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ABSTRACT

Ren, M. Ph.D., Purdue University, December 2018. Model-Based High-Dimensional
Network Inference: Theory & Methods. Major Professor: Dabao Zhang.

In the past several decades, the advent of high-throughput biotechnologies for

genomics study provides appealing opportunities for us to understand the complex

gene interaction inside biological systems, attracting many researches in constructing

gene regulatory networks (GRNs). Motivated by the promise of the genetical genomics

study, our research group has recently focused on representing gene regulatory networks

using structural equation models and further revealing system-wide gene regulations.

This dissertation presents two recent works along this direction.

Firstly, we conducted thorough theoretical analysis of the recently proposed Two-

Stage Penalized Least Squares (2SPLS) method for constructing large systems of

structural equation models. We establish the estimation and prediction error bounds for

results at both stages of 2SPLS as well as its variable selection consistency. Specifically,

a bounded eigenvalue assumption is imposed to ensure the consistency properties of

the `2-penalized regressions at the first stage. At the second stage, the estimation and

variable selection consistency of the `1-penalized regressions are obtained by assuming

a restricted eigenvalue condition and a variant of irrepresentable condition, which are

both commonly employed in the current literature. We will show that the 2SPLS

estimator works not only for fixed dimensions but also diverging dimensions which

can grow to infinity with the sample size but at an appropriate rate.

Secondly, we developed a novel statistical method to identify structural differences

between two cognate networks characterized by structural equation models. We

propose to reparameterize the model to separate the differential structures from

common structures, and then design an algorithm with calibration and construction
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stages to identify these differential structures directly. The calibration stage serves to

obtain consistent prediction by building the `2 regularized regression of each endogenous

variables against pre-screened exogenous variables, correcting for potential endogeneity

issue. The construction stage consistently selects and estimates both common and

differential effects by undertaking `1 regularized regression of each endogenous variable

against the predicts of other endogenous variables as well as its anchoring exogenous

variables. Our method allows for easy parallel computation. Theoretical results are

obtained to establish non-asymptotic error bounds of predictions and estimates at

both stages. Our studies on simulated data demonstrated that the proposed method

performed much better than independently constructing networks. A real data set

was analyzed to illustrate the applicability of our method.
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1. INTRODUCTION

1.1 Motivation From Understanding Gene Regulation

The past several decades witnessed the profound advent of high throughput genome,

transcriptome, microbiome and more broadly “omics” sequencing technologies. Besides

the wet lab experiments, the massive scale of data produced by these tools provide

a multitude of ways for life science researchers and health-care scientists to uncover

the complex interactions and relationships within organic systems. However, the vast

scale and the heterogeneity of the generated data induce many challenges, calling for

development of novel computational efficient and powerful statistical methodologies

(Marx, 2013).

The gene expression data and DNA genotypic data are two fundamental blocks

in the quantification of biological systems due to the central dogma, which formally

illustrates the flow of inheritance information from DNA genotype to gene expression

via transcription and finally to phenotypes via translation and other downstream

processes. Due to the rapid advances in sequencing technologies, it is becoming

more and more affordable and feasible to collect gene expression data or both of the

whole genome gene expression and genotype information for each individual of a large

population, i.e., genetical genomics data. In the past decades, numerous projects have

been dedicated to obtain and curate these data, for instance, the Gene Expression

Omnibus (GEO; Edgar et al., 2002), the Genotype-Tissue Expression (GTEx) project

(Consortium and Others, 2015), and the 1001 Arabidopsis database (Kawakatsu et al.,

2016). The rich sets of data have stimulated a myriad of developments of statistical

methods by employing gene expression data, genotypic data or both of them in order

to understand and model the biological systems in different fashions, for instance, the

construction of gene regulatory networks (GRN) and cis/trans-eQTLs identification.



2

Figure 1.1. An Example of Constructed Gene Regulatory Network in Yant
(2012) for a set of 17 Genes. Genes in different colored oval circles are
grouped by their biological functionality. The regulation effects between
genes are indicated by edges. The causal effects of genotypes are not
shown.

Each species has a set of genes, for instance, human genome has around twenty

thousand genes and fruit fly genome has around fifteen thousand genes. All the

genes rarely act independently, but instead interact with each other in an orchestra

fashion, whose interaction relationship can be naturally represented by a network, i.e.,

gene regulatory network (GRN). Figure 1.1 demonstrates an illustrative example of

gene regulatory network for a set of 17 genes. The reconstruction of gene regulatory

networks from data provides an important tool to explore and understand the organi-

zation and functionality of genes. Those novel information may further facilitate the

characterization of the genetic profiles of many complicated diseases and biological

traits. A great deal of approaches has been developed to construct gene regulatory

networks by using only gene expression data, including partial correlation/graphical
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models (Dobra et al., 2004; Friedman, 2004; Yuan and Lin, 2007; Friedman et al.,

2008; Menéndez et al., 2010), Bayesian and dynamic Bayesian networks (Friedman

et al., 2000; Tamada et al., 2003; Zou and Conzen, 2004; Kim et al., 2004; Young et al.,

2014), correlation based co-expression networks (Carter et al., 2004; Daub et al., 2004;

Langfelder and Horvath, 2008; Teng and Huang, 2009). Furthermore, it would be very

promising to improve the performance of gene regulatory network construction by

combining gene expression data and whole genome genotypic data. There are also

many proposed methods in this direction (Xiong et al., 2004; Liu et al., 2008; Logsdon

and Mezey, 2010; Cai et al., 2013; Ni et al., 2016, 2018).

Gene regulatory network provides a concise representation of gene interactions

for a single population. Sometimes, it is of more importance to compare or detect

the differences between two cognate networks from different but related populations,

such as healthy population and diseased population, or different tissues, such as heart

cells and muscle cells (West et al., 2012). This network differences are also commonly

referred to as differential network, which may help us gain critical insights into the

deep mechanism of the development of complex diseases or the intriguing underlying

biological processes of cell differentiation. Those insights may further assist us with

developing more efficient and personalized drugs or therapies for different diseases

or tissues. In view of the importance, many research efforts have been dedicated to

this direction and a diversity of methods have been proposed, including correlation

and entropy based methods (Fuller et al., 2007; Gill et al., 2010; de la Fuente, 2010;

Gambardella et al., 2013) and similar F-statistic based methods (Lai et al., 2004; Ma

et al., 2011), Gaussian graphical model based direct estimation and testing methods

(Zhao et al., 2014; Xia et al., 2015; Liu et al., 2017b) and Fused lasso based methods

(Zhang and Wang, 2012; Zhang et al., 2016; Liu et al., 2017a) and its related D-trace

loss based methods (Yuan et al., 2017; Zhang et al., 2017).
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1.2 Inferring Gene Regulation via Structural Equation Models

In this section, we first review structural equation model (SEM) and then introduce

the use of SEM to characterize a gene regulatory network for one population, and

then two cognate gene regulatory networks for two different but related populations.

1.2.1 Structural Equation Models and Simultaneous Equation Models

Structural equation models (SEMs) include a broad class of statistical models

which provide a general framework for modeling complex dependence structures in

multivariate data involving unobserved latent variables, observed variables or both of

them (Jöreskog, 1970; Bollen and Noble, 2011). The flexibility of SEMs has resulted

in widespread applications in a diverse of fields, including econometrics, social science,

genetics, and behavioral science (Reiss and Wolak, 2007; Liu et al., 2008; Hoyle, 2012).

There are also many well established statistical software packages specifically designed

for the estimation and inference of SEMs, such as LISREL (Jöreskog, 1970),Mplus

(Muthén and Muthén, 2017) and AMOS (Byrne, 2016). Although structural equation

model is usually perceived to involve latent variables, observed variables only models

are also commonly employed, such as simultaneous equation models which are popular

in econometrics to model the dependence structures among a system of observable

endogenous variables and exogenous variables (Nelson and Olson, 1978; Lee, 1982;

Cai, 2010; Jeanty et al., 2010; Omri et al., 2014; Adewuyi and Awodumi, 2017). Its

popularity in econometrics and related social sciences attracted many researches,

for instance, the classical two-stage least square estimation method (Theil, 1953a,b,

1961; Basmann, 1957; Sargan, 1958) and the model estimation and its identification

(Amemiya, 1977; Kai, 1998; Wilde, 2000; Imbens and Newey, 2009; Dijkstra and

Henseler, 2015). As further pointed out in Bentler and Weeks (1980), Sánchez et al.

(2005) and Bollen and Noble (2011), simultaneous equation models can be considered

as special cases of a general formulation of structural equation models. Moreover, both

structural equation model and simultaneous equation model enjoy nice interpretations
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Y1 Y2

Y3Y4

X1 X2

X3X4

Figure 1.2. An Illustrative Example of Gene Regulatory Network. For
i = 1, 2, 3, 4, Xi denotes the direct causal factors to Yi. Yi denotes the
gene expression level. The solid lines refer to the regulation among gene
expressions, while the zigzag lines refer to the causal effects on each gene,
such as cis-eQTLs.

in causal inference setting (Koster et al., 1996; Pearl, 2003; Pearl et al., 2009). Thus,

SEMs facilitate our understanding and interpretation of reconstructed gene regulatory

networks in our study.

In this dissertation, we intend to model and study gene regulation structures using

a system of linear equation models with observed endogenous and exogenous variables

only. In this sense, our employed structure equation models refer to the simultaneous

equations models in econometrics (Sánchez et al., 2005). Notwithstanding, following

the current trend beyond econometrics and social sciences, we here choose to mainly

use the term “structural equation models” as it is a more broad and general term.

1.2.2 Representation of Gene Regulatory Network

Structure equation models can readily characterize the dependence structures

among a system of random variables. Thus, the interaction or regulation among genes

can be naturally represented by the SEMs. Figure 1.2 provides an simple illustrative

example of the gene regulatory network with four genes Y1, . . . , Y4 and their causal

factors X1, . . . , X4. For a linear system with p genes, the gene regulatory network can

be formulated by the linear structural equation models and each gene is regulated by

effects from two major sources, i.e., two types of causal effects. One is the regulatory
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effects from other genes, and the other is the anchoring regulatory effects from its

cis-expression Quantitative Trait Locus (cis-eQTLs) which are local genotypes inside

the gene region and regulate the expression of the gene. Then, the formal model for

each gene can be concisely formulated as follows.

Yi︸︷︷︸
gene i

= Y−iγi︸ ︷︷ ︸
regulatory effects

by other genes

+ Xφi︸︷︷︸
anchoring regulation

by cis-eQTLs

+ εi︸︷︷︸
error terms

, (1.1)

where Yi and Y−i denote the i-th column and the submatrix by excluding the i-th

column of the n×p matrix Y, n×q matrix X denotes the genotype matrix and γi and

φi encode the two types of causal effects for each term, respectively. In model (1.1),

Y−i and X are also commonly referred to as endogenous and exogenous variables,

respectively (Fan and Liao, 2014), since Y−i may not be independent of the error

terms εi, while Xi and εi are assumed to independent of each other.

The additional anchoring regulation plays an important role in revealing the

directionality of the gene regulation. With proper identification assumption, say, each

gene is assumed to have at least one unique direct causal factor as an anchoring

variable, model (1.1) can not only identify the directionality of the regulation but

also allow for both acyclic and cyclic or loop structures. As illustrated in Figure 1.3,

we can not recover the directionality between node Y1 and Y2 without the extra

information provided by the direct causal factors X1 and X2 because all four sub-

networks consisting of Y1 and Y2 (without X1 and X2) will be Markov equivalent.

Thus, the anchoring variables help reveal the directionality of the regulations between

genes of the interest. The directionality and flexibility are crucial for researchers to

understand complicated biological pathways.

For the analysis of genetical genomics data, Yi usually represents the gene ex-

pression value of the i-th gene, which quantifies its degree of activity and can be

measured by a microarray chip or RNA sequencing platform, while the matrix X

consists of the cis-eQTLs of all genes in the study. In this dissertation, we just used

the cis-eQTL data to construct the network for simplicity. In practice, some genes

may not have significant anchoring factors. However, many other biological factors
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(a) (b) (c) (d)

Figure 1.3. An Illustrative Example of Networks Which Are Not Markov
Equivalent. However, without X1 and X2, sub-networks consisting of only
node Y1 and Y2 will be Markov equivalent.

can be incorporated into the model as the direct causal factors, such as copy number

variation, cis-acting methylation eQTLs or aggregated eQTLs from rare and low

frequency SNPs introduced by Chen (2017). Model (1.1) has been employed in several

studies to represent the gene regulatory networks, such as Xiong et al. (2004), Liu et al.

(2008), Logsdon and Mezey (2010), and Cai et al. (2013). Most recently, Chen (2017)

proposed to estimate model (1.1) in a two stage fashion coupled with penalization to

achieve better performance, especially variable selection in a diverse of settings. We

will investigate its theoretical properties in Chapter 2, in particular, for the case that

dimensions p, q can grow to infinity with the sample size but at appropriate rate.

1.2.3 Differential Gene Regulatory Networks

As discussed in Section 1.1, it is oftentimes of more interest and importance

to detect differences between two cognate gene regulatory networks, which is often
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referred to as differential network. Figure 1.4 demonstrates a simple illustrative

example for two cognate or similar networks and their differential network. Both

networks have four genes and their corresponding causal factors. The differences of

these two networks are the disappearance of regulation effects from Y4 to Y1 and

from Y4 to Y3. We omit the nodes of direct causal factors in the differential network

for simplicity.

In this light, it is natural to represent each network by a structural equation model,

which can be formulated as the model in the below,

Y
(1)
i = Y

(1)
−i γ

(1)
i + X(1)φ

(1)
i + ε

(1)
i ,

Y
(2)
i = Y

(2)
−i γ

(2)
i + X(2)φ

(2)
i + ε

(2)
i .

(1.2)

For k ∈ {1, 2}, the n(k)× p matrix Y(k) = [Y
(k)
1 , . . . ,Y(k)

p ] denotes the gene expression

matrix for p genes, and n(k) × q matrix X(k) denotes the direct casual factors of all

the genes for each network. φ
(k)
i consists of the effects of direct casual factors, such as

cis-eQTLs and γ
(k)
i encodes the regulation structures.

Here, we mainly focus on the detection and the estimation of the non-zeros entries

of the difference between γ
(1)
i and γ

(2)
i , i.e., γ

(1)
i − γ

(2)
i . In practice, we assume that

the two populations underlying the cognate networks are related, such as the healthy

population and diseased population. Therefore, we assume that majority of the

regulation structures of the two networks are similar to each other and the detection

of the sparse differences in γ
(1)
i − γ

(2)
i for each node i will be of the main interest.

Naively, we can construct the gene regulatory networks and estimate the regulatory

effects γ
(k)
i independently. However, this approach will fail to take advantage of

the similarities of the networks, which may result in high false positive rate or low

power. In order to take account of this similarities or commonality, we propose to

reparametrize the models and estimate the differential effects in a direct fashion, which

could lead to much lower false discovery rate and better variable selection performance.

By virtue of the flexibility of structural equation models and the additional

anchoring regulations, model (1.2) naturally reveals the directionality of regulations
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for both networks. Therefore, it can not only identify the change of effect sizes but

also the change of the direction of regulations. Similar to the 2SPLS method, an

slightly relaxed identification assumption will be imposed on the data for revealing

the direction of regulations as well.

1.3 Challenges in Revealing Gene Regulation

In the current big data era, massive biological data from a variety of sequencing

technologies offer a promising opportunity to infer the gene regulatory networks and

differential gene regulatory networks, which can help us understand the gene-gene or

gene-genotype interactions in a data driven manner. However, the promise is hindered

by four major challenges: model flexibility, high dimensionality, computational burden,

and differential analysis. Firstly, many current network inference methods focus

on undirected or acyclic networks, such as graphical model and Bayesian network

Y
(1)

1 Y
(1)

2

Y
(1)

3Y
(1)

4

X
(1)
1 X

(1)
2

X
(1)
3X

(1)
4

−
Y

(2)
1 Y

(2)
2

Y
(2)

3Y
(2)

4

X
(2)
1 X

(2)
2

X
(2)
3X

(2)
4

=
Y

(∗)
1 Y

(∗)
2

Y
(∗)

3Y
(∗)

4

Figure 1.4. An Illustrative Example for Differential Gene Regulatory
Network. The superscripts 1, 2 are the indices for two networks. The
differential network between the two networks is indicated by nodes with
superscript ∗.
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methods. In contrast, the flexible structural equation models can not only reveal the

directionality of regulation but also allow for both acyclic and cyclic structures. As

discussed before, the information of directionality is crucial for life science researchers

to study complex biological pathways. Moreover, cyclic structures offer a promising

way to understand important feedback structures in biological systems. Secondly,

current large scale biological data commonly have high dimensionality, i.e., the number

of predictors can be comparable or even larger than the sample size, which could

result in inefficiency or even failure of traditional methods. Thus, we employ multiple

penalization approaches to control the negative impact of high dimensionality. Thirdly,

large scale data can pose significant demands on computation for even simple models.

Most current methods focus on constructing networks as a whole, which is infeasible

for parallel computation and may not be applicable for large scale data. By virtue

of the node-wise representation of SEMs, we can fit one linear model for each node

in a parallel fashion, which makes our method applicable for large datasets with

hundreds of thousands of endogenous and exogenous variables. Fourthly, most studies

on network construction focus on single network and the research on differential

analysis of networks are relatively scarce due to its difficulty, especially in directed

network setting. Moreover, combined with the other three aforementioned challenges,

the differential analysis of directed networks with flexible structures is much more

complicated. In conclusion, we hope our methods can facilitate the understanding of

complex biological systems based on large scale data, which might eventually help us

develop new drugs and therapies.

1.4 Sketch of the Research

The rest of the dissertation is organized as follows.

In Chapter 2, Section 2.2 and 2.3 first review the model setup and methodology

of the Two-Stage Penalized Least Squares (2SPLS) method proposed in Chen (2017).

Then, Section 2.4 presents the theoretical analysis of 2SPLS estimator for diverging
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dimensions. Our theoretical results show that 2SPLS estimator works not only for

fixed dimensions but also for diverging dimensions, say p � q = o(n). The detailed

technical proofs are displayed in Section 2.5.

In Chapter 3, Section 3.2 introduces the model and identifiability assumption

of Reparametrization-Based Differential Analysis of Directed Networks (ReDNet)

method, which detects the structural differences between two cognate networks char-

acterized by structural equations models. Section 3.3 presents the methodology and

comprehensive theoretical analysis of the ReDNet method. We will show the non-

asymptotic error bounds for both the calibration and construction stages and discuss

how the error bounds can be well controlled with proper sample sizes of both networks,

the dimensions and other parameters. The simulation study is detailed in Section 3.4

to demonstrate the superior performance of our method in practice. Section 3.5

presents a real data analysis example to show the applicability of the proposed method.

The technical proofs of all the theorems are relegated to Section 3.7.

Chapter 4 concludes the dissertation with a summary of all the works.
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2. TWO-STAGE PENALIZED LEAST SQUARE (2SPLS) METHOD

TO CONSTRUCT LARGE NETWORKS

2.1 Introduction

It is presumably expeditious to reveal gene regulation via genetical genomics data.

However, the promise is far from realized due to the lack of a systematic and efficient

approach to construct the networks, especially the directed networks that allow for

both acyclic and cyclic or loop structures. Structural equation model (1.1) provides

us an flexible and promising way to construct such networks and similar models were

studied in many past literatures, such as Xiong et al. (2004), Liu et al. (2008), Logsdon

and Mezey (2010), and Cai et al. (2013). Xiong et al. (2004) proposed the use of

structural equation models to represent the gene regulatory networks and employed

genetic algorithm to search for optimal network structure by minimizing the Akaike

Information Criterion (AIC; Akaike, 1974). Similarly, Liu et al. (2008) also utilized the

genetic algorithm to determine the network topology of the structural equations but

select the model by minimizing Bayesian Information Criterion (BIC; Schwarz et al.,

1978) or its variants (Broman and Speed, 2002) instead of AIC for the optimal genetic

networks. All the aforementioned methods are only suitable for a small number of

genes and genotype markers. In a large scale study, such as whole human genome

network construction, there will be hundreds of thousands of endogenous variables

(genes) and exgeonous variables (genotype markers). Thus, Cai et al. (2013) instead

developed a regularized likelihood based approach to infer a sparse network as a whole.

However this method is not easy for parallel computing and thus may not be able to

scale for massive data.

In the current big data era, it is commonly computationally formidable to fit

a large system based on the likelihood function of the complete model. In her
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dissertation, Chen (2017) instead proposed to identify a large network system via

two-stage estimation approach on a set of limited information models, each for one

endogenous variable in the system (Schmidt, 1976). Based on the instrumental

variables (IVs) interpretation of the classical two-stage least squares method (2SLS;

Theil, 1953a,b, 1961; Basmann, 1957), the estimation consistency of model parameters

depends on the consistent estimation of the conditional expectations of the endogenous

variables which are also referred to as the optimal instruments. Thus, Chen (2017)

extended the classical 2SLS method and proposed a two-stage penalized least squares

(2SPLS) method to fit penalized linear regression at both stages. At the first stage,

`2 regularized linear model is employed to obtain the consistent prediction of the

endogenous variables. Then, with the endogenous variables being replaced by its

predicted values at the second stage, `1 regularized adaptive lasso step is utilized to

identify the non-zero regulatory effects from a large pool of candidates.

The proposed 2SPLS method in Chen (2017) tackles two major challenging issues,

i.e., flexibility and computational burden. Firstly, the structural equation model is

very flexible for inferring the gene regulatory networks and allows for both acyclic and

cyclic or loop structures. The current literature in machine learning and statistics

mainly focus on the study of estimation of undirected and acyclic networks. The

research on the identification of cyclic network structure are comparatively scarce

due to its difficult nature. However, the loop or feedback regulation structures are

indeed present in many species and of the great research interest as well (Boyer et al.,

2005; Cooper et al., 2008; Chen and Wu, 2013; Lee et al., 2016). Thus, the proposed

method may shed new light on this direction. Secondly, since the 2SPLS method

identify the regulatory effects in a node-wise fashion, it’s inherently very easy for

parallel computation. Therefore, Many resampling methods, such as the bootstrap,

are viable for evaluating the significance of detected regulatory effects even for large

scale datasets.

In this chapter, we first review the methodology of 2SPLS method proposed in

the dissertation by Chen (2017). We intend to analyze its theoretical properties of
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both stages in depth. Our derived theorems allow for diverging dimensions. We show

that, when the numbers of endogenous and exogenous variables grow with the sample

size at a polynomial rate, the established consistency properties hold for the 2SPLS

estimator.

2.2 The Identifiable Structural Equation Models

For a system with p endogenous variables (genes) and q exogenous variables

(genotype markers etc.), there will be p of model (1.1). Then, the p linear equations

can be combined and rewritten in a systematic fashion as follows

Y = YΓ + XΦ + ε, (2.1)

where the n× p matrix Y denotes the n samples from the endogenous variables, the

n × q matrix X denotes n sample from the exogenous variables and p × p matrix

Γ and q × p matrix Φ contain the regulatory effects and causal effects, respectively.

Without loss of generality, each column of X is standardized to have `2 norm
√
n.

In particular, the diagonal line of Γ are all zero. Each component of ε is assumed

to independently distributed as zero mean normal distribution and the matrix X is

assumed to be independent of the error term ε.

The structural equation model (2.1) suffers from identifiability issue as other

structure equation based models. Thus, proper identifiability assumption is needed.

In this paper, we follow the common assumption in Logsdon and Mezey (2010) and

Cai et al. (2013), which each endogenous variable is assumed to have a unique set

of exogenous variables. In other words, the nonzero indices of the causal effects

φi are nonempty and can be pre-determined. This serves as “prior” information

for the causal structure of the model and can be determined by domain knowledge.

For example, each gene is directly affected by its local SNPs, a.k.a, cis-eQTLs, due

to the central dogma. We emphasize that the true value of φi still need to be

estimated if necessary, though its nonzero indices are known. Denote the known set
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as Ai = supp(φi), i = 1, 2, . . . , p. Then, the identifiability assumption below which

has been considered in the dissertation Chen (2017) is formulated as follows,

Assumption 1. For i = 1, · · · , p, Ai 6= ∅, but Ai ∩ Aj = ∅ for i 6= j.

Note that this assumption also satisfies the rank condition in Schmidt (1976) that

is a sufficient model identifiability assumption. Since the support set of φi is known,

henceforth, the model for each node can be further rewritten as a limited information

model,

Yi = Y−iγi + XAiφAi + εi, (2.2)

Y = Xπ + ξ, (2.3)

where the error term εi ∼ N(0, σ2
i In). The equation (2.3) is also commonly referred

to as reduced form equation and the effects of the reduced model π = Φ(I − Γ)−1

and its error term ξ = ε(I− Γ)−1. The reduced form equation (2.3) reveals that the

direct causal factors in X serve as the instrumental variables for the full information

model (2.1) in addition to being the anchoring regulation. This motivates the appli-

cation of the instrumental variables based method (Reiersøl, 1941, 1945; Anderson,

2005).

2.3 Two-Stage Penalized Least Squares (2SPLS) Method

2.3.1 The Review of 2SPLS Method

In this section, we review the 2SPLS estimator proposed in Chen (2017). Each

step of the 2SPLS method is detailed in Algorithm 1. In the first step, we aim to

obtain consistent prediction Ẑ of Z = E(Y|X) as the optimal instruments based

on the reduced form equation (2.3). Variable selection is not necessary in this step.

Therefore, we employ ridge regression to the model Yi = Xπi + ξi to obtain the

estimates π̂i and predict Zi with Ẑi = Xπ̂i. Denote ρi as the ridge tuning parameter.
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Algorithm 1 2SPLS Algorithm

Input: Gene expression matrix Y, genotypic matrix X, and known cis-eQTL sets

Ai for i = 1, 2, · · · p.

parallel for i = 1, . . . , p

Step 1. Obtain prediction Ẑi of Zi = E[Yi|X] using the ridge regression;

parallel end

Collect the prediction from above loop and obtain prediction expression matrix Ẑ;

parallel for i = 1, . . . , p

Step 2. Use the adaptive lasso to estimate γ̂i by regressing HiYi against HiẐ−i;

parallel end

Output: The regulatory effects in γ̂1, γ̂2, · · · , γ̂p.

Then, the ridge estimator π̂i can be obtained by minimizing the following objective

function,

||Yi −Xπi||22 + ρi||πi||22.

Following the application of instrumental variables based methods, we replace the

endogenous variables Y−i with its prediction Ẑ−i obtained in the first step and utilize

the adaptive lasso regression to identify the regulatory effects γ̂i in the second step.

The objective function can be formulated as below,

1

n
||Yi − Ẑ−iγi −XAiφAi ||

2
2 + λiω

T
i |γi|1, (2.4)

where ωi is a prespecified weight vector inversely proportional to a initial estimator of

γi and λi is the adaptive lasso tuning parameter. In order to keep consistent with

Chapter 3, we employ factor 1/n in equation 2.4 instead of 1/2 in Chen (2017). Since

the objective functions in equation 2.4 and Chen (2017) are essentially equivalent,

this change neither affects the solution of 2SPLS algorithm nor our theoretical results

here. Only the adaptive tunning parameters differ by a multiplicative term.
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Since there is no regularization imposed on φAi , we can first minimize the objective

function (2.4) for φAi and obtain its estimator,

φ̂Ai = (XT
AiXAi)

−1XT
Ai(Yi − Ẑ−iγi). (2.5)

Plugging it back into the objective function, we have a simplified objective function

at the second stage to obtain the estimate of regulatory effect γ̂i,

γ̂i = arg min
γi

{
1

n
||HiYi −HiẐ−iγi||22 + λiω

T
i |γi|1

}
, (2.6)

where Hi = In −XAi(X
T
AiXAi)

−1XT
Ai is a n× n projection matrix.

2.3.2 Motivation of Theoretical Analysis for Diverging Dimensions

Chen (2017) analyzed the theoretical properties of 2SPLS estimator for fixed

dimensions p, q and showed that the 2SPLS estimator enjoys the consistency properties

in both stages and the oracle variable selection property in the second stage. However,

in current large scale genetical genomics data era, the dimensions of data can be quite

large, which are usually comparable to the sample size or even large than the sample

size. Moreover, the simulation study in Chen (2017) also demonstrates that the 2SPLS

estimator can achieve good variable selection performance even when the dimensions

are comparable to the sample size. Therefore, it is more practical and interesting

to investigate whether the 2SPLS estimator still enjoys the consistency and variable

selection properties even for diverging dimension case, i.e., the dimensions p, q can

grow with the sample to infinity at an appropriate rate, e.g., polynomial rate.

2.4 Theoretical Properties

We are now ready to investigate the theoretical properties of 2SPLS estimator for

diverging dimensions. That is, per Assumption 1, both p and q may grow with sample

size n at the the same order o(n). We will first introduce Assumption 2 below for the

consistency property of the first stage. All the theoretical properties henceforth will

be described by a prespecified sequence fn = o(n) but fn →∞.
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Assumption 2. The singular values of the matrix I − Γ are positively bounded

from below and there exist positive constants c1 and c2 such that, for any vector

δ with ||δ||2 = 1, c1 ≥ n−1/2||Xδ||2 ≥ c2. Furthermore rni , ρ2
i ||πi||22/n = o(n)

We have the following properties on the ridge regression estimator of πi from the

first stage.

Theorem 2.4.1 Under Assumptions 1-2, for each ridge regression estimator π̂i, there

exist constants C1 and C2 such that, with probability at least 1− e−fn,

(a) ||π̂i − πi||22 ≤ C1 (rni ∨ q ∨ fn) /n;

(b) n−1||X(π̂i − πi)||22 ≤ C2 (rni ∨ q ∨ fn) /n.

Denote rmax = max1≤i≤p rni. Then the system-wise losses in both ||π̂i − πi||22 and

n−1||X(π̂i − πi)||22 have upper bounds in the same order as (rmax ∨ q ∨ fn)/n, with

probability at least 1 − e−fn+log(p). With q � p � nc for some c ∈ (0, 1), we can

henceforth select fn = O(nc) to dominate log(p) = O(1), i.e. fn − log(p)→∞, and

note that we can choose rmax = O(nc) as well, due to Assumption 2. Therefore the

prediction and estimation losses over the whole system at the first stage can be well

controlled.

Before we characterize the consistency of estimated regulatory effects γ̂i on the

second stage, we first introduce the following concept of restricted eigenvalue which is

used to present Assumption 3.

Definition 2.4.1 The restricted eigenvalue of a matrix A on an index set D is defined

as

φre(A,D) = min
||δDc ||1≤3||δD||1

||Aδ||2√
n||δD||2

. (2.7)

Denote Di = supp(γi). We make the following restricted eigenvalue assumption to

pave the way for the estimation consistency in Theorem 2.4.2.

Assumption 3. There exists a constant φ0 > 0 such that φre(HiXπ−i,Di) ≥ φ0.

Furthermore, ‖ωDi‖∞ ≤ ‖ωDci ‖−∞.
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We then have the consistency property of estimator γ̂i.

Theorem 2.4.2 (Estimation Consistency) Assume that, for each node i, the adaptive

tuning parameter is chosen as λi � ‖ωi‖−1
−∞||Γ||1 ||π||1

√
n−1(rmax ∨ q ∨ fn) log p and√

(rmax ∨ q ∨ fn)/n + c1||π||1 ≤
√
c2

1||π||21 + φ2
0

/
64C2|Di|. Denote hn = (||Γ||21 ∧

1)
[
(n
q
||π||21) ∧ (rmax ∨ q ∨ fn)

]
log p. Under Assumptions 1-3, there exist constants

C3 > 0 and C4 > 0 such that, with probability at least 1− e−C3hn+log(4pq) − e−fn+log(p),

each 2SPLS estimator γ̂i satisfies that

1. ||γ̂i − γi||1 ≤ 8C4
‖ωDi‖∞||π||1||Γ||1

φ20‖ωi‖−∞
|Di|

√
(rmax∨q∨fn) log p

n
,

2. n−1||HiẐ−i(γ̂i − γi)||22 ≤
C2

4‖ωDi‖
2
∞||π||21||Γ||21

φ20‖ωi‖2−∞
|Di| (rmax∨q∨fn) log p

n
.

Note that the system-wide upper bounds, defined by replacing |Di| with maxi |Di|,

can also be achieved with probability at least 1− e−C3hn+log(4pq)+log(p) − e−fn+2 log(p).

The available anchoring effects required by the identifiability assumption implies that

both ||π||1 and ||Γ||1 are positive. Therefore, we have hn/ log(p)→∞. As discussed

before, when the dimension p � q � nc, we can still choose fn = O(nc) to well control

the two losses at a sufficiently large probability.

Let Wi = diag{ωi} and Vi = (vij)(p−1)×(p−1) , 1
n
πT−iX

THiXπ−i. Further denote

WDi = diag{ωDi}, WDci = diag{ωDci }, Vi,21 = (vij)i∈Dci ,j∈Di , Vi,11 = (vij)i∈Di,j∈Di and

θi = ||V−1
i,11WDi ||∞. We then further introduce the Assumption 4 below for the selection

consistency theorem.

Assumption 4. There exists a ζ ∈ (0, 1) such that ||W−1
Dci
Vi,21V

−1
i,11WDi ||∞ < 1− ζ.

Theorem 2.4.3 (Selection Consistency) Suppose that Vi,11 is invertible, for each i,√
(rmax ∨ q ∨ fn)/n+c1||π||1 ≤

√
c2

1||π||21 + min(φ2
0/64, ζ(4− ζ)−1‖ωi‖−∞/θi)/(C2|Di|)

and min
j∈Di
|γij| > λiθi

(2−ζ) . Under Assumptions 1-4, there exists a 2SPLS estimator γ̂i

satisfying that, with probability at least 1−e−C5hn+log(4pq)−e−fn+log(p) for some constant

C5 > 0, D̂i = Di with D̂i = supp(γ̂i).
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Theorem 2.4.3 states that the true set of signals can be recovered with a large

probability approaching to one.

As shown by Hahn and Hausman (2002), the bias of traditional two-stage least

squares (2SLS) estimator in fixed dimension setting is inversely proportional to the

coefficient of determination R2 in the first stage regression. In other words, weak

instrumental effects may lead to large bias in parameter estimation or vice versa.

For our theoretical results, if we take a closer look at the restricted eigenvalue lower

bound φ0, we can provide a similar but rather non-formal interpretation for such

phenomena. Noting Assumption 3 and Definition 2.4.1 of restricted eigenvalue, we can

know that weaker instrument effects in π−i may lead to smaller lower bound value

φ0, and further larger loss for the bounds or bias in Theorem 2.4.2. Moreover, larger

instrumental effects in π may result in larger hn, and further larger probability for the

selection consistency in Theorem 2.4.3. However, due to regularization in both stages

of 2SPLS method, our bounds are intricate and exact interpretation of the strength of

instrumental effects on error bounds is not very straightforward.

2.5 Proofs of Theoretical Properties

Denote ξji, and εji as the j-th row of ξi and εi, respectively. Note that ξ =

ε(I − Γ)−1. Following Assumption 2, the singular values of (I − Γ) are positively

bounded from below by a constant c. Denote σ2
i = var(εji) and σ̃2

i = var(ξji). Then

σ̃i ≤ σpmax/c = max
1≤i≤p

(σi)/c.

2.5.1 Proof of Theorem 2.4.1

(a) From the ridge regression, we have the following closed form solution,

π̂i = (XTX + ρiIq)
−1XTYi = (XTX + ρiIq)

−1XTXπi + (XTX + ρiIq)
−1XTξi.

Note that

π̂i − πi = −ρi(XTX + ρiIq)
−1πi + (XTX + ρiIq)

−1XTξi = µ+ ATi ξi,
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where µ = −ρi(XTX + ρiIq)
−1πi and Ai = X(XTX + ρiIq)

−1. Then we have

||π̂i − πi||22 = µTµ︸︷︷︸
T1

+ 2µTATi ξi︸ ︷︷ ︸
T2

+ ξTi AiA
T
i ξi︸ ︷︷ ︸

T3

. (2.8)

Via the singular value decomposition of X, we can have the decomposition XTX =

PTUP, where P is a unitary matrix and matrix U is a diagonal matrix with non-

negative diagonal elements ui. Therefore,

(XTX + ρiIq)
−2 = PT (U + ρiIq)

−2P.

Following Assumption 2, λmin(XTX) > c2
2n and λmax(X

TX) < c2
1n, which implies

that ui � n for all i. Therefore,

T1 = ρ2
iπ

T
i PT (U + ρiIq)

−2Pπi =

q∑
i=1

ρ2
i a

2
ik

(ui + ρi)2
= O(ρ2

i ||πi||22/n2) = O(rni/n), (2.9)

where aik is the i-th element of ai = Pπi with ||ai||2 = ||πi||2.

For the term T2, we have that

E[T2] = 0, Var(T2) = 4σ̃2
iµ

TATi Aiµ.

By the classical Gaussian tail probability, we have

P (T2 ≤ t) ≥ 1− exp
{
−t2
/ (

8σ̃2
iµ

TATi Aiµ
)}
.

Note that,

µTATi Aiµ = ρ2
iπ

T
i PT (U+ρiIq)

−2U(U+ρiIq)
−2Pπi =

q∑
i=1

ρ2
iuia

2
ik

(ui + ρi)4
= O(ρ2

i ||πi||22
/
n3).

Letting t =
√

8σ̃2
iµ

TATi Aiµ(fn + log 2), we have, with probability at least 1− e−fn/2,

T2 = O(
√
rnifn/n). (2.10)

For the term T3, we can invoke the Hanson-Wright inequality (Rudelson et al.,

2013) to have, for some constant t1 > 0,

P(T3 ≤ E[T3] + t) ≥ 1− exp

{
−t1 min

(
t2

σ̃4
i ||AiATi ||2F

,
t

σ̃2
i ||AiATi ||op

)}
,
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where || · ||op = max
x 6=0
|| · x||2/||x||2 is the operator norm and || · ||F is the Frobenius

norm.

Since

AiA
T
i = X(XTX + ρiIq)

−2XT = XPT (U + ρiIq)
−2PXT ,

we have

E[T3] = σ̃2
i tr(AiA

T
i ) = σ̃2

i tr(X
TX(XTX + ρiIq)

−2)

= σ̃2
i tr(U(U + ρiIq)

−2) =

q∑
i=1

σ̃2
i ui

(ui + ρi)2
= O(σ̃2

i q/n),

||AiATi ||2F = tr(AiA
T
i AiA

T
i ) = tr(ATi AiA

T
i Ai)

= tr(P TU(U + ρiIq)
−2U(U + ρiIq)

−2) =

q∑
i=1

u2
i

(ui + ρi)4
= O(q

/
n2),

||AiATi ||op = O(λmax
(
XXT

) /
n2) = O(n−1).

Letting t = max
(√

σ̃4
i ||AiATi ||2F (fn + log 2)/t1, σ̃

2
i ||AiATi ||op(fn + log 2)/t1

)
, we ob-

tain that, with probability at least 1− e−fn/2,

T3 = O(q/n) +O(
√
fnq/n) +O(fn/n). (2.11)

Collecting the bounds in (2.9), (2.10), and (2.11), we conclude that there exist a

positive constant C1 such that, with probability at least 1− e−fn ,

||π̂i − πi||22 ≤ C1(rni ∨ q ∨ fn)/n.

(b) Similar to (2.8), we have

||X(π̂i − πi)||22 = µTXTXµ︸ ︷︷ ︸
T4

+ 2µTXTXATi ξi︸ ︷︷ ︸
T5

+ ξTi AiX
TXATi ξi︸ ︷︷ ︸
T6

.

For the term T4, we have

T4 = ρ2
ia

T
i U(U + ρiIq)

−1U(U + ρiIq)
−1ai

= ρ2
i

q∑
i=1

uia
2
ik

(ui + ρi)2
= O(ρ2

i ||πi||22
/
n) = O(rni).

(2.12)
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For the term T5, by the classical Gaussian tail inequality, we have

P (T5 ≤ t) ≥ 1− exp
{
−t2
/

(2Var(T5))
}
,

where

Var(T5) = 4σ̃2
iµ

TXTXATi AiX
TXµ

= 4σ̃2
i ρ

2
ia

T
i (U + ρiIq)

−1U(U + ρiIq)
−1U(U + ρiIq)

−1U(U + ρiIq)
−1ai

= 4σ̃2
i ρ

2
i

q∑
i=1

u3
i a

2
ik

(ui + ρi)4
= O(σ̃2

i ρ
2
i ||πi||22/n).

Taking t =
√

2Var(T5)(fn + log 2), we can obtain that, with probability at least

1− e−fn/2,

T5 = O(
√
rnifn). (2.13)

For the term T6, by the Hanson-Wright inequality, we have, for some constant

t2 > 0,

P(T6 ≤ E(T6) + t) ≥ 1− exp

{
−t2 min

(
t2

σ̃4
i ||AiXTXATi ||2F

,
t

σ̃2
i ||AiXTXATi ||op

)}
.

Similar to managing the term T3 in (a), we have

E[T6] = σ̃2
i tr(AiX

TXATi ) = σ̃2
i tr(U(U + ρiIq)

−1U(U + ρiIq)
−1)

= σ̃2
i

q∑
i=1

u2
i

(ui + ρi)2
= O(σ̃2

i q),

||AiXTXATi ||2F = tr(AiX
TXATi AiX

TXATi ) = tr(XTXATi AiX
TXATi Ai)

= tr(U(U + ρiIq)
−1U(U + ρiIq)

−1U(U + ρiIq)
−1U(U + ρiIq)

−1)

=

q∑
i=1

u4
i

(ui + ρi)4
= O(q),

||AiXTXATi ||op = ||X(XTX + ρiIq)
−1XTX(XTX + ρiIq)

−1XT ||op

= O(λmax

(
XXTXXT

) /
n2) = O(1).

Letting t = max

(√
σ̃4
i ||AiXTXATi ||2F (fn + log 2)/t2, σ̃

2
i ||AiXTXATi ||op(fn + log 2)/t2

)
,

we have that, with probability at least 1− e−fn/2,

T6 = O(q) +O(
√
q fn) +O(fn). (2.14)
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Collecting the bounds in (2.12), (2.13), and (2.14), we conclude that there exists a

positive constant C2 such that, with probability at least 1− e−fn ,

n−1||X(π̂i − πi)||22 ≤ C2(rni ∨ q ∨ fn)/n.

2.5.2 Proof of Theorem 2.4.2

Let’s define the composite quantity gn as

gn = C2 (rmax ∨ q ∨ fn) /n+ 2c1C2||π||1
√

(rmax ∨ q ∨ fn) /n.

We will first prove some lemmas, and then proceed to prove Theorem 2.4.2.

Lemma 2.5.1 Assume that, for each node i, the following inequality holds,√
rmax ∨ q ∨ fn

n
+ c1||π||1 ≤

√
c2

1||π||21 +
φ2

0

64C2|Di|
. (2.15)

Under Assumptions 1-3, we have φre(HiXπ̂−i,Di) ≥ φ0/2 with probability at least

1− e−fn+log(p).

Proof Note that the inequality (2.15) implies that gn ≤ φ20
64|Di| , then, for any index j1

and j2, we first investigate the bound of

(HiXπ̂j1)
T (HiXπ̂j2)− (HiXπj1)

T (HiXπj2)

= (π̂j1 − πj1)TXTHiX(π̂j2 − πj2)︸ ︷︷ ︸
T7

+ (π̂j1 − πj1)TXTHiXπj2︸ ︷︷ ︸
T8

+ (Xπj1)
THiX(π̂j2 − πj2)︸ ︷︷ ︸

T9

.

Note that λmax(Hi) = 1. By Theorem 2.4.1, we have, with probability at least

1− e−fn ,

|T7| ≤ ||HiX(π̂j1 − πj1)||2 × ||HiX(π̂j2 − πj2)||2

≤ λmax(Hi)× ||X(π̂j1 − πj1)||2 × ||X(π̂j2 − πj2)||2

= ||X(π̂j1 − πj1)||2 × ||X(π̂j2 − πj2)||2

≤ C2 (rmax ∨ q ∨ fn) .

(2.16)
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Following that ||Xπj2||2 ≤ c1

√
n||πj2||2, we have,

|T8| ≤ ||Xπj2 ||2 × ||Hj2X(π̂j1 − πj1)||2 ≤ c1

√
n||πj2||2 × ||X(π̂j1 − πj1)||2

≤ c1C2||π||1
√
n (rmax ∨ q ∨ fn).

(2.17)

Similarly, we have,

|T9| ≤ c1

√
n||πj1||2||X(π̂j2 − πj2)||2 ≤ c1C2||π||1

√
n (rmax ∨ q ∨ fn). (2.18)

Putting together the bounds in (2.16), (2.17), and (2.18), we have, with probability

at least 1− e−fn ,

|(HiXπ̂j1)
T (HiXπ̂j1)− (HiXπj2)

T (HiXπj2)| ≤ ngn. (2.19)

By definition, for any set Di and any vector δ, we have

||δ||21 ≤ (||δDci ||1 + ||δDi ||1)2 ≤ (3
√
|Di|||δDi ||2 +

√
|Di|||δDi ||2)2 = 16|Di|||δDi ||22.

We then have, with probability at least 1− e−fn+log(p),

|δT ((HiXπ̂−i)
T (HiXπ̂−i)− (HiXπ−i)

T (HiXπ−i))δ|
/

(n||δDi ||22)

≤ ||δ||21||δDi ||−2
2 max

i,j
|(HiXπ̂i)

T (HiXπ̂j)− (HiXπi)
T (HiXπj)|/n

≤ 16|Di| × gn ≤ 16|Di| × φ2
0

/
(64|Di|) = φ2

0/4,

which, along with Assumption 3, implies that φre(HiXπ̂−i,Di) ≥ φ0/2.

Lemma 2.5.2 (Basic Inequality) Let random vector

J i = 2n−1Ẑ
T

−iHiεi − 2n−1Ẑ
T

−iHi(Ẑ−i −Y−i)γi.

Under Assumption 1-2, for the event Ji(λi) =
{
||W−1

i J i||∞ ≤ λi/2
}

with λi and hn

being specified in Theorem 2.4.2, there exists a constant C3 > 0 such that

P(Ji(λi)) ≥ 1− e−C3hn+log(4qp) − e−fn+log(p),

Furthermore, concurring with the random vector J i, we have the following basic

inequality,

n−1||HiẐ−i(γ̂i − γi)||22 + λiω
T
i |γ̂i| ≤ λiω

T
i |γi|+ JTi |γ̂i − γi|. (2.20)
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Proof With Y−i = Xπ−i + ξ−i and Ẑ−i = Xπ̂−i, we have

J i = 2n−1Ẑ
T

−iHiεi − 2n−1Ẑ
T

−iHi(Ẑ−i −Y−i)γi

= 2n−1π̂T−iX
THiεi −

2

n
π̂T−iX

THi(Xπ̂−i −Xπ−i − ξ−i)γi

= 2n−1(π̂−i − π−i)TXTHiεi︸ ︷︷ ︸
T10

+ 2n−1πT−iX
THiεi︸ ︷︷ ︸

T11

+ 2n−1(π̂−i − π−i)TXTHiξ−iγi︸ ︷︷ ︸
T12

+ 2n−1πT−iX
THiξ−iγi︸ ︷︷ ︸

T13

−2n−1(π̂−i − π−i)TXTHiX(π̂−i − π−i)γi︸ ︷︷ ︸
T14

−2n−1πT−iX
THiX(π̂−i − π−i)γi︸ ︷︷ ︸

T15

.

Denote X = (X·1, X·2, . . . , X·q), then XT
·jX·j = n due to standardization. Let

σ2
pmax = max

1≤i≤p
σ2
i , then Var(XT

·jHiεi) = XT
·jHiX·jσ

2
i ≤ nσ2

i ≤ nσ2
pmax. Further let, for

some constant tλ > 0,

λi = tλ‖ωi‖−1
−∞||Γ||1||π||1

√
n−1(rmax ∨ q ∨ fn) log p.

By the Gaussian tail inequality, we have

P
(
||W−1

i T10||∞ ≥ λi/12
)

≤ P (||T10||∞ ≥ λi‖ωi‖−∞/12)

= P
(
||2n−1(π̂−i − π−i)TXTHiεi||∞ ≥ λi‖ωi‖−∞/12

)
≤ P

(
||(π̂−i − π−i)T ||∞ × ||2n−1XTHiεi||∞ ≥ λi‖ωi‖−∞/12

)
≤ P

(
||2n−1XTHiεi||∞ ≥ λi‖ωi‖−∞

/
(12δπ)

)
≤ q exp

{
−nλ2

i ‖ωi‖2
−∞
/

(1152σ2
pmaxδ

2
π)
}

= q · p−
n
q
t3||Γ||21||π||21

≤ q · p · p−
n
q
t3||Γ||21||π||21 ,

where t3 = t2λ
/ (

1152C1σ
2
pmax

)
and

δπ = max
i
||π̂i − πi||1

≤ max
i

√
q||π̂i − πi||2

=
√
C1q(rmax ∨ q ∨ fn)/n.



27

Similarly, letting t4 = tλ
/ (

1152σ2
pmax

)
, we have

P
(
||W−1

i T11||∞ ≥ λi
/

12
)

≤ P
(
||T11||∞ ≥ λi‖ωi‖−∞

/
12
)

= P
(
||2n−1πT−iX

THiεi||∞ ≥ λi‖ωi‖−∞
/

12
)

≤ P
(
||πT−i||∞||2n−1XTHiεi||∞ ≥ λi‖ωi‖−∞

/
12
)

≤ P
(
||2n−1XTHiεi||∞ ≥ λi‖ωi‖−∞||πT−i||−1

∞
/

12
)

≤ q exp
{
−nλ2

i ‖ωi‖2
−∞||πT−i||−2

∞
/

(1152σ2
pmax)

}
= q · p−t4||Γ||21(rmax∨q∨fn)

≤ q · p · p−t4||Γ||21(rmax∨q∨fn).

Let σ̃2
pmax = max

i
(σ̃2

i ), then, var(XT
·j1Hiξj2) ≤ nσ̃2

pmax. Furthermore, denote

t5 = tλ
/ (

1152C1σ̃
2
pmax

)
. For the term T12, we have

P
(
||W−1

i T12||∞ ≥ λi
/

12
)

≤ P
(
||T12||∞ ≥ λi‖ωi‖−∞

/
12
)

≤ P
(
||(π̂−i − π−i)T ||∞||2n−1XTHiξ−iγi||1 ≥ λi‖ωi‖−∞

/
12
)

≤ P
(
δπmax

j1,j2

∣∣2n−1XT
·j1Hiξj2

∣∣ ||γi||1 ≥ λi‖ωi‖−∞
/

12

)
≤ P

(
max
j1,j2

∣∣2n−1XT
·j1Hiξj2

∣∣ ≥ λi‖ωi‖−∞||γi||−1
1

/
(12δπ)

)
≤ qp exp

{
−nλ2

i ‖ωi‖2
−∞σ̃

−2
pmaxδ

−2
π ||γi||−2

1

/
1152

}
= qp1−t5||π||21n/q.

Letting t6 = tλ
/ (

1152σ̃2
pmax

)
, we similarly have

P
(
||W−1

i T13||∞ ≥ λi
/

12
)

≤ qp exp
{
−λ2

i σ̃
−2
pmax||πT−i||−2

∞ ||γi||−2
1

/
1152

}
= qp1−t6(rmax∨q∨fn).
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When tλ is sufficiently large, say tλ ≥ 12C2||π||−1
1

√
(rmax ∨ q ∨ fn)/(n log p), we

have

||W−1
i T14||∞ ≤ n−1‖ωi‖−1

−∞||γi||1max
j1,j2
|(π̂j1 − πj1)TXTHiX(π̂j2 − πj2)|

≤ n−1‖ωi‖−1
−∞||γi||1max

j1,j2
||HiX(π̂j1 − πj1)||2||HiX(π̂j2 − πj2)||2

≤ n−1‖ωi‖−1
−∞||γi||1max

j1,j2
λmax(Hi)||X(π̂j1 − πj1)||2||X(π̂j2 − πj2)||2

≤ n−1‖ωi‖−1
−∞||γi||1max

i,j
||X(π̂i − πi)||2||X(π̂j − πj)||2

≤ C2‖ωi‖−1
−∞||γi||1n−1(rmax ∨ q ∨ fn)

≤
{
λi
/

12
}
×
{

12C2t
−1
λ ||π||

−1
1

√
n−1(log p)−1(rmax ∨ q ∨ fn)

}
≤ λi

/
12.

Similarly, when tλ ≥ 12
√
C2/ log p,

||W−1
i T15||∞ ≤ 2n−1||γi||1||πT−i||∞‖ωi‖−1

−∞max
j1,j2
|XT
·j1HiX(π̂j2 − πj2)|

≤ 2n−1/2||γi||1||πT−i||∞‖ωi‖−1
−∞max

j2
||HiX(π̂j2 − πj2)||2

≤ 2n−1/2||γi||1||πT−i||∞‖ωi‖−1
−∞max

j2
||X(π̂j2 − πj2)||2

≤
{
λi
/

12
}
×
{

12t−1
λ

√
C2

/
log p

}
≤ λi

/
12.

Putting together all the above results with union bounds, we have, for some

constant C3 > 0,

P(Ji(λi)) ≥ 1− e−C3hn+log(4qp) − e−fn+log p.

Concurring with the random vector J i, we have the following inequality based on

the optimality of γ̂i,

n−1||HiYi −HiẐ−iγ̂i||2 + λiω
T
i |γ̂i| ≤ n−1||HiYi −HiẐ−iγi||2 + λiω

T
i |γi|. (2.21)

With HiYi = HiY−iγi + Hiεi, we also have

||HiYi −HiẐ−iγ̂i||22

= ||HiY−iγi + Hiεi −HiẐ−iγ̂i||22

= ||Hiεi||22 − 2εTi Hi(Ẑ−iγ̂i −Y−iγi) + ||HiẐ−iγ̂i −HiY−iγi||2

= ||Hiεi||22 − 2εTi Hi(Ẑ−iγ̂i −Y−iγi) + ||HiẐ−i(γ̂i − γi)||22

+||Hi(Ẑ−i −Y−i)γi||22 + 2γTi (Ẑ−i −Y−i)
THiẐ−i(γ̂i − γi), (2.22)
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||HiYi −HiẐ−iγi||22

= ||HiY−iγi + Hiεi −HiẐ−iγi||22

= ||Hiεi||22 + ||Hi(Ẑ−i −Y−i)γi||22 − 2εTi Hi(Ẑ−i −Y−i)γi. (2.23)

Combining the equations (2.21), (2.22), and (2.23), we obtain that

n−1||HiẐ−i(γ̂i − γi)||22 + λiω
T
i |γ̂i|

≤ λiω
T
i |γi|+

(
2

n
Ẑ
T

−iHiεi −
2

n
Ẑ
T

−iHi(Ẑ−i −Y−i)γi

)T
(γ̂i − γi)

= λiω
T
i |γi|+ JTi (γ̂i − γi),

which concludes the proof.

By the basic inequality we just proved above and condition on the event Ji(λi),

we have that

n−1||HiẐ−i(γ̂i − γi)||22 ≤ λiω
T
i |γi| − λiωTi |γ̂i|+ JTi (γ̂i − γi)

≤ λiω
T
Di |γDi | − λiω

T
Di |γ̂Di | − λiω

T
Dci
|γ̂Dci |

+JTDci (γ̂Dci ) + JTDi(γ̂Di − γDi)

≤ λiω
T
Di |γ̂Di − γDi | − λiω

T
Dci
|γ̂Dci |

+2−1λiω
T
Dci
|γ̂Dci |+ 2−1λiω

T
Di |γ̂Di − γDi |

≤ 3

2
λiω

T
Di |γ̂Di − γDi | −

1

2
λiω

T
Dci
|γ̂Dci |

≤ 3

2
λi‖ωDi‖∞||γ̂Di − γDi ||1 −

1

2
λi‖ωDci ‖−∞||γ̂Dci ||1,

which implies that

λi‖ωDci ‖−∞||γ̂Dci ||1 ≤ 3λi‖ωDi‖∞||γ̂Di − γDi||1. (2.24)

Note that ‖ωDi‖∞‖ωDci ‖
−1
−∞ ≤ 1 in Assumption 3, we have that

||γ̂Dci − γDci ||1

≤ 3‖ωDi‖∞‖ωDci ‖
−1
−∞||γ̂Di − γDi ||1 ≤ 3||γ̂Di − γDi||1. (2.25)
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On the other hand, following Lemma 2.5.1, we have, with C4 = 3tλ,

n−1||HiẐ−i(γ̂i − γi)||22 ≤
3

2
λi‖ωDi‖∞

√
|Di|||γ̂Di − γDi ||2

≤ 3

2
λi‖ωDi‖∞

√
|Di| × 2n−1/2φ−1

0 ||HiẐ−i(γ̂i − γi)||2

≤ 9φ−2
0 ‖ωDi‖2

∞|Di|λ2
i

= C2
4φ
−2
0 ‖ωi‖−2

−∞‖ωDi‖2
∞||π||21||Γ||21|Di|(rmax ∨ q ∨ fn) log p

/
n.

Employing the inequality (2.24) and ‖ωDi‖∞‖ωDci ‖
−1
−∞ ≤ 1 in Assumption 3, we have

||γ̂i − γi||1 ≤
(
3‖ωDi‖∞‖ωDci ‖

−1
−∞ + 1

)
||γ̂Di − γDi ||1

≤
(
3‖ωDi‖∞‖ωDci ‖

−1
−∞ + 1

)√
|Di|||γ̂Di − γDi ||2

≤
(
6‖ωDi‖∞‖ωDci ‖

−1
−∞ + 2

)√
|Di| × n−1/2||HiẐ−i(γ̂i − γi)||2φ−1

0

≤ 8C4 × ‖ωDi‖∞||π||1||Γ||1φ−2
0 ‖ωi‖−1

−∞

×|Di|
√

(rmax ∨ q ∨ fn) log p
/
n.

Since we condition on event Ji(λi), the above prediction and estimation bounds hold

with probability at least 1− e−C3hn+log(4qp) − e−fn+log p.

2.5.3 Proof of Theorem 2.4.3

Let V̂i = (v̂ij)(p−1)×(p−1) , 1
n
π̂T−iX

THiXπ̂−i. Further denote V̂i,21 = (v̂ij)i∈Dci ,j∈Di ,

V̂i,11 = (v̂ij)i∈Di,j∈Di . Then, the proof of Theorem 2.4.3 will be presented after the

following lemma.

Lemma 2.5.3 Assume that, for each node i, the following inequality holds.

√
(rmax ∨ q ∨ fn)/n+ c1||π||1

≤
√
c2

1||π||21 + min(φ2
0/64, ζ(4− ζ)−1‖ωi‖−∞/θi)/(C2|Di|). (2.26)

Under Assumptions 1-4, we have that, with probability at least 1− e−fn+log(p),

||W−1
Dci

(
V̂i,21V̂−1

i,11

)
WDi ||∞ ≤ 1− ζ/2.
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Proof Following Theorem 2.4.1, we have, with probability at least 1− e−fn+log(p),

n−1max
j1,j2

∣∣(HiXπ̂j1)
T (HiXπ̂j1)− (HiXπj2)

T (HiXπj2)
∣∣ ≤ gn.

The inequality (2.26) implies that θi‖ωDi‖−1
−∞|Di|gn ≤ ζ/(4− ζ), we have

||W−1
Di (V̂i,11 − Vi,11)||∞ ≤ ‖ωDi‖−1

−∞|Di|gn ≤ ζ
/
{(4− ζ)θi}.

Similarly we have that

||W−1
Dci

(V̂i,21 − Vi,21)||∞ ≤ ζ
/
{(4− ζ)θi}.

Applying the matrix inversion error bound in Horn and Johnson (2012), we obtain

||V̂−1
i,11WDi ||∞ ≤ ||V−1

i,11WDi ||∞ + ||V̂−1
i,11WDi − V−1

i,11WDi ||∞

≤ θi + θi||W−1
Di (V̂i,11 − Vi,11)||∞

(
1− θi||W−1

Di (V̂i,11 − Vi,11)||∞
)−1

θi

≤ θi(4− ζ)
/

(4− 2ζ).

Therefore,

||W−1
Dci

(
V̂i,21V̂−1

i,11 − Vi,21V−1
i,11

)
WDi ||∞

≤ ||W−1
Dci

(
V̂i,21 − Vi,21

)
(V̂−1

i,11)WDi ||∞

+||W−1
Dci
Vi,21V−1

i,11WDiW
−1
Di

(
V̂i,11 − Vi,11

)
(V̂−1

i,11)WDi ||∞

≤ ||W−1
Dci

(
V̂i,21 − Vi,21

)
||∞||(V̂−1

i,11)WDi ||∞

+||W−1
Dci
Vi,21V−1

i,11WDi ||∞||W−1
Di

(
V̂i,11 − Vi,11

)
||∞||(V̂−1

i,11)WDi ||∞

≤ ζ/2,

which implies that ||W−1
Dci

(V̂i,21V̂−1
i,11)WDi ||∞ ≤ 1− ζ/2.

By the optimality of γ̂i, it must satisfy the KKT condition as follows,

− 2n−1(HiẐ−i)
T (HiYi −HiẐ−iγ̂i) + λiWiαi = 0, (2.27)
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where ||αi||∞ ≤ 1 and αkjI[γ̂kj 6= 0] = sign(γ̂kj). Plug in the equation HiYi =

HiY−iγi + Hiεi, we can have that

HiYi −HiẐ−iγ̂i = HY−iγi + Hiεi −HiẐ−iγ̂i

= Hiεi + HiY−iγi −HiẐ−iγi + HiẐ−iγi −HiẐ−iγ̂i

= Hiεi −Hi(Ẑ−i −Y−i)γi −HiẐ−i(γ̂i − γi). (2.28)

Combining (2.27) and (2.28), we can get that

2V̂i(γ̂i − γi)− J i = −λiWiαi, (2.29)

where J i = 2n−1Ẑ
T

−iHiεi − 2n−1Ẑ
T

−iHi(Ẑ−i − Y−i)γi. For an estimator satisfying

γ̂Dci = γDci = 0, the above equation implies that 2V̂i,11(γ̂Di − γDi)− JDi = −λiWDiαDi ,

2V̂i,21(γ̂Di − γDi)− JDci = −λiWDciαDci .
(2.30)

Manipulating the above equations, we have that

γ̂Di − γDi = 2−1V̂−1
i,11(JDi − λiW T

DiαDi)

= 2−1V̂−1
i,11WDi(W

−1
Di JDi − λiαDi). (2.31)

Following the similar strategy in proving Lemma 2.5.2, we can prove that there exists

a constant C5 > 0 such that ||W−1
i J i||∞ ≤ λiζ

/
{(4 − ζ)} with probability at least

1− e−C5hn+log(4qp) − e−fn+log(p). Therefore, with ||αDi||∞ ≤ 1, we have that

||γ̂Di − γDi ||∞ ≤ 2−1||V̂−1
i,11WDi ||∞(||W−1

Di JDi ||∞ + λi)

≤ {θi(4− ζ)
/

(2− ζ)} × {4/(4− ζ)} × λi = λiθi
/

(2− ζ) ≤ min
j∈Di
|γkj|.

The above inequality implies that sign(γ̂Di) = sign(γDi).

Combining (2.30) and (2.31), we can also verify that

||W−1
Dci
V̂i,21(V̂i,11)−1(JDi − λiWDiαDi)−W−1

Dci
JDci ||∞

≤ ||W−1
Dci
V̂i,21(V̂i,11)−1WDi ||∞(||W−1

Di J i||∞ + λi) + ||W−1
Dci
JDci ||∞

≤ (1− ζ/2)(4/(4− ζ))λi + ζ/(4− ζ)λi = λi.

Therefore, there exists an estimator γ̂i satisfying the KKT condition (2.29) as well as

sign(γ̂i) = sign(γi) which implies D̂i = Di.
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3. DIFFERENTIAL ANALYSIS OF DIRECTED NETWORKS

3.1 Introduction

It is of great importance and interest to detect sparse structural differences or

differential structures between two cognate networks. For instance, the gene regulatory

networks of diseased and healthy individuals may differ slightly from each other (West

et al., 2012), and identifying the subtle difference between them helps design specific

drugs. Social networks evolve over times, and monitoring their abrupt changes may

serve as surveillance to economic stability or disease epidemics (Pianese et al., 2013;

Berkman and Syme, 1979). However, addressing such practical problems demands

differential analysis of large networks, calling for development of efficient statistical

method to infer and compare complex structures from high dimensional data. In this

paper, we focus on differential analysis of directed acyclic or even cyclic networks

which can be described by structural equation models (SEMs).

Many research efforts have been made towards construction of a single network

via SEM. For example, both Xiong et al. (2004) and Liu et al. (2008) employed a

genetic algorithm to search for the best SEM using different information criteria. Most

recently, Ni et al. (2016, 2018) employed a hierarchical Bayes approach to construct

the SEM based networks. However, these approaches were designed for small or

medium scale networks. For large-scale networks that the number of endogenous

variables p exceeds the sample size n, Cai et al. (2013) proposed a regularization

approach to fit a sparse model. Because this method suffers from incapability of

parallel computation, it may not be feasible for large networks. Logsdon and Mezey

(2010) proposed another penalization approach to fit the model in a node-wise fashion

which alleviates the computational burden. Most recently, Lin et al. (2015), Zhu

(2018), and Chen (2017) together with Chapter 2 each proposed a two-stage approach
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to construct SEMs, with different algorithms designed at different stages. As shown by

Chen (2017) and Chapter 2, such a two-stage estimation approach can have superior

performance compared to other methods and enjoys good consistency and variable

selection properties for both fixed and diverging dimensions.

To the best of our knowledge, no algorithm has been proposed to conduct differen-

tial analysis of directed networks characterized by SEM. While a naive approach would

separately construct each individual network and identify common and differential

structures, this approach fails to take advantage of the commonality as well as sparse

differential structures of the paired networks, leading to higher false positive rate or

lower power. In this light, we introduce a novel statistical method, specially in the

directed network regime, to conduct differential analysis of two networks via appropri-

ate reparameterization of the corresponding models. There are two major features

of our method. Firstly, we jointly model the commonality and difference between

two networks explicitly. This helps us to gain dramatic performance improvements

over the naive construction method. Secondly, benefiting from the flexible framework

of SEMs, we are able to conduct differential analysis of directed networks. Most

importantly, our method allow for both acyclic and cyclic networks. Compared to the

other methods, directionality and allowing for cyclicity are crucial for many network

studies, especially in constructing gene regulatory networks. As far as we know, our

method is the first work on differential analysis of directed networks that enjoys the

two promising features.

The rest of this chapter is organized as follows. We first introduce the model

and its identification assumption in Section 3.2.1 and Section 3.2.2, respectively.

Then, we present our proposed method of Reparameterization-Based Differential

analysis of directed Networks, termed as ReDNet, and its comprehensive theoretical

justification in Section 3.3. Section 3.4 includes our studies on simulated data showing

the superior performance of our method. Section 3.5 demonstrates a real data analysis

using the Genotype-Tissue Expression (GTEx) data sets. We conclude our paper with

brief discussion in Section 3.6.
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3.2 Structural Equation Models and Their Identifiability

Here, we first introduce the use of structural equation model and its identifiability

assumption, and then describe our proposed ReDNet method for identifying common

and differential structures between two directed networks, followed with its theoretical

justification.

3.2.1 The Model

We consider two networks, each describing the dependencies among a common set

of variables or nodes in a unique population. For each node i ∈ {1, 2, . . . , p} in network

k ∈ {1, 2}, its regulation structure can be represented by the following equation,

Y
(k)
i︸︷︷︸

node i

= Y
(k)
−i γ

(k)
i︸ ︷︷ ︸

regulation by others

+ X(k)φ
(k)
i︸ ︷︷ ︸

anchoring regulation

+ ε
(k)
i︸︷︷︸

error

, (3.1)

where Y
(k)
i is the i-th column of Y(k) and Y

(k)
−i is the submatrix of Y(k) by excluding

Y
(k)
i , with Y(k) a n(k) × p matrix. X(k) is a n(k) × q matrix with each column

standardized to have `2 norm
√
n(k). The vectors γ

(k)
i and φ

(k)
i encode the inter-nodes

and anchoring regulatory effects, respectively. The index set of non-zeros of φ
(k)
i is

known and denoted by A(k)
i , in other words, A(k)

i = supp(φ
(k)
i ). The support set A(k)

i

indexes the direct causal effects for the i-th node, and can be prespecified based on

the domain knowledge. However, the size of nonzero effect φ
(k)
i is unknown and can

be estimated. Further property of A(k)
i will be discussed in Section 3.2.2. All elements

of the error term are independently distributed following a normal distribution with

mean zero and standard deviation σ
(k)
i . We assume that the matrix X(k) and the

error term ε
(k)
i are independent of each other. However Y

(k)
−i and ε

(k)
i may correlate

with each other. Y(k) and X(k) include observed endogenous variables and exogenous

variables, respectively.
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By combining the p linear equations in (3.1), we can rewrite the two sets of linear

equations in a systematic fashion as two structural equation models below,Y(1) = Y(1)Γ(1) + X(1)Φ(1) + ε(1),

Y(2) = Y(2)Γ(2) + X(2)Φ(2) + ε(2),

(3.2)

where each matrix Γ(k) is p× p with zero diagonal elements and represents the inter-

nodes regulatory effects in the corresponding network. Specifically, excluding i-th

element (which is zero) from the i-th column of Γ(k) leads to γ
(k)
i . The q × p matrix

Φ(k) contains the anchoring regulatory effects and its i-th column is φ
(k)
i . Each error

term ε(k) is n(k) × p and has the error term ε
(k)
i as its i-th column.

Figure 3.1 gives an illustrative example of networks with three nodes and one

anchoring regulation per node for the structural equations in (3.2). For example, with

anchoring regulation on nodes Y1, X1 has a direct effect on node Y1 but indirect effects

on node Y2 and Y3 via Y1.

(a) Network I (b) Network II (c) Differential

Figure 3.1. An Illustrative Example of Differential Network Between
Two Directed Networks. The error term for each node is not shown for
simplicity.

For each network k, its full model in (3.2) can be further transformed into the

reduced form as follows,

Y(k) = X(k)π(k) + ξ(k), (3.3)
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where the q × p matrix π(k) = Φ(k)(I − Γ(k))−1 and the transformed error term

ξ(k) = ε(k)(I− Γ(k))−1. The reduced model (3.3) reveals variables observed in X(k) as

instrumental variables which will be used later to correct for the endogeneity issue.

Otherwise, directly applying any regularization based regression to equation (3.1) will

result in non-consistent or suboptimal estimation of model parameters (Fan and Liao,

2014; Chen, 2017; Lin et al., 2015; Zhu, 2018).

3.2.2 The Model Identifiability

Here we introduce an identifiability assumption which helps to infer an identifiable

system (3.2) from available data. We assume that each endogenous variable is directly

regulated by a unique set of exogenous variables as long as it regulates other endogenous

variables. That is, any regulatory node needs at least one anchoring exogenous variable

to distinguish the corresponding regulatory effects from association. Explicitly let

M(k)
i0 denote the index set of endogenous variables which either directly or indirectly

regulate the i-th endogenous variable in the k-th network. Thus, A(k)
i ⊆M

(k)
i0 . The

model identification assumption can be stated in the below.

Assumption 1. For any i = 1, · · · , p, A(k)
i 6= ∅ if there exists j such that i ∈ M(k)

j0 .

Furthermore, A(k)
i ∩ A

(k)
j = ∅ as long as i 6= j.

This assumption is slightly less restrictive than the one employed by Chen (2017),

and is a sufficient condition for model identifiability as it satisfies the rank condition

in Schmidt (1976). It can be further relaxed to allow nonempty A(k)
i ∩A

(k)
j as long as

each regulatory node has its own unique anchoring exogenous variables.

The above identifiability assumption not only identifies γ
(k)
i in model (3.1) from

π(k) in model (3.3) but also helps reveal regulatory directionality of the networks.

As illustrated in Figure 1.3 of Section 1.2.2, the additional anchoring variables break

the “Markov Equivalence” and recover the directionality between nodes. In other

words, the known set A(k)
j serves as external prior knowledge which helps recover the

directionality. In our two-stage construction of the differential network, the additional
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anchoring variables serve as instrumental variables in the calibration stage, since

they are independent of the error terms. The present direct causal effects from X(k)

together with Assumption 1 differentiates our approach from the classical graphical

models (Meinshausen and Bühlmann, 2006; Yuan and Lin, 2007) or the PC algorithm

approaches (Spirtes et al., 2000; Kalisch and Bühlmann, 2007), since those methods

either cannot recover edge directions or do not allow for cyclic structure due to lack

of additional direct causal effects from X(k).

3.3 Two-Stage Differential Analysis of Networks

Here we intend to develop a regularized version of the two-stage least squares.

We first screen for exogenous variables and conduct `2 regularized regression of each

endogenous variable against screened exogenous variables to obtain its good prediction

which helps address the endogeneity issue in the following stage. At the second stage,

we reparametrize the model to explicitly model the common and differential regulatory

effects and identify them via the adaptive lasso method.

3.3.1 The Calibration Stage

To address the endogeneity issue, we aim for good prediction of each endogenous

variable following the reduced model in (3.3). However, in the high-dimensional setting,

the dimension q of X(k) can be much larger than the sample size n(k), and any direct

prediction with all exogenous variables may not produce consistent prediction. Note

that both Lin et al. (2015) and Zhu (2018) proposed to conduct variable selection with

lasso or its variants and predict with selected exogenous variables. We here instead

propose to first screen for exogenous variables with ISIS (Fan and Lv, 2008), and then

apply ridge regression to predict the endogenous variables with screened exogenous

variables. While variable screening is more robust and provides higher coverage of

true variables than variable selection, its combination with ridge regression puts
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less computational burden. Furthermore, as shown by Chen (2017), ridge regression

performs well in predicting the endogenous variables.

LetM(k)
i denotes the selected index set for the i-th node in the k-th network from

the variable screening which reduces the dimension from q to d = |M(k)
i |. The Sure

Independence Screening Property in Fan and Lv (2008) can be directly applied in our

case to guarantee that M(k)
i covers the true set M(k)

i0 with a large probability. Here,

We state Assumption 2 and 3 by recollecting the conditions in Fan and Lv (2008) to

pave that way for Theorem 3.3.1 for sure screening.

Denote Y
(k)
ji , X

(k)
jl , ξ

(k)
ji , and π

(k)
ji as the j-th row of Y

(k)
i , X

(k)
l , ξ

(k)
i , and π

(k)
i ,

respectively. Further denote Σ(k) the variance-covariance matrix of the q random

variables in observing X(k). For any index subet M⊂ {1, 2, · · · , q}, denote Σ
(k)
M the

variance-covariance matrix of the random variables in observing X
(k)
M .

Assumption 2. n(1) and n(2) are at the same order, i.e., nmin = min(n(1), n(2)) �

n(1) � n(2), and p � q.

Assumption 3. For each node i in network k ∈ {1, 2},

(a) Each ξ
(k)
ji is normally distributed with mean zero. (Σ(k))−1/2X(k)T is observed

from a spherically symmetric distribution, and has the concentration prop-

erty: there exist some constants c̃
(k)
1 , c̃

(k)
2 > 1 and c̃

(k)
3 > 0 such that, for

any index subset M ⊂ {1, 2, · · · , q} with |M| ≥ c̃
(k)
1 n(k), the eigenvalues of

|M|−1X
(k)
M (Σ

(k)
M )−1/2(Σ

(k)T
M )−1/2X

(k)T
M are bounded either from above by c̃

(k)
2 or

from below by 1/c̃
(k)
2 with probability at least 1− exp(−c̃(k)

3 n(k)).

(b) var(Y
(k)
ji ) = O(1). For some κ(k) ≥ 0, c̃

(k)
4 > 0, and c̃

(k)
5 > 0,

min
l∈M(k)

i0

∣∣∣π(k)
li

∣∣∣ ≥ c̃
(k)
4

(n(k))κ(k)
and min

l∈M(k)
i0

∣∣∣cov
(

(π
(k)
li )−1Y

(k)
ji , X

(k)
jl

)∣∣∣ ≥ c̃
(k)
5 .

(c) log(q) = O((n(k))c̃) for some c̃ ∈ (0, 1− 2κ(k)).

(d) There are some τ (k) ≥ 0 and c̃
(k)
6 > 0 such that λmax(Σ(k)) ≤ c̃

(k)
6 (n(k))τ

(k)
.

Theorem 3.3.1 Under Assumption 1, 2 and 3 which restrict the positive pairs τ (k)

and κ(k). Denote τ̃ = max{τ (1), τ (2)} and κ̃ = max{κ(1), κ(2)} , then there exists some
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θ ∈ (0, 1 − 2κ̃ − τ̃) such that, when d = |M(k)
i | = O((nmin)1−θ), we have, for some

constant C > 0,

P(M(k)
i0 ⊆M

(k)
i ) = 1−O

(
exp

{
−C(n(k))1−2κ̃

log(n(k))

})
.

Hereafter we assume thatM(k)
i successfully covers the true setM(k)

i0 for convenience

of stating the following assumptions and theorems. That is, the probability of successful

screening is not incorporated into our assumptions or theorems in the below.

For node i in network k, let X
(k)

M(k)
i

denotes the submatrix of X(k) with prescreened

columns which are indexed by M(k)
i . With π

(k)
i denoting the i-th column of π(k), the

subvector of π
(k)
i indexed by M(k)

i will be simply denoted by π
(k)

M(k)
i

without confusion.

Such simplified notations will apply to other vectors and matrices in the rest of this

paper.

With d pre-screened exogenous variables, we can apply ridge regression to the

model

Y
(k)
i = X

(k)

M(k)
i

π
(k)

M(k)
i

+ ξ
(k)
i , (3.4)

to obtain the estimates π̂
(k)

M(k)
i

of π
(k)

M(k)
i

, and predict Y
(k)
i with Ŷ

(k)
i = X

(k)

M(k)
i

π̂
(k)

M(k)
i

.

3.3.2 The Construction Stage

With known A(k)
i , we can rewrite model (3.1) as,

Y
(k)
i = Y

(k)
−i γ

(k)
i + X

(k)

A(k)
i

φ
(k)

A(k)
i

+ ε
(k)
i . (3.5)

Before we use the predicted Y(k) to identify both common and differential regulatory

effects across the two networks, we first reparametrize the model so as to define

differential regulatory effects explicitly,

β−i =
γ

(1)
i − γ

(2)
i

2
, β+

i =
γ

(1)
i + γ

(2)
i

2
. (3.6)

Here β−i and β+
i represent the differential and average regulatory effects between

the two networks, respectively. We need compare β+
i with β−i to identify the common
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regulatory effects, that is, effects of all regulations with nonzero values in β+
i but

zero values in β−i .

Note that other differential analysis of networks may suggest a different reparametriza-

tion to identify common and differential regulatory effects. For example, in a typical

case-control study, we may expect few structures in the case network mutated from

the control network. While we are interested in identifying differential structures in

the case network, we may be also interested in identifying baseline network structures

in the control network. Therefore we may reparametrize the model with the regulatory

effects in the control network, as well as the differential regulatory effects defined as

the difference of regulatory effects between case and control networks. We want to

point out that the method described here still applies and we can also derive similar

theoretical results as follows.

Following the reparametrization in (3.6), we can rewrite model (3.5) as follows,Y
(1)
i

Y
(2)
i

 =

Y
(1)
−i Y

(1)
−i

Y
(2)
−i −Y

(2)
−i

β+
i

β−i

+

X
(1)

A(1)
i

0

0 X
(2)

A(2)
i


φ(1)

A(1)
i

φ
(2)

A(2)
i

+

ε(1)
i

ε
(2)
i

 . (3.7)

Denote

Yi =

Y
(1)
i

Y
(2)
i

 , Z−i =

Y
(1)
−i Y

(1)
−i

Y
(2)
−i −Y

(2)
−i

 ,

βi =

β+
i

β−i

 , εi =

ε(1)
i

ε
(2)
i

 .

Further define the projection matrix for each network,

H
(k)
i = In(k) −X

(k)

A(k)
i

(
X

(k)T

A(k)
i

X
(k)

A(k)
i

)−1

X
(k)T

A(k)
i

.

Applying the projection matrix Hi = diag{H(1)
i ,H

(2)
i } to both sides of model (3.7),

we can remove the exogenous variables from the model and obtain,

HiYi = HiZ−iβi + Hiεi. (3.8)
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Algorithm 2 Reparameterization-Based Differential Analysis of Network (ReDNet)

Input: For k ∈ {1, 2}, Y(k), X(k), index set A(k)
i for each i ∈ {1, 2, . . . , p}. Set

d = O(n1−θ
min ).

for i→ 1 to p do

Stage 1.a. Screen for a sub-matrix X
(k)

M(k)
i

of X(k) for model Y
(k)
i versus X(k) and

set X
(k)

M(k)
i

= X(k) if q ≤ n(k).

Stage 1.b. Apply ridge regression to regress Y
(k)
i against X

(k)

M(k)
i

to obtain prediction

Ŷ
(k)

i .

end for

for i→ 1 to p do

Stage 2. Apply adaptive lasso to regress HiYi against HiẐ−i to obtain coefficients

estimate β̂i.

end for

Output: The common and differential regulatory effects in β̂1, . . . , β̂p.

To address the endogeneity issue, we predict Z−i by replacing its component Y
(k)
−i

with the predicted value Ŷ
(k)
−i from the previous stage, and then regressing HiYi

against HiẐ−i with the adaptive lasso to consistently estimate βi. That is, an optimal

βi can be obtained as,

β̂i = arg min
βi

{
1

n
||HiYi −HiẐ−iβi||22 + λiω

T
i |βi|1

}
,

where |βi|1 is a vector taking element-wise absolute values of βi and ωi is the adaptive

weights whose components are inversely proportional to the components of an initial

estimator of βi, and λi is the adaptive tuning parameter.

The two-stage algorithm is summarized in Algorithm 2. With the estimator β̂i

from the second stage, we can accordingly obtain estimators γ̂
(1)
i = β̂

+

i + β̂
−
i and

γ̂
(2)
i = β̂

+

i − β̂
−
i .

As shown in Theorem 3.3.1, a screening method like ISIS (Fan and Lv, 2008) can

identifyM(k)
i with size d = O(n1−θ

min ) which covers the true setM(k)
i0 with a sufficiently
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large probability. For the sake of simplicity and without loss of generality, in the

following we assume M(k)
i0 ⊆M

(k)
i .

We first investigate the consistency of predictions from the first stage. The

consistency properties will be characterized by prespecified sequences f (k) = o(n(k))

but f (k) →∞ as n(k) →∞. We also denote fmax = f (1) ∨ f (2), i.e., max{f (1), f (2)}.

The following assumption is required for the consistency properties.

Assumption 4. For each network k, the singular values of I − Γ(k) are positively

bounded from below, and there exist constants c
(k)
1 , c

(k)
2 > 0 such that, for each

node i, max||δ||2=1(n(k))−1/2||X(k)

M(k)
i

δ||2 ≤ c
(k)
1 and min||δ||2=1(n(k))−1/2||X(k)

M(k)
i

δ||2 ≥ c
(k)
2 .

Furthermore, the ridge parameter λ
(k)
i = o(nmin).

For the ease of exposition, we will omit the subscript M(k)
i from X

(k)

M(k)
i

henceforth,

and accordingly use π
(k)
i and π̂

(k)
i which include the zero components of excluded

predictors.

Denote X = diag{X(1),X(2)}, and

Z =

Y(1) Y(1)

Y(2) −Y(2)

 , Π =

π(1) π(1)

π(2) −π(2)

 .

We use Πj to denote the j-th column of the matrix Π and π
(k)
j to denote the j-th

column of the matrix π(k). We also use Ẑ and Π̂ to denote the prediction of Z and

estimate of Π, respectively. Note that, with the ridge parameter λ
(k)
i for the ridge

regression taken on node i in network k, we have r
(k)
i = (λ

(k)
i )2||π(k)

i ||22/n(k) and hence

define rmax = max
1≤i≤p

[r
(1)
i ∨ r

(2)
i ]. Then the estimation and prediction losses at the first

stage can be summarized in the following theorem.

Theorem 3.3.2 Under Assumptions 1-4, for each j ∈ {1, 2, . . . , 2p}, there will exist

some constant C1 and C2 such that, with probability at least 1− e−f (1) − e−f (2),

1. ||Π̂j −Πj||22 ≤ C1 (d ∨ rmax ∨ fmax)
/
nmin;

2. ||X(Π̂j −Πj)||22 ≤ C2 (d ∨ rmax ∨ fmax).
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Note that these two sets of losses can be controlled by the same upper bounds across

the two networks with probability at least 1− e−f (1)+log (p) − e−f (2)+log (p). Therefore,

f (k) can be selected such that f (k) − log(p) → ∞, which will provide a probability

approaching one to have the network-wide losses approaching zero.

Furthermore, the dimension p can be divergent up to an exponential order, say

p = en
c
min for some c ∈ (0, 1). We can set f (1) = f (2) = n

(1+c)/2
min and, apparently,

f (k) = o(nmin) but f (k) − log(p) = n
(1+c)/2
min − ncmin →∞.

Since the ridge parameter λ
(k)
i = o(nmin), r

(k)
i = ||π(k)

i ||22 × o(nmin). Therefore,

when all ||π(k)
i ||2 are uniformly bounded, we have rmax = o(nmin). Otherwise, the

ridge parameter λ
(k)
i should be adjusted accordingly to control both estimation and

prediction losses. The proof is detailed in Section 3.7.

For the i-th node, we use Si to denote the non-zero indices of βi, i.e., Si = supp(βi).

Further denote

Π−i =

π(1)
−i π

(1)
−i

π
(2)
−i −π

(2)
−i

 .

As in Bickel et al. (2009), we utilize again the restricted eigenvalue defined in

Definition 2.4.1 to impose the following restricted eigenvalue condition on the design

matrix in (3.8).

Assumption 5. There exists a constant φ0 > 0 such that φre(HiXΠ−i,Si) ≥ φ0.

Furthermore, ‖ωSi‖∞ ≤ ‖ωSci ‖−∞.

Let n = n(1) + n(2), cmax = c
(1)
1 ∨ c

(2)
1 , and B = [β1,β2, . . . ,βp]. The matrix norms

|| · ||1 and ‖ · ‖∞ are the maximum of column and row sums of absolute values of the

matrix, respectively. For a vector, we define ‖ · ‖∞ and ‖ · ‖−∞ to be the maximum

and minimum absolute values of its components. Then, we can derive the following

loss bounds for the estimation and prediction at the second stage on the basis of

Theorem 3.3.2.

Theorem 3.3.3 Suppose that, for node i, the adaptive lasso at the second stage

takes the tuning parameter λi � ‖ωi‖−1
−∞||B||1||Π||1

√
(d ∨ rmax ∨ fmax) log(p)

/
nmin,
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and
√

(d ∨ rmax ∨ fmax)
/
n + cmax||Π||1 ≤

√
c2

max||Π||21 + φ2
0/(64C2|Si|). Let hn =

(||B||21∧1) × ((n||Π||21/d) ∧ (d ∨ rmax ∨ fmax)) log(p). Under Assumptions 1-5, there ex-

ist positive constants C3 and C4 such that, with probability at least 1−3e−C3hn+log(4pq)−

e−f
(1)+log(p) − e−f (2)+log(p),

1. Estimation Loss:

||β̂i − βi||1 ≤ 8C4|Si|×

‖ωSi‖∞||B||1||Π||1
φ2

0‖ωi‖−∞

√
(d ∨ rmax ∨ fmax) log(p)

nmin

;

2. Prediction Loss:

1

n
||HiẐ−i(β̂i − βi)||22 ≤ C2

4 |Si|×

‖ωSi‖2
∞||B||21||Π||21
φ2

0‖ωi‖2
−∞

(d ∨ rmax ∨ fmax) log(p)

nmin

.

The main idea of the proof is to take advantage of the commonly used restricted

eigenvalue condition and irrepresentable condition for lasso-type estimator. However,

the design matrix in our case includes predicted values instead of the original one, which

complicates the proof. We claim that the restricted eigenvalue and irrepresentable

condition still hold for the predicted design matrix as long as the estimation and

prediction losses are well controlled at the calibration stage. The proof is detailed in

Section 3.7.

The available anchoring regulators as required by Assumption 1 implies that both

||B||1 > 0 and ||Π||1 > 0, so hn/ log(p)→∞. That is, these loss bounds hold with a

sufficient large probability with properly chosen f (k).

The two sets of losses in Theorem 3.3.3 can also be controlled across the whole

system by the same upper bounds defined by replacing |Si| with smax = maxi |Si|,

with probability at least 1−3e−C3hn+log(4q)+2 log(p)−e−f (1)+2 log(p)−e−f (2)+2 log(p). When

both p and q are divergent up to an exponential order, say p � q � en
c
min for some

c ∈ (0, 1), we can set f (1) = f (2) = n
(1+c)/2
min to guarantee the bounds at a sufficient large
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probability. However, the bounds are determined by (d ∨ rmax ∨ fmax) log(p) which is

o(nmin) only when c < min(1/3, θ). Therefore, if smax also diverges up to nc̃min with

c̃ < min(1/4, θ/2, 1−θ), the losses can be well controlled for c < min((1−4c̃)/3, θ−2c̃).

Note that, with properly chosen f (1) and f (2), these losses are well controlled at

o(nmin), revealing the fact that we need to have sufficient observations for each network

for consistent differential analysis of the two networks.

LetWi = diag{ωi}. Denote Ii = n−1ΠT
−iX

THiXΠ−i and Îi = n−1Π̂
T

−iX
THiXΠ̂−i.

Let Ii,11 be a submatrix of Ii with rows and columns both indexed by Si, and Ii,21

be a submatrix of Ii with rows and columns indexed by Sci and Si, respectively. Îi,11

and Îi,21 are similarly defined from Îi. We further define the minimal signal strength

bi = max
j∈Si
|βij| and ψi = ||I−1

i,11WSi ||∞.

The following assumption, reminiscent of the adaptive irrepresentable condition in

Huang et al. (2008), helps investigate the selection consistency of regulatory effects.

Assumption 6. (Weighted Irrepresentable Condition) There exists a constant τ ∈

(0, 1) such that ||W−1
Sci
Ii,21I−1

i,11WSi||∞ < 1− τ .

Theorem 3.3.4 (Variable Selection Consistency) Denote Ŝi = supp(β̂i). Suppose

that, for node i, Îi,11 is invertible, bi > λiψi/(2 − τ), and
√

(d ∨ rmax ∨ fmax)
/
n +

cmax||Π||1 ≤
√
c2

max||Π||21 + min(φ2
0

/
64, τ(4− τ)−1‖ωi‖−∞

/
ψi)
/

(C2|Si|). Under As-

sumptions 1-6, there exists some constant C5 > 0 such that Ŝi = Si with probability at

least 1− 3e−C5hn+log(4pq) − e−f (1)+log(p) − e−f (2)+log(p).

The above theorem implies that our proposed method can identify both common

and differential regulatory effects between the two networks with a sufficiently large

probability. On the other hand, the assumed weighted irrepresentable condition means

that the true signal should not correlate too much with irrelevant covariates so as

to conduct a successful differential analysis of networks. The corresponding proof is

displayed in Section 3.7.
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3.4 Simulation Study

Here we report on experiments with synthetic data to show the superior performance

of our method. We compare the method ReDNet to a naive differential analysis

which employs the 2SPLS method proposed by Chen (2017) to construct each network

separately. We refer to this method as Naive. Note that the 2SPLS method is

modified here by applying ISIS to screen exogenous variables before conducting ridge

regression to predict endogenous variables, making the naive differential analysis

comparable to ReDNet.

Synthetic data are generated from both acyclic and cyclic networks involving 1000

endogenous variables, with the sample size from 200 to 300. Each network includes

a subnetwork of 50 endogenous variables, whose shared and differential structures

will be investigated against its pair. On average, each endogenous variable has one

regulatory effect in a sparse subnetwork, and three regulatory effects on average in a

dense network. While each pair of subnetworks in comparison share many identical

regulatory effects, they also share five regulatory effects but with opposite signs, and

each network has five unique regulatory effects (so the total number of differential

regulatory effects is 15). The nonzero regulatory effects were independently sampled

from a uniform distribution over the range [−0.8,−0.3] ∪ [0.3, 8]. While assuming

each node is directly regulated by one exogenous variable, each exogenous variable

was sampled from discrete values 0, 1 and 2 with probabilities 0.25, 0.5 and 0.25,

respectively. All of the noise terms were independently sampled from the normal

distribution N(0, 0.12). We also conducted differential analysis between two networks

with both X(1) 6= X(2) and X(1) = X(2) as in practice the paired networks may or may

not share identically valued exogenous variables.

We evaluate the the performance in terms of the false discovery rate (FDR), power

and Matthews correlation coefficient (MCC) (Matthews, 1975). Let TP, TN, FP and



48

M
a
tt
h
e
w

s
 c

o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
t(

M
C

C
)

A

S

200

C

S

200

A

D

200

C

D

200

A

S

300

C

S

300

A

D

300

C

D

300

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

ReDNet,Diff
Naive,Diff
ReDNet,Common
ReDNet,Average
Naive,Average

(a) X1 6= X2, MCC

M
a
tt
h
e
w

s
 c

o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
t(

M
C

C
)

A

S

200

C

S

200

A

D

200

C

D

200

A

S

300

C

S

300

A

D

300

C

D

300

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

ReDNet,Diff
Naive,Diff
ReDNet,Common
ReDNet,Average
Naive,Average

(b) X1 = X2, MCC

Figure 3.2. Performance of ReDNet Versus the Naive Approach which
Independently Constructs Two Networks. The results average over 100
synthetic data sets for different types of networks, with letters A, C,
S, D in the x-axis denoting Acyclic, Cyclic, Sparse and Dense networks,
respectively. “Diff”, “Common” and “Average” summarize the performance
on differential, common and average regulatory effects, respectively. MCC
of the naive approach are undefined due to its failure to identify common
effects. The sample size n(2) = n(2) is either 200 or 300.
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Figure 3.3. Performance of ReDNet Versus the Naive Approach which
Independently Constructs Two Networks. The results average over 100
synthetic data sets for different types of networks, with letters A, C,
S, D in the x-axis denoting Acyclic, Cyclic, Sparse and Dense networks,
respectively. “Diff”, “Common” and “Average” summarize the performance
on differential, common and average regulatory effects, respectively. FDR
of the naive approach are undefined due to its failure to identify common
effects. The sample size n(2) = n(2) is either 200 or 300.
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(b) X1 = X2, Power

Figure 3.4. Performance of ReDNet Versus the Naive Approach which
Independently Constructs Two Networks.. The results average over 100
synthetic data sets for different types of networks, with letters A, C,
S, D in the x-axis denoting Acyclic, Cyclic, Sparse and Dense networks,
respectively. “Diff”, “Common” and “Average” summarize the performance
on differential, common and average regulatory effects, respectively. Power
of the naive approach are always zero due to its failure to identify common
effects. The sample size n(2) = n(2) is either 200 or 300.
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FN denote the numbers of true positives, true negatives, false positives and false

negatives, respectively. MCC is defined as,

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.

Here we refer nonzero effects as positives and zero effects as negatives. The MCC

varies from 0 to 1 with larger values implying better variable selection.

In each differential analysis, the ridge regression employed the generalized cross val-

idation (Golub et al., 1979) to select the ridge parameter, and the adaptive lasso used

10-fold cross-validation to choose its tuning parameter. Following the recommendation

by Fan and Lv (2008), (n(k))0.9 variables are screened by ISIS. The algorithm is imple-

mented in R based on packages SIS (Saldana and Feng, 2018) and parcor (Kraemer

et al., 2009).

For each type of networks, 100 synthetic data sets were generated, and the differen-

tial analysis results are summarized in Figure 3.2, Figure 3.3 and Figure 3.4. Overall,

both ReDNet and the naive approach maintain high power in identifying differential

regulatory effects. However, the naive approach fails to identify common regulatory

effects and tends to report FDR over 80% on differential regulatory effects. Such a

tendency to report false positives by the naive approach results in lower MCC, with

dramatic decrease in identifying differential regulatory effects.

While both methods performed stably across networks with X(1) 6= X(2) and

X(1) = X(2), ReDNet performed better in identifying differential regulatory effects

from dense networks than sparse networks in terms of FDR and MCC. However,

the naive approach tends to report even higher FDR and so much lower MCC when

identifying differential regulatory effects from dense networks. Nonetheless, the naive

approach fails to identify common regulatory effects for each type of networks so the

corresponding FDR and MCC are undefined.

We also calculated the standard errors (SE) of the reported FDR, power, and MCC

over 100 synthetic data sets. They are all small with most at the scale of thousandth

and others at the scale of hundredth as shown in Figure 3.5 and 3.6. Therefore,
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Figure 3.5. Boxplots of the Stardard Errors (SE) of the Reported FDR,
Power and MCC for ReDNet Across Different Settings as Stated in
Figure 3.2, 3.3 and 3.4.
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Figure 3.6. Boxplots of the Stardard Errors (SE) of the Reported FDR,
Power and MCC for Naive Methods Across Different Settings as Stated
in Figure 3.2, 3.3 and 3.4.
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ReDNet performed robustly in differential analysis of networks, and the 2SPLS

approach by Chen (2017) performed also robustly in constructing single networks.

3.5 The Genotype-Tissue Expression (GTEx) Data

(a) (b)

(c) (d)

Figure 3.7. The Top Five Differential Subnetworks of Gene Regulation
Identified by ReDNet from GTEx Data. The dotted, dashed, and solid
lines imply regulations constructed in over 70%, 80%, and 90% of the
bootstrap data sets, respectively. Highlighted in yellow are the target
genes whose regulatory genes are focused in this study. The differential
regulations are in red while common regulations are in black. The arrow
head implies up regulation in both networks or no regulation in at most
one network; the circle head implies down regulation in the whole blood
but up regulation in muscle skeletal; and the diamond head implies up
regulation in whole blood but down regulation muscle skeletal.
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We performed differential analysis of gene regulatory networks on two sets of genetic

genomics data from the Genotype-Tissue Expression(GTEx) project (Carithers et al.,

2015), with one collected from human whole blood (WB) and another one from

human muscle skeletal (MS). The WB and MS data included genome-wide genetic and

genotypic values from 350 and 367 healthy subjects, respectively. The flowchart of the

analysis of the GTEx data is shown in Figure 3.8. Both data sets were preprocessed

following Carithers et al. (2015) and Stegle et al. (2010), resulting in a total of 15,899

genes and 1,083,917 single nucleotide polymorphisms (SNPs) being shared by WB

and MS.

 

1. Data Preprocessing
•Gene Expression Data Quality Control and Normalization
•Adjust Gene Expression for possible confounders, such as top PCs, gender and PEER factors 

(Carithers et al. 2015)
•Genotype Data Quality Control

2. Cis-eQTL mapping 
•Conduct cis-eQTL mapping for each gene on the pooled data and select the marginally significant 

cis-eQTLs with p-value < 0.05
•Further filter the cis-eQTLs of each gene by controling the pairwise correlation under 0.9

3. Differential Analysis of Networks via ReDNet
•Apply ridge regression and sure screening methods on each network data to obatin consistent 

predictions
•Apply adaptive Lasso on the reparametrized model to identify the differential and common effects
•Bootstrap can be employed to assess the significance of the identified effects

4. Visualization
•Employ any network plotting softwares, such as Cytoscape, to visualize the results

Figure 3.8. The Flowchart for The GTEx Data Analysis.



56

Expression quantitative trait loci (eQTL) mapping (Gilad et al., 2008) was con-

ducted and identified 9875 genes with at least one marginally significant cis-eQTL

(with p-value< 0.05). For each gene, we further filtered its set of cis-eQTL by control-

ling the pairwise correlation under 0.9 and keeping up to three cis-eQTL which have

the strongest association with the corresponding gene expression. These cis-eQTL

serve as anchoring exogenous variables for the genes, and expression levels of different

genes are endogenous variables. At completion of preprocessing data, we have 9,875

endogenous variables and 23,920 exogenous variables.

We applied ReDNet to infer the differential gene regulation on a set of eighty

target genes, which had largest changes on gene-gene correlation between the two

tissues. We identified a total of 640 common and 572 differential regulations on

the eighty target genes. To evaluate the significance of identified regulations, we

bootstrapped 100 data sets, and conducted differential analysis on each bootstrap

data set. As summarized in Table 3.1, 50, 43 and 34 differential regulatory effects

were identified in over 70%, 80% and 90% of the bootstrap data sets, respectively.

Table 3.1.
Summary of Regulations Identified in Over 70%, 80%, 90% of the Bootstrap
Data Sets by ReDNet From the GTEx Data. Shown under “Original”
are for those identified from the original data.

Original 70% 80% 90%

Common 640 49 40 34

Differential 572 50 43 34

The top five subnetworks bearing differential regulations on some of the eighty

target genes were shown in Figure 3.7. We also constructed the differential networks

using the naive approach and reported more differential regulations which cover the

reported ones by ReDNet as shown in Table 3.2. This concurs with our observation
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in the synthetic data evaluation that the naive approach tends to report higher false

positives, especially for differential regulatory effects.

Table 3.2.
Summary of Regulations Identified in Over 70%, 80%, 90% of the Bootstrap
Data Sets by Naive Method From the GTEx Data. Shown under “Original”
are for those identified from the original data.

Original 70% 80% 90%

Differential 1516 151 129 109

Overlap with ReDNet 183 50 43 34

3.6 Discussion

We have developed a novel two-stage differential analysis method named ReDNet.

The first stage, i.e., the calibration stage, aims for good prediction of the endogenous

variables, and the second stage, i.e., the construction stage, identifies both common

and differential network structures in a node-wise fashion. The key idea of ReDNet

method is to appropriately re-parametrize the independent models into a joint model

so as to estimate differential and common effects directly. This approach can dra-

matically reduce the false discovery rate. In the experiments with synthetic data, we

demonstrated the effectiveness of our method, which outperformed the naive approach

with a large margin. Note that ReDNet allows independently conducting all `2 regu-

larized regressions at the same time at the first stage, and all `1 regularized regressions

at the same time at the second stage. Therefore, ReDNet not only permits parallel

computation but also allows for fast subnetwork construction to avoid potential huge

computational demands from differential analysis of large networks.

There are some interesting directions for future research. Firstly, it is worthwhile

to explore other re-parametrization approaches such as baseline reparametrizaiton

in a case-control study. Secondly, while we only consider differential analysis of
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two networks, it is possible to generalize our method to compare multiple networks,

demanding more complex reparametrization. Finally, applying the proposed methods

for fully differential analysis of 53 tissues presented in the GTEx project still provides

challenging computational and methodological issues.

3.7 Technical Details in Theoretical Analysis

3.7.1 Proof of Theorem 3.3.1

Proof Following the Sure Independence Screening Property by Fan and Lv [2008],

there exists some θ(k) ∈ (0, 1 − 2κ(k) − τ (k)) such that, when d(k) = |M(k)
i | =

O((n(k))1−θ(k)), we have, for some constant C > 0,

P(M(k)
i0 ⊆M

(k)
i ) = 1−O

(
exp

{
−C(n(k))1−2κ(k)

log(n(k))

})
.

Let θ = min(θ(1), θ(2)), then for d(k) = |M(k)
i | ≡ d = O(n1−θ

min ), we have

P(M(k)
i0 ⊆M

(k)
i ) = 1−O

(
exp

{
−C(n(k))1−2κ̃

log(n(k))

})
.

3.7.2 Proof of Theorem 3.3.2

Note that ξ(k) = ε(k)(I − Γ(k))−1 for k ∈ {1, 2}. Following Assumption 4, the

singular values of both (I − Γ(k)) are positively bounded from below by a constant

c. Denote σ
(k)2
i = var(ε

(k)
ji ) and σ̃

(k)2
i = var(ξ

(k)
ji ). Then σ̃

(k)
i ≤ σpmax/c = max

1≤i≤p
(σ

(1)
i ∨

σ
(2)
i )/c.

Lemma 3.7.1 Under Assumptions 1-4, for each network k ∈ {1, 2} in the calibration

step, there exist positive constants C
(k)
1 and C

(k)
2 such that, with probability at least

1− e−f (k),

1. (Estimation Loss) ||π̂(k)
i − π

(k)
i ||22 ≤ C

(k)
1

(
r

(k)
i ∨ d ∨ f (k)

)/
n(k);
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2. (Prediction Loss) ||X(k)(π̂
(k)
i − π

(k)
i )||22

/
n(k) ≤ C

(k)
2

(
r

(k)
i ∨ d ∨ f (k)

)/
n(k).

Proof We have the closed form ridge estimator π̂
(k)

M(k)
i

for the linear model Y
(k)
i =

X
(k)

M(k)
i

π
(k)

M(k)
i

+ ξ
(k)
i ,

π̂
(k)

M(k)
i

=
(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
X

(k)T

M(k)
i

Y
(k)
i ,

where λ
(k)
i is the ridge tuning parameter. Plugging in the equation Y

(k)
i = X

(k)

M(k)
i

π
(k)

M(k)
i

+

ξ
(k)
i , we have

π̂
(k)

M(k)
i

=

{(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
X

(k)T

M(k)
i

X
(k)

M(k)
i

π
(k)

M(k)
i

}
+

{(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
X

(k)T

M(k)
i

ξ
(k)
i

}
.

The difference between the ridge estimator π̂
(k)

M(k)
i

and the true π
(k)

M(k)
i

can be written

as

π̂
(k)

M(k)
i

− π(k)

M(k)
i

= −λ(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
π

(k)

M(k)
i

+
(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
X

(k)T

M(k)
i

ξ
(k)
i .

For simplicity, we denote the composite forms of π
(k)

M(k)
i

and X
(k)

M(k)
i

as follows,

π̃
(k)

M(k)
i

= −λ(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
π

(k)

M(k)
i

;

X̃
(k)

M(k)
i

= X
(k)

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
.

Then we have the following simplified form of the difference,

π̂
(k)

M(k)
i

− π(k)

M(k)
i

= π̃
(k)

M(k)
i

+ X̃
(k)T

M(k)
i

ξ
(k)
i .

To obtain the `2 norm losses of estimation and prediction, we write

||π̂(k)

M(k)
i

− π(k)

M(k)
i

||22

= π̃
(k)T

M(k)
i

π̃
(k)

M(k)
i︸ ︷︷ ︸

T21

+ 2π̃
(k)T

M(k)
i

X̃
(k)T

M(k)
i

ξ
(k)
i︸ ︷︷ ︸

T22

+ ξ
(k)T
i X̃

(k)

M(k)
i

X̃
(k)T

M(k)
i

ξ
(k)
i︸ ︷︷ ︸

T23

,
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||X(k)

M(k)
i

(
π̂

(k)

M(k)
i

− π(k)

M(k)
i

)
||22

= π
(k)

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
π̃

(k)

M(k)
i︸ ︷︷ ︸

T24

+ 2π̃
(k)T

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
X̃

(k)T

M(k)
i

ξ
(k)
i︸ ︷︷ ︸

T25

+ ξ
(k)T
i X̃

(k)

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
X̃

(k)T

M(k)
i

ξ
(k)
i︸ ︷︷ ︸

T26

.

Firstly, we will derive the bound for T24, T25 and T26 terms, then we can obtain

similar results for term T21, T22 and T23 by simply removing the matrix X
(k)T

M(k)
i

X
(k)

M(k)
i

.

Denote the singular value decomposition X
(k)T

M(k)
i

X
(k)

M(k)
i

= U
(k)T
i V

(k)
i U

(k)
i , where U

(k)
i is

a unitary matrix, V
(k)
i is a diagonal matrix with eigenvalues vi. Therefore, the shared

component of π̃
(k)

M(k)
i

and X̃
(k)

M(k)
i

can be rewritten as

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
= U

(k)T
i

(
V

(k)
i + λ

(k)
i Id

)−1
U

(k)
i .

By Assumption 4, there are some constants c1, c2 such that

max||δ||2=1(n
(k))−1/2||X(k)

M(k)
i

δ||2 ≤ c1 and min||δ||2=1(n
(k))−1/2||X(k)

M(k)
i

δ||2 ≥ c2. Thus,

λmax

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
< c2

1n
(k) and λmin

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
> c2

2n
(k). That is, vj � n(k) for

each eigenvalue. Let b = U
(k)
i π

(k)

M(k)
i

, then ||b||2 = ||π(k)

M(k)
i

||2. Noting that λ
(k)
i = o(n(k))

in Assumption 4, we can bound the term T24 as follows,

T24 = π̃
(k)T

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
π̃

(k)

M(k)
i

= λ
(k)2
i bTV

(k)
i

(
V

(k)
i + λ

(k)
i Id

)−1
V

(k)
i

(
V

(k)
i + λ

(k)
i Id

)−1
b

= λ
(k)2
i

d∑
j=1

vjb
2
ij(

vj + λ
(k)
i

)2 = O(λ
(k)2
i ||π

(k)

M(k)
i

||22
/
n(k)) = O(r

(k)
i ).

(3.9)

Similarly, removing the term X
(k)T

M(k)
i

X
(k)

M(k)
i

, we have

T21 = O(λ
(k)2
i ||π

(k)

M(k)
i

||22
/
n(k)) = O(r

(k)
i

/
n(k)). (3.10)

Noting that T25 follows a Gaussian distribution, we can write the probability of

deviation of T25 with the classical Gaussian tail inequality, for any positive number t,

P (T25 ≤ t) ≥ 1− exp

(
−1

2
t2
/

var(T25)

)
.
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Furthermore,

var(T25) = 4σ̃
(k)2
i π̃

(k)T
(i)

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
X̃

(k)T

M(k)
i

X̃
(k)

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

)
π̃

(k)

M(k)
i

= 4σ̃
(k)2
i λ

(k)2
i bT (V + λ

(k)
i Id)

−1V
(k)
i (V

(k)
i + λ

(k)
i Id)

−1

×V (k)
i

(
V

(k)
i + λ

(k)
i Id

)−1
V

(k)
i

(
V

(k)
i + λ

(k)
i Id

)−1
b

= 4σ̃
(k)2
i λ

(k)2
i

d∑
j=1

v3
j b

2
ij

(vj + λ
(k)
i )4

= O(σ̃
(k)2
i λ

(k)2
i ||π

(k)

M(k)
i

||22
/
n(k))

= O(σ̃
(k)2
i r

(k)
i ).

Letting t =
√

2var(T25)(f (k) + log 2), we obtain that, with probability at least 1 −

e−f
(k)
/2,

T25 = O(

√
r

(k)
i f (k)). (3.11)

Similarly, removing X
(k)T

M(k)
i

X
(k)

M(k)
i

, we can obtain that, concurring with (3.11),

T22 = O(

√
r

(k)
i f (k)

/
n(k)). (3.12)

The term T26 follows a non-central χ2 distribution. We can invoke the Hanson-

Wright inequality (Rudelson et al., 2013) to bound the probability of its extreme

deviation, for some constant t2 > 0,

P(T26 ≤ E(T26) + t)

≥ 1− exp

 −t2t2
σ̃

(k)4
i ||X̃(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

||2F


∧ exp

 −tt2
σ̃

(k)2
i ||X̃(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

||op

 . (3.13)
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To understand this probabilistic bound, we need to calculate E(T26) and the two

involved norms. Firstly,

E(T26) = σ̃
(k)2
i tr

(
X̃

(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

)
= σ̃

(k)2
i tr

(
V

(k)
i

(
V

(k)
i + λ

(k)
i Id

)−1
V

(k)
i

(
V

(k)
i + λ

(k)
i Id

)−1
)

= σ̃
(k)2
i

d∑
j=1

v2
j

(vj + λ
(k)
i )2

= O(dσ̃
(k)2
i ). (3.14)

The Frobenius norm can be simplified as follows,

||X̃(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

||2F

= tr

(
X̃

(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

X̃
(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

)
= tr

(
((X

(k)

M(k)
i

)TX
(k)

M(k)
i

)(X̃
(k)

M(k)
i

)T X̃
(k)

M(k)
i

((X
(k)

M(k)
i

)TX
(k)

M(k)
i

)(X̃
(k)

M(k)
i

)T X̃
(k)

M(k)
i

)
= tr

(
V

(k)
i (V

(k)
i + λ

(k)
i Id)

−1V
(k)
i (V

(k)
i + λ

(k)
i Id)

−1V
(k)
i

× (V
(k)
i + λ

(k)
i Id)

−1V
(k)
i (V

(k)
i + λ

(k)
i Id)

−1
)

=
d∑
j=1

v4
j

(vj + λ
(k)
i )4

= O(d). (3.15)

Note that λmax(X
(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X
(k)T

M(k)
i

) � n(k), then, the operator norm can be

simplified as follows,

||X̃(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

||op

= ||X(k)

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
X

(k)T

M(k)
i

X
(k)

M(k)
i

(
X

(k)T

M(k)
i

X
(k)

M(k)
i

+ λ
(k)
i Id

)−1
X

(k)T

M(k)
i

||op

= O(λmax

(
X

(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X
(k)T

M(k)
i

)/
n(k)2) = O(1). (3.16)

Letting

t =

√
σ̃

(k)4
i ||X̃(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

||2F × (f (k) + log 2)/t2

∨
(
σ̃

(k)2
i ||X̃(k)

M(k)
i

X
(k)T

M(k)
i

X
(k)

M(k)
i

X̃
(k)T

M(k)
i

||op × (f (k) + log 2)/t2

)
,

and combining (3.13), (3.14), (3.15), and (3.16), we obtain that, with probability at

least 1− e−f (k)/2,

T26 = O(d ∨
√
df (k) ∨ f (k)). (3.17)
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Similarly, removing X
(k)T

M(k)
i

X
(k)

M(k)
i

, we can obtain that, concurring with (3.17),

T23 = O(
(
d ∨

√
d f (k) ∨ f (k)

)/
n(k)). (3.18)

Collecting the bounds (3.9), (3.11), (3.17) and noting the definition of X
(k)

M(k)
i

and

π
(k)

M(k)
i

, we conclude there exists some constant C
(k)
2 > 0 such that, with probability at

least 1− e−f (k) ,

1

n(k)
||X(k)(π̂

(k)
i − π

(k)
i )||22 =

1

n(k)
||X(k)

M(k)
i

(π̂
(k)

M(k)
i

− π(k)

M(k)
i

)||22 ≤ C
(k)
2

r
(k)
i ∨ d ∨ f (k)

n(k)
.

Similarly, collecting the bound (3.10), (3.12) and (3.18), we conclude there exists some

constant C
(k)
1 > 0 such that, with probability at least 1− e−f (k) ,

||π̂(k)
i − π

(k)
i ||22 = ||π̂(k)

M(k)
i

− π(k)

M(k)
i

||22 ≤ C
(k)
1

r
(k)
i ∨ d ∨ f (k)

n(k)
.

This concludes the proof of Lemma 3.7.1.

To bound the estimation loss, we write

||Π̂j −Πj||22 = ||π̂(1)
j|p − π

(1)
j|p||

2
2 + ||π̂(2)

j|p − π
(2)
j|p||

2
2,

where π
(k)
j|p and π̂

(k)
j|p are the j|p columns of π(k) and π̂(k), respectively. Following the

bounds in Lemma 3.7.1 for both networks, we obtain the overall estimation bound as,

with probability at least 1− e−f (1) − e−f (2) ,

||Π̂j −Πj||22 ≤ C
(1)
1

r
(1)
j|p ∨ d ∨ f (1)

n(1)
+ C

(2)
1

r
(2)
j|p ∨ d ∨ f (2)

n(2)

≤
(
C

(1)
1 + C

(2)
1

)(r(2)
j|p ∨ d ∨ f (2)

)
∨
(
r

(2)
j|p ∨ d ∨ f (2)

)
n(1) ∧ n(2)

= C1

d ∨
(
r

(1)
j|p ∨ r

(2)
j|p
)
∨
(
f (1) ∨ f (2)

)
n(1) ∧ n(2)

≤ C1
d ∨ rmax ∨ fmax

n(1) ∧ n(2)
,

where C1 = C
(1)
1 + C

(2)
1 . Similarly, we write the prediction bound as, with probability

at least 1− e−f (1) − e−f (2) ,

||X(Π̂j −Πj)||22 = ||X(1)(π̂
(1)
j|p − π

(1)
j|p)||

2
2 + ||X(2)(π̂

(2)
j|p − π

(2)
j|p)||

2
2

≤ C
(1)
2

{
r

(1)
j|p ∨ d ∨ f

(1) + C
(2)
2 r

(2)
j|p ∨ d ∨ f

(2)
}

≤ C2

{
d ∨

(
r

(1)
j|p ∨ r

(2)
j|p
)
∨
(
f (1) ∨ f (2)

)}
≤ C2 {d ∨ rmax ∨ fmax} ,
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where C2 = C
(1)
2 + C

(2)
2 and rmax = max

1≤i≤p
(r

(1)
i ∨ r

(2)
i ). This concludes the proof of

Theorem 3.3.2.

3.7.3 Proof of Theorem 3.3.3

Let cmax = c
(1)
1 ∨ c

(2)
1 , and further denote

gn = C2
d ∨ rmax ∨ fmax

n
+ 2cmaxC2||Π||1

√
d ∨ rmax ∨ fmax

n
.

Lemma 3.7.2 Suppose that, for node i,√
(d ∨ rmax ∨ fmax)

/
n+ cmax||Π||1 ≤

√
c2

max||Π||21 + φ2
0/(64C2|Si|). (3.19)

Under Assumptions 1-5, we have φre(HiXΠ̂−i,Si) ≥ φ0/2 with probability at least

1− e−f (1)+log p − e−f (2)+log p.

Proof The inequality (3.19) implies that gn ≤ φ2
0/(64|Si|).

For any index set Si and vector δ, note the definition of φre(·), then, we have that

||δ||21 ≤ (||δSci ||1 + ||δSi ||1)2 ≤ (3
√
|Si|||δSi ||2 +

√
|Si|||δSi ||2)2 = 16|Si|||δSi ||22. we also

have

δT ((HiXΠ̂−i)
T (HiXΠ̂−i)− (HiXΠ−i)

T (HiXΠ−i))δ

n||δSi||22

≤ ||δ||21
n||δSi ||22

max
j1,j2
|(HiXΠ̂j1)

T (HiXΠ̂j2)− (HiXΠj1)
T (HiXΠj2)|

≤ 16|Si|
n

max
j1,j2
|(HiXΠ̂j1)

T (HiXΠ̂j2)− (HiXΠj1)
T (HiXΠj2)|. (3.20)

Note that,

(HiXΠ̂j1)
T (HiXΠ̂j2)− (HiXΠj1)

T (HiXΠj2)

= (Π̂j1 −Πj1)
TXTHiX(Π̂j2 −Πj2)︸ ︷︷ ︸

T31

+ (Π̂j1 −Πj1)
TXTHiXΠj2︸ ︷︷ ︸
T32

+ (XΠj1)
THiX(Π̂j2 −Πj2)︸ ︷︷ ︸

T33

.
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We will derive the bounds for each of these three terms separately. With Hi a

projection matrix, we have λmax(Hi) = 1. We can obtain that

|T31| ≤ ||HiX(Π̂j1 −Πj1)||2 × ||HiX(Π̂j2 −Πj2)||2

≤ λmax(Hi)||X(Π̂j1 −Πj1)||2 × ||X(Π̂j2 −Πj2)||2

= ||X(Π̂j1 −Πj1)||2 × ||X(Π̂j2 −Πj2)||2.

Note that |T32| ≤ ||X Πj2||2||HiX(Π̂j1−Πj1)||2, and following Assumption 4, we have

that

||X Πj2||22 = ||X(1)π
(1)
j|p||

2
2 + ||X(2)π

(2)
j|p||

2
2

≤ (c
(1)
1 )2n(1)||π(1)

j|p||
2
2 + (c

(2)
1 )2n(2)||π(2)

j|p||
2
2

≤ c2
maxn(||π(1)

j|p||
2
2 + ||π(2)

j|p||
2
2)

≤ c2
maxn

(
||π(1)

j|p||2 + ||π(2)
j|p||2

)2

≤ c2
maxn||Π||21.

Therefore,

|T32| ≤ ||XΠj2||2||HiX(Π̂j1 −Πj1)||2 ≤ cmax

√
n||Π||1||X(Π̂j1 −Πj1)||2. (3.21)

Similarly, we can have

|T33| ≤ cmax

√
n||Π||1||X(Π̂j2 −Πj2)||2. (3.22)

Theorem 3.3.2 leads to the following, with probability at least 1 − e−f
(1)+log(p) −

e−f
(2)+log(p), 

|T31|
n
≤ C2

d ∨ rmax ∨ fmax

n
,

|T32|
n
≤ cmaxC2||Π||1

√
d ∨ rmax ∨ fmax

n
,

|T33|
n
≤ cmaxC2||Π||1

√
d ∨ rmax ∨ fmax

n
.

(3.23)

Putting the above three inequalities together, we have,

δT ((HiXΠ̂−i)
T (HiXΠ̂−i)− (HiXΠ−i)

T (HiXΠ−i))δ

n||δSi ||22

≤ 16|Si| ×
|T31|+ |T32|+ |T33|

n
= 16|Si|gn ≤ 16|Si|

φ2
0

64|Si|
= φ2

0

/
4. (3.24)



66

Together with Assumption 5, we have φre(HiXΠ̂−k,Sk) ≥ φ0/2. This concludes the

proof of Lemma 3.7.2.

Lemma 3.7.3 (Basic Inequality) Let ηi = 2n−1ẐT
−iHiεi − 2n−1ẐT

−iHi(Ẑ−i − Z−i)βi

and

E (λi) =
{
||W−1

i ηi||∞ ≤ λi/2
}
,

for λi specified in Theorem 3.3.3. Under Assumptions 1-4, with hn defined in Theo-

rem 3.3.3, there exit a positive constant C3 > 0 such that

P(E (λi)) ≥ 1− e−C3hn+log(4q) − e−f (1)+log(p) − e−f (2)+log(p).

Concurring with event E (λi), we have the following basic inequality,

n−1||HiẐ−i(β̂i − βi)||22 + λiω
T
i |β̂i|1 ≤ λiω

T
i |βi|1 + ηTi (β̂i − βi). (3.25)

Proof Letting

ξ−i =

ξ(1)
−i ξ

(1)
−i

ξ
(2)
−i −ξ

(2)
−i

 , (3.26)

we have Z−i = XΠ−i + ξ−i. With Ẑ−i = XΠ̂−i, we get

ηi =
2

n
Π̂
T

−iX
THiεi −

2

n
Π̂
T

−iX
THi(XΠ̂−i −XΠ−i − ξ−i)βi

=
2

n
(Π̂−i −Π−i)

TXTHiεi︸ ︷︷ ︸
T34

+
2

n
ΠT
−iX

THiεi︸ ︷︷ ︸
T35

+
2

n
(Π̂−i −Π−i)

TXTHiξ−iβi︸ ︷︷ ︸
T36

+
2

n
ΠT
−iX

THiξ−iβi︸ ︷︷ ︸
T37

− 2

n
(Π̂−i −Π−i)

TXTHiX(Π̂−i −Π−i)βi︸ ︷︷ ︸
T38

− 2

n
ΠT
−iX

THiX(Π̂−i −Π−i)βi︸ ︷︷ ︸
T39

.

We aim to bound each of these six terms by λi/12 either probabilistically or determin-

istically.
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Firstly, for some constant tλ > 0, we choose the adaptive lasso tuning parameter

as below,

λi = tλ‖ωi‖−1
−∞||B||1||Π||1

√
(d ∨ rmax ∨ fmax) log(p)

nmin

. (3.27)

Denoting the j-th column of X by X·j, we have XT
·jX·j = n(k) for k ∈ {1, 2} due to

standardization. Furthermore,

var

(
1

n
XT
·jHiεi

)
≤ 1

n2
XT
·jHiX·jσ

2
pmax ≤

n(k)

n2
σ2
pmax ≤

1

n
σ2
pmax.

For T34, via the classical Gaussian tail inequality, we have

P
(
||W−1

i T34||∞ ≥
λi
12

)
≤ P

(
|| 2
n

(Π̂−i −Π−i)
TXTHiεi||∞ ≥

λi‖ωi‖−∞
12

)
≤ P

(
||(Π̂−i −Π−i)

T ||∞||
2

n
XTHiεi||∞ ≥

λi‖ωi‖−∞
12

)
≤ P

(
|| 2
n

XTHiεi||∞ ≥
λi‖ωi‖−∞

12δΠ

)
≤ 2q exp

{
−
nλ2

i ‖ωi‖2
−∞

1152σ2
pmaxδ

2
Π

}
≤ 2q · p−

n
d
t1||B||21||Π||21 ≤ 2q · p · p−t1||B||21

n
d
||Π||21 , (3.28)

where t1 = t2λ/(2304C1σ
2
pmax), and δΠ is the maximum estimation loss of the first

stage. The last inequality is obtained based on the following bound of δΠ. Following

Theorem 3.3.2, δΠ satisfies the following inequality with probability at least 1 −

e−f
(1)+log(p) − e−f (2)+log(p),

δ2
Π = max

1≤j≤2p
||Π̂j −Πj||21

≤ max
1≤j≤2p

(
2d||Π̂j −Πj||22

)
≤ 2C1d

{
d ∨ rmax ∨ fmax

nmin

}
. (3.29)

Note that the first inequality of (3.29) holds, since Π̂ and Π have at most 2d non-zeros

based on our assumptions and the screening in the calibration step.
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Similarly, for the second term T35, we have that, with t2 = (tλ)2

1152σ2
pmax

,

P
(
||W−1

i T35||∞ ≥
λi
12

)
≤ P

(
|| 2
n

ΠT
−iX

THiεi||∞ ≥
λi‖ωi‖−∞

12

)
≤ P

(
||ΠT

−i||∞||
2

n
XTHiεi||∞ ≥

λi‖ωi‖−∞
12

)
≤ P

(
|| 2
n

XTHiεi||∞ ≥
λi‖ωi‖−∞
12||ΠT

−i||∞

)

≤ 2q exp

{
−

nλ2
i ‖ωi‖2

−∞

1152σ2
pmax||ΠT

−i||2∞

}
= 2q · p−t2||B||21(d∨rmax∨fmax)n/nmin

≤ 2q · p · p−t2||B||21(d∨rmax∨fmax)n/nmin . (3.30)

For the third term T36, we write

P
(
||W−1

i T36||∞ ≥
λi
12

)
≤ P

(
||(Π̂−i −Π−i)

T ||∞||
2

n
XTHiξ−iβi||1 ≥

λi‖ωi‖−∞
12

)
≤ P

(
δΠ ×max

j1,j2
| 2
n
XT
·j1Hiξj2| × ||βi||1 ≥

λi‖ωi‖−∞
12

)
≤ P

(
max
j1,j2
| 2
n
XT
·j1Hiξj2 | ≥

λi‖ωi‖−∞
12δΠ||βi||1

)
≤ 2q · 2p exp

{
−

nλ2
i ‖ωi‖2

−∞

1152σ̃2
pmaxδ

2
Π||βi||21

}
= 4q · p · p−t3||Π||21n/d, (3.31)

where σ̃2
pmax = max

i
(σ̃

(1)
i ∨ σ̃

(2)
i ), var( 1

n
XT
·j1Hiξj2) ≤ σ̃2

pmax/n and t3 =
t2λ

2304C1σ̃2
pmax

.

Similarly, with t4 =
t2λ

1152σ̃2
pmax

, we write T37 term as

P
(
||W−1

i T37||∞ ≥
λi
12

)
≤ 2q · 2p · exp

{
−

nλ2
i ‖ωi‖2

−∞

1152σ̃2
pmax||ΠT

−i||2∞||βi||21

}
= 4q · p · p−t4(d∨rmax∨fmax)n/nmin . (3.32)
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For the deterministic term T38, choosing tλ ≥ 12C2||Π||−1
1

√
(d ∨ rmax ∨ fmax)/(n log(p)),

along with Cauchy-Schwarz Inequality, we have

||W−1
i T38||∞ ≤ ||βi||1‖ωi‖−1

−∞

n
max
j1,j2
|(Π̂j1 −Πj1)

TXTHiX(Π̂j2 −Πj2)|

≤ ||βi||1‖ωi‖−1
−∞

n
max
j1,j2

{
||HiX(Π̂j1 −Πj1)||2||HiX(Π̂j2 −Πj2)||2

}
≤ ||βi||1‖ωi‖−1

−∞

n
max
j1,j2

{
λmax(Hi)||X(Π̂j1 −Πi1)||2||X(Π̂j2 −Πj2)||2

}
≤ ||βi||1‖ωi‖−1

−∞

n
max
j1,j2

{
||X(Π̂j1 −Πj1)||2||X(Π̂j2 −Πj2)||2

}
≤ ||βi||1‖ωi‖−1

−∞C2
d ∨ rmax ∨ fmax

n

≤ λi
12
×

(
12C2

tλ||Π||1

√
d ∨ rmax ∨ fmax

n log(p)

)
≤ λi

12
.

Similarly, we choose tλ ≥ 24
√
C2nmin/(n log(p)), and take Theorem 3.3.2 to obtain

||W−1
i T39||∞ ≤ 2

||βi||1||ΠT
−i||∞‖ωi‖−1

−∞

n
max
j1,j2
|XT
·j1HiX(Π̂j2 −Πj2)|

≤ 2
||βi||1||ΠT

−i||∞‖ωi‖−1
−∞√

n
max
j2
||HiX(Π̂j2 −Πj2)||2

≤ 2
||βi||1||ΠT

−i||∞‖ωi‖−1
−∞√

n
max
j2
||X(Π̂j2 −Πj2)||2

≤ λi
12
×

(
24

tλ

√
C2nmin

n log(p)

)
≤ λi

12
.

Note that n ≥ nmin. Putting together the probabilistic bounds (3.28), (3.29), (3.30),

(3.31) and (3.32), along with union bound, there exist a constant C3 > 0 such that

P(E (λi)) ≥ 1− 3e−C3hn+log(4pq) − e−f (1)+log(p) − e−f (2)+log(p).

Next we will establish the basic inequality, concurring with the event E (λi).

Since the estimator β̂i from the adaptive lasso minimizes the corresponding objec-

tive function, we have

1

n
||HiYi −HiẐ−iβ̂i||2 + λiω

T
i |β̂i|1 ≤

1

n
||HiYi −HiẐ−iβi||2 + λiω

T
i |βi|1. (3.33)
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Because HiYi = HiZ−iβi + Hiεi, we can rewrite

||HiYi −HiẐ−iβ̂i||22

= ||HiZ−iβi + Hiεi −HiẐ−iβ̂i||22

= ||Hiεi||22 − 2εTi Hi(Ẑ−iβ̂i − Z−iβi) + ||HiẐ−iβ̂i −HiẐ−iβi + HiẐ−iβi −HiZ−iβi||22

= ||Hiεi||22 − 2εTi Hi(Ẑ−iβ̂i − Z−iβi)

+||HiẐ−i(β̂i − βi)||22 + ||Hi(Ẑ−i − Z−i)βi||22

+2βTi (Ẑ−i − Z−i)
THiẐ−i(β̂i − βi). (3.34)

Similarly we can rewrite

||HiYi −HiẐ−iβi||22

= ||HiZ−iβi + Hiεi −HiẐ−iβi||22

= ||Hiεi||22 + ||Hi(Ẑ−i − Z−i)βi||22 − 2εTi Hi(Ẑ−i − Z−i)βi. (3.35)

Plugging equations (3.34) and (3.35) into (3.33), we then have

1

n
||HiẐ−i(β̂i − βi)||22 + λiω

T
i |β̂i|1

≤ λiω
T
i |βi|1 +

(
2

n
ẐT
−iHiεi −

2

n
ẐT
−iHi(Ẑ−i − Z−i)βi

)T
(β̂i − βi)

= λiω
T
i |βi|1 + ηTi (β̂i − βi).

Thus, the basic inequality is established. This concludes the proof of Lemma 3.7.3.

Conditioning on the event E (λi), we remove the random term ηi from the basic

inequality as

1

n
||HiẐ−i(β̂i − βi)||22

≤ λiω
T
i |βi|1 − λiωTi |β̂i|1 + ηTi (β̂i − βi)

≤ λiω
T
Si |βSi |1 − λiω

T
Si|β̂Si |1 − λiω

T
Sci
|β̂Sci |1 + ηTSci (β̂Sci ) + ηTSi(β̂Si − βSi)

≤ λiω
T
Si |β̂Si − βSi |1 − λiω

T
Sci
|β̂Sci |1 +

λi
2
ωTSci |β̂Sci |1 +

λi
2
ωTSi |β̂Si − βSi |1

≤ 3

2
λiω

T
Si |β̂Si − βSi |1 −

1

2
λiω

T
Sci
|β̂Sci |1

≤ 3

2
λi‖ωSi‖∞||β̂Si − βSi ||1 −

1

2
λi‖ωSci ‖−∞||β̂Sci ||1. (3.36)
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The fact that ||HiẐ−i(β̂i − βi)||22 is always positive leads to

‖ωSci ‖−∞||β̂Sci ||1 ≤ 3‖ωSi‖∞||β̂Si − βSi ||1, (3.37)

which, following Assumption 5, further implies that

||β̂Sci − βSci ||1 ≤ 3||β̂Si − βSi ||1. (3.38)

The above inequality, as well as the last inequality in (3.36), implies that

1

n
||HiẐ−i(β̂i − βi)||22

≤ 3

2
λi‖ωSi‖∞||β̂Si − βSi ||1 ≤

3

2
λi‖ωSi‖∞

√
|Si|||β̂Si − βSi ||2

≤ 3

2
λi‖ωSi‖∞

√
|Si|

2||HiẐ−i(β̂i − βi)||2√
nφ0

, (3.39)

where the last inequality follows Assumption 5 and Lemma 3.7.2. The above inequality

leads to that,

1

n
||HiẐ−i(β̂i − βi)||22 ≤

9(‖ωSi‖∞)2

φ2
0

|Si|λ2
i .

Plugging in (3.27), and letting C4 = 3tλ, we obtain that

1

n
||HiẐ−i(β̂i − βi)||22 ≤

C2
4‖ωSi‖2

∞||B||21||Π||21
φ2

0‖ωi‖2
−∞

|Si|
(d ∨ rmax ∨ fmax) log(p)

nmin

. (3.40)

Taking this inequality, we can follow Assumption 5 and Lemma 3.7.2 to derive that

||β̂i − βi||1

≤ ||β̂Sci ||1 + ||β̂Si − βSi ||1 ≤
(

3
‖ωSi‖∞
‖ωSci ‖−∞

+ 1

)
||β̂Si − βSi ||1

≤
(

3
‖ωSi‖∞
‖ωSci ‖−∞

+ 1

)√
|Si|

2||HiẐ−i(β̂i − βi)||2√
nφ0

≤
(

3
‖ωSi‖∞
‖ωSci ‖−∞

+ 1

)√
|Si|

2C4‖ωSi‖∞||B||1||Π||1
φ2

0‖ωi‖−∞

√
|Si|

√
(d ∨ rmax ∨ fmax) log(p)

nmin

≤ 8C4
‖ωSi‖∞||B||1||Π||1

φ2
0‖ωi‖−∞

|Si|

√
(d ∨ rmax ∨ fmax) log(p)

nmin

, (3.41)

where the last inequality follows Assumption 5. Since the inequality (3.36) concurs

with the event E (λi), the above prediction and estimation bounds hold with probability

at least 1− 3e−C3hn+log(4pq) − e−f (1)+log(p) − e−f (2)+log(p). This completes the proof of

Theorem 3.3.3.
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3.7.4 Proof of Theorem 3.3.4

Lemma 3.7.4 Suppose that, for node i,√
(d ∨ rmax ∨ fmax)

/
n+ cmax||Π||1

≤
√
c2

max||Π||21 + min(φ2
0

/
64, τ(4− τ)−1‖ωi‖−∞

/
ψi)
/

(C2|Si|). (3.42)

Under Assumptions 1-6, we have ||W−1
Sci

(Îi,21Î−1
i,11)WSi ||∞ ≤ 1− τ/2 with the probability

at least 1− e−f (1)+log(p) − e−f (2)+log(p).

Proof The inequality (3.42) implies that

ψi‖ωi‖−1
−∞|Si|gn ≤

τ

4− τ
.

By the inequalities (3.23) and (3.24) in the proof of Lemma 3.7.2 and union bound,

we have that, with probability at least 1− e−f (1)+log(p) − e−f (2)+log(p),

max
j1,j2

{
1

n
|(HiXΠ̂j1)

T (HiXΠ̂j2)− (HiXΠj1)
T (HiXΠj2)|

}
≤ gn.

With the definitions of infinity norm || · ||∞, Îi,11, and Ii,11, we can obtain the following

inequality indexed by set Si,

ψi||W−1
Si (Îi,11 − Ii,11)||∞

≤ ψi‖ωSi‖−1
−∞||Îi,11 − Ii,11||∞

≤ ψi‖ωSi‖−1
−∞|Si|gn ≤

τ

4− τ
. (3.43)

Similarly we can obtain the following bound indexed by the complement set Sci ,

ψi||W−1
Sci

(Îi,21 − Ii,21)||∞ ≤ ψi‖ωSci ‖
−1
−∞|Si|gn ≤

τ

4− τ
. (3.44)

Applying the matrix inversion error bound in Horn and Johnson (2012) and the

triangular inequality, we have that

||Î−1
i,11WSi ||∞ ≤ ||I−1

i,11WSi ||∞ + ||Î−1
i,11WSi − I−1

i,11WSi ||∞

≤ ψi +
ψi||W−1

Si (Îi,11 − Ii,11)||∞
1− ψi||W−1

Si (Îi,11 − Ii,11)||∞
ψi

≤ ψi +
τ

4− 2τ
ψi =

4− τ
4− 2τ

ψi. (3.45)
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Also note that we can rewrite

W−1
Sci

(
Îi,21Î−1

i,11 − Ii,21I−1
i,11

)
WSi

= W−1
Sci

(
Îi,21 − Ii,21

)
Î−1
i,11WSi

+W−1
Sci
Ii,21I−1

i,11WSiW
−1
Si

(
Îi,11 − Ii,11

)
Î−1
i,11WSi .

Then, it follows from (3.43), (3.44), (3.45) and Assumption 6 that

||W−1
Sci

(
Îi,21Î−1

i,11 − Ii,21I−1
i,11

)
WSi ||∞

≤ ||W−1
Sci

(
Îi,21 − Ii,21

)
||∞||Î−1

i,11WSi ||∞

+||W−1
Sci
Ii,21I−1

i,11WSi ||∞||W−1
Si

(
Îi,11 − Ii,11

)
||∞||Î−1

i,11WSi ||∞ ≤ τ/2.

Therefore, together with Assumption 6 again, we can conclude that

||W−1
Sci

(Îi,21Î−1
i,11)WSi ||∞ ≤ 1− τ/2. This concludes the proof of Lemma 3.7.4.

The optimality of β̂i in the adaptive lasso step and KKT condition lead to

− 2

n
(HiẐ−i)

T (HiYi −HiẐ−iβ̂i) + λiWiαi = 0, (3.46)

where αi ∈ R2p−2, satisfying that ||αi||∞ ≤ 1 and αijI(β̂ij 6= 0) = sign(β̂ij).

Plug in the equation HiYi = HiZ−iβi + Hiεi, we can have that

HiYi −HiẐ−iβ̂i

= HZ−iβi + Hiεi −HiẐ−iβ̂i

= Hiεi + HiZ−iβi −HiẐ−iβi + HiẐ−iβi −HiẐ−iβ̂i

= Hiεi −Hi(Ẑ−i − Z−i)βi −HiẐ−i(β̂i − βi). (3.47)

This, along with KKT condition (3.46), leads to

2Îi(β̂i − βi)− ηi = −λiWiαi, (3.48)

where ηi is defined in Lemma 3.7.3.

Letting β̂Sci = βSci = 0, equation (3.48) can be decomposed as 2Îi,11(β̂Si − βSi)− ηSi = −λiWSiαSi ,

2Îi,21(β̂Si − βSi)− ηSci = −λiWSci αSci .
(3.49)
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We can solve for β̂Si from the first equation of (3.49) as

β̂Si − βSi

= 2−1Î−1
i,11(ηSi − λiW

T
SiαSi)

= 2−1Î−1
i,11WSi(W

−1
Si ηSi − λiαSi). (3.50)

Following the similar strategy in the proof of Lemma 3.7.3, we can prove that

there exists a constant C5 > 0 such that ||W−1
i ηi||∞ ≤ τ

4−τ λi with probability at least

1−3e−C5 hn+log (4q)+log (p)−e−f (1)+log (p)−e−f (2)+log (p). Thus, together with ||αSi ||∞ ≤ 1,

we obtain the infinity norm estimation loss on the true support set Si

||β̂Si − βSi ||∞ ≤ 2−1||Î−1
i,11WSi||∞(||W−1

Si ηSi ||∞ + λi)

≤ 2−1 4− τ
4− 2τ

ψi
4

4− τ
λi =

λiψi
2− τ

≤ min
j∈Si
|βij| = bi,

where the last inequality comes from the condition on the minimal signal strength bi.

The above inequality implies sign(β̂Si) = sign(βSi).

Plugging (3.50) into the left hand side of the second equation in (3.49), we can

verify that

||W−1
Sci
Îi,21(Îi,11)−1(ηSi − λiWSiαSi)−W

−1
Sci
ηSci ||∞

≤ ||W−1
Sci
Îi,21Î−1

i,11WSi ||∞(||W−1
Si ηSi ||∞ + λi) + ||W−1

Sci
ηSci ||∞

≤ (1− τ/2)(4/(4− τ))λi + τ/(4− τ)λi = λi.

Therefore, we have constructed a solution β̂i which satisfies the KKT condition (3.48)

and sign(β̂i) = sign(βi), that is, Ŝi = Si. This completes the proof of Theorem 3.3.4.
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4. SUMMARY

In the current big data era, large scale genetical genomics data provide promising

opportunities for understanding complex biological systems. However, many traditional

analysis methods suffer from inefficiency or even failure in the big data setting. Thus,

it is important to develop new powerful and computational efficient statistical methods.

Motivated by this practical needs, in this dissertation, we presented two recent works

for efficiently modeling large scale systems or networks from different perspectives.

In the first part, we introduce and review the Two-Stage Penalized Least Square

(2SPLS) Method for inferring casual networks from large scale data using structural

equation models. We analyzed its theoretical properties for the diverging dimension

case. We showed that if the dimensions grow with the sample size up to some

polynomial order, i.e., O(nc) for some 0 < c < 1. The estimation error bounds can

be well controlled and the set of true signals can be recovered as well. In particular,

our results mainly depend on the restricted eigenvalue condition and a variant of

irrepresentible condition, which are widely employed in current literature.

It will be interesting to further extend the 2SPLS method to partially linear or even

non-linear structural equation model. This direction will make the model more general

for the real data. Notwithstanding, the extensions may require careful specification

and identifiability assumption of the model and the resulting estimation procedure

may induce higher computational burden.

In the second part, we propose the Reparametrization-Based Differential Analysis

of Directed Network (ReDNet) method to directly detect the sparse differences

between two cognate networks from related populations. Both of the networks are

characterized via structural equation models and the model estimation is designed in

two stages fashion similar to the 2SPLS method. In the first stage, we incorporate

additional sure independence screening step to fast screen for important instrument
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variables to obtain consistent predictions for the second stage. In the second stage, in

order to take advantage of the commonality between two networks, we reparametrize

the two structural equations to directly estimate the differential and common effects

between two networks. We show that the newly proposed method can achieve much

better performance, especially for the detection of differential effects, than that of

estimating the networks independently. We also analyzed the theoretical properties of

ReDNet for diverging dimension case comprehensively. Our main theorems indicate

that the proposed method allows the dimensions to grow with the minimum sample

size up to some exponential order, i.e., O(en
c
min) for some 0 < c < 1. A real data was

also analyzed to demonstrate the applicability of our method in practice.

The ReDNet is designed for detecting structural differences between two networks.

If the data from multiple related populations are available, ReDNet can be naturally

extended to jointly modeling multiple networks. A possible approach for this extension

may be further reparametrizing the structural equations by employing “contrast” idea

in ANONA method.

In conclusion, we hope our study and the novel methods in this dissertation

can assist us to understand and model large scale systems or networks represented

by structural equation models. Though our work was motivated by modeling gene

regulatory network from genetical genomics data, We believe our models and proposed

methods can also be employed in other fields, such as the modeling of social networks

and stock interaction networks.
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