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ABSTRACT

Nolan, Sean M. M.S.A.A., Purdue University, December 2018. Navigation Based
Path Planning by Optimal Control Theory. Major Professor: Michael J. Grant.

Previous studies have shown that implementing trajectory optimization can reduce

state estimations errors. These navigation based path planning problems are often

difficult to solve being computationally burdensome and exhibiting other numerical

issues, so former studies have often used lower-fidelity methods or lacked explanatory

power.

This work utilizes indirect optimization methods, particularly optimal control the-

ory, to obtain high-quality solutions minimizing state estimation errors approximated

by a continuous-time extended Kalman filter. Indirect methods are well-suited to

this because necessary conditions of optimality are found prior to discretization and

numerical computation. They are also highly parallelizable enabling application to

increasingly larger problems.

A simple one dimensional problem shows some potential obstacles to solving prob-

lems of this type including regions of the trajectory where the control is unimportant.

Indirect trajectory optimization is applied to a more complex scenario to minimize

location estimation errors of a single cart traveling in a 2-D plane to a goal location

and measuring range from a fixed beacon. This resulted in a 96% reduction of the

location error variance when compared to the minimum time solution. The single cart

problem also highlights the importance of the matrix that encodes the linearization

of the vehicle’s measurement with respect to state. It is shown in this case that the

vehicle roughly attempts to maximize the magnitude of its elements. Additionally,

the cart problem further illustrates problematic regions of a design space where the

objective is not significantly affected by the trajectory.
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An aircraft descent problem demonstrates the applicability of these methods to

aerospace problems. In this case, estimation error variance is reduced 28.6% relative

to the maximum terminal energy trajectory. Results are shown from two formulations

of this problem, one with control constraints and one with control energy cost, to

show the benefits and disadvantages of the two methods. Furthermore, the ability

to perform trade studies on vehicle and trajectory parameters is shown with this

problem by solving for different terminal velocities and different initial locations.
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1. INTRODUCTION AND MOTIVATION

The traditional mission planning process contains two distinct and separate phases.

One is the design of a nominal reference trajectory, which is considered to be deter-

ministic. The other is navigation guidance that commands changes to the control to

minimize deviations from the reference amid uncertainties during the mission. By

separating these two phases, the designer may miss an opportunity to reduce state

estimation errors through changing the vehicle’s path. Several previous studies have

already shown that changing a vehicle’s path can reduce the size of state estima-

tion errors significantly. Unfortunately, many of these studies lack explanatory power

because they only survey a limited space of trajectories.

As early as 1968, a paper demonstrates that ability and outlines a process using

optimal control theory like in this thesis to minimize estimation errors in a trajectory

[1]. D. R. Vander Stoep applied the process only to a one dimensional problem with

linear control and bearing angle measurement similar to the problem in Section 4.2.

The application of the process at the time would be limited by the computational

capability at the time.

Other more recent research has investigated the use of trajectories to minimize

state errors. These studies have largely only used zeroth-order optimization methods.

These zeroth-order methods, which do not use derivatives to find the optimal solution,

are relatively easy to implement and can be applied to fairly complex problems, but

they also have significant disadvantages. Important information provided by the

derivatives is lost, and truly optimal solutions are not guaranteed unless all possible

paths are evaluated. This results in the restriction of the solutions to a finite set,

which often leads to low fidelity solutions, and the search through the entire set

can be rather computationally intensive. If the form of the control law is defined a

priori, better solutions cannot be reached, and the process excludes equally feasible
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trajectories that elucidate the characteristics that fundamentally lead to a better

result.

Bryson and Sukkarieh have an UAV reduce estimation error by occasionally exe-

cuting either s-shape or orbit maneuvers to increase observability of states [2]. Bose

and Richards investigates optimal paths for the most accurate simultaneous location

and mapping (SLAM) using Sequential Monte Carlo optimization, which is similar to

a particle filter [3]. Rutkowski showed by maneuvering vehicles with measurements

from an IMU and vision system in a “zig-zagging” curved trajectory can more accu-

rately perform SLAM when compared to a straight path and that the frequency and

magnitude of the curves affect the error reduction [4].

Rutkowski with others also investigated cooperative navigation between two carts

with a range measurement between them [5,6]. This problem is shown with detail in

Section 4.1 as a motivating problem. The first study searched for the most accurate

trajectory among candidate trajectories formed by placing 10 different waypoints

either to the left or right to the previous one. Because one cart can follow 10!
(5!)2

= 252

possible paths, there are 63,504 combinations to study. This method resulted in

reducing the standard deviation by a factor of 5 compared to the case where the carts

traveled directly toward the goal [5]. The second study expands upon the first using a

random search algorithm. Several waypoints were placed by randomly perturbing the

currently best performing set of waypoints. If the new waypoints performed better,

future trials were perturbed from it. This method yielded a nearly 15 factor reduction

in position uncertainty standard deviation [6].

There is research that does use higher order optimization techniques, but the

studies required concessions to make the problems tractable. Watanabe uses a “one-

step-ahead” suboptimal optimization technique that solves an approximate problem

for the next time step [7]. Small uses direct optimization methods to solve navigation

based problems, but problem size requires covariance values to be calculated sepa-

rately from the interpolated states and no attempt is made to provide an explanatory

hypothesis of why the results follow the path they do [8].
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The goal of the work presented here is to use indirect optimization to obtain

high-quality solutions to these navigation based path planning problems. By doing

so, a designer can gain greater insight into what characteristics in a vehicle’s path

lead to better error estimation. Indirect methods and the implementation explained

in Section 2.1 are well-suited to obtaining high-quality solutions because necessary

conditions of optimality are derived prior to discretization needed to numerically ar-

rive at a solution. Indirect methods also have the benefits of not exhibiting numerical

artifacts like control jitters present from direct methods, having better computational

scaling than direct methods, and being highly parallelizable [9].

Having the ability to form these optimal solutions enables researchers to ana-

lyze these optimal trajectories for traits that may be applied more generally and to

perform trade studies to balance navigation considerations with other performance

metrics. Furthermore, lessons learned in this work are especially helpful in solving

more complex navigation based optimization problems in the future such as the dual-

cart problem as well as other large trajectory optimization problems. Particularly,

analyses of a single vehicle variant of the mentioned dual-cart problem and a glid-

ing descent problem for a projectile demonstrate the utility of indirect methods for

solving minimum estimation error trajectory problems.
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2. OVERVIEW OF UNDERLYING THEORY AND TOOLS

This chapter reviews the theory that forms the foundation needed to minimize estima-

tion errors using indirect trajectory optimization. Naturally, the two required areas

are the optimization method (i.e. optimal control theory) and the state estimation

method (accomplished with an extended Kalman filter).

2.1 Optimal Control Theory

There exists two branches of optimization. The first being the more common

parameter optimization, which minimizes a function of a finite number of discrete

variables and has its basis in calculus [10]. The other branch, optimal control the-

ory (OCT), seeks to find solutions to problems of infinite dimension that minimize

functionals and is based more specifically in calculus of variations [10]. This distinc-

tion is related to the distinction between direct and indirect methods in trajectory

optimization. Direct methods, typically using parameter optimization, first discretize

a problem’s state and control variables and then adjusts them directly to minimize

the objective function. Indirect methods instead start by applying optimal control

to find the optimality conditions in terms of adjoint differential equations, minimum

principle, and boundary conditions. These are used in most cases to solve a multi-

point boundary value problem (BVP) using a root-solving algorithm [11]. According

to [11], direct methods have been preferred to indirect methods in the recent decades

because:

1. “It is necessary to derive analytic expressions for the necessary conditions, and

for complicated nonlinear dynamics this can become quite daunting.”
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2. “The region of convergence for a root-finding algorithm may be surprisingly

small, especially when it is necessary to guess values for the adjoint variables

that may not have an obvious physical interpretation.”

3. “For problems with path inequalities it is necessary to guess the sequence of

constrained and unconstrained subarcs before iteration can begin.”

These deficiencies have been largely addressed by previous work. Using symbolic

computer algebra systems mitigates the requirement to derive necessary conditions

manually, and the small region of convergence can be avoided by using a homotopy

continuation strategy [12]. There are several ways to bypass the need for multiple arcs

when dealing with path constraints. As the scope of this report only includes path

constraints on the control, the work from [13] will be used as shown in Section 3.4.1.

With those concerns addressed, indirect methods were chosen for the work presented

here because they provide high quality solutions. Furthermore, through paralleliza-

tion, they have the ability to computationally scale better than direct method solvers

to handle these large problems [9].

Both obtaining higher quality solutions and solving more complex or longer tra-

jectories require more discretization nodes when using direct methods. Because sen-

sitivity information is calculated at each node, the addition of nodes contribute sig-

nificantly to the curse of dimensionality at a quicker rate than indirect methods. The

quality of solution also suffers with direct methods because numerical artifacts may

appear such as high-frequency jitters as are often seen with highly sensitive prob-

lems. The solver directly manipulates the control variables to satisfies constraints

and dynamics, and a control profile that changes rapidly, may be able to satisfy these

within tolerances. Another issue arises from the way nodes are placed in the common

pseudo-spectral method like the state-of-the-art GPOPS-II [14]. With a pseudo-

spectral method, nodes are grouped near the beginning and end of a trajectory where

the dynamics and controls tend to be the least interesting. Ultimately, the most fun-
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damental short-coming of direct methods are that they do not guarantee optimality

of the solution because discretization is performed prior to optimization [15].

2.1.1 Necessary Conditions

The generalized statement of an optimal control problem is given in Eqs. (2.1)

to (2.4) with time t, state vector x(t), and control vector u(t). The objective function

is defined in Eq. (2.1) by adding the terminal cost φ to the functional that defines the

path cost
∫ tf
t0
L dt. The dynamics (Eq. (2.2)) for the system are held along each point

of the trajectory. Initial constraint and terminal constraint functions are defined by

Eq. (2.3) and Eq. (2.4), respectively. The initial time, t0, will be considered fixed, but

final time tf is free. Additional constraints can be added such as path, control, and

interior point constraints as describe in [16], but for this work, the control constraints

were applied by restructuring the problem using the method in [13], and path and

interior point constraints were not required.

min J = φ[tf ,x(tf )] +

∫ tf

t0

L[t,x(t),u(t)] dt (2.1)

Subject to:

ẋ = f [t,x(t),u(t)] (2.2)

0 = Ψ0[x(t0), t0] (2.3)

0 = Ψf [x(tf ), tf ] (2.4)

To enforce the constraints above, they are adjoined to J using Lagrange Multipliers

in Eq. (2.5). The dynamics constraint (f − ẋ) is applied with multiplier functions

λ to the path cost. Note that the Lagrange multipliers λ are referred to as costates

and vary with time. The initial and terminal constraints are adjoined to the terminal

cost with constant multipliers ν0 and νf .
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J̄ = φ[tf ,x(tf )] + νT0 Ψ0[x(t0), t0] + νTf Ψf [x(tf ), tf ]

+

∫ tf

t0

L[t,x(t),u(t)] + λT (t)(f [t,x(t),u(t)]− ẋ) dt
(2.5)

It is convenient to define the scalar function H = L + λTf referred to as the

Hamiltonian. Also, terminal constraints are combined with the terminal cost Φ =

φ+νTf Ψf . This gives Eq. (2.6). The function arguments are dropped for conciseness.

J̄ = Φ + νT0 Ψ0 +

∫ tf

t0

(H− λT ẋ) dt (2.6)

A necessary condition of optimality is that the differential of J̄ must equal 0. Equa-

tion (2.7) shows the differential of J̄ with respect to differential changes in x and

tf .

dJ̄ =

[(
∂Φ

∂t
+ L

)
dt+

∂Φ

∂x
dx

]
t=tf

+

[(
ν0
∂Ψ0

∂t
− L

)
dt+ ν0

∂Ψ0

∂x
dx

]
t=t0

+

∫ tf

t0

(
∂H
∂x

δx+
∂H
∂u

δu− λT δẋ
)
dt = 0

(2.7)

By integrating by parts, using δx = dx − ẋdt, and noting dt|t=t0 = 0, Eq. (2.8) is

obtained.

dJ̄ =

(
∂Φ

∂t
+ L+ λT ẋ

)
t=tf

dtf +

[(
∂Φ

∂x
− λT

)
dx

]
t=tf

+

[(
ν0
∂Ψ0

∂x
+ λT

)
dx

]
t=t0

+

∫ tf

t0

[(
∂H
∂x

+ λ̇

)
δx+

∂H
∂u

δu

]
dt = 0

(2.8)
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The final expressions for necessary conditions are obtained finally in Eqs. (2.9) to (2.13)

by equating each term in Eq. (2.8) to 0.

λ̇ = −∂H
∂x

(2.9)

λ (t0) =

(
−νT0

∂Ψ0

∂x

)
t=t0

(2.10)

λ (tf ) =

(
∂Φ

∂x

)
t=tf

=

(
∂φ

∂x
+ νTf

∂Ψf

∂x

)
t=tf

(2.11)

0 =

(
∂Φ

∂t
+ L+ λT ẋ

)
t=tf

=

(
∂Φ

∂t
+
∂Φ

∂x
ẋ+ L

)
t=tf

=

(
dΦ

dt
+ L

)
t=tf

(2.12)

∂H
∂u

= 0 (2.13)

The problem is now expressible as a two-point boundary value problem (TPBVP).

Equation (2.9) defines the dynamics for the costates. Equation (2.10), Eq. (2.11),

and Eq. (2.12) provide the needed boundary conditions (BCs). Equation (2.13) gives

an algebraic expression for the control law. If that expression is not sufficient, the

Pontryagrin minimum principle must be used shown in Eq. (2.14).

H [t,x∗(t),u∗(t),λ∗(t), ] ≤ H [t,x∗(t),u,λ∗(t), ] (2.14)

2.1.2 Description of Solver Implementation

It is helpful for the work done here to have a brief description of the solver’s

implementation of the OCT. The solver, named Beluga, is a product from Michael

Grant’s lab. A flowchart that summarizes the solution process is given in Fig. 2.1.

In order to overcome the small radius of convergence of the indirect method, Beluga

uses a homotopic continuation process following [12]. This continuation process starts

by solving a relatively small problem using an initial guess formed by propagating

the trajectory with guesses for the unknown states, costates, and parameters. The
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Figure 2.1. Flowchart of Trajectory Optimization Process (Beluga)

solution to that small problem is then used as an initial guess to a “larger” problem

with boundary conditions and any other parameters closer to the final problem of

interest. This new solution problem is used again as an initial guess to an even

“larger” problem. The process is repeated until the desired BC and parameters are

reached. An example of this continuation process applied to a navigation problem is

shown in Fig. 2.2.

For the work presented here, the TPBVP posed by applying OCT is solved using

the Multiple Shooting Method (MSM). This method is built upon the Single Shooting

Method (SSM). With SSM, the equations of motion (EOM) are integrated from the

guesses for the free initial states, costates, and parameters. The terminal boundary

conditions are evaluated to obtain a residual error vector as in Eq. (2.15)

ḡ (x0,xf ,λ0,λf , p̄) = ε (2.15)
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Figure 2.2. Example of Continuation Applied to Navigation Problem in Section 4.3
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Corrections need to be made to drive the residual error to zero. A first-order approx-

imation for the correction is formulated using the Jacobian matrices in Eq. (2.16)

and state-transition matrix (STM) defined in Eq. (2.17) propagated along with the

EOMs. Corrections to free parameters require
dxf

dp̄
calculated in nearly the same way

as the STM. These form a combined Jacobian Eq. (2.18), which is used to form the

modified Newton’s step in Eq. (2.19) to be applied to the initial guess where a is a

specified step-length. The correction is applied, and the process is repeated until the

residual becomes sufficiently small.

JM =
∂ḡ

∂x0

, JN =
∂ḡ

∂xf
, JP =

∂ḡ

∂p̄
(2.16)

Φ =
dx (t)

dx0

, Φ̇ =
∂f

∂x
Φ, Φ (t0) = I (2.17)

J =
[
JM + JNΦ JP + JN

dxf

dp̄

]
(2.18)∆x0

∆p̄

 = −aJ−1ε (2.19)

Multiple Shooting varies from SSM in that it divides the trajectory into multiple

arcs that are propagated separately. The original initial conditions hold as well as the

condition that the trajectory must be continuous between arcs as seen in Eq. (2.20).

Likewise, Jacobians are defined by Eq. (2.21) for the beginning and end of each arc,

and the system Jacobian is given by Eq. (2.22).

ḡ (x0,xf , p̄) = Ψ0 (x0) + Ψf (xf ) +
n∑
i=2

(
x
(
t+i
)
− x

(
t−i−1

))
(2.20)

JMi
=

∂ḡ

∂x
(
t+i
) , JNi

=
∂ḡ

∂x
(
t−i
) , JP =

∂ḡ

∂p̄
(2.21)

J =
[
JM1 + JN1Φ1 JM2 + JN2Φ2 · · · JMn + JNnΦn JP +

∑n
i=1 JNi

dx(t−i )
dp̄

]
(2.22)

With the new Jacobian, the problem can be solved using the same step as SSM.

Because each arc is significantly shorter than originally, MSM reduces numerical

issues that arise if a problem has EOMs that are very sensitive to initial conditions.

Through experience, this has shown necessary for these navigation based problems.
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Furthermore, each arc can be propagated in parallel reducing computation time as

discussed in Section 3.2.1.

2.2 State Estimation

The other significant portion of the navigation based problem is the estimation of

states and particularly quantifying the expected size of the estimation errors. This

will require calculating the covariance matrix P in which the diagonal elements are

the squares of each state’s error standard deviation, σ2
i , and the off diagonal elements

are the two states’ standard deviations multiplied by the two states’ correlation co-

efficient, ρi,jσiσj. The objective of navigation based path planning is to minimize

one or a combination of the diagonal variance elements by modifying the path. A

state estimator, as the name implies, synthesizes stochastic information about the

vehicle’s dynamics and measurements to estimate the vehicle’s states. They usually

produce the covariance matrix that is needed. In this work, state estimators are

only of concern to give an estimate of P and their direct improvement will not be

considered.

2.2.1 First Order Filter Example

To gain some fundamental understanding of state estimation, the following simple

first-order filter example is helpful [17]. The simple system has the “truth” modeled

by Eq. (2.23).

ẋ (t) = Fx (t) , x (t0) = 1

ỹ (t) = Hx (t) + v (t)

F = −1, H = 1

(2.23)

Assuming that v(t) is zero mean Gaussian noise with standard deviation 0.05, this

process is simulated in Fig. 2.3. Suppose that value for F is not known, and the

measurement must be used to estimate the state x. The linear feedback system in
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Figure 2.3. First-Order Filter Example [17]

Eq. (2.24) to drive the estimated state x̂ to x by feeding back the difference between

actual measurement and the expected measurement ŷ.

˙̂x (t) = F̄ x̂ (t) +K [ỹ (t)−Hx̂ (t)]

ŷ (t) = Hx̂ (t)
(2.24)

Figure 2.3 shows the result of the estimation for F̄ = −1.5 and K values of 0.1, 100,

and 15 for Case 1, Case 2, and Case 3 respectively. As can be seen, the estimate

in Case 1 is affected little by the measurement. This results in an estimate that

is smooth because it uses mainly the model, but it cannot correct for the error in

the model and varies significantly from the true value. Case 2 relies heavily on the

measurement, so it closely follows the truth value, yet the estimate is greatly affected

by the measurement causing relatively large fluctuations. Case 3 appears to be the

best of the three presented. The estimate follows the truth from the corrections from

the measurement, and the dynamic model adequately smooths fluctuations from the

noise.
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2.2.2 Continuous-Time Kalman Filter

This section concerns finding the optimal gain for an estimator of a linear system.

This optimal estimator is referred to as the Kalman filter. The continuous version

is derived here because the continuous formulation is most conducive to integrating

with OCT. The truth model is given in Eq. (2.25) with states x(t), controls u(t) and

measurements ỹ(t).

ẋ(t) = F (t)x(t) +B(t)u(t) +G(t)w(t)

ỹ(t) = H(t)x(t) + v(t)
(2.25)

The stochastic variables w(t) and v(t) are zero-mean Gaussian noise processes with

covariances given by Eq. (2.26).

E
{
w(t)wT (τ)

}
= Q(t)δ (t− τ)

E
{
v(t)vT (τ)

}
= R(t)δ (t− τ)

E
{
v(t)wT (τ)

}
= 0

(2.26)

The Kalman filter’s structure is prescribed as the feedback form given in Eq. (2.27).

˙̂x(t) = F (t)x̂(t) +B(t)u(t) +K(t) [ỹ(t)−H(t)x̂]

ŷ(t) = H(t)x̂(t)
(2.27)

The state error x̃ = x̂(t)− x(t) has dynamics described by Eq. (2.28).

˙̃x(t) = E(t)x̃(t) + z(t) (2.28)

where:

E(t) = F (t)−K(t)H(t) (2.29)

z(t) = −G(t)w(t) +K(t)v(t) (2.30)

The covariance matrix for z is shown in Eq. (2.31) noting that u(t) cancels in the

state error and that v(t) and w(t) are uncorrelated.

E
{
z(t)zT (τ)

}
=
[
G(t)Q(t)G(t)T (t) +K(t)R(t)KT (t)

]
δ(t− τ) (2.31)
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The matrix exponential solution of Eq. (2.32) is used to find the state error covariance

P (t) in Eq. (2.33).

x̃(t) = Φ(t, t0)x̃(t0) +

∫ t

t0

Φ(t, τ)z(τ)dτ (2.32)

P (t) ≡ E
{
x̃(t)x̃T (t)

}
= Φ(t, t0)P (t0)ΦT (t, t0)

+

∫ t

t0

Φ(t, τ)
[
G(τ)Q(τ)GT (τ) +K(τ)R(τ)KT (τ)

]
ΦT (t, τ)dτ

(2.33)

The time derivative of P (t) is taken in Eq. (2.34).

Ṗ (t) =
∂Φ(t, t0)

∂t
P (t0)ΦT (t, t0) + Φ(t, t0)P (t0)

∂ΦT (t, t0)

∂t

+

∫ t

t0

∂Φ(t, τ)

∂t

[
G(τ)Q(τ)GT (τ) +K(τ)R(τ)KT (τ)

]
ΦT (t, τ)dτ

+

∫ t

t0

Φ(t, τ)
[
G(τ)Q(τ)GT (τ) +K(τ)R(τ)KT (τ)

] ∂ΦT (t, τ)

∂t
dτ

+ Φ(t, t)
[
G(t)Q(t)GT (t) +K(t)R(t)KT (t)

]
ΦT (t, t)

(2.34)

Using several matrix exponential properties and Eqs. (2.29) and (2.33) simplify Eq. (2.34)

to Eq. (2.35).

Ṗ (t) = [F (t)−K(t)H(t)]P (t) + P (t) [F (t)−K(t)H(t)]T

+G(t)Q(t)GT (t) +K(t)R(t)KT (t)
(2.35)

The gain K(t) is now found to minimize the size of the diagonal elements (the state

variances) of P (t). This is accomplished by the equivalent problem of minimizing the

trace of the time derivative Ṗ .

min J [K(t)] = Tr[Ṗ (t)] (2.36)

This leads to holding the necessary condition Eq. (2.37), which is solved to give

Eq. (2.38).

∂J

∂K(t)
= 0 = 2K(t)R(t)− 2P (t)HT (t) (2.37)

K(t) = P (t)HT (t)R−1(t) (2.38)
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Substituting Eq. (2.38) in Eq. (2.33) gives the final expression for Ṗ (t) in Eq. (2.35).

Ṗ (t) = F (t)P (t) + P (t)F T (t)

− P (t)HT (t)R−1(t)H(t)P (t) +G(t)Q(t)GT (t)
(2.39)

Another way to derive the continuous Kalman filter is from the discrete Kalman

filter. This method is presented in [17]. That derivation provides relationships be-

tween the continuous R(t) and Q(t) and their discrete form Rk and Qk given in

Eqs. (2.40) and (2.41).

Rk =
R(t)

∆t
(2.40)

ΥkQkΥ
T
k = ∆tG(t)Q(t)GT (t) (2.41)

It is fitting to set G(t) = d
dt

Υk. Assuming that ∆t is sufficiently small, the correspon-

dence shown in Eq. (2.42) follows.

G(t) =
d

dt
Υk ≈

1

∆t
Υk

⇒ ΥkQkΥ
T
k = ∆tG(t)Q(t)GT (t) = Υk

Q(t)

∆t
ΥT
k

⇒ Qk =
Q(t)

∆t

(2.42)

Therefore, Eqs. (2.43) and (2.44) describe directly R(t) and Q(t) to Rk and Qk.

R(t) = ∆tRk (2.43)

Q(t) = ∆tQk (2.44)

The description of R(t) and Q(t) in this fashion is useful in navigation based path

planning to translate discrete problems into continuous ones and to have a more

intuitive understanding in what the values represent, and therefore are used in the

description of problems in this report. For the purposes of this work in which only

the variance is minimized, the value of ∆t does not effect the optimal path because

it scales the variance by the same factor everywhere throughout the trajectory and

thus does not change where the minimum occurs. This is by the same logic presented

in Section 3.3.2.
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Below the continuous linear Kalman filter is summarized for convenience.

Model:

ẋ(t) = F (t)x(t) +B(t)u(t) +G(t)w(t)

ỹ(t) = H(t)x(t) + v(t)

Initialize:

x̂(t0) = x̂0

P0 = E
{
x̃0x̃

T
0

}
Gain:

K(t) = P (t)HT (t)R−1(t)

Covariance:

Ṗ (t) = F (t)P (t) + P (t)F T (t)− P (t)H(t)R−1(t)H(t)P (t) +G(t)Q(t)GT (t)

Estimate:

x̂(t0) = x̂0

˙̂x(t) = F (t)x̂(t) +B(t)u(t) +K(t) [ỹ(t)−H(t)x̂]

2.2.3 Extended Kalman Filter

The Kalman filter is the optimal estimator for linear systems, but many problems

of interest, especially those in the real world, are nonlinear. The Kalman filtering

technique may be adjusted to give a near optimal estimator and approximation of the

error covariance. The most common approach is through the extended Kalman filter

(EKF). There exists more accurate nonlinear state estimators such as the unscented
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Kalman filter [18], but the EKF is used here because of its simplicity and ease of

implementation.

The nonlinear system has the truth model given in Eq. (2.45).

ẋ(t) = f (x(t),u(t), t) +G(t)w(t)

ỹ(t) = h (x(t), t) + v(t)
(2.45)

To arrive at the EKF, Eq. (2.45) needs to be linearized. It is assumed that the true

state is sufficiently close to the estimated state. Therefore, the first-order Taylor

series approximations given in Eqs. (2.46) and (2.47) can be used.

f (x(t),u(t), t) ≈ f (x̄(t),u(t), t) +
∂f

∂x

∣∣∣∣
x̄(t),u(t)

[x(t)− x̄(t)] (2.46)

h (x(t),u(t), t) ≈ h (x̄(t), t) +
∂h

∂x

∣∣∣∣
x̄(t)

[x(t)− x̄(t)] (2.47)

In the EKF, the nominal state x̄ is set to be equal to the current x̂. The expectations

in Eq. (2.48) follow.

E {f (x,u(t), t)} = f (x̂(t),u(t), t)

E {h (x̂(t), t)} = h (x̂(t), t)
(2.48)

This leads to equations for state and measurement estimates, Eqs. (2.49) and (2.50).

˙̂x(t) = f (x̂(t),u(t), t) +K(t) [ỹ(t)− h (x̂(t), t)] (2.49)

ŷ(t) = h (x̂(t), t) (2.50)

Substituting Eqs. (2.46) and (2.47) into Eq. (2.49) using Eq. (2.45) gives the EKF

structure in Eq. (2.51)

˙̃x = [F (t)−K(t)H(t)] x̃−G(t)w(t) +K(t)v(t) (2.51)

where:

F (t) ≡ ∂f

∂x

∣∣∣∣
x̂(t),u(t)

H(t) ≡ ∂h

∂x

∣∣∣∣
x̂(t)

(2.52)
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This structure is equivalent to the linear Kalman filter structure Eq. (2.27), so ev-

erything else follows as from the continuous linear Kalman filter. The EKF is also

summarized in the equations below.

Model:

ẋ(t) = f (x(t),u(t), t) +G(t)w(t)

ỹ(t) = h (x(t), t) + v(t)

Initialize:

x̂(t0) = x̂0

P0 = E
{
x̃0x̃

T
0

}
Gain:

K(t) = P (t)HT (t)R−1(t)

Covariance:

Ṗ (t) = F (t)P (t) + P (t)F T (t)− P (t)HT (t)R−1(t)H(t)P (t) +G(t)Q(t)GT (t)

F (t) ≡ ∂f

∂x

∣∣∣∣
x̂(t),u(t)

H(t) ≡ ∂h

∂x

∣∣∣∣
x̂(t)

Estimate:

˙̂x(t) = f (x̂(t),u(t), t) +K(t) [ỹ(t)− h (x̂(t), t)]



20

3. METHODS FOR SOLVING NAVIGATION BASED

PATH PLANNING PROBLEMS

3.1 General Approach

The fundamental approach to inserting the variance information into the optimal

control problem is simple. The n(n+1)
2

unique elements of the covariance matrix P are

appended to the state vector, and the optimization process is applied as in Section 2.1.

The dynamics for these elements come from the differential matrix equation from

the EKF for Ṗ given in Eq. (2.39). Instead of propagating stochastic truth and

estimate values, the equation for Ṗ is calculated about the reference path. This is

done assuming the estimate trajectory will closely match the reference through use of

feedback controllers if applied to actual vehicles, and it results in a fully deterministic

problem with smooth derivatives favorable to optimization. The matrix equation

itself is expanded into the scalar equations that correspond to the unique values

appended to the states. This is done to more simply derive necessary conditions and

to fit in existing software. In future work, retaining the matrix form may quicken

computation by reducing redundancies and using more efficient matrix multiplication

algorithms. The addition of the covariance elements to the problem enables them

to be incorporated into the objective functions and minimization of state estimation

errors.

3.2 Addressing Problem Size

Perhaps the most significant issue to solving navigation-based problems is the

curse of dimensionality that results from the addition of the covariance values. As

stated before, for n stochastic vehicle states, there are n(n+1)
2

unique covariance values
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each with its own costate. Furthermore, the length of the dynamic equation describing

each increases by n3 as a result of being derived from basic matrix multiplication.

Each state also has a costate whose dynamics are derived from the quickly lengthening

Hamiltonian. Finally, the computation work is squared in the calculation of the STM

for the MSM.

The large problem size thus poses issues for quick computation and limits any

user not only for the time computer resources are occupied but also to tweak problem

parameters to numerically converge to a solution. Presented below are some methods

that have been done to speed calculations, but more is likely needed to solve more

complicated navigation problems.

3.2.1 Parallelization

Parallelization can be used to fully utilize the multiple cores of modern computer

hardware. The first method shown in [19] runs the MSM in Section 2.1.2 in par-

allel processes distributed across the computer’s separate CPU thread. Each of the

multiple arcs can be propagated independently because they only need to know their

initial guess and the EOM.

The problem can be further parallelized to take advantage of the hundreds of cores

found in modern GPUs as shown by [9]. This method works by first propagating

the states in parallel on the CPU cores as before, but especially with a fixed step

propagation with K steps. A special property of the STM in Eq. (3.1) can be used

to propagate it in parallel.

Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0) (3.1)

Therefore, a corresponding STM Φk = Φ(tk, tk−1) can be calculated each time step

from tk−1 to tk using the already computed states. These are each computed on one of

the GPU cores. Then the matrix multiplication in Eq. (3.2) is performed to compute

the final STM.

Φ = ΦKΦK−1 . . . Φ1Φ0 (3.2)
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This multiplication can also be done with specialized algorithms for matrix multi-

plication on the GPU. This GPU parallelization has shown to be effective on the

navigation problems more than halving computation time on the single cart problem

presented later.

3.2.2 Numerical Derivatives for Costate Propagation

Another way to reduce the computation time needed is to use numerical deriva-

tions to shorten the derivatives for the costates given by Eq. (2.9). The expressions

for the costates may become long when analytically computed because of the applica-

tion of the chain rule so calculating the derivatives numerically is often less intensive

computationally. The problems addressed in this thesis all contain functions that can

handle imaginary arguments so a complex step derivative can be used and calculated

using ∂f
∂x

= =(f(x+ih))
h

where h is small [20]. The terms of the Hamiltonian not de-

pendent on the state considered because those terms do not affect the result, so the

Hamiltonian used in the calculations may be reduced to Hx terms, which contains the

terms in the Hamiltonian dependent on state xi, to further reduce the calculations

needed. This results in:

λ̇i = −∂H
∂xi

= −=(H(xi + ih))

h
= −=(Hx terms(xi + ih))

h
(3.3)

The benefits of using a complex step derivative over a standard forward, backward,

or central difference derivative are that it only requires one function evaluation and

achieve machine precision because it eliminates the subtraction that introduces trun-

cation error. This method reduces the computation time of the derivative in single

cart problem (Section 4.3) by about 50% and the derivatives in dual cart problem

(Section 4.1) by about 90%. This technique is limited though by the software’s abil-

ity to symbolically determine the terms contained in Hx terms. Without reducing the

size of H and eliminating extraneous terms, the analytical expressions for the partial

derivatives may still be shorter. The expression needs to be expanded to dissociate the

states. After the unneeded terms are removed, simplification is necessary to reduce
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redundant calculations. This process is computationally expensive and infeasible in

some cases.

3.3 Scaling

Scaling the optimal control problem is necessary to efficiently and effectively solve

an optimal control problem numerically. This is so that variables handled in the solver

can be treated with the same tolerances, do not numerically dominate one another,

and are independent of the physical units used to express the problem. Ideally, the

problem would be scaled in such a way that all the values are close to unity. The way

the solver has done the scaling in the past is to assign a scale factor to each physical

unit (e.g. meter, second, kilogram). By tying the scaling of each with the physical

units allows the EOM to remain dimensionally consistent without modifying them.

This method applied blindly to a navigation path planning problem can cause issues

though because in a realistic problem, the standard deviation of a state hopefully is

orders of magnitude smaller than the state itself despite the two variables sharing

the same unit. For example, in the original Two-Cart Problem presented in 1, the

carts need to reach a goal 4,000 m away from their initial locations, but the standard

deviation in each inter-range measurement is only 0.01 m.

3.3.1 Norm Scaling

The first method to bypass this issue involved scaling each state individually by

the L2-norm defining a scale value ki,norm =
∫ tf

0
x2
i dt for state xi. This results in a
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new state vector xnew with dynamics defined by 3.4. The solver uses xnew to solve the

TPBVP. The scale factors are recalculated at each continuation step to be adaptive.

xi = ki,normxi,new

⇒ ẋnew =


1

k1,norm
f1(knorm ◦ xnew)

...

1
kn,norm

fn(knorm ◦ xnew)

 (3.4)

This method was successful and allowed for solutions to be found. Unfortunately, it

has several negatives which make this not the preferred method. Firstly, it requires

more computations from the process in Equation 3.4. Also, special care must be

taken in posing the initial guess and problem with the scaling factors in mind. Lastly,

because the scaling of each state is independent from all others, two states, such as two

position variables, may be scaled completely differently, which may be undesirable.

For example, in the single cart problem the actual tolerance applied in the y direction

may be two or three orders of magnitude higher than that applied in the x direction

despite the terminal y coordinate being more difficult to target as implied by the

higher variance for y.

3.3.2 Constant Scaling

Another method of overcoming the scaling issue is simply to multiply the state

noise Q and measurement noise R by some factor so that the covariance elements

and costates are the appropriate magnitude. Multiplying the noise by a factor kcov so

that Qnew = kcovQ and Rnew = kcovR results in a new covariance matrix Pnew = kcovP

without modifying any other aspects of the problem. The consistency of this is shown

in 3.5. Because the optimal path only depends on the relative sizes of the covariances
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to each other and not their absolute magnitudes, the scaled problem has the same

solution as the original.

Ṗnew = FPnew + PnewF
T − PnewH

TR−1HPnew +GQnewG
T

= kcovFP + kcovPF
T − kcovPH

T
(

1
kcov

)
R−1HkcovP +GkcovQG

T

= kcovṖ

(3.5)

A way to see that this would be true is to note that the normal states are only

dependent on each other and the control but not directly on the covariance values.

The control is determined by minimizing the cost functional J . The problem that

minimize J and kJ where k > 0 are equivalent problems. By scaling the covariance

elements, the problem functionally only changes by multiplying the cost function by

a factor of k.

The final scaling method is an extension of this. Instead of using a scalar, more

direct control can be gained by use of a matrix. A diagonal scaling matrix K is defined

such that its elements are on the same order of the corresponding states’ standard

deviation. The relation in Eq. (3.6) defines the scaled covariance matrix Pnew. This

works well because P is composed of diagonal elements σ2
i and off-diagonal elements

ρi,jσiσj with |ρi,j| ≤ 1, so if the matrix K is a diagonal matrix with σi elements, Pnew

will be made of ones on the diagonal and ρi,j off-diagonal.

P = KcovPnewKcov (3.6)

Applying this definition to the dynamic equation for Ṗ yields Eq. (3.8), which is used

in the optimization problem.

Ṗ = KcovṖnewKcov

= FKcovPnewKcov +KcovPnewKcovF
T

−KcovPnewKcovH
TR−1HKcovPnewKcov +GQGT

(3.7)

⇒ Ṗnew = K−1
covFKcovPnew + PnewKcovF

TK−1
cov

− PnewKcovH
TR−1HKcovPnew +K−1

covGQG
TK−1

cov

(3.8)

This method may be used to bring the covariance values near to the states, and then

dimensional scaling is applied.
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3.4 Addressing Controls

Special consideration is merited when deciding how to express the control in a

navigation based problem. The length and complexity of the differential equations

may be prohibitive to symbolic computations required to find the algebraic solution to

Eq. (2.13), ∂H
∂u

= 0. A method using index reduction for solving differential algebraic

equations (DAE) has been effective for other problems in which a control law cannot

be found explicitly [21]. This method finds an expression for the derivative of the

control, u̇, by Eq. (3.9) and numerically integrates that instead of solving for the

control directly.

g =
∂H
∂u

= 0

∂ug (t,x,u) u̇ = −∂xg (t,x,u) ẋ− ∂tg (t,x,u)

(3.9)

Unfortunately, for navigation based problem the length of the Hamiltonian is still

prohibitive. Calculating this at every time step greatly slows computation. The

most effective way to add the control is to make the control linear. This means that

ẋ = F (t,x) + Bu. In practice, this condition may be relaxed somewhat (and will

be with the control constraints) as long as the control is not embedded deeply within

the states’ rates and covariance matrix. The simplest way to do this if the control

variable of interest is not linear is to make that original control an additional state and

to make its rate equal to the new control. This requires the application of a control
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constraint though so that one does not arrive trivially to the original formulation.

This can be seen by Eq. (3.12) where the new control is u and the old control is w.

ẇ = u (3.10)

H = L+ λTf

= L+ λ1f1 + λ2f2 + · · ·+ λwu+ . . . λnfn

= H0 + λwu

(3.11)

∂H
∂u

= λw = 0 (3.12)

∂H
∂w

= −λ̇w = − d

dt
0 = 0 (3.13)

The condition ∂H
∂w

= 0 still has to be held and the control needs to be found numer-

ically to hold λw = 0. The way to apply a linear control without these issues is to

apply a control constraint. In traditional OCT, the minimum principle (Eq. (2.14))

can be used to find the control.

3.4.1 Control Bounding

Traditionally, adding control constraints to an optimal control problem required

prior knowledge of the existence and sequence of constrained and unconstrained arcs,

so the trajectory can be appropriately divided into multiple arcs and the correct

control being applied using the minimum principle Eq. (2.14) [16]. The requirement

for that knowledge of the system a priori prevents the application of the traditional

method to the problems presented here.

Instead, the control constraints shown in this report were all implemented using

the Epsilon-Trig Regularization Method [13]. The main benefits to bounding the

control this way are that the problem can be solved using a single arc and that it is

relatively simple to implement. The method requires replacing the control u with the

trigonometric function umax sinu4, which is clearly bounded between ±umax. The

optimal control problem is then solved with u4 as the control. It is also required

to add an error term to regularize discontinuities in the control law which would
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prevent propagating the differential equations. As originally presented, the error

term εumax cosu4 was added to an arbitrary state’s rate. The constant ε should be

made small relative to the problem, and as ε approaches 0, the regularized problem’s

solution approaches that of the original problem. The approach is shown in Eq. (3.14).

|u| ≤ umax

ẋi = fi

H = L+ λTf

−→

u = umax sinu4

ẋi = fi + εumax cosu4

H = L+ λTf + λiεumax cosu4

(3.14)

Though the original formulation was used for some of the results presented here,

adding the error term to a state’s dynamics is not ideal. Firstly, modifying the state

dynamics may result in constraints that are satisfied in the new system to not be

satisfying in the original system with the same control law. Furthermore, the regular-

ized control law will be strongly dependent on λi, which is problematic if λi changes

magnitude greatly (changing the effect of the term significantly) or goes to 0 (elimi-

nating the regularization entirely). Both these problems can be resolved by noticing

that the error term can be added to the Hamiltonian in almost an identical way but

without the dependency on λi by subtracting it from the path cost L. Subtraction

is chosen so that minimizing the path cost results in |u4| ≤ π/2. This results in

Eq. (3.15). Sizing ε is easier with this method as it can be sized with respect to the

cost only without taking into account of its effect on a state.

|u| ≤ umax

J = φ+

∫ tf

t0

Ldt

H = L+ λTf

−→

u = umax sinu4

J = φ+

∫ tf

t0

L − εumax cosu4 dt

H = L − εumax cosu4 + λTf

(3.15)

3.4.2 Added Nonlinearity Due to Control Bounding

By bounding the control, the nonlinearity present in the problems worsens, and

it may render certain problems nearly unsolvable. Some symptoms of these problems
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are that often the root solver will reduce the residuals to be fairly close to zero

only to have them suddenly grow very large or that the propagation will break from

radically changing derivatives. The issues seem to worsen when areas develop where

the problem becomes relatively insensitive to the control which particularly pertains

to navigation problems as demonstrated in Section 4.3.3. It may be thought that this

insensitivity to the control is the only issue, but this is incongruent with the problem

exhibiting with the sudden changes in the solver’s behavior. Instead, the issues arise

from the presence of sensitive and insensitive regions together.

A bounded Zemelo’s problem described in Eqs. (3.16) to (3.19) is used to demon-

strate this. The problem displayed has already been converted to use Epsilon-Trig

method bounding. This problem is dynamically equivalent to the single-cart problem

in Section 4.3 without the covariance dynamics.

min J =

∫ tf

0

(1 + εumax cosu4)dt (3.16)

x =


x

y

θ

 , f(x) =


v cos θ

v sin θ

umax sinu4

 (3.17)

With boundary conditions and parameters:

x0 = 0, y0 = 0, θ0 = 0, xf = 10, yf = 5 (3.18)

v = 1, umax = 0.1, ε = 0.1 (3.19)

It is helpful here not to look at the sensitivity of the objective to the control,

but rather, observe the effect that the free initial costate values have on the fixed

terminal values. This is because the initial values are what the TPBVP solver using

shooting methods directly adjusts to satisfy the boundary conditions. Therefore, these

sensitivities determine whether the solver can find a solution. In bounded problems,

there is often not a sensitivity issue between the control and objective, as can be

observed at times with the relative ease in solving unbounded variants. Instead, the
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issue is between the costates and the control, causing the insensitivity between the

costates and the states. The bounding creates this in that near the control bounds,

larger magnitude costate values only bring the control asymptotically closer to the

constraint, so as the control approaches the bound, the costates have lesser effect.

Section 3.4.2 shows the corresponding effects of varying the initial costates λx,0 and

λθ,0 about the optimal solution on the final states. For reference to the optimal,

λ?x,0 = −0.7799 and λ?θ,0 = −2.200. Most notable in the plots is the change in

magnitude of the derivatives in the lower plots. These trends are similar to what is

seen in the arctangent function which is known to be difficult to root solve. If the

current solution is in a “flat” region, where large changes in initial value result only

in small changes in terminal values, the solver will attempt to take a very large step

and likely overshoot the solution significantly. Furthermore, the condition number of

the STM, and Jacobian by extension, spikes around the optimal solution indicating

that the problem is near-singular there. Theoretically, a first order method should

be able to converge to a solution with a singular Jacobian, but significantly slower.

Unfortunately, in practice, a bad step often results in failed state propagation, which

either instantly break the solver or starts a series of degrading quality steps that

cannot converge.

Control constraints like those used here require special care to reliably obtain

results. Knowing how the addition of the constraint impacts the search space allows

the researcher to better diagnose numerical issues, select smoothing parameters, and

develop continuation strategies.

3.4.3 Control Energy Cost: Alternative to Control Bounding

An alternative to control bounding to use linear controls is to add a control “en-

ergy” path cost. Equation (3.20) shows the added path cost.

Lcon = kenu
2, ken > 0 (3.20)
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Figure 3.1. Numerical Investigations into Sensitivities of Bounded
Zemelo Problem to Initial Costates
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Applying Eq. (2.13) results in the simple control law for these problems in Eq. (3.21)

where ẋu = u.

∂H

∂u
=
∂ (Lcon + λxuu)

∂u
= 2kenu+ λxu = 0

→ u = − λxu
2ken

(3.21)

The reason that the control bounding method is presented as the primary method

is that it is easier to intuitively understand, retains the pure variance cost, and relates

directly to actual constraints native to the problems, such as the single cart problem

(Section 4.3). One benefit to the control energy cost method is that it does not create

new infeasible regions of the design space. Moreover, it does not appear to suffer as

much from the nonlinearity discussed in Section 3.4.2. Lastly, if all that is desired

from the designer is a decrease of the extreme control effort, this method will lead

the optimizer to “distribute” the limited control where it is most useful to minimize

the variance.
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4. SOLUTIONS TO NAVIGATION BASED PROBLEMS

This chapter applies the methods described above to particular navigation based

problems. The first two problems presented, the dual-cart problem and the 1-D train

problem, provide an insight into characteristics of problems of this type and as a

starting point to developing the tools further. The second two problems, the single

cart problem and aircraft descent problem, were successfully solved and fulfill the

goal of this thesis.

4.1 Dual Cart Problem

As mentioned in Chapter 1, the dual cart problem, studied in [5, 6], served as

the primary motivating problem for the work in this thesis, so it is described math-

ematically in Eqs. (4.1) to (4.5) with a diagram shown in Fig. 4.1. The parameters

given below correspond to a discrete time estimator to match the original papers.

It would need to be converted to a near equivalent continuous time estimator using

Eqs. (2.43) and (2.44). The two carts, separated initially by 600 m, travel to their

respective goals 4,000 m downrange. The objective is to minimize the variance in

terminal estimation. The best performing trajectories from [5] and [6] are given in

Figs. 4.2(a) and 4.2(b) respectively.

min J = px1x1(tf ) + py1y1(tf ) + px1x1(tf ) + py2y2(tf ) (4.1)
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Subject to:

u =

ω1

ω2

 x =



x1

y1

θ1

x2

y2

θ2


f =



ẋ1

ẏ1

θ̇1

ẋ2

ẏ2

θ̇2


=



v cos θ1

v sin θ1

ω1

v cos θ2

v sin θ2

ω2


(4.2)

|ω| ≤ ωmax, Ψ0 =


x1(0)− 0 m

y1(0)− 0 m

x2(0)− 0 m

y2(0)− 600 m

 = 0, Ψf =


x1(tf )− 4000 m

y1(tf )− 0 m

x2(tf )− 4000 m

y2(tf )− 600 m

 = 0

(4.3)

With measurement:

h = ρ =

√
(x1 − x2)2 + (y1 − y2)2 (4.4)

With parameters:

v = 30 m/s, ωmax = 1 rad/s, ∆t = 0.1 s

σv = 0.01 m/s, σω = 0.01 rad/s, σρ = 0.01 m
(4.5)

The greatest barrier to solving this problem using optimal control theory is its

computational burden. Despite very simple state dynamics, the additional dynamics

needed for both the EKF and subsequent OCT quickly become immense. Firstly, the

6 original physical states require the 6(6+1)
2

= 21 unique covariance elements. The

original states and covariance elements all need their corresponding costate values

requiring the propagation of 54 ordinary differential equations. Moreover, the size

of the differential equations vastly grows for each additional set of dynamics. The

matrix operations for the state estimation increase roughly by n3. Therefore, the

state estimation for the dual cart requires about eight times the computations than
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Figure 4.1. Diagram of Dual Cart Problem



36

(a) Best Trajectory From [5] (b) Best Trajectory From [6]

Figure 4.2. Previously Obtained Results for Dual Cart Problem

the single cart problem in Section 4.3. Worse still, the calculations for the costate

dynamics, which are described by λ = −∂H
∂x

= − ∂
∂x

(
L+ λTf

)
, become much larger

as the previously mentioned dynamics grow because those are contained within the

vector f . The time needed to simply propagate the ordinary differential equations

prohibits effectively solving this problem without special considerations. This is why

the remaining sections focus on smaller problems, but including further computational

optimizations and avoiding the possible pitfalls shown in Sections 4.2 and 4.3.3 should

enable this problem to be solved as future work.

4.2 1-D Train Problem

As shown, the complexity of the navigation based path planning problems grows

very quickly with the number of states. When the complexity of the problem is too

great, it is difficult to determine what may prevent finding solutions. The differential

equations for the covariance values in a non-matrix form are usually very long even

for problems that appear relatively simple. This inhibits the ability to intuitively

understand how the solutions would behave by inspection of the differential equations.

To gain a more fundamental understanding, one of the simplest problems of this type
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was examined. It consists of a vehicle that can move only in one direction with

instantaneous acceleration. It may be helpful to imagine the vehicle as an electric

model train. The train measures a bearing angle from a beacon located at (xb, yb) off

one side of the track. There is uncertainty in measuring the bearing angle β and the

train’s velocity, u, and an EKF estimates the state x. The bearing angle β is calculated

with the function arctan2 (y, x), which returns the angle between the positive x-axis

and the line the connects the origin to the coordinates (x, y). For the computations

in this thesis, arctan2 (y, x) obtains equivalent results as the standard inverse tangent

function tan−1( y
x
), but it more closely describes the bearing angle β because it can

return values for all four quadrants. Velocity is the control and is bounded. For the

discussion, the methods presented in Section 3.4.1 or Section 3.4.3 were not applied

because this problem can be solved by introspection. Figure 4.3 shows a diagram of

the problem. It is described mathematically in Eqs. (4.6) and (4.7).

ẋ(t) = u+ w (4.6)

ỹ(t) = β + v = arctan2 (yb, xb − x) + v (4.7)

where:

0 ≤ u ≤ umax

w(t) ∼ N (0, σ2
u)

v(t) ∼ N (0, σ2
β)

(4.8)

P (t) = [p11]

F (t) ≡ ∂f

∂x

∣∣∣∣
x̂(t),û(t)

= 0

H(t) ≡ ∂h

∂x

∣∣∣∣
x̂(t)

=
yb

(xb − x)2 + y2
b

(4.9)

⇒ Ṗ (t) = ṗ11 = σ2
u − p2

11

y2
b

σ2
β((xb − x)2 + y2

b )
2

(4.10)

The differential equation for the variance of the train’s location p11, shown in

Eq. (4.10), is now simple enough to examine directly. Considering that σu, σφ, xb,
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Figure 4.3. 1-D Train Problem Diagram
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Figure 4.4. Convergence of Variance of Non-Moving Train

and yb are constant, a steady-state value for p11 can be calculated for a given location

for a train that is not moving (Eq. (4.11)).

ṗ11 = c0 − p2
11c1(x)

c0 > 0

p2
11c1(x) > 0

⇒ lim
t→∞

p11(x, t) = σuσβ
y2
b + (xb − x)2

yb

(4.11)

This asymptotic behavior is shown in Figure 4.4 for the case where xb = 5 m; yb = 1 m;

σβ = 0.1 rad
√

s; σu = 0.1 m√
s

at x = 5 m. This also suggests that one can find a

minimum steady state variance based on location. For this example, this is when

the train is closest to the landmark. This behavior’s effect can be seen throughout

the trajectory. The dotted line in Figure 4.5 shows the steady-state values along the

path. Also in Figure 4.5 are plotted the variance for different constant velocities. The

variance values increase if they are below the steady state line and decrease if they

are above it as would be expected.
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Figure 4.5. Variance Location of Train with Constant Velocity
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Simply propagating the problem’s equations forward provided much insight into

the nature of the problem. Perhaps the most significant discovery is that if the

objective is to minimize variance and the maximum velocity is below about 4.5 m/s,

the problem has infinitely many optimal solutions that theoretically take infinite

time to complete. If the maximum velocity is large enough, the optimal solution is

to simply go as fast as possible to the end to minimize the time the variance has

to grow. If the train cannot go fast enough to prevent the variance from exceeding

the “steady-state” value, the issues arise. The optimal solution then is to go closest

to the landmark using any velocity profile (infinitely many solutions), stop, wait

infinitely long for the variance to reach the lowest “steady-state” value, and finally

go at maximum speed to the end. This simple example shows that these issues can

occur, which both would prevent finding a solution with the optimal control theory

solver. Using more complicated objective functions, such as one that includes time,

or implementing further constraints on the system may prevent these issues from

appearing.

The similar problem found in [1] used the control energy path cost instead of the

strict control bounds and also placed a constraint on the final time. It also did not

examine the vehicle as it crosses the beacon, important for this discussion above. The

results obtained there are consistent with the case presented here. Notably, as the

relative weight of the control cost was decreased, the velocity control concentrated

with greater magnitude towards the end of the allotted time. In other words, the

vehicle remained as close to the beacon for as long as possible given the specified

control cost and time constraint. Furthermore, the covariance value may be seen to

converge to a common value near the beacon as seen above.

4.3 Single Cart Problem

The single cart problem presented below is a reduced version of the motivating

dual-cart problem. A stationary beacon with a known location replaces the second
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cart. Like the dual-cart problem, the “cart” can be viewed as any turn-limited, fixed

vehicle moving within a 2-D plane such as a fixed-altitude UAV. This problem is

simple enough to be solved within a reasonable time without the trivial or infinite

time solutions of the very simple 1-D problem.

4.3.1 Problem Formulation

The equations describing the problem are given in Eqs. (4.12) to (4.22), and

Fig. 4.6 displays a diagram. The cart is to move from its initial location and ori-

entation to a goal position downrange with a bounded turn-rate being the control.

The objective is to minimize the terminal location estimation error. The beacon from

which it takes a range measurement is placed halfway downrange between the initial

and terminal location and offset by some crossrange distance. The measurement con-

tains random noise as well as random noise corresponding to the vehicle’s speed and

turn rate. The nominal parameters are given in Eq. (4.22).

min J = pxx(tf ) + pyy(tf ) (4.12)

Subject to:

f =


ẋ

ẏ

θ̇

 =


v cos θ

v sin θ

ω

 (4.13)

|ω| ≤ ωmax, Ψ0 =


x(0)− 0 m

y(0)− 0 m

θ(0)− 0 deg

 = 0, Ψf =

x(tf )− xf
y(tf )− yf

 = 0 (4.14)

With measurement:

h = ρ =

√
(x− xb)2 + (y − yb)2 (4.15)
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With covariance dynamics:

Ṗ = FP + PF T − PHR−1HTP +GQGT (4.16)

Q =
E
{
w(t)wT (τ)

}
δ (t− τ)

=

σ2
v 0

0 σ2
ω

 (4.17)

R =
E
{
v(t)vT (τ)

}
δ (t− τ)

=
[
σ2
ρ

]
(4.18)

F =
∂f

∂x
=


0 0 −v sin θ

0 0 v cos θ

0 0 0

 (4.19)

H =
∂h

∂x
=

[
(x−xb)√

(x−xb)2+(y−yb)2
(y−yb)√

(x−xb)2+(y−yb)2
0

]
(4.20)

G =


cos θ 0

sin θ 0

0 1

 (4.21)

With parameters:

v = 30 m/s, ωmax = 0.1 rad/s

σv = 0.1 m/
√

s, σω = 0.1 rad/
√
s, σρ = 0.1 m

√
s

xb = xf/2, yb = 50 m

(4.22)

4.3.2 Results

The results for the nominal single-cart are shown in Fig. 4.7. The terminal down-

range distance was set to 1,000 m. For this problem, solving longer trajectories

becomes infeasible because of the issues discussed in Section 4.3.3. By modifying the

path, the variance in the terminal location is reduced from 47.2 m2 of the straight

path to 1.84 m2, a 96% reduction. The optimal path turns away from the beacon and

follows a curved path to the goal. The control, ω, is near the control constraint only

near the beginning of the trajectory, indicating that the inclusion of the constraint

does not affect the trajectory significantly.
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Figure 4.6. Diagram of Single Cart Problem
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Figure 4.7. Results of Single Cart Problem to Minimize Terminal Covariance
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One goal of this research is to uncover the reasons that some trajectories result in

lower variance than others. Firstly, the variance of the crossrange y, pyy, dominates

the variance in location by more than an order of magnitude. This is partly because

the angle θ is often small so that deviations in θ have a greater relative effect to

crossrange y than to downrange x. The path is thus changed mostly to minimize pyy

over pxx.

Minimizing the elements of P corresponds to minimizing the elements of Ṗ , so its

helpful to look at Eq. (4.28), Ṗ = FP+PF T−PHTR−1HP+GTQG. The direct con-

tribution of the state dynamics, FP +PF T does not vary with the vehicle’s location.

Therefore, investigating the term dependent on the measurement, −PHTR−1HP , in

Eq. (2.39) is key to find the relationship between the trajectory and variance. The

term PHTR−1HP is positive semidefinite (and positive definite if PH has full rank)

because R−1 is positive definite. As a result, increasing the magnitude of the elements

in H will make −PHTR−1HP more negative, which is desirable. Of elements in H,

∂h
∂y

that relates h to y is the most important because it relates most closely to pyy.

As a result, the optimal path has the vehicle maximizing the magnitude ∂h
∂y

. This is

reasonable because ∂h
∂y

is the degree to which the state y changes the measurement h.

In other words, it is representative of the correspondence between h and y.

The upper plot in Fig. 4.8 shows a surface of ∂h
∂y

. The optimal trajectory to 200

m downrange guides the cart to travel where ∂h
∂y

is minimized (maximizing
∣∣∣∂h∂y ∣∣∣) and

thus supports the heuristic. Observing that the magnitude pyy is lowest when in that

region corroborates it further. If the vehicle turned the other direction, the vehicle

would have to travel more in the area where ∂h
∂y

is near zero.

Changing the measurement type provides more evidence for the heuristic. A rela-

tive bearing measurement, h = β = arctan 2(x− xb, y − yb), with standard deviation

σθ = 0.1 deg
√

s replaces the range measurement for a trajectory in Fig. 4.9. Instead

of turning to the right like the vehicle with the range measurement, it turns to the

left. The behavior is consistent with the corresponding plot in Fig. 4.8. There is also

a spike in the variance pyy when the cart passes the downrange location of the beacon
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Figure 4.8. Dependency of Measurements on y as Function of Location
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around where ∂h
∂y

= 0. This explanation explains that the optimal trajectory with

a range measurement moves the vehicle away from the beacon, but the variance is

lowest when closest to the beacon, and vis-a-versa with a bearing measurement.

4.3.3 Sensitivity to Control

The first issue related to sensitivity/insensitivity to the control was already covered

in Section 3.4.2. The second is related more directly to the problem itself. That is the

way the value of pyy is “squeezed” as the cart passes the beacon. As noted earlier, this

can be seen in Figs. 4.7 and 4.9 as the variance reaches a minimum. This minimum

is bounded from below so there is a tendency for the variance to approach the same

value regardless of trajectory. Figure 4.10 demonstrates this by showing various cart

paths that all end at the same point with virtually identical terminal variances. This

echoes what was observed in the electric train problem (Section 4.2). In problems

to minimize terminal variance, the convergence of the objective states means that

there can be any control history prior to the midpoint and still have a nearly optimal

trajectory. Ultimately, this prevents finding a solution because the insensitivity leads

to many numerical issues. This can be avoided in future work by identifying such

points and beginning the optimization from them. Identifying this issue explains why

the path cost variant of the problem, where J =
∫ tf

0
p11 +p22 dt, is able to converge to

a solution with longer trajectories and with fewer apparent numerical issues because

the initial portion of the trajectory contributes directly to the total cost. Still, the

path cost variant can suffer from the insensitivity seen by the flatness of derivative

∂H
∂y

in Fig. 4.8 around the middle portion of the trajectory for the range problem and

at the ends for the bearing problem. Figure 4.11 demonstrates that in this region,

the left-right distance of the cart to the beacon makes only a small change to the

variance pyy.
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Figure 4.9. Comparison Between Solutions With Range and Bearing Measurements
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Figure 4.10. Radically Different Paths With Variances That Converge
to the Same Value
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Figure 4.11. Convergence and Divergence of Variance as Vehicle Crosses Beacon
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4.4 Aircraft Descent Problem

The methods described in this report can be applied to larger and more complex

problems particularly in the aerospace field. This section demonstrates that with a

projectile descent problem. The ability to perform trade studies is also demonstrated

with this problem.

4.4.1 Problem Formulation

The descent problem below is diagrammed in Fig. 4.12. It consists of a supersonic

projectile gliding to a target on the ground with minimum location estimation errors.

The control is angle of attack rate, which is limited. Vehicle motion is confined to a 2-

D vertical plane with altitude h and downrange s. The other two states are velocity v

and flight path angle γ. Aerodynamic forces are calculated with a lift coefficient linear

with respect to angle of attack, a drag coefficient parabolic with respect to the lift

coefficient, and an exponential atmosphere meaning density decreases exponentially

with increasing altitude. These dynamics are described in Eqs. (4.23) to (4.34) with

constants modified from a projectile outlined in [22]. The vehicle measures its bearing

from a point behind the initial location by Eq. (4.27). This may be thought of as

the launch vehicle tracking the projectile and sending the information to it or other

similar setup. Practically, the placement of that point was to avoid issues like those

discussed above in Section 4.3.3.

min J = phh(tf ) + pss(tf ) (4.23)
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Figure 4.12. Diagram of Descent Problem
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Subject to:

f =


ḣ

ṡ

v̇

γ̇

 =


v sin γ

v cos γ

−D
m
− g sin γ

L
mv
− g

v
cos γ

 (4.24)

Ψ0 =


h(0)− h0

s(0)

v(0)− v0

γ(0)− tan−1 h0−hf
sf

 = 0, Ψf =


h(tf )− hf
s(tf )− sf
v(tf )− vf

 = 0 (4.25)

Where:

L =
1

2
ρv2CLAref, CL = CL,αα

D =
1

2
ρv2CDAref, CD = CD,0 +

C2
L

πeAref

ρ = ρ0e
− h

href

(4.26)

With measurement:

h = β = arctan 2(hb − h, sb − s) (4.27)
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With covariance dynamics:

Ṗ = FP + PF T − PHR−1HP +GQGT (4.28)

Q =
E
{
w(t)wT (τ)

}
δ (t− τ)

=

σ2
v̇ 0

0 σ2
γ̇

 (4.29)

R =
E
{
v(t)vT (τ)

}
δ (t− τ)

=
[
σ2
β

]
(4.30)

F =


0 0 sin γ v cos γ

0 0 cos γ −v sin γ

ArefCDv
2ρ

2mhref
0 −ArefvCDρ

m
−g cos γ

−0.5ArefCLvρ
mhref

0 0.5ArefCLρ
m

g sin γ
v

 (4.31)

H =
∂h

∂x
=
[

(s−starget)
h2+(s−starget)2

− h
h2+(s−starget)2

0 1
]

(4.32)

G =


0 0

0 0

1 0

0 1

 (4.33)

With parameters:

CL,α = 0.48 deg−1 CD,0 = 0.5 m = 50 kg

AR = 4.5 e0 = 0.7 Aref = 0.0127 m2

ρ0 = 1.225 kg/m3 href = 9500 m g = 9.81 m/s2

σv̇ = 0.1 m/s
3
2 σγ̇ = 0.05 deg/

√
s σβ = 0.1 deg

√
s

v0 = 900 m/s h0 = 10000 m starget = 1000 m

(4.34)

4.4.2 Results

The results for this problem are in Fig. 4.13 compared with the trajectory that

maximizes terminal velocity. By performing the s-curve, like those discussed in [2], the

vehicle is able to achieve 28.6% reduction in the variance, from 67.7 m2 to 48.3 m2,

in the terminal location. Like the single cart problem, one variance term dominates
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the total. In this case, pss is about an order of magnitude larger. This results in the

total variance being minimized despite phh being larger than the maximum velocity

case. The reduction in state estimation errors comes at the cost of terminal velocity.

For that reason, the terminal velocity was fixed to 350 m/s so that the vehicle would

not slow too much. The terminal velocity constraint also reduces the control effort

exerted. Despite the control constraint not being active, solving the problem using

the constraint directly exhibits numerical issues from it as explained in Section 3.4.2.

Still the absence of features like those in the cart problem, such as large regions that

do not affect the objective and absence of forcing term, make the aircraft descent

problem more numerically stable.

Including the control path cost L = kenu
2 (Section 3.4.3) results in a problem

that is generally easier for the designer to solve while still obtaining satisfactory

results. The optimized trajectories with the path cost are presented in Fig. 4.14 for

several values of ken. The minimum terminal location variance of these trajectories is

48.7 m2, a 28.0% reduction in variance. There is thus a penalty for the numerically

more stable method, but the difference is only 0.83% of the optimal value. This is

surprising because the trajectories differ significantly. The control constraint version

approaches the target from a shallower angle than the maximum velocity case. On

the other hand, the control cost case, flies over the target then turns to hit it. The

great difference, but similar objective values point towards the existence of multiple

local optima.

Varying the value of ken indicates the bounded nature of the objective function.

As ken is made smaller, diminishing reductions in variance are seen as in the lower left

plot of Fig. 4.14. Still, the maximum angle of attack achieved increases quadratically

with decreasing log10 ken. A designer therefore can balance the terminal variance with

the amount of control that is used.

By making the problem numerically more stable, trade studies may be performed

on the trajectory vehicle parameters. In order to demonstrate this, Fig. 4.15 solves

the problem for several terminal velocities. As the terminal velocity increases, the
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Figure 4.13. Results from Descent Problem Using Control Constraints
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Figure 4.14. Results from Descent Problem Using Control Energy Cost
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shape of the control profile does not change substantially, but instead decreases in

magnitude. The variance in the downrange s is more affected by terminal velocity

than variance in altitude. Minimal terminal variance in location is roughly linear with

terminal velocity presenting another trajectory design choice. The same type of trade

may be performed on the target location. This is shown in Fig. 4.16. As downrange

increases, so does the variance. While changing the target position, the variance in

altitude is more greatly affected for this range. The magnitude of the control exerted

does not change much with downrange. Instead, the difference in variance is likely

attributable to the final location relative to the beacon.
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Figure 4.15. Variation of Optimal Trajectory With Changes in Ter-
minal Velocity Constraint
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Figure 4.16. Variation of Optimal Trajectory With Changes in Target Location
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5. SUMMARY

This study successfully implemented indirect optimization methods to problems that

seek to minimize state estimation errors. The state estimation errors are approxi-

mated by use of extended Kalman filters. The equations for the covariance matrix

may be propagated along side the original equations of motion and used in the ob-

jectives in an optimal control problem. Optimal control theory, an indirect method,

is the chosen method to solve the problem in order to produce high quality optimal

trajectories.

There are several special considerations that need to be address to solve navigation

based optimization problems. The first is the large size of many of these problems.

Because the number of additional covariance grows by n(n+1)
2

where n is the number

of states, a problem’s size can easily be computationally prohibitive. Additional nu-

merical problems may arise particularly from the difference in size between a vehicle’s

states and those states’ standard deviations. This is addressed particularly with dif-

ferent scaling techniques. Moreover, applying optimal control theory is complicated

by the length of the dynamic equations of the states and costates. This is avoided

by using a linear control with a specially applied control constraint or control energy

path cost.

Despite not being able to solve the dual cart cart problem originally posed by

Rutkowski et. al [5], the methods were successfully applied to a simpler single cart

variation and an aircraft descent problem. An additional 1-D train problem is useful

to show possible difficulties with solving these navigation-based problems, mainly the

tendency of control extremes and possible existence of regions that do not affect the

objective. By using trajectory optimization, a 96% reduction in terminal location

estimation variance, from 4.72 m2 to 0.184 m2, was achieved with the single cart
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problem. This example also further illuminates these problems first by highlighting

the role of the dependency of the measurement on the states of interest.

Another necessary consideration is the possible existence of regions of the trajec-

tory that do not affect the objective. The final problem type examined is a projectile

descent example. Terminal location variance decreased by 28.6% by following the op-

timal path demonstrating the applicability of these methods to aerospace problems.

The problem also can exhibit the utility of a control energy cost instead of control

constraints. Using control energy cost made the problem numerically easier to solve

with only a 0.83% deviation from the optimal value. Ultimately, this implies that it

may be easier to solve multi-objective formulations because they make the problem

more sensitive to the path when the minimum variance is bounded.

Future work should include expanding these methods to larger and more com-

plicated problems such as the full dual cart one. To be able to do this, the lessons

demonstrated here must be applied, especially the awareness of insensitivities of vari-

ance to certain sections of the paths. Additional work has to address the increasing

size of problem, because this appears to be the limiting factor to applying these

generally.
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