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ABSTRACT

Author: Vorland, Colby, J. PhD

Institution: Purdue University

Degree Received: May 2019

Title: The Physiological Relevance of the Adaptive Capacity of Intestinal Phosphorus
Absorption

Committee Chair: Kathleen Hill Gallant

Intestinal phosphorus absorption is a key contributor to the body phosphorus pool, but
much is unknown regarding physiological adaptations in intestinal phosphorus absorption that
occur in vivo. We sought to measure changes in intestinal phosphorus absorption efficiency and
phosphorus balance in adolescent females and in rats in response to several factors, using
physiologically relevant assessment approaches including whole-body phosphorus balance
techniques and in situ ligated intestinal loop absorption methods.

We first assessed phosphorus balance and net phosphorus absorption in female
adolescents from a controlled crossover study with two levels of calcium intake. Despite an
increased calcium intake of 600 mg/day, there was no change in phosphorus balance, nor a
significant change in net phosphorus absorption.

Next, we measured intestinal phosphorus absorption efficiency with the in situ ligated
loop method in healthy Sprague Dawley rats as well as the Cy/+ rat model of progressive kidney
disease. We found 10-week-old healthy rats had a small but higher absorption efficiency of
phosphorus compared to 20- and 30-week-old rats, while 20-week Cy/+ rats had higher
absorption efficiency than 30-week-old. Each of these results corresponded to net phosphorus
absorption from balance as well as the concentration of 1,25-dihydroxyvitamin D3. In healthy
rats, there was no effect of altering the level of phosphorus in the diet on absorption efficiency.
In Cy/+ rats, kidney disease produced a small increase in absorption efficiency, contrary to the
predicted decrease that would occur with lower 1,25-dihydroxyvitamin D3 observed in CKD.
Gene expression of the major intestinal phosphate transporter, NaPi-2b, largely followed
absorption patterns.

The utility of the Cy/+ model is limited to males as females do not begin to show signs of
progressive kidney decline until a much older age. Therefore, we sought to test whether

ovariectomy would accelerate kidney disease in Cy/+ females, with the aim of establishing a
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postmenopausal model of progressive kidney disease. Our results show that kidney disease is not
accelerated by ovariectomy in this rat strain, as measured by kidney weight and biochemistries
including blood urea nitrogen, creatinine, creatinine clearance, and plasma phosphorus and
calcium.

Our results utilizing in situ absorption measures as well as net absorption of phosphorus
suggest that some of the factors that are understood to influence the intestinal absorption of

phosphorus do not have a significant influence in a physiological context.
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CHAPTER 1: INTRODUCTION

The intestinal absorption of phosphorus has been studied for nearly a century, yet there is
much still unresolved about how it is regulated and the importance and extent of its adaptive
capacity. Strategies for the treatment of chronic kidney disease (CKD) include limiting the
absorption of dietary phosphorus, and the optimization of such therapies may be improved with a
better understanding of intestinal transport. This chapter will overview our current knowledge of
phosphorus as a nutrient, its hormonal regulators in the body, how it is transported through the
kidney and intestine, how various factors may change this transport, and why this is relevant to
kidney disease. Subsequent chapters of this dissertation present our work that focuses on
understanding how four such factors affect the intestinal absorption of phosphorus: calcium
intake in adolescent females, amount of phosphorus in the diet, age, and kidney disease
progression in rats. Finally, we studied whether ovariectomy would accelerate kidney decline in

a female model of CKD to enable us to study these factors in both sexes.

Roles and Sources of Phosphorus

Phosphorus is an essential mineral in human health. In humans, approximately 85% of
phosphorus is contained in teeth and bone, largely in the form of hydroxyapatite. The other 15%
is in located within soft tissue (1). Of this, phosphorus in the blood totals approximately 40
mg/dL, with the normal range of plasma inorganic phosphate at 2.5-4.5 mg/dL (2). Phosphorus
plays diverse roles within these compartments; it plays a large structural role in bone as
hydroxyapatite, in cell membranes in phospholipids, and in the sugar phosphate backbone of
nucleic acids. Other roles include acid-base balance, where phosphorus serves as an important
intracellular buffer; energy metabolism, within transport (e.g. ATP) and storage (e.g. creatine
phosphate) forms of fuels; and cellular signaling (e.g. phosphorylation) (1).

Dietary phosphorus is widespread in the Western food supply and is present in organic
and inorganic forms. While the RDA for phosphorus is set at 700 mg/day for adults (3), data
from the National Health and Nutrition Examination Survey (NHANES) show that the average
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intake of phosphorus in U.S. adults over the age of 20 years is about twice the RDA at 1399
mg/day based on nutrient database values (4). It is estimated that total phosphorus intake has
risen over recent decades through the 1990s (5), and has been relatively stable between 2001 and
2014 (4).

The bioavailability of dietary phosphorus varies between and within organic and
inorganic sources. While the estimated absorption of organic phosphorus is ~50-60%, absorption
of inorganic phosphate is much more efficient, estimated at over 90% (6). However, as an
important aside, many of these estimates come from methods that more accurately reflect
bioaccessibility (availability to be absorbed) versus bioavailability (absorbed and available to the
body tissues). Organic phosphorus exists as complex molecules within cell membranes and
tissues, such as phytate in plants and phosphoproteins (e.g. casein) in animal tissues. Grains
account for ~ 29% of total intake, milk and milk products ~21%, and meat, poultry, fish and
mixtures ~25% (4). Thus, dietary intake of organic phosphorus is highly correlated with dietary
protein intake (7), and it is difficult to limit intake of one and not the other. In contrast, inorganic
phosphorus in the diet comes primarily from phosphate additives used in food processing and is
not associated with protein content in these food sources. Substitution of foods with phosphate
additives has been shown to potentially contribute up to 1000 mg in additional dietary
phosphorus per day (8), which may have long-term negative effects on bone and the
cardiovascular system (9-11).

In addition to wide ranging bioavailability of various food sources of phosphorus,
assessment of dietary phosphorus intake is challenged by incompleteness and inaccuracies of the
available nutrient databases. This has been shown in a number of studies that have compared
estimated phosphorus in foods or meals as listed in nutrient databases to measured phosphorus
and demonstrate a wide range of underestimation of phosphorus content spanning ~15-70% (12-
17). Therefore, care and caution should be taken when estimating phosphorus intake based on

database values.

Hormonal Regulation of Phosphate Homeostasis

The homeostatic regulation of phosphate is controlled primarily by three hormones
produced by the kidney (1,25-dihydroxyvitamin D, 1,25D), bone (fibroblast growth factor-23,
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FGF-23), primarily from osteoclasts but also osteoblasts), and parathyroid glands (parathyroid
hormone, PTH). To the best of current knowledge, transient elevations in serum phosphate are
indirectly sensed when ionized serum calcium complexes with phosphate, decreasing
extracellular calcium concentrations. This results in the elevation of PTH mRNA stability and
increased PTH secretion. Elevated serum phosphate can also increase PTH secretion independent
of changes in ionized or total calcium (18-22). PTH binds its receptor, PTHRL, in the renal
proximal tubule and signals the internalization of intramembranous sodium-phosphate
cotransporter proteins, NaPi-2a and NaPi-2c, leading to a reduced reabsorption of phosphate and
greater urinary phosphate excretion. In the bone, chronic PTH signals via osteoblasts and the
RANK-L pathway to increase osteoclastic bone resorption. This releases phosphate (and
calcium) from the bone mineral. In the kidney, PTH increases 1-alpha-hydroxlase in the
proximal tubule which hydroxylates 25-OHD to the active form 1,25D. A study in healthy
humans demonstrated this relationship by injecting PTH and observing an elevated 1,25D (and
also FGF-23) (23). The main action of 1,25D is to increase intestinal calcium absorption but also
phosphorus absorption. However, the net result of elevated PTH is a reduction in serum
phosphate from its effect on increased renal phosphate excretion. Thus, in phosphate
homeostasis, PTH is first and foremost a phosphaturic hormone.

1,25D acts at the intestine to increase phosphate absorption and also increase bone
formation and resorption. However, because a high calcium and phosphorus diet can rescue
impaired mineral homeostasis and the bone phenotype in vitamin D receptor (VDR)-null mice, it
suggests that the primary role of 1,25D is in the intestine (24). 1,25D also completes a feedback
loop to inhibit PTH synthesis and secretion (25). Injection of 1,25D has been shown to increase
FGF-23 in mice and humans (26, 27). FGF-23 is a powerful phosphaturic hormone and
participates in feedback loops with both 1,25D and PTH. FGF-23 binds to the FGFRL1 receptor
with the Klotho co-receptor in the distal tubule of the kidney, where it decreases NaPi-2a and
NaPi-2c in the proximal tubules by an unknown mechanism (possibly paracrine signaling or an
unknown signal-transduction pathway) (25). This results in decreased reabsorption of phosphate
in the kidney and increased urinary phosphate excretion. As stated above, 1,25D increases FGF-
23. Interestingly, dietary phosphate in a high amount (~2500 mg/d) also increases FGF-23 in
humans independent of 1,25D (28), but this vitamin D-independent signaling mechanism is

currently unknown. FGF-23 also provides negative feedback on 1,25D by reducing expression of
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the CYP271b gene which codes for the 1-alpha-hydroxylase enzyme in the kidney to reduce the
production of active 1,25D. PTH and FGF-23 are also in a negative feedback loop where PTH
increases FGF-23 and FGF-23 decreases PTH (Figure 1.1).

Parathyroid gland

PTH

. - Bone
Intestine / \

> Serum » FGF23

phosphate

1,25(0H,)-VitD,

|
Kidney

Figure 1.31. Hormonal regulation of phosphorus. Reprinted with permission from John Wiley
and Sons (29).

The importance of these hormones has been demonstrated in human disease as well as in
transgenic, knockout, and disease models in animals. A number of human genetic disorders have
been identified in genes related to these hormones that support their characterized roles in
phosphate homeostasis. For example, FGF-23 was first recognized as an important phosphate
regulator when missense mutations that result in a reduction in FGF-23 cleavage and increase in
circulating levels were identified as the cause of autosomal dominant hypophosphatemic rickets,
a rare genetic disease characterized by phosphate wasting and bone demineralization (30).
Another example is tumoral calcinosis type 3 which is characterized by deactivating mutations in
FGF-23 that results in hyperphosphatemia and high 1,25D (25). Transgenic mice overexpressing

FGF-23 also show hypophosphatemia along with phosphate wasting and a reduced expression of
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NaPi-2a (31). Similarly, VDR-null mice develop secondary hyperparathyroidism and
hypophosphatemia, largely due to an inability to absorb dietary calcium and phosphate (32).

Evidence for the Presence of Currently Unknown Phosphate Regulators

It has been postulated that a yet unknown phosphatonin(s) are responsible for rapid
adaptations of renal excretion of phosphorus in response to changing dietary intakes that is
independent of known regulators. This is supported by a rat study that infused sodium phosphate
or sodium chloride into the intestinal lumen over a 30 minute period and demonstrated a rapid
increase in urinary phosphate, without a change in serum phosphate, PTH, FGF-23, or sFRP-4,
and also occurring with renal denervation (33). However, the study used a supraphysiologic
phosphorus load of 1.3 M (34). When a 1.3 mM load was tested, the effect was not reproduced
(35). Further, Martin and colleagues have shown a rapid increase (5 minutes) in PTH in response
to duodenal infusion of phosphonoformate (22). Additionally, in healthy humans, 1V or duodenal
infusion of phosphate over a 36 hour period caused an increase in plasma phosphate
concentrations and PTH followed by an elevation in urinary phosphate, and later FGF-23 and a
reduction in 1,25D (18). This temporal response supports known mechanisms of phosphate
regulation. Most recently, Thomas and colleagues showed that rapid phosphaturic responses
elicited by intravenous or intragastric phosphate load are consistent with changes in PTH, as
parathyroidectomy prevented a phosphaturic response (36). Another phosphatonin, matrix
extracellular phosphoglycoprotein (MEPE), was shown by Marks et al. to also affect intestinal
phosphorus absorption after a 3 hour infusion in rats (37). Using an in situ ligated loop method to
measure absorption, they found that MEPE stimulated absorption in the duodenum independent
of changes in serum PTH, 1,25D, or FGF-23. Further studies are necessary to evaluate the effect
of MEPE on NaPi-2b and other known sodium-dependent phosphorus transporters in response to
dietary phosphorus manipulations. Thus, a direct acute signal from the intestine to induce
phosphaturia isn’t strongly supported; PTH remains the likely candidate that mediates these fast

responses.
Alterations in Phosphorus Homeostasis in Chronic Kidney Disease-Mineral Bone Disorder

The relationship of these phosphate regulatory hormones is well-demonstrated in CKD,

where a reduced ability to excrete phosphate in the urine results in an increase in serum
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phosphate concentrations, though this is not clinically detectable until very late in kidney failure
because of the ensuing hormonal cascade that maintains homeostasis. CKD-Mineral Bone
Disorder (CKD-MBD) is characterized by abnormalities in laboratory values related to calcium
and phosphate homeostasis, bone abnormalities, and vascular and other soft tissue calcifications
(38). As kidney function declines, FGF-23 first increases and is followed by a reduction in
1,25D, and an increase in PTH in temporal sequence as renal function declines (39). Although
PTH and FGF-23 are both elevated in CKD and have opposing actions on the 1-alpha-
hydroxylase enzyme, 1,25D concentrations fall in both humans and animal models (2, 40),
indicating the strength of FGF-23 relative to PTH regarding their effects on 1,25D. Until the
discovery of FGF-23 and its functions, the decline in 1,25D with kidney disease was thought to
occur because of decreased kidney function including that of the 1-alpha-hydroxylase enzyme.
However, it is now known that the direct action of FGF-23 to suppress conversion of 25D to
1,25D via the 1-alpha-hydroxylase enzyme is instead responsible. PTH is elevated in kidney
disease as a result of signaling through increased serum phosphate and subsequently lower serum
ionized calcium (as described above), and through the removal of the suppressive effect of 1,25D
on PTH. Thus, the overall purpose of the alterations in the phosphate-regulating hormones in
CKD-MBD are to increase urinary phosphate excretion via the actions of the phosphaturic
hormones FGF-23 and PTH, and decrease intestinal phosphate absorption through decreased
levels of 1,25D. Unfortunately, these alterations are not benign, nor are they sufficient to stave
off hyperphosphatemia in later kidney failure. The off-target effects include but are not limited to
increased bone resorption as a result of elevated PTH and lower calcium absorption due to
decreased 1,25D, as well as increased left ventricular hypertrophy as a result of increased FGF-
23. Vascular calcifications in turn are increased due to hyperphosphatemia and are potentially
exacerbated by pharmacologic efforts to decrease PTH (such as through calcium loading by
calcium-based phosphate binders, or through calcitriol or active vitamin D analogs). The clinical
consequences of CKD-MBD are increased risk of bone fragility fractures, cardiovascular events,
and death. In fact, fractures are ~4 times more prevalent in end-stage kidney disease patients
compared with the general population (41), and cardiovascular mortality (not kidney failure) is
the leading cause of death in patients with CKD (42).
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Renal Reabsorption of Phosphorus

An introduction to mechanisms of renal reabsorption of phosphorus is helpful in
understanding intestinal absorption of phosphorus. This is because the renal mechanisms were
identified first and have been more fully elucidated, and because notable similarities as well as
differences exist between renal reabsorption and intestinal absorption mechanisms.

The kidney is the central point in the regulation of phosphorus balance in response to
changing dietary intake. In the rat, renal phosphorus reabsorption is upregulated within 2-4 hours
of dietary phosphorus restriction (43, 44), while oral administration of phosphorus promotes
renal excretion in under one hour (33, 45). When renal mass is reduced, there is a delay in the
renal adaptation to a low phosphorus diet, but in the 5/6 nephrectomy rat model plasma
phosphate can be maintained until renal function declines to less than 20% of normal (46).

The majority of renal reabsorption (~80%) occurs in the proximal tubules by a sodium-
dependent process (47). Sodium-dependent phosphate transport in the kidney is mediated by
three families of transporters: type I, type 11, and type 111, which correspond to genes of the
solute carrier series SLC17, SLC34, and SLC20 (48). The two major transporters in the kidney,
sodium-dependent phosphate co-transporter type Il a and ¢ [NaPi-2a (SLC34A1) and NaPi-2c
(SLC34A3)], were discovered through expression cloning (49-51). Both are present at the brush
border membrane (BBM) in proximal tubule cells but are absent in other nephron segments.
More recently, a transporter of SLC20 family, PiT2 (SLC20A2) was identified in the proximal
tubule, although at a low expression (47, 52) (Figure 1.2).
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Figure 1.2. Renal phosphate transporters. Reprinted with permission from the American Society
of Nephrology (53).

Intestinal Absorption of Phosphorus

Intestinal phosphorus absorption occurs by both sodium-dependent transcellular and
sodium-independent paracellular pathways primarily in the proximal small intestine in humans
and in rats. In contrast to phosphorus transport in the kidney, which is largely sodium-dependent,
McHardy and Parsons (54) first showed that intestinal phosphorus absorption occurred by both
pathways using an oral gavage method in rats. Many subsequent experiments have assessed the
relative contributions of sodium-dependent and independent pathways in the intestine, and
results vary widely with sodium-dependent contributing between ~0-80% of total transport,
likely dependent on the phosphate concentration and absorption technique used (Table 1.1). In
situ and in vivo methods likely underestimate sodium-dependency because of endogenous

secretion of sodium and residual luminal phosphate concentrations, which would favor higher
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passive absorption (55). The regional distribution of intestinal absorption in the intestine has
been shown to occur highest in the proximal intestine in humans and rats, whereas the rate of
absorption is higher in the ileum in mice (Table 1.2). In vivo compartmental analyses that
account for both the absorption rate and transit time demonstrate that distal intestine is where
~40-46% of phosphorus is absorbed (56, 57).

The major intestinal phosphate transporter was identified as NaPi-2b (SLC34Az2) using
the cDNA library screening method to find transporters homologous to NaPi-2a or 2¢ (58, 59),
and is present in the apical BBM of enterocytes (58). PiT1 (SLC20A1) and PiT2 (SLC20A2)
were identified in intestinal BBM after being identified as sodium-dependent transporters in
other tissues (60-62), and purportedly contribute <10% of sodium-dependent transport, although
knockout models have not been performed to confirm this (Figure 1.3). Regional phosphate
transporter distribution among species generally follows absorption patterns (Table 1.3).
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Figure 1.3. Intestinal phosphate transporters. Reprinted with permission from John Wiley and
Sons (29).

Recent studies have further evaluated the relevance of NaPi-2b with knockout models.

Ikuta et al. evaluated intestinal uptake in BBM vesicles (BBMV) and via the everted gut sac
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method in NaPi-2b knockout mice and showed reduced BBMV uptake with knockout, but gut
sac uptake was only significantly decreased when the transport buffer phosphate concentration
was 1 mM and not 4 mM (63). This may indicate a reduced relevance of NaPi-2b as luminal
concentration increases, with a higher occurrence of passive absorption. Interestingly, although
NHE3, PiT1, nor PiT2 mRNA changed from NaPi-2b knockout, several claudin mRNA and
protein levels were reduced, although the significance of this is unclear. The hypothesis that the
active component of phosphorus absorption via NaPi-2b may be relatively most important to
overall phosphorus absorption when dietary phosphorus is low is further supported by a study by
Knopfel et al. who showed that a low phosphate diet in NaPi-2b knockout mice was insufficient
to maintain plasma phosphorus and resulted in bone demineralization compared to adequate to a
high phosphate diet (64). NaPi-2b knockout in an adenine induced mouse model of CKD
reduced serum phosphate, but FGF23 and some bone parameters were improved only when a
phosphate binder was added (65). Interestingly, through manipulation of dietary phosphate, pH,
and the NaPi-2b inhibitor phosphonoformate, Candeal et al. found that the changes in known
phosphate transporters are unable to fully explain changes in intestinal transport, suggestive of
still unknown transporters (66). The identity of basolateral transporter(s) of phosphorus is still
unresolved (67).

Although renal adaptation to changes in dietary phosphorus is important to maintain
phosphorus homeostasis, the intestine also plays a role. However, the relative ability of the
intestine to regulate phosphate homeostasis in response to dietary changes or when kidney
function fails is questionable. How intestinal P absorption is regulated has long been a subject of
inquiry but has become more accessible recently with the characterization of intestinal
transporters.

As discussed above, 1,25D is the phosphate-regulating hormone that has a primary role in
regulating intestinal phosphorus absorption. This was first shown by Chen and colleagues in
vitamin D deficiency by feeding 1.1 mg of cholecalciferol to rats on a rachitogenic diet (68).
Phosphate uptake increased in the duodenum and jejunum vs control animals, as measured by the
everted sac method. Many other studies injecting 1,25D have confirmed this observation in
animals (68-93) and humans (94). The administration of 1,25D has also been shown to increase
NaPi-2b expression in parallel with absorption. 1,25D was given intraperitoneally to mice fed a

normal phosphorus diet (0.85%), and absorption measured by rapid filtration 24 hours later (95).
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1,25D increased absorption efficiency and NaPi-2b protein levels but not NaPi-2b transcript
levels, suggesting a post-transcriptional regulation.

In addition to the hormonal effects of 1,25D on intestinal phosphorus absorption, two
important factors that have been identified by some studies that influence intestinal P absorption
efficiency are 1) the level of phosphorus in the diet, and 2) age of the animal. Many animal
studies since the 1970s have examined the effect of phosphorus deficiency on intestinal
transport. Decreasing the level of dietary phosphorus to deficiency consistently increases
sodium-dependent intestinal phosphorus uptake when measured using the rapid-filtration
technique in isolated BBMV in rats (60, 66, 96, 97) and mice (95, 98-100). Further, Lee and
colleagues demonstrated an increased active transport as measured by the Ussing technique in
the jejunum (101). NaPi-2b gene expression tends to increase in most (52, 102-104) but not all
(105-107) studies when dietary phosphorus is restricted, while NaPi-2b protein consistently
increases (52, 66, 102-104, 107), suggesting post-transcriptional regulation of the transporter
under certain conditions. Other transporters such as PiT1 and PiT2 are unchanged in response to
dietary phosphorus restriction (52, 105) except in one study (66), which found differences in
expression of these transporters depending on duration of dietary phosphorus restriction.
Intestinal uptake in isolated intestinal segments may not reflect physiologic conditions. Marks et
al. found no change in jejunal absorption efficiency as measured by the ligated loop in CKD rats
in response to dietary phosphorus restriction (106), while Rizzoli et al. found conflicting
responses in healthy female rats as measured by the ligated loop in the duodenum dependent on
length of restriction and concentration of phosphorus (72).

For several reasons, it was thought that elevated 1,25D mediated the adaptive increase in
active phosphate absorption in response to a low phosphorus diet. Animal studies of dietary
phosphorus restriction have consistently demonstrated concurrent effects of restriction on
increased 1,25D levels and phosphorus absorption. In chicks, an oral gavage method was used to
assess intestinal phosphorus absorption efficiency in response to a low and normal phosphorus
diet (56). Dietary phosphorus restriction caused an elevation in 1,25D concentration as well as an
increase in phosphorus absorption efficiency. Danisi et al. studied rats fed a low (0.02%)
compared to normal (0.6%) and found that sodium-dependent transport was increased, but this
change was preceded by an increase in plasma 1,25D (57). Sruissadaporn et al. studied rats on a

low phosphorus diet of 0.1% compared to a normal diet of 0.65% for 10 days, and found that



24

serum 1,25D levels were increased by feeding the low phosphorus diet (58). Collectively, these
studies are consistent with a regulatory role for 1,25D in intestinal phosphorus absorption.

Despite increases in 1,25D in response to low phosphorus diets and increases in
absorption in response to 1,25D administration, VDR knockout studies indicate that elevated
1,25D is not required for the increase in phosphorus absorption efficiency that occurs with
dietary phosphorus restriction. Segawa et al. compared phosphate uptake by rapid filtration in
BBMV in VDR knockout and wildtype mice on normal (0.5%) and low (0.25%) phosphorus
diets (102). Although the VDR knockout reduced phosphorus uptake in mice on the normal diet,
neither the adaptive increase in phosphorus uptake nor NaPi-2b levels were diminished by the
loss of VDR in response to the low diet. The vitamin D independence of that adaptive increase in
phosphorus absorption efficiency following dietary phosphorus restriction was confirmed by
Capuano and colleagues in studies using both VDR and CYP27B1 (1-alpha-hydroxylase gene)
knockout mouse models (103). In addition, these authors also found that intestinal NaPi-2b
MRNA levels were increased to a similar extent when wild-type and VDR knock-out or
CYP27B1 knock-out mice were fed a low (0.1%) phosphorus diet compared to a normal
phosphorus diet (0.8%). Together these data suggest that neither 1,25D nor its binding to VDR
are required for the increase in active phosphorus absorption that occurs during phosphorus
restriction. The alternative, nongenomic signaling pathway through the membrane-associated,
rapid-response, steroid-binding (MARRS) receptor has been shown to mediate 1,25D stimulated
phosphate uptake (108, 109), although changes in uptake and NaPi-2b in response to phosphate
restriction likely occur too slowly to be explained by this pathway. Additional candidates are
required to further understand absorption regulation in this context.

Animals experience rapid growth during the early stages of life, and like other nutrients it
may be expected that there is an upregulation of intestinal absorption of phosphorus to support
tissue accrual. The effect of age was first studied in rodents by Borowitz and colleagues, who
showed an increase in sodium-dependent and -independent transport in younger rats in the
jejunum using the rapid-filtration technique (1985 cite). Other in vitro uptake studies have
confirmed this finding in rats (Ghishan 1988; Xu 2002) and mice (Arima 2002). Armbrecht
(1986) similarly showed an increased uptake in young rats in the duodenum and jejunum but not
ileum in young rats using the everted gut sac method. The effects of age are further discussed in
Chapter 3.
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Additional factors have been studied to a lesser extent on their impact on intestinal
absorption of phosphorus. Acute glucocorticoid treatment has been shown to inhibit sodium-
dependent phosphate uptake in rabbits (110), and rats concurrent with a reduction in NaPi2b
MRNA (111). Administration of a glucocorticoid for 7 days has been shown to increase passive
absorption of phosphate in all intestinal segments except the colon in rats (112). In pigs, acute
glucocorticoid administration caused an increase in absorption but chronic treatment resulted in a
downregulation (113, 114). Inhibitors of protein synthesis also decrease absorption, suggesting
that such proteins that have a rapid turn-over influence absorption (114). Exogenous growth
hormone increased net phosphorus absorption in pigs (115) Estradiol administration in rats
increased BBMV uptake via NaPi-2b mRNA/protein (116). Epidermal growth factor inhibits
NaPi-2b mRNA (117). Phosphophloretin derivatives (118, 119) as well as phosphonoformic acid
(66, 120, 121) and liver X receptor agonism (122) also inhibit sodium-dependent BBMV uptake.
Diaminobutane dendrimers have also been explored as phosphate binders (123), while additional
binders are discussed below. Metabolic acidosis increases sodium-dependent BBMV uptake
(124, 125) via post transcriptional regulation of NaPi-2b (124). Finally, energy status may
influence NaPi-2b regulation through changes in AMPK-mTOR via the AMP:ATP, which may

be an adaptive response to turn ATP-generating and -consuming pathways on and off (126).
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Table 1.1. Differences between absorption methods in estimating the proportion of intestinal

[P] (mM)
0.1

10
0.5
0.1
10
~0.1

0.1
1

sodium-dependent uptake/absorption.

Na+ -dependent (% of total)

Duodenum Jejunum

0 32
0 29
0

(all segments)

48 73

48 53

~50 ~50
~40
~30

52

10

lleum

Ref
(55)

(55)
(127)
(55)
(55)
(104)

(128)
(128)

Table 1.2. Species differences in rate of absorption of intestinal phosphate.

Species  Technique

Rat Ligated loop

(SD)

Rat Ligated loop

(SD)

Rat Oral gavage

(SD)

Rat Everted sac

(SD)

Rat Everted sac

(SD)

Mouse  Rapid filtration

Human Rapid filtration

Human  Rapid filtration

Species Technique

Rat (SD) Ligated
loop/everted
sac

Rat (SD) Ligated loop

Rat Ussing

(Holtzman)

Human Triple
lumen
perfusion

Mouse Ligated loop

(C57BL/6)

Pig Ussing

Segment
with
highest rate
Jejunum

Duodenum
Jejunum

Jejunum

Ileum

Jejunum

2" highest

Duodenum

Jejunum
Duodenum

lleum
Jejunum/duode

num
Duodenum

3rd

lleum

lleum
lleum

lleum
(negligibl
e)

4th

Distal
colon

Ref
(59)
(91)
(129)

(130)

(91)

(131)
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Table 1.3. Species segmental differences in intestinal phosphate transporter gene and protein

expression.
Species Gene or Protein Duodenum Jejunum  lleum Colon Ref
Rat Slc34a2 mRNA 2 1 - (52, 91)
(NaPi2b)
Rat NaPi2b protein 2 1 - (52)
Rat Slc20al mRNA 3 2 1 (52)
(PiT1)
Rat PiT1 protein 2 1 - (52)
Rat Slc20a2 mRNA 2 1 1 (52)
(PiT2)
Mouse  Slc34a2 mRNA 3 2 1 (91,
(NaPi2b) 104)
Mouse NaPi2b protein - 2 1 (91,

104)
Numbers indicate rank (1 = highest, 3 = lowest) of expression of each gene/protein.

Role of Dietary Phosphorus in Renal Disease Progression

Strictly controlling the level of dietary phosphorus has been shown to slow the
progression of renal disease in both animal and human studies. In Sprague-Dawley rats with 5/6
nephrectomy, Ibels et al. showed that a low phosphorus (0.04%) compared to normal diet (0.5%)
for 82 days prevented renal calcification (132). Haut and colleagues showed studied
uninephrectomized, partially nephrectomized, and intact Sprague-Dawley rats on 3 different
phosphorus levels (0.5%, 1%, and 2%) (133). At each increase in phosphorus, particularly in the
nephrectomized rats, there was an increase in renal calcium and a higher abnormal histology.
Kusano et al fed irreversible Thy1 rats, a uremic model, a low (0.3%) or normal (0.5%)
phosphorus diet and observed a preservation of renal function as assessed by histopathology
(134). In a related study using the same rat model and dietary phosphorus levels as used by Ibels
et al. (132), Karlinksky and colleagues found that renal function, as measured by urinary
creatinine, was maintained on a low phosphorus diet. As a result, 73% of rats fed the low
phosphorus diet were alive after 133 days versus 8% of the rats fed diets with normal phosphorus
levels (135). In humans with chronic renal failure, restricting dietary phosphorus from 900 mg/d
to ~700 mg phosphorus diet reduced urinary creatinine levels (136). Barsotti and colleagues
found that uremic patients consuming a 7.0 mg phosphorus per kg body weight diet had a

reduced creatinine clearance after 11.3 months compared to a control group following a 12 mg
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phosphorus per kg body weight per day diet (137). However, while dietary phosphorus
restriction is suggested by the Kidney Disease: Improving Global Outcomes (KDIGO)
organization for CKD stages 3-5 (138), there are practical considerations that may make this
difficult in free living people. For example, dietary phosphorus is highly positively correlated
with dietary protein (139). However, although lower protein intake reduces serum phosphate, it
is associated with poorer survival in hemodialysis patients (140, 141). Additionally, a post hoc
analysis of a randomized controlled trial in hemodialysis patients found that, compared to
patients who consumed their normal diets, patients prescribed to phosphorus levels between
1001 and 2000 mg per day had a reduction in mortality (median follow-up = 2.3 years) (142).
The difficulty of separating phosphorus and protein is compounded by the ubiquity of
phosphorus in the food supply. In dialysis patients, the typical 3x weekly dialysis sessions each
remove ~1,000 mg of phosphorus (143), but this is easily replaced by the average dietary intake.
To only reduce phosphorus, pharmacologically targeting the intestinal absorption of phosphorus
may be more effective in this condition than diet modifications alone. Currently, KDIGO
guidelines suggest the use of phosphorus binders to prevent intestinal absorption and manage
hyperphosphatemia in stages 3-5 of CKD. Binder development has progressed through several
eras since the 1970s. The various binders and other agents used or in development to limit

dietary phosphorus absorption are reviewed in Appendix A.
Role of Phosphate in Non-Skeletal Mineralization

Phosphate plays an important physiologic role in skeletal mineralization (Appendix B).
But, the actions of elevated serum phosphate can also affect vascular mineralization. It is well
established that there is an elevated association between cardiovascular morbidity and mortality
and increasing serum phosphate levels in healthy populations (144, 145) as well as people with
CKD. Associations also exist between PTH and cardiovascular disease in CKD patients (146),
and FGF-23 is associated with mortality in CKD patients (147).

A possible explanation for such associations is an increased calcification mediated by the
changes in these hormones. Indeed, vascular calcification is prevalent in CKD- apparent in about
30-65% of patients with stage 3-5 CKD and 50-80% in end stage, as well as different rat models
of CKD (eg Cy/+, (148), 5/6 nephrectomized) (149). In rats, high PTH has been shown to be

important in stimulating high phosphate-induced vascular smooth muscle cell (VSMC)
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osteogenic differentiation and vascular calcification (150). Interestingly, however, in a rat model
of CKD (5/6 nephrectomy), chronically neutralizing FGF-23 with an antibody decreased FGF-23
but increased aortic calcification and mortality, consequent to an increase in serum phosphate
(151). This suggests that serum phosphate may play a more important role in cardiovascular
outcomes through its calcifying role. Indeed, in vitro mechanistic evidence thus far suggests that
the elevated phosphate itself is critical in triggering vascular calcification.

Recent studies have demonstrated the ability for high phosphate to induce the
transformation of VSMCs to osteoblast-like cells in culture (152-154). Osteopontin and alkaline
phosphatase expression were increased in the two studies that measured them (152, 154),
markers of phenotypic change and mineralization. Calcium content of the cells was increased in
one study (153). The transcription factor Cbfal/Runx2 was also upregulated in response to
elevated phosphate concentration (154), which is important to osteoblast differentiation in bone
and is also induced by PTH (155). The sodium-dependent phosphate transporter PiT1 has been
found to be upregulated in VSCMs exposed to elevated phosphorus in culture (153), and
inhibiting PiT1 expression in human smooth muscle cells reduced sodium-dependent phosphate
transport and calcification in vitro (156). This suggests that elevated phosphate transport itself
initiates these changes.

After the phenotypic changes of VSMCs to osteoblast-like cells, bone alkaline
phosphatase is induced and degrades the mineralizing-inhibitor pyrophosphate (155). They then
become calcified similar to bone: collagen and other proteins are secreted into the intima or
media, and accumulate phosphorus and calcium which mineralizes into hydroxyapatite (157). It
is important to note that the fate of mineralization is not definite after phenotypic changes occur.
A number of local and circulating proteins have been identified that can inhibit this process, such
as fetuin-A, which is inversely associated with vascular calcification in dialysis patients (158),
and osteopontin which inhibits vascular calcification (155) as demonstrated in osteopontin -/-
mice that experience increased calcification (159). Another, sclerostin, is inhibited by high PTH
which is increased in CKD, and together with elevated phosphate contributes to a pro-calcifying
milieu (150).

In addition to hormonal changes in CKD, a recent study found increased non-renal
clearance, particularly to vascular tissue, of labeled IV phosphate and calcium within 30 minutes

in CKD rats compared to controls, that was independent of changes in PTH and FGF-23,
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suggesting additional mechanisms of deposition are not yet understood (160). Further, high
phosphate may directly alter vascular function independent of mineralization (161), and has also

been shown to lead to an increase in blood pressure in healthy humans (162).
Importance of Understanding Intestinal Phosphorus Absorption

Because of the central role phosphorus plays in renal disease progression and CKD-MBD
cardiovascular and bone abnormalities, it is of great importance to understand mechanisms of
intestinal phosphorus absorption, including the intestine’s ability to adapt to various factors
including diet, age, and kidney function decline. Probing this capacity with physiological
methods of measuring absorption will illuminate the relative importance of the active pathway of
intestinal absorption. Further, it will provide insight into the potential and importance of
currently unresolved regulators of intestinal phosphorus absorption that may be of clinical
interest to the treatment of CKD-MBD.
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CHAPTER 2: PHOSPHORUS BALANCE IN ADOLESCENT GIRLS AND
THE EFFECT OF SUPPLEMENTAL DIETARY CALCIUM

Published: Vorland CJ, Martin BR, Weaver CM, Peacock M, Hill Gallant KM (2018)
Phosphorus Balance in Adolescent Girls and the Effect of Supplemental Dietary Calcium. JBMR
Plus 2(2): 103. d0i:10.1002/jbm4.10026.

Abstract

There are limited data on phosphorus balance and the effect of dietary calcium
supplements on phosphorus balance in adolescents. The purpose of this study was to determine
phosphorus balance and the effect of increasing dietary calcium intake with a supplement on net
phosphorus absorption and balance in healthy adolescent girls. This study utilized stored urine,
fecal, and diet samples from a previously conducted study that focused on calcium balance.
Eleven healthy girls ages 11 to 14 years participated in a randomized crossover study, which
consisted of two 3-week periods of a controlled diet with low (817 = 19.5 mg/d) or high
(1418 £ 11.1 mg/d) calcium, separated by a 1-week washout period. Phosphorus intake was
controlled at the same level during both placebo and calcium supplementation (1435 +23.5 and
1453 +28.0 mg/d, respectively, p=0.611). Mean phosphorus balance was positive by about
200 mg/d and was unaffected by the calcium supplement (p = 0.826). Urinary phosphorus
excretion was lower with the calcium supplement (535 +42 versus 649 £41 mg/d, p=0.013), but
fecal phosphorus and net phosphorus absorption were not significantly different between placebo
and calcium supplement (553 + 60 versus 678 + 63 versus mg/d, p=0.143; 876 + 62 versus
774 + 64 mg/d, p=0.231, respectively). Dietary phosphorus underestimates using a nutrient
database compared with the content measured chemically from meal composites by ~40%.
These results show that phosphorus balance is positive in girls during adolescent growth and that
a calcium dietary supplement to near the current recommended level does not affect phosphorus

balance when phosphorus intake is at 1400 mg/d, a typical US intake level.
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Introduction

Because of rapid growth in adolescence, the phosphorus recommended dietary allowance
(RDA) for girls and boys ages 9 to 13 years is set at 1250 mg/d, nearly twice as high as the RDA
of 700 mg/d for adults (1). Data from the National Health and Nutrition Examination Survey
(NHANES) show that the average intake of phosphorus in this age group for girls is 1176 mg/d,
and 66% of children in this age group meet the estimated average (median) requirement
(2). Dietary calcium binds phosphorus in the intestine and impairs its absorption. The interaction
between phosphorus and calcium in the intestine in healthy adults demonstrated that the
phosphorus binding capacity of calcium carbonate and calcium acetate is approximately 45 mg
phosphorus per gram calcium salt (3). Thus, calcium salts are used as phosphate binders to
prevent or lower hyperphosphatemia in patients with chronic kidney disease (CKD) (4).

Limited information exists on phosphorus balance and the effect of a dietary calcium
supplement on phosphorus retention during adolescent growth to inform the phosphorus Dietary
Reference Intakes (DRI) (5-7). This deficit in knowledge is particularly important because it is
estimated from NHANES data that 24% of females ages 9 to 13 years use supplemental calcium
(8).

The aims of this study were to describe phosphorus balance in adolescent girls and
determine the effect of a dietary calcium supplement on phosphorus skeletal retention using
stored samples from a previous study that examined the effect of particle size of calcium
supplementation on calcium balance (9). In addition, because of the uncertainty of the accuracy
of dietary phosphorus intake from food composition tables, we tested the relationship between
dietary intake estimated from food composition tables and from chemical analyses of the diet
during the balance study.

Materials and Methods
Subjects and Study Design

Stored samples from adolescent girls who participated in calcium balance studies during
the summer of 2007 were analyzed for phosphorus content. A detailed description of the original
study is described elsewhere (9). Briefly, healthy adolescent girls, ages 11 to 14 years,
participated in a randomized crossover study that consisted of two 3-week balance studies,

separated by a 1-week washout period to compare calcium balance in subjects when they were
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given small particle-size calcium carbonate supplements, large particle-size calcium carbonate
supplements, or a placebo. The original study found no difference in calcium balance between
small and large particle-size calcium carbonate but significantly greater positive calcium balance
from small particle size than placebo (9). Eleven of the 12 participants who were in the study
arm that compared small particle-size calcium carbonate with placebo are included in the present
analysis (Table 2.1). One participant was excluded from the present analysis because of
insufficient stored fecal sample. Two of the 11 participants included completed only one of the
two crossover periods. Race and ethnicity were self-reported by questionnaire. Height and
weight were measured with a stadiometer and scale and used to calculate height-for-age, weight-
for-age, and body mass index (BMI)-for-age percentiles from the Centers for Disease Control
(CDC) growth charts using the Statistical Analysis Software (SAS) files available online from
CDC (10). Sexual maturation stage was determined by breast development using a Tanner
Sexual Maturity Form by self-assessment (11). The balance studies were conducted in a
controlled environment in the form of a summer camp. Participants were fed a controlled diet
(containing ~800 mg/d calcium) and randomized to receive either an additional 600 mg/d of
elemental calcium from calcium carbonate capsules or placebo (Fig. 2.1). The controlled diet
consisted of a 4-day cycle menu with consistent phosphorus, calcium, sodium, and protein
content. Participants were allowed to consume deionized water ad libitum. Diets of differing
energy content (1300 kcal/d, 1600 kcal/d, and 1900 kcal/d) were designed to meet the energy
requirements of the participants as estimated by the Harris-Benedict equation (12), and weekly
body weights were monitored for weight maintenance. During each 3-week balance study, all
fecal and urine samples were collected, and participants were closely monitored for diet, fecal,
and urine collection compliance. Duplicate diet composites were made at the time of each meal,
pooled by 24 hours, and frozen. Thawed composites were homogenized, freeze-dried (FTS
Systems Inc., Stone Ridge, NY, USA), and stored for later analysis. Any uneaten food was
offered again to participants during the same 24-hour period, and complete intake was
encouraged. Uneaten food at the end of the 24-hour period was saved, weighed, and analyzed to
determine accurate intake. Polyethylene glycol (PEG), a nonabsorbable fecal marker, was
provided with each meal (PEG E3350, Dow Chemical Co., Midland, MI, USA, prepared in
capsules by Delavau LLC, Philadelphia, PA, USA). Pill counts, urine creatinine, and fecal PEG

recovery were used as compliance measures as described previously (9).



51

Measures
Dietary, fecal, and urine phosphorus content

Dietary phosphorus was estimated from study menus using Nutrition Data System for
Research 2007 (NDSR, Nutrition Coordinating Center [NCC], University of Minnesota,
Minneapolis, MN, USA), and stored diet composite samples were analyzed for phosphorus.
Freeze-dried diet and thawed fecal homogenates (stored at —20°C) were ashed in a muftle
furnace (Thermolyne Sybron Type 30400, Dubuque, 1A, USA) at 600°C for 3 days. Ashed diet
and fecal samples were diluted with 2% nitric acid. Acidified urine samples (stored at —40°C)
were thawed and diluted with 2% nitric acid. Phosphorus was measured in diet, fecal, and urine
samples by inductively coupled plasma-optical emission spectrometry (ICP-OES; Optima
4300DV, Perkin Elmer, Shelton, CT, USA). Daily urinary phosphorus excretion was adjusted
based on average daily creatinine excretion (9) for each participant to correct for timing and

incomplete sample collection errors.
Phosphorus balance and net absorption calculations

The first week of each 3-week study was used as an equilibration period to the calcium intake
level, and balance calculations were based on the last 2 weeks of each 3-week study. For each
balance period, balance, net absorption, and percent net absorption were calculated. Balance is
calculated as dietary phosphorus intake (mg/d) minus urine and fecal phosphorus excretion

(mg/d); net absorption as phosphorus intake (mg/d) minus fecal excretion (mg/d); and percent

net absorption as net absorption (mg/d) divided by dietary intake (mg/d) x 100.
Statistical Analysis

Repeated measures ANOVA for crossover designs using the PROC MIXED procedure with
subject as a random effect was used to compare treatment differences and included analysis for
order and period effects. Unpaired t-tests were used to compare estimated and analytically
measured dietary phosphorus and calcium. Statistical significance was set at a. < 0.05. Statistical
Analysis Software (SAS Institute, Cary, NC, USA) version 9.3 was used for all statistical

analysis. Results are reported as mean = SEM unless otherwise indicated.
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Results

The majority of girls were of white race and non-Hispanic ethnicity (Table 2.1). Mean
BMI-for-age was greater than the 50th percentile. All were healthy and were recruited from
Indiana, Illinois, and Ohio.

Phosphorus measured chemically in the daily diet samples from the placebo phase and
from the calcium carbonate was 39% and 40% greater than the phosphorus content estimated by
NDSR (p <0.001), respectively. Calcium measured in the diet samples was not different from
estimated calcium content from NDSR in the placebo phase and was 2% higher than estimated
on the calcium phase (p=0.013, Table 2.2). Dietary phosphorus intake measured chemically did
not differ between placebo and calcium (p=0.611, Table 2.2), and calcium intake was
significantly different by design between placebo and calcium phases.

Overall phosphorus balance was not different between calcium and placebo (245 £ 81 mg
versus 228 = 79 mg; p=0.826, NS) (Fig. 2.2). Fecal phosphorus was not significantly different
between calcium and placebo (678 £ 63 mg versus 553 + 60 mg; p=0.143, NS), whereas urinary
phosphorus was 114 mg/d lower with calcium than with placebo (535 =42 mg versus
649 £41 mg, p=0.013). Net phosphorus absorption was not significantly different on calcium
compared with placebo expressed as either mg/d (774 + 64 mg/d versus 876 + 62 mg/d; p=0.231,
NS) (Fig. 2.3A) or as percent of intake (53 £4% versus 61 £4%; p=0.186, NS).

As previously reported (9), calcium balance was 307 mg/d higher on calcium compared
with placebo, (519 +£48 mg/d versus 212 + 46 mg/d; p=0.002), fecal calcium was higher
(857 +56 mg/d versus 517 + 54 mg/d; p=0.001), whereas urinary calcium was not significantly
different (114 £+ 26 mg/d versus 84 +26 mg/d; p=10.079, NS) (Fig. 2.4). Net calcium absorption
was higher on calcium compared with placebo (569 £+ 55 mg/d versus 301 =53 mg/d; p=0.004)
(Fig. 2.3B).

Serum calcium, phosphate, 250HD, 1,25(0H)2Ds, parathyroid hormone (PTH),
osteocalcin, alkaline phosphatase (ALP), bone alkaline phosphatase (BAP), and creatinine-
corrected urinary N-terminal telopeptide (NTx) and free deoxypyridinoline (DPD) were not
different between the placebo and calcium (Table 2.3). Values were within normal ranges on

both placebo and calcium supplement.
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Discussion

In this 3-week randomized, placebo-controlled crossover balance study, adolescent girls
were in positive phosphorus balance of about 200 mg when consuming just over 1400 mg of
phosphorus per day. Because bone contains approximately 85% of the body's phosphorus stores
(13), the bulk of the retention is presumed to be in the skeleton, reflecting the high rate of
skeletal growth during adolescence. A calcium supplement of 600 mg/d had no effect on this
phosphorus retention but did increase the calcium retention by more than 300 mg/d. In girls ages
9 to 13 years, average estimated calcium intake from the diet is 968 mg/d (8), and thus
supplements may be used to achieve the calcium RDA of 1300 mg/d (14). The calcium
supplement affected phosphorus metabolism in the expected direction by decreasing urinary
phosphorus, but the decrease in net phosphorus absorption was not statistically significant. This
may be attributable to the higher variability in fecal phosphorus measurements compared with
urinary phosphorus.

Urinary phosphorus decreased by 1.9 per 10 mg/d increase in elemental calcium intake in
the calcium carbonate period. In comparison, we previously published a study of similar design
in moderate-stage CKD patients, which showed that there was about 1 mg/d reduction in urinary
phosphorus per 10 mg/d increase in elemental calcium (15). In the CKD study, urinary
phosphorus fell with calcium carbonate supplementation, but there was no increase in fecal
phosphorus, net phosphorus absorption, or overall phosphorus balance. A study of predialysis
CKD patients also observed a ~1 mg/d reduction in urinary phosphorus per 10 mg/d calcium in
patients receiving ~800 mg elemental calcium (16). The difference in reduction in urine
phosphorus with supplemental calcium between our study in healthy adolescents and the CKD
studies probably reflects increased efficiency to retain phosphorus in adolescents compared with
adults with CKD. However, the lower amount of the calcium supplement in the adolescent study,
which provided only ~600 mg/d, may also be a factor.

There are a limited number of phosphorus balance studies in adolescent girls using
different levels of phosphorus and calcium intake. Nearly 100 years ago, Sherman and
colleagues (7) performed a series of balance studies in 9- to 13-year-old girls. Calcium intakes
ranged from 425 to 1794 mg/d with phosphorus intakes ranging from 886 to 2009 mg/d, and
phosphorus balance ranged from —37 to 667 mg/d. Ca:P intake (mass) ratio ranged from 0.48 to
1.03, and there is no relationship between Ca:P intake ratio and phosphorus or calcium balance.
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More than 50 years later, Greger and colleagues (5) provided 12.5- to 14.5-year-old girls a diet
of 1.07 g/d calcium and 0.85 g/d phosphorus and showed that phosphorus balance was positive
(48 =76 mg/d), as was calcium balance (409 £+ 61 mg/d). In a separate study by Greger and
colleagues (6), phosphorus balance was similar to their previous study at 23 + 110 mg/d.
However, the DRIs for phosphorus for ages 9 through 13 years were set based on estimated
phosphorus intake to support observed tissue accretion rather than intakes for maximal retention
because published studies lacked a range of phosphorus intakes to establish maximal retention as
was available for calcium (1). Our study provides additional data at an intake level intermediate
to other studies (~1.4 g/d phosphorus), but studies over a wider range of phosphorus intakes will
be required to determine the intake that achieves maximal retention.

Because 99% of the body's calcium (17) and 85% of the body's phosphorus (13) reside in
bone as hydroxyapatite and assuming that during a 3-week balance period retained calcium and
phosphate are deposited in the skeleton as apatite crystal, the relationship between calcium
retention and phosphorus retention measured by balance should mirror the 2.15:1 mass ratio (5:3
molar ratio) of calcium to phosphorus in bone hydroxyapatite. On placebo, the mass ratio of the
mean calcium balance to mean phosphorus balance is 1.08 and on calcium supplement is 2.47,
which do not agree with the hydroxyapatite 2.15 ratio for placebo but are close for the calcium
supplement. However, apart from two apparent outliers (one with very high calcium balance on
the calcium supplement but with no change in phosphorus balance, and one with very negative
phosphorus balance on the calcium supplement), the individual subjects demonstrate that they do
generally follow a slope similar to the expected ratio line (Fig. 2.5), although the variation is
high and some individuals appear to be higher or lower mineral retainers. This variation probably
represents cumulative errors in the balance technique and differences in retention from natural
variations in adolescent bone and soft tissue growth rates. It probably also reflects the fact that
calcium phosphate is initially deposited in bone with a wide calcium to phosphate ratio (18).

The observation in our study of an underestimation of dietary phosphorus by
approximately 40% in mixed meals is consistent with other studies, which have found
underestimation of phosphorus content in nutrient databases spanning a wide range from ~15%
to 70% (19-24). Recently, Carrigan and colleagues (21) designed 4-day menus to be low or high
in phosphorus additives based on the absence or presence of phosphorus additives on food label

ingredient lists, then analyzed these diets for phosphorus content and compared measured values
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with the estimated values from NDSR software and reported that NDSR underestimated
phosphorus in these diets by ~14%. Other studies have evaluated the accuracy of nutrient
database values for various meat products that list phosphate additives in the ingredients
compared with those that do not. Sullivan and colleagues (22) analyzed the phosphorus content
of 38 chicken products and found on average a 43% underestimation compared with the expected
values. Benini and colleagues (23) measured an average ~70% more phosphorus than estimated
in ham, roast breast turkey, and roast breast chicken products from Italy. In our study, foods with
phosphate additives listed on the ingredient label were matched as closely as possible to items in
NDSR that also listed additive phosphate as an ingredient. It is clear that this method is
insufficient to accurately estimate phosphorus content in mixed meals. To illustrate the potential
impact of this error, we substituted the estimated dietary phosphorus from the nutrient database
analysis in the balance calculations in this study. Doing so resulted in calculations of phosphorus
balance of —170 mg/d and —163 mg/d for the calcium carbonate and placebo periods,
respectively. Without direct chemical analysis of the phosphorus content of the foods used in our
balance studies, we would have erroneously concluded that our subjects were in negative
phosphorus balance on both placebo and calcium supplement conditions. This underscores the
importance of chemical analysis of diet composites in phosphorus balance studies.

This crossover balance study demonstrates that adolescent girls are in positive
phosphorus balance of an average 200 mg/d on a diet of ~800 mg/d calcium and ~1400 mg/d
phosphorus. When calcium intake is increased from ~800 mg/d to ~1400 mg/d with a calcium
carbonate supplement, phosphorus balance is unchanged despite a more positive calcium
balance. Increasing dietary calcium levels within a normal dietary range (from typical intake
level to around the RDA level) does not negatively impact phosphorus balance when phosphorus
intake is at a level typically consumed in the United States. In addition, we confirm the need to
improve estimations of phosphorus in foods in nutrient databases.
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Table 2.1. Baseline Participant Characteristics

White/Asian, n
Hispanic/other, n

Age, years
Height-for-age, percentile
Weight-for-age, percentile
BMI, kg/m?

BMI-for-age, percentile

10/1

1/10
13.5+0.98 (11.3-14.6)
48.9+29.1 (6.9-97.9)
60.1+32.8 (2.9-98.9)
21.3+2.8(19.4-27.2)

62.3+34.2 (6.2-97.1)

Tanner stage, breast, n for stages 1-5a 0/2/3/2/2

BMI =body mass index.
Mean £+ SD (min-max), unless otherwise indicated.
& Data are missing for 2 participants.

Table 2.2. Estimated and Measured Dietary Phosphorus and Calcium

Estimated Measured Estimated Measured
phosphorus phosphorus (mg) = calcium (mg) calcium (mg)
(mg)

Diet with 1031 +5.6 1435 £23.5%* 784 +0.05 817+19.5

placebo

Diet with 1037+7.4 1453 +28.0%* 1384 +0.07* 1418 £ 11.1%**

calcium

carbonate

Mean + SEM.

*p <0.05 measured calcium versus estimated calcium; **p <0.001 measured phosphorus versus
estimated phosphorus; #p < 0.001 diet with placebo versus calcium carbonate.


https://onlinelibrary.wiley.com/doi/full/10.1002/jbm4.10026#jbm410026-note-0003

Table 2.3. Hormone and Bone Metabolism Markers on Placebo and Calcium Supplement

Placebo Calcium p Value
Serum Ca (mmol/La) 2.275 (0.02) 2.28 (0.02) 0.764
Serum P (mmol/La) 1.49 (0.05) 1.42 (0.05) 0.208
250HD (nmol/L) 62.47 (4.7) 69.09 (5.0) 0.256
1,25(0H)2D3 (pmol/L) 131.45 (8.9) 122.86 (8.9) 0.197
PTH (pmol/L) 2.55 (0.29) 2.40 (0.31) 0.723
Serum osteocalcin (ug/L) 21.71 (3.6) 24.58 (3.7) 0.494
Serum BAP (ug/L) 73.39 (10.4) 81.25 (10.5) 0.120
Serum ALP (IU/L) 171.34 (23.8) 172.11 (24.0) 0.958
Urinary NTx/Cr (nmol BCE/mmol) 403.79 (99.0) 410.26 (100.1) 0.916
Urinary free DPD/Cr (nmol/mmol) 20.69 (3.7) 20.6 (3.7) 0.966

Ca = calcium; P = phosphorus; PTH = parathyroid hormone; BAP = bone alkaline phosphatase;
ALP = alkaline phosphatase; NTx = N-terminal telopeptide; BCE =bone collagen equivalents;
DPD = deoxypyridinoline; Cr = creatinine.

Values are presented as mean (SEM).

& To convert to mg/dL, divide Ca by 0.25 and P by 0.323.


https://onlinelibrary.wiley.com/doi/full/10.1002/jbm4.10026#jbm410026-note-0008
https://onlinelibrary.wiley.com/doi/full/10.1002/jbm4.10026#jbm410026-note-0008
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300 mg Ca 2x/day wash Placebo 2x/day

out

Randomized

n=12

Placebo 2x/day wash 300 mg Ca 2x/day

— L%
n=6 out

Week

Controlled Diet

(800 mg Ca/d)

24h urine & feces 24h urine & feces

Figure 2.1. Randomized crossover study design.

Twelve participants enrolled in the study. *One participant was randomized to the
placebo-calcium sequence but did not start until the second phase so did not receive the placebo;
1 participant randomized to placebo-calcium sequence did not complete the second phase of the
crossover; 1 participant randomized to the placebo-calcium sequence is excluded from the
present analysis because of insufficient stored fecal sample. Thus, 11 are included in this

analysis.



59

1600 - Phosphorus Balance

14004 | ~

1200

[ ]Placebo

[ Calcium Carbonate

xp =0.013

Phosphorus (mg/day)
5 2 8 8
< fen} < (o=

200 A

P intake Fecal P Urine P P Balance

Figure 2.2. Phosphorus balance in healthy adolescent girls on placebo versus calcium carbonate.
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Figure 2.3. Net phosphorus and calcium absorption.
(A) Net phosphorus absorption in healthy adolescent girls on placebo versus calcium carbonate.
(B) Net calcium absorption in healthy adolescent girls on placebo versus calcium carbonate
(n=11). Data from Elble and colleagues (1).
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Figure 2.4. Calcium balance.
Calcium balance in healthy adolescent girls on placebo versus calcium carbonate (n=11). Data
from Elble and colleagues (1).
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Figure 2.5. Phosphorus and calcium balance in individual participants on placebo and calcium
supplement.
Ca:P mass ratio is given above each point, calculated from 99% Ca balance and 85% P balance.
For comparison, the expected 2.15:1 Ca:P mass ratio of bone hydroxyapatite is shown by the
dashed line.

1. Elble AE, Hill KM, Park CY, Martin BR, Peacock M, Weaver CM. Effect of calcium
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CHAPTER 3: EFFECT OF DIETARY PHOSPHORUS INTAKE AND AGE
ON INTESTINAL PHOSPHORUS ABSORPTION EFFICIENCY AND
PHOSPHORUS BALANCE IN MALE RATS
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phosphorus balance in male rats. PLoS ONE 13(11): e0207601.
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Data available: https://doi.org/10.1371/journal.pone.0207601.s002

Abstract

Intestinal phosphorus absorption is an important component of whole-body phosphorus
metabolism, and limiting dietary phosphorus absorption is particularly of interest as a therapeutic
target in patients with chronic kidney disease to manage mineral bone disorders. Yet,
mechanisms and regulation of intestinal phosphorus absorption have not been adequately studied
and discrepancies in findings exist based on the absorption assessment technique used. In
vitro techniques show rather consistent effects of dietary phosphorus intake level and age on
intestinal sodium-dependent phosphate transport. But, the few studies that have used in
vivo techniques conflict with these in vitro studies. Therefore, we aimed to investigate the effects
of dietary phosphorus intake level on phosphorus absorption using the in situ ligated loop
technique in three different aged rats. Male Sprague-Dawley rats (n = 72), were studied at 10-,
20-, and 30-weeks-of-age on a low (0.1%), normal (0.6%), or high (1.2%) phosphorus diet in a
3x3 factorial design (n = 8/group). Rats were fed their assigned diet for 2-weeks prior to
absorption testing by jejunal ligated loop as a non-survival procedure, utilizing **P radioisotope.
Metabolic cages were used for determination of calcium and phosphorus balance over the final
four days prior to sacrifice, and blood was collected at the time of sacrifice for biochemistries.
Our results show that phosphorus absorption was higher in 10-week-old rats compared with 20-

and 30-week-olds and this corresponded to higher gene expression of the major phosphate
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transporter, NaPi-2b, as well as higher whole-body phosphorus balance and net phosphorus
absorption. Dietary phosphorus intake level did not affect jejunal phosphorus absorption or
NaPi-2b gene expression. Our results contrast with studies utilizing in vitro techniques, but
corroborate results of other rodent studies utilizing in situ or in vivo methods. Thus, there is need
for additional studies that employ more physiological methods of phosphorus absorption

assessment.
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Introduction

Phosphorus is an essential nutrient for normal physiological function. However, elevated
serum phosphorus has been linked to increased cardiovascular disease (1), bone disease (2), and
mortality (3, 4). This is particularly true for patients with chronic kidney disease (CKD) (5),
where the failing kidney has a reduced capacity for renal excretion. In normal physiology, the
kidney is the primary site of regulation for phosphate homeostasis (6). Thus, as the kidneys fail,
therapeutic options focus on reducing intestinal phosphorus absorption through dietary
restriction, luminal phosphate binding, or inhibiting intestinal phosphorus transport. However,
mechanisms and regulation of intestinal phosphorus absorption have not been adequately
studied, especially when compared to that in the kidney. Renal phosphate reabsorption is nearly
completely transcellular and sodium-dependent and is regulated by the major known
phosphaturic hormones, parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23)
(7). In contrast to the kidney, intestinal phosphorus absorption occurs by both sodium-dependent
and sodium-independent pathways (8). However, the relative importance of each component is
debated.

The majority of the existing literature on phosphorus absorption has relied on in
vitro methods of absorption assessment including brush border vesicles or Ussing chambers.
Low phosphorus diets have been shown to increase sodium-dependent intestinal phosphate
uptake when measured by the rapid-filtration technique in isolated brush border membrane
vesicles (BBMV) from healthy rats (9-12) and mice (13-16), and by Ussing chamber in rat (17)
and pig (18). In contrast to in vitro studies, the limited in vivo studies in rodents have conflicting
results with low phosphate diet both increasing (19) and having no effect on (20) intestinal
phosphate absorption. Possible reasons for this discrepancy include the intestinal region tested
(duodenum vs jejunum), sex and species of the animals (female Wistar vs male Sprague-
Dawley), normal vs uremic animals, age of animals studied, differences in the technique used,
and the duration of study. Given the importance of understanding precise mechanisms of
intestinal phosphorus absorption in vivo in order to design more effective therapeutic
interventions for patients with CKD, we studied rats at three ages with low, moderate, and high
phosphorus diets. Since the majority of prior studies on intestinal phosphorus transport have

utilized in vitro and ex vivo methods with results at odds with the limited in situ/in vivo results



69

available, we selected the in situ intestinal ligated loop method to assess phosphorus absorption
by a more physiologic technique. Our findings show that intestinal phosphorus absorption by this
method is affected by age, but is not affected by dietary phosphorus intake level, which conflicts

with prior in vitro studies, but largely corroborates the limited prior in situ/in vivo studies.
Materials and Methods
Animals

This was a 3x3 factorial design study. Seventy-two male Sprague-Dawley rats (Harlan
Laboratories, Indianapolis, IN) were randomly assigned to 10-, 20-, or 30-week-old age groups,
and randomly assigned to low, normal, or high dietary phosphorus within each age group (n =8
rats/age x diet group). Rats were fed standard rat chow containing 0.7% phosphorus and 1.0% Ca
(Harlan Teklad 2018, Indianapolis, IN) and water ad libitum until 8-, 18-, or 28-weeks of age
(for the 10, 20, and 30-week-old age groups, respectively), at which time they were switched to
their assigned study diets and fed ad libitum for two weeks prior to sacrifice. The low-
phosphorus (LP), normal-phosphorus (NP), and high-phosphorus (HP) diets contained 0.1, 0.6,
and 1.2% phosphorus, respectively, all with 0.6% Ca (Harlan Teklad, Indianapolis, IN:
TD.85010, LP, TD.84122, NP, TD.85349, HP). Rats were housed individually in wire-bottom
metabolic cages for the two weeks of the assigned diet period, and phosphorus and calcium
balance were performed during the last four days prior to sacrifice. Body weights were taken
weekly. The light-dark cycle was maintained from 6AM-6PM. This protocol was approved by
the Purdue University Animal Care and Use Committee (Protocol Number: 1402001030).

Intestinal Phosphorus Absorption Efficiency

Intestinal phosphorus absorption efficiency was determined by in situ jejunal ligated loop
absorption tests performed as a non-survival procedure before sacrifice. On day 14 of the
assigned diet, rats were fasted for three hours prior to the ligated loop absorption test. Groups
were order-balanced for treatment and testing to average the potential time-effect on absorption
(21). The absorption test protocol was based on that published by Marks et al. (20), with the
exception of the anesthetic. The rats were anesthetized by inhalation of isoflurane and kept warm
with a heating blanket during the non-survival procedure for approximately 45 minutes. A
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jugular vein catheter was placed for blood sampling, and a baseline blood sample (0.4 mL) was
collected. The abdominal cavity was opened, and two ligatures were placed to create a ~5 cm
segment of the jejunum. The first ligature was placed approximately 1 cm distal to the
suspensory muscle of the duodenum (Ligament of Treitz) and firmly tied twice. The second
ligature was loosely tied ~5 cm distal to the first ligature. Transport buffer (0.5 mL) containing
(mmol/L) 16 Na-N-2-hydroxyethylpiperazine-N0-2-ethanesulfonicacid, 140 NaCl, 3.5 KCl, 0.1
KH2PO4, and ~5 uCi *P (**P-orthophosphoric acid, PerkinElmer, Waltham, MA) was injected
by gastight syringe (Hamilton, Reno, NV) into the jejunal lumen through the distal ligature,
which was immediately tied off following the injection of the radioactive transport buffer. Blood
(0.4 mL/sampling) was collected at 5, 10, 15, and 30 min post-injection in lithium heparin tubes
and centrifuged at 10,500 g for 10 minutes (Micro 18R, VWR, Radnor, PA) to separate plasma.
Immediately after the final 30-minute post-injection blood draw, the jejunal loop was removed,
measured for length, and placed in a 20mL scintillation vial containing 6 mL Soluene-350
(PerkinElmer, Waltham, MA) for digestion in preparation for liquid scintillation counting of *3P
activity remaining in the jejunal loop. After heating overnight at 45°C in an oven, the dissolved
jejunal loop was split into two vials and lightened with 0.6 mL 30% hydrogen peroxide
(Avantor, Center Valley, PA) to reduce color quench.

Under anesthesia, rats were sacrificed by cardiac puncture and exsanguination followed
by cardiac excision. Blood (0.5 mL) was aliquoted into lithium heparin tubes for hematocrit
measurement and stored on ice until centrifugation for 5 minutes at 5,900 g (Readacrit, Clay
Adams, Parsippany, N.J.). Remaining blood was aliquoted into lithium heparin tubes for plasma
separation as described above, flash frozen in liquid nitrogen and stored at -80C until analysis.

Liquid scintillation counting of the 3P transport buffer solution, plasma samples from
each time point, and digested jejunal loop was performed on a Tri-Carb 2910 TR Liquid
Scintillation Analyzer (PerkinElmer, Waltham, MA). 500 uL of transport buffer solution and 250
uL plasma samples were counted in 15 mL of EcoLite liquid scintillation cocktail (MP
Biomedicals, Santa Ana, CA), and digested loops were counted in 17 mL of Hionic-Fluor
scintillation cocktail (PerkinEImer, Waltham, MA). Appropriate quench curves for each
scintillation cocktail were used to adjust counts per minute to disintegrations per minute (22)

(Supporting Information). Absorption of 33P was evaluated two ways: 1) area under the curve
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(AUC) was calculated for plasma 2P activity over 30 minutes, and 2) percent intestinal

phosphorus absorption efficiency over 30 minutes was calculated as:

1 — (*3P activity remaining in digested loop) / (Total *3P activity in 0.5mL dose) - 100
Phosphorus and Calcium Balance and Net Absorption

On days 10 through 14 of the assigned study diet, all urine and feces were collected and
diet weighed daily to assess 4-day average phosphorus and calcium balance and net absorption.
Feces and diet were ashed in a muffle furnace (Thermolyne Sybron Type 30400, Dubuque, 1A)
for 10 days at 550°C. Feces were then diluted 140X and diet 14X with 2% nitric acid. Urine was
diluted 11X with 2% nitric acid. Phosphorus and calcium in urine, feces, and diet were quantified
by inductively coupled plasma-optical emission spectrophotometry (ICP-OES; Optima 4300DV,
Perkin Elmer, Shelton, CT). Urine creatinine was determined by colorimetric method using a
COBAS Integra 400 Plus (Roche Diagnostics, Indianapolis, IN). Four-day phosphorus balance
was calculated as dietary phosphorus intake (mg/d) minus urine and fecal phosphorus excretion
(mg/d), and net phosphorus absorption as phosphorus intake (mg/d) minus fecal excretion
(mg/d). Calcium balance and net calcium absorption were calculated similarly.

Intestinal Phosphate Transporter Gene Expression

After the completion of the ligated loop absorption tests and the removal of the
radioactive jejunal loop, approximately 5 cm of jejunum distal to the loop and 5 cm of duodenum
distal to the pylorus were removed, cut open and rinsed with ice-cold deionized water. The
mucosal layers were scraped, and mucosa from each intestinal segment was placed into TRI
Reagent (Fisher Scientific, Hampton, NH) and flash frozen in liquid nitrogen for later mMRNA
quantification by RT-PCR.

Total RNA was extracted using Omega HP Total RNA Kit (R6812-00, Omega Bio-tek,
Norcross, GA; modified to add a chloroform extraction step). Concentration and purity were
determined on a NanoDrop 2000c spectrophotometer at 260, 280, and 230nm (Thermo Fisher
Scientific, Waltham, MA). Real-time PCR amplifications were performed using TagMan gene
expression assays (TagMan MGP probes, FAM dye-labeling) with Applied Biosystems ViiA 7
Real-Time PCR systems (Applied Biosystems). NaPi2b (Slc34a2), PiT1 (Slc20al), and Rplp0
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primers were obtained from Applied Biosystems (Rn00584515 m1, Rn00579811 m1, and
Rn03302271 gH). The AACT method was used to analyze the relative change in gene

expression normalized to the housekeeping gene Rplp0.
Plasma Biochemistries

Plasma stored at -80C was thawed and analyzed for phosphorus, calcium, and creatinine
concentration by colorimetric method using a COBAS Integra 400 Plus (Roche Diagnostics,
Indianapolis, IN). Blood urea nitrogen (BUN), calcium and phosphorus were measured by
colorimetric assay (BioAssay Systems, Hayward, CA and Point Scientific, Canton, Ml). Intact
parathyroid hormone (iPTH), intact fibroblast growth factor 23 (iIFGF23), c-terminal (includes c-
terminal fragments and intact protein) FGF23 (cFGF23) (Immutopics, San Clemente, CA), and
1,25(0OH)2D3 by enzyme immunosorbent assay (Immunodiagnostic Systems, The Boldons, UK).

Statistics

A sample size of n = 8 rats/group was determined to be sufficient to detect a 30%
difference between groups for phosphorus absorption (f = 0.80, a = 0.05) based on means and
standard deviations reported by Marks et al. (20). Two-way ANOVA was performed for all
outcomes with main effects for diet and age and their interaction utilizing least-squares means
with Tukey post-hoc comparisons. Statistical significance was set at o < 0.05. Statistical
Analysis Software version 9.3 (SAS Institute, Cary, NC) was used for all statistical analysis.
Results and figures are reported as mean £ SEM of each age group on the three diets, or vice

versa, unless otherwise indicated.

Results

Body weight prior to starting the assigned diet was higher for older rats, as
physiologically expected (10-week-olds: 275.8 + 3.1 g, 20-week-olds: 425.5 + 5.5 g, 30-week-
olds: 461.5 £ 5.5 g, p <0.0001 for all comparisons, but was not different between the diet
groups, nor was there an age x diet interaction (diet main effect, p = 0.3751; age x diet

interaction, p = 0.2762). At sacrifice, body weight followed a similar pattern (10-week-olds:
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306.7 = 5.8 g, 20-week-olds: 438.7 + 4.5 g, 30-week-olds: 485.8 £ 5.7 g, p < 0.0001 for all
comparisons; diet main effect, p = 0.1344; age x diet interaction, p = 0.0741).

At the time of sacrifice, plasma creatinine tended to be higher in 10-week-old rats versus
20- and 30-week-olds (0.49 = 0.02 mg/dL vs 0.44 £ 0.01 mg/dL and 0.45 + 0.01 mg/dL) but no
post-hoc comparisons were significant due to a marginal interaction with diet (Table 3.1).
Urinary creatinine increased at each age group (7.2 £ 0.2, 11.9 £ 0.4, 13.5 + 0.4 for 10, 20, and
30-week-old, respectively (p < 0.0001 for 10 vs 20 and 30, p = 0.0042 for 20 vs 30). (Table 3.1).
Creatinine clearance was lower in 10-week-old rats versus 20- and 30-week-old rats (3.6 £ 0.1
mL/min vs 4.5 + 0.2 mL/min and 4.5 £ 0.1 mL/min, p = 0.0005 and p = 0.0003, respectively)
(Table 3.1). Plasma BUN progressively declined with age but was within normal physiologic
range (22.6 £ 0.5 mg/dL, 20.4 + 0.6 mg/dL, and 18.3 + 0.5 mg/dL for 10-, 20-, and 30-week
groups respectively (p < 0.015 for all comparisons) and did not change with level of phosphorus
in the diet (p = 0.0771). Plasma phosphorus was higher in 10-week old rats compared to both the
20- and 30-week olds (9.4 £ 0.3 mg/dL vs 7.5 mg/dL £ 0.2 and 7.2 £ 0.1 mg/dL, p < 0.0001 for
both), but there was no difference between diets (Table 3.1). There was a significant age x diet
interaction for plasma calcium, where 10-week olds had higher plasma calcium on LP compared
with NP and HP (p =0.0011 and p = 0.0005 respectively), but there were no other significant
group comparisons (Table 3.1). Overall, dietary phosphorus level and age caused anticipated
changes in the phosphorus-regulating hormones of 1,25D, FGF23, and PTH. There was a
significant age x diet interaction for plasma iPTH where LP resulted in lower iPTH compared
with NP and HP, but the magnitude was greatest in the 10-week old rats (Table 3.1). Both
iIFGF23 and cFGF23 were lower in the LP vs NP and HP (iFGF23: 106.6 + 11.3 pg/mL vs 327.1
+ 14.7 pg/mL and 347.3 £ 11.8 pg/mL, p < 0.0001 for both; cFGF23: 266.6 + 15.1 pg/mL + vs
496.8 £ 16.6 pg/mL and 514.8 = 21.4 pg/mL, p < 0.0001 for both) (Table 3.1). iFGF23 was also
lower in 10-week-old vs 20-week-old rats (240.7 £ 27.7 pg/mL vs 282.5 £ 25.6 pg/mL, p =
0.0491) (Table 3.1). 1,25D was higher in 10-week old rats compared to 20- and 30-week (446.0
+19.9 pg/mL vs 339.9 £ 16.7 pg/mL and 325.1 £+ 16.6 pg/mL, p = 0.0001 and p < 0.0001) and it
was higher on LP vs NP (414.1 + 24.7 pg/mL vs 328.7 + 18.0 pg/mL; p = 0.0017), HP was not
significantly different from LP (370.1 £ 16.9 pg/mL vs 414.1 £ 24.7 pg/mL, p = 0.11) or NP
(370.1 = 18.0 pg/mL vs 328.7 pg/mL, p = 0.24) (Table 3.1).
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Percent intestinal phosphorus absorption efficiency (percent of dose), as assessed by
disappearance from the intestinal loop at 30 minutes, was higher in 10-week-olds compared to
both 20- and 30-week-olds (42.5 = 0.02% vs 35.6 £ 0.01% and 34.7 0.02%, p < 0.01 for both),
but 20- and 30-week-olds were similar (Fig 3.1). Correspondingly, the plasma 3P activity
(percent of dose) AUC over 30 minutes was higher in 10 weeks-olds compared to both 20- and
30- week-olds (1.3 £ 0.08% vs 0.7 £ 0.03% and 0.7 £ 0.04%, p < 0.0001 for both) (Fig 3.2)
There was no effect of dietary phosphorus level on either absorption measure (loop: p = 0.4907;
plasma AUC: p = 0.2585), nor any significant age x diet interaction (loop: p = 0.4034; plasma
AUC: p = 0.9986). Similar results were observed when plasma 3P activity at only the final 30-
minute time point was analyzed (p = 0.6742 for diet main effect, p < 0.0001 for 10 week-olds vs
20- and 30-week-olds).

Similar to the jejunal ligated loop absorption results, jejunal NaPi-2b mRNA was higher
in 10-week-olds compared to both 20- and 30-week-olds (p = 0.0016 and p = 0.0245,
respectively) (Fig 3.3A). In the duodenum, there was an age X diet interaction (p = 0.0011)
driven by higher NaPi-2b mRNA levels in 10-week-olds on the low phosphorus diet compared to
all other groups (Fig 3.3B). Jejunal PiT1 mRNA tended to be higher at 30-weeks, although the
overall model did not reach statistical significance (p = 0.0524) (Fig 3.3C). Duodenal PiT1
expression was not significantly affected by diet or age (overall model p = 0.4975) (Fig 3.3D).

Phosphorus balance was higher in 10-week-olds compared with both 20- and 30-week-
olds, and not different between 20- and 30-week-olds (36.4 + 5.5 mg/day vs 15.7 = 6.1 mg/day
and 18.1 £ 5.5 mg/day, p = 0.0113 and 0.0286, respectively) (Fig 3.4A). There was a significant
effect for diet on phosphorus balance, where HP was higher than NP and LP (43.4 £ 8.2 mg/day
vs 17.5 + 3.4 mg/day and 9.2 £ 1.2 mg/day, p = 0.0012 and p < 0.0001, respectively). For net
phosphorus absorption, there was a clear dose-response effect of diet (LP: 9.4 + 1.2 mg/day, NP:
62.0 £ 2.7 mg/day, HP: 162.2 + 3.8 mg/day, p < 0.0001 for all comparisons), and 10-week-olds
had higher net phosphorus absorption than 20- and 30-week old rats (85.3 + 13.5 mg/day vs 76.4
+ 13.6 mg/day and 72.0 = 13.3 mg/day, p = 0.0469 and p < 0.0017, respectively), but 20- and 30-
week-olds were not different (Fig 3.5A). Calcium balance was also higher in 10-week-old rats
compared with both 20- and 30-week but not between 20- and 30-week-olds (32.5 + 1.7 mg/day
vs 15.8 + 2.9 mg/day and 7.8 + 4.6 mg/day, p = 0.0024 and p < 0.0001, respectively (Fig 3.4B).
Net calcium absorption was similarly higher in 10-week rats (35.7 £ 2.1 mg/day vs 17.5 £ 3.0
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mg/day and 10.1 + 4.7 mg/day, p = 0.0012 and p < 0.0001) (Fig 3.5B). Phosphorus in the diet
had no effect on calcium balance nor net absorption of calcium (p =0.6981 and p = 0.1141 for
main effect) (Figs 3.4B and 3.5B).

Discussion

In this study, we found higher intestinal phosphorus absorption at 10-weeks of age
compared to 20- and 30-weeks as assessed by the ligated loop technique in both appearance
of 3P in plasma and disappearance of 33P from the intestinal loop. This interpretation is
supported by the more positive net phosphorus absorption from metabolic balance and more
positive overall phosphorus balance, higher plasma phosphorus, and higher NaPi-2b mRNA
expression in the 10-week rats vs the 20- and 30-week-olds. The lack of differences between 20-
and 30-week-old rats is likely due to less metabolic demand of bone for phosphorus. The
increased phosphorus absorption and positive phosphorus balance corresponded to higher serum
phosphorus levels at a younger age, similar to that in humans (23, 24). Further, there was lower
PTH and FGF23 levels and higher 1,25D levels at the younger age, suggesting that hormonal
regulation decreases renal phosphorus excretion via decreased PTH and FGF23, and increases
intestinal absorption via vitamin D (7). The elevation at 10-weeks likely reflects the increased
requirement of phosphorus for growth at this age (24) but how these hormonal changes are
stimulated during growth is not completely understood.

Other studies that have observed differences in sodium-dependent BBMV phosphate
uptake between post-weaning and adult rodents have studied even older rats and still found no
differences compared with younger adult rats. Armbrecht (25) compared 8-12 week-old
(“young’) vs 48-46-week-old (“adult”) and 88-96-week-o0ld (“old”) Fisher 344 rats, and observed
differences between the young vs adult and old rats, but no difference between the adult and old
rats. This suggests that sodium-dependent absorption decreases after growth then plateaus for the
adult lifespan. Borowitz and Ghishan (26) also showed an age-dependent decrease in jejunal
sodium-independent BBMV phosphate uptake from 2 to 6 weeks-of-age, albeit smaller than
sodium-dependent reductions. The changes to sodium-independent phosphate transport in later
stages of aging should be further evaluated, as this may contribute to a greater portion of total

phosphorus absorption with aging. In the pre-weaning mouse, an age-dependent decrease in
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NaPi-2b occurs from 14 days to 21 days to 8 weeks, and then remains the same until 8-9 months
(3236 weeks) (27). In rats, there is an age-dependent decrease in NaPi-2b gene expression from
2 weeks to 3 weeks to 6 weeks and 95-100 days (13.5-14.3 weeks), and a reduction in BBMV
uptake between 2 weeks and 95-100 days (28). Future work is necessary to characterize changes
in absorption during this transition using more physiologic absorption techniques.

Importantly, we did not find a difference by dietary phosphorus level on intestinal
phosphorus absorption assessed by jejunal ligated loop. We used the same low phosphorus diet
(0.1%) that has been shown to increase jejunal NaPi-2b expression and sodium-dependent
phosphate uptake in rats in vitro (11, 12), but don’t see that translate in our study to an effect on
the in situ ligated loop technique using a transport buffer phosphate concentration that would be
expected to favor sodium-dependent transport (29). The sodium-dependent, transcellular
pathway predominates at low luminal phosphate concentrations, whereas the sodium-
independent, paracellular pathway will contribute more at high luminal phosphate concentrations
(29-31). The latter was reflected in our results by the stepwise increase in net phosphorus
absorption corresponding to the amount of phosphorus in the diet. NaPi-2b is currently
understood to be the main sodium-dependent intestinal phosphate transporter. It shares homology
to the renal NaPi-2a/c transporters (32, 33) and the type 11l sodium-phosphate co-transporters,
PiT-1 and PiT-2, that are considered to play more minor roles in absorption (32-36). NaPi-2b is
estimated to contribute >90% of sodium-dependent transport based on a mouse NaPi-2b
knockout model (35), with PiT-1 and PiT-2 believed to contribute <10% of sodium-dependent
transport (36). We did not measure PiT-2 because its expression in the intestine is very low (11)
and others have found that PiT-2 mRNA does not change in response to dietary phosphorus
restriction (10). Interestingly, recent evidence suggests that additional transporters may be yet
undiscovered (12). Our data question the importance of sodium-dependent transcellular
phosphate transport in the presence of a liberal consumption of dietary phosphorus which would
favor the sodium-independent pathway, characteristic of the American diet (37). Other rodent
and pig studies have consistently found increases in in vitro intestinal BBMV phosphate uptake
after a low phosphorus diet (9-17), and while studies that measure NaPi-2b protein expression
consistently find increases (11, 12, 14-16, 18, 38), NaPi-2b mRNA expression only increases in
some (14, 16, 38), but not all studies (10, 15, 20). A limitation in our study is a lack of

transporter protein expression. In contrast, and similar to our findings, the previous studies in
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rodents using the more physiologic in situ ligated loop technique for effects of low phosphorus
diets have had conflicting results (19, 20). Rizzoli et al. (19) observed higher duodenal phosphate
transport after a 15-minute ligated loop on a low phosphorus (0.2%) diet in normal female rats
compared to a normal phosphorus (0.8%) diet after 16 days of feeding, but not after only 8 days,
and higher duodenal phosphate transport with a normal phosphorus (0.8%) diet compared to a
high phosphorus (1.8%) diet after 8 days. However, these results were split between two separate
experiments with different concentrations of phosphate in the absorption buffers (5 mM and 2
mM), making it difficult to compare low vs high phosphorus intake. More recently, Marks et al.
(20) tested the effects of very low phosphorus (0.02%) versus normal phosphorus (0.52%) diet
on jejunal phosphate transport efficiency in 5/6" nephrectomized male rats with a 30-minute
jejunal ligated loop. No effect of diet on phosphorus absorption was observed, nor any change in
jejunal or duodenal NaPi-2b mRNA expression. Together, the results of our study which utilized
both loop disappearance and plasma 2P counts, and the other in situ studies, suggest that
conclusions on the effects of low phosphorus diets on phosphorus absorption from studies
utilizing in vitro and ex vivo uptake/transport or flux techniques which utilize isolated intestinal
segments or BBMV may not appropriately reflect physiologic conditions affecting phosphorus
absorption. Thus, there is need for additional studies that employ more physiological methods of
phosphorus absorption assessment. Our study was limited to male rats, so we were unable to
determine if sex-differences exist for age and dietary phosphorus intake level effects on intestinal
phosphorus absorption by the ligated loop technique. To our knowledge, ours is the first study to
utilize the ligated loop method on normal male rats to test this question.

In vitro techniques may fail to replicate physiologic in vivo techniques for a number of
reasons. First, even when using a low transport buffer phosphate concentrations (0.1 mM
KH2PO4) (30) close to the Km of NaPi-2b (39), residual luminal phosphate makes it such that
sodium-dependent transport is contributing a smaller proportion to total phosphate transport and
mask effects of interventions on the sodium-dependent transport mechanism. Luminal phosphate
concentration in vivo is ~1.5-40 mM in the proximal intestine depending on measurement
technique (30, 40), which may contribute to a higher passive transport than in vitro techniques.
Thus, estimating this contribution with the ligated loop is challenging. Marks and colleagues
assessed the proportion of sodium-dependent absorption with the ligated loop in rats at 32 + 8%

vs 73 + 5% using the everted sleeve with the phosphate concentration that we utilized (30). It is
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likely that excreted luminal sodium during the test results in sodium-dependent transport when
injecting a solution without sodium, and indeed measurable sodium was present at the end of the
test. Therefore, we assume that 32% sodium-dependency is a low-end estimate using this
technique. While it is a limitation that we didn’t attempt to measure changes in sodium-
independent absorption with respect to dietary phosphorus and age, sodium-independent uptake
is not regulated by dietary phosphorus (10, 13, 15, 41). Additional factors such as a
disconnection to local blood flow and nerves or transmural potential differences may explain in
situ/in vivo differences with in vitro/ex vivo techniques (30). It is also possible that other
intestinal segments would respond to the two factors we tested. However our interest in studying
the jejunum as regional specific regulation of phosphorus absorption was because 1) NaPi-2b is
expressed highest in the jejunum in rats (42), 2) some studies show that NaPi-2b mRNA and
protein only respond to chronic phosphorus restriction in the jejunum but not duodenum (11),
and only uptake increased in the jejunum (11). Further, infusion of Matrix Extracellular
Phosphoglycoprotein in rats led to a selective change in absorption rate in the jejunum but not
duodenum, suggesting that the jejunum may be most responsive to other factors as well (43).
However, Rizzoli and colleagues showed an increased absorption efficiency in the duodenal
segment in rats with the loop (19), whereas others have showed age related decreases in uptake
with age in both the jejunum and duodenum (25). Additional research is needed to clarify the
relative importance of capacity of the duodenum to adapt to various factors.

In conclusion, in the present study we examined the interaction of age and diet on
intestinal phosphorus absorption in healthy male Sprague Dawley rats with the in situ ligated
loop technique. Moderate phosphorus restriction (0.1%) did not affect phosphate absorption with
this technique, but absorption was higher in younger (10-week) rats with higher positive

phosphorus balance.



Table 3.1. Final blood and urine biochemistriesy.

10 weeks old 20 weeks old 30 weeks old P-Values
LP NP HP LP NP HP LP NP HP Model Age Diet Agex
Diet
Plasma P (mg/dL)* 9.2(0.6) 1 9.0(0.2) 9.9(0.5) | 7.1(0.3) |8.0(0.2) | 7.4(0.3) | 7.2(0.3) [7.2(0.2) | 7.2(0.2) | <0.0001 | < 0.4715 | 0.1703
0.0001
Plasma Ca (mg/dL)* | 10.8 9.4(0.1) 1 9.3(0.1) |9.6(0.2) 19.1(0.2) |9.3(0.2) | 9.6(0.2) |9.7(0.1)  9.8(0.1)  <0.0001 | 0.0084 | 0.0004 | 0.0009
(0.4)
Plasma Creatinine 0.5 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.4 (0.0) | 0.0142 | 0.0438 |0.1500 | 0.0504
(mg/(:lL)a (0.04) (0.02) (0.04) (0.02) (0.02) (0.02) (0.01) (0.02)
Urine Creatinine (mg/ | 6.6 (0.4) | 8.0 (0.5) | 7.2(0.1) | 124 10.7 12.5 13.3 14.3 12.8 <0.0001 | < 0.8948 0.0317
dL) (0.8) (0.7) (0.7) 0.7) (0.4) (0.7) 0.0001
Hematocrit (%)b 42.2 43.1 443 44.6 45.3 441 44.3 439 45,5 0.2573 0.0828 0.4396 0.4635
(1.1) (0.7) (0.5) (1.0) (0.7) (1.4) (0.1) (1.0) (0.7)
Creatinine Clearance | 3.2(0.2) | 4.0(0.2) | 3.5(0.2) | 45(0.4) 1 4.0(0.3) | 5.0(0.3) | 43(0.3) |4.2(0.2) 4.9(0.2) | 0.0002 <0.0001 | 0.0814 0.0641
(mL/min)®
BUN (mg/dL)c 23.6 21.8 22.5 22.0 21.0 18.4 18.7 18.0 18.3 <0.0001 | <0.0001 | 0.0771 0.2731
(0.9) (0.8) (0.7) (0.8) (0.9) (1.2) (0.7) (0.9) (1.3)
Plasma PTH (pgl'mL) 92.1 617.1 778.6 194.6 446.7 376.6 262.8 437.2 421.6 <0.0001 | 0.0027 <0.0001 | <0.0001
(289) | (437) | (64.5) (37.9) | (40.6) | (549) | (622) |(956) | (49.0)
Plasma iFGF23 (pg/ 60.2 300.9 338.3 133.0 340.0 355.8 124.2 340.4 347.8 <0.0001 | 0.0377 | <0.0001 | 0.7148
mL)d (4.0) (19.1) (24.9) (21.1) (32.9) (21.0) (16.1) (23.5) (16.8)
Plasma cFGF23 (pg/ 292.3 504.0 554.4 240.8 458.5 497.6 266.6 528.0 492.3 <0.0001 | 0.1426 <0.0001 | 0.6751
mL)d (34.0) (19.2) (48.6) (13.3) (37.2) (39.8) (21.6) (24.9) (13.1)
Plasma 1,25D (pg/ 527.7 404.0 411.3 385.2 289.0 356.7 336.3 302.5 338.2 <0.0001 | <0.0001 | 0.0026 0.2225
mL)*® (30.1) (25.7) (29.5) (25.3) (32.0) (17.7) (31.4) (19.7) (36.5)

6.
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Table 3.1 cont.

+Final blood and urine biochemistries. ANOVA p-values for the overall model (Pwmogel), main
effect of age (Page), main effect of diet (Ppiet), and interaction of age and diet (Paxp) are shown,
and means and (SEM) are shown for each group. Plasma phosphorus values were higher in 10
week olds vs 20 and 30 weeks. An age x diet interaction for plasma calcium was driven by an
increase at 10 weeks on the low phosphorus diet. Plasma creatinine was higher in 10 week olds
but had a marginal interaction with diet. Urinary creatinine increased at each age group. Blood
hematocrit was not different between age or diet groups. Creatinine clearance was lower at 10
weeks vs 20 and 30 weeks. Plasma BUN progressively declined with age. There was a
significant age x diet interaction for plasma PTH were low phosphorus resulted in lower PTH
compared to normal and high phosphorus, but the magnitude was greatest at 10 weeks. iFGF23
was lower in the low phosphorus group compared to normal and high, and lower at 10 weeks
compared to 20 weeks. cFGF23 was lower in the low phosphorus group compared to normal and
high phosphorus. Plasma 1,25D was higher at 10 weeks compared to 20 and 30 weeks, and
higher on the low phosphorus compared to normal phosphorus diet. LP = low phosphorus diet,
NP = normal phosphorus diet, HP = high phosphorus diet.

an = 4 excluded for insufficient plasma. ® n = 12 excluded for insufficient sample. ¢ n =2
excluded for insufficient plasma. ¢ n = 3 excluded as unphysiologic outliers (near zero).n = 6
excluded for insufficient plasma.
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Figure 3.1. Percent jejunal phosphorus absorption efficiency by age and dietary phosphorus
intake level.
Phosphorus absorption efficiency was calculated as 1-(*3P activity remaining in jejunal
loop)/(Total 33P activity in dose) after 30 minutes post *P injection into the jejunal loop. Means
and standard error bars are shown for each group. Low phosphorus diet (0.1%) is shown in white
bars and black dots; normal phosphorus diet (0.6%) is shown in grey with black diamonds; and
high phosphorus diet (1.2%) is shown in black with white circles. ANOVA p-values for the
overall model (Pmoder), main effect of age (Page), main effect of diet (Poiet), and interaction of age
and diet (Paxp) are shown. There was a main effect for age where 10 week old rats had higher
phosphorus absorption compared to both 20 and 30 week olds, but there was no significant effect
of dietary phosphorus intake level and no significant age x diet interaction. ** p <0.01.n =2
excluded, 1 for mishandling loop, and 1 unphysiologic (counts ~150 fold lower than expected).
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Figure 3.2. Jejunal phosphorus absorption into plasma.

A) Jejunal phosphorus absorption determined by appearance of *3P in plasma over 30 minutes (AUC). Means and standard error bars
are shown for each group. Low phosphorus diet (0.1%) is shown in white bars and black dots; normal phosphorus diet (0.6%) is
shown in grey with black diamonds; and high phosphorus diet (1.2%) is shown in black with white circles. ANOVA p-values for the
overall model (Pwmoder), main effect of age (Page), main effect of diet (Ppier), and interaction of age and diet (Paxp) are shown. B) Jejunal
phosphorus absorption determined by appearance of 3P in plasma over 30 minutes (time series). Each diet group (left) and each age
group are compared (right). Results at 30 minutes were similar to AUC. Absorption was calculated as percent of total 33P activity in
the initial dose. There was a main effect for age where 10 week old rats had higher phosphorus absorption compared to both 20 and 30
week olds, but there was no significant effect of dietary phosphorus intake level and no significant age x diet interaction. *** p <
0.0001. n = 1 excluded for missing last 2 timepoints.
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Figure 3.3. Intestinal phosphate transporter gene expression.
A) Jejunal NaPi-2b mRNA expression by age and dietary phosphorus intake level. There was a
main effect for age where 10 week old rats had higher NaPi-2b expression compared to both 20
and 30 week olds, but there was no significant effect of dietary phosphorus intake level and no
significant age x diet interaction. B) Duodenal NaPi-2b mRNA expression by age and dietary
phosphorus intake level. There was a significant interaction driven by a higher expression in 10
week rats on a low phosphorus diet. C) Jejunal PiT-1 mRNA expression by age and dietary
phosphorus intake level. The overall model approached significance, with a main effect for age
where 30 week old rats had higher PiT-1 expression compared to both 20 and 10 week olds, but
there was no significant effect of dietary phosphorus intake level and no significant age x diet
interaction. D) Duodenal PiT-1 mRNA expression by age and dietary phosphorus intake
level. There were no differences in age, diet, or interaction. Expression was calculated relative to
Rplp0. Means and standard error bars are shown for each group. Low phosphorus diet (0.1%) is
shown in white bars and black dots; normal phosphorus diet (0.6%) is shown in grey with black
diamonds; and high phosphorus diet (1.2%) is shown in black with white circles. ANOVA p-
values for the overall model (Pwmoger), main effect of age (Page), main effect of diet (Ppiet), and
interaction of age and diet (Paxp) are shown. * p < 0.05, ** p < 0.01, # p < 0.01 vs all other
groups. n = 1 duodenum NaPi-2b and PiT-1 excluded for missing sample.
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Figure 3.4. Phosphorus and calcium balance.

A) Phosphorus balance by age and dietary phosphorus intake level. There was a main effect for
age where 10 week old rats had higher phosphorus balance compared to both 20 and 30 week
olds, and the high phosphorus diet group was higher than normal and low phosphorus, with no

significant age x diet interaction. B) Calcium balance by age and dietary phosphorus intake
level. There was a main effect for age where 10 week old rats had higher calcium balance
compared to both 20 and 30 week olds, but there was no significant effect of dietary phosphorus
intake level and no significant age x diet interaction. Balance for each mineral was calculated as
intake—fecal + urine. Means and standard error bars are shown for each group. Low phosphorus
diet (0.1%) is shown in white bars and black dots; normal phosphorus diet (0.6%) is shown in
grey with black diamonds; and high phosphorus diet (1.2%) is shown in black with white circles.
ANOVA p-values for the overall model (Pmoder), main effect of age (Page), main effect of diet
(Ppiet), and interaction of age and diet (Paxp) are shown. * p < 0.05, ** p <0.01, *** p < 0.0001.
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Figure 3.5. Net phosphorus and calcium absorption.

A) Net phosphorus absorption by age and dietary phosphorus intake level. There was a main
effect for age where 10 week old rats had higher net phosphorus absorption compared to both 20
and 30 week olds, and net absorption increased with each phosphorus level in the diet, with no
significant age x diet interaction. B) Net calcium absorption by age and dietary phosphorus
intake level. There was a main effect for age where 10 week old rats had higher calcium balance
compared to both 20 and 30 week olds, but there was no significant effect of dietary phosphorus
intake level and no significant age x diet interaction. Net absorption for each mineral was
calculated as intake—fecal. Means and standard error bars are shown for each group. Low
phosphorus diet (0.1%) is shown in white bars and black dots; normal phosphorus diet (0.6%) is
shown in grey with black diamonds; and high phosphorus diet (1.2%) is shown in black with
white circles. ANOVA p-values for the overall model (Pwmoder), main effect of age (Page), main
effect of diet (Ppiet), and interaction of age and diet (Paxp) are shown. * p < 0.05, ** p < 0.01, #p
< 0.0001 vs normal and low phosphorus, & p < 0.0001 vs high and low phosphorus.
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Supporting Information

Supplemental Information for 33P Quench Curves

Plasma and intestinal ligated loop samples and standards were counted for *3P radioactivity by
liquid scintillation. Various constituents of these samples can cause both chemical and color
quenching that artificially lowers counts per minute (CPM) detected by the liquid scintillation
counter. Therefore, two quench curves were developed to correct for sample quench using the
same scintillation cocktails as used for the samples. A standard quenching agent, nitromethane,
was used to create the quench curve for use with the plasma samples, but in the case of the
digested ligated loops, the sources of potential quench in the samples were simulated to create
the quench curve. These quench curves were prepared based on methods described by Thomas
(2014)(1).

Quench curve for plasma counting
Preparation of the quench curve

Thirteen replicate scintillation vials containing 15mL EcoL.ite scintillation cocktail (MP
Biomedicals, Santa Ana, CA) and ~250,000 CPM 3P (200 pL 0.5 pCi/mL *3P-orthophosphate
(Perkin Elmer, Waltham, MA) in deionized water) were prepared. Vials were counted on a Tri-
Carb 2910 TR Liquid Scintillation Counter (Perkin Elmer, Waltham, MA) in a counting energy
window of 0-300 keV for 10 minutes per vial (energy of 33P: 76.4 keV average, 248.5 keV
maximum) and CPM values obtained. The two vials that deviated the most from the mean CPM
were discarded. The remaining 11 vials had mean radioactivity counts of 258,447 CPM and CV
=0.3%. These 11 vials were used to prepare a quench curve using nitromethane (Fisher
Scientific, Hampton, NH) as a quenching agent in increasing amounts (Table S3.1). The quench
parameter tSIE/AEC is determined from an external 1*¥Ba gamma source within the instrument,
which is described in further detail in Thomas (2014)(1).

Results

The quench values (tSIE/AEC) and counting efficiencies (%) are presented in Table S3.1, and
the quench curve is plotted in Figure S3.1. Unquenched *3P (200 pL 0.5 uCi/mL solution in 15
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mL scintillation cocktail) had a 98% counting efficiency. Counting efficiency was above 95%
until the quench parameter tSIE/AEC reached ~200 (vial #7 =197 tSIE/AEC). Counting
efficiency remained relatively high (above 70%) even with very high quench values seen in vials
#9 and #10, and was only reduced to 59% in the most quenched (tSIE/AEC = 37) vial #11.
Plasma samples analyzed in the present rat study had quench values in the range of ~470-490
tSIE/AEC which placed them on the quench curve at > 98% counting efficiency. Thus,
correcting for counting efficiency only resulted in minor changes in radioactivity values of the
rat plasma samples. Statistical analyses of data before and after quench curve corrections
produced similar results for ANOVA model effects and group differences, but quench correction

slightly increased group means.
Quench curve for intestinal ligated loop counting
Preparation of the quench curve

The present rat study utilized an in situ jejunal ligated loop method for phosphorus absorption
assessment. Percent phosphorus absorption efficiency was calculated as:

1 — (*®P activity remaining in digested loop) / (Total *3P activity in 0.5mL dose) - 100. To
determine the 3P activity remaining in digested loop, the ~5¢cm excised intestinal segment was
digested in 6 mL Soluene 350 (PerkinElmer, Waltham, MA) in a 45°C oven, then divided into
two scintillation vials and the color was lightened with the addition of 0.6mL of 30% hydrogen
peroxide into each of the two vials for the purpose of reducing color quench. Total *P activity
remaining in the digested loop was calculated by adding the counts from the two vials with the
split sample. Therefore, an appropriate quench curve for the digested intestinal loops would
simulate the constituents in the vials that are potential sources of quench. These factors include:
intestinal tissue, thread from ligatures used to tie off the loop segment, absorption buffer solution
injected into the ligated loop during the absorption test.

A range of these factors below and above the actual amounts and volumes utilized in the study
were used in creating a quench curve. Intestinal tissue, thread, and solutes were added to nine
scintillation vials (see lengths and volumes in Table S3.2) and left to digest for 3 days in an oven
at 45°C. Approximately 85,000 CPM *P (50 uL 0.8 pCi/mL **P-orthophosphate (Perkin Elmer,

Waltham, MA) in deionized water) was added into each vial. Hydrogen peroxide and Hionic



88

Fluor scintillation cocktail (PerkinElmer, Waltham, MA) were added to each vial in amounts
shown in Table S3.2. Vials were counted on a Tri-Carb 2910 TR Liquid Scintillation Counter in
an open energy window of 0-2000 keV for 30 minutes per vial. The quench parameter tSIE/AEC
was obtained from the counter output.

Results

The quench values (tSIE/AEC) and counting efficiencies (%) are presented in Table S3.2, and
the quench curve is plotted in Figure S3.2. Unquenched **P (50 pL 0.8 uCi/mL solution in 20
mL scintillation cocktail) had > 99% counting efficiency. Counting efficiency declined to 89%
with the addition of tissue, thread, and solutes. Using the same amounts of these factors as the
used for the actual study samples (“normal conditions”, vials 4 and 5), counting efficiency was
87% with a quench value of 196 tSIE/AEC. As shown in Figure S3.2, two vials (open blue
circles on figure, vials 6 and 8) were excluded because their counting efficiencies did not follow
the expected trend based on the curve established by the adjacent vials.

Intestinal loop samples analyzed in the current study had quench values in the range of ~150-230
tSIE/AEC, which placed them on the quench curve ~85-88% efficiency. Thus, correcting for
counting efficiency based on the quench curve was important for reporting accurate intestinal
phosphorus absorption values. Statistical analyses of data before and after quench curve
corrections produced similar results for ANOVA model effects and group differences, but

quench correction increased group means.
Conclusions

Counting efficiency by liquid scintillation counting is relatively high for **P for both plasma and
digested intestinal ligated loop segments. However, the quench curves developed for the two
types of samples were not interchangeable when comparing the tSIE/AEC values and associated
% counting efficiencies on each curve (e.g. on the Ecolite/nitromethane curve, a quench value of
197 tSIE/AEC had a counting efficiency of 95%, but on the Hionic Fluor/Loop curve, a quench
values of 195 tSIE/AEC had a counting efficiency of only 87%. Therefore, not only would
unadjusted 3P activity in digested ligated loops underestimate actual radioactivity in a sample,

utilizing the wrong quench curve could also produce an erroneous result. This underscores the
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importance of utilizing a quench curve that simulates as closely as possible the conditions of the

samples to be counted (1).

Table S3.1. 33P quench curve with EcoL.ite scintillation cocktail for plasma counting

Vial #

© 0 N o o B~ W N P

N
= O

Amount (uL) of
nitromethane
0

5

10

15

26

45

70

110

150

230

310

tSIE/AEC

468.63
435.48
401.87
378.68
325.32
258.69
197.87
134.92
97.21

55.73

37.89

Count Efficiency
(%)
98.22
99.83
98.84
98.63
98.66
96.55
95.58
90.84
86.69
73.77
59.63
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Figure S3.1. Quench curve of 33P in EcoLite scintillation cocktail for plasma counting.
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Thomson J. Internet: https://www.perkinelmer.com/liquidscintillation/images/APP Use-
and-Preparation-of-Quench-Curves-in-LSC tcm151-171749.pdf.
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Table S3.2. 33P quench curve with Hionic Fluor scintillation cocktail for loop counting

Vial #

1

2

3

4 (“normal
conditions™)
5 (“normal

conditions”)

6

4
8
9

Intestinal
Segment
Length

(cm)

1.5
2.5

3.5

4.5

Ligature = Soluene
Thread 350 vol.

(cm) (mL)
0 0
05 1

1 15
15 3

15 3

2 35
2 35
3 4
35 4

Buffer
vol.
(10x
dil.)
(uL)

0

50

50
200

200

250
250
300
350

Hionic
Fluor
vol.
(mL)

20
19
18.5
17

17

16.5
16.5
16
16

Hydrogen
peroxide
(mL)

0

0.1
0.2
0.6

0.6

0.7
0.8
0.8
0.8

Vials deemed outliers are indicated here in red text.

tSIE/AEC  Count

315.13
278.96
272.47
195.98

195.85

174.52
169.07
153.06
145.43

Efficiency
(%)

99.78
89.30
89.05
87.48

87.25

62.86
85.96
80.22
84.24

16



Figure S3.2. Quench curve of 33P in Hionic Fluor scintillation cocktail for loop counting.
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CHAPTER 4: EFFECT OF KIDNEY DISEASE PROGRESSION ON
INTESTINAL PHOSPHORUS ABSORPTION AND PHOSPHORUS
BALANCE IN MALE RATS

Manuscript draft intended for submission to the Journal of Bone and Mineral Research
Abstract

The Cy/+ rat has been characterized as a progressive model of chronic kidney disease-
mineral bone disorder (CKD-MBD). We aimed to determine the effect of kidney disease
progression on intestinal phosphorus (P) absorption and whole-body P balance in this model.
N=48 Cy/+ (CKD) and N=48 normal littermates (WT) rats were studied at two ages: 20wk and
30wk, to model progressive kidney decline. Sodium-dependent and sodium-independent
intestinal P absorption efficiency was measured by in situ jejunal ligated loops using 3P
radioisotope. Our results show that CKD rats had slightly higher sodium-dependent absorption
compared to WT rats, and absorption decreased from 20 to 30 weeks. These results are in
contrast to measured 1,250H2D, which was lower in CKD rats. Gene expression of the major
intestinal phosphate transporter, NaPi-2b, was not different between groups in the jejunum, but
lower in CKD rats in the duodenum. Ligated loop absorption results are supported by an higher
percent net phosphorus absorption in CKD rats from metabolic balance and higher in 20wk olds
versus 30wk olds. Phosphorus balance was more negative in CKD rats compared to WT and
higher in 20wk olds versus 30wk olds. These results demonstrate no reduction in intestinal
phosphorus absorption with progression of CKD despite a decrease in 1,250H:D status when

assessed by an in situ ligated loop test.
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Introduction

Chronic kidney disease-mineral bone disorder (CKD-MBD) is characterized by
biochemical abnormalities related to calcium and phosphorus metabolism, including elevated
fibroblast growth factor 23 (FGF23), parathyroid hormone (PTH), and serum phosphorus, and
lower serum 1,25-dihydroxyvitamin D3 (1,25D) and calcium, bone abnormalities, and vascular
or other soft tissue calcification (1). Phosphorus and calcium regulating hormones (FGF23,
1,25D, PTH) change in early stages of the disease to maintain serum mineral concentrations (2,
3). However, these hormonal alterations have secondary consequences that contribute to the
elevated risk for cardiovascular events, bone fragility fractures, and death (4-6). Because
phosphate dysregulation is a central driver of these adverse events, interventions aimed at
maintaining phosphate homeostasis have been of interest, including targeting the intestinal
absorption of dietary phosphorus (7).

Gaps exist in understanding the hormonal regulation of intestinal phosphate absorption in
CKD. 1,25D is a recognized positive regulator of the main known intestinal phosphate
transporter, sodium phosphate cotransporter-2b (NaPi-2b) and active intestinal phosphate
absorption (8). In CKD, 1,25D is suppressed via elevated FGF23 (9), and therefore active
intestinal phosphate absorption is expected to be lower as kidney function declines. However,
literature on this topic is mixed. In humans, reduced phosphorus absorption has been
demonstrated in patients with end-stage renal disease using metabolic balance studies as well as
a radioisotopic phosphorus tracer (10-12) and in patients on hemodialysis by a triple-lumen
perfusion technique (13). These findings have been supported in some but not all studies in
experimental rat models: Peerce et al. (14) showed decreased sodium-dependent jejunal brush
border membrane vesicle (BBMV) uptake in 5/6 nephrectomized rats versus age-matched
controls, and Moe et al. (15) found a reduction in active phosphate transport by Ussing chamber
in Cy/+ CKD rats compared to normal rats, though this effect appeared to be driven by rats
treated with phosphate binders. In contrast, sodium-dependent jejunal BBMV uptake was not
different in 5/6 nephrectomized rats versus sham-operated rats in two additional studies (16, 17).
Marks et al. (18) also found no difference in 5/6 nephrectomized versus sham-operated rats using
the in situ ligated loop method in the jejunum or duodenum, and gene expression of the major

intestinal phosphate transporter, NaPi-2b, was also not downregulated with 5/6 nephrectomy.
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Further, in rats with adenine-induced CKD, the mild-CKD and CKD rats had similar appearance
of 33P into serum over 2 hours after an oral gavage compared with controls (19). It is unclear
whether differences in these rat experiments are the result of different stages of severity of the
disease, or methodological differences in absorption assessment technique. This question is
important to resolve, because if intestinal phosphorus absorption is in fact reduced with disease,
approaches targeting active intestinal phosphorus transport may be less effective than
anticipated. If intestinal phosphorus absorption is not reduced with disease, then this suggests
further complexity than described in current models of phosphorus regulation in CKD.

There are additional unanswered questions in regard to phosphate homeostasis with CKD
progression. Given that changes to tight junction proteins are observed in CKD (20, 21), and
given that paracellular transport of intestinal phosphate is not well understood, it is plausible that
sodium-independent absorption could also change with disease progression. To our knowledge,
only one study has assessed this using BBMV uptake and found no difference in sodium-
independent absorption with CKD compared to controls (17). Additionally, it is unclear whether
whole-body phosphorus retention increases with CKD progression, as a driver or consequence of
disease. Certainly, elevated serum phosphate appears in later stages of disease, but serum
phosphate does not necessarily reflect whole-body status. Hill et al. showed an average whole-
body phosphorus balance in moderate-stage CKD patients was around zero and was not affected
by a calcium-based phosphate binder (22), but large variability existed with some patients having
negative, neutral, or position phosphorus balance (23).

In this study we aimed to determine the effects of kidney disease progression in the Cy/+
rat model of progressive kidney decline (24) on intestinal phosphorus absorption as measured by
the in situ ligated loop absorption method, as well as whole-body phosphorus balance,
biochemistries of phosphorus and calcium metabolism, and gene expression of the major
intestinal phosphate transporters in the jejunum and duodenum. We hypothesized that absorption
would be maintained at a moderate stage of kidney disease but decreased at the later stage,

corresponding to a reduction in NaPi-2b expression, and also lower phosphorus balance.
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Materials and Methods

Animals

Ninety-six total male rats were obtained from a Cy rat colony at the Indiana University
School of Medicine. Forty-eight heterozygous Cy/+ (CKD) and forty-eight wild-type +/+ (WT)
litter-match controls were randomly assigned to 20- or 30-week-old age groups in a 2x2 factorial
design (N = 24 rats per age x genotype). Half of the rats in each group were randomly assigned
to the sodium-dependent absorption test outcome or the sodium-independent absorption test
outcome (n = 12 rats/age x buffer group). Rats were fed standard rat chow containing 0.7%
phosphorus and 1.0% Ca (Envigo Teklad 2018, Madison, WI) and water ad libitum until 16
weeks of age, at which time they were switched to an ad libitum casein-based diet (0.7%
phosphorus and 0.7% calcium) that has been shown to accelerate kidney decline (TD.04539,
Envigo Teklad, Madison, W1) (24) until sacrifice. Rats were housed individually in shoe-box
cages until five days prior to sacrifice when they were transferred to wire-bottom metabolic
cages and phosphorus and calcium balance was performed during the last four days prior to
sacrifice. Body weights were taken weekly. The light-dark cycle was maintained from 6 AM-

6PM. This protocol was approved by the Purdue University Animal Care and Use Committee.
Intestinal Phosphorus Absorption Efficiency

Intestinal phosphorus absorption efficiency was determined by in situ jejunal ligated loop
absorption tests as described previously (25) with the exception of being fasted on the day of
sacrifice from midnight until morning for the ligated loop absorption test. Half (N = 12) of the
rats in each age x genotype group were randomly assigned to the “sodium-dependent” absorption
test using a transport buffer containing (mmol/L): 16 Na-N-2-hydroxyethylpiperazine-NO-2-
ethanesulfonicacid or 4-(2-Hydroxyethyl)piperazin-1-ylethanesulfonic acid, 140 NaCl or ChCl,
3.5 KCl, 0.1 KH2PO4, and ~5 uCi P (3P-orthophosphoric acid, PerkinElmer, Waltham, MA),
pH 7.4, and the other half (N = 12) to the “sodium-independent” absorption test using a transport
buffer containing (mmol/L): 4-(2-Hydroxyethyl)piperazin-1-ylethanesulfonic acid, 140 ChCl, 3.5
KCI, 0.1 KH2PO4, and ~5 uCi *P, pH 7.4. After injection of the transporter buffer, blood (0.5

mL/sampling) was collected at 5, 10, 15, and 30 min post-injection in lithium heparin tubes and
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centrifuged at 5000 RPM for 10 minutes (Labofuge A 2502, Baxter Scientific Products, McGaw
Park, IL) to separate plasma. Jejunal loops were removed and heated until dissolved (up to 3
days) at 45°C in an oven.

Absorption of 3P was evaluated two ways: 1) area under the curve (AUC) was calculated
for plasma *P activity over 30 minutes, and 2) percent intestinal phosphorus absorption
efficiency over 30 minutes was calculated as:

1 — (*®P activity remaining in digested loop) / (Total *3P activity in 0.5mL dose) - 100

In addition, because absorption without sodium in the buffer may not be truly sodium-
independent (26), an “exclusively” sodium-dependent component was calculated from each rat
as:

©3p absorption (from loop or AUC)) — (average absorption for the corresponding rat’s group
given the absorption buffer without sodium)

Phosphorus and Calcium Balance and Net Absorption

Over the four days prior to sacrifice, urine and feces were collected per (25) to assess
balance and net absorption of phosphorus and calcium. Feces and diet were ashed in a muffle
furnace (Thermolyne Sybron Type 30400, Dubuque, 1A) for 10 days at 600°C, and diluted
1400X and diet 140X with 2% nitric acid. Urine was diluted 11X with 2% nitric acid.
Phosphorus and calcium in urine, feces, and diet were quantified by inductively coupled plasma-
optical emission spectrophotometry (ICP-OES; Optima 4300DV, Perkin Elmer, Shelton, CT).
Urine creatinine was determined by colorimetric method (Quantichrom, BioAssay Systems,
Hayward, CA). Four-day phosphorus balance was calculated as dietary phosphorus intake (mg/d)
— urine and fecal phosphorus excretion (mg/d), and net phosphorus absorption (%) as phosphorus
intake (mg/d) — fecal excretion (mg/d) / phosphorus intake (mg/d) - 100. Calcium balance and

net calcium absorption were calculated similarly.
Intestinal Phosphate Transporter Gene Expression

After the completion of the ligated loop absorption tests and the removal of the
radioactive jejunal loop, approximately 8 cm of jejunum distal to the ligated loop and the
duodenum distal to the pylorus up to the ligated loop were removed and cut open. The mucosal

layers were scraped, and mucosa from each intestinal segment was placed into TRI Reagent
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(Fisher Scientific, Hampton, NH) and flash frozen in liquid nitrogen for later mMRNA
quantification by RT-PCR. The left kidney was removed, and flash frozen in foil for later MRNA
quantification. Upon thawing, kidneys were weighed and cut into thirds cross-sectionally. The
cortex was removed, mixed, and a sample placed into TRI Reagent (Fisher Scientific, Hampton,
NH).

Gene expression of intestinal NaPi2b and PiT1 using real-time PCR was performed as
previously described (25). NaPi2a and NaPi2c were assessed in the renal cortex (Applied

Biosystems Rn00564677_m1 and Rn00595128 m1).

Plasma Biochemistries

Plasma stored at -80C was thawed and analyzed for phosphorus, calcium, creatinine, and
blood urea nitrogen (BUN) concentration by colorimetric methods (phosphorus and calcium:
Pointe Scientific, Inc., Canton, MI; creatinine and BUN: Quantichrom, BioAssay Systems,
Hayward, CA). Intact PTH (iPTH) and intact FGF23 (iFGF23) were measured by enzyme-linked
immunosorbent assay (Quidel, San Diego, CA), and 1,25D by enzyme immunoassay
(Immunodiagnostic Systems, The Boldons, UK).

Statistics

A sample size of n = 12 rats/group was determined to be sufficient to detect a 30%
difference between groups for phosphorus absorption (f = 0.80, a = 0.05) based on means and
standard deviations reported by Marks et al. (18). Two-way ANOVA was performed for all
outcomes with main effects for age and genotype and their interaction, with Tukey post-hoc
comparisons. Statistical significance was set at o < 0.05. Statistical Analysis Software version
9.4 (SAS Institute, Cary, NC) was used for all statistical analysis. Results are reported as mean +

SEM unless otherwise indicated.
Results

At 16 weeks of age (baseline), plasma creatinine was higher in CKD rats compared with
WT (Table 4.1). Final creatinine was higher in CKD rats, while change from baseline was higher
in CKD rats compared with WT and in 30 week old rats compared with 20 week old rats (Table
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4.2). Urine creatinine was higher in 30 week olds compared with 20 week olds (Table 4.2).
Creatinine clearance and hematocrit were lower in CKD rats compared with WT but not different
between age groups (Table 4.2). There was an interaction for kidney weight where 30 week old
CKD rats were higher than all other groups (p < 0.0001 for all), and 20 week old CKD rats were
higher than WT 20 week olds and 30 week olds (p < 0.0001 and p = 0.0026, respectively) (Table
4.2).

IFGF23 at basline was higher in the CKD rats compared with WT (Table 4.1). An age x
genotype interaction existed for final and change from baseline in iIFGF23, where 30 week old
CKOD rats higher final concentrations and greater increase from baseline than all other groups (p
< 0.0001 for all post-hoc comparisons, Table 4.2). Baseline iPTH was not different between
CKD and WT (Table 4.1). Final levels and change from baseline in iPTH were higher in 30
week old CKD rats versus other groups (Table 4.2). Baseline 1,25D was lower in CKD rats
compared with WT (Table 4.1). There was a significant effect for main effects of age and
genotype for final 1,25D, where CKD was lower than WT, and 30-week-olds were lower than
20-week-olds. However, Tukey’s post-hoc tests revealed the only difference in pairwise
comparisons was for 30-week-old CKD rats that had lower 1,25D than all other groups, despite a
non-significant p = 0.06 for the interaction (Table 4.2).

With the “sodium-dependent” absorption test, phosphorus absorption efficiency from
loops at 30 minutes was higher in 20 week old rats compared with 30 week olds (35.7 £ 0.9 % vs
27.7 £ 1.3 %, p <0.0001), and higher in CKD rats compared with WT (33.4 £ 1.4 % vs 30.0 £
1.3 %, p = 0.0283, interaction 0.6913) (Figure 4.1). With the “sodium independent” absorption
test, there was a significant age x genotype interaction (p = 0.0149), where 20 week old CKD
and WT rats had higher absorption efficiency than 30 week old WT rats (24.5+ 1.6 % and 27.3 £
1.5%vs 18.5+ 1.3 %, p=0.0197 and p = 0.0003) (Figure 4.1). Phosphorus absorption by
plasma AUC had a similar pattern; in the “sodium dependent” test, absorption was higher in 20
week old rats compared with 30 week olds (0.7 + 0.04 vs 0.5 £ 0.03, p < 0.0001), and higher in
CKD rats compared with WT (0.7 £ 0.03 vs 0.5 = 0.04, p = 0.0008; interaction p = 0.5769)
(Figure 4.2). In the “sodium independent” test, absorption was higher in 20 week old rats
compared with 30 week old rats (0.5 + 0.03 vs 0.4 £ 0.02, p = 0.0011), and higher in CKD
compared with WT (0.5 + 0.02 vs 0.4 £ 0.02, p < 0.0001; interaction p = 0.9664) (Figure 4.2).

There was an age x genotype interaction for “exclusively” sodium-dependent absorption
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efficiency from the ligated loops (p = 0.0189) where 20 week old CKD rats had higher
absorption efficiency compared with 20 week old WT and 30 week old CKD rats (13.2 + 1.0 %
vs7.1+£15%and 6.3 +1.9%, p=0.0376 and p = 0.0152) (Figure 4.3A). For absorption by
plasma AUC, sodium-dependent absorption was not different between groups (overall model p =
0.3486) (Figure 4.3B). Body weight at sacrifice was lower in CKD rats compared with WT and
in 20 week olds vs 30 week olds (Table 4.2), however assessment of absorption with body
weight as a covariate in models of loops or plasma did not change results (data not shown). The
sodium-dependency of phosphate absorption varied from 22-35% for CKD rats and 19-33%
depending on age and method of determination (ie label disappearance from loop or appearance
into plasma) (Table 4.3).

NaPi-2b mRNA did not differ by groups in the jejunum, but in the duodenum it was
lower in CKD rats compared with WT, while there was no difference between 20 and 30 week
olds (Figure 4.6). There were no effects of age or genotype on PiT-1 mRNA in either intestinal
segment (Figure 4.6). In the kidney, both NaPi-2a and NaPi-2c were lower in CKD rats
compared with WT but there was no difference between age groups (Figure 4.6).

Phosphorus balance was higher in 20 week olds compared with 30 week olds (0.94 + 2.2
mg/d vs -12.7 £ 3.2 mg/d, p = 0.0005), and higher in WT compared with CKD rats (-2.2 + 2.8
mg/d vs -9.7 = 3.0 mg/d, p = 0.0470), with no age x genotype interaction (p = 0.7881) (Figure
4.4A). Calcium balance was higher in 20 week olds compared with 30 week olds (17.8 £ 2.6
mg/d vs 7.3 £ 1.7 mg/d, p < 0.0001), while there was no difference between WT and CKD
groups (11.3 £ 1.9 mg/d vs 13.9 = 1.7 mg/d, p = 0.2924), and no age x genotype interaction (p =
0.5889) (Figure 4.4B). Net phosphorus balance was higher in 20 week olds compared with 30
week olds (90.8 + 1.5 mg/d vs 76.9 £ 1.9 mg/d, p < 0.0001), but was not different between WT
and CKD rats (81.6 + 1.8 mg/d vs 86.2 + 2.1 mg/d, p = 0.0759), interaction p = 0.7898 (Figure
4.5A). Net calcium balance was also higher at 20 weeks compared with 30 weeks (20.7 £ 1.6
mg/d vs 11.9 £ 1.7 mg/d, p = 0.0001), but not different between WT and CKD (14.0 £ 1.8 mg/d
vs 18.2 + 1.7, p = 0.0848), interaction p = 0.4988 (Figure 4.5B). Individual components of
balance are listed in Tables 4.4 and 4.5.



106

Discussion

In this study, 20-week-old rats had higher intestinal phosphorus absorption efficiency
compared with 30-week-old rats as measured by in situ jejunal ligated loop. This corresponds
with the higher net phosphorus absorption from metabolic balance and greater positive overall
whole-body phosphorus balance observed in 20-week-old versus 30-week-old rats. Interestingly,
these results are in contrast with our previous study in healthy Sprague Dawley male rats, in
which we observed no age difference in jejunal phosphorus absorption efficiency, net
phosphorus absorption, nor balance between 20-week-old and 30-week-old rats using similar
methods (25). This may be due, however, to a difference in rat strain. The Cy rats obtained from
the inbred IUSM colony have a Han:Sprague Dawley background (27), which may have
different physiologic adaptations with age compared to commercial Sprague-Dawley rats
(Envigo). However, in both studies, the age effects on absorption mirrored the age effects on
1,25D: no difference in 1,25D or absorption in 20-week-old versus 30-week-old Sprague-
Dawley rats; higher 1,25D and higher absorption in 20-week-old versus 30-week-olds in the
present study. This is in agreement with the classic understanding of a positive relationship
between 1,25D and intestinal phosphorus absorption.

Notably, in CKD rats, intestinal phosphorus absorption efficiency was slightly but
statistically higher compared with WT, which runs in contrast to the lower 1,25D levels in CKD
compared with WT. Similarly, net phosphorus absorption from metabolic balance was not
statistically different between CKD and WT (p = 0.08) but was numerically higher in CKD, in
line with the ligated loop findings. A lack of decrease in absorption is supported by the work of
others using in situ or in vivo absorption assessment methods. Marks et al. (28) observed no
statistical difference in phosphorus absorption using the ligated loop in 5/6 nephrectomized CKD
rats in either the jejunum or duodenum (but numerically higher in the CKD rats), despite lower
1,25D in CKD rats. Recently, Turner et al. (19) also showed no difference in phosphorus
absorption in adenine-induced moderate or mild CKD rats compared to controls using an in vivo
oral gavage method. These data and ours suggest that CKD does not result in a physiological
adaptation to limit intestinal phosphorus absorption even when 1,25D is low.

In vitro studies contrast in jejunal brush border membrane vesicle (BBMV) uptake in 5/6
nephrectomized rats finding either decreased uptake compared with age matched controls or no

change compared with sham surgery (16, 17). Interestingly, despite showing a reduction in
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sodium-dependent uptake, Peerce et al. found no difference in the percentage of phosphorus
absorbed from metabolic balance in CKD rats (14). Further, Marks et al. observed no difference
in uptake as assessed by the everted gut sac technique in 5/6 nephrectomized rats compared with
sham-operated (28). In vitro techniques assess uptake into enterocytes, whereas the in situ and in
vivo assessments include basolateral transport into circulation. These methodological differences
could illuminate whether basolateral regulation can explain different outcomes, although the
inconsistencies within in vitro results generally rules this out.

We observed some differences when assessing phosphate transport in an absorption
buffer without sodium, although it unclear whether these reflect true sodium-independency with
the ligated loop technique. Luminal phosphate concentration in vivo is ~1.5-40 mM in the
proximal intestine depending on measurement technique (26, 29), which would result in higher
passive transport compared to in vitro techniques, despite utilizing a low phosphate
concentration in the loop. Further, endogenous sodium secretion during the test may contribute
to sodium-dependent absorption (26). Thus, it is unlikely that we are able to observe true
sodium-independent absorption with the ligated loop. This is also reflected in the much lower
estimations of sodium-dependency when using the ligated loop or oral gavage (26, 30). Our
finding of sodium-dependency estimated by appearance into plasma in WT rats of 33% is in
alignment of the finding of 32% by Marks et al. in healthy Sprague Dawley rats (26). Loghman-
Adham et al found no change in sodium-independent uptake in CKD (17). Changes in tight gap
junction proteins occur in 5/6 nephrectomy- or adenine- induced CKD along the intestine,
although the relevance of these to intestinal phosphate transport is unclear (20, 21).

We observed no difference in NaPi-2b mMRNA between CKD and WT rats in the jejunum,
but lower NaPi-2b in CKD rats compared with WT in the duodenum. No age or CKD differences
in PiT-1 mRNA were observed in either intestinal segment. Similarly, Marks et al. observed no
difference in either duodenum nor jejunum NaPi-2b mRNA expression between 5/6""
nephrectomized compared with sham-operated rats (18). However, we have previously (15)
observed lower NaPi-2b mRNA in the duodenum and jejunum, but not ileum, in the same Cy/+
rat model compared with WT controls of similar age to the present study. We observed more
extreme elevations in FGF23 and lower 1,25D in the CKD rats in the prior study, which may

explain the discrepancy in findings between studies in regard to NaPi-2b mRNA expression.
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However, it is notable in both studies, the absorption outcomes generally reflected NaPi-2b
MRNA expression outcomes.

While patients with end-stage renal disease (10-12) and on dialysis (13) appear to have
reduced absorption of dietary phosphorus compared to healthy individuals, whether it is reduced
in moderate stages of the disease is unresolved. Our results, together with others suggest that
absorption is relatively unchanged as the disease progresses to later stages in animal models.
Thus, interventions that target active intestinal phosphorus transport may be fruitful. Although
1,25D decreases markedly with disease progression, we observed no reduction in phosphate
absorption, despite its well-documented positive regulation of absorption via NaPi-2b. Future
work could assess whether a threshold exists or if additional regulation is maintaining phosphate

transport in CKD.



Plasma
Creatinine
(mg/dL)
Plasma PTH
(pg/mL)

Plasma

iIFGF23
(pg/mL)
Plasma

1,25D

(pg/mL)

Table 4.1. Baseline blood biochemistries

20 weeks old
WT

0.39 (0.02)
n=18

376.7 (38.9)
n=15

441.6 (21.1)
n=15

231.7 (61.9)
n=14

CKD

0.55 (0.01)
n=18

349.3 (31.8)
n=15

745.1 (26.6)
n=15

85.9 (22.9)
n=14

30 weeks old
WT

0.30 (0.02)
n=14

341.3 (29.5)
n=15

375.9 (8.8)
n=15

205.8 (55.0)
n=14

CKD

0.51 (0.03)
n=19

339.6 (23.2)
n=16

699.5 (31.2)
n=16

101.6 (26.2)
n=15

109

P-Values
Genotype

<0.0001

0.6325

<0.0001

<0.0001

tBaseline blood and urine biochemistries. ANOVA p-values for the overall model (Pmodel),
main effect of age (Page), main effect of diet (Ppiet), and interaction of age and diet (Paxp) are
shown, and means and (SEM) are shown for each group. Plasma creatinine was higher at 20
weeks vs 30 weeks and higher in CKD vs WT. Plasma PTH did not differ between groups.
iIFGF23 was higher at 20 weeks vs 30 weeks and higher in CKD rats vs WT. Plasma 1,25D was
lower in CKD vs WT.



Body weight
(9)

Kidney
weight (g)
Final Plasma
Creatinine
(mg/dL)
Change
Plasma
Creatinine
(mg/dL)
Urine
Creatinine
(mg/day)
Hematocrit
(%)

20 weeks old

WT

487.9 (5.4)
n=24

1.7 (0.4)
n=22
0.45 (0.02)
n=23

0.06 (0.03)

n=17

767.7 (88.3)

n=24

49.5 (10.1)
n=24

Table 4.2. Final weights and blood and urine biochemistries}

CKD

459.5 (5.9)
n=25
2.1(0.4)
n=22
0.78 (0.03)
n=23

0.25 (0.04)

n=18

595.7 (31.4)

n=24

43.3 (9.2)
n=22

30 weeks old

WT

546.3 (7.7)
n=24

1.8 (0.4)
n=24
0.46 (0.02)
n=23

0.15 (0.03)

n=13

958.5 (72.2)

n=24

49.5 (10.1)
n=24

CKD

511.0 (5.9)
n=23

2.7 (0.6)
n=23
0.91 (0.06)
n=22

0.33 (0.06)

n=18

875.4 (56.5)

n=22

42.4 (8.8)
n=23

P-Values

Model

<0.0001

< 0.0001

<0.0001

<0.0001

0.0013

<0.0001

Age

<0.0001

<0.0001

0.0740

0.0451

0.0006

0.6008

Genotype

<0.0001

<0.0001

<0.0001

<0.0001

0.0565

<0.0001

Age x
Genotype
0.5814

0.0002

0.1196

0.8960

0.5024

0.6026

0TT



Creatinine
Clearance

(mL/min)

Plasma PTH
(pg/mL)

Change
plasma PTH
(pg/mL)
Plasma
IFGF23
(pg/mL)
Change
plasma
iIFGF23

(pg/mL)

2.55 (0.36)
n=24

839.7 (98.1)
n=24

418.5
(118.6)
n=15
527.0 (24.5)
n=24

81.7 (40.5)
n=15

1.18 (0.07)
n=24

1116.5
(122.7)
n=23
691.6 (115.8)
n=14

841.0 (49.7)
n=24

138.5 (55.6)
n=15

Table 4.2 cont

2.74 (0.23)
n=23

1246.8
(128.2)
n=24
880.6 (150.0)
n=15

538.9 (42.2)
n=24

126.9 (24.4)
n=15

1.46 (0.16)
n=22

1707.2
(176.7)
n=18
1301.52
(210.9)
n=14
2215.5
(287.5)
n=23
1318.4
(322.9)
n=16

<0.0001

0.0002

0.0015

<0.0001

<0.0001

0.3176

0.0002

0.0009

<0.0001

0.0008

<0.0001

0.0058

0.0270

<0.0001

0.0007

0.8318

0.4822

0.6303

<0.0001

0.0018
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Table 4.2 cont

Plasma 278.6 (56.9) 259.2 (52.9) @ 232.9(47.5) 93.6(19.5) 0.0003 0.0013 0.0142 0.0621
1,25D n=24 n=24 n=24 n=23

(pg/mL)

Change 97.5(26.0) 164.3(43.9) @ 64.7 (17.3) -0.2 (-0.06) | 0.0765 0.0306 0.9830 0.1437
plasma n=14 n=14 n=14 n=15

1,25D

(pg/mL)

tFinal weights, and blood and urine biochemistries. ANOVA p-values for the overall model (Pmoder), main effect of age (Page),
main effect of diet (Ppiet), and interaction of age and diet (Paxp) are shown, and means and (SEM) are shown for each group. Body
weights were lower at 20 weeks vs 30 weeks and lower in CKD rats vs WT. Kidney weight was higher in 30 week CKD rats. Plasma
creatinine and change from baseline was higher in CKD rats vs WT, and it increased more in the 30 week rats. Urine creatinine was
highest in 30 week rats vs 20 week. Hematocrit and creatinine clearance was lower in CKD rats vs WT. Plasma PTH and change from
baseline was greater in CKD vs WT and at 30 weeks vs 20 weeks. iFGF23 and change from baseline was highest in the 30 week CKD
rats. Plasma 1,25D was lower in CKD rats vs WT and lower at 30 weeks vs 20 weeks.

AN



113

Table 4.3. Percent sodium-dependency of the jejunum by genotype and age

20 Weeks 30 Weeks
% sodium-dependency CKD WT CKD WT
Disappearance from loop (%) | 35 19 22 29
Appearance into plasma (%) |25 33 25 22

Sodium-dependency was determined by (average absorption with buffer with sodium-average
absorption with buffer without sodium/average absorption with buffer with sodium)



Table 4.4. Components of balance for phosphorus
Component 20 weeks old 30 weeks old P-Values

WT CKD WT CKD Model Age Genotype Age X
Genotype

Balance 4.3 (3.5) -2.4 (2.7) -8.4 (4.0) -17.2 (5.0) 0.0015 0.0005 0.0470 0.7881
(mg/d)
Net 11.2 (2.3) 93.3 (2.0) 75.1(2.1) 78.8 (3.2) <0.0001 <0.0001 0.0759 0.7898
absorption
(mg/d)
Net 48.4 (1.1) 51.1 (0.9) 43.7 (1.1) 47.7 (0.8) 0.0005 0.0012 0.0065 0.6068
absorption
(%)
Fecal 94.1 (3.3) 89.5 (2.6) 96.0 (2.1) 86.3 (3.4) 0.0406 0.8226 0.0069 0.3272
phosphorus
(mg/d)
Urine 84.0 (2.5) 95.7 (2.8) 83.5(3.3) 96.0 (4.8) 0.0088 0.9749 0.0007 0.9096
phosphorus
(mg/d)
Dietary 182.4(2.2) 182.8(3.1) 171.1 (1.8) 165.1 (3.5) <0.0001 <0.0001 0.2989 0.2394
phosphorus
intake
(mg/d)

ANOVA p-values for the overall model (Pmoder), main effect of age (Page), main effect of diet (Ppiet), and interaction of age and diet
(Paxp) are shown, and means and (SEM) are shown for each group.

v1iT



Component

Balance
(mg/d)

Net
absorption
(mg/d)

Net
absorption
(%)

Fecal
calcium
(mg/d)
Urine
calcium
(mg/d)
Dietary
calcium
intake
(mg/d)

ANOVA p-values for the overall model (Pmodel), main effect of age (Page), main effect of diet (Ppiet), and interaction of age and diet

Table 4.5. Components of balance for calcium

20 weeks old 30 weeks old P-Values
WT CKD WT CKD Model Age Genotype
17.2 (2.6) 18.4 (1.9) 5.5 (11.0) 9.2 (2.6) 0.0002 <0.0001 0.2924
19.5 (2.5) 21.9 (1.9) 8.8 (2.2) 14.3 (12.5) 0.0004 0.0001 0.0848
13.8 (1.8) 15.6 (1.3) 6.6 (1.6) 11.1 (2.0) 0.0017 0.0009 0.0663
121.4 (2.8) 119.2 (2.9) 123.4 (2.4) 113.2 (3.4) 0.0825 0.4924 0.0349
2.3(0.5) 3.5(0.2) 3.2(0.2) 5.1(0.4) <0.0001 <0.0001 <0.0001
140.9 (1.7) 141.1 (2.4) 132.1 (1.4) 127.5 (2.7) <0.0001 <0.0001 0.2989

(Paxp) are shown, and means and (SEM) are shown for each group.

Age x
Genotype
0.5889
0.4988
0.4212
0.1668

0.1696

0.2394

qT1
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Figure 4.1. Percent jejunal phosphorus absorption efficiency by age (20 or 30 weeks) and
genotype (CKD or WT) with or without sodium in the absorption buffer.
Phosphorus absorption efficiency was calculated as 1-(*3P activity remaining in jejunal
loop)/(Total 33P activity in dose) after 30 minutes post *3P injection into the jejunal loop. Means
and standard error bars are shown for each group. For rats given the absorption buffer with
sodium (left), there was a main effect for age where 20 week old rats had higher absorption
efficiency compared to both 30 week olds, and CKD rats had higher balance compared to WT,
with no significant age x diet interaction. For rats given the absorption buffer without sodium
(right), there was a significant age x genotype interaction, with 20 week old CKD and WT rats
greater than 30 week WT rats. Absorption buffer with sodium: CKD rats are shown with black
bars and white dots, WT rats are shown with white bars and black dots. Absorption buffer
without sodium: CKD rats are shown with black bars with white hashes and white dots, WT rats
are shown with white bars with black hashes and black dots. ANOVA p-values for the overall
model (Pmoder), main effect of age (Page), main effect of diet (Pcenotype), and interaction of age and
diet (Paxc) are shown. ** p < 0.01, *** p < 0.0001, # p < 0.05.
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Figure 4.2. Jejunal phosphorus absorption in plasma over 30 minutes by age (20 or 30 weeks)
and genotype (CKD or WT) with or without sodium in the absorption buffer.
Phosphorus absorption efficiency was calculated as % of initial dose of *3P. Means and standard
error bars are shown for each group. For rats given the absorption buffer with sodium (left), there
was a main effect for age where 20 week old rats had higher absorption efficiency compared to
both 30 week olds, and CKD rats had higher balance compared to WT, with no significant age x
diet interaction. For rats given the absorption buffer without sodium (right), 20 weeks had a
higher absorption vs 30 weeks, and CKD rats were higher than WT. Absorption buffer with
sodium: CKD rats are shown with black bars and white dots, WT rats are shown with white bars
and black dots. Absorption buffer without sodium: CKD rats are shown with black bars with
white hashes and white dots, WT rats are shown with white bars with black hashes and black
dots. ANOVA p-values for the overall model (Pmoder), main effect of age (Page), main effect of
diet (Pcenotype), and interaction of age and diet (Paxc) are shown. ** p < 0.01, *** p <0.0001, # p
<0.01.
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Figure 4.3. A) Sodium-dependent jejunal phosphorus absorption efficiency from loops by age (20 or 30 weeks) and genotype (CKD or
WT). There was a significant age x genotype interaction, with 20 week CKD rats having higher sodium-dependent absorption
efficiency compared to 20 week normal and 30 week CKD rats. B) Sodium-dependent jejunal phosphorus absorption in plasma over
30 minutes by age (20 or 30 weeks) and genotype (CKD or WT). The overall model was not significant. Means and standard error
bars are shown for each group. Sodium-dependent values were calculated by result of each rats given the absorption buffer with
sodium minus the average sodium-independent absorption for that genotype and age group. CKD rats are shown with black bars and
white dots, WT rats are shown with white bars and black dots. ANOVA p-values for the overall model (Pmoder), main effect of age
(Page), main effect of diet (Pcenotype), and interaction of age and diet (Paxc) are shown. * p < 0.05.

8TT



%

80

N
o
1

. oo o [ Jckbp
ot ° . -WT
. ° . Pioger = 0.0002
o K Page < 0.0001
. o o Paiype = 0.2024
o Jo® 0o Py = 0.5889
0’ o e

n
o
1

-40

-60 <

Phosphorus Balance (mg P/day)
L4
Calcium Balance (mg P/day)

n
o
1

-80 —

-100 -

20 wk 30 wk 20 wk 30 wk

Figure 4.4. A) Phosphorus balance by age (20 or 30 weeks) and genotype (CKD or WT). There was a main effect for age where 20
week old rats had higher phosphorus balance compared to both 30 week olds, and CKD rats had higher balance compared to WT, with
no significant age x diet interaction. B) Calcium balance by age and genotype. There was a main effect for age where 20 week old rats

had higher calcium balance compared to 30 week olds, but there was no significant effect of genotype and no significant age x diet

interaction. Balance for each mineral was calculated as intake — fecal + urine. Means and standard error bars are shown for each
group. The CKD group is shown in black bars and white circles, and WT white bars with black circles. ANOVA p-values for the
overall model (Pmoder), main effect of age (Page), main effect of diet (Pcenotype), and interaction of age and diet (Paxc) are shown. ** p <
0.01, *** p < 0.0001, # p < 0.05.
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Figure 4.5. A) Net phosphorus absorption by age (20 or 30 weeks) and genotype (CKD or WT). There was a main effect for age where
20 week old rats had higher net phosphorus absorption compared to both 30 week olds, while there was no difference by genotype and
no significant age x diet interaction. B) Net calcium absorption by age and genotype. There was a main effect for age where 20 week
old rats had higher calcium balance compared to 30 week olds, with no difference by genotype and no significant age x diet
interaction. Net absorption for each mineral was calculated as intake — fecal. Means and standard error bars are shown for each group.
The CKD group is shown in black bars and white circles, and WT white bars with black circles. ANOVA p-values for the overall
model (Pmoder), main effect of age (Page), main effect of genotype (Pcenotype), and interaction of age and diet (Paxc) are shown. ** p <
0.01, *** p < 0.0001.
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Figure 4.6. RNA expression of NaPi-2b, PiT-1 in jejunum and duodenum, and NaPi-2a and
NaPi-2c in kidney. A) NaPi-2b mRNA was not different between groups in the jejunum. B) PiT-
1 mRNA was not different between groups in the jejunum. C) NaPi-2b mRNA was lower in
CKD rats vs WT in the duodenum. D) PiT-1 mRNA was not different between groups in the
duodenum. E) NaPi-2a was lower in CKD rats vs WT in the kidney. F) NaPi-2c was lower in
CKD rats vs WT in the kidney. Excluded outliers above 2 SD of the mean. The CKD group is
shown in black bars and white circles, and WT white bars with black circles. ANOVA p-values
for the overall model (Pmoger), main effect of age (Page), main effect of diet (Pgenotype), and
interaction of age and diet (Paxc) are shown.
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CHAPTER 5: EFFECT OF ESTROGEN DEFICIENCY ON THE
PROGRESSION OF CHRONIC KIDNEY DISEASE-MINERAL BONE
DISORDER (CKD-MBD) IN FEMALE CY/+ RATS

Manuscript draft intended for submission to Scientific Reports
Abstract

Male Cy/+ rats develop progressive kidney disease and features of late stage chronic
kidney disease-mineral and bone disorder by 35 to 38 weeks of age. However, female Cy/+ rats
only begin to progress in disease severity after 40-44 weeks of age, which has precluded their
use in studies to date. Animal and human reports suggest that estrogen may be protective against
kidney decline. Therefore, we tested the hypothesis that estrogen deficiency would accelerate
kidney disease in female Cy/+ rats. Eight female Cy/+ rats underwent ovariectomy (OVX) and
eight underwent a sham surgery at 15 weeks of age. Blood was sampled every 5 weeks until 35
weeks of age, when the rats underwent a four-day metabolic balance, were sacrificed, and tibia
collected for analysis. While OV X produced the expected changes in trabecular and cortical bone
parameters, no difference between plasma blood urea nitrogen, creatinine, creatinine clearance,
phosphorus, calcium, nor kidney weight were observed that would have indicated progression of
kidney disease. These results indicate that estrogen deficiency does not produce a useful model
of postmenopausal kidney disease in the female Cy/+ rat at these ages and duration post-
ovariectomy. Development of other more feasible female models of progressive CKD are

needed.

Introduction

CKD affects approximately 13.4% of adults worldwide (1), and prevalence and
progression of the disease differ based on biological sex. Estimation of the global prevalence of
CKD is higher in women than men (1), but a large cohort study showed a higher proportion of
males than females at end stage renal disease (ESRD) (2). A meta-analysis of 68 studies on
nondiabetic kidney disease concluded that kidney function declines slower in women than men

(3). In concordance, ovariectomy (OVX) has been demonstrated to accelerate kidney disease in
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various animal models (4-9), while exogenous estradiol administration attenuates the disease (5-
12). However, some divergent studies have found no effect (13, 14) or even a protective effect
(15, 16) of estrogen loss on kidney disease progression. In addition to the impact on the kidney,
estrogen has well-established protective effects on bone (17). This is highly relevant as a
common co-morbidity of CKD is CKD-mineral and bone disorder (CKD-MBD). CKD-MBD is
characterized by biochemical abnormalities of mineral metabolism, bone disease, and vascular or
other soft tissue calcification (18) that result in an increased risk for cardiovascular events, bone
fractures, and death. Estrogen may modulate the main biochemical indicators of CKD-MBD,
FGF-23, PTH, and 1,25D, either directly or indirectly (19). Thus, estrogen appears to be
protective against kidney failure and associated co-morbid conditions. However, biological sex
differences in the manifestation and progression of CKD-MBD through the stages of CKD are
understudied.

The Cy/+ rat model of CKD is unique in that it has been characterized as a spontaneous
slowly progressive model of CKD that exhibits all the key features of CKD-MBD and can be
studied at earlier to later stages of disease progression (20, 21). The phenotype is the result of a
missense mutation in Anks6 that encodes for SamCystin, and results in renal cyst formation (22).
Male Cy/+ rats experience a clear elevation in blood urea nitrogen (BUN) by 10 weeks of age
(20) and show all features of late stage CKD-MBD by 35 to 38 weeks of age, including changes
in additional plasma biochemistries such as creatinine, hematocrit, phosphorus and calcium,
regulatory hormones PTH and FGF23, bone histomorphometric parameters, and vascular
calcification (21, 23, 24). On the contrary, female Cy/+ rats do not experience an elevation in
BUN comparable to 10-week-old males until 40-44 weeks of age (25, 26). This has resulted in
minimal use of female Cy/+ rats in studies on CKD-MBD. Therefore, our primary aim of this
study was to determine if reducing circulating estrogen (via OVX) would accelerate kidney
functional decline in Cy/+ females compared to sham-operated females by 35 weeks of age. We
hypothesized that OV X would accelerate kidney function decline and lead to CKD-MBD
comparable to males by 35 weeks of age. Because most women with CKD are postmenopausal
or amenorrhoeic due to the disease (27), this model would be translationally relevant to a large
percentage of women with CKD who have concurrent estrogen-deficiency (or postmenopausal)

osteoporosis.
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Materials and Methods
Animals

Sixteen female Cy/+ rats were studied from our breeding colony at Purdue University.
Heterozygosity for the Anks6é mutation was determined by ear punch and genotyping
(Transnetyx, Memphis, TN). Rats were randomly assigned to shoe-box cages (2 rats per cage),
and within each cage, randomly assigned to undergo OV X (N = 8) or sham (N = 8) surgery at 15
weeks of age (described below). Blood was drawn at 10, 20, 25, 30, and 35 weeks of age. Rats
were fed standard rat chow containing 0.7% phosphorus and 1.0% Ca (Envigo Teklad 2018,
Madison, W1) and water ad libitum until 24 weeks of age, at which time they were switched to
an ad libitum casein-based diet (0.7% phosphorus and 0.7% calcium) which we have previously
shown to lead to more consistent and accelerated kidney decline in Cy/+ males (TD.04539,
Envigo Teklad, Madison, WI) (21). Animals were fed this diet until sacrifice at 35 weeks of age.
At 13 days prior to sacrifice, rats were transferred to wire-bottom metabolic cages and a four-day
phosphorus and calcium balance was performed from 9 to 5 days prior to sacrifice. Five days
prior to sacrifice, rats were transferred back to shoe-box cages. Body weights were taken weekly.
The light-dark cycle was maintained from 6:30AM-6:30PM. This protocol was approved by the

Purdue University Animal Care and Use Committee.
OVX and Sham Procedures

Animals undergoing the OV X or sham surgery procedures were shaved on the dorsal
midline. All appropriate steps were taken for an aseptic surgery. One incision ~2 cm was made
on the dorsal midline. The skin was bluntly dissected from the abdominal wall to both sides. The
incision was pulled to the left side and a small ~10 mm incision was made with scissors through
the abdominal wall. The ovary was externalized with thumb forceps so that the ovary and the end
of the uterine horn were exposed. A silk ligature was tied between the end of the uterine horn
and the ovary. Another silk ligature was tied between the ovary and the ovarian artery. Two cuts
were made to excise the ovary from the artery and the uterus. The abdominal wall was closed
with an absorbable suture and then the skin was pulled to the opposite side to remove the other
ovary by the same method. When both ovaries were removed, the skin was stapled shut.

Buprenex was administered subcutaneously approximately 15 minutes before the end of the
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surgery for pain management. Rats woke up on a towel and once sternal recumbency occurred
they were moved back to their cages. The staple was removed 5-7 days post-surgery. Sham-
operated rats underwent the same surgical procedure, excluding the ligation and removal of the

ovaries.
Tissue Collection

At sacrifice, rats were anesthetized with isoflurane, the thoracic cavity was opened, and
blood was collected from the vena cava resulting in death by exsanguination. Kidneys and uteri
were excised and weighed. The left tibia was excised, cleaned of surrounding soft-tissue, and
stored in 10% neutral buffered formalin for 3 days, then transfer to 70% ethanol and stored at -

20°C until the time of microCT analysis.
Phosphorus and Calcium Balance and Percent Net Absorption

Over the four days of metabolic balance, all urine and feces were collected and diet
weighed daily to assess 4-day average phosphorus and calcium balance and net absorption. Feces
and diet were ashed in a muffle furnace (Thermolyne Sybron Type 30400, Dubuque, 1A) for 10
days at 600°C. Feces were then diluted 1400X and diet 60X with 2% nitric acid. Urine was
diluted 11X with 2% nitric acid. Phosphorus and calcium in urine, feces, and diet were quantified
by inductively coupled plasma-optical emission spectrophotometry (ICP-OES; Optima 4300DV,
Perkin Elmer, Shelton, CT). Urine creatinine was determined by colorimetric method
(QuantiChrom Creatinine Assay Kit; BioAssay Systems, Hayward, CA). Four-day phosphorus
balance was calculated as dietary phosphorus intake (mg/d) minus urine and fecal phosphorus
excretion (mg/d), and percent net phosphorus absorption as phosphorus intake (mg/d) minus
fecal excretion (mg/d) / phosphorus intake (mg/d). Calcium balance and percent net calcium

absorption were calculated similarly.
Plasma Biochemistries

Plasma stored at -80C was thawed and analyzed for phosphorus, calcium, blood urea
nitrogen (BUN), and creatinine by colorimetric assay (Phosphorus Kit: Pointe Scientific Inc.,
Canton, MI; Calcium Kit: Pointe Scientific Inc., Canton, MI; BUN: QuantiChrom Urea Assay
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Kit, BioAssay Systems, Hayward, CA; Creatinine: QuantiChrom Creatinine Assay Kit;
BioAssay Systems, Hayward, CA).

microCT

Proximal tibia were analyzed by uCT (Skyscan 1172, 12um resolution) using protocols
similar to our previous studies (you can cite any of our CKD papers with CT). Trabecular
microarchitecture was obtained from a 1mm region of interest selected approximately 1mm
distal to the tibial growth plate. Bone parameters assessed included trabecular b one
volume/tissue volume (BV/TV, %), trabecular thickness (Th. Th), trabecular number (Th. N),
and trabecular separation (Th. Sp). Cortical bone analysis was performed on a single slice
located 1.5mm distal from the metaphysis region of analysis with outcome parameters including
cortical bone area (Ct.Ar), and cortical thickness (Ct.Th). There was no cortical porosity noted in

any of the animals (OVX or Sham).
Statistics

Repeated measures analysis of variance (ANOVA\) for differences between groups was
performed for all plasma biochemistries. Unpaired t-tests was performed for comparison of mean
differences in uterine and kidney weights, mineral balance and net absorption, and bone
outcomes between OV X and Sham. Statistical significance was set at o < 0.05. Statistical
Analysis Software version 9.4 (SAS Institute, Cary, NC) was used for all statistical analyses.

Results are reported as mean + SEM.
Results

OVX was deemed successful by the significantly lower uterine weight observed at 35
weeks in OV X rats compared with Sham (0.16 + 0.01 g vs 0.78 + 0.06 g, respectively; p <
0.0001), and greater increase in bodyweight after OV X surgery (p < 0.0001, Figure 5.1). Plasma
creatinine (p = 0.43), BUN (p = 0.09), phosphorus (p = 0.61), and calcium (p = 0.39) were not
different between OV X and Sham groups (Figure 5.2). Creatinine clearance was not different
between groups (4.2 £ 0.2 mL/min vs 4.1 + 0.2 mL/min for OV X and Sham respectively, p =
0.83). In addition, kidney weight was not different between groups (1.417 £ 0.075gvs 1.382 +
0.050 g, p = 0.70).
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Phosphorus balance was lower in OV X rats compared to Sham (-2.8 £ 2.6 mg/day vs 5.4
+ 2.5 mg/day, p = 0.04), while calcium balance was also numerically lower but did not reach
statistical significance (0.6 + 2.9 mg/day vs 7.1 + 2.8 mg/day, p = 0.12) (Figure 5.3). Similarly,
percent net phosphorus absorption was numerically lower in OV X rats vs Sham, but did not
reach statistical significance (43 £ 2 % vs 48 + 2 %, p = 0.08), while percent net calcium
absorption was numerically lower but not significant in OVX (54 % vs 12 £ 3 %, p=0.12)
(Figure 5.3). Individual components of balance are listed in Table 5.1.

In the tibia, BV/TV and Th.N were lower in OV X rats (p < 0.0001 for both), and Th.Sp
higher (p <0.0001) vs Sham (Table 5.2). Th.Th was not different (p = 0.15) (Table 5.2). No

cortical porosity was noted for any rats.
Discussion

Although OV X of Cy/+ female rats produced the expected phenotypic changes in body
and uterine weights, and trabecular bone volume, there was no indication of advancing kidney
disease as measured by creatinine clearance, plasma creatinine, BUN, phosphorus, and calcium,
nor kidney weight. Furthermore, there was no reduction in intestinal calcium absorption as is
seen in early CKD due to reduced 1,25(OH).-vitamin D. Finally, although OVX did produce
changes in cancellous bone, there were no changes to cortical bone which is the primary
pathogenesis observed in the Cy/+ male animals with uremia. These findings were contrary to
our hypothesis that OV X would hasten kidney disease progression and the development of CKD-
MBD in female Cy/+ rats.

The renoprotective potential of estrogen on kidney function has been examined in various
animal models with conflicting results. Some studies have shown an increase in
glomerulosclerosis in response to OV X. This has been demonstrated in sclerosis-prone ROP
Os/+ mice (4), 5/6 nephrectomized Wistar rats (5), in rats with streptozotocin-induced diabetic
nephropathy (6), Dahl salt-sensitive rats (7), and in female Imai rats that develop spontaneous
hypercholesterolemia (9). Within these experiments, OV X also increased tubulointerstitial
fibrosis (5, 7), proteinuria (5), and serum creatinine with a trend toward decreased creatinine
clearance (7). Further, administration of estradiol tended to mitigate the changes, with improved
glomeruloscerosis (5-7), tubulointerstitial fibrosis (5-7), proteinuria (5, 6), creatinine measures

(5, 6), and TGF-R expression (6). In female Imai rats, a protective or aggravative effect of
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estradiol on glomerulosclerosis was dependent on dose (9) which may be mediated by growth
hormone (28). Additionally, exogenous estradiol in spontaneously hypertensive rats that
underwent uninephrectomy, or in female db/db mice, male Imai rats, or male Sprague-Dawley
rats has been demonstrated to reduce age-related glomerulosclerosis (8, 10-12), tubulointerstitial
fibrosis (8), as well as albuminuria (10) and proteinuria (12). The estradiol metabolite 2-
hydroxyestradiol has also been shown to be renoprotective in puromycin-aminonucleoside model
of nephropathy (29). Protective effects of estrogen on renal function have been suggested to be
mediated by a reduction in extracellular matrix protein accumulation (30, 31).

In contrast, OV X did not worsen kidney disease in female Munich-Wistar rats that
progressively develop glomerular injury with age nor 5/6 nephrectomized Wistar rats (13, 14).
Further, some studies have even shown apparent benefits of OV X to renal outcomes: OVX in
female spontaneous hypertensive stroke-prone rats increased survival and reduced renal vascular
pathology compared to sham surgery, which was reversed with estradiol administration (15).
Similarly, in context of hyperlipidemia in both analouminemic and Zucker rats, OV X was
protective against glomerulosclerosis, while exogenous estradiol worsened it (16, 32). A
previous study of OV X was conducted in weanling Cy/+ female rats. These rats underwent OVX
at 4 weeks of age and did not exhibit subsequent changes in kidney weight, volume density of
renal cysts, or BUN by 10 weeks of age compared to sham rats, however testosterone
administration induced cystic disease progression (33). Our findings confirm that this lack of
effect of OV X on kidney disease progression is not limited to growing rats in the Cy/+ model of
CKD.

Sex differences in the progression of kidney disease have been observed in both animals
and humans. Previous studies have demonstrated that in the Cy/+ rat (Sprague Daley
background), females do not develop the pronounced azotemia and fibrosis from cystic disease
until much older ages compared with males (25, 26). Interestingly, castration slows progression
of CKD in the Cy/+ male rats but the present study did not demonstrate acceleration with loss of
estrogen in the female (34). Other models also have predominant CKD in male animals. Male
Munich-Wistar hypertensive rats have elevated urinary protein excretion that increases with age
that is not observed in females (35), and male Imai hypercholesterolemic rats develop nephritis
whereas females do not (36). It has long been observed that nephrectomized male Wistar rats

develop nephritis more severely than females (37). In humans, population studies show that end-
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stage renal disease incidence is higher in men than premenopausal women, but sex differences
begin to lessen around menopausal years (38). A meta-analysis of 68 studies on nondiabetic
kidney disease progression concluded that kidney function in men declines faster than in women
(3). In premenopausal women, bilateral oophorectomy at age <45 years was associated with an
elevated risk of CKD as assessed by estimated glomerular filtration rate (39). However, a meta-
analysis of hormone replacement studies in postmenopausal women found no significant effect
on albuminuria or proteinuria when assessed together but in a subgroup analysis of studies
assessing only albuminuria there was a small favorable effect of hormone replacement lowering
albuminuria (40). Thus, the Cy/+ male rat is a more suitable model of progressive CKD and
resulting CKD-MBD than the female, consistent with human studies.

Interestingly, in our study, OV X rats had lower, but not statistically significant, percent
net phosphorus absorption that may suggest that estrogen influences intestinal phosphate
transporters. There is some experimental evidence to support this notion. Acute 17(3-estradiol
injection at 2 mg/kg body weight in rats increased intestinal brush boarder membrane vesicle
uptake and the mRNA and protein expression of the main known intestinal phosphate
transporter, sodium phosphate cotransporter 2b (41). However, in contrast, a study in female rats
of similar age to those in ours found no change in net phosphorus absorption with injection of 5
or 40 ug/kg 17R-estradiol for 21 days (42).

In summary, OVX did not produce an acceleration of kidney disease in the Cy/+ rat
model of kidney disease. Our findings suggest that estrogen is not the protective factor in the

disease progression in this animal model.



Table 5.1. Components of balance for phosphorus and calcium

Component
OVvX

Balance -2.8 (2.6)
(mg/d)

Net 55.1 (2.7)
absorption

(mg/d)

Net 43.3 (2.2)
absorption

(%)

Fecal 72.1 (3.3)
excretion

(mg/d)

Urine 57.8 (1.4)
excretion

(mg/d)

Dietary 127.2
intake (2.1)
(mg/d)

Phosphorus

Sham

5.4 (2.4)

69.5 (2.8)

48.4 (1.6)

74.3 (2.6)

64.2 (1.2)

143.8 (3.1)

0.04

0.002

0.08

0.61

0.005

0.0005

OVX

0.6 (2.9)

4.6 (3.0)

5.0 (3.3)

88.3 (6.6)

4.0 (0.3)

92.8 (1.5)

Values are mean + SE.

Calcium
Sham

7.1(2.8)

12.7 (2.8)

12.0 (3.6)

92.3 (2.9)

5.6 (0.4)

105.0 (2.2)

0.12

0.07

0.12

0.39

0.009

0.0005

134
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Table 5.2. Microstructural parameters of cancellous bone of the tibia measured by micro-CT

OVX (n=8) Sham (n =8) P
BVITV (%) 0.99+0.34 17.45+ 1.59 < 0.0001
Th.N (mm™) 0.14 £ 0.04 2.16 +0.13 < 0.0001
Tb.Th (mm) 0.07 £ 0.008 0.08 £ 0.003 0.15
Th.Sp (mm3) 0.84 £0.02 0.27 £0.01 < 0.0001
B.Ar (mm?) 5.93+0.07 5.22 £ 0.07 <0.0001
Cs.Th (mm) 0.48 + 0.004 0.39 + 0.005 < 0.0001

Values are mean £ SE. BV/TV (bone volume (BV)/Tissue volume (TV)); Th.N (trabecular
number); Th.Th (trabecular thickness); Th.Sp (trabecular separation); B.Ar (cortical bone area);
Cs.Th (cortical thickness).
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Figure 5.1: OV X resulted in higher body mass relative to Sham. Values presented are mean +
SE. *** p<0.0001 between groups.
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Figure 5.2: Plasma biochemistries over time between OVX and Sham surgery. Plasma creatinine,

BUN, phosphate, and calcium were not different between the groups. OJsignifies the mean of
male Cy/+ rats at 34 weeks from Moe et al. 2009 for comparison (21). Values presented are
mean + SE.
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Figure 5.3: Mineral balance and net mineral absorption at 35 weeks by OV X or Sham surgery.
A) phosphorus balance was lower in OV X rats vs Sham. B) calcium balance was not different
between the groups. C) percent net phosphorus absorption and D) percent net calcium absorption
were not different between groups. Values presented are mean = SE. * p<0.05.
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CHAPTER 6: DISCUSSION

Summary & Synthesis

Phosphorus Balance in Adolescent Girls and the Effects of Dietary Calcium

In adolescent females, increasing calcium intake from ~800 mg/day to ~1400 mg/day
through supplementation decreased urinary excretion of phosphorus, suggestive of a renal
adaptation in response to a reduction in phosphorus absorption. However, the decrease in net
absorption was too small to be detected in fecal phosphorus, nor overall balance, which was
positive but not different between the calcium group and placebo. Like previous studies, we also
showed a large underestimation of dietary phosphorus from a nutrient database compared to
measured values. This secondary analysis suggests that changes in calcium intake within normal
to just above recommended values in adolescents does not bind enough phosphorus to warrant

concern toward mineral balance.
Rat Phosphorus Absorption In Situ Studies

Our two rat studies in healthy Sprague Dawley male rats and Cy/+ male rats together
suggest that factors such as the level of phosphorus in the diet, age, and kidney disease
progression are less impactful on jejunal intestinal phosphorus absorption efficiency adaptation
than in vitro and ex vivo methods of measuring uptake suggest. We found no change in
absorption efficiency by disappearance from the ligated loop or appearance in plasma in
response to manipulating the level of dietary phosphorus in healthy Sprague Dawley males.
There was a small elevation in younger (10 week) rats versus 20 and 30 weeks. Gene expression
of NaPi-2b in the jejunum supported these trends. Further, net absorption of phosphorus from
metabolic balance also showed an elevation at 10 weeks of age. Additionally, the net absorption
results reflect that passive absorption drives much of the overall phosphorus absorption, with a
stepwise increase in phosphorus absorption with the amount of phosphorus in the diet. In our
CKOD rats, surprisingly, CKD increased intestinal absorption efficiency assessed by both

disappearance from loop and absorption into plasma, albeit by a small amount, contrary to the
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hypothesized decrease based on in vitro studies. However, net phosphorus absorption results
from metabolic balance support a small increase as well. And, these results were actually
consistent with the one other previous rat study of CKD (5/6™ nephrectomy) rats versus normal
using the in situ ligated loop test (1). Unexpectedly, these rats at 20 weeks of age experienced
higher absorption efficiency versus 30 weeks, contrary to the healthy Sprague Dawley rats. This
was also consistent with the net phosphorus absorption data. Absorption findings for the age
effects in both of these rat studies corresponded to the 1,25D results. Given its known role in
stimulating intestinal phosphorus absorption, it may play a role in strain differences of
phosphorus absorption decline with age. Interestingly, the effect of CKD on phosphorus
absorption was divorced from its effect on 1,25D levels, consistent with the findings of Marks et
al. (1). The lack of significant adaptive capacity of intestinal phosphorus absorption efficiency in
response to these factors (dietary phosphorus level, age, and kidney function) question the
physiological relevance of these adaptations that have been observed in prior in vitro and ex vivo
studies. Also, because of the high affinity to phosphate of NaPi-2b compared to physiological
luminal phosphate concentrations (2), it is unlikely that experiments done in vitro under
conditions optimized to see changes in active uptake via NaPi-2b will reflect what occurs in vivo.

Effects of Ovariectomy in Cy/+ Females on the CKD Phenotype

The inability to use female Cy/+ rats because of the very delayed onset of CKD at much
older ages compared with males is problematic for exploring sex-related differences in intestinal
phosphorus absorption using this progressive disease model. Our finding that ovariectomy at 15
weeks of age did not accelerate CKD progression by any measure — BUN, creatinine, creatinine
clearance, nor plasma phosphorus or calcium, nor kidney weight — indicates that it cannot be a
useful model for progressive CKD, supporting previous work of ovariectomy at 4 weeks of age,
observing markers to 10 weeks in Cy/+ females (3). Other models could be used to study CKD
pathophysiology and sex differences in both males and females, such as the 5/6™ nephrectomy
model or the adenine-induced CKD models. The adenine-induced model may be particularly
useful because both mild and severe levels of disease can be achieved based on duration of
adenine administration (4). Female animal model studies in CKD are sparse in general, and to

our knowledge none exist in regard to studying intestinal phosphorus absorption (5, 6).
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Strengths and Limitations

Our studies have several strengths and limitations that are discussed within the individual
chapters 2-5. Some of these will be highlighted here. First, our metabolic balance studies in both
adolescent girls and rat models had dietary intakes and environmental conditions that were
tightly controlled, and measures were meticulously timed. As such, our carefully conducted
balance studies in each of these experiments are strong complements to the radiolabeled
phosphorus absorption measures by in situ ligated loop. Of course, with more control over
experimental conditions, the generalizability and relevance to more diverse, complex, and free-
living populations is unclear. Our choice in using rats as an animal model is a strength because
humans and rats have similar patterns of intestinal phosphorus absorption in regard to the
intestinal segments (which is not the case for mice and humans) (Chapter 1, Table 2). However,
unpublished reports on intestinal phosphate gene expression between species is not entirely
consistent. NaPi-2b expression was measured in a stepwise decrease from duodenum to jejunum
and ileum in rats, which matches humans (7). A separate report found that NaPi-2b expression
was higher in the jejunum than duodenum in rats, but this was reversed in humans (8). PiT1
expression patterns paralleled NaPi-2b in each species (7, 8). These conflicting results are
however reflected in rat studies that have found a higher absorption rate in the duodenum (9) and
jejunum (10) by the same group. There is limited comparison in humans, although the jejunal
phosphorus absorption has been reported to be higher than in the duodenum (11). The capacity
for adaptation in human intestinal segments has not yet been quantified.

The ligated loop method has been shown to be sensitive to reflect large changes in
calcium absorption in response to calcium restriction and aging in mice (12), and as such we
expected it to reflect those changes phosphorus absorption as well. Indeed, the ligated loop has
been used in rats to show changes phosphorus absorption in response to glucocorticoids (13), and
some (inconsistent) changes in response to dietary restriction of phosphorus have been observed
(5). Both of these previous studies selected the duodenum to study effects of their interventions.
Although the duodenum in rats has significant active absorption of phosphorus (14), and
compartmental analyses of intestinal phosphorus absorption indicate significant absorption in the
distal small intestine due to long length and residence time (15, 16), we selected the jejunum for
the following reasons: First, NaPi-2b is highest expressed in the jejunum in the rat (14). Second,

previous evidence suggests that the adaptive response in NaPi-2b mRNA and protein as well as



146

phosphate BBMYV uptake to chronic dietary phosphorus restriction occurs in the jejunum but not
duodenum in rats (17, 18). Thus, the lack of change in response to dietary restriction, and the
small change in response to CKD progression and age, suggests that whole intestinal changes in
phosphorus absorption are minimal.

While in vitro methods of measuring uptake suggest that sodium-dependent transport
predominates at low (i.e. 0.1 mM) phosphate concentration, it is difficult to estimate this when
utilizing the ligated loop and oral gavage, which have produced estimates that the bulk of
absorption occurs via the sodium-independent component (Chapter 1, Table 1). However, part of
this reason may be because of endogenous sodium secretion into the lumen during the in situ and
in vivo absorption tests producing a higher luminal phosphate concentration that favors sodium-
independent absorption (10). The wide variation in measuring luminal phosphate indicates that it
is difficult to estimate how much sodium-independent absorption this could drive (10, 19). Still,
Marks et al. estimated what should be interpreted as the minimum sodium-dependent absorption
in the rat jejunum at about 32%, with a measured ~5.7 mM luminal phosphate (10), suggesting
that it is a large enough component that changes should still be observable in response to
interventions. Although we attempted to measure sodium-independent absorption with the
ligated loop in our study in CKD rats, it is challenging to conceptualize how much sodium-
dependent absorption this measure actually contains when measured in situ due to potential for
endogenous secretion. In our Sprague Dawley study of effects of age and dietary phosphorus
level, we did not attempt to measure sodium-independent absorption because others have shown
this to be load-dependent, and unregulated (20-23). However, this would have been interesting to
measure for age effects given the report of a change in BBMV uptake with age (24), and thus we
are limited in not being able to compare this to the ligated loop method. It is notable that the
ligated loop provides similar estimates of relative absorption rates compared to the everted
sleeve, indicating that it consistent to in vitro techniques in this regard (10). We believe in situ
and in vivo methods are important to utilize to characterize the importance of changes in
absorption, and thus are a major strength of our work. Net absorption measures from metabolic
balance reinforced our conclusions for both experiments utilizing the ligated loop. As pointed out
by Marks et al. (10), other examples in biology exist to support this sentiment: e.g. GLUT2 was
observed to rapidly internalize away from the brush border membrane during in vitro preparation

of intestinal tissue, and thus was not recognized until later.
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Each of our studies is somewhat limited in sex related comparisons. The inclusion of only
adolescent females in the Camp Calcium secondary analysis was limited to its design. The
healthy rat study manipulating dietary phosphorus and age was only done on males to maintain
homogeneity in an already large study, however given some changes observed in response to
dietary restriction of phosphorus in females with the ligated loop (5), it is important for future
work to compare sex differences. The Cy/+ female rats do not develop progressive kidney
disease as observed in males, as we showed even after ovariectomy. Thus, we are limited in
using this model to study sex differences in absorption. Other models such as the 5/6
nephrectomy or adenine induced CKD could be used for these questions.

We assessed gene expression of NaPi-2b and PiT-1 in the intestines in our rat absorption
studies, but not PiT-2. We focused primarily on NaPi-2b expression since this transporter has
been estimated to account for 90% of sodium-dependent uptake by Sabbagh and colleagues (25),
and added measurement of PiT-1 expression. PiT-2 expression in all intestinal segments in the
rat is minimal (17), and mRNA was unchanged in response to dietary phosphorus restriction
(21). A major limitation is the lack of data on protein expression levels for each of these
transporters, particularly given that there is discordance in whether NaPi-2b is post
transcriptionally regulated in response to dietary restriction of phosphorus (Chapter 3), and there
is limited data on protein expression levels in CKD (Chapter 4).

Finally, the Cy/+ rat model is a well-documented model of autosomal dominant
polycystic kidney disease (ADPKD) (Chapter 5). However, ADPKD is the cause of only ~7-10%
cases of hemodialysis (26), and thus results using this rat may not generalize to all etiologies of
CKD, of which diabetes and hypertension are likely the primary (27). Further, the mutation in
the gene Anks6, which is responsible for ADPKD in the Cy/+ rat, is thought to be responsible for
a small proportion of ADPKD in humans (28), whereas mutations in PKD1 and PKD2 cause the

majority of cases (26).
Future Directions

The translation of basic findings to clinical relevance is always challenging and tempered
by additional considerations. Our results indicate a need for additional studies using
physiological methods of assessing absorption (e.g. in situ ligated loop or in vivo oral gavage) to

verify our findings. Recently, Turner et al. showed no difference in phosphorus absorption in
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adenine-induced CKD animals after oral gavage of phosphorus (4). Marks et al. previously found
no difference in 5/6 nephrectomized CKD animals with the ligated loop (1). Our results extend
these findings to a genetic model of CKD, finding only a small increase with CKD. In response
to dietary phosphorus restriction, absorptive adaptations have not yet been tested with the oral
gavage method. Further, studies should assess both males and females within a cohort to observe
if any sex differences exist, given the different results observed in females (5) and the effect of
estrogen on transporter expression (29). Although it was recently confirmed that CKD rats still
upregulate intestinal transporter expression in response to dietary phosphate restriction in the
jejunum (18), it should be tested whether absorption increases to any significant degree. Further,
Giral et al. (17) reported an intriguing overshoot phenomenon of phosphorus absorption when
normal rats are restricted to consuming phosphorus for 4 hours each day and are acutely
switched from phosphorus restriction to a high phosphorus diet. This phenomenon is important
to explore further with physiological tests and in CKD models, as this may have relevance to
certain human eating patterns such as intermittent fasting or dietary noncompliance in patients
with CKD prescribed low phosphorus diets. Absorption tests examining the adaptive capacity of
the intestine in response to dietary restriction of phosphorus in humans should explore whether
the active transport of phosphorus is relevant to patient populations.

It remains unclear whether the differences observed between the ligated loop and in
vitro/ex vivo methods reflect differences in residual phosphorus concentration in the loop,
creating an environment minimizing active transport of phosphorus, or other factors. Methods
are needed to quantify actual sodium-dependency of transport under different phosphate
concentrations with the loop using positive controls with NaPi-2b inhibitors, or sodium binders
to negate sodium-dependent transport when an absorption buffer without sodium is administered.
Of various factors that have been shown to influence intestinal phosphorus absorption, e.g.
dietary restriction of phosphorus, age, 1,25D, glucocorticoids, estrogen, energy status, etc. could
be comparatively tested for their relative importance via different methods of uptake/absorption.

Finally, a priority should be placed on large randomized trials exploring the effect of
restricting phosphorus absorption on clinical outcomes. While a moderate level of evidence
exists on restricting dietary phosphorus to lower serum phosphate (30), limited placebo

controlled trials evaluating these strategies on hard outcomes such as mortality exist (31),
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precluding confidence in the relevance of understanding intestinal adaptations for patient

outcomes.

Conclusions

The capacity of the intestine to adapt to regulate intestinal phosphorus absorption
efficiency may be limited at the physiological level. Although we did observe differences in
absorption efficiency in younger rats and in CKD rats, they were modest compared to existing in
vitro experiments, despite a similar concentration of phosphorus in the absorption buffer used in
our tests. The relevance of sodium-dependent transport in physiological conditions has been
increasingly questioned (2), and our results are consistent with these reports. Importantly, our
results suggest that an upregulation of phosphorus absorption efficiency in response to dietary
phosphorus restriction may not be a concern for patient populations who are attempting to
restrict phosphorus pharmacologically or through diet. In addition, there doesn’t appear to be a
downregulation of absorption in CKD, which would suggest that this pathway remains a
contributor to absorption and may be appropriate to target pharmacologically. Finally, renal
adaptation is sufficient to maintain positive phosphate retention in response to increasing dietary
calcium from the average of ~800 mg in this age group to up to ~1400 mg/day in adolescent
females, which allays concern that supplementation or dietary intake of calcium to just above
recommendations may interfere with the increased phosphorus requirement in adolescents.
Additional translational research is needed to further refine whether the adaptive capacity of the

intestine is relevant toward disease outcomes.
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APPENDIX A. REVIEW OF PHOSPHORUS BINDERS AND OTHER
AGENTS USED TO LIMIT DIETARY PHOSPHROUS ABSORPTION

Calcium-based binders

Several phosphate binders are currently in use in CKD, with calcium-based ones being
the most commonly used, and calcium carbonate and calcium acetate the most common salts.
Calcium-based binders were first used in the early 1990’s with the theory that because calcium
absorption decreased in CKD when serum 1,25 D levels fall, that the extra calcium will
overcome the loss of active, vitamin D-mediated Ca absorption. Improved total calcium
absorption would suppress secondary hyperparathyroidism, and the increased calcium would go
to bone. In addition, calcium-based binders were proposed as a safer alternative than aluminum-
based binders. Binding efficacy of calcium salts, as estimated by stool analysis, is approximately
45 mg of phosphorus per gram of calcium carbonate and calcium acetate in healthy humans. In
dialysis patients, calcium carbonate binding was measured as between 15-19 mg phosphorus per
gram, while calcium acetate was 27 mg per gram (1). Although the National Kidney
Foundation’s Kidney Disease Outcomes Quality Initiative (KDOQI) guidelines recommend
limiting total calcium (including the binder dose) to 2 grams per day (2), in practice titration
protocols using much higher doses are often required to control serum phosphate.

Many balance studies in healthy participants have examined the impact of dietary or
supplemental calcium on phosphorus absorption and retention, on young women (3, 4), and men
(5-7) , generally reporting a reduced urine phosphate output and increase in fecal phosphorus, so
retention is unchanged, except for one study males and females which found a decrease in
retention when increasing calcium from 202 mg to 1522 mg (8).

In populations with renal disease, calcium has been studied at KDOQI recommended
levels and also at higher doses. For example, in 8 CKD patients consuming a placebo with a base
diet of 957 mg calcium carbonate for a total of 2457 mg calcium, urinary phosphate was lower
on the higher calcium diet, but net absorption, retention, and fasting serum phosphate were
unchanged (9). PTH and FGF-23 were unchanged by the added calcium. However, when
calcium-based binders are used in a titration protocol at high doses, they may effectively control
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serum phosphate. Bleyer et al. started 83 hemodialysis patients on 667-2000 mg of calcium
acetate 3 times per day, which could be increased every 2 weeks to maintain serum phosphate
control (10). With this regimen, serum phosphate was successfully maintained in the range of 2.5
to 5.5 mg/dL for 8 weeks, whereas it increased without the binder. Thus, calcium can be an
effective binder at high doses, and this suggests that blocking intestinal phosphorus absorption
can effectively manage serum phosphate. However, the weight of the evidence from healthy
populations and in CKD suggest that calcium-based binders are not efficacious for modifying
phosphate retention at totals below ~2700 mg per day. This indicates that the KDIGO
recommendation of at most two grams of calcium per day is insufficient to affect phosphorus
balance.

Non-metallic binders

The development of non-metallic, non-absorbed binders has yielded two FDA approved
drugs for the treatment of CKD: sevelamer-based and lanthanum-based products. Sevelamer
carbonate binds phosphorus at 26 mg per gram, while lanthanum has a higher binding capacity of
135 mg per gram. The typical dosing schedule for sevelamer carbonate is ~800 mg to ~15 grams,
while it is ~800 mg to ~3 grams for lanthanum carbonate (1).

Sevelamer-based and lanthanum-based drugs have been used in a number of trials to
assess their ability to alter phosphorus balance and serum phosphate. In healthy participants and
patients with renal disease, both sevelamer (10-13) and lanthanum (14-16) have been
demonstrated to reduce absorption when the dose is titrated to serum phosphate concentration,
but not when given as a fixed dose (17).

Ferric-based binders

Ferric citrate was FDA approved in 2014 as a CKD treatment. Balance studies in rats
suggest that it binds 85-181 mg of phosphate per gram of elemental iron. Ferric citrate
dissociates in the bowel, releasing ferric ion which precipitates with dietary phosphorus. Doses
typically range from 1 to 12 grams per day, with each 1 gram tablet containing 210 mg ferric ion
(18). The efficacy of ferric citrate on serum phosphate has been evaluated in humans, showing a
reduced absorption (19, 20).

Cardiovascular outcomes from phosphorus binders
Because phosphate binders can effectively control serum phosphate, cardiovascular

disease outcomes should be attenuated. However, there are concerns, particularly about calcium-
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based binders on vascular calcification. In a recent balance and kinetics study in CKD patients,
calcium carbonate increased bone calcium balance, but less than the overall increase in calcium
balance, suggesting soft-tissue deposition (9). Indeed, several trials have directly compared
calcium and sevelamer binders on cardiovascular outcomes and suggested that calcium increases
risk for valvular calcification (21), artery and aortic calcification (22), and coronary artery
calcium score (23). In a multicenter randomized controlled trial with 1068 hemodialysis patients,
there was no difference in overall mortality from calcium-based binders vs sevelamer, however
in the subgroup over 65, the mortality on sevelamer was lower compared to calcium (24).
Currently there are no long-term studies on cardiovascular outcomes on lanthanum, but there is
some concern about organ accumulation and toxicity (25). Ferric citrate increases serum ferritin
and transferrin saturation, though it reduced the occurrence of serious adverse events compared
to active control, suggesting that iron overload isn’t a concern (20). Recently, a 9 month placebo-
controlled trial of 148 patients in CKD stages 3-4 comparing calcium acetate, sevelamer
carbonate, and lanthanum carbonate demonstrated an increase in calcification of the coronary
arteries and abdominal aorta compared to placebo, even though serum phosphate was reduced by
all treatments (26). There is an urgent need for follow-up placebo-controlled comparison studies
assessing hard cardiovascular endpoints and/or mortality. Such studies can provide additional
confidence whether reduction in intestinal absorption of phosphorus improves outcomes in
kidney disease patients.

Additional challenges with phosphorus binders

In addition to cardiovascular concerns, there are several practical and physiological
challenges to the binder approach to managing serum phosphate. They tend to be costly- for
example, in 2002 sevelamer was about $4400 per year (27). There is also a large pill burden
because of the doses required of each binder, and thus compliance is low. About % of
hemodialysis patients do not comply with phosphate-binding medications (28).

Reducing dietary phosphorus improves renal function and mortality in animal models.
Because of the difficulty in achieving this with a modern food supply, phosphorus binders are
used to prevent intestinal absorption of phosphorus. Calcium-based, sevelamer-based,
lanthanum-based, and ferric citrate binders may help control serum phosphate in renal disease
when there are no restrictions on dose. However, calcium-based binders consistently demonstrate

worse cardiovascular outcomes compared to sevelamer-based binders. In addition, a study
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comparing 3 binders indicated that they all increased arterial calcification. Because binders
reduce phosphorus dose, it is likely that there is an upregulation of active transport through NaPi-
2b. Particularly because compliance is poor, missing a dose with a meal may result in a higher
absorption of phosphorus than normal. Giral and colleagues maintained Sprague-Dawley rats on
a low (0.1%) phosphorus diet for 7 days, then increased phosphorus to 1.2% for 1 day (29).
Serum phosphorus was much greater (~17 mg/dL) after 4 hours compared to a group consuming
the 1.2% phosphorus diet for all 7 days (~8 mg/dL). This rapid increase corresponded with an
increase NaPi-2b protein in duodenal BBMV, suggesting that the intestine can rapidly adapt and
compensate for prolonged phosphorus restriction. Interventions that reduce NaPi-2b expression
could mitigate this problem and provide an alternative or complementary approach to

phosphorus binders.

Additional Factors Known to Influence Intestinal P Absorption Efficiency

Agents targeting transport

Nicotinamide, the amide of nicotinic acid, is a compound that has been demonstrated to
reduce phosphorus transport and NaPi-2b. It was first shown by Kempson et al to reduce renal
phosphate transport as measured by rapid filtration, and increase urinary phosphate with an acute
intraperitoneal injection in Sprague-Dawley rats. Because nicotinamide is a component of NAD,
it was also tested on phosphorus transport. Indeed, addition of NAD to cultured renal BBMV
decreased sodium-dependent phosphorus uptake (30). Subsequently, nicotinamide was
demonstrated to reduce sodium-dependent uptake in rat intestinal jejunal BBMVs along with
serum phosphate. Nicotinamide reduced NaPi-2b mRNA but not PiT1, PiT2, BNPI, or PiUS. In
addition, serum 1,25D and VDR mRNA were reduced (31). Similarly, intestinal phosphate
transport is decreased by nicotinamide injection in a rat model of chronic renal failure (5/6
nephrectomy), and this also corresponded to a decrease in NaPi-2b mRNA in the jejunum. Serum
phosphate was reduced without a change in urinary excretion, and the progression of renal
insufficiency was slowed, as measured by BUN and serum creatinine (32). Further, nicotinamide
was shown to prevent an increase in serum phosphate by ~50% in response to a phosphate bolus
in wild type mice but not in NaPi-2b knockout mice (33). Finally, clinical trials have shown that
nicotinamide consistently reduces serum phosphate in humans in dialysis patients (34). Together,

these studies indicate that nicotinamide reduces intestinal phosphorus transport and induces a
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decrease in NaPi-2b expression. Further research is necessary to determine whether it acts
through an increase in NAD, modulation of 1,25D/VDR, directly, or another mechanism.

NaPi-2b inhibitors are currently in development, although the limited published human
data suggest that treatment of end stage renal disease patients for 2 weeks with the drug
ASP3325 is insufficient to reduce serum phosphate (35).

Sodium/hydrogen exchanger isoform 3 (NHE3) inhibitors represent a novel method of
inhibiting intestinal uptake. Several oral NHE3 inhibitors (tenapanor, NTX792, and NTX3572)
were tested in healthy rats by Labonté and colleagues (36). NTX792 and NTX3572 reduced
phosphorus uptake and urinary phosphorus, while tenapanor and NTX3572 increased fecal
phosphorus in balance studies. In 5/6 nephrectomized Sprague-Dawley rats, tenapanor reduced
vascular calcification in the aorta and stomach, and mitigated the decline in renal function.
Serum phosphate and FGF-23 were also reduced. Interestingly, jejunal BBM NHE3 and NaPi-2b
expression weren’t changed, and NaPi-2b nor PiT1 were altered in a cell-based assay. Recently,
King et al. further investigated the mechanism of tenapanor, finding that it reduces paracellular
phosphate permeability by a reduced transepithelial electrical resistance, likely through a
decrease in pH (37). Molecular identification of tight junction proteins that interact with
phosphate remain elusive. Several phase | and 11 trials of tenapanor have been published that

demonstrate reductions in serum phosphate from the drug (34).
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APPENDIX B. REVIEW OF THE ROLE OF PHOSPHATE IN SKELETAL
MINERALIZATION

The majority of phosphorus in the body is contained within bone as hydroxyapatite. The
homeostatic mechanisms controlling the deposition and release of phosphorus from bone are part
of the axis discussed earlier. Hydroxyapatite is formed by osteoblasts, which are derived from
mesenchymal progenitors. Various transcription factors control the differentiation of
mesenchymal stems cells to osteoblasts. The secretion of type I collagen and other proteins form
osteoid, which upon hydroxyapatite is deposited. Mineralization is regulated by the ratio of
intracellular inorganic pyrophosphate and extracellular inorganic phosphate in osteocytes; with
an excess of phosphate, mineralization proceeds and excess of pyrophosphate inhibits. The level
of phosphate is controlled by the amount in diet or renal reabsorption, or by a number of positive
regulators such as PHEX, DMP1, and negative regulators such as FGF-23. In addition, alkaline
phosphatase can synthesize it from pyrophosphate (1).

High serum and dietary phosphate has been shown to increase FGF-23 secretion (2), and
also PTH primarily because of a reduction in plasma ionized calcium (3). These hormones also
begin to elevate in the early stages of CKD-MBD (4), serving to regulate serum phosphate
concentration. However, also have secondary actions on bone mineralization. Nearly 100% of
long-term dialysis patients have bone pathology (5), indicating the potency of such regulators.
CKD-MBD serves to highlight the mechanisms of bone mineralization in a context of disturbed
phosphate homeostasis. FGF-23 and sclerostin production are elevated in osteocytes, and PTH is
also elevated (6). The increase in FGF-23 is the result of changes in the ratio of inorganic
phosphate to pyrophosphate in CKD (7). Chronic elevated PTH can promote osteoclast
formation and demineralization of bone through the upregulation of RANK ligand (RANKL) and
the downregulation of OPG through osteoblasts (increasing the RANKL:OPG), while sclerostin
is a negative regulator of the anabolic Wnt signaling pathway (8).

Many diseases stemming from genetic mutations have contributed to the role of
phosphate in bone mineralization, though the majority are mediated through a change in FGF-23
concentration or function. As previously discussed, autosomal dominant hypophosphatemic
rickets is characterized by a mutation in FGF-23 that reduces its cleavage and increases
circulating concentration, leading to phosphate wasting (9) from the reduction in renal
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expression of NaPi-2a and NaPi-2c. A similar genetic disorder is X-linked hypophosphatemic
rickets, which stems from a mutation in PHEX, which is involved in the regulation of normal
concentrations of FGF-23. A mouse model of this disease has demonstrated that within PHEX
activity, osteopontin fragments accumulate in bone and inhibit mineralization to produce
osteomalacic bone (10). Another example is autosomal recessive hypophosphatemic rickets,
which is the result of a mutation in DMP1. DMP1 controls osteocyte proliferation and facilitates
mineralization by hydroxyapatite after being cleaved. Thus, impaired mineralization and

osteocyte differentiation occur (9).
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APPENDIX C: ADDITIONAL DETAILS ON THE LIGATED LOOP

ABSORPTION METHOD

Protocol details with example photos:

1)

2)
3)
4)
5)
6)
7)
8)
9)

Prepare absorption buffers:

a. Buffers with and without sodium are prepared according to concentrations from
(1, 2). With sodium: HEPES sodium salt (16 mM), NaCl (140 mM), KCI (3.5
mM), KH2POj4 (0.1 mM). Without: HEPES free acid (16 mM), ChCI (140 mM),
KCI (3.5 mM), KH2PO4 (0.1 mM).

b. First, prepare buffers to 10X required concentration (ie 160 mM HEPES, 1400
mM NaCl or ChCl, 35 mM KCI, and 1 mM KH2POy4 in a 100 ml volumetric flask.

c. Store this buffer solution at 4C as stock.

d. To prepare doses, dilute stock solution 10X with ultrapure and P33 solution
(based on number of injection doses required and accounting for P33 half life and
days from certification). Mix well.

e. Prepare P33 standard in duplicate by drawing 0.5ml of absorption buffer solution
into Hamilton syringe and transferring into a scintillation vial with scintillation
cocktail. Measure prior to experiment to verify expected radioactivity, and
measure standards along with samples (collected as described below).

Draw 0.5ml of P33 solution into Hamilton syringe

Change gloves after handling P33 source

Check warm saline supply

Clean blades and tweezers with ethanol before each new rat

Anesthetize rat with isoflurane gas and note time.

Place jugular catheter and note time.

Ensure rat is under a heat lamp and/or on a heating pad

Connect syringe to catheter line, draw blood to syringe start (use this syringe for
subsequent draws to syringe start during time draws)

10) Take baseline blood draw (0.4 or 0.5 ml — just be consistent between rats) and note time.
11) Connect new syringe to catheter line, push saline to clear line (only use this syringe to

push new saline in)

12) Open rat, find caudal turn approximately 1cm distal to Ligament of Treitz (~8 cm distal

to pyloric sphincter, the white suspensory tissue pictured below).
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13) Place ligature, tighten enough to close tissue but not too tight so that it tears (2 knots)
14) Approximate 5cm distal to first knot, loosely place 2" ligature. Use a pre-measured 5cm
piece of thread to use to measure the segment for consistency

“1 ' o [

15) (2 people) With one person holding the 2 ends of the thread, inject Hamilton syringe
through 2" ligature, tighten loop over needle, inject slowly into loop, tighten ligature as
much as possible over needle, and remove syringe and tighten quickly. Knot a second
time and note time. Cut extra thread to ~1cm of the segment (otherwise when you
solubilize the loop, the thread darkens the solution).
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16) Change gloves to avoid radioactive contamination

17) Close rat and cover with warm, saline soaked gauze

18) Write down scheduled blood draw times on record sheet based on injection time

19) At 5, 10, 15, and 30 minutes after injection, repeat steps 8) — 10) to draw blood and note
times.
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20) After 30 minute draw, remove loop (maintain segment integrity) and note length, and
place into 6 ml soluene-350 and note time.

21) Remove approximately 5cm of jejunum distal and 5 cm of duodenum proximal to where
loop was for intestinal scraping.

22) Remove kidney and flash freeze in liquid nitrogen in foil

23) Take final blood draw- aim for 6ml and note amount and time.
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APPENDIX D: ADDITIONAL WORK

Diet and Fecal Digestion Methods Comparison for Phosphorus Recovery

Purpose of the project

Compare the recovery of phosphorus after various digestion methods.

1) Mixed diet spiked with disodium phosphate or sodium phytate
2) Wheat flour SRM (NIST)
3) Fecal sample spiked with ICP standard

Methods

Sample Descriptions

Mixed Diet

A mixed diet meal composite was made by blending the following foods: pork tenderloin, baked
potato, sour cream, butter, baby carrots, baguette, applesauce, and skim milk. This diet was
designed using the Nutrition Data System for Research 2007 (NDSR, Nutrition Coordinating
Center [NCC], University of Minnesota, Minneapolis, MN, USA). During blending, it was
spiked with either 1) no added P, 2) disodium phosphate, or 3) sodium phytate. For both the
disodium phosphate and sodium phytate spikes, three different levels were used: low (0.45 mg
P/g diet), medium (0.90 mg P/g diet), or high (1.35 mg P/g diet).

Wheat flour standard reference material (SRM)
Wheat flour SRM was purchased from NIST (SRM 1567b). Average P is certified by taking the
average of the following analytical methods: DCP-AES, ICP-OES, SPECTRO, WDXRF.

Feces
A fecal homogenate was created by vortexing and inverting pooled stored human fecal
homogenates from a previous experiment. The pooled fecal homogenate was spiked with
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ammonium dihydrogen phosphate (ICP standard; SPEX CertiPrep) at 200 uL (200 ug P) or 400
ML (400 ug P) after samples were aliquoted for digestion.

Digestion Methods
Muffle Furnace Methods (MF600 and MF500): diet or fecal samples were aliquoted into 40 mL

crucibles (CoorsTek), weighed, and placed in a muffle furnace with lids (Thermolyne, Thermo
Scientific). Temperature increased at 5 C/minute and held for 3 days at 600 C (MF600), or 2.5
days at 500 C (MF500). Crucibles were then removed from the furnace, allowed to cool
overnight, weighed the next morning, and diluted 60X with 2% HNO3 for analysis by inductively
coupled plasma-optical emission spectrometry (ICP-OES; Optima 4300DV, Perkin Elmer,

Shelton, CT, USA). Lid were rinsed into the crucible during dilution to capture all phosphorus.

Microwave (MICRO): diet or fecal samples were weighed and aliquoted into vessels (MARS 6,
CEM, Matthews, NC) 5 mL 70% HNOz and 5 ml water were added to each vessel for samples to
begin digestion for 30 minutes. Vessels were then capped and placed in the microwave (MARS
6, CEM, Matthews, NC). The “One Touch” “food” method and a custom “feces” method were
used with the following settings, and diluted 170X to 2% HNOa:
“Food”: ramp time 20:00-25:00 minutes, hold time 15:00 minutes, temperature 210 C.
“Feces”: ramp time 20:00-25:00 minutes, hold time 15:00 minutes, temperature 200 C.

Short furnace and acid combination (COMB): samples were aliquoted into 40 mL crucibles
(CoorsTek), weighed, and placed into the muffle furnace with lids. Temperature was ramped to
550 C and held for 1 hour. After cooling (~2 hours), 5 ml 70% HNOz was added to samples and
heated in a water bath at 70 C for 15 minutes. Samples were then transferred to funnels with #5
filter paper (2.5 um pore size) for filtration, and diluted with 2% HNOs for analysis on ICP-OES.

Perchloric acid digestion AOAC method (AOAC): diet or fecal samples were aliquoted into 50
mL graduated digestion glass tubes, and 5 mL 70% HNO3 was added and covered with parafilm
and samples were left overnight to digest. Under a percholoric-acid approved hood, 3 mL HCIO4
was added to each tube, and samples were heated in a heating block to ~175 C for > 50 ~ 90

minutes, then cooled. Samples were heated to ~200 C for 1.5 ~ 3 hours, until white fumes



173

disappeared. When tubes were cool, the solution was transferred to 50 mL Falcon tubes (Fisher)
and diluted 600X with ultrapure water. Analysis was done using a colorimetric method on a

spectrophotometer (PowerWaveX, Bio-Tek Instruments, Inc).

For each method, samples were prepared in triplicate or quadruplicate. Approximately 0.5 g diet

and 1.5 g feces were used for all methods.

METHOD DESCRIPTION ACIDUSEFOR MAX TOTAL ANALYTICAL
ABBREVIATION DIGESTION TEMPERATURE DIGESTION METHOD
(°C) TIME
MF600 Dry ash (muffle - 600 3 days ICP-OES
furnace)
MF500 Dry ash (muffle - 500 2.5 days ICP-OES
furnace)
MICRO Microwave 35% HNO3 210 (diet) 1h 20 minutes  ICP-OES
(CEM Mars 6) 200 (feces)
COMB Dry ash (muffle  70% HNO; 550 1 hour ICP-OES
furnace) + wet (furnace)
digestion (acid) Overnight
(acid)
AOAC Wet digestion 70% HNO;3 + 200 ~4.5 hours Colorimetric
(HCIO4 + 70% HCIO4
HNO3), AOAC
standard

Table A.D.1. Parameters of each method tested for mixed diet, wheat flour, and fecal samples.

Statistics

Bland-Altman plots and 95% limits of agreement were generated with R 3.3.2 with the
BlandAltmanLeh package for comparisons between methods. The plots reflect the mean
difference between each method and the AOAC method, along with the estimation of the interval
that 95% of the differences between the methods fall.
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e Methods 1, 2, 3, and 5 were similar in their measurement of baseline phosphorus. Method
4 was too low and too high.
e Recovery was closest to 100% with methods 1, 2, 3, and 5. Method 4 was low.

Baseline
Method 1 Method 2 Method 3 Method 4 Method 5
108 (9) 97 (13) 102 (19), 100 | 41 (21), 136 (15) 110 (8)
(23)

mg P/100g diet (+/- SD)

Recovery (% vs expected certified reference value)

Method Disodium phosphate Sodium phytate

1 104% (4%) 108% (2%)
2 99% (7%) 105% (6%)
3 95% (10%) 104% (7%)
3 (repeat 1) 113% (2%) 119% (2%)
3 (repeat 2) 104% (7%) 114% (3%)
4 47% (4%) 56% (5%)
4 (repeat) 75% (2%) 93% (2%)
5 103% (7%) 107% (7%)

(+/- SD)

Wheat flour:

e All methods were higher than expected (vs SRM certified value), but all methods except
method 4 were similar to one another.
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Wheat Flour SRM (All Methods)

2000

1500
1000
50

M Expected B Method 1 H Method 2

o

Phosphorus (mg/kg)

H Method 3 (only nitric) ® Method 3 (+H202)  ® Method 4

® Method 5

Note: method 3 was done twice, once with nitric acid only and one with nitric acid + hydrogen
peroxide.

Recovery (% vs expected certified reference value)

Method
1 114% (5%)
2 122% (0.7%)
3 (nitric acid only) 122% (2%)
3 (nitric + hydrogen peroxide) 121% (4%)
4 138% (5%)
5 119% (5%)

Fecal:
e Baseline: similar between method 1, 2, and 5. Method 3 slightly higher, method 4

highest.
e Recovery: Method 1 and 2 were a bit higher, methods 3, 4, and 5 were about the

same, close to 100% recovery.




Baseline Fecal Phosphorus (before spike)
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Method 1 Method 2 Method 3 Method 4 Method 5
2435 (340) 2431 (186) 2678 (126) 2950 (123) 2428 (97)
mg P/kg feces (+/- SD)
Recovery (% vs expected certified reference value)
Method Low Spike High Spike
1 110% (7%) 118% (5%)
2 111% (2%) 110% (5%)
3 102% (4%) 104% (2%)
4 97% (2%) 102% (6%)
5 96% (1%) 97% (7%)

(+/- SD)
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Figure 1. continued

(mean difference -13.2 and -11.6 mg). COMB had poor recovery of phosphorus vs AOAC and is not a suitable method for digestion
of mixed diet samples. Phosphorus in wheat flour was similar to AOAC with MF600, MF500, and MICRO.
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Figure A.D.3. Overall average differences for each digestion method compared to the AOAC

method for mixed diet, wheat flour, and fecal samples.

Conclusions

Diet Digestion

e MF600, MICRO, and MF500 are suitable alternatives to the AOAC nitric

acid+perchloric acid digestion for measurement of phosphorus in mixed diet samples

and wheat flour. Recovery of spiked phosphorus confirmed these results.

e COMB (short dry digestion + nitric acid digestion) is not suitable for mixed diet

sample analysis.

Human Fecal Digestion
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e MF600 and MF500 are most consistent with the AOAC method for phosphorous
measurement in fecal samples. MICRO and COMB slightly overestimated
phosphorus but are suitable alternatives. Recovery of spike largely corroborated these
results.

Overall conclusions

Muffle furnace at 600 or 500 C, or microwave digestion of diet and human feces are reliable
alternatives to the AOAC method. Such methods provide additional choices to the use of the
hazardous chemical perchloric acid required by the AOAC method. Additional support for the
use of microwave digestion of foods and measurement of phosphorus by ICP-OES has been
published and adopted as a new AOAC method (1).
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APPENDIX E: EXAMPLE SAS CODE FROM PRIMARY OUTCOMES

Appendix E1: Phosphorus Balance and Net Phosphorus Absorption in Adolescent Females

symboll
symbol?2
symbol3
symbol4
symbol5
symbol6
symbol7
symbol8
symbol9

color=vibg
color=vibg
color=vibg
color=vibg
color=vibg
color=vibg
color=vibg
color=vibg
color=vibg

interpol=join
interpol=join
interpol=join
interpol=join
interpol=join
interpol=join
interpol=join
interpol=join
interpol=join

value=dot;
value=dot;
value=dot;
value=dot;
value=dot;
value=dot;
value=dot;
value=dot;
value=dot;

symboll0 color=vibg interpol=join value=dot;
symbolll color=vibg interpol=join value=dot;
proc gplot data=al;

plot PhosBalance*CalLevel = id /regeqn;

run;

PhosBalance
700

600 o

500

(R

400

300
k3

-100
-200

-300
high

Calevel

proc mixed;

class order id period CalLevel;

model NetPhosAbs = order Calevel Period;
random id;

lsmeans Calevel;

run;

low
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Type 3 Tests of Fixed Effects
Effect Num DF Den DF F Value Pr>F

order 1 7 0.11 0.7499
Calevel 1 7 1.72 0.2305
period 1 7 0.00 0.9699

Least Squares Means
Effect Calevel Estimate Standard DF t Value Pr > [t|

Error
CalLevel high 773.96 643389 7 12.03 <.0001
Calevel low 875.75 62.0103 7 14.12 <.0001

proc mixed;

class order id period Calevel;

model PercNetPhosAbs = order CalLevel Period;
random id;

lsmeans Calevel; run;

Type 3 Tests of Fixed Effects
Effect Num DF Den DF F Value Pr>F

order 1 7 0.05 0.8346
Calevel 1 7 2.16 0.1855
period 1 7 0.02 0.9000

Least Squares Means
Effect Calevel Estimate Standard DF t Value Pr > [t|

Error
CalLevel high 0.5332 0.04313 7 12.36 <.0001
Calevel low 0.6119 0.04153 7 14.73 <.0001

Appendix E2: Phosphorus Absorption Efficiency, Disappearance from Ligated Loop, in
Healthy Male Sprague Dawley Rats

proc glm data=loops;
class age level;
model y = age level age*level;



lsmeans age level age*level / pdiff adjust=tukey;

run;

The GLM Procedure

Dependent Variable: y

Source DF Sum of Squares Mean Square F Value Pr>F
Model 8 0.11355494  0.01419437 2.66 0.0141
Error 61 0.32497131  0.00532740

Corrected Total 69 0.43852625

R-Square Coeff Var Root MSE y Mean
0.258947 19.41544  0.072989 0.375933

Source DF Typel SS Mean Square F Value Pr>F
age 2 0.08439165  0.04219583 7.92 0.0009
level 2 0.00739157  0.00369578 0.69 0.5036
age*level 4 0.02177172  0.00544293 1.02 0.4034

Source DF Type lI1 SS Mean Square F Value Pr>F
age 2 0.08087616  0.04043808 7.59 0.0011
level 2 0.00767372  0.00383686 0.72 0.4907
age*level 4 0.02177172  0.00544293 1.02 0.4034
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The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer

age y LSMEAN LSMEAN Number

10 0.42397024 1
20 0.35588750 2
30 0.34760774 3

Least Squares Means for effect age
Pr > |t| for HO: LSMean(i)=LSMean(j)
Dependent Variable: y

ilj 1 2 3

0.0062  0.0022
2 0.0062 0.9203
3 0.0022  0.9203

The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Tukey-Kramer

level y LSMEAN LSMEAN Number

High 0.36674524 1
Low 0.39039583 2
Normal 0.37032440 3

Least Squares Means for effect level
Pr > |t| for HO: LSMean(i)=LSMean(j)
Dependent Variable: y

ilj 1 2 3
1 05120  0.9849
2 0.5120 0.6164
3 09849  0.6164

Appendix E3: Phosphorus Absorption Efficiency, Disappearance from Ligated Loop, in
Cy/+ Male Rats

proc glm data=loops_ dependent;

class genotype buffer age;

model abs = genotype age age*genotype;

lsmeans age genotype age*genotype / pdiff adjust=tukey STDERR;
run;



Source
Model
Error

The GLM Procedure

Dependent Variable: abs

DF Sum of Squares Mean Square F Value Pr>F
3 0.09199653  0.03066551  10.89 <.0001

44 0.12387478  0.00281534

Corrected Total 47 0.21587132

Source

age

Source DF Type 11 SS Mean Square F Value
genotype 1 0.01448764 0.01448764 5.15
age 1 0.07705914 0.07705914  27.37

genotype*age 1 0.00044975  0.00044975  0.16

genotype age abs LSMEAN Standard Pr > |t|

CY
CY
Norm
Norm

R-Square Coeff Var Root MSE abs Mean
0.426164 16.73612 0.053060 0.317037

The GLM Procedure
Least Squares Means
Adjustment for Multiple Comparisons: Tukey

Error
20 0.37753884 0.01531703 <.0001
30 0.29128194 0.01531703 <.0001
20 0.33667053 0.01531703 <.0001
30 0.26265772 0.01531703 <.0001

Least Squares Means for effect genotype*age
Pr > |t| for HO: LSMean(i)=LSMean(j)
Dependent Variable: abs

ilj 1 2 3 4
1 0.0014 02485 <0001
2 0.0014 0.1705  0.5545
3 0.2485  0.1705 0.0072
4 <0001 05545 0.0072

DF Type I SS Mean Square F Value
genotype 1 0.01448764  0.01448764 5.15
1 0.07705914 0.07705914  27.37
genotype*age 1 0.00044975  0.00044975 0.16

Pr>F
0.0283
<.0001
0.6913

Pr>F
0.0283
<.0001
0.6913

LSMEAN Number

A~ w0 N P
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Appendix E4: Blood Urea Nitrogen Over Time from Cy/+ Female Rats that Underwent

Ovariectomy or Sham Surgery

proc glm data=BUN;
class OVX;
model TimeO--Timed =
OVX / nouni;
repeated Time 5 (0 1 2 3 4) polynomial / summary printe;
run;

The GLM Procedure
Repeated Measures Analysis of Variance
Univariate Tests of Hypotheses for Within Subject Effects

Source DF Type 11 SS Mean Square F Value Pr>F AdjPr>F
G-G H-F-L
Time 4 47.1384675  11.7846169 3.83 0.0081 0.0162 0.0084

Time*OVX 4 20.3021825 5.0755456 1.65 0.1752 0.1924 0.1760
Error(Time) 56 172.5167100 3.0806555

Greenhouse-Geisser Epsilon  0.7565
Huynh-Feldt-Lecoutre Epsilon 0.9885
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Appendix E5: Bland-Altman Plot Comparing Phosphorus Digestion Methods (done in R)

library(ggplot?2)
library(BlandAltmanLeh)

df<-read.csv("T:/../Hill Gallant lab/Methods Comp/data for R.csv'",sep = ",")
material <- df$Material
ba.stats <- bland.altman.stats (df$MF600.all, df$AOAC.all)

plot(ba.stats$means, ba.stats$diffs, xlab="Mean of Measurements (Both
methods; mg P/100g diet)", ylab="Difference
(mg)",cex.lab=1,col.lab="Black",col=material,

main="MF600 vs AOAC", ylim=c(-250,250), pch=19,xaxt="n",yaxt="n")
axis(l, cex.axis = 1, font = 2)
axis (2, cex.axis = 0.7, font =2)
abline(h = ba.stats$lines, lty=c(2,3,2),
col=c("lightblue", "blue","lightblue"),

lwd=c (3, 3,23))

legend(x = "topright", legend = c("Mixed Diet","Wheat Flour"), £fill = 1:2)

#HHf#dHEdietdHdH4

png(filename="T:/../Hill Gallant Lab/Colby/Diet Phos Methods
Comparison/R/Std PNG.png",

units="in"

width=12,

height=7,

pointsize=10,

res=300)
par (mfrow=c(2,2),cex=1.5,mar=c(5, 4, 1, 2.5) + 0.1)#it goes c(bottom, left,
top, right) )
material <- df$Material

ba.stats <- bland.altman.stats (df$MF600.all, df$AOAC.all)
plot (ba.stats$means, ba.stats$diffs, xlab="Mean of Measurements (Both
methods; mg P/100g diet)"™, ylab="Difference
(mg)",cex.lab=1,col.lab="Black",col=material,
main="MF600 vs AOAC"™, xlim=c(100,300), ylim=c(-250,250),
pch=19, xaxt="n", yaxt="n")
axis(l, cex.axis = 1, font = 2)
axis (2, cex.axis = 0.4, font =2, at=c(seq(from=-250,to=250,by=50)))
abline(h = ba.stats$lines, lty=c(2,3,2),
col=c("lightblue","blue","lightblue"),
lwd=c (3, 3, 3))
#print (ba.stats$lines)
mtext (text=round(ba.stats$lines['upper.limit'],digits=1), las=l,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=35
)

mtext (text=round(ba.stats$lines['mean.diffs'],digits=1), las=l,
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side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=c (0)
)
mtext (text=round(ba.stats$lines['lower.limit'],digits=1), las=l,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=-35
)
abline (h=0, col="green")
legend(x = "topright", legend = c("Mixed Diet","Wheat Flour"), fill = 1:2,
cex=0.8)

ba.stats <- bland.altman.stats (df$MF500.all, df$AOAC.all)
plot (ba.stats$means, ba.stats$diffs, xlab="Mean of Measurements (Both
methods; mg P/100g diet)"™, ylab="Difference
(mg)",cex.lab=1,col.lab="Black",col=material,
main="MF500 vs AOAC", xlim=c(100,300),ylim=c(-250,250),
pch=19, xaxt="n", yaxt="n")
axis(l, cex.axis = 1, font = 2)
axis (2, cex.axis = 0.4, font =2, at=c(seq(from=-250,to=250,by=50)))
abline(h = ba.stats$lines, lty=c(2,3,2),
col=c("lightblue","blue","lightblue"),
lwd=c (3, 3, 3))
mtext (text=round(ba.stats$lines['upper.limit'],digits=1), las=l,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=30
)
mtext (text=round(ba.stats$lines['mean.diffs'],digits=1), las=1,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=c(-10)
)
mtext (text=round(ba.stats$lines['lower.limit'],digits=1), las=l,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=-40
)
abline (h=0, col="green'")
legend(x = "topright", legend = c("Mixed Diet","Wheat Flour"), fill = 1:2,
cex=0.28)

ba.stats <- bland.altman.stats (df$MICRO.all, df$AOAC.all)

plot (ba.stats$means, ba.stats$diffs, xlab="Mean of Measurements (Both
methods; mg P/100g diet)", ylab="Difference
(mg)",cex.lab=1,col.lab="Black",col=material,
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main="MICRO vs AOAC", xlim=c(100,300),ylim=c(-250,250),
pch=19, xaxt="n", yaxt="n"
axis(l, cex.axis = 1, font = 2)
axis (2, cex.axis = 0.4, font =2, at=c(seq(from=-250,to=250,by=50)))
abline(h = ba.stats$lines, lty=c(2,3,2),
col=c("lightblue","blue","lightblue"),
lwd=c (3, 3, 3))
mtext (text=round(ba.stats$lines['upper.limit'],digits=1), las=l,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=30
)
mtext (text=round(ba.stats$lines['mean.diffs'],digits=1), las=l,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=c(-10)
)
mtext (text=round(ba.stats$lines['lower.limit'],digits=1), las=l,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=-40
)
abline (h=0, col="green')
legend(x = "topright", legend = c("Mixed Diet","Wheat Flour"), fill = 1:2,
cex=0.8)

ba.stats <- bland.altman.stats(df$COMB.all, df$AOAC.all)
plot (ba.stats$means, ba.stats$diffs, xlab="Mean of Measurements (Both
methods; mg P/100g diet)", ylab="Difference
(mg)",cex.lab=1,col.lab="Black",col=material,
main="COMB vs AOAC", xlim=c(100,300),ylim=c(-250,250),
pch=19, xaxt="n", yaxt="n")
axis(l, cex.axis = 1, font = 2)
axis (2, cex.axis = 0.4, font =2, at=c(seq(from=-250,to=250,by=50)))
abline(h = ba.stats$lines, lty=c(2,3,2),
col=c("lightblue","blue","lightblue"),
lwd=c (3, 3, 3))
mtext (text=round(ba.stats$lines['upper.limit'],digits=1), las=l,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=30
)

mtext (text=round(ba.stats$lines['mean.diffs'],digits=1), las=l,

side=4,

outer = FALSE,
cex = 0.7,

col = "#B36000",

at=-100
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mtext (text=round(ba.stats$lines['lower.limit'],digits=1), las=l,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=-225
)

abline (h=0, col="green'")

legend(x = "topright", legend = c("Mixed Diet","Wheat Flour"), fill = 1:2,
cex=0.28)

dev.off ()

FHEHH SRR

df<-read.csv("T:/../Hill Gallant lab/Methods Comp/data for R.csv'",sep = ",")

material <- df$Material
ba.stats <- bland.altman.stats (df$MF600.all, df$AOAC.all)

plot (ba.stats$means, ba.stats$diffs, xlab="Mean of Measurements (Both
methods; mg P/100g diet)"™, ylab="Difference
(mg)",cex.lab=1,col.lab="Black",col=material,

main="MF600 vs AOAC", ylim=c(-250,250), pch=19,xaxt="n",yaxt="n")
axis(l, cex.axis = 1, font = 2)
axis (2, cex.axis = 0.7, font =2)
abline(h = ba.stats$lines, lty=c(2,3,2),
col=c("lightblue", "blue","lightblue"),

lwd=c (3, 3, 3))

legend(x = "topright", legend = c("Mixed Diet","Wheat Flour"), £fill = 1:2)

#HHftdtttfecestitiit

df<-read.csv("T:/../Hill Gallant lab/Methods Comp/data for R - feces.csv", sep

—] H)
4

png(filename="T:/../Hill Gallant Lab/Colby/Diet Phos Methods
Comparison/R/rplot feces.png",

units="in",

width=12,

height=7,

pointsize=10,

res=300)
par (mfrow=c(2,2),cex=1.5,mar=c(5, 4, 1, 2.5) + 0.1)#it goes c(bottom, left,
top, right) )

ba.stats <- bland.altman.stats (df$MF600.all, df$AOAC.all)
plot (ba.stats$means, ba.stats$diffs, xlab="Mean of Measurements (Both
methods; mg P/100g feces)", ylab="Difference
(mg)",cex.lab=1,col.lab="Black",col=material,
main="MF600 vs AOAC", xlim=c(220,320), ylim=c(-250,250),
pch=19, xaxt="n", yaxt="n")
axis(l, cex.axis = 1, font = 2)
axis (2, cex.axis = 0.4, font =2, at=c(seq(from=-250,to=250,by=50)))
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abline(h = ba.stats$lines, lty=c(2,3,2),
col=c("lightblue","blue","lightblue"),
lwd=c (3, 3,3))
#print (ba.statsS$lines)
mtext (text=round(ba.stats$lines['upper.limit'],digits=1), las=l,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=92
)
mtext (text=round(ba.stats$lines['mean.diffs'],digits=1), las=l,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=30
)
mtext (text=round(ba.stats$lines['lower.limit'],digits=1), las=l,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=-30
)

abline (h=0, col="green')

ba.stats <- bland.altman.stats (df$MF500.all, df$AOAC.all)
plot (ba.stats$means, ba.stats$diffs, xlab="Mean of Measurements (Both
methods; mg P/100g feces)", ylab="Difference
(mg)",cex.lab=1,col.lab="Black",col=material,
main="MF500 vs AOAC", xlim=c(220,320),ylim=c(-250,250),
pch=19, xaxt="n", yaxt="n")
axis(l, cex.axis = 1, font = 2)
axis (2, cex.axis = 0.4, font =2, at=c(seq(from=-250,to=250,by=50)))
abline(h = ba.stats$lines, lty=c(2,3,2),
col=c("lightblue","blue","lightblue"),
lwd=c (3, 3, 3))
mtext (text=round(ba.stats$lines['upper.limit'],digits=1), las=l,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=80
)
mtext (text=round(ba.stats$lines['mean.diffs'],digits=1), las=1,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=30
)

mtext (text=round(ba.stats$lines['lower.limit'],digits=1), las=l,

side=4,
outer = FALSE,
cex = 0.7,

col = "#B36000",



abline (h=0, col="green'")

ba.stats <- bland.altman.stats (df$MICRO.all, df$AOAC.all)
plot(ba.stats$means, ba.stats$diffs, xlab="Mean of Measurements (Both
methods; mg P/100g feces)", ylab="Difference
(mg)",cex.lab=1,col.lab="Black",col=material,

main="MICRO vs AOAC", xlim=c(220,320),ylim=c(-250,250),
pch=19, xaxt="n", yaxt="n"
axis(l, cex.axis = 1, font = 2)
axis (2, cex.axis = 0.4, font =2, at=c(seq(from=-250,to=250,by=50)))
abline(h = ba.stats$lines, lty=c(2,3,2),
col=c("lightblue", "blue","lightblue"),

lwd=c (3, 3,3))

mtext (text=round(ba.stats$lines['upper.limit'],digits=1), las=l,

side=4,

outer = FALSE,
cex = 0.7,

col = "#B36000",
at=70

)

mtext (text=round(ba.stats$lines['mean.diffs'],digits=1), las=l,

side=4,

outer = FALSE,
cex = 0.7,

col = "#B36000",
at=35

)

mtext (text=round(ba.stats$lines['lower.limit'],digits=1), las=l,

side=4,

outer = FALSE,
cex = 0.7,

col = "#B36000",
at="7

)

abline (h=0, col="green')

ba.stats <- bland.altman.stats(df$COMB.all, df$AOAC.all)
plot (ba.stats$means, ba.stats$diffs, xlab="Mean of Measurements (Both
methods; mg P/100g feces)", ylab="Difference
(mg)",cex.lab=1,col.lab="Black",col=material,
main="COMB vs AOAC", xlim=c(220,320),ylim=c(-250,250),
pch=19, xaxt="n", yaxt="n")
axis(l, cex.axis = 1, font = 2
axis (2, cex.axis = 0.4, font =2, at=c(seq(from=-250,to=250,by=50)))
abline(h = ba.stats$lines, lty=c(2,3,2),
col=c("lightblue","blue","lightblue"),
lwd=c (3, 3,3))

mtext (text=round(ba.stats$lines['upper.limit'],digits=1), las=l,

side=4,

outer = FALSE,

cex = 0.7,

col = "#B36000",

at=90
)

mtext (text=round(ba.stats$lines['mean.diffs'],digits=1), las=l,

192
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outer = FALSE,
cex = 0.7,
"#B36000",

)

mtext (text=round(ba.stats$lines['lower.limit'],digits=1), las=l,
side=4,
outer = FALSE,
cex = 0.7,
col = "#B36000",
at=25
)
abline (h=0, col="green")
#L3ug2kyrfgqrm3VC5rFEzqHiE1ZgAAC)ZRm4 f jdBprafCxVmrQcEz#
dev.off ()
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APPENDIX F: EXTERNAL ABSTRACTS AND POSTERS FROM
DISSERTATION PROJECT

Appendix F1: ASBMR Annual Meeting 2014, Houston, TX

Effect of dietary calcium on phosphorus balance and net absorption in healthy adolescent girls

Phosphorus is an essential nutrient which plays a critical role in energy metabolism as
ATP and as a major structural component of bone. Phosphorus deficiencies are extremely rare as
it is widespread in the food supply. Conversely, there is increasing concern over potential harms
of dietary phosphorus excess. Inorganic forms of phosphorus are commonly used as food
additives, which contributes to an increased intake in the U.S. Emerging evidence shows that
elevated serum phosphorus and high dietary phosphorus intake may increase the risk of
cardiovascular disease and mortality in patients with chronic kidney disease as well as the
general population. However, few phosphorus balance studies have been conducted, and are
needed to examine factors that influence whole body phosphorus metabolism.

The purpose of this study was to determine the effect of dietary calcium on phosphorus
balance and net phosphorus absorption in healthy adolescent girls, utilizing a unique resource of
banked urine, fecal, and diet samples from a controlled calcium balance study previously
conducted at Purdue University. Eleven healthy girls ages 11-14y participated in a randomized
crossover study conducted in 2007 which consisted of two 3-week periods of a controlled diet
with low (817 + 62 mg/d) or high (1418 + 35 mg/d) calcium, separated by a 1-week washout
period. Phosphorus intake was the same on the low and high calcium diets (1531 £ 29 and 1534
+ 30 mg/d, respectively, p = 0.83). Results show urinary phosphorus excretion was lower on the
high calcium diet (649 + 41 vs 535 + 42 mg/d, p = 0.01). However, fecal phosphorus (553 + 60
Vs 678 £ 63 vs mg/d, p = 0.14), net phosphorus absorption (980 + 56 vs 859 + 58 mg/d, p =
0.14), and overall phosphorus balance (339 + 72 vs 329 + 74 mg/d, p = 0.90) were not
significantly different between low and high calcium intake. This agrees with our previously
published study of phosphorus balance in adult moderate-stage chronic kidney disease patients,

where increased calcium intake modestly reduced urinary phosphorus, but did not affect overall
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phosphorus balance or absorption. Combined, these balance studies suggest that increasing

dietary calcium is not an effective strategy for reducing phosphorus absorption or retention.
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Appendix F2: Indiana Musculoskeletal Symposium 2016, Indianapolis, IN

Effect of Age and Dietary Phosphorus Intake on Intestinal Phosphorus Absorption in Male Rats

Hyperphosphatemia is associated with negative bone outcomes in Chronic Kidney
Disease. Improving the understanding of the regulation of intestinal phosphorus absorption may
improve treatment strategies targeting absorption. The purpose of this study was to determine the
effects of age and dietary phosphorus intake level on intestinal phosphorus absorption efficiency
in male rats. Seventy-two male Sprague Dawley rats, ages 8-weeks, 18-weeks, and ~28-weeks
were randomized into defined diets with 0.6% calcium and three different levels of phosphorus:
0.1% (low), 0.6% (normal), or 1.2% (high) for 14 days (n = 8 rats per age and diet group). Rats
were housed individually in metabolic cages, and feces, urine, and diet were collected, weighed,
and analyzed over the final four days of the study to calculate phosphorus balance. On day 14,
phosphorus absorption efficiency was assessed using ligated loops of jejunum. (5 microCi P* in
0.5 mL of transport buffer (0.1 mmol/L phosphate). Serial blood samples were collected over 30
minutes, and the jejunal loop was excised at 30 minutes. Plasma samples and the digested jejunal
loop were analyzed for P activity by scintillation counting. Two-way analysis of variance was
used to determine main effects (age and diet) and the interaction effect for age x diet, with
Tukey’s post-hoc comparisons.

Results show that phosphorus appearance into the plasma was higher in the 10-week old
rats compared to the 20- and 30-week rats at 30 minutes (0.073 vs 0.052 and 0.048% of initial
dose, respectively, p < 0.0001 for both comparisons). Similarly, % absorption, determined from
disappearance of P33 activity from the intestinal loop at 30 minutes, was higher in the 10-week
old rats compared with 20- and 30-week old rats (40.1 vs 34.7 and 34.6% of total dose,
respectively, p = 0.01 for both). There were no differences in absorption efficiency between the
three levels of dietary phosphorus (p = 0.65), and no age x diet interaction. Ten-week old rats
had a higher positive phosphorus balance vs 20- and 30-week (37.2 vs 6.5 and 9.8 mg/day,
respectively, p = 0.0008 and p = 0.0013), while the high phosphorus intake group had a higher
positive balance than the normal and low intakes (31.7 vs 10.4 and 11.2 mg/day, respectively, p
=0.01 and p = 0.03). Together, these results suggest that intestinal phosphorus absorption is
more efficient at younger ages in rats, but that changes in dietary phosphorus do not elicit

adaptation in the efficiency of jejunal phosphorus absorption.
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Appendix F3: ASBMR Annual Meeting 2016, Atlanta, GA

Effect of Age and Dietary Phosphorus Intake on Intestinal Phosphorus Absorption in Male Rats

The purpose of this study was to determine the effects of age and dietary phosphorus
intake level on intestinal phosphorus absorption efficiency in male rats. Seventy-two male
Sprague Dawley rats, ages 8-weeks, 18-weeks, and ~28-weeks were randomized into defined
diets with 0.6% calcium and three different levels of phosphorus: 0.1% (low), 0.6% (normal), or
1.2% (high) for 14 days (n = 8 rats per age and diet group). Rats were housed individually in
metabolic cages, and feces, urine, and diet were collected, weighed, and analyzed over the final
four days of the study to calculate phosphorus balance. On day 14, phosphorus absorption
efficiency was assessed using ligated loops of jejunum. (5 microCi P*® in 0.5 mL of transport
buffer (0.1 mmol/L phosphate). Serial blood samples were collected over 30 minutes, and the
jejunal loop was excised at 30 minutes. Plasma samples and the digested jejunal loop were
analyzed for P*3 activity by scintillation counting. Two-way analysis of variance was used to
determine main effects (age and diet) and the interaction effect for age x diet, with Tukey’s post-
hoc comparisons.

Results show that phosphorus appearance into the plasma was higher in the 10-week old
rats compared to the 20- and 30-week rats at 30 minutes (0.073 vs 0.052 and 0.048% of initial
dose, respectively, p < 0.0001 for both comparisons). Similarly, % absorption, determined from
disappearance of P activity from the intestinal loop at 30 minutes, was higher in the 10-week
old rats compared with 20- and 30-week old rats (40.1 vs 34.7 and 34.6% of total dose,
respectively, p = 0.01 for both). There were no differences in absorption efficiency between the
three levels of dietary phosphorus (p = 0.65), and no age x diet interaction. Ten-week old rats
had a higher positive phosphorus balance vs 20- and 30-week (37.2 vs 6.5 and 9.8 mg/day,
respectively, p = 0.0008 and p = 0.0013), while the high phosphorus intake group had a higher
positive balance than the normal and low intakes (31.7 vs 10.4 and 11.2 mg/day, respectively, p
=0.01 and p = 0.03). Together, these results suggest that intestinal phosphorus absorption is
more efficient at younger ages in rats, but that changes in dietary phosphorus do not elicit

adaptation in the efficiency of jejunal phosphorus absorption.
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Appendix F4: Experimental Biology 2017, Chicago, IL

Comparison of Digestion Methods for Phosphorus Analysis of Fecal and Diet Samples

The purpose of this study was to determine fecal and diet phosphrous content comparing four
different digestion methods to the standard AOAC perchloric acid method (AOAC). The four
methods tested were: muffle furnace at 600 C for 3 days (MF600), muffle furnace at 500 C for
2.5 days (MF500), microwave acid digestion (MICRO), combination muffle furnace and wet
digestion (550 C for 1 hour + 70% nitric acid overnight) (MF550+). Homogenized mixed diet
samples, NIST wheat flour standard reference material, and homogenized fecal samples were
digested by these methods. The mixed diet samples were spiked with 0, 0.45 (low), 0.90 (med),
or 1.35 (high) mg phosphorus/gram diet of disodium phosphate, while the fecal samples were
spiked with 0, 200 (low), or 400 (high) pug phosphorus in each sample. Phosphorus content of
samples digested using the AOAC method was determined by colorimetry, and by ICP-OES for
the other four digestion methods. Total phosphorus content and % recovery of spiked samples
from the four methods were compared with the AOAC method. For the mixed diet, compared to
the AOAC (110 + 0.9 mg/100 g), MF600 (108 + 0.9 mg/100g), MF500 (97 £ 2.7 mg/100 g), and
MICRO (100 + 5.2 mg/100 g) but not MF550+ (41 + 5.2 mg/100 g) yielded similar phosphorus
content. Recovery of spiked disodium phosphate on AOAC averaged 103%, MF600 104%,
MF500 99%, MICRO 95%, and MF550+ 47%. Bland-Altman plots showing the mean difference
between each method and the AOAC and 95% limits of agreement are shown below. Phosphorus
content in wheat flour standard on the AOAC method was 1586 + 36 mg/kg, MF600 was 1526 +
35 mg/kg, MF500 1623 + 5 mg/kg, MICRO 1621 + 10 mg/kg, and MF550+ 1836 + 32 mg/kg,
all higher than the expected of 1333 + 36 mg/kg. MF600, MF500, and AOAC yielded similar
recovery for fecal phosphorus: MF600 2435 + 196 mg/kg, MF500 2431 + 108 mg/kg, MICRO
2678 + 72 mg/kg, MF550+ 2950 + 71 mg/kg, and AOAC 2428 + 56 mg/kg. Recovery from fecal
phosphorus spiking tended to be overestimated with dry digestion: average for AOAC was 97%,
MF600 112%, MF500 111%, MICRO 103%, and MF550+ 100%. Overall, combination dry and
wet digestion yielded inconsistent phosphorus content compared to other methods for mixed diet,
wheat standard, or fecal samples. Other methods are similar for mixed diet, but all overestimated
phosphorus in wheat flour. Spiked recovery for fecal phosphorus was most accurate with

microwave, combined dry and wet digestion, and perchloric digestion.
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Appendix F5: ASBMR Annual Meeting 2018, Montreal, CA

Effect of Age and Dietary Phosphorus Intake on Phosphorus Regulatory Hormones and Intestinal
Phosphate Transporter Gene Expression

We previously reported higher phosphorus (P) absorption efficiency in 10wk SD rats vs
older rats and no effect of low P diet on net P absorption using an in situ ligated loop method
(Vorland JBMR 31(S1)). To understand the mechanisms involved in these age-related changes,
we evaluated the effects of age and dietary phosphorus (P) on P-regulating hormones and
intestinal P transporter gene expression. N=72 male SD rats studied at 3 ages (10wk, 20wk, and
30wk of age) were fed diets of 0.6% Ca and 0.1% (LP), 0.6% (NP), or 1.2% (HP) P (n=8/group)
for 14d before sacrifice. Intestinal P absorption was measured by jejunal ligated loop (5 pCi *°P
in 0.5 mL of 0.1 mmol/L P transport buffer) over 30min prior to sacrifice. Jejunal and duodenal
mucosal tissue and blood were collected. Gene expression of intestinal P transporters NaPi2b and
Pitl were measured by RT-PCR, plasma 1,25-dihydroxyvitamin D3 (1,25D) by EIA, and intact
parathyroid hormone (iPTH), intact and c-terminal fibroblast growth factor 23 (iFGF23,
cFGF23) by ELISA. Data were analyzed by 2-way ANOVA for age, diet and interaction effects,
with Tukey’s post-hoc tests.

1,25D levels were significantly lower, and iFGF23 and iPTH levels were higher at 20 or
30wk compared with 10wk in all animals (all p<0.05). LP increased 1,25D, and decreased both
IFGF23 and cFGF23 (all p<0.01). There was an age x diet interaction only for iPTH (p<0.0001)
where LP had lower iPTH vs NP and HP, but the magnitude was greatest in 10wk. 10wk rats had
higher jejunal NaPi2b mRNA than 20wk and 30wk rats (p=0.002 & p=0.02), but there was no
effect of diet (p=0.14), consistent with our previously reported increased P absorption at 10wk
versus 20wk and 30wk of age. LP diet increased duodenal NaPi2b mRNA expression, but only
in 10wk (p=0.001). There were no significant effects for age or diet in Pitl mRNA in the
duodenum (p=0.50). In contrast to the decrease in NaPi2b with age, there was an increase in
jejunal Pitl mRNA expression at 30 weeks compared to 10wk and 20wk (p=0.002).

These results show that higher P absorption observed in younger normal SD rats is due to
higher 1,25D and lower PTH and FGF23, resulting in upregulation of NaPi2b. Overall, LP diet
caused expected changes in P-regulating hormones, but only upregulated NaPi2b at 10wk and
only in the duodenum, and had no effect on Pitl. This corresponds with the lack of effect of diet

P level on intestinal P absorption assessed in the jejunum in these rats.
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Appendix F6: ASBMR Annual Meeting 2018, Montreal, CA

Effect of Kidney Disease Progression on Intestinal Phosphorus Absorption in Male Cy/+
Chronic Kidney Disease Rats

The Cy/+ rat has been characterized as a progressive model of chronic kidney disease-
mineral bone disorder (CKD-MBD). We aimed to determine the effect of kidney disease
progression on intestinal phosphorus (P) absorption and whole-body P balance in this model.
N=48 Cy/+ (CKD) and N=48 normal littermates (WT) rats were studied at two ages: 20wk and
30wk, to model early (~50% loss of kidney function) and moderate-late CKD (~75% loss of
kidney function), respectively. All rats were placed on a 0.7% Ca, 0.7% P casein-based diet to
promote disease progression in the CKD rats. Intestinal P absorption efficiency was measured by
ligated loops using ~5 puCi %P in 0.5mL transport buffer (0.1 mmol/L KH2PO4, with or without
sodium (Na)) injected into a ~5¢cm jejunal segment while rats were anesthetized. The 2 different
transport buffers assessed Na-dependent and Na-independent components of P absorption
(n=12/genotype/age/test). 3P activity was measured in the excised, digested loop by liquid
scintillation counting. Absorption was determined by disappearance from the loop at 30min post-
injection. P balance was determined over 4d prior to sacrifice. Diet, urine, and fecal P were
measured by ICP-OES. Two-way ANOVA was used to determine genotype and age effects and
interaction, with Tukey’s post-hoc comparisons.

There was a significant genotype x age interaction (p<0.05) for Na-dependent absorption
with decreased absorption from 20wk to 30wk in the CKD rats (13 to 5%, p < 0.01) and no
difference in WT rats. However, there were no differences for genotype, age, or interaction
observed for Na-independent absorption efficiency (overall p=0.36). CKD rats had marginally
lower P balance compared to WT (-10 vs -2 mg/day, p=0.06). There was a significant effect of
age where 30wk rats had lower P balance compared to 20wk rats, regardless of genotype (-13 vs
1 mg/day, p<0.001). There was no significant genotype x age interaction.

These results demonstrate decreasing Na-dependent P absorption with progression of

CKD when assessed by an in situ ligated loop test.
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Appendix F7: The American Society for Nephrology (Kidney Week) Annual Meeting 2018,
Chicago, IL

Effect of ovariectomy on the progression of chronic kidney disease-mineral bone disorder (CKD-
MBD) in Cy/+ rats

Background:

There is increasing interest in sex as a biologic variable, yet studies have generally not examined
the role of sex in the pathogenesis of CKD-MBD despite experimental and epidemiological
evidence suggesting that estrogen is protective to kidney function and bone and thus CKD-MBD.
In the Cy/+ rat model of CKD-MBD, a spontaneous genetic mutation causes progressive kidney
function decline in males prior to 20 weeks of age, but kidney function is maintained in females
past 80 weeks of age making it impractical to study these females as a model of CKD. Therefore,
ovariectomy to mimic a post-menopausal state may accelerate the initiation of the CKD-MBD
phenotype and enable the use of female Cy/+ rats in research. The primary aim of this study was
to determine if ovariectomy in Cy/+ females would cause kidney function decline more similarly
to Cy/+ males.

Methods:

Sixteen female Cy/+ rats were randomized to either ovariectomy (OVX) (n=8) or sham surgery
(n=8) at 15 weeks of age. A casein-based diet was initiated at 24 weeks of age to promote kidney
function decline as is done in studies with male Cy/+ rats. Blood was sampled at 10, 20, 25, 30,
and 35 weeks of age, and analyzed for BUN, plasma phosphorus, and plasma calcium.

Results:

Data collected on all n=16 through 25 weeks show that OV X rats have higher body weights
(p<0.0001) (and lower uterine weights for n=4 that completed the 35 weeks of the study)
confirming the success of the OV X procedure. Plasma phosphorus decreased over time in both
groups (p<0.0001), but was not different between groups (p=0.46). Plasma calcium was not
different between groups (p=0.38) and did not change over time (p=0.57). Plasma BUN
decreased slightly over time in both groups (p<0.01) but remained in normal ranges, and there is
no difference between OV X and sham (p=0.23). In n=2 OV X and n=2 sham that have completed
the 35 weeks of the study, preliminary analysis shows no appreciable difference in BUN,

phosphorus, or calcium between groups.
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Conclusion:

Analyses will continue through 35 weeks, however at 25 weeks of age, there is currently no
indication that OV X accelerates kidney function decline in female Cy/+ rats. This is in contrast
to Cy/+ male rats which can be phenotyped based on elevated BUN as early as 10 weeks of age,
and by 25 weeks of age exhibit a ~50% reduction in kidney function (Moe et al. 2011).
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VITA

Education
Ph.D. in Nutrition Science, 2019 (expected)
Interdepartmental Nutrition Graduate Program
Purdue University, West Lafayette, IN
Dissertation: The Physiological Relevance of the Adaptive Capacity of Intestinal Phosphorus

Absorption

M.Sc in Food and Nutritional Science, 2013

Concentration in Human Nutrition

University of Wisconsin-Stout, Menomonie, WI

Thesis: Contribution of Dietary Fat to High-Density Lipoprotein Triacylglycerol in an Overnight

Period in Non-alcoholic Fatty Liver Disease

B.Sc in Human Biology with a Nutrition emphasis, 2009
Didactic Program in Dietetics, verification statement earned
Minor in Spanish

University of Wisconsin-Green Bay, Green Bay, Wisconsin

Research Experience
Graduate Research Assistant, Purdue University, 2013-2018

Conducted laboratory research under the mentorship of Dr. Katie Hill Gallant at Purdue under a
graduate assistantship. My dissertation focuses on the adaptive capacity of intestinal phosphorus
absorption in health and chronic kidney disease and will result in four first author publications.
e Developed a protocol to use an in situ intestinal phosphorus absorption method in rats.
e Used the absorption method to characterize absorption changes in response to age,
dietary phosphorus level, and kidney disease.
e Analyzed human and rat diet, urine, and fecal samples for mineral content to assess

phosphorus balance in response to those factors.
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e Helped to initiate and now manage a rat breeding colony to study progressive kidney
disease.
Graduate Research Assistant, University of Wisconsin-Stout, 2011-2013
Performed research under the mentorship of Dr. Kerry Peterson at UW-Stout under a graduate
assistant grant. The work was for my master’s thesis, isolating HDL from non-alcoholic fatty
liver disease patients over nocturnal time-points to quantify HDL concentration and isotopically
labeled dietary triglyceride transfer to HDL.

e Experience with Folch extraction, thin layer chromatography, and GC-MS

Undergraduate Research, University of Wisconsin-Green Bay, 2009-2010
Assisted in a study on the effects of vitamin D on athletic performance in athletes at UW-Green
Bay in ’09-’10. Involved in the study idea conception and literature reviewing, implementation,

recruiting, and testing. The principal investigator was Dr. Debra Pearson.

Publications
Peer-Reviewed Original Research

e Vorland CJ, Lachcik PJ, Aromeh LO, Moe SM, Chen NX, & Hill Gallant KM. Effect of
dietary phosphorus intake and age on intestinal phosphorus absorption efficiency and
phosphorus balance in male rats. PLoS ONE (2018) 13(11): e0207601.
https://doi.org/10.1371/journal.pone.0207601

e Vorland CJ, Martin BR, Weaver CM, Peacock M, & Hill Gallant KM. Phosphorus
Balance in Adolescent Girls and the Effect of Supplemental Dietary Calcium. JBMR Plus
(2018) 2(2): 103. https://doi.org/10.1002/jbm4.10026.

Peer-Reviewed Review Articles
e Vorland CJ, Stremke ER, Moorthi RN, & Hill Gallant KM. Effects of Excessive Dietary
Phosphorus Intake on Bone Health. Curr Osteoporos Rep (2017) 15: 473.
https://doi.org/10.1007/s11914-017-0398-4
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Moorthi RN, Vorland CJ, & Hill Gallant, KM. Diet and Diabetic Kidney Disease: Plant
Versus Animal Protein. Curr Diab Rep (2017) 17: 15. https://doi.org/10.1007/s11892-
017-0843-x

In Preparation

Vorland CJ, Lachcik PJ, Biruete A, Chen NX, Moe SM, & Hill Gallant, KM. Effect of
Kidney Disease Progression on Intestinal Phosphorus Absorption and Phosphorus
Balance in Male Rats.

Vorland CJ, Lachcik PJ, Swallow E, Metzger C, Allen M, Chen NX, Moe SM, & Hill
Gallant, KM. Effect of Estrogen Deficiency on the Progression of Chronic Kidney
Disease-Mineral Bone Disorder (CKD-MBD) in Cy/+ Rats.

Abstracts and Presentations for Scientific Meetings
Vorland, CJ., Aromeh, L., Lachcik, PJ., Moe, SM., Chen, NX., Hill Gallant, KM. Effect

of Age and Dietary Phosphorus Intake on Phosphorus Regulatory Hormones and

Intestinal Phosphate Transporter Gene Expression. Presented at The American Society

for Bone and Mineral Research meeting, Montreal, Canada, September 2018.
Vorland, CJ., Lachcik, PJ., Moe, SM., Chen, NX., Hill Gallant, KM. Effect of Kidney
Disease Progression on Intestinal Phosphorus Absorption in Male Cy/+ Chronic Kidney

Disease Rats. Presented at The American Society for Bone and Mineral Research

meeting, Montreal, Canada, September 2018.

Vorland, CJ., Lachcik, PJ., Nelson, C., Chen, NX., Hill Gallant, KM. Effect of
Ovariectomy on the Progression of Chronic Kidney Disease-Mineral Bone Disorder
(CKD-MBD) in Cy/+ Rats. Presented at The American Society for Nephrology (Kidney
Week) meeting, San Diego, CA, October 2018.

Vorland, CJ., Martin, BR., Armstrong, C., Radcliffe, S., Moe, SM., Hill Gallant, KM.
Comparison of Digestion Methods for Phosphorus Analysis of Fecal and Diet Samples.

Presented at the Experimental Biology meeting, Chicago, IL, April 2017.
Vorland, CJ., Lachcik, PJ., Fleet, JC., Hill Gallant, KM. Effect of Age and Dietary

Phosphorus Intake on Intestinal Phosphorus Absorption in Male Rats. Presented at The
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American Society for Bone and Mineral Research meeting, Atlanta, GA, September
2016.

Vorland, CJ., Lachcik, PJ., Fleet, JC., Hill Gallant, KM. Effect of Age and Dietary

Phosphorus Intake on Intestinal Phosphorus Absorption in Male Rats. Presented at The
Indiana Musculoskeletal Symposium, Indianapolis, IN, June 2016.

Vorland, CJ., Martin, BR., Weaver, CM., Peacock, M., Hill Gallant, KM. Effect of
Dietary Calcium on Phosphorus Balance and Net Absorption in Healthy Adolescent

Girls. Presented at The American Society for Bone and Mineral Research meeting,
Houston, TX, September 2014.

Vorland, CJ., Peterson, KD. Contribution of Dietary Fat to High-Density Lipoprotein
Triglyceride During Nocturnal Hypertriglyceridemia. Presented at the Experimental
Biology meeting, San Diego, CA, April 2014.

Teaching Experience

Graduate Teaching Certificate, Purdue University Center for Instructional Excellence,
completed 2017
o Consisted of attending teaching workshops, teaching observations, incorporating
student feedback.
Graduate Teaching Assistant for NUTR 424 Nutrition Communication, Purdue
University, Spring 2014-Fall 2018 (7 semesters)
o Led labs, graded presentations and assignments, assisted with classroom
activities, lectured. Varying 25-50 students.
o Lead instructor for the course in Spring 2017.
Graduate Teaching Assistant for NUTR 453 Food Chemistry lab section, Purdue
University, Fall 2013 (1 semester)
o Taught 3-hour weekly lab of 24 students.
Graduate Teaching Assistant for undergraduate Human Nutrition course, 2008,

University of Wisconsin-Green Bay (1 semester)
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Invited Guest Lectures

NUTR 480 Medical Nutrition Therapy I, Purdue University, “Cognitive Biases and
Critically Evaluating Research”, Fall 2014, 2015, 2016, 2017, 2018

NUTR 424 Nutrition Communication, Purdue University, “Professional Benefits of
Social Media”, 2017

Other Science Communications

American Society for Nutrition — Official Meeting Blogger for Experimental Biology,
2014, 2017

American Society for Nutrition — Official Student Blogger, 2013-2014, 2017-2018
Acrticle about the Dietary Guidelines co-written with Dr. Connie Weaver for the Indiana
State Department of Health Food Protection Program “FoodBytes” Winter 2016
newsletter: https://www.in.gov/isdh/files/FoodbytesWinter 2016.pdf

Creator and blogger of a nutrition science blog, nutsci.org, 2009-present

Scientific Tools and Software Developed

Creator of LazyScholar.org: a browser extension that finds full scholarly article texts,
metrics, more.

Creator of nutsci.com: aggregates new nutrition papers into a sortable table.

Creator of ishouldbewriting.net: tool to encourage writing.

Additional projects listed at http://nutsci.org/projects

Memberships and Affiliations

The American Society for Nutrition 2012-present
The American Society for Bone and Mineral Research 2014-present
The American Society for Nephrology 2016-present
The Academy of Nutrition and Dietetics 2007-2009, 2017-present

Honors and Awards

Endocrine Fellows Foundation Forum travel grant, American Society for Bone and
Mineral Research/The Endocrine Society, Fall 2016



