of equations. 

 
𝑑2𝜆

𝑑𝑥2
+ 
𝑑2𝜆

𝑑𝑦2
+ 
𝑑2𝜆

𝑑𝑧2
− 
𝑑𝜆

𝑑𝑡
= 0 (41) 

 
𝑑𝜆

𝑑𝑛
= 2[𝑇 − 𝑌]  𝛿(𝑥 − 𝑥𝑚)𝛿(𝑦 − 𝑦𝑚)𝛿(𝑧 − 𝑧𝑚) 𝑜𝑛 𝑆2 , 𝑡 > 0 (42) 

𝑑𝜆

𝑑𝑛
= 0 𝑜𝑛 𝑆𝑛  𝑛 = 1, 3,4…𝑁 (43) 

𝜆 = 0 𝑖𝑛 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 𝑤ℎ𝑒𝑛 𝑡 = 𝑡𝑓 (44) 

As we can observe the equation and the boundary conditions of the problem are of the same type 

that a common heat conduction problem with the exception that we are imposing the final 
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conditions and not the initial conditions. Therefore, we can use the same techniques to solve it by 

including a transformation of variable to invert the time: 𝜏 =  𝑡𝑓 − 𝑡. The increment in the step can 

be related to the increment of heat flux as  

Δ𝑑 = ∫ ∫ 𝜆 Δ𝑞(𝑆1, 𝑡) 𝑑𝑆1 𝑑𝑡𝑆1

𝑡𝑓
𝑡=0

    (45) 

Δ𝑑 = ∫ ∫ 𝑑′ [𝑞(𝑆1, 𝑡)] Δ𝑞(𝑆1, 𝑡) 𝑑𝑆1 𝑑𝑡𝑆1

𝑡𝑓
𝑡=0

. (46) 

Therefore, we can conclude that the Lagrange multiplier has a direct relation with the direction 

of descent: 

𝑑′ [𝑞(𝑆1, 𝑡)] =  λ(x, y, z) ∥ on 𝑆1. 
(47) 

The sensitivity problem (Equations (46)-(49)) is the next step to calculate the heat flux for the next 

iteration. In this problem, we solve exactly the same equation that in the direct problem, but 

imposing an increment of heat flux that will translate to an increment of temperature. From there, 

we can calculate the coefficient 𝛽𝑘.  

𝑑2∆𝑇

𝑑𝑥2
+ 
𝑑2∆𝑇

𝑑𝑦2
+ 
𝑑2∆𝑇

𝑑𝑧2
− 
𝑑∆𝑇

𝑑𝑡
= 0 (48) 

 
𝑑∆𝑇

𝑑𝑛
= Δ𝑞(𝑆1, 𝑡) 𝑜𝑛 𝑆1 , 𝑡 > 0 (49) 

𝑑∆𝑇

𝑑𝑛
= 0 𝑜𝑛 𝑆𝑛  𝑛 = 1, 3,4…𝑁 (50) 

∆𝑇 = 0 𝑖𝑛 𝑡ℎ𝑒 𝑤ℎ𝑜𝑙𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 𝑤ℎ𝑒𝑛 𝑡 = 0 (51) 

So, we obtain the following solution linearizing the temperature solution obtained in the previous 

iteration using a Taylor expansion: 
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𝑑[𝑞𝑘+1] =  ∫ ∑ [𝑇𝑚(𝑞
𝑘) − 𝛽𝑘 𝑀

𝑚=1
𝑡𝑓
𝑡=0

∆𝑇𝑚(𝑑
𝑘) − 𝑌𝑚]

2 𝑑𝑡  . (52) 

Then the search step 𝛽𝑘 is obtained by minimizing the Equation (50) with respect to the 𝛽𝑘, the 

solution to which is already shown in equation 36. Here, this method is described as a whole 

domain estimation (i.e., all time steps included), but it can be modified to use sequential estimation. 

Whole domain estimation is very robust, and it uses the whole time domain in order to estimate 

the heat flux in each timestep. In the sequential estimation, only a given number of future timesteps 

are used to estimate the heat flux in a particular timestep [111]. 

3.1.1 Whole Domain Estimation 

The regularization used in this methodology can be associated to time in two different ways: the 

whole domain estimation and the sequential estimation. The whole domain estimation is defined 

with the aforementioned equations, where the whole-time domain is taken into account in order to 

compute the heat flux in each time step. This is observed in all the integrations over time in the 

Equations (39), (40), (45), (46) and (50). In these integrations, the minimization is performed over 

the whole-time domain from t = 0 to t = tf. This way to compute the minimization and the step of 

descent minimize the computational time and effort of the methodology since it has to be computed 

only once for the whole-time domain. Therefore, the results at each time are more related with the 

whole behavior of the heat flux, acting like a regularization technique for the solution of the final 

heat flux. This technique is not very flexible since there is no parameter that can be changed in 

order to modify the solution that it is obtained. With this methodology the same solution is always 

obtained and normally tends to be the one that it is most likely to happen taken into account that 

the temporal gradient is limited by the integration. In this procedure, the heat flux solution is very 

unlikely to be discontinuous, and when there are extreme peaks appearing, the computation has 

diverged escaping of the local minimum of the objective function.   
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The results shown in the following pictures are connected with the microelectronics application. 

We used the case of the microelectronics application to test the different aspects of the code, since 

it is a simple case which major complication is the small size and the large number of different 

materials.  

 

Figure 3-2. Whole domain estimation solution when applying a sinusoidal heat flux input into a 

stack of slabs of different materials. 

Over a stack of different materials, we applied a sinusoidal heat flux in time and space as shown 

in the solid line of the right graph in the Figure 3-2. The response in terms of increment of 

temperature is plotted in the left figure. The objective function tries to minimize the difference 

between the measured temperature and the computed temperature, and as it can be depicted in the 

figure, the convergence is achieved when this difference is below a certain threshold. As observed 

in the previous results, the conjugate gradient method with whole domain estimation provides 

accurate results after 9 iterations, but the number of iterations is highly dependent on the gradient 

of the temperature in the input data as well as how are the gradients in the imposed heat flux, that 

for the method are unknown.  
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3.1.2 Sequential Estimation 

In the sequential estimation, the domain in time is limited in the regularization in order to improve 

the convergence and minimize the computational resources needed to compute the heat flux with 

the Conjugate Gradient Method. To explain the difference between the two estimations, we have 

represented in the Figure 3-3, the temperature response of one surface of a slab to a heating pulse 

in space and time located in the opposite surface of the slab. This can be translated as the sensitivity 

coefficient of that particular geometry. First, the temperature has a delay in the answer due to the 

thickness of the slab and then reaches a maximum of temperature increase before decreasing 

exponentially and asymptotically due to the diffusivity of the material and the boundary conditions. 

This is the complete effect of a pulse of heat flux over the temperature. In the whole domain 

estimation for every heat flux timestep calculation, the effect over the temperature is considered 

over all the future timesteps. In the Sequential estimation, only a limited number of timesteps is 

considered. The number of future timesteps that are considered is a user choice, but there are some 

considerations to take into account about this number and it depends on the size of the timestep. 

As discussed in Chapter 1, the shape of the sensitivity coefficient changes in terms of location and 

magnitude of the peak depending on the non-dimensional timestep.  
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Figure 3-3. Temperature response to a pulse of heat flux in a slab (top). Whole domain 

estimation schematic (bottom left) and Sequential estimation schematic (bottom right).  

Both techniques have been programmed to compare the results and their stability. Figure 3-4 

illustrates the results for the whole domain estimation in the left, a sequential estimation using 

three future time steps in the center and a sequential estimation with two future timesteps in the 

right. We noticed that the case using the whole domain estimation is the most stable case, taking 

many iterations to blow up as observed in the literature, but at the same time is computationally 

more expensive. The case of the sequential estimation with 3 future timesteps converge faster to 

the searched value and the agreement is slightly better than in the case of the whole domain 

estimation, mainly in the regions when or where the heat flux suffer a strong variation (next to heat 

flux equal 0). It is less stable and less robust, and it blows up few iterations after it gets converged. 

In the case of the two future timesteps, the calculation blows up even before the solution converges. 
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This is because the heat does not travel through the solid in such a way that with only two timesteps 

we cannot assess all the heat provided to the surface by a pulse of heat flux in a particular timestep. 

This behaves like the Courant number in CFD and providing a small number of timesteps the 

convergence becomes more difficult and more unstable. More case with 5 and 10 future timesteps 

were analyzed with similar results to the ones shown in the whole domain estimation.   

 

Figure 3-4. Calculated heat flux with the inverse heat transfer methodology using whole 

estimation method (left), sequential method with 3 future steps(center) and 2 future steps (right). 

The overall difference in the computation between the whole domain estimation and the sequential 

estimation is small. There is an improvement in terms of computational time, but it is paid off in 

terms of robustness of the method. It is important to choose the right number of future timesteps 

in the evaluation of the sequential domain in order not to fall in unstable solutions. It is 

recommended that the number of timesteps is correlated with the behavior over time of the 

sensitivity coefficient. Checking this behavior, we observe that the sensitivity coefficient has a 
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large gradient at the beginning and then change the sign of the gradient descending in an 

exponential asymptotic way. It has been noticed that the convergence of the method improves 

when the number of timesteps is larger than the number of timesteps needed for the sensitivity 

coefficient to reach the 66% of the final value of the descending exponential function. If the 

number of future time steps is very low, even below the number of timesteps needed for the 

sensitivity coefficient to reach the peak, the results of the computation will be wrong and it will 

not converge in most of the cases. In fact, as demonstrated by Fernandes [93], it is more important 

to keep the trend in the exponential behavior of the function that the definition of the location of 

the peak. The magnitude of the peak and the final asymptotic value are important though.  

3.1.3 Noise Effect in Conjugate Gradient Method  

The effect of noise in the results of the CGM was evaluated numerically in order to test the 

robustness of the methodologies. We could not observe great differences between the whole 

domain estimation and the sequential estimation procedures. We add random noise numerically 

with a deviation of 0.5K and 1K to check how the behavior of the Conjugate Gradient Inverse 

method when the input signal is unstable. It is reasoned that the level of noise that makes the 

calculation unstable is directly related with the size of the gradient of temperature observed in the 

input of the method.  
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Figure 3-5. a) Computation of the conjugate gradient method with 0.5K of random level of noise. 

b) Computation of the conjugate gradient method with 1K of random level of noise. 

It is observed that introducing the noise, it takes more iterations in order to get to an approximate 

solution. As shown in Figure 3-5, after 6 iterations, even though the temperature is almost matched, 

the calculated heat flux do not match with the imposed heat flux with a large disagreement in the 

magnitude of the heat flux and in the temporal location of the peak. After 20 iterations, the heat 

flux has diverged and even though it is run for a lot of iterations, the solution has found another 

local minimum and it will not reach the solution giving the imposed heat flux.  
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Independently of the level of noise, and also on the distribution of the randomness of the noisy 

signal, the calculation always diverges in the same way. This is because the divergence depends 

on the general shape of the temperature input data.  

3.1.4 Uncertainty Evaluation 

For the case that we analyzed we computed the uncertainty using a linear approximation. The 

computation of the uncertainty with this methodology is described in the Appendix A. 

Table 3-1. Conjugate Gradient Method uncertainty analysis based on the numerical assessment. 

Quantity 
Mean 

Value 

Absolute 

Uncertainty 

Heat flux variation 

relative to mean (%) 
Sensitivity 

Temperature [K] 314 1 4.31 13.65 

k single crystal silicon [W/mK] 130 10 -0.52 -0.07 

ρ single crystal silicon [kg/m3] 2320 10 0.03 0.06 

Cp single crystal silicon [J/kgK] 703 7 0.3 0.3 

k polycrystalline silicon [W/mK] 100 10 -0.52 -0.7 

ρ polycrystalline silicon [kg/m3] 2330 10 0.09 0.21 

Cp polycrystalline silicon 

[J/kgK] 
678 7 0.15 0.15 

Thickness single crystal silicon 

[mm] 
1 0.05 1.98 0.40 

Thickness polycrystalline silicon 

[mm] 
0.5 0.05 2.06 0.21 

TOTAL   5.9  

We have performed also for the conjugate gradient method the same uncertainty analysis that we 

performed for the digital filter method with all the parameters it depends on. From the results we 
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can see that this methodology is more sensitive to the temperature variations than the digital filter 

method. Also, the effect of the conductivity is higher in this method. Other parameters such as the 

thickness of the different materials, their density or the heat capacity seems to be invariants to the 

method and they play a smaller important role in the computation of the uncertainty. As in the 

digital filter method, the temperature measurement and the thickness of the different layers of 

materials are the main contributors to the uncertainty values of the methodology. In this case the 

total uncertainty calculated using the squared root of the sum of squares of the uncertainty of each 

one of the parameters is below 6%. 

3.2 Digital Filter Method 

In order to solve an ill-posed problem, we need to numerically reformulate the problem, including 

additional assumptions and enhancing the smoothness in a process called regularization [80].  

There are different regularization techniques amongst which we highlight the widely used 

Tikhonov regularization method ([62], [130], [131], [132], [133]). Here, we have combined this 

regularization technique with the function specification method to minimize the number of 

operations needed to calculate the sensitivity coefficient of the geometry [89][88][93]. This 

method is based on the calculation of a sensitivity coefficient, which is the effect of a heat pulse 

on the temperature of the system at key points of interest. This sensitivity coefficient varies in 

space and time and, in order to simplify its applicability to the problem, is expressed as a matrix. 

Here the sensitivity coefficient is calculated with a finite element solver. COMSOL Multiphysics 

combined with Matlab, using the Livelink module between the two to communicate the data. The 

finite elements solver is run once with the selected 3D geometry. With the matrix sensitivity 

coefficients, we then apply Duhamel’s Theorem to perform the regularization and solve the ill-
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posed heat transfer problem. This approach is restricted to linear problems, but it is chosen here as 

computational time is a limitation. The main source of non-linearity is the temperature dependent 

thermal properties of the different materials. The temperature dependence of the thermal properties 

is taken into account in the modelling of the materials in COMSOL, through the calculation of a 

sensitivity coefficient, which is computed by applying a heat flux pulse at the heaters locations, 

and evaluating the increment of temperature in COMSOL. This is a precise methodology, which 

may yield inaccurate results only when the initial temperature of the test article is not the same 

that the one used in the sensitivity coefficient calculation in COMSOL. 

Here, the temperature on the top of the chip from the forward solution (from COMSOL) is tracked 

numerically and is the only input to the inverse heat conduction method which is used to determine 

the unknown source of heat (as a function of space and time). Ultimately, the input to the inverse 

method will be experimentally determined temperature profiles.  

To improve the computational efficiency of the method, we organize our inputs and unknowns in 

vectors discretized in time and space; therefore, the temperatures are  

𝑇 = [

𝑇(1)

𝑇(2)
⋮

𝑇(𝑛)

]     𝑎𝑛𝑑     𝑇(𝑖) = [

𝑇1(𝑖)
𝑇2(𝑖)
⋮

𝑇𝑚(𝑖)

], (53 a,b) 

where n represents the total number of time steps, the index i is one particular time step, and 

m is the total number of sensors used to retrieve the temperature map. On the other hand, we 

can define our unknown heat fluxes in the same way.  
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𝑞 = [

𝑞(1)

𝑞(2)
⋮

𝑞(𝑛)

]   ,   𝑞(𝑖) = [

𝑞1(𝑖)
𝑞2(𝑖)
⋮

𝑞𝑝(𝑖)

] , 𝑎𝑛𝑑     𝑞𝑗(𝑖) = 𝑞𝑥𝑗−1→𝑥𝑗(𝑖), (54 a,b) 

where p is the number of sources of heat flux and q represents the heat flux at the time step i, taking 

into account the heat flux in the previous time steps.  The relation between these vectors, T and q, 

is a simple multiplication by the sensitivity coefficient X: 

𝑇 = 𝑋 𝑞. (55) 

In order to match the dimensions of q to T, the matrix X of the sensitivity coefficients must be 

[89]: 

𝑋 = [

𝑎(1) 0 0 ⋯ 0
𝑎(2) 𝑎(1) 0 ⋯ 0
⋮

𝑎(𝑛)
⋮

𝑎(𝑛 − 1)
⋮ ⋱ ⋮

⋯ ⋯ 𝑎(1)

] , 

where 

𝑎(𝑖) =

[
 
 
 
𝑎11(𝑖) 𝑎12(𝑖) ⋯ 𝑎1𝑝(𝑖)

𝑎21(𝑖) 𝑎22(𝑖) ⋯ 𝑎2𝑝(𝑖)

⋮          ⋮       ⋱     ⋮
𝑎𝑚1(𝑖) 𝑎𝑚2(𝑖) ⋯ 𝑎𝑚𝑝(𝑖)]

 
 
 

 , 

and 

 𝑎𝑗𝑘(𝑖) =
𝜕𝑇(𝑥𝑗 , 𝑡𝑖)

𝜕[𝑞(1)]
. 

(56 a,b,c) 

Most of the error in a 3D inverse method calculation is induced through Equation (56.c), since we 

are calculating the effect on the temperature of a pulse of heat flux in a particular time and a 
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particular location in space. Therefore, we have to take into account that it is an approximation 

that will depend on the boundary conditions at the limits of the 3D geometry.  

The matrix of measured temperatures, Y, comes from the experiments or the numerical “data”, and 

the coefficients 𝑎𝑗𝑘(𝑖) come from the direct finite element solution. Thus, to calculate the unknown 

vector of heat fluxes, q, we need to use a regularization technique for the objective function where 

we try to minimize the error between the measured temperature Y and the calculated temperature 

T. Combining the minimization with the regularization we obtain: 

𝑆 = (𝑌 − 𝑇)𝑇(𝑌 − 𝑇) + 𝛼𝑡[𝐻𝑡𝑞]
𝑇[𝐻𝑡𝑞] 

+ 𝛼𝑠[𝐻𝑠𝑞]
𝑇[𝐻𝑠𝑞], 

(57) 

where the variable S is the objective function that we try to minimize in our calculation. The suffix 

s and t define the regularization in space and in time respectively. The matrices 𝐻𝑠 and 𝐻𝑡 are the 

filter of the effect of each heat flux in space and in time, respectively. In our case, they are defined 

as  

𝐻𝑡 = [

−𝐼 𝐼 0 ⋯ 0
0 −𝐼 𝐼 ⋯ 0
⋮
0

⋮
0

⋮ ⋱ ⋮
⋯ ⋯ 0

] , where 

 𝐼 = [

1 0 0 ⋯ 0
0 1 0 ⋯ 0
⋮
0

⋮
0

⋮ ⋱ ⋮
⋯ ⋯ 1

] 

(58 a,b,c,d) 
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𝐻𝑠 = [

ℎ𝑠 0 0 ⋯ 0
0 ℎ𝑠 0 ⋯ 0
⋮
0

⋮
0

⋮ ⋱ ⋮
⋯ ⋯ ℎ𝑠

], where 

ℎ𝑠 = [

−1 1 0 ⋯ 0
0 −1 1 ⋯ 0
⋮
0

⋮
0

⋮ ⋱ ⋮
⋯ ⋯ 0

]. 

The coefficients 𝛼𝑠  and 𝛼𝑡 are the regularization parameters with values between 10-4 and 0 

depending on the desired effect of the regularization in space or in time. The value of these 

coefficients depends on the characteristics of the geometry and the nature of the expected solution 

of heat flux.  

Minimizing the sum of squares of the objective function, we obtain the least squares estimator of 

the heat flux: 

�̂� = [𝑋𝑇𝑋 + 𝛼𝑡𝐻𝑡
𝑇𝐻𝑡 + 𝛼𝑠𝐻𝑠

𝑇𝐻𝑠]
−1
𝑋𝑇𝑌. (59) 

The inversion of the matrix in brackets can be performed with one of several functions in Matlab. 

After investigating several options, we found that the pseudo inverse (pinv) and the preconditioned 

conjugate gradient method (pcg) provide the most robust solution to our heat conduction problem. 

The difference on the solution between using one function or another are negligible, but as 

previously mentioned the solution is highly dependent of the value of the regularization 

coefficients. Figure 3-6 shows the solution of heat flux for the same input temperature varying the 

spatial and time regularization coefficients. In the figure on the left the time regularization 

coefficient is small so we are allowing large variations of heat flux in time, while in the figure on 

the right we have increased the value of the time regularization coefficient, limiting the gradient 
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between the value of the heat flux at one particular time and its value in the next timestep. As it is 

a zeroth order regularization we are only limiting the gradient of the heat flux, in first order and 

second order regularizations we could limit as well the first and second derivative of the solution.  

 

Figure 3-6. Results of the heat flux for a given distribution of temperature for different values of 

regularization coefficients. 

The solution is considerably different in both cases. The prediction in the figure of the left shows 

a large pick of heat flux at the beginning that disappear towards the end. Based on the experience 

computing different cases, we have observed that this is the behavior predicted by the function 

when the system of equation is largely ill-conditioned in time. It modifies the value of the first 

columns of heat flux in order to match the required temperatures and in the last time steps it leaves 

it free in order to adapt the final value of the temperatures. The over prediction of heat flux in the 

initial steps is then compensated by negative or zero heat flux in the rest of the timesteps. The 

convergence in terms of temperature is not great in the final steps since it is normally higher than 

the input. When we increase the value of the regularization coefficient the value of heat flux 

becomes more reasonable as the ill-condition of the system of equations improves. Still in all the 

cases we observe large peaks when rapid changes in heat flux occur. This is also related with the 
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thickness of the material. In thin test articles, the response of the heat flux is not damped through 

the thickness of the object and the prediction of the heat flux is more sudden than the one obtained 

in a thick object where the temperature is damped due to the diffusivity of the material.   

3.2.1 Non-iterative Non-linear Digital Filter Method Improvement 

The Digital Filter Method as it is introduced in this section fails to solve non-linear problems where 

the thermal properties of the material depend on the temperature, since it is a linearization of the 

heat conduction equation. Also, in the real case where we have natural or forced convection, it 

under predicts the correct value of heat flux that have been input into the system. For this reason, 

we have included the following two corrections. 

The improvement of the Digital Filter Method consists in the modification of two of the terms of 

the Equation (59): the temperature adjusted sensitivity coefficient (𝑋𝑇) and the inclusion of the 

convective heat losses (𝑞𝑐𝑜𝑛𝑣). Therefore, the heat fluxes are defined by the Equation (60): 

𝑞𝑐 = 𝑞𝑖𝑚𝑝 + 𝑞𝑐𝑜𝑛𝑣  = [𝑋𝑇
𝑇𝑋𝑇 + 𝛼𝑡𝐻𝑡

𝑇𝐻𝑡 + 𝛼𝑠𝐻𝑠
𝑇𝐻𝑠]

−1
𝑋𝑇

𝑇 𝑌. (60) 

The unknown solved with this methodology is the imposed heat flux, 𝑞𝑖𝑚𝑝. The temperature of the 

surface is an input of the method and hence, the convective heat flux can be computed beforehand. 

The convective heat flux is modeled based on the difference between the flow temperature and the 

solid temperature at each discretize location. 

𝑞𝑐𝑜𝑛𝑣  = 𝐶 (𝑌𝑖 − 𝑇𝑎𝑚𝑏) (61) 

The coefficient C is a combination of the convective heat coefficient and the area where the 

temperature reading is averaged. This coefficient varies depending on the flow conditions and the 

studied geometry, therefore it needs to be calibrated before performing direct calculations at 
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different conditions. Once the value of the coefficient C is obtained, the subtraction of the 

convective heat flux from the computed heat flux, 𝑞𝑐, will give the imposed heat flux.  

 

Figure 3-7. Non-linear non-iterative process with temperature adaptive sensitivity coefficient 

estimation. 

The second improvement is the development of a new non-iterative methodology to include the 

non-linearity of temperature varying thermal properties in the inverse methodology. Most part of 

the methods that include this non-linear behavior are based on iterative processes that take into 

account the temperature obtained in the previous iteration in order to compute the new values of 

thermal properties, such as the Levenberg-Marquardt Method [81][82][83]. In the present study, 

the temperature is considered a known parameter since it is measured at each timestep, and the 

sensitivity coefficient can be adjusted based on the measured temperature before the inverse 

calculation is performed. The temperature adjustment of the sensitivity coefficients is made by 
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running direct simulations with heat flux pulses at different temperatures of the test article. These 

simulations provide the information needed to know how the temperature field reacts when the 

test article is already at higher temperatures and therefore with different thermal properties. Figure 

3-7 represents the process followed to obtain the temperature adjusted sensitivity coefficients.  

The results of the heat flux pulse simulations are compiled and a linear fitting with respect to the 

test article temperature between the coefficients is made, developing the concept of temperature 

factor, 𝐹𝑇. The corrected sensitivity coefficient is obtained by multiplying of the temperature factor 

by the sensitivity coefficient at ambient temperature.  

𝑋𝑇  = 𝐹𝑇 𝑋𝑎𝑚𝑏 (62) 

With the temperature field at each timestep, the temperature factor 𝐹𝑇 is computed using a linear 

fitting based in the data obtained with the heat flux pulses at different temperatures. Then the 

corrected sensitivity matrix 𝑋𝑇 is obtained for each timestep. This improved methodology is used 

for the calculation of the heat flux in a microchip with 25 heaters independently controlled by 

measuring the temperature on the top surface with an infrared microscope. 

3.2.2 Uncertainty Evaluation 

The same uncertainty analyzed that we used for the CGM was applied for this new methodology. 

It is performed to evaluate the degree of convergence of the inverse heat transfer method. The 

parameters analyzed in the uncertainty calculation are based on the geometry, the materials used 

between the heaters and the top surface where the temperature was retrieved, and the measurement 

of the temperature itself. The uncertainty applied to each of the quantities is based on the accuracy 

of state of the art in measurement techniques. Therefore, measuring the temperature with infrared 

thermography, the absolute uncertainty is around 1K, the absolute uncertainty associated to the 
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thickness of the layers is 50 microns, and the relative uncertainties associated conductivity and 

heat capacity are predicted to be around 10%. In order to compute the effect of the thermal 

diffusivity of the materials, the uncertainty due to the density of the two silicon layers is added and 

expected to be around 0.5%. Table 3-2 shows the estimated uncertainty and sensitivity of each of 

the quantities involved in the inverse heat conduction combined with Kriging calculation. 

Table 3-2. Uncertainty analysis of the Digital Filter Method 

Quantity 
Mean 

Value 

Absolute 

Uncertainty 

Heat flux variation 

relative to mean (%) 
Sensitivity 

Temperature [K] 314 1 3.21 10.08 

k single crystal silicon [W/mK] 130 10 -0.13 -0.02 

ρ single crystal silicon [kg/m3] 2320 10 0.03 0.06 

Cp single crystal silicon [J/kgK] 703 7 0.3 0.3 

k polysilicon [W/mK] 100 10 -1.65 -0.16 

ρ polysilicon [kg/m3] 2330 10 0.09 0.21 

Cp polycrystalline silicon 

[J/kgK] 
678 7 0.15 0.15 

Thickness single crystal silicon 

[mm] 
1 0.05 1.98 0.40 

Thickness polycrystalline silicon 

[mm] 
0.5 0.05 2.06 0.21 

TOTAL   4.62  

The total uncertainty associated with this methodology is less than 5%, as shown in Table 3-2. 

Most of this uncertainty is associated with the measurement of the temperature. Therefore, in order 

to achieve reliable results for heat flux, we need to measure the temperature as accurately as 

possible. 
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3.3 Conclusions 

In this chapter, we have detailed the inverse methodologies employed in this doctoral dissertation. 

The base methodologies have been chosen based on the robustness and the computational 

efficiency. Two of them have been chosen, an optimization technique and a fitting technique.  

The Conjugate Gradient Method is the optimization technique chosen because of its robustness 

and the Digital Filter Method is the chosen fitting technique because of its computational 

efficiency. From the analysis performed in this chapter we can extract the following conclusions: 

- Both methodologies can predict the imposed heat flux for simple cases analyzed using 

numerical models. The Conjugate Gradient Method is more precise, and the Digital Filter 

Method is much faster. 

- The Conjugate Gradient Method is an iterative procedure which converges slowly using as 

objective function the difference between the measured temperature and the computed 

temperature. Given the nature of the procedure, for a model with one million cells, the 

computation can take days on a computer with 64 GB of RAM memory and 12 cores. 

- The Conjugate Gradient Method tends to diverge with levels of noise of 0.5K or higher. 

Very noisy signals are detrimental in the calculation of the heat flux using this method. It 

is important to remark that the diversion of the calculation is independent of the introduced 

noise, but it depends on the objective function and the location of the global and local 

minima of this equation. Therefore, when the computation diverges, it always diverges in 

the same way for the same model.   

- An improvement to the CGM was then applied. The improvement consists of the use of 

sequential estimation in the computation of the direction of descent and the step of descent. 

Instead of computing the equations in the whole-time domain, we only consider few future 

timesteps. Sequential estimation improves the computational efficiency of the method, but 
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it becomes more unstable, especially if the number of future timesteps considered in the 

calculation is low.   

- The Digital Filter Method is a non-iterative procedure based on the solution of an ill-

conditioned system of equations. It consists of linearizing the heat conduction equation and 

introducing the concept of the sensitivity coefficient directly in the computation. In the 

equation, or system of equations, that needs to be solved, we then need to include 

regularization terms to drive the solution towards physical solutions of the heat conduction 

equation. The solution is highly dependent on the regularization terms in time and space 

that are required to improve the ill-condition nature of the system of equations. The solution 

takes seconds to compute using the same computer that for the CGM takes days. 

- An improvement of the DFM has been introduced in this chapter, in order to include non-

linearity of temperature dependent thermal properties and convective boundary conditions 

into the equation. This addition considerably improves the accuracy of the method as 

demonstrated in the next section. In this improved method, more computations of the direct 

problem are needed upfront in order to compute the corrected sensitivity coefficients, but 

this correction does not increase the time to solve the system of equations suing the inverse 

method and retains the non-iterative nature of the DFM. 

- An uncertainty analysis was performed for both methodologies analyzing the effect of the 

different measurable parameters on which the inverse method is dependent. The analysis 

assumes typical values of uncertainty for these parameters and is based on the numerical 

experiment created to develop the methodologies. For both methodologies, the main 

contributor is the uncertainty in temperature and the uncertainty in retrieved heat flux is 6% 

for the case of the CGM and 5% for the case of the DFM.  
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 SENSOR OPTIMIZATION IN MICROELECTRONICS 

USING IHTM1 

In microelectronics, once the chip is built there is some notion of where the heat sources are but 

the exact location of hot spots may not be exactly know due to difference in the fabrication or 

variations with the mode of operation. For this kind of problem, inverse methodologies can be 

used to find the location and magnitude of heat sources, as well as boundary conditions of the chip. 

Figure 4-1 shows the basic schematic of the problem where the temperatures on the top are 

measured and the heat flux coming from individual heat generating sources inside of the chip are 

retrieved. 

 

Figure 4-1. Sketch of the simulated microchip with the sources of heat flux and the temperature 

reading location. 

                                                 
1 This chapter is partly based on: 

 

D. G. Cuadrado, A. Marconnet, G. Paniagua, "Inverse Conduction Heat Transfer and Kriging Interpolation Applied 

to Temperature Sensor Location in Microchips", J. of Electronic Packaging, March 2018, doi: 10.1115/1.4039026. 

[169]. 
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4.1 Conductive Heat Transfer Numerical Evaluation 

The case analyzed here is die with dimensions 21mm x 21mm. This die includes 100 heaters inside 

two layers of silicon. There is a temperature sensor embedded for every 25 heaters (one in each 

quadrant). Figure 4-2 shows the different layers of carrier, heaters, sensors and silicon with 

different thermal and mechanical properties. The model is a simplification of a real chip which 

contains 100 heaters and is attached to a board that has electrical circuitry to control the power of 

these heaters. Additionally, 625 (25x25 pixels) temperatures are calculated across the top of the 

chip, and the number of unknown heater flux levels is 100. The ratio of 6 to 1 was chosen in order 

to improve the results of the least squared method.  

Simplifications are required to reduce the computational time of this method. The verification 

model consists of 1/25 of the final model and its modelling is illustrated in Figure 4-3. In the 

simplified domain, we have suppressed the connection balls to the carrier, the ball grid array 

(BGA), and underlying printed circuit board (i.e., the card), as well as grouping some heaters 

together. The objective of the simplification is to reduce the size of the mesh and hence, reduce 

the computational time. Due to the simplifications made in the 3D domain, we first assessed the 

similarity of the results from the simple domain to those from the full model. 

Thus, we have compared the “simplified reduced chip” with “reduced chip” structure that takes 

into account the BGA, card, and all the heaters, as shown in Figure 4-3 and Figure 4-4. 

A direct heat transfer simulation is performed applying 0.2W to one corner heater with periodic 

boundary conditions on all side walls, adiabatic wall on the bottom and natural convection on the 

top surface. The temperature of a corner edge and centerline of the verification model for both the 

“reduced chip” and “simplified reduced chip” are shown in Figure 4-4. Evaluating the similarity 



   74 

 

of the shape and the magnitude of the temperature variation, we establish that the simplified model 

represents the behavior of the real chip with good agreement.  

 

Figure 4-2. (top) Schematic of the complete experimental test fixture and (bottom) the COMSOL 

model used for the inverse method and Kriging model.  (bottom inset) Approximate verification 

model to prove the simplified geometry 

Regarding the computational efficiency, the reduced chip with 3.5 million cells takes 40 minutes 

to calculate a direct transient computation, while the simplified reduced chip with 0.9 million cells 

takes 13 min., reducing the computational time by a factor of 3.  

The methodology can be applied to more complex geometry imported into or directly built in 

COMSOL Multiphysics with an increase in the computational time. The material properties are 

provided in the model inside COMSOL Multiphysics and they can be constant or temperature-

dependent. 
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Figure 4-3. Sketch of the “reduced chip” structure including the geometry of the real microchip 

with 100 heaters.  

 

Figure 4-4. Temperature distribution within the chip for the reduced chip and the simplified 

reduced chip model at t=1.5s and t=5s. 
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The reduced model was only used for verification purposes, since we could not implement all the 

features in the complete chip for memory limitations. After all this analysis, the model that was 

used is the simplified model, which is in the Figure 4-2 bottom left. The boundary conditions were 

the same that the ones applied in the reduced model for verification, but the final size is around 

21x21mm. 

 In order to compute the sensitivity coefficient in a first evaluation of the model, we used the model 

of the complete chip in COMSOL Multiphysics. The boundary conditions applied in this first 

evaluation of the model are the same boundary conditions than in the final inverse heat transfer 

computation and they are similar to the ones described in the Figure 4-3, but changing the periodic 

conditions on the sides for natural convection. In this way, the sensitivity coefficient is associated 

to the boundary conditions applied in each case and it varies depending not only on the geometry, 

but also on the boundary conditions applied to the system. 

4.1.1 Conjugate Gradient Method Evaluation 

The conjugate gradient method was also tested in the same model under the same conditions that 

the digital filter method. So we are imposing a sinusoidal signal in all 100 heaters of the model. 

Figure 4-5 shows the model already evaluated in the previous case and with a surface of 

21mmx21mm and 100 heaters embedded inside. For the analyzed case in COMSOL, sinusoidal 

wave with a peak of 2e5W/m2 in 3seconds was applied and the measurements of temperature in 

the outer surface of the chip was recorded. This temperature is the input to the inverse conjugate 

gradient optimization methodology. The objective function that needs to be minimized is described 

in previous sections and is the square root of the sum of the squared difference of all the points 

that are evaluated in the inverse method. The conjugate gradient method is an iterative 
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methodology that need that the last point of the calculation goes to 0. Therefore in all the analyzed 

cases, the heat flux go to zero before stop recording data.  

 

Figure 4-5. Analyzed model with the imposed heat flux in all the heaters. 

 

Figure 4-6. Computed temperature (left) and estimated heat flux (right) by the conjugate gradient 

method after 2, 6 and 9 iterations in the center (top) and the corner (bottom) of the analyzed chip. 
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The results of the inverse heat transfer method using the conjugate gradient method are shown in 

the Figure 4-6. It shows the temperature increase (input) of the surface temperature at two different 

locations, the center of the chip and one corner; and the imposed and estimated heat flux with the 

inverse method after 2, 6 and 9 iterations. We can observe that after 9 iterations the temperature is 

already matched and there is a good agreement between the imposed heat flux and the estimated 

heat flux, both in the center and the corner of the analyzed chip. 

4.1.2 Digital Filter Method Evaluation 

The objective of this work is to define a proper location for the temperature sensors under any 

conditions. For this reason, the case that has been analyzed first is a constant heat flux in space 

and a sinusoidal shape in time. In order to compute the inverse method, we need measurements of 

the temperature on the top surface of the microchip. We perform a direct numerical experiment to 

retrieve the temperature distribution over this surface and use it as the input for the inverse 

methodology (rather than experimental data, for this validation). In the transient simulation, we 

imposed heat flux with a positive sinusoidal wave in time over 1.5 seconds with a maximum 

amplitude of 2e5 W/m2 as shown in Figure 4-7(a). This heat generation was applied in all of the 

100 heaters in the interior of the model in this case. The boundary conditions were similar that the 

ones described in the simplified reduced model of verification: natural convection on the top and 

sides of the chip and adiabatic conditions on the bottom of the model. More complex cases can be 

analyzed spatially and timely distributed, but this case has been chosen to minimize the 

dependence of the solution of the optimization on the particular cases given when only few of the 

heaters are on. The temperature rise is tracked at each time step. Figure 4-7(b) depicts the 

temperature rise in the corner and center of the microchip, respectively.  
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With this numerical method, the calculated heat flux derived from the “measured” temperatures is 

shown in Figure 4-8. We observe a shift upstream in time compared to the imposed heat flux, as 

well as a slight under-prediction of the heat flux. This is due to the fact that the temperature is 

decreasing in the last time steps and therefore the model calculates a negative heat flux value. The 

same or very similar behavior is found at any heater location since the imposed heat flux is 

uniformly distributed in this case. 

 

Figure 4-7(a) Imposed heat flux in the numerical experiment for the corner and center heaters. 

(b) Temperature increase over time at the top surface in the corner and center locations of the 

microchip. 

The competitive advantage of this method with respect to other inverse methodologies such as the 

conjugate gradient method (CGM) is the computational efficiency. While the widely used CGM 

for 3D inverse problems is an iterative process and requires around 9 hours to give a suitable 

solution, the function specification method combined with the regularization problem is able to 

perform the same calculation with similar results in less than 15 minutes. 
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There is a good agreement in the magnitude of the heat flux prediction. This heat flux distribution 

is then used to predict the temperature distribution inside of the microchip where the temperature 

sensors are going to be located. This temperature distribution is used as an input of the second step 

of this methodology where the Kriging interpolation is implemented. 

 

Figure 4-8. Comparison between the imposed heat flux and the heat flux estimated with the 

inverse 3D methodology. 

4.2 Conjugate Heat Transfer Numerical Evaluation 

These two methodologies were programmed as well combining Matlab and Fluent in order to 

perform conjugate inverse heat transfer analysis. Fluent was chosen for its flexibility to create the 

links with other programs and because it is widely used in computational fluid dynamics, where 

the analysis of conjugate heat transfer plays an important role. The first step is to build a simple 

model which consists in the same number of layers of single crystal silicone and poly-crystal 

silicone and the same location of the heaters, but in this case only 4 heaters have been introduced 

in the chip. This simplification was made because for conjugate heat transfer we need to define 
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each one of the interfaces between the different solids and between the solids and the fluid. Figure 

4-9 shows the model of the test article studied in Fluent. It is composed by four heaters equally 

spaced that can generate heat individually. The first step is to verify that the conjugation of heat is 

happening in our domain and for that in Figure 4-9 we show the velocity field and the temperature 

field. The temperature field shows that the fluid domain is clearly heated by one of the heaters 

since we observe an increase of temperature in the plane just downstream of the chip and also the 

footprint of the increase of temperature in the downstream exit plane of the domain. This confirms 

that there is conjugate heat transfer in the model between the solid domain and the fluid domain.  

 

Figure 4-9. Microchip with four heaters (left) velocity field in the fluid domain (top right) and 

temperature field in the solid and fluid domains (bottom right). 

The evaluation of the tow different methods was done imposing different patterns of heat flux in 

the heaters. In this case we illustrate one of the numerical experiments where we imposed a peak 

of 200000 W/m2 in two of the heaters (heater 2 and heater 3) as shown in the Figure 4-10. We run 

the experiment during ten timesteps where we imposed a sinusoidal wave of heat flux in time. 
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Figure 4-10. Imposed heat flux in ten timesteps in two of the heaters of the test article. 

The temperature was measured in the top surface of the chip with a grid of 25x25pixels that 

represent the pixels of the infrared camera. Then the output of these measurements was introduced 

in the developed inverse methodologies in order to retrieve the imposed heat flux. In the following 

sections, the results of both methods are detailed. 

4.2.1 Conjugate Gradient Method Evaluation 

The conjugate gradient method was predicting the values with good accuracy in the conductive 

heat flux calculation in COMSOL. The program was implemented in Fluent with the same 

algorithms that was programmed in the conductive application in COMSOL, both in the whole 

domain estimation and the sequential estimation. In the conjugate heat transfer estimation, the 

method is not behaving in the same way that expected based on the conductive calculation. The 

computational efficiency of this method was reduced considerably due to the fluid computation. 

The time to perform an iteration is increased by 5 times and the convergence is slower as 

demonstrate the Figure 4-11. In this figure, we plot the results in the first 4 iterations of the method 

in function of time and the nodes inside the heater. We can observe that even though with the 
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iterations the solution is approximating to the imposed heat flux, the calculated heat flux are far 

away from been converged based on the temperature measurements.  

For this reason we can conclude that the conjugate gradient method needs a lot of iterations to get 

a converged solution and it may not be the most suitable method for the conjugate heat transfer 

computations. 

 

Figure 4-11. Computation of the heat flux in all the nodes of the heater 3 in the first four 

iterations of the conjugate gradient method. 

4.2.2 Digital Filter Method Evaluation 

To demonstrate the accuracy and feasibility of this inverse methodology, we conduct a numerical 

“experiment” using the conjugate heat transfer model ANSYS Fluent. In this numerical experiment, 

first we compute the direct problem with known boundary conditions (i.e., applied heat fluxes) in 

the heaters and measure the predicted temperature on the top surface of the silicon layer. In the 

inverse problem, we input the temperature measurement from the direct problem to compute the 

heat flux boundary conditions in space and time. The objective of this test is to validate if the 
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inverse methodology can predict the amplitude of the heat flux, its behavior through time and the 

spatial location of the heat source. 

The digital filter method was able to predict successfully in the most part of the cases the imposed 

heat flux as shown in Figure 4-12. The aforementioned case with two heaters providing heat is 

represented as well as the comparison with the solution extracted from the Digital Filter Method. 

The method can predict the location of the heaters that are on and it predicts the magnitude and 

the shape of the heat flux that were imposed. The behavior of the heaters 2 and 3 is predicted based 

on the effect in the temperature in a transient. Also, the behavior of the heaters 1 and 4 is predicted, 

except for the last timesteps in the heater 1 where the method is predicting spurious positive heat 

flux.  

 

 

Figure 4-12. Location of the different heaters (left) and comparison between the imposed heat 

flux and computed heat flux (right) with the digital filter method. 



   85 

 

4.3 Experimental Validation 

The last step to validate the methodologies consists in the comparison of the results with 

experimental data. For this validation, we are using a squared chip of 21x21mm composed by 

several layers of silicone, 26 RTDs and 25 heaters that we can control individually.  

Figure 4-13 shows the chip used during the experimental validation and a sketch of the location of 

the heaters inside the silicon layers.  

 

Figure 4-13. Microchip with 25 independent heaters used for the experimental validation of the 

inverse methodology. The system consists of a grid with 25 independently controlled heaters and 

26 embedded temperature sensors. 
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Figure 4-14 depicts the two different models used for analysis of the microchip: (1) a pure 

conductive model using COMSOL Multiphysics® software and (2) a conjugate (i.e., including 

convection and conduction) heat transfer model using ANSYS Fluent® . The COMSOL conduction 

model include the silicon microchip as described in the numerical analysis of the previous section, 

while the ANSYS Fluent conjugate heat transfer model includes the microchip, the printed circuit 

board (PCB), and the air in the enclosure surrounding the chip. 

 

 

Figure 4-14. a) Microchip in the experimental setup, b) COMSOL model of the microchip with 

subdivisions in the top surface marking the approximate size of the pixels for IR thermal 

measurements, and c) Fluent model of the microchip for conjugate heat transfer analysis. 

Divisions shown here outline the 25 different heaters elements.  

These models were tested numerically, specially the ANSYS Fluent model, since it is a complete 

different model with respect to the numerically aforementioned demonstration. Specifically, in the 

numerical experiment, a single heater provides a sinusoidal heat flux over 10 seconds with a 

maximum amplitude of 2x105 W/m2. The remaining heaters are off for the entire duration. Figure 
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4-15 depicts the imposed heat flux in four different heaters and the estimation of heat flux using 

the developed inverse methodology. Note that three heaters with no applied heat flux are shown 

for illustration and all the imposed and retrieved data for those heaters overlap at the 0 W/m2 axis. 

The method accurately predicts the location of the heat source, the time evolution of the imposed 

heating, and the magnitude of the heat flux with an error below 5% of its maximum, only providing 

the temperature measurement of the top surface of the test article.  

 

Figure 4-15. Numerical validation of the inverse methodology in Ansys Fluent including 

conjugate heat transfer. (a) The imposed and retrieved heat fluxes in selected four heaters agree 

well. (b) Top view of the 5x5 heater grid with the four selected heaters labeled. A heat flux is 

imposed on heater 1, while all remaining heaters are off for the duration of the simulations. 

The procedure in order to make the experimental campaign is detailed in Figure 4-16. It starts with 

the design of the experimental setup. A controlled environment enclosure was designed in order 

to place the chip with heaters that we are using for the experimental validation. This enclosure 

helps in the acquisition of the infrared data reducing the error introduced by the convection and in 

acquisition of a stable reference temperature to calibrate the infrared measurements. This enclosure 
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has 4 walls in top bottom and sides, one open side and one side with fans in order to generate 

forced convection inside of the enclosure simulating a rack. 

 

Figure 4-16. Experimental procedure. 

Inside of the enclosure we perform different temperature measurements: thermocouples control 

the temperature of the air of the enclosure, the RTDs inside of the chip to measure the temperature 

near the surface of the chip and infrared thermography over the top surface of the chip which is 

going to be the measurement. These measurement techniques need to be calibrated before we 

perform the measurement campaign. The thermocouple probes specially designed for this 

application were calibrated in a first step using a Fluke thermocouple calibrator with an uncertainty 

of 0.005ºC. They are thermocouples type K that were calibrated using 12 points of calibration in 

the thermocouple calibrator: eight of them increasing the temperature and four of them decreasing 
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the temperature from the previous calibration point. Figure 4-17 shows the result of the calibration 

of the three calibrated thermocouples.  

 

Figure 4-17. Thermocouple calibration. 

These thermocouples, already calibrated, were used in the next step of the calibration procedure 

when we used an oven to calibrate the RTDs and the heaters inside of the chip. For this calibration, 

we used the same data acquisition system of the experimental campaign and the chip was placed 

inside of an oven together with the thermocouples to check which the internal temperature of the 

oven was. We placed one thermocouple next to the enclosure, one few centimeters over the 

enclosure and another at the bottom of the oven. In this case a 6 points calibration was performed, 

in order to calibrate all the heaters and all the heaters. Since we did not have channels to calibrate 

all together, we had to repeat the process several times.  
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The behavior of the RTDs, as expected, and the heaters is pretty linear with the temperature as 

shown in the Figure 4-18 and Figure 4-19. The RTDs are used to control the safety operation of 

the chip taking into account that they should not measure temperatures over 100ºC. The 

temperature measured with eight of the RTDs is monitored to provide real time data about the 

status of the chip for a possible quick shut down of the experiment. The heaters instead are 

calibrated to know the total heat flux or power that they are providing including the effect of the 

temperature, since the resistance of the heaters varies with the temperature. Figure 4-18 and Figure 

4-19 depict the effect of the temperature in the resistance of 8 of the RTDs and 8 of the heaters, 

but the complete chip with all the heaters are RTDs was characterized.  

  

Figure 4-18. RTD calibration. 
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Figure 4-19. Heaters calibration. 

Once all the measurement techniques and the heater chip were characterized, we could proceed 

with the experimental campaign using an infrared microscope. This infrared microscope measures 

the temperature at the top surface of the microchip as a function of space and time with ~18 μm 

spatial resolution and ~0.1 K temperature resolution. Because silicon IR transparent, we apply a 

layer of graphite paint on the measured surface. The lens used in this experiment had a field of 

view of 12mm x 12mm, therefore, the experimental campaign was carried out using a 3x3 heaters 

array located in one of the corners of the test article, as shown in the Figure 4-20. 
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Figure 4-20. Experimental setup to measure the top surface temperature of the chip in the 

specified field of view of the IR microscope. 

The experimental campaign was divided in 6 different experiments where we were providing 

different levels of heat flux in different heaters as shown in the Figure 4-21.The experiments were 

carried out for 100 seconds with a sampling frequency for the infrared camera of 1 Hz. The 

thermocouples and RTDs were sampled at 10Hz. The different heaters are represented as green 

squares and the heaters that are on in each one of the experiments are marked as an orange squared. 

The RTDs are located over the different heaters, except for the central heater with has 2 RTDs 

over it. The use of the microscope also provides a limitation to the setup since the field of view 

that we can target with the larger field of view lens is only a 3x3 matrix of heaters. For this reason, 
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we decided to limit the experimental campaign to the bottom right corner of the experimental chip 

and also reduce the number of experiments and the location of the heaters that are on to the 

particular field of view that we can observe. The six experiments depicted in the Figure 4-21were 

performed in natural convection and in forced convection so we have a total of 12 experimental 

data which are validated in the case of the natural convection with the conductive model developed 

in COMSOL and the conjugate heat transfer using the model developed in Fluent. In experiment 

1, we used the same strategy of the numerical experiment where we heat up all the heaters. In 

experiment 2, heat up the central heater of the chip and then it is combined with a corner heater 

for experiment 3. In experiment 4, we heat up the central heater of the field of view and then we 

evaluate what happens when we turn on the heaters in the same column and on the same row for 

experiments 5 and 6, respectively. 

 

Figure 4-21. Different experiments performed with the 5x5 heaters test article. 
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Each experiment was run for 100 seconds recording one temperature map each second. In terms 

of time distribution of heat flux, the selected heaters for each of the cases were turned on between 

2 s and 8 s after beginning the recording and they were switched off after 60 seconds of operation 

at constant heat flux. The heat flux generated by the heaters is controlled with a LabView program 

coupled with a Keithley sourcemeter, which is also used to record and save all the data. Figure 

4-22 depicts the six experiments with variations in the heat flux maps and resultant temperature 

profiles. In this work we focus on experiments 1, 3, and 4 to validate the proposed inverse 

methodology.  

 

Figure 4-22. Experiments performed to validate the methodology. Each small inset indicates 

which heat sources were on (red) for each experiment and the black box indicates the field of 

view of the infrared microscope. The thermal images are from one frame of the thermal movie 

and show the spatial variation in temperature of the die.  

As observed in the Figure 4-22, the spatial distribution of temperature varies considerably amongst 

the different experimental cases, and this helps in the determination of the location of the heat 

sources and the retrieval of the value of the applied heat flux. In experiment 1, we powered the 

3x3 grid of heaters within the field of view of the microscope, while in experiments 2 and 4 we 
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only powered one heater but in different locations of our temperature map. In experiment 3, we 

used 2 heaters at the corners of the field of view. In the experiment 5 and 6, we turned on three 

heaters corresponding to a columns and a row of heaters of the field of view, respectively. The 

temperature map obtained with the IR microscope contains 1024x1024 measurements (pixels). To 

apply this methodology, which number of operations is directly proportional to the number of 

temperature measurements, we decided to reduce this number of measurements to a grid of 15x15 

effective pixels. The temperature map was divided in the desired grid and all the nodes contained 

in the subdivisions were averaged at each time step to get the input temperature maps for the code.  

 

Figure 4-23. Infrared images of the experiment 4 and experiment 6 at second 50 of the transient 

experiment. 

Figure 4-23 shows the experimental data measured in the experiment 4 and 6 after 50 seconds of 

experiment. The experimental procedure was similar for each one of the experiments only varying 

the times when the power was turned on and off to the heaters. First we start to sample with the 

infrared microscope and the other measurement techniques. After few seconds, we turn on the 

heaters and we observe the behavior of the temperature. At around the second 70 of each 

experiment we turn off the heaters in order to see how the temperature decays with time and if we 

are able to predict it with the inverse methods. 
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Figure 4-24. Thermal response during Experiment 1 with a 15x15 grid of sensors in order to 

validate the data with the inverse methods. 

Figure 4-24 depicts the experimental data obtained with the infrared microscope at different 

timesteps during the experiment 1. It reaches a temperature of 60ºC before we turned off the heaters. 

Also it can be observed that in this case the pixels are noticeable. We had to increase the size of 

the pixels applying an averaging technique in order to be able to apply it to the developed model 

where we have a 625 pixels where we can impose the temperature, step needed for the calculation 

of the heat flux with the inverse methods. 

This experimental measured data was then used as input for the two inverse methods and we tested 

if we could predict the trends in time of heat flux, the magnitude of the heat flux that we are 

imposing in each one of the heaters and the location of the heaters that were on and off in each 

experiment.  
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4.3.1 Conjugate Gradient Method Validation 

The conjugate gradient method was validated for both experiment 1 and experiment 4. It is 

remarkable to observe that the solution of the conjugate gradient method and the digital filter 

method have several similitudes. It detects the same peak that in the previous model when we turn 

on the heaters and then stabilize around the value of heat that we have imposed. Then it detects or 

predicts the same negative value of heat flux (cooling) in the timestep when we turn off the heaters.  

 

Figure 4-25. Comparison of the imposed heat flux and the computed heat flux with the 

Conjugate Gradient Method after 11 iterations in the center(top) and corner (bottom) of the 

experimental chip. 
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The dashed line, is the predicted heat flux after 11 iterations and we can observe that the 

temperature is not completely matched like in the numerical case, therefore for this case apart of 

the corrections that need to be implemented to minimize the peaks at the beginning and at the end 

of the application of the heat flux, we will need to let the process run for more iterations. 

We used the same method to validate the other cases of heat flux imposed in the different 

experiments and we could observe that the conjugate gradient method is not the best method to 

identify hotspots in a small region with small gradients since it is not able to identify the location 

of the heaters that are on. 

4.3.2 Digital Filter Method Validation 

The digital filter method was tested with the experiment 1 for the moment but i twill be tested in 

the future with the other experiments. With the digital filter method, we have flexibility modifying 

three parameters to drive the solution to the most adequate solution of the het flux based on 

previous knowledge. Figure 4-26 shows the comparison between the heat flux that we imposed in 

the central heater and the corner heater of the 3x3 array of heaters analyzed with respect to the 

solution extracted from the digital filter method. We can observe that it is not matching with the 

imposed heat flux due to the sudden changes in heat flux imposed since it is a squared step. The 

digital filter method is predicting which heaters are on and which ones are off and it gives the 

moment of time when we impose the heat flux and when we stop them. There is a peak in the 

predicted heat flux when the increase of heat flux is detected. This peak drives down the prediction 

of heat flux in the steady part of the heat flux and the sudden drop of temperature when the heat 

flux is stopped makes the method predict that there is cooling in our experimental setup which is 

true if we take into account that the dissipation for natural convection is larger than the one 
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predicted by the model. This feature can be minimize by applying the correction of the model 

already introduced but it will not disappear.  

 

Figure 4-26. Comparison of the imposed heat flux and the computed heat flux using Digital 

Filter Method. 

4.3.3 Digital Filter Method with Non-Iterative Non-Linear Correction 

All the tested experiments were analyzed using the inverse methodology. We focus on three of 

them: experiment 1 which is the most general case, and experiment 3 and 4 since they are the most 

challenging heat distributions of the experiments.  

First, consider experiment 1 where all the heaters in the field of view are heating at the same rate. 

The temperature evolution in time is represented in the Figure 4-27 and we observe that we can 

predict the evolution in time of all the heaters. Also, the magnitude of the heat flux is captured 

well by the inverse methodology. The results show good agreement for both natural convection 

and conjugate heat transfer calculations.  
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Figure 4-27. Validation of the inverse methodology for the experiment 1. (a) Temperature maps 

at selected times. Note that the temperature is fairly uniform at each time step. (b) Sketch of the 

5x5 heater grid with the 9 active heaters indicated in red. The black outline indicates the field of 

view. (c - d) Heat flux in the center (blue) and (red) corner heater within the field of view as 

extracted from the inverse method. Panel (c) shows the results for natural convection with the 

Comsol model and panel (d) shows the results under forced convection using the Fluent model. 

The new methodology can predict, not only the magnitude of the heat flux and the temporal 

behavior of the heat flux, but also spatially resolve the locations of applied heat flux as shown in 

Figure 4-28 which illustrates the imposed and retrieved heat flux at t=40s for experiments 3 and 4. 

We applied our methodology to the most complex case (experiment 3 where two heaters are active, 

while the rest do not provide any heat) and we obtained very good agreement in terms of the 

predicted magnitude of heat flux, the time when the heaters are turned on and turned off, and the 

location of the heat sources as can be observed in the Figure 4-28. The magnitude of the heat flux 

also varies from test to test and the methodology was able to compute the value of heat flux that 
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was imposed with a reasonable accuracy (< 10% error) in all the heaters and at any moment of 

time.   

 

Figure 4-28. Experimental validation for experiments 3 and 4 at t=40s demonstrating ability to 

spatially resolve heat flux. (a) Schematic of active heaters and observed temperature map at t = 

40s. (b) Imposed and retrieved heat fluxes in each heater at t=40s. 

We performed an uncertainty analysis based on the uncertainty of the inputs to this method. For 

this case, we consider the uncertainty in the thermal properties of the different materials that 
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compose the microchip with the heaters, in the thickness of the materials (50 micrometers), and 

finally in the measured temperatures (±2K, after the calibration of the thermocouples and the IR 

camera). Combining linearly all the contributions to the uncertainty, we observe that the 

uncertainty in temperature dominates the overall uncertainty. Also, as we take temperature 

measurements over all the surface as input to the method, this is logical. Based on the experimental 

setup, the overall uncertainty of the new non-linear non-iterative methodology is 7.1% for 

evaluating the value of predicted heat flux, as shown in Table 4-1.  

Table 4-1. Uncertainty analysis of the heat flux computation using the non-linear inverse 

method. 

Quantity 
Absolute 

input 
uncertainty 

Uncertainty 
in %  

Variation in heat 
flux relative to 

mean in % 
Sensitivity 

Temperature [K] 2.0 0.64 6.35 9.98 

k silicon [W/mK] 10 7.69 -0.15 -0.02 

ρ silicon [kg/m3] 10 0.43 0.14 0.32 

CP silicon [J/K kg] 7 0.99 0.30 0.30 

k polycrystalline silicon 
[W/mK] 

10 10.00 -1.66 -0.17 

ρ polycrystalline 
silicon [kg/m3] 

10 0.43 0.09 0.21 

Cp polycrystalline silicon 
[J/K kg] 

7 1.03 0.15 0.15 

thickness silicon [m] 0.00005 5.00 1.97 0.39 

thickness polycrystalline 
silicon [m] 

0.00005 10.00 1.97 0.20 

Overall Uncertainty in heat flux calculation 7.14  

When comparing the heat flux extracted from our inverse method to that measured directly in the 

measurement rig, we must also consider the uncertainty in the power measurements. Specifically, 

the uncertainty of the experimentally measured heat flux is 4.6% as evaluated given the uncertainty 

in the voltmeter and sourcemeter measurements.  Table 4-2 shows the uncertainty associated to the 
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power computed in each one of the heaters that we used as heat source during the different 

experiments.  

Table 4-2. Uncertainty calculation of the power in the experiments. 

Quantity 
Absolute 

uncertainty 
Uncertaint

y in %  
Variation of power 

relative to mean in % 
Sensitivity 

Voltage [V] 0.005 0.152 4.591 30.30 

Current [A] 0.00001 0.002 0.278 166.67 

Overall uncertainty in power calculation 4.600  

4.4 Sensor Location Optimization Technique 

4.4.1 Kriging Interpolation Combined with Genetic Algorithm Optimization 

There are several methods to interpolate a surface from discrete data points: for example, 

polynomial interpolation, the radial basis function method, the inverse distance weighted methods, 

and Kriging interpolation. The first typically uses Taylor expansions to estimate the surface of the 

solution from the measurement points and it is one of the best estimators since it is based on the 

least squares solution. The Kriging methodology is based on a statistical method that uses a 

weighted variance, minimizing the error between the estimated and the actual values [134][135]. 

It was first proposed in the field of geo-statistics [136] to estimate three dimensional mineable 

deposits and it was adapted for other applications mainly related to optimization. The Kriging 

interpolation was applied recently in different optimization techniques in order to minimize the 

information needed to save and perform the optimization [137]. This method provides two main 

advantages since it provides anisotropy information (the direction and the ratio of anisotropy) and 

provides standard errors related with spatial data. If the desired quantity is T (in this case the 

temperature), the Kriging estimator is expressed linearly as T* [138]: 
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𝑇∗(𝑥0, 𝑦0) =  ∑ 𝜆𝑖
𝑛
𝑖=1 𝑇(𝑥𝑖, 𝑦𝑖), (60) 

where the 𝑇(𝑥𝑖, 𝑦𝑖) are the measurement points (i.e., where the sensor is placed) and the 𝜆𝑖 are the 

weights of each one of the points. These weights are calculated in this method by evaluating the 

statistical properties of the data [139].  

Additionally, we need to define a residual based on a model m(x,y), which can even be the main 

level of the population 𝜇: 

𝑌∗(𝑥𝑖, 𝑦𝑖) = 𝑇(𝑥𝑖, 𝑦𝑖) − 𝑚(𝑥𝑖, 𝑦𝑖) (61) 

and 

𝑌∗(𝑥0, 𝑦0) =  ∑ 𝜆𝑖
𝑛
𝑖=1 𝑌(𝑥𝑖 , 𝑦𝑖). (62) 

The coefficients 𝜆𝑖 are calculated by minimizing the expected error variance of the estimate 𝑌∗: 

𝑒2 =  𝐸{[𝑌∗(𝑥0, 𝑦0)]
2} − 2𝐸{𝑌∗(𝑥0, 𝑦0)𝑌(𝑥0, 𝑦0)} + 𝐸{[𝑌(𝑥0, 𝑦0)]

2}, (63) 

or, after substituting the estimate of 𝑌∗ from (62): 

𝑒2 = ∑∑𝜆𝑖𝜆𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝐸{𝑌(𝑥𝑖, 𝑦𝑖)𝑌(𝑥𝑗, 𝑦𝑗)} + 2∑𝜆𝑖

𝑛

𝑖=1

𝐸{𝑌(𝑥𝑖, 𝑦𝑖)𝑌(𝑥0, 𝑦0)} + 𝐶(0) . (64) 

The covariance in the equation is defined as 𝐶(ℎ): 



   105 

 

𝐶(ℎ) =  
1

𝑚
∑[𝑌(𝑥𝑖 + ℎ)]

𝑚

𝑖=1

[𝑌(𝑥𝑖)] . (65) 

Having previous information about the spatially distributed points, we calculate the covariance 

and the only remaining unknowns in Equation (64) are 𝜆𝑖. We need to minimize the variance error 

to optimize the sensor placement; therefore, we derive the error by the weights and solve for when 

this derivative equals 0: 

𝜕𝑒2

𝜕𝜆𝑖
=  2∑𝜆𝑗

𝑛

𝑗=1

𝐶(𝑥𝑖 − 𝑥𝑗) − 2𝐶(𝑥𝑖 − 𝑥0) = 0 . (66) 

Therefore, the final equation is 

∑𝜆𝑗

𝑛

𝑗=1

𝐶(𝑥𝑖 − 𝑥𝑗) = 𝐶(𝑥𝑖 − 𝑥0) . (67) 

There are different types of Kriging interpolators. The simple interpolator assumes a constant value 

of the expectation in all points. The ordinary Kriging method does not assume a constant 

expectation, but the statistical properties are function of the distance between the measured and 

the estimated points. It is the most commonly used method due to the accuracy of its estimate. 

In this ordinary Kriging methodology, we need to impose another restriction on the weights in 

order to calculate them. Specifically, the sum of all the coefficients of the weights must be unitary. 

Therefore, the system of equations to calculate the weights is defined as 
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{
 
 

 
 ∑𝜆𝑗

𝑛

𝑗=1

𝐶(𝑥𝑖 − 𝑥𝑗) = 𝐶(𝑥𝑖 − 𝑥0)

∑𝜆𝑗 = 1

𝑛

𝑗=1

𝑓𝑜𝑟 𝑖 = 1, 2, 3, … , 𝑛 (68) 

The outputs of this interpolation are the value of the function at the non-visited points and an 

estimation of the error variance, which is a way to measure the accuracy of the Kriging fitting. 

Since we do not have information regarding the distribution of the variance in space, this 

estimation of the error in variance is computed using a semi-variogram, which is a suitable model 

based in the distance between visited and non-visited points. Normally, a spherical function is used 

to express the semi-variogram in a 2D space: 

𝐶(ℎ) = {
 𝑐0  (

3

2
 
ℎ

𝑎0
− 

1

2
 (
ℎ

𝑎0
)
3

)  𝑓𝑜𝑟 ℎ ≤ 𝑎0

                    𝑐0                    𝑓𝑜𝑟  ℎ > 𝑎0

, (69) 

where h is the distance between the estimated point and the measured point in two-dimensional 

space and the coefficients 𝑎0 and 𝑐0 are 30 and 300, respectively, and they are chosen arbitrarily 

based on “trial and error” fitting. 

In order to get the final location of interest we need to couple the Kriging interpolation method 

with an optimizer. In this case, a Genetic Algorithm optimizer is chosen due to its flexibility and 

robustness when programming any kind of spatial distribution data. The objective function is to 

minimize the sum of squares of the difference between the temperature value calculated by the 

Kriging interpolation and the temperature value obtained by COMSOL over all the points 

measured. 
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𝑆(𝑇) =  ∑√(𝑇𝑖 − 𝑌𝑖)2

𝑝

𝑖=1

 . (70) 

Where S(T) is the objective function that we need to minimize, p is the total number of points that 

we have in the measurement surface and it varies with the surface discretization. 𝑇𝑖 and 𝑌𝑖 are the 

calculated temperature by the Kriging interpolation in each point and the measurement temperature, 

respectively.  

The optimizer was run for 100 generations with 50 specimens per generation with good 

convergence ratios for all the cases analyzed. 

To estimate the optimal location of the points inside the microchip, we need to know the 

temperature map at different times and the number of sensors to be placed. The temperature map 

is the output of the inverse method and the number of sensors is an input from the design 

parameters. In this case, we have performed the GA optimization with 6 and 8 sensors inside of 

the chip. Figure 4-29 represents the temperature map at two different time steps. These temperature 

distributions have been included in the optimization using Kriging interpolation. The objective 

function of the optimization consists of the sum of the squares of the difference between the real 

distribution and the interpolated surface at each location.  

In order to perform the optimization, we use the same heat flux that we imposed for the inverse 

heat transfer method. All the heaters are on, in a sinusoidal manner for 3 seconds and the boundary 

conditions shown in Figure 4-3. In the minimization we take two random timesteps and we apply 

the objective function detailed in Equation (70). 
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Figure 4-29. Temperature maps in the plane where the temperature sensors should be located at 

t=1.5s and t=2.7s. 

 

Figure 4-30. Location of the optimal points inside of the microchip envelope for the case run 

with 8 sensors. 

Figure 4-30 shows the optimal location of the points after running the optimization with 100 

individuals during 50 generations. The optimization parameters were the x and y positions of the 

points inside the spatial envelope of the chip. Due to the shape of the temperature profile (the 
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lowest temperature is located in the corners of the chip and the higher temperature is located in the 

center), the optimization algorithm locates one sensor in each corner and the other four sensors are 

placed in the center.  

The Kriging interpolation is performed with the data of the optimal points and the solution surface 

is depicted in Figure 4-31. The goodness-of-fit of this surface to the input surface is lower than 

70% for 6 optimal sensor locations, and higher than 80% for the two time steps evaluated when 

using 8 optimal sensor locations. 

 

Figure 4-31. Kriging interpolation results for the temperature maps using the optimal location for 

the sensors. 

This interpolation could be done using other models, such as a polynomial model, but the 

parameters will vary depending on the time the measurement is taken, which adds complexity to 

the meta-model used to recalculate the temperature map. 

Finally, this methodology has been coupled with the inverse methodology following the strategy 

depicted in Figure 4-32.  
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Figure 4-32. Number and location sensor optimization strategy coupled with an inverse method 

assessment. 

Starting from the measured temperature and a model of the test article, we compute the inverse 

method. In this case, we have programed the Digital Filter Method due to its computational 

efficiency. Once the heat flux is obtained we can compute the temperature inside of the chip. 

Providing an initial number of sensors and a goodness of fit, we run the kriging interpolation 

optimization to optimize the location of the sensors inside of the chip. A temperature map can be 

derived from the scatter sensors that have been placed in the optimized locations and it is compared 

with the input infrared temperature map.  From this comparison, we get the goodness of fit between 

the interpolated data and the measured data. If the goodness of fit is lower than certain assigned 

threshold the procedure add another sensor and recompute the location optimization. Once the 
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goodness of fit is larger than the threshold, we compute the heat flux again using the inverse 

methodology with the interpolated temperature map as an input.   

 

Figure 4-33. Example of the scatter sensor optimization technique using the experimental data 

from the Experiment 1. 

Figure 4-33 shows an example of the complete method using experimental data. The initial number 

of sensors was 6 and the optimization with a prescribed goodness of fit of 80% gave a solution 

with 14 sensors scattered in the whole chip. Also an additional feature was implemented in which 

we add regions in which no sensor can be placed. This is done by increasing the penalty of the 

sensors located in that region in the minimization of the objective function.  
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4.5 Conclusions 

In this chapter, the inverse methods have been applied to a microscale problem, which is 

challenging given the limited thermal gradients observed in this application. The microscale field 

that has been targeted is the microelectronics application.  

From the assessment performed in this chapter for this particular application, we can extract the 

following conclusions:  

- The two developed methodologies (Conjugate Gradient Method and Digital Filter Method) 

have been assessed for this application. A numerical investigation followed by an 

experimental validation was conducted in order to bring light to the challenges faced in 

microscale applications. Additionally, the computation was performed using two different 

difference volume solvers, COMSOL Multiphysics and ANSYS Fluent, which evaluated 

the methodologies in pure conduction heat transfer and conjugate heat transfer, 

respectively.  

- At the microscale, the spatial temperature gradients are small and, therefore, all of the 

methods based on the computation of gradients, such as all deterministic optimization 

methods, fail in the computation of the spatial location of the heat sources.  

- The Conjugate Gradient Method is a gradient based methodology and, therefore, has 

problems predicting sudden changes of heat flux in space and time. The methodology was 

assessed numerically providing good agreement for simple and smooth changes of heat 

flux in time, failing to capture the spatial gradients due to the small spatial gradients. The 

experimental validation confirmed the difficulties of this method to perform track spatial 

gradients, leading to disagreements in the magnitude of the computed heat flux as well.  

- The Digital Filter Method is recommended for this application, not only for its flexibility, 

but also for the accuracy of the results and the computational efficiency. The methodology 
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was assessed numerically and validated experimentally and was able to predict the 

magnitude, the location, and the temporal behavior of the imposed heat flux. Also, a 

comparison between the improved DFM and the basic DFM was performed, observing 

how the non-linear non-iterative methodology improves the prediction considerably.  

- The methodology, if optimized to increase the computational efficiency, can be applied in 

real time and this makes it suitable for active thermal management of microelectronics.  

- The number and location of the sensors inside of the microchip can be optimized using 

inverse methods. For this application of the inverse method, a Genetic Algorithm 

optimization combined with a Kriging interpolation method was developed. In this 

methodology, by controlling the goodness of fit of the interpolated temperature, the 

location of the sensors is optimized as a function of the number of sensors, which is directly 

dependent on the required goodness of fit.  
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 DIGITAL FILTER INVERSE METHOD APPLIED TO 

GAS TURBINE CASING2 

The tip region of the turbine blade is responsible for more than 1/3 of the losses occurring in a 

turbine stage [140]. At the same time, the characteristics and flow topology of this part of the 

turbine strongly influences the convective heat transfer to the casing. Hence, the blade tip region 

is key in order to optimize the turbine performance as well as enhance its durability from the 

thermal perspective. For these reasons, an important part of past turbine research has focused on 

the optimization of the blade tip region aerothermodynamics [141]-[147]. 

The presence of a blade and the inclusion of cooling paths through this region, make the insertion 

of sensors in the rotor turbine casing a challenging task. In laboratory conditions, thin films, 

pressure taps, and capacitance probes [148][149] have been inserted in the casing to perform 

measurements of heat transfer, pressure, and clearance. However, at engine-like conditions these 

measurements are practically impossible. This makes turbomachinery researchers look for new 

options on how to characterize the turbine casing region, especially the overtip area. In this frame, 

                                                 
2 This chapter is partly based on: 

 

D. G. Cuadrado, F. Lozano, V. Andreoli, G. Paniagua, 2019. "Engine-scalable Rotor Casing Convective Heat Flux 

Evaluation Using Inverse Heat Transfer Methods", Journal of Engineering for Gas Turbines and Power, 141(1), p. 

011012. [170] 

 

Paniagua, G., Cuadrado, D., Saavedra, J., Andreoli, V., Meyer, T., Solano, J.P., Herrero, R., Meyer, S. and Lawrence, 

D., 2019. “Design of the Purdue Experimental Turbine Aerothermal Laboratory for Optical and Surface Aerothermal 

Measurements.” Journal of Engineering for Gas Turbines and Power, 141(1), p.012601. [171] 

 

V. Andreoli, D. G. Cuadrado, G. Paniagua, “Prediction of the Turbine Tip Convective Heat Flux Using Discrete Green 

Functions.” ASME. J. Heat Transfer. 2018;(), doi:10.1115/1.4039182. [172] 

 

D. G. Cuadrado, J. Saavedra, V. Andreoli, G. Paniagua, "Experimental Calibration of a High Speed Blowdown 

Tunnel". 2017 ISABE conference No 2017-22636. [173] 
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inverse heat transfer methodologies are indispensable since they allow the characterization of the 

heat transfer phenomena occurring inside the turbine based only on temperature measurements on 

the outer casing.  

Inverse methods have been previously used in turbomachinery for design purposes [150]-[152]. In 

this case, we have focused the inverse method in the solution of the heat conduction equation 

through the casing. Therefore, in the proposed methodology, temperature measurements in the 

outer casing are the input parameters of the methodology in order to retrieve the heat flux in the 

inner turbine casing. This represents a non-intrusive technique for the retrieval of the heat transfer 

phenomena in the turbine casing. This avoids the intrusion of any measurement device that might 

modify the flow physics of the casing area, especially at the reduced tip clearance. 

In the present work, inverse heat transfer methodologies have been applied in order to retrieve 

inner casing heat flux for various thicknesses using a Digital Filter Method [88][89]. This method 

uses the Duhamel’s Theorem [6][153] to retrieve the response of the system to pulses in heat flux. 

It is a similar approach to the one used in the Green Functions convective heat transfer approach 

[154]-[159]. In the case of the Duhamel’s Theorem, we observe the response of the solid while the 

Green Functions approach evaluate the fluid response.  

5.1 Numerical Evaluation 

In this application, providing the temperature map of one surface and a model with the geometrical 

and thermal properties, we compute the boundary conditions which is our unknown parameter. 

Therefore, measuring the temperature in the outer surface of the turbine casing we could retrieve 

the inner heat flux evacuated through the casing.  
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Figure 5-1. Schematic of the inverse heat transfer procedure applied to the turbine casing. 

Equation (71) contains the solution of the heat flux with the spatial and temporal terms already 

included in the matrix. 

�̂� = [𝑋𝑇𝜓𝑋 + 𝛼𝑡𝐻𝑡
𝑇𝐻𝑡 + 𝛼𝑠𝐻𝑠

𝑇𝐻𝑠]
−1
𝑋𝑇𝑌, (71) 

In order to solve Equation (71), there are several methods that can be used, and all of them imply 

the use of a preconditioning technique of the sensitivity matrix of coefficients. Matlab functions 

already implemented such as gmres, pinv and pcg can be used to solve the ill-conditioned problem. 

For this case, and due to the extremely ill-condition of the matrix we have used the function 

fmincon of Matlab which is providing more accurate results without falling in large spatial and 

temporal variations of heat flux. To obtain more accurate results, it is recommendable to provide 

an initial iteration solution which has similar trends to the expected solution. This means that if 

you have a previous knowledge of where the blade is located, if it is specified at the beginning the 

results will improve with respect to the solution when no initial data is provided. 

The methodology described in the previous section was applied in a numerical experiment 

performed in Numeca Turbo with conjugate heat transfer boundary conditions in the casing. The 
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solid domain was composed by a section of the outer wall and different thicknesses were tested. 

Figure 5-2 shows the computational domain with details of grid in the solid and the fluid regions. 

The mesh was generated using Numeca IGG/Autogrid5, maintaining the same grid characteristics 

used in [127]. In the previous work, a grid sensitivity study was performed to assess the correct 

characterization of the heat flux in the tip region of the same high-pressure turbine used for this 

work. Figure 5-2 shows the turbine stage, which is a scaled version of the geometry tested by 

Sieverding et al.[128]. In order to reduce the computational cost, only the steady Reynolds 

Averaged Navier-Stokes simulations are run with the complete stage. 

 

Figure 5-2: Computational domain with details of solid and fluid domain. 

The pitchwise averaged quantities at the mixing plane between stator and rotor are extracted and 

imposed at the rotor inlet. The rotor only is then used for the full unsteady conjugate calculations. 

The first cell size was selected in order to guarantee a y+ lower than 1 everywhere. A ramp of total 

pressure was imposed at the rotor inlet in order to reproduce a time-variant increase of heat flux 
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on the internal casing. The temperature profile, function of radial location and time, is initialized 

with the profile extracted from the steady CFD and then increased uniformly of the 10% in an 

interval of 0.5s. After this ramp, the inlet total temperature achieves the 110% of the initial value 

and is kept constant until a steady state is achieved. 

Figure 5-3 shows the boundary conditions used in the RANS simulations. At the rotor inlet, total 

pressure and temperature are imposed together with the velocity direction. The static pressure is 

imposed at the rotor outlet, applying the principle of radial equilibrium. The interface between 

fluid and solid domain allows the solution of the fully conjugate problem. On all the other solid 

walls, adiabatic boundary condition was imposed. On the side surfaces of the domain, periodic 

boundary conditions were imposed for both solid and fluid domains.  

 

Figure 5-3. Numerical domain used in Numeca for the computation of the conjugate heat transfer 

in the casing of the turbine blade. 

The output of the conjugate calculation is the input of the inverse methodology that has been 

programmed using COMSOL Multiphysics. The solid domain was reproduced in the same way 

that in the Numeca model and a direct calculation was performed to extract the temperature at the 
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outer side of the metallic block. The domain is discretized in squares (a grid of 20x20 in the outer 

wall of the casing and 15x15 in the inner wall) in order to retrieve the area-averaged value of the 

different discretized areas. The area evaluated is composed by the upper region of the turbine tip 

with a 25% of the axial chord upstream of the blade and 50% of the axial chord on the downstream 

part. The main purpose of the division of the surface in squares (or pixels) is the practical 

implementation using infrared thermography. Therefore, each one of the squares would be a pixel 

of the infrared camera and they would be the input data for the inverse methodology in order to 

retrieve the heat losses through the casing. This technique is not only restricted to the use of 

infrared thermography, but also any other temperature measurement technique can be used.  

Figure 5-4 shows the heat trace of the blade in the relative frame during a transient operation where 

the mass flow through the turbine was increased. After running the numerical experiment the 

temperature of the outer part is represented in the Figure 5-5 for the case of 500µm casing thickness. 

This temperature distribution is the input of the inverse methodology. 
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Figure 5-4. a)  Transient evolution of the heat flux applied in the conjugate heat transfer 

simulation in two different points of the domain. b) Spatial distribution of heat flux at t=4.5s in 

the overtip region in the conjugate heat transfer calculation. 
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Figure 5-5. Temperature distribution in the outer wall of the casing at t=3s and t=5s for the 

baseline case of casing thickness (0.5mm) and tip clearance (1% of the blade span). 

Three different thicknesses were evaluated: 16μm, 500µm and 0.5cm. The temperature distribution 

at different thicknesses varies due to the diffusivity of the material, being more diffuse with larger 

thicknesses. However, the effect in the computation is not very large since the method uses a model 

of the plate or foil that already includes the thickness in the computation. The differences in 

retrieved heat flux between cases with different thicknesses is below 10%. 

 The results of the inverse calculation for the baseline case are shown in Figure 5-6. We can 

observe that the method is not able to predict accurately the value of heat flux along time since the 

sensitivity coefficient matrix is very ill-conditioned, but it predicts trends in the heat flux as well 

as provides a good estimate of the spatial distribution of heat flux. The over-prediction in the first 

timesteps is counteracted by an under-prediction of the heat flux in the last timesteps. 
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Figure 5-6. a) Comparison between the transient evolution of imposed heat flux and the retrieved 

heat flux. b) Spatial distribution of the imposed heat flux at t=1s in the simulation. c) Spatial 

distribution of the retrieved heat flux at t=1s in the simulation. 

The same calculation was performed for different clearances. The trace of the blade in the casing 

varies considerably from one clearance to another due to the drastic changes of the aerodynamic 

phenomena in the tip flow. Figure 5-7 depicts the heat flux leaving the casing at two different 

clearances: 0.25%.and 0.55% of the blade span. If we compare the results with the case with a tip 

gap of 1% of the blade span, which is our baseline case for the calculations performed in this work, 

we observe that the heat transfer decreases when the tip gap reduces, and at the same time the hot 
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spots are moved from the top of the blade towards the leading edge of the blade. This may be 

counter intuitive since one may expect to have an increase in the heat losses through the casing in 

cases of tighter clearances. Instead, the adiabatic wall temperature is considerably increased due 

to the dominant role of the viscous forces in such cases and therefore the heat flux is reduced. 

 

Figure 5-7. a) Imposed heat flux extracted from the conjugate heat transfer simulation with a 

clearance of 0.25% the blade span. b) Retrieved heat flux from the inverse method in the case of 

0.25% of the blade span. c) Imposed heat flux extracted from the conjugate heat transfer 

simulation with a clearance of 0.55% the blade span. d) Retrieved heat flux from the inverse 

method in the case of 0.55% of the blade span. 

The non-linear nature of the heat flux at different clearances, which depends not only on the 

upstream conditions of the flow but also in the geometrical shape of the turbine tip, makes 

impractical the implementation of the inverse heat transfer method to predict the tip clearance, but 

as described in the following section, it can be used to predict different parameters inside of the 
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turbine such as averaged upstream temperature or upstream pressure, since there is a clear relation 

between the heat flux in the casing and these quantities. 

An uncertainty analysis of the developed inverse methodology was performed taking into account 

all the parameters that affect the calculation. They can be divided in geometrical and thermal 

properties. In the geometrical properties we took into account the thickness of the metallic window 

where we measure. The thermal properties of the material comprehend the thermal conductivity, 

the density and the thermal capacitance of the solid material. Also, the uncertainty in the 

measurement of the temperature has been taken into account. The approach used is based in a 

linearization of the uncertainty in which a mean value of each quantity has been taken and a 

variation equal to the uncertainty of each quantity has been added. As shown in Table 5-1, the 

main contributors in the total uncertainty are the temperature and the thickness. The total 

uncertainty of the method is below 4%. 

Table 5-1. Uncertainty analysis for the turbine casing inverse heat transfer analysis 

Quantity Mean Value 
Absolute 

Uncertainty 

Heat flux variation 

relative to mean (%) 
Sensitivity 

Temperature [K] 500 0.5 3.18 31.7 

k [W/mK] 130 10 -0.15 -0.02 

ρ [kg/m3] 2320 10 0.13 0.32 

Cp [J/kgK] 703 7 0.3 0.3 

Thickness [mm] 0.5 0.05 1.98 0.10 

TOTAL   3.8  
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All the previous calculations were performed under steady conditions of the rotor. This means that 

physically, the rotor will be located in an annular cascade and we are retrieving the heat flux in the 

relative frame of the rotor. In order to evaluate the effect in the absolute frame of reference the 

frequency retrieval was analytically and numerically evaluated.  

5.1.1 High Frequency Phenomena Retrieval 

All the previous data was obtained in the relative reference frame, this means that it assesses the 

capability of the method to be used in an annular turbine cascade. However, in order to apply it to 

rotating machinery, we must evaluate the effect of the blade passing in the casing wall. In these 

environments, the heat flux is characterized by peaks occurring at the blade passing frequency. 

Due to high rotational speed, this results in high frequency fluctuations on the heat flux, as well as 

the temperatures induced in the casing. 

5.1.1.1 Numerical Analysis 

The study has been done through an analytical solution [6], an in-house 1D conduction solver 

developed by Saavedra el al. [129] and the commercial finite element solver COMSOL. The object 

under consideration in this section is the conductive material layer that would be placed on the 

inner face of the facility’s casing. Considering thermal properties and availability, two different 

materials have been studied, namely Al and Cu. In addition to frequency, another parameter that 

has been varied is the thickness of such layer. The values studied are: 16 µ𝑚 (thin foil), 100 µ𝑚, 

0.5 𝑚𝑚 and 0.5 𝑐𝑚 (thick layer). 

As mentioned before, when a fluctuating heat flux is applied on one of the boundaries of a slab, a 

fluctuating temperature field will be developed inside the solid. This is the principle applied herein. 
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By measuring those temperature fluctuations on the outer casing, the fluctuating heat flux on the 

inner casing can be retrieved.  

The analytical solution considered herein [6] is based on a heat flux excitation as the one given in 

Equation (72). According to these authors, inside the solid, the fluctuations are damped as 

described in Equation (73). In this expression, 𝑥 represents the distance penetrated in the material, 

with 𝑥 = 0 being the face where the fluctuating heat flux signal acts. For the present application, 

this represents the inner face of the casing (where it is intended to retrieve heat flux) and the 

opposite one the outer face of the casing (where temperature would be measured). 

𝑞(𝑡) =  ∆𝑞 𝑐𝑜𝑠(𝜔𝑡) (72) 

𝑇 − 𝑇𝑡=0
(𝑇 − 𝑇𝑡=0)𝑥=0

= 𝑒𝑥𝑝 [−𝑥 (
𝜔

2𝛼
)
1/2

] 
(73) 

From the expression above, it can be inferred that there are three parameters affecting the damping 

the temperature fluctuations suffer along the material’s thickness: 

• Thickness of the material (𝑥): higher thicknesses lead to higher damping. 

• Frequency of the fluctuation ( 𝜔 = 2𝜋𝑓 ): higher frequencies equally cause higher 

dissipation of the fluctuations along the thickness. 

• Thermal diffusivity of the material (𝛼): higher thermal diffusivities lead to lower damping 

of the fluctuations. 

Therefore, in order to capture temperature fluctuations corresponding to high frequency inner heat 

flux fluctuations, as it will be shown, low thickness and high thermal diffusivity are required. 
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Figure 5-8. Numerical heat transfer simulation imposing fluctuations of heat flux in a thin layer 

of aluminum. 

The effect of blade passing frequency and thickness on the damping of temperature fluctuations 

can be observed for Cu and Al in Figure 5-9. These data were computed with the finite elements 

solver COMSOL by imposing the corresponding heat flux signal on one of the faces and adiabatic 

boundary condition on the others. In both cases, the ratio of amplitudes of the temperature 

fluctuations for the outer to the inner face is given with respect to frequency of the imposed heat 

flux for different thicknesses.  

For a thickness of 16 µ𝑚, a negligible damping occurs for both, Al and Cu. Only for a blade 

passing frequency of 10 𝑘𝐻𝑧 a damping slightly higher than 1 % appears.  

However, as thickness is increased, higher damping appear, reducing the fluctuations amplitude at 

the outer part to approximately 40 % of those occurring on the inner face for a thickness of 100 𝜇𝑚 

and a blade passing frequency of 10 𝑘𝐻𝑧. However, as thickness is increased, higher damping 

appears, reducing the fluctuations amplitude at the outer part to approximately 40 % of those 
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occurring on the inner face for a thickness of 100 𝜇𝑚 and a blade passing frequency of 10 𝑘𝐻𝑧. 

For Cu (solid lines), the damping suffered by the 𝑇  fluctuations is slightly lower than for Al 

(dashed lines). Nevertheless, only approximately 40 % of the inner temperature signal can be 

retrieved on the outer face for 10 𝑘𝐻𝑧 of frequency. 

For the thicker case depicted in Figure 5-9, the damping suffered by the temperature fluctuations 

are significantly increased. For a blade passing frequency of 1 𝑘𝐻𝑧, the signal is damped over 

80 % for both materials considered. Similarly, although the difference is minor, Al shows a higher 

damping of the fluctuations. For frequencies beyond 2 𝑘𝐻𝑧, less than 10 % of the inner signal can 

be retrieved on the outer face of the material. 

  

Figure 5-9: Temperature fluctuation damping through Aluminum (dashed lines) and Copper 

(solid lines) for different thicknesses and frequencies. 

Data corresponding to a thick casing (0.5 𝑐𝑚) are not given in Figure 5-9. This is due to the 

fact that such a high thickness completely dissipates the fluctuations at the outer face for the 
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frequencies depicted in that graphic. This case is however analyzed in Figure 5-10(b). Figure 5-10 

presents two graphs corresponding to the inner and outer temperature signals retrieved after 

applying a heat flux boundary condition as the one depicted in Equation (72) on the inner face. In 

both graphics differential temperature with respect to the initial one (room temperature) is 

represented against time non-dimensionalized with the period of the fluctuations (𝑝). The results 

shown in Figure 5-10 have been obtained with the analytical solution (blue lines) and the 1D 

conduction solver (red lines). For the calculation with the 1D solver, the same boundary conditions 

applied in COMSOL have been imposed. 

Figure 5-10(a) shows the significant damping depicted in Figure 5-9 suffered by the temperature 

signal as it travels through the thickness of the material, Al in this case. Another important effect 

shown at Figure 5-10(a) is the phase lag added to the signal when travelling through the material. 

This accounts to approximately 180°, as shown by the data from the 1D solver. Such phase shift 

cannot be predicted by the analytical solution. This phase lag just described increases with 

thickness of the casing. However, its full evolution has not been shown for the sake of simplicity. 

Figure 5-10(b) shows the analogous data to that of Figure 5-10(a), corresponding this time to the 

thickest casing considered (0.5 𝑐𝑚). In this case, it acts as a semi-infinite solid. As a consequence, 

the temperature fluctuations appearing at the face when oscillatory heat flux is imposed are 

completely damped through the material. 

The results obtained for Cu are similar to those depicted for Al in Figure 5-10. For the 0.5 𝑚𝑚 

thickness case (Figure 5-10(a)), has a lower damping as it can be inferred from Figure 5-9 and it 

also presents a phase lag between the temperature signals of the two faces of the material. Similarly, 

for the 0.5 𝑐𝑚 case, Cu also behaves as a semi-infinite solid, damping all temperature fluctuations 

through the thickness. 



   130 

 

 

Figure 5-10. Inner and outer T vs time signals for a frequency of 1 kHz (a) Al, 500 μm thickness 

and (b) Al 0.5 cm thickness 
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5.1.1.2 Practical Implementation 

Regarding the feasibility of experimentally implementing inverse methodologies to retrieve rotor 

overtip casing heat flux, other aspects have been considered: material choice and operational limits 

of different configurations. 

The material choice has been guided by the ability to retrieve the high frequency phenomena 

previously studied. In order to do that, the damping suffered by the fluctuations through the 

thickness of the material needs to be minimized. For that, high thermal diffusivity is required. This 

was, together with their availability, the main reason for choosing Al and Cu for the present study. 

They have thermal diffusivities of 8.27 × 10−5 𝑚2/𝑠  and 1.058 × 10−4 𝑚2/𝑠, respectively. 

From these two materials studied, Cu has shown a superior performance capturing high frequency 

phenomena. This is assessed in terms of the lower damping suffered by fluctuating temperature 

signal through the thickness of this material (see Figure 5-9). Therefore, this would be the preferred 

material. In addition to that, the study presents that a thickness as small as possible is desired in 

order to capture phenomena occurring at frequencies as high as possible. Hence, from the cases 

studied, the lowest thickness (16 𝜇𝑚) is the preferred one. 

In addition to this, the time limits the different test objects studied could withstand in the high 

temperature environment of the turbine have been analyzed. This has been done through numerical 

simulations also with the commercial finite elements solver COMSOL. Convective heat flux data 

obtained from CFD simulations at engine-like conditions with isothermal walls has been imposed 

as boundary conditions of plates of the materials and thicknesses considered. Then, with this heat 

flux applied, the material life time has been evaluated. For Al, these times range from 0.1 to 26 

seconds for the thinnest and thickest cases, respectively. For Cu, these times range from 0.3 to 53 

seconds. 
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5.1.2 Prediction of the Upstream Conditions Based on IHTM 

Inverse methods were conceived to predict unknown parameters or quantities in form of a number 

or a function based on the solution of the problem. Starting from this statement we evaluated the 

possibility to predict the variation of the averaged total quantities upstream of the rotor blade, 

considering constant the other geometrical and thermal properties of the system. In the studied 

case we have evaluated variations in the total pressure upstream of the rotor blade. An analysis of 

how the heat flux through the casing varies at different levels of pressure has been made. Pressures 

of 80%, 90%, 110%, and 120% of the total design point pressure were assessed. Figure 5-11 

represents the increase of heat flux observed when we increase the pressure upstream of the blade.  

This linear relation can be captured with the inverse methodology and then using the outer 

temperature measurements we can calibrate the model to predict the pressure in the test section. 

Using the same data in steady state represented in Figure 5-11 we predict a similar linear behavior 

using the temperature measurements and the inverse procedure. 
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Figure 5-11. Averaged heat flux evolution at different upstream pressure conditions. 

 

Figure 5-12. Pressure prediction based on the inverse heat transfer procedure. 
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We could predict the baseline pressure with the data from the other data points, as shown in the 

Figure 5-12. Even though the values are not exactly the same, since the inverse method cannot 

accurately predict the values of the heat flux in transient evolution, the trends are representative 

and they can be used to establish a relation with the total quantities.  

In order to get the predicted pressure, we have computed the heat flux using the inverse method 

for the baseline case. Only the last time steps were taken in order to perform the calculation since 

in the first timesteps there is more disagreement between the input and the computed data. This is 

one of the reasons why the values of the heat flux are smaller than in the Figure 5-11. The predicted 

value of the pressure using this technique is 2.41 bar when the simulation was run at 2.38 bar. We 

can conclude that we can estimate the pressure with an accuracy higher than the 2% using a linear 

approximation. 

This methodology can be extended to the estimation of other quantities such as total temperature 

with a previous calibration of the relationship between heat flux and predicted quantity.  

5.2 Experimental Evaluation of the IHTM in Turbine Casing 

The experimental implementation of this technique would consist of placing a layer of a 

conductive material on the inner face of one of the optical access windows of the facility. For this 

a new wind tunnel with optical access for turbine research was designed. The characteristics of 

this unique wind tunnel are detailed below. 
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5.2.1 Blowdown Wind Tunnel Design 

The facility was conceived to operate in a wide range of Re and Mach numbers. The control of the 

Re number is related to the operational limits of pressure and temperature. The test section inlet 

pressure ranges from 0.5 to 6 bar, while the temperature can vary between 270K and 700K.  

 

Figure 5-13. Schematic of the layout of the Purdue Experimental Turbine Aerothermal 

Laboratory. 

Figure 5-13 sketches the wind tunnel facility, with the high pressure air storage providing 

pressurized dry ambient temperature air at 150 bar. 

Initially, all valves are closed. We begin the test diverting warm flow to the mixer, which combines 

the cold with the hot stream. Along the cold and hot pipes, control valves are used to regulate the 

pressure level and mass flow into the mixer, which serves to adjust the flow temperature. While 

the temperature is being adjusted, the massflow is purged to the atmosphere through the purge 

valve.  
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Figure 5-14 . Temperature achieved after the mixer with several hot to cold flow ratios. 

The conditioning of the flow upstream of the test rig requires the mixing of a hot stream of air at 

1100 K with a cold stream of air at 300 K. The thermal mixing of both streams allows to prepare 

the flow in a range of temperatures from 350 K to 950 K and total mass flow rates from 1 to 30 

kg/s. A T-junction between a main pipe driving the cold stream and a branch pipe that drives the 

hot stream was chosen as design solution for mixing both air flows. The turbulent nature of these 

streams promotes a more efficient thermal mixing downstream of the junction, which is favored 
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by the presence of long straight sections (L>20D) and several 90° elbows that drive the flow to the 

test section.  

Figure 5-14 depicts the range of temperatures that we can achieved in the test section when we 

mix different massflows of cold air and hot air. The performance of the mixer is the limitation, 

together with the NTU that the heater can provide to the flow, of the maximum temperature that 

we can get in the test section. Therefore extensive calculations to compute this limiting temperature 

and the uniformity of the temperature after the mixing have been performed.  

In order to assess the mixing performance of this configuration, a numerical model of the T-

junction and downstream piping has been elaborated. A fully structured mesh is created, 

sufficiently refined in the walls in order to reproduce y+ values in the range 1<y+<30. Turbulence 

has been modeled using a URANS k-omega SST method with unsteady second order discretization 

scheme. A density-based solver is employed, using an ideal-gas model for air as working fluid. 

Static and dynamic pressure fields have been analyzed in order to validate the solution against 

Idelchik correlations for pressure losses in T-junctions. 

Different combinations of hot and cold mass flow rates have been simulated, in order to reproduce 

a wide range of operating scenarios. The resulting momentum ratios of the main and branch flows 

allow to classify the mixing pattern of the intruding hot air flow as impinging jet, deflected jet or 

wall jet. These configurations lead to the formation of a horseshoe vortex downstream of the 

junction or hairpin vortices, any of them boosting thermal mixing of the flow. Once these vortices 

disappear, the radial turbulent diffusion of the flow also acts positively towards thermal 

homogenization of the flow. Finally, the dean vortices that appear when the flow enters in a 90° 

elbow further enhance thermal mixing, owing to the strong radial velocity components induced by 

the centrifugal forces. 
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Figure 5-15 presents an evaluation of the mixing downstream of the junction using as an indicator 

the maximum local temperature difference. 3.5 m downstream of the junction. Starting from a 

maximum difference of 800 K, differences between 3.6 and 21.1 K have been predicted, for four 

different operating conditions. 

 

Figure 5-15. Min-max temperature difference along the length of the piping downstream of the 

mixer. 

Once the steady performance of the mixer has been guaranteed, the high pressure control valve is 

regulated to set the intended massflow. When the operational pressure and temperature are 

achieved, the fast actuated butterfly valve is triggered, creating a step in temperature. This fast 

actuated butterfly valve (0.25m diameter ANSI300) upstream of the settling chamber, is prompted 

by a Kinetrol actuator. The sealing in the valve is bubble tight, to prevent leakage between the high 

0 0.5 1.5 2.5 3.5

0

100

200

300

400

500

600

700

800

900

axial coordinate (m)

T
m

a
x

(K
)

m
cold

=1.5 kg/s, m
hot

=0.5 kg/s - =33%

m
cold

=2.2 kg/s, m
hot

=1.5 kg/s - =68%

m
cold

=15 kg/s, m
hot

=4.5 kg/s - =30%

m
cold

=20 kg/s, m
hot

=5 kg/s - =25%

3.6 K

6.1 K

14.1 K

21.1 K



   139 

 

pressure line and the test section at vacuum conditions. In order to ensure tightness for the hot flow 

operation, at temperatures around 700 K, special alloys seals were selected. 

The flow is discharged to the settling chamber, designed to provide uniform flow conditions to the 

test section. Downstream of each test section (linear and annular) a sonic valve is used to set the 

pressure within the test sections, in subsonic operation. The blowdown is working at matched 

conditions, or steady pressure when the mass flow provided by the upstream high pressure valves 

matches the mass flow set in the test section. In supersonic operation the sonic valve is fully opened. 

To allow low Reynolds number testing, the test section and vacuum tank are all set at sub-

atmospheric conditions. When operating at sub-atmospheric conditions, the test concludes once 

the sonic valve gets unchoked due to the filling up of the vacuum tank. The vacuum pump to 

achieve 10 mbar is the DuraVane Lubricated rotary vane pump, provided by Dekker Vacuum 

Technologies. 

5.2.2 Facility Calibration Strategy 

The calibration is performed by checking different non-dimensional quantities: Reynolds and 

Mach number. Based on massflow continuity and isentropic relations, envelopes for both Mach 

and Reynolds are obtained for different the ranges of pressure, temperature, and mass flow, as 

shown in the Figure 5-16. The discontinuity on both contours represents the choking limit of the 

sonic valve. The purpose of the calibration is to characterize the response of the facility to the 

control parameters and be able to reach accurately each one of the points inside the envelope by 

setting the correct massflow and sonic throat of the wind tunnel.  
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Figure 5-16. a) Reynolds number per meter and b) Mach number maps achieved in the test 

section in all the span of the sonic valve and with a maximum massflow of 15 kg/s. 

The calibration of the linear test section is performed in three successive steps. First, the selection 

of the number of points to test, providing a reasonable uncertainty in the prediction of the complete 

envelope. Then, a total number of experimental points is chosen based on the shape of the Mach 

and Reynolds maps considering a second order model. Once the number of points is decided, a 

Kriging interpolation method is developed and coupled with a Genetic Algorithm optimizer in 

order to choose the location of the testing points inside of the envelope, minimizing the Root Mean 

Squared Error (RMSE) of every point inside the envelope. The cloud of the testing points obtained 

with this optimization is assessed and compared with a structured array of the same number of 

points. Finally, we test the points in the experimental facility and compare the results with the 

numerical solution. Based on the empirical results we can modify the numerical models to fit the 

Kriging interpolated map extracted from the experiments.  

The selection of the calibration points is carried out taking into account the model used to predict 

the behavior of the wind tunnel [161][162]. The number of points needed to build a dth-order model 

is directly related with the number of independent variables, the tolerance for interference errors 
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and the uncertainty of the estimated values [160]. The minimum number of points for a specified 

tolerance is defined by the Eq. (74). 

𝑁 =
(𝑑 + 𝑘)!

𝑑! 𝑘!
 (𝑡𝛼 + 𝑡𝛽)

2 𝜎2

𝛾2
 (74) 

In this equation, 𝑑 represents the order of the model, 𝑘 is the number of independent variables, 𝑡𝛼 

and 𝑡𝛽 are the t-statistics related with the Type I and Type II errors, 𝜎 is the estimated standard 

deviation of the measurements and 𝛾 is the precision requirement. Therefore, in order to facilitate 

the feasibility of the experimental calibration we need to find a balance between the desired 

precision and the limited number of points.  

As an approximation we have used a 2nd order model, with k=2 variables, the massflow through 

the test section and the sonic valve area. The t-statistics type I and type II (𝑡𝛼 and 𝑡𝛽) are extracted 

from the tables of the t-student distribution with a probability of error of 0.02 and 0.05, respectively. 

The standard deviation of the data taking into account the accuracy of the measurements is 

estimated around 9 x104 for the Reynolds number per meter and 0.011 for the Mach number. 

Doubling the precision requirement of the measurements accuracy, the number of experiments is 

about 40 for both non-dimensional numbers. Since both, Reynolds and Mach envelopes are 

irregular due to the status of the sonic valve, we implemented a meta-model based in a Kriging 

interpolation to compute the different quantities [163]. 

The Kriging model is a model with an infinite number of degrees, which implies that the obtained 

precision in the different quantities is highly dependent on the location of the points inside of the 

surface. As a consequence, we can only use the Equation (74) as an initial approximation. The 

purpose of the Genetic Algorithm coupled with the Kriging interpolation is to minimize the error 

(RMSE) of the surfaces with respect to the meta-model created with the determined number of 
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points. After choosing the amount of points, their location inside of the design space is optimized 

using a Kriging methodology developed in Matlab. The limiting values that we have used for 𝑐0  

and 𝑎0 are 30 and 300 respectively to minimize the effect of the location of the points with respect 

to the mean level. 

The Kriging interpolation is coupled with a Genetic Algorithm optimization. This optimization 

was performed during 80 generations with 25 individuals per generation. The genetic algorithm is 

programed in the Optimization Toolbox in Matlab and was executed with parallel processing to 

optimize the computational time. The objective function is the square of the error of every point 

in the evaluated surface of Mach and Reynolds. The optimization is performed simultaneously in 

both targeted surfaces, weighting the error of each of the non-dimensional representations. For 

safety reasons, there were regions that were penalized during the optimization through the 

implementation of constraints. For instance, the operational points within the test section pressures 

over 5 bar were penalized in the objective function and all the selected points fall outside of this 

region of the envelope. At the same time, the maximum massflow tested is 15kg/s in the current 

configuration to guarantee a safe operation.  

The selection of the order of magnitude number of points was based in the Equation (74) to give a 

statistical sense assuming a second order function. Using the Kriging interpolation meta-model, 

we are not imposing anymore a second order function and therefore we evaluated the Root Mean 

Squared Error (RMSE) of the complete model when we use different number of points. Similarly 

to a grid sensitivity evaluation, the RMSE between all the points of the real model and the Kriging 

meta-model for Mach number and Reynolds number was assessed for 20, 36 and 50 points of 

measurement. Figure 5-17c) depicts the evolution of the error for both quantities, and shows the 

targeted errors we could tolerate, of 0.015 for the Mach and 5x105. There is a trade-off between 
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the number of points we could test and the error we could admit, and therefore we decided to 

perform 36 experiments for which the Mach number is well below the error limit and for the 

Reynolds it is close enough. Figure 5-17a) and b) represents the comparison between the surface 

generated by the physical model of the facility (in color) and the surface generated by the Kriging 

interpolation method (in white mesh) for the Reynolds number per unit length and the Mach 

number respectively. We can observe that the agreement between model and meta-model is 

accurate for the selection of the points of the optimization, introducing a larger difference outside 

of the testing envelope where the pressure is higher than 5bar. 

 

Figure 5-17. a) Comparison between the Re/m map and the Kriging meta-model in function of 

the massflow and the throat area with the representation of the points resulted from the 

optimization methodology. b) Comparison between the Mach number map and the Kriging meta-

model in function of the massflow and the throat area with the representation of the points 

resulted from the optimization methodology. c) Root mean squared error of the Mach number 

and Re/m number using 20, 36 and 50 points in the Kriging interpolation optimization 

methodology. 

In order to verify that we get an optimized solution with the sampling resulted from the 

optimization we have compared the solution with a Latin Hypercube sampling [164]. The number 

of points for both cases is 36. In the case of the Latin Hypercube we have created a grid of 7x6 

points, where we have eliminated all the 6 points that falls inside of the high pressure region 

(pressure over 5 bar). Table 5-2 shows the comparison between the different RMSE obtained with 
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the different sampling approach, being the Kriging interpolation around 30% more accurate than 

the Latin Hypercube sampling.  

Table 5-2. Root Mean Square Error (RMSE) relative to the two non-dimensional numbers using 

the different sampling distributions. 

 
Latin Hypercube 

Sampling 

Kriging interpolation 

Optimization 

Mach number RMSE 0.0173 0.0135 

Reynolds number (/m) RMSE 7.54 x 105 5.17 x 105 

Figure 5-18 shows a more detailed comparison between the errors in the Reynolds per unit length 

(b)) and the Mach numbers (c)). Figure 5-18 a) shows the location of the different points for both 

sampling strategies. We can observe how the Latin Hypercube sampling has a more organized 

pattern than the solution of the optimization. The points that are located next to the pressure limit 

have a great effect in the calculation of the error and therefore, the Kriging interpolation 

optimization has located four points in the surroundings that using the Latin Hypercube sampling 

we could not locate. Figure 5-18 b) and c) show how the error is located mainly in the high pressure 

region and it is nearly negligible in the center of the surface.  

Once the optimization is performed and the results numerical results have been verified, the next 

step consists in the experimental characterization of the facility using the optimized points. 
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Figure 5-18. a) Sampling comparison between the Kriging optimization result and the Latin 

Hypercube approach. b) Re/m error comparison between the surface generated with the Latin 

Hypercube sampling and the Kriging interpolation optimization. c) Mach error comparison 

between the surface generated with the Latin Hypercube sampling and the Kriging interpolation 

optimization. 

5.2.3 Annular Test Section Design 

The annular test section was designed with two casings to allow testing additive manufacturing 

components in a wide range of pressures, while preserving the structural integrity. The external 

casing in carbon steel is designed to withstand the pressure difference between the test section and 

the atmosphere. Whereas the inner casing defines the particular turbine endwalls under 

investigation. In the current design the hub to tip radius ratio is 0.85, representative of small engine 

cores, with an outer radius of 420 mm. The aerodynamic design goals were to minimize the 

blockage of the instrumentation on the flow field, and to maximize the modularity to study vane / 

rotor rows alone, and their interactions. To minimize the blockage of the aerodynamic probes, the 

test section was scaled up considerably to the maximum allowable mass flow in the Zucrow 

laboratory, at engine-like conditions. Additionally, the large size will allow to maximize the spatial 

resolution of the measurement techniques, which should serve to reveal new phenomena, and 

reduce the uncertainty in cavity measurements. Furthermore, the test section was designed to allow 

future research on combustor interactions, and consequently, modularity was prioritized. 
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Figure 5-19a shows an axial cut of the annular test section, and the four measuring locations. The 

inlet component replicates a contraction similar to a combustion chamber, to allow testing of 

combustion chamber emulators. The vane row is mounted on a disc that can be fixed or rotated, as 

a pre-swirler to the rotor row. This allows to perform rotor measurements with an upstream wake 

generator, which requires a small electrical generator to absorb the power from the moving “stator 

row”. This turning pre-swirler can be designed with the adequate geometry to induce vane wakes 

and secondary flows similar to the actual turbine stage, while respecting the engine-like reduced 

frequency. At supersonic velocities this pre-swirler would generate shock waves, to characterize 

the shock airfoil interactions (shock-rotor, and shock-vane interactions). The rotor row is mounted 

on bearings to allow the rotation, but the movement will be actually constrained with a load cell. 

Therefore, we will monitor the tangential force directly using the reading from this load cell, and 

hence the torque. 

2D Unsteady Reynolds Averaged Navier-Stokes simulations were performed to evaluate the 

boundary layer along the annular test section. Axisymmetric computations were performed using 

Ansys Fluent, with the Spalart-Almaras turbulence model. The computational domain comprised 

827,426 cells, from half of the settling chamber until the sonic throat only with the endwalls. Figure 

5-19b shows the velocity profile at two axial locations, at the vane leading edge and at the rotor 

leading edge. Owing to the inlet contraction, the boundary layer is less than the 5% of the blade 

height at the vane leading edge, and 10% at the rotor. 
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Figure 5-19. a) Annular test section measurement planes. b) Velocity profile at two axial 

locations. c) Stage velocity triangles. d) Absolute-relative velocities of a rotor row with a pre-

swirler; e) Velocity triangle in a stationary rotor row with rotating pre-swirler; f) Reverse 

rotation. 

Traditionally, turbine stages are tested and results compared with CFD following this sequence: 1) 

linear cascade testing of the vane; 2) linear cascade testing of the blade; 3) annular cascade testing 

of the vane; 4) rotor is added to the annular cascade and tested in rotation. The comparison between 

CFD and experiments is typically straight forward for phases 1-3. However, when moving to phase 

4, there are multiple effects which obfuscate the agreement between experiments and CFD, namely 

rotational effects, the interaction between the stator and the rotor, the effect of the cavity at the 
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stator rim-rotor platform and tip clearance effects. In the present facility we propose to perform 

annular cascade testing of the vane, and of the rotor separately, including then a device to 

characterize the unsteadiness at several frequencies in a controlled environment. The actual 

velocity triangle of the rotor is displayed in Figure 5-19-c. A first option, sketched in Figure 5-19-

d, is to mount a stationary pre-swirler, to provide the relative inlet angle to the stationary rotor row. 

In this way, if we are assessing a rotor row, we use the absolute velocity of the flow as if it would 

be the relative velocity (V2=W2, V3=W3).  Typical modern designs would require a turning of 

about 20 deg. An alternative option would be to use a rotating pre-swirler, as shown in Figure 

5-19-e. Due to the rotation, the turning of the flow will increase, which will imply a decrease of 

the turning of the pre-swirler to keep the same W2 angle. This implies that little power would be 

required to be absorbed from this pre-swirler. In all these experiments the rotor torque would be 

precisely monitored by a load cell. Figure 5-19-f shows another concept, reverse rotation, which 

allows to replicate the rotor inlet velocity without any upstream stator, i.e. the rotor inlet absolute 

velocity is axial, which also requires small rotational speeds. However, reverse rotation would not 

allow to replicate the radial distribution of the static pressure, unless we would investigate rotors 

with zero relative inlet angle all along the radius. 

The modularity in the design of the test section allows the implementation of pioneering turbine 

concepts, i.e. supersonic turbines [165] and bladeless turbines [166]. To achieve supersonic flows, 

the inlet contraction shown in Figure 5-19-a will be replaced by a converging-diverging nozzle. 

To perform optical measurements through the casings, two sets of windows were required, across 

the external and inner casing. Figure 5-20-a shows the four windows at different azimuthal 

positions around the annulus and the multiple 1in and half-an-inch fitting holes needed to fully 

characterize the flowfield with optical measurement techniques. The inner window is thinner, 
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around 10 mm, and curved in the inner wall to respect the flow path and minimize the effect of its 

presence in the flow. The outer window purpose is to preserve the structural integrity of the wind 

tunnel, thicker and flat. The windows are located right above the rotor blades and extended 

downstream and upstream of the turbine more than 1.5 times the axial chord. This extension 

provides access to all the casing instrumentation and supports. 

Figure 5-20c-d shows different configurations that can be implemented in the modular annular test 

section. By changing the components upstream of the stator or rotor rows, we can test in subsonic 

(Figure 5-20c) and in supersonic conditions (Figure 5-20d). 

Figure 5-21 shows the operational Mach and Re number range in the annular test section, based 

on the vane outlet flow conditions, an axial chord of 60 mm, and a flow direction of 72 deg. The 

outer diameter at the vane exit is 0.84 m, and the vane airfoil radial span is 63 mm, to scale up 

small core axial turbines. The dashed lines represent the maximum and minimum Re numbers 

achievable in the test section at each Mach number. The dotted line represents the minimum Re 

number that can be attained exhausting directly to the atmosphere. Any point intended to be tested 

below this line is achieved using the vacuum system. With the range of mass flow provided and 

the current test section geometry, supersonic velocities may be reached up to Mach 1.3, and axial 

Mach numbers of about 0.42. 
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Figure 5-20. Annular test section: a) Overall layout of the optical windows; b) frontal view of the 

test section; c) meridional view; d) supersonic configuration. 

In Figure 5-21-left, we included six different operating points, in the transonic range (Mach 0.9 

and Mach 1.1) located along the maximum Re number line (A at 2.5·106 and B at 2.6·106), 

minimum Re number line (C at 144·103 and D at 151·103) and the vacuum limit line (E and F). 

Additionally, the figure also includes data from other turbine facilities. Figure 5-21-right lists the 

pressures, temperature, massflow, and test duration of the previously specified conditions. Each 

Re number and Mach number can actually be achieved at various flow temperatures. Therefore, 

we could independently select the Tgas/Tmetal for high pressure as well as for low pressure turbines. 
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The test duration of all the points presented in Figure 5-21-right was calculated considering 

exhaust to the vacuum tank. Blowing to the atmosphere, the experimental time would increase one 

order of magnitude for the points A, B, E and F. Note that the maximum pressure needed to achieve 

the maximum Re number is 2.8·105 Pa. 

 

Figure 5-21. Left) Mach-Re limits in subsonic operation. Right) Operational range in subsonic 

conditions. 

To achieve supersonic operation a convergent-divergent nozzle, shown in Figure 5-20-d, was 

designed using the Method of Characteristics for the supersonic part and Bezier curves for the 

converging part, preserving the curvature along the transition between both methods and the 

throat. Figure 5-22 shows the available range of operation of the facility in supersonic 

operation, with a maximum available mass flow of 30 kg/s. In Figure 5-22-left we included six 

different operating points at Mach 2 and 3.2 considering that vane outlet Mach number with a 

turning of only 12 deg. and the same axial chord than in the subsonic case for the calculation 

of the Re number. Figure 5-22-right lists the pressure, temperature, massflow and test duration. 

The maximum achievable Reynolds number is most restricted at low Mach numbers, the 
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minimum achievable Re number is 119·103 at Mach 2 (test C), and 62·103 at Mach 3.2 

(condition D). The area inside the dashed line represents tests performed while exhausting to 

the vacuum tank. The maximum pressure that can cover the entire range is 4 bar and the 

temperature oscillates between ambient temperature and 700K. 

 

Figure 5-22. Left) Mach-Re limits in supersonic operation. Right) Operational range in 

supersonic conditions. 

5.2.4 Infrared Thermography Experimental Setup 

The annular cascade was specifically designed for the use of optical measurement techniques. The 

optical access of the annular cascade is utilized in experimentally validating the inverse heat 

transfer methodology in gas turbine applications. The experiment is conducted in the test section 

without airfoils, so only the contraction of the endwalls provides spatial gradients of heat flux. The 

purpose of the experiment is to measure the temperature in the intake of the high pressure turbine, 

where it is extremely difficult to implement instrumentation, and using the inverse methodology, 

retrieve the conditions in the inner flow path. This allows for non-invasive flowfield measurements 

and allows for measurements in the turbine which previously would have been nearly impossible 
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to instrument. Figure 5-23 shows the meridional cut of the test section where the experiment was 

performed. This test section does not contain any moving part and the flow is completely axial. 

Therefore, in this case the spatial gradients are minimal and the experiment is focused in the 

computation of the flow temperature and massflow. 

 

Figure 5-23. Meridional cut of the annular test section under investigation. 

To experimentally validate the proposed methodology, one of the windows was modified to hold 

a smaller infrared transparent window that was installed in the outer casing in order to measure the 

temperature in the inner casing.  
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Figure 5-24. Infrared access in the turbine annular cascade to perform infrared thermography of 

the inner casing of the rotor. 

Figure 5-24 shows the details of the modifications required in the wind tunnel to measure 

temperature in the inner casing. The camera is located outside of the facility protected from 

possible vibrations of the wind tunnel and the targeted frequency is 10 Hz. In this experiment, in 

order to validate the heat flux through the casing, more sensors need to be added in the inner 

surface of the inner casing. With the measurements taken on the inner surface with surface 

thermocouples and on the outer casing with the infrared camera, we can compute the heat flux 

through the casing with a 1D calculation, estimating the thermal properties of the material. 

5.2.4.1 Instrumentation 

The test section is fully instrumented with pressure taps, a pressure probe, a pressure rake, two 

temperature probes and a temperature rake. These instruments provide the information needed to 

know the conditions of the flow. The metal temperature is monitored using RTDs all around the 

casing in the outer and inner endwalls in the same axial locations where the pressure taps are 

located. There are measurements in three different axial locations along the test section.  
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Figure 5-25. Measurement planes in the experimental setup of the annular the test section. 

Figure 5-25 depicts the location of the planes where the instrumentation was placed. In plane 0, 

upstream of the last contraction (which is where the infrared camera is used) there are two 

temperature probes and one total pressure probe as shown in the Figure 5-26. In plane 1, the 

windows in the outer endwall are used to place the instrumentation, while in the inner endwall 

there are 22 pressure taps and 8 RTDs in the outer surface of the contraction, (placed like this so 

that they are not in the flowpath). In the outer ring, 4 pressure taps and 4 RTDs were placed through 

one of the windows. Another window was equipped with 4 more RTDs in plane 1, a total pressure 

rake, and a total temperature rake to measure the uniformity of the flow in the radial direction. In    

Figure 5-26, the rakes are depicted as well as the insert in which they have been placed in the 

upstream location of the external window. Plane 2 in located downstream more than 2 inches 

downstream of the plane 1 and there is no contraction in the annulus at this point. As in plane 1 

the four external windows were used to place the instrumentation of the outer endwall while the 
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inner endwall was not instrumented. All of this instrumentation is used to check the uniformity of 

the flow in the annulus and to determine the radial pressure and temperature profiles at a desired 

location. This location corresponds to where the temperature measurements are being taken for the 

inverse method validation with IR cameras. This is to say that the instrumentation in the endwalls 

is not used directly in the computation and validation of the inverse methodology, rather it is used 

to ensure flow uniformity and determine radial profiles at the location of the IR camera; while the 

IR camera measurements are directly used in the validation of the inverse methodology.  

 

Figure 5-26. a) Instrumented annular test section ready to be set into the wind tunnel. b) Detail of 

the thermocouple probe already in the test section. c) Detail of the total pressure probe already in 

the test section. d) Total pressure rake and e) Total temperature rake. 

Together with the flow and uniformity instrumentation, surface thermocouples were used to 

measure the temperature of the endwall temperature and a FLIR Infrared camera was used to 

monitor the temperature of the outer casing of the inner annulus. One of the external windows was 

adapted to hold a Calcium Fluoride IR window. Through this transparent window the inner casing 

temperature can be measured, but a previous calibration needs to be performed to account for the 
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transmissivity of the window. The material of the window was carefully chosen based on the range 

of metal temperatures that we were expecting during the experiment and it is detailed in the 

Appendix D. Figure 5-27 shows the surface thermocouples located in 8 different axial location 

between the plane 1 and the plane 2 of measurements and right under the location where the 

infrared camera is taken measurements. They are scattered such that there is no interference 

between thermocouples and the flow.  

 

Figure 5-27. Instrumentation used for the validation of the inverse heat transfer methodology 

composed by a) surface thermocouples in the inner surface of the measured intake and b) 

Infrared camera configuration to measure the outer temperature of the same turbine intake. 

Figure 5-27 also shows the outer configuration of the experimental setup with the IR transparent 

window and the FLIR Infrared camera. The IR camera was located outside of the test bed of the 

facility to minimize the vibrations that may occur during the blowdown experiment through the 

facility. Additionally, the outer surface of the inner casing, where we take the IR temperature data, 

was painted with a layer of graphite. The aluminum has a high reflectivity coefficient and this 

modifies the real value of the temperature that we measure with the IR camera. This effect is even 

more significant when dealing with curved surfaces such as the ones we are dealing with in the 

inner casing. To remedy this a layer of graphite paint was applied in the region of the inner casing 

where the measurements were taken. Figure 5-28 shows the test section already in its final position 

and completely instrumented.  
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Figure 5-28. Test section instrumented,  installed and ready for the experiments. 

To summarize, during this experimental campaign, 90 sensors and measurement devices were 

distributed around the annular stationary test section to ensure uniformity of temperature and 
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pressure around the annulus and to measure the temperature needed to compute the inverse method 

and the validation of the methodology.  

5.2.5 Experimental campaign  

In this experimental campaign, we have analyzed 5 different experiments in which we have 

modified the massflow and the input temperature in the test section. The procedure followed in 

each one of the experiments is as follows: 

1- Heater starting phase: the heater should reach the intended temperature in order to perform the 

experiment. For this phase the annular butterfly valve is closed and the purge valve is open. This 

is done to keep the keep a large gas to wall temperature ratio; allowing us to perform the heat 

transfer experiments. At this stage, we are blowing low levels of massflow (~1lb/s) while the heater 

reaches steady state. In this phase all the air is dumped to atmosphere through the purge line. The 

temperature is slowly increased to the achieve the desired inlet temperature at the venture, and 

once steady state is reached we proceed to the next phase.  

2- Massflow adjustment: Next the massflow is increased (with the purge line remaining open and 

the annular line closed). The heater automatically adapts the fuel in order to heat up the flow to 

the set temperature. The temperature is set by the test operator and he has to take into account the 

thermal losses through the piping and therefore the temperature in the test section is lower than the 

set temperature. These losses depend on the level of massflow and the ambient temperature.  

3- Experiment starting: Once the conditions of temperature and massflow are stable, the 

experiment can start by opening the annular line and then quickly closing the purge line. The 

massflow is measured by the venturi and directed through the annular test section for the duration 

of the experiment (2 minutes in this case).  
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4- Experiment shut-down: Once we complete the intended time of the experiment and we have 

taken the needed data, we open the purge valve and close the annular valve to finish the experiment. 

Then, we can lower the massflow to shut down the facility.  

The experiments that were evaluated in this doctoral thesis are contained below in Table 5-3.  

Table 5-3. Turbine application experimental campaign tests. 

Experiment Name Temperature [F] in the heater Massflow [lb/s] 

Experiment 1 300 9 

Experiment 2 400 9 

Experiment 3 500 9 

Experiment 4 500 6 

Experiment 5 500 12 

The baseline case is experiment 3. In these experiments we independently vary the two variables 

(massflow and temperature) that we can vary in the current configuration of the wind tunnel. The 

sonic valve downstream of the test section is not used in this experimental campaign; and the 

variation of total pressure is coupled with the variation of massflow.   

Following the aforementioned procedure, the temperature of the flow passing through the test 

section is complex to control, therefore as observed in the results in Appendix E, the temperature 

measured by the temperature probe located in the plane 0 is not stable for the different experiments. 

Instead the main objective is to have a stable gas to wall temperature ratio during the experiment 

as shown in Figure 5-29. 
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Figure 5-29. a) Gas temperature measured by one of the total pressure probes in the test section 

during the baseline experiment and b) gas to wall temperature ratio during the same experiment. 

Figure 5-29 shows the flow temperature in our baseline case and the uniformity of the gas to wall 

temperature ratio during the experiment. In the baseline case this ratio is around 1.42 during the 

experiment (the wall temperature increases at the same rate as the gas temperature during the 

experiment).  
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Figure 5-30. a) Total pressure measurement in the annular test section in plane 1 during the 

experiment 5. b) Massflow measurement during the same experiment in the venturi located 

upstream of the test section. 
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Figure 5-30 shows the total pressure and massflow during the experiment. As there is no sonic 

point downstream of the test section, the pressure and the massflow are coupled. The massflow 

represented in the figure, is measured in the critical flow venturi upstream of the purge line, while 

the pressure is measured with the total pressure probe in the test section. The figure shows when 

the annular valve was opened at the beginning of the experiment and closed at the end of the 

experiment. 

As discussed earlier, one of the necessary steps that needs to be performed for the validation 

experiments is to check the uniformity of massflow and temperature in the circumferential 

direction. The uniformity will allow for the inverse methods to be validated in the annular test 

section. Figure 5-31 depicts the measurements of the different pressure taps around the inner and 

outer casing in the plane 1 and plane 2. We observe that the measurements fall one on top of each 

other in all the cases and therefore we can conclude that the flow is uniformly distributed around 

the whole annulus; allowing us to use the experiments to validate the inverse method. In all these 

pressure and massflow measurements, the uncertainty is represented with the red bands shown in 

the figures. The uncertainty is associated to each sensor at every time step of the sensor and is 

based on the calibration of each sensor.  
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Figure 5-31. a) Static pressure readings in the plane 1 in the hub of the flowpath. b) Static 

pressure readings in the plane 2 in the shroud of the flowpath. c) Uniformity in the 

circumferential direction of the static pressure in the hub of the plane 1. 

Regarding the wall temperature distribution, the readings of the surface thermocouples within the 

flow path are compared with each other. As observed in the Figure 5-32 two surface thermocouples 
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were positioned at the same axial location as thermocouples 1 and 6; but they were placed at 

different circumferential directions.  

 

Figure 5-32. a) Surface thermocouples located inside of the test section. b) Temperature 

comparison between the Thermocouple 6 and the thermocouple 10 located in the same axial 

position in the experiment 1. c) Temperature comparison between the thermocouple 6 and the 

thermocouple 10 located in the same axial position in the baseline case. 

Figure 5-32 shows the temperature along the experiment 1 and 3 of the two of the thermocouples 

located in the same axial position. Based off of the similarity between these thermocouple readings 

at different circumferential locations we conclude that the thermal distribution is uniform in the 

circumferential direction.  
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For the validation of the inverse methodology we use the measurements of the surface 

thermocouples that are located in the inner part of the window and the measurements taken with 

the infrared camera. In order to compute the heat flux using the Digital Filter Methodology, the 

only information needed is the temperature gathered with the infrared camera. The temperature 

monitored with the surface thermocouples is used together with the infrared thermography to 

directly compute the heat flux and is then compared with the results of the inverse solution.  

5.2.6 Digital Filter Method Validation 

In order to run the inverse method in the inner casing of the facility a model of the casing is needed. 

The inner casing model was designed in Catia based on the prints and drawings of the part. Then 

the model was imported into Comsol where finite element thermal computation is performed. We 

did not used the whole annulus since only we are measuring in the sector of the annulus where we 

have the outer window. The ring was cut on the borders of this window and periodic boundary 

conditions where set in the meridional cuts.  

 

Figure 5-33. Comsol model with the boundary conditions applied during the calculation. 
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Figure 5-33 depicts the CAD model used in the calculation of the heat flux. We have included all 

the geometric features that may influence the behavior of the heat flux in this complex 3D 

geometry. As it can be observed, the top surface and the bottom surface has been divided in 

rectangles as is required for the inverse computation. The 8x4 array of surfaces is located in both, 

the inner and the outer surface of the flow path, with 8 divisions in the axial direction of the flow 

and 4 divisions in the circumferential direction. The temperature measured with the surface 

thermocouples correspond to the 8 different axial locations of the centers of the divisions. 

Therefore, the measurements taken in each one of the inner surface thermocouples is then used in 

the different axial locations in order to retrieve the heat flux. The circumferential direction is 

assumed to be uniform. Therefore, the same temperature taken in one axial location is extrapolated 

to the other 4 circumferential locations and we assume that the heat flux is the same all along the 

circumferential direction. This is assessed with the uniformity in the temperatures that we have 

observed in the Figure 5-31.  

In order to validate the methodology, we need to compute the heat flux through the solid. For this 

step, we used a Crank-Nicolson 1D in-house conductive heat transfer code [129]. In this 

computation, in order to get the heat flux, we need to provide the temperatures readings at both 

sides of the slab of material we are computing as well as the thermal properties of the material and 

the thickness of the slab. Figure 5-34 shows the readings of the different thermocouples located in 

the flow path during one of the experiments. We observe that the temperature increases differently 

depending on the axial location, which effects the calculation of the heat flux. The temperature of 

the wall increases considerably during the experiment and it takes a while to reach steady state 

conditions, as observed in Figure 5-34.  
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Figure 5-34. a) Surface thermocouples in the inner flowpath and b) inner metal temperature in 

the different axial locations over the measured surface. 

The measurements on the outer surface are made with the infrared camera. In order to keep a 

uniform emissivity on the whole surface, the surface was coated with graphite paint. The infrared 

measurements were taken with the camera outside of the wind tunnel. To do this, one of the 

external windows was adapted in order to hold a Calcium Fluoride window. The camera needs to 

be calibrated with the window before taking the measurements. For this, a thermal stage painted 

with the same graphite temperature was used. Figure 5-35 shows the setup for the calibration of 

the camera with the window. The temperature that we are measuring is known and set by the 

thermal stage and the emissivity received by the camera can be calibrated for the graphite coating. 

Once we measure the set temperature we add the window between the thermal stage and the 

camera, which modifies the measured temperature. Then in the camera the emissivity is adjusted 

to match the measured temperature.  
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Figure 5-35. Calibration IR camera and IR transparent window set up. 

Figure 5-35 shows part of the setup used to calibrate the IR camera with the CaF2 window. After 

the calibration, we setup the experiment in the wind tunnel and we run the different experiments. 

Figure 5-36 gathers some of the images from the IR camera at different timesteps during one of 

the experiments. All the data obtained in the five different experiments can be found in the 

Appendix E.  
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Figure 5-36. IR images taken during the experiment 1. 

Extracting the data from the thermal images we observe that the temperature varies slightly in the 

axial direction; with higher temperatures upstream and lower temperatures downstream. 

Regarding the behavior in time we observe that the temperature increases during the experiment, 

with a time delay due to the thickness of the aluminum piece as shown in the Figure 5-37. 
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Figure 5-37. a) IR image of the region of interest. b) Spatial behavior of the temperature in the 

region inside the window. c) Temperature measured in the inner and outer surface of the shroud, 

used to compute the heat flux with the 1D heat conduction code. 

This information over time is fed into the 1D code in order to compute the heat flux. This code is 

able to compute the temperature though the whole slab in space and time as it is depicted in the 

Figure 5-38 and compute the heat flux. For the baseline experiment the heat flux in both interfaces 

are calculated and represented in Figure 5-38. 
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Figure 5-38. a) Temperature map in time and space for the calculation of the 1D heat conduction 

with the thermocouples in location 1. b) Heat flux computed with the 1D heat conduction code 

with the temperature from the thermocouple at location 1. 
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The heat fluxes for the inner surface are the ones we are retrieving with the inverse methodology.  

Only the information of the infrared camera was used by the Digital Filter Methodology to 

compute the heat flux. In this case we do not expect large gradients in the spatial domain, but we 

expect large gradients in the time domain. For this reason, the regularization term in time is large, 

limiting the gradients in the spatial domain and the regularization coefficient in time is small to 

allow for rapid changes. Figure 5-39 shows the comparison between the computed heat flux with 

the inverse method and the heat flux that were experienced in the wind tunnel. The retrieved heat 

flux matches the imposed heat flux in terms of magnitude and time behavior. As demonstrated in 

a previous section regarding the frequency retrieval, the thickness and the diffusivity of the 

material act like a filter for the high frequencies. As a result, the sudden increase of heat flux that 

can be seen at the beginning and end of the experiment is not captured by the inverse method. 

Since the method is not able to predict the large temporal excitations of heat flux, the behavior of 

the calculated heat flux is much smoother than the real heat flux. Additionally, the heat flux 

calculated by the inverse method starts to rise before the real time of opening of the valve; and the 

inverse method predicts prematurely predicts the end of the experiment with a smaller gradient 

than in reality. In this evaluation of the method we are focused on the value of the heat flux during 

the steady operation of the experiment.  
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Figure 5-39. Comparison between the heat flux computed by the inverse heat conduction method 

and the heat flux through the casing. 

We performed this calculation for each of the experiments and extracted the heat flux for each 

case. The heat fluxes were constant across the different experiments, instead the massflow and 

temperatures were varied across experimental runs. In the wind tunnel operation it is easier to 

control the massflow by actuating the valve than to control the temperature in the test section. This 

is because the thermal losses through the pipes bringing hot flow from the external heater to the 

test section vary greatly depending on the pressure and massflow conditions, as well as the thermal 

history of the experimental campaign. Due to the thermal history developing in the pipes, the 
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temperature in the test section for the first test of the day (when the pipes start at ambient 

temperature) is different from the second or third test of the same day (when the pipes are already 

heated up). This is why we chose to run the experiments at constant heat fluxes and vary the 

massflow and temperature in the test section. Figure 5-40 shows the comparison between the 

computed heat flux and the imposed heat flux in two different points of the casing.  

 

Figure 5-40. a) Heat flux comparison between the inverse method solution and the imposed heat 

flux in the upstream axial location in function of the difference between the gas temperature and 

the wall temperature. b) Heat flux comparison between the inverse method solution and the 

imposed heat flux in the downstream axial location in function of the difference between the gas 

temperature and the wall temperature. 

Due to the difficulty in maintaining the temperature level, we observe that the temperature varies 

from experiment to experiment and there is no a clear trend in the value of heat flux with respect 

to the difference between the gas temperature and the metal temperature. This was observed as 

well in the evaluation of the heat flux with respect to the gas to wall temperature ratio as shown in 

Figure 5-41. There is not a large range of gas to wall temperature ratios analyzed in this 

experiment, but as observed in this section, there are constant values of this ratio through the whole 
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experiment. As the ratios do not differ in a large range amongst each other there is not a clear trend 

in the value of heat flux with respect to this ratio. The same is observed when we plot the heat flux 

with respect to the convective heat transfer coefficient computed based on the inlet total 

temperature in Figure 5-42.  

 

Figure 5-41. a) Heat flux comparison between the inverse method solution and the imposed heat 

flux in the upstream axial location in function of the gas to wall temperature ratio. b) Heat flux 

comparison between the inverse method solution and the imposed heat flux in the downstream 

axial location in function of the gas to wall temperature ratio. 

The convective heat transfer coefficient was computed based on the temperature difference 

between the gas temperature and the metal temperature and the computed heat flux. Representing 

the heat flux as a function of the massflow, shows a clear trend that can be predicted by the inverse 

methodology as shown in the Figure 5-43. 
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Figure 5-42.a) Heat flux comparison between the inverse method solution and the imposed heat 

flux in the upstream axial location in function of the convective heat transfer coefficient. b) Heat 

flux comparison between the inverse method solution and the imposed heat flux in the 

downstream axial location in function of the convective heat transfer coefficient. 

 

Figure 5-43. a) Heat flux comparison between the inverse method solution and the imposed heat 

flux in the upstream axial location in function of the massflow. b) Heat flux comparison between 

the inverse method solution and the imposed heat flux in the downstream axial location in 

function of the massflow. 
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5.3 Conclusions 

In this chapter, the inverse methodologies have been applied to a macroscale field. The gas turbine 

application is a field where the inverse methodologies can be useful because of the harsh conditions 

that the sensors must withstand if they are located in the flowpath. In this application, we measure 

the temperature outside of the engine and using inverse methodologies we retrieve the heat flux 

through the engine casing. As expected, the heat flux varies with the conditions of the flow, so 

based on the temperature outside, we can retrieve the flow conditions using inverse methodologies. 

Based on the analysis performed in this chapter, we draw the following conclusions: 

- A numerical analysis was performed coupling CFD with the Digital Filter inverse 

methodology in a conjugate heat transfer calculation. Based on this analysis, we observe 

that the method cannot predict with accuracy the behavior in time of the heat flux, but it 

can retrieve the mean value of given heat flux as well as the spatial distribution of heat flux 

since the spatial gradient in this macroscale application is more defined. 

- The methodology is used to retrieve the inlet conditions of the flow which affect the heat 

flux through the casing. A numerical assessment of the methodology was used varying the 

upstream pressure conditions of the flow. The methodology could retrieve the upstream 

pressure measuring only the outer temperature of the casing with an error below 3%.  

- A numerical analysis of the frequency content of the heat flux was performed as well. In 

this case the objective was to know the limiting factors of the inverse methodology to 

retrieve the blade passing frequency in case the measurement is performed in the outer 

rotor casing. The results reveal that the thickness of the solid acts as a low pass filter to the 

fluctuations of heat flux, therefore unless we are dealing with a very thin layer of metal and 

a very conductive material, the inverse method cannot predict blade passing frequency 

since everything is damped through the casing.  
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- The same situation is observed when we try to obtain the tip gap in the rotor using the same 

methodology. The flow features are so complex when varying the tip gap, that it is difficult 

to relate the tip gap with the heat transfer through the casing. In this case, it is not only 

varying in terms of magnitude but also in terms of location of the hotspots, since the flow 

morphology changes drastically for tight tip gaps.  

- An annular cascade wind tunnel was designed and developed with emphasis in optical 

measurement techniques. This cascade can target large ranges of Re numbers and Mach 

Numbers (from subsonic to supersonic). This annular test section was used for the 

experimental validation of the inverse heat transfer method for the gas turbine application.  

- An experimental validation of the Digital Filter Method in the gas turbine application was 

performed with good agreement between the imposed heat flux and the computed heat flux 

at different conditions of massflow and temperature of the flow. The experiments were 

performed in the inlet of a high pressure gas turbine and the methodology could retrieve 

the heat flux through the casing for the different cases. It is observed a clear trend of 

increase of heat flux with the increase of massflow and therefore this can be predicted using 

the inverse methodology. At different inlet temperatures, the heat flux did not vary, maybe 

because the difference in the temperatures was insufficient and the results were 

inconclusive based on the performed experiments.  

  



   180 

 

 CONCLUSIONS 

The present doctoral research aimed to further develop some of the existing inverse methodologies 

and its implementation into two different engineering fields where it can be a breakthrough 

technology.  These areas are the microelectronic packaging field and the gas turbine field.   

Through the work performed in this doctoral research two inverse methodologies have been 

developed and improved with respect to the state-of-the-art in applied inverse heat transfer 

methodologies, these two methods were assessed in terms of robustness and computational 

efficiency and they were applied to the two different fields aforementioned.  

Regarding the development and analysis of the inverse methods, this work has demonstrated the 

following aspects: 

- Inverse methods are applicable to different fields. In heat transfer, they have been 

developed to determine unknown parameters such as heat flux distribution.  

- Based on how the sensitivity parameter varies, some of the inverse methodologies are more 

attractive and robust than others. The sensitivity parameter is used by all methods in order 

to compute the unknown parameters. 

- The Conjugate Gradient Method and the Digital Filter method were developed. Both 

methodologies can predict the imposed heat flux for simple cases analyzed using numerical 

models. The Conjugate Gradient Method is more precise, and the Digital Filter Method is 

much faster. 

- The Conjugate Gradient Method converges slowly using as objective function the 

difference between the measured temperature and the computed temperature. Given the 
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iterative nature of the procedure, and based on model with a grid of a million cells, the 

computation can take days on a computer of 64 GB of RAM memory and 12 cores. 

- An improvement of the CGM has been implemented based on a sequential estimation. 

Sequential estimation improves the computational efficiency of the method, but makes it 

more unstable for low number of future timesteps.   

- The Digital Filter Method is a non-iterative procedure based on the solution to a system of 

equations which is ill-conditioned. The solution is highly dependent on the regularization 

terms in time and space that need to be included in order to improve the ill-condition nature 

of the system of equations. The solution takes seconds in the same computer that for the 

CGM takes days. 

- An improvement of the DFM has been implemented, in order to include non-linearity of 

temperature dependent thermal properties and convection into the equation. This correction 

does not increase the time to solve the system of equations and it keeps the non-iterative 

nature of the DFM. 

- The uncertainty associated to these methodologies is below 10% for all the analyzed cases 

and experimental validations.  

- The following figure summarizes different aspects of the developed methodologies based 

on the numerical analysis.  
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Figure 6-1. Comparison summary of the different analyzed methodologies. 

In the microscale application, the conclusions drawn through the numerical assessment and the 

experimental validation are: 

- At the microscale, the spatial gradients are small and therefore all the methods based on 

the computation of gradients, such as all deterministic optimization methods, fail in the 

computation of the spatial location of the heat sources.  

- The Conjugate Gradient Method is a gradient-based methodology and, therefore, have 

problems in predicting sudden changes of heat flux in space and time. The methodology 

was assessed numerically providing good agreement for simple and smooth changes of 

heat flux in time, but failing to capture the spatial gradients due to the small spatial 

gradients.  
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- The Digital Filter Method is the recommended method for this application. Not only for its 

flexibility but also for its accuracy of the results and its computational efficiency. It predicts 

the magnitude, the location, and the temporal behavior of the imposed heat flux.  

- The methodology, if optimized to increase the computational efficiency, can be applied in 

real time and this makes it suitable for active thermal management of microelectronics.  

- The number and location of the sensors inside of the microchip can be optimized using 

inverse methods. For this application of the inverse method, a Genetic Algorithm 

optimization combined with a Kriging interpolation method was developed.  

Regarding the gas turbine application, the inverse method analysis demonstrated: 

- That based on the numerical assessment, the method cannot predict with accuracy the 

behavior in time of the heat flux, but it can retrieve the mean value of given heat flux as 

well as the spatial distribution of heat flux since the spatial gradient in this macroscale 

application is more defined. 

- The methodology can retrieve the inlet conditions of the flow. The methodology could 

retrieve the upstream pressure measuring only the outer temperature of the casing with an 

error below 3%.  

- The thickness of the solid acts as a low pass filter to the fluctuations of heat flux, therefore 

unless we are dealing with a very thin layer of metal and a very conductive material, the 

inverse method cannot predict blade passing frequency since the frequency content is 

damped through the casing.  

- The flow features are complex when varying the tip gap. The heat flux is not only varying 

in terms of magnitude but also in terms of location of the hotspots, since the flow 
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morphology changes drastically for tight tip gaps. Therefore the prediction of tip gaps using 

inverse methodologies is limited and needs more assessment. 

- There is a good agreement between the imposed heat flux and the computed heat flux at 

different conditions of massflow and temperature in the experimental validation. 

-  The heat flux increases with increasing massflow and, therefore, this can be predicted 

using the inverse methodology. At different inlet temperatures, the heat flux did not vary, 

because the difference in the temperatures was insufficient and the results were 

inconclusive based on the performed experiments. 

This doctoral research covered the development and application of inverse heat transfer 

methodologies, through simplified numerical analysis to experimental validations in each one of 

the applications. Throughout this project, the inverse methodologies were evaluated and improved 

with satisfactory results in their implementation in micro and macro-scale problems. Guidelines 

and recommendations about the best practice and methodology were identified given the 

application and the needs of each user.  New insights into the inverse heat transfer problems were 

provided increasing the current state-of-the-art in the application of these methodologies in real 

engineering problems such as microelectronics and gas turbine development and monitoring. 
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APPENDIX A. UNCERTAINTY ANALYSIS PROCEDURE 

While the error is associated to a single observation, the uncertainty is determined for a number of 

experiments and represents the possible value that the error might have given a confidence interval. 

The value of uncertainty always depends upon the confidence level. For a given confidence level, 

experiments performed with care will result in a reduced uncertainty.  

In order to determine a property of interest generally we need to measure several parameters. As 

the property of interest is a combination of the measured properties, the propagation of error from 

these properties need to be assessed to know the uncertainty of the property of interest. For that, 

we use again the concept of sensitivity coefficient. Mathematically, the total uncertainty value of 

a property A is equivalent to the mathematical exercise of performing a Taylor’s series expansion 

about the true value of A in terms of the parameters it depends upon.  

For small values of uncertainty, the higher terms can be neglected, but for large uncertainty values 

or for highly non-linear dependence of the particular quantity A, second and third derivatives can 

be considered in the Taylor’s expansion.  

In the case of the inverse method, we are dealing with small uncertainties of different magnitudes 

that we can measure: thermal properties of the different materials, the measured temperature which 

is the input of the method and the thicknesses of the different layers of material.  

The procedure we have used consists of a simplification of the mathematical approach since the 

equation to compute the sensitivity due to uncertainty of each parameter can be tedious. This 

method is divided in the following steps:  
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1. All the uncertainties relative to the measured parameters need to be known or assessed, and 

a mean value for each one of them needs to be assigned. Typically, the mean assigned values 

are the ones of the baseline analyzed case.  

2. The baseline values are used to compute the analyzed quantity (in the inverse method, the 

heat flux, or mean value of heat flux over time and space).  

3. We need to repeat the calculation as many times as different dependent parameters. In each 

one of these calculations we modify the values of one parameter with the uncertainty of the 

parameter and we compare with the baseline case.  

4. We compute the variation in the analyzed quantity due to the variation of the measured 

parameter.  

5. The total uncertainty of the analyzed parameter will be the root means squares sum of each 

contribution.  

Table A-1. Uncertainty analysis of the heat flux computation using the non-linear inverse 

method. 

Quantity 
Absolute 

input 
uncertainty 

Uncertainty 
in %  

Variation in heat 
flux relative to 

mean in % 
Sensitivity 

Temperature [K] 2.0 0.64 6.35 9.98 

k silicon [W/mK] 10 7.69 -0.15 -0.02 

ρ silicon [kg/m3] 10 0.43 0.14 0.32 

CP silicon [J/K kg] 7 0.99 0.30 0.30 

k polycrystalline silicon 
[W/mK] 

10 10.00 -1.66 -0.17 

ρ polycrystalline 
silicon [kg/m3] 

10 0.43 0.09 0.21 

Cp polycrystalline silicon 
[J/K kg] 

7 1.03 0.15 0.15 

thickness silicon [m] 0.00005 5.00 1.97 0.39 

thickness polycrystalline 
silicon [m] 

0.00005 10.00 1.97 0.20 

Overall Uncertainty in heat flux calculation 7.14  
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The sensitivity column contains shows the influence of the measured parameter on the final result 

of the analyzed parameter. It is calculated by dividing the variation in the analyzed parameter in 

by the uncertainty of the measured parameter. The larger the sensitivity, the higher Is the effect of 

the measured parameter. Therefore, in order to decrease uncertainties we should target the 

reduction of the parameters with high sensitivity.  

In the case of the inverse method represented in the example, the temperature measurement plays 

a big role in the variation of the computed heat flux. The uncertainty due to the measurement in 

the temperature is more than the 6% of the total 7% of the uncertainty of the methodology. An 

improvement in the temperature uncertainty would imply a great improvement in the uncertainty 

of the method.   
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APPENDIX B. EXPERIMENTAL DATA IN MICROELECTRONICS 

APPLICATION 

After several numerical assessment of the two different methodologies based on results from a 

model, we performed twelve different experiments with the microchip in the temperature 

controlled enclosure. The microchip consists of 25 heaters that can be controlled independently. 

Different patterns were used to provide a variety of spatial distributions of hot spots in the 

measured surface.  

 

Figure B- 1. Different experiments performed with the 5x5 heaters test article. 

The six different patterns were performed in natural convection and in forced convection (therefore, 

there are twelve experiments). From these experiments, the experiments 1, 3 and 4 where analyzed 
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by the inverse methodology since with them we can assess all the features where the inverse 

method can fail: magnitude of the heat flux, time behavior of the heat flux, spatial distribution of 

the hotspots, and identification of more than one hot spot.  

 

Figure B- 2. Temperature maps for each one of the six experiments under natural convection. 

In order to be able to use the methodologies, the pixel size needs to be increased, to decrease the 

number of sensors. For that we divided the image in squares and computed the mean value of 

temperature in each square.  We evaluated the inverse method with different sizes of the pixel and 

there is not a large difference of performance once the number of sensors is larger than the number 

of heat sources that we have to compute.  
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Figure B- 3. Temperature maps of the experiment 3 with different pixel size. 

Experiment 1 

This experiment was used to validate the Conjugate Gradient Method and the Digital Filter Method. 

With this test we are able to track how the methodologies respond regarding the prediction of the 

magnitude of the heat flux and its behavior in time. The temperature maps over with respect to 

time are detailed in Figure B- 4. 
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Figure B- 4. Temperature maps at different timesteps during experiment 1. 

When we evaluated the experiment 1 using the Conjugate Gradient Method, we observed that we 

could not reproduce the behavior of the imposed heat flux in terms of magnitude. It takes a lot of 

time to converge to a reasonable value and the trends in time are predicted (when the heat flux 

start and when the power is turned off).  

The Digital Filter Method with the correction, predicts well the magnitude of the heat flux and the 

temporal behavior both in the pure conduction analysis using COMSOL Multiphysics and in the 

Conjugate Heat Transfer analysis performed using ANSYS Fluent. 
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Figure B- 5. Conjugate Gradient Method results using the experimental data from the experiment 

1 in two different heaters. 
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Figure B- 6. Digital Filter Method results using the experimental data from the experiment 1 in 

natural convection in two different heaters. 

 

Figure B- 7. Digital Filter Method results using the experimental data from the experiment 1 in 

forced convection in two different heaters. 
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Experiment 4 

This experiment was used to observe if the different methods could predict the location of the heat 

sources that are activated. This is the most simple experiment to analyze the spatial distribution. 

We evaluated the results with the CGM, with not a good agreement with the imposed heat flux 

and the DFM which was able to predict the time, space and magnitude of the heat that was provided 

to the chip. 

 

Figure B- 8. Temperature maps at different timesteps during experiment 4. 
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Figure B- 9. Conjugate Gradient Method results using the experimental data from the experiment 

4 in two different heaters. 



   

 

 

Figure B- 10. Digital Filter Method results using the experimental data from the experiment 4 in natural convection representing the 

different heaters. 
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Experiment 3 

We evaluate the case which would be more difficult to compute for the Digital Filter Method, 

where we have two different hot spots clearly separated. We observe that the inverse method can 

predict accurately the magnitude of the heat flux, the location of the heaters that are providing 

power to the system and the time behavior of the heating pattern.  

 

Figure B- 11. Temperature maps at different timesteps during experiment 3. 



   

 

 

Figure B- 12. Digital Filter Method results using the experimental data from the experiment 3 in natural convection representing the 

different heaters. 
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APPENDIX C. INVERSE METHOD AND KRIGING INTERPOLATION 

OPTIMIZATION MATLAB GUI FOR SIMPLE 3D GEOMETRIES 

The work performed regarding the assessment of the inverse methodology in microchips was 

framed in the Cooling Technologies Research Center (CTRC). One of the objectives of the 

development of the inverse method in this frame is to make it accessible to all the community. 

Since the methodology is rather complex, we have developed an interface to make the inverse 

method easier to run to all the interested members of the consortium.  

We have summarized the way this code works in 7 simple steps that we have to follow in the main 

user interface shown in Figure C- 1. 

 

Figure C- 1. Main user interface 

Step 1: Model setup 

In this step we can choose between import the CAD or to make a simple CAD formed by blocks 

or parallelepipeds.  
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Figure C- 2. Import CAD models. 

 

 

Figure C- 3. Build blocks interface 

With these interfaces we can generate the preferred geometry and then with the button of “Show 

Geometry”, we can  see the generated or imported geometry.  
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Figure C- 4. Geometry viewer. 

Step 2: Material setup 

In the inverse method it is extremely important to set up the materials and their properties in each 

one of the generated domains. In this step, we can create new materials and assign them to the 

different domains that are created in our model.  

 

Figure C- 5. Create Materials. 
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Figure C- 6. Assign materials to the different domains. 

Step 3: Mesh 

Once the complete model is defined with the different materials assigned, we proceed to mess 

the different domains. We can assign different levels of discretization depending on the accuracy 

that is needed, the complexity of the 3D domains and the computational power of the machine in 

which the program is being used.  
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Figure C- 7. Meshing interface. 

Step 4: Heat source surfaces 

In this step we define which surfaces are likely to have the heat flux that we need to compute. This 

is a necessary step in all the inverse methods: at least we should be able to provide the surfaces 

where we want that the computation of the heat flux is performed. If we fail in this step, the code 

will not know where to apply the pulses in order to generate the sensitivity coefficients needed for 

the inverse computation.  

In this step, we can define the surface or surfaces that will have heat flux and the type of boundary 

condition that needs to be implemented: heat flux in surface or boundary heat source in the surface. 

The last can be used for surfaces that are inside the domain or between domains.  
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Figure C- 8. Heat flux surfaces interface. 

Step 5: Import temperature data 

In this step we define the surface where we are measuring the temperature and we need to provide 

a temperature map which needs to be in a .mat format. It should be 3D matrix with the first two 

dimensions the temperatures in the x and y directions of the sensors or pixels and the third 

dimension gather the data in time. This step is particularly complicated because the code needs to 

map the temperature maps over the surface that it is provided by the user. We define as well the 

timestep that it is needed in the methodology in this step. 
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Figure C- 9. Temperature map reading interface. 

Step 6: Inverse method: 

This step is the one where the inverse method is computed. First we have to compute the sensitivity 

coefficients for which the only information that is needed is the thermal properties of the model, 

the place where the heat flux are located and the geometry itself. It will run different pulses at 

different temperatures in order to create a sensitivity matrix that will be connected exclusively to 

the model that we are analyzing. It is not independent on the temperature that it was input because 

of the correction for temperature that it has been introduced in a previous section.   

Once the matrix of coefficients is defined, we can compute the inverse method and for that we 

only have to define the regularization terms and the sigma value (to correct for differences in the 
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thermal properties) and click the button of “Compute Heat Flux”. As quick as seconds, the 

computation of the heat flux will be performed, since in this case the methodology that has been 

used is the Digital Filter Method.  

 

Figure C- 10. Inverse methodology interface. 

Step 7: Sensor number and location optimization 

In this step, we optimize using the Kriging Methodology and a Genetic Algorithm optimization 

technique the number and the location of the sensors inside of the chip or geometry. For this we 

need to provide an initial number of sensors and a desired goodness of fit. The optimization will 

start with the initial number of sensors and if after the optimization the goodness of fit is below 

the intended value, the code will add another sensors and the optimization will start again.  

Finally we will have the final value of the number of sensors, their location and the goodness of 

fit in terms of temperature that we will be able to get with the optimized number and location of 

the sensors. 
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Figure C- 11. Kriging Interpolation Optimization interface. 

 

Figure C- 12. Final result with a goodness of fit of 85%.  
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APPENDIX D. INFRARED WINDOW MATERIAL SELECTION 

The selection of the material of the Infrared transparent window is crucial for the measurements 

intended in the annular test section in the application for gas turbines. In the case of the 

microelectronics application since the IR microscope has a smaller dimensions and there is no 

need to be sealed, we decided not to use a window.  

In the gas turbine application for safety and for sealing we need to use an IR transparent window. 

To make the choice of the material we need to consider different aspects of the experiment, such 

as the metal temperature in which the window in going to be located, the temperature and the 

pressure inside the chamber that the window is enclosing and the range of temperatures of the 

surface that needs to be measured.  

The first parameter that we looked at is the temperature of the fluid in the chamber. If we want to 

have temperatures larger than 500K, we need to use ceramic (glass) materials and we have to avoid 

the plastic windows.  

The second requirement is the metal temperature of the surface we are measuring. For that we need 

to evaluate the wavelength that we are expecting to measure with our infrared camera, which is 

located in the mid-wave infrared region (3 to 30micrometers of wavelength) as shown in the Figure 

D- 1. At ambient temperatures the expected wave length is approximately 10micrometers as shown 

in Figure D- 2.  
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Figure D- 1.  Electromagnetic spectrum.[167] 

 

Figure D- 2. Radiance with respect to the temperature [168]. As the temperature of a blackbody 

increases, the spectral curve shifts toward shorter wavelengths. In this diagram, wavelengths are 

given in microns (µm), which are 1000 times longer than nanometers (nm). 



   230 

 

In the mid-wave range the number of materials that can be used is reduced more, since the range 

is so large that not many materials can fully cover it. Figure D- 3 shows the range of transparency 

for some of the most common substrates used in Infrared thermography.   

 

Figure D- 3. Infrared Substrate Comparison[167]. 

After the first temperature analysis the list of materials was reduced to KBr, NaCl, BaF2, ZnSe, 

ZnS, Germanium, Silicon, CaF2.  

The last check is the differential pressure that the window should withstand during the blowdown 

operation. In the experiments performed in this work , the differential pressure is below 1 

atmosphere, but the calculation was intended in order to withstand 3 bar of differential pressure. 

The pressure is directly related with the thickness of the window with respect to the size of the 

window, and most part of the optical providers have a limited number of thickness that they can 

provide, unless a custom made window needs to purchased increasing considerably the cost.  

Based on the surface that needed to be measured in order to cover the whole axial length where 

we analyze the heat flux data, the size of the window is 3in diameter. The thickness of the window 
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needs to be computed based on this requirement. The formula that we have used for this 

computation is the following: 

𝑆𝑚𝑎𝑥 =
(𝑘 𝐷2 𝑃)

4 𝑡2
 (76) 

where k is a constant, the value for which depends upon whether or not the window is clamped. 

We use 0.75 for clamped windows and 1.125 for unclamped (See Figure D- 4). Smax is the 

maximum stress, D is the window diameter under pressure (i.e., the portion of window not 

supported by the flange as shown in the schematic in Figure D- 4), P is the load, and t is the 

thickness of the window material. 

 

Figure D- 4. Configuration of high pressure windows. 
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In this experiment we have decided to implement the clamped configuration since it is safer for 

the window when there is no a strong gradient of pressure across the window, that happens when 

installing the window and every time that we are not using the wind tunnel. 

We use a safety factor in the calculation of the thickness of 2. Using this safety factor and the 

catalog of available windows of different manufacturers it was decided to use a CaF2 window of 

76mm diameter and 3.5mm thickness. This window is able to withstand a pressure differential of 

3 bar.  
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APPENDIX E. EXPERIMENTAL DATA IN GAS TURBINE 

APPLICATION 

In the gas turbine application, we run several test at different conditions of temperature and 

massflow. The following table summarizes all the analyzed tests for this study. 

The experiments that were evaluated in this doctoral thesis are contained in the Table E-1.  

Table E-1. Turbine application experimental campaign tests. 

Experiment Name Temperature [F] in the heater Massflow [lb/s] 

Experiment 1 300 9 

Experiment 2 400 9 

Experiment 3 500 9 

Experiment 4 500 6 

Experiment 5 500 12 

The baseline case is the experiment 3 and we vary independently the two variables  that we can 

vary in the current configuration of the wind tunnel (massflow and temperature). The variation of 

total pressure is coupled with the variation of massflow.   

In this appendix we summarize the conditions and the most important results of each one of the 

experiments that were used to compile all the information displayed in the main body of the 

doctoral dissertation. We focus in the gas and metal temperatures in the different places that they 

were measured and the computation of the heat flux that are derived from these measurements. 
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Finally the Digital Filter Method is used to compute the heat flux based on the temperatures 

obtained using infrared thermography in the outer surface of the inner casing.  

Experiment 1 

 

Figure E- 1. a) Gas temperature measured by one of the total pressure probes in the test section 

during the experiment 1 and b) gas to wall temperature ratio during the same experiment. 

 

Figure E- 2. a) Surface thermocouples in the inner flowpath and b) inner metal temperature in the 

different axial locations over the measured surface. 
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Figure E- 3. IR images taken during the experiment 1. 

 

Figure E- 4. a) IR image of the region of interest. b) Spatial behavior of the temperature in the 

region inside the window. c) Temperature measured in the inner and outer surface of the shroud, 

used to compute the heat flux with the 1D heat conduction code. 
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Figure E- 5. a) Temperature map in time and space for the calculation of the 1D heat conduction 

with the thermocouples in location 1. b) Heat flux computed with the 1D heat conduction code 

with the temperature from the thermocouple at location 1. 
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Figure E- 6.Comparison between the heat flux computed by the inverse heat conduction method 

and the heat flux through the casing. 
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Experiment 2 

 

Figure E- 7. a) Gas temperature measured by one of the total pressure probes in the test section 

during the experiment 2 and b) gas to wall temperature ratio during the same experiment. 

 

Figure E- 8. a) Surface thermocouples in the inner flowpath and b) inner metal temperature in the 

different axial locations over the measured surface. 
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Figure E- 9. IR images taken during the experiment 2. 

 

Figure E- 10. a) IR image of the region of interest. b) Spatial behavior of the temperature in the 

region inside the window. c) Temperature measured in the inner and outer surface of the shroud, 

used to compute the heat flux with the 1D heat conduction code. 
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Figure E- 11. a) Temperature map in time and space for the calculation of the 1D heat 

conduction with the thermocouples in location 1. b) Heat flux computed with the 1D heat 

conduction code with the temperature from the thermocouple at location 1. 
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Figure E- 12.Comparison between the heat flux computed by the inverse heat conduction method 

and the heat flux through the casing. 
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Experiment 3 (Baseline) 

 

Figure E- 13. a) Gas temperature measured by one of the total pressure probes in the test section 

during the experiment 3 and b) gas to wall temperature ratio during the same experiment. 

 

Figure E- 14. a) Surface thermocouples in the inner flowpath and b) inner metal temperature in 

the different axial locations over the measured surface. 
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Figure E- 15. IR images taken during the experiment 3. 

 

Figure E- 16. a) IR image of the region of interest. b) Spatial behavior of the temperature in the 

region inside the window. c) Temperature measured in the inner and outer surface of the shroud, 

used to compute the heat flux with the 1D heat conduction code. 
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Figure E- 17. a) Temperature map in time and space for the calculation of the 1D heat 

conduction with the thermocouples in location 1. b) Heat flux computed with the 1D heat 

conduction code with the temperature from the thermocouple at location 1. 
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Figure E- 18.Comparison between the heat flux computed by the inverse heat conduction method 

and the heat flux through the casing. 
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Experiment 4 

 

Figure E- 19. a) Gas temperature measured by one of the total pressure probes in the test section 

during the experiment 4 and b) gas to wall temperature ratio during the same experiment. 

 

Figure E- 20. a) Surface thermocouples in the inner flowpath and b) inner metal temperature in 

the different axial locations over the measured surface. 
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Figure E- 21. IR images taken during the experiment 4. 

 

Figure E- 22. a) IR image of the region of interest. b) Spatial behavior of the temperature in the 

region inside the window. c) Temperature measured in the inner and outer surface of the shroud, 

used to compute the heat flux with the 1D heat conduction code. 
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Figure E- 23. a) Temperature map in time and space for the calculation of the 1D heat 

conduction with the thermocouples in location 1. b) Heat flux computed with the 1D heat 

conduction code with the temperature from the thermocouple at location 1. 
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Figure E- 24.Comparison between the heat flux computed by the inverse heat conduction method 

and the heat flux through the casing. 
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Experiment 5 

 

Figure E- 25. a) Gas temperature measured by one of the total pressure probes in the test section 

during the experiment 5 and b) gas to wall temperature ratio during the same experiment. 

 

Figure E- 26. a) Surface thermocouples in the inner flowpath and b) inner metal temperature in 

the different axial locations over the measured surface. 
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Figure E- 27. IR images taken during the experiment 5. 

 

Figure E- 28. a) IR image of the region of interest. b) Spatial behavior of the temperature in the 

region inside the window. c) Temperature measured in the inner and outer surface of the shroud, 

used to compute the heat flux with the 1D heat conduction code. 
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Figure E- 29. a) Temperature map in time and space for the calculation of the 1D heat 

conduction with the thermocouples in location 1. b) Heat flux computed with the 1D heat 

conduction code with the temperature from the thermocouple at location 1. 
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Figure E- 30.Comparison between the heat flux computed by the inverse heat conduction method 

and the heat flux through the casing. 
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