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ABSTRACT

Cadena, Maria J. Ph.D., Purdue University, August 2018. Observing and Recon-
structing Subsurface Nanoscale Features Using Dynamic Atomic Force Microscopy.
Major Professors: Arvind Raman, Ronald Reifenberger, School of Mechanical Engi-
neering.

The atomic force microscope (AFM), traditionally known as a nanoscale instru-

ment for surface topography imaging and compositional contrast, has a unique ability

to investigate buried, subsurface objects in non-destructive ways with very low energy.

The underlying principle is the detection of interactions between the AFM probe and

the sample subsurface in the presence of an external wave or field. The AFM is a

newcomer to the field of subsurface imaging, in comparison to other available high-

resolution techniques like transmission or scanning electron microscopy. Nevertheless,

AFM offers significant advantages for subsurface imaging, such as the operation over

a wide range of environments, a broad material compatibility, and the ability to in-

vestigate local material properties. These make the AFM an essential subsurface

characterization tool for materials/devices that cannot be studied otherwise.

This thesis develops a comprehensive qualitative and quantitative framework un-

derpinning the subsurface imaging capability of the AFM. We focus on the detection

of either electrostatic force interactions or local mechanical properties, using 2nd-

harmonic Kelvin probe force microscopy (KPFM) and contact-resonance AFM (CR-

AFM), respectively. In 2nd-harmonic KPFM we exploit resonance-enhanced detection

to boost the subsurface contrast with higher force sensitivity. In CR-AFM we use the

dual AC resonance tracking (DART) technique, in which the excitation frequencies

are near one of the contact resonance frequencies. Both techniques take advantage of

the maximized response of the cantilever at resonance which improves the signal to
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noise ratio. These enable high-resolution subsurface mapping on a variety of polymer

composites.

A relevant challenge is the ability to reconstruct the properties of the subsurface

objects from the experimental observables. We propose a method based on surrogate

modelling that relies on computer experiments using finite element models. The

latter are valuable due to the lack of analytical solutions that satisfy the complexity

of the geometry of the probe-sample system and sample heterogeneity. We believe this

work is of notable interest because offers one of few approaches for the non-destructive

characterization of buried features with sub-micron dimensions.
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1. INTRODUCTION

The continuous development of nanomaterials and nanodevices requires innovative

new metrology techniques, particularly for the characterization at the sub-micron

scale. Recently, there has been a growing interest in the sub-micron scale character-

ization of subsurface features in a number of materials/devices in a non-destructive,

non-invasive manner. Sub-micron subsurface characterization can be key to under-

stand the performance (or lack thereof) of these systems in many areas.

In materials science, such characterization can reveal the internal structure of

bulk materials and nanocomposites at different length scales. For instance, to deter-

mine the distribution and connectivity of subsurface nano-inclusions in nanocompos-

ites. These are critical factors affecting their performance in diverse applications [1],

such as flexible transparent electrodes [2–4], optoelectronic devices [5,6], energy stor-

age/conversion systems [7–10] or integrated circuits [11] (figure 1.1(a-c)).

In the semiconductor industry, subsurface defect detection and analysis of devices

and interconnects at the sub-micron scale is of great importance in 3D structures and

overlays [13]. The efficiency and performance of electronic devices are determined

by the quality of interfaces between semiconductors, metals and non-metals. The

interfaces can be buried beneath the surface layer as in the spin valve device shown

in figure 1.1(d) [12]. In this figure, buried defects (grey regions and black dots) are

detected underneath the surface between the bottom of a Cu wire and buried junction

interfaces of Ni0.8Fe0.2.

Subsurface sub-micron imaging is also important in biology to investigate the

cytoskeleton [14, 15] and subcellular phenomena [16], as well as the evaluation of

cytotoxicity in the presence of nanomaterials [17].

Not surprisingly, many microscopy techniques have been recently employed for

subsurface imaging, such as X-ray microscopy, confocal microscopy, transmission
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electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force

microscopy (AFM). In this chapter, we will discuss the main sub-micron resolution

techniques categorized as non-AFM (section 1.1) or AFM based techniques (section

1.2).

In comparison to the other high resolution techniques for subsurface imaging,

the AFM is a newcomer to this field since it is primarily known as a nanoscale

instrument for surface topography and compositional contrast. However, it has also

the potential to investigate buried, subsurface objects. The underlying principle is

the detection of interactions between an AFM probe and the subsurface of a sample,

in the presence of an external wave or field that penetrates the subsurface. When

compared to other high resolution microscopies, the relevant advantages of AFM are

its low-energy, the operation over a wider range of materials and environments and

its capability to investigate local material properties. In general, the AFM subsurface

data is represented using 2D spatial maps with a contrast related to a sample physical

property or an experimental variable. A key challenge is to take the given observables

and to recreate the distribution, shape, and appearance of features within the volume

of the sample. Methods used for this purpose are known as 3D reconstruction or

tomography.

This chapter contains an outline of the main techniques used for subsurface imag-

ing with a particular emphasis on the state-of-the-art for AFM based methods, distin-

guishing between destructive and non-destructive approaches. It is divided as follows:

section 1.1 presents a discussion on non-AFM subsurface techniques, section 1.2 con-

tains an overview of AFM and AFM based techniques for subsurface imaging, section

1.3 presents an outlook on the present and future challenges placed in the context of

the contribution of this work, described in section 1.4.
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1.1 Non-AFM Techniques for Subsurface Imaging

Several techniques have been used to investigate the interior of materials. Some

of them have isotropic resolution, i.e. identical resolution in three dimensions, others

have higher or lower resolution in the direction normal to the surface (z) compared

to the lateral (x-y) directions, as shown in figure 1.2 [18]. X-ray microscopy is dis-

tinguished by having a field-of-view in three-dimensions but lower lateral resolution,

in a range of 40 - 100 nm [19]. Secondary ion mass spectroscopy (SIMS) has a low

lateral (100 nm) and depth resolution (< 5 nm) [20, 21]. High lateral resolution

techniques are transmission electron microscopy (TEM), focused ion beam (FIB) /

scanning electron microscopy (SEM) [22], atom probe microscopy (APM) [23] and

atomic force microscopy (AFM) [24]. These are typically 2D imaging techniques that

can resolve the subsurface of a specimen within one to hundreds of nanometers deep.

In what follows, we describe the most common non-AFM high resolution techniques

at the nanoscale, i.e. TEM and SEM, that possess a resolution comparable to the

AFM.

TEM and SEM were introduced in the late 1930/early 1940s. Both make use

of electrons and their interaction with matter. TEM generates atomic level images

related to the sample chemistry and crystallography [25]. It has a greater resolution

and higher magnification than the SEM. However, some of its limitations are no depth

sensitivity in a single image (2D image) [26] and time consuming thinning processes of

the specimen to ensure transmission of electrons, which makes it a destructive method.

The SEM can image bulk specimens based on scattering processes and diffusion of

electrons, it has a larger field of view and provides more information about the shape

and the location of features relative to each other [27].

For subsurface imaging and 3D reconstruction applications, destructive or non-

destructive approaches have been implemented to access the layers underneath the

surface. Common destructive methods, known as slice and view, involve a section-

ing process of the specimen [22] using ultramicrotomy [28–32], ion milling [33–35] or
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polishing/etching [36,37]. After the upper layer is removed, the exposed surface is im-

aged by one of the microscopy methods. For instance, figure 1.3(a) shows a schematic

representation of an ultramicrotome mounted inside an environmental SEM, in which

a diamond knife cut thin slices of the specimen (50 to 100 nm thick) and then the

electron beam images the remaining block face [38]. Figure 1.3(b) illustrates a dual

beam instrument, in which a FIB is used to mill thin slices of a specimen previously

prepared in a cube shape. After removal of thin layers, SEM is used for imaging

the exposed surface [33, 35, 39]. Some examples are shown in figure 1.3(c-d), corre-

sponding to SEM images of a graphene-polystyrene (PS) composite [32] and TEM

images of intercalated/exfoliated PS and polypropylene-g-maleic anhydride (PPgMA)

nanocomposites, after sectioning by ultramicrotomy [28]. To achieve 3D reconstruc-

tion using these destructive approaches, serial sectioning is applied to collect multiple

images after each layer removal, which are then assembled by computational algo-

rithms [22,35].

On the other hand, there has been a great effort in the development of non-

destructive approaches based on SEM and TEM. The capability of the SEM has been

demonstrated using a voltage contrast method, also known as charging effect, typically

at high acceleration voltages. It has been applied to image conducting nanostructures

in a dielectric matrix, such as CNTs or graphene nanoplatelets embedded in polymer

composites [40–44], Si nanostructures embedded in SiO2 [45] or overlay marks [46,

47]. The common feature within these studies is the conductive or semiconductive

nature of the specimens. In fact, subsurface image contrast strongly depends on the

conductivity of the specimen [41–43]. Figure 1.4(a), shows an example of subsurface

imaging of SWCNTs in a polyimide (PI) composite above the percolation threshold,

using accelerating voltages of 5kV and 20kV. The latter gives higher contrast and

better resolution [43].

A non-destructive imaging tool based on TEM is electron tomography. With this

technique, the creation of 3D images is achieved through the acquisition of 2D TEM

projections at different angles around a tilt axis [48]. As a result of recent develop-
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ments in instrumentation and software, it has been applied to a series of systems such

as electronic devices, composites, biomaterials, metals and alloys [18]. For example,

figure 1.4(b) corresponds to images of agglomerated grafted silica particles in a PS

matrix. The 3D rendering is produced after processing images recorded with tilt

angles ranging from -60° to 60° with an increment of 1° [49]. The orthogonal slices

exhibit an elongation artifact in the z direction due to a “missing wedge” during

recording [50]. The sample still requires preparation before imaging. In this case, the

nanocomposite was cut in a 250 nm thick film, then floated onto deionized water and

set on a copper grid.

Although SEM and TEM are useful high resolution imaging tools for subsurface

imaging, they have limitations for a wider range of applications. Specifically they

are invasive, energetic imaging techniques that can locally damage the sample under

study, by electron beam induced heating, electrostatic charging, ionization damage,

displacement damage, sputtering and hydrocarbon contamination [51]. These issues

are particularly problematic for polymer based samples whose properties can change

due to these effects. Additionally, complex chemical and mechanical preparation

techniques are required in the case of electron-beam-sensitive materials such as soft

matter (polymers) or biological samples [52, 53]. Also, in the case of TEM, for 2D

projections, materials must be transparent to electrons and machinable into some

thin slices, for which not all specimens are suitable. For 3D imaging, electron to-

mography would require low beam dose, controlled acquisition times and assumption

of specific symmetry of the specimen for post-processing algorithms [48, 53]. Both

EM techniques generally require vacuum conditions, although recent advances allow

imaging under liquid using environmental chambers or closed liquid cells, while the

rest of the microscope is kept at low pressure [54].
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1.2 Subsurface Imaging Using AFM

In comparison to SEM and TEM based high resolution subsurface imaging tech-

niques described above, AFM based subsurface imaging techniques boast special ad-

vantages as described below:

1. These are low energy techniques, hence non-invasive. There is little charging or

damage of sample,

2. Easy sample preparation in comparison to complex or time consuming processes

required for SEM or TEM [55].

3. There is no need to apply destructive processes to the samples, preserving the

native states of the specimen.

4. Hard, soft or hybrid materials can be imaged. Electrical conductivity of samples

is not required [56–58].

5. It allows subsurface imaging through the detection of a variety of detectable

fields.

6. Beyond morphology, it is a useful tool to investigate local material properties

such as mechanical [59–61], electrical [62–65], chemical [66–68].

7. Operates in a wider range of environments: air [57], liquid [69,70] and vacuum

[71].

In what follows we provide a brief overview of AFM and of the state-of the-art of

AFM based subsurface imaging.

1.2.1 An Overview of AFM

AFM is classified as a scanning probe technique. Its predecessor is the scan-

ning tunneling microscopy (STM), introduced in the early 1980s. The STM provides

atomic resolution (∼ 0.1 nm) [72,73] based on a tunneling current flowing through a
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sharp tip held nanometers apart from a substrate. This limits its use to electrically

conductive samples (metals or semiconductors). It also usually requires ultrahigh

vacuum conditions for clean and well-defined surfaces [55, 74]. After the remarkable

success of the STM, AFM made its appearance in 1986. AFM was originally thought

as a method to analyze the surfaces of both conductors and insulators on the atomic

scale, overcoming the limitation of the STM. The AFM is notable for its high sen-

sitivity to detect interatomic forces acting on a sharp tip in close proximity to a

surface [56].

The essential components for the operation of an AFM are shown in figure 1.5.

The probe is composed of a microcantilever with an integrated conical sharp tip

at one of its end. The head consists of a probe holder, a system to measure the

microcantilever deflection, in this case, the laser beam bounce detection method used

in current AFMs, and a probe excitation mechanism, commonly a piezoactuator. The

scanner regulates the position of the tip relative to the sample in the x-y-z direction

and the feedback loop controls a measure of microcantilever vibration or mechanics

that is sensitive to the interaction forces (deflection, amplitude, frequency or phase

shift) while scanning [75].

The physics of the AFM draws upon the interaction forces developed between the

tip and the sample. In general, AFM techniques are categorized within two modes:

static and dynamic. In static AFM, tip-surface forces are first measured as a function

of the separation distance (Z). In a second approach, known as contact mode AFM

(CM-AFM), the tip is brought into contact with the sample surface for scanning at

a constant applied force. Due to high lateral forces, this method is not appropriate

in some cases, such as in soft or weakly bonded materials.

Dynamic AFM is based on the induced oscillation of the microcantilever-tip above

the sample. The vibration can be generated either by dither-piezo excitation (mov-

ing the base of the microcantilever) or direct excitation by means of magnetic field,

Lorentz force or a pulsed laser (phototermal), applied to the microcantilever. The fre-

quency of the excitation usually matches the resonance frequency of the fundamental
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mode of the microcantilever, which starts vibrating with a certain amplitude (A) and

phase (φ). Then, variations in A, φ or frequency are measured to infer the tip-sample

interaction forces. For convenience, in most of the text, frequency is expressed in

terms of the angular frequency ω = 2πf . The frequency of the fundamental mode is

expressed as ω0 (ω0 = ω1).

Two of the relevant features of dynamic AFM techniques in comparison to CM-

AFM are the lower lateral forces and access to additional observables for investigation

of local surface material properties [76, 77]. Dynamic AFM covers a wide variety of

techniques. The most common is amplitude modulation AFM (AM-AFM). In this

method, the feedback loop controls the oscillation amplitude of the microcantilever,

while the sample is scanned at a constant separation distance. The motion of the

microcantilever (or sample) during this process is rendered as the topography of

the sample. Furthermore, mapping of phase (φ) shifts provides useful compositional

information, mainly based on local mechanical properties. AM-AFM forms the basis

for other dynamic techniques as a first step to track surface topography in air or liquid.

In addition to a feedback based on A, the drive frequency can be modulated to keep

a constant φ while maintaining a constant frequency shift during the scan (three

feedback loops). This approach is known as frequency modulation AFM (FM-AFM).

It has been used to acquire very high resolution images under vacuum, ambient and

under liquid conditions and also used in combination with other techniques [66,78].

Most dynamic AFM techniques described above are used for surface characteriza-

tion. Now we describe the existing state of the art with respect to subsurface imag-

ing. Subsurface imaging using AFM has been demonstrated using either destructive

(slice-and-view) or non-destructive approaches. The former has been promoted for 3D

reconstruction applications and involves sectioning processes of the specimen, such as

etching, ultramicrotomy or scratching [24].

Some examples of slice-and-view approaches are given in figure 1.6. Plasma etch-

ing in combination with AM-AFM have been used to image domain structures of a

triblock copolymer poly-(styrene-block-butadiene-block-styrene) (SBS) film. Phase
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contrast reveals PS cylinders (bright) embedded into a polybutadiene (PB) matrix

(dark), after removal of thin layers (7.5 ± 0.2 nm) of the sample. A volume image

(200×160×45nm3 ) is reconstructed from a series of phase images [79] taken between

serial sectioning. Another example uses a doped ultra-sharp full diamond probe to

remove the upper layer of the specimen, as shown in the topography in figure 1.6(b).

The probe scans successively digging into the sample, while a bias is applied between

the probe and a TiN electrode at the bottom. An AFM technique, known as scanning

spreading resistance microscopy (SSRM), is used to generate 2D maps of the local

resistance. Vertically aligned bundles of multi-walled carbon nanotubes (MWCNTs)

are distinguished from a surrounding oxide matrix in the map. Processing stacks

of 2D resistance images results in a 3D volume representation [80]. Figure 1.6(c)

corresponds to images of a conductive graphene network embedded in PS. Ultrami-

crotomy is used as a sectioning process and current distribution maps are generated

using conductive AFM (C-AFM). A 3D volume (2.5× 2.5× 0.34µm3) reconstruction

of a single graphene cluster is achieved through a series of current maps obtained

after microtome cuts with steps of 12 nm.

In what follows we present a summary of non-destructive AFM techniques that

have been used for subsurface imaging. Depending on the detection mechanism, the

state of the art breaks up into three areas (figure 1.7): (1) surface vibrations, (2) local

mechanical properties and (3) electrostatic force interactions.

1.2.2 Surface Vibration Detection

Within this dynamic AFM classification, we encounter the approaches character-

ized by surface detection of scattering of an ultrasonic wave that is launched from

below the sample to the top, due to buried nano-objects. The AFM is then used to

map out the resulting patterns of surface vibration. In the literature, various studies

are found based on this principle but with slight modifications in the technique. For

instance, in ultrasonic force microscopy (UFM), a high frequency wave (usually in the
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MHz range) is sent from below the sample [81] or through the microcantilever [82], as

indicated in figure 1.8(a). This technique has been used to visualize subsurface edge

dislocations in highly oriented pyrolytic graphite [83].

On the other hand, in heterodyne force microscopy (HFM) two ultrasound waves

are utilized, as shown in figure 1.8(b). One is launched from the bottom of the

sample at a frequency ω1, another via the microcantilever at a frequency ω2 and the

maximum tip-surface distance is modulated at a beat frequency (ω2 − ω1), as shown

in figure 1.8(b). HFM relies on the nonlinear tip-sample interaction as a result of the

frequency mixing of both waves. It has been used to resolve near surface inclusions

of rubber added to poly(methylmethacrylate) (PMMA) [84].

A modification to HFM is scanning near-field ultrasound holography (SNFUH).

This technique detects amplitude and phase changes of the acoustic standing wave in

near-contact mode, reportedly appropriate for soft and biological specimens [85]. It

has been used in several heterogeneous systems, for instance to detect gold nanopar-

ticles beneath a polymer cover, voids or defects in coated Si3N4 structures as shown

in figure 1.9, malaria parasites inside infected red blood cells [85], single-walled

carbon nanohorns inside cells from mice lungs [17], silica nanoparticles within a

macrophage [86] or buried defects in copper interconnects [87]. Wave scattering and

diffraction are thought to make contributions to the image contrast [85,88]. However,

the exact imaging mechanism is still not fully understood, since theoretical calcula-

tions demonstrate that both amplitude and phase contrast are much weaker than the

experimental measurements [89].

In mode-synthesizing AFM (MSAFM), the probe and the sample are excited by

forces containing a number of known frequency components or modes [90], as shown in

figure 1.8(c). The mechanical waves scatter due to the internal structure of the sample

influencing the tip-surface coupling sensed by the tip. In addition, a new set of modes

is generated by the tip which mixes the waves at the surface with the microcantilever’s

own frequency components [91]. Therefore, a multiple order spectrum is created.

Amplitude and phase images generated at each of the synthesized modes contain
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information of topography as well as mechanical properties of surface and subsurface

features. This technique has been used to study layers of poplar wood cells and nickel

nanodots within a germanium coating [90].

1.2.3 Detection of Local Mechanical Properties

Within the available dynamic AFM techniques, some take advantage of the dy-

namics of the microcantilever and the subtle variations of local mechanical properties

caused by subsurface objects. Some of these techniques applied for subsurface imag-

ing are: amplitude modulation AFM (AM-AFM), multimodal AFM (figure 1.10(a)),

contact resonance AFM (CR-AFM)(figure 1.10(b)) and DC-biased AM-AFM (figure

1.10)(c).

An approach using AM-AFM has been demonstrated for subsurface imaging of

soft materials by adjusting the tip-sample indentation [92]. This method relies on

amplitude and phase distance curves taken pointwise above a selected region. The

data are processed to obtain true sample surface [93], tip indentation, and depth

resolved images. For instance, cylinders of PS (20 nm deep) covered by polybutadiene

are distinguished by contrast in a phase map and reconstructed as a function of depth.

Similarly, crystalline and amorphous regions are mapped under the surface of a thin

film of elastomeric polypropylene (EPP) to a depth of 19 nm.

Simultaneous excitation of several flexural modes of the microcantilever has been

applied to gather complementary information, higher compositional resolution and

sensitivity through dynamic AFM [94]. The most common is a bimodal scheme in

which the microcantilever is mechanically excited by two driving forces, each at fre-

quencies that match two of the flexural modes, usually the first and second resonances.

The first mode is used to image the topography of the surface similar to AM-AFM.

The second mode has been utilized to map local properties based on dissipation,

Young modulus, viscosity and short and long-range interactions [61]. Recently, the

capability of bimodal and trimodal (simultaneous excitation of three modes) for sub-
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surface imaging of nanostructures embedded in a soft materials has been shown [?,95].

For instance, silicon nanowires, iron oxide nanoparticles [95] and glass nanoparti-

cles [?] have been imaged underneath a thin film of polydimethylsiloxane (PDMS). In

these studies, the first mode is used to map the surface topography, the second mode

to enhance subsurface contrast, and the third mode to modulate sample indentation.

Figure 1.11(a) shows the detection of subsurface silicon nanowires covered by 70 nm

thick PDMS film using trimodal AFM. These are not visible through conventional

tapping mode [95].

Detection of minute elastic variations, i.e., contact stiffness induced by subsurface

features is the foundation of contact resonance AFM (CR-AFM) [96,97]. Embedded

inclusions or defects influence local mechanical properties so long as the elastic strain

fields extend deep enough into the sample [98]. One mechanical property that is

influenced is the local contact stiffness which subsequently alters the microcantilever

dynamics. When the contact stiffness changes, the contact resonance frequency (ωc)

of the microcantilever will shift correspondingly. With this principle, CR-AFM has

been used mainly for characterizing mechanical properties [99, 100]. In addition,

the microcantilever oscillation includes frequency, amplitude and phase information

which are all able to generate subsurface contrast information. In this way, CR-AFM

methods have been exploited to probe nanoparticles (NPs) buried in polymers [96,97].

For example, figure 1.11(b) shows the detection of silica NPs buried under a 125 nm

thick PS film using the contact stiffness contrast map (∆k/kb) [100]. To enhance the

sensitivity, higher eigenmodes of the microcantilever are often employed.

Lastly, DC-biased amplitude modulation AFM uses a dc bias voltage between the

tip and the sample, while it operates in AM mode, as shown in figure 1.10(d). The mi-

crocantilever oscillates near its resonance frequency in attractive regime (non-contact

mode). Phase contrast allows the detection of subsurface features. Electromechanical

dissipation has been explained as the main mechanism for contrast formation [101].

This technique has been applied to study 2D arrangement of SWCNTs and a 3D
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network of doubled-walled nanotubes (DWCNTs) underneath a polymer mix (SEBS-

PS) [101] and SWCNTs dispersed in a PI composite [102].

1.2.4 Detection of Electrostatic Force Interactions

Non-invasive electrostatic techniques based on AFM are also used to attain sub-

surface information. Two techniques utilize the long range electrostatic interaction

between the probe and the sample under the influence of an external electric field.

These are known as electrostatic force microscopy (EFM) and Kelvin probe force

microscopy (KPFM). EFM and KPFM can be used either in single-pass or in double-

pass mode. In the former, only one scan per line is used to simultaneously measure

surface topography and the microcantilever response to the electric field [103]. The

latter requires two scans, the first records the topography and the second senses the

electrostatic interactions at a certain lift-off height above the sample [104], as shown

in figures 1.12(a),(b).

In single-pass EFM, an AC bias voltage is applied across the tip-sample system

and the amplitude and phase of the microcantilever response at the frequency of the

electrical excitation is recorded [105]. In double-pass EFM a DC voltage is applied

during the second scan while the tip oscillates at or close to its resonance frequency

(figure 1.12(a)). Phase shift is generated in the microcantilever response due to the

electrostatic force gradient. This shift in phase is considered as the EFM signal [106].

For KPFM, single- and double-pass modes work under the same principle, i.e.

an applied DC bias equal to the contact potential difference (CPD) between the tip

and the sample nullifies the microcantilever response at the frequency of the AC

excitation (figure 1.12(b)). This feature of the KPFM technique is particularly useful

for the investigation of surface potential [107,108]. However, additionally it is possible

to capture the microcantilever response at the second harmonic of the electrostatic

force. This signal is proportional to the gradient of the capacitance with respect

to the tip-sample distance, which depends mainly on the dielectric properties of the
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sample [102]. Due to the utility of this channel, this technique is named 2nd-harmonic

KPFM [109].

Both EFM and KPFM have been used for surface compositional mapping based

on heterogeneities in the electrical properties when different phases are present in

a material [105, 110, 111]. This feature has been exploited in the identification of

subsurface components. For instance, EFM has been used to distinguish organic do-

mains of a methyl-terminated monolayer (CH3(CH2)16SH) and an alcohol-terminated

monolayer (HO(CH2)16SH) buried under a polystyrene film of 430±50 nm [112] thick.

The same technique has been used to visualize individual single-walled carbon nan-

otubes (SWCNTs) suspended in a matrix of polymethylmethacrylate (PMMA) or

SWNT networks embedded in polyimide (PI) films [102, 113]. Recently, imaging of

networks of multi-walled carbon nanotubes (MWCNTs) within a dried latex film was

reported [114]. Also KPFM studies have been reported on imaging SWCNTs-PI

composites using the 2nd-harmonic channel [102,109]. By using maps of CPD, buried

micropatterns of self-assembled monolayers deposited on a gold substrate have been

determined under a coating of PS [115].

Previously, we performed a comparative study that imaged embedded SWCNTs in

a PI composite film, as shown in figure 1.13, using a variety of electrostatic methods

[102]. This work reveals the capability of three of the techniques for subsurface

imaging mentioned above. First, second and third rows in figure 1.13 correspond

to the observables obtained by DC-biased AM-AFM, single-pass EFM and single

pass KPFM, respectively. It is notable that no CNTs are revealed in the surface

topography (figures 1.13(a,d,g)). The presence of CNTs are revealed in the phase

channel corresponding to DC-biased AM-AFM (figure 1.13(b)), the amplitude of the

electrostatic force in EFM (figure 1.13(e)) or the capacitance gradient in KPFM

(figure 1.13(i)). Among these, the KPFM channel (∂C/∂Z) is considered the best

to obtain high-contrast subsurface images of the CNT networks, since the surface

charging and subsurface images are well-decoupled.
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1.3 Outlook of Present and Future Challenges

Remarkable advances have taken place in AFM techniques for non-invasive subsur-

face imaging, as presented in the review above. Reliable subsurface images have been

achieved by means of different mechanisms, either by acoustic (ultrasound) waves,

electric or stress fields, or multimodal schemes. It is worthwhile to summarize the

advantages offered by each class of techniques to allow a rational choice based on the

available instrumentation or researcher expertise.

In terms of the experimental setup, some techniques are easy to implement based

on standard equipment in commercial AFMs, such as DC-biased AM-AFM, EFM,

KPFM. Others require external resources, such as additional lock-in amplifiers in tri-

modal AFM [95], signal generators or mixers in MSAFM [90], one or two transducers

(typically piezoelectric) in UFM [83,97], HFM [84], SNFUH [116] or CR-AFM [96]. In

addition, complex data post-processing is required in MSAFM or for the APD curves

obtained by AM-AFM mode [92]. This can become a drawback for widespread and

reproducible use.

In general, the outcome of all techniques are 2D maps corresponding to one or more

observables. Some of these are intrinsically qualitative but others can be interpreted

in a quantitative manner. Both aspects are faced with critical challenges. On the

one hand, visualization of subsurface features with high resolution requires attention

to relevant aspects such as spatial resolution, depth sensitivity (how deep we can

”see”), contrast enhancement, artifact identification, and dissociation of surface and

subsurface information. These characteristics are associated with the quality of the

obtained maps, which usually are measurements of amplitude, phase or frequency

shifts with respect to some reference excitation.

On the other hand, a current concern is the ability to gather spatial distribution

data for 3D volume reconstruction, which is not a straightforward task. First, it

requires a clear understanding of the underlying mechanisms behind the technique.

Second, the observables need a quantitative interpretation related to a physical vari-
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able. This usually involves the creation of a mathematical model. Due to the com-

plexity of the probe geometry, sample heterogeneity or the presence of non-linear

interactions, an analytical solution is not always feasible, therefore numerical and

computational methods are mostly required. Third, a set of 2D maps or curves are

needed to reproduce a 3D representation with spatial (x-y-z) and morphology (shape,

size) information of the subsurface features. This would require the manipulation of

the experimental variable(s) or conditions, for which there is not always an obvious

procedure.

Some novel solutions have been reported in the literature using mechanical or

electrical excitation techniques. For instance, amplitude and phase distance (APD)

curves have been used to create a depth resolved image of a thin film of polypropylene

(PP), as shown in figure 1.14(a) [92]. This is obtained by reconstructed maps of the

tip-sample spring constant (kTS), which are combined into a volume image. The

kTS maps are the result of converting 50 x 50 APD curves measured in the region

indicated by the phase image in figure 1.14(c). Some kTS slices are shown for three

different depths in figures 1.14(d-f). This approach is based on the heterogeneity of

the mechanical properties in the specimen. In this case, hard regions of PP (crystalline

- in yellow) are distinguished from the soft (amorphous) regions. As it is indicated in

figure 1.14(a) and the cross-section of a lamella in figure 1.14(b), the resolved depth

is 19 nm. In general, the depth resolution of this technique is limited by how much

the tip can indent the sample without damage.

Another approach combines 2nd-harmonic KPFM with finite element analysis

(FEA) to obtain a 3D reconstruction of SWCNTs embedded in a polyimide (PI)

composite film, as shown in figure 1.15 [109]. Embedded SWCNTs are clearly de-

tectable through the 2nd-harmonic or ∂C/∂Z channel, as in figure 1.12(b). The

capacitance gradient difference (∆C ′ = (∂C/∂Z)SWCNT − (∂C/∂Z)PI) is calculated

as a function of CNT depth using FEA, as shown in figure 1.12(a), which is also

obtained experimentally. These curves are used to convert the experimental ∂C/∂Z
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data (figure 1.12(b)) into depth information. The rationale of this method, is based

on the proportional relation between ∂C/∂Z and depth.

Much remains to be understood and explored in the noninvasive characterization

of subsurface structures and the generation of quantitative 3D spatial distribution

maps. The family of techniques based on AFM is relatively young in comparison

to the other high resolution microscopy such as SEM or TEM, but it has become a

promising versatile tool.

1.4 Contributions and Layout of This Thesis

Following the brief review on AFM subsurface techniques presented in this chapter,

this thesis chapters focuses primarily on 2nd-harmonic KPFM and CR-AFM.

Second-harmonic KPFM has emerged as a key tool for subsurface nanoscale imag-

ing, typically demonstrated in CNT based polymer composites [102, 109]. Chapter

2 exploits resonance-enhanced mode in 2nd-harmonic KPFM for high resolution sub-

surface imaging of a variety of polymer nanocomposites. This study explores the

advantages of detection at resonance of the electrostatic force, which remain unex-

plored for subsurface imaging applications. Additionally, a finite element model using

Comsol Multiphysics is introduced, to gain a deeper understanding in the role of the

electrostatic force and analyze the depth sensitivity, lateral resolution and contrast

dependence on dielectric properties of the material. The model is in turn used to

interpret quantitatively the experimental observable (A2ωe) as a function of depth.

The capability of CR-AFM for subsurface imaging is explored in Chapter 3. A

detailed comparison with 2nd-harmonic KPFM is presented in terms of lateral resolu-

tion and depth sensitivity. For this purpose, a much needed simultaneous experiment

is performed to compare the two techniques, using a SWCNTs/PI composite film as

a sample. Both techniques have been reported separately for subsurface imaging, but

no direct comparison has been done until now. This study lays out the advantages,

limitations and disadvantages offered by each technique. Furthermore, a significant
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result is the agreement in the estimation of depth of subsurface CNTs, between the

two techniques.

Chapter 4 presents a method for 3D volume reconstruction using electrostatic

force detection within the framework of KPFM. This process involves the creation

of a surrogate model based on numerical results obtained via finite element compu-

tations and the acquisition of a set of experimental subsurface data. Contrary to

prior work, this non-destructive approach can be used not only to estimate the depth

but to reconstruct the size of the buried object, and in principle estimate other un-

known properties. Validation is made on a model sample, composed of nanoparticles

(BaTiO3) buried under a thin polymer film (PDMS).

We extend the reconstruction approach based on surrogate modeling to CR-AFM,

which is detailed in Chapter 5. CR-AFM is advantageous due to the highly localized

stress field. The local contact stiffness is measured between the contact area of the

apex of the tip with the surface of the sample. This in turn provides higher lateral

resolution and there is no contributions of the macroscopic parts of the probe as in

KPFM.

Finally, in chapter 6 we summarize the contributions of this thesis and propose

some future research directions.
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(a) (b)

(c)

(d)

Figure 1.1. Nanocomposites and nanoelectronic devices where sub-
surface nanoscale characterization is important. (a) Transparent
and conductive silver nanowire (Ag NW) coating on polyethylene
terephthalate (PET) substrate with a sheet resistance of 50Ω/sq.
Reprinted with permission from [5]. Copyright American Chemical
Society 2010. (b) ITO-free flexible organic solar cell built over a
PET/polyaniline:carbon nanotube film used as transparent electrode.
Reprinted with permission from [9]. Copyright (2013) John Wiley &
Sons, Inc. (c) CNT thin film transistor (TFT) fabricated on a flex-
ible and transparent polyethylene naphthalate (PEN) substrate and
a schematic cross-section of a bottom-gate TFT with an Al2O3 gate
insulator. Adapted by permission from Macmillan Publishers Ltd:
Nature Nanotechnology [11], Copyright (2011). (d) (Left) SEM image
of a spin-valve device consisting of two 200 x 200 nm Ni0.8Fe0.2/Cu
junctions, followed by top 70 nm thick Cu wires. (Right) Defects
detected in the Cu wire by backscattered electrons (BSE) near the
buried junction interfaces. Adapted by permission from Nature Pub-
lishing group: Nature Communications [12], Copyright (2016).
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Figure 1.2. Diagram of lateral versus depth resolution for the tech-
niques used in the investigation of the internal structure of materials,
known as tomography. X-ray microscopy is distinguished by hav-
ing three-dimensional resolution but lower lateral resolution. High
lateral resolution techniques are (1) atom probe tomography, (2)
scanning transmission electron microscopy (STEM), electron tomog-
raphy (green color), atomic force microscopy (AFM), focused ion
beam (FIB) / scanning electron microscopy (SEM). Secondary ion
mass spectroscopy (SIMS) have a low lateral and depth resolution.
Reprinted from [18], with permission from Elsevier.
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(a) (b)

(c) (d)

Figure 1.3. (a) Schematic diagrams of slicing procedures using (a) ul-
tramicrotomy inside an environmental SEM. It has backscattered elec-
tron (BSE) and secondary electron detectors (SE) for imaging under
high and low vacuum conditions. Adapted from [38], with permission
from Wiley. (b) Slice and view process in dual beam FIB/SEM. Lay-
ers are cut with the ion beam at an angle of 52deg and then imaged by
the electron beam. Reprinted with permission from [35]. Reprinted
from [35], Copyright (2012), with permission from Elsevier. (c) SEM
image of microtomed graphene (0.24 and 1.44 vol% -polystyrene com-
posite. Adapted by permission from Macmillan Publishers Ltd: Na-
ture [32], copyright (2006). (d) High-magnification TEM image of in-
tercalated/exfoliated PS nanocomposite (mass fraction = 5% AMMT)
and a PPgMA intercalated/exfoliated nanocomposite (mass fraction
= 8% AMMT). Reprinted with permission from [28]. Copyright
(2013) John Wiley & Sons, Inc.
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(b)(a)

Figure 1.4. Non-destructive approaches with SEM and TEM. (a)
Voltage contrast SEM using accelerating voltages of 5kV and 20kV
showing SWCNTs embedded in PI. Reprinted from [43], Copyright
(2013), with permission from Elsevier. (b) Observation of agglomer-
ated grafted silica particles in a polystyrene matrix, obtained using
transmission electron tomography. The 3D rendering is produced af-
ter processing images recorded with tilt angles. The orthogonal slices
slices exhibit an elongation artifact in the z direction. Reprinted with
permission from [49]. Copyright (2014) American Chemical Society.
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Figure 1.5. Schematic representation of the basic components of an
atomic force microscope. Main elements of the head are: the laser
beam bounce detection system (laser and 4-quadrant photodiode),
a holder of the probe (microcantilever-tip assembly), and a probe
excitation mechanism. The scanner controls the position of the tip
relative to the sample. The feedback loop usually maintains constant
one of the experimental variables.
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Figure 1.6. Slice-and-view approaches for subsurface imaging us-
ing AFM. (a) AM-AFM in combination with plasma etching reveals
PS cylinders (bright phase contrast) formed within a SBS film (dark
phase constrast) [79] Copyright (2000) by the American Physical So-
ciety. (b) Successive removal of material (crater feature) made by
an ultra-sharp full diamond probe. 2D SSRM measurements shows
the total resistance obtained on vertically aligned MWCNT bundles
(bright, lower resistance) surrounded by oxide (dark, higher resis-
tance). Reprinted with permission from [80]. Copyright (2012) John
Wiley & Sons, Inc. (c) Ultramicrotome used in combination with
C-AFM to image a conductive graphene network in a PS matrix.
Reprinted with permission from [117]. Copyright (2012) John Wiley
& Sons, Inc.
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Figure 1.7. Non-destructive AFM techniques for subsurface imaging.
Relevant features are the preservation of the original state of the spec-
imen in study, no complex sample preparation and operation under
a wider range of environments/media. These techniques are classi-
fied based on the mechanism of detection either surface vibrations,
mechanical properties or electrostatic force interactions.
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Figure 1.8. Schematic representation of techniques based on detec-
tion of surface vibrations. Ultrasound waves are launched, using an
external transducer usually a piezoelectric, from the sample or via
the microcantilever as in (a) UFM CR-AFM, or through both in (b)
HFM and SNFUM, while the tip is in contact or near-contact with the
sample. The measured frequency response is different in each case,
for example, in HFM is the beat frequency (ω2−ω1). (c) In MSAFM,
the probe and the sample are excited with forces containing different
frequency components.
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Figure 1.9. Detection of voids/defects in trench structures using
scanning near-field ultrasound holography (SNFUH). (A) Schematic
representation of the sample with 1 µm deep trenches etched in SOD
(spin-on-dielectric) covered by a 50 nm layer of Si3N4, and 500 nm of
polymer (benzocyclobutene). (B) Sample topography with uniform
superficial coating. (C) SNFUH phase image reveals internal voids
or defects on the trenches (D) Profile across the void. From [85]
Reprinted with permission from AAAS.
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Figure 1.10. Schematic representation of techniques based on the de-
tection of local mechanical properties. (a) In multimodal AFM there
is a simultaneous excitation of the flexural modes of the microcan-
tilever. (b) In CR-AFM, a piezoelectric at the bottom of the sample
generates a wave while the tip is in contact with the sample. (c) In
DC-biased AM-AFM, the microcantilever oscillates at ω ∼ ω0 while
biased with a DC voltage. The measured frequency response is differ-
ent in each case, for example, in the trimodal case are the frequency
components equal or close to the first three of the flexural modes
(ω1, ω2 and ω3), in MSAFM could be any of the mixed frequencies
(modes), in CR-AFM is the contact resonance frequency (ωc) and in
DC biased AM-AFM one of the flexural frequencies.
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Figure 1.11. Subsurface imaging using detection of local mechan-
ical properties. (a) Trimodal and tapping AFM images (topogra-
phy) of an array of silicon nanowires buried under a 70 nm PDMS
film. From [118] ©IOP Publishing. Reproduced with permission.
All rights reserved. (b) Topography and contact stiffness contrast ob-
tained using CR-AFM. Buried silica particles (50 nm size) are located
under a 125 nm thick PS cover film. From [100] ©IOP Publishing.
Reproduced with permission. All rights reserved.
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Figure 1.12. Schematic representation of AFM techniques based on
the detection of electrical force interactions for subsurface imaging.
The diagrams in (a) and (b) are representations of double-pass modes
for EFM and KPFM, respectively. During the second pass the tip is
at a lifted height ∆Z, an electrical bias is applied to the tip and the
mechanical oscillation of the microcantilever is on in EFM (at ω ∼ ω0)
and off in KPFM. An additional feedback loop measures the surface
potential (SP) in KPFM.
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Figure 1.13. Comparison of subsurface imaging of SWCNTs in a PI
composite using DC-biased AFM-AFM, EFM and KPFM. (First row)
Observables from DC-biased AM-AFM: (a) Topography, (b) phase
shift and (c) amplitude, with -3V applied to the tip. (Second row)
Single-pass EFM observables: (d) topography, (e) amplitude com-
ponent, and (f) phase. (Third row) Single-pass KPFM observables:
(g) topography, (h) surface potential and (i) capacitance gradient.
From [102] ©IOP Publishing. Reproduced with permission. All
rights reserved.
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Figure 1.14. Depth resolved image of a thin film of polypropylene
(PP) (a) Volume image reconstructed from kTS maps. The resolved
depth is 19 nm. (b) Cross-section of the lamella marked in (c), which
corresponds to the phase image obtained by AFM-AFM of the region
where the APD curves (50 x 50) were taken. Some kTS slices are shown
from (d) to (f) for three different depths. Reprinted with permission
from [92]. Copyright (2013) American Chemical Society.
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Figure 1.15. Three dimensional reconstruction of SWCNTs em-
bedded in polyimide (PI) using 2nd-harmonic KPFM. (a) Compu-
tational and experimental capacitance gradient difference (∆C ′ =
(∂C∂z)SWCNT − (∂C∂z)PI) as a function of CNT depth. (b) ∂C∂z
map (5 µm x 5 µm) (c - d) Volume images of three selected SWCNTs
regions (500 nm x 500 nm). Reprinted with permission from [109].
Copyright (2015) American Chemical Society.
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2. RESONANCE-ENHANCED 2nd-HARMONIC KPFM FOR SUBSURFACE

IMAGING

Dynamic AFM techniques based on electrostatic force sensing, such as electrostatic

force microscopy (EFM) and Kelvin probe force microscopy (KPFM), have been used

to detect subsurface features in a non-invasive manner [102, 109, 112, 113, 119]. In a

previous study, we demonstrated the advantages of KPFM as a robust quantitative

subsurface technique when compared to EFM [102]. KPFM is known as a tech-

nique to measure the local contact potential difference (CPD) between the tip and

the sample at nanoscale [107, 120]. However, it also provides a 2nd-harmonic chan-

nel largely sensitive to the dielectric properties or charge distribution on or below

the surface [121–123]. Due to its quantitative character and dependence on sample

properties, it opens up the possibility to convert additional KPFM observables into

physical quantities, especially for subsurface imaging. All prior works using KPFM

2nd-harmonic for subsurface imaging [102,109] have done so with off-resonance electro-

static excitation. While resonance-enhanced 2nd-harmonic imaging has been proposed

earlier in the context of dielectric mapping [104,124–126], the benefits for subsurface

imaging remain unexplored.

This chapter contains a comprehensive analysis on 2nd-harmonic KPFM, using

resonance-enhanced detection for subsurface imaging. This scheme takes advantages

of the microcantilever dynamics and its maximized response at resonance. The 2nd-

harmonic channel is set at one of the frequencies of the available flexural modes of

the microcantilever. Theoretical considerations are provided for the electrostatic force

interaction generated at a potential difference between the probe and the sample, as

well as a model to describe the microcantilever dynamics when it is directly excited

by an external electrostatic force. The technique is used in the observation of buried

0D, 1D and 2D objects in three types of polymer composites. Lastly, a finite ele-
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ment model is used to analyze material contrast, depth and lateral resolution of the

technique.

2.1 Theory

2.1.1 Microcantilever Dynamics in Double-Pass KPFM

KPFM belongs to the family of dynamic AFM techniques based on electrostatic

force detection. It draws upon the macroscopic Kelvin probe method invented to

measure the work function of metals and semiconductors [127], and later adapted to

the sub-micron scale in 1991 [107]. In KPFM, the response of an electrically biased

microcantilever accounts for electrostatic force interactions, generated by an external

electric field applied between the AFM probe and sample. The detection is further

improved by using resonance-enhanced mode, which relies on the microcantilever

response at resonance, to improve material contrast and sensitivity.

In dynamic AFM, the microcantilever exhibits several eigenmodes of vibration

and the intention is to drive the microcantilever at resonance [128]. Particularly,

resonance-enhanced KPFM uses one of the flexural or bending modes, which are

transverse to the plane of the microcantilever. Each bending mode has its own reso-

nance frequency and can be determined using the Euler Bernoulli beam theory. The

partial differential equation describing the motion of a thin rectangular microcan-

tilever is

EI
∂4w(x, t)

∂x4
+ c∗

∂w(x, t)

∂t
+ ρA

∂2w(x, t)

∂t2
= Fdrive(x, t) (2.1)

where EI, w(x, t), c*, ρ, A and Fdrive(t) are the flexural rigidity, transverse deflection,

damping, mass density, cross-sectional area and driving (excitation) force, respec-

tively. Fdrive in this case refers to the electrostatic force, which is presently approx-

imated as a point force applied at the end of the microcantilever, where the tip is

located. Therefore, F (t)drive is equal to Fδ(x−L), where δ is the Dirac delta function.
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Equation (2.1) is discretized using Galerkin’s method [129]. This approach assumes

a solution in the form

w(x, t) =
∞∑
j=1

ψj(x)qj(t), (2.2)

where ψj(x) is the ith microcantilever eigenmode function and qj(t) is a modal co-

ordinate. Each ψj(x) is normalized so that ψj(L) = 1, so that qj(t) corresponds to

the deflection of the microcantilever at the location of the tip [130, 131]. A detailed

derivation is given in Appendix A.1. Using the discretization, Equation (2.1) can be

simplified into the following ordinary differential equations for i = 1, 2, ..., N ,

1

ω2
i

d2qi(t)

dt2
+

1

ωiQi

dqi(t)

dt
+ qi(t) =

Fi(t)

ki
, (2.3)

where ωi, Qi, ki, and Fi(t), are the bending resonance frequency, quality factor,

equivalent stiffness, and modal forcing of the ith eigenmode, respectively. Further-

more, the microcantilever-sample capacitance can be discretized in terms of the modal

coordinates such that C(Z, q1, q2, ..., qN), where Z is the separation between the non-

vibrating microcantilever tip and the sample.

In a microcantilever-sample system, considered as a small vibrating capacitor, the

modal electrostatic excitation (driving) force Fi(t) in the vertical z direction, is given

by

Fi(t) = −∂U
∂qi

= −1

2

∣∣∣∣∂C∂qi
∣∣∣∣ (∆V (t))2, (2.4)

where U is the stored energy, ∂C/∂qi is the capacitance gradient with respect to the

modal contribution to Z. ∆V is the potential difference, composed of an ac voltage

with amplitude Vac and frequency ωe, a dc voltage Vdc, and the contact potential

difference between the tip and the sample Vcpd. Both Vdc and Vac are applied to

the conductive microcantilever, and typically are in the order of few volts (1-3 V).

Expanding Equation (2.4), three separate contributions are found for Fi(t) as [104]
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Fi(t) = Fi,dc + Fi,ωe(t) + Fi,2ωe(t), (2.5)

Fi,dc = −
∣∣∣∣∂C∂qi

∣∣∣∣ [1

2
(Vdc − Vcp)2 +

V 2
ac

4

]
, (2.6)

Fi,ωe(t) = −
∣∣∣∣∂C∂qi

∣∣∣∣ (Vdc − Vcp)Vacsin(ωet), (2.7)

Fi,2ωe(t) =
1

4

∣∣∣∣∂C∂qi
∣∣∣∣V 2

accos(2ωet). (2.8)

where Fi,dc, Fi,ωe and Fi,2ωe correspond to the DC, ωe and 2ωe components of the

modal electrostatic force.

KPFM has two main working modes, namely amplitude modulation (AM-) or

frequency modulation (FM-) KPFM. AM-KPFM is based on the electrostatic force

given in Equation (2.4), and the induced microcantilever amplitude response. FM-

KPFM draws upon the gradient of the electrostatic force and the resulting shifts on

the microcantilever oscillation frequency of the chosen eigenmode. Therefore, [132]

∆fi(z, ωe) ∝
∂Fi,ωe

∂qi
=
∂2C

∂q2
i

(Vdc − Vcpd)Vacsin(ωet). (2.9)

FM-KPFM is mostly implemented under ultra high vacuum (UHV) conditions to

estimate the work function of materials, especially when absolute values are required

[132, 133]. Conversely, AM-KPFM is commonly operated under ambient conditions

and its implementation is relatively easier compared to FM-KPFM, so it is feasible

in most commercial AFMs.

Both AM- and FM-KPFM can be implemented in two schemes, namely, single-

pass and double-pass. In single-pass, measurements of surface topography and the

microcantilever response to the electrostatic forces are performed simultaneously [103,

125]. Double-pass differs from single-pass in that two scans are performed. The first

records the surface topography and the second senses the electrostatic interactions

at a preset height offset above the surface. Therefore, in double-pass, the frequency

of Fi,2ωe can be tuned to one particular eigenmode, so that only one of N are in the

response. Then, the equation of motion reduces to a one degree of freedom model
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(Equation (2.3)). Henceforth the modal coordinate of the one chosen eigenmode,

i = 1 or i = 2, in double-pass KPFM will be denoted simply as “q”. In this work,

we use AM-KPFM in double pass mode, focusing on the Fi,2ωe component, hereafter

referred as 2nd-harmonic KPFM or KPFM for brevity.

Traditionally, KPFM has been used to map the contact potential difference (CPD),

while the tip scans the sample surface. This is achieved by recording the Vdc voltage

that nulls the microcantilever oscillation at ωe (Equation (2.7)). The CPD is pro-

portional to the work function in metals or semiconductors (Vcpd =
Φsample−Φtip

e
), local

charges in insulators and voltage drops in a biased circuit [134].

The 2ωe component, namely 2nd-harmonic channel, depends on the electrical prop-

erties of the sample and the microcantilever-sample geometry. It determines the

variation of the capacitance with respect to the tip-sample distance. In early days,

before KPFM was formally introduced as a technique, the 2ωe channel was already

being used to study surface dielectric properties as well as dopant concentration in

semiconductors [125,126].

In double-pass resonance-enhanced KPFM, the microcantilever response at 2ωe,

using the first flexural microcantilever eigenmode (i = 1), can be obtained by the

steady state solution of the single degree of freedom point mass-model given in Equa-

tion (2.3). Letting qp(t) = A1,2ωesin(2ωet−Ψ2ωe),

A1,2ωe =
|F1,2ωe|
k1

√
1

(1− r2)2 + (r/Q1)2
, (2.10)

=
|F1,2ωe|
k1

|H1,2ωe|,

where r = 2ωe

ω1
. |H1,2ωe|, A1,2ωe and Ψ1,2ωe are the magnitude of the microcantilever

transfer function, the amplitude and phase response at 2ωe, respectively [124]. Assum-

ing ωe = ω1/2, the amplitude response at 2ωe simplifies to

A1,2ωe =
Q1

k1

F1,2ωe . (2.11)
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The above equation shows the dependence of A2ωe on the ratio Q/k. Furthermore,

using Equations (2.8) and (2.11), we can relate the 2nd-harmonic of the electrostatic

force to the experimental A2ωe and find an analytical relation for ∂C/∂q1 as

∂C

∂q1

=
4k1A1,2ωe

V 2
ac|H1,2ωe|

. (2.12)

The measured phase is given by Ψ1,2ωe = φ1,2ωe + φ1,2 + φinst, where φ1,2ωe is

the phase due to the electric properties of the sample, φ1,2 is the phase lag due

to microcantilever dynamics
(
φ1,2 = tan−1

(
r

Q1(1−r2)

))
) and φinst is an instrumental

phase shift introduced by the electronics. For the purposes of this work, we mainly use

A1,2ωe (amplitude channel), but Ψ1,2ωe has been employed elsewhere to study the real

and imaginary components of ∂C/∂q1 related to complex dielectric properties [65].

2.1.2 Electrostatic Force Calculation Using Finite Element Analysis

The 2nd-harmonic channel is useful in the detection of subsurface features, being

sensitive to changes in the electrostatic force interactions caused by variation of the

local capacitance gradient. Buried objects with different dielectric properties com-

pared to the surrounding media, perturb the electric field applied between the tip and

the sample, affecting the electrostatic interactions. Also, there are contributions from

the geometry of the probe and sample that must be considered, due to the long-range

nature of the electrostatic force.

Within this framework, three relevant questions arise for subsurface imaging ap-

plications: what is the material contrast resolution, how deep a buried object can

be detected (depth sensitivity), and what is the spatial (lateral) resolution. In or-

der to answer those questions, we need a model, considering the properties of the

probe-sample system. One of the main challenges in modeling long-range electro-

static interactions is the shape of the probe and the complexity of sample properties,

particularly when dealing with heterogeneous materials. A typical probe is composed

of a microcantilever (beam), and a conical (or pyramidal) tip ending in an spherical

apex. Some analytical models have been derived for homogeneous substrates, such as



40

a flat conductor [135–137], a semiconductor [138] or a thin dielectric [139,140]. These

studies have shown that the electrostatic force between the tip and the sample is not

confined at the very end of the tip but rather it is the sum of the contributions from

the spherical apex, the conical side faces and the distal end of the microcantilever.

The dominant part depends on the relation between tip-sample gap with respect to

the tip radius and length [135,140].

In the case of heterogeneous materials with buried objects within a matrix or thick

dielectrics, there is a lack of accurate analytical models. Therefore, numerical or finite

element analyses have been proposed to compute the electrostatic force interaction

between a conductive probe and more complex samples. For instance, numerical

simulations of the equivalent charge method are used for point charges embedded in a

dielectric matrix [141,142] or finite element modeling in the case of uncharged/charged

buried nanoparticles [143], or CNT bundles [109] embedded in a polymer matrix.

Here, a 3D finite element model is built in Comsol Multiphysics using the elec-

trostatics interface. Within the model, it is relevant to consider the contributions

of all parts of the probe, i.e. the micrometric sized cone and microcantilever and

the nanometric sized tip apex [?, 144]. The tip of the probe is modeled as a hemi-

sphere (apex) with radius rt attached to a cone with a half angle θ and height ht.

The distal end of the microcantilever is modeled as a disk of radius rc and thickness

tc, as shown in figure 2.2(a). In consideration of the type of samples used in this

study, we model the sample as a matrix (block) with a dielectric constant εm, and

a filler (cylinder or sphere) with a dielectric constant εf . For conductive materials,

such as CNTs, we assume a floating potential boundary condition on its surface, not

necessarily grounded. The surrounding air is defined as an infinite element domain.

Note: the 3D model can be simplified computationally by exploiting symmetries. For

instance, a 2D axisymmetric model is suitable in the case of an axisymmetric tip and

a 0D subsurface object, when the latter is aligned with the tip. In case of asymmetry

with one of the axis, the mirror symmetry of the 3D model can be invoked to mesh

only half of the volume.
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To compute the electrostatic force, the boundary problem is defined by the fol-

lowing conditions: a constant electric potential applied to the probe (Vt), a constant

electric potential at the bottom surface of the sample (0 V, ground), zero charge

(n · D = 0) in the air domain surrounding the probe and the sample and charge

conservation enforced everywhere. An example of the electric potential distribution

with Vt = 1V is shown in figure 2.2(b), using a 2D surface plot of the y-z plane.

The electrostatic force on an arbitrary charge distribution with a volume V having a

position dependent charge density ρ(x, y, z) is given by

F =

∫
V

ρEdV, (2.13)

where dV = dxdydz is the volume element. Defining the force per unit volume

f = ρE, it can be shown that

f = ε0 [(∇ · E)E + (E · ∇)E]− 1

2
∇(ε0E

2). (2.14)

Comsol uses the Maxwell stress tensor (T) to compute F, which simplifies the

computation of the volume integral. T is defined as [145]

T = Tij ≡ ε0

(
EiEj −

1

2
δijE

2

)
, (2.15)

where the indices i, j refer to the coordinates x, y, z and Ei, Ej are the components

of the electric field. It can be shown that

(∇ ·T),j = ε0 [(∇ · E)Ej + (E · ∇)Ej]−
1

2
∇j(E

2). (2.16)

Equations (2.16) and (2.14) imply that the force per unit volume can be written as

f = (∇ ·T). Therefore, the force F on an arbitrary charge distribution is given by

F =

∫
V

(∇ ·T)dV. (2.17)

Using the divergence theorem, Equation (2.17) is equal to

F =

∮
S

T · ds, (2.18)
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which means that instead of solving the volume integral given in Equation (2.13), the

force is calculated by a surface integral over an arbitrary surface (Equation (2.18)).

Physically, T represents the traction force per unit area acting on the surface S. Thus

Txx, Tyy, Tzz represent normal stresses and Txy, Txz, etc. represent shear stresses

respectively acting along xy, yz and xz planes. A more detailed explanations is given

in Appendix A.2.

The computational model allows the estimation of the electrostatic force in dif-

ferent scenarios, for example, changing the dielectric constant, geometry or depth of

the embedded object. This is a useful approach to estimate material contrast, depth

and lateral resolution.

One of the criteria to determine the limits of the experimental subsurface detection

is the force sensitivity, i.e. the minimum detectable force. This is determined by the

noise, mainly the thermal noise of the microcantilever (ηth) and the detector noise

of the AFM [146]. The thermal noise can be estimated from the microcantilever

oscillations in a thermal bath, as follows. From the fluctuation dissipation theorem,

the power spectral density can be calculated as

S(ω) =
2kBT

ω1

Im(χ(ω)) (2.19)

where kB is the Boltzmann constant, T is the room temperature and χ(ω) is the

microcantilever transfer function relating the tip motion to the input force. For a

single degree of freedom oscillator,

S(ω) =
2kBT

πkω1Q1

1

(1− (ω/ω1)2)2 + ω2/(ω1Q1)2
. (2.20)

S(ω) is related to the thermal noise by [147]

η2
th =

∫ ∞
0

S(ω)dω. (2.21)

To calculate ηth for the resonance and off resonance case, we integrate Equation

(2.21) over a frequency bandwidth range (B = 1 kHz), in which the experiments are

performed. Using ω1 = 68.3 kHz, Q = 120.4, k = 2.37 N/m, T = 293 K, ηth = 37.5
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pm when ω = ω1. If ω < ω1 (20 kHz), ηth = 0.56 pm. These values are used to

calculate Fmin,th given by

Fmin,th =
k1ηth
|H1,2ωe|

(2.22)

The detector noise is determined mainly by the optical beam deflection sensor noise

density (ηobd) of the AFM system. In Cypher AFM (Asylum Research)from Asy-

lum Research used throughout this work, ηobd ≈ 25fm/Hz1/2. Then, the minimum

detectable force due to ηobd is given by

Fmin,obd =


ηobd
√
Bk1

Q1
2ωe = ω1,

ηobd
√
Bk1 2ωe � ω1.

(2.23)

F obd
min is frequency dependent and is lower (higher sensitivity) at resonance than off-

resonance. The minimum total force is obtained as

Fmin =
√

(Fmin,th)2 + (Fmin,obd)2. (2.24)

Using typical values for a conductive microcantilever used during experiments, ω1 =

77.1kHz, k1 = 2.3 N/m, and Q1 = 232, at room temperature and B = 1kHz, Fmin is

equal to 0.82 pN and 2.0 pN when 2ωe is at ω1 and off-resonance, respectively.

2.2 Experimental Setup

In double-pass mode, two scans per line are performed on a selected sample loca-

tion. As shown in figure 2.1, during the first pass, the AC deflection of the microcan-

tilever is sensed by Lock-in A, whose reference is set to ωm, approximately equal to

one of the frequencies of the flexural eigenmodes of the microcantilever (typically ω1).

Lock-in A tracks the topography by controlling the amplitude of the microcantilever

oscillation in non-contact (or tapping) mode, while it keeps constant the distance be-

tween the tip and the sample. During the second pass, the tip is raised to a lift-height

(∆Z) above the sample, the mechanical oscillation is turned off and an electrical exci-

tation at a frequency ωe and amplitude Vac is applied to the tip. The microcantilever
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response to the electrostatic interactions at ωe and 2ωe are captured by Lock-in B and

Lock-in C, respectively. Additionally, a feedback loop constituted by a KPFM servo,

is used to apply Vdc to nullify the amplitude response to Fωe (Equation (2.7)). The lat-

ter is used in the common application of KPFM for surface potential measurements.

The main observables are the topography from the 1st-pass and the amplitude (A2ωe)

and phase (Ψ2ωe) corresponding to the microcantilever response from the 2nd-pass.

This is the mode used in this work. Single-pass differs from double pass in that mea-

surements of surface topography and the microcantilever response to the electrostatic

forces are performed simultaneously, usually in non-contact mode [103,125].

Double-pass is advantageous for the resonance-enhanced mode. The same eigen-

mode frequency can be used for the mechanical and electrical driving forces, since

they are not simultaneously applied as required in single-pass. Therefore, during the

first pass, ωm is set near to the first resonance frequency ω1, and in the second pass, ωe

is adjusted close to ω1/2. Detection at resonance has been used to improve resolution

in CPD measurements under vacuum conditions, using the second oscillation mode

instead (ωe = ω2). This is done taking advantage of a high Q achieved in vacuum

due to reduction in damping [148, 149]. However, in air it is better to use the first

oscillation mode for the electrical excitation, as discussed below.

Experiments were performed using the Cypher AFM at room temperature with

the AFM chamber back-filled with flowing dry nitrogen. We use metallic coated

silicon probes (PPP-EFM), with a nominal length and width of 225 µm and 28 µm,

respectively. The tip has a height of 10 - 15 µm, a pyramidal apex angle of 25◦ and

a tip apex radius of approx. 25 nm.

2.3 Results and Discussion

2.3.1 Resonance-Enhanced Subsurface Imaging

The capability of resonance-enhanced 2nd-harmonic KPFM for high resolution sub-

surface imaging is demonstrated for three types of polymer nanocomposites. These
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composites differ from each other by the morphology of the filler, i.e. 0D (nanospheres),

1D (nanotubes) or 2D (platelets). Representative results using double-pass mode are

shown in figure 2.3. The first sample (figure 2.3(a, b)) corresponds to a 10 wt%

barium titanate (BaTiO3)-polydimethylsiloxane (PDMS) composite. The embedded

BaTiO3 nanoparticles (NPs), which can not be distinguished in the surface (figure

2.3(a)), are clearly revealed in the A2ωe map (figure 2.3(b)). The NPs have an average

size of 100 ± 15nm, during fabrication they were aligned through the volume of the

PDMS matrix by electrophoresis [150]. The second sample is a 3 wt % SWCNTs-PI

film. Buried SWCNTs are seen in the A2ωe map (figure 2.3(d)), but not detectable

in the topography (figure 2.3(c)). This composite is above the percolation threshold,

so it is expected to contain networks of well-dispersed CNTs [43]. The third sample

is a 0.25 wt % reduced graphene oxide (RGO)-polystyrene composite (PS), made

by chemical reduction method [151]. The appearance of RGO flakes as crumpled or

folded structures as seen in A2ωe map (figure 2.3(f)) is expected. As in the other

cases, the flakes do not appear in the topography image (figure 2.3(e)). Table 2.1

presents a summary of these samples.

Resonance-enhanced detection significantly improves image contrast when com-

pared to the off-resonance case. This is demonstrated using double-pass mode in one

of the composite samples. Figure 2.4 indicates the results obtained using double-pass

in the BaTiO3-PDMS composite. As shown in table 2.2, we chose ωm to be equal to

ω1, for the first pass in which the topography map (figure 2.4(a)) is acquired. For

the second pass, the two cases of resonance-enhanced can be performed when 2ωe

is equal or close to ω1 (figure 2.4(b)) or ω2 (figure 2.4(c)). Figure 2.4(d) shows the

off-resonance case (2ωe < ω1). The maps were taken with the same voltage applied

between the tip and the sample (Vac = 4V). A clear subsurface contrast is observed in

the resonance-enhanced modes for both observables (A2ωe and Ψ2ωe). The amplitude

response being higher when 2ωe = ω1 (figure 2.4(b)). This result reflects the depen-

dence of A2ωeon the ratio between Q and k (Equation (2.11)), which decreases with

higher eigenmodes. These values vary depending on the mode shape of the microcan-
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tilever [152,153]. For instance, approximating a real microcantilever to a rectangular

beam without a tip in air, Q2 = 6.27Q1 while k2 = 39.31k1
1. Therefore, (Q1

k1
) > (Q2

k2
)

and the amplitude response is reduced when the frequency of the 2nd flexural mode

of the microcantilever is used as 2ωe.

In comparison to resonance-enhanced subsurface detection, the traditional off-

resonance methods are not so good. Under the same conditions of tip voltage and

tip-sample distance, the two observables A2ωe and Φ2ωe exhibit a weak or lack of

contrast, as shown in figure 2.4(c). This implies the need to increase the voltage

applied between the tip and the sample.

A main advantage of using resonance-enhanced detection is a higher force sensi-

tivity, while decreasing the magnitude of the bias voltage applied between the tip and

the sample. This is convenient to avoid charging or damage of samples susceptible to

higher voltages [154] and reduces the constant electrostatic background in topography

by Fdc (Equation (2.6)). Furthermore, the tip can be brought closer to the surface of

the sample in the second pass, which gives better lateral resolution. The latter due to

the dominant contribution from the apex at lower Z. Also, we get a better contrast

resolution.

For a quantitative assessment on contrast resolution (image quality) as a function

of frequency, we use as a metric the contrast-to-noise ratio (CNR) defined as [155,156]

CNR =
µ0 − µB
σB

, (2.25)

CNRn =
CNR−min(CNR)

max(CNR)−min(CNR)
, (2.26)

where µf and µm correspond to the mean A2ωe measured over the filler (brighter)

and the mean A2ωe on the surrounding polymer matrix (darker), i.e. higher and

lower amplitude response, respectively. This is analogous to the analysis of exposure

images from MRI (magnetic resonance imaging) or X-ray imaging. Figures 2.5(a),

(b) show subsurface images of a region in the BaTiO3-PDMS sample when 2ωe is

equal or lower to ω1, respectively. From maps taken at frequencies around ω1, the

1Indices 1 and 2 correspond to the 1st and 2nd flexural modes, respectively
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normalized CNR (Equation (2.26)) was calculated as a function of frequency (2ωe),

as shown in figure 2.5(c). The maximum CNR occurs at 2ωe = ω1, as expected from

the microcantilever dynamics.

2.3.2 Material Contrast, Depth and Lateral Resolution

In this section, we use the FE model built in Comsol Multiphysics to compute

the electrostatic force between the AFM probe and a sample, in scenarios close to

real experiments. We gain a deeper understanding on image contrast and sensitivity

dependence on sample properties such as dielectric constant, geometry and depth

of the embedded object. In experiments, these parameters are also influenced by

the operation at resonance or off-resonance. Furthermore, we estimate the lateral

resolution influenced by the long-range nature of the electrostatic force.

The subsurface maps shown in figure 2.3, corresponds to composite samples in

which a filler (BaTiO3 NPs, SWCNTs, or RGO flakes) with high dielectric constant

is embedded within a low dielectric matrix (PDMS, PI or PS). This implies a higher

∂C/∂q1 and therefore higher Fq1,2ωe (Equation (2.8)). In terms of image contrast, this

is reflected as brighter regions for the embedded object and darker for the polymer.

In a first simulation, we calculate the force as function of depth (d) in the case of

an embedded sphere or a cylinder, both buried into a low dielectric matrix (εm = 3,

typical value of low dielectric polymers), as shown in figure 2.6. We define ∆F as

the difference in the force measured when the tip is over the filler (Ff ) and when it

is over the matrix (Fm) at a fixed tip-sample distance Z.

Figure 2.6(a) shows ∆F vs d for the case of a sphere of radius rf = 20 nm.

Different values of εf were assumed, 1 as if it was a void (air) to 10000. When

εf ≥ 1000, ∆F is close to the case defining floating potential boundary conditions on

the surface of the filler (conductive). Figure 2.6(b) corresponds to ∆F vs d in the

case of a cylinder of fixed length (L = 1µ m) and radius (rf = 20 nm). εf is varied
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similar as in the case of the buried sphere. In both cases, the geometry of the probe

is fixed, tip radius rt = 20 nm, Vt = 1 V and Z = 10 nm.

The electrostatic force is proportional to εf . When εf > εm, ∆F is positive and

brighter contrast is expected in A2ωe . On the contrary, ∆F is negative when εf < εm,

as in the case of a void, anticipating a darker (lower A2ωe) contrast in the subsurface

maps. Figures 2.6(a, b) also show the dependence of ∆F on the geometry of the

embedded object, which is higher in the case of the 1D object (cylinder) compared

to the 0D object (sphere).

With respect to the depth of the embedded object, higher values of ∆F are ob-

tained when the filler is near the surface and decays with increasing d, until it gets

close to zero. The latter occurs when Ff approximates Fm, in which case no contrast

is expected in A2ωe and therefore, no detection of the embedded object. Figure 2.7(a)

shows ∆F as a function of d for the case of a conductive 1D object, for which floating

potential or ground boundary conditions are assumed. A threshold of detection is

determined by the minimum detectable force [109] (Fmin, Equation (2.24)), shown

by the straight lines in figures 2.7 (a) and (b). Using resonance-enhanced with a

typical conductive microcantilever Fmin = 0.8 pN (orange line). The conductive 1D

object (L = 1µm, Rf = 20nm) would be detected up to ∼ 100 nm deep with Vt = 1V

at Z = 10 nm or more than 600 nm if it is grounded. For off-resonance operation,

Fmin = 2.5 pN (green line), in which case the limit would be ∼ 50 nm if the filler

is not grounded. There is an increase in depth sensitivity when using resonance-

enhanced detection at 2ωe. The threshold varies depending on ηobd of the AFM and

the properties of the microcantilever such as k, Q, ω1 and the detection frequency.

The depth sensitivity estimated from ∆F versus d, depends on the electrical proper-

ties and shape of the embedded object, the applied voltage (Vt), and the tip-sample

distance Z.

Figure 2.7(b) shows the dependence of ∆F on V 2
t (Equation (2.4)) and length

of the influence of the size (length L) of the 1D object. From this simulation, the

detection of larger objects is expected to occur first at lower voltages, while shorter
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would appear at higher Vt. This is demonstrated with the experimental maps shown

in figure 2.7(c-d). The images were acquired on a sample composed by a 2D CNT

network grown on a silicon substrate, coated with 40 nm of polymer. At 2V, the

larger CNTs under the surface start to appear in the subsurface map, but the short

ones can be barely seen, contrary to when Vt = 5 V.

In a second simulation, we analyze the lateral resolution when the tip (rt = 20

nm, Vt = 1 V) moves in the y direction, over an embedded 1D object (rf = 20 nm,

L = 1µm), located at a depth d. The results are shown in figure 2.8. From the data,

we calculate the full width at half maximum (FWHM) and the minimum distance

(Ls) at which two similar objects at the same d can be detected individually. For

instance, figure 2.8 (b) shows the cases assuming the objects are separated at distances

Ls = n×FWHM, where n = 1, 2, ...N (multiple values of FWHM) obtained, for d = 20

nm. The FWHM obtained for d = 20, 40 and 60 nm are 122.6, 163.2 and 197.6 nm,

respectively. This is reflected by a widening effect of the embedded object compared

to its real size. Figure 2.8(c) relates ∆F as a function of the lateral separation

distance between the two objects, where each point corresponds to multiples of the

FWHM measured for each of the depths. Using the threshold given by the minimum

detectable force, similar objects must be separated at least a distance equivalent to

two times the FWHM to be detected individually (∆F > 2FWHM) for depths below

100 nm. Lateral resolution depends also on tip radius. We simulated the case in

which rt is comparable to the radius of the embedded object, at a fixed Z = 10 nm.

It is relevant to notice that this analysis is based on amplitude modulation KPFM

(AM-KPFM), where the amplitude of the microcantilever response is proportional to

the electrostatic force. The other common implementation in KPFM is based on

frequency modulation (FM-KPFM), in which the frequency shift is proportional to

the gradient of the electrostatic force. The latter would exhibit a different sensitivity

and lateral resolution for subsurface imaging applications [132,140,157].
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2.3.3 Additional: Single-Pass Resonance-Enhanced KPFM

In single-pass mode, using the same scheme in figure 2.1(b), the three lock-ins (A,

B, C) are operated at the same time during one single scan. Same as in double-pass,

Lock-in A tracks the surface topography by mechanically exciting the microcantilever

at ωm close or equal to ω1. Lock-in B is used to electrically excite the microcantilever

and detect its response, both at ωe, which must be distinct from ωm. Typically, ωe

is chosen within a low frequency range (5 to 20 kHz) to avoid cross-talk. Addition-

ally, the feedback loop is in charge of CPD measurements. Lock-in C detects the

microcantilever response at 2ωe.

For resonance-enhanced mode, single-pass requires a bimodal scheme, i.e. a simul-

taneous excitation of two of the oscillation modes of the microcantilever. In this case,

either ω1 is used for the mechanical excitation and the ω2 for the electrical excitation

or viceversa.

For single-pass mode, the resonance-enhanced and off-resonance cases are pre-

sented in figure 2.9, i.e when 2ωe (figure 2.9(b)) is equal or close to ω2 and less than

ω1 (figure 2.9(c)), respectively. Same as in double-pass mode, there is a remarkable

difference in A2ωe contrast in the first case, as a result of the magnification in the

amplitude response at resonance and a lack of contrast when using a lower frequency

at the same applied voltage (Vac = 5 V). A quantitative assessment of the observables

would require a more careful analysis of the microcantilever dynamics.

Table 2.2 summarizes both modes for a particular case of resonance-enhanced

detection, which we have implemented in this work to improve the sensitivity of the

2nd-harmonic subsurface channel.

2.4 Summary

Resonance-enhanced detection is an effective complement to 2nd-harmonic KPFM

for subsurface imaging applications. Higher contrast resolution (image quality) is

obtained when compared to the off-resonance case in double or single-pass modes,
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and lower voltages are required for the detection of objects underneath the surface.

This is convenient for materials sensitive to the application of electric potential and

in turn, reduces the dc component of the electrostatic force that may affect the

topography channel.

We point out that for AM-KPFM in air, it is more appropriate to use the first

flexural mode of the microcantilever for two main reasons. First, the microcantilever

response to F2ωe is higher when 2ωe = ω1 and second, the microcantilever dynamics

described by the point-mass model, can be used to relate the experimental observable

(A2ωe) to F2ωe . Within the available schemes for KPFM, single and double-pass,

the latter is more advantageous for resonance enhanced detection. In this mode,

mechanical and electrical excitations are not mixed during scanning as in single-pass

mode. For this reason, conventional single-pass uses ωe lower than ω1. Resonance-

enhanced in single-pass requires to use the second oscillation mode, so that 2ωe = ω2,

while the microcantilever is mechanically driven at its first mode for the topography

channel. The opposite situation can also be applied, in which 2ωe = ω1 and ωm = ω2.

However, in any case, when using the second mode, quantitative estimations require

more careful considerations of the microcantilever dynamics, as well as tip-sample

gaps [152].

A deeper understanding of the relevant aspects behind the technique is gained

through finite element analysis. We investigate the contrast mechanism related to

material properties, depth sensitivity and lateral resolution, using a model that ap-

proximates the geometry of the probe and sample properties. This type of com-

putational approach is one of the key steps to convert KPFM into a quantitative

reconstruction technique, which is further detailed in Chapter 4.
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Figure 2.1. Schematic of the experimental setup in double-pass mode.
Lock-in A is used to track surface topography during the first pass.
Lock-ins B and C acquire the microcantilever response to the elec-
trostatic force at ωe and 2ωe, respectively, during the second pass
performed at a distance ∆Z from the sample. The relevant observ-
ables are surface topography and A2ωe for subsurface mapping.
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Figure 2.2. Representative plots in Comsol Multiphysics using the
electrostatics interface. (a) Geometry of the 3D model corresponding
to the AFM probe and sample. Zoom-in area for better visualization
of nanometer sized objects, such as the tip apex and the filler). (b)
2D surface plot of the electric potential distribution, with 1V applied
to the probe and bottom of the sample is grounded. The contours
in the zoom-in image corresponds to the electric field lines. Floating
potential boundary conditions are defined to the embedded object 60
nm deep. Geometric parameters: rt = 20 nm, ht = 12.5 µm, θ = 25°,
rc = 14 µm, tc = 3 µm, Z = 10 nm.
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RGO-PS

Figure 2.3. Representative subsurface images of polymer composites
using resonance-enhanced 2nd-harmonic KPFM. (1st-column) Surface
topography and (2nd-column) subsurface maps corresponding to (a-
b) BaTiO3-PDMS (0D composite), (c-d) SWCNTs-PI (1D compos-
ite), (e-f) RGO-PS (2D composite). Topography and A2ωe are ob-
tained during the 1st and 2nd scans, respectively. Parameters: A0 =
14.6, 15.0, 29.7 nm, Asp = 9.1, 10.0, 17.8 nm, ω0 = 66.8, 53.4, 66.8 kHz,
Vac = 8.0, 1.7, 3.0 V, ∆Z = 8, 3, 10 nm, 2ωe = ω1 in all cases.
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Figure 2.4. Comparison of resonance-enhanced and off-resonance
double-pass KPFM for subsurface imaging on the BaTiO3-PDMS
composite. (a) Topography during the 1st-pass (ωm = 68.4 kHz).
Second and third column correspond to 2nd-pass subsurface observ-
ables, A2ωe and Ψ2ωe , for three cases: (b) 2ωe = 68.2kHz ≈ ω1

(resonance) and (c) 2ωe = 401.4kHz ≈ ω2 (resonance), and (d)
2ωe = 30kHz < ω1, ω2 (off-resonance). Parameters: A0 = 11 nm,
Asp = 60%, ∆Z = 5 nm, Vac = 4.8 V.
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Figure 2.5. Contrast-to-noise ratio calculated for resonance and off-
resonance frequencies. Representative subsurface maps of a BaTiO3-
PDMS composite region (a) at resonance and (b) off-resonance, where
data was collected. (c) Normalized contrast to noise ratio as a function
of the frequency of the 2nd-harmonic of the electrostatic force.
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Figure 2.6. Force dependence on the dielectric properties of the filler
(εf ), embedded at a depth (d) in a low dielectric (εm) matrix . (a-b)
∆F as a function of depth (d) in the case of a 0D object (sphere) and
a 1D object (cylinder) for different εf , respectively. When εf > 1000,
∆F approaches the case of floating potential boundary conditions on
the filler. In both plots, the inset parameters labeled in black desig-
nate those variables held constant.
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Figure 2.7. Depth sensitivity in the case of a 1D object (conductive
cylinder) embedded in a low dielectric matrix (εm = 3). (a) Depen-
dence on boundary conditions of the conductive 1D object (floating
potential or ground). The diagram corresponds to the geometry used
in the computation model with fixed tip radius (rt = 20 nm), length
(L = 1µm), filler’s radius (rf = 20 nm) and tip-sample distance
(Z = 10 nm). (b) Dependence on tip voltage Vt for different L, other
parameters are kept constant and d = 40 nm. The thresholds cor-
respond to Fmin at resonance (green line) and off-resonance (orange
line). (c) Experimental data obtained in a sample composed of 2D
CNTs grown on silicon buried in a 40 nm coating of poly(styrene-
butadiene-styrene) (SBS). The arrow indicates shorter CNTs not vis-
ible at lower voltage in (d).
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Figure 2.8. Lateral resolution in the case of a 1D conductive object
embedded in a matrix as indicated by the diagram in (a). (b) Su-
perposition of a profile obtained when tip scans above the embedded
object (d = 20 nm) in the y-direction. (c) δF as a function of the
separation distance (Ls) of two fillers at different depths. Fmin is a
typical noise level threshold for resonance-enhanced mode.
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Figure 2.9. Comparison of resonance-enhanced and off-resonance
single-pass KFPM for subsurface imaging on a BaTiO3-PDMS com-
posite. (a) Topography acquired simultaneously with subsurface
maps, A2ωeand Ψ2ωe , for the resonance case (b) 2ωe = ω2 and the off-
resonance case (d)2ωe < ω1. Parameters: ωm = 68.4 kHz, A0 = 11.8
nm, Asp = 72%, Vac = 5 V.
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Table 2.1. Polymer nanocomposites used as samples for subsurface
imaging using resonance-enhanced KPFM.

Nanocomposite Properties

0D PDMS (Polydimethylsiloxane) Polymer, insulator, εr = 2.3-2.8

BaTiO3 (Barium titanate) Ceramic, ferroelectric, εr = 1500

1D PI (Polyimide) Polymer, insulator, εr = 4

SWCNTs (Single-walled carbon nanotubes) Semiconductor or metallic

2D PS (Polystyrene) Polymer, insulator, εr = 2.4-2.7

rGO (Reduced graphene oxide) Conductor

Table 2.2. Resonance-enhanced detection in double and single-pass
2nd-harmonic KPFM (ω1, ω2: frequencies of the 1st and 2nd flexural
eigenmodes).

Mode
Excitation Detection

Observables
Mech. Elec. Mech. Elec.

Double

pass

1st scan ωm = ω1 - ωm - Topo, φ

2nd scan - ωe = ω1/2 -
ωe CPD

2ωe A1,2ωe , φ1,2ωe

Single

pass
Simultaneous

ωm = ω1 ωm Topo, φ,

ωe = ω2/2 ωe CPD

2ωe A1,2ωe , φ1,2ωe
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3. COMPARATIVE SUBSURFACE AFM IMAGING BY DETECTION OF

ELECTROSTATIC FORCE INTERACTIONS AND LOCAL MECHANICAL

PROPERTIES USING 2nd-HARMONIC KPFM AND CR-AFM

In this chapter, we compare the capabilities for subsurface imaging of 2nd-harmonic

KPFM, and contact resonance AFM (CR-AFM). Both are robust techniques, in which

the dynamic motion of the microcantilever can be quantitatively related to a physical

variable. As described in Chapter 2, KPFM is based on the detection of electro-

static force interactions in the presence of an electric field. While CR-AFM detects

variations on local mechanical properties upon the application of stress fields. These

techniques have been reported separately for subsurface imaging, but little or no in-

formation is available to allow a direct comparison of the advantages, limitations and

disadvantages offered by each technique. For this reason, a parallel study using both

techniques is undertaken by mapping an identical region of a composite thin film con-

taining single-walled carbon nanotubes (SWCNTs) buried in a polyimide (PI) matrix,

with the same probe tip.

A prerequisite for a quantitative interpretation of the images obtained from either

of these two approaches is the emphasis on numerical simulations. Except for the

simplest configurations, analytical solutions to the interaction of a tip with subsurface

features are not available. Not surprisingly, prior literature reports on a variety of

studies using finite element methods [89,98,109,141,143]. In this study we use finite

element simulations in COMSOL Multiphysics to compute solutions to two relevant

problems: i) the electrostatic force that develops between a tip and a polymer matrix

with an embedded CNT bundle and ii) the modulation of the contact stiffness when

a tip indents the same matrix with the CNT bundle in it. This analysis allows

a quantitative comparison between theoretical expectations and experiments. For

instance, the experimental subsurface images clearly show a reduced lateral resolution
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in KPFM, a trend also predicted by simulations, but a comparable depth sensitivity.

Additionally, the simulations are used to infer the depth of a single CNT bundle

from both experimental KPFM and CR-AFM images and the depth estimates are

in good agreement with each other. By making a head-to-head comparison, we can

convincingly assess the inherent advantages and disadvantages offered by each of these

two techniques.

The layout of this chapter is as follows. First, it is presented an explanation of

CR-AFM, with the theory and experimental setup of CR-AFM1. Then, the finite

element computations for KPFM and CR-AFM are discussed. Lastly, experimental

subsurface maps are presented from a polymer composite film. A major result is that

we can infer the depth of subsurface CNTs, by matching the experimental data and

computational results between the two techniques.

3.1 Contact-Resonance AFM

CR-AFM is a dynamic AFM technique use to measure the elastic and viscoelastic

properties of a sample [100,158–160]. In this technique, a resonant vibrational mode

of the microcantilever is excited while the microcantilever tip is in contact with the

surface of the sample. The resonant frequency of the surface-coupled microcantilever,

namely contact-resonance frequency (ωc), is sensitive to variations in the local contact

stiffness. Particularly, minute elastic variations, induced by subsurface features, can

be detected as the tip scans over the sample at a constant average force. To enhance

the sensitivity of stiffness detection, higher eigenmodes of the microcantilever are

often employed [96].

The local contact stiffness can be inferred from the contact resonance frequency,

acquired as a function of lateral position. For this purpose, the Euler Bernoulli partial

differential equation can be applied, assuming the microcantilever as a rectangular

slender beam with uniform cross section.

1A detailed description of KPFM is given in Chapter 2
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3.1.1 Beam Theory

The microcantilever in contact with the sample in the case of CR-AFM can be

described by the model shown in figure 3.1(a). This model considers the microcan-

tilever tilt, the tip position offset and the normal and lateral forces. The total length

of the microcantilever is L and it is titled at an angle α. The tip has a length h and

it is located at a position L1 from the microcantilever base. The tip-sample contact

is represented by a normal contact stiffness k∗ and a lateral stiffness k∗L, related to

the normal and lateral forces, respectively [161].

To find the characteristic equation, we first start with the homogeneous equation

of motion of the undamped microcantilever beam, given by

EI
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
= 0, (3.1)

where EI, ρ, A and w(x, t) are the flexural rigidity, mass density, cross-sectional area

and deflection of the microcantilever, respectively. A general solution to the above

equation can be expressed as,

w(x, t) = w(x) · w(t) = eiωt = (A1e
λx + A2e

−λx + A3e
iλx + A4e

−iλx)eiωt. (3.2)

Substituting the solution into Equation (3.1), we get the dispersion relation given by

EIλ4 − ρAω2 = 0. (3.3)

which can be written as

ω =
(λL)2

L2

√
EI

ρA
(3.4)

The above equation can be used to calculate the resonance frequencies of the micro-

cantilever. The resonance frequency of the nth mode normalized by the free resonance

frequency is
ωn
ω0
n

=

(
λnL

λ0
nL

)2

. (3.5)

Here, superscript 0 denotes the free resonance and the subscript n denotes the eigen-

mode number.
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To relate the contact stiffness to the resonance frequencies, we need to build the

characteristic function. This is obtained from the general solution and the bound-

ary conditions given by the model in figure 3.1(a). For convenience, for the two

microcantilever sections of length L1 and L2 = L− L1, we can define

w(x, t) =

w1(x1, t) for 0 < x1 < L1,

w2(x2, t) for 0 < x2 < L2,

(3.6)

At the tip position (x1 = L1 and x2 = L2), the sample and microcantilever are

coupled.

The boundary conditions of the model are

w1(x1 = 0, t) = 0, (3.7)

∂w1

∂x
|x1=0 = 0, (3.8)

w1(x1 = L1, t) = w2(x2 = L2, t), (3.9)

∂w1

∂x1

|x1=L1 = −∂w2

∂x2

|x2=L2 , (3.10)

EI

(
∂2w1

∂x2
1

|x1=L1 −
∂2w2

2

∂x2
2

|x2=L2

)
= −Fxh, (3.11)

EI

(
∂3w1

∂x3
1

|x1=L1 +
∂3w2

2

∂x3
2

|x2=L2

)
= Fw, (3.12)

EI
∂2w2

∂x2
2

|x2=0 = 0 (3.13)

EI
∂3w2

∂x3
2

|x2=0 = 0 (3.14)

where

Fx = h
∂w1

∂x1

|x1=L1

(
k∗sin2α + k∗Lcos2α

)
+ w1|x1=L1sinαcosα (k∗L − k∗) , (3.15)

Fw = h
∂w1

∂x1

|x1=L1sinαcosα (k∗L − k∗) + w1|x1=L1

(
k∗sin2α + k∗Lcos2α

)
. (3.16)

The general solution given in Equation (3.2) can be re-written as

w(x, t) = A1(cosλxcoshλx) + A2(cosλx− coshλx)

+ A3(sinλx+ sinhλx) + A4(sinλx− sinhλx). (3.17)
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Using the piecewise definition for w(x, t) (Equation (3.6)), the mode shape function

given by the above equation, can be separated into

W1(x1) = A1(cosλxcoshλx) + A2(cosλx− coshλx)

+ A3(sinλx+ sinhλx) + A4(sinλx− sinhλx), (3.18)

W2(x2) = B1(cosλxcoshλx) +B2(cosλx− coshλx) (3.19)

+B3(sinλx+ sinhλx) +B4(sinλx− sinhλx), (3.20)

Applying the boundary conditions given in Equations (3.7), (3.8), (3.13) and

(3.14), the coefficients A1 = A3 = B2 = B4 = 0. The other boundary conditions are

then used to determine the remaining unknown constants in Equations (3.19), and

(3.20). After a long process (details of the solution are given elsewhere [161,162]), it

is obtained the following equation [158]

C

3

kc
k∗

+B + 3A
k∗

kc
= 1, (3.21)

where

A = γ2

(
h

L1

)2

(1− cosλnL1coshλnL1) (1− cosλnL2coshλnL2) , (3.22)

γ =
k∗L
k∗
, (3.23)

B = B1 +B2 +B3, (3.24)

C = 2 (λnL1)4 (1 + cosλnLcoshλnL) , (3.25)

and

B1 =

(
h

L1

)2

(λnL1)3 (sin2a+ γcos2a
)2

(3.26)

× [(1 + cosλnL2coshλnL2)(sinλnL1coshλnL1 + cosλnL1sinhλnL1)

− (1− cosλnL1coshλnL1)(sinλnL2coshλnL2 + cosλnL2sinhλnL2)],

B2 = 2

(
h

L1

)2

(γ − 1) cosasina (3.27)

× [(1 + cosλnL2coshλnL2)sinλnL1sinhλnL1

+ (1− cosλnL1coshλnL2)sinλnL2sinhλnL2],
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B3 = λnL1

(
cos2a+ γsin2a

)
(3.28)

× [(1 + cosλnL2coshλnL2)(sinλnL1coshλnL1 − cosλnL1sinhλnL1)

− (1− cosλnL1coshλnL1)× (sinλnL2coshλnL2 − cosλnL2sinhλnL2)].

Combining Equations (3.5) and (3.21), we can thus relate the measured resonance

frequency to contact stiffness (k∗).

3.1.2 Experimental Setup: DART Mode

To implement CR-AFM, we use a piezoceramic transducer (Steminc, Miami, FL,

USA) placed in close contact to the bottom of the sample. The transducer has a

resonance frequency of 4.25 MHz and a nominal piezoelectric constant of 450 pm/V.

The excitation waveform was generated by the internal direct digital synthesizer of

the AFM controller and the microcantilever oscillation signal was analyzed using

the ARC2 controller of the Cypher AFM. Subsurface imaging was realized by either

driving at a single frequency or employing the dual AC resonance tracking (DART)

mode [163]. The schematic of the experimental setup is shown in figure 3.1(b).

The microcantilever is first brought into contact with the sample at a preset

normal force. By using a frequency sweep, the contact resonance frequencies are de-

termined. Then, dual excitations are applied to modulate the tip-sample contact at

two frequencies (ω1 and ω2). These two frequencies are centered near the contact

resonance with one below resonance and another above. The corresponding micro-

cantilever amplitudes (A1 and A2) were analyzed by lock-ins A and B respectively.

During scanning, the resonance frequencies are tracked by changing the excitation

frequencies via a feedback loop to maintain the amplitude difference constant [163].

3.2 Finite Element Analysis (FEA)

Two separate computational models are built into COMSOL Multiphysics, within

the AC/DC and Solid Mechanics modules, respectively. These models are used to
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calculate the electrostatic force and the contact stiffness, as in KPFM and CR-AFM,

respectively.

3.2.1 Electrostatic Force Calculation

The Electrostatics interface, available in the AC/DC module, is used to solve

the electrostatics problem with boundary conditions, similar as in Chapter 2. i) A

constant electric potential applied to the probe, ii) a constant electric potential (0

V , ground) at the bottom surface of the sample (polymer matrix with dielectric

constant ), iii) a floating potential on the cylinder surface (CNT bundle), and iv) zero

charge in the air region surrounding the probe and the sample. Charge conservation

was enforced everywhere. We use the floating potential condition assuming the CNT

bundle is conductive or has a conductivity many orders of magnitude larger than the

surrounding medium and is not connected directly to ground. The tip of the probe

is modeled as a hemisphere (apex) with radius Rtip attached to a cone with a half

angle θ and length Ltip. The microcantilever is modeled as a disk of radius Rcant and

thickness Tcant approximately equal to the given specifications of the FORTA probe

(AppNano). The surrounding air is defined as an infinite element domain. The values

of relevant parameters are given in Table I.

To compute the electrostatic force on the probe an integration of the Maxwells

stress tensor is performed on the external surface, as it is detailed in Chapter 2.

3.2.2 Contact Stiffness Calculation

A similar procedure is followed to simulate the stress field generated when the tip

exerts a force on the polymer composite. The contact stiffness that results when an

AFM tip scans over a nanocomposite is analyzed using the Solid Mechanics module.

The tip is modeled as a silicon hemisphere. The top of the sample and the bottom

of the tip are defined as a contact pair while the CNT-polymer interface is treated

as perfectly bounded. Automatic global fine meshing is applied on all FEA elements,
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with further adaptive refinement around the tip-sample contact area and the CNT-

polymer interface.

The same sample geometry is employed using a silicon hemisphere of radius Rtip as

the tip of the AFM probe (figure 3.2(c)). The top of the sample and the bottom of the

tip are defined as a contact pair while the CNT-polymer interface is treated as per-

fectly bounded. Automatic global fine meshing is applied on all FEA elements, with

further adaptive refinement around the tip-sample contact area and the CNT-polymer

interface. At each point of contact, the FEA calculates the sample deformation dFn

for an applied normal load Fn. The contact stiffness is then calculated by

k∗(Fn) ≈ 1

2

[
(Fn + ∆F )− Fn
dFn+∆F − dFn

+
Fn − (Fn −∆F )

dFn − dFn+∆F

]
. (3.29)

Here, ∆F is an incremental force step (5 nN in our calculations). Before computa-

tions, we validated the 3D FEA model by comparing with the Hertz theory in the

case of an AFM tip contacting an elastic half-space. The relative deviations of the

contact stiffness were found to be less than 5% for a load up to 100 nN.

All relevant parameters employed when simulating these two situations are listed

in Table I. A distinguishing characteristic of the results plotted in figures3.2(b) and

3.2(c) is the non-local nature of the electrostatic field in KPFM when compared to

the highly localized stress field that develops in CR-AFM.

3.3 Results and Discussion

3.3.1 Subsurface Maps

To investigate subsurface imaging and to compare the predictions of the simula-

tions to data, a parallel experimental AFM-based study of a PI-SWCNTs composite

film was performed. The measurements were conducted using a Cypher AFM (Asy-

lum Research, Santa Barbara, CA, USA) operating under ambient conditions. A

rectangular, highly doped Si microcantilever model FORTA (Applied Nanostructures,
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Mountain View, CA, USA) with spring constant of 1.23 N/m by thermal calibration

and free resonance frequency of 53.48 kHz was used throughout.

We use resonance-enhanced KPFM in double-pass mode. The tip is withdrawn

by an amount ∆Z, and an electrical excitation (V = Vacsinωet + Vdc ) is applied to

the tip with ωe close to ω0/2. The tip is scanned across the sample surface taking

into account the geometry of the sample that was just previously measured. The

amplitude of the microcantilever response at 2ωe are acquired which correspond to

the 2nd harmonic of the electrostatic force (Equation (2.8)) using resonance-enhanced

mode (2ωe ≈ ω0). Some of the parameters used in this study are: Vac = 1.7 V,

∆Z = 10 nm and 2ωe = 53.4 kHz. The typical image size was 10 µm × 10 µm and

contained 512 × 512 points. The scan rate was 1.0 Hz and it required ≈ 8.5 minutes

to acquire a single image.

After mapping the KPFM signal, the same region of the sample was studied

using CR-AFM using the same probe. In the experiment, the applied normal force

was approximately 65.0 nN. The 3rd-eigenmode with resonance frequency of ∼ 1.035

MHz was used because it demonstrated the best frequency sensitivity to the contact

stiffness variations among the first three eigenmodes. The typical image size was 10

µm × 10 µm and contained 512 × 512 points. The scan rate was 1.0 Hz and it

required ∼ 8.5 minutes to acquire a single image.

Typical subsurface images are summarized in figure 3.4. Topography and the

microcantilevers oscillation amplitude at the 2nd harmonic of the electrostatic force

(A2ωe) from KPFM are shown in figure 3.4(a,b). Figures 3.4(c, d) contain the maps

of topography and the 3rd eigenmode CR frequency shift (CR-Freq) of the microcan-

tilever when loaded against the polymer composite. The surface topography using

both techniques reveal identical features and show no evidence of CNTs on the sur-

face. A careful comparison of A2ωe(figure 3.4(b)) to CR-Freq (figure 3.4(d)) shows

excellent agreement in the location and shape of the subsurface bundles of CNTs.

In addition, the CR-Freq map clearly reveals a sensitivity to surface defects (parallel

scratch lines in figure 3.4(d)) when compared to the A2ωemap in figure 3.4(b).
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3.3.2 FEA: Lateral Resolution and Depth Sensitivity

A salient result from the finite element simulations comes from a comparison

between the change in electrostatic force (∆F for KPFM) and the change in contact

stiffness (∆k∗ for CR-AFM) as a function of the depth of the CNT bundle beneath the

surface with respect to the neat polymer. In both instances, the numerical difference

is calculated when the tip is positioned directly over the buried CNT bundle and

when the tip is positioned over the uniform polymer matrix with no presence of

CNT. As shown in figure 3.3 both ∆F and ∆k∗ decrease as the depth of the CNT

bundle beneath the interface increases. Both ∆F and ∆k∗ intersect the noise-floor

as the CNT is buried deeper, giving rise to the saturation in figure 3.3(a) as the

depth increases and have a small but systematic dependence on tip radius. This

result implies that both techniques are limited to imaging CNT bundles of radius

20 nm and length 300 nm that are within approximately 50 nm below the surface,

for CR-AFM and KPFM respectively. The depth sensitivity will vary depending on

the tip-sample geometry, its electrical/mechanical properties and the noise from the

AFM system. For instance, previous work has shown a higher depth sensitivity in

which the CNTs are assumed to be grounded [109].

It is also worth noting that there are other approaches to KPFM which measure

different quantities related to the electrostatic force [104, 164]. In this work we only

measure the electrostatic force as this is the most common output from KPFM in

amplitude modulation mode. Further simulations were performed in which the AFM

tip was rastered in a direction perpendicular across the buried CNT bundle. In these

simulations, both F (x) and k∗(x) were calculated as a function of the depth of the

bundle, where x is the raster direction of the tip. An important feature comes by

closely examining the profiles of the simulated KPFM and CR-AFM scans across the

CNT bundle and calculating the full width at half maximum (FWHM) versus depth

as shown in figure 3.3(b). The inset is a representative result of the scan across a

CNT bundle at 5 nm deep. From these simulations, we conclude the width from
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CR-AFM is essentially independent of the CNT depth, being equal to the diameter

of the bundle assumed in the simulations (40 nm). In this regard, when imaging

a subsurface feature, CR-AFM provides depth independent information about the

width of the embedded object closer to its actual value. On the contrary, a larger

FWHM is obtained in the case of KPFM, which increases with the depth of the

bundle. This indicates a diminished lateral resolution, which could be utilized to

infer the depth of the object.

3.3.3 Electric Field vs Stress Field

The computational results above can also be understood from the point of view

of Greens function-like response in the simple cases of the electric field (E) in a

dielectric slab generated by a point charge Q located outside at a distance Z (in

air) and the stress field (σz) generated by an applied point force at the surface of

an elastic material. In the former case, the magnitude of E inside the dielectric

(relative dielectric constant εr directly below Q is given by [165] |E| = 1
4πε0

2Q
(εr+1)

Z
(Z+d)3

.

In the latter case the normal stress generated at a depth d directly below where a

normal point force P is applied on the surface can be calculated from a Boussinesq

analysis [166] to be σz = −3P
2π

1
d2

. Using both analytical expressions, the decay of

the fields as a function of depth d and Z demonstrated in the computations can be

explained. Specifically, the decay of |E| with d can be slower than the decay of σz

with d when Z is sufficiently large and the depth d of the object is sufficiently small.

This qualitatively explains the computational results described above.

The force sensitivity defined as the minimum resolvable electrostatic force is in-

dicated by the horizontal threshold line marked in figure 3.3a. It is mainly limited

by the noise level dominated by the thermal noise of the microcantilever (ηth) due

to Brownian motion and ii) the detector noise with the optical beam deflection sen-

sor (ηobd) as the major contributor [146]. In Cypher AFM ηobd = 25 fm/H1/2. The

thermal noise is given by Equation (2.24). Within the frequency bandwidth range of
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the lock-in amplifier (B), the minimum detectable amplitude due to thermal noise is

then given by Ath = ηth
√

2B, which depends on the microcantilever geometry and

the environment. With the parameters from the experiment, f0 = 53475 Hz, k = 1.23

N/m, Q = 99.05, B = 1000 Hz, at an excitation frequency of 55000 Hz (assumed

for detection), Ath is equal to 15.14 pm. Then the minimum detectable force due to

thermal noise (Fth) is 1.09 pN. On the other hand, the minimum detectable ampli-

tude and force due to ηobd is 1.12 pm and 0.081 pN, respectively. Therefore, the total

minimum force is Fmin =
√
F 2
th + F 2

obd = 1.09 pN.

Contact resonance sensitivity is further analyzed from the frequency-stiffness rela-

tion [100]. The sensitivity can be defined as the frequency change with respect to the

contact stiffness change, that is, Sn =
∂(ωn/ω0

1)

∂(k∗/kC)
. The calculated sensitivity ratio defined

in this way was compared with the measured frequency shift ratio among the first

three eigenmodes. Within our experimental settings, the 3rd-eigenmode resonance

demonstrated the best sensitivity to contact stiffness. The experimental frequency

resolution is roughly estimated as 1 kHz. Using tip radius of 20 nm, normal force of

65 nN, microcantilever spring constant of 1.23 N/m and 1st free resonance frequency

of 53.48 kHz, the corresponding stiffness resolution is determined to be approximately

0.84 nN/nm.

Based on simulations, the top surface of a buried CNT bundle of nanotubes with

20 nm radius and 300 nm length (not grounded) is within approximately 50 nm of the

surface if it is to be imaged using KPFM or CR-AFM. Greater depths can be obtained

in CR-AFM if the load is increased or in KPFM if the voltage on the tip is higher or

the CNT bundle is longer or grounded [109]. CR-AFM senses a very localized change

in elasticity and simulations show this technique has a lateral resolution independent

of depth. In contrast, the resolution achieved by KPFM is about a factor of 2 less

than in CR-AFM and does depend on depth.
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3.3.4 Depth Estimation from Experiments and FEA

By examining a zoom-in on a single CNT bundle imaged using both techniques

as shown in figure 3.5(a) and (b), it is clear that the apparent width of the bundle of

CNTs is greater in KPFM than in CR-AFM, in agreement with the results presented

in figure 3.3(b). Careful measurements of the FWHM give values of 37.7 ± 6.2 nm

for CR-AFM and 67.0 ± 13.4 nm for KPFM. The ratio of these two numbers agrees

with predictions based on the simulations plotted in figure 3.3(b).

To infer the depth of the CNT bundle, line scans across five separate locations

were analyzed. From this data, the change in the KPFM signal and the frequency

shift of the 3rd eigenmode could be determined as a function of position. In both cases,

we compare the change in signal when the tip was directly above the CNT bundle

to when the tip was located far from the CNT. The simulations in figure 3.3(a) were

then used to convert these measured values into a depth below the surface (Rtip = 20

nm). If the simulations are accurate, both techniques should provide the same depth

for this particular CNT bundle. A direct comparison is provided in figure 3.5(a) and

shows that on average, for the KPFM data, the depth is 29.1 ± 2.8 nm while for the

CR-AFM data, the average depth is 33.7 ± 2.6 nm. The agreement between the two

depths is very satisfactory within the limits of the uncertainty.

In the process of inverting the observables to depth, there are systematic un-

certainties to consider, which come from the model and experiments. For instance,

assumptions in the FEA with respect to the boundary conditions and size of the

CNT, and probe geometry, lead to the over- and under-prediction of the depth of the

CNT, when inferred from k and F2ωe measurements, respectively, as reflected in the

data (figure 3.5(a)). As a further validation of depth estimation, an additional region

shown in figure 3.5(b), was analyzed following the same procedure. It is noted the

same trend of over- and under-prediction of CNT depth using CR-AFM and KPFM,

respectively. As such, the systematic difference in the prediction of depth is consistent

and not an anomaly.



75

3.4 Summary

The results of this study allow a direct comparison between two techniques com-

monly used for subsurface imaging. CR-AFM relies on a nano-mechanical modulation

of the surface elasticity due to buried objects. This technique is noteworthy because

it requires no special restrictions on the sample like electronic conduction or mag-

netism. On the other hand, 2nd-harmonic KPFM, requires samples in which the

matrix is insulating or weakly conducting. If this condition is not met, the electro-

static fields cannot penetrate to probe local changes in the dielectric properties due

to buried subsurface objects. Another salient difference between the two techniques

is that CR-AFM senses a very local change in sample stiffness due to a buried object

while KPFM is limited by the non-local nature of the electrostatic field that develops

between the tip and a buried object. As a result, the lateral spatial resolution of CR-

AFM is about 1
2

that achieved by KPFM. A brief summary of the advantages and

disadvantages of each technique is presented in Table 3.2. Thus CR-AFM and KPFM

both enable high sensitivity subsurface imaging, each based on the sensing of a distinct

physical property. Additionally, in both techniques, quantitative three-dimensional

reconstruction of subsurface features is possible through computer simulations that

incorporate the important geometrical/electrical/mechanical features of the buried

object and the surrounding matrix under study.
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Figure 3.1. Representative diagrams for CR-AFM. (a) Schematic of
the analytical model of a microcantilever in contact with the surface of
the sample, used to find k∗. (b) Schematic of the experimental setup
in DART mode. The CR-Freq map is monitored to map subsurface
features.
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Figure 3.2. Finite element computations for an AFM tip near a PI-
SWCNTs composite sample. In a), 3-dimensional visualization show-
ing the geometry of the AFM probe positioned above the composite
film resting on a ground plane which defines V = 0 V. In (b), a cross-
section through the symmetry plane of the tip showing the calculated
electrostatic potential field developed near the tip in KPFM. The bias
voltage on the tip is 1.7 V and the tip-sample distance is 13 nm. In
(c), a plot of the tip-sample elastic stress field induced by tip-sample
contact in CR-AFM. The applied normal force is 65 nN. The location
of the CNT below the interface is indicated by the circle in both b)
and c). In (d), an SEM image of the tip used during experiments with
a tip radius of 25.5 nm.
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to 7 in Region 2, respectively. In both cases, the subsurface images
correspond to the 3rd-eigenmode CR-Freq from CR-AFM and A2ωe
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Table 3.1. Relevant input parameters for FEA in COMSOL Multiphysics.

Parameters Symbol Value

Common

CNT radius RCNT 20 nm

CNT length LCNT 300 nm

Tip radius Rtip 20 nm

CR-AFM

PI dimension L×W × T 800nm× 400nm× 500nm

PI modulus EPI 3.6 GPa

CNT modulus ECNT 400 GPa

Tip modulus ET ip 165 GPa

Poisson’s ratio ν 0.3

Normal force Fn 60 nN, 65 nN, 70 nN

KPFM

PI dimension L×W × T 60 µm × 60 µm × 10 µm

PI dielectric constant εr 3.4

Bias voltage V 1.7 V

Tip-sample distance Z 13 nm

Half cone angle θ 25deg

Tip length Ltip 14 µm

Microcantilever width Rcant 13.5 µm

Microcantilever thickness Tcant 2.7 µm
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Table 3.2. Comparison between CR-AFM and KPFM for subsurface imaging.

CR-AFM KPFM

Physical property for

subsurface detection

Local stiffness

(mechanical property)

Electrostatic force

(dielectric property)

Sample limitation

Contrast between

modulus of substrate vs.

modulus of buried object

Contrast between

dielectric of substrate vs.

dielectric of buried

object

Detectability limit

Determined by minimum

difference in stiffness

(typically 1 N/m)

Determined by minimum

difference in electrostatic

force (typically 1 pN)

Maximum deptha Approx. 50 nm. Approx. 50 nm.

a Applicable only for the particular sample analyzed in this study (parameters are given in Table

I, and for ungrounded CNT. The maximum depth in KPFM changes significantly depending

on electrical boundary condition applied to the buried CNT.
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4. 3D RECONSTRUCTION OF 0D-NANOCOMPOSITES USING A

SURROGATE MODEL BASED APPROACH IN AFM

The quantification of subsurface properties from a sample investigated by an AFM

probe is not an easy task. A key challenge is to reconstruct the spatial distribution

of the subsurface in three dimensions, with images that are typically acquired in two

dimensions. This necessarily is an inverse problem where some type of model will be

needed to relate a measured physical variable at each pixel to the properties of sub-

surface objects such as size, depth, orientation, physical properties etc., using AFM for

subsurface reconstruction. Examples of subsurface reconstruction described in earlier

chapters or prior work [109, 167] assume that all properties, include dimensions of

the subsurface object are already known, and all that remains to be identified is the

depth. Here we present an approach that can be used to reconstruct the unknown

depth and size of the buried object, and can in principle be used to estimate other

unknown properties of the buried object.

In this study, we use the electrostatic force measured in 2nd-harmonic KPFM as the

basis for non-destructive reconstruction of subsurface features. This force constitutes

the response variable of the microcantilever-system in the KPFM setup. Based on

a surrogate model, we propose a method to solve the inverse problem of finding the

spatial distribution of nanosized features embedded in a matrix, determined by their

size and depth. The model is an approximation to define the relationship between

the electrostatic force and some of the tip-sample properties relevant to the problem.

This chapter presents a description of the surrogate model based approach for

non-destructive reconstruction purposes. The proposed method involves three main

steps. First, it requires the creation of an interpolation function. This involves the

development of a parametric study, defining the relevant variables to the problem

and the computation of the response variable in terms of the input variables. The
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latter achieved by a finite element model. Second, it requires the acquisition of a

experimental subsurface data set, for which the surrogate model can be applicable.

In this case, we use subsurface detection based on the electrostatic force interactions

at varying Z distances. This is done by resonance-enhanced 2nd-harmonic KPFM in

double-pass mode. Third, it requires the solution of the inverse problem of finding

sample properties by means of the surrogate model and the experimental data set.

This study focuses on 0D subsurface objects (spherical nanoparticles) buried in a

matrix (polymer). The aim is to estimate their size and depth in a quantitative

manner.

4.1 Surrogate Model

The physical phenomena of some systems can not be described by a mechanistic or

analytical model. Such is the case of the electrostatic force interactions between the

AFM probe and complex heterogeneous samples. As described in Chapter 2, the elec-

trostatic force is proportional to the capacitance gradient with respect to tip-sample

separation and the potential difference between the tip and the sample. Ideally, it

would be affected only by variations in capacitance. However, it is also influenced

by other parameters, such as the geometry of the probe and sample. For instance,

non-local effects are generated by unknown contributions from the macroscopic parts

of the probe (stray capacitances).

Analytical expressions for the electrostatic force have been derived for simpli-

fied geometries, considering flat (semi-) conductive substrates or thin dielectric films

[135–140]. In the case of more complex substrates, other approaches use numerical

methods to solve a boundary integral equation given by Green’s function [168,169], a

self-consistent integral equation method [170] or finite element analysis [171]. Com-

putational models have the advantage of calculating the interaction force using a

geometry more approximated to real experimental scenarios. In Chapter 3, for ex-

ample, we show how to solve the inverse problem of finding the depth of subsurface
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single-walled carbon nanotubes (SWCNTs) using a finite element model. This was

presented in the case of subsurface images obtained using contact-resonance AFM

and KPFM. Similarly, a recent study uses finite element computations to estimate

the depth sensitivity of KPFM, applied for imaging subsurface SWCNTs in a low

dielectric polymer matrix [109].

Relevant parameters for the physics of the problem can be varied using computa-

tional models. From this type of analysis, a surrogate model can be derived to solve

the inverse problem of finding quantitative sample properties. In general, a surro-

gate model, also known as response surface model (RSM), determines a functional

analytical relationship between the outputs and inputs of multivariable complex sys-

tems [172]. A computational model mimics the system under study, which predicts

the response of an output variable subject to certain input conditions. The compu-

tational data set is then used to derive an analytical expression approximating the

behavior of the system. For instance, in this study, the response variable is the elec-

trostatic force interactions (F ) developed in the microcantilever-sample system. This

force can be expressed by

F = f(xi, θj), (4.1)

where xi and θj correspond to the set of input or predictor variables and a set of

parameters, respectively. In this study, the input variables are the depth (d), and

radius (rs) of the subsurface object and the distance from the apex of the tip to

the surface of the sample (Z). The two variables d and rs are the two unknowns of

interest. The latter being the only geometric parameter defining a 0D object (sphere).

The spheres mimic nanoparticles (NPs), which are considered dispersed on a medium,

as in polymer composites. The Z distance is the known (controllable) experimental

variable, which can be varied to collect a set of experimental data.

Since an exact analytical relationship describing F in Equation (4.1) is unknown,

an interpolation function g(xi, βk) is found that approximates closely the force. The

βk would correspond to the coefficients of the function. Parametric computations

determine F numerically as a function of the xi’s. These in combination with a
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regression algorithm are useful to create g(xi, βk). The approximate analytical model

g(xi, βk), can the be used to solve the inverse problem and reconstruct the size and

depth of the 0D objects. To this end, some assumptions must be considered in the

model so that the response surface is locally smooth and single-valued.

The computational model assumes there is one single embedded 0D object right

below the tip. It is considered that there are no other particles in a close range that

influence the value of F. These conditions give single-valued responses, i.e. the force

is unique for a combination of size, depth and tip-sample distance.

4.1.1 Parametric Computations

A full multiparameter sweep in Comsol Multiphysics leads to the calculation of

the electrostatic force under a range of values for the xi’s. In this case, the ranges of

interest for Z, d and rs are between 10 to 100 nm with steps of 10 nm, 10 to 100 nm

in steps of 10 nm and 15 to 55 nm in steps of 5 nm, respectively.

The geometry of our problem has a convenient symmetry. This fact allows us

to simplify the 3D model to a 2D axisymmetric model, reducing the computational

cost. Figure 4.1(a) indicates a revolution of the created geometry, around the vertical

axis. Three main domains can be distinguished, the surrounding air (prescribed as

an infinite element domain), the AFM probe and the sample. Similar as described in

Chapter 2, the tip of the probe is composed by a hemispherical apex and a conical

section, attached to the distal end of the micro microcantilever modeled as a disk, as

shown in figure 4.1(b). The dimensions of these parts correspond to the probe used

during the experimental run (NanoWorld, EFM Probe). A detailed description of the

probe and simulation parameters are given in Appendix B.1.

The tip is at a variable distance Z above the surface of the sample. The latter

consists of a block of a low dielectric matrix with an embedded sphere of radius rs at

a depth d. This geometry approximates the model sample with nanoparticles buried

in a polymer matrix.
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The physics of the model is defined by the following conditions:

1. Charge conservation is specified for all domains (E = −∇V , ∇ · (ε0εrE = ρv),

where E, V , ρv, εr are the electric field, electric potential, charge density and

relative permittivity, respectively).

2. The axial symmetry condition is established around the z axis.

3. There is zero charge in the boundaries of the air domain (n ·D = 0, where D

is the electric displacement field).

4. The initial value of the electric potential distribution in all the domains is equal

to 0 V.

5. The boundaries of the probe are defined within a terminal node at an electric

potential V = Vt.

6. The boundary at the bottom of the sample is grounded (V = 0 V).

Figure 4.1(b) shows a zoom-in of the 2D surface electric potential distribution.

The contours correspond to the electric field lines between the apex of the probe and

the buried sphere. The dielectric constants of the sphere and the surrounding matrix

are 1500 and 2.5. These values are characteristic of the barium titanate nanoparticles

(BaTiO3 NPs) and the polydymethilsiloxane (PDMS), both used in the sample for

experimental validation.

The computation of the electrostatic force (response variable) on the probe, for

all the combinations of the xi’s is given by

F =

∫
∂Ω

2πrnTdS (4.2)

where 2πr is a volume factor accounting for the 2D axial symmetry condition and T

is the Maxwell stress tensor as detailed in Appendix A.2.
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4.1.2 Response Surface: Model-Building

Different approaches can be considered when building an adequate functional re-

lationship between the response variable (F) and the predictor variables (Z, d and

rs). Suitable transformations to these variables, namely choice of metric, facilitate

interpretation and comparison with experimental data [172]. For instance, a non-

dimensionalization is applied to the electrostatic force using

F̃ =
Fsphere|Zi

Fsphere|Zref

, (4.3)

where Fsphere is the force measured when the tip is above the embedded sphere.

The subindex Zi with i = 1, 2, ...n, refers to different values of tip-sample distances

(¡ 100 nm), and Zref is a reference distance far from the surface of the sample,

typically equal to 100 nm. The ratio given by Equation (4.3) is calculated over the

sphere itself. The polymer is not considered, since it is not likely to encounter neat

polymer in a composite without the influence of buried spheres. Furthermore, the

non-dimensionality allows a direct conversion of the experimental variable (A2ωe) to

the force. This is because the ratio cancels the terms related to the microcantilever

dynamics, when converting A2ωe to force, as discussed in Chapter 2.

The relationship between F̃ and the two inputs Z and d, can be represented

by a smooth and single-valued surface, as shown in figure 4.2(a). This response

surface corresponds to a fixed value of rs = 20 nm. Furthermore, F̃ as a function

of transformed variables Ẑ and d̂ as shown in figure 4.2(b), where Ẑ = ln(Z) and

d̂ = ln(d), indicates that a close approximation can be obtained by using low degree

polynomials. F̃ as a function of Ẑ, d̂ and rs can be locally approximated by a second

order polynomial model of the form

g(xi, β) = β0 +
i∑

m=1

βmxm +
∑∑

m<n

βmnxmxn +
i∑

m=1

βmmx
2
m + ζ, (4.4)

where i = 3 and ζ are the residuals. The above expression can be thought of as

a truncated Taylor’s series expansion of the true underlying theoretical function de-

scribing F̃ [173]. Estimates of the βm coefficients are found using the method of least
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squares [174] on the computational data set. Other approximations used for g(xi, βm)

are given in Appendix B.3.

Figures 4.2(c) and (d) show the predicted values of F̃ using the interpolation

function given in Equation (4.4) and the obtained residuals. This plots indicate that

it is possible to represent F̃ moderately well, i.e. the difference between the predicted

and computed values F̃ is on the order of 10−2, over the region of interest of the input

variables.

4.2 Experimental Procedure

4.2.1 Subsurface Data Set

Resonance-enhanced 2nd-harmonic KPFM allows the observation of nanofillers in

a matrix, based on capacitance gradient variations, as described in Chapter 2. The

latter is influenced by probe geometry and the sample properties, such as shape,

dimensions and spatial location of the embedded objects.

Double-pass mode allows the variation of one of the input variables, Z, in a

relatively straightforward way, using the so called lift or nap height (∆Z). Therefore,

a set of two-dimensional subsurface maps, generated from the amplitude response

of the microcantilever at the 2nd harmonic of the electrostatic force (A2ωe), can be

collected at different ∆Zi (index i is used for the iterations). F̃exp is then calculated

after identification of the subsurface nanoparticles, at each Zi. The reference tip-

sample distance Zref is defined equal to 100 nm.

4.2.2 Determination of Tip Radius

Electrostatic forces are associated with long range interactions, therefore the ge-

ometry of the probe must be considered within the analysis of quantitative data [175].

At small Z distances, on the order of the tip radius, the major contribution to the

electrostatic force, comes from the tip-apex. This is defined by its radius, which can



90

be determined by: direct imaging, deconvolution techniques or fitting analytical ex-

pressions derived for conductive substrates [175]. Here, we use high-resolution SEM

to determine the effective radius of the AFM probe. SEM images of the probe before

collecting the experimental subsurface data set, are given in appendix B.1.

4.2.3 Model Sample

One relevant step within the development of the reconstruction approach is a

system of validation. In this case, we propose the use of a model or calibration sample.

This consists of nanoparticles (spheres) of known size, embedded in a polymer at a

known depth, as shown in the schematic of figure 4.3(a).

We use barium titanate nanoparticles (BaTiO3-NPs) (US Research Nanomaterials,

Inc), with an specified nominal size of 50 nm and dielectric constant of 1500. A

0.05wt% of these NPs is dispersed in a solution of ethanol, isopropanol and Triton

X-100 by ultrasonication. Then, they are deposited on a gold coated glass substrate

by spin coating. An AFM topography image of a region of interest (ROI) is shown

in figure 4.3(b).

Subsequently, the NPs are coated with a thin film of PDMS (Sylgard 184, Dow

Corning). The two components of the polymer (base and curing agent) are mixed

in hexane, using a mass ratio of 1:10:1000, respectively. This solution is spin coated

over the sample using 6000 rpm for 180 seconds. Lastly, the sample is heated at 120

° C for 20 minutes. Figure 4.3(c) shows the topography of the ROI after the PDMS

coating. The thickness of the PDMS film is measured from the topography taken at

an interface between the substrate and the polymer as shown in figure 4.3(d). The

thickness of this sample is approximately 106±2.3 nm. The dielectric constant of the

PDMS is 2.68 (at 100 kHz). Some challenges in sample fabrication are a flat surface

topography with no particle features and a good dispersion of NPs.
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4.3 Results and Discussion

The surrogate model obtained for F̃ as a function of the three input variables (Ẑ,

d̂, rs), is given by

F̃pred(Ẑ, d̂, rs) = b0+b1Ẑ+b2d̂+b3rs+b12Ẑd̂+b13Ẑrs+b23rs+b11Ẑ+b22d̂+b33rs, (4.5)

where the coefficients bij are found with an n-dimensional polynomial fitting algorithm

based on the method of least squares. The data is well represented by the above

function, in the region defined by 10 < Z < 100 nm, 10 < d < 100 nm and 15 <

rs < 55 nm, as indicated in figures 4.1(c-d). The coefficient of determination (R2) is

equal to 0.99, used as a general parameter to determine fit adequacy. Table 4.1 gives

a summary of the fitting parameters.

Experimentally, F̃ is determined by the ratio of A2ωe , measured when the tip is

above the buried sphere at a distance Z and at a distance Zref = 100 nm. The variable

Z is controllable using KPFM in double-pass mode and the remaining two unknowns

are d and rs. These quantities can be found solving the interpolation function given

in Equation (4.5), with at least two experimental values of F̃ (F̃exp) obtained at two

different Zi.

The validation of the proposed approach is performed on the model sample previ-

ously described. From the topography image taken before the PDMS coating (figure

4.3(b)), we can identify with certainty the size and location of the BaTiO3 NPs (or

isolated agglomerations) in the ROI. The height of the features marked from P1 to

P8 are 54.2, 82.1, 58.9, 67.7, 107, 137.5, 51 and 36.3 nm, respectively.

After coating, the same ROI is located and imaged using KPFM. The two main

observables are shown in figure 4.4(a-b), corresponding to the topography obtained

during the 1st-pass and the subsurface map from the 2nd-pass, respectively. The

polymer coating is approximately 106 nm (figure 4.3(c)). Therefore, it is expected P5

and P6 to appear on the surface topography, as it happens in figure 4.4(a). There is

no evidence of other particles in topography, (P1, P3, P7, P8), but they do appear

in the subsurface map. A light protuberance (< 5 nm) is exhibited for particles P2
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and P4, which are detailed in the profiles in figure 4.4(c). For evaluation of size and

depth, we use the particles marked from P1 to P5. P7 and P8 are not considered.

Although they are detected in figure 4.4(b), this corresponds to the subsurface map

taken at the lowest value of Z used during experiments. For higher Z, P7 and P8

exhibit a weak A2ωe response. These are the smaller NPs of the ROI buried at ≈ 60

and 70 nm.

A sequence of experimental data is collected at different values of ∆Zi, during

the 2nd-pass, as indicated in figure 4.5(a). The reference for ∆Zi is Z0, which is the

setpoint used during the 1st-pass. The A2ωe maps are shown in figure 4.5(c). These

are obtained using a conductive AFM probe (EFM from NanoWorld) with a tip radius

of rt = 31.2± 2.6 nm. The latter estimated by SEM images (see Appendix B.1).

In the post-processing of the images, a mask is used to locate each of the spheres.

F̃exp is calculated from the maximum values of A2ωe , as a function of Zi (Equation

(4.3)). Figure 4.6(a) shows the obtained F̃exp corresponding to the particles P1 to

P5 (scatter points). The surrogate model (Equation (4.5)) is then used to find the

estimates of size and depth. A fitting algorithm using least squares is applied to the

experimental data set. The predicted response is indicated by the curves (lines) in

figure 4.6(a), which follow the experimental data. A good fit with R2 = 0.99 is found

in all cases. The residuals of the fit are in the order of 10−3, as shown in figure 4.6(b).

Table 4.2 shows the estimated size and depth of P1 to P5 in the ROI. The expected

rs is calculated from the height of the particles measured in the model sample before

coating. The expected d is calculated from the difference between the measured

thickness of the PDMS coating (figure 4.3(d)) and the height of the particles. The

error percentage for the estimates of rs and d, in the case of the coated particles (P1

to P4), is between 1 to 6 %.

In principle, the proposed approach works for isolated or a cluster of particles

separated from one another, as is the case of the model sample. This follows the

assumptions made in the computational model, where the force is calculated for a

single 0D object located under the tip, neglecting the influence of other particles in a
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close vicinity. We would like to point out that in the case of a cluster of particles (for

instance, P4 or P5), where at least two particles are together or overlap, they would

appear as a spherical shaped object with a bigger apparent size. This is explained

from a lack of lateral resolution due to the long-range character of the electrostatic

force.

There are other type of scenarios that could be considered in the model, where

instead of a single particle, multiple individual particles are distributed close to one

another. In this case, the force measured over one particle would be the sum of

individual contributions, up to a radius of influence, determined by the lateral sep-

aration of the particles. This issue would require an analysis of lateral thresholding

with inclusion of other subsurface features within the model. Such more complicated

situations may require multivalued response surfaces, where the solution may not be

unique. Also, it is worth mentioning that although this study is focused on 0D ob-

jects described geometrically for one single parameter (radius), the approach can be

extended for 1D (nanotubes) or 2D (platelets) objects. The latter, would require the

inclusion of other variables within the model.

Within the framework of this study, there are some remaining challenges that we

would like to addressed, as follows:

1. Other input variables are considered to be included within the surrogate model,

for a more generalized interpolation function. These are the tip radius and

dielectric constants of the sample components.

2. We can determine the range of values at which the input variables should be

evaluated by means of a design of experiments method. This would reduce the

number of simulations needed to build the surrogate model.

3. Ideally, a model sample would require individual particles, uniformly distributed

over a conductive substrate. However, there is still a challenge in achieving this

over the gold coated glass. We consider that the roughness of the latter affects

the distribution of the particles. Therefore, particle dispersion and deposition is
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one of the aspects to improve. Additionally, we consider a second set of samples

including two different thickness of polymer coating.

4. As mentioned above, the model considers a region where there is a single particle

with no closer particles, at least in a radius of influence to the interaction force

sensed by the tip. From the simulations in Chapter 2, it is estimated that this

radius should be at least two times the width of the object. Those simulations

are for the case of similar cylinders at the same depth. An equivalent analysis

should be performed for 0D objects to determine a lateral threshold, that defines

until what extent the force pertains to one particle, i.e. the minimum separation

between two NPs. This would be useful to establish a relation between lateral

separation and the percentage of contribution, as a function of the depth.

5. After validation, the surrogate model based approach can be used in a (0D) poly-

mer composite film, made of BaTiO3 nanoparticles embedded in PDMS [150],

to estimate the distribution of particles, size and depth. Subsurface images of

this composite are presented in chapter 2.

6. Using image processing we would like to construct quantitative 3D volume im-

ages from the stack of 2D images, where depth and size are assigned.

4.4 Summary

The constructed surrogate model approximates the response of the electrostatic

force as a function of the input variables, Z, d and rs. The second order polynomial

is a close representation, at least in the domain comprised by the given values of

the input variables. From the experimental data set and the interpolation function,

the estimates of size and depth obtained for the 0D objects embedded in the low

dielectric matrix, are in agreement with the expected values in the validation sample.

This approach could be extended for the quantitative determination of other sample
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properties and other detection mechanisms. Therefore, we would like to continue with

the exploration of the proposed method and estimate its limitations and applicability.
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Figure 4.1. (a) Geometry of the 2D axisymmetric model in Comsol
Multiphysics. (b) 2D surface plot of the electric potential distribution
between the biased probe (at a voltage Vt) and the sample. (c) The
zoom-in indicates the variables used in the parametric sweep: tip-
sample distance (Z), radius (rs) and depth (d) of the sphere. Other
parameters are kept constant, such as the tip radius (rt) and the
dielectric constants of the surrounding air domain, the polymer matrix
and the sphere, εa = 1, εm= 2.5, and εf = 1500, respectively.
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Figure 4.2. Response surfaces of F̃ as a function of input variables.
For visualization purposes, one input variable is kept constant, rs =
20 nm. (a-b) Computed F̃ obtained from the parametric sweep in
Comsol, as a function of Z and d and the tranformed variables, Ẑ =
ln(Z) and d̂ = ln(d), respectively. (c-d) Force ratio and residuals
calculated using the surrogate model (F̃pred(Ẑ, d̂, rs)), as a function of

Ẑ and d̂.
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Figure 4.3. Model sample for validation of reconstruction ap-
proach. (a) It consists of BaTiO3 nanoparticles deposited over a gold
coated glass (substrate) and then coated with a thin layer of polymer
(PDMS). (b) Topography of a selected region (ROI), it shows the
nanoparticles over the substrate before coating. These are marked
with the labels P1 to P8 (scale bar: 1 µm). (c) Measurement of
thickness of the PDMS film. The inset shows the topography of the
boundary (silicon/PDMS) where the value was measured. PDMS was
spin coated under the same conditions in the model sample (6000 rpm
/ 180 secs, mass ratio: 1:10:200 of curing agent, base and hexane).
The thickness of the PDMS is 106.5± 3 nm.
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Figure 4.4. Identification of subsurface 0D objects in the ROI of the
model sample using double-pass KPFM. (a) Topography after coating
with a thin film of PDMS (scale bar: 1µm). (b) Subsurface map
corresponding to A2ωe . (c) Profiles taken in the topography image
in (a), corresponding to the central positions where the spheres are
buried.
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Figure 4.5. Experimental subsurface data set taken on the model
sample at different nap heights (∆Zi). (a) Schematic diagram of ex-
perimental set-up in double-pass KPFM. (b) Topography of the ROI
obtained during the 1st-pass at Z0 = 9.1 nm (scale bar: 1 µ m). (c)
Subsurface data set taken during the 2nd-pass, varying Z.
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Figure 4.6. Validation of surrogate model from experimental data
taken on model sample. (a) Force ratio as a function of Z for five of the
particles indicated in the subsurface image of the inset. The scatter
points and the lines correspond to the experimental data and the
fitting from the experimental data set and the interpolation function,
where d̂ and rs are the unknowns.
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Table 4.1. Parameters obtained for the second-order polynomial func-
tion using least squares (σ: standard deviation, RMSE: root mean
square error.)

Values σ

Coeff.

b0 3.087 0.034

b1 -0.540 0.011

b2 -0.239 0.010

b3 -0.004 0.001

b12 0.063 0.001

b13 4.1× 10−4 1.3× 10−4

b23 −3.7× 10−5 1.1× 10−4

b11 0.014 0.001

b22 -0.004 0.001

b33 1.8× 10−5 1.4× 10−5

R2 0.995

RMSE 0.009

Table 4.2. Estimation of size and depth of the BaTiO3 NPs located
in the ROI of the model sample.

Expected values Estimated values % Error

rs (nm) d (nm) r′s (nm) d’ (nm) rs d

P1 27.4 51.6 28.6 54.5 4.4 5.7

P2 41.4 23.7 42.1 22.2 1.8 6.1

P3 29.8 46.9 30.4 46.0 2.2 2.0

P4 34.2 38.1 32.6 36.5 4.7 4.2

P5 53.8 -1.2 48.7 13.9 9.6 —
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5. 3D RECONSTRUCTION USING SUBSURFACE CONTACT RESONANCE

ATOMIC FORCE MICROSCOPY (CR-AFM)

5.1 Introduction

Previous chapters have focused on exploring the physics of subsurface imaging with

AFM and determining its depth and lateral resolution. However once the subsurface

objects are revealed in images many properties remain to be determined: how deep is

the object? what size and shape is the object? by how much are its physical properties

different from the surrounding matrix? In this chapter we exploit surrogate modeling

to reconstruct the properties of subsurface features from AFM data. Surrogate models

are applied in different fields, to deal with systems where the exact relationship of

the output or response variable and the input or predictor variables is not known or

computationally expensive to ascertain [176–181]. Chapter 4 presents a preliminary

surrogate model based approach with direct application to KPFM, which is based

on the electrostatic force interactions between the AFM probe and a buried object.

Preliminary results show that the approach is useful to estimate the size and depth

of buried nanoparticles, within 1 to 6% of error.

In chapter 3 we present a direct comparison of CR-AFM with KPFM for subsur-

face imaging applications. The highly localized stress field that develops in CR-AFM,

offers advantages in solving the inverse problem for 3D reconstruction compared to

KPFM. Measurements of sample contact stiffness are very localized and are confined

to the region of contact between the apex of the tip and the surface of the sample [167].

Hence, here we present a methodology to reconstruct the properties of subsurface

objects from imaging with CR-AFM. Due to the complexity of the problem on its

own, as a proof of concept, we chose a simplification on the subsurface geometry. We

assume there is a 0D object (sphere), geometrically represented by one parameter, its
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radius, located at a certain depth in a semi-infinite matrix. This mimics the confi-

guration of nanocomposites where spherical nanometer-sized particles are embedded

within a block of polymer. In particular, we consider the case where there is an in-

terest to know the location of the nanoparticles and the quantification of their size

and depth after the fabrication process.

We explore the mathematical form of two types of surrogate models to describe

the functional relationship between the observable, in this case the contact stiffness,

and the main physical parameters related to the tip-sample geometry and mechanical

properties. The first model is based on a pure mathematical approach that considers

a polynomial response surface [172], while the second model is built using physical

principles in contact mechanics [182].

To develop these models, a data set is required which provides an output or

response variable as a function of the main input or predictor variables. For this

purpose, we use computer experiments, which are more feasible and less expensive in

comparison to physical experiments [183]. These offer flexibility to recreate scenarios

where the output variable can be computed over a range of input variables. Further-

more, to fully validate the surrogate model approach, we developed a well character-

ized sample that provided experimental results which could be directly compared to

the surrogate model.

This chapter is divided as follows. Section 1 describes the construction of the

surrogate models from computer experiments. Section 2 presents the methodology to

estimate the geometrical properties of the subsurface 0D object using the surrogate

models built in Section 1. This is shown in the case of calculated contact stiffness un-

der simulated scenarios. Section 3 presents the validation on experimental data with

CR-AFM using a model sample with particles at a known depth. Section 4 presents a

discussion about the challenges and prospective improvements of the surrogate model

approaches for 3D reconstruction in subsurface imaging using AFM.
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5.2 Construction of the Surrogate Model

5.2.1 Computer Experiments

The first step in developing a successful surrogate model is the identification of the

main input and output variables in the context of CR-AFM. As described in Chapter

3, CR-AFM relies on a nano-mechanical modulation of the surface elasticity due to

buried objects. During experiments, the tip is brought into contact with the sample at

a normal force, while an ultrasonic excitation is applied to the bottom of the sample.

Using a dual AC resonance tracking (DART) mode in the Cypher AFM, we measure

changes in the contact-resonance frequency (CR-Freq), which is proportional to the

sample contact stiffness [100,162,163].

The main output variable in CR-AFM is the contact stiffness (k∗). It depends on

the applied load (F), the tip radius (rt), the elastic modulus of the buried sphere (Ep),

the elastic modulus of the polymer (Em), the elastic modulus of the tip (Et), the radius

of the 0D object (particle) (rp) and its depth (d). These variables are identified in the

schematic shown in figure 5.1(a). F is considered as the input controllable variable,

analogous to the tip-sample distance used in KPFM (chapter 4).

Once the main variables are defined, the second step is to specify all the configura-

tions to be simulated according to the ranges of each input variable. For this purpose

we use Latin Hypercube sampling (LHS), which is a space filling statistical method to

design experiments. In LHS each variable has the same number of levels (or points)

which is equal to the number of runs in the design. LHS spaces the levels between

the lower and the upper bound of every variable in an even manner. The levels are

chosen with the criteria to maximize the minimum distance between them [184]. The

LHS consists of 300 computer simulations, and it is defined using the ranges of the

main input variables given in Table 5.1.

The configuration of input variables are then introduced in the finite element

model implemented in Comsol Multiphysics. The geometry of the model as shown

in figure 5.1(b) is defined by the tip of the probe, modeled as a silicon hemisphere
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(apex), the sample matrix (block with defined width and height) and the embedded

0D object (sphere). The Young’s modulus of the materials are assumed constant,

E = 170, 65 and 3 GPa, for the tip apex, the embedded spherical particle and the

polymer matrix, respectively. This model simulates the stress field generated when

the tip exerts a force on the sample as shown in figure 5.1(c). It computes the sample

deformation and the contact force, from which the contact stiffness is calculated.

Since the particles are stiffer, k∗ is higher in comparison to the surrounding polymer.

Details on the parameters and boundary conditions are given in Appendix C.2

5.2.2 Surrogate Model Based on a Polynomial Response Surface

One way to model the functional relationship between k∗ and the input variables

is to use a polynomial function. A general motivation of polynomials is that they

can be considered as a Taylor’s series expansion of the true underlying theoretical

function [172, 176]. Higher order terms are truncated depending of the degree of the

polynomial.

We use a second degree polynomial with a mathematical form defined as [176]

y = f(x, θ) (5.1)

= b0 +
n∑
i=1

bixi +
n∑
i=1

n∑
j=i

θijxixj, (5.2)

where n = 4, y is the output variable (k∗) and xi are the input variables (x1 = rt,

x2 = rp, x3 = d and x4 = F ). The form of the second-order model in Equation

(5.2) describes the main effects of the xi and the two-way interactions between them.

Equation (5.2) is defined as SM 1. The parameters bi, also known as regression coef-

ficients, are found by the method of least squares [176]. We use the computed values

of k∗ for the different configurations of the xi defined by the LHS. The variables are

conveniently transformed using the natural logarithm, which improves the represen-

tational capability [172]. The notation for the transformed variables is k̂, r̂t, r̂p, d̂,

F̂ .
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Table 5.2 indicates the estimated values, the standard error (SE) and the p-value

(derived from the t-statistics under the assumption of normal errors). The latter is

useful to test the significance of each individual regression coefficient in the model,

based on the hypotheses H0 : bi = 0 and H1 : bi 6= 0. If H0 is not rejected, then it

indicates that xi can be deleted from the model [176]. For instance, all the terms,

except b44, which corresponds to F̂ 2, are significant within a 5% level.

To check the model adequacy, we use the diagnostic plots shown in figure 5.2. Fig-

ure 5.2(a) corresponds to the actual (k̂∗) versus the predicted values of the response

variable (k̂∗predicted) which follows a line with slope 1. This means that the predicted

response is close to the actual response. Figure 5.2(b) indicates the distribution of

the residuals (ri = k̂∗ − k̂∗predicted, i = 1, 2, ..., n) with respect to k̂∗predicted. The ri

are randomly spread around a horizontal line (at zero), suggesting the computational

experiments are well modeled by a linear relationship between k̂∗ and the input vari-

ables and the variance of the observations is constant for all values of k̂∗. Therefore,

it is considered that over the region defined by the ranges of the input variables, SM

1 represents the true function in an adequate manner. Figure 5.2(c) corresponds to

the case when the variables are scaled back from the logarithmic transformation.

The response surface in figure 5.3 shows the relationship between the contact

stiffness (k∗) and the two variables of the sphere (rp) and (d), when rt and F are

constant. As expected, maximum values of k∗ are achieved at lower d and higher rp,

i.e. bigger particles near to the surface.

5.2.3 Surrogate Model Based on Dimensional Analysis

Dimensional analysis is another approach that has been used to determine rela-

tionships between variables when the exact functional relationship is unknown. It

relies more on a physical reasoning and a functional form can be defined based on the

comprehension of the problem. It is also applied to reduce the number of variables

by balancing the dimensions of the variables [179,184,185].
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We use the Buckingham π theorem to construct a surrogate model using non-

dimensional parameters π [184,186]. These are useful to find a functional dependence

of k∗ and the input variables. The physical variables involved in the problem and

its dimensions are shown in Table 5.1. According to this theorem, the relationship

between these variables can be written as some function G such that

G (π1, π2, . . . , πp) = 0. (5.3)

where πi are dimensionless ratios (π parameters) and p is the number of π products.

To find these products we proceed as follows [187].

Considering the variables and its dimensions from Table 5.1, a dimensional matrix

is defined as

k∗ d rt F E∗ rp

m −1 1 1 0 −2 1

N 1 0 0 1 1 0

In this problem, the number of variables is Nv = 6, the number of dimensions is

Nd = 2, the rank of the dimensional matrix is r = 2 and p = Nv − r = 4. Assume we

seek a relation involving the 6 variables and the 2 dimensions that satisfy[
(k∗)e1 · de2 · re3t · F e4 · (E∗)e5 · re6p

]
= m0 ·N0, (5.4)

which can be written as

−1 1 1 0 −2 1

1 0 0 1 1 0

 ·



e1

e2

e3

e4

e5

e6


=

0

0

 . (5.5)

The dimensional matrix can be divided into two submatrices as follows

A =

−2 1

1 0

 ,B =

−1 1 1 0

1 0 0 1

 . (5.6)
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The linearly independent columns form A and the remaining columns constitute B.

Using these two matrices, the relation in Equation (5.5) can be expressed as

e1

e2

e3

e4

e5

e6


=

 I 0

−A−1B A−1

 ·



e1

e2

e3

e4

0

0


. (5.7)

The first matrix in the right side is known as the exponent matrix (E). Since the

number of dimensionless products of variables we can form is four, the relation in

Equation (5.7) can be expressed as P = E · Z, where

Z =



e11 e12 e13 e14

e21 e22 e23 e24

e31 e32 e33 e34

e41 e42 e43 e44

0 0 0 0

0 0 0 0


. (5.8)

Each row of P corresponds to the physical variables in the following order: k∗, d, rt,

F , E∗ and rp and each column corresponds to dimensionless products.

To find the dimensionless products, we calculate E replacing A and B, and define

the arbitrary ei’s in Z using physical reasoning that comes from the Hertzian contact

mechanics model. This model describes the force between an elastic spherical tip

with radius rt in contact with an elastic half space as F = 4
3
E∗
√
rtδ3, where δ is the

indentation [182]. The tip sample contact stiffness is analytically known to be

k∗ = 3
√

6rt(E∗)2F . (5.9)
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Equation (5.9) suggests a mathematical form between k∗ and two of the independent

variables, F and rt, given by the cubic root. Therefore, the matrix with the arbitrary

e′is in our problem is defined as

Z =



3 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


The final π products we found are

π1 = (k∗)3

(E∗)3r3t
, π2 =

d

rt
, (5.10)

π3 = rp
rt
, π4 =

F

E∗r2
t

(5.11)

Combining physical intuition given by the Hertz contact model, the computational

experiments, and the dimensionless products, we find a surrogate model that describes

k∗ in terms of F and rt such as in Equation (5.9), but also includes the geometrical

parameters of the embedded sphere. In terms of the π products, the model is given

by

π1 = β1π4 + β2
π4

π2

+ β3π3π4 (5.12)

where the βi’s corresponds to regression parameters. Replacing variables, the expre-

ssion for the surrogate model is

(k∗predicted)3 = c1Frt +
c2Frt
d

+
c3Frtrp

d
+ c4. (5.13)

It is noted that now the parameters ci encapsulate the effective Young’s modulus,

which is a constant term that depends on the modulus and the Poisson’s ratio of

the tip, the particle and the matrix [158]. These parameters are found using the

method of least squares. The estimates are given in Table 5.3. The independent term

represents sources of variability not accounted for k∗. This model is from now on

referred as SM 2.
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In Figure 5.4 we evaluate the adequacy of the model. Figure 5.4(a) shows that

the predicted k∗ using SM 2 are close to the actual k∗, this indicates that the model is

a good representation of the functional relationship in the region of interest. Figure

5.4(b) presents the residuals with respect to the predicted k∗. They are randomly

distributed around the horizontal line (at zero), indicating low variability and that

no significant non-linear relationships have been left out in the surrogate model.

5.3 Test of the Surrogate Models Using Computer Experiments

As described above, in a CR-AFM experiment, the main observable is the contact

resonance frequency which is quantitatively related to the contact stiffness. The

controllable variable is the force applied to the AFM tip. In order to use the two

surrogate models to extract the properties of the subsurface object, we propose to

measure the contact stiffness at several applied forces and use the mathematical

relations given by either SM 1 (Equation (5.2)) or SM 2 (Equation (5.13)) to estimate1

rp and d.

First we test this approach using simulations that mimic the case of a real expe-

riment. We calculate k∗ at different applied forces, assuming a spherical tip of radius

rt and a sample with an embedded sphere of radius rp and depth d. As an example,

we calculated k∗ for the case of having an embedded particle with rp = 40 nm at

different values of d. The force applied by the tip with rt = 50 nm is varied starting

from 30 nN to 90 nN. The results are shown in figure 5.6, indicated by the scatter

points.

Assuming we do not have a previous knowledge of d and rp, we can use the

surrogate models to find them. We consider two cases: 1) where there is only one

unknown, the particle depth and 2) when two variables are unknown, the particle

radius and depth.

1Estimated values uses the notation r̃p and d̃
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5.3.1 Case 1: One Unknown

For demonstration purposes we assume no prior knowledge of the depth of the

particle. For the cases shown in figure 5.6, we estimate d by SM 1 and SM 2 using

least squares fitting of k∗ as a function of F . The results are shown in Table 5.4.

Both SM 1 and SM 2 are able to effectively predict the value of the depth of the

sphere (known from simulations). We calculate the percentage error, which for SM 1

is < 5% and for SM 2 is ≤ 10%.

5.3.2 Case 2: Two Unknowns

Now we test the models in the case where both rp and d are unknown. We use

SM 1 and SM2 for the simulations in figure 5.6 (rp = 40 nm and d = 15, 25, 35, 45,

55 nm). we estimate rp and d using least square fitting. The results are indicated in

Table 5.5.

In this case, finding two unknowns is a global optimization problem that often

needs a good initial guess for the parameters to converge to a reasonable fit. To

overcome this problem we have developed an optimized procedure as described below:

1. Define a lower and upper bound for rp ([rlowp rupp ]).

2. Find d using the surrogate model at the lower and upper bounds of rp ([dlow

dup]).

3. Define the initial guess of rp and d within the lower and upper bound given by

[rlowp dlow] and [rhighp dhigh].

4. Use least squares with the function given by the surrogate model introducing

the defined initial guess and bounds.

In figure 5.6(a-b), the solid lines corresponds to the fitting of SM 1 and SM 2,

respectively, using the estimated values of d and rp. For all the spheres, SM 1 and
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SM 2 fit the simulations with R2 = 0.99. The dotted line in both figures corresponds

to k∗ calculated on the polymer matrix in the absence of a particle, with rt = 50 nm.

We include other simulation cases in which rp and d are varied, as shown in figure

5.7(a). The scatter points correspond to k∗ calculated as a function of F . Using the

same procedure as before, we use least square fitting to obtain the estimates of the

unknowns, which are given in Table 5.6. The solid lines in figure 5.7(a) correspond

to k∗predicted as a function of F . The R2 is 0.999 in all cases. Figure 5.7(b) shows a 3D

representation of each sphere with the estimated rp and d, assuming they are laterally

separated by 80 nm in the x direction.

5.4 Validation on Experimental Data

5.4.1 Model Sample

For validation purposes using CR-AFM data, we fabricated a well characterized

composite sample in a sandwich type structure as shown in figure 5.8(a). The fabri-

cation process is as follows:

1. Substrate preparation: a silicon wafer was used as a rigid support substrate.

This was cleaned with IPA/acetone/DI water and exposed to UV.

2. Barium titanate BaTiO3 particle deposition: a 0.025wt% solution of BaTiO3

(US Research Nanomaterials, Inc), DI water and surfactant was ultrasonicated

for 45 min. After this process, the dispersion was centrifuged at 2000 rpm for

30 min. Then the solution was spin coated on the silicon substrate, previously

exposed to UV to increase adhesion of the nanoparticles. The particles are well

dispersed on the silicon as it is shown in figure 5.8(b), with an average diameter

of 44.6 ± 17.7 nm. A histogram of the particle size distribution is given in

Appendix C.1
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3. Thick layer of polystyrene (PS): a 20 wt% solution of PS (Sigma-Aldrich, ave-

rage MW ∼ 350.000) in toluene was spin coated at 3000 rpm for 60 s over the

nanoparticles in the silicon substrate. Then annealed for 1 h at 150 ◦C.

4. Flipping step: the PS layer was peeled off from the silicon substrate. Some of

the BaTiO3 particles stuck to this layer as shown in figure 5.8(c).

5. PS coating: a first layer of PS (1.5wt%) was spin coated on top of the flipped

side of the sample. The topography is shown in figure 5.8(c), which exhibits

protrusions where the BaTiO3 particles are located. To bury the nanoparti-

cles, a second layer of PS is deposited on top. Figure 5.8(d) shows the final

topography of the sample.

A calibration sample relies on accurate height measurements which is a difficult

task because wetting effects on different substrates produce PS layers of different

thickness. To avoid this effect and accurately calibrate the thickness of the PS layer,

we rely on measurements of the height of the particles. In figure 5.8(b) the average

height of the particles protruding above the anchor layer is 16.4 ± 7.7 nm. After

applying a first coat of PS, the particles protruding have a height of 2.7 ± 1.1 nm.

This implies the first coat of PS is 13.7± 7.8 nm. A second layer was applied and its

thickness was measured using a silicon substrate with a PS layer of known thickness.

The difference in the thickness of the PS coating after the second coat was applied

is 28.1 ± 4.1 nm. Taken together, this means the thickness of the two PS coatings

is 41.8 ± 9.3 nm. Since the particles protruded 16.4 nm above the anchor layer, the

estimated depth is 19.5 ± 12.8 nm. The largest uncertainty in the measurements

comes from the particle size distribution.

5.4.2 CR-AFM Subsurface Data Set

CR-AFM is a dynamic contact mode technique based on measurements of the re-

sonance frequency of a surface coupled AFM microcantilever. As the stiffness of the
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sample contact changes, the contact resonance frequency (CR-Freq) varies propor-

tionally. We use the DART mode in Cypher AFM to track the CR-Freq [163], while

the tip scans over the sample surface using a scan rate of 0.3 Hz. The experimental

setup is described in Chapter 3.

During experiments we use a compliant microcantilever (FORTA from AppNano)

with a spring constant of 1.4 N/m and Q = 107.8. The measured free eigenmode

frequencies are f 0
1 = 55.7 kHz, f 0

2 = 355.1 kHz and f 0
3 = 1.01 MHz. The opti-

mal eigenmode for subsurface detection needs to be identified and depends on the

experimental range of contact stiffness [188]. In this case, we use the third eigen-

mode frequency of the microcantilever. All measurements were made under ambient

conditions.

Subsurface images of the PS/BaTiO3/PS sample are shown in figure 5.9. There

is no evidence of nanoparticles on the surface (figure 5.9(a)), but they are clearly

identified on the CR-Freq map (figure 5.9(b)). The surrounding PS appear darker in

contrast, i.e. a lower frequency and in turn lower contact stiffness in comparison to

the BaTiO3 particles. There are some line marks in the CR-Freq map that indicates

tip modification, a common issue in CR-AFM. The tip is prone to wear during ex-

periments in contact with the sample surface [189]. This is a relevant aspect in our

experiment, since we scan the same region of the sample several times to get the data

at different applied forces. Therefore, the complete data set is acquired in the smaller

area shown in figure 5.9 (c-d).

As described in section 2, the required set of data corresponds to k∗ as a function

of F . A series of CR-Freq maps where taken at F = 20, 30, ..., 70 nN, with steps

of 10 nN in between. The sequence of maps is shown in figure 5.10. As expected,

CR-Freq increases with higher forces [100].

After the acquisition of the data set, we calculate k∗ on each nanoparticle and the

surrounding polymer region from each map. For this purpose, we use the theoretical

model in [162], detailed in Chapter 3. This model considers the total length of the

microcantilever (L), the tip offset (L1), tip height (h), a lateral stiffness (kL) and
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the tilt angle (α) as shown in figure 3.1. The effective values of the microcantilever

geometric parameters are typically found using a calibration sample [158,190]. In this

case, we use the PS region surrounding the nanoparticles. The tip radius is estimated

from a high resolution SEM image taken before the experiment, as shown in figure

5.11(a). Figure 5.11(b) shows k∗ with respect to force from the experimental data

and a simulation using rt = 70 nm. The parameters used in the CR-AFM model are

L = 240µm, L1 = 228µm, h = 12µm, kL/kc = 0.85, α = 11◦.

The mean value of k∗ as a function of force, for each nanoparticle, is shown in figure

5.12(a). To reconstruct the size and depth of the nanoparticles we can then apply

the surrogate models previously discussed. The expected results are: rp = 22.3± 8.8

nm, d = 19.5 ± 12.8 nm. The surrogate model predictions are shown in Table 5.7.

The estimation of rp and d are obtained using SM 1 and SM 2 when F = 30 to 60

nN. At these applied forces, the subsurface maps have a more stable CR-Freq on the

polymer regions throughout the scan. With SM 1 and SM 2 the estimations agree

with the expected values. Figure 5.12(b) shows a graphical 3D representation of the

buried nanoparticles with the estimated size and depth.

5.5 Discussion

The surrogate models SM 1 and SM 2 described in section 2 provide a functional

relationship for k∗ that explicitly depends on the main input parameters. This relation

is expressed in a mathematical form that can be used to find unknown variables. For

instance, in section 3, SM 1 and SM 2 are used to find one unknown (d) or two

unknowns (rp and d), given k∗, F and rt. In principle, the methodology to construct

these models is applicable to other AFM techniques. Two main requirements are: a

quantifiable observable and the knowledge of the influential predictor variables.

There are still some challenges in the reconstruction approach based on these types

of surrogate models. For instance, we face a global optimization problem where there

can be multiple local solutions. To overcome this issue we apply constraint bounds to
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the variables in the least square algorithm. There are other optimization algorithms

for multidimensional systems that can be explored such as particle swarm optimiza-

tion [191,192] or genetic algorithms [193]. An alternative solution is to analyze other

independent observable aside from k∗. This could be the apparent width of the object

given by the full width half maximum (FWHM). Chapter 3 presents a preliminary

study where we determine the FWHM as a function of the depth of a buried 1D

object [167], when its size is fixed. For the parameters assumed in the simulation,

the FWHM is almost constant as a function of depth (d < 50 nm). Therefore, us-

ing computer experiments with the tip scanning above the embedded object, we can

determine FWHM as a function of the input variables, as in the case of k∗. These

set of parametric simulations allow the creation of a new surrogate model seek to be

linearly independent to the model of k∗ = g(rt, F, rp, d) built in section 2.

In the acquisition of the experimental subsurface data, we found that CR-AFM

is a robust quantitative AFM technique where a highly localized stress field gives the

advantage of higher local resolution to resolve subsurface features. However, there

are also some remaining challenges. i) The tip is prone to wear while scanning in

contact the surface of the sample. ii) There is some cross-talk from topography in the

CR-Freq maps. iii) The theoretical model to quantify k∗ from the contact resonance

frequency requires careful consideration of a calibration sample to find the effective

parameters of the microcantilever.

5.6 Summary

This chapter describes a method developed to reconstruct the properties of subsur-

face objects imaged with CR-AFM. This is based on surrogate models created using

computer experiments where a design of the needed configurations is done by LHS. It

shows satisfactory results in the estimation of the geometrical parameter describing

a 0D object and the distance at which it is located under the surface of the sample.

We believe this approach can be applied in more general situations to estimate other
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properties and be extended to other geometrical objects such as nanowires, nanorods,

or nanoplatelets. The latter involving multi-parameter geometric representations to-

gether with large scale computations.
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Figure 5.1. Tip-sample geometry. a. Schematic illustrating the main
design parameters: applied force (F ), tip radius (rt), nanoparticle
depth (d) and radius (rf ). 2D axisymmetric model in Comsol, assum-
ing F = 40 nN, rt = 65 nm, rf = 54 nm and d = 20 nm. b. 3D
representation from the revolution of the 2D axisymmetric geometry
in (c). The colors corresponds to the Young’s modulus and Poisson’s
ratio assigned for each material, Em = 3 GPa, Ef = 67 GPa, Et = 170
Gpa, νt = 0.28, νm = νf = 0.3. (c) Von Mises stress surface plot.
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Figure 5.2. Analysis of SM 1 using the predicted response and resi-
duals from least squares regression. (a) Predicted (k̂∗predicted) versus

actual (k̂∗actual) contact stiffness using transformed variables. (b) Re-

siduals versus k̂∗predicted using transformed variables. (c) k∗ versus
k∗predicted after transforming the variables back to meaningful experi-
mental quantities.
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(5.2). These plots are obtained using a constant F = 50 nN and

rt = 100 nm. (a) k̂predicted with respect to r̂p and d̂. (b) kpredicted with
respect to rp and d.
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Figure 5.4. Analysis of SM 2. (a) Predicted versus actual k∗. (b)
Residuals versus predicted k∗.
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Figure 5.5. Response surface given by kpredicted with respect to rp
and d. This is obtained using SM 2 given in Equation (5.13) using a
constant F = 50 nN and rt = 50 nm.
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Figure 5.6. Contact stiffness versus applied force in computer exper-
iments assuming rt = 50 nm, rp = 40 nm and d = 15, 25, 35, 45,
55 nm. The scatter points correspond to the calculated k∗ and the
solid line is the corresponding k∗predicted using (a) SM 1 and (b) SM 2.
The dotted line correspond to k∗ in the absence of a particle (just the
polymer matrix).
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Figure 5.7. (a) Contact stiffness versus applied force in computer
experiments assuming rt = 50 nm. Different values are assumed for
rp and d as shown in the legend. The scatter points correspond to the
calculated k∗ and the solid line is the corresponding k∗predicted using SM
2. The dotted line correspond to k∗ in the absence of a particle (just
the polymer matrix). (b) 3D graphic where each sphere is plotted
with the corresponding estimated rp and d (z), assuming they are
located 80 nm apart from each other in the x axis.
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Figure 5.8. Schematic of the model sample and topography maps
taken during fabrication steps. (a) Cartoon of the sandwich-type
structure. (b) BaTiO3 particles on silicon substrate, the average dia-
meter is 44.6 ± 17.7 nm (scale bar: 2 µm). (b) Flipped side of the
sample indicating stuck BaTiO3 particles in the PS thick layer (scale
bar: 2 µm). (c) Surface after first PS coating layer (scale bar: 4
µm) with a thickness of 13.7 ± 7.8 nm. There are small protrusions
wherever a particle is located. (d) Surface after second (final) PS
coating with a thickness of 28.1 ± 4.1 nm. The final thickness of the
top PS layer (h) is 41.8 ± 9.3 nm (scale bar: 4 µm). The sample
exhibits a smooth surface with no topographical features related to
buried particles.
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Figure 5.9. Contact-resonance subsurface imaging on model sample.
Main observables are (a) topography and (b) CR-Freq (scale bar 2
µm, F = 40 nN, f 0

3 = 1.5 MHz, kc = 3.7 nN/nm). (c-d) Smaller
scanned region for data set acquisition (scale bar 500 nm, F = 70 nN,
f 0

3 = 1.01 MHz, kc = 1.4 nN/nm).

Table 5.1. Main physical variables in CR-AFM, range of input vari-
ables for LHS and dimensions.

Variable Symbol Range Dimension

Contact stiffness k* – N·m−1

Effective Young’s modulus E* – N·m−2

Tip radius rt 10-100 nm m

Particle radius rp 10-80 nm m

Depth d 10-100 nm m

Force F 20-100 nN N
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Figure 5.10. Subsurface data set: CR-Freq maps at different applied
force, (a-f) F = 20 to 70 nN with steps of 10 nN in between. (Scale
bar: 500 nm, f 0

3 = 1.01 MHz, kc = 1.4 nN/nm.
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Figure 5.11. (a) SEM (Hitachi S-4800) images of the tip from the
FORTA probe (AppNano) used to collect the experimental subsurface
data set in the model sample. The estimated value of rt = 70nm.
(a) k∗ of PS with respect to force, the scatter points corresponds to
experimental data, the solid line is the result from a simulation with
rt = 70 nm.
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Figure 5.12. Experimental results using CR-AFM on model sample.
(a) k∗ as a function of force. The scatter points correspond to the
mean value of k∗ on the particles. The error bars corresponds to the
standard deviation. (b) 3D representation of subsurface nanoparticles.
Due to the difference in the order of magnitude between the lateral
axes (x and y) and z, the spheres appear with an elongated shape.
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Table 5.2. Estimates of the bi parameters for the polynomial function
given in Equation (5.2) using least squares (R2 = 0.999).

Parameters Estimate SE p-Value

b0 0.791 0.096 1.03E-14

b1 0.591 0.019 8.28E-85

b2 0.134 0.018 4.37E-12

b3 -0.144 0.017 5.40E-16

b4 0.356 0.029 1.11E-27

b12 0.015 0.002 5.26E-14

b13 -0.025 0.002 2.13E-31

b14 0.015 0.002 1.01E-09

b23 -0.068 0.002 4.64E-105

b24 0.012 0.002 2.94E-07

b34 -0.019 0.002 5.77E-17

b11 -0.030 0.002 2.14E-41

b22 0.010 0.002 8.77E-09

b33 0.063 0.002 6.68E-104

b44 -0.003 0.003 0.429

Table 5.3. Estimates of the ci parameters for the surrogate model
(SM 2) given in Equation (5.2) using least squares (R2 = 0.992).

Parameters Estimates Confidence intervals

c1 73.5 [70.4, 76.6]

c2 568.3 [494.2, 642.5]

c3 18.0 [16.7, 19.3]

c4 -8.5 [-9.3, -7.7]
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Table 5.4. Estimated particle depth (d̃) using SM 1 (Equation (5.2))
and SM 2 (Equation (5.13), from simulated cases where k∗ is calcu-
lated as a function of applied load (F = 30 − 90) nN. In this case,
rt = 50 nm and rp = 40 nm.

d (nm)

(actual)

SM 1 SM 2

d̃ (nm) % Error d̃ (nm) % Error

15 14.5 3.5 13.5 10.0

25 24.8 0.8 24.4 2.5

35 35.9 2.6 36.0 2.8

45 46.6 3.7 46.2 2.7

55 57.0 3.6 54.3 1.2

Table 5.5. Example 1: estimated particle radius (r̃p) and depth (d̃)
using SM 1 (equation (5.2)) and SM 2 (equation (5.2)), from simulated
cases where k∗ is calculated as a function of applied load (F = 30−90
nN). In this case, the tip radius is assumed to be known (rt = 50 nm).

rp (nm) d (nm)
SM1 SM2

r̃p (nm) %Error d̃ (nm) %Error r̃p (nm) %Error d̃ (nm) %Error

40.0 15.0 42.2 5.4 14.5 0.5 42.5 6.2 14.0 6.8

40.0 25.0 42.6 6.5 25.0 2.8 42.5 6.2 25.2 0.9

40.0 35.0 41.6 3.9 35.6 5.0 42.5 6.3 37.2 6.4

40.0 45.0 41.4 3.6 45.7 5.9 41.7 4.2 47.3 5.1

40.0 55.0 36.0 10.0 52.4 3.4 37.2 7.0 52.2 5.1
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Table 5.6. Example 2: estimated particle radius (r̃p) and depth (d̃)
using SM 1 (equation (5.2)) and SM 2 (equation (5.2)), from simulated
cases where k∗ is calculated as a function of applied load (F = 30−90
nN). In this case, the tip radius is assumed to be known (rt = 50 nm).

rp (nm) d (nm)
SM1 SM2

r̃p (nm) %Error d̃ (nm) %Error r̃p (nm) %Error d̃ (nm) %Error

20 50 21.4 7.2 48.9 2.2 20.3 1.6 48.6 2.8

45 35 41.0 9.0 33.9 3.3 45.5 1.1 34.6 1.2

30 15 28.0 6.6 14.3 4.6 26.0 13.4 13.5 9.7

50 20 59.8 19.6 21.3 6.7 55.0 10.0 19.4 3.0

25 40 26.1 4.3 42.2 5.5 22.8 8.9 41.2 3.0

Table 5.7. Estimation of rp and d of the BaTiO3 nanoparticles in the
model sample.

SM 1 SM 2

Particle r̃p d̃ r̃p d̃

P1 22.4 20.1 26.5 24.0

P2 21.8 18.1 26.4 21.7

P3 21.7 17.7 25.7 21.2
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6. SUMMARY AND FUTURE WORK

6.1 Summary: Contributions of This Thesis

In this thesis we investigated the capability of the AFM for non-destructive high

resolution subsurface imaging and develop methods for a quantitative 3D reconstruc-

tion. Chapter one presented a review of the state of the start on this matter, classi-

fying the existing dynamic AFM techniques depending on the detection mechanism.

Within the available techniques, our work focuses on the detection of electrostatic

force interactions and local mechanical properties, using 2nd-harmonic KPFM and

CR-AFM, respectively. These are two robust quantitative dynamic AFM techniques

where we can relate the experimental observable to a physical variable.

In chapter 2, we exploit resonance-enhanced 2nd-harmonic KPFM as a sensitive

high resolution technique for subsurface imaging applications. It provides a better

signal-to-noise ratio (SNR) due to the resonance amplification, without resorting to

larger voltages. This in turn results in a significant higher contrast resolution (image

quality) when compared to the off-resonance case. This mode provides high resolution

subsurface images on a variety of polymer composites.

Resonance-enhanced 2nd-harmonic KPFM is suitable for the two common configu-

rations of KPFM, double-pass and single-pass, as shown in chapter 2. We noted that

double-pass is advantageous when operating under ambient conditions. It works in a

monomodal configuration where the first eigenmode frequency of the microcantilever

is optimal for both mechanical and electrostatic force detection. The quantitative

interpretation of the experimental observables is performed by modeling the micro-

cantilever dynamics as a single-degree of freedom oscillator.

CR-AFM is by itself a resonance detection technique. A direct comparison with

resonance-enhanced 2nd-harmonic KPFM is presented in chapter 3. This study dis-
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cerns the advantages and disadvantages of each technique. We highlighted the higher

lateral resolution in CR-AFM based upon the highly localized stress field. Mean-

while, the lateral resolution in KPFM decreases due to the broadening effect of the

electric field lines. This was an influential consideration to develop the reconstruction

approach in Chapter 5. Furthermore, this study opens up the possibility of using a

combination of multiple excitation fields for subsurface imaging applications.

CR-AFM and KPFM both enable high sensitivity subsurface imaging. Although

the physics behind them is different, similar computational approaches can be used for

reconstruction purposes. An example is presented in chapter 3, where we estimate

the depth of the same subsurface features imaged with both techniques, finding a

satisfactory agreement between the two. The depth in this case is directly estimated

from master curves obtained by finite element models that assume knowledge of all

the other tip-sample parameters. Finite element analysis is an indispensable tool

used through out this thesis. It provides i) a deeper understanding of the physical

principles behind the techniques and their limitations, ii) a quantitative comparison

between theoretical expectations and experiments and iii) a quantification of sample

properties.

The relation of the experimental observables to a physical variable in both tech-

niques opens up a procedure for 3D reconstruction. The goal is to recreate the spatial

distribution and shape of the subsurface features within the volume of the sample.

An ad-hoc reconstruction approach is proposed in chapter 4 based on surrogate mod-

eling. This describes the functional relationship between the electrostatic force and

the main independent parameters as a polynomial function. The mathematical expre-

ssion can then be used to estimate the size and depth of the subsurface object, which

is demonstrated in the case of 0D objects embedded within a low dielectric matrix.

This model assumes that there is only one object in the close vicinity of interaction

with the tip.

Finally, the reconstruction approach based on surrogate models is extended to CR-

AFM in chapter 5. As described in chapter 3, CR-AFM has the advantage of a more
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localized interaction between the tip and the subsurface object. Aside from an empir-

ical polynomial function, we proposed a model based on dimensional analysis which

relies more on physical intuition and provides a reduced expression. Both approaches

show to be useful from the validation made with simulations and experimental data

acquired on a model sample.

6.2 Future Research Directions

This thesis discussed the use of AFM techniques for high-resolution non-destructive

subsurface imaging and a method to reconstruct nanoscale subsurface features from

the AFM data. There is still work to be done and remaining challenges to be addre-

ssed. Here are some suggestions on future directions in this area.

6.2.1 Application to Other Nanoscale Materials and Devices

Throughout this work we use a variety of polymer nanocomposites that incorpo-

rate 0D-nanoparticles, 1D-nanotubes, or 2D-platelets dispersed in a polymer matrix.

However, the AFM techniques in combination with reconstruction approaches can

be used to characterize other types of materials and devices, currently under deve-

lopment. For instance, 3D structures and multilayer materials, where there is still a

demand for innovative non-destructive 3D metrology tools [194,195].

In this context, the International Roadmap for Devices and Systems (2017) projects

reduced device feature sizes less than 5 nm within the next 10 years and an increa-

sing use of complex 3D structures fabricated using new materials and processes. The

IRDS emphasizes the need for new tools capable of the detection of defects and ana-

lysis of interconnects covered by overlays. This is relevant during process control and

failure analysis of devices that incorporate nanometer size features [196]. Based on

the work performed in this thesis, both KPFM and CR-AFM should be tested on

these complex 3D structures of interest to the device community.
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6.2.2 Complex Shapes and Generalization of Surrogate Model

Our aim in chapter 4 and 5 is to demonstrate a methodology for reconstruction of

subsurface properties from AFM data using surrogate models. This is done in the case

of buried 0D objects in a uniform matrix. The proposed approach can be expanded

to more complex shapes such as 1D or 2D objects, which are geometrically described

by more than 1 parameter. This expansion requires the identification and inclusion of

other input parameters, which in turn implies multiparametric models and large scale

computations. It would also require the exploration of other independent observables

to create numerically independent models.

The critical task is the creation of global surrogate models for complete blind re-

construction. This would be of benefit for the application to a larger range of samples.

We suggest the exploration of supervised learning algorithms such as artificial neural

networks or genetic algorithms [197].

6.2.3 Combination of Detection Mechanisms

The comparison between the subsurface imaging capabilities of CR-AFM and

KPFM presented in chapter 3 offers an insight in how a combination of different

excitation fields can yield complementary results. For example, depending on the

sample properties, either one technique or both can be used. CR-AFM is appropriate

in the case where there are weak electrostatic force interactions between the tip and

the sample or when dielectric properties of the inclusions and the matrix are so similar

they can not be discriminated. On the contrary, KPFM is useful for soft or sticky

samples or when the sample components exhibit similar elastic properties. However,

both can be combined when there is interest to extract either dielectric or mechanical

properties or when challenging samples are studied. Furthermore, other detection

mechanisms can be explored using magnetic fields or thermal spectroscopy [24,198].
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6.2.4 Improved Subsurface Data Acquisition

The AFM is able to generate a 2D image while the tip scans above the sample

moving along the x and y directions. The location of the tip and the sample are

fixed in terms of orientation, which becomes a limitation to generate 3D volume

reconstruction. As a solution in chapters 4 and 5 we propose to acquire a set of 2D

maps where the observable is measured at different values of a controllable predictor

variable. Therefore we scan the same region of interest several times while increasing

the nap height or the applied force in the case of 2nd-harmonic KPFM or CR-AFM,

respectively.

A significant improvement to this approach would be the acquisition of a data set

using just one single scan. A possibility is to use a similar approach as the recently

implemented multidimensional mapping mode by Bruker [199]. In this mode, force

spectra are acquired at each pixel of the image as in fast force mapping [200], but

additionally it allows to hold the tip at a defined setpoint force, and vary other

operating parameter. In the case of 2nd-harmonic KPFM, this would allow to ramp

the voltage while the tip is engaged with the sample to measure electrostatic force

spectra. In the case of CR-AFM, CR-Freq spectra could be measured with respect to

the applied force. This generates data cubes for each pixel of the image at one single

scan with the needed information.

Such an approach will contribute to i) faster experimental data acquisition, ii)

the reduction of lateral force, which in turn reduces tip wear or modification of the

surface of the sample in CR-AFM and iii) avoid the drifts that appear in consecutive

scans.
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gradient signal: resolution enhancement in electrostatic force microscopy and
improved Kelvin probe microscopy. Nanotechnology, 14(2):332–340, 2 2003.

[141] C. Riedel, A. Alegria, G. A. Schwartz, R. Arinero, J. Colmenero, and J. J.
Saenz. On the use of electrostatic force microscopy as a quantitative subsur-
face characterization technique: A numerical study. Applied Physics Letters,
99(2):023101, 2011.



145

[142] C. Riedel, R. Arinero, A. Alegria, J. Colmenero, and J. J. Saenz. Three-
dimensional tomography of single charge inside dielectric materials using elec-
trostatic force microscopy. MRS Proceedings, 1421:11–1421, 1 2012.

[143] R. Arinero, C. Riedel, and C. Guasch. Numerical simulations of electrostatic
interactions between an atomic force microscopy tip and a dielectric sample in
presence of buried nano-particles. Journal of Applied Physics, 112(11):114313,
12 2012.

[144] G. Gramse, G. Gomila, and L. Fumagalli. Quantifying the dielectric constant
of thick insulators by electrostatic force microscopy: effects of the microscopic
parts of the probe. Nanotechnology, 23(20):205703, 5 2012.

[145] D. J. Griffiths. Introduction to electrodynamics. Prentice Hall, 3rd edition, 1999.

[146] R. Garcia. Amplitude modulation atomic force microscopy. Wiley-VCH, 2011.

[147] S. Rast, C. Wattinger, U. Gysin, and E. Meyer. The noise of cantilevers. Nan-
otechnology, 11(3):169–172, 9 2000.

[148] A. Kikukawa, S. Hosaka, and R. Imura. Vacuum compatible high-sensitive
Kelvin probe force microscopy. Review of Scientific Instruments, 67(4):1463, 4
1996.

[149] C. Sommerhalter, T. W. Matthes, T. Glatzel, A. Jager-Waldau, and M. C. Lux-
Steiner. High-sensitivity quantitative Kelvin probe microscopy by noncontact
ultra-high-vacuum atomic force microscopy. Applied Physics Letters, 75(2):286,
7 1999.

[150] S. Batra. Field assisted self assembly for preferential vertical alignment of parti-
cles and phases using a novel roll-to-roll processing line. PhD thesis, University
of Akron, 2014.

[151] W. Park, J. Hu, L. A. Jauregui, X. Ruan, and Y. P. Chen. Electrical and ther-
mal conductivities of reduced graphene oxide/polystyrene composites. Applied
Physics Letters, 104(11):113101, 3 2014.

[152] D. Kiracofe and A. Raman. On eigenmodes, stiffness, and sensitivity of atomic
force microscope cantilevers in air versus liquids. Journal of Applied Physics,
107(3):033506, 2010.

[153] R. Garcia and E. T. Herruzo. The emergence of multifrequency force mi-
croscopy. Nature Nanotechnology, 7(4):217–26, 4 2012.

[154] C. Sommerhalter, T. Glatzel, T. Matthes, A. Jäger-Waldau, and M. Lux-
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A. ADDITIONAL INFORMATION ON CHAPTER 2

A.1 Microcantilever Dynamics

The microcantilever motion driven by an external force Fdrive can be described by

the Euler Bernoulli beam partial differential Equation (A.1)

EIw′′′′(x, t) + c∗ẇ + ρAẅ(x, t) = Fdrive(x, t). (A.1)

where EI, w(x, t), c* ρ and A are the flexural rigidity, transverse displacement,

damping, mass density and cross-sectional area of the beam, respectively. It assumes

the microcantilever is a slender beam where the bending stress dominates the shear

force and rotatory inertia is negligible.

To solve Equation (A.1), first, we consider the case of the undamped free response

given by

EIw′′′′(x, t) + ρAẅ(x, t) = 0. (A.2)

Assuming a separable solution of the form w(x, t) = W (x)T (t) and replacing in

Equation (A.2), we get

EIT (t)W ′′′′(x) + ρAW (X) ¨T (t) = 0. (A.3)

Rearranging terms
T̈ (t)

T (t)
=
−EI
ρA

W ′′′′(x)

W (x)
. (A.4)

The above equation must be true for all x and t, therefore each side is equal to a

constant −ω2. It results into the following ordinary differential equations

T̈ (t) + ω2T (t) = 0, (A.5)

W ′′′′(x)− α4W (x) = 0, (A.6)



151

where α4 = ω2 ρA
EI

. The solution to Equations (A.33) and (A.6) are given by

T (t) = Ccos(ωt) + Ssin(ωt), (A.7)

W (x) = acosh(αx) + bsinh(αx) + ccos(αx) + dsin(αx). (A.8)

Enforcing boundary conditions, we can find the coefficients in Equation (A.8).

In this case, it is considered a fixed microcantilever at x = 0 and free at x = L.

Therefore,

w(0, t) = 0 (no motion), (A.9)

w′(0, t) = 0 (zero slope), (A.10)

w′′(L, t) = 0 (zero moment), (A.11)

w′′′(L, t) = 0 (zero shear force). (A.12)

Using Equations (A.9) and (A.10), it is found that a = −c, b = −d. From Equations

(A.11) and (A.12)cosh(αL) + cos(αL) sinh(αL) + sin(αL)

sinh(αL)− sin(αL) cosh(αL) + cos(αL)

c
d

 =

0

0

 . (A.13)

Non-trivial solutions give the characteristic equation given by

cos(αL)cos(αL) + 1 = 0, (A.14)

where αi = 1.875, 4.694, 7.855..., for i = 1, 2, 3....

The modal functions are given by

ψi(x) = cos
(
αi
x

L

)
− cosh

(
αi
x

L

)
+

(
sin(αi)− sinh(αi)

cos(αi) + cosh(αi)

)(
sin
(
αi
x

L

)
+ sin

(
αi
x

L

))
,

(A.15)

where it is chosen the normalization of the eigenfunctions ψi(L) = 1, relevant in the

discretization of the forced response as shown below [130]. The eigenfrequencies are

given by

ωi = α2
i

√
EI

ρA
. (A.16)
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The general solution to Equation (A.2) is

w(x, t) =
∞∑
i=1

ψi(x)[Cicos(ωit) + Sisin(ωit)]. (A.17)

Now we consider the response under the presence of an excitation force, which

in this case refers to the electrostatic force. It is considered as a point force applied

at the end of the microcantilever. Therefore, Fdrive in Equation (A.1) is equal to

Fδ(x − L), where δ is the Dirac delta function. Equation (A.1) is discretized using

Galerkin’s method [129]. This approach assumes a solution in the form

w(x, t) =
∞∑
j=1

ψj(x)qj(t), (A.18)

where ψj(x) are the orthogonal basis functions of the normalized eigenmodes found

in Equation (A.15), and qj(t) are the generalized coordinates of the basis functions.

Then, we substitute w(x, t) into Equation (A.1), multiply by ψi(x) and integrate

over the microcantilever length (L), so that∫ L

0

ψi(x)

[
EI
∑
j

ψ′′′′j (x)qj(t) + c∗
∑
j

ψj(x)q̇(t) + ρA
∑
j

ψj(x)q̈j(t)

]
dx

=

∫ L

0

ψi(x)Fδ(x− L). (A.19)

Recall that ψi(L) = 1, which ensures q(t) is the actual tip deflection. Using

orthogonality of the eigenfunctions the above equation is equal to(
EI

∫ L

0

ψi(x)ψ′′′′i (x)dx

)
qi(t) +

(
c∗
∫ L

0

ψ2
i (x)dx

)
q̇i(t)

+

(
ρA

∫ L

0

ψ2
i (x)

)
q̈i(t) = Fψ2

i (L). (A.20)

This equation can be reduced to

miq̈i(t) + ciq̇i(t) + ki(t) = F (t), (A.21)

where i = 1, 2, 3, ..., N, mi = ρA
∫ L

0
ψ2
i (x)dx, ci = c ∗

∫ L
0
ψ2
i (x)dxq̇i(t), and ki =

EI
∫ L

0
ψi(x)ψ′′′′i (x)dx are the modal mass, and equivalent damping and stiffness, re-

spectively. Dividing Equation (A.21) by ki,

q̈i(t)

ω2
i

+
q̇i(t)

ωiQi

+ qi(t) =
F (t)

ki
, (A.22)
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where ωi and Qi are the natural frequency and quality factor, respectively. Equation

(A.22) corresponds to the point-mass model used in this work.

A.2 Electrostatic Force Calculation Using the Maxwell Stress Tensor

The electromagnetic force on an arbitrary charge distribution with a volume V

having a position dependent charge density ρ(x, y, z), in the presence of an electric

field E and magnetic field B is given by

F =

∫
V

(E + v ×B)ρdV, (A.23)

=

∫
V

(ρE + J×B)dV, (A.24)

where dV = dxdydz and J is defined as the current density due to the velocity v of

the charge distribution ρ. Then, the force per unit volume in a region of space could

be defined as

f = ρE + J×B. (A.25)

Using Maxwell’s equations

∇ · E =
ρ

ε0
, (A.26)

∇×B = µ0J + µ0ε0
∂E

∂t
, (A.27)

and

∂

∂t
(E×B) =

(
∂E

∂t
×B

)
+

(
E× ∂E

∂t

)
(A.28)

combined with Faraday’s law
∂B

∂t
= −∇× E, (A.29)

we can re-write Equation (A.25) in terms of the fields alone as

f = ε0 [(∇ · E)E− E× (∇× E)]− 1

µ0

[B× (∇×B)]− ε0
∂

∂t
(E×B). (A.30)
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Using the vector identity ∇(E2) = 2(E · ∇)E + 2E× (∇×E) and Maxwell’s second

equation ∇ ·B = 0, f in a symmetrical form is equal to

f = ε0 [(∇ · E)E + (E · ∇)E] +
1

µ0

[(∇ ·B)B + (B · ∇)B]

− 1

2
∇
[
ε0E

2 +
1

µ0

B2

]
− ε0

∂

∂t
(E×B). (A.31)

Limiting to problems where B is neglected, Equation (A.31) can be simplified as

f = ε0 [(∇ · E)E + (E · ∇)E]− 1

2
∇(ε0E

2). (A.32)

The Maxwell Stress Tensor is defined as [145]

T = Tij ≡ ε0

(
EiEj −

1

2
δijE

2

)
, (A.33)

where i, j refer to the coordinates x, y, z. It can be shown that

(∇ ·T)j = ε0 [(∇ · E)Ej + (E · ∇)Ej]−
1

2
∇j(E

2), (A.34)

which implies that the for per unit volume given by Equation (A.32) can be written

in a simple form f = (∇ ·T).

Therefore, the force F on an arbitrary charge distribution is given by

F =

∫
V

(∇ ·T)dV. (A.35)

Using the divergence theorem, Equation (A.35) is equal to

F =

∮
S

T · ds, (A.36)

which means that instead of solving the volume integral given in Equation (A.24),

we can calculate the force by a surface integral over an arbitrary surface (Equation

(A.36)). Physically, T represents the force per unit area acting on the surface S.

Thus Txx, Tyy, Tzz represent normal forces and Txy, Txz, etc. represent shear forces.
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B. ADDITIONAL INFORMATION ON CHAPTER 4

B.1 Probe Parameters

The probe used to collect the subsurface data set using KPFM is the NanoWorld

Pointprobe EFM. SEM images shown in figure B.1, were taken on the probe before

collecting the data on the model sample presented in Chapter 2. The tip radius was

found from the high resolution image at the bottom right. The dimensions of the

probe are given in table B.1.

The stiffness, quality factor and resonance frequency of the microcantilever are

4.7 N/m, 224.7 and 79.9 kHz, respectively. These values are found from the standard

experimental calibration procedure.

Table B.1. Dimensions of EFM probe (NanoWorld).

Data Value

microcantilever

Length 225 (220 - 230) µm

Width 28 (22.5 - 32.5) µm

Thickness 3.0 (2.5 - 3.5) µm

Tip

Tip height 12.5 ± 2.5 µm

Tip radius 31.6 ± 2.5 nm

Angle 25°

B.2 Parameters Used in Finite Element Model

The relevant parameters of the computational model built for the parametric

sweep computations are summarized in table B.2.
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10μm
S4800 SEM 
10.0 kV x3.0k SE(U)

500nmS4800 SEM 
10.0 kV x110k SE(U)

500nm

Figure B.1. SEM images of NanoWorld Pointprobe EFM probe used
to collect the experimental subsurface data set in model sample. The
estimated tip radius is 31.2± 3 nm

B.3 Surrogate Models

Other functions were evaluated in the process of building the surrogate-model

based on the computational data. Table B.3 summarizes some of them.
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Table B.2. Parameters used in 2D axisymmetric model in Comsol Multiphysics.

Data Value

microcantilever

(disk)

Radius 14 µm

Thickness 3.0 µm

Tip

(cone)

Height 12.5 µm

Angle 25

Tip (apex) Radius 30 nm

Sample

(buried sphere)

Radius (r s) Variable, 15 - 55 nm

Dielectric constant (εf ) 1500

Depth (d) Variable, 10 - 100 nm

Sample

(polymer matrix)

Width 25 µm

Thickness Variable

Dielectric constant (εm) 2.5

Tip-sample distance Z Variable, 10 - 100 nm

Bias voltage Vt 1 V
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Table B.3. Other models used in the investigation of an adequate
surrogate models.

Model F̃ (Z, d) R2

Sphere-sphere approx.a F̃ = 1 +
(

b1rs
b2+rs

)2 (
b3

(Z+b4d+b5)2

)
0.967

F̃ (Ẑ, d̂)

1st-order pol. F̃ = b0 + b1Ẑ + b2d̂ 0.926

2nd-order pol. F̃ = b0 + b1Ẑ + b2d̂+ b12Ẑd̂+ b11Ẑ
2 + b22Ẑ

2 0.995

F̃ (Ẑ, d̂, rs)

2nd-order pol. F̃ = b0 + b1Ẑ + b2d̂+ b3rs + b12Ẑd̂+ 0.995

b13Ẑrs + b23d̂rs + b11Ẑ
2 + b22d̂

2 + b33r
2
s

a This approach follows the derivation of an expression derived for the electrostatic force

between two spheres [201].
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C. ADDITIONAL INFORMATION ON CHAPTER 5

C.1 Particle Size Distribution in Model Sample

The size of the BaTiO3 particles is estimated by measuring their height from

topography maps obtained using AFM. These were taken after the particle disper-

sion was deposited on a silicon substrate. Figure C.1 shows the histogram of the

particle size distribution from 100 particles. The solid line corresponds to a normal

distribution curve. The mean particle diameter is 44.6 ± 17.7 nm.

Figure C.1. BaTiO3 particles size distribution.

C.2 2D Axisymmetric Model in Comsol Multiphysics

The contact mechanics problem involving the tip and the 0D buried object em-

bedded in a polymer matrix is solved using the 2D axisymmetric solid mechanics

interface from the structural mechanics module in Comsol Multiphysics.

The model assumes all the objects are linear elastic, homogeneous and isotropic

and only includes the frictionless part. The geometry of the model is shown in figure
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C.2. A contact pair is defined by the boundary of the apex of the tip and the top

boundary of the polymer matrix. The load is applied on the top boundary of the

tip apex, and there is a fixed constraint at the bottom of the polymer matrix. The

stationary problem is solved with a force boundary condition. For stability, we added

a spring foundation node to the boundary load. It assumes an initial spring before the

tip apex establishes contact with the base object and it is removed afterwards [202].

Table C.1 shows the main settings used in the model.

Tip apex

0D object

Polymer matrix

Contact pair

Figure C.2. Model geometry
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Table C.1. Parameters used in the 2D axisymmetric model.

Parameter Value Description

Em 3 Gpa Young’s modulus of polymer matrix

νm 0.3 Poisson’s ratio of polymer matrix

Ep 67 Gpa Young’s modulus of particle

νp 0.3 Poisson’s ratio of particle

Et 170 Gpa Young’s modulus of tip

νt 0.28 Poisson’s ratio of tip

Wm 400 (nm) Width matrix

Hm 600 (nm) Height matrix
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