
EFFICIENT MATRIX-AWARE RELATIONAL QUERY PROCESSING IN BIG

DATA SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Yongyang Yu

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Walid G. Aref, Chair

Department of Computer Science

Dr. Elisa Bertino

Department of Computer Science

Dr. Sunil Prabhakar

Department of Computer Science

Dr. Alex Pothen

Department of Computer Science

Approved by:

Dr. Voicu S. Popescu

Head of the School Graduate Program

iii

This dissertation is dedicated to my parents for their love, endless support and

encouragement.

iv

ACKNOWLEDGMENTS

I am really thankful to my academic advisor, Dr. Walid G. Aref, who guides me

to explore and appreciate the beauty of database systems. Dr. Aref is a respectable

and brilliant researcher, who always pushes me to think deeper, and shares his own

research experience. He is open-minded and willing to listen to new ideas, always

offering positive feedbacks whenever I propose novel research topics, without which

I will never have the chance to accomplish my dissertation. He is such a diligent

professor that I will never forget the days when we have revised my papers together

late until the middle of the nights, even if he was in poor health condition. It is great

fortune for me to work with this excellent person and benefit from his perspective.

This dissertation is the result of collaboration with a number of great collabo-

rations. Chapter 2 is the joint work with Mingjie Tang, Walid G. Aref, Qutaibah

Malluhi, Mostafa Abbas, and Mourad Ouzzani [1]. Chapter 3 extends the system de-

veloped in Chapter 2 for efficient processing queries that involve both matrix and re-

lational operations. Chapter 4 demonstrates the performance of the proposed system

with complex machine learning queries in deep learning applications. Both chapters

are joint works with with Mingjie Tang and Walid G. Aref [2, 3].

I am very pleased to invite Dr. Elisa Bertino, Dr. Sunil Prabhakar, and Dr. Alex

Pothen to serve on my final exam committee. Their suggestions improve my disserta-

tion significantly. Beyond direct collaborators on my dissertation, many friends have

contributed to my graduate work, and made Purdue an unforgettable experience.

My labmates at Purdue database research group include Mingjie Tang, Ahmed R.

Mahmood, and Amgad M. Madkour always offer their help and feedbacks to enhance

this work. Shandian Zhe, Weihang Wang, Dong Su, Shuxian Jiang, Xuejiao Kang,

Xin Cheng, Zhengyi Zhang, Mu Wang, Jiasen Yang, Yifan Yang, Xi Tan, and Xiao

v

Zhang were great fun to hang out with and fantastic people for great inspirations on

some neat ideas.

Last but not the least, I want to show my gratitude to my father Tianqing Yu,

and mother Lijuan Wang for their unwavering support throughout my Ph.D. study.

Without their support, I cannot accomplish this work.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xi

1 Introduction . 1
1.1 Motivation . 3
1.2 Challenges in Matrix-aware Relational Query Processing 8
1.3 Hypothesis of the Dissertation . 11
1.4 Summary of Contributions . 11
1.5 Dissertation Outline . 13

2 Preliminaries and Notations . 15
2.1 Notations . 15
2.2 Matrix operators . 15
2.3 Relational operators . 16

3 Query Processing for Queries with Matrix-only Operators in Big Data Systems17
3.1 Introduction . 17
3.2 An Overview of Distributed Processing of Matrix Computations 20
3.3 Plan Generation for Efficient Query Execution 21

3.3.1 Cost-based Dynamic Optimization 22
3.3.2 Rule-based heuristics . 26
3.3.3 Generation of Execution Plans Involving Big Matrix-data Par-

titioning . 29
3.4 Local Execution and System Implementation 36

3.4.1 Physical Storage of a Local Matrix 36
3.4.2 System Design and Implementation 40

3.5 Related Work . 41
3.6 Performance Evaluation . 42

3.6.1 PageRank . 44
3.6.2 GNMF . 45
3.6.3 BFGS . 47
3.6.4 Sparse matrix chain multiplication 48
3.6.5 Biological data analysis . 50
3.6.6 Comparison with Non-MapReduce-based Systems 51

3.7 Concluding Remarks . 53

vii

Page

4 Big-Data Query Processing for Queries That Involve Both Relational and
Matrix Operators . 54
4.1 Introduction . 54
4.2 An Overview of Distributed Relational Query Processing over Big Ma-

trix Data . 59
4.3 Relational Operators on Matrix Data 60

4.3.1 Relational Algebra on Matrix Data 61
4.3.2 Relational Selection on Matrix Data 62
4.3.3 Projection on Matrix Data . 65
4.3.4 Aggregation on Matrix Data . 66
4.3.5 Relational Join on Matrix Data 72

4.4 System Implementation . 85
4.4.1 Physical Storage of Matrix Joins (Tensor) 85
4.4.2 System Design and Implementation 86

4.5 Related Work . 87
4.6 Performance Evaluation . 89

4.6.1 Experiment Setup . 90
4.6.2 Aggregation on a Gram Matrix 91
4.6.3 Selection over Matrix Data . 93
4.6.4 Cross-product . 95
4.6.5 Join on dimensions . 96
4.6.6 Join on Entries . 99
4.6.7 PNMF . 101

4.7 Concluding Remarks . 102

5 Optimizing Complex Matrix-aware Relational Query Evaluation Pipelines –
Deep-learning as a Driving Application . 103
5.1 Introduction . 103
5.2 Overview of Deep-learning Models . 104
5.3 Required Operations for Deep-learning 105
5.4 Query Interface . 108
5.5 Performance Evaluation – Skip-Gram 109
5.6 Concluding Remarks . 110

6 Conclusion . 111

REFERENCES . 114

VITA . 122

viii

LIST OF TABLES

Table Page

3.1 Communication cost of matrix transpose 31

3.2 Communication cost of matrix-scalar operators 31

3.3 Communication cost of element-wise operators 32

3.4 Communication cost of matrix-matrix multiplications. C(si1, si2) is the
cost when the 2 matrices are partitioned in schemes si1 and si2. 33

3.5 Statistics of the social network datasets . 44

3.6 Comparison with ScaLAPACK and SciDB 52

4.1 Communication cost of different D2D join predicates 81

4.2 Communication cost of different D2V and V2D join predicates 83

4.3 Communication cost of converting partition schemes 84

4.4 Statistics of the social network datasets . 91

4.5 The Kronecker product on different systems 95

4.6 PNMF on different systems . 101

ix

LIST OF FIGURES

Figure Page

3.1 An overview of MatFast. 22

3.2 Computation costs of different plans. 22

3.3 Element-wise operators folding. 28

3.4 Execution plan with matrix data partitioning scheme of GNMF. In the
physical plan, the blue lines denote the data shuffle among different data
partitions. The dashed red rectangles denote different stages for the exe-
cution on Spark. 35

3.5 Block matrix storage. 39

3.6 PageRank on different real-world datasets. 45

3.7 GNMF on the Netflix dataset. 46

3.8 BFGS on the Netflix dataset. 48

3.9 Costs of various skews for sparse matrix multiplication chain of length 4
with fixed sparsity ρ = 0.01. 49

3.10 Costs of different sparsity values for matrix multiplication chains of length
4 with fixed skew s = 0.5. 50

3.11 kruX algorithm for eQTL over multiple platforms. 51

4.1 Collaborative filtering with side information. 55

4.2 Pushing aggregation under matrix multiplication. 57

4.3 Architecture of MatRel. 60

4.4 Direct overlay of two sparse matrices. 74

4.5 Communication cost for D2D join. 80

4.6 Block tensor storage. 86

4.7 Sum aggregation over matrix-matrix multiplications. 92

4.8 Selecting a row from linear regression. 93

4.9 Selecting an entry from a Gram matrix. 94

x

Figure Page

4.10 Execution time for join on two dimensions. 97

4.11 Join on a single dimension and join on entries. 100

5.1 Representative neural networks: (a) fully connected, and (b) including
dropout [104]. 106

5.2 Parameter learning of a general 3-layer neural network. 106

5.3 Neural network training for Skip-Gram. 109

xi

ABSTRACT

Yu, Yongyang Ph.D., Purdue University, December 2018. Efficient Matrix-aware
Relational Query Processing in Big Data Systems. Major Professor: Walid G. Aref.

In the big data era, the use of large-scale machine learning methods is becoming

ubiquitous in data exploration tasks ranging from business intelligence and bioinfor-

matics to self-driving cars. In these domains, a number of queries are composed of

various kinds of operators, such as relational operators for preprocessing input data,

and machine learning models for complex analysis. Usually, these learning meth-

ods heavily rely on matrix computations. As a result, it is imperative to develop

novel query processing approaches and systems that are aware of big matrix data

and corresponding operators, scale to clusters of hundreds of machines, and leverage

distributed memory for high-performance computation. This dissertation introduces

and studies several matrix-aware relational query processing strategies, analyzes and

optimizes their performance.

The first contribution of this dissertation is MatFast, a matrix computation

system for efficiently processing and optimizing matrix-only queries in a distributed

in-memory environment. We introduce a set of heuristic rules to rewrite special fea-

tures of a matrix query for less memory footprint, and cost models to estimate the

sparsity of sparse matrix multiplications, and to distribute the matrix data partitions

among various compute workers for a communication-efficient execution. We imple-

ment and test the query processing strategies in an open-source distributed dataflow

engine (Apache Spark).

In the second contribution of this dissertation, we extend MatFast to MatRel,

where we study how to efficiently process queries that involve both matrix and re-

lational operators. We identify a series of equivalent transformation rules to rewrite

xii

a logical plan when both relational and matrix operations are present. We intro-

duce selection, projection, aggregation, and join operators over matrix data, and

propose optimizations to reduce computation overhead. We also design a cost model

to distribute matrix data among various compute workers for communication-efficient

evaluation of relational join operations.

In the third and last contribution of this dissertation, we demonstrate how to

leverage MatRel for optimizing complex matrix-aware relational query evaluation

pipelines. Especially, we showcase how to efficiently learn model parameters for deep

neural networks of various applications with MatRel, e.g., Word2Vec.

1

1 INTRODUCTION

In the big data era, data exploration aims at establishing correlations between things

we do not know that may lead to new possibilities, unlike business intelligence (BI)

systems where one knows what information she is looking for and designs systems to

deliver the specific types of information, e.g., sum aggregation on a certain attribution

in a report. Big data also exhibits quite different characteristics than traditional

business data, known as 4V properties, i.e., Volume, Velocity, Variety, and Veracity [4,

5].

Volume represents the amount of data, such as Terabyte (TB, 240 bytes) or

Petabyte (PB, 250 bytes). With the advent of Internet of Things (IoT) [6], data

are generated much faster than ever before. For instance, about 2.5 quintillion bytes

of data are created each day, and this speed is predicted to increase exponentially

during the next decade according to International Data Corporation (IDC). At Face-

book, daily active users upload 350 million photos, and more than 500 TB data are

generated per day. These facts indicate a big data system must be able to handle

tremendous volumes of data as inputs of typical workloads.

Velocity reflects the speed of data generation, update, or processing. Modern big

data systems accept sources with high data generation rate. For example, generating

100 TB text data in 5 hours implies the generation rate of 20 TB/hour. In addition,

a lot of big data applications require real-time data updates. For example, in a social

network site, e.g., Facebook and Twitter, the social graph data is continuously up-

dating when a friend or follower relationship is established or dropped. Furthermore,

in streaming systems, data streams continuously arrive and the big data system must

be able to process the data in real-time to keep up with the arrival speed. Therefore,

it is very challenging for a big data system to reflect data generation rates, update

frequencies, and processing speed.

2

Variety indicates the range of data types and sources. The fast development of

IoT and remote sensing gives birth to a diversity of data types, such as structured

data (e.g., relational tables), unstructured data (e.g., text, graph, images, audios, and

videos), and semi-structured data (e.g., web logs, customer reviews, and resumes).

Hence, it is imperative for a big data system to support a spectrum of data types in-

cluding structured, semi-structured, and unstructured data, as well as representative

data sources, such as table, text, stream, and graph.

Veracity [7] denotes if the data used in the query processing conforms to the

inherent and important characteristics of the raw data. Sometimes, it is too expensive

to process the raw data in huge volumes as there may not exist enough compute

resources. Data sketch [8] is a promising technique to capture the main characteristics

of the raw input with less data. Data veracity is important to guarantee the credibility

of the results from a big data system.

Besides the 4V properties of big data, the workflows of queries also exhibit differ-

ent features in a big data system from those of traditional BI queries. Data scientists

and analysts often need to analyze large volumes of data in diverse applications, such

as self-driving cars, social network analysis, web-search, online advertisement bidding,

and recommender systems. Most of queries in these driving applications are expressed

using machine learning (ML) models, e.g., principle component analysis (PCA) [9],

collaborative filtering (CF) [10], and linear regression (LR) [11], that involve linear

algebra operations and heavy matrix computations as building blocks. Additionally,

many network analysis algorithms are expressed by matrix operations as well, e.g.,

PageRank, betweenness centrality, and spectral clustering [12]. Recently, tensor fac-

torization [13] has become a popular model to capture relationships among multiple

entities, which also extensively relies on matrix computations. Thus, it is of great

importance for these models to have access to an efficient, scalable, and matrix-aware

relational data system.

3

1.1 Motivation

The large amount of data accumulated from IoT, remote sensing, online social

networks, and computational sciences calls for advanced matrix-aware relational query

processing techniques. Consider the following application scenarios for matrix-aware

relational query processing.

Motivating Scenario 1: Recommender System

Making recommendations to potential customers is a million-dollar business in

marketing, e.g., Netflix prize1 for movie recommendations. Gaussian Non-negative

Matrix Factorization (GNMF) [14], is a widely used ML model for clustering docu-

ments and modeling topics of massive text data. The input to GNMF is a d × w

document-term Matrix V, where d corresponds to the number of documents, and

w corresponds to the number of terms. Each cell Vij records the frequency of term

j in document i. To predicate an unseen term in a certain document, GNMF as-

sumes that Matrix V can be characterized by p hidden topics such that V can be

factorized into the multiplication of two hidden factor Matrices Wd×p and Hp×w, i.e.,

V ≈W×H. In real-world applications, the number of topics p is chosen between 50

and 200. Typically, d and w are much larger than p. For example, GNMF could be

applied to the Netflix contest dataset [15], where d = 480, 189 and w = 17, 770.

The estimations for Matrix W and H could be conducted in an iterative manner.

1 val p = 100 // number of topics

2 val V = loadMatrix("in/V") // read matrix

3 var W = RandomMatrix(V.nrows, p)

4 var H = RandomMatrix(p, V.ncols)

5 val max_iteration = 50

6 for (i <- 0 until max_iteration) {

7 H = H * (W.t %*% V) / (W.t %*% W %*% H)

8 W = W * (V %*% H.t) / (W %*% H %*% H.t)

1https://web.archive.org/web/20090924184639/http://www.netflixprize.com/community/
viewtopic.php?id=1537

https://web.archive.org/web/20090924184639/http://www.netflixprize.com/community/viewtopic.php?id=1537
https://web.archive.org/web/20090924184639/http://www.netflixprize.com/community/viewtopic.php?id=1537

4

9 }

Code 1.1: GNMF algorithm in Scala

Code 1.1 illustrates the Scala source code for evaluating Matrix W and H, where

“∗” denotes matrix element-wise multiplication, “% ∗ %” represents matrix-matrix

multiplication, and “A.t” indicates the transpose of matrix A. In contrast to queries

in a relational database, this query exposes several specific features: big matrix data

retrieval, common matrix operators, and iterative execution.

Motivating Scenario 2: Web Search

The World Wide Web (WWW) hosts trillions of hyperlinked documents. One

of the most important tasks a search engine, e.g., Google, faces every day is how

to rank the relevant webpages according to a user’s query. PageRank [16, 17] is a

link analysis model and it assigns a numerical weight to each document, with the

purpose of measuring its relative importance within WWW. PageRank models the

whole WWW as a graph, where each document serves a a vertex and the hyperlink

between a pair of documents serves a directed edge in the graph.

1 val A = loadMatrix("in/A") // adjacency matrix

2 val d = rowSum(A) // out-going degrees of vertices

3 val P = A.t %*% diag(1.0 / d) // transition matrix

4 var v = ones(A.nrows, 1) // jumping vector

5 v = v / sum(v) // normalization

6 val alpha = 0.85 // damping factor

7 var x = v

8 val max_iteration = 100

9 for (i <- 0 until max_iteration) {

10 x = alpha * P %*% x + (1.0 - alpha) * v

11 }

Code 1.2: PageRank algorithm in Scala

5

Code 1.2 illustrates the computation steps for PageRank vector x in Scala code.

The input to PageRank is the adjacency matrix A of WWW, which is a square matrix

of 30 trillion rows and columns. In order to compute the transition matrix P, a sum

aggregation along the row dimension is conducted for the out-going degrees of all

the vertices. Next, Matrix P is computed by a matrix-matrix multiplication between

the transpose of the adjacency matrix A and the diagonal matrix of the inverse of

the out-going degree vector. The PageRank vector x is evaluated in an iterative

manner. Besides common matrix operators and iterative execution, this query also

exposes relational operations on big matrix data, e.g., sum aggregation along the row

dimension. It is worth noting that the size of the entire web graph is so massive that

single-node solutions cannot process the data efficiently. It is necessary to have a

distributed engine for executing such queries.

Motivating Scenario 3: Bioinformatics – eQTL

With the development of biology and bioinformatics technologies, genetic diagno-

sis has emerged as a promising mechanism for modern clinical medicine. It allows

the analysis of chromosomes, proteins, and certain metabolites in order to detect

heritable disease-related genotypes, mutations, phenotypes, or karyotypes for clinical

purposes [18]. Expression quantitative trait loci (eQTLs) are genomic loci that ex-

plain all or a fraction of variation in expression levels of mRNAs [19]. eQTL analysis

is a widely used method to find out how a given genotype at a particular QTL affects

gene expression at the certain locus. Several statistical methods have been explored

for eQTL analysis. kruX [20] is an efficient matrix-based tool for calculating the

non-parametric test statistics, Kruskal-Wallis, to identify eQTL.

1 Load dense genotype matrix G

2 Generate index matrix Ii(m, k) = 1 if G(m, k) = i

3 Compute vector Ni, where Ni(m) =
∑K

k=1 Ii(m, k)

6

4 Compute Si(n,m) =

K∑
k=1

R(n, k) ∗ Ii(m, k) = (R× ITi)(n,m), where R(n, k) records

the rank for the nth trait in the ith genotype group of the mth

marker

5 Compute S(n,m) =
12

K(K + 1)

∑̀
i=0

Si(n,m)2

Ni(m)
− 3 ∗ (K + 1)

Code 1.3: Computation steps of kruX

Code 1.3 demonstrates the computation steps of kruX. The input to kruX is a dense

genotype Matrix G. To compute the index matrices, e.g., I0, a compute engine needs

efficient search on matrix data to locate the positions of certain values. Further-

more, the computation of Matrix S requires sum aggregation on the result of matrix

element-wise divisions. It is also worth noting that the computation steps are CPU

intensive, since matrix computations consume much more CPU cycles than tradi-

tional BI queries. Therefore, it is necessary to have an in-memory compute engine

for executing such computation intensive queries.

Motivating Scenario 4: Natural Language Processing – Word2Vec

In natural language processing, semantic similarity is a metric defined over a set

of documents or terms to measure the distance between them based on the likeness of

their meaning or semantic contend as opposed to similarity which are estimated by

syntactical representations. For example, “Madrid” has a smaller semantic distance

to “Spain” than “Portugal”. Recently, Word2Vec [21] is proposed as a group of related

models to produce word embeddings [22], which are leveraged to compute the semantic

similarity between words in a corpus. These models are two-layer neural networks [23]

that are trained to reconstruct linguistic contexts of words. The input to Word2Vec is

a corpus of text, and it produces a vector space, usually of several hundred dimensions,

where each unique word in the corpus is assigned with a corresponding vector in the

space. Word vectors are positioned in the vector space such that words that share

common contexts in the corpus are located closer in the space.

7

Let us take a look at skip-gram model for the detailed computation steps. Given

a trained skip-gram model, the input vectors are one-hot encoded2. To predict the

adjacent words around an input x, the hidden layer vector is evaluated as h = xT×W,

whereW is the weight matrix between the input layer and the hidden layer. Similarly,

the inputs to each of the C × V output nodes is computed by the weighted sum of

its inputs, e.g., the input to the j-th node of the c-th output word is uc,j = v′Twj
× h.

Finally, the probability that the output of the j-th node of the cth output word is

yc,j = exp(uc,j)/
∑V

j′=1 exp(uj′).

1 Training set S = {y1, . . . ,yc}

2 Initialize weight matrix WV×N and hidden layer weight matrix UN×V

3 for x ∈ S {

4 Uij = Uij − η ·
C∑
c=1

(yc,j − tc,j) · hi

5 Wij = Wij − η ·
V∑
j=1

C∑
c=1

(yc,j − tc,j) · Uij · xj

6 }

Code 1.4: Back propagation of skip-gram model with stochastic gradient descent

Code 1.4 illustrates the back propagation steps for model training of skip-gram. tc,j

is an indicator variable, where tc,j = 1 if the jth node of the cth true output word

is equal to 1. η is the step length of the stochastic gradient descent. To accelerate

the back propagation procedure, the negative sampling technique [24] is adopted to

update only a sample of weights in matrix W and U. Both prediction and back

propagation of Word2Vec models rely heavily on common matrix operations and

iterative executions. Furthermore, optimization strategies, e.g., negative sampling,

require common relational operations on matrix data, such as relational selection on

the negative words. Thus, it is very important that a compute engine supports both

common matrix and relational operations on big matrix data.

Motivating Scenario 5: GIS – Raster Data Analysis
2https://en.wikipedia.org/wiki/One-hot

https://en.wikipedia.org/wiki/One-hot

8

A geographic information system (GIS) is a system designed to integrate, store,

manipulate, analyze, manage, and display spatial or geographical data [25]. Modern

GIS technologies utilize digitalized data and helps decision-making in various appli-

cations, such as urban planning, transport/logistics, insurance, telecommunications,

and business [26]. With the development of remote sensing techniques, more and

more ortho-rectified images are collected every day from space satellites, aircraft,

camera drones [27], intelligent robots [28]. These images are typically stored using

two broad methods: raster images and vectors. The images facilitate numerous ad-

vanced analytics in map-based applications and scientific research. For example, map

overlay is a useful GIS operation that superimposes multiple datasets for the purpose

of identifying relationships between them [29]. Especially, it could be leveraged to

answer queries, such as “What landuse is on top of what soil type?” and “What roads

are within what counties?”.

1 val A = loadRaster("in/A")

2 val B = loadRaster("in/B")

3 val C = join(A, B, "A.rid = B.rid and A.cid = B.cid")

4 select(C, ’temp > 20 and type = "AG"’)

Code 1.5: Map overlay operation in Scala

Code 1.5 demonstrates computing the overlay between two maps in raster format.

The raster format could be represented by a matrix naturally. In addition, the over-

lay operation relies heavily on relational joins, as it combines characteristics from

numerous layers into a single layer. Common relational selections are utilized to pick

specific cells and attributes from the overlayed matrix.

1.2 Challenges in Matrix-aware Relational Query Processing

There is a wide range of applications that rely on matrix-aware relational query

processing. These include databases, data mining, machine learning, bioinformatics,

9

and GIS. From aforementioned driving application scenarios, we summarize important

challenges that need to be addressed for a big data system to support efficient matrix-

aware relational query processing.

• Big Matrix-data Storage, Retrieval, and Search

The 4V properties of big data imply large volumes of matrix data from various

data sources, e.g., scientific report, satellite image, text, software logs. Often,

only a subset of the entire database or data warehouse is utilized for answering

a certain query. For commercial and scientific applications, the raw input data

contains errors and missing values for some attributes. This requires efficient

matrix-data storage, retrieval, and search to filter out noisy data and provide

data prepocessing functionality for subsequent advanced analytical operations.

• Supporting Common Matrix Operators

A plethora of applications require a number of different kinds of matrix op-

erators, e.g., matrix transpose, matrix-scalar operators, matrix element-wise

operators, matrix-matrix multiplications. These operators are organized in a

pipeline, where the output of an operator is fed as input to another. It is nec-

essary for a big data system to support common matrix operators and make

extensions for new application specifications.

• Supporting Queries with Both Relational and Matrix Operations

Complex analytics require multiple stages to accomplish a single task, and each

stage may be composed of different types of operations, e.g., selecting a subset

from a data source using relational selection and performing matrix operations

on the subset; partitioning the input matrix into multiple sections for cross-

validation [23] when training an ML model; obtaining average users’ rating

on a movie after predicting the missing values in the user-movie rating matrix.

Thus, it is necessary for a big data system to support both relational and matrix

operators efficiently for various applications scenarios.

10

• Supporting Iterative Execution

Traditional SQL query execution is acyclic in nature. Matrix-aware relational

query execution require iterative executions, since many ML models and matrix

algorithms need multiple iterations before converge to the optimal solution. The

data flows between different operators exhibit strong data dependency during

iterative executions. A temporary computed solution often needs to be cached

for repetitively access. Therefore, it is very important for a big data system to

support efficient iterative executions.

• Optimizing Queries That Involve Both Relational and Matrix Oper-

ators

When a query involves both relational and matrix operators, the optimization

for query processing is non-trivial. Existing optimization techniques in RDBMSs

have been extensively studied for relational data and operators. However, these

techniques need to be studied thoroughly before they could be applied to ma-

trix data and corresponding operators. For example, relational selection predict

pushdown is a common optimization technique to reduce input data size before

a join operation. A direct application of the pushdown mechanism to a query

that involve both relational and matrix operators may produce erroneous re-

sult when the input matrices are sparse. Thus, carefully designed and studied

optimization techniques are called for queries that involve both relational and

matrix operators.

• Supporting In-memory Query Processing in Distributed Big Data

Systems

Recently, there has been a trend for in-memory database systems, which re-

duces I/O costs significantly by storing all the data in memory. Furthermore,

matrix computations are inherently CPU and memory intensive. Disk-based

distributed big data systems are not good candidates for matrix queries, e.g.,

Hadoop [30], as intermediate computed results have to be written to and read

11

from disks repeatedly for iterative executions. Therefore, it is essential to cre-

ate an in-memory system that efficiently support matrix-aware relational query

processing by leveraging the distributed memory inside a cluster of computers.

• Communication Overhead in the Distributed Setup

A salient issue for distributed matrix-aware relational query processing is the ex-

tensive communication overhead when transferring data from different compute

nodes over the network. Load-balanced data partitioning schemes on big matrix

data may not be efficient, e.g., round-robin data partitioning for matrix-matrix

multiplications. Due to iterative executions, data dependency also needs to be

considered when storing intermediate matrices in distributed memory. Thus,

it is crucial for a big data system to have little communication overhead for

matrix-aware relational query processing.

1.3 Hypothesis of the Dissertation

Based on the observations and challenges from motivating examples, we claim:

“it is possible to build a computation- and communication-efficient matrix-aware re-

lational query processor and optimizer for queries that combine both relational and

matrix-based operators.”

1.4 Summary of Contributions

1. Query Processing for Queries with Matrix-only Operators in Big Data Systems

• We develop MatFast, a matrix computation system for efficiently pro-

cessing and optimizing queries with matrix-only operators in a distributed

in-memory environment.

• We introduce a cost model to accurately estimate the sparsity of sparse ma-

trix multiplications, and propose heuristic rules to rewrite special features

of a query with matrix-only operators for mitigating memory footprint.

12

• We investigate several popular matrix data partitioning schemes, and de-

rive the conversion overhead between different partitioning schemes. In ad-

dition, we introduce a second cost model to distribute the matrix data par-

titions among a number of compute workers for a communication-efficient

execution plan.

• We conduct an extensive experimental study of MatFast against state-of-

the-art distributed matrix computation systems using real and synthetic

datasets with various ML applications. The experiments illustrate the ef-

fectiveness of our proposed cost models for reducing memory consumption

and communication overhead. Experimental results illustrate up to an

order of magnitude enhancement in performance.

2. Query Processing for Queries That Involve Both Relational and Matrix Oper-

ators in Big Data Systems

• We develop MatRel, a system for efficient query processing for queries

that involve both relational and matrix operators in a distributed in-

memory environment.

• We identify a series of equivalent transformation rules to rewrite a logical

plan when both relational and matrix operations are present. Especially,

we extend the relational predicate pushdown heuristic to a mixture of

relational selection/aggregation and matrix operations for reducing com-

putation overhead.

• We formally define the join operator on matrix data based on different

variants of the join predicates, and propose a number of optimization tech-

niques to enhance runtime cost. By identifying sparsity-preserving merge

functions and adopting the Bloom-join strategy when the join predicate

contains matrix entries, MatRel is able to generate efficient execution

plans on sparse matrices. We introduce a cost model to distribute matrix

13

data among various compute workers for communication-efficient evalua-

tion of relational join on big matrix data.

• We extend MatFast to MatRel, and realize the introduced query pro-

cessing and optimization techniques. We use the developed prototype

system to conduct a number of evaluations on both real and synthetic

datasets. We compare MatRel against state-of-the-art distributed ma-

trix computation systems and an array database. Experimental results

illustrate up to two orders of magnitude enhancement in performance.

3. Optimizing Complex Matrix-aware Relational Query Evaluation Pipelines (with

Deep-learning as a Driving Application)

• We demonstrate the domain specific language and expressive programming

interface of MatRel in the DataFrame API for evaluating complex ML

pipelines.

• We illustrate the superiority of MatRel in evaluating deep-learning mod-

els, e.g., Word2Vec. We discuss the detailed computation steps of the

predication procedure and the back propagation for model training. By

examining the core operation required by deep-learning models, we show

how MatRel could be leveraged to reduce the computation and communi-

cation overhead. Experimental results on real datasets show enhancements

in performance by up to an order of magnitude over existing deep-learning

platforms.

1.5 Dissertation Outline

We have published parts of the work presented in this dissertation [1–3]. The

work on query processing and optimizations for queries with matrix-only operators is

presented in [1]. The study of query processing for queries that involve both relational

14

and matrix operators is presented in [2]. The demonstration of optimizing complex

matrix-aware relational query evaluation pipeline is presented in [3].

The remaining of the dissertation is organized as follows. Chapter 2 presents the

preliminaries and common notations for matrices and tensors. Chapter 3 introduces

query processing and optimizations for queries with matrix-only operators. Chapter 4

covers query processing and optimizations for queries that involve both relational and

matrix operators. Chapter 5 discusses optimizing complex matrix-aware relational

query evaluation pipelines, especially we demonstrate how to leverage the techniques

and the system we’ve developed in previous chapters for deep-learning applications.

Chapter 6 concludes this dissertation and discusses possible areas for future work.

15

2 PRELIMINARIES AND NOTATIONS

In this chapter, we briefly introduce the common notations used in this dissertation.

2.1 Notations

We follow the convention that a bold, upper-case Roman letter, e.g., A, denotes a

matrix and regular Roman letter with subscripts, e.g., Aij represent single elements

in a matrix. A column vector is written in bold, lower-case Roman letter, e.g., x. A

scalar is written in lower-case Greek letter, e.g., β. A block matrix is written as Aij,

where i and j are the row-block index and column-block index. (Xij) represents a

matrix with element Xij at the i-th row and the j-th column. A bold, upper-case

calligraphic Roman letter, e.g., A, denotes a tensor, and regular Roman letter with

subscripts, e.g., Aijk or Aijk`, represents an element in a 3rd- or 4th-order tensor [31].

The order of a tensor is the number of dimensions, and it can be inferred from the

context when we discuss corresponding operators in Chapter 4.

2.2 Matrix operators

To enable matrix-aware relational query processing, a big data system should be

able to support both common unary and binary matrix operators. For unary matrix

operator, we have matrix transpose B = AT , Bij = Aji, ∀i, j. Binary operators in-

cludes matrix-scalar addition, B = A+β, Bij = Aij+β; matrix-scalar multiplication,

B = A ∗ β, Bij = β ∗ Aij; matrix-matrix addition, matrix-matrix element-wise mul-

tiplication, matrix-matrix element-wise division, C = A ? B, Cij = Aij ? Bij, where

? ∈ {+, ∗, /}; and matrix-matrix multiplication, C = A×B, Cij =
∑

k Aik ∗ Bkj. In

16

our code snippet, we use A.t to denote the transpose for matrix A. For matrix-matrix

multiplications, A% ∗%B has the same meaning as A×B.

2.3 Relational operators

To enable relational query processing on big matrix data, a big data system should

support basic relational operators, such as selection, projection, aggregation, and

join. As matrix data is two dimensional, the relational predicates for these common

operators may involve both row and column dimensions, and entry values. We adopt

common notations from relational algebra [32]. The relational selection is represented

as σθ(RID,CID,val)(A), where θ is a propositional formula on the dimensions and entries

of Matrix A. A relational projection on a matrix is denoted as Πτ(RID,CID,val)(A),

where τ is a subset of all the attributes {RID,CID, val}. An aggregation is formally

defined as Γρ,dim(A), where ρ is the name of the aggregate function, e.g., sum, and

dim indicates the chosen dimension, e.g., row or column. A relational join is a binary

operator, defined as A onγ,f B, where γ is the join predicate, and f is the user-

defined merge function that takes two matching entries and outputs a merging value.

A thorough discussion of the parameters about each operator is presented in Chapter

4.

17

3 QUERY PROCESSING FOR QUERIES WITH MATRIX-ONLY OPERATORS

IN BIG DATA SYSTEMS

3.1 Introduction

In the era of big data, data scientists and analysts often need to analyze large

volumes of data in a diverse array of application such as BI, self-driving cars, so-

cial network analysis, web-search, online advertisement bidding, and recommender

systems. Most of the algorithms in these applications are expressed using machine

learning (ML) models, e.g., principle component analysis (PCA), collaborative filter-

ing (CF) and linear regression (LR), that involve linear algebra operations and heavy

matrix computations as building blocks. Furthermore, many network analysis algo-

rithms are expressed using matrix operations, e.g., PageRank, betweenness centrality,

and spectral clustering [12]. Recently, tensor factorization [13] has become a popular

model to capture relationships among multiple entities, which also extensively relies

on matrix computations. Thus, it is important for these models to have access to

an efficient and scalable execution engine for matrix computations. The advent of

MapReduce [33] has spurred numerous distributed matrix computation systems, e.g.,

HAMA [34], Mahout [35], and SystemML [36]. These systems not only provide com-

parable compute efficiency to widely used scientific platforms [36], e.g., R [37], but

also offer better scalability and fault-tolerance. However, these systems suffer from

two main shortcomings. First, they are unable to reuse intermediate data [38]. The

inability to efficiently leverage intermediate data greatly impedes the performance of

further data analysis with matrix computations. In addition, these systems do not

leverage the power of distributed memory offered by modern hardware.

One promising way to address the above challenges is to develop an efficient exe-

cution engine for large-scale matrix computations based on an in-memory distributed

18

cluster of computers. Apache Spark [38] is a computation framework that allows

users to work on distributed in-memory data without worrying about the data dis-

tribution or fault-tolerance. Recently, a variety of Spark-based systems for matrix

computations have been proposed, e.g., MLI [39], MLlib [40], and DMac [41]. Al-

though addressing several challenges in distributed matrix computation processing,

none of the existing systems leverage some of the special features of matrix programs

to generate efficient partitioning schemes for matrix data at both the input and in-

termediate stages. The special features we are referring to, and which are prevalent

in ML algorithms, include sparse matrix chain multiplications, low-rank matrix up-

dates, and invariant expressions in loop structures. Since matrix computations are

inherently memory intensive, an execution engine that cannot leverage these special

features will overwhelm the hardware capacity.

For illustration, consider Gaussian Non-negative Matrix Factorization (GNMF) [14],

a widely used ML model for clustering documents and modeling topics of massive text

data. Code 1.1 shows the compute steps of GNMF. GNMF assumes that Matrix V

can be characterized by p hidden topics such that V can be factorized into the mul-

tiplication of two hidden factor Matrices Wd×p and Hp×w, i.e., V ≈ W × H. In

real-world applications, the number of topics p is chosen between 50 and 200. Typ-

ically, d and w are much larger than p. For example, in the Netflix contest dataset,

d = 480, 189 and w = 17, 770.

There are two updates for Matrix H and W during each iteration. The common

matrix multiplication of W × H is not shared between the two compute steps (in

Lines 7 and 8), because H is updated during the execution. Observe that the matrix

chain multiplications WT ×W×H and W×H×HT involve more than one matrix

multiplication. The order of execution on multiple matrix multiplications should

be chosen carefully to avoid generating intermediate matrices of large sizes. The

matrix metadata records several properties, e.g., the dimension, the sparsity (dense

or sparse), and the storage format. From the metadata of the input matrices, it

should be possible to infer the dimensions of intermediate matrices.

19

For computing W ×H ×HT , there are two possible execution orders, i.e., com-

puting W×H first and producing an intermediate result with 480, 189×200×17, 770

arithmetic multiplications; or computing H ×HT first and producing an intermedi-

ate result with 200 × 17, 770 × 200 arithmetic multiplications; assuming the Netflix

contest dataset when p is set to 200. The two execution plans differ greatly in the

dimensions of the intermediate matrices, and result in different computation costs.

The plan generation becomes even more intricate when sparse matrices are involved.

It is usually difficult to obtain accurate estimates on the sparsity of the computed

intermediate matrices, which is directly related to the computation cost. Another

common feature of matrix programs is the mix between element-wise operations and

matrix-matrix multiplications. An eager plan generator that arranges a sequential

execution incurs unnecessary memory overhead for intermediate matrices. An opti-

mizer for matrix computation is needed to leverage features of matrix programs that

reduce computation and memory overhead.

In a distributed setup, the communication overhead may become a bottleneck

in matrix computations. Load-balanced data partitioning schemes, e.g., hash-based

schemes, where a hash function distributes rows evenly across the partitions, may not

be efficient for matrix operations with data dependencies. Data dependencies between

compute steps in a matrix program are prevalent, e.g., an update of Matrix H (Line

7) is fed to compute a new update of Matrix W (Line 8). The matrix multiplication

H × HT will requires re-partitioning if a hash-based scheme is used for H. Thus,

optimizing the data partitioning of input and intermediate matrices is also a critical

step for efficiently executing matrix programs.

In this chapter, we introduce MatFast, an in-memory distributed matrix com-

putation processing system. MatFast has (1) a matrix program optimizer to iden-

tify and leverage special features of the input matrices to reduce computation cost

and memory footprint, and (2) a matrix data partitioner to mitigate communication

overhead. The matrix program optimizer uses a cost model and heuristic rules to

dynamically generate an execution plan. MatFast uses a second cost model to par-

20

tition the input and intermediate matrices to minimize communication overhead. To

improve compute performance on local matrices, MatFast leverages a block-based

strategy for efficient local matrix computations. MatFast is designed as a Spark

library that uses Spark’s standard dataflow operators.

The main contributions of this chapter are as follows:

• We develop MatFast, a matrix computation system for efficiently processing

and optimizing matrix programs in a distributed in-memory environment.

• We introduce a cost model to accurately estimate the sparsity of sparse ma-

trix multiplications, and propose heuristic rules to rewrite special features of a

matrix program for mitigating memory footprint.

• We introduce a second cost model to distribute the matrix data partitions among

various workers for a communication-efficient execution.

• We evaluate MatFast against state-of-the-art distributed matrix computation

systems using real and synthetic datasets. Experimental results illustrate up to

an order of magnitude enhancement in performance.

The rest of this chapter proceeds as follows.

Section 3.2 gives an overview of MatFast, and its major components. Section 3.3

presents the plan generation strategies of MatFast. Especially, static heuristic

rule-based optimizations and dynamic cost-based optimizations are introduced. Sec-

tion 3.4 discusses the detailed implementation of the system and its design decisions.

Section 3.5 provides the related work. Section 3.6 presents the datasets and experi-

mental evaluation of the system via a number of ML applications. Finally, Section 3.7

contains conclusion remarks.

3.2 An Overview of Distributed Processing of Matrix Computations

To facilitate matrix computation, we realize an execution plan generator for eval-

uating matrix expressions over in-memory matrix data. Given an analytic task, e.g.,

21

an ML algorithm, that involves multiple matrix expressions, these expressions are

extracted and are optimized to generate a compute- and memory-efficient logical

evaluation plan. Then, we develop a cost model to decide on how the input and

intermediate matrix data are partitioned based on data dependencies. Finally, each

worker adopts a block-based matrix storage to execute computations locally.

Refer to Figure 3.1 for illustration. MatFast consists of three major compo-

nents: a plan generator for executing matrix programs, a query optimizer, and a data

partitioner. These components leverage rules to transform a matrix expression (that

is extracted from a high-level application) to an optimized execution plan in a dis-

tributed environment. Figure 3.1b gives the workflow among the various components.

For each matrix expression or query (a matrix expression is a query for MatFast),

the execution plan generator produces an initial query evaluation plan tree that is

pipelined into the query optimizer to apply cost-based dynamic analysis and rule-

based rewriting heuristics. The matrix data partitioner assigns partitioning schemes

to input and intermediate matrices based on a cost model. For matrix expressions

that involve sparse matrix multiplications, a globally optimal execution plan cannot

be determined by a single pass on the plan tree due to inaccurate estimates on the

computation cost of the intermediate matrices. MatFast adopts a greedy approach

to progressively generate an execution order for sparse matrix chain multiplications.

The dashed arrow in Figure 3.1b refers to the dynamic optimizations of these cases.

3.3 Plan Generation for Efficient Query Execution

We present how to generate a computation- and communication-efficient execu-

tion plan for a matrix expression. First, we present a sampling-based technique to

estimate the computation cost for sparse matrix chain multiplications in a single

statement. Next, we introduce rule-based heuristics to identify special features of a

matrix expression for memory efficiency. Finally, we present a cost model to estimate

22

Matrix Program Execution Plan Generator

Matrix Program Optimizer

Apache Spark

MLlib GraphX
Distributed

Linear Algebra …

HDFS/Hadoop storage

Matrix Data Partitioner

(a) Components of MatFast

HDFS

Execution Plan
Generator

Optimizer

Runtime

Spark Jobs

best plan
remaining plan

Data
Partitioner

matrix
program
(query)

result

(b) Architecture of MatFast

Figure 3.1.: An overview of MatFast.

plan
1

plan
2

plan
3

plan
4

plan
5

MatFast

A
v
e

ra
g

e
 E

x
e

c
u

ti
o
n

 T
im

e
(s

)

10
2

10
3

10
4

((A
1
 × A

2
) × A

3
) × A

4

(A
1
 × (A

2
 × A

3
)) × A

4

A
1
 × ((A

2
 × A

3
) × A

4
)

A
1
 × (A

2
 × (A

3
 × A

4
))

(A
1
 × A

2
) × (A

3
 × A

4
)

Figure 3.2.: Computation costs of different plans.

the communication overhead for optimizing the data partitioning of individual input

and intermediate matrices in the matrix expression.

3.3.1 Cost-based Dynamic Optimization

Matrix chain multiplication is commonly found in random walk [17] and ma-

trix factorization [14] applications. We distinguish between dense and sparse matrix

23

chain multiplications. For dense matrix chain multiplications, MatFast exploits the

classical dynamic programming approach [42] to determine the optimal order of the

matrix pair multiplications. The cost of multiplying two dense matrices is defined

as the number of arithmetic floating point multiplications. The computation cost of

Am×q ×Bq×n can be estimated by mqn floating point multiplications. However, for

sparse matrix chain multiplications, we cannot apply the same dynamic programming

approach, because the computation cost of intermediate product matrices would be

over-estimated. This cost depends not only on the dimensions of the input matrices

but also on several other factors, e.g., matrix sparsity and the locations of non-zero

entries. Figure 3.2 gives the average runtime of various plans for a sparse matrix

chain multiplication of length 4. The cost varies significantly between the best and

the worst plan. To better estimate this computation cost, various sparsity estimation

methods, e.g., average-case estimation [43] and worst-case estimation [41,44], can be

used and are explained below.

Given a sparse matrix, the associated metadata contains the dimension and spar-

sity information, i.e., the number of rows m, columns n, and the sparsity ρ, where

ρ = Nnz/(mn), Nnz is the number of non-zero entries. For matrix-matrix multiplica-

tion Cm×n = Am×q ×Bq×n, estimating the sparsity ρc of Matrix C is difficult, and is

usually interpreted as the probability of non-zero entries in a matrix, under the uni-

form distribution assumption. Thus, the average- and worst-case estimations predict

sparsity as ρc = 1− (1− ρaρb)
q, and ρc = min(1, ρaq)×min(1, ρbq), respectively.

For matrices derived from real-world applications, e.g., online social networks, ci-

tation networks, protein-protein interactive networks, non-zero entries usually follow

non-uniform distributions. Average-case estimation works poorly for these matrices.

The node degrees follow a power law distribution [45], where certain rows and columns

contain substantially more non-zero entries than others. Worst-case estimation is pes-

simistic, and leaves little opportunity for optimization, i.e., it generates a sequential

execution plan of the multiplication chain since the sparsity is estimated to 1 when

24

ρaq ≥ 1 and ρbq ≥ 1. Average- and worst-case estimations are static because they

predict sparsity without touching the underlying matrices.

Thus, cost estimation for sparse matrix chain multiplications should conservatively

consider data skew. Matrix-matrix multiplication A × B can be interpreted as the

summation of the vector outer products between corresponding columns from A and

rows from B, i.e.,

A×B =
[
a1 a2 · · · ak

]
×

bT1

bT2
...

bTk

 =
k∑
i=1

aib
T
i .

This matrix multiplication rule also works for block partitioned matrices, where

A and B are partitioned into compatible blocks, i.e., the number of columns in block

Aik equals the number of rows in block Bkj. The outer-product perspective provides

a different way to estimate the cost of sparse matrix multiplications. Intuitively, a

larger product value of nnz(ai) × nnz(bTi) leads to a denser multiplication matrix,

where nnz(A) denotes the number of non-zero entries in Matrix A. However, it is

unaffordable to calculate each nnz(ai) × nnz(bTi) for large matrices with millions of

rows or columns. The optimizer needs a sketch about the exact cost.

To obtain an accurate cost estimation of sparse matrix chain multiplications, Mat-

Fast adopts a sampling-based approach to sketch the positions of the non-zero en-

tries. A good sampling method needs to capture the densest columns and rows. If the

number of non-zero entries in a row (column) of a sparse matrix follows a power law

distribution, and the rows (columns) are in the descending order with respect to the

number of nonzero entries, then it is ideal to select the first few rows and columns for

estimating the computation cost of multiplying the matrices. If no prior knowledge

is available for the input, MatFast adopts a simple random-sampling method, e.g.,

systematic sampling [46], to estimate the computation cost of the multiplication. This

25

cost estimation can be generalized to block partitioned sparse matrix multiplication

as follows,

Ccomp(A×B) = max
k∈S
{ck ∗ rk},

where ck =
∑
i

nnz(Aik), rk =
∑
j

nnz(Bkj),

where Ccomp(X) denotes the computation cost of calculating Matrix X, and S is the

set of the sampled column (row) block indices, and ck (rk) is the number of non-zero

entries in the k-th column (row) block. The maximum operator is used because a

larger value of ck ∗ rk indicates a denser product matrix.

Analysis of Cost Estimation with Sampling.

If the distribution of the non-zero entries is provided by a user, MatFast samples

rows (columns) according to the distribution. If MatFast samples input matrices

with a random sampling method, the probability of accurately estimating the cost

can be modeled as follows. Suppose there are n columns in Matrix A, n rows in

Matrix B, and w column-row pairs, whose products achieve the maximum product.

The probability that the maximum product is chosen in s samples is given by,

P = 1−
(
n− w
s

)(
n

s

)−1
.

By sampling s row-column pairs, there are totally
(
n
s

)
possible combinations. The

chance that the maximum pair is not chosen among w pairs is
(
n−w
s

)(
n
s

)−1. Thus,

P can be computed by the complementary event. Similarly, for a block partitioned

matrix, this probability is as follows:

P̂ = 1−
(
n̂− ŵ
s

)(
n̂

s

)−1
,

where n̂ is the number of column (row) blocks of matrix A (B), n̂ = n/` (` is the

block size), ŵ is the number of blocks that achieves the maximum product value. In

practice, P̂ ≥ P and the probability of accurate cost estimation is improved.

Running Example.

Given a sparse matrix chain multiplication A1 ×A2 ×A3 ×A4, MatFast dynam-

ically generates an execution plan. Initially, the sampling index set S is determined

26

by a random sampling method. The number of non-zero entries are collected for the

sampled rows and columns. Next, the costs for pair-wise adjacent matrix multiplica-

tions are computed, i.e., c1 = Ccomp(A1 ×A2), and similarly for c2 and c3. Say, c2 is

the cheapest. The multiplication chain is computed a step further and is reduced to

A1 ×M23 ×A4, where Mij is the intermediate product matrix of Ai and Aj. Then,

the sampling is conducted again on Mij. Notice that the sampled statistics can be

reused for the existing matrices, e.g., A1 and A4. The sampling-based cost estima-

tion repeats until the chain is reduced to a single matrix. We identify the following

features that occur frequently in matrix programs:

3.3.2 Rule-based heuristics

Matrix expressions have various features that may induce heavy memory foot-

prints. We identify the following features that occur frequently in matrix programs:

(1) low-rank matrix updates, (2) chains of multiple element-wise matrix operators,

and (3) loop structures that reflect iterative executions. MatFast handles these

features by using heuristics to generate a memory-efficient execution plan.

Identifying and Preserving Low-rank Matrix Updates.

Low-rank matrix updates are widely used in ML models due to the popularity of

latent variables [47]. Latent variables are utilized in many disciplines, e.g., economics,

machine learning, bioinformatics, natural language processing, and social sciences.

For example, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [48] and its

variant limited memory BFGS (`-BFGS) are widely used quasi-Newton methods for

solving unconstrained nonlinear optimization problems. Low-rank matrix update is

a critical step of BFGS and is stated as follows:

Bk+1 = Bk +
yk × yTk
yTk × sk

− Bk × sk × sTk ×Bk

sTk ×Bk × sk
,

where Bk is the approximate Hessian matrix, sk is the line search step, and yk is the

difference of the gradient. yTk × sk and sTk ×Bk× sk are two scalars that can be easily

computed and shared among workers. Notice that there are two low-rank (rank-1)

27

matrix updates in each iteration, i.e., yk × yTk and Bk × sk × sTk ×Bk. An ignorant

query optimizer generates a sequential execution plan for each intermediate matrix,

i.e., both low-rank update matrices have to be explicitly computed and materialized

during the execution. However, multiplying low-rank matrices usually produces dense

matrices of very high dimensions, and incurs heavy memory overhead.

Given a matrix expression, MatFast analyzes the dimensions of the input ma-

trices, and identifies low-rank matrix updates. It defers the evaluation of low-rank

matrix updates to reduce the memory footprint. Low-rank matrix updates usually

involve matrix components of low dimensions. Thus, storing and transmitting the

low-rank matrix components are more efficient than materializing the matrix prod-

uct. For example, matrix yk and Bk × sk are two vectors but their corresponding

rank-1 updates yk × yTk and Bk × sk × sTk ×Bk are dense. Thus, deferring the com-

putation of low-rank matrix multiplications can reduce communication overhead. To

evaluate the updated Hessian matrix Bk+1, first, we broadcast vector yk and Bk× sk

to all workers. Then, each element of the low-rank matrix multiplication is computed

from the vectors on the fly without storing the matrix product explicitly.

Folding of Matrix Operators.

Matrix element-wise operations are prevalent in ML algorithms. For GNMF (Code 1.1),

the algorithm updates Matrix W with element-wise multiplications and divisions,

i.e., W = W ∗ (V × HT)/(W × H × HT). These expressions are generalized as

A1 ?A2 ? · · · ?Ak, where all Ai’s have the same dimension and ?’s are element-wise

operators, i.e., ? ∈ {+, ∗, /}. For the update of W, A1 = W,A2 = V × HT , and

A3 = W×H×HT . To generate an execution plan for this expression, a naive query

optimizer generates a “ left-deep tree” plan. The left part of Figure 3.3 shows the

left-deep tree plan for updating Matrix W, where the dashed rectangles represent the

subtrees for A2 and A3. The problem is that the inner nodes of the left-deep tree

plan must be materialized, e.g., W ∗ (V ×HT), before the element-wise division. A

left-deep tree plan induces multiple compute steps and memory overhead for storing

the intermediate matrices.

28

op< * , / >

rewrite

W V HWH H

t t

%*%

*

/

%*%

%*%

W V H W H H

%*%

%*%

t t

%*%

Figure 3.3.: Element-wise operators folding.

Given a matrix expression, MatFast identifies element-wise matrix operations

and then organizes them in a “bushy tree” execution plan. A bushy tree plan benefits

from circumventing materializing the intermediate matrices. The right part of Fig-

ure 3.3 illustrates the bushy tree plan for updating Matrix W. To facilitate low-level

executions, MatFast’s optimizer generates a tree node of a new compound opera-

tor in the form “op<binop_list>”. The compound operator records each element-

wise operator and the corresponding input matrices. For example, “op<*,/>” in

Figure 3.3 encodes the chain of matrix element-wise multiplication and division op-

erations among W, A2, and A3. Notice that the dashed rectangle also gives an

optimized plan for intermediate Matrix A3. The optimization reflects the execution

plan of W ×H×HT .

Eliminating Common and Invariant Expressions.

Many ML models and matrix computations are iterative in nature. Accelerating

loop executions provides performance improvement for matrix programs. To optimize

loop executions, MatFast identifies and eliminates recurring common subexpressions

(CSE) [49]. It recognizes loop-constant subexpressions, moves them out of the loop,

and saves them for reuse. Thus, redundant computation and memory footprint are

mitigated.

29

For example, the key update step of PageRank (Code 1.2) is a matrix-vector

multiplication,

xk+1 = αPxk + (1− α)v,

where α is a constant scalar, P is the stochastic link matrix, and v is a constant

restart vector. Notice that the constant expressions αP and (1 − α)v are evaluated

repetitively during iterations. Therefore, we move the constant expressions out of the

iteration loop, and the redundant computations are avoided.

3.3.3 Generation of Execution Plans Involving Big Matrix-data Partitioning

When an optimized plan is distributed among a set of workers, its execution

may suffer from heavy communication overhead due to inconsistent data partitioning

schemes between dependent matrices. For a typical pipeline of matrix operators, the

output of an operator always serves as an input to another. For GNMF (Code 1.1),

the computation of H × HT relies on the previous step. If H is partitioned in the

default hash-based scheme, then we need to repartition H before the actual execution,

and hence inducing extra communication cost. Thus, choosing a consistent matrix

partitioning scheme for an intermediate matrix is essential to reduce communication

overhead. In this section, we introduce MatFast’s matrix data partitioning schemes.

Then, we present a cost model to efficiently partition matrix data.

Partitioning Schemes.

MatFast supports the following three widely used matrix data partitioning schemes:

Row (“r ”), Column (“c”), and Block-Cyclic (“b-c”). Moreover, the Broadcast (“b”)

scheme is supported for sharing a matrix of low dimensions or a single vector. The

Row and Column schemes place all the elements in the same row and column on a

worker, respectively. The Block-Cyclic scheme partitions a matrix into many more

blocks than the number of available workers, and assigns blocks to workers in a

round-robin manner so that each worker receives several non-adjacent blocks. Dif-

ferent schemes introduce different communication costs for various matrix operators.

30

They should be assigned to input matrices on their own merits. For example, for

matrix-matrix multiplications with cross product plans [36], the Block-Cyclic scheme

incurs extra shuffle cost to aggregate rows (columns) together. Row and column

schemes assign related matrix elements on the same executor for matrix-matrix mul-

tiplication with no extra aggregation costs. Therefore, we introduce a cost model

to evaluate the communication costs of different partitioning schemes for the various

matrix operators.

Cost Model for Communication.

The communication cost incurred by a matrix expression can be modeled by,

Ccomm(expri) =
m∑
j=1

Ccomm(opj, sji1 [, sji2], sjo),

where matrix expression expri contains j matrix operators, and each operator takes

some inputs in schemes sji1 [, sji2], and produces an output in scheme sjo . [, sji2]

represents an optional argument as we support both unary and binary operators. For

the unary operator (i.e., matrix transpose) op, Ccomm(op, si, so) is characterized by

the input matrix and partitioning schemes in Table 3.1, where A is the input matrix,

si and so are the partitioning schemes of the input and the output, respectively, and

N is the number of the workers in the cluster. |A| refers to the size of Matrix A,

i.e., |A| = mn if A is an m-by-n dense matrix; and it means nnz(A) if A is sparse.

If the input matrix is partitioned in the Row scheme, then the transposed matrix is

naturally partitioned in the Column scheme. Therefore, no communication cost is

introduced. However, if the input matrix is partitioned in the Row scheme and the

output matrix is also required to be partitioned in the Row scheme, then the matrix

data must be shuffled to satisfy the requirement. This results in shuffling the whole

matrix.

Similarly, for matrix-scalar operators (e.g., multiplying a matrix by a constant),

Table 3.2 gives the communication costs for the various schemes. If the input and the

output are partitioned in the same scheme, then there is no communication. Notice

31

Table 3.1.: Communication cost of matrix transpose

so \ si r c b b-c

r |A| 0 0 |A|

c 0 |A| 0 |A|

b N |A| N |A| 0 N |A|

b-c |A| |A| 0 |A|

Table 3.2.: Communication cost of matrix-scalar operators

so \ si r c b b-c

r 0 |A| 0 |A|

c |A| 0 0 |A|

b N |A| N |A| 0 N |A|

b-c |A| |A| 0 0

that no communication is incurred if the inputs are partitioned in the Broadcast

scheme.

Let Ccomm(op, si1, si2, so) be the cost function for a matrix element-wise operator

that is illustrated in Table 3.3. From the table, the matrix element-wise operators

introduce no communication overhead if both input matrices are partitioned (1) in

the same scheme as the output, (2) at least one of the inputs is partitioned in the

Broadcast scheme and the other one has the same scheme as the output.

Matrix-matrix multiplication is a bit more complicated. We do not use the Block-

Cyclic scheme as it incurs more overhead than the other schemes. The cost function

is given in Table 3.4. Notice that the cells with 0’s in the table indicate no cost, e.g.,

when the inputs are partitioned in the Row scheme, the Broadcast scheme, and the

output is in the Row scheme.

32

Table 3.3.: Communication cost of element-wise operators

so
(si1, si2)

Communication Cost

r
{(r, r), (r, b), (b, r), (b, b)} else

0 |A|

c
{(c, c), (c, b), (b, c), (b, b)} else

0 |A|

b
(b, b) si1 = si2 or {(b, *), (*, b)} else

0 N |A| (N + 1)|A|

b-c

{(b-c, b-c), (b, b), {(b-c, *), (*, b-c)} else

(b-c, b), (b, b-c)}

0 |A| 2|A|

With the cost functions introduced above, MatFast assigns the partitioning

schemes having minimum costs to the input and intermediate matrices, i.e.,

si1(i2) ← arg min
si1(i2)

Ccomm(op, si1[, si2], so).

MatFast optimizes the communication cost for a single operator, and assigns the as-

sociated scheme to the input. For a matrix expression consisting of several operators,

the entire expression is greedily optimized by tuning each operator.

33

Ta
bl
e
3.
4.
:
C
om

m
un

ic
at
io
n
co
st

of
m
at
ri
x-
m
at
ri
x
m
ul
ti
pl
ic
at
io
ns
.
C

(s
i1
,s
i2

)
is
th
e
co
st

w
he
n
th
e
2
m
at
ri
ce
s
ar
e
pa

rt
it
io
ne
d

in
sc
he
m
es
s i

1
an

d
s i

2
.

(s
i1
,s

i2
)

s o
(r

,
r)

(r
,
c)

(r
,
b)

(c
,
r)

(c
,
c)

(c
,
b)

(b
,
r)

(b
,
c)

(b
,
b)

r
N
|B
|

N
|B
|

0
N
|A

B
|

N
(|
A
|+
|B
|)

|A
|

N
|A

B
|

|A
B
|

0

c
N
(|
A
|+
|B
|)

N
|A
|

|A
B
|

N
|A

B
|

N
|A
|

N
|A

B
|

|B
|

0
0

b
m

in
{N
|A
|+

C
(b
,r
),

N
m

in
{|
A
|,
|B
|}

N
|A

B
|

2
(N
−

1
)|
A
B
|

m
in

{N
|A
|+

C
(b
,c
),

m
in

{|
A
|+

N
|A

B
|,

m
in

{|
B
|+

N
|A

B
|,

N
|A

B
|

0

N
|B
|+

C
(r
,b
)}

+
N
|A

B
|

N
|B
|+

C
(c
,b
)}

2
(N
−

1
)|
A
B
|}

2
(N
−

1
)|
A
B
|}

34

Algorithm for Plan Generation and Partitioning Scheme Assignment.

Algorithm 1 describes plan generation in MatFast. The input is a matrix program P ,

and the output is an optimized execution plan tree T with an optimized partitioning

scheme at each node. MatFast applies the rule-based heuristics to each expres-

sion of P . If the expression contains no matrix operator, then the variable is parsed

and associated with the corresponding metadata (Line 28), e.g., loading matrix data

or storing results to HDFS. If an expression contains matrix chain multiplications,

the execution plan is determined by the matrix types (Lines 17-24), i.e., a classical

dynamic programming approach is invoked for dense matrix chains; otherwise, dy-

namic cost-estimation is triggered for sparse matrix chain multiplications (Line 22).

Then, the optimized expression is inserted into the plan tree T (Line 25). Finally,

Procedure assignParitionScheme (Algorithm 2) assigns partitioning schemes to

matrices based on the cost model. The scheme assignment starts from the root of the

plan tree T . For the root node, the scheme is determined by the nature of the out-

put, i.e., recurring in a loop, participating in matrix-matrix multiplications, or only

involving in element-wise operations. For an internal node, the Broadcast scheme is

assigned if it consists of low-rank matrix updates. Otherwise, an internal node is as-

signed with a scheme such that it introduces minimum communication cost (Lines 17

and 20). After scheme assignment, the execution is organized into several stages,

where the operations are packed together such that no communication is introduced

in the same stage.

GNMF Running Example.

The optimized execution plan tree is given in Figure 3.4a. Procedure AssignParti-

tionScheme traverses from the root node to all leaf nodes, and assigns a partitioning

scheme to each input and intermediate matrix. The left and right subtrees are the

execution plans for updating Matrices H, and W, respectively. The dashed arrows

indicate loop execution. The root node Wi participates in matrix-matrix multiplica-

tion and loop execution. The number of rows in Wi is significantly bigger than that

of columns. Thus, the Row scheme leads to a more balanced data distribution. The

35

op< *, / >(c)

op< *, / >(r)

H(c) %*%(c) %*%(c)

W
T(c) V(r) %*%(b) H(c)

W
T(c) W(r)

W(r) %*%(r) %*%(r)

V(r) H
T(r) W(r) %*%(b)

H(c) H
T(r)

W0 H0

H!

W!

V

(a) Optimized query execution plan of GNMF

…
…

…
W

T

V

W
T

V

…

…
…

W
T

W

…

W
T

W

…

W
T

WH

…

H

…

H

…

V

…

VH
T

…

H
T

…

HH
T

…

…W

WHH
T

…

W

W

stage 1

stage 2 stage 3 stage 4

…

(b) Physical execution plan of GNMF

Figure 3.4.: Execution plan with matrix data partitioning scheme of GNMF. In the

physical plan, the blue lines denote the data shuffle among different data partitions.

The dashed red rectangles denote different stages for the execution on Spark.

36

cost model for the element-wise operator aids in assigning the Row schemes to Wi’s

child nodes. To determine the partitioning schemes for V and HT , the procedure

checks the cost model table for matrix-matrix multiplication. The dimension of V is

larger than that of the product V×HT . Thus, partitioning both matrices in the Row

scheme is cheaper than other strategies, i.e., 17, 770 × 200 × N . Matrix H ×HT is

partitioned in the Broadcast scheme due to its tiny dimension (200× 200). Similarly,

H uses the Column scheme and HT uses the Row scheme with no cost. Hi’s subtree

is processed similarly. Figure 3.4b gives the physical execution in the cluster. The

dashed boxes indicate the different execution stages.

3.4 Local Execution and System Implementation

Once the query execution with matrix partitioning schemes is generated, each

compute node locally performs matrix computations. We use block matrices as a

basic unit for manipulation to store matrix data in the distributed memory. We

discuss briefly the system implementation on top of Apache Spark. In this section,

we will describe the matrix data partitioner layer and how the optimizer determines

the partitioning schemes for input and intermediate matrices.

3.4.1 Physical Storage of a Local Matrix

To better utilize spatial locality of nearby entries in a matrix, we use block matrices

to store matrix data in the distributed memory. A matrix block is the basic unit for

storage and computation. Figure 3.5 illustrates that Matrix A is partitioned into

blocks of size 3 × 3, where each block is stored as a local matrix. To fully exploit

the parallelism of the workers, block size is an important parameter for efficient

execution. A large block size leads to computation skew, while a small block size

results in heavy communication costs. For the sake of simplicity, we only consider

square blocks. Figure 3.5 illustrates an example storage layout of a block matrix. The

block size may not be applicable to the last row (column) block, e.g., the row block

37

Algorithm 1: Execution plan generation
Input: Matrix program P

Output: Execution plan tree T

1 T ← ∅

2 L← P.getExprList() // expressions in sequential order

3 for expr in L do

4 currExpr ← expr

5 if expr.containsMatrixOperator() then

6 // low-rank matrix preservation

7 if expr.containsLowRankMatrix() then

8 currExpr ← preserveLowRank(currExpr)

9 end

10 if expr.elementOperator() > 1 then

11 currExpr ← createCompound(currExpr) // operator folding

12 end

13 // loop invariant extraction

14 if expr.isLoop() && expr.containsConst() then

15 currExpr ← extractConst(currExpr)

16 end

17 if expr.containsMatrixChainMult() then

18 if isDenseChain(expr) then

19 currExpr ← denseP lan(currExpr)

20 end

21 else

22 currExpr ← sparseP lan(currExpr)

23 end

24 end

25 T.add(currExpr)

26 end

27 else

28 load data into memory and extract metadata

29 end

30 end

31 assignPartitionScheme(T, null)

32 return T

38

Algorithm 2: assignPartitionScheme(T, q)

1 // Plan tree T , output matrix partitioning scheme q

2 // for root node

3 if q = null then

4 if T.type = ‘compound’ && ((isInLoop(T) && !inMatMult(T)) ||

!isInLoop(T)) then

5 T.scheme← ‘b-c’

6 end

7 else

8 Choose p ∈ {‘r’, ‘c’} based on the metadata of T , and T.scheme← p

9 end

10 end

11 // for an internal node

12 else if T.scheme = null then

13 if isLowRankMult(T) || isT inySize(T) then

14 T.scheme← ‘b’

15 end

16 if op is unary then

17 T.scheme← arg min
si

Ccomm(op, si, q)

18 end

19 else

20 T.scheme← arg min
si1 or si2

Ccomm(op, si1, si2, q), with respect to the position of T

21 end

22 end

23 for R in T.children do

24 assignPartitionScheme(R, T.scheme)

25 end

39

with ID = 2. To fully exploit the compute power of CPU cores, MatFast assigns

each core 4 matrix blocks to each worker, i.e.,MN = 4WP`2, whereM and N are the

dimensions of the matrix, W is the number of workers, P is the number of cores per

worker, and ` is the block size. To avoid performance degeneration, MatFast limits

the smallest block size to be 1000, i.e., ` = max
{√

MN
4WP

, 1000
}
.

0 01 1510

2 6 103 81

0 76 010 0

0 3 80 05 4

0 68 90 7 8

1

06

3

5

21

47

0

04

20

0 1 2

0

1

2

A

Column block ID

R
o

w
 b

lo
c
k
 I
D

A0,1

A1,1

<(0,1), {dense, 3, 3, [1,4,7,2,5,8,3,6,9]}>

<(1,1), {sparse, 3, 3, [1,6,3,8], [1,2,0,2], [0,2,3,4]}>

row index: [1,2,0,2]

column pointers: [0,2,3,4]

values: [1,6,3,8]

matrix format #rows #cols data storage

block ID

0

1 0

0

86

30

0

local matrix A1,1

0 1 2

0

1

2

Compressed Sparse Column (CSC)

Figure 3.5.: Block matrix storage.

Each local matrix block consists of two components; a block ID and matrix data.

A block ID is an ordered pair, i.e., (row-block-ID, column-block-ID). The matrix

data field is a quadruple, 〈matrix format, number of rows, number of columns, data

storage〉. A local matrix block supports dense and sparse matrix storage formats. For

the dense format, an array of double precision floating point numbers stores all block

entries. For the sparse format, the non-zero entries are stored in Compressed Sparse

Column (CSC), and Compressed Sparse Row (CSR) format [50]. The compressed

format, say CSC, requires three arrays to store all the data. Array values stores all

the non-zero entries, and Array row index records the row index for the corresponding

entry. Array column pointers keeps the starting position of each column, and the last

entry records the total number of non-zero entries. Figure 3.5 illustrates the dense

representation of Block A0,1, and the compressed representation (CSC) of Block A1,1.

40

An m× n sparse matrix in CSC format requires (2Nnz + n+ 1)× 8 bytes of memory,

where Nnz is the number of nonzero entries.

For dense matrices, we leverage high-performance dense matrix kernels to conduct

matrix operations locally, e.g., the LAPACK kernel. Unlike existing systems, e.g.,

MLlib [40], MatFast operates on sparse matrices in compressed formats directly,

without converting to their dense counterparts. Performing local matrix computations

in compressed format mitigates the memory footprint for operations among large

sparse matrices. This is confirmed by our experiments in the PageRank and sparse

matrix chain multiplications case studies.

3.4.2 System Design and Implementation

MatFast is implemented as a library in Spark, and provides Scala API for

conducting distributed matrix computations. It uses RDD (Resilient Distributed

Datasets) [51] to represent matrix blocks. A driver program orchestrates the execu-

tions of the various workers in the cluster. The dimension and sparsity statistics are

computed and maintained at the driver program when a matrix is loaded into mem-

ory. The optimized execution plan and data partitioning schemes are generated at

the driver program as well. The matrix operators are realized via RDD’s transforma-

tion operations, e.g., map, flatMap, zipPartitions, and reduceByKey. Each local

matrix has a block ID, and is stored as either a DenseMatrix or a SparseMatrix.

Local matrix operations are optimized by the LAPACK kernel when conducting

dense matrix computations. Sparse matrix computations, e.g., multiplication, are

conducted in compressed format. The RDD Partitioner class is extended with the

four Row, Column, Broadcast, and Block-Cyclic partitioning schemes for distributed

matrices. MatFast utilizes the caching mechanism of Spark to buffer a computed

matrix when it repeatedly appears in the execution plan. Spark’s fault tolerance

mechanism applies naturally to MatFast. The Spark cluster is managed by YARN,

and a failure in the master node is detected and managed by ZooKeeper. In the

41

case of master node failure, the lost master node is evicted and a standby node is

chosen to recover the master. An open-source version of MatFast is available at

https://github.com/yuyongyang800/SparkDistributedMatrix.

3.5 Related Work

Matrix computation has been an active research topic for many years in the high-

performance computing (HPC) community. Existing libraries, e.g., BLAS [52] and

LAPACK [53], provide efficient matrix operators. ScaLAPACK [54] is a distributed

variant of LAPACK built on the SPMD (single program, multiple data) model, but

it lacks support for sparse matrices, and is prone to machine failures. SpMachO [43]

optimizes computation costs for sparse matrix chain multiplications in a single ma-

chine setting.

Many systems have been proposed to support efficient matrix computations using

Hadoop [30] and Spark [51]. Pegasus [55], a Hadoop-based library, implements a

special class of graph algorithms expressed in repeated matrix-vector multiplications.

However, optimizing a single operation is restrictive for various matrix applications.

Many systems provide interfaces for multiple matrix operations, e.g., HAMA [34],

Mahout [35], MLI [39], MadLINQ [56], SystemML [36], and DMac [41]. HAMA and

Mahout provide matrix algorithm implementations using the low-level MapReduce

APIs that makes it hard to realize new algorithms and tune for performance. MLI is

a programming interface built on top of Spark for ML applications. However, MLI

does not provide optimizations for sequences of matrix computations.

MadLINQ [56] exploits fine-grained pipelining to explore inter-vertex parallelism.

However, it lacks support for efficient sparse matrix operations. SystemML provides

an R-like interface for matrix primitives, and translates the script into a series of

optimized MapReduce jobs on Hadoop. However, SystemML lacks optimized data

partitioning of input and intermediate matrices with respect to the execution. A hy-

brid parallelization strategy [57] of combining task and data parallelism is proposed

https://github.com/yuyongyang800/SparkDistributedMatrix

42

for SystemML to achieve comparable performance to in-memory computations. Col-

umn encoding schemes and operations over compressed matrices are proposed for

SystemML [58] to handle the case when data does not fit in memory. DMac [41]

leverages matrix dependencies to build a communication efficient execution plan, but

it does not identify the special features of a matrix program to reduce computation

costs and memory footprints. SciDB [59] supports the array data model, but it treats

each operator individually without tuning for a series of matrix operators. Mat-

Fast differs from these platforms in that (1) MatFast’s optimized execution plan

is generated progressively by leveraging dynamic sampling-based order selection for

sparse matrix chain multiplications and rule-based heuristics for special features of

a matrix program, (2) sparse matrix computations are conducted in the compressed

formats, and (3) matrix data partitioning scheme assignment based on the optimized

plan mitigates communication overhead in the distributed computing environment.

3.6 Performance Evaluation

We study the performance of the optimized execution plans by performing matrix

operations from various ML applications. The performance is measured by the aver-

age execution time and communication (shuffle) cost. The experiments are conducted

on two clusters: (1) a 4-node cluster, where one node has an Intel Xeon(R) E5-2690

CPU, 128GB memory, and a 2TB disk; the other 3, each has an Intel Xeon(R) E5-

2640 CPU, 64GB memory, and a 2TB disk. The maximal memory allocation for

JVM is 48GB, (2) Hathi cluster1 has 6 Dell compute nodes. Each has 2 8-core Intel

E5-2650v2 CPUs, 32 GB memory, and 48TB of local storage. Spark 1.5.2 runs on

YARN with the default configuration.

Case Studies.

We conduct case studies on a series of ML models and matrix computations with
1https://www.rcac.purdue.edu/compute/hathi/

https://www.rcac.purdue.edu/compute/hathi/

43

special features on different datasets. These are PageRank, GNMF, BFGS, sparse

matrix chain multiplications, and a biological data analysis.

Datasets.

Our experiments are performed on both real-world and synthetic datasets. The six

real-world datasets are: soc-pokec2, cit-Patents3, LiveJournal3, Twitter20103, Net-

flix [15], and 1000 Genomes Project sample4. The synthetic datasets are generated

by a sparse matrix generator by varying the dimensions, sparsity, skew type, and skew.

The skew controls whether non-zero entries distribute in a row- or column-major way.

To generate an m×n matrix with sparsity ρ and skew s in the column-major fashion,

the generator produces mnρ values in a given range. The mnρ(1 − s)j−1’s remain-

ing elements are assigned randomly to the j-th column, until all the mnρ values are

assigned. The PageRank experiments on soc-pokec, cit-Patents, LiveJournal, and

synthetic sparse matrix chain multiplications are performed on Hathi. The rest are

conducted on the first cluster as larger date sets require more memory on each worker

node.

Baseline Comparison.

Various matrix computation platforms have been recently proposed on Spark. In par-

ticular, we compare MatFast with MLlib [40] and SystemML (https://github.

com/apache/incubator-systemml,0.9) [36] in Spark batch mode. To validate the

proposed optimizations, the results are presented in 2 modes, MatFast and Mat-

Fast(opt), where the optimizations for special matrix program features and data par-

titioning schemes are turned off in MatFast. MatFast partitions matrix data with the

default hash partitioner in Spark. Moreover, the open-source library ScaLAPACK [54]

and the array-based database SciDB [59] are used for performance evaluation.
2https://snap.stanford.edu/data/
3http://law.di.unimi.it/webdata/twitter-2010/
4http://www.1000genomes.org/

https://github.com/apache/incubator-systemml, 0.9
https://github.com/apache/incubator-systemml, 0.9
https://snap.stanford.edu/data/
http://law.di.unimi.it/webdata/twitter-2010/
http://www.1000genomes.org/

44

Table 3.5.: Statistics of the social network datasets

Graph #nodes #edges

soc-pokec 1,632,803 30,622,564

cit-Patents 3,774,768 16,518,978

LiveJournal 4,847,571 68,993,773

Twitter2010 41,652,230 1,468,365,182

3.6.1 PageRank

The most expensive compute step of PageRank [17] is updating the vector, i.e.,

xk+1 = αPxk + (1− α)v, where α is a constant scalar, P the stochastic link matrix,

v the constant restart vector. The computation can be improved by eliminating con-

stant sub-expressions from the loop, e.g., αP and (1− α)v. Matrix P is partitioned

in the Row scheme and Vector x and v are partitioned in the Broadcast scheme (from

Table 3.4) because x and v are matrices of small sizes (two vectors). Table 4.4 lists all

the statistics of the social network datasets used for the PageRank computation. All

the graphs are sparse, and both MatFast(opt) and MatFast compute sparse matrix

multiplications in compressed format. Figure 3.6a gives the average execution time for

one iteration of PageRank on various social graph datasets. MatFast consistently

performs the best. MatFast(opt) outperforms MatFast when rule-based heuristics are

turned on and optimized matrix data partitioning schemes are adopted. For Dataset

Twitter2010, the average execution time per iteration in MatFast(opt) is about 340s,

while it needs more than 1000s for MatFast, 1800s for MLlib and 26000s for SystemML

in Spark mode. MatFast(opt) caches the invariant matrices in the distributed mem-

ory without repetitive computations. Figure 3.6b shows that MatFast(opt) incurs

lowest shuffle costs during each iteration. MatFast(opt) outperforms the MLlib and

SystemML due to the following reasons: (1) it identifies and extracts the loop invari-

45

soc-pokec cit-Patents LiveJournal Twitter2010

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

lo
g

-s
c
a

le

100

101

102

103

104

105

MatFast(opt)
MatFast
MLlib
SystemML(Spark)

(a) Execution time

soc-pokec cit-Patents LiveJournal Twitter2010

A
m

o
u

n
t

o
f

D
a

ta
(G

B
)

lo
g

-s
c
a

le

10-1

100

101

102

MatFast(opt)
MatFast
MLlib
SystemML(Spark)

(b) Communication cost

Figure 3.6.: PageRank on different real-world datasets.

ant expressions, and caches the invariants without recomputing, and (2) it broadcasts

the updated PageRank vector based on the cost-efficient partitioning scheme.

3.6.2 GNMF

The Netflix dataset consists of 100,480,507 ratings on 17,770 movies from 480,189

customers. In the experiment, the number of topics p is set to 200. The perfor-

mance of GNMF is optimized by folding element-wise matrix operators and choosing

a cost-efficient order for matrix chain multiplications. Figure 3.7a gives the accu-

mulated execution time for the Netflix dataset over different systems. MatFast(opt)

consistently performs the best, followed by SystemML and MLlib. The accumulated

execution time of MatFast is very close to that of MLlib. When all the optimiza-

tion strategies are turned off, MatFast computes a matrix chain multiplication in

the sequential order that is exactly the same order adopted by MLlib. The slight

performance improvement is due to MatFast using replication-based matrix multi-

plications for tiny matrices and cross-product based matrix multiplications for other

input matrix types. Both MatFast(opt) and SystemML optimize the dense matrix

46

Iteration
1 2 3 4 5 6 7 8 9 10

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

lo
g

-s
c
a

le

10
2

10
3

10
4

MatFast(opt)
MatFast
MLlib
SystemML(Spark)

(a) Execution time

Iteration
1 2 3 4 5 6 7 8 9 10

A
m

o
u

n
t

o
f

D
a

ta
(G

B
)

0

20

40

60

80

100
MatFast(opt)
MatFast
MLlib
SystemML(Spark)

(b) Communication cost

Figure 3.7.: GNMF on the Netflix dataset.

chain multiplications. MatFast(opt)’s extra speedup is due to its optimized matrix

data partitioning schemes.

Figure 3.7b gives the accumulated communication costs for the Netflix dataset

over various systems. MatFast(opt) has minimal communication overhead due to its

effective data partitioning schemes. SystemML does not capture data dependencies

among different matrix operators. Thus, it incurs high communication overhead.

MLlib fails to identify a good execution plan for matrix chain multiplications, and

lacks efficient data partitioning schemes for matrix data. When the data partitioning

scheme assignment is turned off for MatFast, the communication overhead is similar to

that of SystemML. The reason is that MatFast adopts similar matrix multiplications

strategies as SystemML.

47

3.6.3 BFGS

BFGS is widely used for solving unconstrained nonlinear optimization problems.

For the Netflix problem, to obtain a good approximation of V ≈ W × H, we can

define an objective function as,

f(W,H) = ||V −W ×H||2F + ||W||2F + ||H||2F ,

where ||A||2F =
∑m

i=1

∑n
j=1A

2
ij. The gradient of f(W,H) is computed by the partial

derivatives w.r.t. W and H, i.e.,

∂

∂W
f(W,H) = 2W − 2(V −W ×H)×HT ,

∂

∂H
f(W,H) = 2H− 2WT × (V −W ×H).

A complete gradient for all the variables is derived by concatenating the two vectorized

partial derivatives. We implement the key update computation for BFGS on the

Netflix dataset.

Figure 3.8a shows the accumulated execution time for BFGS update on the var-

ious systems. MatFast(opt) spends about 168s for each iteration using the low-rank

matrix update heuristic. By turning off the optimization, MatFast spends about 372s

for each iteration by storing the intermediate product matrices. SystemML performs

slightly better than MatFast, and spends about 292s for each iteration. MLlib per-

forms the worst and spends more than 2000s for a single iteration. The reason is that

MLlib uses an inefficient strategy for matrix multiplications by duplicating copies

of the input matrices. Figure 3.8b gives the communication overhead for each sys-

tem. MatFast(opt) shuffles about 2.4GB data during each iteration to broadcast the

updated gradient. Without the optimization for low-rank matrix update, MatFast

shuffles about 14.4GB data to store intermediate results. SystemML and MatFast

generate a similar amount of data shuffle. MLlib performs the worst due to its inef-

ficient implementation of matrix multiplications.

48

Iteration
1 2 3 4 5 6 7 8 9 10

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

lo
g

-s
c
a

le

10
2

10
3

10
4

MatFast(opt)
MatFast
MLlib
SystemML(Spark)

(a) Execution time

Iteration
1 2 3 4 5 6 7 8 9 10

A
m

o
u

n
t

o
f

D
a

ta
(G

B
)

0

50

100

150

200
MatFast(opt)
MatFast
MLlib
SystemML(Spark)

(b) Communication cost

Figure 3.8.: BFGS on the Netflix dataset.

3.6.4 Sparse matrix chain multiplication

We generate random matrices with the same dimensions to study the effectiveness

of the dynamic cost-based optimization strategy. We generate matrix chains of length

4 (A1 ×A2 ×A3 ×A4). Each matrix is of size 30,000 × 30,000. The skew type of

input Matrix A1 and A3 are set for column-major fashion, and those of Matrix A2

and A4 are set for row-major fashion.

We fix the sparsity at ρ = 0.01 and vary the skew of the generated matrix data.

Figure 3.9 gives the execution time and communication cost with median, minimum,

and maximum w.r.t. various skew values. OPT is the optimal plan by enumerating all

possible execution plans. MLlib evaluates the sparse matrix chain multiplication in a

sequential order. It incurs high compute time and communication overheads due to

its inability to perform sparse matrix multiplications in compressed format. MatFast

with the optimizations turned off conducts sparse matrix chain multiplications in a

sequential order. It outperforms MLlib because all the sparse matrix operations are

executed over the compressed format. SystemML exploits worst-case estimation to

predict the sparsity of the intermediate results. When the skew is small, i.e., s = 5e-4,

49

Skew
5e-4 5e-3 5e-2 5e-1

E
x
e

c
u

ti
o

n
 t

im
e
(s

)

600

900

1200

1500

1800

2100

2400

OPT
MatFast(opt)
MatFast
MLlib
SystemML(Spark)

(a) Execution time

Skew
5e-4 5e-3 5e-2 5e-1

A
m

o
u
n

t
o

f
D

a
ta

(G
B

)

0

20

40

60

80

100

120

OPT
MatFast(opt)
MatFast
MLlib
SystemML(Spark)

(b) Communication cost

Figure 3.9.: Costs of various skews for sparse matrix multiplication chain of length 4

with fixed sparsity ρ = 0.01.

the non-zero entries follow almost uniform distribution in the input matrices. The cost

of the sequential execution plan is very close to the optimal. It takes MatFast(opt)

extra overhead to collect the sampling statistics. Thus, MatFast(opt) performs worse

than SystemML for extremely small skew values. However, dynamic cost estimation

pays off as the skew becomes prominent. When the skew s ≥ 5e-3, the optimal

execution is no longer sequential. MatFast(opt) executes the multiplications in a

nearly optimal order with negligible sampling costs.

Next, we fix the skew at s = 0.5 and vary the sparsity values. Figure 3.10 il-

lustrates that when the sparsity value is very small, i.e., ρ = 1e-6, different plans

have similar execution costs due to the extremely low sparsity in the matrices. ML-

lib performs the worst because it does not support sparse matrix multiplications in

compressed format. As the sparsity increases, MatFast(opt) consistently outperforms

SystemML with less execution time and communication cost. MatFast with the op-

timizations turned off performs slightly worse than SystemML when ρ < 1e-4. The

sequential execution order adopted by MatFast incurs extensive computation costs

when ρ > 1e-4 compared to SystemML.

50

Sparsity
1e-6 1e-5 1e-4 1e-3

E
x
e

c
u

ti
o

n
 t

im
e
(s

)

0

200

400

600

800

1000

1200

1400

1600

1800

OPT
MatFast(opt)
MatFast
MLlib
SystemML(Spark)

(a) Execution time

Sparsity
1e-6 1e-5 1e-4 1e-3

A
m

o
u
n

t
o

f
D

a
ta

(G
B

)

0

20

40

60

80

100

OPT
MatFast(opt)
MatFast
MLlib
SystemML(Spark)

(b) Communication cost

Figure 3.10.: Costs of different sparsity values for matrix multiplication chains of

length 4 with fixed skew s = 0.5.

3.6.5 Biological data analysis

For a comprehensive study of the proposed optimization techniques, we evaluate

matrix computations in a complex biological data analysis (Expression Quantitative

Trait Loci (eQTL)) using the kruX technique [20]. To perform eQTL analysis on a

real-world genome dataset, we apply kruX on 462 samples. The size of the genotype

matrix is 38,187,570 × 462, and the size of the expression matrix is 23,722 × 462.

The output is a dense matrix (23,722 × 38,187,570) that takes about 7,250 GB of

memory. This is far beyond our clusters’ hardware. Thus, the whole genotype matrix

is partitioned into chunks of size of 170, 000× 462, and the result takes about 32GB

per chunk.

The kruX library provides serial implementations on popular platforms, e.g.,

Python and R. Figure 3.11 gives a performance comparison between the different

platforms. We measure performance in terms of execution time per 1K rows of the

result matrix. This metric is an important parameter for kruX to produce human

checkable results. Both Python and R implementations run in a single node and do

51

MatFast(o
pt)

MatFast
MLlib

SystemML(Spark)
Python R

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

p
e

r
1

K
 r

o
w

s

10
0

10
1

10
2

10
3

(a) Execution time

MatFast(o
pt)

MatFast
MLlib

SystemML(Spark)
Python R

A
m

o
u

n
t

o
f

D
a

ta
(G

B
)

10
1

10
2

10
3

(b) Communication cost

Figure 3.11.: kruX algorithm for eQTL over multiple platforms.

not leverage parallel compute resources. Python and R take 158s and 278s to pro-

duce 1K rows, respectively. In contrast, MatFast(opt) takes about 4.6s to compute

1K rows, while MatFast, MLlib and SystemML take 33s, 38.5s, and 20s, respectively,

to compute 1K rows. The kruX algorithm involves various matrix operators, e.g.,

dense matrix multiplication with sparse matrix, matrix transpose, and element-wise

operations. With an optimized execution plan and matrix data partitioning schemes,

MatFast(opt) outperforms MLlib by 9 times and SystemML by 5 times for computing

eQTL. MatFast(opt)’s communication cost is less than 10% of those for MLlib and

SystemML.

3.6.6 Comparison with Non-MapReduce-based Systems

To complete the performance study, we also compare MatFast with non-

MapReduce-based systems, i.e., ScaLAPACK and SciDB. ScaLAPACK [60] is a li-

brary for high-performance linear algebra routines on distributed-memory message-

passing computers. It provides interfaces for distributed matrix computation.

SciDB [59] is a scalable database management system designed for advanced analytics

52

on multi-dimensional array data model. SciDB provides SQL-like query interfaces for

performing matrix operations, e.g., matrix multiplication and transpose.

Table 3.6.: Comparison with ScaLAPACK and SciDB

Operation ScaLAPACK SciDB MatFast(opt)

MG-dense 103s 706s 118s

MG-sparse 86s 566s 19s

We use matrix-matrix multiplications for comparing the performance of the vari-

ous systems. We select a dense partition G from the genotype matrix with dimension

10,000 × 462, and the whole mRNA sampling Matrix M with dimension 23,722 ×

462. To generate a sparse Matrix Gs, we fix the sparsity to 0.01 and randomly select

each entry in G with probability of 0.01 to fill out the corresponding position in Gs.

For SciDB, the sparse matrix multiplication is computed with the spgemm operator.

ScaLAPACK, SciDB, and MatFast all run on the Hathi cluster, where each node

launches eight processes.

Row “MG-dense” in Table 3.6 gives the execution time for computing M ×GT .

ScaLAPACK and MatFast(opt)’s performance are comparable for dense matrix mul-

tiplications. However, ScaLAPACK does not provide any fault tolerance guarantees

for big data computations. MatFast is built on top of Spark that naturally supports

fault tolerance. SciDB is slower than the other two systems because it takes care of

data placement on disk. SciDB redistributes the data on the compute workers to

satisfy the requirement of ScaLAPACK. SciDB also incurs extra overhead for main-

taining failure handling during execution. Row “MG-sparse” gives the execution time

for computingM×GT
s . MatFast(opt) performs significantly better than ScaLAPACK

and SciDB as it performs sparse matrix multiplication in compressed format. Both

ScaLAPACK and SciDB are not well tuned for sparse matrix operations and they

treat sparse matrices as dense ones.

53

3.7 Concluding Remarks

In this chapter, we present MatFast, an in-memory distributed platform that

optimizes query pipelines of matrix operations. MatFast takes advantage of both

dynamic cost-based analysis and rule-based heuristics to generate an optimized query

execution plan. The dynamic cost-based analysis leverages a sampling-based tech-

nique to estimate the sparsity of matrix chain multiplications. The rule-based heuris-

tics explore the special features of a matrix program and these features are organized

in a memory-efficient way. Furthermore, communication-efficient data partitioning

schemes are applied to input and intermediate matrices based on a cost function for

matrix programs. MatFast has been implemented as a Spark library. The case stud-

ies and experiments on various matrix programs demonstrate that MatFast achieves

an order of magnitude performance gain compared to state-of-the-art systems.

54

4 BIG-DATA QUERY PROCESSING FOR QUERIES THAT INVOLVE BOTH

RELATIONAL AND MATRIX OPERATORS

4.1 Introduction

Data analytics, including machine learning (ML) and scientific research, often

need to analyze large volumes of matrix data in various applications, e.g., self-driving

cars [61], natural language processing [62], and social network analysis, recommender

systems [63]. As ML models increase in complexity, and data volume accumulates

drastically, traditional single-node solutions are incapable of processing this data ef-

ficiently. As a result, a number of distributed systems have been built to optimize

data processing pipelines in a unified ecosystem of big matrix data for various kinds

of applications.

In addition, queries to ML and scientific applications exhibit quite different char-

acteristics from traditional business data processing applications. Complex analytics,

e.g., linear regression (LR) for classification, and principle component analysis (PCA)

for dimension reduction, are prevalent in these query workloads. These complex ana-

lytics replace the traditional SQL aggregations that are commonly used in traditional

business intelligence applications. These analytical tasks rely heavily on large-scale

matrix computations and are more CPU-intensive than the other traditional RDBMS

computations.

The advent of MapReduce [33] and Apache Spark [51] has spurred a number of dis-

tributed matrix computation systems, e.g., Mahout [35], SystemML [36], DMac [41],

MLlib [40], and MatFast [1]. In contrast to popular scientific platforms, e.g., R [37],

the above systems provide better scalability and fault-tolerance in addition to effi-

ciency in computations. However, these systems only focus on the efficient execution

of pure matrix computations.

55

XX
~

Y

d
features

n itemsn

d
~

redundant features

n

t

items

users

Y
~

predicated matrix

1

2

k

…

feature

extraction

Figure 4.1.: Collaborative filtering with side information.

Data analytics on real-world applications need an entire data processing pipeline

that usually consists of multiple stages and various data operations, e.g., relational

selections and aggregations on matrix data. A typical pipeline of ML and scientific

applications consists of several components, e.g., data pre-processing, core computa-

tion, and post-processing.

Example 1 (Collaborative Filtering) Consider collaborative filtering with side in-

formation [64]. In Figure 4.1, the input is an n-by-t item-user recommendation ma-

trix Y that contains the observed recommendation activities of t users over n items.

An observed entry Yij indicates that the i-th item has been recommended by the j-th

user. An unobserved entry Yij = 0 indicates an unknown relationship between the

i-th item and the j-th user. As side information, the model assumes that there is

an n-by-d item-feature Matrix X, where each row represents a feature vector for the

corresponding item. The goal is to identify the most promising potential items, say

the top-k items, for each target user from her non-recommended items by leveraging

both Matrix Y and X. Before computing the optimal model parameters, one needs to

construct Matrix X, which could be obtained by crawling each item’s webpage. Certain

features may contain inconsistent or empty values. For successful feature extraction,

56

all the empty columns should be removed from X and any inconsistent data should be

corrected by a data cleaning toolkit. Cross-validation [23] is a common technique to

estimate the regularizers to prevent overfitting. The k-fold cross-validation divides the

training dataset into k disjoint partitions, selects (k−1) partitions as the training set,

and keeps the k-th partition for testing. The generation of k disjoint partitions can

be achieved by relational selections on the row dimension of Matrix Y. The selected

nonzero entries serve as the test set to evaluate the regularizers. For post-processing,

a max aggregation is conducted on the predicated matrix Ỹ, which is computed from

the collaborative filtering model based on Matrix Y and X̃, to find the entries with

the largest predicted values, and recommend them to potential users. This example

suggests successful training and prediction of a complex ML model requires a seamless

execution of high-performance relational operations and linear algebra operations.

Although several systems provide efficient matrix computations, they do not offer

relational operations over matrix data, or only provide premature relational support

with limited optimizations. SciDB [59] is a full-fledged array database system that

supports rich relational operations on array data. However, SciDB is not well-tuned

for sparse matrix computations, and incurs extra overhead for maintaining failure

handling during execution [41]. For other systems built on general dataflow plat-

forms, e.g., SytemML, MLlib, MatFast, the relational operations could become a

bottleneck in the entire matrix data processing pipeline if they are not treated prop-

erly. An effective matrix query optimizer should be able to process both relational and

matrix operations efficiently, and discover the potential to execute the mixed types

of operations interchangeably, e.g., pushing a relational operation under a matrix

operation in the logical query evaluation plan with correctness guarantees.

In this chapter, we identify a series of equivalent transformation rules for rewriting

logical query plans that involve both relational and matrix operations. For example, a

query optimizer that is not sensitive to matrix operations evaluates Γsum,r(A×(B+C))

by first computing the intermediate summation of B and C, then conducting matrix-

matrix multiplication on A and the intermediate sum, and finally performing the sum

57

B C

+

x

A

Γsum, r

B C

Γsum, r Γsum, r

+

x

A

Figure 4.2.: Pushing aggregation under matrix multiplication.

aggregation along the row direction of the product matrix. An improved logical plan

can be obtained by pushing the aggregation function below the matrix multiplication.

Figure 4.2 gives two different logical plans. The second plan is more beneficial because

the dimensions of the result are much smaller than the dimensions of the inputs after

the aggregation. The smaller aggregated matrices further enhance the execution of the

matrix-matrix multiplications. Thus, it is of great importance for a query optimizer

to enumerate all the equivalent transformations, and pick the ones with the minimum

computation overhead.

For a complex query pipeline consisting of both relational and matrix operations,

optimizing computation overhead alone is not enough. Communication overhead

incurred by expensive relational operations on big matrix data may dominate overall

query executions. In a distributed setup, the communication overhead may become a

bottleneck for complex relational operations, e.g., joins. Load-balanced matrix data

partitioning schemes, e.g., hash-based schemes, may not be efficient for joins with

data dependencies. Consider the collaborative filtering example. The predicted item-

user recommendation matrix Ỹ could be computed from two factor matrices W and

H learned from the observed data Y and X̃, e.g., Ỹ = W ×HT . Suppose we have

another user-item matrix C with the same users as Ỹ on different items. Tensor

58

decomposition [31] allows to capture connections among the users and two different

sets of items. Such a tensor is constructed by conducting a join operation on two

matrices, i.e., Ỹ on C, or (W ×HT) on C, on the column dimension of Ỹ and the

row dimension of C. An efficient execution plan would partition Matrix Ỹ in the

column dimension and Matrix C in the row dimension to satisfy the requirement of

the join predicate. Partitioning Matrix Ỹ in the column dimension further requires

evaluating the costs of different matrix data partitioning strategies on W and H, and

choosing the one with the minimum communication overhead. Therefore, optimizing

the data partitioning of the input and intermediate matrices is also a critical step for

efficiently evaluating relational operations over big matrix data.

In this chapter, we introduce MatRel, an in-memory distributed relational query

processing system on big matrix data. MatRel has (1) a query optimizer to identify

and leverage a series of transformation rules of interleaved relational and matrix

operations to reduce the computation cost and the memory footprint, and (2) a

matrix data partitioner to mitigate the communication overhead for the relational

join operations on matrix data. The query optimizer utilizes rule-based query rewrite

to generate an optimized logical plan. MatRel leverages a cost model to partition

the input matrices for relational join operations to minimize communication overhead.

MatRel is designed as an extension to Spark SQL that leverages existing relational

query optimization techniques and dataflow operators.

The main contributions of this chapter are as follows:

• We develop MatRel, a system for efficient relational query processing over big

matrix data in a distributed in-memory environment.

• We identify a series of equivalent transformation rules to rewrite a logical plan

when both relational and matrix operations are present.

• We formally define the join operator over matrix data and propose correspond-

ing optimization techniques to enhance runtime cost.

59

• We introduce a cost model to distribute matrix data among various workers for

communication-efficient evaluation of relational join operations.

• We evaluate MatRel against state-of-the-art distributed matrix computation

systems using real and synthetic datasets. Experimental results illustrate up to

two orders of magnitude enhancement in performance.

The rest of this chapter proceeds as follows. Section 4.2 gives an overview of the

supported matrix operators and MatRel’s architecture. Section 4.3 presents the

formal definitions of all the supported relational operations and their corresponding

optimizations, e.g., relational selection, projection, aggregation, and join over matrix

data. Section 4.4 discusses the local execution of various operators on the workers and

system implementation. Section 4.5 presents the related work. Section 4.6 presents

experimental results on various datasets and applications. Finally, Section 4.7 con-

cludes the chapter.

4.2 An Overview of Distributed Relational Query Processing over Big Matrix Data

To facilitate relational query processing on matrix data, we realize a query opti-

mizer for evaluating and optimizing a mixture of relational and matrix operators over

distributed matrix data. To guarantee meaningful outputs from relational operators,

the optimizer automatically infers the schema of the result given the input matrices

and operators. Furthermore, we develop a cost model to decide on how the output

matrix (tensor) data is partitioned, especially for the join operators. Each worker

adopts a block-based matrix storage to conduct computations locally.

Figure 4.3 shows the major components of MatRel. We briefly introduce each

component in the top-down order. The input to MatRel can be an ML algorithm

or a graph analytical task that consists of various relational and matrix operators

over the input matrices. The query can be expressed by the customized DataFrame,

which is a wrapper of Dataset[Row]. A DataFrame provides basic relational and

matrix operators to manipulate the input matrices, which is similar to the R pro-

60

Apache Spark (RDD)

MLlib
Graph

Analytics
Distributed

Linear Algebra …

HDFS/Hadoop storage

Spark SQL
Matrix DataFrame

Catalyst

Optimizer

Matrix Query Optimizer

Matrix Data Partitioner

Matrix Dataset

This is a speech bubble callout.

Click to edit.

mat

matrix transpose,
matrix-scalar,

matrix element-wise,
matrix-matrix
multiplication,

selection, projection,
aggregation, join

Figure 4.3.: Architecture of MatRel.

graming language [37]. A DataFrame organizes the operators as a logical evaluation

plan, and the plan is fed to MatRel’s optimizer for query optimization. MatRel’s

optimizer extends Spark SQL’s Catalyst optimizer [65] by introducing new data types

for matrix data. The optimizer is able to recognize matrix data and its schema. By

leveraging rule-based query rewrite heuristics, the initial query plan is transformed

to an optimized execution plan in a distributed environment. The optimizer invokes

the matrix data partitioner to assign efficient partitioning schemes to the distributed

matrix data based on a cost model. Internally, the matrix data is organized as Re-

silient Distributed Datasets (RDDs) [51] for distributed execution. For efficient and

fault-tolerant storage of matrix data, MatRel leverages Hadoop Distributed File

System (HDFS) for external storage.

4.3 Relational Operators on Matrix Data

In this section, we discuss the conceptual schema of a matrix in terms of relational

algebra. Based on the well-defined schema, we introduce basic relational operators on

61

matrix data, i.e., selection, projection, aggregation, and join. We also discuss various

optimization strategies for the relational operations over matrix data.

4.3.1 Relational Algebra on Matrix Data

Relational algebra [66] and the primitive operators have well-founded semantics

for relations. All the relational operators assume the input data has a properly defined

schema. The relational operations produce a closure on the relations, i.e., the output

of a relational operator always generates a new relation with a certain schema, which

is derived from the schema of the input. To ensure expressive relational operators

over matrix data, we need to define a general schema, which captures the logical

structure of data in a matrix.

Schema of a Matrix

A matrix A consists of two dimensional entries, Aij’s. As an analogy, each entry in

a matrix resembles a tuple in a table, and a matrix can be modeled by a relation

naturally. Therefore, a general schema for a matrix can be defined as,

matrixA (RID, CID, val),

where RID is the row dimension, CID is the column dimension, and val is the value

of the matrix entry. Attribute val may have its own schema as a tuple of multiple

attributes. For the sake of simplicity, we only consider simple numerical numbers in

the val attribute. In addition, MatRel also maintains the dimension of the matrix

in the system catalog, i.e., the number of rows and the number of columns.

This schema specifies the logical structure of a matrix. However, it does not reflect

the physical storage of the matrix data. For efficiency and storage consideration, a

matrix is usually divided into “blocks” or “chunks”, i.e., it is partitioned into smaller

matrices, which can be moved around to specific compute nodes for high-performance

local computations (refer to Section 3.4.1 for illustration).

62

4.3.2 Relational Selection on Matrix Data

Relational selection (σ) is a useful operator for picking the qualified entries from

a matrix. We distinguish between selections on the dimensions, and the values of a

matrix. Formally, a relational selection is a unary operator, written as

σθ(RID,CID,val)(A),

where θ is a propositional formula on the dimensions and entries of Matrix A. An

atom in θ is defined as vϕc or cϕv, where v ∈ {RID,CID, val} is one of the di-

mensions or the matrix entry, and c is a constant, ϕ ∈ {<,≤,=, 6=,≥, >}; and the

logical expressions among atoms, i.e., ∧ (and), ∨ (or), and ¬ (negation) expressions.

A relational selection on a matrix produces another matrix, perhaps with different

dimensions. The dimensions depend on the predicate, e.g., the predicate “RID = i”

produces a matrix of a single row.

Selecting the Entries

We discuss different variants on the selection predicates, and corresponding optimiza-

tion techniques. A selection outputs a matrix of the same dimension if the predicate

only involves the entries. The entries that qualify the θ predicate are preserved, and

the remaining are filled with 0’s. An important property of the relational selection on

matrix entries is that it does not change the dimension of the input. To optimize the

execution, let us examine the components of the input. The input could be a matrix

expression of a series of matrix operators, or one of multiple relational operators.

There is little room in optimization for the former scenario. The input matrix has to

be computed correctly before any selection is performed, as the selection predicate

will be evaluated on the entries. In summary, we have the following optimization rule

if the input matrix is composed of a series of selection operations,

σθ1(σθ2(· · · (σθk(A)))) = σθ1∧θ2∧···∧θk(A), (4.1)

where each θi is a predicate on the entries. For other relational operations, the

selection has to wait until the evaluation is completed, e.g., join and aggregation

operations.

63

Selecting the Dimensions

A selection predicate on dimensions is leveraged to pick slices of a matrix according to

the given row/column dimension value. For example, cross-validation [23] is an ML

technique to estimate how accurately a predicative model will perform in practice.

Specifically, leave-one-out cross-validation can be realized by selecting a single row

from a training matrix as the test set. We only consider the predicates involving

equality conditions for the sake of simplicity, i.e., θ ∈ {“RID = i”, “CID = j”,

“RID = i ∧ CID = j”}.

The output of a selection on the dimensions is a matrix of different dimensions

than the input. Suppose the input is an m-by-n Matrix A, σRID=i(A) generates a

1-by-n matrix, whose entries come from the i-th row of A. Similarly, σCID=j(A)

outputs an m-by-1 matrix, and σRID=i∧CID=j(A) outputs a 1-by-1 matrix, whose

entries come from the j-th column, and the (i, j)-th entry of A.

The selection predicate can be composed of conditions on both dimensions and

entries. For instance, selecting all the entries whose values equal 10 from the 5-th row

can be expressed as σval=10∧RID=5(A). Furthermore, in real-world ML applications, an

empty column suggests no metrics have been observed for some feature. Removing

empty columns will benefit the feature extraction procedure for better efficiency.

Thus, we introduce two special predicates,

σrows 6=0(A) and σcols6=0(A).

The former excludes the rows that are all 0’s, and the latter excludes the columns

that are all 0’s. These are important extensions to the selection operator, since empty

rows/columns usually do not contribute to matrix computations.

Optimizing Selection with Dimensions

A selection on dimensions exhibits potential opportunities for optimization. First, we

discuss how to optimize a selection when the input is composed of matrix operations.

Next, we explore optimizations on the selection when the input involves multiple

relational operations.

64

MatRel supports multiple matrix operations, e.g., matrix transpose, matrix-

scalar operation, matrix element-wise operation, and matrix-matrix multiplications.

For matrix transpose, we have

σRID=i(A
T) = (σCID=i(A))T , (4.2)

σCID=j(A
T) = (σRID=j(A))T . (4.3)

These transformation rules reduce the computation costs significantly by avoiding the

evaluation on matrix transposes. It takes O(n2) operations to compute the matrix

transpose on an n-by-n matrix. However, it only takes O(n) operations for a typical

selection on a single dimension.

Similar rewrite rules apply to matrix-scalar and matrix element-wise operations as

well. These rules can be viewed as pushing the selection below corresponding matrix

operations:

σRID=i(A + β) = σRID=i(A) + β, (4.4)

σRID=i(A ?B) = σRID=i(A) ? σRID=i(B), (4.5)

where ? ∈ {+, ∗, /}. Rule 4.4 also applies to matrix-scalar multiplications. We illus-

trate these transformation rules on the selections with respect to the row dimension.

The rules apply to selections on the column dimension as well. The number of required

operations drops from O(n2) to O(n) by circumventing the intermediate matrix.

For matrix-matrix multiplications, we have

σRID=i(A×B) = σRID=i(A)×B, (4.6)

σCID=j(A×B) = A× σCID=j(B). (4.7)

Proof (Rule 4.6) Let C = A × B, where Cij =
∑

k Aik ∗ Bkj. Ci: denotes the i-th

row in Matrix C. Then, by definition, Ci: =
∑

k Aik ∗ Bk:, where Aik is the (i, k)-th

entry from A, and Bk: is k-th row from B. This can be viewed as the summation

of each entry in the i-th row of A multiplying with corresponding rows of B, i.e.,

Ci: = Ai: ×B.

65

The correctness of Rule 4.7 can be verified in a similar manner. It takes O(n3) opera-

tions for a typical matrix-matrix multiplication, while a matrix-vector multiplication

usually costs O(n2) operations. These transformation rules serve as basic optimizing

blocks for producing strategies when a selection is performed on multiple dimensions.

For example,

σRID=i∧CID=j(A×B) = σRID=i(A)× σCID=j(B), (4.8)

which reduces the complexity from O(n3) to O(n) for the selection on an entry from

a matrix-matrix multiplication to vector inner-product.

4.3.3 Projection on Matrix Data

Relational projection (Π) is used to select a subset of the attributes from the

matrix. Formally, a projection on a matrix A can be written as

Πτ(RID,CID,val)(A),

where τ is a subset of all the attributes {RID,CID, val}. When val is a tuple, the

predicate τ can be used to project only the interesting attributes from val’s. The

produced matrix has the same dimension as A, and each entry contains the projected

attributes from val. Some applications may only be interested in the entries of

a matrix, without caring about the dimensions, e.g., estimating the distribution of

matrix entries. A projection on the dimensions is less common, since the dimensions

could be obtained from the matrix metadata directly.

The input to a projection can have different formats: a matrix expression of a

series of matrix operations, or a matrix produced by relational operations. When a

projection involves the entry, the input has to be evaluated before the projection.

However, it is very efficient to evaluate a projection if it only involves dimensions of

the input. No actual computation is required as the dimensionality can be inferred

from the matrix operations or the relational operations. The only exception is the

66

selecting the nonzero rows/columns. The nonzero selection has to be evaluated as it

may change the dimension of the matrix.

4.3.4 Aggregation on Matrix Data

Traditionally, an aggregation is defined on the columns of a relation with various

aggregate functions, e.g., sum and count. The aggregation operator is also beneficial

on matrix data, e.g., computing the average ratings of all the users in the user-movie

rating database. The (i, j)-th entry in the user-movie rating matrix denotes the rating

from useri on moviej. This requires an average computation on the row dimension.

Unlike relational data, aggregations on a matrix may occur in different dimensions.

Formally, an aggregation is a unary operator, defined as

Γρ,dim(A),

where ρ is the name of the aggregate function, and dim indicates the chosen dimen-

sion, i.e., dim could be row (r), column (c), diagonal (d), or all (a). Specially,

MatRel supports various aggregate functions, ρ ∈ {sum, nnz, avg, max, min}. We

introduce each aggregate function and corresponding optimizations in this section.

Sum() on Matrix Data

For sum aggregation, MatRel supports four different variants, Γsum,r/c/d/a(A). We

first introduce their definitions, then discuss optimization strategies. Given an m-

by-n Matrix A, Γsum,r(A) produces a m-by-1 matrix, or a column vector, whose i-th

entry computes the summation along the i-th row of A. Similarly, Γsum,c(A) generates

a 1-by-n matrix, or a row vector, which computes the summations of entries along

the column direction. Γsum,d(A) is defined only if m = n for square matrices, which

is also called the trace of a square matrix. The trace is simply a 1-by-1 matrix, or a

scalar value. Finally, Γsum,a(A) computes the summation of all the entries.

67

We first present transformation rules for optimizing sum aggregation when the

input consists of various matrix operations. If the input is a matrix transpose, we

have

Γsum,r/c(A
T) = (Γsum,c/r(A))T , (4.9)

Γsum,d/a(A
T) = Γsum,d/a(A), (4.10)

By pushing a sum aggregation before a matrix transpose, MatRel computes the

transpose on a matrix of smaller dimensions. For trace and all entry summation, the

evaluation of the transpose can be avoided.

For matrix-scalar operations, we can derive the following transformation rules,

Γsum,r/c/a(A + β) = Γsum,r/c/a(A) + βn/βm/βmn, (4.11)

Γsum,d(A + β) = Γsum,d(A) + βn, (4.12)

Γsum,·(A ∗ β) = Γsum,·(A) ∗ β, (4.13)

where Rule 4.12 only holds for square matrices, i.e., m = n. For matrix-scalar

multiplications, similar rules apply when the aggregation is executed along the column

direction, diagonal direction, and the entire matrix.

For matrix element-wise operations, only the matrix element-wise addition has a

compatible transformation rule for sum aggregations.

Γsum,·(A + B) = Γsum,·(A) + Γsum,·(B). (4.14)

Though Rule 4.14 does not change the computation overhead, it circumvents storing

the intermediate sum matrix A + B, alleviating memory footprint.

For matrix-matrix multiplications, we derive efficient transformation rules to com-

pute the sum aggregations,

Γsum,r(A×B) = A× Γsum,r(B), (4.15)

Γsum,c(A×B) = Γsum,c(A)×B, (4.16)

Γsum,a(A×B) = Γsum,c(A)× Γsum,r(B), (4.17)

Γsum,d(A×B) = Γsum,a(A
T ∗B) = Γsum,a(A ∗BT). (4.18)

68

Proof (Rule 4.15) Let C = A × B, where Cij =
∑

k Aik ∗ Bkj. Let the column

Vector y = Γsum,r(C). Therefore,

yi =
∑
j

Cij =
∑
j

∑
k

Aik ∗Bkj =
∑
k

Aik ∗ bk,

where Vector b = Γsum,r(B). It is clear that the derivation in the matrix format,

y = A× b, which is exactly Rule 4.15.

Similar derivations also apply to Rule 4.16 and 4.17. For Rule 4.18, both input

matrices are required to be square.

Proof (Rule 4.18) Let us write Matrix A in terms of rows, and Matrix B in terms

of columns,

A =

aT1
...

aTn

 , B =
[
b1 · · · bn

]
.

Therefore, the matrix-matrix multiplication can be represented by Vector ai’s and

bi’s.

A×B =

aT1 b1 . . . aT1 bn
...

aTnb1 . . . aTnbn

The trace of A×B can be computed as Γsum,d(A×B) =

∑n
i=1 a

T
i ×bi. The transpose

of A is represented as,

AT =
[
a1 · · · an

]
,

and the matrix element-wise multiplication is computed as,

AT ∗B =
[
a1 ∗ b1 · · · an ∗ bn

]
.

When conducting the all entry sum aggregation, it is essentially to compute the inner-

product of corresponding vector pairs, i.e., Γsum,a(A
T ∗B) =

∑n
i=1 a

T
i ×bi. The second

half of Rule 4.18 can be verified in a similar manner.

69

The computation complexity is usually O(n3) for n-by-n square matrix-matrix

multiplications. By leveraging matrix element-wise multiplication and matrix trans-

pose, the complexity is reduced to O(n2).

Unfortunately, equivalent transformation rules do not apply when the input in-

volves a relational selection or projection. For general selection condition θ and

projection predicate τ ,

Γsum,·(σθ(A)) 6= σθ(Γsum,·(A)), (4.19)

Γsum,·(Πτ (A)) 6= Πτ (Γsum,·(A)). (4.20)

However, there exist valid transformation rules if the sum dimension happens to

match with the predicate of the selection, e.g., Γsum,r(σRID=i(A)) = σRID=i(Γsum,r(A)).

Swapping the execution order of sum aggregation and projection leads to the same

result. Pushing a selective relational operation below a matrix operation is beneficial,

as it could reduce the dimension of the matrix.

Count() on Matrix Data

For relational data, the count aggregate function computes the number of tuples

that satisfy a certain criteria. For matrix data, the count function is usually inter-

preted as computing the number of nonzeros (nnz). This function is quite useful

for optimizing matrix computations, e.g., sparsity estimation for sparse matrix chain

multiplications [1]. Similar to sum aggregation, MatRel supports four count vari-

ants, Γnnz,r/c/d/a(A). The output of each function is defined as its counterpart of the

sum function correspondingly.

We present equivalent transformation rules for optimizing count aggregations

when the input is composed of various matrix operations. For matrix transpose,

we have

Γnnz,r/c(A
T) = (Γnnz,c/r(A))T , (4.21)

Γnnz,d/a(A
T) = Γnnz,d/a(A). (4.22)

70

These rules push a count aggregation below a matrix transpose. The postponed

matrix transpose is executed on a smaller matrix, e.g., a vector, avoiding O(n2)

computations for the matrix transpose.

For matrix-scalar operations, let A be an m-by-n matrix, and scalar β 6= 0. We

denote e(n) to be an all-one column vector of length n. The following rules hold for

an input that involves matrix-scalar operations,

Γnnz,r(A + β) = e(m) ∗ n, (4.23)

Γnnz,c(A + β) = e(n)T ∗m, (4.24)

Γnnz,d(A + β) = n, (4.25)

Γnnz,a(A + β) = mn, (4.26)

Γnnz,·(A ∗ β) = Γnnz,·(A). (4.27)

By assuming the constant β 6= 0, the number of zeros is not altered for matrix-scalar

multiplications. For the matrix-scalar addition, the output does not depend on the

entries in A, which only requires the dimensions to conduct the computation.

For matrix element-wise operations, only the division operator works friendly with

count aggregation.

Γnnz,·(A/B) = Γnnz,·(A) (4.28)

Rule 4.28 indicates the matrix element-wise division preserves the number of nonzeros

of the numerator matrix. Unfortunately, such convenient transformation rules do not

apply to other matrix element-wise operators and matrix-matrix multiplications.

For an input consisting of relational selections and projections, Rule 4.19 and

4.20 can be extended too. It is impossible to swap the execution order of a count

aggregation and a selection for a correct output. It is only valid to swap the execution

order of a count aggregation and a selection when both work on the same dimension,

e.g., Γnnz,c(σCID=j(A)) = σCID=j(Γnnz,c(A)).

Avg() on Matrix Data

The avg aggregate function computes the average statistic on a matrix in a certain

71

dimension. MatRel supports four different variants, Γavg,r/c/d/a(A). The output

of each avg aggregate function is defined as its counterpart of the sum aggregation

correspondingly. The avg aggregation can be viewed as a compound operator from a

sum and a count aggregations. Formally, any avg aggregation can be computed as

Γavg,·(A) = Γsum,·(A)/Γnnz,·(A).

Therefore, optimizing an avg aggregation can leverage all the transformation rules

we have explored for sum and count aggregations. MatRel’s optimizer automat-

ically invokes query planning for corresponding sum and count aggregations when

generating an execution plan for an avg aggregation.

Max()/Min() on Matrix Data

The max (or min) aggregation is used to obtain the extreme values from a ma-

trix, which serves as an important building block for anomaly detection [67] in

data mining applications. Naturally, MatRel supports four max (or min) variants,

Γmax/min,r/c/d/a(A). The output of each aggregation is defined as its counterpart of the

sum aggregation correspondingly. The transformation rules for optimizing max (or

min) aggregation can be derived as follows,

Γmax/min,r/c(A
T) = (Γmax/min,c/r(A))T , (4.29)

Γmax/min,d/a(A
T) = Γmax/min,d/a(A), (4.30)

Γmax/min,·(A + β) = Γmax/min,·(A) + β, (4.31)

Γmax/min,·(A ∗ β) = Γmax/min,·(A) ∗ β (β > 0), (4.32)

Γmax/min,·(A ∗ β) = Γmin/max,·(A) ∗ β (β < 0). (4.33)

We assume the constant scalar β 6= 0. When β < 0, the optimizer computes the

min/max aggregation instead for avoiding the intermediate matrix A ∗ β. For matrix

element-wise operations and matrix-matrix multiplications, no general rules apply.

For example, Γmin,r([1, 1, 2] + [3, 0.5, 0]) = Γmin,r([4, 1.5, 2]) = 1.5, which could only be

evaluated after computing the sum of the two matrices. For an input consisting of

relational selections and projections, it is only valid to swap the execution order of a

max/min aggregation and selection when both work on the same dimensions.

72

4.3.5 Relational Join on Matrix Data

The relational join (on) is a useful operator for picking corresponding entries that

satisfy the join predicates from two separate matrices. For example, raster data

overlay analysis [68] requires a join on two matrices with matching row/column index,

where a raster map can be interpreted as a matrix. Formally, a relational join is a

binary operator,

A onγ,f B,

where γ is the join predicate, f is the user-defined merge function that takes two

matching entries and outputs a merging result, e.g., z = f(x, y). We introduce

various formats of γ in different semantics in the subsequent sections. In general, the

result of a relational join on two matrices is a tensor, or a multi-dimensional array,

whose dimensions are determined by the predicate γ. We first discuss how to infer the

schema of a join output based on the join predicates. Next, we introduce all the valid

formats of γ. Finally, we investigate the optimization strategies for join executions.

Schema of Join Result

Just like every matrix has a schema, MatRel automatically produces a schema for a

join result. The schema of a join result consists of two parts: the index and the value.

In this work, we only consider equality predicates as the join condition. Given two

input matrices A(RIDA, CIDA, valA) and B(RIDB, CIDB, valB), the cardinality of

the dimension of A onγ,f B is

d = 4− δdim,

where δdim is the number of equality predicates on the join dimensions. For example,

if the join predicates γ = “RIDA = RIDB”, the join output boasts the schema

(D1, D2, D3, val), where D1 takes matching dimension from RIDA, D2 takes relevant

dimension from CIDA, D3 takes relevant dimension from CIDB, and val is the

evaluation of the merge function on the matching entries from A and B. The join

output may degrade to a normal matrix when γ contains two or more predicates on

the join dimensions.

73

Cross-product on Two Matrices

The cross-product operator is a special join operator between two matrices, where the

join predicate γ is empty, i.e., A ⊗B = A onf B. If both input matrices are viewed

as relations, this operator is essentially the Cartesian product. The cross-product is

widely used in tensor decomposition and applications, e.g., Kronecker product [31].

MatRel’s optimizer infers the output schema from the join predicate, which is empty

for cross-product. Therefore, a cross-product produces a 4th-order tensor from two

input matrices. For example, C(D1, D2, D3, D4, val) is the schema of C = A⊗B. The

first two dimensions (D1, D2) inherit from A, and the last two dimensions (D3, D4)

inherit from B.

The execution of a cross-product is conducted in a fully parallel manner. Ma-

tRel stores a matrix in blocks of equal size, where the blocks are distributed among

all the workers in a cluster. First, each block of the smaller matrix is duplicated p

times, where p is the number of partitions from the larger matrix. Next, each dupli-

cated block is sent to a corresponding partition of the larger matrix. Finally, each

worker performs join operation locally without further communication. The 4th-order

tensor is stored as a series of block matrices in a distributed manner. The detailed

physical storage is described in Section 4.4.

Join on Two Dimensions

The dimension-based predicates for join on two dimensions can take two different

formats:

A onRIDA=RIDB∧CIDA=CIDB ,f B,

or

A onRIDA=CIDB∧CIDA=RIDB ,f B.

These two predicates are the only valid formats, as a propositional formula takes

dimensions from both inputs. The former predicate can be viewed as an overlay on

the two input matrices directly (direct overlay), while the latter can be viewed as an

overlay on Matrix A and the transpose of Matrix B (transpose overlay). Figure 4.4

illustrates an example of direct overlay. Conceptually, two input matrices can be

74

regarded as two relations with the schema introduced in Section 4.3.2. The output

of a join on two dimensions is a normal matrix, since two common dimensions are

shared with the inputs.

0

2 0

0

86

00

0

matrix A

0 1 2

0

1

2 0

0 6

0

54

02

0

matrix B

0 1 2

0

1

2A.RID = B.RID ^

A.CID = B.CID, f

⋈ Merge Function

f(x, y) = x + y

822

2

60

RID

01

2

valCID

52 2

0 42

1

0 0

val

61

CIDRID

2

A.RID = B.RID ^

A.CID = B.CID, f

⋈

22 13

102 0

1 61

0

0 0

val

21

CIDRID

2

A

B

C

Figure 4.4.: Direct overlay of two sparse matrices.

To efficiently evaluate joins on two dimensions, MatRel adopts the hash join

strategy to partition the matrix blocks from the inputs. By hashing the matched

matrix blocks to the same worker, a worker conducts local join execution without

further communications. For direct overlay, MatRel’s planner partitions the two

input matrices using the same partitioner. For transpose overlay, the planner makes

sure the partitioning scheme on one input matches the partitioning scheme on the

transpose of the other.

Join on a Single Dimension

The dimension-to-dimension (D2D) predicates can take four different formats:

A onIDA=IDB ,f B,

where IDA/B ∈ {RIDA/B, CIDA/B}. Therefore, the join output is a 3rd-order tensor,

and takes the schema (D1, D2, D3, val). Each entry from a matched row/column from

A is joined with the entries from the corresponding row/column from B.

75

MatRel leverages a hash-based data partitioner to map matched row or column

matrix blocks to the same worker. Suppose both input matrices are partitioned into

`-by-` square blocks. Let us consider the D2D predicate to be “RIDA = RIDB”.

Two matrix blocks Amp and Bmq are mapped to the same worker. For the t-th row

from Amp, each entry is joined with the same row from Bmq. Thus, a 1-by-` vector is

produced by joining a single entry in the t-th row from Amp and an entire row from

Bmq. After the join operation, the t-th row from Amp leads to an `-by-` matrix block.

Potentially, there are totally ` such matrix blocks for the join result from two input

matrix blocks.

Join on Entries

The entry-based (value-to-value, or V2V) join operation takes the following format:

A onvalA=valB ,f B.

The join output is a 4th-order tensor, where the first two dimensions come from the

dimensions of A, and the other two from the dimensions of B.

The execution of a V2V join is conducted in a fully parallel manner, similar to

the execution of cross-product. MatRel broadcasts each block of the smaller input

to each partition of the larger one. Each worker in the cluster adopts a nested-loop

join strategy to compute the join locally by taking each pair of matrix blocks. The

four dimensions are copies of the dimension values from matched entries.

Join on a Single Dimension and an Entry

The join on a single dimension and an entry operation (D2V, or V2D) takes the

following format:

A onIDA=valB ,f B, or A onvalA=IDB ,f B

where IDA/B ∈ {RIDA/B, CIDA/B}. The output is a 4th-order tensor, where the

4 dimensions derive from the entry locations of the matched rows/columns, and the

matched entries from the other input. To evaluate this type of join, the matrix

blocks containing the matched entries are mapped to the other matrix, where the

76

row/column dimension matches. Each worker conducts local join computation based

on the matched dimensions and entries.

Join Optimization

Relational joins over matrix data are more complex than other relational operations.

They potentially have higher computation and communication overhead. We have

identified several heuristics to mitigate the heavy memory footprint and computation

burden. We leverage the following features: (1) sparsity-preserving merge functions,

and (2) Bloom-join for join on entries. Furthermore, we also develop a cost model to

capture the communication overhead among different joins. By utilizing the heuristics

and the cost model, MatRel generates a computation- and communication-efficient

execution plan for a join operation.

Identifying Sparsity-preserving Merge Functions.

Given a general join operation, A onγ,f B, there are two important parameters, γ and

f . The predicate γ is utilized to locate the join entries, and f is evaluated on the

two entries for an output entry. In real-world applications, large matrices are usually

sparse and structured1. For example, Figure 4.4 illustrates a direct overlay on two

sparse matrices, where the merge function is f(x, y) = x + y. We say f(x, y) is a

sparsity-preserving function if f(0, ·) = 0 or f(·, 0) = 0. Thus, the summation merge

function is not sparsity-preserving since C00 = A00 +B00 = 0 + 2 = 2, which does not

preserve sparsity from the left- or right-hand side. On the other hand, f1(x, y) = xy,

is sparsity-preserving on both sides.

The benefit of utilizing sparsity-preserving function is obvious, as it avoids eval-

uating the function completely if one of the inputs contains all zeros. Traditionally,

a straw man execution plan takes two input matrix blocks. It at first converts the

sparse matrix formats to the dense counterpart by explicitly filling in 0’s, then eval-

uates the merge function on the matched entries. Note that a sparse matrix format

only records nonzeros and their locations. Compressed sparse representations reduce

memory consumption and computation overhead for matrix manipulations. However,
1http://www.cise.ufl.edu/research/sparse

http://www.cise.ufl.edu/research/sparse

77

the memory consumption grows significantly when a sparse matrix is stored in the

dense format.

Thus, it is critical to identify the sparsity-preserving merge functions, and avoid

converting a sparse matrix format to dense format whenever possible. We consider

a special family of merge functions: linear function and their linear combinations,

i.e., f(x, y) = g(x)y + h(x), or f(x, y) = g(y)x + h(y), where both g(·) and h(·) are

linear functions. For any merge function in this family, MatRel adopts a sampling

approach to identify the sparsity-preserving property. Given a merge function f(x, y),

we compute t1 = f(0, s1), and t2 = f(0, s2), where s1 and s2 are random numbers. If

both t1 and t2 are 0, f(x, y) is sparsity-preserving because of the linearity of function

components. A similar sparsity-preserving test could be conducted on the y value.

Once a sparsity-preserving function is identified, MatRel’s planner orchestrates

the execution of join operations by leveraging the sparse matrix computations. For

example, if the merge function f(x, y) boasts the sparsity-preserving property on the

x component, MatRel only retrieves the nonzero entries from the left-hand side,

and joins with entries from the right-hand side. All the computations are conducted

in the sparse matrix format without converting to dense matrix format.

Bloom-join on Entries.

For a join predicate that involves a dimension on the matrix, it is efficient for Ma-

tRel to locate the corresponding row matrix blocks or column matrix blocks. The

irrelevant matrix blocks are not accessed during evaluation. However, the join op-

eration becomes expensive when the join predicate contains a comparison on the

entries. A straw man plan compares each pair of entries exhaustively, where a lot of

computation is wasted on the mismatched entries.

MatRel adopts a Bloom-join strategy when a join predicate contains matrix

entries. Each worker computes a Bloom filter on the entries. Due to the existence of

sparse matrices, a worker needs to determine whether to store 0’s in the Bloom filter.

Thanks to the heuristic of identifying zero-preserving merge functions, 0 values are

not inserted into the Bloom filter if f(x, y) is sparsity-preserving. After each matrix

78

block creates its own Bloom filter, a worker picks an entry from one of the input

matrix and consults the Bloom filter on the other input. If no match is detected

from the Bloom filter, the join execution continues to the next entry; otherwise, a

nested-loop join is conducted on the input matrices to generate the join output.

Cost Model for Communications.

MatRel extends MatFast’s [1] matrix data partitioner, and it naturally supports

three matrix data partitioning schemes: Row(“r”), Column(“c”), and Broadcast(“b”).

The Broadcast scheme is only used for sharing a matrix of low dimensions, e.g., a

single vector. Different matrix data partitioning schemes lead to significantly different

communication overhead for join executions. Therefore, we introduce a cost model to

evaluate the communication costs of various partitioning schemes for join operations

on matrix data.

We design a communication cost model based on the join predicates. For cross-

product, we have

Ccomm(A⊗B) =

 0, if sA/B = b.

(N − 1) min{|A|, |B|}, otherwise.

where sA and sB are the partitioning scheme of input matrix A and B, and N is

the number of workers in the cluster. |A| refers to the size of the Matrix A, i.e.,

|A| = mn if A is an m-by-n dense matrix; and it means nnz(A) if A is sparse. The

communication cost is 0 if one of the inputs has been broadcast to every worker in

the cluster. This only applies to the case when either A or B is a matrix of tiny

dimensions. When A and B are partitioned in Row/Column scheme, each partition

of the smaller matrix has to be mapped to every worker. Therefore, it incurs a

communication cost of (N − 1) min{|A|, |B|}.

For direct overlay, we have the following cost function,

Ccomm(A onγ,f B) =

N−1
N

min{|A|, |B|}, if (sA, sB) =

(r, c) or (c, r).

0, otherwise.

79

It is clear that the direct overlay operation induces 0 communication overhead if one

of the inputs is broadcast to all the workers in the cluster. Furthermore, there is

no communication when both inputs are partitioned using the same scheme. Each

worker receives matrix blocks with the same row/column block IDs from both inputs,

and the join predicates are naturally satisfied. The communication overhead is only

incurred when one of join operands is partitioned in Row scheme and the other is

partitioned in Column scheme. To mitigate this partitioning scheme incompatibility,

MatRel repartitions the smaller matrix using the same data partitioning scheme

from the larger matrix.

For transpose overlay, we have a similar cost function,

Ccomm(A onγ,f B) =

N−1
N

min{|A|, |B|}, if (sA, sB) =

(r, r) or (c, c).

0, otherwise.

The cost model for a transpose overlay is very similar to that of the direct overlay

case. The difference is that the communication overhead is introduced when two

matrices are partitioned using the same scheme.

Table 4.1 summarizes the communication costs for joins on a single dimension. If

any input matrix is broadcast to all the workers, there is no communication cost. We

omit this case in Table 4.1. Let us focus on the case when γ = “RIDA = RIDB” and

(sA, sB) = (r, c). Figures 4.5 illustrates that Matrix A is partitioned in Row scheme

and Matrix B is partitioned in Column scheme. Suppose we have 3 workers in the

cluster, i.e., N = 3. Each square in the matrix is a block partition. The blocks with

the same color are stored on the same worker. The join predicate requires that the

entries sharing the same RID’s are joined together. There are two possible execution

strategies based on the partitioning schemes of A and B. Strategy I sends the blocks

with the same RID from A to the workers which hold the joining blocks from B. For

example, Worker W1 sends all the blocks to Worker W2 and W3, since both W2 and

W3 hold some joining blocks from B. Both W2 and W3 send the blocks in a similar

80

manner. Each worker needs to send the blocks (N− 1) times to all the other workers.

Thus, this strategy induces (N− 1)|A| communication cost. Strategy II adopts a

different policy by sending different blocks from B to the same worker that holds the

blocks with the same RID from A. For example, the blocks with diagonal lines from

W2 andW3 are sent toW1 to satisfy the join predicate. As illustrated in Figure 4.5, all

the blocks with diagonal lines introduce a communication cost of N−1
N
|B|. Thus, the

best communication cost is min{(N − 1)|A|, N−1
N
|B|} when γ = “RIDA = RIDB”

and (sA, sB) = (r, c). The remaining entries in Table 4.1 can be computed with

similar strategies. Notice, the diagonal of Table 4.1 contains all 0’s. This is because

the partitioning schemes of both matrices happen to match the join predicate.

matrix A matrix B

A.RID = B.RID, f
⋈

W1

W2

W3

matrix A matrix B matrix A matrix B

(a) Sending blocks from A to B (b) Sending blocks from B to A

Figure 4.5.: Communication cost for D2D join.

81

Ta
bl
e
4.
1.
:
C
om

m
un

ic
at
io
n
co
st

of
di
ffe

re
nt

D
2D

jo
in

pr
ed
ic
at
es

(s
A
,s
B

)

γ
(r
,r
)

(r
,c

)
(c
,r
)

(c
,c

)

R
I
D
A

=
R
I
D
B

0
m

in
{(
N
−

1)
|A
|,
N
−
1

N
|B
|}

m
in
{N
−
1

N
|A
|,

(N
−

1)
|B
|}

(N
−

1)
m

in
{|
A
|,
|B
|}

R
I
D
A

=
C
I
D
B

m
in
{(
N
−

1)
|A
|,
N
−
1

N
|B
|}

0
(N
−

1)
m

in
{|
A
|,
|B
|}

m
in
{N
−
1

N
|A
|,

(N
−

1)
|B
|}

C
I
D
A

=
R
I
D
B

m
in
{N
−
1

N
|A
|,

(N
−

1)
|B
|}

(N
−

1)
m

in
{|
A
|,
|B
|}

0
m

in
{(
N
−

1)
|A
|,
N
−
1

N
|B
|}

C
I
D
A

=
C
I
D
B

(N
−

1)
m

in
{|
A
|,
|B
|}

m
in
{N
−
1

N
|A
|,

(N
−

1)
|B
|}

m
in
{(
N
−

1)
|A
|,
N
−
1

N
|B
|}

0

82

A join on entries has an identical cost function as a cross-product. It is clear

that the join execution incurs 0 communication cost if either A or B is partitioned in

Broadcast scheme. For any other combination of partitioning schemes of A and B, a

worker needs to broadcast the smaller of the inputs to all the other workers. Hence,

the communication cost is (N − 1) min{|A|, |B|}.

For a join on a single dimension and entries, Table 4.2 gives the communication

costs for the various schemes. We use η to denote the selectivity of entries that

could match the row/column dimensions from the other matrix. Let us examine

the cost function for γ = “RIDA = valB”. When (sA, sB) = (r, r), there exist

two strategies to evaluate the join. Strategy I requires each worker to send its own

matrix blocks of A to the other (N − 1) workers, since any worker may hold a block

from B that has matched entries with the row dimension. Broadcasting A incurs a

communication cost of (N − 1)|A|. Strategy II sends the matched entries from B

to each corresponding worker that holds the blocks of A. The selectivity indicates a

total amount of ηB|B| of matrix data is transferred. Thus, the communication cost

would be min{(N−1)|A|, ηB|B|}. For (sA, sB) = (c, r), the only difference is that the

selected matching entries from B are sent to all the workers in the cluster, since A is

partitioned in Column scheme. The remaining entries in Table 4.2 can be computed

in a similar manner.

83

Ta
bl
e
4.
2.
:
C
om

m
un

ic
at
io
n
co
st

of
di
ffe

re
nt

D
2V

an
d
V
2D

jo
in

pr
ed
ic
at
es

(s
A
,s
B

)

γ
(r
,r
)

(r
,c

)
(c
,r
)

(c
,c

)

R
I
D
A

=
v
a
l B

m
in
{(
N
−

1)
|A
|,
η B
|B
|}

m
in
{(
N
−

1)
|A
|,
η B
|B
|}

m
in
{(
N
−

1)
|A
|,
N
η B
|B
|}

m
in
{(
N
−

1)
|A
|,
N
η B
|B
|}

C
I
D
A

=
v
a
l B

m
in
{(
N
−

1)
|A
|,
N
η B
|B
|}

m
in
{(
N
−

1)
|A
|,
N
η B
|B
|}

m
in
{(
N
−

1)
|A
|,
η B
|B
|}

m
in
{(
N
−

1)
|A
|,
η B
|B
|}

v
a
l A

=
R
I
D
B

m
in
{η

A
|A
|,

(N
−

1)
|B
|}

m
in
{N

η A
|A
|,

(N
−

1)
|B
|}

m
in
{η

A
|A
|,

(N
−

1)
|B
|}

m
in
{N

η A
|A
|,

(N
−

1)
|B
|}

v
a
l A

=
C
I
D
B

m
in
{N

η A
|A
|,

(N
−

1)
|B
|}

m
in
{η

A
|A
|,

(N
−

1)
|B
|}

m
in
{N

η A
|A
|,

(N
−

1)
|B
|}

m
in
{η

A
|A
|,

(N
−

1)
|B
|}

84

Algorithm for Partitioning Scheme Assignment of Joins.

Before we delve into the algorithm of partitioning scheme assignment for joins, we first

discuss the cost function for converting distributed matrix data from one partitioning

scheme to another. Table 4.3 illustrates the conversion costs, where sA is the partition

scheme of an input, and s′A is the scheme for an output. ξ denotes the case when the

input data is randomly partitioned among all the workers in the cluster, e.g., round-

robin. It introduces the communication cost of |A| when re-partitioning Matrix A

from round-robin to Row/Column scheme. Broadcast scheme is more expensive and

it costs N |A|, where each worker has a copy of all the matrix data.

Table 4.3.: Communication cost of converting partition schemes

s′A

sA r c b

r 0 N−1
N

|A| (N− 1)|A|

c N−1
N
|A| 0 (N− 1)|A|

b 0 0 0

ξ |A| |A| N |A|

Given a join operation and input matrices A and B, MatRel’s data partitioner

computes the best partition schemes for A and B by optimizing the following,

(s′A, s
′
B)← arg min

(s′A,s
′
B)

{Ccomm(A onγ,f B, s
′
A, s

′
B)

+ Cvt(A, sA → s′A) + Cvt(B, sB → s′B)}.

Function Ccomm(A onγ,f B, s′A, s
′
B) computes the communication cost of the join ac-

cording to our cost model when A is partitioned in Scheme sA and B in Scheme

sB. Function Cvt(A, sA → s′A) computes the communication cost when converting A

from Scheme sA to s′A. Essentially, the data partitioner adopts a grid-search strategy

among all the possible combinations of partition schemes on the input matrices, and

outputs the cheapest schemes for A and B.

85

4.4 System Implementation

After query execution plan and matrix data partitioning schemes are generated,

each worker conducts matrix and relational computations locally. MatRel lever-

ages block matrices as a basic unit for storing and manipulating matrix data in the

distributed memory. We discuss briefly the system implementation on top of Spark

SQL.

4.4.1 Physical Storage of Matrix Joins (Tensor)

We partition a matrix into smaller square blocks to store and manipulate matrix

data in the distributed memory. A matrix block is the basic unit for storage and

computation. Every matrix block consists of two parts: a block ID and matrix

data. A block ID is an ordered pair, i.e., (row-block-ID, column-block-ID). The

matrix data field is a quadruple, 〈matrix format, number of rows, number of columns,

data storage〉. A local matrix block supports both dense and sparse matrix storage

formats. For the sparse format, the nonzero entries are stored in Compressed Sparse

Column (CSC), and Compressed Sparse Row (CSR) format. Refer to Section 3.4.1

for more details.

A join may produce a normal matrix or a higher-dimensional tensor, e.g., a 3rd-

order tensor for joins on a single dimension. MatRel utilizes block matrices to

manipulate higher-dimensional tensors as well. Given a 3rd-order tensor, the schema

of the tensor is represented as (D1, D2, D3, val), where D1, D2, and D3 denote the

three dimensions. To leverage the block matrix storage, MatRel extends the block

ID component to higher dimensions, e.g., (D1, D2-block-ID, D3-block-ID), where D1

records the exact dimension value, and the remaining record the matrix block IDs

for the other dimensions. Figure 4.6 illustrates the storage layout of a 3rd-order

tensor in terms of matrix blocks. There is freedom on choosing which dimension

of the tensor to serve as D1, D2, or D3. Usually there exits an aggregation on

a certain dimension following the join. A heuristic is to choose a non-aggregated

86

dimension as D1 in a physical block storage. It is beneficial that each worker only

needs to execute the aggregation locally without further communication. Figure 4.6

demonstrates 2 possible tensor layouts on dimension D1 and D3 respectively. If a

subsequent aggregation is performed on dimension D2 or D3, MatRel stores the

join result in block matrices with respect to dimension D1.

0

2 0

0

86

40

0

matrix A

0 1 2

0

1

2 0

0 6

4

04

02

0

matrix B

0 1 2

0

1

2
A.RID = B.CID

⋈

0

2 0

0

00

00

4
0

0 0

0

00

30

0
0

0 0

0

08

06

0

D1 = 0
D1 = 1

D1 = 2 0

0 0

0

86

20

0
0

3 0

0

00

00

0 0

0 0

0

00

40

0

D3 = 0
D3 = 1

D3 = 2

Block partition on dimension D1 Block partition on dimension D3

Merge Function

f(x, y) = x * y / 4

Figure 4.6.: Block tensor storage.

4.4.2 System Design and Implementation

MatRel is implemented as a library in Apache Spark. It extends Spark SQL and

its Catalyst optimizer to work seamlessly with matrix/tensor data. We provide Scala

API for conducting relational query processing on distributed matrix data. It uses

a DataFrame [65] to represent distributed matrix blocks. Each row in a DataFrame

has the schema (RowBlkID, ColBlkID, Matrix), where both IDs takes a long in-

teger type, and Matrix is a user-defined type that encodes the quadruple shown in

Figure 3.5. For logical optimization, we extend the Catalyst optimizer with all the

transformation rules for optimizing the relational operations on matrix data. Once

an optimized logical plan is produced, MatRel generates one or more physical plans.

By leveraging the cost model for communication, the matrix data partitioner selects

87

the partitioning schemes for input matrices, that incurs minimum communication

overhead. Finally, the optimized physical plan is realized by RDD’s transformation

operations, e.g., map, flatMap, zipPartitions, and reduceByKey, etc. The RDD

partitioner class is extended with three partitioning schemes for distributed matrices,

i.e., Row, Column, and Broadcast. Spark’s fault tolerance mechanism applies natu-

rally to MatRel. In case of node failure, the lost node is evicted and a standby node

is chosen to recover the lost one. An open-source version of MatRel is available on

GitHub2.

4.5 Related Work

We review related work of relational and matrix query processing and optimiza-

tions on matrix data.

Matrix Query Processing on Matrices

There has been a long history of research on conducting efficient matrix computations

in the high-performance computing (HPC) community. Existing libraries provide

efficient matrix operators, e.g., BLAS [52] and LAPACK [53] (and its distributed

variant ScaLAPACK [60]). However, they lack support for sparse matrices, and are

prone to machine failures.

Recently, many systems have been proposed to support efficient matrix compu-

tations using Hadoop [30] and Spark [51]. These systems provide an easy-to-use

interface on multiple matrix operations, e.g., HAMA [34], Mahout [35], MLI [39],

MadLINQ [56], Cumulon [69], SystemML [36, 57, 58, 70, 71], DMac [41], and Mat-

Fast [1]. Each system provides various optimization strategies for reducing mem-

ory consumption, computation and communication overhead. For example, Sys-

temML [58] adopts column encoding schemes and operations over compressed ma-

trices to mitigate memory overhead when the original matrices are too large to fit

in the available compute resources. MatFast [1] adopts a sampling-based approach
2https://github.com/yuyongyang800/SparkDistributedMatrix/tree/spark-2.1-dev

https://github.com/yuyongyang800/SparkDistributedMatrix/tree/spark-2.1-dev

88

to estimate the sparsity of matrix chain multiplications, and organizes distributed

matrix partitions in a communication-efficient manner by leveraging matrix data de-

pendencies. However, these systems focus on matrix-only operations on big matrix

data. None provides full-fledged relational query processing on matrix data. Ma-

tRel is built on MatFast, and provides optimized relational query processing on

the distributed matrix data. MATLANG [72] examines matrix manipulation from

the view of expressive power of database query language. It confirms the matrix

operators provided by these systems are adequate for a wide range of applications.

Matrix Query Processing on Relations

A lot of work consider the problem of providing ML over relational data for specific

ML algorithms. The assumption is the input dataset can be viewed as a join result

on multiple tables. The so-called “factorized machine learning” tries to learn a model

based on the de-normalized tables, without performing the join operation explicitly.

For instance, [73] aims at optimizing the linear regression model over factorized join

tables. [74] shows how to learn a generalized linear model over factorized join tables.

Furthermore, [75] discusses the cases when it is safe to conduct feature selection by

avoiding key-foreign key joins to obtain features from all base tables. More recently,

Morpheus [76] is proposed to conduct general linear algebra operations over factorized

tables for popular ML algorithms. However, these systems rely on the assumption

that the input matrix is obtained from joins on multiple tables, which is not always

the case for real-world applications, e.g., recommender systems.

Relational Query Processing on Matrices

The idea of building a universal array DBMS on multidimensional arrays for scientific

and numerical applications has been explored for a long time. One of the most notable

efforts is Rasdaman [77].

Recently, there are several systems built from scratch with native support for lin-

ear algebra, such as SciDB [59, 78, 79] and TensorFlow [80]. TensorFlow has limited

support for distributed computation. The user has to manually map computation

and data to each worker, since Tensorflow does not offer automatic work assign-

89

ment [81]. While Tensorflow is mainly designed for neural network models, it lacks

well-defined relational operations on a matrix (tensor). SciDB supports the array data

model, and adopts a share-nothing massively parallel processing (MPP) architecture.

SciDB provides a rich set of relational operations on the array data. However, it

treats each array operator individually without tuning for a series of array opera-

tors. ChronosDB [82] is an array database, specially designed for processing raster

data. It delegates portions of raster data processing to feature-rich and highly op-

timized command line tools. It is different from MatRel, since the operators are

only optimized for satellite images in certain formats, while MatRel provides opti-

mizations on generic matrix data. Furthermore, ChronosDB does not provide holistic

optimizations over a series of operation on raster data.

The MADlib project [83] built analytics, including linear algebra functionality,

on top of a database system. MADlib shows the potential of high-performance of

linear algebra on top of a relational database. Recent extension on SimSQL [84]

discusses the possibility of making a small set of changes to SQL for enabling a

distributed, relational database engine to become a high-performance platform for

distributed linear algebra. However, the extension does not cover the optimization on

a series of mixed relational and matrix operations. Our work explores the potential to

optimize the query execution pipeline by pushing relational operators below matrix

operators, and computes costs for different plans. MatRel’s query optimizer also

takes into account the optimized data layout of join operands for communication-

efficient executions.

4.6 Performance Evaluation

We study the performance of the optimized execution plans by conducting different

relational operations on matrix data from various ML applications. The performance

is measured by the average execution time.

90

4.6.1 Experiment Setup

The experiments are conducted on an HP DL360G9 cluster with Intel Xeon E5-

2660 realized over 6 nodes. The cluster uses Cloudera 5.9 consisting of Spark 2.1 as a

computational framework and Hadoop HDFS as a distributed file system. Each node

has 16 cores, 32 GB of RAM, and 400 GB of local storage. The total HDFS size is

1 Terabyte. Spark was configured with 5 executors, 16 cores/executor, 16 GB driver

memory, and 24 GB executor memory.

Comparison Across Different Platforms

Platforms Tested. The platforms we evaluated are:

(1) MatRel. This is our implementation on Spark 2.1. All computations are written

in Scala using the extended DataFrame API. The experiments are conducted on

MatRel and MatRel(w/o-opt), where the optimizations are turned on and off

respectively.

(2) Spark MLlib. This is the built-in Spark library, mllib.linalg. This is run on

Spark V2.1 in the cluster mode. All computations are written in Scala.

(3) SystemML. This is SystemML V0.13.1, which provides the option to run on top of

Apache Spark. All computations are written in SystemML’s DML programming

language.

(4) SciDB. This is SciDB V15.12.1. All computations are written in SciDB’s AQL

language that is similar to SQL. Dense matrix computations are conducted with

gemm() API, and sparse matrix computations are with spgemm() API.

Datasets

Our experiments are performed on both real-world and synthetic datasets. The three

real-world datasets are: soc-pokec3, cit-Patents3, and LiveJournal3. All these datasets

are sparse matrices and their statistics are shown in Table 4.4.
3https://snap.stanford.edu/data/

https://snap.stanford.edu/data/

91

Table 4.4.: Statistics of the social network datasets

Graph #nodes #edges

soc-pokec 1,632,803 30,622,564

cit-Patents 3,774,768 16,518,978

LiveJournal 4,847,571 68,993,773

Furthermore, we generate extra smaller datasets, e.g., u100k and d15k. The first

letter denotes the matrix type, i.e., “u” for a sparse matrix with a uniform distribution

of the nonzero entries, and “d” for a dense matrix. The trailing number indicates the

dimension of the square matrix. For example, u100k is a 100K-by-100K sparse matrix,

where nonzero entries are uniformly distributed. d15k is a 15K-by-15K dense matrix.

In our experiments, we conduct several representative computations. We manually

kill the job if it fails to finish within 1 hour, or 3600s.

4.6.2 Aggregation on a Gram Matrix

A Gram matrix is computed as the inner-products of a set of vectors. It is com-

monly used in ML applications to compute the kernel functions and covariance matri-

ces. Given a matrix X to store the input vectors, the Gram matrix can be computed

as G = XT × X. We consider two different aggregations on the Gram matrix, i.e.,

summation along the row dimension Γsum,r(G), and trace computation Γsum,d(G).

Figure 4.7a illustrates the execution time for different systems when performing

Γsum,r(X
T×X). For all the sparse matrices, Spark MLlib throws out-of-memory (OOM)

exceptions, due to the fact that MLlib converts a sparse matrix to the dense format

for matrix-matrix multiplications. Even for the smallest 100K-by-100K sparse ma-

trix with the sparsity of 10−5, it requires about 160 GB memory to store the dense

matrices, which exceeds the hardware limit of our cluster. Without pushing the aggre-

gation below the matrix-matrix multiplications, SciDB runs over 1 hour to compute

92

cit-Patents soc-pokec LiveJournal u100k d15k

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

lo
g

-s
c
a

le

10
1

10
2

10
3

O

O

M

O

O

M

O

O

M

O

O

M

MatRel
MLlib
SystemML
SciDB

(a) Execution time for Γsum,r(G)

cit-Patents soc-pokec LiveJournal u100k d15k

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

lo
g

-s
c
a

le

10
1

10
2

10
3

O

O

M

O

O

M

O

O

M

O

O

M

MatRel
MLlib
SystemML
SciDB

(b) Execution time for Γsum,d(G)

Figure 4.7.: Sum aggregation over matrix-matrix multiplications.

the product of two matrices before the aggregation. On the other hand, both Ma-

tRel and SystemML adopt the similar rewrite rule to push sum aggregation below

the matrix-matrix multiplications. MatRel and SystemML spend 120s and 680s for

the computation on LiveJournal dataset respectively. The extra performance gain

for MatRel comes from the fact that MatRel is implemented on Spark Dataset API

while SystemML is run on RDDs directly. A Dataset makes extra effort for effi-

cient data compression, serialization, and de-serialization. For u100k dataset, SciDB

spends about 800s to compute the sparse matrix multiplication, since SciDB is not

optimized for sparse matrix computations. For d15k dataset, all systems finish the

job within the time budget.

Figure 4.7b shows the execution time for different systems when performing

Γsum,d(X
T ×X). The trace computation leverages the rule to rewrite matrix-matrix

multiplications in terms of matrix element-wise multiplications. MatRel’s optimizer

detects the two inputs are table scans on the same matrix after query rewrite. It

generates the code to compute the matrix element-wise multiplication on a single

matrix without duplicate table scans. For the LiveJournal dataset, it takes about 90s

93

cit-Patents soc-pokec LiveJournal u100k d15k

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

lo
g

-s
c
a

le

10
1

10
2

10
3

O

O
M

O

O
M

O

O
M

O

O
M

MatRel
MLlib
SystemML
SciDB

(a) Execution time for LR

cit-Patents soc-pokec LiveJournal u100k d15k

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

lo
g

-s
c
a

le

10
1

10
2

10
3

MatRel
MatRel(matrix order)
MatRel(selection pushdown)
MatRel(w/o-opt)

(b) Effects of various optimizations in MatRel

Figure 4.8.: Selecting a row from linear regression.

for MatRel and 525s for SystemML to complete the query execution. Other systems

spend similar amount of time as the previous query since they fail to leverage the

more efficient query rewrite rule.

4.6.3 Selection over Matrix Data

Least squares linear regression (LR) is a popular ML model for classification [23].

The input is a feature matrix X and a label vector y. Each label yi can be viewed as

a linear combination of the feature vector xTi , i.e., yi ≈ xTi × b + εi, where b is the

vector of regression coefficients, and εi is the error term. The most common estimator

for b is the least squares estimator b̂ = (XT ×X)−1 ×XT × y.

Figure 4.8a illustrates the execution time for selecting a row of b̂. For an efficient

evaluation of the coefficient vector b̂, a good execution plan should compute XT × y

before multiplying with (XT ×X)−1, since multiplying XT with y results in a lower

dimension matrix. MatRel adopts this optimized evaluation plan. It also selects a

single row on (XT ×X)−1. Spark MLlib throws OOM exceptions for all the sparse

matrices due to the inefficient implementation on matrix multiplications. SystemML

94

cit-Patents soc-pokec LiveJournal u100k d15k

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

lo
g

-s
c
a

le

10
1

10
2

10
3

O

O
M

O

O
M

O

O
M

O

O
M

MatRel
MLlib
SystemML
SciDB

(a) σRID=1∧CID=1(G)

cit-Patents soc-pokec LiveJournal u100k d15k

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

lo
g

-s
c
a

le

10
1

10
2

10
3

MatRel
MatRel(w/o-opt)

(b) Pushing selection below matrix multipli-

cations

Figure 4.9.: Selecting an entry from a Gram matrix.

adopts a similar strategy for selection pushdown. However, the implementation on

RDD prohibits SystemML from obtaining the better performance achieved by MatRel,

which implements the operations on Datasets. SciDB does not generate an efficient

execution plan for LR computation, and performs the selection only after the complete

evaluation of b̂. Figure 4.8b demonstrates the different effects of optimizations that

MatRel has adopted. Especially, we manually turn off the optimizations of order

selection on matrix chain multiplications, and relational selection pushdown below

matrix multiplications, e.g., MatRel (matrix order) means turning on the optimization

of order selection on matrix chain multiplications only.

Figure 4.9a demonstrates the execution time for evaluating a selection on a matrix

entry of the Gram matrix. All the systems conduct Gram matrix computation in the

same manner. With selection pushdown, MatRel and SystemML are able to finish

the computation in 39s and 254s for the cit-Patents dataset. When selecting (i, j)-th

entry on XT × X, MatRel’s optimizer rewrites the query plan to (σCID=i(X))T ×

σCID=j(X). The rewritten query plan avoids evaluation of a matrix transpose by

95

a vector transpose. SciDB cannot finish the evaluation of the matrix multiplication

XT×X in 3600s. Figure 4.9b illustrates the effect of selection pushdown below matrix

multiplications on MatRel.

4.6.4 Cross-product

The Kronecker product is a generalization of outer-product from vectors to matri-

ces. It is widely used in tensor decomposition and applications [31]. Formally, given

an m-by-n matrix A and a p-by-q matrix B, the Kronecker product A ⊗ B is the

mp-by-nq block matrix,

A⊗B =

a11 ∗B . . . a1n ∗B

...

am1 ∗B . . . amn ∗B

 .
The Kronecker product is essentially the cross-product between matrix A and B

with the merge function of f(x, y) = x ∗ y. We compare MatRel and SciDB for the

performance of the Kronecker product computation, since all the other systems do

not support joins. The Kronecker product is an expensive operation that consumes

lots of resources. Therefore, we generate another 25K-by-25K sparse matrix u25k,

where nonzero entries are uniformly distributed with sparsity of 10−6. Table 4.5

demonstrates the execution time for different systems on various cross-product tasks.

Table 4.5.: The Kronecker product on different systems

Dataset MatRel MatRel(w/o) SciDB

u25k ⊗ d15k 294s > 1h > 1h

u25k ⊗ u25k 44s > 1h > 1h

d15k ⊗ u25k 312s > 1h > 1h

d15k ⊗ d15k OOM OOM NSLOD

96

Both MatRel(w/o-opt) and SciDB first conduct the cross-product computation on

each pair of matching entries. Then, they evaluate the merge function on the matched

entries. On the other hand, MatRel’s optimizer identifies that merge function f(x, y)

has the zero-preserving property. Thus, MatRel only computes the cross-product

using the nonzero entries from the sparse input. MatRel spends about 294s to finish

the evaluation of the Kronecker product between a dense matrix and a sparse one,

while MatRel(w/o-opt) and SciDB cannot finish the job within 1 hour. MatRel spends

only 44s for computing the Kronecker product between two sparse matrices. When

both inputs are dense matrices, no optimizations can be applied, and no system can

finish the job successfully. There are totally 154 × 1012 entries when computing the

Kronecker product between two 15K-by-15K dense matrices, which costs about 4×105

TB. This is far beyond the total amount of memory of our cluster, or even the disk

space. Thus, MatRel throws OOM exceptions after 5 minutes, and SciDB throws no

space left on device (NSLOD) errors after 3 hours.

4.6.5 Join on dimensions

Many real-world applications rely on joins on dimensions of big matrices, e.g.,

raster data overlay analysis. We examine two different join predicates: equal-join on

two dimensions, and equal-join on a single dimension. Among all the systems we com-

pare with, only SciDB provides similar functionality with join() and cross_join().

The join() operator combines the entires of two input matrices at matching dimen-

sion values. The cross_join() operator computes the cross-product of the two input

matrices, and applies equality predicates to pairs of dimensions.

We conduct experiments on two different types of joins: direct overlay and trans-

pose overlay. The join() operator implements direct overlay exactly. The cross_join()

operator is leveraged to evaluate the transpose overlay. Figure 4.10a illustrates the

execution time of MatRel and SciDB on various combinations of inputs. d30k and

d50k are two dense square matrices with dimensions 30K and 50K respectively. Both

97

(u100k, d30k) (u100k, d50k) (u200k, d50k) (u200k, u100k)

Q
u

e
ry

 E
v
a

lu
a

ti
o

n
 T

im
e

(s
)

lo
g

-s
c
a

le

10
1

10
2

MatRel
MatRel(w/o-opt)

SciDB

Loading time
Execution time

(a) Direct overlay

(u100k, d30k) (u100k, d50k) (u200k, d50k) (u200k, u100k)

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

lo
g

-s
c
a

le

10
1

10
2

10
3

MatRel
MatRel(w/o-opt)
SciDB

(b) Transpose overlay

Figure 4.10.: Execution time for join on two dimensions.

u100k and u200k are sparse matrices with the sparsity of 10−5. Thanks to the Mul-

tidimensional Array Clustering (MAC) technique, SciDB stores matrix partitions in

a way that the matrix chunks are aligned along the dimensions. This data layout is

preferred for evaluating a direct overlay, since the join can be performed locally on

the matched chunks. On the other hand, MatRel does not make any assumptions on

data locations when loading data from HDFS. It needs to shuffle the matrix blocks to

fulfill the requirement of Row/Column partitioners for join executions. Figure 4.10a

shows a detailed decomposition of the execution time of MatRel. The execution time

is divided into two parts, the matrix data loading time and query execution time.

For SciDB, there is only execution time since the data is already partitioned. The

actual execution time of MatRel is similar to that of SciDB. The MatRel(w/o-opt)

uses the default hash partitioner of Spark, which has a similar performance to MatRel

for direct overlay queries.

Figure 4.10b shows the performance comparison for the transpose overlay queries.

For this type of query, SciDB no longer benefits from the MAC technique, since

the matrix chunks have to be transferred to different workers to facilitate the query

98

execution. For example, SciDB spends about 51min to conduct the transpose overlay

query when joining u100k and d30k. On the other hand, it takes about 44s for MatRel

to finish the same query, which shows a consistent performance as the direct overlay

query. When testing on larger datasets, say u100k and d50k, SciDB spends about

172min to complete, while MatRel only spends 276s.

We further perform experiments for joins on a single dimension. Figure 4.11a

illustrates the performance comparison for A onRIDA=RIDB ,f B, where f(x, y) = x∗ y.

We use different combinations of input matrices, e.g., (u25k, d15k). MatRel lever-

ages the sparsity-preserving property of the merge function f(x, y). MatRel spends

about 51s, and SciDB spends about 45min when computing the join on A(u25k)

and B(d15k). MatRel(w/o-opt) converts a sparse matrix to the dense format, and

conducts the join on the dense block, spending about 60s. SciDB’s cross_join()

implementation is sensitive to the order of arguments, and it incurs huge overhead

when the inner join matrix is a dense one. When swapping matrix A and B, SciDB’s

performance improves significantly, and it only takes about 279s to complete the join.

MatRel(w/o-opt) spends about 1690s to finish the join, since it has to duplicate the

outer dense matrix multiple times and converting a sparse matrix block to a dense

one for query evaluation. MatRel’s optimizer detects both the dimensions and the

sparsity of the input matrices, and shuffles the matrix with fewer nonzero entries to

meet the join predicate with the other matrix for better performance.

When both inputs are sparse, MatRel and SciDB exhibit similar performance. It

takes longer time for MatRel(w/o-opt) to evaluate the query as it does not leverage

the sparsity of the matrices. When both inputs are dense matrices, no optimizations

can be applied, and no system can finish the job successfully. For d25k dataset, each

block size is 1K-by-1K and there are 225 blocks in each input. The join generates 1K

new blocks for each input block. That results in about 1800 GB, which exceeds the

total amount of available memory of our cluster, or even the free disk space. However,

MatRel throws OOM exceptions after about 5 minutes, while SciDB throws NSLOD

errors after 3 hours.

99

Figure 4.11b illustrates the performance comparison for the join predicate of

“CIDA = RIDB”. All the systems show similar trends as Figure 4.11a. Figure 4.11c

depicts the amounts of data shuffle for MatRel and MatRel(w/o-opt) when the join

predicate is “RIDA = RIDB”. According to our communication cost model, Ma-

tRel’s optimizer partitions both A and B using Row scheme. MatRel(w/o-opt) relies

on Spark’s default hash partitioner to distribute the matrix among all the workers.

For a load-balanced execution, we need to repartition the matrices to satisfy the join

predicate. Figure 4.11c verifies our cost model since MatRel(w/o-opt) shuffles twice

as much data as MatRel.

4.6.6 Join on Entries

For all the systems we’ve compared with, only MatRel supports the joins when the

predicate involves matrix entries. We leverage the sparsity-preserving merge function

f(x, y) = x ∗ y for this query. MatRel takes advantages of two optimizations for this

kind of queries, i.e., identifying sparsity-preserving merge functions, and leveraging a

Bloom join on matrix blocks. Figure 4.11d demonstrates the performance of joins on

matrix entries of MatRel when turning on and off the optimizations. MatRel(Bloom)

leverages a Bloom filter for probing the entries of the inner matrix blocks without

exploiting the sparsity of a sparse input. On the other hand, MatRel(sparsity) exam-

ines non-empty blocks in the inner matrix when conducting the join. In general, Ma-

tRel(sparsity) achieves a better performance than MatRel(Bloom) when there exists

a sparse input. When both inputs are dense matrices, the optimization of sparsity-

preserving merge function cannot apply. All the three variants of MatRel cannot

finish the query within 1 hour.

100

(u25k, d15k) (d15k, u25k) (u100k, u100k) (d15k, d15k)

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

lo
g

-s
c
a

le

10
2

10
3

O

O

M

O

O

M

N

S

L

O

D

MatRel
MatRel(w/o-opt)
SciDB

(a) A onRIDA=RIDB ,f B

(u25k, d15k) (d15k, u25k) (u100k, u100k) (d15k, d15k)

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

lo
g

-s
c
a

le

10
2

10
3

O

O

M

O

O

M

N

S

L

O

D

MatRel
MatRel(w/o-opt)
SciDB

(b) A onCIDA=RIDB ,f B

(u25k, d15k) (d15k, u25k) (u100k, u100k) (d15k, d15k)

A
m

o
u

n
t

o
f

d
a

ta
 s

h
u

ff
le

 (
G

B
)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
MatRel
MatRel(w/o-opt)

(c) Data shuffle

(u25k, d15k) (u25k, u25k) (d15k, u25k) (d15k, d15k)

E
x
e

c
u

ti
o

n
 T

im
e

(s
)

lo
g

-s
c
a

le

10
1

10
2

10
3

MatRel MatRel(Bloom) MatRel(Sparsity)

(d) Join on entries

Figure 4.11.: Join on a single dimension and join on entries.

101

4.6.7 PNMF

PNMF [85] is a popular model for dimension reduction, and it tries to approximate

a sparse input matrix A with two factor matrices W and H of low rank k, typically

10 – 200. The computation steps are

W←W ∗ ((A/(W ×H))×HT)/(E×HT),

H← H ∗ (WT × (A/(W ×H)))/(WT × E),

where Am×n is the input sparse matrix, Wm×k and Hk×n are two factor matrices,

and E is an m-by-n matrix, where Eij = 1. The updates for W and H continue until

convergence. The objective function of PNMF is a combination of Euclidean distance

and Kullback-Leibler divergence, i.e.,

f(W,H) =
∑
i,j

(W ×H)ij −
∑
i,j

(A ∗ log(W ×H))ij

where log(X) computes the logarithm of each entry in X.

The sparsity of each generated sparse matrix is 10−3. Table 4.6 shows the exe-

cution time per iteration of PNMF on different systems. MatRel performs the best,

followed by SystemML. MLlib has a better performance than SciDB for dataset of

small sizes. However, MLlib does not scale for larger datasets, since it does not adopts

native matrix multiplications for sparse matrices.

Table 4.6.: PNMF on different systems

Dataset MatRel MLlib SystemML SciDB

u25k 13s 61s 23s 62s

u50k 28s 372s 37s 260s

u100k 52s 2041s 63s 1092s

u200k 148s OOM 160s > 1h

Notice, there are lots of opportunities when the sparsity-preserving property could

be leveraged, e.g., A/(W ×H) and A ∗ log(W ×H). Matrix A is sparse, thus, it

102

is unnecessary to evaluate the dense intermediate matrix of W × H. MatRel only

computes the blocks of W ×H, which map to the corresponding locations of sparse

blocks from A. A similar argument also applies to A ∗ log(W ×H). Furthermore,

MatRel adopts the rule of aggregation pushdown below matrix multiplications when

evaluating
∑

i,j(W ×H)ij of the objective function. MatRel also interprets E×HT

into Γsum,r(H). Therefore, MatRel involves no matrix multiplications for evaluating

the PNMF pipeline.

4.7 Concluding Remarks

In this chapter, We have presented MatRel, an in-memory system that enables

scalable relational query processing on big matrix data in a distributed setup. Ma-

tRel supports common relational operations on big matrix data, e.g., relational se-

lection, projection, aggregation, join. MatRel’s query optimizer leverages rule-based

heuristics to rewrite a query into an equivalent execution plan with lower computation

costs. For relational joins, MatRel can leverage the sparsity-preserving property of

the merge function and Bloom-join strategies for efficient executions. Furthermore,

MatRel adopts a cost model to generate communication-efficient matrix data par-

titioning schemes for input matrices on various join predicates. The experimental

study on various applications demonstrates that MatRel achieves up to two orders

of magnitude performance gain compared to state-of-the-art systems.

103

5 OPTIMIZING COMPLEX MATRIX-AWARE RELATIONAL QUERY

EVALUATION PIPELINES – DEEP-LEARNING AS A DRIVING APPLICATION

5.1 Introduction

Recently, big data analytics has become more and more popular among both

academics and industry. In the domain of Internet of Things (IoT)/Cyber-Physical

Systems (CPS) [86,87], deep-learning has become a dominant tool to study the com-

plex relationships hidden in the large volumes of the observed data in both and aca-

demic research industry applications. It has been demonstrated that deep-learning

exhibits potential to approximate complex datasets with high accuracy, significantly

facilitating human-centered smart systems [88]. Compared to other ML models, deep-

learning architectures can be adapted to various data types, e.g., video, audio, text,

numerical, or combinations. A number of open-source platforms have been developed

from major companies, Goolge’s TensorFlow [80], Facebook’s Pytorch [89], Amazon’s

MXNet [90], Microsoft’s Cognitive Toolkit [91]. These carefully designed and well-

tuned platforms further improve the performance of deep-learning models and make

them easy to deploy for different use cases.

Deep-learning excels in supervised learning tasks for classification, achieving higher

accuracy and better predictive performance than labor forces, such as handwriting

and image recognition [92], speech recognition [93], and text understanding [94, 95].

For unsupervised learning tasks, deep-learning is leveraged for dimension reduction

and density estimation. For instance, a high-resolution image contains tens of thou-

sands pixels (features). Auto-encoders [96] are able to transform input data into an

encoded output for compression. Furthermore, reinforcement learning exhibits poten-

tial for deep-learning without human supervision, through feedbacks from a connected

environment. The ability of non-human interference has contributed significantly to

104

robotics and computer vision [97]. Google’s AlphaGo [98] is the first deep-learning

based intelligent agent to beat a professional human player without handicap1. Its

successor, AlphaGo Zero [99] is able to learn without any human input, and signifi-

cantly outperforms the prior implementations.

During the past few years, deep-learning has exhibited great development in fea-

ture learning of big data [100,101]. Compared to the conventional ML techniques, e.g.,

Support Vector Machine (SVM) and Naive Bayes [23], deep-learning models take ad-

vantage of numerous samples to extract the high-level features and learn the hierarchi-

cal representations by combining low-level inputs effectively. Therefore, deep-learning

provides great potential to extract valuable knowledge from big data for prediction

in industry and medical care [102]. In this chapter, we first give an overview of the

deep-learning model. Next, we discuss the building blocks for composing computation

pipelines of deep-learning. Finally, we illustrate our developed system, MatRel, is

an easy-to-use and efficient platform for realizing deep-learning models, as a proof of

concept.

5.2 Overview of Deep-learning Models

Many popular ML models can only accept inputs of certain data types, and have

limited ability to learn complex data representations, e.g., Naive Bayes, linear re-

gression, logistic regression, and decision trees. Deep-learning has originated from

cognitive science, trying to imitate the learning process of human neurons and cre-

ating complex inter-connected neural structures. As pointed out by [103], the wide

adoption of deep-neural networks is attributed to the fact that a generic neuron can be

applied to any data type and learn a discriminative representation of the underlying

data.

With recent advancement on large-scale distributed compute clusters, the imple-

mentation of large collections of neurons makes possible the neural networks. Though
1https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol

105

neural networks are ubiquitous today, they dated back to 1940s [103] and faded out

of the focus of academics due to high complexity and compute deficiencies. However,

the situation has clearly changed, thanks to the emerging applications where other

ML models lag behind neural networks, such as image recognitions [92] and intelligent

agents [99].

Essentially, deep-learning can be viewed as the application of multi-layer neural

networks to conduct learning tasks. The basic computational neuron, the sigmoid

neuron, is a single logistic activation function. Every neuron is linked to some input,

and a loss function is leveraged to update the weights of the neuron and tune the

logistic fit to the incoming data. When applying this procedure to multiple layers of

many neurons, each neuron learns from all the outputs of the previous layers, reducing

errors to produce an output. Therefore, the complexity is inevitably high for multiple

inter-connected neurons.

Figure 5.1 illustrates the general structure for a deep neural network. The input

layer ingests the raw data, and feeds them to multiple hidden layer neurons. Finally,

the hidden layer neurons output the result, such as classification values or vectors

that encode the raw input. The most basic layer is a fully-connected layer, where all

neurons are linked to each other from the input layer. Alternatively, some links are

randomly dropped in order to prevent over-fitting.

5.3 Required Operations for Deep-learning

Let us examine the required operations when evaluating the parameters of a

deep neural network. Given a multi-layer neural network, the evaluation of an

input is conducted by the forward propagation procedure. For an input vector

x = [x1, x2, . . . , xn]T , the input to a hidden layer node can be computed as zi =∑
k

wi,k ∗xk+bi, where bi is a bias term, or in terms of matrix algebra z = W×x+b.

Each hidden layer node has an activation function to transform the input zi, e.g., a sig-

moid function σ(zi) =
1

1 + e−zi
, or REctified Linear Unit (RELU) f(zi) = max(0, zi).

106

Figure 5.1.: Representative neural networks: (a) fully connected, and (b) including

dropout [104].

…

x1

Input layer

x2

x3

xn

Hidden layer

…

w1,1

w1,2
w1,3

w1,n

w2,1
w3,1wm,1

w2,2w3,2
wm,2

w2,3

w3,3

wm,3

w2,n

w3,n

wm,n

Output layer

…

y1

y2

yp

v1,1

v2,1vp,1 v1,2

v2,2
vp,2

v1,3

v2,3

vp,3

v1,m

v2,m

vp,m

Figure 5.2.: Parameter learning of a general 3-layer neural network.

Thus, the output of the hidden layer can be evaluated as h = σ(W × x + b), where

the sigmoid function is chosen as the activation function. The output layer prediction

can be computed in the similar manner as the hidden layer, y = σ(V×h+ c), where

c is the bias vector of the output layer. Here, we assume the model parameters are

already tuned, where matrix W, V and vector b, c are all known.

The training phase is more expensive, compared to the prediction phase. Given the

training set {xi, yi}, the objective is to minimize the loss function: L =
1

2

∑
i

||f(xi)−

yi||22, where f(xi) is the prediction of xi from the neural network, and yi is the true

107

label of xi. Assume that there is only one node in the output layer, we organize all

the unknown parameters in a single vector u = [wi,j, vi, bi, c]
T . The optimal solution

of u is achieved when ∂L
∂u

= 0. To obtain the partial derivative of L with respect

to u, we only need to find ∂L
∂wi,j

, ∂L
∂vi

, ∂L
∂bi

, and ∂L
∂c
, and stack these partial derivative

components together for ∂L
∂u

. Leveraging the chain rule of partial derivatives, we

can compute ∂L
∂wi,j

= ∂f
∂h
× ∂h

∂wi,j
. The optimal parameters of u could be obtained by

gradient-based numerical optimization methods, e.g., gradient descent method and

stochastic gradient descent method.

As we have described so far, deep-learning models rely heavily on efficient matrix

computations, which makes MatRel an ideal platform for training deep-learning

models and making predictions. In addition, we show how to leverage relational data

processing of MatRel to train deep-learning models on certain applications.

Let us look at the problem of learning word embedding (semantic representation)

in natural language processing. There are two widely used Word2Vec models [105],

Continuous Bag of Words (CBOW) and Skip-Gram. These two models essentially

share the same model structure, and only differ in data dimensions of input and output

layers. CBOW predicts the current word based on context, while Skip-Gram predicts

surrounding words given the current word. To be specific, CBOW reads a word vector,

and predicts a single word. On the other hand, Skip-Gram reads a single word, and

predicts a word vector which most likely appear around the given input word. Both

could be leveraged to learn the vector representation for each word in the corpus. For

the purpose of demonstration, we choose Skip-Gram for discussion. Each input to

Skip-Gram is a word in one-hot encoding, i.e., a vector x of length V (vocabulary size)

and xi = 1, xj = 0 for j 6= i, which means only the i-th word appears in the input.

The output is a set of surrounding words in one-hot encodings. The training samples

are created by enumerating word pairs from a sliding window of a fixed size (say 10)

on plain texts. In general, all the model parameters, e.g., each entry of matrix W

and V, need to be updated when a new training sample is encountered. This is an

expensive procedure as there are millions of parameters to update for large datasets.

108

Negative sampling [106] is a technique that makes each training sample only update

a small percentage of the weight matrix, rather than all of the entries. The relational

selection is an ideal operator to choose which rows/columns of the weight matrix to

update given the negative samples. Thus, MatRel is a perfect computation engine

for Word2Vec models.

5.4 Query Interface

We extend MatRel’s programming interface to allow composing deep-learning

pipelines easily. Code 5.1 demonstrates the training procedure of the 3-layered neural

network for Skip-Grammodel in Scala. The corpus is loaded via the loadWordPairs()

interface. The input word pairs are encoded with the one-hot encoder. The parame-

ters are initialized with random floating point numbers. The neural work is configured

with the DNN interface, where sigmoid() denotes the activation function. Gradient

descent method is used for tuning the parameters, and the number of iterations is set

to 100.

1 val data = loadWordPairs("in/pairs") // word pairs

2 val (X, ylabel) = oneHot(data) // one-hot encoding

3 val hSize = K // hidden layer size

4 var W = RandomMatrix(hSize, X.ncols) // weight

5 var V = RandomMatrix(X.ncols, hSize)

6 var b = RandomMatrix(hSize, 1L) // bias

7 var c = RandomMatrix(X.ncols, 1L)

8 val H = W %*% X.t + b

9 predict = DNN.sigmoid(V %*% H.t + c)

10 predict.run(100) // run 100 times

Code 5.1: Skip-Gram in Scala

109

text8 1B-Benchmark
10

0

10
1

10
2

10
3

E
x
e
c
u
ti
o
n
 T

im
e
 p

e
r

e
p
o
c
h
(s

)
lo

g
-s

c
a
le

MatRel

MLlib

TensorFlow

Figure 5.3.: Neural network training for Skip-Gram.

5.5 Performance Evaluation – Skip-Gram

We study the performance of MatRel for Skip-Gram on different datasets. The

experiment setup is the same as the last chapter: an HP DL360G9 cluster with Intel

Xeon E5-2660 realized over 6 nodes. The cluster uses Cloudera 5.9 consisting of Spark

2.1 as a computational framework and Hadoop HDFS as a distributed file system.

Each node has 16 cores, 32 GB of RAM, and 400 GB of local storage. The total

HDFS size is 1 Terabyte. Spark was configured with 5 executors, 16 cores/executor,

16 GB driver memory, and 24 GB executor memory.

The experiments are conducted on two real-world datasets: text82 and 1 billion

word benchmark3. The text8 dataset consists of 17 million words and 71K distinct

words. The 1 billion word benchmark has 805 million words and 1.1 million unique

words. We compare the runtime performance among MatRel, Spark MLlib, and

TensorFlow on the two datasets.
2http://mattmahoney.net/dc/textdata.html
3http://www.statmt.org/lm-benchmark/

http://mattmahoney.net/dc/textdata.html
http://www.statmt.org/lm-benchmark/

110

Figure 5.3 illustrates the execution time per epoch for three different systems. The

Spark MLlib performs the worst, since it does not have a well-tuned library for sparse

matrix computation. After one-hot encoding, the input matrix X is a sparse matrix.

The labels also form a sparse matrix as each word is usually adjacent to a few words in

the corpus. Without a delicate sparse matrix computation library, MLlib falls behind

the other 2 systems. MatRel spends 282s on execution for each epoch on the 1

billion word benchmark, while TensorFlow takes about 700s. The performance gain

of MatRel comes from the efficient query optimizer, which chooses the execution

plan with lowest computation and communication costs.

5.6 Concluding Remarks

In this chapter, we discuss how MatRel could be leveraged to optimize complex

matrix-aware relational query evaluation pipelines. Especially, we examine a popular

family of ML models – deep neural networks. The core components required by

deep neural networks are efficient matrix computations and relational operators. We

demonstrate how to leverage MatRel for Word2Vec and show it achieves up to 2.5X

speedups on real-world datasets, compared with the popular distributed deep-learning

platforms.

111

6 CONCLUSION

In this dissertation, we study matrix-aware relational query processing in big data

systems. With the emerging trend of in-database analytics, modern relational data

systems are required to support complex statistical inference and machine learning

models, where a number of these advanced tools rely heavily on linear algebra. There-

fore, one question often arises, shall we develop systems specially for linear algebra

support from scratch? This dissertation demonstrates that, we should leverage the

well-tuned database query optimizer, and customize it to offer new opportunities for

emerging application demands.

With application requirements rapidly evolving, our experiments demonstrates

that the general database query optimizer needs to add new ingredients. For exam-

ple, system without optimization, e.g., Spark MLlib, show worse performance than

optimized ones. Thus, we believe that the developed techniques in this dissertation

just open a tip of the iceberg for efficiently support linear algebra in a relational data

system. For example, we propose and implement heuristic rule-based techniques for

rewriting a matrix query when it possesses certain features. We develop cost mod-

els for optimizing sparse matrix multiplication chains and distributing matrix data

partitions for reducing communication overhead. We propose a collection of transfor-

mation rules for reordering operators in a logical plan when both matrix and relational

operators are present in the execution pipeline. We formalize the join operator on

matrix data and develop a cost model for join execution on distributed matrix data

over a cluster of machines. Overall, we believe these specific optimization strategies

based on various characteristics of the query patterns and structures would enable

fast innovation. Below, I present some open questions for future research:

112

• Better Support for Large Sparse Matrix Data: The combination of strong phys-

ical data independence and high-performance matrix computation for large

sparse matrix data is ubiquitous in ML applications. Unfortunately, none of

the existing big data systems support this requirement [107]. MatFast and

its successor MatRel are one of the few systems provide some preliminary

support. Spark MLlib has poor physical data independence and ScaLAPACK

lacks support for sparse data. SystemML provides certain support for this com-

bination, but it may be costly to maintain the metadata for input matrices in

some scenarios. MatFast/MatRel maintains the sparsity for a matrix dur-

ing the computation, but it may not be 100 percent accurate in certain cases.

Therefore, more attention is needed for thoroughly supporting sparse matrix

data for efficient and scalable matrix computation, including optimizing data

layout, staging computations and communications etc.

• Memory Management for Distributed in-memory Matrix Data: Memory is

scarce resource in a distributed computing system. A system needs to allo-

cate the memory resource to different jobs based on their priorities and data

access patterns. As a pioneering step, we have studied a special structure of

matrix chain multiplications to reduce the sizes of intermediate results. How-

ever, more research work should be focusing on automatically determining the

storage format of matrices for general computational patterns, especially when

sparse matrices are present.

• Auto-tuning Matrix Data Layout and System Parameters: Most of existing big

data systems require developers to decide the matrix data layout and system

parameter during execution. For example, MLlib requires manually tunning

partitioning schemes and caching mechanism. Such low-level decisions are cum-

bersome and unintuitive for ML-oriented end users. MatFast/MatRel ’s op-

timizer offers automatically matrix data partitioning based on the cost model,

but users still need to tweak the system parameters for Spark, e.g., caching

113

mechanism. Overall, more work is still needed to achieve full automation of

determining matrix data layout and system parameters.

• Approximate Matrix Computations: Matrix computations are very expensive

in terms of floating point number operations. By default, all the computations

are conducted in double-precision to avoid overflow and losing significant digits

in the result. However, many ML models do not require precise computation

in each step. For example, an approximate solution during iteration is good

enough to converge to the optimal solution in gradient descent. In certain cases,

computations in single-precision lead to the similar result as those conducted in

double-precision. The former has better compute efficiency and consumes less

memory. However, this requires a deep understanding of the ML models and

their computational paradigm.

REFERENCES

114

REFERENCES

[1] Y. Yu, M. Tang, W. Aref, Q. Malluhi, M. Abbas, and M. Ouzzani, “In-memory
distributed matrix computation processing and optimization,” in ICDE’17.
Washington, DC, USA: IEEE Computer Society, 2017, pp. 1047–1058.

[2] Y. Yu, M. Tang, and W. G. Aref, “Scalable relational query processing on big
matrix data,” Purdue University, Technical Report, April 2018.

[3] Y. Yu, W. G. Aref, and M. Tang, “Matrel: A matrix-enabled relational data
system,” Purdue University, Technical Report, June 2018.

[4] M. Hilbert, “Big data for development: A review of promises and challenges,”
Development Policy Review, vol. 34, pp. 135–174, 2016.

[5] R. Han, X. Lu, and J. Xu, “On big data benchmarking,” in Big Data Bench-
marks, Performance Optimization, and Emerging Hardware - 4th and 5th Work-
shops, BPOE 2014, Salt Lake City, USA, March 1, 2014 and Hangzhou, China,
September 5, 2014, Revised Selected Papers, 2014, pp. 3–18.

[6] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and A. Mouzaki-
tis, “A survey of the state-of-the-art localization techniques and their potentials
for autonomous vehicle applications,” IEEE Internet of Things Journal, vol. 5,
no. 2, pp. 829–846, 2018.

[7] Y. C. Tay, “Data generation for application-specific benchmarking,” PVLDB,
vol. 4, no. 12, pp. 1470–1473, 2011.

[8] J. Jiang, F. Fu, T. Yang, and B. Cui, “Sketchml: Accelerating distributed
machine learning with data sketches,” in Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston, TX,
USA, June 10-15, 2018, pp. 1269–1284.

[9] H. Itoh, A. Imiya, and T. Sakai, “Low-dimensional tensor principle component
analysis,” in Computer Analysis of Images and Patterns - 16th International
Conference, CAIP 2015, Valletta, Malta, September 2-4, 2015 Proceedings, Part
I, pp. 715–726.

[10] M. Weimer, A. Karatzoglou, and A. J. Smola, “Adaptive collaborative filtering,”
in Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys
2008, Lausanne, Switzerland, October 23-25, 2008, pp. 275–282.

[11] “Linear regression,” in Encyclopedia of Parallel Computing, 2011, p. 1033.

[12] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear Algebra.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2011.

115

[13] S. Zhe, K. Zhang, P. Wang, K.-c. Lee, Z. Xu, Y. Qi, and Z. Ghahramani,
“Distributed flexible nonlinear tensor factorization,” in Advances in Neural In-
formation Processing Systems (NIPS), 2016.

[14] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,”
in NIPS’01, T. Leen, T. Dietterich, and V. Tresp, Eds. MIT Press, 2001, pp.
556–562.

[15] J. Bennett and S. Lanning, “The netflix prize,” KDD Cup, pp. 35–35, 2007.

[16] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation rank-
ing: Bringing order to the web.” Stanford InfoLab, Technical Report 1999-66,
November 1999.

[17] A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond: The Science
of Search Engine Rankings. Princeton, NJ, USA: Princeton University Press,
2006.

[18] N. A. Holtzman, P. D. Murphy, M. S. Watson, and P. A. Barr, “Predictive
genetic testing: From basic research to clinical practice,” Science, vol. 278, no.
5338, pp. 602–605, 1997.

[19] M. V Rockman and L. Kruglyak, “Genetics of global gene expression,” vol. 7,
pp. 862–72, 12 2006.

[20] J. Qi, H. Asl, J. Björkegren, and T. Michoel, “krux: matrix-based non-
parametric eqtl discovery.” BMC Bioinformatics, vol. 15, p. 11, 2014.

[21] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances in
Neural Information Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a meeting held December
5-8, 2013, Lake Tahoe, Nevada, United States., 2013, pp. 3111–3119.

[22] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix factor-
ization,” in Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada, 2014, pp. 2177–2185.

[23] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning,
ser. Springer Series in Statistics. New York, NY, USA: Springer New York Inc.,
2001.

[24] Y. Goldberg and O. Levy, “word2vec explained: deriving mikolov et al.’s
negative-sampling word-embedding method,” CoRR, vol. abs/1402.3722, 2014.

[25] M. F. Goodchild, “Twenty years of progress: Giscience in 2010,” J. Spatial
Information Science, vol. 1, no. 1, pp. 3–20, 2010.

[26] V. Maliene, V. Grigonis, V. Palevicius, and S. Griffiths, “Geographic informa-
tion system: old principles with new capabilities,” Urban Design International,
vol. 16, no. 1, pp. 1–6, 2011.

[27] X. Wang, A. Chowdhery, and M. Chiang, “Networked drone cameras for sports
streaming,” in 37th IEEE International Conference on Distributed Computing
Systems, ICDCS 2017, Atlanta, GA, USA, June 5-8, 2017, 2017, pp. 308–318.

116

[28] D. Albani, J. IJsselmuiden, R. Haken, and V. Trianni, “Monitoring and map-
ping with robot swarms for agricultural applications,” in 14th IEEE Interna-
tional Conference on Advanced Video and Signal Based Surveillance, AVSS
2017, Lecce, Italy, August 29 - September 1, 2017, 2017, pp. 1–6.

[29] K. Clarke, Getting Started with Geographic Information Systems. Upper Saddle
River, NJ: Prentice Hall, 1997.

[30] “Hadoop,” http://hadoop.apache.org/.

[31] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM
Rev., vol. 51, no. 3, pp. 455–500, Aug. 2009.

[32] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database systems - the complete
book (2. ed.). Pearson Education, 2009.

[33] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large
clusters,” in OSDI’04. USENIX Association, 2004.

[34] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, “Hama: An effi-
cient matrix computation with the mapreduce framework,” in CLOUDCOM’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 721–726.

[35] “Mahout,” http://mahout.apache.org/, 2017.

[36] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani,
S. Tatikonda, Y. Tian, and S. Vaithyanathan, “Systemml: Declarative machine
learning on mapreduce,” in ICDE’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 231–242.

[37] “R,” https://www.r-project.org/.

[38] M. Zaharia, An Architecture for Fast and General Data Processing on Large
Clusters. New York, NY, USA: Association for Computing Machinery and
Morgan, 2016.

[39] E. R. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. E. Gonzalez,
M. J. Franklin, M. I. Jordan, and T. Kraska, “Mli: An api for distributed
machine learning,” in ICDM, 2013, pp. 1187–1192.

[40] “Mllib,” http://spark.apache.org/mllib/, 2018.

[41] L. Yu, Y. Shao, and B. Cui, “Exploiting matrix dependency for efficient dis-
tributed matrix computation,” in SIGMOD’15. New York, NY, USA: ACM,
2015, pp. 93–105.

[42] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[43] D. Kernert, F. Köhler, and W. Lehner, “Spmacho - optimizing sparse linear
algebra expressions with probabilistic density estimation,” in EDBT, 2015, pp.
289–300.

http://hadoop.apache.org/
http://mahout.apache.org/
https://www.r-project.org/
http://spark.apache.org/mllib/

117

[44] M. Bohm, D. R. Burdick, A. V. Evfimievski, B. Reinwald, F. R. Reiss, P. Sen,
S. Tatikonda, and Y. Tian, “Systemml’s optimizer: Plan generation for large-
scale machine learning programs,” IEEE Data Eng. Bull., vol. 37, no. 3, pp.
52–62, 2014.

[45] L. Muchnik, S. Pei, L. C. Parra, S. D. S. Reis, J. S. Andrade Jr, S. Havlin, and
H. A. Makse, “Origins of power-law degree distribution in the heterogeneity of
human activity in social networks,” Sci. Rep., vol. 3, May 2013.

[46] S. K. Thompson, Sampling, ser. Wiley series in probability and statistics. New
York: J. Wiley, 2002.

[47] M. I. Jordan, Ed., Learning in Graphical Models. Cambridge, MA, USA: MIT
Press, 1999.

[48] J. Nocedal and S. J. Wright, Numerical optimization, ser. Springer Series in
Operations Research and Financial Engineering. Berlin: Springer, 2006.

[49] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools (2Nd Edition). Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2006.

[50] T. A. Davis, Direct Methods for Sparse Linear Systems (Fundamentals of Algo-
rithms 2). Philadelphia, PA, USA: Society for Industrial and Applied Mathe-
matics, 2006.

[51] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in NSDI’12. San Jose,
CA: USENIX, 2012, pp. 15–28.

[52] “Blas,” http://www.netlib.org/blas/.

[53] “Lapack,” http://www.netlib.org/lapack/.

[54] “Scalapack,” http://www.netlib.org/scalapack/.

[55] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale graph
mining system implementation and observations,” in ICDM’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 229–238.

[56] Z. Qian, X. Chen, N. Kang, M. Chen, Y. Yu, T. Moscibroda, and Z. Zhang,
“Madlinq: Large-scale distributed matrix computation for the cloud,” in Eu-
roSys’12. New York, NY, USA: ACM, 2012, pp. 197–210.

[57] M. Boehm, S. Tatikonda, B. Reinwald, P. Sen, Y. Tian, D. R. Burdick, and
S. Vaithyanathan, “Hybrid parallelization strategies for large-scale machine
learning in systemml,” Proc. VLDB Endow., vol. 7, no. 7, pp. 553–564, Mar.
2014.

[58] A. Elgohary, M. Boehm, P. J. Haas, F. R. Reiss, and B. Reinwald, “Compressed
linear algebra for large-scale machine learning,” Proc. VLDB Endow., vol. 9,
no. 12, pp. 960–971, Aug. 2016.

[59] P. G. Brown, “Overview of scidb: Large scale array storage, processing and
analysis,” in SIGMOD’10. New York, NY, USA: ACM, 2010, pp. 963–968.

http://www.netlib.org/blas/
http://www.netlib.org/lapack/
http://www.netlib.org/scalapack/

118

[60] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, “Scalapack: a scalable
linear algebra library for distributed memory concurrent computers in frontiers
of massively parallel computation,” in Symposium on the Frontiers of Massively
Parallel Computation, 1992.

[61] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba,
“End to end learning for self-driving cars,” CoRR, vol. abs/1604.07316, 2016.

[62] C. Manning and D. Klein, “Optimization, maxent models, and conditional es-
timation without magic,” in Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computational Linguistics on Hu-
man Language Technology: Tutorials - Volume 5, ser. NAACL-Tutorials ’03.
Stroudsburg, PA, USA: Association for Computational Linguistics, 2003, pp.
8–8.

[63] J. Beel, B. Gipp, S. Langer, and C. Breitinger, “Research-paper recommender
systems: A literature survey,” Int. J. Digit. Libr., vol. 17, no. 4, pp. 305–338,
Nov. 2016.

[64] F. Zhao, M. Xiao, and Y. Guo, “Predictive collaborative filtering with side
information,” in Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence, ser. IJCAI’16. AAAI Press, 2016, pp. 2385–2390.

[65] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark sql: Relational
data processing in spark,” in SIGMOD ’15, 2015, pp. 1383–1394.

[66] E. F. Codd, “A relational model of data for large shared data banks,” Commun.
ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970.

[67] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.

[68] A. Eldawy, M. F. Mokbel, and C. Jonathan, “Hadoopviz: A mapreduce frame-
work for extensible visualization of big spatial data,” ICDE’16, pp. 601–612,
2016.

[69] B. Huang, S. Babu, and J. Yang, “Cumulon: Optimizing statistical data anal-
ysis in the cloud,” in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’13. New York, NY, USA:
ACM, 2013, pp. 1–12.

[70] M. Boehm, M. W. Dusenberry, D. Eriksson, A. V. Evfimievski, F. M. Manshadi,
N. Pansare, B. Reinwald, F. R. Reiss, P. Sen, A. C. Surve, and S. Tatikonda,
“Systemml: Declarative machine learning on spark,” Proc. VLDB Endow.,
vol. 9, no. 13, pp. 1425–1436, Sep. 2016.

[71] T. Elgamal, S. Luo, M. Boehm, A. V. Evfimievski, S. Tatikonda, B. Reinwald,
and P. Sen, “SPOOF: sum-product optimization and operator fusion for large-
scale machine learning,” in CIDR’17, 8th Biennial Conference on Innovative
Data Systems Research, 2017.

119

[72] R. Brijder, F. Geerts, J. V. den Bussche, and T. Weerwag, “On the expressive
power of query languages for matrices,” in 21st International Conference on
Database Theory, ICDT 2018, March 26-29, 2018, Vienna, Austria, 2018, pp.
10:1–10:17.

[73] M. Schleich, D. Olteanu, and R. Ciucanu, “Learning linear regression models
over factorized joins,” in Proceedings of the 2016 International Conference on
Management of Data, ser. SIGMOD ’16. New York, NY, USA: ACM, 2016,
pp. 3–18.

[74] A. Kumar, J. Naughton, and J. M. Patel, “Learning generalized linear models
over normalized data,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’15. New York, NY, USA:
ACM, 2015, pp. 1969–1984.

[75] A. Kumar, J. Naughton, J. M. Patel, and X. Zhu, “To join or not to join?:
Thinking twice about joins before feature selection,” in Proceedings of the 2016
International Conference on Management of Data, ser. SIGMOD ’16. New
York, NY, USA: ACM, 2016, pp. 19–34.

[76] L. Chen, A. Kumar, J. Naughton, and J. M. Patel, “Towards linear algebra over
normalized data,” Proc. VLDB Endow., vol. 10, no. 11, pp. 1214–1225, Aug.
2017.

[77] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann, “The multi-
dimensional database system rasdaman,” in Proceedings of the 1998 ACM SIG-
MOD International Conference on Management of Data, ser. SIGMOD ’98.
New York, NY, USA: ACM, 1998, pp. 575–577.

[78] E. Soroush, M. Balazinska, and D. Wang, “Arraystore: A storage manager for
complex parallel array processing,” in Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’11. New
York, NY, USA: ACM, 2011, pp. 253–264.

[79] J. Duggan, O. Papaemmanouil, L. Battle, and M. Stonebraker, “Skew-aware join
optimization for array databases,” in Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’15. ACM,
2015, pp. 123–135.

[80] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke,
Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale machine learning,”
in Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation, ser. OSDI’16. Berkeley, CA, USA: USENIX Association,
2016, pp. 265–283.

[81] P. Mehta, S. Dorkenwald, D. Zhao, T. Kaftan, A. Cheung, M. Balazinska,
A. Rokem, A. Connolly, J. Vanderplas, and Y. AlSayyad, “Comparative evalu-
ation of big-data systems on scientific image analytics workloads,” Proc. VLDB
Endow., vol. 10, no. 11, pp. 1226–1237, Aug. 2017.

[82] R. Zalipynis and R. Antonio, “ChronosDB: Distributed, file based, geospatial
array DBMS,” PVLDB, vol. 11, no. 10, pp. 1247–1261, 2018.

120

[83] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek,
K. S. Ng, C. Welton, X. Feng, K. Li, and A. Kumar, “The madlib analytics
library: Or mad skills, the sql,” Proc. VLDB Endow., vol. 5, no. 12, pp. 1700–
1711, 2012.

[84] S. Luo, Z. Gao, M. Gubanov, L. Perez, and C. Jermaine, “Scalable linear algebra
on a relational database system,” in ICDE’17. Washington, DC, USA: IEEE
Computer Society, 2017, pp. 523–534.

[85] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang, “Distributed nonneg-
ative matrix factorization for web-scale dyadic data analysis on mapreduce,”
in Proceedings of the 19th International Conference on World Wide Web, ser.
WWW ’10. New York, NY, USA: ACM, 2010, pp. 681–690.

[86] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on
internet of things: Architecture, enabling technologies, security and privacy,
and applications,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125–
1142, 2017.

[87] A. Zanella, N. Bui, A. P. Castellani, L. Vangelista, and M. Zorzi, “Internet of
things for smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1, pp.
22–32, 2014.

[88] N. D. Nguyen, T. Nguyen, and S. Nahavandi, “System design perspective for
human-level agents using deep reinforcement learning: A survey,” IEEE Access,
vol. 5, pp. 27 091–27 102, 2017.

[89] “Pytorch,” https://pytorch.org/.

[90] “Mxnet,” https://mxnet.apache.org/.

[91] “The microsoft cognitive toolkit,” https://www.microsoft.com/en-us/
cognitive-toolkit/.

[92] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90,
2017.

[93] D. Chen and B. K. Mak, “Multitask learning of deep neural networks for low-
resource speech recognition,” IEEE/ACM Trans. Audio, Speech & Language
Processing, vol. 23, no. 7, pp. 1172–1183, 2015.

[94] N. Majumder, S. Poria, A. F. Gelbukh, and E. Cambria, “Deep learning-based
document modeling for personality detection from text,” IEEE Intelligent Sys-
tems, vol. 32, no. 2, pp. 74–79, 2017.

[95] Z. Jiang, L. Li, D. Huang, and L. Jin, “Training word embeddings for deep
learning in biomedical text mining tasks,” in 2015 IEEE International Confer-
ence on Bioinformatics and Biomedicine, BIBM 2015, Washington, DC, USA,
November 9-12, 2015, 2015, pp. 625–628.

[96] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

https://pytorch.org/
https://mxnet.apache.org/
https://www.microsoft.com/en-us/cognitive-toolkit/
https://www.microsoft.com/en-us/cognitive-toolkit/

121

[97] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep
reinforcement learning: A brief survey,” IEEE Signal Process. Mag., vol. 34,
no. 6, pp. 26–38, 2017.

[98] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with
deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,
2016.

[99] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering the game of go
without human knowledge,” Nature, vol. 550, pp. 354–359, Oct. 2017.

[100] M. A. Alsheikh, D. Niyato, S. Lin, H. Tan, and Z. Han, “Mobile big data
analytics using deep learning and apache spark,” IEEE Network, vol. 30, no. 3,
pp. 22–29, 2016.

[101] Y. Zhou, S. Zhao, X. Wang, and W. Liu, “Deep learning model and its ap-
plication in big data,” in Design, User Experience, and Usability: Theory and
Practice - 7th International Conference, DUXU 2018, Held as Part of HCI In-
ternational 2018, Las Vegas, NV, USA, July 15-20, 2018, Proceedings, Part I,
2018, pp. 795–806.

[102] X. Chen and X. Lin, “Big data deep learning: Challenges and perspectives,”
IEEE Access, vol. 2, pp. 514–525, 2014.

[103] I. J. Goodfellow, Y. Bengio, and A. C. Courville, Deep Learning, ser. Adaptive
computation and machine learning. MIT Press, 2016.

[104] W. G. Hatcher and W. Yu, “A survey of deep learning: Platforms, applications
and emerging research trends,” IEEE Access, vol. 6, pp. 24 411–24 432, 2018.

[105] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” CoRR, vol. abs/1301.3781, 2013.

[106] S. Stergiou, Z. Straznickas, R. Wu, and K. Tsioutsiouliklis, “Distributed nega-
tive sampling for word embeddings,” in Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, Cali-
fornia, USA., 2017, pp. 2569–2575.

[107] A. Thomas and A. Kumar, “A comparative evaluation of systems for scalable
linear algebra-based analytics,” PVLDB, vol. 11, no. 13, pp. 2168–2182, 2018.

VITA

122

VITA

Yongyang Yu has obtained an M.S. degree (2010), and a B.S. degree (2008) in the

department of Computer Science and Technology from Harbin Institute of Technol-

ogy (HIT), China. His research interests include database systems, machine learning,

and matrix computations.

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Motivation
	Challenges in Matrix-aware Relational Query Processing
	Hypothesis of the Dissertation
	Summary of Contributions
	Dissertation Outline

	Preliminaries and Notations
	Notations
	Matrix operators
	Relational operators

	Query Processing for Queries with Matrix-only Operators in Big Data Systems
	Introduction
	An Overview of Distributed Processing of Matrix Computations
	Plan Generation for Efficient Query Execution
	Cost-based Dynamic Optimization
	Rule-based heuristics
	Generation of Execution Plans Involving Big Matrix-data Partitioning

	Local Execution and System Implementation
	Physical Storage of a Local Matrix
	System Design and Implementation

	Related Work
	Performance Evaluation
	PageRank
	GNMF
	BFGS
	Sparse matrix chain multiplication
	Biological data analysis
	Comparison with Non-MapReduce-based Systems

	Concluding Remarks

	Big-Data Query Processing for Queries That Involve Both Relational and Matrix Operators
	Introduction
	An Overview of Distributed Relational Query Processing over Big Matrix Data
	Relational Operators on Matrix Data
	Relational Algebra on Matrix Data
	Relational Selection on Matrix Data
	Projection on Matrix Data
	Aggregation on Matrix Data
	Relational Join on Matrix Data

	System Implementation
	Physical Storage of Matrix Joins (Tensor)
	System Design and Implementation

	Related Work
	Performance Evaluation
	Experiment Setup
	Aggregation on a Gram Matrix
	Selection over Matrix Data
	Cross-product
	Join on dimensions
	Join on Entries
	PNMF

	Concluding Remarks

	Optimizing Complex Matrix-aware Relational Query Evaluation Pipelines – Deep-learning as a Driving Application
	Introduction
	Overview of Deep-learning Models
	Required Operations for Deep-learning
	Query Interface
	Performance Evaluation – Skip-Gram
	Concluding Remarks

	Conclusion
	REFERENCES
	VITA

