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ABSTRACT

Author: Hwang, Hyun. M.S.
Institution: Purdue University
Degree Received: December 2018
Title: Low-Cost and Scalable Visual Drone Detection System Based on Distributed

Convolutional Neural Network
Major Professor: Eric T. Matson

Recently, with the advancement in drone technology, more and more hobby drones are

being manufactured and sold across the world. However, these drones can be repurposed

for the use in illicit activities such as hostile-load delivery. At the moment there are not

many systems readily available for detecting and intercepting those hostile drones.

Although there is a prototype of a working drone interceptor system built by the

researchers of Purdue University, the system was not ready for the general public due to

its nature of proof-of-concept and the high price range of the military-grade RADAR used

in the prototype. It is essential to substitute such high-cost elements with low-cost ones, to

make such drone interception system affordable enough for large-scale deployment.

This study aims to provide an alternative, affordable way to substitute an

expensive, high-precision RADAR system with Convolutional Neural Network based

drone detection system, which can be built using multiple low-cost single board

computers. The experiment will try to find the feasibility of the proposed system and will

evaluate the accuracy of the drone detection in a controlled environment.
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CHAPTER 1. INTRODUCTION

The primary goal of this research study is to design and implement a distributed

Convolutional Neural Network (CNN) based image processing system that can detect

small Unmanned Aerial Vehicles (UAV), often colloquially referred to as ‘drones.’ The

system aims to be scalable, low-cost, equipment-neutral, and easy to build from scratch

using new or existing resources; this will help any individual or organization with limited

resources to adopt the system without the worry of financial burdening.

1.1 Background

Drone—defined as ‘aircraft without onboard pilot’—is not a new concept; both

U.S. military and hobbyists were researching and building remote-controlled aerial

vehicles for nearly a half a century now [1–3]. However, the limitation of technologies at

those times has made building drones a challenging task. This discouragement in building

a drone has changed in a relatively recent timeframe when the technology related to these

drones has advanced rapidly, enabling smaller flying objects and easier mass

manufacturing of drones, therefore greatly expanding the market targetted for

individuals [1, 4]. According to the Federal Aviation Administration (FAA), around thirty

thousand drones will be flying in U.S. airspace at any given time by 2020 [1].

Accompanied with this market expansion, many new usages for drones appeared,

including, but not limited to, use in journalism [1, 5], delivery [1, 6], agriculture [1], and

exploring places that are either hard for or not meant for humans to access [1, 7]. All these

new applications are indeed for aiding humans on traditionally dangerous, painful, or

costly tasks, thus serving humanity as a useful tool. However, every tool has two sides of

good and evil, and drones are not exception. These illicit applications span from

voyeurism and privacy intrusion [1, 8], smuggling at the border or into prisons [9, 10], and

to the least favored, use in hostile load delivery for domestic terrorism [11].

Public interest in these illicit uses of drones peaked when there was an incident at

the White House involving a drone [12]. Fortunately, the drone in the incident was not
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carrying any dangerous material and did not cause any serious threat. However, the

symbolic meaning of the incidents—breach of the military-grade airspace security of one

of the most densely guarded place in the world by a small toy aircraft that costs mere few

hundred dollars—was enough to bring a global argument regarding the possible misuse of

drones. This breach is one of the examples that show the problematic nature of the

difficulty in detecting such small flying objects.

Because the drone industry is yet very new compared to the traditional air industry,

there are not enough resolutions against drones, regulation-wise. Traditionally, almost

every human-made flying objects were a) large, b) having pilots onboard, c) legally

registered to authorities, and d) having transponders attached for identification purpose.

However, drones a) are small, b) have no pilot onboard, and c) have no transponders

attached for being lightweight. Although the FAA has made the registration of all drones

mandatory starting 2015 [13], the only thing the regulation enforces is for all drone

operators to register drones to the FAA and to mark their drones with the registration

number. Of course, these markings are better than having nothing, but still, are typically

hard to read with the naked eyes when the drone is in the air making the usage only to

track the registrant after the drone lands or crashes into protected space. Furthermore, if

the drone were carrying explosives and successfully commit self-bombing, it would be

hard to track since there might be not many remains. This lack of reality in drone

regulation leads to the need for proactive detection and tracking system, for which it

would help on counteracting the threat in the early stage.

There is a previous study conducted by the researchers of Purdue University with

the title of “Air-to-Air Counter Unmanned Aerial System (CUAS)” [14] to detect, track,

and intercept a suspected-hostile drone en route to a protected object. This ‘Purdue

CUAS’ study proved that drone detection, tracking, and intercepting in the air is not an

impossible task; in fact, Purdue CUAS is the first ever system to perform such interception

of drones successfully. However, in the accessible and affordable viewpoint, Purdue

CUAS is not an ideal option to choose, as it has used a made-for-military—meaning

military-grade accuracy—RADAR. It is understandable as the system needed to detect

such small flying objects with high accuracy. However, military-grade RADAR is neither
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affordable in cost nor freely available to the general public, hence Purdue CUAS as a

counter-UAV system would be neither accessible nor affordable option; this is even stated

in the research paper itself. For the same reason, Purdue CUAS is neither scalable nor

easy-to-build system.

When it comes to the detection part, there are a few highly accurate solutions

commercially available already. However, these solutions are for sale of dedicated

hardware with paid customer support, which is not what this study aims to follow: a

scalable, low-cost drone detection system with easy-to-acquire day-to-day equipment.

The proposed system will satisfy the goal mentioned above and complement the

downside of Purdue CUAS, via CNN-based visual drone detection method. The system

will use a live stream of a camera video feed as its source, a multiple of cheap

Single-Board Computers (SBC) as the processing cluster, and finally, deliver the drone

detection result to any countermeasure control system. Therefore, this system is expected

to satisfy low-cost (designed to use cheap components), scalable (adding more SBC will

raise the system’s throughput), and easy-to-build (requires not many hardware

components) requirements of the study, making it ‘accessible’ and ‘affordable.’

1.2 Problem Statement

Traditional means of detecting an arbitrary flying object using RADAR has turned

out to be a difficult task. Although it is not impossible considering commercially available

solutions, the approach of using high-accuracy detector equipment raises the overall cost

and difficulty of acquiring such equipment, hence making these systems neither accessible

nor affordable.

1.3 Research Question

This study will build a prototype system that consists of cheap and easy to acquire

components only. This study will prove that the system is a feasible alternative by

answering the following question:
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• Can the proposed system detect a drone visually while achieving accuracy and time

constraint?

1.4 Significance

Although there are many deep-learning-based object detection study done, most of

them were using equipment with high computational performance. Deep learning, mainly,

relies on massive floating point arithmetic operations and for that purpose Graphics

Processing Units (GPU) are typically used for both training and processing. This study,

however, aims to use a cluster of equipment with low computational power, which has

rarely used in conjunction with deep-learning. The significance of doing so are a) units

with low computational performance are incredibly cheap compared to high-performance

GPU, b) using many units at once requires parallelized algorithm which is easy to scale

up, c) this can be applied to the recently trending Internet of Things applications, and d)

by using units with low computational performance this study sets a baseline so the end

user can easily upgrade the system with better equipment without any issue.

1.5 Assumption

• The drone that appears in front of the prototype system is assumed to be controlled

by an operator with mal-intent of committing a crime.

• There is a drone interceptor system, which will track and catch the hostile drone en

route to the protected object.

• There is a control system for the interceptor system, which will receive the detection

result from the prototype system and act accordingly.
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1.6 Limitation

• Due to the problem of acquiring a military-grade RADAR to evaluate the result of

the proposed system against, the evaluation took place with a scoring system that

takes the overall accuracy of the detection and the ratio of time spent on processing

a single test case over the actual time spent on recording the single case into

consideration.

1.7 Delimitation

• To minimize the confusing factor for the prototype system and focus on detecting

drones, the experiment will occur in the controlled indoor environment.

• For the same reason as above, the neural network inside the prototype system is

trained to detect a single type of drone only.

• The drone type used in this study is DJI Phantom 2.

1.8 Summary

This chapter described the problem of current drone detection, a research question

based on it, the significance of the new method, assumptions, limitations, and

delimitations. This study focuses on seeing the feasibility of distributed, CNN-based

visual drone detection system.
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CHAPTER 2. REVIEW OF RELEVANT LITERATURE

This chapter discusses previous research efforts of other researchers in

RADAR-based drone detection, object recognition based on the convolutional neural

network.

2.1 RADAR-Based Drone Detection

Since its debut in World War II [15], RADAR has completely changed the aspects

of ‘seeing’ in a combat. Nowadays, many things we use or experience involve RADAR,

including but not limiting to, reading cloud patterns to generate weather forecasts [16],

detecting surrounding obstacles for self-driving/driver-assist technologies [17], and so on.

Today, almost everything that involves aircraft utilizes RADAR. Thus, adopting RADAR

in order to detect an airborne drone was an entirely rational choice. However, there are

pitfalls in regards to the unique characteristics of drones made traditional RADAR a bit

less effective tool for detection, but not entirely obsolete.

2.1.1 Purdue CUAS Revisit

It is worth mentioning the Purdue CUAS [14] again, as the study has provided the

initial motive for this study. The primary objective of the Purdue CUAS study was to

detect a drone approaching the protected object and to intercept such drone before it

reaches the object. Rationally, but for much higher accuracy, Goppert et al. have used a

“high-precision,” “military RADAR” to detect and track an inbound target; as mentioned

before, this is the most traditional and rational way of detecting flying objects in the sky

yet still broadly used. The location of the experiment did not contain any obstacle that

might confuse the RADAR, as the place was previously a runway for aircraft. The study

concludes by successfully catching the hostile drone. However, as shown in Figure 2.1,

the location of the target from the RADAR seems very dispersed, even though “the target
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UAS flew in a straight line.” This result shows that even with military-grade RADAR it is

still hard to reliably detect and track a small UAV in a continuous time domain.

Figure 2.1. The trajectory of both hunter and the target drones, detected by RADAR [14]

2.1.2 Identifying with RADAR

One thing Purdue CUAS did not cover is the identification of the target; it is

understandable if this was the delimitation of the study, but still, the system assumes the

detected object is a target drone. There might be a case where a natural flying

object—most notably, a bird—crosses the border of ‘No Fly Zone’ and triggers the entire

intercepting mechanism. Of course, utilizing some advanced RADAR imaging techniques

such as Inverse Synthetic-Aperture RADAR (ISAR) might solve the problem, but then,

this will again put a strikethrough on one of the goals of this study—accessibility—since
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it requires specialized RADAR hardware (e.g., phased array system) and its paired driving

software. Therefore, the need for identifying flying objects still stands.

The identification of flying civilian aircraft is done with transponders. Thus,

identification is not part of the RADAR itself. However, by exploiting the physical

characteristics of the electromagnetic wave, getting identifiable information from a

RADAR-detected object has become possible. Wit et al. [18] focused on detecting and

classifying small UAVs using both continuous wave (CW) and frequency-modulated

continuous wave (FMCW) RADARs by analyzing the Micro-Doppler Signature (MDS) of

the target. Because typical drones reveal their rotors and blades, aside from the movement

of the drone itself, there is MDS caused by the periodic rotation of blades. The authors put

a focus on this characteristic of typical drones. By experimenting with a helicopter, a

quadcopter, and an octocopter, the authors were able to find the type of the drone (heli-,

quad-, or octocopter), the rotor diameter of the drone, and the rotation speed. However,

this identification relies on the fact that the drone was stationary; when the drone

maneuvering involves a complicated movement, the MDS is too minute to extract

meaningful information.

Another study involving Doppler signature is by Jahangir et al. [19]. The authors,

whose association is a commercial entity, developed a new RADAR system (Holographic

RADAR) that can detect a small UAV up to 5 kilometers. The concept of this RADAR

system is that it “stares” the entire surveillance area by using broad beam antenna as the

transmitter and two-dimensional array as the receiver. Then, with all the data received

from each receiver element, it classifies all detected targets by analyzing the Doppler

pattern, then filters out unrelated objects such as birds. The authors have proven with

real-world testing that this system can detect, classify, and track individual drones with

incredible accuracy. However, the paper mentioned that this system does need substantial

computational power, thus involving GPUs with specialized computing hosts for

processing the input data in real-time. Impressive work indeed, but still does not fit into

the low-cost category.

Thus, detecting and identifying a drone reliably—without mistakenly confusing it

with birds or others—is not an impossible task, but requires either constraints or
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specialized equipment, which is not what this study aims. Therefore, RADAR-based

drone detection is not the way this study chose to go along.

2.2 Visual Object Recognition

Visually detecting a drone is also not a new topic. Back in Purdue CUAS, relying

only on ground RADAR turned out to be inaccurate, although not entirely obsolete. To

compensate such inaccuracy, Wagoner et al. [20] have proposed a system that “uses only a

monocular camera on board a UAV to autonomously detect, track, and follow an

unauthorized UAV for surveillance purposes.” This system has three operation modes:

manual, autonomous, and destroy. In the manual mode, the pilot of the “hunter UAV” flies

it to near the “target UAV.” Then, when switched to the autonomous mode, the hunter will

detect and track the movement of the target, and follow the target by adjusting the position

of itself to keep the target in the center of the perceived image from the camera. With this

system, the inaccuracy of the ground RADAR can be compensated. Still, however, this

does not solve the initial drone detection problem of the RADAR: it cannot distinguish

some natural flying objects from drones.

2.2.1 Pitfalls of Simple Computer Vision

The aforementioned onboard monocule camera system for tracking target drone of

Wagoner is based on a prior study on feature extraction of drones. Wagoner et al. [21]

have conducted a preliminary experiment on figuring out the approximate distance limit of

feature extraction algorithm on sUAS. Although ran in simulated, controlled environment,

the feature detection algorithm has shown the performance dropping drastically when the

drone is merely 2 to 3 meters away from the camera. This performance drop implies that

in the real-world environment, this algorithm will not be feasible unless the drone is close

to the tracking system, as in the case of [20]. This issue has also been mentioned in [20],

where “noises” such as other objects within the horizon caused the tracking algorithm to

lock on a wrong target (Figure 2.2). The author wrote that to solve this issue temporarily
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the hunter drone had to rose until there is no horizon in its field of view anymore. This is

the apparent limit of simple computer vision algorithm based drone detection: the

algorithm returns merely some identifiable point of interest, not what the object actually is

based on those identifiers. If the system was able to categorize objects visible to the

camera, it could have pinpointed the target drone and continue chasing regardless of noise.

Figure 2.2. An example of noises confusing the feature extraction algorithm when the

drone is near ground. [20]

Due to the above reason, there were not many aerial object detection relying on

computer vision, until a revolutionary image processing and object recognition strategy

came out.

2.2.2 Convolutional Neural Network

There are multiple studies done in the field of object detection using the

convolutional neural network. Although the concept of CNN existed for a very long

time [22–24], the actual use of CNN on categorizing arbitrary objects began recently.
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One of the earliest studies on detecting and recognizing an object out of an image

with a complex background is the one done by LeCun et al. [25]. In the study, the authors

took large numbers of photos of small objects, with different pose and lightings, and

combined with noisy backgrounds. Then these images are used to train the network, which

as a result, showed at best 10.6% error rate on detecting the original object in the image.

Szarvas et al. did a study [26] to detect pedestrians with LiDAR and CNN in

real-time; when LiDAR detects an obstacle, CNN is used to confirm that the obstacle is a

pedestrian or not. What is essential in the study is that to lessen the burden on the

computationally demanding classifier the authors have picked only the part of the image

from the camera, dubbed as “region of interest” (ROI). This is where the LiDAR is

involved in for picking the ROI for a possible pedestrian presence. As a result, by limiting

the region for the classifier to scan, utilizing LiDAR did decrease the false positive of the

system.

Karpathy et al. [27] has tried to apply CNN to videos, which then was put to the

test on classifying the content of the video into one of 487 classes of sports activity. This

study is significant because unlike the still images, videos have one more factor of time

than images and these durations vary between each video. Therefore the authors have

sliced each video into a collection of fixed clips, which then the network can easily take as

an input. Because videos have time, the authors tried multiple approaches on fusing the

data across the temporal domain; this enabled the motion-aware classification which

increased the true positive rate later. This strategy can also be applied to this very research.

Amato et al. [28] has conducted an experiment which intends to build a

lightweight CNN-based parking lot vacancy detector in a distributed manner. A node

consists of a Raspberry Pi SBC and a camera, and the pre-trained CNN classifier runs on

this SBC itself; thus lightweight and distributed. The authors have tested two distinct

CNN architecture and compared the performance. Even though the classification job ran

on SBC, the authors stated that the load average was 0.25, meaning that for that time

duration the system was 75% idle and 25% busy. For that reason, this system can be said

lightweight and can be a role model for implementing what this very study is trying to
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build. However, it should be noted that this system took 15 seconds to scan the entire lot

and detect parked cars.

2.2.3 Detecting Drone with CNN

As suggested before, CNN is neither an entirely new topic nor has not been used in

drone detection, although drone detection with CNN is undoubtedly a rare topic; most of

the previous studies are focused on using CNN with drones—analyzing images taken

from drone-attached camera—not using CNN on drones—analyzing images of drones.

Although not applying directly on the image of drones, Kim et al. [29] have tried

detecting drones by feeding the MDS spectrum and Cadence-Velocity Diagram (CVD),

concatenated into a single Merged-Doppler Image (MDI), into CNN. In this study, nearly

60,000 images of two sample drones seen by an FMCW RADAR in an anechoic chamber

and outdoor environment were used to train the network. The reason why the researchers

used an MDI instead of MDS or CVD individually is that upon their preliminary testing

both images have shown higher accuracy in some cases and lower cases in some other

cases, respectively; hence, merging both into one MDI has made the network to yield the

highest accuracy in any given cases. The result is spectacular, as the MDI analysis has

yielded 94.1% accuracy in anechoic chamber and 100% accuracy when tested outdoor.

The only downside of this study is that the researchers have focused on drones hovering in

one place, not moving. As discussed earlier, this is due to the characteristics of MDS

which requires additional shift-interpolation in case of moving targets, where the MDS

signature of rotating blades can be easily buried under the shift caused by the movement

of the drone itself.

The study by Aker and Kalkan [30] is by far the most interesting study on

CNN-based drone detection, with the raw images of drones. For the experiment, the

authors generated an artificial dataset by combining real images of drones and birds

randomly on real videos of coastal areas. After training the network with both the artificial

dataset and the real dataset from ImageNet [31], the network was put to the test, which

showed around 90% accuracy. Therefore, this study has proven that artificially generated
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dataset is good enough to be used on training and that CNN is an excellent approach to

detect drones. However, this study has applied the neural network on still images and did

not cover applying the network to videos; our study had to tackle this problem down by

ourselves.

2.3 Summary

This chapter provided the review of existing research studies with the subject of

traditional RADAR-based drone detection, general applications of both vision-based

object recognition and convolutional neural network.
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CHAPTER 3. METHODOLOGY

The goal of the proposed system is to detect a drone visually using CNN on a

cluster of SBCs. Individual SBC has low computational performance, hence the delay that

occurs while processing each frame of the video stream will cause the system to lag

behind indefinitely. This study aims to resolve such issue by parallelizing the process:

distributing each frame of the video stream across multiple SBCs. Thus, the study is to

evaluate two aspects of the system: accuracy and throughput.

3.1 Proposed System Overview

The prototype system is built with many SBCs connected with each other via a

network switch. A single SBC becomes a ‘node.’ One of these nodes has the role of

‘master’ which coordinates and distributes tasks to other nodes. The rest of the nodes get

the role of ‘worker’ which repeats the following cycle: receive the task assigned by the

master, perform the task, and report the result back to the master. The master node also

holds the responsibility of capturing the visual circumstance around the system; hence the

only available camera module is attached to the master. Figure 3.1 depicts the system.

Figure 3.1. System overview
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3.1.1 Hardware

The prototype system used in the experiment is built with eight SBCs, one switch,

and one camera module. Although this experiment has only used seven worker nodes, this

is enough setup to observe scalability, thanks to the initial design that considered

distributed running environment. All of the equipment used in the experiment is generally

accepted to fall under the category of ‘cheap’ and ‘easy to acquire,’ still satisfying the goal

of this study. Especially, in general, a large userbase of certain equipment means a vast

knowledge base exists for easy troubleshooting and guidance. It is a loss indeed not to use

such ‘knowledge base,’ so in case there are multiple options available for certain

equipment the popularity in the market is used to decide which to use. The specifications

of all equipment are as follows:

• SBC: Raspberry Pi 3 Model B v1.2 [32] is chosen for its versatility, ease of

acquiring one, and cheap; it costs mere $35. For the operating system on this SBC,

Raspbian Stretch is chosen as it is Raspberry Pi Foundation’s official OS and comes

with the Foundation’s full support.

• Camera module: the standard Raspberry Pi Camera Module v2 [33] is chosen for its

decent performance of 1080p30, meaning it can capture full HD video at 30

frames-per-second. The camera has 54◦ wide view angle and sees at most n meters

wide at n meters away from the camera. Figure 3.2 depicts this.

• Networking: To connect all nodes with minimum bottleneck, D-Link DGS-1024A

24-Port Unmanaged Gigabit Switch [34] is chosen.

• Drone: DJI Phantom 2 [35] is chosen, for its dominant market share [14].

3.1.2 Software

Initially, this study aimed to utilize a framework named ‘Darknet’ [36] and the

model of ‘YOLOv3’ [37] for maximum performance; Darknet is a neural network
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Figure 3.2. Camera overview

implementation in the C language; thus it was expected to provide high performance even

on an SBC. However, this turned out not a good choice, as a preliminary test that ran on a

standard laptop showed Darknet’s poor performance against TensorFlow [38]. Even with

decent processing power, it was underachieving, so Darknet is undoubtedly not a good fit

for running on an SBC.

TensorFlow is undoubtedly the most popular framework for machine learning;

therefore the same notion of ‘knowledge base’ mentioned above applies to this, too.

TensorFlow has been extensively researched and utilized in many studies and projects, it

also provides multiple models suitable for various purposes out of the box [39]. In this

study, considering the special situation of running a neural network on devices with low

computational performance without GPU, a model optimized for these kinds of devices is

chosen: SSD [40] + MobileNetV2 [41–43].

Utilizing TensorFlow with SSD + MobileNetV2, the software stack on each of

master and worker node is written from scratch. The master node is in charge of capturing

the visual circumstance of the system; thus it runs a process ‘FrameFetcher’ that fetches a

frame from the camera and enqueues it into an internal buffer. Then, whenever there is an

idle worker, a process ‘FrameDistributor’ dequeues an unprocessed frame from the queue

and hands over to the worker. The worker runs the frame through the neural network
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which emits an annotated frame. The worker reports this frame back to the master, which

then the master saves it into another queue for later analysis. These steps are repeated

until the user turns the device off. Figure 3.3 depicts the internals of the software stack of

the master and the worker, and the flow of information between them.

Figure 3.3. Overview of master and worker software stack, with information flow between

them

3.2 Training CNN

The TensorFlow Model Zoo provides pre-trained inference graphs, but none of

them are trained to detect a drone, especially the Phantom 2. Thus, training a new detector

from the ground was a must, which then requires a training dataset with ground truth

labeled. Generally, training requires a massive dataset, but following what Aker et al. has

done in [30], with additional images taken directly for this study, a set of 700 images with

ground truth labels has been made.

Training a neural network requires much great computational performance than

actually using the network, so training itself was performed on a dedicated computation

instance on Amazon AWS. The training has been done for 32 hours on 700 images

explained above. Then the inference graph is exported frozen, distributed across the

workers; thus all the workers run the same neural network graph.
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3.3 Data Collection

There are two criteria this study is evaluating: the scalability in forms of system

throughput and the accuracy.

A fully functional system was set to operate in an indoor environment. Then, a

drone has flown in front of the camera multiple times, with different distance between the

drone and the camera and with a different number of workers participating in the

processing. Figure 3.4 depicts the experiment setting.

Figure 3.4. Experiment setup overview.

For measuring the system throughput, the master marked the timestamp in

nanosecond resolution on each frame upon capturing each frame from the camera.

Workers also marked the timestamp before and after processing the frame.

At the end of each trial, the following data were calculated for later analysis:

• System Throughput Rate (STR): as mentioned above, each frame holds three

timestamps: when the master captured the frame (tc), when the worker received the

frame (ts), and when the worker finished processing the frame (te). It is expected

that the duration of the processing a single frame (te − ts) is uniform while the

purpose of the experiment is to measure the overall throughput of the system when

the number of workers changes. Therefore, the Formula 3.1 is used to measure the

throughput STR of the trial.



19

• Accuracy of detection: each processed frame falls into one of the four categories:

each processed frame falls into one of the four categories described in Table 3.1.

The accuracy was calculated with Formula 3.2, proposed by [44] as Overall Error

Rate (OER).

• The number of workers: with a different number of workers, the throughput varied.

This value is used to categorize results.

• The distance between the camera and the drone: The distance affected the accuracy.

This value is used to classify results.

Table 3.1. Category table of the processed frame
System Reports Drone System Reports NO Drone

There IS Drone True Positive False Negative
There is NO Drone False Positive True Negative

STR =
Process Duration = tel − ts f

Trial Duration = tcl − tc f
(3.1)

OER =
FP+FN

TP+FP+TN+FN
(3.2)

3.3.1 Evaluation

Among the collected data, both the STR and the OER share the same trait: the

lower, the better. Therefore, as a way of evaluating the set of the distance and the worker

count, the OER will be multiplied by the STR, yielding the Final Evaluation Score (FES).

For example, if the STR was 7 and the OER was 15%, then the FES will be 1.05 (Equation

3.3), and if the STR was 15 and the OER was 40%, then the FES will be 6 (Equation 3.4).

15
100

×7 =
105
100

= 1.05 (3.3)

40
100

×15 =
600
100

= 6 (3.4)
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When designing the experiment, an ideal threshold of the processing time STR 5

and maximum 20% OER is expected in the experiment. As this study aims to prove that

the scalability is an essential factor to consider building this distributed neural network

system, the configuration that shows the final score less than 1 will be selected as the most

favored result.

3.4 Experiment

For each distance between the camera and the drone, and for each number of

workers, a trial of flying the drone in front of the camera was conducted ten times. Then

for each trial, the final score is calculated. Table 3.2 lists all of the possible distance-count

pairs. As mentioned in Chapter 1, the experiment was conducted inside a controlled

indoor environment to exclude any possible source of confusion on the system.

Table 3.2. List of all experiment cases

Case #: 1 2 3 4 5 6 7 8 9 10 11

Distance (m) 2 2 2 2 4 4 4 4 6 6 6

Worker Count 1 3 5 7 1 3 5 7 1 3 5

Case #: 12 13 14 15 16 17 18 19 20

Distance (m) 6 8 8 8 8 10 10 10 10

Worker Count 7 1 3 5 7 1 3 5 7

There was a slight problem on when the distance was 2 meters: because when on 2

meters away from the camera, the camera only sees 2 meters wide horizontally, making

the drone exposure shorter than the rest of the cases. However, since the experiment does

not use absolute values directly but calculate the relative ratio out of those values, this has

caused no problem.
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3.5 Summary

This chapter discussed the design of the experiment on evaluating the proposed

system.
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CHAPTER 4. ANALYSIS OF RESULT

This chapter lists all the data captured from entire experiment and discuss the

analysis.

4.1 Observing Result

Each worker yields annotated frame image data as its output. Each trial yielded

150 frames in average and there were 200 trials, thus the experiment in whole has

generated near 30,000 annotated frame images. All the images were analyzed manually

for the existence and location of drone and detection bounding boxes, then the counts were

organized into tables. Due to the extensive amount, all the data are attached at the end of

this chapter as Table 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16,

4.17, 4.18, 4.19, 4.20, 4.21, 4.22 and 4.23. Entries in STR, OER, and FES were underlined

if they satisfied the predefined threshold. Additional column legends are as follows:

• TD: the duration of that single trial in seconds, calculated tcl − tc f , where tc f is

always 0.

• PD: the duration of processing that single trial in seconds, calculated tel − ts f .

Although the analysis was primarily checking the correctness of detection

bounding boxes’ location, detection itself reports its level of confidence score with a

bounding box. For example, Figure 4.1 shows a detection result with very high score,

while Figure 4.2 shows very low score. In this study, both results were counted as True

Positive as the CNN has put correct bounding box on drones. For comparison, Figure 4.3

shows an example of False Positive. However, seeing that most of the images has captured

a drone as a ghost-like image, a question of ‘if, given without prior context, would a

human being recognize this image as a photo of a drone?’ has risen. This question will be

dealt later again.
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Figure 4.1. A drone was flying 4m away from the camera at the time of the capture.

Analysis by the neural network reported that it is 95% sure that the object in the bounding

box is a drone.

Figure 4.2. A drone was flying 6m away from the camera. Analysis reported that it is only

2% sure that the object is a drone.
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Figure 4.3. A drone was flying 4m away from the camera at the time of the capture.

Analysis by the neural network reported that it is 1% sure that there is a drone inside the

bounding box, which in reality, there was nothing.

4.2 Analysis

An example analysis of a single trial can be as follows: (trial #3 of Case #7, Table

4.10)

• The trial began with the start command, and the system declared timestamp 0.

• The trial was conducted for 29.407 seconds. Capturing stopped immediately

following the stop command, but the processing continued, as intended.

• The neural network received and started processing the first frame 0.186 seconds

after its capture.

• The neural network finished processing the last frame 64.272 seconds after the start

command.

• From above two timestamps, the entire processing duration is calculated: 64.086

seconds.
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• There were 168 frames.

– 49 frames captured the drone and the neural network detected the drone

correctly (True Positive)

– 86 frames captured nothing and the neural network reported there is nothing

(True Negative)

– 1 frame captured nothing but the neural network detected the drone is there

(False Positive)

– 32 frames captured the drone but the neural network reported there is nothing

(False Negative)

• The throughput is calculated 64.086/29.407 = 2.179, meaning the neural network

is twice slower in processing than the system capturing.

• Out of 168 total frames, the neural network reported wrongly in 1+32 = 33 frames;

the error rate is calculated 33/168 = 0.196.

• FES is calculated 2.179 ·0.196 = 0.428. This satisfies the predefined threshold of 1.

All 200 trials followed the same step as above example analysis. The following are about

evaluations conducted based on the outcome of the analysis.

4.2.1 System Scalability

For measuring whether the STR decreases as more workers are involved, for each

case the arithmetic mean of STR of all 10 trials were calculated. This mean is shown in

Table 4.1, from which a graph with distance as the category has been plotted in Figure 4.4.

Because the neural network yields results in fixed amount of time (due to its internal

design), the result of scalability was expected not to be affected by the distance between

the drone and the camera and was observed not; there were no significant differences

between distances under same number of workers.

With only 1 worker, the processing required ten times of the duration of the

capturing, as frames are queued up in real time but the processing is being done at much
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slower rate. Thus, when added 2 more workers (3 workers), the processing is distributed

among workers, requiring 3 times of the duration of the capturing. When added 2 more

workers again (5 workers), the processing required twice the duration of capturing.

Finally, with 7 workers, processing required near-equal of the duration of the capturing,

which is a more-than-expected result.

Another aspect of this result to look into is the inclination of the slopes between

worker counts in the graph. A steep negative slope is observed between 1 worker and 3

workers, meaning there were drastic performance boost by just adding 2 more workers.

Following that, steadier negative slope connects 3 workers and 5 workers, meaning there

still is performance boost by adding 2 more workers but not as drastic as the previous.

Same alignment continues with more steadier slope between 5 workers and 7 workers. It

is clear that adding more worker nodes decrease STR, thus proving that this system is

designed to be scalable and is confirmed scalable. As STR goes near 1, it can be said that

the system is processing frames in near real time. However, as the slope inclination

changes show, the performance boost per worker node addition is decreasing, meaning

there will be a threshold where worker node cost will exceed the profit gained from the

performance boost. It is considered inevitable with the current multiprocessing design

selected for this study, as there are resources being wasted on performing transactions

with shared data structured.

Table 4.1. Mean STR of each case. Values with underline indicates they satisfy predefined
threshold.

Distance 1 Worker 3 Workers 5 Workers 7 Workers

2m 10.217 3.508 2.138 1.528
4m 10.175 3.592 2.203 1.595
6m 10.332 3.553 2.188 1.571
8m 10.283 3.456 2.125 1.504

10m 10.194 3.672 2.278 1.715
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Figure 4.4. Scalability graph showing mean STR on different worker counts. With more

worker, the performance boost can be easily seen, confirming that the system is scalable.

4.2.2 System Accuracy

Similar to STR, for each case the arithmetic mean of OER of all 10 trials were

calculated. Table 4.2 and Figure 4.5 represent those means. Because all the worker nodes

used in the experiment were sharing very same inference graph, the accuracy was

expected not to be affected by the number of workers, but was observed so; the accuracy

was affected by the number of workers, and the reason behind was not determined.

According to the data, while the system works as designed, there is an accuracy

issue with the system, as only with 2m distance between the camera and the drone the

system was able to achieve less than 20% OER. The rest of the cases, as the distance

increases, the OER increased as well. However, this is not related to the core concept of

the system but to the amount of the dataset that was used to train the neural network and

the quality of image from the camera. Although this study has used twice the image of

what Aker et al. have used in [30], due to the unique nature of ‘video’ rather than ‘still
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image,’ the system required more training data, as in ‘video’ frames a moving object

typically has blurry edges, which then might have confused the neural network.

Additionally, as the distance between the drone and the camera increased, due to the low

quality of images generated by low-cost camera module, the ‘outline’ of the drone that is

used by the neural network might have become less sharp, thus confusing its ability to

catch edges of the drone and detecting the drone. This issue can be resolved by training

the neural network further with more dataset, but at this moment this is very time

consuming task as there is no ready-made dataset of drones—either holding still or

moving—available, so making it is the only way as of now. Also, by replacing the camera

with the one of more quality, the outline issue might be resolved, too; but doing so will

again violate the ‘affordable’ aspect of this study. Thus, this system can be said ‘fairly

accurate, but only within close range; with plenty of room for improvement.’

Table 4.2. Mean OER of each case. Values underlined are ones within the predefined
threshold.

Distance 1 Worker 3 Workers 5 Workers 7 Workers

2m 0.214 0.160 0.130 0.140
4m 0.616 0.506 0.413 0.497
6m 0.985 0.838 0.757 0.785
8m 1.000 0.988 0.985 0.989

10m 1.000 0.875 0.809 0.836

4.2.3 System Feasibility

As defined in previous chapter, both STR and OER are better if they are lower.

From this, as an easy-to-grasp scale, FES is defined to be calculated from multiplying

STR and OER. With both STR and OER obtained from the study, FES was retrieved per

the equation, then again, means of each individual FES were taken. Table 4.3 and Figure

4.6 depicts these. Observing the data, the following cases showed the tendency of eligible

system: Case #2 (2m + 3 workers), #3 (2m + 5 workers), #4 (2m + 7 workers), #7 (4m + 5

workers), #8 (4m + 7 workers).
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Figure 4.5. Accuracy graph showing mean OER on different worker counts. With

increasing distances, the error rate has risen considerably.

Due to the nature of multiplication, STR and OER were given the relationship of

mutual complementation; even if one value did not satisfy its own threshold, the other

value has chance to complement that. Thus, there were cases that either STR or OER were

over the threshold but the other value compensated to go under the FES threshold. Case

#7 (4m + 5 workers) and #8 (4m + 7 workers) are those; although the OER was out of

acceptable range, STR was low enough to drag the FES down. Training the neural

network further to lower OER and adding more workers to lower STR will significantly

lower FES further, making the system more reliable and more responsive.
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Table 4.3. Mean FES of each case. Values underlined are ones under predefined threshold.

Distance 1 Worker 3 Workers 5 Workers 7 Workers

2m 2.191 0.563 0.280 0.216
4m 6.277 1.817 0.909 0.796
6m 10.174 2.974 1.650 1.228
8m 10.283 3.416 2.093 1.488

10m 10.194 3.212 1.837 1.433
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Figure 4.6. Feasibility graph showing mean FES on different worker counts

4.3 Additional Consideration

There were few issues appeared during the analysis.

4.3.1 Blurry Image of Drones

Due to the limited image quality produced by the camera module and the low

performance of the master SBC, almost every image of drones appeared ‘blurry’ and
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‘ghost-like.’ To tackle this problem, the initial training data set was also produced with

exactly same camera module. Therefore, the inference graph used in this study knows that

those blurry images are drones. However, supposing that a human being is given this

frame images without any previous knowledge, it is uncertain that the human being would

recognize this as a drone. Similarly, any white object moving fast can also generate

similar-looking image. This issue can be easily resolved by replacing the camera module

with a better working camera module, but it would raise the cost of the system, which is

the violation of affordability. Right now, the only feasible resolution for this issue is to

train the CNN further to see if the neural network can recognize it. This leads to the next

issue, which is also linked to the maturity of the neural network.

4.3.2 Low Detection Score

Although in feasibility analysis we have concluded that 5 cases turned out to be

feasible, two cases of 4m distance are unique as they have failed on OER threshold but

passed FES threshold eventually. Combined with low detection scores observed from

outputs, this is highly suspected to be caused by the immaturity of the CNN. Usually, a

CNN requires massive data set to function as expected; however, the CNN used in this

study has used mere 700 GT images, per [30]. High OER on farther distances suggests

that the CNN has neither trained enough with size differences yet nor with various

backgrounds, which leads back to the size of the training set. This problem of high OER is

expected to be resolved with much larger training GT image set, and by knowing this

possible resolution this study can be improved in the future.
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Table 4.4. Data from Case #1: 2m distance & 1 worker
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 48.440 48.440 0.233 502.228 501.995 14 253 0 24 10.363 0.082 0.855
2 35.199 35.199 0.183 357.831 357.648 10 169 0 28 10.161 0.135 1.374
3 27.907 27.907 0.197 287.831 287.633 2 124 0 41 10.307 0.246 2.530
4 32.994 32.994 0.171 313.061 312.890 7 135 0 40 9.483 0.220 2.084
5 22.377 22.377 0.260 237.909 237.649 3 101 0 33 10.620 0.241 2.558
6 29.967 29.967 0.224 308.703 308.479 2 146 0 31 10.294 0.173 1.783
7 30.020 30.020 0.203 305.874 305.670 6 137 0 34 10.182 0.192 1.956
8 25.019 25.019 0.197 265.002 264.805 6 95 0 52 10.584 0.340 3.597
9 25.914 25.914 0.230 267.917 267.687 11 96 0 47 10.330 0.305 3.153

10 32.548 32.548 0.225 320.676 320.451 9 138 0 38 9.846 0.205 2.022

Table 4.5. Data from Case #2: 2m distance & 3 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 52.417 52.417 0.221 172.272 172.051 23 252 1 15 3.282 0.055 0.180
2 35.328 35.328 0.210 122.801 122.591 17 167 1 22 3.470 0.111 0.386
3 30.173 30.173 0.216 100.551 100.335 13 123 0 31 3.325 0.186 0.617
4 30.532 30.532 0.205 110.111 109.906 17 136 0 29 3.600 0.159 0.574
5 23.612 23.612 0.221 83.858 83.637 11 99 0 27 3.542 0.197 0.698
6 30.314 30.314 0.277 107.908 107.631 5 157 0 17 3.550 0.095 0.337
7 30.206 30.206 0.216 106.373 106.157 12 137 1 27 3.515 0.158 0.556
8 25.687 25.687 0.188 92.584 92.396 15 95 0 43 3.597 0.281 1.011
9 26.154 26.154 0.227 93.307 93.079 25 96 0 33 3.559 0.214 0.763

10 30.659 30.659 0.188 111.827 111.638 20 139 0 26 3.641 0.141 0.512

Table 4.6. Data from Case #3: 2m distance & 5 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 51.414 51.414 0.270 107.110 106.840 27 252 0 12 2.078 0.041 0.086
2 35.773 35.773 0.218 77.190 76.972 24 168 1 14 2.152 0.072 0.156
3 30.137 30.137 0.248 63.311 63.063 17 125 0 25 2.093 0.150 0.313
4 31.559 31.559 0.211 69.026 68.815 21 138 0 23 2.180 0.126 0.276
5 23.748 23.748 0.231 53.592 53.361 13 101 0 23 2.247 0.168 0.377
6 32.220 32.220 0.227 67.070 66.842 6 153 0 20 2.075 0.112 0.232
7 30.535 30.535 0.268 67.088 66.820 17 138 1 21 2.188 0.124 0.272
8 26.630 26.630 0.266 58.316 58.050 20 96 0 37 2.180 0.242 0.527
9 26.521 26.521 0.224 58.969 58.745 35 97 1 21 2.215 0.143 0.316

10 35.146 35.146 0.238 69.442 69.203 24 138 0 23 1.969 0.124 0.245
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Table 4.7. Data from Case #4: 2m distance & 7 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 56.804 56.804 0.207 77.760 77.553 26 251 1 13 1.365 0.048 0.066
2 37.381 37.381 0.278 56.918 56.640 20 168 0 19 1.515 0.092 0.139
3 29.680 29.680 0.251 47.339 47.088 18 124 0 25 1.587 0.150 0.238
4 34.687 34.687 0.217 50.621 50.404 20 138 0 24 1.453 0.132 0.192
5 23.845 23.845 0.261 39.954 39.692 13 101 0 23 1.665 0.168 0.279
6 33.380 33.380 0.181 49.582 49.401 6 154 0 19 1.480 0.106 0.157
7 33.028 33.028 0.235 49.748 49.513 16 139 0 22 1.499 0.124 0.186
8 27.918 27.918 0.205 43.492 43.287 18 94 0 41 1.551 0.268 0.415
9 27.494 27.494 0.198 44.197 43.999 32 96 1 25 1.600 0.169 0.270

10 32.739 32.739 0.221 51.573 51.352 21 137 0 26 1.569 0.141 0.222

Table 4.8. Data from Case #5: 4m distance & 1 worker
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 64.128 64.128 0.194 645.551 645.356 34 0 0 341 10.064 0.909 9.151
2 29.550 29.550 0.192 302.562 302.369 5 46 0 124 10.233 0.709 7.250
3 28.384 28.384 0.176 293.516 293.339 20 87 0 61 10.335 0.363 3.752
4 21.281 21.281 0.218 224.916 224.697 7 28 0 94 10.558 0.729 7.694
5 28.914 28.914 0.258 298.346 298.088 9 64 0 99 10.309 0.576 5.934
6 22.303 22.303 0.173 236.803 236.630 24 26 0 85 10.610 0.630 6.680
7 22.143 22.143 0.267 228.156 227.889 7 32 0 92 10.292 0.702 7.228
8 28.149 28.149 0.174 293.708 293.534 35 42 0 91 10.428 0.542 5.648
9 30.705 30.705 0.184 311.167 310.983 17 73 0 90 10.128 0.500 5.064

10 31.142 31.142 0.210 273.990 273.780 6 74 0 79 8.791 0.497 4.368

Table 4.9. Data from Case #6: 4m distance & 3 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 65.420 65.420 0.197 223.246 223.049 118 6 5 246 3.410 0.669 2.282
2 29.721 29.721 0.246 106.116 105.870 29 48 7 91 3.562 0.560 1.995
3 28.665 28.665 0.206 102.548 102.342 38 74 1 55 3.570 0.333 1.190
4 21.788 21.788 0.251 80.599 80.348 31 13 3 82 3.688 0.659 2.430
5 29.201 29.201 0.209 104.489 104.280 35 59 2 76 3.571 0.453 1.619
6 22.941 22.941 0.207 84.888 84.681 46 22 3 64 3.691 0.496 1.832
7 22.308 22.308 0.282 81.300 81.018 25 13 3 90 3.632 0.710 2.578
8 28.121 28.121 0.235 104.386 104.151 63 44 1 60 3.704 0.363 1.345
9 30.385 30.385 0.208 109.335 109.127 38 68 0 74 3.592 0.411 1.477

10 27.496 27.496 0.265 96.529 96.264 29 65 5 59 3.501 0.405 1.418
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Table 4.10. Data from Case #7: 4m distance & 5 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 67.259 67.259 0.198 138.172 137.974 156 6 8 205 2.051 0.568 1.165
2 30.219 30.219 0.246 66.830 66.584 43 48 8 76 2.203 0.480 1.058
3 29.407 29.407 0.186 64.272 64.086 49 86 1 32 2.179 0.196 0.428
4 22.477 22.477 0.202 51.212 51.010 44 9 4 72 2.269 0.589 1.337
5 29.152 29.152 0.201 66.417 66.215 46 59 8 59 2.271 0.390 0.885
6 23.405 23.405 0.229 54.139 53.910 65 20 4 46 2.303 0.370 0.853
7 23.671 23.671 0.261 52.523 52.262 36 29 4 62 2.208 0.504 1.112
8 30.044 30.044 0.188 65.965 65.777 72 44 4 48 2.189 0.310 0.678
9 31.129 31.129 0.178 68.527 68.349 49 71 1 59 2.196 0.333 0.732

10 28.005 28.005 0.269 60.661 60.392 38 58 7 55 2.156 0.392 0.846

Table 4.11. Data from Case #8: 4m distance & 7 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 73.326 73.326 0.203 100.645 100.443 136 6 8 225 1.370 0.621 0.851
2 29.988 29.988 0.232 50.072 49.840 36 48 9 82 1.662 0.520 0.864
3 34.958 34.958 0.202 48.192 47.990 47 76 1 44 1.373 0.268 0.368
4 22.807 22.807 0.207 38.565 38.357 36 0 3 90 1.682 0.721 1.212
5 29.130 29.130 0.268 49.784 49.516 41 56 6 69 1.700 0.436 0.741
6 24.189 24.189 0.268 40.133 39.865 57 0 4 74 1.648 0.578 0.952
7 23.640 23.640 0.215 38.934 38.719 32 15 4 80 1.638 0.641 1.050
8 29.898 29.898 0.220 48.797 48.576 68 42 4 54 1.625 0.345 0.561
9 31.791 31.791 0.235 50.872 50.637 41 74 1 64 1.593 0.361 0.575

10 27.294 27.294 0.215 45.541 45.326 32 51 6 69 1.661 0.475 0.788

Table 4.12. Data from Case #9: 6m distance & 1 worker
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 23.870 23.870 0.191 252.806 252.615 10 0 0 135 10.583 0.931 9.853
2 27.091 27.091 0.222 276.831 276.609 0 0 0 160 10.211 1.000 10.211
3 63.035 63.035 0.197 628.302 628.105 0 0 0 366 9.964 1.000 9.964
4 25.617 25.617 0.190 253.380 253.190 1 0 0 145 9.884 0.993 9.816
5 22.550 22.550 0.222 236.303 236.082 3 0 0 133 10.469 0.978 10.238
6 26.862 26.862 0.198 277.425 277.227 0 0 0 160 10.321 1.000 10.321
7 34.861 34.861 0.184 361.170 360.986 2 0 0 209 10.355 0.991 10.257
8 19.710 19.710 0.206 209.417 209.211 1 0 0 119 10.614 0.992 10.526
9 22.668 22.668 0.258 235.470 235.211 2 0 0 134 10.376 0.985 10.224

10 24.529 24.529 0.226 258.792 258.565 3 0 0 146 10.541 0.980 10.329
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Table 4.13. Data from Case #10: 6m distance & 3 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 24.631 24.631 0.217 89.376 89.158 44 0 0 101 3.620 0.697 2.521
2 26.835 26.835 0.232 98.047 97.815 16 0 0 144 3.645 0.900 3.281
3 61.781 61.781 0.260 213.925 213.665 22 0 0 344 3.458 0.940 3.251
4 26.032 26.032 0.195 88.599 88.404 9 0 0 137 3.396 0.938 3.187
5 22.934 22.934 0.205 83.729 83.524 27 0 0 109 3.642 0.801 2.919
6 27.265 27.265 0.221 97.655 97.435 18 0 0 142 3.574 0.888 3.172
7 36.501 36.501 0.213 126.173 125.960 35 0 0 176 3.451 0.834 2.878
8 20.919 20.919 0.215 74.504 74.289 27 0 0 93 3.551 0.775 2.752
9 22.929 22.929 0.272 83.751 83.479 35 0 0 101 3.641 0.743 2.704

10 25.381 25.381 0.221 90.505 90.283 20 0 0 129 3.557 0.866 3.080

Table 4.14. Data from Case #11: 6m distance & 5 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 24.874 24.874 0.208 56.364 56.156 63 0 0 82 2.258 0.566 1.277
2 27.647 27.647 0.229 60.914 60.685 26 0 0 134 2.195 0.838 1.838
3 64.792 64.792 0.206 131.086 130.879 31 0 0 335 2.020 0.915 1.849
4 25.332 25.332 0.211 56.603 56.392 18 0 0 128 2.226 0.877 1.952
5 25.257 25.257 0.198 53.680 53.483 41 0 0 95 2.118 0.699 1.479
6 28.276 28.276 0.208 60.725 60.518 24 0 0 136 2.140 0.850 1.819
7 37.291 37.291 0.245 79.553 79.308 52 0 0 159 2.127 0.754 1.603
8 20.730 20.730 0.207 47.782 47.575 42 0 0 78 2.295 0.650 1.492
9 23.638 23.638 0.265 54.143 53.878 52 0 0 84 2.279 0.618 1.408

10 25.575 25.575 0.268 57.002 56.734 29 0 0 120 2.218 0.805 1.787

Table 4.15. Data from Case #12: 6m distance & 7 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 25.822 25.822 0.285 42.774 42.489 57 0 0 88 1.645 0.607 0.999
2 29.282 29.282 0.224 45.311 45.087 22 0 0 138 1.540 0.863 1.328
3 71.042 71.042 0.324 95.948 95.624 28 0 0 338 1.346 0.923 1.243
4 26.683 26.683 0.275 41.843 41.568 15 0 0 131 1.558 0.897 1.398
5 23.923 23.923 0.268 39.899 39.632 37 0 0 99 1.657 0.728 1.206
6 28.857 28.857 0.198 45.272 45.074 20 0 0 140 1.562 0.875 1.367
7 36.976 36.976 0.226 58.301 58.074 43 0 0 168 1.571 0.796 1.251
8 22.497 22.497 0.211 36.148 35.938 37 0 0 83 1.597 0.692 1.105
9 24.140 24.140 0.227 40.293 40.066 46 0 0 90 1.660 0.662 1.098

10 26.721 26.721 0.237 42.443 42.206 28 0 0 121 1.580 0.812 1.283
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Table 4.16. Data from Case #13: 8m distance & 1 worker
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 30.039 30.039 0.181 307.937 307.756 0 0 0 178 10.245 1.000 10.245
2 25.041 25.041 0.218 256.863 256.644 0 0 0 148 10.249 1.000 10.249
3 26.720 26.720 0.201 280.699 280.497 0 0 0 162 10.497 1.000 10.497
4 27.424 27.424 0.232 277.025 276.793 0 0 0 161 10.093 1.000 10.093
5 27.770 27.770 0.254 286.789 286.536 0 0 0 166 10.318 1.000 10.318
6 33.686 33.686 0.192 342.113 341.921 0 0 0 198 10.150 1.000 10.150
7 43.436 43.436 0.183 447.563 447.380 0 0 0 260 10.300 1.000 10.300
8 25.086 25.086 0.167 261.342 261.175 0 0 0 152 10.411 1.000 10.411
9 24.222 24.222 0.202 254.614 254.412 0 0 0 147 10.504 1.000 10.504

10 29.498 29.498 0.187 297.032 296.845 0 0 0 172 10.063 1.000 10.063

Table 4.17. Data from Case #14: 8m distance & 3 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 31.284 31.284 0.205 107.379 107.174 3 0 0 175 3.426 0.983 3.368
2 24.964 24.964 0.203 90.223 90.020 1 0 0 147 3.606 0.993 3.582
3 28.881 28.881 0.240 97.393 97.152 4 0 0 158 3.364 0.975 3.281
4 28.859 28.859 0.264 96.948 96.684 0 0 0 161 3.350 1.000 3.350
5 29.835 29.835 0.205 100.449 100.245 0 0 0 166 3.360 1.000 3.360
6 35.269 35.269 0.218 117.250 117.033 6 0 0 192 3.318 0.970 3.218
7 43.432 43.432 0.218 153.346 153.129 1 0 0 259 3.526 0.996 3.512
8 26.667 26.667 0.201 91.312 91.111 2 0 0 150 3.417 0.987 3.372
9 24.654 24.654 0.280 89.132 88.852 2 0 0 145 3.604 0.986 3.555

10 28.969 28.969 0.250 104.146 103.896 1 0 0 171 3.586 0.994 3.566

Table 4.18. Data from Case #15: 8m distance & 5 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 31.830 31.830 0.223 66.644 66.421 5 0 0 173 2.087 0.972 2.028
2 26.085 26.085 0.218 56.461 56.243 1 0 0 147 2.156 0.993 2.142
3 30.144 30.144 0.228 61.420 61.192 4 0 0 158 2.030 0.975 1.980
4 28.022 28.022 0.182 61.158 60.976 0 0 0 161 2.176 1.000 2.176
5 28.222 28.222 0.193 63.118 62.925 0 0 0 166 2.230 1.000 2.230
6 34.942 34.942 0.262 73.775 73.513 10 0 0 188 2.104 0.949 1.998
7 49.159 49.159 0.203 93.759 93.556 1 0 0 259 1.903 0.996 1.896
8 25.694 25.694 0.198 57.769 57.572 3 0 0 149 2.241 0.980 2.196
9 25.698 25.698 0.197 56.335 56.138 2 0 0 145 2.185 0.986 2.155

10 30.187 30.187 0.202 64.749 64.547 1 0 0 171 2.138 0.994 2.126
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Table 4.19. Data from Case #16: 8m distance & 7 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 32.717 32.717 0.224 49.210 48.986 4 0 0 174 1.497 0.978 1.464
2 27.916 27.916 0.242 42.680 42.438 0 0 0 148 1.520 1.000 1.520
3 30.857 30.857 0.227 45.572 45.345 2 0 0 160 1.470 0.988 1.451
4 28.202 28.202 0.261 44.717 44.456 0 0 0 161 1.576 1.000 1.576
5 31.390 31.390 0.264 46.643 46.380 0 0 0 166 1.478 1.000 1.478
6 36.020 36.020 0.214 54.400 54.186 7 0 0 191 1.504 0.965 1.451
7 49.333 49.333 0.234 69.013 68.779 1 0 0 259 1.394 0.996 1.389
8 27.659 27.659 0.222 43.166 42.943 2 0 0 150 1.553 0.987 1.532
9 26.309 26.309 0.205 41.927 41.722 2 0 0 145 1.586 0.986 1.564

10 32.362 32.362 0.196 47.653 47.457 1 0 0 171 1.466 0.994 1.458

Table 4.20. Data from Case #17: 10m distance & 1 worker
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 26.386 26.386 0.197 274.603 274.406 0 0 0 158 10.400 1.000 10.400
2 32.651 32.651 0.239 278.427 278.189 0 0 0 161 8.520 1.000 8.520
3 25.537 25.537 0.204 262.441 262.236 0 0 0 151 10.269 1.000 10.269
4 24.644 24.644 0.189 256.200 256.011 0 0 0 148 10.388 1.000 10.388
5 25.347 25.347 0.191 248.895 248.704 0 0 0 143 9.812 1.000 9.812
6 5.889 5.889 0.206 66.260 66.054 0 0 0 36 11.217 1.000 11.217
7 23.067 23.067 0.209 240.070 239.862 0 0 0 138 10.398 1.000 10.398
8 25.027 25.027 0.259 257.658 257.400 0 0 0 148 10.285 1.000 10.285
9 22.498 22.498 0.169 229.959 229.790 0 0 0 132 10.214 1.000 10.214

10 25.475 25.475 0.227 266.017 265.790 0 0 0 153 10.433 1.000 10.433

Table 4.21. Data from Case #18: 10m distance & 3 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 26.613 26.613 0.227 97.002 96.776 30 0 0 128 3.636 0.810 2.946
2 28.065 28.065 0.221 99.220 98.999 41 0 0 120 3.527 0.745 2.629
3 25.753 25.753 0.218 92.765 92.547 38 0 0 113 3.594 0.748 2.689
4 24.606 24.606 0.207 91.404 91.197 8 0 0 140 3.706 0.946 3.506
5 24.214 24.214 0.241 87.804 87.563 10 0 0 133 3.616 0.930 3.363
6 5.810 5.810 0.217 25.844 25.627 6 0 0 30 4.411 0.833 3.676
7 23.721 23.721 0.211 84.681 84.470 9 0 0 129 3.561 0.935 3.329
8 25.397 25.397 0.231 90.779 90.548 10 0 0 138 3.565 0.932 3.324
9 22.715 22.715 0.219 81.433 81.214 8 0 0 124 3.575 0.939 3.359

10 26.277 26.277 0.223 92.903 92.680 10 0 0 143 3.527 0.935 3.297
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Table 4.22. Data from Case #19: 10m distance & 5 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 27.555 27.555 0.186 60.833 60.647 48 0 0 110 2.201 0.696 1.532
2 29.023 29.023 0.233 62.755 62.522 61 0 0 100 2.154 0.621 1.338
3 26.545 26.545 0.209 59.518 59.309 59 0 0 92 2.234 0.609 1.361
4 25.913 25.913 0.241 57.082 56.841 13 0 0 135 2.194 0.912 2.001
5 25.597 25.597 0.240 54.914 54.675 15 0 0 128 2.136 0.895 1.912
6 5.887 5.887 0.277 18.827 18.550 9 0 0 27 3.151 0.750 2.363
7 24.554 24.554 0.211 53.343 53.132 16 0 0 122 2.164 0.884 1.913
8 25.545 25.545 0.188 56.697 56.509 13 0 0 135 2.212 0.912 2.018
9 23.445 23.445 0.196 51.542 51.346 12 0 0 120 2.190 0.909 1.991

10 27.165 27.165 0.240 58.580 58.340 15 0 0 138 2.148 0.902 1.937

Table 4.23. Data from Case #20: 10m distance & 7 workers
Trial # tttccclll TD tttsss fff ttteeelll PD TP TN FP FN STR OER FES

1 29.847 29.847 0.216 45.460 45.244 40 0 0 118 1.516 0.747 1.132
2 28.363 28.363 0.195 46.145 45.950 53 0 0 108 1.620 0.671 1.087
3 28.506 28.506 0.240 43.802 43.563 50 0 0 101 1.528 0.669 1.022
4 25.779 25.779 0.240 42.327 42.087 11 0 0 137 1.633 0.926 1.511
5 25.683 25.683 0.282 41.221 40.938 13 0 0 130 1.594 0.909 1.449
6 5.872 5.872 0.228 15.425 15.197 8 0 0 28 2.588 0.778 2.013
7 23.971 23.971 0.237 40.185 39.948 14 0 0 124 1.667 0.899 1.497
8 25.803 25.803 0.249 42.951 42.702 12 0 0 136 1.655 0.919 1.521
9 23.009 23.009 0.240 38.457 38.216 10 0 0 122 1.661 0.924 1.535

10 25.628 25.628 0.210 43.590 43.380 12 0 0 141 1.693 0.922 1.560
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CHAPTER 5. CONCLUSION

5.1 Summary

This study introduced an alternative way of detecting drones visually rather than

RADAR, with affordability (cost effective), accessibility (easy to build from scratch), and

scalability (future growth in mind) as the main objectives. RADAR is fairly expensive

equipment, while the camera + SBC combination used in this study is relatively cheap and

easily acquirable.

The prototype system has proven that it is more than possible to detect a drone

visually, using cheap equipment and CNN. Although the system has shown a issue of

accuracy, but there exists a way to improve and resolve the issue. Other than the accuracy,

the design of the system is proven scalable, with mere less than 10 nodes already showing

near real time performance. Therefore, we can conclude that within certain boundary

(which the solution already exists), the proposed system is accurate and scalable, fulfilling

the original objectives.

The design shown in this study is not bound to cheap equipments, however. If

being cost effective is not a big concern, then many of the equipments used in this study

can be replaced with ones of better quality and performance. A better camera will yield

better image of drones with sharper edges, helping the neural network to easily recognize

the outline of the drone. A better computing unit, such as GPU, will lower the fixed

amount of time the neural network spends on each frame, improving the responsiveness of

the system. Based on this study, there are many possible applications available.

The price of SBC is continuously decreasing while the performance is increasing,

so in near future these ‘economic’ equipment can surely take part in production

environment. Moreover, recently the TensorFlow project began its official support on

Raspbian [45], opening wide for more practical applications. This study is believed to put

a footprint in before those applications.



40

5.2 Future Work

During the experiment, 700 images of both artificial and real photos of a drone has

been created. Currently, there is no known publicly available image dataset solely

focusing on drones. Deep learning is well known for its high demand on image dataset for

training, thus having a drone image dataset available will greatly aid researches in similar

fields of studies. The shortcoming of this study also derives from lack of image dataset.

More dataset for training means the CNN can extract more data the inference

graph—roughly said, outline matrix—can be made with. With more dataset, and enough

training, the neural network is expected to detect in much higher accuracy, regardless of

the environment the system might run; the system could be running indoor, running on the

roof of a house, running at the rooftop of a sky scrapper, et cetera. Once properly trained,

the system can applied anywhere without considerable change to its configuration. All this

can be done if there are more dataset, easily accessible without any restriction. Therefore,

making a publicly available, online dataset of drones relying on crowd contribution will

spark not only great advancement in drone research but also help other general deep

learning researchers. Once this kind of large dataset is available, studies like this can be

performed again for better results.



41

REFERENCES

[1] T. A. Rule, “Airspace in an Age of Drones,” Boston University Law Review, vol. 95,

no. 1, pp. 155–208, 2015.

[2] T. P. Ehrhard, Air Force UAVs : the secret history. Arlington, VA: Mitchell Institute

Press, 2010.

[3] K. Dalamagkidis, “Aviation History and Unmanned Flight,” in Handbook of

Unmanned Aerial Vehicles, Valavanis Kimon P. and G. J. Vachtsevanos, Eds.

Dordrecht: Springer Netherlands, 2015, pp. 57–81. [Online]. Available:

https://doi.org/10.1007/978-90-481-9707-1 93

[4] D. M. Atwater, “The Commercial Global Drone Market.” Graziadio Business Review,

vol. 18, no. 2, pp. 1–7, 4 2015. [Online]. Available: http://search.ebscohost.

com/login.aspx?direct=true&db=bth&AN=118656985&site=ehost-live

[5] P. Chamberlain, Drones and Journalism., P. (Firm), Ed. Place of publication not

identified : Taylor and Francis Ltd : Routledge, 2017.

[6] B. Dane, “Drones: Designed for Product Delivery,” Design Management Review,

vol. 26, no. 1, pp. 40–48, 7 2015. [Online]. Available:

https://doi.org/10.1111/drev.10313

[7] N. TEUCHERT, “Drone Inspections: HRSG Maintenance from a Bird’s Eye View.”

Power Engineering, vol. 122, no. 3, pp. 10–14, 3 2018. [Online]. Available:

http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=

128570671&site=ehost-live

https://doi.org/10.1007/978-90-481-9707-1_93
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=118656985&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=118656985&site=ehost-live
https://doi.org/10.1111/drev.10313
http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=128570671&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=128570671&site=ehost-live


42

[8] P. N. Borden, “The Peering Predator: Drone Technology Leaves Children

Unprotected from Registered Sex Offenders.” Campbell Law Review, vol. 39,

no. 1, pp. 167–185, 2017. [Online]. Available: http://search.ebscohost.com/

login.aspx?direct=true&db=ofm&AN=121319566&site=ehost-live

[9] A. Press, “2 Plead Guilty to Using Drones to Smuggle Heroin Into U.S.” Time.com, p.

N.PAG, 8 2015. [Online]. Available: http://search.ebscohost.com/login.aspx?

direct=true&db=crh&AN=108888174&site=ehost-live

[10] J. Vanian, “Prisoners Are Using Drones To Smuggle In Drugs and Porn.”

Fortune.com, p. 60, 6 2017. [Online]. Available: http://search.ebscohost.com/

login.aspx?direct=true&db=bth&AN=123635071&site=ehost-live

[11] B. A. Card, “Terror from Above,” Air & Space Power Journal, vol. 32, no. 1, pp.

80–95, 2018. [Online]. Available:

https://search.proquest.com/docview/2050581361?accountid=13360https:

//search.proquest.com/docview/2050581361?accountid=13360

[12] M. D. Shear, “White House Drone Crash Described as a U.S. Workers Drunken Lark,”

New York Times, vol. 164, no. 56760, p. A15, 2015.

[13] Federal Aviation Administration, “REGISTRATION AND MARKING

REQUIREMENTS FOR SMALL UNMANNED AIRCRAFT,” 2015.

[14] J. M. Goppert, A. R. Wagoner, D. K. Schrader, S. Ghose, Y. Kim, S. Park, M. Gomez,

E. T. Matson, and M. J. Hopmeier, “Realization of an autonomous, air-to-air

Counter Unmanned Aerial System (CUAS),” in Proceedings - 2017 1st IEEE

International Conference on Robotic Computing, IRC 2017, 2017.

[15] S. S. Swords, Technical History of the Beginnings of Radar, 1st ed. London, United

Kingdom: The Institution of Engineering and Technology, 1986.

http://search.ebscohost.com/login.aspx?direct=true&db=ofm&AN=121319566&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=ofm&AN=121319566&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=crh&AN=108888174&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=crh&AN=108888174&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=123635071&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=123635071&site=ehost-live
https://search.proquest.com/docview/2050581361?accountid=13360 https://search.proquest.com/docview/2050581361?accountid=13360
https://search.proquest.com/docview/2050581361?accountid=13360 https://search.proquest.com/docview/2050581361?accountid=13360


43

[16] J. A. Scheer and W. L. Melvin, Principles of Modern Radar : Volume 3 Radar

Applications. Raleigh, UNITED STATES: Institution of Engineering &

Technology, 2013. [Online]. Available:

http://ebookcentral.proquest.com/lib/purdue/detail.action?docID=1632047

[17] S. M. Shammas, “The Future of Driving: A Look Into the Technology Behind

Autonomous Vehicles,” Ph.D. dissertation, Oakland University, 2017.

[Online]. Available: http://hdl.handle.net/10323/4529

[18] J. J. M. d. Wit, R. I. A. Harmanny, and G. Prémel-Cabic, “Micro-Doppler analysis of

small UAVs,” in 2012 9th European Radar Conference, 2012, pp. 210–213.

[19] M. Jahangir, C. J. Baker, and G. A. Oswald, “Doppler characteristics of micro-drones

with L-Band multibeam staring radar,” in 2017 IEEE Radar Conference

(RadarConf), 2017, pp. 1052–1057.

[20] A. R. Wagoner, “A Monocular Vision-Based Target Surveillance and Interception

System Demonstrated in a Counter Unmanned Aerial System (CUAS)

Application,” 2017.

[21] A. R. Wagoner, D. K. Schrader, and E. T. Matson, “Towards a vision-based targeting

system for counter unmanned aerial systems (CUAS),” in 2017 IEEE

International Conference on Computational Intelligence and Virtual

Environments for Measurement Systems and Applications (CIVEMSA), 2017,

pp. 237–242.

[22] Y. LeCun and Y. Bengio, “Convolutional Networks for Images, Speech, and

Time-Series,” The handbook of brain theory and neural networks, vol. 3361,

no. 10, 1995.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, 1998.

http://ebookcentral.proquest.com/lib/purdue/detail.action?docID=1632047
http://hdl.handle.net/10323/4529


44

[24] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object Recognition with

Gradient-Based Learning,” in Shape, Contour and Grouping in Computer

Vision, D. A. Forsyth, J. L. Mundy, V. di Gesú, and R. Cipolla, Eds. Berlin,
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