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ABSTRACT

Author: Pal, Sudipta,. PhD

Institution: Purdue University
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Title: Nickel Catalyzed Cycloaddition Reactions: Alkyne Cyclotrimerizations and
Reductive Vinylidene Transfer Reactions

Committee Chair: Christopher Uyeda

The advent of transition metal catalysis has greatly expanded the scope of viable
cycloaddition reactions, allowing for the direct synthesis of highly functionalized and
complex biologically active compounds. By manipulating various aspects of catalyst
structure, including the supporting ligands and the central metal, the function of a catalyst
can be modified. In this context, the catalytic properties of dinuclear complexes have not
been greatly explored in cycloaddition reactions. Our research has focused on studying the
catalytic properties of dinuclear complexes in cycloaddition reactions. Comparative studies
between dinuclear and mononuclear Ni-complexes led us to discover and develop an
efficient route to synthesize 1,2,4-trisubstituted benzene derivatives from terminal alkynes.
The key organometallic intermediates in this process were isolated, and computational
studies were performed to unravel a novel bimetallic mechanism for alkyne
cyclotrimerizations. As an extension of this study, we have found that the dinuclear catalyst
is capable of catalyzing the methylenecyclopropanation of olefins. The reaction uses 1,1-
dichloroalkene as a vinylidene precursor along with Zn as a stoichiometric reductant. A
wide range of monosubstituted terminal alkenes and relatively unhindered internal alkenes
are viable substrates. Furthermore, to understand the mechanism of vinylidene transfer,
various stoichiometric and stereochemical experiments were performed. Furthermore, we
discovered that mononuclear and dinuclear Ni-complexes are highly efficient in achieving
vinylidene insertions into Si—H bonds to synthesize Si-containing heterocyclic molecules.
Ongoing efforts are directed toward optimizing the reaction conditions and elucidating the

substrate scope of the reaction.
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CHAPTER 1. EVALUATING THE EFFECT OF CATALYST
NUCLEARITY IN NI-CATALYZED ALKYNE
CYCLOTRIMERIZATIONS

1.1 Abstract

An evaluation of catalyst nuclearity effects in Ni-catalyzed alkyne oligomerization
reactions is presented. A dinuclear complex, featuring a Ni—Ni bond supported by a
naphthyridine—diimine (NDI) ligand, promotes rapid and selective cyclotrimerization to
form 1,2,4-substituted arene products. Mononickel congeners bearing related N-donor
chelates (2-iminopyridines, 2,2’-bipyridines, or 1,4,-diazadienes) are significantly less
active and yield complex product mixtures. Stoichiometric reactions of the dinickel catalyst
with hindered silyl acetylenes enable characterization of the alkyne complex and the
metallacycle that are implicated as catalytic intermediates. Based on these experiments and
supporting DFT calculations, the role of the dinuclear active site in promoting
regioselective alkyne coupling is discussed. Together, these results demonstrate the utility
of exploring nuclearity as a parameter for catalyst optimization.

1.2 Introduction

Transition metal catalysts containing polynuclear active sites are underdeveloped
alternatives to mononuclear catalysts for organic transformations.! Polynuclear complexes
have the potential to exhibit unique catalytic properties by binding substrates and
delocalizing redox activity across multiple metals. Platforms featuring direct metal-metal
bonds are particularly well-suited to capitalize on these cooperative processes due to the
enforced proximity of the metals and the strong electronic coupling between them.
Consequently, ligands that support reactive metal-metal bonds have emerged as synthetic
targets. The resulting complexes have been demonstrated to engage organic and small
inorganic molecules in well-defined stoichiometric reactions.? Despite these advances, the
cooperativity effects attributed to metal-metal bonds have rarely been evaluated in a

catalytic process.® Such studies would complement those characterizing dinuclear effects
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in catalyst systems where direct metal-metal interactions are either not relevant* or are
formed transiently.®

Dinuclear complexes of naphthyridine—diimine (NDI) ligands are versatile platforms to
study stoichiometric and catalytic redox processes at discrete metal-metal bonds.® The [~
PINDINi2(CsHg) complex (1) is an analog of known mononickel complexes bearing N-
donor chelates (eg. 2-iminopyridines, 2,2’-bipyridines, and 1,4-diazadienes), providing an
opportunity to probe nuclearity effects within a family of related catalysts (Scheme 1).
Here, we report a comparative study of mono- and dinickel catalysts in the oligomerization
of terminal alkynes. Whereas mononuclear [N,N]Ni catalysts 2—4 uniformly yield complex
product mixtures, the dinuclear catalyst 1 promotes rapid and selective cyclotrimerizations
to form 1,2,4-trisubstituted arenes (Figure 1). Stoichiometric reactivity studies, combined

with DFT calculations, provide insight into this pronounced nuclearity effect.

i-Pr;
// \ND
W ~ N/

Ni i-Pr

\
CcoD
[FPTIPINi(COD) (2)

["PNDIINiz(CeHs) (1) Yoo
i-Pr

[FP"'DAD]INi(COD) (4)

Scheme 1.1. Mononuclear and dinuclear Ni complexes of chelating N-donor ligands
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Non-Selective Alkyne Oligomerization Selective Alkyne Cyclotrimerization
Using Mononuclear [N,N]Ni Catalysts at a Ni-Ni Bond
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Figure 1.1. Mononuclear and dinuclear pathways for alkyne oligomerizations using Ni
catalysts.

1.3 Catalyst Comparison Studies

Transition metal-catalyzed cycloadditions are direct and efficient routes to cyclic
organic molecules;” however, complex selectivity considerations must be addressed in
order to obtain high yields of a single product. Among the catalysts that have been surveyed
in alkyne oligomerization reactions, the low-valent Ni catalysts initially reported by Reppe
are unusual in the breadth of accessible products.® Simple Ni(0) sources such as Ni(COD).°,
activated Ni metal'®, and combinations of divalent Ni halide salts and reductants'! convert
terminal alkynes to mixtures of cyclic (arene and cyclooctatetraene regioisomers) and
acyclic (oligomers and polymers) products. Supporting ligands have been effectively
utilized to improve the selectivity of these reactions.'? For example, phosphine-ligated
complexes generally yield benzene derivatives'?®9 whereas 1,4-diazadiene complexes
favor cyclooctatetraenes.*?"

In order to assess the viability of using catalyst nuclearity to control selectivity in
these reactions, terminal alkyne substrates with diverse electronic properties were selected
for comparison studies (Figure 2). For ethyl propiolate, all examined mononuclear and

dinuclear catalysts (Scheme 1) were active, with 1 affording the highest conversion of
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substrate under a standardized set of conditions. Consistent with previous reports,*? [*-
P'IP]Ni(COD) (2), [BPY]Ni(COD) (3), [""DAD]Ni(COD) (4), and Ni(COD): (5) yielded
significant amounts of both cyclotrimerized and cyclotetramerized products. Among these
four mononickel catalysts, no greater than 14% combined yield of aromatic products was
observed, with cyclooctatetraenes being formed in 11-71% yield. By comparison, 1 was
selective for cyclotrimerization, affording a 90% combined yield of the 1,2,4- and 1,3,5-

regioisomer. No cyclooctatetraene products were detected using 1.

1)

R
catalyst (1-6 mol%) R -
== - B - Y
e R R R

+ all other products I:l
100

80 +

o2}
(=]
1

Yield (%)

~
o
1

20

0_
Catalyst: 1 2 3 4 & 12 3 45 12 3 45
Substrate (-R): -CO,Et -Ph -CH,OMe

Figure 1.2. A comparison of catalytic activity for the cyclotrimerization of ethyl
propiolate, phenylacetylene, and methyl propargyl ether. Data for catalysts 1, 2, 3, 4, and
Ni(COD): (5) are shown. Reaction conditions for ethyl propiolate and methyl propargyl
ether: 22 °C, 11 min, 1 mol % catalyst. Reaction conditions for phenylacetylene: 60 °C,

40 min, 5 mol % catalyst. Yields and conversions are averaged over two runs and
determined by GC-FID analysis. The total heights of the bars are the total conversion of
starting material. The product fraction corresponding to the 1,2,4-isomer (solid red),
1,3,5-isomer (dashed red), and all other products (white) are plotted.
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Similar effects were observed using more electron-rich alkyl- and aryl-substituted
terminal alkynes. Phenylacetylene and methyl propargyl ether were poorly reactive using
catalysts 2-5 and produced a mixture of coupled products. Catalyst 1 effected rapid
cyclotrimerization, with nearly exclusive formation of the 1,2,4-regioisomer. Methyl
propargyl ether is converted to 1,2,4-tris(methoxymethyl)benzene in 98% GC yield using
1 mol % of 1 in less than 15 min at room temperature. This rate and selectivity is
noteworthy among those observed using the most efficient cyclotrimerization catalysts,
including catalysts containing precious metals.!*> For example, the reaction of methyl
propargyl ether with an optimized (diphosphine)Rh(I) complex, [Rh(DTBM-
SEGPHOS)]BF4, requires longer reaction times at 5 mol % loading and forms a 6:1 mixture

of 1,2,4- to 1,3,5-substituted products.'3

1.4 Substrate Scope for Alkyne Cyclotrimerizations

The high selectivity for cyclotrimerization using 1 is general across a range of terminal
alkynes (Figure 3). In all cases, the 1,2,4-regioisomer is highly favored, and no competing
formation of cyclooctatetraenes is observed. Alkylacetylenes reach full conversion within
1 h at room temperature using 1 mol % of 1. A higher catalyst loading of 5 mol % was used
for arylacetylenes. To probe electronic effects, a series of para-substituted phenylacetylenes
was studied. Substrates bearing electron-withdrawing substituents reacted at a faster rate
than substrates bearing electron-donating substituents. Using cyclopropylacetylene,
cyclotrimerization occurred without cyclopropane rearrangement through either a radical
or organometallic mechanism. Finally, 1,6-heptadiyne and propargyl ether reacted to form
the corresponding tethered diarene products. This selectivity is complementary to that
under the conditions reported by Wender (20 mol % (DME)NiBr; and 40 mol % Zn
powder), which generate the dimeric cyclooctatetraene product from 1,6-heptadiyne in

89% yield.
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1 (1-5 mol%) RD/R
CeD
6-'6 R
Ar: Ar NMe, OMe CHO F
D/ Ar= )(©/ )(©/ )(©/ )(©/
Ar

60 °C,8h 60 °C,8h 60 °C,1.5h 22 °C, 30 min
81% yield 93% yield 72% yield 92% yield
(17:1) (>20:1) (>20:1) (15:1)
iD/\ n-HeXD/ n-Hex
n-Hex
22 °C, 15 min 22 °C, 15 min 22°C,1h
97% yield 80% yield 79% yield
(>20:1) (>20:1) (>20:1)
22 °C, 15 min 22 °C, 15 min
84% yield 94% yield

Figure 1.3. Substrate scope for alkyne cyclotrimerizations catalyzed by 1. Conditions: 5
mol % catalyst loading for arylacetylenes and 1 mol % for all other substrates. Yields are
of isolated products and are averaged over two runs. The ratio of the 1,2,4- to 1,3,5-
regioisomer is shown in parentheses.

1.5 Stoichiometric Alkyne Coupling Reactions

We investigated the origin of the observed dinuclear effect by pursuing the
characterization of plausible intermediates. Terminal alkynes bearing bulky silyl
substituents, such as —SiMes and —SiMe2Ph, react with 1 but do not generate the cyclized
product (Scheme 2). The reaction between 1 and dimethylphenylsilylacetylene (2.0 equiv
or greater) in Ce¢Ds is complete in 3 h at room temperature, producing the head-to-tail
coupled product 6. In the *H NMR spectrum, two signals are observed at 6.20 and 4.79

ppm (doublets with J = 4.5 Hz due to long-range coupling), corresponding to the two non-
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equivalent C-H groups of the bound butadienyl fragment. No other isomeric complexes
arising from head-to-head or tail-to-tail dimerization are detected under these conditions.
The solid state structure (Figure 4a) reveals that the metallacycle incorporates one Ni into
a five-membered ring. The second Ni provides secondary stabilization through an n?-
interaction with a double bond of the diene system. The formation of a directly analogous
complex is observed with phenylacetylene under catalytic conditions (*H NMR: 6.70 and
4.52 ppm, J = 4.3 Hz), supporting the catalytic relevance of the structurally characterized

complex 6.

i-Pr| i
PhMe,Si—== [""NDIINiz(CeHe) = SiMe,
(2.0 equiv) (1) (1.0 equiv)

i-Pr.
Me

[Si]

["P'NDI]Ni,(PhMe,SIiCCH), (6) ["P'NDI]Ni>(Me3SiCCH) (7)

Scheme 1.2. Stoichiometric reactions of 1 with trialkylsilylacetylenes.
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Figure 1.4. Solid state structures of (a) 6 and (b) 7 (ellipsoids at 50% probability). i-Pr
groups on the NDI ligand and substituents on silicon are truncated for clarity. Selected
bond distances for 6 (A): Ni1-Ni2, 2.4814(6); Ni1-C1, 1.942(2); Ni1-C4, 1.868(2); Ni2—
C1, 1.875(2); Ni2-C2, 2.042(2); C1-C2, 1.416(4); C2-C3, 1.482(3); C3-C4, 1.350(3).
Selected bond distances for 7 (A): Ni1-Ni2, 2.3140(6); Ni1-C1, 2.023(3); Ni1-C2,
1.911(3); Ni2—-C1, 2.015(2); Ni2-C2, 1.904(2); C1-C2, 1.301(4).

The reversibility of the C-C coupling was examined to determine whether the
regioisomer 6 is formed under thermodynamic or kinetic control. When 6 is exposed to
trimethylsilylacetylene (10 equiv), no exchange of -SiMe;Ph for —SiMez in the
metallacycle is observed even after heating at 70 °C for 48 h. The formation of 6 is therefore
sufficiently thermodynamically favorable to preclude the reverse reaction from occurring
at catalytically relevant temperatures. A plausible explanation for the high head-to-tail
selectivity is the steric hindrance imposed by the flanking 2,6-diisopropylphenyl
substituents of the catalyst. The solid state structure of 6 suggests that substituents at C2 or
C4 would be highly disfavored by interactions with a catalyst i-Pr group or arene
respectively (Figure 4a).

The metallacycle 6 does not react with additional equivalents of

dimethylphenylsilylacetylene; however, when a less hindered alkyne, methyl propargyl
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ether, is introduced, cyclotrimerization proceeds to form the heterocoupled product 8
(Scheme 3). This reaction is accompanied by catalytic homocyclotrimerization of methyl
propargyl ether. The regioselectivity in this stoichiometric process is consistent with that
observed under standard catalytic conditions. Collectively, these experiments support the
competence of metallacycles analogous to 6 as intermediates in the formation of 1,2,4-

substituted arene products.

OMe (20 equi i i
/\ (20 equiv) 22°C.1h PhMe28|\©iS|/Me2Ph Meo/\CCOMe
+ _ +
) M OMe
["P'NDI]Niy(PhMe,SiCCH), CeDs OMe

(6) 86% yield
(8)

Scheme 1.3. Stoichiometric conversion of 6 to the heterocoupled product 8.

The presumed monoalkyne complex (7), en route to the metallacycle 6, was characterized
from reactions of 1 with one equivalent of trimethylsilylacetylene. In the solid state, the
alkyne exhibits pi-n?m? coordination and is perpendicular to the Ni-Ni bond vector (Figure
4b). The C-C distance is significantly elongated from approximately 1.20 A for free
trimethylsilylacetylene'® to 1.301(4) A in the complex. The alkyne complex 7 is
sufficiently stable to permit structural characterization; however, over the course of 24 h at
room temperature in CgDe, it disproportionates to form a mixture of the corresponding

metallacycle and the benzene complex 1.

1.6 Origin of the Dinuclear Effect

The observed ratio of 1,2,4- to 1,3,5-substituted products in the alkyne
cyclotrimerization arises from regioselectivity considerations in two sequential steps: the
dimerization to form the metallacyclic intermediate and the subsequent incorporation of
the third alkyne to yield the arene product. The stoichiometric reactivity studies described
above provide insight into the selectivity of the first C—C coupling; however, less

information is readily apparent regarding the product formation step.
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Figure 1.5. DFT calculations (M06/6-31g(d,p) level of theory) addressing the selectivity
of alkyne addition to the bound butadienyl ligand. Propyne was used as a model substrate
and i-Pr substituents on the catalyst were truncated to Me substituents. (a) The lowest-
energy transition structure corresponding to the [4+2]-cycloaddition of the bound alkyne
and butadienyl ligands. Distances for the two forming C—C bonds are shown in red. (b)
The HOMO-1 for the metallacycle intermediate.

DFT calculations (M06/6-31G(d,p) level of theory) were performed on a model
catalyst system (i-Pr groups on the aryl substituent were truncated to Me groups) to assess
potential pathways for the conversion of this intermediate into the final product. Using
propyne as a substrate, a concerted transition state was optimized, corresponding to a
[4+2]-cycloaddition of a Ni-coordinated alkyne to the butadienyl system (Figure 5a).
Stationary points associated with alternative stepwise pathways could not be located.
Consistent with the fast rates observed experimentally for cyclotrimerizations with
alkylacetylenes, the activation energy for this step was calculated to be only 9.3 kcal/mol.
The competing transition state leading to the minor 1,3,5-substituted product was 2.0
kcal/mol higher in energy.

The calculated cycloaddition transition state (Figure 5a) is highly asynchronous
with bond formation between C4 and C5 (2.07 A) being significantly more advanced than
that between C1 and C6 (2.61 A). This asymmetry arises from stabilization of one of the
double bonds through n? coordination to the second Ni center. The calculated HOMO-1,
which primarily corresponds to the delocalized m-orbital of the diene system, shows
significantly greater density at the uncoordinated double bond (Figure 5b). This electronic
structure is manifested in the solid-state geometry of 6 as an elongated C1-C2 (1.416(4)
A) distance relative to the C3—C4 distance (1.350(3) A). A hypothesis that emerges from
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these calculations is that this electronic asymmetry, induced by the presence of the second
Ni center in the catalyst, results in a steric preference for the substituent of the approaching
alkyne to be positioned at the carbon where the forming C—C distance is longer in the
transition state.

In summary, the dinuclear [NDI|Ni, platform provides access to an efficient
cyclotrimerization pathway that is not available to its mononuclear counterparts. The
catalyst nuclearity effect is particularly significant for alkyl-substituted alkynes: reactions
are complete within 1 h at room temperature using 1 mol % loading of 1 with nearly
exclusive formation of 1,2,4-substituted arene products. Stoichiometric reactivity studies
provide structural insight into the metallacyclopentadiene intermediate that is implicated
in the catalytic mechanism. Combined with DFT calculations, these experiments suggest
several distinct features of the bimetallic system. First, binding across two metals
constrains the geometry of the metallacycle, disfavoring the formation of other possible
regioisomers. Second, the [4+2]-cycloaddition of the butadienyl ligand and the
approaching alkyne is facilitated by metal coordination to both partners. Third, the
selectivity of the cycloaddition is controlled by an electronic bias in the diene m-system,
caused by a secondary 1? interaction. Exploring the implications of these dinuclear effects

for other catalytic cycloadditions is ongoing in our laboratory.
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CHAPTER 2. CATALYTIC REDUCTIVE VINYLIDENE
TRANSFER REACTIONS

2.1 Abstract

Methylenecyclopropanes are important synthetic intermediates that possess strain
energies exceeding those of saturated cyclopropanes by >10 kcal/mol. This report describes
a catalytic reductive methylenecyclopropanation reaction of simple olefins, utilizing 1,1-
dichloroalkenes as vinylidene precursors. The reaction is promoted by a dinuclear Ni
catalyst, which is proposed to access Niz(vinylidenoid) intermediates via C—Cl oxidative

addition.

2.2 Introduction

Vinylidenes (methylidene carbenes) are reactive intermediates comprising a
divalent carbon atom incorporated into a C=C double bond.! Like their saturated carbene
counterparts, vinylidenes undergo reactions that allow the valence-deficient carbon to
increase its coordination number—for example, through cheletropic reactions with -
systems or insertions into C-H bonds.> Free vinylidenes are accessible from the
decomposition of transiently generated diazoalkenes.> Alternatively, (R.C=C)(M)(X)
species (vinylidenoids) serve as R,C=C: surrogates, eliminating metal halides as
stoichiometric byproducts.'¢ A key challenge associated with developing efficient transfer
reactions of vinylidenes is their susceptibility to competing Fritsch—Buttenberg—Wiechell
(FBW) rearrangements that form alkynes (Figure 1).* The rate of the 1,2-shift varies as a
function of the migrating group, but when one of the alkene substituents is an H atom, the
rearrangement becomes nearly barrierless.’ This process underlies the well-known Corey—
Fuchs and Seyferth-Gilbert alkyne syntheses.®

Transition metal catalysis may provide an avenue to address the instability of
vinylidenes, allowing group transfer reactions to be favored over competing FBW
rearrangement. Nevertheless, current carbene transfer catalysts are largely unsuitable for
vinylidene transfer due to their reliance on diazoalkane decomposition as an activation

strategy.” Diazoalkenes, the equivalent vinylidene precursors, are not known to be isolable
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and undergo N elimination spontaneously at room temperature.'®** Transition metal-
bound vinylidenes are accessible by an alternative route involving a metal-induced
isomerization of an alkyne.® Buono described a Pd-catalyzed methylenecyclopropanation
reaction that operates by this pathway and is effective for a range of norbornene-derived
substrates.”!? Other classes of alkenes are not currently viable in catalytic vinylidene [2 +
1]-cycloadditions.

Our group is interested in developing new modes of carbene generation based on
the reductive dehalogenation of readily available and indefinitely stable 1,1-dihaloalkanes.
In this context, we recently described a dinuclear Ni catalyst that promotes the
cyclopropanation of alkenes using CH>Cl> as a carbene source and Zn as a terminal
reductant.!! Here, we report the reductive transfer of vinylidenes from 1,1-dichloroalkenes
(Figure 1). This method provides direct access to methylenecyclopropanes, a class of synt
synthetic intermediates valued for their ability to engage in strain-induced ring-opening

reactions.?d2¢12
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Vinylidenes as Reactive Intermediates
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Figure 2.1. Vinylidenes as reactive intermediates and design principles for a catalytic
reductive vinylidene transfer reaction.

2.3 Reaction Optimizations

In our initial studies, we arrived at an optimal set of conditions for a model

methylenecyclopropanation reaction based on our previously reported CH: transfer

method.!! The Ni catalyst 1! promotes the addition of 2 to styrene in 94% yield using Zn

as a reductant (Table 1, entry 1). Of note, none of the 1,1-dichloroalkene is lost to

polymerization, reductive dehalogenation, or FBW rearrangement, allowing the reaction to

be conducted with near-equimolar quantities of the two reaction partners. The [~

PINDI]Ni>Cl> complex 4 is also a high-yielding catalyst, demonstrating efficient entry into

the catalytic cycle from multiple oxidation states of the Ni, complex (entry 2). The reaction

is amenable to in situ catalyst generation using the free “P'NDI ligand (5, 5 mol%) and
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Ni(DME)CI; (10 mol%) in the place of preformed 1 (entry 3). Decreasing the steric profile
of the imine aryl substituents leads to rapidly diminishing yields (entries 4-5). Finally, the
importance of the dinuclear catalyst structure was assessed using a series of mononickel
complexes bearing structurally related N-donor ligands. In these cases, there is significant
consumption of the 1,1-dichloroalkene (2) but no productive vinylidene transfer to form 3

(entries 6-9).



—— Me A
P r
ST =
N r/N . ~cob
[*P"PDIINICI, (8) [*P"IPINi(COD) (9) [BPYINi(COD) (10)
Ar = 2,6-diisopropylphenyl
entry catalyst yield
1 [“P'NDI]Ni2(CeHs) (1) 94%
2 [“P'NDINi>Cl, (4) 87%
30 “PrNDI (5) + Ni(DME)Cl, 92%
4P EINDI (6) + Ni(DME)Cl, 50%
5° MeNDI (7) + Ni(DME)Cl, <2%
6 [“P'PDIINICl2 (8) <2%
7 [“PTP]Ni(COD) (9) <2%
8 [BPY]Ni(COD) (10) <2%
9 [""DAD]Ni(COD) (11) <2%

Table 2.1 . Catalyst Structure—Activity Relationships?

\CI

Et,O/DMA

catalyst (5 mol%) X
+ A pn > 5
(@) Cl Zn (3.0 equiv)

Ph

Me Ri=ipr,R2=H (5)
R'=Et, R?=H (6)

R

Ar

["""DAD]Ni(COD) (11)

T=R2=Me (7)

N/Ar
Nﬂ-
— NI

- ~cob

E/Z ratio
1:5
1:5
1:5
1:1

28

2Yields and E/Z ratios were determined by *H NMR integration. Reaction conditions: 2

(0.21 mmol), styrene (0.2 mmol), catalyst (5 mol%), 24 h, 22 °C. bReactions were

conducted with 5 mol% of the NDI ligand and 10 mol% of Ni(DME)Cl..
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2.4  Substrate Scope

The substrate scope of the catalytic methylenecyclopropanation is summarized in
Table 2. 1,1-Dichloroalkenes bearing alkyl, aryl, or heteroaryl substituents afford high
yields in their reactions with styrene (12-18). With regard to the alkene partner,
monosubstituted terminal alkenes are effective substrates (19-32), and a variety of
common functional groups are tolerated, including esters, ethers, nitriles, boronate esters,
aryl chlorides, sulfonyl protecting groups, acetals, primary amides, and ketones. The
observed E/Z ratios vary over a range of values and are dependent on the identity of the
alkene substituent: alkyl groups with a-branching favor the E-isomer, linear alkyl groups
afford low stereoselectivity, and aryl groups favor the Z-isomer.

Relatively unhindered internal alkenes, such as cyclopentene, 2,5-dihydrofuran, and
norbornene, also react to form cyclopropanated products (33—37). More hindered alkenes
than those shown in Table 2 are a current limitation and generally result in low yields. In
accordance with these observations, the selectivity properties of the reaction are highly
sensitive to steric effects. For example, norbornene and norbornadiene are selectively
cyclopropanated on the exo face (37-38), and polyalkene substrates are

monocyclopropanated at the less substituted alkene (39—40).
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Table 2.2 . Substrate Scope for the Catalytic Methylenecyclopropanation Reaction?
Isolated yields were determined following purification and are averaged over two runs.
See Supporting Information for experimental details. ®The alkene partner was used in
excess (4-10 equiv).

[PP'NDIINi(CeHg) (1)
(5-10 mol%)
R/\(C‘ . (\R3 m
-
Cl Zn (3.0 equiv)
it, 24 h
Et,0, DMA
A O S
R 12 87% Yield 13 93% Yield 14 71% Yield 15 53% Yield 16 62% Yield 17 67% Yield 18 95% Yield
(E12=13) (E/Z=14) (E12=14) (E/Z=1:4) (E/2=13) (E12=12) (E12=16)
19 R=-CF; 99% Yield, EiZ=18 ! OMe % \ %
20 R=-COM % Yi =17 ! o
N Me  81% Yield, E/Z=1:7 : R N kY N\ Y
21 R=-OMe  89% Yield, EZ=13 | 0 o
' N
R 22 R=-CN 74% Yield, EiZ=18 ! Ts

o 23 R=-BPin  78%Yield EZ=16 ! 25 72% Yield 26 98% Yield 27 66% Yield 28 50% Yield 29 56% Yield

24 R=-Cl 83% Yield, E/Z = 1:6 5 (E1Z = 1:4) (E12=15) (E12=13) (E1Z=81) (E1Z=13:1)
/ “n-Hept
AN AN
Ph Ph
AcHN FaC
30 97% Yield 31 81% Yield 32 79% Yield 33> 77% Yield 34> 75% Yield 35 79% Yield
(E12=19) (E1Z=1:4) (E/Z=13)
OMe
ﬁ\[—? W M\orwe wc Y\A/Q/
36° 99% Yield 37° 86% Yield 38° 54% Yield 39 67% Yield 40 95% Yield

(E1Z=1:1) (E1Z = 1:1)

Unexpectedly, attempts to carry out the methylenecyclopropanation of ethylene (1
atm) yielded 1,3-diene products (41-43), a reaction that constitutes a formal vinylidene
insertion into a C(sp?)—H bond (Figure 2). We reasoned that these products may be forming
in a catalyst-promoted ring-opening of a transient methylenecyclopropane intermediate.'*
At partial conversions, the reaction to form 42 contains significant amounts of the
corresponding corresponding methylenecyclopropane, the concentration of which

decreases as the reaction approaches completion.
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["P'NDIINix(CeHe) (1) R
Cl (5 mol%)
RO + = » | B R/\/\
Cl (1 atm) Zn (3.0 equiv)
Et,O, DMA
Observed at
partial conversions

N N
X X
/O/\/\ O(j/\/\ Hopt M
MeO

41 78% Yield 42 78% Yield 43 74% Yield
(E/Z = >20:1) (E/Z = >20:1) (E/Z = 8:1)

Figure 2.2 . Tandem methylenecyclopropanation—isomerization reactions.

2.5 Mechanistic Studies

Experiments  pertaining to  the  mechanism  of  the  catalytic
methylenecyclopropanation are summarized in Figure 3a. By cyclic voltammetry, the
Ni2Cl, complex 4 exhibits two reversible reduction events at —1.15 and —1.72 V relative to
the Fo/Fc" couple.!! Zn is capable of accessing only the first of these two reductions,
suggesting that the NioCl complex 44 is the most reduced state of the catalyst that is
accessible. Next, we questioned whether the role of Zn is restricted to catalyst reduction'
or whether it might be more intimately involved in the cyclopropane-forming steps of the
mechanism—for example, through the generation of Zn vinylidenoid species.'¢ This latter
possibility was ruled out by conducting a cyclopropanation in the absence of Zn, where the
Ni2Cl complex 44 was used stoichiometrically as the only source of reducing equivalents.
Accordingly, the reaction between f3,B-dichlorostyrene (1.0 equiv), p-methoxystyrene (1.0
equiv), and 44 (2.0 equiv) provided 32 in 67% yield (1:2 E/Z ratio).

Finally, there is substantial evidence to support a stepwise mechanism for the
cyclopropanation. The E- and Z-stereoisomers of -deuterated p-methoxystyrene react with
incomplete retention of the alkene stereochemistry, yielding product 32-d; as a mixture of
cis and trans diastereomers. In principle, this loss of stereochemical fidelity may be due to
an off-path, catalyst-promoted £/Z isomerization of the p-methoxystyrene starting material.
This possibility was tested by running these reactions to partial conversion and examining

the stereochemistry of the recovered alkene. At a reaction time of 20 min, the recovered
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alkene is diastereomerically pure, suggesting that stereochemical scrambling is intrinsic to
the mechanism of cyclopropane formation.

A proposed catalytic cycle based on these data is outlined in Figure 3b. Two-electron
oxidative addition of the 1,1-dichloroalkene using the Ni>Cl complex 44 would require an
additional reducing equivalent provided by either a second molecule of 44 or by Zn. The
resulting Niz(1-chloroalkenyl)Cl intermediate 45 could then engage the alkene partner and
form the corresponding methylenecyclopropane product. An alternative possibility is that
45 first isomerizes by a-chloride migration to produce the Nix(vinylidene)Cl, species 46.!7
According to DFT models (BP86/6-311G(d,p)), this isomerization is moderately
endothermic but potentially accessible under the reaction conditions (AG = 10.5 kcal/mol,
298 K). In both scenarios, the Ni2Cl> complex 4 is generated following vinylidene transfer,
and a one-electron reduction closes the catalytic cycle.

Attempts to obtain characterization data on the postulated vinylidenoid intermediate
45/46 proved unsuccessful due to its instability. In order to access a more stable structural
surrogate, the Nix(u-styrenyl)Br complex 47 was prepared from an oxidative addition
reaction between 1 and B-bromostyrene. This complex lacks the additional halogen at the
B-position and is thus incapable of engaging in vinylidene transfer. A notable feature of the
solid-state structure is the n?-coordination of the alkenyl m-system to the second Ni. This
interaction constrains the orientation of the f-hydrogen substituent and may contribute to

the absence of FBW rearrangement side products in these reactions.
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(a) Mechanistic Studies (b) Proposed Catalytic Cycle cl

A R
1. Zn effects the one-electron reduction of the [-P'NDI]Ni ,Cl, complex
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5 Siepuise e s forcylopropant \— \I v \N/Ni
._ e )

[FPINDIINiy(CaHe) (1) 140

a Z “ph D~ (5 mol%) ‘) Cis/Trans
+ V\Ar N
a Zn (3.0 equiv)
Et,0/DMA
Ar = p-MeOPh- 20 Ph
32-2-d,

['NDIINiz(CgHe) (1)

D 3.7:1
Cis/Trans
o 5 mol%
DI LI\
a b n@Eoequy) (£ A
Ar=pMeOPh.  EGODMA  pp
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Figure 2.3 . (a) Mechanistic studies probing the relevant catalyst oxidation states, the role
of Zn, and the concertedness of the cyclopropanation. (b) A proposed catalytic
mechanism. (c) A structurally characterized model (47) for the proposed Ni. vinylidenoid
intermediate (45).

In summary, the Ni» catalyst 1 has proven to be uniquely effective relative to
analogous mononickel complexes in promoting reductive methylenecyclopropanation
reactions using 1,1-dichloroalkenes. Of particular significance, vinylidene transfer
predominates over competing rearrangement to the alkyne despite the presence of a f3-
hydrogen. Our current efforts are directed at generalizing this catalytic vinylidene transfer

strategy to other classes of cycloadditions.
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APPENDIX A. CHAPTER 1

Al General Information

General considerations. All manipulations were carried out using standard Schlenk
or glovebox techniques under an atmosphere of N2. Solvents were dried and degassed by
passing through a column of activated alumina and sparging with Ar gas. Deuterated
solvents were purchased from Cambridge Isotope Laboratories, Inc., degassed, and stored
over activated 3 A molecular sieves prior to use. All other reagents and starting materials
were purchased from commercial vendors and used without further purification unless
otherwise noted. Liquid reagents were degassed and stored over activated 3 A molecular
sieves prior to use. Elemental analyses were performed by Midwest Microlab (Indianapolis,
IN). The ["""NDI]Ni2(CsHs) complex 1 was prepared according to previously reported
procedures.?

Physical methods. *H and **C{*H} NMR spectra were collected at room temperature
on a Varian INOVA 300 MHz, Bruker 400 MHz, or Bruker 500 MHz spectrometer. 'H
and BC{*H} NMR spectra are reported in parts per million relative to tetramethylsilane,
using the residual solvent resonances as an internal standard. GC/MS data was collected
on a Shimadzu GCMS-QP2010 spectrometer containing a mini-bore capillary GC column
and single quad EI detector. ATR-IR data were collected on a Thermo Scientific Nicolet
Nexus spectrometer containing a MCT* detector and KBr beam splitter with a range of
350-7400 cm™. UV-vis measurements were acquired on a Cary 100 UV/vis
spectrophotometer or Perkin EImer Lambda 950 UV-VIS-NIR spectrophotometer using a
1-cm two-window quartz cuvette. High-resolution mass data were obtained using a Thermo

Scientific LTQ Orbitrap XL mass spectrometer.

1Zhou, Y.-Y.; Hartline, D. R.; Steiman, T. ].; Fanwick, P. E.; Uyeda, C. Inorg. Chem. 2014, 53,11770-
11777.
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X-ray crystallography. Single-crystal X-ray diffraction studies were carried out at the
Purdue X-ray crystallography facility on either a Nonius KappaCCD or Rigaku Rapid |1
diffractometer. Data were collected at 150 or 200 K using Mo Ka (A=0.71073 A) or Cu Ka
(A=1.54178 A) radiation. Structures were solved using direct methods using SHELXT and

refined against F2 on all data by full-matrix least-squares.



A.2  Catalyst Comparison Data

Combined Yield of

Substrate Catalyst Conversion Trimers 1,2,4- : 1,3,5- Ratio
Run1 Run 2 Run1 Run 2 Run1 Run 2
Ethyl propiolate ["P"NDI]Ni(CeHs) (1) >99% >99% 90% 90% 3.11 3.0:1
[*"IP]Ni(COD) (2) 33% 33% 7.5% 7.5% 2.8:1 2.8:1
[BPY]Ni(COD) (3) 29% 34% 12% 15% 5.6:1 5.6:1
[""DAD]Ni(COD) (4) 72% 74% 15% 11% 3.1:1 3.6:1
Ni(COD); (5) 93% 93% 14% 14% 3.0:1 3.0:1
Phenylacetylene [""NDI]Ni2(CeHs) (1) >99% >99% >99% >99% 32:1 33:1
[*"IP]Ni(COD) (2) 53% 52% 28% 27% 5.5:1 4.8:1
[BPY]Ni(COD) (3) 35% 44% 14% 17% 3.5:1 3.7:1
[""DAD]Ni(COD) (4) 13% 18% 9% 15% 8.5:1 9.2:1
Ni(COD); (5) 52% 48% 23% 22% 2.9:1 2.3:1
Methyl propargy!l ["P"NDI]Ni(CeHs) (1) >99% >99% >99% 98% 70:1 66:1
ether [*"IP]Ni(COD) (2) 2.3% 2.6% <1% <1% 1.0:1 1:1.2
[BPY]Ni(COD) (3) 8.6% 6.9% 1% <1% 1.2:1 1.2:1
[*"DAD]Ni(COD) (4) 1.7% 2.8% <1% <1% 2.8:1 1.8:1
Ni(COD); (5) 23% 23% 2.4% 2.9% 1.2:1 1.2:1

Figure A.1.Catalyst (1-5) comparison data for the cyclotrimerization of ethyl propiolate,phenylacetylene, and methylpropargyl ether

8¢
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General Procedure, Figure 2, Ethyl Propiolate. Under an atmosphere of N, a
tube was charged with the catalyst (1 mol %). A stock solution of ethyl propiolate (0.4
mmol) and mesitylene (0.4 mmol) in CeHe (1.0 ml) was added. After stirring for 11 min at
rt in a sealed tube, the reaction mixture was quenched by exposing to air and diluting with
CeHe. Conversion of substrate, combined yield of trimers, and the ratio of regioisomers
were determined by GC-FID analysis.

General procedure, Figure 2, phenylacetylene. Under an atmosphere of N2, a
tube was charged with the catalyst (5 mol %). A stock solution of phenylacetylene (0.4
mmol) and mesitylene (0.4 mmol) in CeHe (0.5 ml) was added. After stirring for 40 min at
60 °C in a sealed tube, the reaction mixture was quenched by exposing to air and diluting
with CeHs. Conversion of substrate, combined yield of trimers, and the ratio of

regioisomers were determined by GC-FID analysis.

General procedure, Figure 2, methyl propargyl ether. Under an atmosphere of
N2, a tube was charged with the catalyst (1 mol %). A stock solution of methyl propargyl
ether (0.4 mmol) and mesitylene (0.4 mmol) in CeHs (1.0 ml) was added. After stirring for
11 min at rt in a sealed tube, the reaction mixture was quenched by exposing to air and
diluting with CsHe. Conversion of substrate, combined yield of trimers, and the ratio of

regioisomers were determined by GC-FID analysis.
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Figure A.2. 'H NMR spectrum for the cyclotrimerization of ethyl propiolate catalyzed by

1 (crude reaction mixture containing catalyst and mesitylene).
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Figure A.3. *H NMR spectrum for the cyclotrimerization of phenylacetylene catalyzed by
1 (crude reaction mixture containing catalyst and mesitylene).
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Figure A.4. 'H NMR spectrum for the cyclotrimerization of methyl propargyl ether

catalyzed by 1 (crude reaction mixture containing catalyst and mesitylene).
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Figure A.5. GC-FID data for cyclotrimerizations of ethyl propiolate with catalysts 1-5.
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A.3  Substrate Scope for Cyclotrimerizations Catalyzed by 1.

General procedure. Under an atmosphere of Nz, [P"NDI]Ni2(CeHs) (1) was
dissolved in C¢Ds (1.0 mL) in a 20-mL scintillation vial (for reactions at room temperature)
or a 2-mL crimp top vial (for reactions at 60 °C). The alkyne (0.50 mmol, 1.0 equiv) was
added to the catalyst solution, and the vial was sealed. The reaction was allowed to stir at
the indicated temperature, monitoring by *H NMR. After full conversion of the starting
material, the crude mixture was exposed to air and loaded directly onto a column of SiOa.
Following purification by column chromatography, the yield of the isolated product was
determined. The ratio of 1,2,4- to 1,3,5-regioisomers was determined by *H NMR and GC

PhD/Ph
Ph

1,2,4-Triphenylbenzene [1165-53-3]. Phenylacetylene (51 mg, 0.50 mmol) was

analysis.

allowed to react in the presence of 1 (18.1 mg, 0.025 mmol, 5.0 mol %) in CsDe (1 mL) for
1 h at 60 °C. Triphenylbenzene was obtained as a 32:1 mixture of 1,2,4- to 1,3,5-
regioisomers. Run 1: 95% yield. Run 2: 96% yield. *H NMR (300 MHz, CsDs) & 7.69 (d,
J=2.0Hz, 1H), 7.56-7.48 (m, 3 H), 7.41 (d, J = 6 Hz, 1 H), 7.28-7.17 (m, 7 H), 7.09-
6.97 (m, 6 H); *C{*H} NMR (101 MHz, CeHe) 5 142.2, 141.8, 141.5, 141.1, 140.9, 140.0,
131.6, 130.3, 130.3, 129.9, 129.1, 127.6, 127.5, 126.9, 126.5.

Me,N l l NMe,
1,2,4-Tris(4-dimethylaminophenyl)benzene (6a) [189315-83-1]. 4-
Dimethylaminophenylacetylene (72 mg, 0.50 mmol) was allowed to react in the presence
of 1 (18.1 mg, 0.025 mmol, 5.0 mol %) in CsDe (1 mL) for 8 h at 60 °C. Tris(4-

dimethylphenyl)benzene was obtained as a 17:1 mixture of 1,2,4- to 1,3,5-regioisomers.
Run 1: 81% vyield. Run 2: 81% yield. *H NMR (400 MHz, CsDg) & 7.99 (d, J = 1.9 Hz, 1

MezN



47

H), 7.76-7.62 (m, 4 H), 7.42-7.38 (m, 4 H), 6.73-6.66 (m, 2 H), 6.58-6.46 (m, 4 H), 2.56
(s, 6 H), 2.47 (s, 6 H), 2.46 (s, 6 H); *C{*H} NMR (101 MHz, CsHs) 5 150.3, 149.4, 149.4,
141.6, 140.3, 139.1, 131.6, 131.1, 131.1, 130.0, 129.3, 125.1, 113.4, 112.7, 40.3, 40.2.

MeO l l OMe
MeO I

1,2,4-Tris(4-methoxyphenyl)benzene (6b) [136612-96-9]. 4-
Methoxyphenylacetylene (66 mg, 0.50 mmol) was allowed to react in the presence of 1
(18.1 mg, 0.025 mmol, 5.0 mol %) in CeéDe (1 mL) for 8 h at 60 °C. Tris(4-
methoxyphenyl)benzene was obtained as a 37:1 mixture of 1,2,4- to 1,3,5-regioisomers.
Run 1: 94% vyield. Run 2: 91% yield. *H NMR (300 MHz, CsDg) § 7.77 (d, J= 1.9 Hz, 1
H), 7.58-7.46 (m, 4 H), 7.26-7.18 (m, 4 H), 6.93-6.86 (m, 2 H), 6.76-6.68 (m, 4 H), 3.37
(s,3H),3.26 (s, 3 H), 3.25 (s, 3 H); 3C{*H} NMR (101 MHz, CsHg) & 159.8, 158.9, 158.9,
141.1, 140.2, 139.1, 134.8, 134.4, 133.8, 131.6, 131.4, 129.6, 128.5, 125.9, 114.8, 114.1,
114.0, 55.0, 54.9.

OHC ] ] CHO
OHC I

1,2,4-Tris(4-formylphenyl)benzene (6¢) [1433220-07-5]. 4-
Ethynylbenzaldehyde (65 mg, 0.50 mmol) was allowed to react in the presence of 1 (18.1
mg, 0.025 mmol, 5.0 mol %) in Ce¢Des (1 mL) for 1.5 h at 60 °C. Tris(4-
formylphenyl)benzene was obtained as a >20:1 mixture of 1,2,4- to 1,3,5-regioisomers.
Run 1: 74% yield. Run 2: 70% yield. *H NMR (300 MHz, C¢Ds) 5 9.79 (s, 1 H), 9.63 (s, 2
H), 7.68 (d, J = 8.0 Hz, 2 H), 7.47-7.33 (m, 7 H), 7.23-7.20 (m, 1 H), 6.98 (t, J = 7.4 Hz,
5 H). BC{*H} NMR (101 MHz, CsDs) & 190.8, 190.7, 146.8, 146.4, 145.6, 140.5, 140.3,
139.6, 136.4, 135.7, 131.5, 130.6, 130.6, 130.4, 129.8, 129.6, 129.0, 127.4, 109.0.
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Q.
e

1,2,4-Tris(4-fluorophenyl)benzene (6d) [896102-02-6]. 4-fluorophenylacetylene
(60 mg, 0.50 mmol) was allowed to react in the presence of 1 (18.1 mg, 0.025 mmol, 5.0
mol %) in CsDe (1 mL) for 30 min at 22 °C. Tris(4-fluorophenyl)benzene was obtained as
a 15:1 mixture of 1,2,4- to 1,3,5-regioisomers. Run 1: 91% vyield. Run 2: 93% vyield. H
NMR (400 MHz, C¢De) 7.41 (s, 1 H), 7.36-7.20 (m, 4 H), 6.95-6.86 (m, 6 H), 6.70 (t, J =
8.6 Hz, 4 H); *C{*H} NMR (101 MHz, CsHs) 5 164.4, 163.6, 161.9, 161.1, 140.4, 140.0,
138.8, 137.6, 137.3, 136.9, 131.8, 131.7, 131.4, 129.6, 129.1, 129.0, 126.5, 116.5, 115.9,

115.4, 115.2.
MeQO OMe
MeO.

1,2,4-Tris(methoxymethyl)benzene [84941-00-4]. Methyl propargyl ether (35 mg,
0.50 mmol) was allowed to react in the presence of 1 (3.6 mg, 0.0050 mmol, 1.0 mol %)
in CeDe (1 mL) for 15 min at 22 °C. Tris(methoxymethyl)benzene was obtained as a 70:1
mixture of 1,2,4- to 1,3,5-regioisomers. Run 1: 94% yield. Run 2: 94% vyield. *H NMR
(300 MHz, CsDs) 6 7.52 (s, 1 H), 7.39 (d, J = 7.7 Hz, 1 H), 7.25-7.20 (m, 1 H), 4.42 (s, 2
H), 4.40 (s, 2 H), 4.27 (s, 2 H), 3.15 (s, 3 H), 3.14 (s, 6 H); *C{*H} NMR (75 MHz, C¢Hs)
0 138.4,137.0,136.0, 128.8, 127.9, 126.8, 74.7, 72.5, 72.4, 58.2, 58.1

Et02C:©/002Et
EtO,C
Triethyl benzene-1,2,4-tricarboxylate [14230-18-3]. Ethyl propiolate (49 mg,

0.50 mmol) was allowed to react in the presence of 1 (3.6 mg, 0.0050 mmol, 1.0 mol %)
in CsDse (1 mL) for 15 min at 22 °C. Triethyl benzene-1,2,4-tricarboxylate was obtained as
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a 3:1 mixture of 1,2,4- to 1,3,5-regioisomers. Run 1: 88% yield. Run 2: 88% yield. '"H NMR
(300 MHz, CeD¢) & 8.61 (dd, J = 1.7, 0.5 Hz, 1 H), 7.99 (dd, J = 8.0, 1.7 Hz, 1 H), 7.48
(dd, J = 8.0, 0.5 Hz, 1 H), 4.30-3.90 (m, 6 H), 1.13-0.85 (m, 9 H); BC{*H} NMR (101
MHz, CeHe) 6 167.0, 166.4, 164.7, 137.2, 133.1, 132.9, 132.1, 130.4, 129.2, 61.8, 61.7,
61.4,14.1, 14.0.

1,2,4-Tricyclopropylbenzene (7) [41009-68-1]. Cyclopropylacetylene (33 mg,
0.50 mmol) was allowed to react in the presence of 1 (3.6 mg, 0.0050 mmol, 1.0 mol %)
in CeDs (1 mL) for 15 min at 22 °C. 1,2,4-Tricyclopropylbenzene was obtained as a 74:1
mixture of 1,2,4- to 1,3,5 regioisomers. Run 1: 98% yield. Run 2: 96% yield. *H NMR (300
MHz, CsDs) 8 6.87 (d, J = 7.9 Hz, 1 H), 6.83 (d, J = 1.9 Hz, 1 H), 6.78 (dd, J = 7.8, 2.0 Hz,
1 H), 2.13-2.02 (m, 2 H), 1.77-1.68 (m, 1 H), 0.85-0.69 (m, 6 H), 0.69-0.55 (m, 6 H);
BC{'H} NMR (101 MHz, CeHe) & 142.4, 141.4, 139.9, 125.7, 123.6, 123.2, 15.7, 13.7,
13.3,9.0, 7.4.

PhO OPh
PhO

1,2,4-Tris(phenoxymethyl)benzene (8) [120819-22-9]. Phenyl propargyl ether
(66 mg, 0.50 mmol) was allowed to react in the presence of 1 (3.6 mg, 0.0050 mmol, 1.0
mol %) in CeDe (1 mL) for 15 min at 22 °C. 1,2,4-Tris(phenoxymethyl)benzene was
obtained as a >20:1 mixture of 1,2,4- to 1,3,5-regioisomers. Run 1: 80% yield. Run 2: 79%
yield. 'H NMR (300 MHz, CeéD¢) 6 7.47 (d, J = 1.7 Hz, 1 H), 7.36 (d, J = 7.8 Hz, 1 H),
7.23-7.18 (m, 1 H), 7.15-7.06 (m, 6 H), 6.93-6.80 (m, 9 H), 4.87 (d, J = 3.7 Hz, 4 H), 4.66
(s, 2 H); B®C{*H} NMR (101 MHz, CéHs) 5 159.3, 137.8, 135.9, 135.2, 129.9, 129.8, 129.2,
128.2,127.4,121.4,121.2,115.2, 69.5, 67.9, 67.8.
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n-HexD/n-Hex

n-Hex

1,2,4-Trihexylbenzene (9) [10069-28-0]. 1-Octyne (55 mg, 0.50 mmol) was
allowed to react in the presence of 1 (3.6 mg, 0.0050 mmol, 1.0 mol %) in CsDs (1 mL) for
1 h at 22 °C. 1,2,4-Trihexylbenzene was obtained as a 47:1 mixture of 1,2,4- to 1,3,5-
regioisomers. Run 1: 78% yield. Run 2: 79% yield. *H NMR (400 MHz, CsDs) 6 7.13 (s, 1
H), 7.07 (d, J = 2.0 Hz, 1 H), 7.03 (d, J = 7.7 Hz, 1 H), 2.70-2.52 (m, 6 H), 1.69-1.55 (m,
6 H), 1.44-1.32 (m, 6 H), 1.29-1.22 (m, 12 H), 0.94-0.84 (m, 9 H); *C{*H} NMR (101

MHz, CsHe) & 140.5, 140.5, 137.9, 129.8, 129.6, 128.5, 126.4, 36.2, 33.3, 32.9, 32.2, 32.2,
32.1,32.0, 29.9, 29.9, 29.5, 23.1, 14.4.

1,3-Bis(2,3-dihydro-1H-inden-5-yl)propane (10) [1785-55-3]. 1,6-Heptadiyne
(46 mg, 0.50 mmol) was allowed to react in the presence of 1 (3.6 mg, 0.0050 mmol, 1.0
mol %) in CeDs (1 mL) for 15 min at 22 °C. 1,3-Bis(2,3-dihydro-1H-inden-5-yl)propane
was obtained as a single regioisomer. Run 1: 94% yield. Run 2: 93% yield. 'H NMR (400
MHz, Ce¢De) 6 7.11 (d, J = 7.5 Hz, 2 H), 7.00 (s, 2 H), 6.98-6.93 (m, 2 H), 2.73 (t, J=7.5
Hz, 8 H), 2.60 (t, J = 7.7 Hz, 4 H), 2.01-1.90 (m, 2 H), 1.88-1.79 (m, 4 H); *C{*H} NMR
(101 MHz, CeéHe) 6 144.4, 141.6, 140.6, 126.8, 124.9, 124.5, 35.9, 34.4, 33.2, 32.8, 26.0.

5,5'-(Oxybis(methylene))bis(1,3-dihydroisobenzofuran) (11) [288094-61-1].
Propargyl ether (47 mg, 0.50 mmol) was allowed to react in the presence of 1 (3.6 mg,
0.0050 mmol, 1.0 mol %) in Ce¢Ds (1 mL) for 15 min at 22 °C. 55-
(Oxybis(methylene))bis(1,3-dihydroisobenzofuran) was obtained as a single regioisomer.
Run 1: 85% yield. Run 2: 83% yield. *H NMR (300 MHz, CsDg) & 7.15 (d, J = 3.9 Hz, 2
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H), 6.98 (s, 2 H), 6.84 (d, J = 7.7 Hz, 2 H), 4.92 (s, 8 H), 4.39 (s, 4 H); *C{*H} NMR (101
MHz, CeHe) 5 140.2, 139.2, 138.2, 126.9, 121.0, 120.6, 73.5, 73.4, 72.2.

A.4  Synthesis and Characterization Data for Ni; Complexes

Me,PhSi——
(2.3 equiv)

["P"NDI]Nix(PhMe,SiCCH), (12)

[“P'NDI|Ni2(PhMe>SiCCH), (12). Under an atmosphere of Na, [“P'NDI]Ni2(CeHp)
(1) (30 mg, 0.041 mmol, 1.0 equiv) was dissolved in C¢Hg (2.0 mL) in a 20-mL vial.
Dimethylphenylsilylacetylene (17 pL, 0.095 mmol, 2.3 equiv) was added, and the reaction
was stirred at room temperature for 3 h to afford a dark purple homogeneous solution. The
solvent was removed under vacuum. The residue was washed with three portions of cold
pentane (-30 °C) and dried under reduced pressure to obtain [P NDI|Ni>(PhMe,SiCCH),
(12) (35 mg, 87% yield). Single crystals suitable for XRD were obtained by slow
evaporation of a saturated solution in C¢He. "H NMR (500 MHz, CsD¢) & 7.71-7.67 (m, 2
H), 7.56-7.52 (m, 2 H), 7.35-7.31 (m, 2 H), 7.29-7.18 (m, 5 H), 7.11-6.96 (m, 9 H), 6.19
(d, J=4.5 Hz, 1 H, butadienyl C4-H), 4.79 (d, J = 4.5 Hz, 1 H, butadienyl C2-H), 3.56
(sept., J= 6.8 Hz, 1 H, CH(CH3)3), 2.54 (sept., J= 6.8 Hz, 1 H, CH(CH3)3), 2.34 (sept., J
=6.8 Hz, 1 H, CH(CH3)3), 1.98 (sept., /= 6.8 Hz, 1 H, CH(CH3)3), 1.61 (d,J=6.8 Hz, 3
H, CH(CH3)3), 1.59 (s, 3 H, N=CCH3), 1.55 (s, 3 H, N=CCH3), 1.44 (d, J= 6.6 Hz, 3 H,
CH(CH3)3), 1.21 (d,J=6.9 Hz, 3 H, CH(CH3)3), 1.16 (d,J= 7.0 Hz, 3 H, CH(CH3)3), 1.01
(d, J=6.7Hz, 3 H, CH(CH3)3), 0.86 (d, /= 6.8 Hz, 3 H, CH(CHs)3), 0.82 (d, J= 6.8 Hz,
3 H, CH(CHs)3), 0.80 (d, /= 7.0 Hz, 3 H, CH(CH3)3), 0.36 (s, 3 H, Si(CH3)2Ph), 0.26 (s, 3
H, Si(CHs),Ph), 0.06 (s, 3 H, Si(CH3),Ph), 0.03 (s, 3 H, Si(CH3),Ph). 1*C {'H} NMR (101
MHz, CsHs) 6 193.4 (butadienyl C1), 177.3 (butadienyl C3), 169.6 (butadienyl C4), 162.6,
162.5, 159.7, 148.6, 147.2, 142.2, 141.9, 141.1, 140.3, 140.2, 136.7, 135.6, 135.5, 134.4,
134.2, 131.2, 129.7, 127.3, 126.6, 126.1, 123.8, 123.7, 123.4, 122.9, 115.1, 110.0, 75.6
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(butadienyl C2), 28.9, 28.7, 28.1, 27.9, 25.9, 25.0, 24.6, 24.0, 23.9, 23.5, 23.2, 22.5, 16.9,
15.9, 1.1, 0.74, -2.11, —2.81. UV-vis: (CeHe): A (nm) {e, cm™' M"'} 996 {8100}, 772
{6200}, 548 {6700}, 476 {8100}. Anal. Calcd for 12 (["PNDI]Ni»(PhMe,SiCCH),): C,
69.36; H, 6.96; N, 5.78. Found: C, 69.26; H, 7.00; N, 5.61.
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Figure A.8. *H NMR spectrum for 12 (CsDs, room temperature).
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Figure A.9. 3C{*H} NMR spectrum for 12 (CsDs, room temperature).
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Figure A.10. 'H-*H COSY spectrum for 12 (CsDs, room temperature).
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Figure S11. *H-C HMQC spectrum for 12 (CeDs, room temperature).
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Figure A.12. 'H-*C HMBC spectrum for 12 (CsDs, room temperature).
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Figure A.13. UV-Vis spectrum for ["""NDI]Niz(PhMe2SiCCH) (12) in CsHs (0.031 mM)
at room temperature.
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Figure A.14. *H NMR spectrum (CsDs, room temperature) for the crude reaction mixture
between 1 and phenylacetylene (10 equiv after a 5 min reaction time at room
temperature). The key doublets assigned to the C-H groups of a bound butadienyl
fragment are highlighted.
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Figure A.15. *H NMR spectrum (CsDs, room temperature) for the cyclotrimerization of
phenylacetylene catalyzed by 1 (5 mol%) highlighting the speciation of the catalyst. The
reaction was run at room temperature for 30 h. At this time, full conversion of
phenylacetylene was observed. The mixture was then heated at 60 °C for an additional 48
h. Three primary catalyst species are observed: a metallacycle with a structure analogous
to complex 12, an unknown paramagnetic species, and the ["""NDI]Ni2(CsHs) (1).
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—— Me
. N :
1.0 equiv Ni
(1.9 equv) Me /\Ni_./_l’ll i-Pr
N S~o

i-Pr j L
i-Pr
[Si]
["P'NDI]Niz(Me3SIiCCH) (13)

[“P'NDI]Ni2(Me3SiCCH) (13). Under an atmosphere of No, ["P"NDI|Ni2(CsHs) (1)
(20 mg, 0.027 mmol) was dissolved in CeHe¢ (2.0 mL) in a 20-mL vial
Trimethylsilylacetylene (3.9 pL, 0.027 mmol, 1.0 equiv.) was added, and the reaction was
allowed to stir at room temperature for 5 min to produce a green homogeneous solution.
The solvent was removed under reduced pressure to obtain ["P'NDI]Ni>(Me3SiCCH) (13)
(20.5 mg, 99% yield). Single crystals suitable for X-ray diffraction were obtained by slow
evaporation of a saturated solution in Et20. 'H NMR (300 MHz, CsD¢) § 7.07-6.99 (m, 6
H, Ar H), 6.07 (d, /= 8.1 Hz, 2 H, naphthyr H), 5.70 (d, J= 8.1 Hz, 2 H, naphthyr H), 3.40
(sept., J = 6.9 Hz, 4 H, CH(CH3)2), 2.44 (s, 1 H, TMSCCH), 1.49 (d, J = 6.8 Hz, 12 H,
CH(CHs)2), 1.19 (s, 6 H, N=CCH3), 1.03 (d, J = 6.8 Hz, 12 H, CH(CH3)2), —0.25 (s, 9 H,
Si(CH3)3). *C{'H} NMR (101 MHz, C¢D¢) & 162.4, 160.8, 140.6, 139.6, 138.8, 128.6,
125.7, 124.5, 123.4, 113.5, 109.0, 79.0 (TMSCCH), 78.1 (TMSCCH), 28.5, 24.4, 23.9,
14.4,-0.33. UV-vis: (CéHe): A (nm) {&, cm ' M1} 521 {1400}, 467 {2000}, 364 {4600}.
Anal. Calcd for 13 (["P"NDI]Ni2(Me3SiCCH)): C, 65.80; H, 7.27; N, 7.49. Found: C, 65.74;
H, 7.47; N, 7.51.



61

|
N
-
4.00{;5_\
\

.

T ™ 7 T T ™ T

o 2 2 ° ¥ o8 =

8 8 8 ] 2 822 3

K - et S 56N o
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.0 25 2.0 15 1.0 0.5 0.0 0.5 1.0

3.5
f1 (ppm)

Figure A.16. *H NMR spectrum for 13 (CsDs, room temperature).
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Figure A.17. 3C{*H} NMR spectrum for 13 (CsDs, room temperature).
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Figure A.18. 'H-'H COSY spectrum for 13 (CsDs, room temperature).
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Figure A.20. UV-Vis spectrum for ["""NDI]Niz(MesSiCCH) (13) in CsHg (0.098 mM) at
room temperature.
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A5 . Stoichiometric Reactions of 12 and 13

. 48 h,70°C
+ =—SiMe;y; ————> N.R.

[Si]

["P"NDI]Niy(PhMe,SiCCH), (12)

Reversibility of metallacycle formation. Under an atmosphere of N2, complex 12
(22 mg, 0.023 mmol, 1 equiv.) was dissolved in CsD¢ (1.5 mL) in a 20-mL vial.
Trimethylsilylacetylene (32.2 pL, 10 equiv.) was added to the solution and was allowed to
stir for 30 min at room temperature. The resulting reaction mixture was transferred to a J-
Young tube and started heating at 70 °C for 48 h. The progress of the reaction was

monitored by *H NMR. No exchange of —SiMe,Ph for —MesSi was observed.

i-Pr + 1

i-Pr
[Si] [Si]
[i'PrNDI]NiZ(Me3SiCCH) (13) [i'PrNDI]Niz(Me3SiCCH)2

(49% conversion)

Disproportionation of 13. Under an atmosphere of Na, freshly prepared complex
13 (15 mg, .020 mmol) was dissolved in C¢Ds (1 mL) in a 20-mL vial. The green color
solution was transferred to a J-Young tube and the disproportionation of complex 13 was
monitored by *H NMR. After 24 h at room temperature, 49% conversion of 13 to form a

mixture of the metallacycle and 1.
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i-Pr,

— Me
[SiD= /\
— OMe
VAN -/N Z . PhMe,Si SiMe,Ph
NP (20 equiv) 2 2 MeO OMe
Me—\ __—Ni i-Pr - 5 +
N 1h, rt OMe OMe

i-Pr
i-Pr
z: :;/ [Si] (86% yield)
[P'NDIINi,(PhMe,SIiCCH), (12) (14)

Reaction of 6 with methyl propargyl ether. Under an atmosphere of N2, complex
12 (17 mg, 0.011 mmol, 1 equiv) was dissolved in C¢De (1.0 mL) in a 20-mL vial. Methyl
propargyl ether (30 pL, 0.35 mmol, 20 equiv) and mesitylene (2.4 uL, 0.011 mmol, 1 equiv)
were added to the solution, and the reaction mixture was allowed to stir for 1 h at room
temperature. Compound 14 was formed in 86% yield (98% relative to recovered 12) by *H
NMR integration against mesitylene. *H NMR (300 MHz, C¢Ds) & 7.98 (d, J = 1.3 Hz, 1
H), 7.59 (dd, J =7.5, 1.4 Hz, 1 H), 7.55-7.44 (m, 5 H), 7.24-7.16 (m, 5 H), 7.15-7.12 (m,
1 H), 4.31 (s, 2 H), 2.96 (s, 3 H), 0.57 (s, 6 H), 0.51 (s, 6 H); *C{*H} NMR (101 MHz,
CsDs) 8 146.0, 142.0, 139.5, 138.4, 136.7, 135.9, 135.7, 134.6, 134.4, 129.4, 129.2, 128.2,
75.0, 57.6, 0.9, —2.2. HRMS (m/z): [M + H]" calcd for C24H310Si», 391.191; found,
391.190.
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Figure A.21. *H NMR spectrum for 14 (C¢Ds, room temperature).
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Figure A.22. BC{*H} NMR spectrum for 14 (CsDs, room temperature).



A.6 XRD Data

[P'NDI]Ni2(MezPhSiC2H)> (12): CssHssNaNizSiz

formula

formula weight

space group

a, A

b, A

c, A

b, deg

vV, A3

Z

dearc, 9 cm®

crystal dimensions, mm
temperature, K
radiation (wavelength, A )
monochromator

linear abs coef, mm*

absorption correction applied
transmission factors: min, max

diffractometer

h, k, I range

2q range, deg
mosaicity, deg
programs used

Fooo

data collected

unique data

Rint

data used in refinement

Cs6HesN4Ni2Sio
970.79

P 121/n1 (No. 14)
10.4510(2)
22.6010(4)
22.0156(5)
94.4090(10)
5184.76(18)

4

1.244

0.50x 0.43x 0.28
200.

Mo Ka (0.71073)
graphite

0.812

empirical®

0.56, 0.80

Nonius KappaCCD
0to13 0to27 -29to29
1.80-56.66

4.63

SHELXTL

2064.0

34083

9125

0.038

9125

70



cutoff used in R-factor calculations
data with 1>2.0s(1)

number of variables

largest shift/esd in final cycle
R(Fo)

Rw(Fo?)

goodness of fit

71

Fo?>2.0s(Fo?)
6401

591

0.00

0.036

0.087

1.024

2 Otwinowski Z. & Minor, W. Methods Enzymol. 1996,276307.
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["P"NDI]Ni2(MesSiC2H) (13): Ca1Hs4NsNi2Si

formula

formula weight

space group

a, A

b, A

c, A

a, deg

b, deg

g, deg

vV, A3

Z

dcalc, g cm

crystal dimensions, mm
temperature, K

radiation (wavelength, A)
monochromator

linear abs coef, mm™
absorption correction applied
transmission factors: min, max
diffractometer

h, k, I range

2q range, deg

mosaicity, deg

programs used

Fooo

data collected

unique data

Rint

data used in refinement
cutoff used in R-factor calculations

Ca1Hs4N4Ni2Si
748.42

P -1 (No. 2)
8.2242(3)
14.3806(7)
17.7803(6)
107.132(4)
93.402(3)
102.319(3)
1946.39(14)

2

1.277

0.20x 0.20x 0.18
298.

Cu Ka (1.54184)
graphite

1.737

empirical®

0.56, 0.73
Nonius KappaCCD
0to9 -17to16 -21to21
5.25-135.83

0.36

SHELXTL

796.0

46579

6835

0.044

6835
Fo?>2.0s(Fo?)
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data with 1>2.0s(1) 6369
number of variables 446
largest shift/esd in final cycle 0.00
R(Fo) 0.049
Rw(Fo?) 0.138
goodness of fit 1.059

2 Otwinowski Z. & Minor, W. Methods Enzymol. 1996,276307.

AT DFT Calculations and Optimized Structures

Computational Methods. Geometry optimizations were performed using the
Gaussian09 package.? All geometries were fully optimized at the M06/6-31G(d,p) level of
DFT.2# Stationary points were verified by frequency analysis.

2 Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A ;
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li,
X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota,
K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T
Montgomery, J. A, Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N;
Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; lyengar, S. S;
Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski,
J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian,
Inc., Wallingford CT, 2009.

3 Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241.

4 (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54, 724. (b) Hehre, W. J.; Ditchfield, R.;
Pople, J. A. J. Chem. Phys. 1972, 56, 2257. (c) Harihan, P. C.; Pople, J. A. Theor. Chem. Acc. 1973, 27, 213—
222.



74

+ 5.6 kcal

+ 2.4 kcal

+ 2.8 kcal

Figure A.23. Relative energies of the metallacycle intermediate, cycloaddition transition
state, and arene product for the two pathways forming the 1,2,4- (black) and 1,3,5-
regioisomers (red). Relative energies for the other three metallacycle regioisomers are

shown.
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Figure A.24. Intrinsic reaction coordinate calculations (M06/6-31G(d,p)) from the [4+2]-

cycloaddition transition state to the arene complex. Top: relative energy and RMS
gradient. Bottom: distances for the two forming C—C bonds.
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Charge: 0

Multiplicity: 1
Imaginary Frequencies: 1
Energy: —4668.00477695

Ni -1.21429600
Ni 1.08865900
N 2.81462400
0.84418500
-1.39962800
-2.74288400
4.35486000
4.53407100
5.20718700
4.36287400
3.06430900
1.99481800
1.94989000
2.84873400
0.75769700
0.71497100
-0.43249600
-1.73130100
-1.85385600
-2.82213200
-3.79414400
-2.63805700
-3.36907900
-4.68971300
-4.63123600
-5.01239000
-5.47265100

ITTOOOIOITOOIOITOOOIIIITOZZZ

0.10757000
0.13777000
0.25659200
1.82285400
1.90841400
-0.10433000
1.75826700

1.03850100

1.67132400

2.76179300

1.45263000

2.38402200

3.68973200

4.15140400

4.39573200

5.40583200

3.79391700

4.32588400

5.32034200
3.47839600

3.77634200
2.20491900

1.04172100

1.07813400

0.53279200
2.09999800

0.59111000

0.83808100
0.40809500
-0.42246300
-0.31819300
0.27552900
-0.40876000
-1.63104300
-2.43979500
-0.94600900
-2.06108200
-0.94362900
-0.86278200
-1.34512100
-1.74633600
-1.34009700
-1.74217000
-0.88593300
-1.02592300
-1.44904500
-0.87068900
-1.25844500
-0.33818300
-0.66816500
-1.36756700
-2.31812700
-1.57816500
-0.77402400
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-0.31818600
3.79156500
3.70313700
4.63242600
4.57013300
5.61986600
6.33584200
5.68267900
6.44377200
4.77323300

-3.22396400

-4.24818800

-4.57475300

-5.36670500

-3.91399800

-4.18064100

-2.91060800

-2.39363300

-2.55432200
0.17649700
1.01302600
1.72841800
0.95433600

-0.18856500
4.80099700
5.09124700
3.80569000
5.50908500
2.60428900
1.62934000
2.52086800
2.75317600

-5.00600400

-4.98575700

-4.59042200

-6.06272200

-1.48941000

-1.88751000

-0.68882900

-1.05214500
1.89459900
0.15445200

2.48358700
-0.76317800
-1.78767400
-2.82580400
-3.61937900
-2.85999800
-3.67804400
-1.84944700
-1.87900000
-0.79276600
-1.34891200
-2.05229800
-3.33354600
-3.88150100
-3.90856500
-4.90859400
-3.19727500
-3.63639900
-1.91975300
0.58853800
-0.45016800
-0.42684800
-1.55090600
-1.50936200
0.26214500

1.24758800

0.39005100
-0.00052600
-1.77641900
-1.94521000
-0.80982000
-2.55708000
-1.47281400
-2.14958200
-0.51412400
-1.32053600
-1.13667800
-0.20063800
-0.83722600
-1.71419300
-2.71455200
1.89630500

-0.29882600
-0.42991400
-1.38590700
-1.34021900
-2.08388700
-0.36379700
-0.33924000
0.58809000
1.36697500
0.57535500
-0.85942800
-0.20368300
-0.65733300
-0.14640800
-1.73154200
-2.06570700
-2.38267400
-3.23510900
-1.96347400
2.12599700
2.46909000
3.29452600
1.54244200
0.70525700
1.63957200
1.25191700
2.08673300
2.43196700
-2.40260200
-1.92215600
-2.91456000
-3.15561600
0.95556100
1.81946500
1.27767300
0.69763700
-2.66803400
-3.08285300
-1.97582200
-3.48958700
1.60018900
2.84456400
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1.92740300
2.91945900
1.57670800
0.59430700
0.73266900
-0.85897000
-0.43914700
-1.83473300
-2.18450900
-2.02047600
-2.86995800
-3.35393900
-3.63363000
-2.15960200

-3.24844000
-2.40025400
-3.42816200
1.79420600
2.65664000
2.30158100
-2.37033600
-1.50019200
-0.43793400
-2.54602900
0.41142300
1.26062000
-0.14976900
0.82464300

0.64339700
1.83480900
2.37177400
3.84649100
2.30257000
2.94480200
0.07785000
1.96273500
2.54245100
1.77691400
3.51495700
3.01484500
4.06866700
4.24123800
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Charge: 0

Multiplicity: 1
Imaginary Frequencies: 1
Energy: —4668.00158962

Ni
Ni

ITTOOOIOITOOIOITOOOIIIITOZZZ2Z

-1.18504500
1.10970500
2.81223500
0.92435500

-1.30336800

-2.76763200
4.38442900
5.24268300
4.57229700
4.34985500
3.10978300
2.09013300
2.10016700
3.01163800
0.94500600
0.94388900

-0.26493800

-1.53672700

-1.61679900

-2.66501000

-3.62785900

-2.53392400

-3.33396300

-4.67077600

-4.70680700

-4.89187200

-5.47490100

0.16795300
0.13690400
0.24664900
1.88770100
2.02435200
0.14755100
1.78808800
1.30837700
2.86288400
1.40313900
1.47590100
2.44307000
3.78892600
4.24141300
4.54622400
5.59091100
3.95973400
4.56361500
5.59714100
3.75782400
4.13404000
2.43489900
1.34531000
1.51601100
0.96178100
2.56513700
1.11929800

0.89025500

0.42444100
-0.45408800
-0.14081000

0.51002300
-0.31552200
-1.57494400
-1.09228800
-1.62644900
-2.60322900
-0.86125500
-0.66177200
-1.01996700
-1.40294400
-0.92087100
-1.22463400
-0.49874400
-0.56287400
-0.89189200
-0.46060900
-0.79933700
-0.04793100
-0.45697900
-1.10358100
-2.04963100
-1.31023300
-0.47210500
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-0.20476200
3.73878800
3.58089500
4.45729500
4.34025400
5.46140600
6.13461900
5.59598500
6.37132300
4.74016100

-3.36764700

-4.46015700

-4.91526900

-5.75598000

-4.31359800

-4.67859500

-3.24714300

-2.78222100

-2.76741900
0.24655900
1.05227700
1.77945000
0.92595000

-0.23510700
4.85030600
5.18861900
3.87443200
5.55946100
2.46392700
1.49123000
2.41206700
2.56555700

-5.14857400

-5.28605300

-4.58560300

-6.15170100

-1.65932800

-2.00585200

-0.82839100

-1.27674200
1.81298800
0.27038200

2.59641200
-0.81282600
-1.76550400
-2.84885400
-3.58842600
-2.99642700
-3.84917800
-2.05417400
-2.17133800
-0.95634200
-1.02277200
-1.64839700
-2.86728000
-3.35737400
-3.45870800
-4.41118400
-2.81982600
-3.26531600
-1.60188200
0.46593000
-0.62841700
-0.70542000
-1.63934600
-1.47870600
0.02887400

1.01740400

0.18697200
-0.32039600
-1.63555800
-1.79787900
-0.63216100
-2.36621500
-1.06189500
-1.81925900
-0.23092800
-0.69592900
-0.87955700

0.08745900
-0.64538400
-1.46688400
-2.84444700
1.69116000

-0.03499000
-0.55820900
-1.57728800
-1.62018700
-2.41148200
-0.67179600
-0.71704800
0.34071500
1.09698800
0.41860000
-0.81817000
-0.19257400
-0.70328100
-0.21185300
-1.80339400
-2.18080100
-2.42921100
-3.30793500
-1.95804500
2.19262900
2.42216600
3.23373900
1.40790300
0.60799600
1.54283000
1.20465600
2.02234000
2.30006100
-2.56585800
-2.07839600
-3.00568500
-3.37474500
1.00526300
1.78728700
1.43870500
0.74604200
-2.66058200
-3.04983800
-1.98009200
-3.50225100
1.34780500
3.04432800
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1.77986000
2.85991400
1.49794900
0.81506500
0.76911700
-0.73755600
-0.50828300
-1.83109000
-2.05929600
-2.12424400
-2.42872900
-1.25067800
-2.94629900
-2.49276200

-3.31659200
-2.59075500
-3.59275300
1.49555100
2.52669400
2.03939400
-2.26904300
-1.59582900
-0.50607800
-3.03487800
-3.27590600
-3.64956300
-3.31461900
0.04951000

0.35932000
1.55605400
2.08822300
3.97803600

2.53660000

3.29562400
-0.09685500
1.95004500
2.54607000
1.78964900
0.76441200
2.03768000
2.45836500
3.35956800
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Charge: 0

Multiplicity: 1
Imaginary Frequencies: 0
Energy: —-4668.16251770

Ni
Ni

I ITTOOOIOITIOOIOITOOOIIIITOZZZZ

-1.25855400
1.22828100
3.13436900
1.11709900

-1.15771100

-3.16380300
4.85804400
5.37571700
4.92449600
5.42705500
3.44208400
2.33980200
2.38183300
3.33935700
1.21486100
1.23862600

-0.02757800

-1.27360100

-1.30453200

-2.43462000

-3.39553500

-2.38089900

-3.47355800

-4.87181500

-5.38618900

-4.88954400

-5.46892500

-0.05591800
-0.06164700
0.30164800
1.80294700
1.79858900
0.27998600
2.07393600
1.62351100
3.15853800
1.77990000
1.59996800
2.47291800
3.86432400
4.37579700
4.60120300
5.68843800
3.94323300
4.59157100
5.67859600
3.84639800
4.34854000
2.45637400
1.57380500
2.05293600
1.42253300
3.08086000
2.01534100

0.10316200
0.03060900
-0.01440600
-0.00538600
-0.02450700
-0.15218800
0.10594300
0.96226000
0.20554800
-0.78480900
0.03760800
0.04072900
0.06765000
0.11010300
0.03190200
0.03816800
-0.02012600
-0.08810700
-0.10057900
-0.16574800
-0.23828300
-0.14209300
-0.24482100
-0.47072800
-1.20450200
-0.83821700
0.44966300

85



OOIITITITIOIITIITIOIIIOIIITOOOITIOOOIIOIIOZOOOOIOZOIOOOON

-0.02173000
4.21626700
4.72706900
5.75418600
6.14326000
6.27412200
7.06847000
5.78012700
6.19657000
4.75974100

-4.20726100

-5.07462100

-6.04237100

-6.70568300

-6.16878200

-6.92446300

-5.32944300

-5.43429500

-4.34913600
0.11074500
1.25496700
2.17896300
1.13279400

-0.15534700
4.31514900
5.12942800
3.46348200
4.03577300
4.15257100
3.05676900
4.38648800
4.54479100

-5.00050100

-5.14895700

-4.04003700

-5.78921100

-3.49070800

-3.82146600

-2.44706500

-3.53312100
2.16370400
0.29147000

2.50553500
-0.60600600
-0.87030400
-1.79849400
-2.01036900
-2.46093000
-3.19313000
-2.17517500
-2.67302800
-1.23756200
-0.66443300
-0.98745900
-1.97321200
-2.23409200
-2.61423900
-3.38374800
-2.26086700
-2.74338000
-1.28453700
-1.31382400
-1.80979000
-2.03924500
-2.05197600
-1.84932900
-0.89380000
-0.41216200
-0.20698500
-1.79080600
-0.18006200
-0.24705400

0.89278000
-0.61442500
-0.28944500
-0.99568500

0.21580800

0.47014100
-0.86204300

0.10348800
-0.71608800
-1.59398100
-2.78579400
-0.93309900

-0.01357300
-0.13728900
-1.42409500
-1.56239700
-2.55754500
-0.45465700
-0.57898100
0.80852200
1.68415100
0.99114700
-0.32473300
0.73228200
0.52800400
1.35233100
-0.69546500
-0.83454100
-1.74519400
-2.71619100
-1.58160700
1.58886300
0.87381600
1.40325500
-0.51189300
-1.07723800
2.38375700
2.94106000
2.38217900
2.95196200
-2.62430800
-2.64193800
-2.63725500
-3.54973400
2.05840900
2.88375000
2.20108400
2.14798400
-2.73526700
-3.14283300
-2.43343400
-3.54841000
-1.31137800
3.03042300
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2.31608100
3.12928100
1.81106000
0.11287700
1.30964100
-0.39300800
-0.26958300
-1.30256900
-1.18014100
-2.24296400
-2.23907000
-2.41545700
-3.18799100
-1.92688200

-2.33540000
-2.84665000
-3.81175300
-1.78532800
-0.57220600
-0.12996600
-1.98602900
-1.98928600
-1.75936000
-2.34999600
-2.15555300
-1.38877300
-2.36960500
-3.06847600

-2.29978300
-0.80507900
-1.47801700
3.70261000
3.21228600
3.32658500
-2.15176900
-0.25054400
1.13993100
-0.66372300
2.11837900
2.88126800
1.61736000
2.64521000
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Charge: 0

Multiplicity: 1

Imaginary Frequencies: 0
Energy: —4668.16437521

Ni -1.24892100
Ni 1.24892700
N 3.13807400
1.13713300
-1.13684500
-3.13787800
4.83260400
5.20943500
4.86916900
5.53658700
3.44790300
2.36213400
2.41217500
3.37306000
1.24803900
1.27818300
0.00014900
-1.24770800
-1.27783800
-2.41182400
-3.37269700
-2.36177400
-3.44757500
-4.83213400
-5.53674600
-4.86879500
-5.20809200

ITTOOOIOITOOIOITOOOIIIITOZZZ

0.01595600
0.01598000
0.31955600
1.84346600
1.84344800
0.31961500
2.04132900
1.46639500
3.09956300
1.87062900
1.60250000
2.49605000
3.88487000
4.38690100
4.62940200
5.71445200
3.98129400
4.62939400
5.71444000
3.88482800
4.38680800
2.49602100
1.60251400
2.04135000
1.86956200
3.09982600
1.46710600

-0.34780500
-0.34775800
-0.00874500
-0.01821700
-0.01821100
-0.00823000
0.53936200
1.39473000
0.80404700
-0.28453900
0.18942400
0.10783600
0.19403400
0.27007300
0.17834800
0.24601100
0.11715600
0.17880000
0.24652500
0.19491300
0.27143200
0.10858200
0.19028600
0.54080100
-0.28232400
0.80447600
1.39702900
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0.00014700
4.13806000
5.09477200
6.00077200
6.73381300
5.97932500
6.68655400
5.05627700
5.04770200
4.13827000
-4.13807500
-4.13845800
-5.05677600
-5.04833800
-5.97992400
-6.68740100
-6.00109100
-6.73417000
-5.09477900
-0.00050400
1.21467600
2.12161400
1.23423000
0.00026600
3.19618600
3.52701900
2.19127800
3.13196900
5.18379600
4.27002000
6.01937300
5.36693500
-3.19620500
-3.13129700
-2.19153400
-3.52743100
-5.18358800
-6.01843700
-4.26937500
-5.36776500
2.31604300
-0.00099100

2.54878900
-0.65158000
-0.99893300
-2.02185600
-2.29927900
-2.67805800
-3.47846300
-2.29616600
-2.78689000
-1.27907000
-0.65144000
-1.27960900
-2.29656300
-2.78781000
-2.67767900
-3.47797500
-2.02090200
-2.29775200
-0.99810700
-2.08356500
-2.01871100
-2.43146000
-1.58515200
-0.99228000
-0.81536500

0.13993900
-0.63490300
-1.54275300
-0.28455000

0.27482800

0.42881700
-0.98877300
-0.81679700
-1.54519300
-0.63535900

0.13774600
-0.28304900

0.43117300

0.27552600
-0.98674100
-1.92926900
-2.48523100

0.00946300
0.25327300
-0.71430100
-0.42480500
-1.18185400
0.79677400
1.00064200
1.76365400
2.73622000
1.51515900
0.25325800
1.51477400
1.76273700
2.73504200
0.79565300
0.99908800
-0.42563200
-1.18285200
-0.71459100
0.63245100
-0.09135500
0.35329200
-1.43943400
-1.89267500
2.58433000
3.01570000
2.18343900
3.40069800
-2.03127300
-2.25297100
-2.03518300
-2.85141400
2.58419500
3.39961800
2.18318300
3.01695000
-2.03122200
-2.03451700
-2.25312500
-2.85158900
-2.40864200
2.07729700
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2.47351500
3.26423900
2.02903600
-0.88792300
0.88414500
0.00033600
0.00064200
-1.23407500
-1.21521700
-2.31558600
-3.26436500
-2.47154100
-2.02921700
-2.12247500

-1.12592500
-2.14710400
-2.82806700
-3.08377800
-3.08647100
-1.62459600
-0.59210800
-1.58488800
-2.01877900
-1.92875100
-2.14510200
-1.12600400
-2.82847300
-2.43150500

-3.13924700
-1.90720100
-2.97118300

2.31905200
2.31897400
2.75975300
-2.90866500
-1.44013300
-0.09215300
-2.40974000
-1.90876500
-3.14131600
-2.97113300

0.35185900
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APPENDIX B. CHAPTER 2

B.1 General Information

General considerations. All manipulations were carried out using standard
Schlenk or glovebox techniques under an atmosphere of N2. Solvents were dried and
degassed by passing through a column of activated alumina and sparging with Ar gas.
Deuterated solvents were purchased from Cambridge Isotope Laboratories, degassed, and
stored over activated 3 A molecular sieves prior to use. All other reagents and starting
materials were purchased from commercial vendors and used without further purification
unless otherwise noted. Liquid reagents were degassed and stored over activated 3 A
molecular sieves prior to use. The ["P"NDI]Ni2(CsHs) complex 1 was prepared according
to previously reported procedures.' Zn powder (325 mesh, 99.9%) was purchased from

Strem Chemicals, stored under inert atmosphere, and used without further purification.

Physical methods. *H, °F and *C{*H} NMR spectra were collected at room
temperature on a Varian INOVA 300 MHz or a Bruker AV500HD NMR spectrometer. *H
and BC{*H} NMR spectra are reported in parts per million relative to tetramethylsilane,
using the residual solvent resonances as an internal standard. High-resolution mass data
were obtained using a Thermo Scientific LTQ Orbitrap XL mass spectrometer or a Thermo
Electron Corporation MAT 95XP-Trap mass spectrometer. ATR- IR data were collected
on a Thermo Scientific Nicolet Nexus spectrometer containing a MCT* detector and KBr
beam splitter with a range of 350-7400 cm™. UV-vis measurements were acquired on an
Agilent Cary 6000i UV-Vis-NIR Spectrophotometer using a 1- cm two- window quartz

cuvette. Elemental analyses were performed by Midwest Microlab (Indianapolis, IN).

X-ray crystallography. Single-crystal X-ray diffraction studies were carried out at
the Purdue X-ray crystallography facility using a Rigaku Rapid Il diffractometer or a
Bruker AXS D8 Quest CMOS diffractometer.
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Procedure for XRD data collected using the Rigaku Rapid Il instrument. Single

crystal X-ray measurements were conducted on a Rigaku Rapid Il curved image plate
diffractometer with a Cu-Ko. X-ray microsource (A = 1.54178 A) with a laterally graded
multilayer (Goebel) mirror for monochromatization. Single crystals were mounted on
Mitegen microloop mounts using a trace of mineral oil and cooled in-situ to 150(2) K for
data collection. Data were collected using the dtrek option of CrystalClear-SM Expert 2.1
b32.1 Data were processed using HKL3000 and data were corrected for absorption and
scaled using Scalepack.™

Procedure for XRD data collected using the Bruker Quest instrument. Single

crystals of were coated with mineral oil or fomblin and quickly transferred to the
goniometer head of a Bruker Quest diffractometer with kappa geometry, an I-u-S
microsource X-ray tube, laterally graded multilayer (Goebel) mirror single crystal for
monochromatization, a Photon2 CMOS area detector and an Oxford Cryosystems low
temperature device. Examination and data collection were performed with Cu Ko radiation
(L =1.54178 A) at 100 K. Data were collected, reflections were indexed and processed,
and the files scaled and corrected for absorption using APEX3.

Structure Solution and Refinement. The space groups were assigned and the
structures were solved by direct methods using XPREP within the SHELXTL suite of

programs" and refined by full matrix least squares against F? with all reflections using
ShelxI2016" using the graphical interface Shelxle."" If not specified otherwise H atoms
attached to carbon and nitrogen atoms were positioned geometrically and constrained to
ride on their parent atoms, with carbon hydrogen bond distances of 0.95 A for and aromatic
C-H, 1.00, 0.99 and 0.98 A for aliphatic C-H, CH and CH3 moieties, respectively. Methyl
H atoms were allowed to rotate but not to tip to best fit the experimental electron density.
Uiso(H) values were set to a multiple of Ueq(C) with 1.5 for CHs, and 1.2 for C-H units,
respectively. Additional data collection and refinement details, including description of

disorder and/or twinning (where present) can be found in Section 9.
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B.2 Synthesis and Characterization of Novel 1,1-Dichloroalkenes

Cl

4-(2,2-dichlorovinyl)tetrahydro-2H-pyran.? Under an N2 atmosphere, a 100-mL
Schlenk flask was charged with PhsP (10.5 g, 40 mmol, 4.0 equiv) and a magnetic stir bar.
MeCN (20 mL) was added, and the solution was stirred at 0 °C. Tetrahydro-2H-pyran-4-
carbaldehyde (1.14 g, 10 mmol, 1.0 equiv) and CCl4 (1.9 mL, 20 mmol, 2.0 equiv) were
added sequentially by syringe, and stirring was continued at 0 °C. After 5 min, the reaction
was allowed to warm to room temperature and monitored by TLC. After full consumption
of PhsP (approx. 2 h), the reaction mixture was quenched with water (150 mL), and the
product was extracted with Et.O (3 x 100 mL). The combined organic phases were dried
over Na>SO4 and filtered. The filtrate was evaporated to dryness under reduced pressure.
The crude material was purified by column chromatography (SiO2, 4:1 CH2Clz/hexanes)
to provide 4-(2,2-dichlorovinyl)tetrahydro-2H-pyran as a colorless liquid (1.28 g, 71%
yield).

'H NMR (500 MHz, CDCls) § 5.72 (d, J = 9.1 Hz, 1H), 3.99-3.88 (m, 2H), 3.43
(td, J =117, 2.3 Hz, 2H), 2.62 (tdt, J = 11.3, 8.6, 4.1 Hz, 1H), 1.70-1.56 (m, 2H), 1.54—
1.37 (m, 2H).

BC{'H} NMR (125 MHz, CDCl3) § 133.4, 120.1, 67.4, 36.5, 31.3.

HRMS(APCI) (m/z): [M + H]* calcd for C7H10Cl20: 181.0187; found: 181.0179.

A\
d N—g

Cl

2-(2,2-dichlorovinyl)benzofuran."" Under an N, atmosphere, a 100-mL Schlenk
flask was charged with PhsP (2.6 g, 10 mmol, 1.0 equiv) and a magnetic stir bar. CCl4 (5.8
mL, 60 mmol, 6.0 equiv) was added by syringe, and the solution was stirred at 60 °C. After
1 h, 2-benzofurancarboxaldehyde (1.46 g, 10 mmol, 1.0 equiv) was added by syringe, and
stirring was continued at 60 °C overnight. The reaction mixture was concentrated to

dryness under reduced pressure. The crude reaction mixture was directly loaded onto a
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SiO2 column for purification, providing 2-(2,2-dichlorovinyl)benzofuran as a colorless
crystalline solid (660 mg, 31% yield).

IH NMR (500 MHz, CDCls) & 7.59 (d, J = 7.8 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H),
7.37-7.29 (m, 1H), 7.29-7.19 (m, 1H), 7.16 (s, 1H), 6.91 (s, 1H).

BC{'H} NMR (125 MHz, CDCl3) § 154.3,150.2, 128.4, 125.5,123.4,122.9, 121.6,
119.0, 111.3, 107.7.

HRMS(APCI) (m/z): M* calcd for C10HeCl20: 211.9796; found: 211.9785.

7]
Cl / S

Cl

2-(2,2-dichlorovinyl)thiophene [65085-96-3].> Under an N, atmosphere, a 100-
mL Schlenk flask was charged with PhsP (2.6 g, 10 mmol, 1.0 equiv) and a magnetic stir
bar. CCls (5.8 mL, 60 mmol, 6.0 equiv) was added by syringe, and the solution was stirred
at 60 °C. After 1 h, 2-thiophenecarboxaldehyde (1.12 g, 10 mmol, 1.0 equiv) was added by
syringe, and stirring was continued at 60 °C overnight. The reaction mixture was
concentrated to dryness under reduced pressure. The crude reaction mixture was directly
loaded onto a SiO. column for purification, providing 2-(2,2-dichlorovinyl)thiophene as a
colorless crystalline solid (537 mg, 30% yield).

'H NMR (500 MHz, CDCl3) § 7.38 (ddd, J = 5.1, 1.2, 0.6 Hz, 1H), 7.20 (ddd, J =
3.7,1.2,0.6 Hz, 1H), 7.11-7.02 (m, 2H).

BBC{'H} NMR (125 MHz, CDCl3) & 136.4, 129.5, 127.4, 126.8, 123.0, 118.8.
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B.3 Catalyst Comparison Studies

N Cl catalyst (5 mol%) - A
+ A pn > 5
Cl Zn (3.0 equiv)

© Et,0/DMA Ph
2 3
Entry Catalyst Conversion Yield E/Z ratio
1 [P'NDI]Ni2(CeHs) (1) >99% 94% 1:5
2 [""NDIINi-Cl, (4) 93% 87% 1:5
3 [-"'NDI] (5) + Ni(DME)CI; 96% 92% 1:5
4 [EINDI] (6) + Ni(DME)Cl, 71% 50% 1.2:1
5 [MeNDI] (7) + Ni(DME)CI, 14% <2% -
6 ["P"PDIINICI; (8) 30% <2% -
7 [P"IP]Ni(COD) (9) 16% <2% -
8 [BiPY]Ni(COD) (10) 10% <2% -
9 ["""DAD]Ni(COD) (11) <2% <2% -

Figure B.1. Catalyst comparison data for the methylenecyclopropanation of styrene.

General Procedure for Entries 1, 2, 6-9. In an No-filled glovebox, a 5-mL vial
was charged with a magnetic stir bar, the catalyst (5 mol%), and Zn powder (0.60 mmol).
A solution of N,N-dimethylacetamide (200 pL) and Et2O (500 pL) was added. A solution
containing styrene  (0.20 mmol), mesitylene (0.20 mmol), and 4-(2,2-
dichlorovinyl)tetrahydro-2H-pyran (0.21 mmol) in Et2O (1.1 mL) was added to the
catalyst/reductant mixture. The vial was sealed, and the reaction mixture was stirred at
room temperature. After 24 h, an aliquot of the reaction was removed, and the substrate
conversion, yield of 3, and the ratio of E/Z diastereomers were determined by *H NMR

analysis.
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General Procedure for Entries 3-5. In an N-filled glovebox, a 5-mL vial was
charged with a magnetic stir bar, the [NDI] ligand (5 mol%), Ni(DME)CI> (10 mol%), and
Zn powder (0.60 mmol). A solution of N,N-dimethylacetamide (200 L) and Et20O (500 L)
was added, and the mixture was stirred at room temperature for 5 min. A solution
containing styrene (0.20 mmol), mesitylene (0.20 mmol), and 4-(2,2-
dichlorovinyl)tetrahydro-2H-pyran (0.21 mmol) in Et2O (1.1 mL) was added to the
catalyst/reductant mixture. The vial was sealed, and the reaction mixture was stirred at
room temperature. After 24 h, an aliquot of the reaction was removed, and the substrate
conversion, yield of 3, and the ratio of E/Z diastereomers were determined by *H NMR

analysis.

B.4 Substrate Scope Studies and Methylenecyclopropane Characterization

["P"NDIINi»(CgHg) (1) R
Cl (5-10 mol%) <\
/ 3
R1/y . K\R > R3

Cl R? Zn (3.0 equiv)
/, 24 h R2
Et,0, DMA

General Procedure. In an No-filled glovebox, a 5-mL vial was charged with a
magnetic stir bar, the alkene, the 1,1-dichloroalkene, Zn powder (0.60 mmol, 3.0 equiv),
N,N-dimethylacetamide (200 pL), and Et;O (500 pL). A solution of ["""NDI]Ni2(CsHs)
(0.010 mmol, 5 mol%) in Et2O (1.1 mL) was added. The vial was sealed, and the reaction
mixture was stirred at room temperature. After 24 h, the reaction mixture was concentrated
under reduced pressure, and the crude residue was directly loaded onto a SiO2 column for
purification. Isolated yields were determined following purification.

For terminal alkene substrates, the E/Z diastereomers were inseparable unless
otherwise indicated. Yields, NMR spectroscopy data, and high-resolution mass
spectrometry data correspond to the mixture of diastereomers. E/Z ratios were determined
by *H NMR integration.

NOTE: The methylenecyclopropanes described below are sufficiently stable to

permit their purification by column chromatography without any special precautions to
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protect them from O». Following purification, they were immediately pumped into an No-
filled glovebox for long-term storage. Under air, these methylenecyclopropanes undergo
complete decomposition to intractable mixtures of products over the course of several

hours to days.

X
A X O O 1:3.1 (E/2)

(2-benzylidenecyclopropyl)benzene [201345-00-8] (12). V! The reaction was
conducted according to the general procedure without modification using (2,2-
dichlorovinyl)benzene (38 mg, 0.22 mmol, 1.1 equiv) and styrene (21 mg, 0.20 mmol, 1.0
equiv). The products were isolated as a white solid following column chromatography
(SiO2, hexanes).

Run 1: 36.3 mg (88% yield), Run 2: 35 mg (85% vyield) (E/Z = 1:3.1).

12-E/Z: *H NMR (500 MHz, CDCls3) § 7.66 (d, J = 5 Hz, 2H, 12-E), 7.54-7.37 (m,
2H, 12-E/Z), 7.37-7.27 (m, 4H, 12—E/Z), 7.27-7.16 (m, 4H, 12-E/Z), 7.03-6.99 (m, 1H,
12-7), 6.99-6.96 (m, 1H, 12-E), 2.97 (ddd, J = 9.2, 4.9, 2.1 Hz, 1H, 12-Z), 2.77 (ddd, J =
9.1, 4.9, 1.8 Hz, 1H, 12-E), 2.16 (td, J = 10, 5.0 Hz, 1H, 12-E), 1.90 (td, J = 9.1, 2.0 Hz,
1H, 12-Z), 1.61 (ddd, J = 9.4, 4.9, 2.5 Hz, 1H, 12-E), 1.33 (ddd, J = 9.0, 4.8, 2.0 Hz, 1H,
12-2).

12-E: BC{*H} NMR (125 MHz, CDCls) 6 142.2, 137.8, 128.7, 128.5, 127.3, 127.0,
126.6, 126.1, 119.5, 18.1, 16.1.

12-Z: BC{*H} NMR (125 MHz, CDCl3) § 141.3,137.4, 128.7, 128.6, 127.6, 127.2,
127.1,126.5, 126.1, 120.3, 21.6, 13.9.
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/\

OMe O AN
O \ O O 1:3.7 (E/2)

OMe
1-methoxy-4-((2-phenylcyclopropylidene)methyl)benzene (13). The reaction
was conducted according to the general procedure without modification using 1-(2,2-
dichlorovinyl)-4-methoxybenzene (45 mg, 0.22 mmol, 1.1 equiv) and styrene (21 mg, 0.20
mmol, 1.0 equiv). The products were isolated as a colorless oil following column
chromatography (SiO2, 1:4 CHzCl2/hexanes).

Run 1: 43.3 mg (92% yield), Run 2: 44.3 mg (94% yield) (E:Z = 1:3.7).

Scale-up Reaction: In an Na-filled glovebox, a 100-mg round bottom flask was
charged with a magnetic stir bar, 1-(2,2-dichlorovinyl)-4-methoxybenzene (1.12 ¢, 5.5
mmol, 1.1 equiv), styrene (521 mg, 5.0 mmol, 1.0 equiv), Zn powder (981 mg, 1.5 mmol,
3.0 equiv), N,N-dimethylacetamide (5 mL), and Et,O (35 mL). A solution of ["
P'NDI]Ni2(CsHs) (181 mg, 0.25 mmol, 5 mol%) in Et,O (5 mL) was added. The reaction
vessel was sealed with a septum, and the reaction mixture was stirred at room temperature.
After 24 h, the reaction flask was removed from the glovebox and opened to the ambient
atmosphere. The reaction mixture was washed with water (20 mL). The aqueous phase was
extracted with an additional portion of Et,O (50 mL). The combined organic phases were
dried over Na>SO4 and filtered. The filtrate was concentrated to dryness under reduced
pressure, and the crude product was purified by column chromatography (SiO., 1:4
CH:Cly/hexanes) to afford 1-methoxy-4-((2-phenylcyclopropylidene)methyl)benzene as a
colorless liquid (1.16 g, 98% yield, E/Z = 1:3.3).

13-E/Z: *H NMR (500 MHz, CDCl3) & 7.59-7.52 (m, 2H, 13-E), 7.37-7.31 (m,
2H, 13-2), 7.31-7.24 (m, 2H), 7.23-7.17 (m, 2H), 7.17-7.11 (m, 2H), 6.96-6.92 (m, 2H,
13-E), 6.92-6.87 (m, 1H), 6.84-6.77 (m, 2H, 13-Z), 3.85 (s, 3H, 13-E), 3.77 (s, 3H, 13-2),
2.90 (ddd, J =9.0, 4.6, 2.1 Hz, 1H, 13-Z), 2.71 (ddd, J = 8.9, 4.6, 1.7 Hz, 1H, 13-E), 2.09
(td, J=9.0, 2.4 Hz, 1H, 13-E), 1.85 (td, J = 8.9, 2.0 Hz, 1H, 13-Z), 1.53 (ddd, J = 9.2, 4.7,
2.5Hz, 1H, 13-E), 1.26 (ddd, J = 8.8, 4.7, 2.0 Hz, 1H, 13-2).

13-E: BC{*H} NMR (125 MHz, CDCl3) § 159.0, 142.5, 130.7, 128.5, 128.1, 126.6,
126.3, 126.0, 118.9, 114.1, 55.5, 18.1, 16.0.
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13-Z: BC{*H} NMR (125 MHz, CDCl3) § 158.8, 141.5, 130.4, 128.7, 128.3, 126.5,
126.0, 125.0, 119.6, 114.1, 55.3, 21.5, 14.0.
HRMS(ESI) (m/z): [M + H]" calcd for C17H160: 237.1280; found: 237.1272.

/\

e
O \ O O 1:4.3 (E/2)

CF;

1-((2-phenylcyclopropylidene)methyl)-4-(trifluoromethyl)benzene (14). The
reaction was conducted according to the general procedure using 1-(2,2-dichlorovinyl)-4-
(trifluoromethyl)benzene (53 mg, 0.22 mmol, 1.1 equiv) and styrene (21 mg, 0.20 mmol,
1.0 equiv). Modifications from the general procedure: 10 mol% instead of 5 mol% catalyst
loading. The products were isolated as a colorless oil following column chromatography
(SiO2, hexanes).

Run 1: 37.7 mg (69% yield), Run 2: 40 mg (73% yield) (E:Z = 1:4.3).

14-E/Z: *"H NMR (500 MHz, CDCls) § 7.73-7.60 (m, 4H, 14-E), 7.52-7.43 (m,
4H, 14-7), 7.28 (t, J = 10 Hz, 2H, 14-E/Z), 7.24-7.17 (m, 1H, 14-E/Z), 7.11 (d, J = 5 Hz,
2H, 14-E/Z), 7.0-6.97 (m, 1H, 14-Z), 6.97-6.94 (m, 1H, 14-E), 2.95 (ddd, J = 9.5,5.1, 2.1
Hz, 1H, 14-7),2.77 (ddd, J =9.3,5.2, 1.7 Hz, 1H, 14-E), 2.14 (td, J = 9.4, 2.4 Hz, 1H, 14-
E), 1.91 (td, J = 9.4, 2.0 Hz, 1H, 14-Z), 1.60 (ddd, J = 9.6, 5.2, 2.5 Hz, 1H, 14-E), 1.34
(ddd, J=9.4,5.1, 2.0 Hz, 1H, 14-Z).

14-E/Z: BC{*H} NMR (125 MHz, CDCl3) § 141.6, 140.7, 140.6, 131.2, 128.9,
128.8 (9, 2Jc-r =33 Hz, 14-Z), 128.6, 127.2, 127.1, 126.6, 126.4, 126.3, 125.6 (q, 3Jc r =
3.8 Hz, 14-2), 124.4 (q, Yc.r = 270 Hz, 14-7), 119.1, 118.5, 21.7 (14-Z), 18.2 (14-E),
15.9 (14-E), 13.9 (14-2).

14-E: F NMR (300 MHz, CDCl3) 5 —63.91.

14-Z: **F NMR (300 MHz, CDCls) 5 —63.97.

HRMS(APCI): [M + H]* calcd for C17H13Fs: 275.1048; found: 275.1034.
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/\

—~ ) O
\ ~ o 1:3.7 (E/2)

2-((2-phenylcyclopropylidene)methyl)benzofuran (15). The reaction was
conducted according to the general procedure without modification using 2-(2,2-
dichlorovinyl)benzofuran (47 mg, 0.22 mmol, 1.1 equiv) and styrene (21 mg, 0.20 mmol,
1.0 equiv). The products were isolated as a pale yellow oil following column
chromatography (SiO2, 5:1 CH2Cl2/hexanes).

Run 1: 27 mg (55% yield), Run 2: 25.1 mg (51% vyield) (E:Z = 1:3.7).

15-E/Z: 'H NMR (300 MHz, CDCl3) & 7.74-7.56 (m, 3H, 15-E), 7.55-7.42 (m,
3H, 15-2), 7.41-7.24 (m, 3H, 15-E/Z), 7.24-7.15 (m, 2H, 15-E/Z), 7.14-7.06 (m, 2H, 15-
E/Z), 7.01-6.96 (m, 1H, 15-Z), 6.96-6.93 (m, 1H, 15-E), 2.94 (ddd, J = 9.6, 5.2, 2.0 Hz,
1H, 15-7), 2.80-2.72 (m, 1H, 15-E), 2.14 (td, J = 9.5, 2.4 Hz, 1H, 15-E), 1.90 (td, J = 9.4,
2.0 Hz, 1H, 15-Z), 1.60 (ddd, J = 9.7, 5.1, 2.5 Hz, 1H, 15-E), 1.39-1.29 (m, 1H, 15-Z).

15-E/Z: BC{*H} NMR (125 MHz, CDCls) § 140.7, 140.6, 131.2, 128.9, 128.7,
128.6, 127.2, 127.1, 127.1, 126.8, 126.6, 126.4, 126.3, 125.6, 125.6, 119.1 (15-2), 118.5
(15-E), 21.7 (15-Z), 18.2 (15-E), 15.9 (15-E), 13.9 (15-2).

HRMS(APCI) (m/z): [M + H]" calcd for C1gH140: 247.1123; found: 247.11009.

1:2.6 (E/2)
S

S \ N
z
2-((2-phenylcyclopropylidene)methyl)thiophene (16). The reaction was
conducted according to the general procedure without modification using 2-(2,2-
dichlorovinyl)thiophene (39 mg, 0.22 mmol, 1.1 equiv) and styrene (21 mg, 0.20 mmol,

1.0 equiv). The products were isolated as a pale orange oil following column
chromatography (SiOz, 9:1 CH2Cl/hexanes).
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Run 1: 27 mg (64% yield), Run 2: 25 mg (59% vyield) (E:Z = 1:2.6).

16-E/Z: *H NMR (500 MHz, CDCls) & 7.39-7.30 (m, 3H, 16-E/Z), 7.30-7.23 (m,
2H, 16-E/Z), 7.23-7.16 (m, 2H, 16-E/Z), 7.16-7.08 (m, 1H, 16-E/Z), 7.06-6.97 (m, 1H,
16-E/Z), 2.94-2.84 (m, 1H, 16-E/Z), 2.07 (td, J = 9.2, 2.4 Hz, 1H, 16-E), 2.01 (td, J = 9.1,
1.9 Hz, 1H, 16-Z), 1.52 (ddd, J = 9.5, 4.9, 2.4 Hz, 1H, 16-E), 1.50-1.42 (m, 1H, 16-Z).

16-E/Z: BC{'*H} NMR (125 MHz, CDCls) & 143.3 (16-E), 142.7 (16-Z), 141.9 (16-
E), 140.8 (16-2), 128.6, 128.5, 127.3, 127.2, 127.1, 126.6, 126.4, 126.2, 126.1, 125.2,
125.1, 125.0, 124.7, 114.0 (16-Z), 113.8 (16-E), 21.5 (16-Z), 20.3 (16-E), 16.1 (16-E),
15.4 (16-2).

HRMS(ESI) (m/z): [M + H]" calcd for C14H12S: 213.0738; found: 213.0932.

W N 1:2.2 (E/2)

(2-(cyclopropylmethylene)cyclopropyl)benzene (17). The reaction was
conducted according to the general procedure without modification using (2,2-
dichlorovinyl)cyclopropane (30 mg, 0.22 mmol, 1.1 equiv) and styrene (21 mg, 0.20 mmol,
1.0 equiv). The products were isolated as a colorless oil following column chromatography
(SiO2, hexanes).

Run 1: 23 mg (68% yield), Run 2: 22.5 mg (66% yield) (E:Z = 1:2.2).

17-E/Z : *H NMR (500 MHz, CDCls): § 7.45-7.22 (m, 2H, 17-E/Z), 7.22—7.06 (m,
3H, 17-E/Z), 5.57-5.48 (m, 1H, 17-E/Z), 2.67 (ddd, J = 8.7, 4.5, 2.1 Hz, 1H, 17-Z), 2.56
(ddd, J=8.6,4.6,1.7 Hz, 1H, 17-E), 1.78 (td, J = 8.5, 2.4 Hz, 1H, 17-E), 1.71 (td, J = 8.4,
2.0 Hz, 1H, 17-Z), 1.68-1.60 (m, 1H, 17-E), 1.57-1.46 (m, 1H, 17-Z), 1.22 (ddd, J = 8.5,
4.5, 2.4 Hz, 1H, 17-E), 1.14 (ddd, J = 8.2, 4.5, 2.0 Hz, 1H, 17-Z), 0.84-0.75 (m, 2H, 17-
E), 0.74-0.64 (m, 2H, 17-Z), 0.58-0.49 (m, 2H, 17-E), 0.49-0.33 (m, 2H, 17-2).

17-E/Z : BC{*H} NMR (126 MHz, CDCls) § 142.9 (17-E), 142.7 (17-Z), 128.5
(17-Z), 128.4 (17-E), 126.5, 125.8 (17-E), 125.8 (17-Z), 123.9, 123.9, 123.6 (17-Z), 123.4
(17-E), 20.1 (17-2), 19.6 (17-E), 15.0 (17-2), 14.3 (17-E), 13.4 (17-2), 13.2 (17-E), 6.8,
6.7, 6.6.

HRMS(APCI) (m/z): [M + H]" calcd for C1sH14: 171.1174; found: 171.1162.
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A 1:5.6 (E/2)

(2-(cyclohexylmethylene)cyclopropyl)benzene (18). The reaction was conducted
according to the general procedure without modification using (2,2-
dichlorovinyl)cyclohexane (38 mg, 0.21 mmol, 1.05 equiv) and styrene (21 mg, 0.20 mmol,
1.0 equiv). The products were isolated as a pale yellow oil following column
chromatography (SiOz, hexanes).

Run 1: 40.2 mg (95% yield), Run 2: 40 mg (94% vyield) (E:Z = 1:5.6).

18-E/Z: 'H NMR (500 MHz, CDCl3) § 7.32-7.23 (dd, J = 9.1, 6.2 Hz, 2H, 18-E/Z),
7.21-7.08 (m, 3H, 18-E/Z), 5.94-84 (m, 1H, 18-E/Z), 2.61 (ddt, J = 8.0, 4.4, 1.6 Hz, 1H,
18-7), 2.52 (ddt, J = 8.1, 4.6, 1.5 Hz, 1H, 18-E), 2.34-2.24 (m, 1H, 18-E), 2.23-2.10 (m,
1H, 18-Z), 1.94-1.56 (m, 6H, 18-E/Z), 1.42-1.02 (m, 6H, 18-E/Z).

18-E: BC{*H} NMR (125 MHz, CDCl3) § 143.1, 128.4, 126.4, 125.7, 125.6, 124.1,
40.6, 33.2, 33.1, 26.4, 18.8, 14.9.

18-Z: BC{*H} NMR (125 MHz, CDCl3) § 143.2, 128.4, 126.2, 126.1, 125.6, 123.6,
40.8, 33.0, 32.8, 26.3, 26.2, 20.6, 14.7.

HRMS(EI) (m/z): M* calcd for C16H20: 212.1560; found: 212.1564.

N 1:4.8 (E/2)

4-((2-phenylcyclopropylidene)methyl)tetrahydro-2H-pyran (3). The reaction
was conducted according to the general procedure without modification using 4-(2,2-
dichlorovinyl)tetrahydro-2H-pyran (38 mg, 0.21 mmol, 1.05 equiv) and styrene (21 mg,
0.20 mmol, 1.0 equiv). The products were isolated as a pale yellow oil following column
chromatography (SiO., hexanes).

Run 1: 42 mg (98% vyield), Run 2: 40.1 mg (94% vyield) (E:Z = 1:4.8).
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3-E/Z: § 7.33-7.21 (m, 2H, 3-E/Z), 7.21-7.12 (m, 1H, 3-E/Z), 7.11-7.03 (m, 2H,
3-E/Z), 5.94-5.90 (m, 1H, 3-E), 5.90-5.84 (m, 1H, 3-Z), 4.08-3.96 (m, 2H, 3-E), 3.96—
3.81 (m, 2H, 3-2), 3.56-3.43 (m, 2H, 3-E), 3.42-3.27 (m, 2H, 3-2), 2.68-2.57 (m, 1H, 3-
Z), 2.56-2.48 (m, 1H, 3-E), 2.45-2.31 (m, 1H, 3-E/Z), 1.83-1.43 (m, 5H, 3-E/Z), 1.25-
1.20 (m, 1H, 3-E), 1.17-1.09 (m, 1H, 3-2).

3-E: BC{*H} NMR (125 MHz, CDCls) § 142.6, 128.4, 126.4, 125.9, 125.4, 123.7,
67.9, 37.7,32.8,32.7, 18.7, 14.7.

3-Z: BC{*H} NMR (125 MHz, CDCls) § 142.8, 128.5, 126.0, 125.8, 125.1, 124.0,
67.9, 37.9, 32.5, 32.5, 20.6, 14.6.

HRMS(ESI) (m/z): [M + H]" calcd for C15H180: 215.1436; found: 215.1432.

A 1:8.3 (E/2)

F3C

4-((2-(4-(trifluoromethyl)phenyl)cyclopropylidene)methyl)tetrahydro-2H-
pyran (19). The reaction was conducted according to the general procedure without
modification using 4-(2,2-dichlorovinyl)tetrahydro-2H-pyran (38 mg, 0.21 mmol, 1.05
equiv) and 1-(trifluoromethyl)-4-vinylbenzene (34 mg, 0.20 mmol, 1.0 equiv). The
products were isolated as a pale yellow oil following column chromatography (SiO., 4:1
CH:Clz/hexanes).

Run 1: 55.8 mg (99% yield), Run 2: 55.3 mg (98% yield) (E:Z = 1:8.3).

19-E/Z: *H NMR (300 MHz, CDCl3) 6 7.49 (d, J = 8.1 Hz, 2H, 19-E/Z), 7.16 (d, J
= 8.1 Hz, 2H, 19-E/Z), 6.08-5.79 (m, 1H, 19-E/Z), 4.10-3.99 (m, 2H, 19-E), 3.98-3.82
(m, 2H, 19-Z), 3.58-3.46 (m, 2H, 19-E), 3.46-3.22 (m, 2H, 19-Z), 2.78-2.63 (m, 1H, 19-
Z), 2.63-2.55 (m, 1H, 19-E), 2.49-2.25 (m, 1H, 19-E/Z), 2-1.40 (m, 5H, 19-E/Z), 1.28-
1.12 (m, 1H, 19-E/Z).

19-Z: BC{*H} NMR (125 MHz, CDCl3) & 147.3, 128.0 (q, 2Jcr = 33 Hz), 126.2,
1255 (q, 3Jcr = 3.8 Hz), 124.5, 124.5 (q, N r = 271 Hz), 124.3, 67.8, 37.9, 32.4, 32.4,
20.4,15.2.
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19-E: °F NMR (300 MHz, CDCls) § —63.82.
19-Z: F NMR (300 MHz, CDCls) 5 —63.78.
HRMS(ESI) (m/z): [M + H]" calcd for C16H17F30: 283.1310; found: 283.0003.

1:6.7 (E/2)
MeOzC

MeO,C

methyl 4-(2-((tetrahydro-2H-pyran-4-yl)methylene)cyclopropyl)benzoate
(20). The reaction was conducted according to the general procedure without modification
using 4-(2,2-dichlorovinyl)tetrahydro-2H-pyran (38 mg, 0.21 mmol, 1.05 equiv) and
methyl 4-vinylbenzoate (32 mg, 0.20 mmol, 1.0 equiv). The products were isolated as a
pale yellow oil following column chromatography (SiO2, 10:1 CH.CI,/EtOAC).

Run 1: 39.8 mg (73% yield), Run 2: 48 mg (88% vyield) (E:Z = 1:6.7).

20-E/Z: *H NMR (300 MHz, CDCl3) § 7.90 (d, J = 7.9 Hz, 2H, 20-E/Z), 7.11 (d, J
= 7.9 Hz, 2H, 20-E/Z), 5.97-5.82 (m, 1H, 20-E/Z), 4.09-3.78 (m, 2H, 20-E/Z), 3.91 (s,
3H, 20-E/Z), 3.57-3.44 (m, 2H, 20-E), 3.43-3.22 (m, 2H, 20-2), 2.74-2.62 (m, 1H, 20-2),
2.62-2.54 (m, 1H, 20-E), 2.45-2.27 (m, 1H, 20-E/Z), 1.98-1.39 (m, 5H, 20-E/Z), 1.37-
1.15 (m, 1H, 20-E/2).

20-Z: BC{*H} NMR (125 MHz, CDCl3) § 167.1, 148.7,129.9, 127.7, 125.8, 124.9,
124.3, 67.8, 52.0, 37.9, 32.4, 20.6, 15.1.

HRMS(ESI) (m/z): [M + H]" calcd for C17H2003: 273.1491; found: 273.1479.
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X 1:2.7 (E/2)

MeO
O

4-((2-(4-methoxyphenyl)cyclopropylidene)methyl)tetrahydro-2H-pyran (21).
The reaction was conducted according to the general procedure without modification using
4-(2,2-dichlorovinyl)tetrahydro-2H-pyran (38 mg, 0.21 mmol, 1.05 equiv) and 4-
vinylanisole (27 mg, 0.20 mmol, 1.0 equiv). The products were isolated as a pale yellow
oil following column chromatography (SiOz, 9:1 CH2CI2/EtOAC).

Run 1: 40 mg (82% yield), Run 2: 47 mg (96% yield) (E:Z = 1:2.7).

21-E/Z: *H NMR (300 MHz, CDCl3) 6 7.06 (d, J = 8.4 Hz, 2H, 21-E), 7.01 (d, J =
8.4 Hz, 2H, 21-7), 6.81 (d, J = 8.3 Hz, 2H, 21-E/Z), 5.98-5.80 (m, 1H, 21-E/Z), 4.12-3.99
(m, 2H, 21-E), 3.98-3.88 (m, 2H, 21-Z), 3.81 (s, 3H, 21-E/Z), 3.59-3.46 (m, 2H, 21-E),
3.46-3.28 (m, 2H, 21-Z), 2.73-2.57 (m, 1H, 21-Z), 2.57-2.49 (m, 1H, 21-E), 2.49-2.30
(m, 1H, 21-E/Z), 1.97-1.43 (m, 5H, 21-E/Z), 1.27-1.16 (m, 1H, 21-E), 1.16-1.04 (m, 1H,
21-2).

21-E: BC{*H} NMR (125 MHz, CDCl3) § 158.0, 134.4, 127.5, 125.5, 123.6, 113.9,
68.0, 55.4, 37.8, 32.8, 32.7, 17.9, 14.3.

21-Z: BC{*H} NMR (125 MHz, CDCl3) § 157.9, 134.7, 127.0, 125.3, 124.0, 114.0,
67.9,55.4, 37.9, 32.6, 32.5, 19.9, 14.2.

HRMS(ESI) (m/z): [M + H]" calcd for C16H2002: 245.1542; found: 245.1536.

X 1:8 (E/2)

NC

4-(2-((tetrahydro-2H-pyran-4-yl)methylene)cyclopropyl)benzonitrile (22).
The reaction was conducted according to the general procedure without modification using
4-(2,2-dichlorovinyl)tetrahydro-2H-pyran (38 mg, 0.21 mmol, 1.05 equiv) and 4-

vinylbenzonitrile (26 mg, 0.20 mmol, 1.0 equiv). The products were isolated as a pale
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yellow solid following column chromatography (SiO2, 10:1 CH>CIo/EtOAc). Single
crystals of 22-Z suitable for X-ray diffraction analysis were obtained from concentrated
MeOH solutions at room temperature.

Run 1: 35 mg (73% yield), Run 2: 35.8 mg (75% vyield) (E:Z = 1:8).

22-E/Z: *H NMR (500 MHz, CDCls) § 7.53 (d, J = 5 Hz, 2H, 22-E/Z), 7.19-7.10
(m, 2H, 22-E/Z), 5.95-5.85 (m, 1H, 22-E/Z), 4.04-3.95 (m, 2H, 22-E), 3.93-3.81 (m, 2H,
22-7), 3.53-3.41 (m, 2H, 22-E), 3.32 (qd, J = 11.5, 2.7 Hz, 2H, 22-Z), 2.62 (ddd, J = 8.2,
4.2,1.9 Hz, 1H, 22-2), 2.57-2.49 (m, 1H, 22-E), 2.31 (dq, J = 10.6, 5.6 Hz, 1H, 22-E/Z),
1.92-1.85 (m, 1H, 22-E), 1.80 (tt, J = 8.8, 1.8 Hz, 1H, 22-Z), 1.69-1.33 (m, 4H, 22-E/Z),
1.31-1.25 (m, 1H, 22-E), 1.20 (ddt, J = 8.4, 4.1, 1.8 Hz, 1H, 22-2).

22-Z: BC{*H} NMR (125 MHz, CDCl3)  149.1,132.4, 126.6, 124.7, 124.3, 119.2,
109.4, 67.7, 37.9, 32.3, 32.3, 20.7, 15.5.

HRMS(ESI) (m/z): [M + Na]" calcd for C16H17NO: 262.1208; found: 262.1205.

Me. O~ 1:5.7 (E/2)

Me O\B I,3

Me’ O' Me O

Me Mg’ o
Me

4,4.55-tetramethyl-2-(4-(2-((tetrahydro-2H-pyran-4-
yl)methylene)cyclopropyl)phenyl)-1,3,2-dioxaborolane (23). The reaction was
conducted according to the general procedure without modification using 4-(2,2-
dichlorovinyl)tetrahydro-2H-pyran (38 mg, 0.21 mmol, 1.05 equiv) and 4,4,55-
tetramethyl-2-(4-vinylphenyl)-1,3,2-dioxaborolane (46 mg, 0.20 mmol, 1.0 equiv). The
products were isolated as a pale yellow oil following column chromatography (SiO2, 9:1
CH.CIL/EtOAC).

Run 1: 51 mg (75% yield), Run 2: 54.4 mg (80% yield) (E:Z = 1:5.7).

23-E/Z: 'H NMR (300 MHz, CDCl3) § 7.70 (d, J = 7.6 Hz, 2H), 7.08 (d, J = 9 Hz,
2H), 5.95-5.80 (m, 1H), 4.07-3.98 (m, 2H, 23-E), 3.97-3.80 (m, 2H, 23-Z), 3.58-3.44 (m,
2H, 23-E), 3.44-3.25 (m, 2H, 23-Z), 2.72-2.58 (m, 1H, 23-Z), 2.60-2.52 (m, 1H, 23-E),
2.48-2.27 (m, 1H), 1.91-1.69 (m, 1H), 1.69-1.45 (m, 4H), 1.39 (s, 12H), 1.27-1.12 (m,
1H).
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23-E: BC{*H} NMR (125 MHz, CDCl3) § 146.2, 135.0, 125.7, 123.7, 83.7, 67.8,
37.7,32.8, 32.7, 25.0, 19.0, 14.9.

23-Z: BC{*H} NMR (125 MHz, CDCl3) § 146.4, 135.0, 125.4, 125.2, 124.0, 83.8,
67.8, 37.9, 32.4, 32.4, 25.0, 25.0, 20.8, 14.8.

HRMS(ESI) (m/z): M* calcd for C21H20BO3: 340.2325; found: 340.2315.

X 1:5.9 (E/2)
cl

Cl
(0)

4-((2-(4-chlorophenyl)cyclopropylidene)methyl)tetrahydro-2H-pyran  (24).
The reaction was conducted according to the general procedure without modification using
4-(2,2-dichlorovinyl)tetrahydro-2H-pyran (38 mg, 0.21 mmol, 1.05 equiv) and 4-
vinylbenzyl chloride (28 mg, 0.20 mmol, 1.0 equiv). The products were isolated as a
colorless oil following column chromatography (SiOz, 9:1 CH2Clz/hexanes).

Run 1: 40.7 mg (82% yield), Run 2: 41.6 mg (84% yield) (E:Z = 1:5.9).

24-E/Z: *H NMR (500 MHz, CDCl3) & 7.33-7.17 (m, 2H, 24-E/Z), 7.11-6.95 (m,
2H, 24-E/Z), 6.00-5.88 (m, 1H, 24-E/Z), 4.12-4.01 (m, 2H, 24-E), 4.01-3.82 (m, 2H, 24-
Z),3.59-3.48 (m, 2H, 24-E), 3.47-3.27 (m, 2H, 24-Z), 2.72-2.56 (m, 1H, 24-Z), 2.56-2.49
(m, 1H, 24-E), 2.49-2.28 (m, 1H, 24-E/Z), 1.90-1.42 (m, 5H, 24-E/Z), 1.28-1.20 (m, 1H,
24-E), 1.20-1.08 (m, 1H, 24-2).

24-E: BC{*H} NMR (125 MHz, CDCl3) § 141.1,131.5, 128.5, 127.7, 124.9, 124.1,
67.9, 37.7, 32.8, 32.6, 18.1, 14.8.

24-7: BC{*H} NMR (125 MHz, CDCl3) 5 141.5, 131.3, 128.6, 127.3, 124.8, 124.3,
67.8, 37.9, 32.4, 20.0, 14.7.

HRMS(EI) (m/z): M* calcd for C1sH17CIO: 248.0962; found: 248.0968.
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OMe
OMe (@)

X 1:3.6 (E/2)

4-((2-(2-methoxyphenyl)cyclopropylidene)methyl)tetrahydro-2H-pyran (25).
The reaction was conducted according to the general procedure without modification using
4-(2,2-dichlorovinyl)tetrahydro-2H-pyran (38 mg, 0.21 mmol, 1.05 equiv) and 2-
vinylanisole (27 mg, 0.20 mmol, 1.0 equiv). The products were isolated as a pale yellow
oil following column chromatography (SiOz, 9:1 CH2CIl2/EtOAC).

Run 1: 34.1 mg (70% yield), Run 2: 35.5 mg (73% yield) (E:Z = 1:3.6).

25-E/Z: *H NMR (500 MHz, CDCl3) § 7.21-7.12 (m, 1H, 25-E/Z), 6.93-6.79 (m,
3H, 25-E/Z), 5.95- (m, 1H, 25-E), 5.90-5.84 (m, 1H, 25-Z), 4.04-3.97 (m, 2H, 25-E),
3.96-3.82 (m, 2H, 25-Z), 3.89 (s, 3H, 25-Z), 3.88 (s, 3H, 25-E), 3.48 (tdd, J = 11.6, 2.4,
1.2 Hz, 2H, 25-E), 3.37 (tdd, J = 11.6, 5.6, 2.5 Hz, 2H, 25-Z), 3.03-2.92 (m, 1H, 25-Z),
2.80 (ddt, J=8.6, 5.1, 1.6 Hz, 1H, 25-E), 2.56-2.47 (m, 1H, 25-E), 2.47-2.33 (m, 1H, 25-
Z), 1.87-1.45 (m, 5H, 25-E/Z), 1.17-1.10 (m, 1H, 25-E), 1.09-1.01 (m, 1H, 25-2).

25-E: BC{*H} NMR (125 MHz, CDCl3) § 158.4, 130.4, 126.9, 125.9, 125.0, 123.7,
120.6, 110.3, 68.0, 55.6, 37.8, 32.9, 32.7, 13.6, 13.1.

25-Z: BC{*H} NMR (125 MHz, CDCl3) 5 157.9, 130.8, 126.7, 125.4, 124.9, 124.1,
120.8, 110.3, 67.9, 55.6, 37.9, 32.6, 32.5, 14.5, 13.8.

HRMS(ESI) (m/z): [M + H]" calcd for C16H2002: 245.1542; found: 245.1537.

/\
A ] A
O O X 1:4.7 (E/2)

(0)

4-((2-(naphthalen-2-yl)cyclopropylidene)methyl)tetrahydro-2H-pyran  (26).
The reaction was conducted according to the general procedure without modification using

4-(2,2-dichlorovinyl)tetrahydro-2H-pyran (38 mg, 0.21 mmol, 1.05 equiv) and 2-
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vinylnaphthalene (31 mg, 0.20 mmol, 1.0 equiv). The products were isolated as a white
solid following column chromatography (SiO2, 9:1 CH2Clz/hexanes).

Run 1: 52.3 (99% yield), Run 2: 50.8 mg (96% vyield) (E:Z = 1:4.7).

26-E/Z: *H NMR (300 MHz, CDCl3) § 7.89-7.70 (m, 3H, 26-E/Z), 7.61 (s, 1H, 26-
E), 7.59 (s, 1H, 26-2), 7.54-7.35 (m, 2H, 26-E/Z), 7.23 (d, J =9 Hz, 1H, 26-E), 7.18 (d, J
=7.18 Hz, 1H, 26-Z), 6.04-5.9 (m, 1H, 26-E/Z), 4.13-3.98 (m, 2H, 26-E), 3.98-3.80 (m,
2H, 26-Z), 3.61-3.45 (m, 2H, 26-E), 3.44-3.20 (m, 2H, 26-Z), 2.86-2.74 (m, 1H, 26-2),
2.74-2.67 (m, 1H, 26-E), 2.66-2.50 (m, 1H, 26-E), 2.50-2.28 (m, 1H, 26-Z), 1.96-1.42
(m, 5H, 26-E/Z), 1.39-1.31 (m, 1H, 26-E), 1.31-1.20 (m, 1H, 26-2).

26-Z: BC{*H} NMR (126 MHz, CDCl3) § 140.4, 133.7,132.2, 128.2, 127.8, 127.4,
126.2,125.2, 125.2, 124.5, 124.4, 124.3, 67.9, 38.0, 32.5, 32.5, 20.8, 14.6.

HRMS(ESI) (m/z): [M + H]" calcd for C19H200: 265.1593; found: 265.1591.

Q N
A | 1:2.6 (E/Z)
I TsN
TsN
0

3-(2-((tetrahydro-2H-pyran-4-yl)methylene)cyclopropyl)-1-tosyl-1H-indole
(27). The reaction was conducted according to the general procedure without modification
using 4-(2,2-dichlorovinyltetrahydro-2H-pyran (38 mg, 0.21 mmol, 1.05 equiv) and 1-
tosyl-3-vinyl-1H-indole (59 mg, 0.20 mmol, 1.0 equiv). The products were isolated as a
yellow-brown oil following column chromatography (SiOz, 9:1 CH2CIl2/EtOAC).

Run 1: 53 mg (65% yield), Run 2: 54.5 mg (67% yield) (E:Z = 1:2.6).

27-E/Z: *H NMR (300 MHz, CDCls) § 8.01-7.90 (m, 1H), 7.77-7.65 (m, 2H),
7.60-7.51 (m, 1H), 7.35-7.13 (m, 5H), 6.03-5.96 (m, 1H, 27-E), 5.96 — 5.88 (m, 1H, 27-
Z), 4.02 (dt, J = 11.2, 3.1 Hz, 2H, 27-E), 3.89 (ddt, J = 11.1, 6.6, 3.3 Hz, 2H, 27-Z), 3.51
(td, J = 11.5, 2.6 Hz, 2H, 27-E), 3.35 (dtd, J = 14.0, 11.0, 3.1 Hz, 2H, 27-Z), 2.67 (dd, J =
8.9, 4.6 Hz, 1H, 27-Z), 2.53 (dd, J = 9.5, 5.1 Hz, 1H, 27-E), 2.44 (m, 1H), 2.35 (s, 3H),
1.88-1.48 (m, 5H), 1.39-1.21 (m, 1H).

27-E/Z: B*C{*H} NMR (126 MHz, CDClz) & 144.9, 135.6, 135.5, 135.4, 135.3,
130.9, 130.5, 129.9, 126.8, 126.8, 124.9, 124.8, 124.6, 124.3, 124.2, 123.6, 123.2, 123.1,
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123.0,122.3,121.7,119.8, 120.0, 114.0, 113.8, 67.9 (27-E), 67.8 (27-2), 38.1 (27-2), 37.7
(27-E), 32.7 (27-E), 32.6 (27-E), 32.5 (27-2), 21.6, 12.7 (27-2), 12.4 (27-E), 11.6 (27-2),
9.6 (27-E).

HRMS(ESI) (m/z): [M + H]" calcd for C24H2sNO3S: 408.1634; found: 408.1629.

o) O XN
o) A </o 7.7:1(E/2)
d
0

4-((2-(1,3-dioxolan-2-yl)cyclopropylidene)methyl)tetrahydro-2H-pyran (28).
The reaction was conducted using 4-(2,2-dichlorovinyl)tetrahydro-2H-pyran (38 mg, 0.21
mmol, 1.05 equiv) and 2-vinyl-1,3-dioxolane (20 mg, 0.20 mmol, 1.0 equiv).
Modifications from the general procedure: 10 mol% instead of 5 mol% catalyst loading
and 48 h instead of 24 h reaction time. The products were isolated as a brown solid
following column chromatography (SiO2, 9:1 CH2Cl2/EtOAC). Single crystals of 28-E
suitable for X-ray diffraction analysis were obtained from concentrated CHCI3 solutions at
room temperature.

Run 1: 22.2 mg (53% yield), Run 2: 19.8 mg (47% yield) (E:Z =7.7:1).

28-E: 'H NMR (300 MHz, CDCl3) § 5.89 (dq, J = 6.3, 2.2 Hz, 1H), 4.42 (d, J = 6.4
Hz, 1H), 4.03-3.97 (m, 2H), 3.97-3.92 (m, 2H), 3.89-3.82 (m, 2H), 3.43 (td, J = 11.6, 2.4
Hz, 2H), 2.41 (ddddd, J = 15.0, 9.9, 5.6, 3.7, 1.8 Hz, 1H), 1.75-1.61 (m, 3H), 1.61-1.50
(m, 2H), 1.39 (tt, J = 8.7, 1.9 Hz, 1H), 1.17 (dddd, J = 8.8, 4.2, 2.4, 1.5 Hz, 1H).

28-E: B¥C{*H} NMR (126 MHz, CDCls) § 124.6, 119.8, 106.8, 67.9, 65.3, 65.1,
37.7,32.6, 32.6, 16.7, 6.6.

HRMS(ESI) (m/z): [M + H]" calcd for C12H1803: 211.1334; found: 211.1328.



111

X o 13:1 (E/2)

0

4-((2-(tetrahydro-2H-pyran-4-yl)cyclopropylidene)methyl)tetrahydro-2H-
pyran (29). The reaction was conducted using 4-(2,2-dichlorovinyl)tetrahydro-2H-pyran
(38 mg, 0.21 mmol, 1.05 equiv) and 4-vinyltetrahydro-2H-pyran (22 mg, 0.20 mmol, 1.0
equiv). Modifications from the general procedure: 48 h instead of 24 h reaction time. The
products were isolated as a brown oil following column chromatography (SiO2, 9:1
CH:CIL/EtOAC).

Run 1: 26.5 mg (60% yield), Run 2: 22.7 mg (51% yield) (E:Z = 13:1).

29-E: 'H NMR (500 MHz, CDCls) § 5.71 (dq, J = 6.3, 2.1 Hz, 1H), 3.93 (dtd, J =
10.5,5.7, 5.0, 2.2 Hz, 4H), 3.47-3.37 (m, 2H), 3.31 (td, J = 11.7, 2.4 Hz, 2H), 2.37 (tdd, J
=10.5, 6.7, 3.0 Hz, 1H), 1.66 (dtg, J = 11.1, 4.2, 2.2 Hz, 3H), 1.62-1.48 (m, 3H), 1.48—
1.34 (m, 2H), 1.26-1.14 (m, 2H), 1.08 (dpd, J = 14.8, 7.6, 7.0, 4.4 Hz, 1H), 0.87-0.74 (m,
1H).

29-E: 3C{*H} NMR (125 MHz, CDCl3) § 124.7, 122.0, 68.1, 68.1, 68.0, 38.7, 37.8,
32.9,32.8,32.2,32.2,19.6, 7.5.

HRMS(ESI) (m/z): [M + H]" calcd for C14H220,: 223.1698; found: 223.1695.

/\
/\ N
X 1:9.1 (E/2)
AcHN
AcHN

N-(4-(2-benzylidenecyclopropyl)phenyl)acetamide (30). The reaction was
conducted using (2,2-dichlorovinyl)benzene (38 mg, 0.22 mmol, 1.1 equiv) and N-(4-
vinylphenyl)acetamide (32 mg, 0.20 mmol, 1.0 equiv). Modifications from the general
procedure: 10 mol% instead of 5 mol% catalyst loading. The products were isolated as a

pale yellow solid following column chromatography (SiO2, 9:1 EtOAc/CH.CI). Single
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crystals suitable for X-ray diffraction analysis were obtained from concentrated MeCN
solutions at room temperature.

Run 1: 51.5 mg (98% yield), Run 2: 50.5 mg (96% yield) (E:Z = 1:9.1).

30-Z: 'H NMR (300 MHz, CDCl3) & 7.36 (dd, J = 7.6, 4.5 Hz, 4H), 7.23 (t, J = 7.1
Hz, 2H), 7.15 (dd, J = 8.9, 5.4 Hz, 2H), 7.07 (d, J = 8.2 Hz, 2H), 6.92 (s, 1H), 2.91 (dd, J
=10.0, 5.5 Hz, 1H), 2.22 (s, 3H), 1.87 (t, J = 9.0 Hz, 1H), 1.28 (dd, J = 12.5, 6.3 Hz, 1H).

30-Z: BC{*H} NMR (125 MHz, CDCl3) § 168.7, 137.3, 137.2, 136.1, 128.6, 127.6,
127.1, 127.0, 126.9, 120.5, 120.2, 24.5, 21.1, 13.8.

HRMS(ESI) (m/z): [M + Na]" calcd for C1gH17NO: 286.1208; found: 286.1196.

F3C

A -
X
O X O 1:4.0 (E/2)

1-(2-benzylidenecyclopropyl)-4-(trifluoromethyl)benzene (31). The reaction
was conducted using (2,2-dichlorovinyl)benzene (38 mg, 0.22 mmol, 1.1 equiv) and 1-
(trifluoromethyl)-4-vinylbenzene (35 mg, 0.20 mmol, 1.0 equiv). Modifications from the
general procedure: 10 mol% instead of 5 mol% catalyst loading. The products were isolated
as a colorless oil following column chromatography (SiO2, hexanes).

Run 1: 45 mg (82% yield), Run 2: 43.9 mg (80% vyield) (E:Z = 1:4.0).

31-E/Z: *H NMR (300 MHz, CDCls3) § 7.63 (d, J =9 Hz, 2H, 31-E), 7.54 (d, J=9
Hz, 2H, 31-Z), 7.44-7.32 (m, 2H, 31-E/Z), 7.31-7.13 (m, 5H, 31-E/Z), 7.05-6.98 (m, 1H,
31-7), 6.98-6.92 (m, 1H, 31-E), 3.10-2.93 (m, 1H, 31-Z), 2.86-2.78 (m, 1H, 31-E), 2.26
(td, J=9.5, 2.6 Hz, 1H, 31-E), 2.0 (td, J = 8.8, 1.9 Hz, 1H, 31-2), 1.72-1.63 (m, 1H, 31-
E), 1.48-1.22 (m, 1H, 31-2).

31-Z: ®C{*H} NMR (126 MHz, CDCls3) 5 145.6, 137.0, 128.7, 128.4 (q, 2Jc r = 33
Hz), 127.4,127.1, 126.7, 126.5, 125.7 (q, *Jc—r = 3.8 HZ), 124.5 (q, }Jcr = 272 Hz), 120.7,
21.4,14.4.

31-Z: F NMR (300 MHz, CDCl3) 5 —63.80.

HRMS(APCI) (m/z): [M + H]* calcd for Ci7H13F3: 275.1048; found: 275.1035.
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1-(2-benzylidenecyclopropyl)-4-methoxybenzene (32). The reaction was

/\
/\ N
X 1:2.8 (E/2)
MeO O

MeO

conducted according to the general procedure without modification using (2,2-
dichlorovinyl)benzene (38 mg, 0.22 mmol, 1.1 equiv) and 4-vinylanisole (27 mg, 0.20
mmol, 1.0 equiv). The products were isolated as a pale yellow oil following column
chromatography (SiO2, 2:3 CHzCl/hexanes).

Run 1: 37.8 mg (80% yield), Run 2: 36.7 mg (78% yield) (E:Z = 1:2.8).

32-E/Z: *H NMR (500 MHz, CDCl3) 6 7.64 (d, J = 8.1 Hz, 2H, 32-E), 7.45-7.41
(m, 2H, 32-2), 7.39 (d, J = 7.9 Hz, 2H, 32-E), 7.32-7.25 (m, 1H/2H, 32-E/Z), 7.23-7.17
(m, 1H, 32-2), 7.16 (d, J = 8.7 Hz, 2H, 32-E), 7.09 (d, J = 8.7 Hz, 2H, 32-Z), 6.96 (m,
1H, 32-E/Z), 6.89-6.82 (m, 2H, 32-E/Z), 3.81 (s, 3H, 32-E), 3.79 (s, 3H, 32-Z), 2.92
(ddd, J=9.1,4.9, 2.1 Hz, 1H, 32-Z), 2.71 (ddd, J = 9.0, 5.0, 1.8 Hz, 1H, 32-E), 2.09 (td,
J=9.2,2.4 Hz, 1H, 32-E), 1.83 (td, J = 9.0, 2.0 Hz, 1H, 32-Z), 1.51 (ddd, J = 9.3, 5.0,
2.5 Hz, 1H, 32-E), 1.23 (ddd, J = 8.9, 4.9, 2.0 Hz, 1H, 32-2).

32-E: BC{*H} NMR (125 MHz, CDCls) § 158.1, 137.9, 134.0, 129.0, 128.7,
127.7,127.2,127.0, 119.5, 114.0, 55.4, 17.3, 15.7.

32-Z: BC{*H} NMR (125 MHz, CDCl3) § 158.1 137.5, 133.1, 128.6, 128.0,
127.6, 127.2, 127.0, 120.3, 114.2, 55.3, 20.9, 13.6.

HRMS(ESI) (m/z): [M + H]" calcd for C17H160: 237.1280; found: 237.1277.

o]
O%

2-((3-oxabicyclo[3.1.0]hexan-6-ylidene)methyl)benzofuran (33). The reaction
was conducted using 2-(2,2-dichlorovinyl)benzofuran (43 mg, 0.20 mmol, 1.0 equiv) and
2,5-dihydrofuran (140 mg, 2.0 mmol, 10 equiv). Modifications from the general procedure:
10 mol% instead of 5 mol% catalyst loading. The product was isolated as a pale yellow
solid following column chromatography (SiO2, 3:2 CH2Cl2/hexanes).

Run 1: 30 mg (71% vyield), Run 2: 34.8 mg (82% yield).
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'H NMR (300 MHz, CDCl3) & 7.56-7.49 (m, 1H), 7.44 (dg, J = 8.2, 0.9 Hz, 1H),
7.30-7.15 (m, 2H), 6.76 (d, J = 1.5 Hz, 1H), 6.62 (s, 1H), 4.33 (d, J = 8.0 Hz, 1H), 4.17 (d,
J=8.1Hz, 1H), 4.02-3.85 (m, 2H), 2.53 (ddd, J = 7.2, 3.4, 1.8 Hz, 1H), 2.32 (ddd, J = 7.1,
3.2,1.1 Hz, 1H).

BC{'H}INMR (125 MHz, CDCl3) § 155.1, 155.0, 131.6, 129.2, 124.2, 122.8, 120.9,
111.1,110.3, 103.6, 71.82, 71.6, 23.2, 21.2.

HRMS(ESI) (m/z): calcd for C14H1302: 213.0916; found: 213.0912.

(0]

6-octylidene-3-oxabicyclo[3.1.0]hexane (34). The reaction was conducted using
1,1-dichloronon-1-ene (39 mg, 0.20 mmol, 1.0 equiv) and 2,5-dihydrofuran (140 mg, 2.0
mmol, 10 equiv). Modifications from the general procedure: 10 mol% instead of 5 mol%
catalyst loading. The product was isolated as a pale yellow oil following column
chromatography (SiO2, 3:2 CH2Cl/hexanes).

Run 1: 28 mg (72% yield), Run 2: 30 mg (77% yield).

'H NMR (300 MHz, CDCls3) § 5.82 (t, J = 6.5 Hz, 1H), 4.04 (t, J = 7.6 Hz, 2H),
3.80 (dt, J=6.8, 2.7 Hz, 2H), 2.27-2.05 (m, 4H), 1.56-1.24 (m, 13H), 1.01-0.87 (m, 3H).

BC{'H}NMR (125 MHz, CDCl3) 6 124.9, 121.3,71.3, 71.2, 32.0, 31.9, 29.9, 29.4,
29.4,22.8,21.0, 20.9, 14.3.

HRMS(APCI) (m/z): [M + H]" calcd for C13H220: 195.1749; found: 195.1735.

72
O
OMe

6-(4-methoxybenzylidene)-3-oxabicyclo[3.1.0]hexane (35). The reaction was
conducted using 1-(2,2-dichlorovinyl)-4-methoxybenzene (41 mg, 0.20 mmol, 1.0 equiv)
and 2,5-dihydrofuran (140 mg, 2.0 mmol, 10 equiv). Modifications from the general
procedure: 10 mol% instead of 5 mol% catalyst loading. The product was obtained as a

pale brown oil following column chromatography (SiO2, 3:2 EtOAc/CHCL).
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Run 1: 31 mg (77% yield), Run 2: 32.2 mg (80% vyield).

'H NMR (300 MHz, CDCls) § 7.40 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.6 Hz, 2H),
6.72 (s, 1H), 4.25(d, J = 7.8 Hz, 1H), 4.12 (d, J = 8.1 Hz, 1H), 3.91 (ddd, J = 15.3,8.2,3.4
Hz, 2H), 3.84 (s, 3H), 2.52-2.44 (m, 1H), 2.24 (dd, J = 7.1, 3.2 Hz, 1H).

BC{'H} NMR (125 MHz, CDCl3) § 158.9, 130.5, 128.0, 125.1, 120.2, 114.1, 71.4,

70.9, 55.4, 22.6, 19.7.
HRMS(ESI) (m/z): [M + H]" calcd for C13H140: 203.1072; found: 203.1066.

S,

Z »

2-(((bicyclo[3.1.0]hexan-6-ylidene)methyl)thiophene (36). The reaction was
conducted using 2-(2,2-dichlorovinyl)thiophene (36 mg, 0.20 mmol, 1.0 equiv) and
cyclopentene (136 mg, 2.0 mmol, 10 equiv). Modifications from the general procedure: 10
mol% instead of 5 mol% catalyst loading. The product was isolated as a pale brown oil
following column chromatography (SiO2, hexanes).

Run 1: 34.9 mg (99% yield), Run 2: 35 mg (99% yield).

'H NMR (300 MHz, CDCl3) § 6.97 (s, 1H), 6.92 (d, J = 4.5 Hz, 1H), 6.90-6.83 (m,
2H), 2.30 (dd, J =12.0, 7.2 Hz, 1H), 2.10-2.03 (m, 1H), 2.01-1.88 (m, 2H), 1.88-1.66 (m,
2H), 1.61-1.45 (m, 1H), 1.37-1.16 (m, 1H).

BC{'H} NMR (125 MHz, CDCl3) § 144.2, 133.2, 127.2, 124.0, 123.9, 114.0, 30.2,

29.1,22.8,21.7,21.3.
HRMS(ESI) (m/z): [M + H]" calcd for C11H12S: 177.0738; found: 177.0735.
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OMe

3-(4-methoxybenzylidene)tricyclo[3.2.1.02,4]octane [607020-85-8] (37).™ The
reaction was conducted using 1-(2,2-dichlorovinyl)-4-methoxybenzene (41 mg, 0.20
mmol, 1.0 equiv) and norbornene (75 mg, 0.80 mmol, 4 equiv). Modifications from the
general procedure: 10 mol% instead of 5 mol% catalyst loading, 60 °C instead of room
temperature. The product was isolated as a colorless oil following column chromatography
(SiO2, 1:5 CH2Clz/hexanes).

Run 1: 39.3 mg (87% yield), Run 2: 38 mg (84% yield).

'H NMR (500 MHz, CDCl3) § 7.44 (d, J = 10 Hz, 2H), 6.88 (d, J = 10 Hz, 2H),
6.60 (s, 1H), 3.82 (s, 3H), 2.62 (s, 1H), 2.50 (s, 1H), 1.65-1.53 (m, 3H), 1.52-1.43 (m, 2H),
1.34 (d, J = 10 Hz, 1H), 1.03 (d, J = 10 Hz, 1H), 0.82 (d, J = 10 Hz, 1H).

BC{'H} NMR (125 MHz, CDCl3) § 158.6, 131.3, 128.2, 127.6, 118.9, 114.0, 55.4,
38.5, 38.1, 31.0, 29.0, 28.8, 23.0, 19.5.

OMe

3-(4-methoxybenzylidene)tricyclo[3.2.1.02,4]oct-6-ene [1195789-82-2] (38). *
The reaction was conducted using 1-(2,2-dichlorovinyl)-4-methoxybenzene (41 mg, 0.20
mmol, 1.0 equiv) and norbornadiene (92 mg, 1 mmol, 5.0 equiv). Modifications from the
general procedure: 10 mol% instead of 5 mol% catalyst loading. The product was isolated
as a colorless oil following column chromatography (SiOz, 1:5 CH2Clz/hexanes).

Run 1: 23.7 mg (53% yield), Run 2: 24.1 mg (54% yield).

'H NMR (300 MHz, CDCl3) § 7.45 (d, J =9 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 6.51
(s, 1H), 6.43 (bs, 2H), 3.85 (s, 3H), 3.23 (s, 1H), 3.11 (s, 1H), 1.88 (d, J = 7.7 Hz, 1H),
1.66 (d, J=8.0 Hz, 1H), 1.19 (d, J = 8.3 Hz, 1H), 1.01 (d, J = 8.6 Hz, 1H).

BC{*H}NMR (125 MHz, CDCl3) § 158.7, 139.9, 139.4, 138.9, 131.0, 127.8, 116.7,
114.1,55.5,45.2,44.5, 42.7, 28.4, 25.1.
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OMe 0 ‘ AN
\ O O 1:1.4

OMe

U

3-(2-(2-(4-methoxybenzylidene)cyclopropyl)ethyl)cyclohex-2-en-1-one  (39).
The reaction was conducted according to the general procedure without modification using
3-(but-3-en-1-yl)cyclohex-2-en-1-one (30.0 mg, 0.20 mmol, 1.0 equiv) and (2,2-
dichlorovinyl)benzene (38.2 mg, 0.22 mmol, 1.10 equiv). The product was isolated as a
yellow oil following column chromatography (SiO2, 2:3 CH2Clz/hexanes).

38.0 mg, 67% yield (ratio of stereoisomer = 1:1.4).

39-E/Z: 'H NMR (500 MHz, CDCls3) § 7.45 (d, J = 8.8 Hz, 2H, 39-major), 7.35
(d, J=8.7 Hz, 2H, 39-minor), 6.87 (d, J = 8.8 Hz, 2H), 6.71 (g, J = 2.0 Hz, 1H, 39-major),
6.66 (q, J = 1.8 Hz, 1H, 39-minor), 5.93 (s, 1H, 39-major), 5.91 (s, 1H, 39-minor), 3.82
(s, 3H, 39-minor), 3.81 (s, 3H, 39-major), 2.41-2.27 (m, 6H), 2.21-2.12 (m, 1H, 39-
major), 2.04-1.95 (m, 2H), 1.76 (dddq, J = 11.0, 6.5, 4.4, 2.1 Hz, 1H, 39-minor), 1.72—
1.53 (m, 3H), 1.48 (dddd, J = 11.5, 8.7, 4.6, 1.7 Hz, 1H, 39-major), 1.36-1.24 (m, 1H),
1.07 (ddd, J = 8.9, 4.6, 2.3 Hz, 1H, 39-major), 0.84 (ddd, J = 8.7, 4.8, 1.9 Hz, 1H, 39-
minor).

39-E/Z: BC{*H} NMR (125 MHz, CDCl3) & 199.8, 165.9, 165.8, 158.7, 158.6,
130.8, 130.7, 127.8, 127.7, 126.5, 126.3, 126.0, 125.9, 118.7, 117.6, 114.0, 113.9, 55.3,
37.9,37.4,37.3,37.1,30.7, 29.8, 29.7, 29.5, 22.7, 16.3, 12.8, 10.7, 7.5.

HRMS(ESI) (m/z): [M + H]" calcd for C19H220: 283.1698; found: 283.1693.
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OMe X
Y\/A\Q/ Me 1:1.1

Me
OMe

1-methoxy-4-((2-(3-methylbut-3-en-1-yl)cyclopropylidene)methyl)benzene
(40). The reaction was conducted according to the general procedure without modification
using 2-methyl-1,5-hexadiene (19.2 mg, 0.20 mmol, 1.0 equiv) and (2,2-
dichlorovinyl)benzene (38.2 mg, 0.22 mmol, 1.10 equiv). The product was isolated as a
colorless oil following column chromatography (SiO2, 1:4 CH2Clz/hexanes).

43.5 mg, 95% vyield (ratio of stereoisomer = 1:1.1).

40-E/Z: *H NMR (500 MHz, CDCls3) § 7.47 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 8.8
Hz, 2H), 6.88 (dd, J = 8.9, 2.4 Hz, 2H), 6.72 (9, J = 2.0 Hz, 1H), 6.65 (g, J = 1.8 Hz, 1H),
4.77-4.70 (m, 2H), 3.82 (s, 3H), 3.81 (s, 3H), 2.24-2.15 (m, 2H), 2.16-2.08 (m, 1H), 1.81-
1.69 (m, 3H), 1.65-1.43 (m, 2H), 1.29 (tdd, J = 8.7, 2.1, 1.1 Hz, 1H), 1.22-1.12 (m, 1H),
1.09-1.02 (m, 1H), 0.83 (ddd, J = 8.6, 4.9, 1.9 Hz, 1H).

40-E/Z: BC{*H} NMR (125 MHz, CDCls) § 158.5, 145.7, 131.2, 131.0, 127.8,
127.6, 127.5, 118.1, 117.0, 113.9, 113.9, 110.0, 55.3, 37.6, 36.9, 31.5, 30.3, 22.6, 22.5,
16.7,13.1, 10.6, 7.5.

HRMS(ESI) (m/z): [M + H]" calcd for C16H200: 229.1593; found: 229.1590.

B.5 Reactions with Ethylene

General procedures for reactions with ethylene. In an Na-filled glovebox, a 25-
mL Schlenk tube was charged with a magnetic stir bar, the ["""NDI]Ni(CeHs) catalyst 1
(0.010 mmol, 0.050 equiv), Zn powder (0.60 mmol, 3.0 equiv), DMA (200 pL), and Et,O
(1.6 mL). The reaction mixture was frozen in the glovebox cold well at liquid N>
temperatures. The 1,1-dichloroalkene (0.20 mmol, 1.0 equiv) was added. The Schlenk tube
was sealed, removed from the glove box, and immediately placed in liquid N2. The Schlenk
tube was connected to a Schlenk line, the N2 atmosphere was evacuated, and the reaction

vessel was back-filled with ethylene (1 atm). The reaction was stirred at room temperature.
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After 24 h, the reaction mixture was concentrated under reduced pressure, and the crude
residue was directly loaded onto a SiO, column for purification. Isolated yields were

determined following purification.

o
MeQO

(E)-1-(buta-1,3-dien-1-yl)-4-methoxybenzene [32507-39-4] (41).X According to
the general procedure, ethylene was (1 atm) reacted with 1-(2,2-dichlorovinyl)-4-
methoxybenzene (41 mg, 0.2 mmol, 1.0 equiv). Isolated yields were determined by
following column chromatography (SiO2, 1:3 CH2Clz/hexanes).

Run 1: 78% yield, Run 2: 78% yield.

'H NMR (500 MHz, CDCls) & 7.35 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H),
6.68 (dd, J = 15.5, 10.5 Hz, 1H), 6.58-6.45 (m, 2H), 5.29 (d, J = 15.3 Hz, 1H), 5.13 (d, J
= 8.5 Hz, 1H), 3.82 (s, 3H).

BC{'H}NMR (125 MHz, CDCls) 8 159.4, 137.5,132.5,130.1, 127.8, 116.6, 114.2,
55.4.

NN
(0]

(E)-4-(buta-1,3-dien-1-yltetrahydro-2H-pyran  [1646529-61-4]  (42). X
According to the general procedure, ethylene was (1 atm) reacted with 4-(2,2-
dichlorovinyl)tetrahydro-2H-pyran (36 mg, 0.2 mmol, 1.0 equiv). Isolated yields were
determined by following column chromatography (SiO2, 19:1 CH2Cl/EtOAC hexanes).

Run 1: 76% yield, Run 2: 80% yield.

'H NMR (300 MHz, CDCls) & 6.64 (dt, J = 16.7, 10.5 Hz, 1H), 5.96 (t, J = 10.9 Hz,
1H), 5.42-5.04 (m, 3H), 4.11-3.87 (m, 2H), 3.47 (td, J = 11.5, 2.7 Hz, 2H), 2.86-2.64 (m,
1H), 1.73-1.41 (m, 4H).

13C{'H} (126 MHz, CDCl3) 6 136.7, 132.2, 128.5, 117.8, 67.6, 34.2, 32.9.
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(E)-undeca-1,3-diene [79309-74-3] (43).X"" According to the general procedure,
ethylene was (1 atm) reacted with 1,1-dichloronon-1-ene (39 mg, 0.2 mmol, 1.0 equiv).
Isolated yields were determined by following column chromatography (SiO2, hexanes).

Run 1: 74% yield, Run 2: 74% vyield (E:Z = 8.3:1).

43-E: 'H NMR (500 MHz, CDCls) § 6.71-6.57 (m, 1H), 6.04-5.94 (m, 1H), 5.46
(dt, J=10.9, 7.8 Hz, 1H), 5.18 (dd, J = 16.9, 2.0 Hz, 1H), 5.08 (dd, J = 10.2, 2.1 Hz, 1H),
2.19 (qd, J = 7.5, 1.6 Hz, 2H), 1.35 — 1.12 (m, 10H), 0.89 (t, J = 6.8 Hz, 3H).

43-E: BC{*H} (125 MHz, CDCls3) § 133.2, 132.5, 129.3, 116.8, 32.0, 29.8, 29.4,
29.4,27.9, 22.8, 14.3.

B.6  Assignment of E/Z Sterechemistry in Methylenecyclopropane Products

The assignments of alkene stereochemistry in products 3 and 12-32 were made
using a combination of X-ray crystallography, *H NMR analysis, and NOE analysis. Each

of the product classes are discussed separately below.

R1
V4 E
R =aryl
Product Class: Products 12-16, 30-32
RZ = aryl

For these methylenecyclopropanes, the Z-stereocisomer is the major product.

The *H NMR signals for the E and Z stereoisomers of 12 (aryl = phenyl) were
previously assigned in the literature"V and are consistent with our data.

Single crystals were obtained for a representative member of the class, compound
30, which affords high diastereoselectivity. The XRD structure shows Z-stereochemistry,

and the *H NMR spectrum was obtained for the pure major diastereomer.
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NOE data were obtained for a representative member of the class, compound 31,
which has sufficiently resolved *H NMR signals to permit the detection of key exchange
interactions (Figure S2).

All other members of this class were assigned by comparison of the *H NMR
spectra. The most reliable signal for stereochemical assignment is the cyclopropyl methine
proton. The *Jun coupling constant is larger for the Z-isomer than for the E-isomer.

Examples:
H H = H z u
Ph H Ph H
12-Z 12-E 32-7 32-Z
WL% M o
3‘00 1 (ppm) 2"95 zjso f1 (ppm) 2j75 2j95 f1 (PD|121;90 2j75 f1 (D%TIZT())
ddd,J=9.2, ddd,J=9.1,49,18 ddd,J=9.1,49, 21Hz ddd,J=9.0,5.0,1.8
49,2.1Hz Hz Hz
Product Class: R" = branched alky! (eg. THP) Products 3, 17-27

R? =aryl

For these methylenecyclopropanes, the Z-stereoisomer is the major product.

Single crystals were obtained for a representative member of the class, compound
22, which affords high diastereoselectivity. The XRD structure shows Z-stereochemistry.

NOE data were obtained for representative members of the class, compounds 20
and 26, which has sufficiently resolved 'H NMR signals to permit the detection of key
exchange interactions (Figures S3 and S4).

All other members of this class were assigned by comparison of the *H NMR

spectra. For THP-containing products, the most reliable signals for stereochemical
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assignment are the protons adjacent to the THP oxygen, which show distinct splitting
patterns for the E and Z stereoisomers.

The related products 17 and 18 were assigned by analogy.

Examples:
7 =z
CN
H 0 H H o H
H H H H
3 22 97
3-Z
22.7 27-Z
27-Z
3.z 22-Z
27-E
3-E 27-E
3-E -
29.E 22-E
LI LI LI LI LI LI T T T T T . . . . . . . . . . ; ; ; ; ; ; . ; . ; . ; .
41 40 39 38 3fl7(pg§r?) 35 34 33 32 41 40 39 38 37 36 35 34 33 32 42 4.0 3.8 3.6 34 3.2
f1 (ppm) f1 (ppm)

Ph
HI/A( Mph
H 7
H
H
17-Z 7-E

N 1_

T T T T T T T T
270  2.68 2.66 2.64 2.58 256 254 2.5
f1 (ppm) f1 (ppm)

ddd,J=8.7,45,2.1 ddd,J=8.6,4.6,1.7
Hz Hz
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R! = branched alkyl
Product Class:  (eg. THP) Products 28 and 29
R? = branched alkyl

For these methylenecyclopropanes, the E-stereoisomer is the major product.

Single crystals were obtained for a representative member of the class, compound
28, which affords high diastereoselectivity. The XRD structure shows E-stereochemistry,
and the *H NMR spectrum was obtained for the pure major diastereomer.

NOE data were obtained for a representative member of the class, compound 28,
which has sufficiently resolved *H NMR signals to permit the detection of key exchange
interactions (Figure S4).

The related product 29 was assigned by analogy.

Product Class: R =aryl Products 39 and 40
R? = linear alkyl

These methylenecyclopropanes are formed in a near 1:1 mixture of E- and Z-
stereoisomers. The *H NMR resonances that correspond to each stereoisomer are left
unassigned.
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Figure B.2. NOE data for 31 highlighting exchange interactions relevant to the
assignment of the alkene stereochemistry. The irradiated proton is shown in red (negative
phase), and an asterisk is placed next to the exchange interaction indicated by the double-

headed arrow.
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Figure B.3. NOE data for 20 highlighting exchange interactions relevant to the
assignment of the alkene stereochemistry. The irradiated proton is shown in red (negative
phase), and an asterisk is placed next to the exchange interaction indicated by the double-

headed arrow.
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Figure B.4. NOE data for 26 highlighting exchange interactions relevant to the
assignment of the alkene stereochemistry. The irradiated proton is shown in red (negative

phase), and an asterisk is placed next to the exchange interaction indicated by the double-
headed arrow.
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Figure B.5. NOE data for 28 highlighting exchange interactions relevant to the
assignment of the alkene stereochemistry. The irradiated proton is shown in red (negative
phase), and an asterisk is placed next to the exchange interaction indicated by the double-

headed arrow.
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B.7 Mechanistic Studies

j-Pr, i-Pr,

o Me — Me
/
— C|\N
7KL~
N| N /NI
Me: \/NI Y\Ph + —> Me \N/Ni\l i-Pr + 7
OMe i Ph
OMe

j-Pr -Pr. Cl
i-Pr
. ) ) 67% Yield
(2.0 equiv) (1.0 equiv) (1.0 equiv) (E/Z=1:2.4)

Stoichiometric methylenecyclopropanation in the absence of Zn. In an No-filled
glovebox, the ["""NDI]Ni2Cl complex 44 (20.6 mg, 0.030 mmol, 2.0 equiv) was dissolved
Et,O (0.6 mL), generating a dark purple solution. A solution of (2,2-dichlorovinyl)benzene
(2.6 mg, 0.015 mmol, 1.0 equiv) and 1-methoxy-4-vinylbenzene (2.0 mg, 0.015 mmol, 1.0
equiv) dissolved in DMA (0.20 mL) and ether (1.0 mL) was added. The reaction mixture
was stirred at room temperature, resulting in a color change to dark green. After 1 h, the
reaction vessel was removed from the glovebox, opened to atmosphere, and concentrated
under reduced pressure. Mesitylene (4.3 mg, 5.0 pL) was added as a *H NMR integration
standard, and an aliquot of this solution was filtered through a short plug of SiO., eluting

with CDCls (approx. 1.5 mL). The product mixture was analyzed by *H NMR spectroscopy.
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Figure B.6. 'H NMR detection of the ["""NDI]Ni2Cl. complex 4 from the stoichiometric
methylenecyclopropanation (top, black). A comparison *H NMR spectrum for isolated 4
(bottom, red).

["P'NDIINi(CgHsg) D C'3/.77':1 D 1.9:1
Cl 5 mol% ) is/frans Cis/Trans
\|/\Ph . (\Ar ( o) -
Ll +
cl D Zn (3.0 equiv) = Ar PhF Ar
Ar = p-MeOPh- Cis/Trans = 20/1 Et,O/DMA Ph ZIE=2.311
Yield = 80%

Stereoselectivity Under Catalytic Conditions. In an No-filled glovebox, a 5-mL
vial was charged with a magnetic stir bar, (Z)-1-methoxy-4-(vinyl-2-d)benzene (28 mg,
0.20 mmol, 1.0 equiv), (2,2-dichlorovinyl)benzene (38 mg, 0.22 mmol, 1.1 equiv), Zn
powder (0.6 mmol, 3 equiv), DMA (200 pL), and Et,O (500 pL). A solution of [*
P'NDI]Ni2(CsHs) (0.01 mmol, 0.05 equiv) in Et20 (1.1 mL) was added. The vial was sealed,
and the reaction mixture was stirred at room temperature. After 24 h, the reaction mixture
was concentrated under reduced pressure, and the crude residue was directly loaded onto a
SiO2 column for purification (4:1 hexane/CH2Clz). Isolated yields and ratios of

stereoisomers were determined following purification.
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Figure B.7. 'H NMR data for the mixture of stereoisomers of 32 formed using (2)-1-
methoxy-4-(vinyl-2-d)benzene.

[“P'NDIINi»(CeHg) 1:4.0 1:2.1
cl ~on o (5 mol%) Cis/Trans A) Cis/Trans
Y\ . \/\Ar ’ .
Cl Zn (3.0 equiv)
Ar = o-MeOPh ) Et,O/DMA
r=p-ve - Cis/Trans < 1/20 24 h ZIE = 2.011
Yield = 54%

Stereoselectivity Under Catalytic Conditions. In an N-filled glovebox, a 5-mL
vial was charged with a magnetic stir bar, (E)-1-methoxy-4-(vinyl-2-d)benzene (28 mg,
0.20 mmol, 1.0 equiv), (2,2-dichlorovinyl)benzene (38 mg, 0.22 mmol, 1.1 equiv), Zn
powder (0.6 mmol, 3 equiv), DMA (200 pL), and Et,O (500 pL). A solution of [*
P'NDI]Ni2(CsHs) (0.01 mmol, 0.05 equiv) in Et20 (1.1 mL) was added. The vial was sealed,
and the reaction mixture was stirred at room temperature. After 24 h, the reaction mixture
was concentrated under reduced pressure, and the crude residue was directly loaded onto a
SiO2 column for purification (4:1 hexane/CH2Cl2). Isolated yields and ratios of

stereoisomers were determined following purification.
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Figure B.8. 'H NMR data for the mixture of stereoisomers of 32 formed using (E)-1-
methoxy-4-(vinyl-2-d)benzene.

["P™NDI]Ni(CgHg) 1:4.4 1:2.4

D
. D
Cl = (5 mol%) A) Cls/Trans Cis/Trans
Y\Ph . D\/\Ar > .
cl Zn (3.0 equiv) = Ar Ph A Ar
h

Et,O/DMA P

20 min ZIE= 2.8
Yield = 31%

Starting Material Stereochemistry at Partial Conversions. The procedure above

Ar = p-MeOPh- Cis/Trans < 1/20

was repeated, stopping the reaction after 20 min in order to examine the stereochemistry
of the recovered starting material. (E)-1-Methoxy-4-(vinyl-2-d)benzene was recovered in

60% yield with no erosion of stereochemistry.

P X Cl catalyst 1 (5 mol%)
/\r + /\Ph > Ph\/A\Ph * = Ph

Cl Zn (3.0 equiv)
Et,O/DMA Ph
12-E 12-2

Product E/Z ratio monitored as a function of conversion
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Dependence of product E/Z ratio on conversion. In order to test for a catalyst-
promoted E/Z isomerization of the product or a selective ring-opening of one product
isomer, the E/Z ratio for product 12 was monitored as a function of conversion.

The reaction was conducted according to the general procedure without
modification using (2,2-dichlorovinyl)benzene (38 mg, 0.22 mmol, 1.1 equiv) and styrene
(21 mg, 0.20 mmol, 1.0 equiv).

Reaction Time: 30 min, 55% conversion of styrene. E/Z = 1:3.3

Reaction Time: 2 h, 75% conversion of styrene. E/Z = 1:3.1

Reaction Time: 24 h, 93% conversion of styrene. E/Z =1:3.1

Ve = Ph
e
N catalyst4 (5mol%) — pocovered Starting Material
] ' E/Z Ratio
= Ph Zn (3.0 equiv)
Et,O/DMA
OMe
13-E 13-Z

Resubjecting Product 13-E/Z to the Standard Catalytic Conditions. In order to
probe the stability of the product under the reaction conditions, the isolated product 13-
E/Z was resubjected to the standard reaction conditions.

In an No-filled glovebox, a 5-mL vial was charged with a magnetic stir bar, 1-
methoxy-4-((2-phenylcyclopropylidene)methyl)benzene (13-E/Z, 47.2 mg, 0.2 mmol, E/Z
= 1:3.3, 1.0 equiv), Zn powder (40 mg, 0.60 mmol, 3.0 equiv), N,N-dimethylacetamide
(200 pL), and Et2O (500 pL). A solution of ["P"NDI]Ni2Cl2 (7.2 mg, 0.010 mmol, 5 mol%)
in Et2O (1.1 mL) was added. The vial was sealed, and the reaction mixture was stirred at
room temperature for 24 h. After 24 h, the vial was taken out from the glovebox and the
reaction mixture was concentrated under reduced pressure. The crude material was purified
by column chromatography (SiO2, 1:4 CH.Cly/hexanes) to afford 1-methoxy-4-((2-
phenylcyclopropylidene)methyl)benzene (43 mg, 91% recovery) with E/Z = 1:5.0.
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Tandem methylenecyclopropanation—isomerization reactions: detection of the
methylenecyclopropane intermediate. In an N»-filled glovebox, a 25-mL Schlenk tube
was charged with a magnetic stir bar, the ["P"NDI]Ni2(CsHs) catalyst 1 (0.010 mmol, 0.050
equiv), Zn powder (0.60 mmol, 3.0 equiv), DMA (200 pL), and Et2O (1.6 mL). The
reaction mixture was frozen in the glovebox cold well at liquid N2 temperatures. 4-(2,2-
Dichlorovinyl)tetrahydro-2H-pyran (36 mg, 0.2 mmol, 1.0 equiv) was added. The Schlenk
tube was sealed, removed from the glove box, and immediately placed in liquid N2. The
Schlenk tube was connected to a Schlenk line, the N2 atmosphere was evacuated, and the
reaction vessel was back-filled with ethylene (1 atm). The reaction was stirred at room
temperature. After 40 min, the reaction mixture was concentrated under reduced pressure,
and the crude residue was directly loaded onto a SiO> column for purification. Following
column chromatography, a mixture of the 1,3-diene 42 and methylenecyclopropane was
characterized by *H NMR spectroscopy.
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Figure B.9. 'H NMR spectrum for the mixture containing the 1,3-diene (red circles) and
methylenecyclopropane (blue squares) products.
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B.8  Characterization of Complex 47

i-Pr i-Pr,

= — 7Ny
NI G Brji\ e
N Ni THF N Ni
Me—& N7 By P PR —_— WM NN P
e \— i Sy i-Pr + . e NI P
) B B rt, 10 min
i-Pr. \ r
i-Pr

In an No-filled glovebox, the ("P"NDI)Ni2(CsHs) complex 1 (44 mg, 0.060 mmol,
1.0 equiv) was dissolved in THF (1.0 mL) to generate a dark brown solution. A solution
of (Z)-(2-bromovinyl)benzene (0.60 mL, 0.10 M) in THF was added, resulting in a color
change to purple then indigo. After stirring for 10 min, the reaction mixture was
concentrated to approx. 0.50 mL under reduced pressure then filtered through a glass fiber
pad to remove any insoluble impurities. Complex 47 was obtained as a brown-green
crystalline solid (13.7 mg, 27 % yield) from the filtrate by slow diffusion of pentane vapor
at —30 °C over 16 h. Single crystals obtained by this procedure were suitable for XRD
analysis.

'H NMR (300 MHz, THF-dg) & 34.36, 32.67, 13.76, 11.71, 8.35, 7.06, 5.21, 4.99,
3.26,2.89, 2.55, 2.11, 1.82.

UV-Vis (THF, nm {M cm}):268 {33,000}, 353 {sh}, 471 {sh}, 585 {sh}, 631
{sh}, 796 {sh}.

Hetf = 1.83 pg (Evans method, 295 K, CgHe).

Anal. Calcd. for 47 (CasHs1BrNsNi,): C 63.43, H 6.17, N 6.72; found: C 63.72, H

6.23, N 6.60.
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Figure B.10. 'H NMR spectrum (THF-ds, room temperature) for 47.
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Figure B.11. UV-Vis-NIR spectrum for 47 in THF (0.040 mM) at room temperature.
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Figure B.13. 'H VT-NMR spectra for 47 over a temperature range of 203—-303 K.
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Figure B.14. Selected *H NMR peaks for 47 are plotted as a function of temperature (red
points), and each set of points was fit (black lines) to the Boltzmann function for a spin-

Curve

crossover system according to the equation shown below.

b

chemical shift = a +

a = chemical shift for the diamagnetic state
b = fitting constant

[4 d
T+(1+ e(8.314*T_8.314))

¢ = enthalpy of spin-crossover event in units of J/mol

d = entropy of spin-crossover event in units of J/mol-K

Adj. R? a b

0.99951 1.01654 14639.03
0.99948 5.8751 14498.62
0.99936 7.23334 2513.489
0.9995 7.00212 3434.173
0.99931 1274163  -42194.5

AH = 12,600 J/mol, AS =46 + 1 J/mol-K

c

13298.72

12288.66

12179.55

12619.98

12735.01

d

49.72218
4422822
42.04741
45.06768

46.58308
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Crystal data

Chemical formula C18H17NO
M 263.32
Crystal system, space group Triclinic, P1
Temperature (K) 150

a, b, c(A) 9.4236 (8), 11.2688 (10), 14.0432 (12)
o B,y (°) 77.633 (5), 82.697 (5), 79.523 (6)

V (A% 1426.3 (2)

yA 4

Radiation type Cu Ka

[ (mm?) 0.59

Crystal size (mm)

0.30 x 0.21 x 0.02

Data collection

Diffractometer

Bruker  AXS D8  Quest CMOS

diffractometer

Absorption correction

Multi-scan

SADABS 2016/2: Krause, L., Herbst-Irmer,
R., Sheldrick G.M. & Stalke D., J. Appl.
Cryst. 48 (2015) 3-10

Tmin, Tmax 0.540, 0.754

No. of measured, independent and|14713, 5735, 4670
observed [1 > 2(](1)] reflections

Rint 0.047

(sin 0/0)max (A1) 0.639
Refinement

R[FZ > 200(F9)], wR(F?), S

10.048, 0.130, 1.05
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No. of reflections 5735
No. of parameters 369
No. of restraints 2

H-atom treatment

H atoms treated by a mixture of independent
and constrained refinement

0 Pmax;, 00 Pmin (e A—B)

0.22,-0.18

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016),
SHELXS97 (Sheldrick, 2008), SHELXL2016/6 (Sheldrick, 2015, 2016), SHELXLE

Rev714 (Hubschle et al., 2011).
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Crystal data

Chemical formula C12H1803

M 210.26

Crystal system, space group Monoclinic, P21/n

Temperature (K) 100

a, b, ¢ (A) 10.9372 (3), 4.3348 (1), 22.8813 (7)
b (°) 94.6511 (10)

V (A% 1081.24 (5)

Z 4

Radiation type Cu Ka

u (mm) 0.74

Crystal size (mm)

0.54 x 0.32 x 0.10

Data collection

Diffractometer Bruker AXS D8 Quest CMOS
diffractometer
Absorption correction Multi-scan

SADABS 2016/2: Krause, L., Herbst-
Irmer, R., Sheldrick G.M. & Stalke D.,
J. Appl. Cryst. 48 (2015) 3-10

Tmin, Tmax 0.550, 0.754

No. of  measured, independent  and|11358, 2291, 2156
observed [1 > 2s(1)] reflections

Rint 0.050

(sin g/Dmax (AY) 0.639

Refinement

R[FZ > 25(FA)], wR(F?), S

0.036, 0.091, 1.05

No. of reflections

2291

No. of parameters

136

H-atom treatment

H-atom parameters constrained

Apmax,Apmin (€ A®)

0.32,-0.18

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016),
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SHELXS97 (Sheldrick, 2008), SHELXL2016/6 (Sheldrick, 2015, 2016), SHELXLE
Rev714 (Hubschle et al., 2011).
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Crystal data

Chemical formula Ci6H17NO

M 239.30

Crystal system, space group Monoclinic, P21/c

Temperature (K) 150

a, b, c(A) 7.3009 (7), 6.1456 (5), 28.818 (2)
(%) 93.188 (5)

V (A% 1291.02 (19)

z 4

Radiation type Cu K[

0 (mm™) 0.60

Crystal size (mm)

0.11 x 0.09 x 0.03

Data collection

Diffractometer Bruker AXS D8 Quest CMOS
diffractometer

Absorption correction Multi-scan
TWINABS 2012/1: Krause, L., Herbst-

Irmer, R., Sheldrick G.M. & Stalke D., J.
Appl. Cryst. 48 (2015) 3-10

Tmin, Tmax

0.481, 0.754

No. of measured, independent
observed [1 > 2(](1)] reflections

and

8625, 3402, 3002

Rint

0.073

(sin 0 D)max (A1)

0.638

Refinement

R[FZ> 20(FA], wR(F?), S

0.065, 0.168, 1.12

No. of reflections 3402

No. of parameters 164

H-atom treatment H-atom parameters constrained
Apmax, Apmin (& A7) 0.26, -0.22

Computer programs: Apex3 v2016.9-0 (Bruker, 2016), SAINT V8.37A (Bruker, 2016),
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SHELXS97 (Sheldrick, 2008), SHELXL2016/6 (Sheldrick, 2015, 2016), SHELXLE
Rev714 (Hubschle et al., 2011).

The crystal under investigation was found to be non-merohedrally twinned. The orientation
matrices for the two components were identified using the program Cell_Now, with the
two components being related by a 180 degree rotation around the reciprocal c-axis. The
two components were integrated using Saint and corrected for absorption using twinabs,

resulting in the following statistics:

1328 data (699 unique) involve domain 1 only, mean I/sigma 21.0
1331 data (696 unique) involve domain 2 only, mean I/sigma 23.5
6067 data (2217 unigue) involve 2 domains, mean I/sigma 35.8

3 data (3 unique) involve 3 domains, mean I/sigma 93.3

The exact twin matrix identified by the integration program was found to be

-1.00012 0.00016 -0.00054

-0.00014 -1.00000 -0.00012

0.43061 -0.00268 1.00012

The structure was solved using direct methods with only the non-overlapping reflections
of component 1. The structure was refined using the hklf 5 routine with all reflections of

component 1 (including the overlapping ones), resulting in a BASF value of 0.526(2).

The Rint value given is for all reflections and is based on agreement between observed
single and composite intensities and those calculated from refined unigue intensities and
twin fractions (TWINABS (Sheldrick, 2012)).
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Crystal data

Chemical formula

CasHs51BrNsNi2-1.264(CsHg0)-0.368(CsH12)

M

950.86

Crystal system, space group

Monoclinic, P2i/c

Temperature (K)

100

a, b, ¢ (A) 19.3774 (7), 15.9602 (6), 15.4736 (6)
B (°) 101.395 (3)

V (A% 4691.2 (3)

Z 4

Radiation type Cu Ka

u (mm) 2.30

Crystal size (mm)

0.21 x0.18 x 0.04

Data collection

Diffractometer Rigaku Rapid Il curved image plate
diffractometer
Absorption correction Multi-scan

SCALEPACK (Otwinowski & Minor, 1997)

Tmin, Tmax 0.750, 0.914

No. of measured, independent|53493, 8895, 7580
and observed [l > 25(1)] reflections

Rint 0.096

(sin O/A)max (AY) 0.618

Refinement

R[F? > 25(F?)], wR(F?), S

0.073, 0.202, 1.07

No. of reflections 8895
No. of parameters 701
No. of restraints 526

H-atom treatment

H-atom parameters constrained

Computer programs: CrystalClear-SM Expert 2.1 b32 (Rigaku, 2014), HKL-3000
(Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL2014/7 (Sheldrick,
2014), SHELXLE Rev714 (Hubschle et al., 2011).
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A solvate THF molecule was refined as disordered. Another solvate occupied area of the
structure is disordered around an inversion center. The area was modeled as being occupied
by either two THF molecules (related to each other by inversion), or two pairs of pentane

molecules disordered around the inversion center (each two being symmetry equivalent).

All THF molecules were restrained to have similar geometries. All pentane molecules were
restrained to have similar geometries, and C-C bonds and 1,3 C...C distances were
restrained to 1.50(2) and 2.50(2) Angstrom respectively. Uij components of ADPs of
disordered atoms were restrained to be similar for atoms closer to each other than 1.7
Angstrom, and pentane ADPs were restrained to be close to isotropic.

Subject to these conditions the occupancy ratio for the first THF molecule refined to
0.623(10) to 0.377(10). The occupancies for the other type of THF molecule and of the
two independent pentane moieties refined to 0.264(3), 0.1744(16) and 0.1936(16).



B.10 NMR Data for 1,1-Dichloroalkenes, Methylenecyclopropanes, and Dienes
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Figure B.15. *H NMR spectrum for 4-(2,2-dichlorovinyl)tetrahydro-2H-pyran in CDCls.
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Figure B.16. *C{*H} NMR spectrum for 4-(2,2-dichlorovinyl)tetrahydro-2H-pyran in

CDCls.
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Figure B.17. *H NMR spectrum for 2-(2,2-dichlorovinyl)benzofuran in CDCls.
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Figure B.18. *C{*H} NMR spectrum for 2-(2,2-dichlorovinyl)benzofuran in CDCls.
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Figure B.19. *H NMR spectrum for 2-(2,2-dichlorovinyl)thiophene in CDCls.
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Figure B.20. *C{*H} NMR spectrum for 2-(2,2-dichlorovinyl)thiophene in CDCls.
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Figure B.68. 'H NMR spectrum for 32 in CDCls.
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Figure B.69. *C{*H} NMR spectrum for 32 in CDCls.
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Figure B.73. *C{*H} NMR spectrum for 34 in CDCls.
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Figure B.77. *C{*H} NMR spectrum for 36 in CDCls.
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Figure B.79. *C{*H} NMR spectrum for 37 in CDCl3
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Figure B.81. *C{*H} NMR spectrum for 38 in CDCls.
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Figure B.82. *H NMR spectrum for 39 in CDCls.
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Figure B.83. *C{*H} NMR spectrum for 39 in CDCls.
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218

vs L
Z29°0T —
80°€ET —
89°9T ~=

ﬁm.NNv

JAswa4

2€70€ ~
os'1E
06°9€ ~.
8s/e

0€°'SS —

£6°60T ~_
06°€TT

P6°ETT AN
CO°LTT —
ST'81T

€5°/2T
+9°/2T
LL7L2T 7

86°0€T \

€TTIET

0L°'SPT —

+H'8ST
+S'8ST v

110

120

130

140

150

160

170

f1 (ppm)

Figure B.85. *C{*H} NMR spectrum for 40 in CDCls.



/@/\/\
MeO

219

2.00]  m—
os1 G

J
EYY $d &
0o S o N
- - 0
T T T T T T T T T T T T T T T T T T T T T T T T T T T T
8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

4.0
f1 (ppm)

Figure B.86. 'H NMR spectrum for 41 in CDCls.



220

I o Yoo N ©

a N NON o <

n [y} MmN - - wn

- 4 233 e in

o [
|
|
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10
f1 (ppm)

Figure B.87. *C{*H} NMR spectrum for 41 in CDCls.
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Figure B.90. *H NMR spectrum for 43 in CDCls.
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B.11 DFT Calculations
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Computational Methods. Geometry optimizations were performed using the

Gaussian09 software package.* All geometries were fully optimized at the BP86/6-

311G(d,p) level of DFT. Stationary points were verified by frequency analysis.

Y

Charge: 0

Multiplicity: 1

Imaginary Frequencies: 0
Energy: —-5549.38523891
Free Energy (298 K): —-5548.869070
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-4.99301800
-5.43854800
-3.58497600
-2.50556100
-2.64609000
-3.63238900
-1.53990400
-1.64213100
-0.25887900

0.39284100
0.30462600
0.50942900
2.15550900
2.29584200
0.87118200
2.13051700
1.24094800
2.68820300
2.78145500
1.73922100
2.71504900
4.11235500
4.53623400
4.93971500
6.02475900
4.37428700

-0.42135500
0.45924100
-0.16983700
-0.18276100
-0.04334000
0.03851100
-0.84893700
-0.96051600
-1.79952100
-0.08129300
-0.46752800
-0.42783800
-0.59193400
-0.78963500
-0.45759500
-0.53958200
-0.21640200
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-0.17939500
0.95020300
0.92741000
2.14528500
3.07717500
2.16225100
3.33560700
4.69518300
4.67577500
5.03207800
5.43502300

-4.09071600

-3.98290200

-4.82176600

-4.74978700

-5.72824100

-6.36594900

-5.80426800

-6.49897900

-4.99167700
4.08223500
4.90121000
5.84042300
6.47756400
5.96501800
6.69658100
5.14545100
5.23645800
4.19111300
0.10873300
0.07843700

2.94238900
5.10086800
6.19332500
4.42163300
4.97092400
3.00898500
2.15782900
2.71885900
3.29246700
3.40425300
1.91369400
-0.60609700
-1.51117900
-2.63643200
-3.34266500
-2.86741900
-3.75502700
-1.97092300
-2.15980200
-0.82648200
-0.13302700
-0.49108700
-1.51734100
-1.80925500
-2.16723300
-2.96989700
-1.79595600
-2.30598400
-0.77557800
-0.77876200
-2.00502000

-0.14441800
-0.04223600
-0.06328800
0.15431900
0.30091000
0.12082600
0.22545200
0.54147800
1.48284500
-0.25469100
0.63922600
-0.19042800
-1.27650700
-1.28216000
-2.11423800
-0.24262600
-0.25954000
0.82817700
1.65185000
0.88096100
0.19561500
-0.90266700
-0.71173700
-1.55159500
0.52062700
0.64428000
1.59113500
2.55452700
1.45368200
0.40526100
0.97949000

233



r rr 60T T OITT T T O T T T O ITT O ITT O TTO ITTOITOO X

Q

Cl

-0.14918700
0.29874700
0.27486300
0.10018400
0.47347900
0.45320800
0.69573600
0.84994300
0.71476300
0.88590100
0.51480300
0.53019600

-5.05549900

-5.64595700

-4.04798800

-5.53258300

-2.99947100

-3.30986000

-1.99962800

-2.90528200
4.76387800
5.01610800
5.43576400
3.72978300
3.30933000
3.62362400
2.26209200
3.34825300

-1.36706700
1.12163900

-1.96342300
-3.33722800
-4.44860600
-4.28192700
-5.74462400
-6.59055100
-5.95888500
-6.97239900
-4.86427000
-5.02467100
-3.56647800
-2.71933200
0.11441200
-0.33131400
0.34190300
1.07485100
-1.26428600
-0.41765100
-1.00997500
-2.15150900
0.20165400
1.27434000
-0.25338700
0.13293400
-0.36595100
0.60288200
-0.24725900
-1.11244500
0.50801900
-0.37137100

2.05794800
0.42337400
1.29950200
2.36653400
0.81711800
1.50956200
-0.55036100
-0.92999000
-1.42965300
-2.49760200
-0.95682300
-1.64743500
2.06110000
2.87494300
2.44685700
1.79729300
-2.39510100
-3.03190500
-2.00761400
-3.03689800
-2.23688000
-2.17005700
-2.97911300
-2.61375900
2.60928200
3.03619700
2.29038800
3.41540100
2.70030700
-2.50694100
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Charge: 0

Multiplicity: 5

Imaginary Frequencies: 0
Energy: —5549.34323365
Free Energy (298 K): —-5548.839546

Ni

<
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-1.26035900
1.26214900
3.14545800
1.18225300

-1.09317500

-3.08512300
4.90250200
5.55837800
4.92384000
5.31698200
3.49687200
2.40331200
2.48855700
3.46070600
1.33754300
1.40375300

-0.32146100
-0.47829600
-0.62530200
-2.20648700
-2.24935600
-0.71782500
-2.20961200
-1.32919400
-2.67523700
-2.94187600
-1.82964000
-2.77740700
-4.14724600
-4.59404600
-4.93755500
-6.00572700

-0.53475200
0.61518400
-0.02055800
-0.29827400
-0.21238000

0.17435300
-0.83719400
-0.84443700
-1.83529800
-0.12334400
-0.45631000
-0.56221600
-0.87988400
-1.09794800
-0.88946000
-1.10993800
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0.06780700
0.05252300
-1.18768300
-1.23125200
-2.35311300
-3.31169800
-2.29681900
-3.40107700
-4.77308700
-4.72636700
-5.20229900
-5.45147900
4.06201000
4.03566500
4.89571700
4.88197900
5.75387800
6.41209100
5.76051000
6.42435500
4.91935200
-3.99294100
-4.94161600
-5.76407800
-6.49805000
-5.65340600
-6.29884100
-4.71038000
-4.61972300
-3.86466000
-0.02463500

-4.35538600
-2.93931400
-5.01993400
-6.10111700
-4.30018300
-4.81802300
-2.90276700
-2.00546400
-2.53748300
-3.27205500
-3.05079800
-1.72585800
0.46336800
1.44061200
2.54351000
3.30565700
2.67904900
3.54846000
1.70718800
1.81736200
0.58409200
0.30718200
0.83445600
1.88376000
2.30345100
2.39790700
3.22040800
1.86352400
2.26386400
0.81397500
0.81299800

-0.62126700
-0.38071000
-0.56211200
-0.71463000
-0.28899900
-0.21652000
-0.12463200
0.17122800
0.48728300
1.30734800
-0.38969500
0.78044000
0.07699200
-0.95030700
-0.83795900
-1.62227600
0.25826900
0.33391700
1.26405300
2.12654000
1.19936800
0.57685400
-0.33610000
0.10685000
-0.58717600
1.40234000
1.72133500
2.28638600
3.30032900
1.89593500
0.24185900
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0.05859500
0.24707400
-0.05311000
0.01358700
0.13542000
-0.07877700
-0.02776100
-0.23560200
-0.30816000
-0.29879600
-0.42431100
-0.20407200
-0.26388200
4.91739800
5.54089700
3.89594600
5.31677400
3.10878100
3.41424500
2.08007900
3.09211000
-5.06393100
-5.35870000
-5.82452200
-4.10602200
-2.85596700
-3.14623200
-1.86010200
-2.76371300
1.24852800
-1.53692100

2.09780600
2.20395900
3.34708900
4.57165300
4.55561900
5.79104500
6.72757700
5.81296500
6.76638900
4.60363200
4.61304800
3.38109800
2.44433200
-0.44619500
-0.10991400
-0.62485100
-1.41700800
1.28653600
0.44941000
1.06738200
2.20128200
0.30479900
-0.75831300
0.87010700
0.37970700
0.22736400
-0.78818800
0.13617700
0.84855300
-0.36769600
0.21421900

0.64446900
1.72613400
-0.10642800
0.59888200
1.68582700
-0.07654700
0.48524000
-1.46953900
-1.99931900
-2.18009000
-3.26607200
-1.51334100
-2.07217000
2.30284400
3.14393600
2.67759200
1.96117700
-2.13088400
-2.78226500
-1.80225000
-2.73984300
-1.74397300
-1.76133100
-2.30204000
-2.28539400
2.85337500
3.17475800
2.39203000
3.75563800
2.82988100
-2.67038600
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Scheme 1. Mononuclear and Dinuclear Ni Complexes of
ABSTRACT: An evahiation of catalyst nuclearity effects Chelating N-Donor Ligands
in Ni-catalyzed alkyne oligomerization reactions is

presented. A dimuclear complex, featuring a Ni—Ni bond "PD O/@
rted aphthyridine—diimi NDI) ligand ~ S
supported by a naphthyridine—diimine ( ) igand, mn i \/;\ /N
\

. X . iy P

promotes rapid and selective cyclotrimerization to form — e W

1,2,4-substituted arene products. Mononickel congeners i, M top oo
N, [FIPINICOD) (2) [BPYINI{COD} (3)

bearing related N-donor chelates (2-iminopyridines, 2,2’ e R
H

§ Ny
bipyridines, or 1,4,-dia7.adienes) are significantly [ess active Pr y ‘\"@ e
Ej or

and yield complex product mixtures. Stoichiometric oSy
reactions of the dinickel catalyst with hindered silyl @N\M/ ipr
acetylenes enable characterization of the alkyne complex FNDIINIZ(Cehe) (1) o Yoo
and the metallacycle that are implicated as catalytic FFDADINICOD) ()

intermediates. Based on these experiments and supporting
DFT calculations, the role of the dinuclear active site in
promoting regioselective alkyne coupling is discussed.
Together, these results demonstrate the atility of exploring
nuclearity as a parameter for catalyst optimization.

uniformly yield complex product mixtures, the dinuclear catalyst
1 promotes rapid and selective cyclotrimerizations to form 1,2,4-
trisubstituted arenes (Figure 1). Stoichiometric reactivity studies,
combined with DFT calculations, provide insight into this
nuclearity effect.

I ransition-metal catalysts containing polynuclear active sites Non-Selective Alkyne Oligomerization Selective Alkyne Cyclotrimerization
are underdeveloped alternatives to mononuclear catalysts Using Mononuclear [N.NJNi Catalysts ata Ni-NiBond

for organic wansformations. Polynuclear complexes have the

potential to exhibit unique catalytic properties by binding \\\r,,|||
substrates and delocalizing redox activity across multiple metals. v
Platforms featuring direct metal—metal bonds are particularly =R
well-suited to capitalize on these cooperative processes due to r

the m?forccd proximity of t[:lc metals and t‘hc strong electronic N
coupling between them. Consequently, ligands that support e
reactive metal—metal bonds have emerged as synthetic targets.

The resulting complexes have been demonstrated to engage ll
organic and small inorganic molecules in well-defined stoichio-

metric reactions.” Despite these advances, the cooperativity cyclotrimers, cyclotetramers, lirear

cligomers, and polymers

effects attributed to metal-metal bonds have rarely been
evaluated in a catalytic process.” Such studies would complement
those characterizing dinuclear effects in catalyst systems where
direct metal—metal interactions cither are not relevant™ or are
formed transiently.”

Figure 1. Mononuclear and dinuclear pathways for alkyne oligomeriza-
tions using Ni catalysts.

Dinuclear complexes of naphthyridine—diimine (NDI) Catalyst Comparison Studies. Transition-metal-catalyzed
ligands are versatile platforms to study stoichiometric and cycloadditions are direct and efficient routes to cyclic organic
catalytic redox processes at discrete metal—metal bonds.® The molecules;” however, complex selectivity considerations must be
[J""NDI]N]'Z(CSHG) complex (1) is an analog of known addressed in order to obtain high yields of a single product.
mononickel complexes bearing N-donor chelates (e.g, 2- Among the catalysts that have been surveyed in alkyne
iminopyridincs, 2,2"-bipyridincs, and 1,4-diazadicnes), providing oligomerization reactions, the low-valent Ni catalysts initially
an opportunity to probe nuclearity effects within a family of reported by Reppe are unusual in the breadth of accessible
related catalysts (Scheme 1). Here, we report a comparative
study of mono- and dinickel catalysts in the oligomerization of Received:  May 13, 2015
terminal alkynes. Whereas mononuclear [N,N]Ni catalysts 2—4 Published: June 11, 2015

icati £ 2015 American Chemical Socie! 8042 DOI: 10.1021/jacs. 5b04990
<5 ublications ty i
2 Am. Chem. Soc. 2015, 137, 80428045
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products.” Simple Ni(0) sources such as Ni(COD),,” activated
Ni metal,'® and combinations of divalent Ni halide salts and
reductants'! convert terminal alkynes to mixtures of cyclic (arene
and cyclooctatetraene regioisomers) and acyclic (oligomers and
polymers) products. Supporting ligands have been effectively
utilized to improve the selectivity of these reactions.'” For
example, phosphine-ligated complexes generally yield benzene
derivatives,'* ® whereas 14-diazadiene complexes favor cyclo-
octatetraenes.'™"

In order to assess the viability of using catalyst nuclearity to
control selectivity in these reactions, terminal alkyne substrates
with diverse electronic properties were selected for comparison
studies (Figure 2). For ethyl propiolate, all examined

R
R. R
catalyst (1-5 mol%)
= SO Y - /@\ 7
Catte R R R

+ allotherproducts ||

Yield (%)

12345
COEt -Ph

12345
-CH,OMe

Catalyst:
Substrate (R):

Figure 2. A comparison of catalytic activity for the cyclotrimerization of
ethyl propiolate, phenylacetylene, and methyl propargyl ether. Data for
catalysts 1—4 and Ni{COD), (5) are shown. Reaction conditions for
ethyl propiolate and methyl propargyl ether: 22 “C, 11 min, | mol %
catalyst. Reaction conditions for phenylacetylene: 60 °C, 40 min, 5 mol
9% catalyst. Yields and conversions were averaged over twe nms and
determined by GC-TID analysis. The total heights of the bars are the
total conversion of starting material. The product fraction correspond-
ing to the 1,2 4-isomer (solid red}), 1,3,5-lsomer (dashed red), and all
other products (white} are plotted.

mononuclear and dinuclear catalysts (Scheme 1) were active,
with 1 affording the highest conversion of substrate under a
standardized set of conditions. Consistent with previous
reports,'¥ [P |Ni{COD) (2), [BPY|Ni{COD) (3),
[*""DAD|Ni{COD) (4), and Ni{COD), (5) yielded significant
amounts of both cyclotrimerized and cyclotetramerized
products. Among these four mononickel catalysts, no greater
than 14% combined yield of aromatic products was observed,
with cyclooctatetraenes being formed in 11-71% yield. By
comparison, 1 was selective for cyclotrimerization, affording a
90% combined yield of the 1,2,4- and 1,3,5-regivisomer. No
cyclooctatetraene products were detected using 1.

Similar effects were observed using more clectron-rich alkyl-
and aryl-substituted terminal alkynes. Phenylacetylene and
methyl propargyl ether were pootly reactive using catalysts 2—
5 and produced a mixture of coupled products. Catalyst 1
effected rapid cyclotrimerization, with nearly exclusive formation
of the 1,2,4-regioisomer. Methyl propargyl cther is converted to

8043

1,2,4-tris(methoxymethyl)benzene in 98% GC vield using 1 mol
% of 1 in <15 min at room temperature. This rate and selectivity
is noteworthy among those observed using the most efficient
cyclotrimerization catalysts, including precious metal-based
system&u

Substrate Scope for Alkyne Cyclotrimerizations. The
high selectivity for cyclotrimerization using 1 is general across a
range of terminal alkynes (Figure 3). In all cases, the 1,2,4-

10-Smos R’
=R ——
CaDs R
ar Ar NHe one cHO F
A= )(©/
A

B0°C,8h 60°C.8h BD'C,15h 22°C, 30 min
1% vield 93% yield 725 yield 92% yield
a7 (=20:1) (=20:1) 151}
6a &b e 6d
n-Hex. mHex
Ph OPh
PhO.
nHex
22°C, 18 min 22°C, 15 min 22°C,1h
97% yield 80% yield 79% yisid
(>20:1) (> 20:1) (>20:4)
7 8 e
$ [> { )
L %VVCS)
22°C, 15 min 22°C. 15 min
4% yield 845 yield
10 i

Figure 3. Substrate scope for alkyne cyclotrimerizations catalyzed by 1.
Conditions: 5 mol % catalyst loading for arylacetylenes and 1 maol % for
all other substrates, Yields are of isolated products and are averaged over
two runs. The ratio of the 1,2,4- to 1,3,5-regioisomer is shown in
parentheses.

regioisomer 15 highly favored, and no competing formation of
cyclooctatetraenes is observed.'! Alkylacetylenes reach full
conversion within 1 h at room temperature using 1 mol % of 1
(products 7—11). A higher catalyst loading of $ mol % was used
for arylacetylencs (products 6a—d). To probe clectronic effects, a
series of Para—subsﬁtuted pheny]acety]enes was studied. Sub-
strates bearing electron-withdrawing substituents reacted at a
faster rate than substrates bearing electron-donating substituents,
Using cyclopropylacetylene, cyclotrimerization occurred without
cyclopropane rearrangement through cither a radical or
organometallic mechanism. Finally, 1,6-heptadiyne and prop-
argyl ether reacted to form the corresponding tethered diarene
products (10 and 11).

Stoichiometric Alkyne Coupling Reactions. We inves-
tigated the origin of the observed dinuclear effect by pursuing the
characterization of plausible intermediates. Terminal alkynes
bearing bulky silyl substituents, such as —SiMe; and —SiMe,lh,
react with 1 but do not generate the cyclized product (Scheme
2). The reaction between 1 and dimethylphenylsilylacetylene
(2.0 equiv or greater) in C,D; is complete in 3 h at room
temperature, producing the head-to-tail coupled product 12. In
the "H NMR spectrum, two signals are observed at 6.20 and 4.79
ppm (doublets with ' = 4.5 Hz), corresponding to the two
nonequivalent C—H groups of the bound butadienyl fragment.
No other isomeric complexes arising from head-to-head or tail-
to-tail dimerization are detected under these conditions. The
solid-state structure (Figure 4a} reveals that the metallacycle
incorporates one Ni into a five-membered ring. The second Ni

DO 10.1021/jacs 56049990
1 Am. Chem. Soc. 2015, 137, 8042-8045
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Scheme 2. Stoichiometric Reactions of 1 with

Trialkylsilylacetylenes

P
PhiMe,Si—= [FPNDINIACHe) =siMe;
(2.0 equiv) ] (1.0 equiv)

Figure 4. Solid-state structures of {a) 12 and {b) 13 {ellipsoids at 50%
probability). i-Pr groups on the NDI ligand and substituents on silicon
are truncated for clarity. Selected bond distances for 12 (A): Nil-Ni2,
24814(6); Ni1—C1, 1.942(2); Nil—C4, 1.868(2); Ni2—C1, 1.875(2);
Ni2-C2, 2.042(2); C1-C2, 1416(4); C2—C3, 1482(3); C3—C4,
1.350(3). Selected bond distances for 13 (A): Nil—-Ni2, 2.3140(6);
Nil—C1, 2.023(3); Nil—C2, 1.911(3); Ni2—C1, 2.015(2); Ni2—C2,
1.904(2); C1-C2, 1.301(4).

provides additional stabilization through an i*-interaction with 2
double bond of the diene system. Related z-interactions have
been invoked in alkyne cyclotrimerizations®™'® and Pauson—
Khand reactions™® mediated by Co,(CO),. In support of the
catalytic relevance of the structurally characterized complex 12, 2
directly analogous metallacycle is observed with phenylacetylene
under turnover conditions ("H NMR: 6.70 and 4.52 ppm, /= 4.3
Hz).

The reversibility of the C—C coupling was examined to
determine whether the regioisomer 12 is formed under
thermodynamic or kinetic control. When 12 is exposed to
trimethylsilylacetylene (10 equiv), no exchange of —SiMe,Ph for
—SiMe, in the metallacycle is observed even after heating at 70
°C for 48 h. The formation of 12 is therefore sufficiently
thermodynamically favorable to preclude the reverse reaction
from occurring at catalytically relevant temperatures. A plausible
explanation for the high head-to-tail selectivity is the steric
hindrance imposed by the flanking 2,6-diisopropylphenyl
substituents of the catalyst. The solid-state structure of 12
suggests that substituents at C2 or C4 would be highly disfavored
by interactions with a catalyst i-Pr group or arene respectively
(Figure 4a).

The metallacycle 12 does not react with additional equivalents
of dimethylphenylsilylacetylene; however, when a less hindered
alkyne, methyl propargyl ether, is introduced, cyclotrimerization
proceeds to form the heterocoupled product 14 (Scheme 3).
This reaction is accompanied by catalytic homocyclotrimeriza-
tion of methyl propargyl cther. The regioselectivity in this
stoichiometric process is consistent with that observed under
standard catalytic conditions. Collectively, these experiments
support the competence of metallacycles analogous to 12 as
intermediates in the formation of 1,2,4-substituted arene
products.

Scheme 3. Stoichiometric Conversion of 12 to the
Heterocoupled Product 14

OMe (20 MesS
é/\ e {20 equiv) 22°c,1p  Phbessi @15:@ Ph Mmmm
+ —_— +
R M
(PNDING(PHMe,SICCHY, OB Ol °

(12 86% yisld
14

The presumed monoalkyne complex (13), en route to the
metallacycle 12, was characterized from the reaction of 1 with
one equivalent of trimethylsilylacetylene. In the solid state, the
allkyne exhibits g7 coordination and is perpendicular to the
Ni—Ni bond vector (Figure 4b). The C—C distance is
significantly elongated from approximately 120 A for free
trimethylsilylacetylene®® to 1.301(4) A in the complex. The
alkyne complex 13 is sufficiently stable to permit structural
characterization; however, over the course of 24 h at room
temperature in GzDy, it disproportionates to form a mixture of
the corresponding metallacycle and the benzene complex 1.

Origin of the Dinuclear Effect. The observed ratio of 1,2,4-
to 1,3,5-substituted products in the alkyne cyclotrimerization
arises from regioselectivity considerations in two sequential
steps: the dimerization to form the metallacyclic intermediate
and the subsequent incorporation of the third alkyne to yield the
arene product. The stoichiometric reactivity studies described
above provide insight into the selectivity of the first C—C
coupling; however, less information is readily apparent regarding
the product formation step.

DFT calculations (M06/6-31G(d,p) level of theory) were
performed on a model catalyst system (i-Pr groups on the aryl
substituent were truncated to Me groups) to assess potential
pathways for the conversion of this intermediate into the final
product. Using propyne as a substrate, a concerted transition
state was optimized, corresponding to a [4 + 2]-cycloaddition of
a Ni-coordinated alkyne to the butadienyl system (Figure 5a).17

Figure 5. DFT calculations {M06/6-31G(d,p) level of theory)
addressing the selectivity of alkyne addition to the bound butadienyl
ligand. Propyne was used as a model substrate and i-Pr substituents on
the catalyst were truncated to Me substituents. {(a) The lowest-energy
transition structure corresponding to the [4 + 2]-cycloaddition of the
bound alkyne and butadienyl ligands. Distances for the two forming C—
C bonds are shown in red. (b) The HOMO-1 for the metallacycle

intermediate.

Stationary points associated with alternative stepwise pathways
could not be located. Consistent with the fast rates observed
experimentally for cyclotrimerizations with alkylacetylenes, the
activation energy for this step was calculated to be only 9.3 keal/
mol. The competing transition state leading to the minor 1,3,5-
substituted product was 2.0 keal /mol higher in energy.

The calculated cycloaddition transition state (Figure Sa) is
highly asynchronous with bond formation between C4 and C5
(2.07 A) being significantly more advanced than that between C1
and C6 (2.61 A). This asymmetry arises from stabilization of one
of the double bonds through ;7 coordination to the second Ni

DO 10.1021/acs.5b04990
1 Am. Chem. Soc. 2015, 137, 8042 8045
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center. The calculated HOMO—1, which primarily corresponds
to the delocalized m-orbital of the diene system, shows
significantly greater density at the uncoordinated double bond
(Figure 5b}. This electronic structure is manifested in the solid-
state geometry of 6 as an elongated C1-C2 (1416(4) A)
distance relative to the C3—C4 distance (1.350(3) A). A
hypothesis that emerges from these calculations is that this
electronic asymmetry, induced by the presence of the second Ni
center in the catalyst, results in a steric preference for the
substituent of the approaching alkyne to be positioned at the
carbon where the forming C—C distance is longer in the
transition state.

In summary, the dinuclear [NDI]Ni, platform provides access
to an efficient cydutrimk:rizaLiun Paﬂ'lway that is not available to
its mononuclear counterparts. The catalyst nuclearity effect is
Particulal‘ly signi.ﬁcant for al]cyl-su]:st{tutad a]](y'nes: reactions are
complete within 1 h at room temperature using 1 mol % loading
of 1 with nearly exclusive formation of 1,24-substituted arene
products. Stoichiometric reactivity studies provide structural
insight into the metallacyclopentadiene intermediate that is
implicated in the catalytic mechanism. Combined with DFT
calculations, these experiments suggest several distinct features
of the bimetallic system. First, binding across two metals
constrains the geometry of the metallacycle, disfavoring the
formation of other possible regioisomers. Second, the [4 + 2]-
cycloaddition of the butadienyl ligand and the approaching
alkyne is facilitated by metal coordination to both partners.
Third, the selectivity of the cycloaddition is controlled by an
electronic bias in the diene 7z-system, caused by a secondary 5*
interaction. Exploring the implications of these dinuclear effects
for other catalytic cycloadditions is ongoing in our laboratory.
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ABSTRACT: Methylenecyclopropanes are important
synthetic intermediates that possess strain energies
exceeding those of saturated cyclopropanes by >10 kcal/
mol. This report describes a catalytic reductive methyl-
enecyclopropanation reaction of simple olefins, utilizing
1,1-dichloroalkenes as vinylidene precursors. The reaction
is promoted by a dinuclear Ni catalyst, which is proposed
to access Niy(vinylidenoid) intermediates via C—Cl
oxidative addition.

‘ 7 inylidenes (methylidene carbenes) are reactive intermedi-
ates comprising a divalent carbon atom incorporated into

‘ Vinylidenes as Reactive Intermediates ‘

metal-halogen
H H H, M exchange

/
).:c:", - >:c: or ):c\ — ):c\
R =N R K X

iz

Fritsch-Buttenberg-Wiechell
Rearrangement

Vinylidene Transfer

o Forvinylidenes possessing a p-hydrogen, FBWrearrangement is the dominant reaction pathway

Catalytic Carbene Transfer Catalytic Vinylidene Transfer
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™ Ll 0] I
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Vinyligene
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Figure 1. Vinylidenes as reactive intermediates and design principles
for a catalytic reductive vinylidene transfer reaction.

a C=C double bond." Like their saturated carbene counter-
parts, vinylidenes undergo reactions that allow the valence-
deficient carbon to increase its coordination number: for
example, through cheletropic reactions with 7-systems or
insertions into C—H bonds.” Free vinylidenes are accessible
from the decomposition of transiently generated diazoalkenes.”
Alternatively, (R,C=C)(M)(X) species (vinylidenoids) serve
as Ry,C=C: surrogates, eliminating metal halides as stoichio-
metric byproducts.’® A key challenge associated with
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Table 1. Catalyst Structure—Activity Relationships”

o cl

2

Mok

_gC** >b . :,
\/Nl S P = N

'aml, 5t (5 mol%)

Zn (3 o equw)

‘P@, . e [ s Me R1zipr RZ=H (5)
N R'=Et R2=H (8}
["NDIINiz(GgH) (1) R'=R?=Me (T)
e Ar
P, P
Ar}“ Y A “cop
[F'PDINICI; i8) ["PIPIMI(COD) (9) [BPY]NI(CODY) (10)  [PDADINI(COD) {11}
Ar = 2 5-diisopropylphenyl
entry <catalyst yield E/Z ratio
1 [*PNDIINL,(CH,) (1) 949 1:5
2 [*P"NDINi,CI, (4) 87% 1:5
3 “PNDI (5) + Ni{ DME)CI, 92% 1:5
4 ENDI (6) + Ni{DME)CL, 50% 11
s MENDI (7} + Ni{DME)C], 2% -
6 [M*PDIINIC, (8) <2% -
7 [FPIPINI(COD) (9) 2% -
& [BPY]Ni(COD) (10} <2% -
9 ["DADINi(COD) (11) <2%

“Yields and E/Z ratios were determined by 'H NMR integration.
Reaction conditions: 2 {0.21 mmol), styrene (0.2 mmol), catalyst (3
mol %), 24 h, 22 °C. PReactions were conducted with § mol % of the
NDI ligand and 10 mol % of Ni{DME}C],.

developing eflicient transfer reactions of vinylidenes is their
susceptibility to competing Fritsch—Buttenberg—Wiechell
(FBW) rearrangements that form alkynes (Figure 1)." The
rate of the 1,2-shift varies as a function of the migrating group,
but when one of the alkene substituents is an H atom, the
rearrangement  becomes nearly barrierless.” This process
underlies the well-known Corey—Fuchs and Seyferth—Gilbert
alkyne synth eses.”

Transition metal catalysis may provide an avenue to address
the instability of vinylidenes, allowing group transfer reactions
to be favored over competing FBW rearrangement. Never-
theless, current carbene transfer catalysts are largely unsuitable
for vinylidene transfer due to their reliance on diazoalkane
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Table 2. Substrate Scope for the Catalytic Methylenecyclopropanation Reaction™

]
["*NDINiz(CsHe) (1) R
R"Ym A (5-10 molt) \
_— 3
cl R 2n (3.0 equiv) "
24h r2
E%0. DMA
0 O
=
R 12 87% Yield 13 93% Yield 14 71% Yield 15 53% Vield 16 62% Yield A7 87% Yield 18 95% Yield
(EiZ=13) (E1Z=14) (EZ=14) (EiZ = 1:4) (EZ=1:3) (E7=12) (€7 = 16)
19 9% Yield EIZ= 18 Olte 5 5 5
N 20 81% Yield, EZ = 17 . N Y 3 \'/
21 89% Yield, EZ= 13 N & o
R 22 74% Yield EZ= 18 Ts
o » 8% Yield, EiZ = 1:8 25 72% Yield 25 88% Yield 27 68% Yield 28 50% Yield 28 56% Yield
24 83% Vield, E1Z o (EZ = 14 (EZ=15) (E12=1:3) (E1Z =811} (E1Z = 13:1)

30 97% Vield
(EzZ=19) {EZ = 1:4) (EZ=13

31 81% Yield 32 79% Yield
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367 50% Yield 37° 6% Yield 38°  54% Yield
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Ph Ph Ot
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33° 77% Yield 34b 75% Yield 35" 79% Yield

39 B7% Yield 40 95% Yield
(EZ=1.1) EZ=11)

“Isolated yields were determined follewing purification and are averaged over two runs. See Supperting Information for experimental details. "The

alkene partner was used in excess (4—10 equiv).

[PNDINiz(GaHg) (1} R.

X Cl {5 mol%) I

R = — —_— Ny
=] (1atm) 2Zn (3.0 equiv)
EtO, DMA
Otsenved at
partial conversions
o X
= Y

Mea’

41 78% Yield 42 78% Yield 43 74% Yield

(E/Z = >20:1) (E/Z=>20:1) (B/Z=81)

Figure 2. Tandem methylenecyclopropanation—isomerization reac-
tions.

decomposition as an activation strategy."' Diazoalkenes, the
equivalent vinylidene precursors, are not known to be isclable
and undergo N, elimination spontaneously at room temper-
ature.""** Transition metal-bound vinylidenes are accessible by
an alternative route involving a metal-induced isomerization of
an alkyne.® Buono described a Pd-catalyzed methylenecyclo-
propanation reaction that operates by this pathway and is
effective for a range of norbornene-derived substrates.”'” Other
classes of alkenes are not currently viable in catalytic vinylidene
[2+1]-cycloadditions.

Qur group is interested in developing new modes of carbene
generation based on the reductive dehalogenation of readily
available and indefinitely stable 1,1-dihaloalkanes. In this
context, we recently described a dinuclear Ni catalyst that
promotes the cyclopropanation of alkenes using CH,CI, as a
catbene source and Zn as a terminal reductant.'’ Here, we
report the reductive transfer of vinylidenes from 1,1-
dichloroalkenes (Figure 1). This method provides direct access

to methylenecyclopropanes, a class of synthetic intermediates
valued for their ability to engage in strain-induced ring-opening
reactions, ">

In our initial studies, we arrived at an optimal set of
conditions for a model methylenecydopropanation reaction
based on our Jp‘reviously reported CH, transfer method.'" The
Ni, catalyst 17 promotes the addition of 2 to styrene in 94%
yield using Zn as a reductant (Table 1, entry 1). Of note, none
of the 1,1-dichloroalkene is lost to polymerization, reductive
dehalogenation, or FBW rearrangement, allowing the reaction
to be conducted with near-equimolar quantitics of the two
reaction partners. The ["""NDI]Ni,Cl, complex 4 is also a high-
yielding catalyst, demonstrating cllicient entry into the catalytic
cycle from multiple oxidation states of the Ni, complex (entry
2). The reaction is amenable to in situ catalyst generation using
the free "T'NDI ligand (5, 5 mol %) and Ni(DME)CI, (10 mol
%) in the place of preformed 1 {entry 3). Decreasing the steric
profile of the imine aryl substituents leads to rapidly
diminishing yields (entries 4 and 5). Finally, the importance
of the dinuclear catalyst structure was assessed using a series of
mononickel complexes bearing structurally related N-donor
ligands. In these cases, there is signilicant consumption of the
1,1-dichloroalkene (2) but no productive vinylidene transfer to
form 3 (entries 6—9).

The substrate scope of the catalytic methylenecycopropa-
nation is summarized in Table 2. 1,1-Dichloroalkenes bearing
alkyl, aryl, or hetercaryl substituents afford high yields in their
reactions with styrene (12—18). With regard to the alkene
partner, monosubstituted terminal alkenes are effective
substrates (19-32), and a variety of common functional
groups are tolerated, including esters, ethers, nitriles, boronate
esters, aryl chlorides, sulfonyl protecting groups, acetals,

DOI: 10.1021/acs. 7b05901
4 Am. Chem. Sac 2017, 13, 11686 11689
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(a) Mechanistic Studies

1. Zn effects the one-slectron reduction of the [-"NDIINi,Cl, complex
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Figure 3. {a) Mechanistic studies probing the relevant catalyst oxidation states, the role of n, and the concertedness of the cyclopropanation. (b)
Proposed catalytic mechanism. (c) Structurally characterized model (47) for the proposed Ni, vinylidenoid intermediate (43).

primary amides, and ketones. The observed E/Z ratios vary
over a range of values and are dependent on the identity of the
alkenc substituent: alkyl groups with «-branching favor the E-
isomer, linear alleyl groups afford low stereoselectivity, and aryl
groups favor the Z-isomer.

Relatively unhindered internal alkenes, such as cyclopentene,
2,5-dihydrofuran, and norbomene, alse react to form cyclo-
propanated products (33—37). More hindered alkenes than
those shown in Table 2 are a current limitation and generally
result in low yields. In accordance with these observations, the
selectivity properties of the reaction are highly sensitive to steric
effects. For example, norbornene and norbornadiene are
selectively cyclopropanated on the exo face (37—38), and
polyalkene substrates are monocyclopropanated at the less
substituted alkene (39—40).

Unexpectedly, attempts to carry out the methylenecyclopro-
panation of ethylene (1 atm) yielded 1,3-diene products (41—
43), a reaction that constitutes a formal vinglidene insertion
into a C(sp?)—H bond (Figure 2). We reasoned that these
products may be forming in a catalyst-promoted ring-opening
of a transient methylenecyclopropane intermediate. At partial
conversions, the reaction to form 42 contains significant
amounts of the corresponding methylenecyclopropane, the
concentration of which decreases as the reaction approaches
completion.

Experiments pertaining to the mechanism of the catalytic
methylenccyclopropanation are summarized in Figure 3a. By
cyclic voltammetry, the Ni,Cl, complex 4 exhibits two
reversible reduction events at —1.15 and —1.72 V relative to
the F/F." couple." Zn is capable of accessing only the first of
these two reductions, suggesting that the Ni,Cl complex 44 is
the most reduced state of the catalyst that is accessible, Next,

we questioned whether the role of Zn is restricted to catalyst
reduction'® or whether it might be more intimately involved in
the cyclopropane-forming steps of the mechanism: for example,
through the generation of Zn vinylidenoid species.'® This latter
possibility was ruled out by conducting a cyclopropanation in
the absence of Zn, where the Ni,Cl complex 44 was used
stoichiometrically as the only source of reducing equivalents.
Accordingly, the reaction between fi,f-dichlorostyrene (1.0
equiv), p-methoxystyrene (1.0 equiv), and 44 (2.0 cquiv)
provided 32 in 67% yield (1:2 E/Z ratio).

Finally, there is substantial evidence to support a stepwise
mechanism for the cyclopropanation. The E- and Z-sterco-
isomers of f-deuterated p-methoxystyrene react with incom-
plete retention of the alkene stereochemistry, yielding product
32-d, as a mixture of cis and trans diastereomers. In principle,
this loss of stereochemical fidelity may be due to an of-path,
catalyst-promoted E/Z isomerization of the p-methoxystyrene
starting material. This possibility was tested by running these
reactions to partial conversion and examining the stereo-
chemistry of the recovered alkene. At a reaction time of 20 min,
the recovered alkene is diastereomerically pure, suggesting that
stereochemical scrambling is intrinsic to the mechanism of
cyclopropane formation.

A proposed catalytic cycle based on these data is outlined in
Figure 3b. Two-electron oxidative addition of the 1,1-
dichloroalkene using the Ni,Cl complex 44 would require an
additional reducing equivalent provided by cither a second
molecule of 44 or by Zn. The resulting Ni, (1-chloroalkenyl }C1
intermediate 45 could then engage the alkene partner and form
the corresponding methylenecyclopropane product. An alter-
native possibility is that 45 fust isomerizes by o-chloride
migration to produce the Ni,(vinylidene)Cl, species 46."
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According to DFT models (BP86/6-311G{d,p)), this isomer-
ization is moderately endothermic but potentially accessible
under the reaction conditions {AG = 10.5 keal/mol, 298 K). In
both scenarios, the Nizcl,‘ cumplex. 4 is generated fo].lowing
vinylidene transfer, and a one-electron reduction closes the
catalytic cycle.

Attempts to obtain characterization data on the postulated
vinylidenoid intermediate 45/46 proved unsuccessful due to its
instability. To access a more stable structural surrogate, the
Ni,{-styrenyl }Br complex 47 was prepared from an oxidative
addition reaction between 1 and f-bromostyrene. This complex
lacks the additional halogen at the f-position and is thus
incapable of engaging in vinylidene transfer. A notable feature
of the solid-state structure is the Tpl-(uurdinaﬁun of the a_H(en)ﬂ
7i-system to the second Ni This interaction constrains the
orientation of the ﬁ-hydrngen substituent and may contribute
to the absence of FBW rearrangement side products in these
reactions.

In summary, the Ni, catalyst 1 has proven to be uniquely
effective relative to analogous mononickel complexes in
promoting reductive methylenecyclopropanation reactions
using 1,1-dichloroalkenes. Of particular significance, vinylidene
transfer predominates over competing rearrangement to the
alkyne despite the presence of a f-hydrogen. Our current
efforts are directed at generalizing this catalytic vinylidene
transfer strategy to other classes of cycloadditions.
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