
LOCATING SPARSE RESOURCES IN UNMAPPED TERRAIN

WITH A COLLECTIVE ROBOTIC SYSTEM

USING EXPLORATION STRATEGIES INSPIRED BY PLANTS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Daniel K. Schrader

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2018

Purdue University

West Lafayette, Indiana

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Eric Matson, Chair

Department of Computer and Information Technology

Dr. Byung-Cheol Min

Department of Computer and Information Technology

Dr. J. Eric Dietz

Department of Computer and Information Technology

Dr. Julia M. Rayz

Department of Computer and Information Technology

Approved by:

Dr. Kathryne A. Newton

Head of the Graduate Program

ii

Dedicated to my two best friends. They were always so happy to see me, no matter

when I got home, and they patiently awaited their new, improved life. Thanks for

sticking with me, ladies.

iii

ACKNOWLEDGMENTS

I would like to gratefully acknowledge my committee for their guidance and

assistance.

I would also like to thank all of the folks that helped me develop and test

this system, good weather or bad. I could not have done it without all of you.

A sincere thank you to my family for supporting me, encouraging me, and

providing a childhood and a family environment to enable endeavors such as this.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . xiii

ABSTRACT . xiv

CHAPTER 1. INTRODUCTION . 1
1.1 Research Question . 2
1.2 Significance . 2
1.3 Purpose/Scope . 3
1.4 Assumptions . 3
1.5 Limitations . 4
1.6 Delimitations . 4
1.7 Definitions . 4
1.8 Summary . 5

CHAPTER 2. REVIEW OF RELEVANT LITERATURE 6
2.1 With respect to collective systems, what is emergence? 6

2.1.1 Complex systems . 6
2.1.2 Collective robotic systems 7

2.2 What are the primary types of emergence? 8
2.2.1 Weak vs. strong . 8
2.2.2 Non-emergent and controllable-emergent behavior 9
2.2.3 Beginnings of an ontology 11

2.3 Inevitability . 14
2.4 Adaptability . 14

2.4.1 Domains of study . 21
2.4.2 Self-adaptation . 22

2.5 Self-developmental systems . 22
2.5.1 Open-ended evolution and unbounded self-development . . . 24
2.5.2 Developmental plasticity of collective systems 26

2.6 Is self-development/repair necessary in collective robotic systems? . 27
2.7 Biological collective systems (swarms) 29

2.7.1 Plants as swarms . 30
2.7.2 Natural inspiration . 34

v

Page

CHAPTER 3. STARS OF THE SHOW (ROBOTS) 36
3.1 Brief Introduction to the Experiments 36
3.2 Requirements . 36

3.2.1 Build vs. Buy . 37
3.3 Design . 37

3.3.1 Wireless Communication . 37
3.3.2 Electrical . 40
3.3.3 Computation . 46
3.3.4 Mechanical/Physical . 46

3.4 Construction . 51
3.5 Beacons . 53
3.6 Software and firmware . 55

3.6.1 Robots . 57
3.6.2 Beacons . 57
3.6.3 Nexus . 58

CHAPTER 4. (ADVENTURES IN) METHODOLOGY AND TESTING . . 75
4.1 Similarities to and differences from plant roots 75
4.2 Operational Overview . 76

4.2.1 Modes . 77
4.2.2 Bumping . 81
4.2.3 Elongation . 82
4.2.4 Signal Strength as Nutrient Flow 82
4.2.5 Simultaneous Requests . 83

4.3 Test Locations . 83
4.4 Variables . 91
4.5 Measure of Success . 92
4.6 Simulation, or lack thereof . 92
4.7 An abridged version of the road so far 93
4.8 Practical odds and ends . 105

4.8.1 Connecting to the robots for development and debugging . . 105
4.8.2 Shutting down and rebooting the robots 106
4.8.3 Deploying code changes to all robots 106
4.8.4 Running software automatically 107

4.9 Testing procedure . 107

CHAPTER 5. RESULTS AND DISCUSSION 111
5.1 Trial 1 . 113
5.2 Trial 2 . 113
5.3 Trial 3 . 114
5.4 Trial 4 . 114
5.5 Trial 5 . 117
5.6 Trials 6 and 7 . 117

vi

Page

5.7 Trial 8 . 118
5.8 Trial 9 . 119
5.9 Trial 10 . 119
5.10 Trial 11 . 120
5.11 Trial 12 . 122
5.12 Trial 13 . 122
5.13 Trials 14 through 18 . 126
5.14 Discussion . 126
5.15 Conclusion . 135

CHAPTER 6. MOVING FORWARD . 137
6.1 Verify Omni-directional Antenna Radiation Pattern 137
6.2 More Thorough Bench Testing . 139
6.3 Granularity of Field Data Collection 141

CHAPTER 7. SUMMARY . 142

LIST OF REFERENCES . 143

vii

LIST OF TABLES

Table Page

2.1 Fromm’s classification of emergence (Fromm, 2005). 10

2.2 Summary of discussed works on emergence. 15

2.3 Adaptivity classes of collective systems (Haasdijk, Eiben, & Winfield,
2013). 16

2.4 Capabilities to detect changes in CS (Haasdijk et al., 2013). 17

2.5 Four types of environmental changes in robotic applications and examples
of cases both forecast and not forecast (Levi & Kernbach, 2010). 18

2.6 Main adaptive mechanisms in collective systems (Haasdijk et al., 2013). 19

3.1 Bill of materials for the robots. Does not include wires, cables, screws,
bolts, nuts, etc. 49

3.2 Bill of materials for the beacons. 54

5.1 Results for Trial 1. 113

5.2 Results for Trial 2. 113

5.3 Results for Trial 3. 114

5.4 Results for Trial 4. 117

5.5 Results for Trial 5. 117

5.6 Results for Trial 6. 118

5.7 Results for Trial 7. 118

5.8 Results for Trial 8. 119

5.9 Results for Trial 9. 119

5.10 Results for Trial 10. 120

5.11 Results for Trial 11. 122

5.12 Results for Trial 12. 125

5.13 Results for Trial 13. 125

viii

LIST OF FIGURES

Figure Page

2.1 Different mechanisms of functional and structural adaptation in collective
systems (Levi & Kernbach, 2010). 20

2.2 Generating relation between adaptive and self-adaptive mechanisms (Levi
& Kernbach, 2010). 23

2.3 Sketch of the self-developmental approach in the functional case [of developmental
plasticity] (Haasdijk et al., 2013). 27

2.4 Sketch of the self-developmental approach in the structural case [of developmental
plasticity] (Haasdijk et al., 2013). 28

2.5 A root growth simulation at times t = 0 and t = 200. The root extracted
(58.27, 53.95, 73.56) out of a soil initially holding (555.59, 542.37, 499.89),
a fraction of (0.10, 0.10, 0.15) (Simes et al., 2011). 32

2.6 Sensor Web deployment on scenario A (256 robots) (Simes et al., 2011). 33

2.7 Basic components of stigmergy (Heylighen, 2011). 33

2.8 Finite state automaton that can describe the observed bee behavior (Kernbach,
Thenius, Kernbach, & Schmickl, 2009). 35

3.1 XBee radio module. 38

3.2 SparkFun XBee Explorer USB. 38

3.3 L-Com 2.4GHz directional patch antenna. 39

3.4 6S 6.6Ah lithium polymer battery from HobbyKing. 40

3.5 12V step-down voltage regulator for drive motors. 41

3.6 12V step-down voltage regulator for stepper motor. 41

3.7 5V step-down voltage regulator for Raspberry Pi. 42

3.8 Controller for drive motors. 42

3.9 Stepper motor to rotate the directional antenna. 43

3.10 Arduino Micro. 44

3.11 Current sensor. 44

ix

Figure Page

3.12 Electrical schematic for the robot. 47

3.13 Raspberry Pi 3 Model B. 48

3.14 ServoCity Scout robot chassis. 49

3.15 ServoCity Warden robot chassis with some Actobotics aluminum structural
components. 52

3.16 AdaFruit Perma-Proto Board. 53

3.17 (A) Battery connector. (B) Fuse. (C) 12V regulator for drive motors.
(D) Current sensor. (E) Power switch. (F) Drive motor controller. (G)
Arduino Micro. (H) Stepper motor driver. (J) Drive motor. (K) Stepper
motor connector. 54

3.18 (L) GPS receiver. (M) Battery cage. (N) Battery. (O) Power switch. (P)
Stepper motor. 55

3.19 (Q) Raspberry Pi 3. (R) XBee radio used for communication. 56

3.20 (S) Omnidirectional antenna. (T) Directional patch antenna. (U) XBee
radio used primarily for direction-finding. 59

3.21 The beacons consist of a battery pack, an Arduino Uno, an XBee shield,
and the XBee radio. 60

3.22 First part of the flowchart of the firmware for the robot’s Arduino Micro. 61

3.23 Second part of the flowchart of the firmware for the robot’s Arduino Micro. 62

3.24 Flowchart of the software on each robot’s Raspberry Pi. 63

3.25 Flowchart of the software on each robot’s Raspberry Pi. Red indicates
something that was in the initial design but was removed. 64

3.26 Flowchart of the software on each robot’s Raspberry Pi. Red indicates
something that was in the initial design but was removed. 65

3.27 Flowchart of the software on each robot’s Raspberry Pi. 66

3.28 Flowchart of the software on each robot’s Raspberry Pi. Red indicates
something that was in the initial design but was removed. 67

3.29 Flowchart of the software on each robot’s Raspberry Pi. 68

3.30 Graph of ROS architecture on each robot’s Raspberry Pi. 69

3.31 Flowchart of the beacon’s firmware. 70

3.32 Flowchart of the Nexus’s process for initializing nodes (robots). 71

x

Figure Page

3.33 Flowchart of the Nexus’s process for monitoring nodes (robots). 72

3.34 Flowchart of the Nexus’s process for handling extension requests from
nodes (robots). 73

3.35 Flowchart of the Nexus’s process for reassigning deployed nodes (robots)
to accommodate new requests. 74

4.1 Example deployment scenario. 78

4.2 Node reassignment in example deployment scenario. 79

4.3 Testing location: the top level of a parking garage. 84

4.4 Testing location: unused planting bed of a greenhouse during the winter. 85

4.5 Testing location: an empty church sanctuary. 86

4.6 Testing location: the parking area of a rugby field. 87

4.7 Testing location: a school parking lot after hours. 88

4.8 Testing location: a school parking lot after hours. 89

4.9 Testing location: a school parking lot after hours. 90

4.10 Developing and testing the system out of a trailer. 94

4.11 Developing and testing the system out of a trailer. 95

4.12 RF antenna gain pattern of L-Com HG2414P antenna, per the manufacturer’s
datasheet. 96

4.13 Unsuccessful attempt to attenuate unwanted RF radiation with aluminum
foil. 97

4.14 Unsuccessful attempt to attenuate unwanted RF radiation with aluminum
foil. 98

4.15 Unsuccessful attempt to attenuate unwanted RF radiation with aluminum
foil. 99

4.16 CAD model of my do-it-yourself parabolic dish section frame. 100

4.17 CAD model of my do-it-yourself ”cantenna” frame. 101

4.18 Custom-made parabolic dish section antenna. 102

4.19 Custom-made ”cantenna”. 103

4.20 Comparison of directional bias of three types of directional antennas. . 104

xi

Figure Page

5.1 Layout of the testing area during experimentation (and some development).
The robots started in a line directly in front of the nexus. 112

5.2 Arrangement at the start of trial 3. Squares are robots (nodes) and
hexagons are beacons. 115

5.3 Arrangement at the end of trial 3. Squares are robots (nodes) and hexagons
are beacons. For the nodes, white = idle, green = apex, yellow = transition,
blue = relay edge, red = relay. For the beacons, red text means that beacon
was found. 116

5.4 Trial 10, when one robot sought one (elevated) beacon. Each intermediate
location is where the robot stopped to initiate a new search. 121

5.5 Arrangement at the start of trial 11. Squares are robots (nodes) and
hexagons are beacons. 123

5.6 Arrangement at the end of trial 11. Squares are robots (nodes) and
hexagons are beacons. For the nodes, white = idle, green = apex, yellow
= transition, blue = relay edge, red = relay. For the beacons, red text
means that beacon was found. 124

5.7 Trial 17: step 1. The beacons are difficult to see, so they are highlighted
by red circles. 126

5.8 Trial 17: step 2. The highlighted robot has completed one search iteration
and has moved one step toward the beacon. 127

5.9 Trial 17: step 3. The highlighted robot continues to track toward the
beacon. 128

5.10 Trial 17: step 4. The highlighted robot continues to track toward the
beacon. 129

5.11 Trial 17: step 5. The highlighted robot continues to track toward the
beacon. 130

5.12 Trial 17: step 6. The highlighted robot continues to track toward the
beacon. 131

5.13 Trial 17: step 7. The highlighted robot continues to track toward the
beacon. 132

5.14 Trial 17: step 8. The highlighted robot continues to track toward the
beacon. 133

5.15 Trial 17: step 9. The highlighted robot continues to track toward the
beacon. 134

xii

Figure Page

5.16 Trial 17: step 10. The more distant highlighted robot has requested an
extension, which the closer highlighted robot has been assigned to (notice
its antenna in mid-rotation). 135

5.17 Trial 17: step 11. The more distant highlighted robot was bumped by
the closer highlighted robot. The closer robot has now called for its own
extension, which the remaining robot is in the process of executing. . . 136

6.1 Sample of in-plane paths along which to measure the signal strength from
the omni-directional antenna (represented by the blue dot), to verify that
there is not significant asymmetry in the radiation pattern. 138

xiii

ABBREVIATIONS

NASA National Aeronautics and Space Administration

ESA European Space Agency

SBC single board computer

ANN Artificial neural network

LCS Learning classifier system

RSSI Received signal strength indicator

LQI Link quality indicator

RPi Raspberry Pi

xiv

ABSTRACT

Schrader, Daniel K. Ph.D., Purdue University, December 2018. Locating Sparse
Resources in Unmapped Terrain with a Collective Robotic System Using
Exploration Strategies Inspired by Plants. Major Professor: Eric Matson.

Wherever we go, we need resources. Finding those resources in unmapped

areas is an ever-present challenge. Nature provides many examples of systems that

manage to find the resources they need for growth, despite having little to no

information about their environment. Emulating the resource-finding strategies of

animals and insects has been, and continues to be, attempted in robotic systems, to

varying degrees of success. However, borrowing strategies from plants is much less

explored. This dissertation explores an attempt at distilling the resource-hunting

methods of plant roots into a collective robotic system.

Utilizing low-power computing and wireless communication, the robots

attempt to locate ”resources” (radio beacons, in this case) in an unmapped area.

They work collectively via extending and branching from each other. The results of

this experiment show limited success, with the limitations primarily stemming from

the wireless communication. Nonetheless, it is shown that a collective robotic

system, emulating plant roots, can feasibly locate resources that display a gradient,

with no map of the environment.

1

CHAPTER 1. INTRODUCTION

We are explorers. Throughout history, we have pushed the boundaries of our

known world further and further out. Technology has always driven, or at least

enabled, exploration that was previously not possible. From hand-carved canoes all

the way to planetary rovers, we rely on technology to help us explore our

environment. As we move further out into space, we need new technologies that will

assist us and keep us safe. Whether for asteroid mining or the preparation of a

manned settlement, locating resources is key to our efforts. Those resources may be

anything from water to metals to particular locations/topographies or even valuable

data.

There are myriad methods and ideas regarding the finding of resources, but

the natural world provides us with examples of success in this endeavor. Nearly

every biological organism must actively seek out resources to survive, but if we are

to translate these organisms’ success into robotic systems, we must take into

account our ability to create a synthetic approximation of different organisms. Lions

are very good at finding and collecting resources, but they use sensors, processing,

and actuators that are, for the moment, beyond our reach. What about insects?

They are some of the most successful organisms in the history of Earth, and we can

create synthetic approximations of them (though not nearly as small). So far, so

good, but we can go a step further. Plants are arguably the most successful

organisms in our environment. Despite very limited abilities in sensing, processing,

and actuation, plants manage to locate resources around them with sufficient

efficiency to grow and reproduce.

Sending a robotic system into space requires that the system possesses

extremely high reliability. The more complex a system is, the more difficult it is to

ensure reliability. Plants are much simpler than lions, for example, and at least not

2

more complex than insects. There is another important property of plants and

many insects (and some animals) that is relevant to space exploration, which is that

they are collective systems. Collective systems, or swarms, have the ability to be

very robust, due to the lack of a single point of failure. A plant is not a singular

object, but rather a collective made up of leaves, stems, stalk, roots, etc. The root

system, in particular, is a collective of individual roots with no apparent central

authority. When one root fails, it does not necessarily cause the entire system to

fail. Emulating the plant’s method of locating resources in a robotic system will

likely impart onto that system many of the advantages that plants enjoy.

Developing real, full-scale, collective robotic systems is a very challenging

task, in no small part due to the monetary cost of these systems. Since plants

demonstrate remarkable success with such limited resources at their disposal, they

lend themselves nicely to robotic emulation. Simple sensors, low-performance

actuation, and relatively little computation mean that individual robots are

reasonably simple and inexpensive, which makes a full-scale system feasible.

1.1 Research Question

How completely can a collective robotic system, based on resource-finding

strategies of plants, locate specific resources in a completely unknown and

unmapped area?

1.2 Significance

As we continue to push past the boundaries of our known world, we need

technologies that will augment, enable, and protect us and our machines in

unknown, unmapped places. We cannot possibly carry everything with us that we

might need as we explore further out, so we need to be able to locate resources on

asteroids, planets, and whatever is available, even when it is difficult or impossible

for humans to do so. NASA states on their official website:

3

Robotic exploration continues to deliver profound answers about our

Universe by visiting far-off destinations, providing reconnaissance and

collecting scientific data. When combining both human and robotic

exploration methods we will use technology and our senses to increase

our ability to observe, adapt, and uncover new knowledge (Wiles, 2013).

Robotics holds enormous promise for the future of space exploration, but we will

need the benefits of collective systems as we move forward. Developing full-scale

collective systems is a very challenging task, but one that nature has repeatedly

solved. “Arguably, the complexity, flexibility and adaptation demonstrated by

natural collective systems is unmatched by any man-made system” (Simes et al.,

2011). Therefore, it is logical to borrow strategies from one of the natural world’s

most successful collective organisms, plants, to help us push the boundaries of our

knowledge even further.

1.3 Purpose/Scope

I will develop a collective robotic system that explores an unmapped area in

search of nutrients, which will be represented by controlled quantities, such as radio

beacons. This system will grow “roots,” much like a plant does when searching for

nutrients. The exploration decisions will be made individually by the roots, rather

than a central authority, which will be called the nexus. The primary responsibility

of the nexus will be to dispense resources (i.e. additional robots) as the “roots”

grow. Since the system will lack the physical connections that roots have, it will use

directional wireless communication to pass messages and perform limited

localization.

1.4 Assumptions

• No global coordinates (via GPS or otherwise) are available

4

• Test area has no major physical or radio obstacles

• Nutrients display concentration gradients (Simes et al., 2011)

• Nutrients do not fade with time

• Environmental factors do not change quickly enough to significantly influence

a test

• Nutrients are static

1.5 Limitations

• Number of available robots

1.6 Delimitations

• Transport of nutrients

• Significant map generation

• Obstacle avoidance

• Any study, beyond simulation, of significant scalability of the system

• Branches of more than two children

1.7 Definitions

Nutrients: resources that are being searched for

Stigmergy: an indirect, mediated mechanism of coordination between actions in

which a perceived effect of an action stimulates the performance of a

subsequent action (Heylighen, 2011)

Apex: the tip of a root (Simes et al., 2011)

5

Node: mobile robot

Nexus: device that serves as data collector and place of initial node deployment

1.8 Summary

This chapter provided the purpose/scope, significance, research question,

assumptions, limitations, delimitations, definitions, and other background

information for the research project. The next chapter provides a review of the

literature relevant to this dissertation.

6

CHAPTER 2. REVIEW OF RELEVANT LITERATURE

The literature review is split into several major domains. The first discusses

collective robotics and associated topics in a theoretical, sometimes even

philosophical, context. The second deals with the notion of plants as swarms,

borrowing methodologies from plants to inspire robotics, and some exploratory

simulation work that has been done in this area. The third presents some references

for various components of the proposed system, such as neural networks and

wireless technology.

2.1 With respect to collective systems, what is emergence?

“Emergence is an effect or event where the cause is not immediately visible

or apparent” (Fromm, 2005). More computationally defined, emergence is “the

incompressibility of a simulation process” (Huneman, 2008). Getting a bit more

specific, Goldstein says, “Emergence...is the arising of novel and coherent structures,

patterns, and properties during the process of self-organization in complex systems”

(Goldstein, 1999). In that statement, Goldstein refers to two concepts that need to

be defined and contextualized. The first of those two, self-organization, is discussed

in a later section of this paper. The second concept is that of a complex system. A

thorough dive into complex systems (Bar-Yam, 1997, 1998) or complexity theory is

not within the scope of this paper, but a concise description is helpful.

2.1.1 Complex systems

Bar-Yam described the study of complex systems (Bar-Yam, 1997) by saying,

“As a discipline, complex systems is a new field of science studying how parts of a

7

system and their relationships give rise to the collective behaviors of the system, and

how the system interrelates with its environment.” Giving context to that definition,

Bar-Yam discussed the fundamental scientific principle that everything is made of

parts. Traditionally, when a scientist wants to know how something works, (s)he

begins by examining its parts. Those parts are made up of their own parts, which

are made up of even more parts, and so goes the rabbit hole. Studying parts has

given us much of our modern understanding of the world, but the dissection of parts

alone is not sufficient to tackle increasingly complex problems. For that, we must

study the relationships between parts. Unlike parts themselves, the relationships

between parts are not consistent between different systems. This nature of

relationships gives rise to complexity theory and the study of complex systems.

Returning to Goldstein’s definition of emergence (Goldstein, 1999), it is

reasonable to say that emergence is the result of the relationships between a

system’s parts and environment. Therefore, the study of emergence is, in a sense,

the application and classification of complexity theory. However, this paper is not

explicitly focused on complexity theory. Rather, the focus is on emergence within a

specific type of complex system: collective robotics.

2.1.2 Collective robotic systems

Collective robotic systems consist of many interacting individuals (i.e.

robots) that, through their interactions with each other, are able to achieve

behaviors, functionality, and structures that are not achievable by any lone

individual (Haasdijk et al., 2013). Collective systems, in general, are all around us in

the form of viruses, microscopic particles, social insects and animals, transportation

systems, and computer networks, just to name a few. The principles governing

those systems and the phenomena those systems produce are the same for collective

robotic systems. Emergence is what makes collective robotics interesting and

challenging, so an ontology (of a sort), introduced in the next section, is necessary.

8

2.2 What are the primary types of emergence?

There is quite a bit of overlap between defining emergence and categorizing

its types (i.e., the first and second questions in the title). At the beginning of this

paper, I gave several definitions of emergence that I feel are clear and concise, but

other definitions and descriptions are discussed in this section. Much like the topic

of artificial intelligence, emergence takes a different form with each debate or

discussion.

2.2.1 Weak vs. strong

Kernbach made a distinction between two overarching types of emergence:

weak and strong (Haasdijk et al., 2013).

Weak emergence describes new properties arising in systems as a result

of the interactions between collective agents. Emergence, in this case, is

part of the model, which describes a system’s behavior.

Strong emergence is a type of emergence in which the emergent property

is irreducible to its individual agents.

Strong emergence often spawns philosophical discussion, such as in (Laughlin &

Leggett, 2005; Todd, 1934). In the Introduction of (Todd, 1934), Blitz summarized

the progression of the philosophy of biological evolution and the nature of the

natural world, which are good examples of strong emergence, by Kernbach’s

definition. Fromm also refers to the emergence of life (and culture) as clear examples

of strong emergence (Fromm, 2005). Laughlin, too, discussed strong emergence, but

rather than biological evolution, the focus is on physics and the understanding of

physical laws through the study of emergence (Laughlin & Leggett, 2005).

As interesting as strong emergence is, it does have a big drawback:

predictability. The lack of predictability makes designing (or attempting to design)

strong emergence rather problematic. “The general problem of designing [strong]

9

emergence is that we cannot say in advance which emergent behavior will be

generated by the chosen rules” (Haasdijk et al., 2013). Possessing the property of

being unpredictable means there are few or no analytic methods that give much

insight into the emergent system’s behavior, leaving engineers with simulation:

When common knowledge of a collective system is not a subset of

group-related knowledge, there is no other way of predicting the result of

top-down and bottom-up approaches other than to simulate it with the

full complexity of individual agents and their interactions (Haasdijk et

al., 2013).

A true emergent phenomenon is one for which the optimal means of

prediction is simulation (Suki, Bates, & Frey, 2011).

2.2.2 Non-emergent and controllable-emergent behavior

Weak emergence is best clarified by the concept of controllable-emergent

behavior, where the designer has explicit control over a system’s degrees of freedom

(Haasdijk et al., 2013). Ronald and Sipper provided good examples (an indoor mail

delivery robot and a garbage collecting robot) and comparison between

non-emergent and controllable-emergent behaviors (E. M. Ronald & Sipper, 2001).

The mail delivery robot is described as a line follower with a very carefully

engineered path, illustrating non-emergent behavior. Ronald and Sipper assigned

such behavior to the realm of classical engineering, where the goal is unsurprise. In

contrast, the garbage collecting robot is designed through evolutionary robotics,

where the degrees of freedom are controlled and the outcome is, in a sense,

intentionally designed. However, the engineer did not explicitly program the robot’s

behavior. “Yes, the evolved robot works (surprise), but it is in some oxymoronic

sense expected surprise: as though you were planning your own surprise birthday

party” (E. M. Ronald & Sipper, 2001). Fromm offers an alternative and potentially

10

Table 2.1.

Fromm’s classification of emergence (Fromm, 2005).

Type Name Frequency Predictability

I Nominal abundant predictable

II Weak frequent predictable in principle

III Multiple common-unusual not predictable (or chaotic)

IV Strong rare not predictable in principle

more familiar example of weak emergence: shoals of fish, where the presence of the

shoal/swarm influences each individual’s motions (Fromm, 2005).

Non-emergent (i.e. classical) collective behavior (Kornienko, Kornienko, &

Priese, 2004; E. M. Ronald & Sipper, 2001; E. M. A. Ronald & Sipper, 2000) has

the advantages of being stable and predictable, even when responding to

irregularities, but it suffers from limited adaptability (Haasdijk et al., 2013). Fromm

refers to non-emergent, or even very weakly-emergent, behavior as

“nominal/intentional” (Fromm, 2005) (see Table 2.1). Controllable-emergent

behavior (Kornienko, Kornienko, & Levi, 2004) fills in the middle of the scale (with

strong emergence at the far end, although Fromm defines a level of emergence

between weak and strong (see Table 2.1)), providing more adaptability than

non-emergent systems, but at the cost of stability and predictability.

Nominal emergence

Nominal emergence, as defined by Fromm (Fromm, 2005) and Bedau (Bedau,

2002), is the weakest form of emergence. Fromm put forth the example of a

classically-designed machine (e.g. a mechanical clock) to illustrate nominal

emergence. “The function of a machine is an emergent property of its components,”

and “a specific and fixed role is assigned to each part, and this role does not change

11

in the course of time. The behavior of each part is always the same, it is

independent of the other parts’ states, the global state of the system and the

environment” (Fromm, 2005). Ronald and Sipper’s mail delivery robot

(E. M. Ronald & Sipper, 2001) fits nicely into Fromm’s idea of nominal emergence.

Bedau offers a similar, albeit a bit more abstract, definition by saying that “nominal

emergence is simply this notion of a macro property that is the kind of property

that cannot be a micro property” (Bedau, 2002).

2.2.3 Beginnings of an ontology

There are, as mentioned previously, many ways to describe and understand

emergence. Weak and strong are certainly a useful start, but such a general level of

distinction leaves something to be desired. Much of the literature on emergence

indicates that enforcing strict, deep categories is either irrelevant or premature, so

my answer to the question “What are the primary types of emergence?” will not

simply list finer and finer categories. Rather, I will introduce several of the concepts

of emergence from the introductory chapter of (Haasdijk et al., 2013), as well as

other sources.

Combinatorial

Huneman defined combinatorial emergence as focusing on “whole-parts

relationships” and stated that “emergence is often considered to be the problem of

understanding properties of the wholes that are irreducible to properties of the

parts” (Huneman, 2008). However, Huneman argued that the combinatorial

approach, despite its popularity (Bechtel & Richardson, 1992; Bedau, 2002;

O’Connor, 1994; Silberstein, 2002), is not a very useful way to think about

emergence. Properties of the whole, according to Huneman’s approach, are almost

always novel when compared to the properties of the parts (e.g. mass and volume).

12

Therefore, the combinatorial approach does not provide much insight into

emergence. Rather, “focusing on what is an emergent process, rather than on the

emergence of properties” (Huneman, 2008) lends more clarity and utility to the

concept of emergence.

Descriptive/Explanatory

Fromm borrowed from the Cambridge Dictionary of Philosophy (Audi, 1999)

to define descriptive and explanatory emergence (Fromm, 2005).

Descriptive emergence means “there are properties of ’wholes’ (or more

complex situations) that cannot be defined through the properties of the

’parts’ (or simpler situations).”

By this definition, descriptive emergence is simply a rephrasing of combinatorial

emergence. Since combinatorial (descriptive) emergence is arguably the dominant

view, overlap is expected. Explanatory emergence, however, is more akin to

Huneman’s computational philosophy of focusing on processes, instead of properties

(Huneman, 2008).

Explanatory emergence means the laws of the more complex situations

in the system are not deducible by way of any composition laws or laws

of coexistence from the laws of the simpler or simplest situations.

Surprising

Ronald and Sipper took a novel approach to defining emergence by invoking

the concept of surprise (E. M. Ronald & Sipper, 2001; E. M. A. Ronald & Sipper,

2000). They provided three criteria for establishing that behavior is emergent:

13

1. Design. The system has been constructed by the designer by describing local

elementary interactions between components (e.g., artificial creatures and

elements of the environment) in a language L1.

2. Observation. The observer is fully aware of the design, but describes global

behavior and properties of the running system, over a period of time, using a

language L2.

3. Surprise. The language of design L1 and the language of observation L2 are

distinct, and the causal link between the elementary interactions programmed

in L1 and the behaviors observed in L2 is non-obvious to the observer who

therefore experiences surprise. In other words, there is a cognitive dissonance

between the observers mental image of the systems design stated in L1 and his

contemporaneous observation of the systems behavior stated in L2.

Using an observer’s surprise to gauge whether or not behavior is emergent is vague

but intuitive. Ronald and Sipper provide some granulation to the notion of surprise

(unsurprise, unsurprising surprise, and surprising surprise (E. M. A. Ronald &

Sipper, 2000)), but the definitions are still qualitative.

...and more

There are nearly as many definitions and explanations of emergence as there

are people writing about it. Some authors have attempted to corral the widely

varying analyses (Audi, 1999; Fromm, 2005; Goldstein, 1999; Haasdijk et al., 2013;

Silberstein, 2002), which is helpful, but highlights the lack of agreement within the

field. Huneman rejected the common foundation of analyzing emergence by

properties and takes a computational approach to identifying emergence (Huneman,

2008). Bar-Yam and Darley tried to lay out mathematically rigorous definitions of

(strong) emergence (Bar-Yam, 1997, 1998, 2003, 2004a, 2004b; Suki et al., 2011).

14

Wimsatt came at the problem of emergence through philosophy, defining emergence

as the lack of aggregativity. Put another way, Wimsatt definee emergence “by

figuring what conditions should be met for the system property not to be emergent

(i.e, for it to be a ’mere aggregate’ of its parts properties)” (Wimsatt, 2000). This is

all to illustrate that defining, categorizing, describing, and understanding emergence

is neither easy nor agreed upon. Table 2.2 summarizes my analysis and relevant

opinions on some of the works discussed so far.

2.3 Inevitability

I’ll start by addressing the question of inevitability of self-development and

self-repair in collective robotic systems. In short, no, it is not inevitable. One can

easily imagine a collective system that either diverges from

self-developmental/repair behaviors, or is designed with enough constraints so as to

eliminate any significant emergence. The rest of this paper will focus on

self-development and self-repair, in general, and whether or not they are necessary.

2.4 Adaptability

Adaptation and self-adaptation are core features of collective systems (CS).

Levi and Kernbach defined adaptability (Levi & Kernbach, 2010):

Adaptability is defined in terms of a triple relation: environmental

changes → system’s response → environmental reaction. In general,

adaptability is the ability of a collective system to achieve desired

environmental reactions in accordance with a priori defined criteria by

changing its own structure, functionality, or behavior.

Unsurprisingly, there is a spectrum of adaptability in CS. Table 2.3 summarizes the

overarching classes of adaptability, according to Kernbach. Self-developmental

15

Table 2.2.

Summary of discussed works on emergence.

Source Philosophy Strength Weakness Utility

(Bar-Yam, 1997, 1998,
2003, 2004a, 2004b)

Math
formalism

Quantitative,
measurable

Must formally
define

constraints

Med.

(Bedau, 2002) Downward
causation

Makes weak
emergence
traceable

Arguably
violates causal

laws

Low
to

med.

(Suki et al., 2011) Analytical
decomposition

Quantitative,
measurable

Relies on full
simulation

High

(Fromm, 2005) Categorization Flexible,
fairly

encompassing

Qualitative,
general

Med.
to

high

(Goldstein, 1999;
O’Connor, 1994)

Historical
context

Thorough Non-technical High

(Haasdijk et al., 2013) Survey of
collective
robotics

Thorough,
directly
relevant

None High

(Huneman, 2008) Process (not
property)
analysis

Scientifically
rigorous

Relies on
computability

High

(Kornienko, Kornienko,
& Levi, 2004)

Top-down
rule

generation

Controllable,
compact
results

Computationally
complex and
demanding

High

(E. M. Ronald & Sipper,
2001; E. M. A. Ronald &

Sipper, 2000)

Levels of
surprise

Intuitive,
simple

Qualitative,
subjective

Low

(Silberstein, 2002) Critique of
reductionism

Well-researched,
thoughtful

Very...academic Med.

(Wimsatt, 1997, 2000) Lack of
aggregativity

Novel, useful
in

categorization

High
(philosophical)
barrier to entry

Low
to

med.

16

Table 2.3.

Adaptivity classes of collective systems (Haasdijk et al., 2013).

Type of CS Comment

CS with fixed interactions Environmental fluctuations can be foreseen and
absorbed by external mechanisms; cooperative behavior
includes some adaptive mechanisms but is mostly
predefined (Colestock, 2005).

Tunable, reconfigurable
CS

More developmental degrees of freedom, adaptivity is
achieved in different ways, from parameter changing,
feedback-based mechanisms (Astrom, 1987), and
adaptive [self-organization] (Vaario, 1994) to fully
reconfigurable systems. A multitude of learning
mechanisms can be applied (Domingos, 2002).

Self-developmental CS Systems capable of structural changes and with
changeable reward/feedback mechanisms have bound
and unbound cases.

collective systems are listed as the most adaptable, which is logical, and also makes

clear that adaptability is a prerequisite of self-development.

“Adaptability is closely related to environmental changes, the ability of a

system to react to these changes, and the capability of the designer to forecast the

reaction of the environment to the system’s response” (Haasdijk et al., 2013). Table

2.5 describes a few types of environmental changes and corresponding examples,

both with the ability to be forecast and without.

For an adaptive collective system to respond to any environmental change, it

must have some means of detecting that change. Kernbach separated the capability

to detect changes into three categories: model reference based, self-tuning based,

and concept based, described in Table 2.4 (Haasdijk et al., 2013). Once a system

has detected a change in the environment, it needs some mechanism(s) to react to

that change. Table 2.6 lays out three types of adaptive mechanisms, with

self-organized mechanisms being the most adaptive. However, Table 2.6 does not

make a distinction between structural and functional self-organization (SO), but

17

Table 2.4.

Capabilities to detect changes in CS (Haasdijk et al., 2013).

Type Comment

Model
reference-based

Widely used scheme in, for example, adaptive control
(Chalam, 1987), machine learning (Domingos, 2002),
artificial evolutionary systems (Nolfi & Floreano, 2004), and
many other areas, where the detection of changes represents
a error between model and system (“plant” in control
theory). A multiplicity of feedback, reward, fitness
based mechanisms (Astrom, 1987; Fogel, 2006) originate
from this approach.

Self-tuning-based Very popular approach (see, e.g., (Åström, 1980), the first
ideas are described by (Kalman, 1958)). It consists of a
parameter estimator, a design calculation, and a regulator
with adjustable parameters, the idea being to select “a
design for a known plant parameter and to apply it to an
unknown plant parameter using recursively estimated values
of these parameters” (Chalam, 1987).

Concept-based Self-developmental systems with a high degree of plasticity
cannot use model- or tuning-based detection mechanisms;
their mechanisms of detection are not plastic enough.
Instead, the so-called self-concept-based approach has been
proposed (first in human psychology (Maslow & Lowery,
1968; McLean, Pasupathi, & Pals, 2007)).

18

Table 2.5.

Four types of environmental changes in robotic applications and examples of cases
both forecast and not forecast (Levi & Kernbach, 2010).

Environmental
changes leading
to:

Examples: forecast Examples: not forecast

Appearance of
new situations

Installation of industrial robots in
a new workshop

Work in previously
unexplored environment
(e.g., landing on Mars)

Changed
functionality

Changing a type of locomotion
(e.g., from wheeled to legged),
when changing a terrain type

Search-and-rescue scenario
when robots encounter
unknown obstacles

Modified
behavioral
response

Gravitational perturbation of
flying object in space and finding
new control laws for engines

Disturbed control of legged
locomotion for obstacles of
random geometry

Optimization of
parameters

Changing of day/night light and
adapting intensity of additional
light

Adapting locomotive
parameters for randomly
moving obstacles

19

Table 2.6.

Main adaptive mechanisms in collective systems (Haasdijk et al., 2013).

Type Comment

Parameter-based
adaptive mechanisms

Traditional for control theory (see, e.g., (Narenda &
Annaswamy, 1989)); the system is controlled through
control parameters by modifying the values, the controlled
system responds by changing its behavior. A multitude
of possible variations exists: when a system is known,
its analytical model can be used for control purposes;
when the environment is simple, it is incorporated into
the analytical model; when a system is unknown (the
black box approach), different feedback mechanisms can be
used for control purposes. Different ways of adapting the
system are the focus of unsupervised, reward-based learning
approaches. The parameter-based adaptive mechanisms are
very efficient but have several essential drawbacks related to
low flexibility.

Modularity-based
adaptive mechanisms

The system consists of modules that can be dynamically
linked to each other. The linkage can be of binary as
well as fuzzy character. Examples of such systems are
artificial neural networks (ANNs) (Fausett, 1994), genetic
programming (GP) (Koza, 1992), reconfigurable robotics
(Shen et al., 2006), and others. The modular structure
has several particular issues, for example, granularity of
modules–how large are changes of the transfer function
created by relinking only one elementary module.

Self-organized
adaptive mechanisms

Self-organizing systems consist of many interacting elements
with a relative high degree of autonomy (Haken, 2004). The
transfer function of such systems is “generated” dynamically
through interactions. Self-organized adaptive mechanisms
introduce feedback directly into the interactions among
elements (Alvarez-Ramı́rez, 1993; Basso, Evangelisti,
Genesio, & Tesi, 1998).

structural SO is, in theory, even more adaptable than functional SO (see my paper

answering question 1).

20

Figure 2.1. Different mechanisms of functional and structural adaptation in collective

systems (Levi & Kernbach, 2010).

21

2.4.1 Domains of study

Adaptation is a generic concept, but within the engineering community,

there are three domains that deal heavily with adaptability: control theory, artificial

intelligence, and software-intensive systems (Haasdijk et al., 2013). Of the three,

control theory’s study of adaptability dates back the furthest. In 1959, Whitaker

applied adaptive controls to aircraft and spacecraft (Whitaker, 1959). Two decades

later, Egardt wrote about the stability of adaptive control (Egardt, 1979). Adaptive

control theory continued to be studied in the 1980s (Anderson, Bitmead, Johnson,

Riedle, & Parks, 1989; Narenda & Annaswamy, 1989), 1990s (Kristic,

Kanellakopoulos, & Kokotovic, 1995), and is still an active area of study (Wilson,

2001).

Artificial intelligence (AI) researchers approach adaptation a bit differently

than control theorists. Where adaptive control theory tends to address the “fixed

controllers” in Figure 2.1, artificial intelligence research deals more with the

“changeable controllers” and perhaps even the “evolved controllers.” Beer, in the

book “Intelligence as Adaptive Behaviour,” claimed that traditional AI is not very

flexible or adaptable. To remedy this, Beer discussed the modeling of an artificial

insect’s nervous system (i.e. a collective system made up of many neurons), in the

context of adaptive behavior. Beer is not alone in looking to nature for inspiration

(Kernbach, Thenius, et al., 2009). The adaptability of biological organisms is a

popular topic in the field of AI (Floreano & Mattiussi, 2008). Keijzer challenged the

notion of decision-making being inherently intelligent, and instead discusses

adaptability in terms of cognition (or “active thinking”) (Keijzer, 2003). The works

discussed here are only a small sample of the debate about AI’s embodiment and

dependence on adaptation. A full literature review on this topic would be extensive.

Software-intensive and distributed (collective) systems, particularly in the

context of business, rely on ever-increasing adaptability to keep up with

ever-increasing complexity (SAP, 2005). However, unlike the large research topic of

22

collective robotic systems, distributed business systems focus more narrowly on

adaptation in terms of scalability, self-optimization, self-protection, context

awareness, and software reliability issues (Cheng et al., 2009; Haasdijk et al., 2013).

2.4.2 Self-adaptation

Modern literature, particularly in evolutionary computation, often makes a

distinction between adaptation and self-adaptation (Beyer, 1996). Bäck defined

dynamic parameter control, adaptive parameter control, and self-adaptive parameter

control as all distinct from each other (Bäck, 2001). “Adaptive,” according to Bäck,

has the intuitive meaning of feedback-based regulative mechanisms, whereas

“self-adaptive” describes mechanisms that can change regulative structures

(Haasdijk et al., 2013). Figure 2.2 illustrates the relationships between adaptation

and self-adaptation (and self-development, discussed in the next section).

2.5 Self-developmental systems

The body of research about developmental systems is widespread and

multi-disciplinary. Evolutionary robotics (Nolfi & Floreano, 2004) has its roots in

developmental systems research and often attempts to mimic biological evolution.

The self-* features (e.g., self-monitoring and self-repair), as Kernbach referred to

them, can emerge from the developmental approach and are related to adaptability,

evolveability, behavioral emergence, and the control of long-term development

(Haasdijk et al., 2013).

The study of self-developmental robotics (Oudeyer, 2004) may have

originated in neuroscience, artificial neural networks, and evolutionary systems

(Haasdijk et al., 2013). Rather than focusing on cognition and ontogenetic

development (i.e. developmental systems research), self-development addresses

issues like self-exploration, self-supervision, self-learning, and more (Lungarella,

Metta, Pfeifer, & Sandini, 2003).

23

Figure 2.2. Generating relation between adaptive and self-adaptive mechanisms (Levi

& Kernbach, 2010).

24

2.5.1 Open-ended evolution and unbounded self-development

Open-ended evolution is characterized by a continued ability to invent

new properties–so far only the evolution of life on earth (data partly

from fossil records) and human technology (data from patents) have

been shown to generate adaptive novelty in an open-ended manner

(Rasmussen et al., 2004).

Kernbach talked about “unbounded self-development” as a robotic version of

open-ended evolution. Both concepts deal with growing complexity (potentially

indefinitely growing (Ruiz-Mirazo, Umerez, & Moreno, 2008)), but unbounded

self-development also includes the ideas of embodiment, links between structures

and functions, energy and homeostasis, and others. “When driving forces of

adaptive processes are mostly bound, expressed by reward or fitness, the

self-concept may include driving forces which are of unbounded character. In this

way, self-development does not necessarily imply any evolutionary progress, but a

progress driven by the unbounded force of self-concept” (Haasdijk et al., 2013). The

idea of self-concept comes from psychology, which defines it as “conscious beliefs

about the self that are descriptive or evaluative” (Kernis & Goldman, 2003; Markus

& Wurf, 1987; McLean et al., 2007). In robotics, self-concept is a bit different

(Kernbach, Levi, Meister, Schlachter, & Kernbach, 2009):

To explain the idea of a self-concept and a structural generator, we

consider the case when locomotion should have a specific form, such as a

symmetric movement of legs, segmented (like by insects) construction of

body, or there are imposed constraints or a priory desired properties.

The self-concept contains in a compressed form a description of these

constraints/properties.

Standish experimented with open-ended evolution via the artificial life

simulators called Tierra and Avida (Standish, 2002). Although tempered by the

25

acknowledgment that longer simulation runs might provide different results,

Standish concluded that an organism can undergo self-development without

appreciably increasing in complexity. This work, along with (Spector, Klein, &

Feinstein, 2007) and others, led Kernbach to ask (Haasdijk et al., 2013):

• Which processes can generate complexity?

• How should we control long-term unbounded development?

Which processes can generate complexity?

John von Neumann’s well-known concept of cellular automata directly

addresses the question of how complexity is generated in collective systems:

...synthesis of automata can proceed in such a manner that each

automaton will produce other automata which are more complex and of

higher potentialities than itself (von Neumann, 1966).

However, as Standish discovered (Standish, 2002) and as Kouptsov explained

(Kouptsov, 2008), a system’s complexity is independent of its size–“the self-similar

structural production does not increase complexity” (Haasdijk et al., 2013). This

conclusion leads to the notion that “structural production rules parameterized by

random (environmental) values may lead to infinite growth of complexity and

diversity and are candidates for the unbounded self-concept” (Haasdijk et al., 2013).

Before moving on, I feel it is important to make clear the difference between

complexity and complication. Complicated systems are (ideally) explicitly and

thoroughly designed (e.g., the Space Shuttle). They rely on expertise and careful

division of tasks. Complex systems, on the other hand, are typically much less

defined and controllable. They often have many moving parts, so to speak, and are

theoretically capable of significantly greater degrees of adaptation (and perhaps

even self-development) than complicated systems.

26

How should we control long-term unbounded self-development?

The controlling of self-development processes in artificial systems is both

challenging and crucial, due to their ability to change their own structure and

regulative/functional mechanisms. “Artificial adaptive systems with a high degree

of plasticity (Levi & Kernbach, 2010) demonstrate a developmental drift” (Haasdijk

et al., 2013). Developmental drift is the divergence of the system’s properties and

behavior from the system’s goal, caused by the very independence and autonomy

that enables self-development. The consequences of large-scale developmental drift,

if carried far enough, lead to complex and self-aware artificial systems that may have

different goals than we do (e.g., the “Terminator” scenario, in the extreme case).

Ever increasing complexity and unbounded self-development/concept in

collective robotic systems could lead to emergent phenomena that are nearly

impossible to trace back to a definable cause: artificial societies and cultures

(Winfield & Griffiths, 2010), bio-technical hybrid systems (Novellino et al., 2007),

animal-robot mixed societies (Caprari, Colot, Siegwart, Halloy, & Deneubourg,

2005), and synthetic biology (Alterovitz, Muso, & Ramoni, 2009), for example

(Haasdijk et al., 2013). Currently, we do not have a good answer to the problem of

controlling unbounded self-development, but this is an active area of research. For

example, Stepney et al. address the engineering of emergence (and therefore,

self-development) in the context of molecular nanotechnology via the Theory

Underpinning Nanotech Assemblers project (Stepney, Polack, & Turner, 2006), but

the study of this subject is still in its youth.

2.5.2 Developmental plasticity of collective systems

Developmental plasticity, like other concepts in collective robotic systems,

originally comes from biology. It means different things to different disciplines of

biology, but for example, neuroscience defines developmental plasticity as changes in

27

Figure 2.3. Sketch of the self-developmental approach in the functional case [of

developmental plasticity] (Haasdijk et al., 2013).

neural connections, due to environmental stimuli (Foehring & Lorenzon, 1999). Of

course, since robots do not yet possess any decent facsimile of a biological brain,

developmental plasticity in (collective) robotics means something different. “The

developmental plasticity of collective systems expresses a degree of flexibility and

changeability of different regulative, functional, structural, or homeostatic

components during the runtime” (Haasdijk et al., 2013; Kernbach, 2008).

Self-development and self-adaptation in collective robotic systems rely on

developmental plasticity; it is the underlying enabler of self-driven change.

Collective robotics breaks developmental plasticity into two categories: functional

and structural. In the functional case, macroscopic properties are related to

macroscopic behavior, like flocking, foraging, and aggregation (Haasdijk et al., 2013;

Sahin, 2005). In the structural case, macroscopic properties correlate with common

structures, which the robots aggregate to and act collectively to share resources

(Haasdijk et al., 2013). Since function relies on structure, changing the structure

also changes the functionality (and behavior) (Kernbach, 2008).

2.6 Is self-development/repair necessary in collective robotic systems?

The short answer, much like the beginning of this paper, is no. One could

design a collective robotic system that had no ability for self-development or

28

Figure 2.4. Sketch of the self-developmental approach in the structural case [of

developmental plasticity] (Haasdijk et al., 2013).

29

self-repair. In fact, such a task would likely be trivially easy when compared to the

challenge of designing useful emergence.

However, the short answer is not very interesting. Such a question needs

some context and/or constraints. The primary advantage of collective robotics over

“traditional” robotics (i.e., a small number of explicitly controlled machines) is its

flexibility, adaptability, and self-* features. The reason collective robotic systems are

studied so much is that we want to create artificial systems that can do useful work

without a lot of “baby-sitting.” Take, for example, a hypothetical mission to explore

a distant planet. Would we want to send our best humanoid robot? No, of course

not. Such systems are the opposite of robust and adaptable. We would (should)

send a collective system that is designed to exhibit emergent self-development and

certainly self-repair, given its remote and unpredictable environment. So is

self-development/repair necessary in collective robotic systems? For the interesting

ones, yes.

2.7 Biological collective systems (swarms)

The natural world is full of examples of collective systems/swarms. When

engineers look to nature for inspiration about swarms, animals and insects usually

take center stage. From the human perspective, this makes sense, since we can

readily observe animals and insects. Animal and insect individuals tend to be large

enough to see with the naked eye, and they operate in the same magnitude of time

as we do.

Honeybees (Kernbach, Thenius, et al., 2009; Schmickl et al., 2013; Seeley,

Kirk Visscher, & Passino, 2006; Szopek, Schmickl, Thenius, Radspieler, &

Crailsheim, 2013) and ants (Meng & Jin, 2011) are popular choices when engineers

study insect swarms, likely due to the accessibility to and observability of these

species and their dramatic swarm behaviors. Moving up in the food chain, birds and

fish get a lot of attention for the same reasons (Couzin, 2009; Couzin, Krause,

30

James, Ruxton, & Franks, 2002; Giardina, 2008). Nature, however, has more than

insects and animals to offer in the way of collective systems.

2.7.1 Plants as swarms

Considering swarms only as “large groups of simple autonomous agents

interacting locally” (Simes et al., 2011) opens the door to all levels of biology being

studied as swarms, even all the way down to bacteria (Atkinson & Williams, 2009).

Plants fall firmly within such a definition of a swarm. Simoes et al. phrase this idea

nicely (Simes et al., 2011):

All directional growth decisions and a majority of environmental sensing

are made in the apex [(the tip of the root)]. [...] Since there is no

anatomic evidence for a central sensing and decision unit and

considering the rather low computational capacity of a plant cell

(compared to neuronal systems of animals, for example), it appears

meaningful to consider the apex as a simple autonomous unit taking

decisions on own account (Baluska, Mancuso, Volkmann, & Barlow,

2004). [...] When looking at the root as a collective, growth patterns are

not chaotic, but seem to follow a higher order, and emerge as a result of

the individual decision-making of the apexes.

The literature covering plants as swarms and as inspiration for robotics is quite

thin, but some works do exist. Brabazon et al. discussed several plant-inspired

computational algorithms (Brabazon, ONeill, & McGarraghy, 2015), although not

specifically in the context of robotics. Baluka et al. even went so far as to propose

that the tips of plant roots act as a primitive, decentralized brain (Baluska et al.,

2004). Some research attempts to create a synthetic copy of the physical structure

of a plant root, although this is experimental, at best (Mazzolai et al., 2011;

Tonazzini, Popova, Mattioli, & Mazzolai, 2012; Wooten, 2016).

31

European Space Agency study

When we change the focus to looking at plant roots as simply inspiration for

a collective robotic system, rather than a blueprint, many more options become

available. Of primary interest is a report released by the European Space Agency

(ESA) that borrows exploration and nutrient-finding strategies from plants to

explore unknown terrain with a collective robotic system (Simes et al., 2011). The

ESA report discussed the biological factors (such as in (Poovaiah & Reedy, 1995)),

motivations, and justifications (Allen et al., 2007; Doussan, Pagès, & Pierret, 2009),

and presents a simulation of plant root growth (see Figure 2.5). The authors of the

report also provided the beginnings of a framework for a robotic sensor web (Delin

et al., 2005) that is based on their understanding of plant roots (see Figure 2.6),

which provides significant motivation for this dissertation.

Some aspects of plant roots do not transfer directly to a robotic

implementation, such as soil stigmergy (see Figure 2.7) and the scale of branching.

Simoes et al. dealt with the limited branching by choosing to use additional robots

only for branching and not for elongation, which will not work outside simulation

(due to finite wireless radio range). The lack of soil stigmergy was dealt with by

simply keeping each simulated robot up to date with a difference map, which again

is a very non-trivial problem in a real robotic system.

The ESA study directly ties the nutrient-finding strategies of plants to a

robotic system for space exploration. Their methodologies are thorough enough to

provide a foundation for the proposed research but need considerable adaptation

and extension to be implemented in a real robotic system. Since the ESA report so

heavily inspired this research, I contacted the report’s authors to ask about

extending their work. Six out of the seven authors responded with excitement and

offers of assistance, and also asked to be kept abreast of any major progress.

32

Figure 2.5. A root growth simulation at times t = 0 and t = 200. The root extracted

(58.27, 53.95, 73.56) out of a soil initially holding (555.59, 542.37, 499.89), a fraction

of (0.10, 0.10, 0.15) (Simes et al., 2011).

33

Figure 2.6. Sensor Web deployment on scenario A (256 robots) (Simes et al., 2011).

Figure 2.7. Basic components of stigmergy (Heylighen, 2011).

34

2.7.2 Natural inspiration

Why do we look to nature for guidance when studying collective systems?

The simple answer is that nature has it figured out, at least much more than we do.

Honeybees create nurturing hives, ants create thriving colonies, fish survive longer

in schools, plants grow in nearly every Earthly environment, and so on. Biological

collectives display remarkable success, so we attempt to reverse engineer that

success. With regard to swarm robotics, specifically, Garnier stated that “robots

require a complete specification,” which means a formal, mathematical description

must be created that at least approximately quantifies the link between individuals

and the group (Meng & Jin, 2011). An explicit, mathematical description enables

iteration and improvement (e.g., Figure 2.8), which increases both the performance

of the engineered system and our understanding of the biological system. As George

Bernard Shaw said, “Imitation is not just the sincerest form of flattery - it’s the

sincerest form of learning.”

35

Figure 2.8. Finite state automaton that can describe the observed bee behavior

(Kernbach, Thenius, et al., 2009).

36

CHAPTER 3. STARS OF THE SHOW (ROBOTS)

3.1 Brief Introduction to the Experiments

Before talking about the robots, it is important to provide some context

about the tests they execute. Their objective is to, via methods inspired by plant

roots seeking nutrients, locate radio beacons in an area, but without specific

knowledge of the environment. The robots work as a team and must be able to

communicate, as well as determine the directional bias of specific radio signals. The

environments are not strictly controlled, such as in a laboratory, but are assumed to

be flat and free of obstacles (e.g., parking lot). The experiments and methodologies

are discussed further in the coming chapters, but with this minimal explanation, I

can give the basic requirements for the robots.

3.2 Requirements

• Less than $1000 in parts per robot

• Small enough to be easily carried and transported

• Capable of communicating with each other over short distances (<100 meters)

• Capable of tracking the source of a radio transmission

• Enough energy storage to last for roughly a full day (about 8 hours) of

operation

• Field-repairable

37

3.2.1 Build vs. Buy

The dilemma of building versus buying machines like this is one that many

engineers deal with. There are many ready-to-run robotic platforms available today,

but after searching, none of the available platforms met all of the requirements

listed above. Finding a machine that could be made, without undue effort, to do

what I needed it to do was not a problem. Finding that machine for under $1000

was not possible at the time.

The decision to build my own robots for this experiment was a big

commitment. Designing, acquiring, and building the robots took several months.

Working out all of the obvious hardware bugs took another considerable chunk of

time.

3.3 Design

3.3.1 Wireless Communication

Plant roots have physical connection to each other and to the main body.

Since that is not very feasible in the case of mobile robots, a wireless

communication technology had to be employed. The key considerations when

choosing which technology to use were cost, power consumption, and existing mesh

networking capabilities. Mesh networking is required because there is not an

omnipresent central connection point. The robots must be able to operate without a

direct connection to the coordinator, so they need to relay each other’s messages.

Creating such a networking protocol is outside the scope of this research.

Several wireless technologies that meet at least some of these requirements

are readily available. The easiest to acquire and use looked to be Digi’s ZigBee

(specifically, XBee) radios. These radio modules are inexpensive and low-power

when compared to common wireless protocols like IEEE 802.11. ZigBee is designed

to be a stand-alone wireless network for ”internet of things” devices and has a fairly

38

Figure 3.1. XBee radio module.

Figure 3.2. SparkFun XBee Explorer USB.

mature mesh-like protocol. The low-power XBee radios operate at 2.4 GHz, which

made it fairly easy to find antennae. Coupled with a USB board from SparkFun,

these radios fit nicely into the design.

Each robot carries two XBee radios. One is attached to an omnidirectional

antenna and is used for communication with the coordinator and with other robots.

The second is attached to a directional patch antenna and is primarily used for

direction finding (although it does do limited communication). The directional

antenna needed to be as light as possible, since it is mounted relatively high on a

mast, and have as narrow of a beam width as was reasonably achievable to

maximize the precision of the directionality.

39

Figure 3.3. L-Com 2.4GHz directional patch antenna.

After working with these radios, it is apparent that they are not well-suited

for this application. They were certainly not designed for it, and despite fulfilling

the initial requirements, the ZigBee protocol caused, or at least exacerbated,

problems later in development. I will discuss this more in Chapter 5.

Why not use two directional antennae?

Two directional antennae on a mobile robot have been proven to provide

connectivity and enhanced range over omnidirectional antennae (Min, Matson, &

Jung, 2016). The choice to use an omnidirectional antenna as the primary

communication antenna is due to practicality during testing. There are additional

benefits to using only one directional antenna:

• Omnidirectional antennae tend to be less expensive than directional antennae

• Each directional antenna requires a rotation mechanism, which increases the

cost and complexity of each robot

40

Figure 3.4. 6S 6.6Ah lithium polymer battery from HobbyKing.

• Using an omnidirectional antenna for primary communication enables the

option of using the robot itself as the rotation mechanism for the directional

antenna

3.3.2 Electrical

The design of the electrical system is intended to be as easily

assembled/repaired as possible, to allow for field repairs. The primary components

are the battery, voltage regulators, DC motor controller, stepper motor controller,

Arduino Micro, current sensor, fuse, power switch, and the voltage divider. The

battery is a 6 cell lithium polymer (LiPo) that operates at 22.2 volts (nominally). I

chose this relatively high voltage to make it easy to use step-down voltage regulation

for the 12V and 5V components. The batteries have a capacity of 6.6 Amp-hours.

There are three voltage regulators on-board. The 5V regulator is to power

the Raspberry Pi 3 (discussed below). The two 12V regulators provide power to the

stepper motor and the drive motors. I chose to give the stepper motor its own

smaller 12V regulator to avoid loss of power if all the drive motors stalled. The drive

41

Figure 3.5. 12V step-down voltage regulator for drive motors.

Figure 3.6. 12V step-down voltage regulator for stepper motor.

motors have a stall current of 5 A, which would more than consume the large 12V

regulator’s capacity of 15 A. If this happened, the stepper motor would lose power,

which is not desirable. Therefore, the stepper motor has its own voltage regulator.

The drive motors are controlled by a two-channel brushed DC motor

controller. To reduce the cost of each robot, I used the two channels to control all

four wheels by utilizing a skid steer scheme. The wheels (motors) on each side of

the robot are connected together, effectively making the robot steer like a tank. The

motor controller is a RoboClaw 2x7A, meaning each channel can only pull a

42

Figure 3.7. 5V step-down voltage regulator for Raspberry Pi.

Figure 3.8. Controller for drive motors.

constant 7 A. The combined stall current for two motors is 10 A, which exceeds the

controller’s capacity, but I considered the risk of damage to be minimal. None of the

planned test scenarios involved situations where the motors might stall, and the

current draw of two combined motors during operation is less than half of the

controller’s stated capacity.

The robots’ only means of direction-finding is the directional 2.4 GHz

antenna. In order to search in all directions, that antenna needs to rotate, which is

the job of the stepper motor. The stepper motor controller is capable of delivering 2

43

Figure 3.9. Stepper motor to rotate the directional antenna.

A per coil, but the stepper motor is rated for 1 A per coil, giving plenty of extra

capacity. Although the controller is capable of micro-stepping, I use full steps.

There are 200 steps per revolution, or 1.8°per step. Since the antenna has a beam

width of 30°, micro-stepping is overkill.

Interfacing with the stepper motor controller, current sensor, GPS receiver,

and the voltage divider for the battery is the responsibility of the Arduino Micro. I

chose to handle these tasks with an Arduino, rather than directly with the

Raspberry Pi, because the software libraries are more available for Arduino. The

Arduino is powered via USB to the Raspberry Pi, and the 5V output of the Arduino

provides power to the current sensor, stepper motor driver, and GPS receiver.

The original plan was to measure voltage and current concurrently, thus

providing the data necessary to calculate power usage. The current sensor was

chosen to provide as much resolution as possible within the amperage range the

robots pull. The output of the sensor is an analog voltage which is connected to one

of the Arduino’s analog pins, enabling rapid reading of current consumption to

make the power calculation as accurate as possible. As development of the system

progressed, it became clear that the amount of ZigBee network traffic was a choke

point, so the current sensor readings were not sent. Still wanting to have some

measure of power consumption, I had two options. First, I could store the current

44

Figure 3.10. Arduino Micro.

Figure 3.11. Current sensor.

and voltage measurements on the Raspberry Pi and extract them after a test.

Second, I could measure the voltage of the battery after every test and, combined

with a characterization of the battery, calculate the power consumed during that

test. For the sake of simplicity and time, I chose the second option.

45

The aforementioned voltage divider consists of a fixed resistor and a

potentiometer, with an analog Arduino pin connected between them. Equation 3.1

describes a voltage divider.

V out = V in ∗
R2

R2 + R1

(3.1)

Knowing that a 6S LiPo battery has a fully-charged voltage of 25.2V gives us Vout.

The corresponding Vin should be 5V. Selecting a common 3.9kΩ resistor, plugging

these values into Equation 3.1, and solving for R2:

R2 ≈ 965Ω (3.2)

A potentiometer with a maximum resistance of 1kΩ would probably work, but to

avoid any issues associated with the manufacturing vagueries of inexpensive

potentiometers, I chose to go up to 2kΩ.

Since the Arduino can not handle the battery’s voltage directly, the

potentiometer is adjusted such that when the battery is fully charged, the Arduino

reads 5V (or an analog-to-digital converter output of 1023) on its pin. The

ATmega32U4 at the heart of the Arduino has 10-bit analog to digital converters.

Combined with the maximum 5V rating of the ATmega32U4’s pins, the resolution

of the ADC = 5V/210 ≈ 0.0049V .

The selected resistances give a voltage divider ratio of R1/R2 = 4.04. To map

the ADC values to battery voltages, multiply each voltage ”chunk” by the voltage

represented by the ADC values:

V = (valueADC ∗ resolutionADC ∗ 1) + (valueADC ∗ resolutionADC ∗ 4.04) (3.3)

Equation 3.3 shows that a battery voltage of 20V, for example, corresponds to an

ADC value of 810.

46

A slow-burn fuse rated for 20A was chosen to roughly correspond to the

maximum power draw of all the voltage regulators combined, while allowing for

transient spikes. The power switch is a matter of convenience and is a simple single

pole, single throw (SPST) toggle switch.

One more thing...

Each robot carries a GPS receiver. This receiver is not used for

localization or navigation. It was intended to be used simply to log

each robot’s position during tests to facilitate nice-looking diagrams.

Due to time constraints, I abandoned this effort.

3.3.3 Computation

The primary piece of computational equipment is the Raspberry Pi 3 (RPi),

with the Arduino Micro providing limited support, as described previously. The RPi

is not doing any particularly heavy numerical computation (although it is doing

some arithmetic, finding mean and median, etc.). Rather, it is running multiple

Python threads (via Robot Operating System, discussed later) that manage

asynchronous input and output, constituting a sort of state machine.

3.3.4 Mechanical/Physical

Selecting a chassis to carry all of the discussed equipment was an important

part of the design process. Initially, I considered constructing a custom chassis, but

eliminated this option as it became too much of a time/resource sink. None of the

components are particularly heavy or hazardous, so a relatively simple plastic

chassis made by ServoCity fit the bill. Out of the ten robots I built, eight are

ServoCity’s Scout and two are the Warden. They function the same, but I had to

mix the chassis designs due to supply issues. The electronic components are bolted

47

Figure 3.12. Electrical schematic for the robot.

48

Figure 3.13. Raspberry Pi 3 Model B.

to the chassis (on top of standoffs). The battery is contained by either bolts (on the

Warden) or a 3D printed cage (on the Scout).

One of the reasons I chose ServoCity’s chassis kits was the compatibility with

their Actobotics aluminum structural components. Actobotics allowed me to

construct a solid, rotating mast to mount the directional antenna and stepper motor

to (and various other components, in the case of the Warden). After a tricky trial

and error process, I had a reliable, reproducable mast design.

49

Figure 3.14. ServoCity Scout robot chassis.

Table 3.1.: Bill of materials for the robots. Does not

include wires, cables, screws, bolts, nuts, etc.

Component Vendor Dollars Quantity

Scout chassis kit ServoCity 169.99 8

Warden chassis kit ServoCity 199.99 2

RoboClaw 2x7A motor controller ServoCity 69.99 10

50

Component Vendor Dollars Quantity

XBee radio module DigiKey 18.19 20

XBee Explorer USB SparkFun 24.99 20

Raspberry Pi 3 Amazon 38.00 10

MicroSD memory card Amazon 5.99 10

6S LiPo battery HobbyKing 42.30 10

Stepper motor (35STH36) Phidgets 16.00 10

A4988 Stepper Motor Driver Carrier Pololu 7.49 10

8dBi Omnidirectional Antenna Amazon 7.99 10

14dBi Flat Panel Antenna (HG2414P) L-Com 57.96 10

12V, 15A Step-Down Regulator Pololu 39.95 10

12V, 2.2A Step-Down Regulator Pololu 9.95 10

5V, 2.5A Step-Down Regulator Pololu 8.95 10

Arduino Micro DigiKey 20.63 10

XT90 pigtail connector Amazon 7.99 10

2kΩ trim potentiometer DigiKey 0.78 10

3.9kΩ resistor DigiKey 0.10 10

100uF capacitor DigiKey 0.36 10

ACS715 Current Sensor Carrier Pololu 9.95 10

51

Component Vendor Dollars Quantity

NEMA 14 stepper motor mount ServoCity 6.99 10

0.77” pattern set screw hub ServoCity 4.99 10

Side Tapped Pattern Mount D ServoCity 5.99 30

90°angle bracket ServoCity 4.99 40

12” aluminum channel ServoCity 9.99 16

10.5” aluminum channel ServoCity 8.99 2

3”x1.5” pattern plate ServoCity 1.59 20

4.5”x1.5” pattern plate ServoCity 1.99 10

Fuse holder Amazon 2.98 10

Glass tube fuse Amazon 0.79 20

Power switch (SPST toggle) Amazon 11.99 10

Screw terminal (4-pin) Pololu 2.25 10

Screw terminal (2-pin) Pololu 2.25 70

Perma-Proto breadboard pack AdaFruit 12.50 7

3.4 Construction

Deciding on the design and components was only part of the battle.

Constructing the first robot was a tricky task. I had to figure out component layout,

wiring, develop a workflow, and work out hardware bugs before moving on to

52

Figure 3.15. ServoCity Warden robot chassis with some Actobotics aluminum

structural components.

building the other robots. The primary considerations during this process were

structural soundness and field repairability, since the robots would have to be

transported to and from, as well as be repaired in, the field. Minimizing the number

of wires traversing between the inside and top chassis layers was important, since

these all have to be disconnected to remove the top for repairs/adjustments. The

fuse, for example, would be easiest to replace if it was placed on top of the robot.

However, that meant two more thick wires going to the top, so I placed it on the

53

Figure 3.16. AdaFruit Perma-Proto Board.

edge of the bottom chassis plate. This placement allows easy replacement and does

not cause unnecessary wire runs.

Securing each component to the chassis required the use of plastic standoffs

and nuts/bolts of varying sizes, which meant drilling dozens of holes. The next step

was constructing and soldering the proto-board circuitry; a tedious, slow, delicate,

occasionally injurious process. All structural hardware, both for the chassis and the

Actobotics components, was installed with a threadlocker compound so I wouldn’t

have to worry about anything jiggling loose during testing.

3.5 Beacons

None of this effort would amount to much if the robots had nothing to find.

Radio beacons serve as the ”resource” that the system is seeking. Using radios,

specifically the same type of radios onboard the robots, means no additional sensors

are needed. Additionally, and perhaps more importantly, the use of radio beacons

provides a natural gradient for the robots to follow (like chemicals in the soil being

sought by plant roots). Early attempts at establishing a gradient for the robots to

sense and follow included sound and color, but these were quickly disqualified. Sonic

beacons provide a natural gradient, but would require test conditions that would be

54

Figure 3.17. (A) Battery connector. (B) Fuse. (C) 12V regulator for drive motors.

(D) Current sensor. (E) Power switch. (F) Drive motor controller. (G) Arduino

Micro. (H) Stepper motor driver. (J) Drive motor. (K) Stepper motor connector.

Table 3.2.

Bill of materials for the beacons.

Component Vendor Dollars Quantity

Arduino Uno SparkFun 24.95 10

XBee Arduino shield SparkFun 14.95 10

XBee module DigiKey 18.19 10

AA battery holder Amazon 4.39 10

2.4GHz 8dBi Omnidirectional Antenna Amazon 7.99 10

difficult to ensure. Color is less prone to environmental interference (although not

immune), but it does not provide a natural gradient. The idea of repeatedly

creating color gradients of some sort (in loosely controlled conditions) is rather

unappealing, so radio beacons were the winner.

55

Figure 3.18. (L) GPS receiver. (M) Battery cage. (N) Battery. (O) Power switch.

(P) Stepper motor.

3.6 Software and firmware

The software and firmware running the system are split into four

components: beacons, each robot’s Arduino, each robot’s RPi, and the Nexus.

Much, but not all, of the roadmap for the software development was based on

intuition and revision through testing. There were two key components that I

pre-determined: the overall architecture for the robots’ Raspberry Pis and for the

nexus. The robots were conceived as state machines, of a sort. In early revisions of

the system, this manifested as one giant, multi-threaded Python script, then moved

to each state being its own Python script with state and other relevant data being

56

Figure 3.19. (Q) Raspberry Pi 3. (R) XBee radio used for communication.

passed between scripts. However, this approach proved nothing but problematic,

even after several complete rewrites. I eventually switched over to Robot Operating

System onboard the robots, which is discussed in Chapter 4. The nexus is still

essentially what I intended it to be from the beginning. It acts as a point of

deployment for the robots, monitors the system, and dispenses resources when

requested, similar to some of the functions of the main body of a plant.

My intuition was aided by, or anchored to, a somewhat top-down design

methodology within each ”piece” of software. Accordingly, I determined what

needed to be accomplished, processed, output, etc., then built functions and scripts

to assemble a code structure for that purpose. As these ”pieces” came together,

system functionality coalesced. Figure 3.30 looks chaotic, but it is a good

57

illustration of the result of this design methodology. Each ROS node (oval) is its

own Python script, with messages between ROS nodes represented as arrows. Per

my original architecture for the robots’ software, each state has its own ROS node.

As development continued, I added supporting ROS nodes and messages when I

thought it logical to separate functionality.

3.6.1 Robots

Arduino Micro

The general idea of this code is to interface with the GPS receiver, current

sensor, battery voltage divider, and stepper motor driver. Additionally, it

communicates this data to the RPi upon request. Figures 3.22 and 3.23 illustrate

the robot’s firmware.

Raspberry Pi

Each robot’s RPi is using Robot Operating System (ROS) to manage its

software by running ROS locally. ROS is not used to communicate between robots

or to the Nexus. Its use onboard the robots arose from the difficulty of managing an

asynchronous, multi-threaded software system (which is discussed more in Chapter

4). An overview of the robot’s software is provided in Figures 3.24, 3.25, 3.26, 3.27,

3.28, 3.29, and 3.30.

3.6.2 Beacons

The XBee radio beacons broadcast a simple packet every n seconds to enable

the robots to find them. When a beacon is found, it is sent a message to stop

broadcasting. Once the ”resource” is located, the system should not waste energy

finding that same ”resource” again. This disabling of a beacon is not directly

communicated to the other robots. Instead, the disabling of the beacon

58

communicates its status through stigmergy, like the depletion of chemicals in plant

root-bearing soil. Figure 3.31 illustrates the beacon’s operation.

3.6.3 Nexus

The Nexus is essentially a collection of ROS nodes running on a computer

connected to an XBee radio that is in ”Coordinator” mode. The Nexus has a few

roles to play, but does not actively make navigation decisions for the robots. The

robots do that for themselves. The Nexus initiates the system by checking which

robots are present and healthy, dispensing parameters to them, deploying them, and

managing which requests get approved when there are not enough idle robots to

accommodate all the requests. Figures 3.32, 3.33, 3.34, and 3.35 describes the

Nexus’s behavior.

59

Figure 3.20. (S) Omnidirectional antenna. (T) Directional patch antenna. (U) XBee

radio used primarily for direction-finding.

60

Figure 3.21. The beacons consist of a battery pack, an Arduino Uno, an XBee shield,

and the XBee radio.

61

Figure 3.22. First part of the flowchart of the firmware for the robot’s Arduino Micro.

62

Figure 3.23. Second part of the flowchart of the firmware for the robot’s Arduino

Micro.

63

Figure 3.24. Flowchart of the software on each robot’s Raspberry Pi.

64

Figure 3.25. Flowchart of the software on each robot’s Raspberry Pi. Red indicates

something that was in the initial design but was removed.

65

Figure 3.26. Flowchart of the software on each robot’s Raspberry Pi. Red indicates

something that was in the initial design but was removed.

66

Figure 3.27. Flowchart of the software on each robot’s Raspberry Pi.

67

Figure 3.28. Flowchart of the software on each robot’s Raspberry Pi. Red indicates

something that was in the initial design but was removed.

68

Figure 3.29. Flowchart of the software on each robot’s Raspberry Pi.

69

Figure 3.30. Graph of ROS architecture on each robot’s Raspberry Pi.

70

Figure 3.31. Flowchart of the beacon’s firmware.

71

Figure 3.32. Flowchart of the Nexus’s process for initializing nodes (robots).

72

Figure 3.33. Flowchart of the Nexus’s process for monitoring nodes (robots).

73

Figure 3.34. Flowchart of the Nexus’s process for handling extension requests from

nodes (robots).

74

Figure 3.35. Flowchart of the Nexus’s process for reassigning deployed nodes (robots)

to accommodate new requests.

75

CHAPTER 4. (ADVENTURES IN) METHODOLOGY AND TESTING

Adapting the nutrient-finding strategies of plants to a robotic system

requires many carefully-assembled pieces, such as developing the robots themselves,

emulating the communication that physically-connected roots have, emulating the

decisions and behavior of root apices, addressing the lack of inherent stigmergy, and

dealing with a scarcity of root-extending resources (i.e., robots) that plants do not

share to the same degree. This study is inspired by a 2011 report released by the

European Space Agency (ESA) (Simes et al., 2011) that studied the nutrient-finding

methods of plants and how those methods might be applied to a robotic system.

4.1 Similarities to and differences from plant roots

Simply stated, the goal of the robotic system is to locate ”nutrients”

(represented by radio beacons) in an unmapped environment. The robots are placed

in the unmapped environment and spread out to explore the environment in search

of nutrients. As discussed in the previous chapters, plant roots provide inspiration

for this study, due to their success in a very limiting environment (soil). The

primary features being borrowed from plant roots are:

• Mostly decentralized processing and decision-making

• Exploratory actuation consisting only of elongation and branching

• Limited environmental sensing

• Following nutrient gradients

• Indirect communication with other parts of the root system via stigmergy (i.e.

radio “nutrient” beacons being turned off once found)

76

However, a full and direct transfer of plant roots into a robotic system is not

yet feasible, so some adaptation and substitution is required:

• Rather than moving through the ground, the robots move on top of it.

• Root apices are physically connected to the rest of the plant system. Since

pulling tethers around is not very practical, the robots use wireless

communication to attempt to emulate the physical connection.

• Plant roots follow chemical gradients in the soil, which would be difficult to

control for testing purposes. Instead of chemicals, radio beacons are used to

represent nutrients, due to the ease of detection and inherent gradient they

provide.

• When a root system creates a new branch that does not find nutrients, the

resources used to create that branch are not directly reclaimed. In the robotic

system, unsuccessful branches are eventually reclaimed and reassigned, due to

the severely constrained resources for growth, compared to a plant root.

4.2 Operational Overview

I will use an example to illustrate the intended operation of the system.

When the nexus is activated, nodes 1 and 2 will be in apex mode and will start

moving away from the nexus (Figure 4.1(a)). Apex mode (represented by triangles

in the figures) means the node is searching for nutrients and is capable of making

elongation and branching decisions. Elongation occurs when an apex node wants to

continue moving in one direction, but has reached the end of its wireless range.

Branching occurs when an apex node finds two directions of interest. There are sure

to be scenarios in which an apex node finds more than two directions of interest,

but for the sake of this study, branching will be limited to two children.

When node 1 reaches the end of its wireless range, it communicates an

elongation request to the nexus. The nexus then releases node 3, which tracks

77

toward node 1 via the onboard directional antenna. When node 3 reaches node 1,

node 3 “bumps” node 1 and replaces it, which results in node 1 moving away from

node 3 in the elongation direction (Figure 4.1(b)). This action is analogous to a

plant root growing. Node 3 is now in relay edge mode. The possible modes that

each node can be in are described in Section 4.2.1.

Node 2 decides to branch, so the nexus sends the first of two additional

nodes toward node 2. Using the same bumping procedure as before, node 4 replaces

node 2 (Figure 4.1(c)). Then, to complete the branching, node 5 replaces node 4

(Figure 4.1(d)). Finally, node 2 requests elongation, so node 6 is released from the

nexus, bumping node 5, which then bumps node 2 and sends it in the direction of

elongation (Figure 4.1(e)). Notice that only the outermost nodes are in apex mode,

with nodes 3, 5, and 6 acting as relays.

The nexus has now deployed all the nodes, but the system does not just sit

still. Node 4 requests elongation, but since there are no available nodes, the nexus

determines if any of the apices are not supplying enough nutrients (i.e. not

detecting a strong enough signal). In this case, node 2 is not meeting the threshold,

so it gets reassigned to elongate node 4 (Figure 4.2). This process continues until

one of the termination criteria is met.

4.2.1 Modes

Each node is capable of being in four modes: apex, relay edge, relay, or

transition. Apex mode is active when a node is the outermost node in its branch, or

put another way, when the node does not have any children. In Figure 4.1(e), nodes

1, 2, and 4 are in apex mode. Being an apex means being an explorer, so an apex

node’s directional antenna is actively scanning for nutrients (recall that nutrients

are represented by radio beacons in this study). Being an apex also means making

decisions about when and where to elongate and branch.

78

Nexus

1 2

3 4 5 6

(a)

Nexus

3 2

1

4 5 6

(b)

Nexus

3 4

1

2

5 6

(c)

Nexus

3 5

1

2

4

6

(d)

Nexus

3 6

1

5

4

2

(e)

Figure 4.1. Example deployment scenario.

79

Nexus

3 5

1

2

6
4

Figure 4.2. Node reassignment in example deployment scenario.

80

initialization;

while signal strength is below bump threshold do

scan for direction of target node;

if direction is not current heading then

turn to face direction of target node;

end

move forward;

measure signal strength;

end

stop moving;

exit Transition mode;

adopt role of target node;

Algorithm 1: Bumping
Relay mode accomplishes what its name suggests. When a node is in relay

mode, it acts as a wireless relay between its parent and child/children, enabling the

growth of the system. In Figure 4.1(e), nodes 3, 5, and 6 are in relay mode. The

nexus is always in relay mode, albeit an enhanced relay (known as the ZigBee

Coordinator).

Relay edge mode is similar to relay mode, but is active when a relay node

only has one child. In this mode, the node will scan for any signals of interest

(except the one being sought by its child). If any are located, the node will request

an extension in an attempt to track this signal. The node will not, however, move

until it is bumped by another node, because it is acting as a relay for its child.

Moving could affect its connection to its child and/or parent.

Transition mode is active when a node is moving toward another node that it

is going to bump. A node in transition mode is using its directional antenna to

track toward the node to be bumped, stopping when the received signal strength is

high enough to indicate a “collision.” At this point, the transitioning node becomes

a relay and the bumped node enters into transition or apex mode.

81

4.2.2 Bumping

As implied in the previous sections, bumping is the term I am using to

indicate a node “colliding” with another node. Collision, in this context, does not

mean a physical collision, but rather a received wireless signal strength that is

sufficient to consider the two nodes to be collocated. The bumping threshold will be

fairly imprecise, due to the noisy nature of these types of wireless signals, but will

have to suffice in the absence of any other proximity sensors.

The alternative to bumping is for nodes to go around each other, but reliably

navigating around another node with only wireless signal strength as a guide would

be very difficult. I could put additional sensors on the nodes to allow for more

reliable navigation around each other, but more sensors means more cost and more

complexity, both of which I am attempting to minimize.

Result: Newly-arriving node replaces existing node.

initialization;

while signal strength is below bump threshold do

scan for direction of target node;

if direction is not current heading then

turn to face direction of target node;

end

move forward;

measure signal strength;

end

stop moving;

exit Transition mode;

adopt role of target node;

Algorithm 2: Bumping

82

4.2.3 Elongation

A node makes the decision to elongate (i.e. request an extension) when it

reaches the end of its wireless range from its parent. For an apex node, this may or

may not involve detection of a signal of interest. For a node in relay edge mode,

elongation is only requested if a signal of interest (other than the signal being

sought by its child) is detected. This situation could also be called branching.

Result: Elongation of a branch.

initialization;

if wireless range reached (or moving prohibited) then

request elongation;

while request awaiting approval do

if request timeout reached then

repeat request;

end

end

wait for bump;

transfer role to newly-arrived node;

resume tracking toward direction of interest;

end

Algorithm 3: Elongation

4.2.4 Signal Strength as Nutrient Flow

In the ESA report that inspired this study (Simes et al., 2011), the authors

suggest treating data flow from the nodes as analogous to nutrient flow in a plant

root. The purpose of this would be to implicitly determine the amount of

scientifically interesting data being produced by each apex, thus enabling a more

direct transfer of the plant analogy to the robotic system. In my robotic system,

this nutrient flow would be represented by the signal strength of the radio

83

“nutrient” beacons being detected by apex nodes and reported to the nexus. If the

nodes were detecting a larger variety of nutrients, adding this layer of abstraction

may prove useful in the design and interpretation of the system. However, since the

nodes in this study are only detecting one nutrient, I will leave the application of

this analogy to the reader.

4.2.5 Simultaneous Requests

The nexus is not directly controlling the actions of the nodes, so it is possible

that the nexus will receive nearly simultaneous requests for elongation. Ideally, the

nexus would have perfect information about all requests that will be made during

the course of a test. Since that is not the case, the nexus services requests at a

regular interval, rather than immediately upon receipt. This allows the nexus to do

limited optimization of the requests it has at any given time.

4.3 Test Locations

Finding a location to test this system proved to be a bit of a challenge. Even

at small scale, there are several characteristics that a location must have. When

combined, those characteristics eliminate most locations. The primary

considerations were unrestricted (mostly, at least) access, no foot or vehicle traffic,

as large as reasonably possible, not subject to excessive radio interference/reflection,

flat, and free of obstacles. That effectively leaves remote, unused parking lots as the

only viable option, but those are few and far between.

Throughout development of the system, I did not have regular access to such

a location, so I had to bounce around to different locations, most of which were

pretty far from ideal. These locations included the top level of a parking garage

(Figure 4.3), an unused planting bed (during the winter) at a greenhouse (Figure

4.4), an empty church sanctuary (Figure 4.5), the gravel parking area of a rugby field

(Figure 4.6), and several school parking lots after hours (Figures 4.7, 4.8, and 4.9).

84

Figure 4.3. Testing location: the top level of a parking garage.

85

Figure 4.4. Testing location: unused planting bed of a greenhouse during the winter.

86

Figure 4.5. Testing location: an empty church sanctuary.

87

Figure 4.6. Testing location: the parking area of a rugby field.

88

Figure 4.7. Testing location: a school parking lot after hours.

89

Figure 4.8. Testing location: a school parking lot after hours.

90

Figure 4.9. Testing location: a school parking lot after hours.

91

4.4 Variables

The independent variables for this study are:

• Number of nodes that deploy at initialization

• Time to wait for initial deployment to complete

• Number of nodes participating

• Time to wait for confirmation of parameters being received by nodes

• Signal strength required of node’s best detection to avoid reassignment

• Interval for servicing new requests

• Number of beacons available

• Maximum duration of trial

• RPM of stepper motor for the directional antenna

• Duration of turn interval while seeking a specific signal

• Interval for sending broadcast ”beep” messages

• Timeout for ”clear to send” for the XBees

• Duration of driving forward while searching

• Speed of backward wheel spin

• Speed of forward wheel spin

• Ratio of right/left wheel spin speeds during a turn

• Ignore GPS status (for in-lab testing)

• Voltage of batteries to be considered depleted

92

• Maximum number of times the robot will rotate when searching for a signal

• Difference in RSSI values that is required to consider a value an outlier

• Number of packets required for a search step to complete

• Timeout for waiting to receive required number of packets

• Number of stepper motor steps per search step

• Signal strength required to bump

• Signal strength required to consider a detection to be valid

• Signal strength required to disable a beacon

• Sensitivity gain for matching RSSI values

• Signal strength at which the robot is at maximum range from its parent

• Interval for sending status messages to the Nexus

The dependent variables for this study are:

• Ratio of located nutrients to available nutrients

• Energy required to locate particular ratios of available nutrients

4.5 Measure of Success

The only major, meaningful measure of success is showing that a low-cost,

plant-inspired, robotic exploration system is feasible.

4.6 Simulation, or lack thereof

Rather than following directly in the footsteps of the authors of (Simes et al.,

2011), I chose not to use neural networks, at least for this first phase of the study.

93

Instead, the control scheme is more akin to a traditional state machine. I did not

see how simulation of such a system would further my efforts to gauge the feasibility

of the system.

4.7 An abridged version of the road so far

Projects like this one tend to be difficult and fraught with problems. This

project was no exception. Getting the system to where it is now has been a long

road that has somewhat diverted from the original plan.

The Python code that runs on each robot’s RPi started out as a single

Python script. Since a robot does not know when it will receive messages, the

software must be able to cope with asynchronous input. The default method of

handling such a situation is to use threading, which Python has standard libraries

for. As the complexity grew, this architecture became unwieldy and increasingly

difficult to predict. Long days and nights of attempting to corral this situation

(such as shown in Figures 4.10 and 4.11) resulted in several complete rewrites of the

robots’ software, but to no avail.

Confusing and frustrating behavior from the robots continued to the point

where I questioned the directionality of the directional antennas. No antenna acts

like a laser, even high-quality antennas, as evidenced in Figure 4.12. I tried to shield

the back and sides of the antenna with aluminum foil, even extending that foil into

a box in front of the antenna (see Figures 4.13, 4.14, and 4.15), but none of this

helped and it proved to be too much for the stepper motor to control.

Taking things a step further, I sought out antenna configurations that were

favored for their controllable directionality. The two configurations I chose were the

”cantenna” and the parabolic dish. The problem is that these types of antennas

tend to be heavy and bulky, by this project’s standards. The fastest and least

expensive solution was to design and build my own antennas, using CAD software

and consumer-grade 3D printing. Figures 4.16 and 4.17 show the CAD models for

94

Figure 4.10. Developing and testing the system out of a trailer.

95

Figure 4.11. Developing and testing the system out of a trailer.

96

Figure 4.12. RF antenna gain pattern of L-Com HG2414P antenna, per the

manufacturer’s datasheet.

the frames of these antennas. Figures 4.18 and 4.19 show the antennas mounted to

a robot for testing. To keep the antennas as lightweight and wind-resistant as

possible, I printed the frames out of PLA plastic and glued aluminum screen (the

kind used for screen doors) into them. This combination was as radio-opaque (for

2.4GHz, at least) and wind-transparent as I could quickly create. The parabolic

dish antenna is only a section of a parabola, because I am not concerned with the

vertical performance of the antenna. Using only a section made the antenna lighter

and easier to construct.

Testing revealed that my custom-built antennas were not any better than

L-Com’s panel antenna. In fact, they were a bit less directional. Figure 4.20 shows

that the difference in signal strength (i.e. the bias) at different angles to the source

was the strongest for the original panel antenna.

Satisfied that the performance of the antenna was as good as could be

reasonably expected, I concluded that the problematic behavior was due to

97

Figure 4.13. Unsuccessful attempt to attenuate unwanted RF radiation with

aluminum foil.

98

Figure 4.14. Unsuccessful attempt to attenuate unwanted RF radiation with

aluminum foil.

99

Figure 4.15. Unsuccessful attempt to attenuate unwanted RF radiation with

aluminum foil.

100

Figure 4.16. CAD model of my do-it-yourself parabolic dish section frame.

101

Figure 4.17. CAD model of my do-it-yourself ”cantenna” frame.

102

Figure 4.18. Custom-made parabolic dish section antenna.

103

Figure 4.19. Custom-made ”cantenna”.

104

Figure 4.20. Comparison of directional bias of three types of directional antennas.

105

code/algorithm issues, despite the many months of effort already spent on that

avenue.

I had previously chosen not to use Robot Operating System (ROS) on the

robots because I did not want to figure out how to get ROS to communicate

through the XBees. Revisiting this decision, though, introduced the idea of using

ROS locally to manage the many threads and asynchronous input that the system

requires. ROS is a mature, stable software ecosystem that is quickly becoming a

standard tool for anyone working with robotics. Assuming at least some of the

issues I had been dealing with were due to my multi-threaded architecture, I

completely rewrote the robot’s software again, this time using ROS (see Figure 3.30

for an illustration).

The move to ROS onboard the robots was a good one. The robots were

behaving more correctly, more reliably, and more predictably. However, this

iteration of the software had its share of bugs and problems, too. Despite working

much better than previous versions, the system was still very far from perfect.

Nonetheless, development and testing moved forward.

4.8 Practical odds and ends

Moving from a lab environment to the field requires some forethought and

extra steps. Mostly for the benefit of anyone who happens to read this looking for

some tips from experience, I’ll briefly talk about the key odds and ends I needed to

be effective in the field.

4.8.1 Connecting to the robots for development and debugging

The ability to write code and monitor debugging output in the field is vital

for a project like this. To enable those things, I set up an inexpensive WiFi router

for the robots and gave each one of them a static IP address. Along with a Virtual

106

Network Computing (VNC) server running on the RPi, this setup allowed me to

connect to and develop directly each robot while in the field.

4.8.2 Shutting down and rebooting the robots

Properly shutting down or rebooting the RPi is important to avoid data

corruption. Connecting to each robot via SSH or VNC to shut them down every

time is cumbersome. Additionally, the WiFi router needed to be disabled during

testing so as to not interfere with the XBees running on 2.4GHz (which it very

much did). My solution was to run a small Python script in the background that

monitored two of the RPi’s general purpose I/O pins, one for shutting down and one

for rebooting. I then connected a jumper wire to the 3.3V pin on the RPi, briefly

connecting it to one of the two monitored pins to initiate the desired action.

4.8.3 Deploying code changes to all robots

In most situations, all the robots need to be running the same code, since

their roles throughout the trial are not predetermined. Copying and pasting code

via SSH or VNC is inconvenient and error-prone, so I needed a better solution. I set

up the robot’s code within a Git repository, which provides a mechanism for code

deployment. However, the robots need a Git server to pull from, so when I was

actively developing/debugging, I used one robot as a development machine. Once I

was satisfied with a code change, I would commit it to the Git repository and use

Git’s ”serve” tool. This temporarily runs a Git server for the onboard repository,

which the other robots can pull from, thus deploying the code to all the robots

quickly and reliably.

107

4.8.4 Running software automatically

None of these tools and techniques are worth anything if I have to connect to

each robot to manually initiate them. They all need to run when the RPi boots up.

To accomplish this, I wrote a Bash script that starts the VNC server, runs the

shutdown/reboot script in the background, and attempts a Git ”pull” to grab any

new code that might be available from the development robot. Once those tasks are

done, the Bash script runs the ROS launch file, which starts everything up and

waits for deployment.

4.9 Testing procedure

Once at the point of attempting to collect performance data, it is very

helpful to have a written checklist, since small mistakes can render entire trials

invalid. I had several versions of checklists, such as those for comparing the

performance of different antenna designs, testing the wireless range in different

environments, etc. The most important checklist is the one used for full-scale data

collection. The steps involved in such a list vary widely between different projects

and situations, but my procedure was a text document that I filled in for each trial:

1. ROS bag name:

2. Check voltage of beacon batteries

3. Place beacons in the field and turn them on

4. Record polar coordinates of each beacon (from Nexus)

• Beacon 1:

• Beacon 2:

• Beacon 3:

• Beacon 4:

108

• Beacon 5:

• Beacon 6:

• Beacon 7:

• Beacon 8:

• Beacon 9:

• Beacon 10:

5. Clear/store any ROS bags that already exist

6. Record robot battery voltages

• Robot 1:

• Robot 2:

• Robot 3:

• Robot 4:

• Robot 5:

• Robot 6:

• Robot 7:

• Robot 8:

• Robot 9:

• Robot 10:

7. Set parameters in ROS launch file

8. Turn on all participating robots (wait 60 seconds for them to boot)

9. Start ROS monitoring on Nexus

10. Run ROS launch file on Nexus

11. Record robot-to-beacon distance when beacons are found

109

• Beacon 1:

• Beacon 2:

• Beacon 3:

• Beacon 4:

• Beacon 5:

• Beacon 6:

• Beacon 7:

• Beacon 8:

• Beacon 9:

• Beacon 10:

12. At termination: rename and store ROS bag

13. At termination: record robot battery voltages

• Robot 1:

• Robot 2:

• Robot 3:

• Robot 4:

• Robot 5:

• Robot 6:

• Robot 7:

• Robot 8:

• Robot 9:

• Robot 10:

14. Notes:

110

Recording the battery voltage for each robot at the start and end of a trial is

necessary because I disabled battery reporting during development, as part of the

effort to simplify troubleshooting. Checking the voltages serves two purposes: first,

it indicates when batteries are depleted, and second, it allows for rough calculations

of the consumed power (after characterizing the battery’s performance, since all

robots carried identical batteries).

Getting the GPS coordinates of the Nexus and the polar coordinates of the

beacons is not strictly necessary. It was done in this case to enable simple

illustrations of the test scenarios/environments.

111

CHAPTER 5. RESULTS AND DISCUSSION

When the system was performing the best it ever had, I ran some trials

under varying conditions. Of course, there were thousands of tests under all manner

of conditions, but those were in the service of development and not representative of

the system as a whole. The example scenario given in 4.2 would be great to see

happen in the field, but that is not quite what happened. I will discuss the trials in

the order that they occurred and attempt to elucidate some of the decisions and

results.

Before testing in each environment, I performed some basic calibration of the

system. This mostly consisted of getting a rough idea of the signal strengths

correlated to distances (as most of the available parameters remained unchanged

after they had been satisfactorily determined during development). For example, to

calibrate the required signal strength for extension requests, I measured the RSSI

that a node received from the nexus as it moved away. When it was at the desired

distance, I noted the RSSI. The same process applied to determining the required

signal strength to disable a beacon or bump another node. While this procedure

was far from perfect, it gave me a rough starting point for experimentation.

The basic model, if you will, behind the experiments is a simplified version of

plant roots growing from a seed (albeit not in every direction). Expanding out from

this starting point, the robots should ”hunt” for the beacons, utilizing each other to

expand beyond their singular range. Plant roots do something similar, although

they are continuous, rather than discrete.

112

Figure 5.1. Layout of the testing area during experimentation (and some

development). The robots started in a line directly in front of the nexus.

One more thing...

There are 10 total beacons, but I did not deploy all the beacons for

each test, mostly due to space constraints. You may notice that the

beacons change between trials, but this was simply due to operational

convenience. All the beacons are identical.

113

Table 5.1.

Results for Trial 1.

Trial Beacon Polar coords. from Nexus Distance when found

1

1 48 ft @ 75° not found

5 73 ft @ 65° 71 ft

9 34 ft @ 105° 30 ft

10 66 ft @ 100° not found

Table 5.2.

Results for Trial 2.

Trial Beacon Polar coords. from Nexus Distance when found

2

1 48 ft @ 75° not found

5 73 ft @ 65° 45 ft

9 34 ft @ 105° 15 ft

10 66 ft @ 100° not found

5.1 Trial 1

Beacons 5 and 9 were found almost immediately, probably indicating that

the signal strength required to ”find” a beacon was too low.

5.2 Trial 2

Robot 5 seemed to struggle to find signals to seek. It drove away from the

beacons (and behind the Nexus) for a few minutes, but then corrected and started

moving toward the beacons. Since the environment was not very controlled, this

could have been the result of reflections off of cars, buildings, etc. Robot 2 did not

drive in the wrong direction, but it fruitlessly searched in circles.

114

Table 5.3.

Results for Trial 3.

Trial Beacon Polar coords. from Nexus Distance when found

3

1 48 ft @ 75° not found

5 73 ft @ 65° 45 ft

9 34 ft @ 105° not found

10 66 ft @ 100° not found

5.3 Trial 3

The conditions for Trial 3 were the same as for Trial 2, including the beacon

locations. Robot 3 drove within a few feet of a beacon, but did not disable it.

However, only Beacon 5 was found at a distance of 45 feet. Robot 3 requested an

extension, which was assigned to Robot 10. After an initial search, Robot 10

bumped Robot 3 without moving. Other extensions requests and bumps started

happening so quickly that I lost track of what was going on. I let the system try to

figure things out for awhile, but eventually terminated the trial, due to the

confusion.

5.4 Trial 4

It seemed that the environment was perhaps too noisy and the robots were

unable to make clear distinctions between signals, so I moved the beacons farther

out. Despite being significantly farther away, Beacon 10 was found quite quickly at

a distance of 83 feet. The signal strength required to disable a beacon was fairly

high, due to what happened with Robot 3 in Trial 3, so this was surprising. Once

that happened, the deployed robots searched for awhile, but couldn’t reliably find

any signals to track.

115

Figure 5.2. Arrangement at the start of trial 3. Squares are robots (nodes) and

hexagons are beacons.

116

Figure 5.3. Arrangement at the end of trial 3. Squares are robots (nodes) and

hexagons are beacons. For the nodes, white = idle, green = apex, yellow = transition,

blue = relay edge, red = relay. For the beacons, red text means that beacon was found.

117

Table 5.4.

Results for Trial 4.

Trial Beacon Polar coords. from Nexus Distance when found

4

1 91 ft @ 120° not found

5 177 ft @ 95° not found

9 178 ft @ 70° not found

10 86 ft @ 75° 83 ft

Table 5.5.

Results for Trial 5.

Trial Beacon Polar coords. from Nexus Distance when found

5

1 48 ft @ 75° not found

5 73 ft @ 65° not found

9 34 ft @ 105° not found

10 66 ft @ 100° not found

5.5 Trial 5

Trying again did not make much of a difference. In fact, no beacons were

found this time, and Robot 2 ended up requesting an extension when it was to the

side of the Nexus, rather than out in the field of beacons.

5.6 Trials 6 and 7

Some amount of failure and poor performance was expected, so I continued

to give the system chances. Trial 6 was the first trial of a new day, so the beacons

moved a bit. Similar results were seen in these trials. Beacon 9 was found in Trial 6,

but at a distance of 100 feet. Beacon 5 was found in Trial 7, at a distance of 65 feet.

118

Table 5.6.

Results for Trial 6.

Trial Beacon Polar coords. from Nexus Distance when found

6

1 69 ft @ 75° not found

4 148 ft @ 80° not found

5 68 ft @ 110° not found

9 116 ft @ 100° 100 ft

Table 5.7.

Results for Trial 7.

Trial Beacon Polar coords. from Nexus Distance when found

7

1 69 ft @ 75° not found

4 148 ft @ 80° not found

5 68 ft @ 110° 65 ft

9 116 ft @ 100° not found

The behavior of the robots seemed to indicate that they were still struggling to

discern signals.

5.7 Trial 8

During development of the system, it was often run with only one beacon

and two or three robots. In an attempt to figure out what was happening, I went

back to such an arrangement. A single beacon (Beacon 9) was placed at 116 ft @

100 degrees from the Nexus and three robots were activated. One of the robots was

even started about one third of the distance to the beacon, but this resulted in that

robot searching many times, then driving toward the Nexus (away from the beacon).

119

Table 5.8.

Results for Trial 8.

Trial Beacon Polar coords. from Nexus Distance when found

8 9 116 ft @ 100° not found

Table 5.9.

Results for Trial 9.

Trial Beacon Polar coords. from Nexus Distance when found

9 9 200 ft @ 90° not found (barely)

5.8 Trial 9

At this point, I was wondering if the environment was somehow attenuating

the radio signals, giving the robots nothing to track. I reduced the deployment to a

single beacon and a single robot, set the power of the XBees to maximum, and put

the beacon straight ahead at about 200 feet. Additionally, the beacon was set on

top of a car to free up more of the Fresnel zone. All of this resulted in the robot

tracking straight toward the beacon and getting within 6 feet of it.

5.9 Trial 10

The beacon (and the car) were moved to about 180 ft @ 75 degrees and the

same system configuration was run. The purpose was to be more convinced that the

success of the last trial was not a fluke. With the same result as in Trial 9, it seems

that the robots are able to track a signal quite precisely. Even better, these trials

demonstrated the self-correcting nature of the algorithm. The robots do not drive

very straight most of the time, so they end up turning away from the signal they are

tracking, but nothing in the algorithm is aware that this happened. Since the robots

stop to scan 360 degrees with the directional antenna, then turn around in a circle

120

with the antenna facing forward to try to find the same signal, they end up

realigning themselves toward the signal with each search iteration.

The beacons’ proximity to the ground appears to have been causing the

issues. Too much of the Fresnel zone was obscured, severely attenuating the signal.

Worse, the pavement obstruction was probably also scrambling the signal.

Table 5.10.

Results for Trial 10.

Trial Beacon Polar coords. from Nexus Distance when found

10 9 180 ft @ 75° not found (barely)

5.10 Trial 11

Returning to full-scale testing, the beacons were placed a few feet off the

ground. Despite being able to track the beacons more effectively, the robots still

struggled to track each other. Beacon 9 was found at a distance of 40 feet, but after

that, Robot 4 requested an extension without leaving the start line. Robot 10 was

assigned to that request, but because the directional antennas were to the side of

each other (since Robot 10 had not yet moved either), Robot 10 struggled to find

Robot 4’s signal. Also, the robots were not elevated like the beacons now were, so I

suspect they were dealing with highly-obstructed Fresnel zones. Robot 10

eventually completed its search, but it immediately bumped Robot 4 without

moving. The robots did, however, exhibit the desired behavior of requesting,

bumping, and changing state. Robot 10 went into relay edge mode and began

searching for additional beacon signals. After seeing one, it requested an extension,

which is what it is supposed to do. Robot 7 began seeking it.

Robot 4 moved forward a bit, but quickly requested another extension, which

Robot 5 was assigned to. Robot 2 then requested an extension while still too close

to the Nexus, which was assigned to Robot 6. Then Robot 5 immediately requested

121

Figure 5.4. Trial 10, when one robot sought one (elevated) beacon. Each intermediate

location is where the robot stopped to initiate a new search.

122

its own extension, which Robot 8 started working on. Once Robot 8 bumped Robot

5, 5 went into relay edge mode and requested an extension to chase a beacon (again,

correct behavior). A short time later, Robot 4 requested another extension, but

since all the robots were deployed and all of the apices were chasing promising

signals, the request was denied.

As I’ve described, the scene was a bit chaotic. However, the robots did

successfully execute the desired actions, despite not moving much.

Table 5.11.

Results for Trial 11.

Trial Beacon Polar coords. from Nexus Distance when found

11

1 188 ft @ 78° not found

3 59 ft @ 95° not found

9 96 ft @ 65° 40 ft

10 133 ft @ 85° not found

5.11 Trial 12

Things got a bit hectic in Trial 11, so I ran the same setup again. This time,

the two robots that initially deployed into apex mode pressed forward. They ended

up circling the same beacon and even running into it, but failed to disable it. No

extension requests were made.

5.12 Trial 13

The setup for this trial was the same as for the last two trials, with the

exception of slightly widening the margin of acceptability for considering two signals

to be the same. Changing this parameter did, in fact, make the robots track the

beacons more loosely, occasionally even seeming to send them directly away from

123

Figure 5.5. Arrangement at the start of trial 11. Squares are robots (nodes) and

hexagons are beacons.

124

Figure 5.6. Arrangement at the end of trial 11. Squares are robots (nodes) and

hexagons are beacons. For the nodes, white = idle, green = apex, yellow = transition,

blue = relay edge, red = relay. For the beacons, red text means that beacon was found.

125

Table 5.12.

Results for Trial 12.

Trial Beacon Polar coords. from Nexus Distance when found

12

1 188 ft @ 78° not found

3 59 ft @ 95° not found (barely)

9 96 ft @ 65° not found

10 133 ft @ 85° not found

the beacons (perhaps due to seeing a similar enough signal on the back lobe of the

antenna’s radiation pattern). The robots got a bit farther away from the Nexus

before requesting extensions, but that was inconsistent. Another effect of loosening

the margin was that the beacons were disabled more easily, sometimes at

significantly different distances.

The robots have a tendency to run into each other, because, at times, they

are tracking the same signals. This is analogous to plant roots tangling around each

other when seeking nutrient concentrations. If the nodes told each other who they

were seeking, instead of relying on stigmergy, they would probably not run into each

other as much.

Table 5.13.

Results for Trial 13.

Trial Beacon Polar coords. from Nexus Distance when found

13

1 188 ft @ 78° not found

3 59 ft @ 95° 25 ft

9 96 ft @ 65° not found

10 133 ft @ 85° 60 ft

126

5.13 Trials 14 through 18

Several more trials resulted in several more similar outcomes. The robots

track the beacons fairly well, but struggle to track each other. When they do

manage to interact, though, the structure of those interactions is good. Figures 5.7

through 5.17 show the chronological steps of Trial 17.

Figure 5.7. Trial 17: step 1. The beacons are difficult to see, so they are highlighted

by red circles.

5.14 Discussion

Starting with the positive, the concept of a plant root-inspired,

resource-hunting multi-robot system seems plausible. Despite the difficulties faced

127

Figure 5.8. Trial 17: step 2. The highlighted robot has completed one search iteration

and has moved one step toward the beacon.

in this project, there were enough successes to believe that, with more time and

resources, the system could be made much more robust. Automated resource

finding will be important as we push further out into space. We will need the ability

to harvest resources from the places around us, since leaving Earth with everything

required for the mission will become increasingly impractical. While the system

shown in this document is very far from fulfilling such a role, it does represent a

possible starting point.

Following a gradient has been demonstrated to be practical, albeit sometimes

problematic for this project. Using the received signal strength indicator (RSSI) for

this purpose is not reliable, but there are more sophisticated indicators, such as the

128

Figure 5.9. Trial 17: step 3. The highlighted robot continues to track toward the

beacon.

link quality indicator (LQI), that could be evaluated. The robots could also be

constructed with their antennas much higher off the ground, or perhaps with

multiple directional antennas to enable differential signal identification (like our ears

helping us determine a sound’s direction). Yet another option would be to use other

types of sensors, such as sound, light/laser, etc, that may be more predictable. Of

course, the ”resource” that is being sought does not need to be radio signals, since

those were chosen for practical reasons in this project. Following chemical gradients,

airborne or not, is another option. Perhaps tracking magnetic fields would be more

practical. The purpose of this experiment was not to focus on wireless

communication, but rather to show that the plant’s method of following gradients

129

Figure 5.10. Trial 17: step 4. The highlighted robot continues to track toward the

beacon.

away from a starting point is transferable to robots. The robots did, in fact, follow

gradients and execute a state machine that approximates plant roots, and they did

this with low-power computing and inexpensive, imprecise sensing and actuation.

I expected these trials to be successful, at least partially, because I saw

individual behaviors work correctly in the lab and during controlled testing. My

intuition, augmented by an understanding of the fundamentals of how plant roots

operate, also told me that the basic notions upon which this project is based are

valid. Nonetheless, the complexity and fragility of a prototype system like this are

not to be underestimated.

130

Figure 5.11. Trial 17: step 5. The highlighted robot continues to track toward the

beacon.

One of the key lessons taken from this project was the difficulty and

unreliability of using low-power (digital) RF communication for all sensing and

communication. The effectiveness of the radios was dramatically affected by

environmental interference, such as a Wi-Fi access point being enabled or proximity

to the ground. The sensing and communication also became less reliable as more

robots were activated, since this added to the ZigBee network traffic. I had to

continue to slow the search process and allow for longer timeouts as more robots

and beacons were added. ZigBee, in particular, is not designed for such a dynamic

application. It is intended for mostly static applications where power consumption

is more important than responsiveness and synchronization. For example, the XBee

131

Figure 5.12. Trial 17: step 6. The highlighted robot continues to track toward the

beacon.

radios do not necessarily push received packets out of the serial port immediately.

Sometimes, several packets are buffered and spit out all at once, which does not

lend itself to an application that requires predictable timing. For example, I often

noticed that one step of a search would time out and move to the next step, but the

XBee would then dump multiple messages very quickly. This was understood by the

RPi to be a signal coming from a direction that it may not have actually come from.

Another negative effect of this behavior affected the reading of RSSI. The Xbees do

not include an RSSI value in the data they send to the serial port. Instead, when

the RPi received a message from the XBee, the RPi had to make a request for the

RSSI of the last packet. If there is too much latency in this process happening for

132

Figure 5.13. Trial 17: step 7. The highlighted robot continues to track toward the

beacon.

every message, the RSSI value reported to the RPi will misrepresent some of the

messages it received in a burst, which produces inaccuracies in matching and

searching for signals. Using gradients of radio frequency energy as a mechanism for

tracking is not impractical, in principle. However, using such a dramatically

discretized form of measuring that energy does not suit this application. Overall, I

do not believe ZigBee is a good choice for this system.

Another key take-a-way is the difficulty of developing and managing what

amounts to a state machine of this complexity. While it is, of course, possible to do

so, it would be a major effort to make such a system robust and reliable.

Alternative system architectures/control methods should be explored, such as

133

Figure 5.14. Trial 17: step 8. The highlighted robot continues to track toward the

beacon.

neural networks (as proposed by the authors of (Simes et al., 2011)). Aside from

dealing with the problems associated with wireless communication, convincing the

many-faceted state machine to behave as I intended was the biggest challenge.

The purpose of the robots built for this experiment was not to be anywhere

near a final product. That being said, care still needs to be taken when designing a

prototype or single-purpose machine. The hardware and mechanics of the robots

performed satisfactorily, for the most part, but there are two notable components

that made testing and development more problematic. The stepper motor that

rotated the directional antenna was strong enough to hold the antenna in place in

moderate winds, but it was not able to hold the antenna when the robot hit a bump

134

Figure 5.15. Trial 17: step 9. The highlighted robot continues to track toward the

beacon.

or shuddered during a turn. A stronger motor, or perhaps a different design, could

help with this. The other major issue was the robots’ method of turning, combined

with the motor controller. Skid steer is a simple turning mechanism, but with the

friction between the tires and asphalt, combined with the somewhat top-heavy

weight distribution, the robots often shook when turning. Additionally, the motor

controllers did not reliably start and stop the drive motors, resulting in robots

occasionally turning excessively, turning awkwardly, or not turning at all.

Returning to the metric of success mentioned in Section 4.5, I interpret these

results as meeting the success criteria. It is not pretty or elegant, but seeing the

system work as well as it did shows the beginnings of plausibility. The robots

135

Figure 5.16. Trial 17: step 10. The more distant highlighted robot has requested an

extension, which the closer highlighted robot has been assigned to (notice its antenna

in mid-rotation).

showed the ability to successfully track toward the beacons and ”gather” the

resources (i.e. disable the beacons). They also detected a weakening connection to

the rest of the system and requested resources to continue exploration, which the

rest of the system responded to.

5.15 Conclusion

My conclusion is that it is feasible and potentially useful to explore an

environment with a multi-robot system, using strategies adapted from plant roots.

136

Figure 5.17. Trial 17: step 11. The more distant highlighted robot was bumped by

the closer highlighted robot. The closer robot has now called for its own extension,

which the remaining robot is in the process of executing.

The outcome of this particular effort was not a complete success, but it did show

that the concept can work. Even continuing development of the state machine

approach could produce good, consistent results, but other architectures may prove

more effective.

137

CHAPTER 6. MOVING FORWARD

After moving through the initial phase of development and testing of this

system, I have identified a handful of recommended tasks for continuing this

research. These tasks are discussed in no particular order, and this list is far from

complete. It is simply intended as a starting point.

6.1 Verify Omni-directional Antenna Radiation Pattern

The frequency, severity, and unpredictability of problems with seeking signals

was enough to justify verifying the radiation pattern of the omni-directional

antennas. Ideally, the radiation pattern would be radially symmetrical

(perpendicular to the ground plane, at least). If this is not the case, the orientation

of the antennas, which is difficult to discern at a glance, would have an undesired

effect on the robots’ ability to seek each other and the beacons.

Having access to an appropriately instrumented RF anechoic chamber would

be great, but in the likely event that you do not, getting a rough idea of the

antenna’s 2-D radiation pattern could be done with a bit of leg work. In the

quietest and least reflective RF environment you can find, measure the signal

strength at as many points as possible along widening perimeters around the

transmitter, such as in Figure 6.1. This data could then be represented as a heat

map, contour map, etc. to provide a visualization of the radiation pattern. Of

course, this method is far from perfect and rather imprecise, but would illuminate

any glaring differences from the ideal radiation pattern.

138

Figure 6.1. Sample of in-plane paths along which to measure the signal strength from

the omni-directional antenna (represented by the blue dot), to verify that there is not

significant asymmetry in the radiation pattern.

139

6.2 More Thorough Bench Testing

With careful planning, more testing could be done in the lab before moving

the system into the field environment. Bench (lab) testing is helpful because it

allows you to better control environmental variables. Testing in the field makes it

very difficult, often impossible, to isolate variables. With a system as complex as

this, isolating variables/behaviors is essential to making progress. Observing the

following behaviors in a controlled environment would be prudent, before moving

into the field, to avoid wasting time and effort. Most of these were observed in the

lab during the course of this research, but not all. Those that weren’t were due to

lack of necessary equipment or time to circumvent the need for such equipment.

• Deployment (by the nexus)

• Seeing signals of interest and recognizing/storing the best

• Turning to move toward the most interesting signal (by recognizing what

appears to be the same signal again)

• Moving toward that signal, then initiating another search

• Disabling beacons if they have been ”found”

• Recognizing the need for an extension and making the request

• Stably waiting for that extension to be fulfilled

• Bumping (and the associated information exchange between nodes)

• Seeking another node by the same process as that for a beacon

• Creating a branch via a relay edge node requesting a second extension to

explore a second signal of interest

• Receiving a bump route and reacting accordingly, including when being

reassigned

140

With those basic behaviors working independently, the work moves to

ensuring that they work together and initiate each other, where appropriate. As I

mentioned before, those behaviors were (mostly) independently verified in the lab,

but field testing did not consistently display those behaviors. One key factor that

I’ve identified is the amount of signal interference due to proximity to the ground

(i.e. obstruction of the Fresnel zone). It would be helpful to quantify, in a controlled

environment, the scale and nature of the Fresnel zone obstruction. This data would

inform not only the choice of testing environment, but may highlight the need for

physical and/or code changes to the robots.

As the system matured and became more complex, reliable procedures for

verifying the above listed behaviors were increasingly elusive. This was due to the

increasing difficulty of creating in-situ conditions that isolated the desired behavior,

while still providing the structure and data that the system expected to have during

that behavior. While I attempted to allow for this while developing the software,

more modularity and isolation of code is necessary. Two complementary approaches

come to mind. The first is having a debugging software ”switch” that, when

enabled, retrieves real-time operational data and state information from a controlled

input (e.g. files, intentionally-generated signals, etc.), rather than from the

”natural” sources. This would require carefully-designed input mechanism(s), but

based on my experience, would save time over having to operate by trial and error

in the field. The second, complementary, approach is to employ a simulation

environment. Simulation would not only provide the ability to control, with fine

granularity, the inputs to the system. It would also allow for much more rapid

iteration, due to the time compression of the simulation.

With such a development infrastructure in place, it would be feasible to

implement some additional functionality. Some suggested improvements, behaviors,

and measures to further develop and verify in a lab environment are:

• More detailed reporting to the nexus of what a node is seeing and/or seeking

(for monitoring and debugging)

141

• Better measure of distance by using more sophisticated metrics of signal

quality (rather than simply the signal strength)

• Direct association of signal values with directional antenna orientation

6.3 Granularity of Field Data Collection

During and after field testing, it was difficult to decode the intermediate and

transient states of the robots. A more detailed picture of the system in operation

would aid in development and debugging. It would also make clearer the analogy to

the biological plant root methodology. Modifying the nodes to regularly report the

following data to the nexus would be helpful:

• Parent

• Child(ren)

• Strength of best detected signal

• Relative direction of best detected signal

• Name of beacon or node being sought

• Current action

The nexus could then record and display, perhaps graphically, this

information to the user. The analogy to plant roots could be made visual by

drawing a conceptual picture of the system as it evolves, similar to 2.6. Having such

a record of experiments would enable a ”play-by-play” for analysis, as well as a

more detailed correlation to the functions and actions of plant roots.

142

CHAPTER 7. SUMMARY

We are going to need autonomous systems to help us locate resources in

extraterrestrial and/or unexplored environments. One way we might do this is with

multi-robot systems that explore their environment in a way analogous to plant

roots. Plants are very successful organisms, despite possessing low levels of sensing,

computing, and actuation. Transferring these properties into a machine means that

machine can be relatively simple and inexpensive.

A report by the European Space Agency (ESA) (Simes et al., 2011) explored

this idea through simulation and concluded that it was promising. This document

describes an effort to build and deploy a real system of robots, inspired by the ESA

report, that executed a proof-of-concept experiment. The ”nutrients” that the

robots look for are radio beacons, which they attempts to locate with directional

antennas. Similar to the elongation and branching behaviors of plant roots, the

robotic system extends and explores via robots acting as relays.

There were and still are many challenges to accomplishing such a task. Using

off-the-shelf ZigBee wireless devices, for example, turns out to be rather

inappropriate for this application. Creating a control architecture that reliably

executes the desired actions is another significant challenge (one that was not

completely overcome). Despite the difficulties, this experiment showed that the

concept of a robotic plant root analog is feasible outside of simulation and deserves

further exploration.

LIST OF REFERENCES

143

LIST OF REFERENCES

Allen, M. F., Vargas, R., Graham, E. a., Swenson, W., Hamilton, M., Taggart, M.,
. . . Estrin, D. (2007, 11). Soil Sensor Technology: Life within a Pixel.
BioScience, 57 (10), 859. Retrieved from
http://dx.doi.org/10.1641/B571008 doi: 10.1641/B571008

Alterovitz, G., Muso, T., & Ramoni, M. F. (2009, 1). The challenges of informatics
in synthetic biology: Frombiomolecular networks to artificial organisms.
Briefings in Bioinformatics , 11 (1), 80–95. Retrieved from
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
2810114&tool=pmcentrez&rendertype=abstract doi: 10.1093/bib/bbp054

Alvarez-Ramı́rez, J. (1993, 10). Using nonlinear saturated feedback to control
chaos: The H??non map. Physical Review E , 48 (4), 3165–3167. Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/9960954 doi:
10.1103/PhysRevE.48.3165

Anderson, B. D. O., Bitmead, R. R., Johnson, C. R., Riedle, B. D., & Parks,
R. P. C. (1989). Stability of Adaptive Systems : Passivity and Averaging
Analysis * Linear Control Systems a Computer-aided Approach * (Vol. 25)
(No. 1). MIT press.

Astrom, K. (1987, 2). Adaptive feedback control. Proceedings of the IEEE , 75 (2),
185–217. Retrieved from
http://ieeexplore.ieee.org/document/1457988/ doi:
10.1109/PROC.1987.13721

Åström, K. J. (1980). Design principles for self-tuning regulators. In H. Unbehauen
(Ed.), Methods and applications in adaptive control (pp. 1–20). Berlin,
Heidelberg: Springer Berlin Heidelberg. Retrieved from
http://www.springerlink.com/index/10.1007/BFb0003250 doi:
10.1007/BFb0003250

Atkinson, S., & Williams, P. (2009). Quorum sensing and social networking in the
microbial world. Journal of the Royal Society, Interface / the Royal Society ,
6 (40), 959–78. Retrieved from
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
2827448&tool=pmcentrez&rendertype=abstract doi:
10.1098/rsif.2009.0203

Audi, R. (1999). The Cambridge Dictionary of Philosophy (Vol. 584) (No. 2).
Cambridge University Press. Retrieved from
http://www.amazon.com/dp/0521637228 doi: 10.1198/tech.2007.s467

http://dx.doi.org/10.1641/B571008
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2810114&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2810114&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/9960954
http://ieeexplore.ieee.org/document/1457988/
http://www.springerlink.com/index/10.1007/BFb0003250
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2827448&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2827448&tool=pmcentrez&rendertype=abstract
http://www.amazon.com/dp/0521637228

144

Bäck, T. (2001, 6). Introduction to the Special Issue: Self-Adaptation. Evolutionary
Computation, 9 (2), iii-iv. Retrieved from
http://www.mitpressjournals.org/doi/10.1162/106365601750190361
doi: 10.1162/106365601750190361

Baluska, F., Mancuso, S., Volkmann, D., & Barlow, P. (2004). Root apices as plant
command centres: the unique ’brain-like’status of the root apex transition
zone. Biologia (Bratisl.), 59 (Suppl. 13), 7–19. Retrieved from
http://www.izmb.uni-bonn.de/baluska/pdf/articles/58.pdf

Bar-Yam, Y. (1997). General Features of Complex Systems (Vol. I) (No. 1). EOLSS
UNESCO Publishers.

Bar-Yam, Y. (1998). Dynamics of Complex Systems (Vol. 12) (No. 4). Cambridge,
MA: Perseus Press. Retrieved from
http://link.aip.org/link/CPHYE2/v12/i4/p336/s1&Agg=doi doi:
10.1063/1.168724

Bar-Yam, Y. (2003). When systems engineering fails-toward complex systems
engineering. In Smc’03 conference proceedings. 2003 ieee international
conference on systems, man and cybernetics. conference theme - system
security and assurance (cat. no.03ch37483) (Vol. 2, pp. 2021–2028). IEEE.
Retrieved from http://ieeexplore.ieee.org/document/1244709/ doi:
10.1109/ICSMC.2003.1244709

Bar-Yam, Y. (2004a, 7). A mathematical theory of strong emergence using
multiscale variety. Complexity , 9 (6), 15–24. Retrieved from
http://doi.wiley.com/10.1002/cplx.20029 doi: 10.1002/cplx.20029

Bar-Yam, Y. (2004b, 3). Multiscale variety in complex systems. Complexity , 9 (4),
37–45. Retrieved from http://doi.wiley.com/10.1002/cplx.20014 doi:
10.1002/cplx.20014

Basso, M., Evangelisti, A., Genesio, R., & Tesi, A. (1998). On Bifurcation Control
in Time Delay Feedback Systems. International Journal of Bifurcation and
Chaos , 08 (04), 713–721. Retrieved from
http://www.worldscientific.com/doi/abs/10.1142/S0218127498000504
doi: 10.1142/S0218127498000504

Bechtel, W., & Richardson, R. C. (1992). Emergent phenomena and complex
systems. Emergence or reduction, 257–288.

Bedau, M. A. (2002). Downward Causation and the Autonomy of Weak Emergence.
Principia, 6 (1), 5–50. Retrieved from
https://periodicos.ufsc.br/index.php/principia/article/view/
17003%5Cnhttp://philpapers.org/rec/BEDDCA doi:
10.7551/mitpress/9780262026215.003.0010

Beyer, H.-G. (1996). Toward a Theory of Evolution Strategies: Self-Adaptation.
Evolutionary {C}omputation, 3 (3), 311–347. Retrieved from http://
www.mitpressjournals.org/doi/abs/10.1162/evco.1995.3.3.311

Brabazon, A., ONeill, M., & McGarraghy, S. (2015). Plant-inspired algorithms. In
Natural computing series (Vol. 28, pp. 455–477). Springer Berlin Heidelberg.

http://www.mitpressjournals.org/doi/10.1162/106365601750190361
http://www.izmb.uni-bonn.de/baluska/pdf/articles/58.pdf
http://link.aip.org/link/CPHYE2/v12/i4/p336/s1&Agg=doi
http://ieeexplore.ieee.org/document/1244709/
http://doi.wiley.com/10.1002/cplx.20029
http://doi.wiley.com/10.1002/cplx.20014
http://www.worldscientific.com/doi/abs/10.1142/S0218127498000504
https://periodicos.ufsc.br/index.php/principia/article/view/17003%5Cnhttp://philpapers.org/rec/BEDDCA
https://periodicos.ufsc.br/index.php/principia/article/view/17003%5Cnhttp://philpapers.org/rec/BEDDCA
http://www.mitpressjournals.org/doi/abs/10.1162/evco.1995.3.3.311
http://www.mitpressjournals.org/doi/abs/10.1162/evco.1995.3.3.311

145

Retrieved from
http://link.springer.com/10.1007/978-3-662-43631-8 25 doi:
10.1007/978-3-662-43631-8{\ }25

Caprari, G., Colot, A., Siegwart, R., Halloy, J., & Deneubourg, J. L. (2005).
Building mixed societies of animals and robots. IEEE Robotics &
Automation Magazine, 12 (2), 58–65.

Chalam, Y. (1987). Adaptive Control Systems: Techniques and Applications. CRC
Press. Retrieved from https://www.crcpress.com/Adaptive-Control
-Systems-Techniques-and-Applications/Chalam/9780824776503

Cheng, B. H. C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
. . . Whittle, J. (2009). Software Engineering for Self-Adaptive Systems: A
Research Roadmap (B. H. C. Cheng, R. Lemos, H. Giese, P. Inverardi, &
J. Magee, Eds.). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved
from http://link.springer.com/10.1007/978-3-642-02161-9 1 doi:
10.1007/978-3-642-02161-9{\ }1

Colestock, H. (2005). Industrial robotics: selection, design, and maintenance.
McGraw-Hill. Retrieved from
https://books.google.com/books?id=YgJUAAAAMAAJ

Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive
Sciences , 13 (1), 36–43. Retrieved from http://www.sciencedirect.com/
science/article/pii/S1364661308002520 doi: 10.1016/j.tics.2008.10.002

Couzin, I. D., Krause, J., James, R., Ruxton, G. D., & Franks, N. R. (2002).
Collective memory and spatial sorting in animal groups. Journal of
Theoretical Biology , 218 (1), 1–11. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0022519302930651 doi:
10.1006/jtbi.2002.3065

Delin, K. A., Jackson, S. P., Johnson, D. W., Burleigh, S. C., Richard, R., Mcauley,
J. M., . . . Baker, V. R. (2005). Environmental Studies with the Sensor Web:
Principles and Practice. Sensors (Basel, Switzerland), 5 (2), 103–117.

Domingos, P. (2002). Machine learning. McGraw-Hill. Retrieved from
http://portal.acm.org/citation.cfm?id=778311

Doussan, C., Pagès, L., & Pierret, A. (2009). Soil exploration and resource
acquisition by plant roots: An architectural and modelling point of view.
Sustainable Agriculture, 23 (5-6), 583–600. Retrieved from
https://hal.archives-ouvertes.fr/hal-00886193 doi:
10.1007/978-90-481-2666-8{\ }36

Egardt, B. (1979). Stability of Adaptive Controllers. Springer-Verlag Berlin
Heidelberg New York , 145. doi: 10.1007/BFb0005037

Fausett, L. (1994). Fundamentals of Neural Networks: Architectures, Algorithms,
and Applications (L. Fausett, Ed.). Upper Saddle River, NJ, USA:
Prentice-Hall, Inc.

http://link.springer.com/10.1007/978-3-662-43631-8_25
https://www.crcpress.com/Adaptive-Control-Systems-Techniques-and-Applications/Chalam/9780824776503
https://www.crcpress.com/Adaptive-Control-Systems-Techniques-and-Applications/Chalam/9780824776503
http://link.springer.com/10.1007/978-3-642-02161-9_1
https://books.google.com/books?id=YgJUAAAAMAAJ
http://www.sciencedirect.com/science/article/pii/S1364661308002520
http://www.sciencedirect.com/science/article/pii/S1364661308002520
http://www.sciencedirect.com/science/article/pii/S0022519302930651
http://www.sciencedirect.com/science/article/pii/S0022519302930651
http://portal.acm.org/citation.cfm?id=778311
https://hal.archives-ouvertes.fr/hal-00886193

146

Floreano, D., & Mattiussi, C. (2008). Bio-inspired artificial intelligence. The MIT
Press. Retrieved from https://mitpress.mit.edu/books/
bio-inspired-artificial-intelligence doi: 10.1007/s10710-010-9104-3

Foehring, R. C., & Lorenzon, N. M. (1999, 3). Neuromodulation, development and
synaptic plasticity. Canadian Journal of Experimental Psychology/Revue
canadienne de psychologie expérimentale, 53 (1), 45–61. Retrieved from
http://doi.apa.org/getdoi.cfm?doi=10.1037/h0087299 doi:
10.1037/h0087299

Fogel, D. B. (2006). Evolutionary Computationn Toward a New Philosophy of
Machine Intelligence (3rd ed.). Wiley-IEEE Press. Retrieved from http://
www.wiley.com/WileyCDA/WileyTitle/productCd-0471669512.html doi:
10.1002/0471749214

Fromm, J. (2005, 6). Types and forms of emergence. Retrieved from
http://arxiv.org/abs/nlin/0506028 doi: citeulike-article-id:262942

Giardina, I. (2008, 8). Collective behavior in animal groups: Theoretical models
and empirical studies. HFSP Journal , 2 (4), 205–219. Retrieved from
http://www.tandfonline.com/doi/abs/10.2976/1.2961038 doi:
10.2976/1.2961038

Goldstein, J. (1999, 3). Emergence as a Construct: History and Issues. Emergence,
1 (1), 49–72. Retrieved from
http://www.tandfonline.com/doi/abs/10.1207/s15327000em0101 4 doi:
10.1207/s15327000em0101{\ }4

Haasdijk, E., Eiben, a. E., & Winfield, A. F. T. (2013). Individual, Social and
Evolutionary Adaptation in Collective Systems. Pan Stanford. Retrieved from
http://eprints.uwe.ac.uk/20223/1/Haasdijk etal HCR Collective
Social Learning finaldraft.pdf%5Cnhttp://www.panstanford.com/
books/9789814316422.html doi: 10.4032/9789814364119

Haken, H. (2004). Synergetics introduction and advanced topics (1st ed.).
Springer-Verlag Berlin Heidelberg. Retrieved from
http://www.springer.com/us/book/9783540408246 doi:
10.1007/978-3-662-10184-1

Heylighen, F. (2011). Stigmergy as a generic mechanism for coordination :
definition , varieties and aspects. doi: 10.1016/j.cogsys.2015.12.007

Huneman, P. (2008). Emergence Made Ontological? Computational versus
Combinatorial Approaches. Philosophy of Science, 75 (5), 595–607. Retrieved
from http://www.jstor.org/stable/10.1086/596777 doi:
10.1086/596777

Kalman, R. E. (1958). Design of a self-optimizing control system. Trans. of the
ASME , 80 , 468–478.

Keijzer, F. (2003, 12). Making decisions does not suffice for minimal cognition.
Adaptive Behavior , 11 (4), 266–269. Retrieved from
http://adb.sagepub.com/content/11/4/266.extract doi:
10.1177/1059712303114006

https://mitpress.mit.edu/books/bio-inspired-artificial-intelligence
https://mitpress.mit.edu/books/bio-inspired-artificial-intelligence
http://doi.apa.org/getdoi.cfm?doi=10.1037/h0087299
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471669512.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471669512.html
http://arxiv.org/abs/nlin/0506028
http://www.tandfonline.com/doi/abs/10.2976/1.2961038
http://www.tandfonline.com/doi/abs/10.1207/s15327000em0101_4
http://eprints.uwe.ac.uk/20223/1/Haasdijk_etal_HCR_Collective_Social_Learning_finaldraft.pdf%5Cnhttp://www.panstanford.com/books/9789814316422.html
http://eprints.uwe.ac.uk/20223/1/Haasdijk_etal_HCR_Collective_Social_Learning_finaldraft.pdf%5Cnhttp://www.panstanford.com/books/9789814316422.html
http://eprints.uwe.ac.uk/20223/1/Haasdijk_etal_HCR_Collective_Social_Learning_finaldraft.pdf%5Cnhttp://www.panstanford.com/books/9789814316422.html
http://www.springer.com/us/book/9783540408246
http://www.jstor.org/stable/10.1086/596777
http://adb.sagepub.com/content/11/4/266.extract

147

Kernbach, S. (2008). Structural self-organization in multi-agents and multi-robotic
systems. Logos Verlag Berlin GmbH.

Kernbach, S., Levi, P., Meister, E., Schlachter, F., & Kernbach, O. (2009). Towards
self-adaptation of robot organisms with a high developmental plasticity. In
Computation world: Future computing, service computation, adaptive,
content, cognitive, patterns, computationworld 2009 (pp. 180–187). doi:
10.1109/ComputationWorld.2009.11

Kernbach, S., Thenius, R., Kernbach, O., & Schmickl, T. (2009, 6). Re-embodiment
of honeybee aggregation behavior in an artificial micro-robotic system.
Adaptive Behavior , 17 (3), 237–259. Retrieved from
http://adb.sagepub.com/content/17/3/237.short doi:
10.1177/1059712309104966

Kernis, M. H., & Goldman, B. M. (2003). Stability and variability in self-concept
and self-esteem. In M. Leary & J. Tangney (Eds.), Handbook of self and
identity (pp. 106–127). Guilford Press.

Kornienko, S., Kornienko, O., & Levi, P. (2004). Generation of desired emergent
behavior in swarm of micro-robots. In Proceedings of the 16th european
conference on ai (ecai 2004) (Vol. 16, p. 239). Valencia, Spain.

Kornienko, S., Kornienko, O., & Priese, J. (2004, 8). Application of multi-agent
planning to the assignment problem. Computers in Industry , 54 (3), 273–290.
Retrieved from http://dl.acm.org/citation.cfm?id=1017163.1017167
doi: 10.1016/j.compind.2003.11.002

Kouptsov, K. L. (2008). Production-rule complexity of recursive structures. In
A. A. Minai & Y. Bar-Yam (Eds.), Unifying themes in complex systems iv
(pp. 149–157). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved
from http://link.springer.com/10.1007/978-3-540-73849-7 17 doi:
10.1007/978-3-540-73849-7{\ }17

Koza, J. R. (1992). Genetic Progamming: On the Programming of Computers by
Means of Natural Selection. The MIT Press. Retrieved from
https://mitpress.mit.edu/books/genetic-programming

Kristic, M., Kanellakopoulos, I., & Kokotovic, P. (1995). Nonlinear and adaptive
control design (1st ed.). New York, NY, USA: John Wiley & Sons, Inc.

Laughlin, R. B., & Leggett, A. (2005). A Different Universe: Reinventing Physics
from the Bottom Down (Vol. 58) (No. 10). Basic Books. Retrieved from
http://scitation.aip.org/content/aip/magazine/physicstoday/
article/58/10/10.1063/1.2138425%5Cnhttp://link.aip.org/link/
PHTOAD/v58/i10/p77/s1&Agg=doi doi: 10.1063/1.2138425

Levi, P., & Kernbach, S. (2010). Symbiotic Multi-Robot Organisms (Vol. 7).
Springer-Verlag Berlin Heidelberg. Retrieved from
http://link.springer.com/10.1007/978-3-642-11692-6 doi:
10.1007/978-3-642-11692-6

Lungarella, M., Metta, G., Pfeifer, R., & Sandini, G. (2003). Developmental
robotics: a survey. Connection Science, 15 (4), 151–190. Retrieved from
http://www.tandfonline.com/doi/abs/10.1080/09540090310001655110
doi: 10.1080/09540090310001655110

http://adb.sagepub.com/content/17/3/237.short
http://dl.acm.org/citation.cfm?id=1017163.1017167
http://link.springer.com/10.1007/978-3-540-73849-7_17
https://mitpress.mit.edu/books/genetic-programming
http://scitation.aip.org/content/aip/magazine/physicstoday/article/58/10/10.1063/1.2138425%5Cnhttp://link.aip.org/link/PHTOAD/v58/i10/p77/s1&Agg=doi
http://scitation.aip.org/content/aip/magazine/physicstoday/article/58/10/10.1063/1.2138425%5Cnhttp://link.aip.org/link/PHTOAD/v58/i10/p77/s1&Agg=doi
http://scitation.aip.org/content/aip/magazine/physicstoday/article/58/10/10.1063/1.2138425%5Cnhttp://link.aip.org/link/PHTOAD/v58/i10/p77/s1&Agg=doi
http://link.springer.com/10.1007/978-3-642-11692-6
http://www.tandfonline.com/doi/abs/10.1080/09540090310001655110

148

Markus, H., & Wurf, E. (1987). The dynamic self-soncept: A social psychological
perspective. Annual Review of Psychology , 38 (1), 299–337. Retrieved from
http://www.annualreviews.org/doi/abs/10.1146/
annurev.ps.38.020187.001503 doi: 10.1146/annurev.ps.38.020187.001503

Maslow, A., & Lowery, R. (1968). Toward a Psychology of Being. Hoboken, NJ:
Wiley. Retrieved from http://www.wiley.com/WileyCDA/WileyTitle/
productCd-0471293091.html

Mazzolai, B., Mondini, A., Corradi, P., Laschi, C., Mattoli, V., Sinibaldi, E., &
Dario, P. (2011, 4). A miniaturized mechatronic system inspired by plant
roots for soil exploration. IEEE/ASME Transactions on Mechatronics ,
16 (2), 201–212. doi: 10.1109/TMECH.2009.2038997

McLean, K. C., Pasupathi, M., & Pals, J. L. (2007, 8). Selves creating stories
creating Selves: A process model of self-development. Personality and Social
Psychology Review , 11 (3), 262–278. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/18453464 doi:
10.1177/1088868307301034

Meng, Y., & Jin, Y. (2011). Bio-Inspired Self-Organizing Robotic Systems (Vol. 355;
Y. Meng & Y. Jin, Eds.). Berlin, Heidelberg: Springer Berlin Heidelberg.
Retrieved from
http://www.springerlink.com/index/10.1007/978-3-642-20760-0 doi:
10.1007/978-3-642-20760-0

Min, B. C., Matson, E. T., & Jung, J. W. (2016, 5). Active Antenna Tracking
System with Directional Antennas for Enhancing Wireless Communication
Capabilities of a Networked Robotic System. Journal of Field Robotics ,
33 (3), 391–406. Retrieved from
http://doi.wiley.com/10.1002/rob.21602 doi: 10.1002/rob.21602

Narenda, K. S., & Annaswamy, A. M. (1989). Stable Adaptive Systems. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc.

Nolfi, S., & Floreano, D. (2004). Evolutionary Robotics: The Biology, Intelligence,
and Technology of Self-Organizing Machines. The MIT Press. Retrieved from
https://mitpress.mit.edu/books/evolutionary-robotics

Novellino, A., D’Angelo, P., Cozzi, L., Chiappalone, M., Sanguineti, V., &
Martinoia, S. (2007, 1). Connecting neurons to a mobile robot: An in vitro
bidirectional neural interface. Computational Intelligence and Neuroscience,
2007 , 2. Retrieved from http://dx.doi.org/10.1155/2007/12725 doi:
10.1155/2007/12725

O’Connor, T. (1994). Emergent properties. American Philosophical Quarterly ,
31 (2), 91–104. Retrieved from http://philpapers.org/rec/OCOEP doi:
10.2307/20014490

Oudeyer, P.-Y. (2004). Intelligent Adaptive Curiosity: a source of
Self-Development. Science, 117 , 127–130. Retrieved from
http://cogprints.org/4144/ doi: 10.1.1.58.3374

http://www.annualreviews.org/doi/abs/10.1146/annurev.ps.38.020187.001503
http://www.annualreviews.org/doi/abs/10.1146/annurev.ps.38.020187.001503
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471293091.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471293091.html
http://www.ncbi.nlm.nih.gov/pubmed/18453464
http://www.springerlink.com/index/10.1007/978-3-642-20760-0
http://doi.wiley.com/10.1002/rob.21602
https://mitpress.mit.edu/books/evolutionary-robotics
http://dx.doi.org/10.1155/2007/12725
http://philpapers.org/rec/OCOEP
http://cogprints.org/4144/

149

Poovaiah, B. W., & Reedy, a. S. N. (1995). Plant Roots: The Hidden Half (Vol. 56)
(No. 4). CRC Press. Retrieved from
http://books.google.com/books?hl=ja&lr=&id=C7daGqhy1N8C&pgis=1
doi: 10.1080/08854300308428351

Rasmussen, S., Chen, L., Deamer, D., Krakauer, D. C., Packard, N. H., Stadler,
P. F., & Bedau, M. A. (2004, 2). Transitions from Nonliving to Living
Matter. Science, 303 (5660), 963–965. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/14963315 doi:
10.1126/science.1093669

Ronald, E. M., & Sipper, M. (2001). Surprise versus unsurprise: Implications of
emergence in robotics. Robotics and Autonomous Systems , 37 (1), 19–24.
Retrieved from https://www.semanticscholar.org/paper/
Surprise-versus-unsurprise-Implications-of-Ronald-Sipper/
a98aa0f005ce43a15e8e9ae7305d270eb34b5248 doi:
10.1016/S0921-8890(01)00149-X

Ronald, E. M. A., & Sipper, M. (2000). Engineering, emergent engineering, and
artificial life: Unsurprise, unsurprising surprise, and surprising surprise.
Artificial Life, 7 , 523–528.

Ruiz-Mirazo, K., Umerez, J., & Moreno, A. (2008). Enabling conditions for
’open-ended evolution’. Biology and Philosophy , 23 (1), 67–85. Retrieved
from http://dx.doi.org/10.1007/s10539-007-9076-8 doi:
10.1007/s10539-007-9076-8

Sahin, E. (2005). Swarm Robotics: From Source to Inspiration to Domains of
Application. In Special issue, autonomous robots (Vol. 3342, pp. 10–20).
Springer Berlin Heidelberg. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161
.6393%5Cnhttp://link.springer.com/10.1007/b105069 doi:
10.1007/b105069

SAP. (2005). Adaptive Manufacturing - Enabling the Lean Six Sigma Enterprise.

Schmickl, T., Szopek, M., Bodi, M., Hahshold, S., Radspieler, G., Thenius, R., . . .
Kernbach, O. (2013, 9). ASSISI: Charged hot bees Shakin’ in the spotlight.
In International conference on self-adaptive and self-organizing systems, saso
(pp. 259–260). IEEE. Retrieved from http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6676514 doi:
10.1109/SASO.2013.26

Seeley, T. D., Kirk Visscher, P., & Passino, K. M. (2006). Group decision making in
honey bee swarms. American Scientist , 94 (3), 220–229. Retrieved from
https://www.americanscientist.org/issues/
id.993,y.2006,no.3,page.5/postComment.aspx doi: 10.1511/2006.3.220

Shen, W. M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., & Venkatesh, J.
(2006). Multimode locomotion via superbot robots. Proceedings - IEEE
International Conference on Robotics and Automation, 2006 (2), 2552–2557.
Retrieved from http://dx.doi.org/10.1007/s10514-006-6475-7 doi:
10.1109/ROBOT.2006.1642086

http://books.google.com/books?hl=ja&lr=&id=C7daGqhy1N8C&pgis=1
http://www.ncbi.nlm.nih.gov/pubmed/14963315
https://www.semanticscholar.org/paper/Surprise-versus-unsurprise-Implications-of-Ronald-Sipper/a98aa0f005ce43a15e8e9ae7305d270eb34b5248
https://www.semanticscholar.org/paper/Surprise-versus-unsurprise-Implications-of-Ronald-Sipper/a98aa0f005ce43a15e8e9ae7305d270eb34b5248
https://www.semanticscholar.org/paper/Surprise-versus-unsurprise-Implications-of-Ronald-Sipper/a98aa0f005ce43a15e8e9ae7305d270eb34b5248
http://dx.doi.org/10.1007/s10539-007-9076-8
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161.6393%5Cnhttp://link.springer.com/10.1007/b105069
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161.6393%5Cnhttp://link.springer.com/10.1007/b105069
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6676514
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6676514
https://www.americanscientist.org/issues/id.993,y.2006,no.3,page.5/postComment.aspx
https://www.americanscientist.org/issues/id.993,y.2006,no.3,page.5/postComment.aspx
http://dx.doi.org/10.1007/s10514-006-6475-7

150

Silberstein, M. (2002). Reduction, Emergence and Explanation. In P. K. Machamer
& M. Silberstein (Eds.), The blackwell guide to the philosophy of science (pp.
80–107). Cambridge: Blackwell. doi: 10.4324/9780203133972

Simes, A. L. F., Cruz, C., Ribeiro, R. a., Correia, L., Ampatzis, C., & Izzo, D.
(2011). Path Planning Strategies Inspired by Swarm Behaviour of Plant Root
Apexes (Vol. 31; Tech. Rep. No. 0). Technical Report 09/6401 of European
Space Agency, Advanced Concepts Team. Ariadna Final Report.

Spector, L., Klein, J., & Feinstein, M. (2007). Division blocks and the open-ended
evolution of development, form, and behavior. In Gecco ’07: Proceedings of
the 9th annual conference on genetic and evolutionary computation (pp.
316–323). New York, NY, USA: ACM. Retrieved from
http://dx.doi.org/10.1145/1276958.1277019 doi:
10.1145/1276958.1277019

Standish, R. K. (2002, 10). Open-Ended Artificial Evolution. International Journal
of Computational Intelligence and Applications , 3 (167). Retrieved from
http://arxiv.org/abs/nlin/0210027 doi: 10.1142/S1469026803000914

Stepney, S., Polack, F. A. C., & Turner, H. R. (2006). Engineering emergence. In
11th ieee international conference on engineering of complex computer
systems (iceccs’06) (p. 9 pp.-). doi: 10.1109/ICECCS.2006.1690358

Suki, B., Bates, J. H., & Frey, U. (2011). Complexity and emergent phenomena.
Comprehensive Physiology , 1 (2), 995–1029. doi: 10.1002/cphy.c100022

Szopek, M., Schmickl, T., Thenius, R., Radspieler, G., & Crailsheim, K. (2013, 1).
Dynamics of Collective Decision Making of Honeybees in Complex
Temperature Fields. PLoS ONE , 8 (10), e76250. Retrieved from
http://dx.plos.org/10.1371/journal.pone.0076250 doi:
10.1371/journal.pone.0076250

Todd, T. W. (1934). Emergent Evolution (1st ed., Vol. 80) (No. 133). Springer
Netherlands. Retrieved from
http://www.springer.com/us/book/9780792316589 doi:
10.1126/science.80.2073.271

Tonazzini, A., Popova, L., Mattioli, F., & Mazzolai, B. (2012, 6). Analysis and
characterization of a robotic probe inspired by the plant root apex. In
Proceedings of the ieee ras and embs international conference on biomedical
robotics and biomechatronics (pp. 1134–1139). doi:
10.1109/BioRob.2012.6290772

Vaario, J. (1994). Modeling adaptive self-organization. In Proceedings of artificial
life iv (pp. 313–318).

von Neumann, J. (1966). Theory of Self-Reproducing Automata. IEEE
Transactions on Neural Networks , 5 (1), 3–14.

Whitaker, H. P. (1959). An adaptive system for control of the dynamics
performances of aircraft and spacecraft. Inst. Aeronatical Sciences , 59–100.

Wiles, J. (2013). Why We Explore. Retrieved from https://www.nasa.gov/
exploration/whyweexplore/why we explore main.html#.WDD7cOYrJPY

http://dx.doi.org/10.1145/1276958.1277019
http://arxiv.org/abs/nlin/0210027
http://dx.plos.org/10.1371/journal.pone.0076250
http://www.springer.com/us/book/9780792316589
https://www.nasa.gov/exploration/whyweexplore/why_we_explore_main.html#.WDD7cOYrJPY
https://www.nasa.gov/exploration/whyweexplore/why_we_explore_main.html#.WDD7cOYrJPY

151

Wilson, D. I. (2001). Adaptive control. Courier Corporation.

Wimsatt, W. C. (1997). Aggregativity: Reductive Heuristics for Finding
Emergence. Philosophy of Science, 64 (S1), S372. Retrieved from
http://www.jstor.org/stable/188418 doi: 10.1086/392615

Wimsatt, W. C. (2000). Emergence as non-aggregativity and the biases of
reductionisms. Foundations of Science, 5 (3), 269–297. doi:
10.1023/A:1011342202830

Winfield, A., & Griffiths, F. (2010). Towards the emergence of artificial culture in
collective robotic systems. In P. Levi & S. Kernbach (Eds.), Symbiotic
multi-robot organisms (Vol. Vol.7, pp. 425–433). Berlin ; Heidelberg:
Springer-Verlag. Retrieved from http://wrap.warwick.ac.uk/48446/

Wooten, M. (2016). Novel Vine-like Continuum Robot for Environmental
Exploration Applications (Doctoral dissertation, Clemson University).
Retrieved from http://tigerprints.clemson.edu/all theses/2406

http://www.jstor.org/stable/188418
http://wrap.warwick.ac.uk/48446/
http://tigerprints.clemson.edu/all_theses/2406

	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	Chapter 1. Introduction
	Research Question
	Significance
	Purpose/Scope
	Assumptions
	Limitations
	Delimitations
	Definitions
	Summary

	Chapter 2. Review of Relevant Literature
	With respect to collective systems, what is emergence?
	Complex systems
	Collective robotic systems

	What are the primary types of emergence?
	Weak vs. strong
	Non-emergent and controllable-emergent behavior
	Beginnings of an ontology

	Inevitability
	Adaptability
	Domains of study
	Self-adaptation

	Self-developmental systems
	Open-ended evolution and unbounded self-development
	Developmental plasticity of collective systems

	Is self-development/repair necessary in collective robotic systems?
	Biological collective systems (swarms)
	Plants as swarms
	Natural inspiration

	Chapter 3. Stars of the show (robots)
	Brief Introduction to the Experiments
	Requirements
	Build vs. Buy

	Design
	Wireless Communication
	Electrical
	Computation
	Mechanical/Physical

	Construction
	Beacons
	Software and firmware
	Robots
	Beacons
	Nexus

	Chapter 4. (Adventures in) Methodology and Testing
	Similarities to and differences from plant roots
	Operational Overview
	Modes
	Bumping
	Elongation
	Signal Strength as Nutrient Flow
	Simultaneous Requests

	Test Locations
	Variables
	Measure of Success
	Simulation, or lack thereof
	An abridged version of the road so far
	Practical odds and ends
	Connecting to the robots for development and debugging
	Shutting down and rebooting the robots
	Deploying code changes to all robots
	Running software automatically

	Testing procedure

	Chapter 5. Results and Discussion
	Trial 1
	Trial 2
	Trial 3
	Trial 4
	Trial 5
	Trials 6 and 7
	Trial 8
	Trial 9
	Trial 10
	Trial 11
	Trial 12
	Trial 13
	Trials 14 through 18
	Discussion
	Conclusion

	Chapter 6. Moving Forward
	Verify Omni-directional Antenna Radiation Pattern
	More Thorough Bench Testing
	Granularity of Field Data Collection

	Chapter 7. Summary
	LIST OF REFERENCES
	Blank Page

