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Granular material blending plays an important role in many industries ranging from those that 

manufacture pharmaceuticals to those producing agrochemicals. The ability to create 

homogeneous powder blends can be critical to the final product quality. For example, insufficient 

blending of a pharmaceutical formulation may have serious consequences on product efficacy and 

safety. Unfortunately, tools for quantitatively predicting particulate blending processes are lacking. 

Most often, parameters that produce an acceptable degree of blending are determined empirically. 

 

The objective of this work was to develop a validated model for predicting the magnitude and rate 

of granular material mixing and segregation for binary mixtures of granular material in systems of 

industrial interest. The model utilizes finite element method simulations to determine the bulk-

level granular velocity field, which is then combined with particle-level diffusion and segregation 

correlations using the advection-diffusion-segregation equation.  

 

An important factor to the success of the finite element method simulation used in the current work 

is the material constitutive model used to represent the granular flow behavior. In this work, the 

Mohr-Coulomb elastoplastic (MCEP) model was used. The MCEP model parameters were 

calibrated both numerically and experimentally and the procedure is described in the current work. 

Additionally, the particle-level diffusion and segregation correlations are important to the accurate 

prediction of mixing and segregation rates. The current work derived the diffusion and segregation 

correlations from published literatures and determined a methodology for obtaining the particle 

diffusion and segregation parameters from experiments. 

 

The utility of this modelling approach is demonstrated by predicting mixing patterns in a rotating 

drum and Tote blender as well as segregation patterns in a rotating drum and during the discharge 
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of conical hoppers. Indeed, a significant advantage of the current modeling approach compared to 

previously published models is that arbitrary system geometries can be modeled. 

 

The model predictions were compared with both DEM simulation and experiment results. The 

model is able to quantitatively predict the magnitude and rate of powder mixing and segregation 

in two- and three-dimensional geometries and is computationally faster than DEM simulations. 

Since the numerical approach does not directly model individual particles, this new modeling 

approach is well suited for predicting mixing and segregation in large industrial-scale systems. 
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 INTRODUCTION 

Blending of particulate materials is a common manufacturing unit operation and plays an important 

role in many industries, such as those that produce chemicals, pharmaceuticals, food products, and 

agrochemicals. Generating a homogeneous mixture can be critical to product quality and 

performance and, thus, proper design and operation of a blending operation is essential [1]. 

Unintentionally heterogeneous powder blends can result in inconsistencies during processing and 

unacceptable product quality. For example, insufficient blending of a pharmaceutical formulation 

may have serious consequences on product efficacy and safety.  

 

A wide variety of blenders are available in the marketplace [2,3]. Unfortunately, predictive 

engineering design of industrial powder blenders remains underdeveloped due to the lack of 

quantitative modeling tools. As a result, design and scale-up of blending equipment often relies on 

empirical studies and parameters that produce an acceptable degree of blending are determined 

empirically. Numerical simulations using the discrete element method (DEM) have been used in 

recent years to predict blending unit operations and are considered state-of-the-art. However, this 

modeling approach is not well-suited for modeling industrial-scale blenders due to computational 

limitations [4]. These models must assume particle sizes orders of magnitude larger than the true 

particle sizes [5–11]. This assumption calls into question the quantitative accuracy of the 

predictions, particularly at smaller scales of scrutiny. Moreover, determining particle-level input 

parameters to use in such models is challenging and not widely agreed upon [12–14]. 

 

In this work, we present a new multi-scale modeling approach for predicting mixing and 

segregation of granular materials in different geometries. A finite element method (FEM) 

simulation is used to predict the shape of the material domain and the advective flow field. The 

velocity field results are used within a finite difference formulation of the advection-diffusion-

segregation (ADS) equation, which predicts the concentration evolution, i.e., mixing and 

segregation, of the material. The model is considered multi-scale in the sense that a continuum 

model is used for bulk flow behavior while a local model is used for particle diffusive behavior. 
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In the multi-scale model, the diffusion and segregation parameters used within the ADS equation 

were calibrated through experiments or derived from previous literature. Different geometries 

were considered, such as the rotating drum, the Tote blender, and conical hoppers. The model is 

able to quantitatively predict the magnitude and rate of powder mixing and segregation in two- 

and three-dimensional geometries and is computationally faster than DEM simulations. This new 

modeling approach is well suited for predicting mixing and segregation in industrial-scale systems, 

which are beyond the scope of current DEM modeling techniques. 
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 BACKGROUND 

The components of a granular mixture typically have different properties, such as size and shape, 

which can result in the segregation of the components. Many phenomena can result in segregation, 

such as vibration-driven percolation and convection [15–17] and elutriation [18]. In particular, 

gravity-driven segregation in dense, sheared granular flows, known as shear-driven percolation 

[19–21], is a common mechanism that occurs during industrial processing. In shear-driven 

percolation, small particles have a larger probability of falling through the gaps that form between 

larger particles when the particle assembly is subject to shear.  As a result, smaller particles collect 

below the shear layer leaving the larger particles at the top [19,20,22–26]. 

 

The computational discrete element method (DEM) has been used extensively for predicting 

particle mixing and segregation dynamics and is considered state-of-the-art [7,11,27,28]. DEM 

simulations are particularly helpful for understanding blending physics at the particle level. For 

example, recent DEM simulations by Fan et al. [29] and Khola et al. [30] produced expressions 

for particle diffusion coefficients and segregation rates using simple heap flow and shear cell 

geometries, respectively. Other studies have investigated the effects of particle size, shape and 

cohesion, also in simple geometries [27,28,31,32]. Although these studies have provided valuable 

qualitative insight, they are limited in their quantitative predictions by computational requirements, 

at least using realistic particle sizes. Typical DEM simulations model on the order of 106 particles 

at most, with some simulations reaching as many as 108 particles. However, even a small, lab-

scale blender containing 100 m particles contains more than 1010 particles, far exceeding what is 

possible to model with standard computational tools. Typically, to maintain the same fill level in 

the model that is used in the real process, particle sizes are made artificially larger in the DEM 

simulations, often by two to three orders of magnitude. Although DEM can still produce 

qualitatively reasonable behavior using such large particles, it is not clear that the models are 

accurate quantitatively. Indeed, previous work [27,33] has shown that particle size can have an 

influence on the rate and extent of blending. Hence, DEM may not produce quantitatively accurate 

results for systems of industrial interest 
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In addition to issues related to particle size, the use of DEM simulations also requires knowledge 

of a number of particle material properties, such as elastic modulus and Poisson’s ratio, and particle 

interaction properties, such as coefficients of restitution and sliding and rolling friction coefficients. 

Direct measurements of these properties are often impractical, particularly for particles smaller 

than 1 mm. Often, parametric studies are performed to determine the sensitivity of the simulation 

results on the unknown properties in order to account for parameter value uncertainty. Back-fitting 

of bulk simulation results to bulk experimental measurements is becoming increasingly common, 

but questions remain as to whether (a) different sets of parameters might also fit the experimental 

results well, and (b) inaccuracies in the DEM model are disguised by parameter fitting [12,14]. 

Ideally, those simulations would rely on a small number of well-defined, easy-to-perform bulk 

level measurements. 

 

Besides computational DEM models, analytical continuum models have also been proposed for 

modeling mixing and segregation [19,34,35]. A number of studies have modeled shear-driven 

percolation segregation using a continuum approach that incorporates advection due to mean flow, 

percolation-driven segregation, and diffusion [19,34–39]. Most of these models were used to gain 

a qualitative understanding of the complex physics while some showed good agreement with 

experiments [40,41]. Recently developed continuum models utilized discrete element method 

(DEM) simulations to derive particle diffusion and segregation correlations at a local, i.e., particle-

level, scale and combined these correlations with analytically-derived advection fields at the 

macro-scale [31,42,43]. Predictions from these studies were shown to be quantitatively accurate 

compared with DEM-only simulations and experiments. However, since they depend on analytical 

solutions for the macroscopic flow field, their use is restricted to simple two-dimensional 

geometries, such as a simple heap flow. 

 

A variety of flows have been studied using the continuum approach, such as chute [31,38,40], plug 

[35], annular shear [37], and rotating drum [42] flows. However, the domains of these flows were 

simple, two-dimensional geometries amenable to analytical solutions for the macroscopic flow 

field. Indeed, the shear layers in these geometries are often approximated as having linear or 

exponential velocity profiles located at a free surface. 
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To study more complex geometries, a computational approach is needed for obtaining the 

macroscopic flow field.  For continuum modeling, this means that a constitutive model describing 

the stress-strain behavior is required.  Many constitutive models have been developed to describe 

granular flow dynamics, such as the Schaeffer model [44,45], the μ(I) model [46–48], and the 

hydrodynamic model [49–51]. These models have been used to predict the flow behavior of 

granular materials in more complex configurations than those studied analytically, such as silos 

and hoppers [47,49,50], a high-shear granulator [48], and an asymmetric double cone mixer [51]. 

Although good agreement with DEM simulations and experiments have been observed for several 

aspects of these flows, such as velocity fields and wall stress profiles [50,52], these flows were 

still mainly restricted to two-dimensional geometries. Recently, finite element method (FEM) 

simulations with Drucker–Prager [53–55] and Mohr-Coulomb [56–58] constitutive material 

models have been used to study the granular flow behavior in both two- and three-dimensional 

systems, and quantitatively accurate predictions were observed. The advantages of using FEM 

simulations with an elasto-plastic material model over previous constitutive models are that (a) 

unsteady granular flows in three-dimensional configurations can be simulated, and (b) 

experimental characterization of the required material properties is usually straightforward using, 

for example, standard shear cell equipment. 

 

Only recently have researchers begun to combine computationally predicted velocity fields with 

expressions for particle diffusion and segregation. For example, Bertuola et al. [59] predicted 

segregation in a discharging two-dimensional hopper using segregation correlations derived by 

Fan et al. [31] and Hajra et al. [60], and combined these correlations with flow field predictions 

using a hydrodynamic model for particle flow. The model was able to quantitatively predict the 

degree of segregation compared with published experiments after key model parameters were 

fitted to the experimental data. It is worth noting that the hydrodynamic model used to simulate 

the macroscopic flow behavior was less accurate than the one predicted by a Mohr-Coulomb model 

[57,58]. Bai et al. [61] used an FEM model assuming Mohr-Coulomb constitutive behavior to 

predict the velocity field in a cylindrical, bladed mixer, which was shown to be qualitatively 

accurate compared to DEM simulations. They also predicted the degree of blending by assuming 

convective mixing only, but observed a dependence of the mixing rate on FEM mesh size. 
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 THESIS GOAL AND OBJECTIVES 

Based on the prior research in the field of granular material mixing and segregation modeling, the 

following goal and objectives are proposed for this thesis work. 

3.1 Thesis goal 

Develop a validated model for predicting the magnitude and rate of granular material mixing and 

segregation in systems of industrial interest. 

3.2 Thesis objectives 

The following objectives are derived for this thesis work: 

 Develop a finite element method (FEM) model with Mohr-Coulomb material properties to 

predict the advective flow field of granular materials. 

 Develop a multi-scale model that combines particle diffusion and segregation correlations 

with the advective flow field information from FEM simulations to predict the mixing and 

segregation of granular materials. 

 Determine a methodology for obtaining the Mohr-Coulomb material properties. 

 Determine a methodology for obtaining the particle diffusion and segregation correlations. 

 Develop experiments using different equipment to validate that the multi-scale model is 

able to quantitatively predict the magnitude and rate of granular material mixing and 

segregation. 

 Extend the multi-scale model to study the mixing and segregation of materials with 

different material properties. 
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 TWO-DIMENSIONAL MULTI-SCALE MIXING MODEL 

* The content of this chapter has been published in the AIChE Journal (doi:10.1002/aic.16179). 

 

This chapter investigates mixing in a rotating drum using the multi-scale modeling approach. 

Section 4.1 introduces the finite element modeling approach and its implementations; Section 4.2 

describes the advection-diffusion equation used in the multi-scale model and the numerical method 

used to solve it; Section 4.3 describes the DEM simulations used for comparison and the material 

calibration methods; Section 4.4 describes the comparisons between the DEM simulations and 

multi-scale model predictions; Section 4.5 describes the parametric studies performed to help 

understand the effects of different parameters in the multi-scale model. 

 

4.1 Finite element method model 

A three-dimensional FEM model is used in the present chapter to provide predictions of the 

advective flow field in a cylindrical rotating drum. Prior works by Zheng and Yu [56,57] have 

shown that FEM models can provide good predictions of the flow behavior of bulk granular 

materials. The following sub-sections describe the FEM model implementations used in the 

present chapter. 

 

4.1.1 Model geometry and boundary conditions 

The FEM model used here is derived from the one described by Zheng and Yu [56]. For 

convenience, several aspects of this model are presented here. The commercial FEM package 

Abaqus/Explicit V6.14 is used to perform the simulations. The system geometry is shown in Figure 

4.1 for a lab scale rotating drum with a diameter of 140 mm. A narrow width of 1 cm is used for 

computational efficiency. Note that both the front and back sides of the Eulerian mesh are regarded 

as planes of symmetry in the model, which is analogous to having periodic boundaries. The drum 

wall is meshed separately as a rigid shell, with the only degree of freedom being rotation about the 

z axis. The rotational speed remains constant throughout the simulations and equal to 6 rpm (0.628 

rad/s). Gravity is included in the model with g = 9.8 m/s2 directed in the negative y direction. 
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Figure 4.1 A schematic of the geometry modeled in the FEM simulations. 

 

Because the material in the drum is anticipated to deform substantially, an Eulerian element 

formulation is used in the model to contend with potential mesh distortion issues. The entire 

simulation domain is modeled using 8-node, linear, Eulerian brick elements (EC3D8R) while the 

drum circumference is assumed to be a non-deformable, frictional, Lagrangian boundary. Within 

the Eulerian domain, the material stress-strain behavior is modeled using the Mohr-Coulomb 

elastoplastic (MCEP) model. Upon yielding, the material flows plastically. The continuity 

equation is discretized using a coupled Eulerian-Lagrangian formulation to efficiently model free 

surfaces and rigid walls. Details of this model can be found in Abaqus documentation [62]. 

Previous work [56–58] has shown that the MCEP model can describe the behavior of flowing 

granular materials well. Moreover, as reported by Zheng and Yu [56], the Young’s modulus, 

Poisson’s ratio, and bulk density of the material have little influence on the material flow behavior 

and, hence, can be treated as constant values. Note that although the FEM algorithm includes 

inertial terms in the momentum equation, there is no stress dependence on strain rate in the MCEP 

material model. There are other constitutive models available that do include strain-rate effects 

[63,64]. The methodology for obtaining the MCEP material properties used within the simulation 

are described in the following sections. 
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4.1.2 Abaqus implementation 

Since an Eulerian element formulation is used in the current model to eliminate mesh distortion, 

the Coupled Eulerian-Lagrangian (CEL) approach in Abaqus is applied to handle interactions 

between the highly deformable material elements and stiff wall elements. Details of this approach 

can be found in the Abaqus documentation [62]. In the Eulerian framework, elements do not 

represent specific masses of material, but instead represent specific regions in space. The volume 

of material within an element is represented by the Eulerian Volume Fraction (EVF). A value of 

EVF = 0 indicates that no material is present in the element while EVF = 1 indicates that the 

element is completely filled with material. 

 

All Eulerian elements were initially empty (EVF = 0) and the initial bed state was generated by 

filling a fraction of the elements with material (EVF = 1), which is highlighted in blue in Figure 

4.1. Next, the material was allowed to settle as the gravitational acceleration was slowly increased 

from zero to its final value. At this point, the drum was allowed to rotate and the simulation was 

considered started. This gravity-varying filling procedure was used to fill the drum and reduce the 

time needed for the material to completely settle before rotation. The filling level of the drum, 

defined as the maximum level bed depth divided by the drum diameter, was 0.35. 

 

Although the current chapter uses the FEM model to predict the macroscopic flow field in a 

rotating cylindrical drum, several trials were also performed to investigate the material stresses in 

the drum. Zheng and Yu [56] showed that the CEL approach does not impose specific requirements 

on the shape or dimensions of the Eulerian element mesh since the mesh can cover the entire 

domain of the modeled system. However, in the current work it was observed that the predicted 

material stresses are sensitive to the Eulerian domain shape. Figure 4.2 shows two different 

meshing schemes for the Eulerian domain. Figure 4.2(a) is the rectangular structured mesh used 

by Zheng and Yu while Figure 4.2(b) is a cylindrical structured mesh tested in the current work. 

Note that the central hole in Figure 4.2(b) is used to maintain the structured mesh for the cylindrical 

domain and does not affect the results since there is no material within that region. Mesh 

dependence tests were carried out for both meshing algorithms to verify that the meshes were 

sufficiently resolved for the moving system. As shown in Figure 4.3, the cylindrical structured 

mesh provides better predictions of the hydrostatic stress field, especially near the rigid drum wall, 
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since this meshing geometry ensures that the rigid wall does not cut through Eulerian elements and 

allows for better contact detection. Nevertheless, since the current work does not rely on a 

predicted stress field, no further study was performed on this topic. As mentioned previously, the 

mesh geometry plays little role on the velocity field; hence, a rectangular structured mesh was used 

due to its computational efficiency. 

 

 

Figure 4.2 Two different meshing algorithms for the cylindrical drum (side view): (a) rectangular 

structured mesh, (b) cylindrical structured mesh, for the Eulerian domain. 

 

Figure 4.3 Stress distributions for the two meshes shown in Figure 4.2 when gravity is applied: 

(a) rectangular structured mesh, (b) cylindrical structured mesh. The colors represent pressure in 

Pascals. 
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4.2 The multi-scale mixing model 

4.2.1 Advection-diffusion equation 

As mentioned previously, the FEM simulations provide only the velocity field information for 

material movement in the blender. Hence, in order to model the spatiotemporal evolution of the 

concentration of a particular material species, c, an additional model is needed. This model is the 

advection-diffusion equation, 

   
c

c c
t


  


D v ,         (4.1) 

where c is the local concentration of a particular species of material, D is the diffusion coefficient 

for that species, and v is the local advective velocity vector. For simplicity, incompressible flow is 

assumed in the current work, which gives the local mass conservation equation, 

0 =v .           (4.2) 

 

Previous studies [31,42,65] have been devoted to understanding the underlying mechanisms 

governing particle mixing and segregation and developing analytical and numerical methods for 

predicting blending dynamics. These modeling frameworks incorporated advective movement of 

material using either DEM simulation measurements or theoretical expressions for simple 

geometries, such as steady flow down a free surface. The primary difference with the present work 

is that the advective flow field is generated using an FEM model, which greatly increases the types 

and sizes of systems that can be modeled. 

 

Since the current system of interest, a cylindrical rotating drum, is nominally two-dimensional, the 

advection-diffusion equation is simplified for a two-dimensional case. Note that there are no 

significant limitations to modeling fully three-dimensional flows, however. Since the current 

model only focuses on self-diffusion during blending, no segregation is considered. Chapter 6 will 

incorporate a segregation component into the multi-scale modeling framework. 

 

Previous works [31,42] have treated the self-diffusion coefficient D as a constant value for 

simplicity. However, studies [66–68] have shown that D is, in fact, a tensor quantity with 

components Dij. Utter et al. [66] found that the off-diagonal components Dxy and Dyx are an order 

of magnitude smaller than the diagonal components Dxx and Dyy and, hence, can be reasonably 
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ignored. The advection-diffusion equation (Eq. (4.1)) written in index notation and making use of 

Eq. (4.2) is, 

ij i

i j i

v
c c c

D
t x x x


    

       

,         (4.3) 

which may be expanded to give, 

2 2

2 2

yyxx
x xx y yy

DDc c c c c
v D v D

t x x x y y y

      
       

         
,     (4.4) 

taking into account the diffusion coefficient assumptions. Utter et al. [66] also found that the 

particle diffusivity is proportional to the local shear rate and is approximately 1.9 times larger 

along the mean flow direction than it is in the perpendicular direction. A similar relationship has 

been reported by Hsiau et al. [67]. More recently, Fan et al. [29] measured the self-diffusion 

coefficient D in the spanwise direction of a heap flow and found that when the shear rate is not too 

small, 

2~D d ,           (4.5)   

where   is the local shear rate in the direction perpendicular to bed free surface and d  is the local 

mean particle diameter. 

 

Combining Eq. (4.5) with Utter et al.’s relationship and dividing the local shear rate into x and y 

directions, the shear rate-dependent diffusion coefficient D can be written as, 

2 2

1 2

2 2

yy 1 2

xx y x

x y

D k d k d

D k d k d

 

 

 

 
.         (4.6) 

where 
y yv x     and x xv y    .  The constant k1 can be found from experiments or small-

scale DEM simulations. In the current work, k1 = 0.04, which is derived from the previous 

computational work by Fan et al. [29].  Making use of Utter et al.’s findings, k2 = 1.9k1. 

 

4.2.2 Numerical method 

Many numerical techniques have been developed to solve the advection diffusion equation, such 

as the finite difference method, finite element method, finite volume method, and the domain 

decomposition method. Previous works [31,42,65] also introduced an operator splitting approach, 
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which solves the advection step and a combined diffusion and segregation step separately. A 

matrix mapping method is used in these previous works due to its high accuracy [69]. Since the 

current model is two-dimensional and only self-diffusion is considered, a finite difference method 

using a central explicit scheme is used here to solve Eq. (4.4) due to its simplicity and 

computational efficiency. 

 

Previous work [70] has shown that a simple combination of individual finite differences in 

different axes without appropriate cross terms can cause numerical instability. The generalization 

of explicit finite difference schemes for the advection-diffusion equation to multiple dimensions 

is not simply the sum of individual one-dimensional contributions. Hence, in order to maintain a 

high computational efficiency without losing accuracy, a second-order Tylor Lax-Wendroff 

scheme is used in the current model to rewrite Eq. (4.4) as, 

1 2 2

0

2 2

0 0 0

1

2

1

2

n n n n

ij ij x x ij x x x ij

n n n

y y ij y y y ij x y x y ij

c c c c

c c c

   

     

   
       

  

  
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,      (4.7) 

where, 
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2
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This finite difference formula is illustrated using the computational molecule shown in Figure 4.4, 

which can be used independently of the directions of the velocity components. Details of this 

scheme, including its Taylor series expansion and the iteration process, can be found in the work 

by Sousa [70]. 

 

 

Figure 4.4 Computational molecule for the second-order Taylor-Wendroff scheme. The larger 

circle denotes the center node. 

 

Note that since an explicit finite difference scheme is used here, solutions of the current model are 

not unconditionally stable. Hence, the Von Neumann conditions must be checked before the 

iteration to ensure the stability of the numerical computations. Details of this stability analysis can 

be found in the published literature [70]. However, in practice, an easier way to ensure numerical 

stability is to continuously decrease the time step until reaching a critical value below which the 

numerical computation remains stable. Using this approach, the time step in the current model is 
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determined as 5e-4 s (20,000 time steps per drum rotation) with the grid length of 3e-4 m (467 

elements span the drum diameter). 

 

To determine the initial particle concentrations used in the multi-scale model, the material region 

in the FEM model was divided into two equal parts by assigning two different material colors as 

shown in Figure 4.5(a). All of the materials had the same properties, however. The drum was then 

allowed to move in an unsteady fashion according to the FEM predictions as the drum started to 

rotate and the material advected until a steady velocity field was achieved, which occurred after 

0.25 revolutions (Figure 4.5(b)). Particle diffusion was not considered during this stage of the 

model. This assumption is addressed further in the following sections. Once a steady velocity field 

was established in the FEM model, the velocity components were then used within the advection-

diffusion equation (Eq. (4.4)) to model material mixing.  

 

 

Figure 4.5 Material concentration distributions from a typical FEM simulation (a) initial filling 

and (b) after reaching steady state. 

 

Because a steady state velocity field was used in the current model, the boundaries of the material 

domain remained the same throughout the entire computation. Hence, a control volume boundary 

condition was used in the current model and no moving boundary was considered. Note that in 

computational fluid dynamics (CFD) simulations, a polynomial fitting approach is often used and 

the species concentration of the boundary node is set equal to the extrapolated value of inner nodes 

of the control volume [71]. The same idea was used in the current algorithm and the material 
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concentration of the boundary node was set to equal the value of the node that was one grid point 

inward.  

Post-processing of the FEM simulation data was required to determine the extent of the material 

domain. As mentioned previously, the computational mesh in an Eulerian FEM does not represent 

the material and instead, the Eulerian Volume Fraction (EVF) is used to determine the volume and 

position of materials within the Eulerian mesh. Hence, nodal EVF values for the two materials 

must be generated first so that empty elements and boundaries can be identified. 

 

A MATLAB program was used to iterate the finite difference form of the advection-diffusion 

equation given in Eq. (4.7). After obtaining the material domain and steady velocity field 

information from the FEM simulation, initial conditions were interpolated into a structured 

rectangular mesh that covered the entire material domain. The grid width was determined such 

that it was sufficiently small to achieve a converged result. Iteration was used for all interpolated 

nodes and a threshold was set to ensure the material concentration value remained between 0 and 

1. As described previously, a small time step was carefully chosen to ensure the stability of the 

explicit scheme. 

 

4.3 Discrete element method (DEM) simulations 

4.3.1 DEM rotating drum simulation 

Although DEM simulation is not well suited for industrial-scale blenders, it can still accurately 

predict the mixing and segregation for large particles [5–11]. Thus, a three-dimensional DEM 

model with large particles was developed in the current work to compare to the predictions from 

the multi-scale model. The commercial DEM package EDEMTM (DEM Solutions, Inc., Lebanon, 

NH) was used to perform the simulation. The system geometry is shown in Figure 4.6(a).  Note 

that the front and back boundaries were periodic, consistent with the FEM model although the 

FEM symmetric boundary condition did not allow for material movement through the boundary 

while the DEM periodic boundaries did. Note that previous work has shown that sidewall friction 

can play an important role in the surface flow dynamics [72]. In the simulation, a drum was filled 

with two different colored, but otherwise identical, spherical particles, which were initially 

separated side by side as shown in Figure 4.6(b). Once the bed was fully settled, the drum rotated 
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at a constant speed and the particle began mixing. The DEM parameters used in the simulation are 

listed in Table 4.1.  

Table 4.1 DEM simulation parameters. 

Parameter Value 

Drum diameter (mm) 140 

Domain width (mm) 10 

Number of particles (-) 53445 

Particle diameter (mm) 1 

Particle density (kg/m3) 2500 

Particle shear modulus (MPa) 10 

Poisson’s ratio (-) 0.3 

Particle-particle friction coefficient (-) 0.4 

Particle-wall friction coefficient (-) 0.3 

Rolling friction coefficient (-) 0.01 

Filling level (% of max level depth) 35 

Rotation speed (rpm) 6 

Simulated time (s) 30 

 



35 

 

 

Figure 4.6 DEM simulation: (a) drum and domain geometry; (b) initial state. 

 

4.3.2 Calibration of material properties 

In order to justify a comparison between the multi-scale model and the DEM simulations, the 

Mohr-Coulomb properties used in the FEM simulations were determined from the DEM particle 

properties specified in Table 4.1. The Mohr-Coulomb properties, namely the internal friction angle, 

cohesion, and dilation angle, were calibrated using a DEM simulation of an annular shear cell with 

periodic boundaries (Figure 4.7(a)). Analogous to a real annular shear tester, vertical fins were 

attached to the top and bottom plates to ensure failure within the material. A constant normal 

pressure was applied to the top plate while the bottom plate moved with a constant rotation speed 

and the tangential shear stress was recorded and evaluated to determine the bulk internal friction 

angle after a constant stress level was reached. 
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Figure 4.7 A snapshot showing the computational domain for the DEM annular shear cell 

simulations for (a) internal friction angle and (b) wall friction angle. Periodic boundary 

conditions are used in the x direction. 

 

The defining feature of a Mohr-Coulomb material is its shear failure criterion,  

tan( )ic f    ,          (4.19) 

where  and  are the failure shear stress and the applied normal stress acting on the failure plane, 

respectively. The parameter c  is the bulk cohesion of the material and the parameter fi is the 

internal friction angle of the material. These parameters were found using two different shear cell 

simulations with different top plate normal pressures: one at 2 kPa and the other at 4 kPa. Figure 

4.8 plots the results from these two simulations along with a best fit line based on a least squares 

fit to Eq. (4.19). The results clearly demonstrate that the bulk material can be treated as 

cohesionless (c = 0) with an internal friction angle of 23.6°. The dilation angle of material was set 

to 0.1° since the dilation of cohesionless granular materials is usually small, as stated by Zheng 

and Yu [56].  A wall friction simulation was also performed using a similar DEM annular shear 

cell, but with a flat bottom boundary surface, to determine the material-wall friction angle. This 

simulation gave a bulk material-wall friction coefficient of 0.324, which is close to the particle-

wall friction coefficient. 
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Figure 4.8 Critical state shear stress plotted as a function of the applied normal stress from the 

DEM shear cell simulations using the material properties listed in Table 4.1. Two data points are 

shown in the plot along with a fitting line. 

 

Although previous work [56] has indicated that Mohr-Coulomb FEM simulations of bulk material 

flow is insensitive to the elastic modulus, Poisson’s ratio, and bulk density of the material, they 

were still measured from the DEM simulations in the current work for completeness. The bulk 

density was taken to be 0.6 of the particle density, which is consistent with loosely packed, non-

cohesive spheres. The bulk elastic parameters, namely, elastic modulus E and Poisson’s ratio , 

were obtained from a separate uniaxial compression DEM simulation in which the axial and radial 

stresses were measured as a function of axial strain during both compression and decompression 

of the material, as shown in Figure 4.9. The initial slope of the unloading curves were used to 

compute both parameters, 
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where zz is the axial stress, rr is the radial stress, and e
zz is the elastic axial strain. Details of this 

method can be found in the work of Swaminathan et al [73].  
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Figure 4.9 A snapshot showing the computational domain for the DEM uniaxial compression 

simulations. 

 

Figure 4.10 shows the compression and decompression curves from the DEM simulation using the 

properties listed in Table 4.1. Previous work [73–75] has shown that the bulk elastic properties are 

functions of the relative density, which in turn is a function of the applied stress. From the FEM 

simulation, the stresses acting on material vary throughout the drum. Several DEM uniaxial 

compression simulations with maximum applied stresses between 20 kPa and 40 kPa have been 

performed and give values of (elastic modulus, Poisson’s ratio) between (2.8 MPa, 0.055) and (3.7 

MPa, 0.065). For simplicity, the elastic properties used in the current FEM model were determined 

for a single stress condition corresponding to Figure 4.10. The bulk elastic modulus E and 

Poisson’s ratio  determined for this condition were 3.65 MPa and 0.065, respectively. Previous 

works [73–75] have shown that the Poisson’s ratio  is typically small at relative densities near 

the poured relative density for a variety of different materials, which is consistent with the value 

measured in the current work. As mentioned previously, the bulk material flow behavior is 

insensitive to the elastic modulus and Poisson’s ratio so the variation in elastic properties is 

expected have little influence on the results. Indeed, FEM simulations performed as part of this 

work with different elastic properties produced little variation in the bulk material kinematics. A 

summary of the FEM simulation material parameters is given in Table 4.2. The drum geometry 

and rotation speed were identical between the two models. It is important to emphasize that the 
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FEM model parameters in Table 4.2 were found from independent, standard material tests rather 

than being back-fit to the blending data. Since the present work compares the multi-scale model 

blending performance to results from a DEM simulation, DEM simulations were used to determine 

the FEM material parameters for consistency. For a more practical case, however, the FEM 

material parameters would be found from the same characterization tests (i.e., shear cell and 

uniaxial compression) but performed experimentally. Although spherical particles are used in the 

current work for simplicity, particle shape and size effects can be considered indirectly via the bulk 

material properties and diffusion coefficient used in the model. The diffusion coefficient could be 

measured experimentally or possibly found via DEM simulation [29]. 

Table 4.2 Parameters used in the FEM simulation. 

Parameter Value 

Material density (kg/m3) 1500 

Young’s modulus (MPa) 3.65 

Poisson’s ratio (-) 0.065 

Internal friction angle (degree) 23.6 

Cohesion (Pa) 0 

Dilation angle (degree) 0.1 

Wall friction coefficient (-) 0.324 

 

Figure 4.10 The compression and decompression curves from the uniaxial compression DEM 

simulation used to obtain the bulk elastic modulus and Poisson’s ratio.  
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4.4 Comparison of the DEM and multi-scale model results 

The magnitude of the steady state material velocity in the drum, predicted by DEM and FEM 

simulations, is shown in Figure 4.11. Figure 4.12 plots the velocity along the free surface of the 

material as well as in the surface-normal direction, predicted by the two different models. These 

two figures demonstrate that the FEM model compares favorably with the DEM models. The free 

surface angles predicted by the DEM and FEM simulations are 24.5° and 23.3°, respectively, with 

a difference of less than 5%. Moreover, the thicknesses of the active layer predicted by the two 

models differ by less than 5% as well. Zheng and Yu [56]showed that their FEM rotating drum 

predictions matched experimental measurements well, lending confidence that the FEM model is 

a good model for predicting velocity fields. Figure 4.11 also illustrates the well-known observation 

that the flow field in the drum can be divided into two distinct regions: an active region 

characterized by a thin, downward flowing layer adjacent to the free surface and a passive region 

below the active region where particles move in solid body rotation [1]. The large velocity gradient 

in the active region is the source of most of the diffusive mixing in the system (refer to Eq. (4.5)), 

which is consistent with previous work [76].  

 

 

Figure 4.11 Field plots of the material speed in the (a) DEM simulation and (b) FEM simulation.  

The color scales used in the two figures are identical. 

 



41 

 

 

Figure 4.12 The velocity (a) along the free surface of the material, and (b) in the surface-normal 

direction in Figure 4.11, predicted by DEM and FEM simulations 

 

The initial stages of mixing are shown in Figure 4.13. To enforce consistency between the multi-

scale model and DEM model, all the revolutions shown in the current work start from the 

horizontal position. This figure shows the state of the material in the DEM and FEM (advection 

only) models at 0.25 revolutions, after which the changes in the velocities in various regions of the 

drum were observed to be typically less than 3% and steady state material movement began. 

Clearly the mixing during this short unsteady period was dominated by material advection, which 

is consistent with the assumption described before that no diffusion happens during the initial 

development of the bed movement. As mentioned previously, the material concentration field 

predicted from the FEM model at this point was used as the initial condition for the multi-scale 

model. Note in Figure 4.13, the edges of the bed free surface in the FEM simulation show a rounder 

shape than in the DEM simulation due to the method Abaqus uses to display partially filled 

elements. This effect has no influence on the predictions of interest, namely the free surface angle, 

flow velocities, and mixing rate. 
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Figure 4.13 The material state in the (a) DEM simulation and (b) FEM simulation (advective 

material movement only) at 0.25 revolutions, which is when a steady state velocity field is 

reached. 

 

The state of the material after different numbers of drum revolutions is shown in Figure 4.14 for 

both the DEM and multi-scale models. The colors in the DEM simulations are the individual red 

and black particles while the colors in the multi-scale model correspond to the concentration of 

red particles, with yellow indicating a large concentration of red particles and blue indicating a 

small concentration. As expected, as time increases the degree of mixing increases, with both 

advection and diffusion contributing to the mixing process. At least qualitatively, the multi-scale 

model reproduces the mixing observed in the DEM simulations. 
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Figure 4.14 Snapshots showing the time evolutions of mixing. (a) DEM simulation and (b) multi-

scale model. The vertical color scale in (b) is the red particle concentration. 

 

To provide a more quantitative comparison of the two models, red particle concentration is plotted 

as a function of the perpendicular distance  along the center of the bed starting from the free 

surface (refer to the dashed lines shown in Figure 4.14). The distance is made dimensionless by 

dividing by the maximum level depth of the drum bed h. Thus, 0 (free surface) ≤ /h ≤ 1 (drum 

surface). In the DEM simulation, red particle concentration is calculated in cells with a square 

cross section and a depth spanning the drum width (10 particle diameters). The cells overlap, with 

each cell center located three particle diameters from its neighbors. The number of red and black 

particles with centers located within a cell are recorded to calculate the red particle concentration. 

 

Note that because of the finite cell size, often referred to as the “scale of scrutiny”, the 

concentration profile will vary with the cell size. Larger cell sizes provide less spatial resolution 

while cell sizes approaching the particle size produce less meaningful concentration values due to 

statistical fluctuations. To examine this cell size influence, three cell sizes of 3d, 5d, and 7d (d is 

the particle diameter) are used in the concentration calculations. In the multi-scale model, there is 

no cell size since the material concentration is calculated directly from the advection-diffusion 

equation at each node point along the path.   

 

Figure 4.15 plots the red particle concentration profiles for the DEM (with cell size of 5d) and 

multi-scale models for the same number of revolutions shown in Figure 4.14. There is very good 
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quantitative agreement between the two models, although it does appear that there is a slight offset 

in the multi-scale model concentration values. As indicated previously, there is a minor difference 

in the free surface angle between two models, which will lead to an offset in the two results. Both 

sets of results show large peaks and valleys within the first two drum revolutions. These peaks and 

valleys diminish considerably by 2.7 revolutions due to increased advective folding of the material 

along with diffusion. With larger numbers of revolutions, the red particle concentration approaches 

the expected value of 0.5 along the entire profile. As expected, changing the cell size used in the 

DEM concentration calculation slightly affects the results. However, the difference is within 10% 

for a cell size of 5d plus or minus 2d. 

 

Figure 4.15 Red particle concentration plotted as a function of dimensionless distance from the 

free surface, /h, along the centerline of the drum for both the DEM and multi-scale models.  

Each plot corresponds to a different number of drum revolutions. 
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An important point to make is that the multi-scale modeling approach is much faster than the DEM 

modeling approach. For the parameters listed in Table 4.1, the DEM simulation completed in 5 to 

6 days of wall clock time using a 16 processor desktop PC. The same geometry and simulated time 

using the multi-scale modeling approach (Table 4.2 for the FEM portion) completed in 4 to 5 hours 

on the same PC with the same number of processors. The FEM computations comprised about 60% 

of this time with the MATLAB advection-diffusion calculations using the remainder. The multi-

scale modeling approach is expected to be even more computationally efficient as the system size 

increases. 

 

Another common measure used to assess the state of mixedness in a blending operation is the 

segregation intensity I, which is defined as [77], 
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In these relations, i
2 is the measured variance of component i’s concentration (here component i 

is the red particles), 0
2 is the variance of component i’s concentration for a fully segregated system, 

ci is the measured mean concentration of component i, and Ns is the total number of samples used 

to calculate the mean and variance. The segregation intensity varies from zero, corresponding to 

perfect mixing, to one, which is a fully segregated state. The segregation intensity provides less 

information and is a less stringent test of the multi-scale model’s accuracy than the concentration 

profiles shown in Figure 4.15. Nevertheless, it is calculated here for both models since it is a 

common metric for assessing the state of blending.  

 

In the multi-scale model, every node at which a concentration is calculated is used in the evaluation 

of the segregation intensity. For the DEM simulations, a non-overlapping grid of cuboidal cells, 

illustrated in Figure 4.16(a), is used to calculate red particle concentration. As with the 
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concentration profile, cell sizes of 3d, 5d, and 7d are used.  The segregation intensity values are 

plotted in Figure 4.16(b) as a function of the number of drum revolutions. Both models display the 

frequently observed decay in segregation intensity, which is often fit to an exponential function. 

Significantly, the multi-scale model quantitatively predicts the DEM results well. The DEM scale 

of scrutiny does play a minor role with larger scales of scrutiny having smaller segregation 

intensities. This trend is expected from statistics [78]. 

 

The asymptotic values for the segregation intensity can be predicted analytically as originally 

described by Danckwerts [78]. A perfectly mixed state where I = 0 is generally not achievable in 

practice and instead a randomly mixed state is the expected asymptotic state. For a randomly mixed 

system, the concentration variance is, 

 2
1-i i

r

p

c c

N
  ,          (4.26) 

where Np is the number of particles in the cell used to calculate the concentration. Thus, the 

segregation intensity for a randomly mixed system is IR = r
2/0

2
. Clearly, as the scale of scrutiny 

increases, the asymptotic segregation intensity decreases, which is the trend observed in Figure 

4.16(b). Interestingly, the multi-scale model predicts an asymptotic segregation intensity of zero, 

corresponding to a perfectly mixed state. This result stems from the fact that the multi-scale model 

assumes the material is a continuum and thus the number of particles in Eq. (4.26) is infinite.  

Hence, although the multi-scale model accurately predicts mixing behavior throughout most of the 

process, it will always predict a smaller segregation intensity at larger times.  
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Figure 4.16 (a) The cuboidal cells in the DEM simulation; (b) the segregation intensity as a 

function of the number of drum revolutions for the DEM model and multi-scale model. 

 

4.5 Parametric study of the multi-scale model 

To better understand the effect of and the sensitivity to changes in different parameters of the 

multi-scale model, a study was performed in which several of the model parameters were varied. 

A sensitivity analysis of the system was also performed in order to more efficiently perform the 

simulations. 

 

A mesh dependency study was performed first to ensure convergence of the advection-diffusion 

solution. Figure 4.17 shows the segregation intensity for different diffusion constants as a function 

of the number of drum revolutions for different numbers of mesh elements. For k1 = 0.04, which 

was chosen based on prior studies, the solution was insensitive to the mesh sizes tested and, thus, 

300,000 elements were used in the current study to maintain accuracy and computational 

efficiency (Figure 4.17(a)). Note that for a much smaller diffusion constant of k1= 0.005, a similar 

convergence analysis concludes that a mesh size of 600,000 is needed (see Figure 4.17(b)). This 

result indicates that for convection dominated flows, a refined mesh is required to avoid the 

artificial diffusion intrinsic to the finite difference method itself. 
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Figure 4.17 The segregation intensity for diffusion constants of (a) k1 = 0.04 and (b) k1 = 0.005. 

 

To more efficiently investigate the influence of other parameters on the degree of mixing in the 

system (quantified using the segregation intensity), a sensitivity analysis of the system is 

performed first. Table 4.3 lists the dimensionless parameters resulting from the multi-scale model. 

For consistency, the Froude number Fr and the filling volume fraction fv are kept constant 

throughout the study. Moreover, as mentioned previously, the elastic modulus E and Poisson’s 

ratio  have little influence on the material flow behavior and, hence, are not studied. Therefore, 

the internal friction angle fi, wall friction angle fw, drum diameter to particle diameter ratio Ddrum/d, 

and diffusion constants k1 and k2 are included in the parametric study. 
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Table 4.3 Dimensionless parameters. 

Parameter Dimensionless Quantity 

Segregation intensity I  

Number of drum revolutions 
2

t




 

Froude number 
2

drumD
Fr

g


  

Filling volume fraction vf  

Ratio of elastic modulus to max hydrostatic pressure 
bulk drum v

E

gD f
 

Poisson’s ratio   

Internal friction angle if  

Wall friction angle wf  

Drum diameter to particle diameter ratio drumD

d
 

Spanwise diffusion constant 1k  

Streamwise diffusion constant 2k  

 

The effects of internal friction angle and wall friction angle are shown in Figure 4.18. A larger 

internal friction angle results in slower mixing, which appears to be due to a reduction in active 

region surface speeds caused by the increased frictional resistance. However, the mixing process 

happens so fast in this lab-scale drum that the materials are well-mixed after three revolutions, 

regardless of the internal friction angle. Figure 4.18(b) indicates that the mixing process is 

unaffected by the wall friction angle. The reason for this behavior is that, if the wall friction is 

sufficiently large to lift the powder, the first avalanche always occurs at the same location and the 

free surface angle remains constant (and equal to the internal friction angle). If the wall friction 

angle is too small, the powder cannot be lifted and it slips against the rotating wall. 
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Figure 4.18 The segregation intensity I as a function of the number of drum revolutions for (a) 

different internal friction angles fi, and (b) different wall friction angles fw, as defined in Table 

4.3. 

 

The effect of drum-to-particle diameter ratio is shown in Figure 4.19. Although particles are not 

directly simulated in the multi-scale model, their size does indirectly appear in the calculation of 

the diffusion coefficient, with smaller particles resulting in smaller diffusion coefficients. The 

material properties remain unchanged since the material is assumed to remain cohesionless and 

identical in shape regardless of particle size. A larger drum-to-particle diameter ratio results in 

slower mixing since a larger drum diameter results in a thicker shear layer and a smaller particle 

diameter results in a smaller diffusion coefficient. The same trend can be found in work by 

Kwapinska et al. [8]. These results are useful for anticipating changes when scaling a mixing 

operation, for example. 
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Figure 4.19 The segregation intensity as a function of the number of drum revolution for 

different drum diameter to particle diameter ratios Ddrum/d, as defined in Table 4.3. 

 

The effects of the spanwise and streamwise diffusion constants k1 and k2 are shown in Figure 4.20. 

According to Eq. (4.6), a larger diffusion constant k1 or k2 results in a larger diffusion coefficient 

and, thus, more rapid mixing. The diffusion constant k1 is more dominant than k2, even when k2 is 

larger than k1. In a rotating drum, as shown in Figure 4.11, the spanwise shear rate within the active 

region is much larger than the streamwise shear rate. Therefore, even though the streamwise 

diffusion constant k2 is larger than the spanwise diffusion constant k1, the mixing occurs mainly in 

the spanwise direction. However, this is not necessarily true for other geometries and hence the 

streamwise diffusion constant k2 should be included in the diffusion coefficient expression for 

completeness. 
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Figure 4.20 The segregation intensity as a function of the number of drum revolutions for (a) 

different spanwise diffusion constants k1, and (b) different streamwise diffusion constants k2, as 

defined in Table 4.3. 

 

4.6 Summary 

In the current chapter, a new multi-scale approach to modeling particulate blending processes is 

presented. This multi-scale modeling approach combines finite element method simulations to 

obtain macroscopic velocity fields with calculations from the advection-diffusion equation with 

computationally and experimentally obtained expressions for particle diffusion at a local scale. 

The potential of this approach is demonstrated with the study of a rotating drum blender, i.e., with 

a “benchmark” system. Predictions of concentration profiles and segregation intensity from the 

multi-scale model compare well quantitatively to DEM results, although the multi-scale model 

does predict smaller segregation intensities than those found from the DEM model at large times. 

This inaccuracy is due to the fact that the multi-scale model assumes continuum material behavior 

and, thus, the asymptotic mixing state corresponds to a perfectly mixed system as opposed to the 

asymptotic randomly mixed state predicted for the finite sized particles used in DEM simulations. 

Also, a parametric study was performed to better understand the effect of and the sensitivity to 

changes in different parameters of the multi-scale model. 
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 THREE-DIMENSIONAL MULTI-SCALE MIXING 

MODEL 

* The content of this chapter is an extended version of a paper published in the Powder Technology 

Journal (doi:10.1016/j.powtec.2018.09.033). 

 

The current chapter extends the work in Chapter 4 to investigate mixing in a more industrially-

relevant Tote blender. Several key implementation details are also different. First, the model 

utilizes transient velocity field information from the FEM simulations instead of a steady velocity 

field. Second, the governing equations are extended to three dimensions instead of two dimensions. 

Together, these two modifications greatly increase the flexibility of the model. In addition, rotating 

drum experiments are used to calibrate the diffusion coefficient used in the multi-scale model and 

the model predictions are compared against published experimental results. Section 5.1 introduces 

the FEM modeling approach and implementation for the current work. Section 5.2 describes the 

advection-diffusion equation used in the multi-scale model and the numerical method used to solve 

it. Section 5.3 describes the material calibration methods and experiments. In Section 5.4, 

comparisons are made between published experimental results and the multi-scale model 

predictions. And Section 5.5 studies the effects of the initial loading condition and fill method. 

 

5.1 Finite element method model 

A three-dimensional, coupled Eulerian-Lagrangian, FEM model is used in the present work to 

provide predictions of the advective flow field in a Tote blender. Previous works [56,57,73,74,79] 

have shown that FEM models can accurately simulate granular material behavior well, including 

advective flow fields [56,57], and that results are mesh-independent after a critical mesh 

refinement. For example, in the previous work [56,57], compared to the results using 160,000 

elements, the results change by less than 1% when using 40,000 elements or 10,000 elements. 

Details of the model implementation can be found in previous work [80] and Chapter 4. The 

following sub-sections describe the model geometry, boundary conditions, and initial conditions. 
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5.1.1 Model geometry and boundary conditions 

The commercial FEM package Abaqus/Explicit v6.14 is used to perform the bulk flow simulations. 

The geometry of the simulated Tote blender is based on the experiments by Sudah et al. [81]. 

Those experiments were carried out in a 14-L GEI Gallay Tote blender. Details of the geometry 

and dimensions of the blender are presented in their work [81]. For convenience, the dimensions 

are also shown in Figure 5.1. 

 

 

Figure 5.1 Dimensions of the GEA Gallay Tote blender used in the FEM simulation. 

 

A Mohr-Coulomb elastoplastic model is used in the current work to describe the stress-strain 

behavior of the particulate material. Chapter 4 has shown that this constitutive model can 

accurately describe dense granular flow fields. Note that: a) The current constitutive model is shear 

rate-independent. Previous works [56,80] have shown that a shear rate-independent constitutive 

model is sufficiently accurate for the Tote blender investigated in the current work. However, other 

models should be considered if shear rate effects become important. b) The current constitutive 

model cannot predict the formation of shear bands without considering shear localization. For 

situations where shear bands are important, other constitutive models, such as an extended Mohr-

Coulomb model, could be used to get a more accurate prediction [82]. c) The current model does 

not take into account changes in material porosity nor material hardening or softening since the 

current system does not involve large changes in porosity. For systems in which the solid fraction 
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changes significantly, such as during compaction, a modified Drucker-Prager Cap (DPC) model 

could be used to account for material hardening and softening [74,75]. 

 

The material properties needed in the model are bulk density, Young’s modulus, Poisson’s ratio, 

and material internal friction angle. These parameters can be found from independent, standard 

material tests. For example, the bulk density, Young’s modulus, and Poisson’s ratio can be 

calibrated from a uniaxial compression test and the material internal friction angle can be measured 

from a standard shear cell test. The methodology for obtaining those material properties was 

described in detail in Chapter 4. 

 

Linear shape functions for 8-node hexahedrons were used in the current work and the elements 

use a reduced integration scheme with one integration point and hourglass effects are controlled. 

These techniques were used to prevent locking [83]. Boundary conditions applied in the model 

include the material-wall friction angle, the rotational speed along the axis of rotation, and the 

gravitational acceleration (g = 9.8 m/s2 directed in the negative y direction in Figure 5.1). 

 

5.1.2 Initial conditions 

The coupled Eulerian-Lagrangian approach implemented in Abaqus is adopted in the current 

model. Details of this approach were described in Chapter 4. As shown in Figure 5.2, the Eulerian 

mesh covers the entire material domain and ensures that no material leaks outside of the mesh. The 

Eulerian Volume Fraction (EVF) value, as introduced in Chapter 4, is used to determine the 

volume of material within each element. A value of EVF = 0 indicates that no material is present 

in the element while EVF = 1 indicates that the element is completely filled with material. 
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Figure 5.2 A schematic of the FEM model domain. The Eulerian mesh is shown in grey, the Tote 

blender mesh is shown in blue, and the outlines of the initial material domain are shown in red. 

 

The initial bed state is generated by filling a fraction of the elements with material. Details of the 

process can be found in Chapter 4 as well. For monodisperse mixing, material loadings were 

achieved by assigning user-defined field variables at each material point to represent the initial 

material concentration. Details of this field variable approach can be found in the Abaqus 

documentation [62]. An example of left-right initial loading is shown in Figure 5.3. The color 

represents a field variable value from 0 (blue) to 1 (red). For monodisperse mixing with materials 

A and B, the field variable represents the material concentration of A. A field variable value of 

one indicates that the element is completely filled with material A, while a value of zero indicates 

that the element is completely filled with material B. 
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Figure 5.3 Initial material concentration for a simulation with left-right loading. The color 

represents field variable value from zero (blue) to one (red). The materials in this simulation 

have homogeneous properties, except for color. 

 

The simulation process consists of two steps. First, the material is allowed to settle as the 

gravitational acceleration is slowly increased from zero to its final value. The blender remains 

stationary during this step. This procedure is used to eliminate the transient oscillations of material 

as it settles and results in a stable bed compressed under its own weight. Next, the blender is 

allowed to rotate immediately at the rotation speed and the simulation is considered started. 

 

5.2 The multi-scale mixing model 

The current multi-scale model is extended from the two-dimensional model introduced in Chapter 

4. Details of the model description and development can be found there. Since all of the material 

is identical in the current chapter, except for color, a one-way coupled method is used and, thus, 

material properties do not change with concentration. The following sub-sections summarize the 

main aspects of the model and highlight its extension to transient, three-dimensional problems. 

 

5.2.1 Advection-diffusion equation 

The same advection-diffusion equation used in Chapter 4 is used in the current chapter to model 

the spatiotemporal evolution of the concentration of a particular material species, c. The governing 

equation is derived as, 
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where c is the local concentration of a particular species of material, D is the diffusion coefficient 

tensor for that species, and v is the local advective velocity vector. Using the local mass 

conservation equation and assuming an incompressible material, i.e., 

0 v ,           (5.2) 

the governing equation can be written in index notation form as, 
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The self-diffusion coefficient D is a tensor quantity with components Dij, and with off-diagonal 

components Dij (𝑖 ≠ 𝑗) an order of magnitude smaller than the diagonal components Dij (𝑖 = 𝑗) as 

mentioned in Chapter 4. By neglecting off-diagonal components of the self-diffusion coefficient 

tensor, the index notation form of Eq. (5.3) in three-dimensional form is, 
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The self-diffusion coefficient D is also proportional to the local shear rate   and the local mean 

particle diameter d . The particle diffusivity is approximately 1.9 times larger along the mean flow 

direction than it is in the perpendicular direction, according to work by Utter et al. [66]. Note that 

this relationship was derived for dense, granular shear flows in a 2D Couette apparatus by using 

round disks and it could be dependent on the material type. However, results in Chapter 4 showed 

that including the particle diffusivity in the mean flow direction was not significant for a tumbling 

system. Hence, k2 = 1.9k1 is still used in the current work. The shear rate-dependent diffusion 

coefficient D can be written as, 
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where  x y zv x v x       ,  y x zv y v y       , and  z x yv z v z       .  The 

constant k1 can be found from experiments or small-scale DEM simulations, with k2 = 1.9k1. 

 

5.2.2 Numerical method 

The same as Chapter 4, A finite difference method using a central explicit scheme is used to solve 

Eq. (5.4) due to its simplicity and computational efficiency. A second-order Tylor Lax-Wendroff 

scheme is used to generate the finite difference expression of the governing equation, 
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This finite difference formula is illustrated using the computational molecule shown in Figure 5.4. 

Details of the Taylor series expansion and stability of the numerical computations can be found in 

Chapter 4. 

 

 

Figure 5.4 Computational molecule for the second-order, three-dimensional Taylor Lax-

Wendroff scheme. 
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It should be emphasized that transient velocity fields are included in the solution to the advection-

diffusion equation, Eq. (5.4), by extending the work in Chapter 4. Therefore, a C++ post-

processing script was developed to process the FEM output files (.obd files [62]) and handle the 

large amount of data from these simulations. 

 

As mentioned in Section 5.1, the initial particle concentrations used in the model are determined 

by the loading conditions, and the user-defined field variable used in the FEM simulation is set 

accordingly, as in Figure 5.3. Since transient velocity fields are used in the current model, the 

boundaries of the material domain change throughout the entire computation. These boundaries 

are computed within the FEM simulation from the EVF values and, similarly, are determined by 

the advection-diffusion solver, after reading EVF values from the FEM output file at each time 

step. Specifically, the advection-diffusion boundary conditions at the free surface are enforced by 

setting the material concentration of the boundary node equal to the value of the node that is one 

grid point inward in the direction normal to the surface. This approach is similar to the polynomial 

fitting approach often used in computational fluid dynamics (CFD) [71]. 

 

Next, a MATLAB program is used to iterate the finite difference form of the advection-diffusion 

equation given in Eq. (5.6). After generating initial particle concentrations using the extracted field 

variable values, the material concentration evolution is iterated using the transient velocity field 

obtained from the FEM simulation for each time step. A threshold is set to ensure the material 

concentration value remains between zero and one, and a small time step is carefully chosen to 

ensure the stability of the explicit scheme. Details of the iteration algorithm were presented in 

Chapter 4. 

 

To achieve a converged result, the number of elements used in the advection-diffusion MATLAB 

program should be much larger than the number of elements in the FEM simulation. Hence, a 

linear interpolation algorithm is introduced in the MATLAB program to generate enough elements 

and ensure convergence. The MATLAB numerical algorithms are parallelized to divide the 

computational domain onto different cores. By using the full processing power of an eight-core 

desktop with the Intel Xeon CPU E5-2680 v3 processor, the iteration runs approximately 5-8 times 

faster than on a single core. 
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5.3 Calibration of material properties 

5.3.1 Material properties for the FEM simulation 

The published experimental work for monodisperse particle mixing by Sudah et al. [81] was used 

to validate the multi-scale model predictions. Those experiments utilized a 14-L GEI Gallay Tote 

blender containing 12-mm diameter glass beads of two different colors. 

 

As mentioned in Chapter 4, the material density , elastic modulus E, and Poisson’s ratio are 

known to have little influence on the material flow behavior. Moreover, the mixing process was 

shown to be unaffected by the wall friction angle within a rotating blender since the first avalanche 

always occurs at the same location and the free surface angle remains constant. Hence, the material 

density, elastic modulus, Poisson’s ratio, and wall friction angle used in the current FEM 

simulation are all based on values from Chapter 4 for hard spheres. Note that the Poisson’s ratio 

is very small because it is for a loose powder bed (relative density around 0.3). It is expected to be 

small since a loose powder bed is very compressible. Previous works [73–75] have shown that the 

Poisson's ratio is typically small at relative densities near the poured relative density for a variety 

of different materials, which is consistent with the value measured in the current work. The wall 

friction angle is assumed constant in the current work since the wall is assumed smooth and 

nominally uniform. In addition, the Mohr-Coulomb dilation angle of the material was set to 0.1°, 

which is the minimum value allowed in Abaqus due to mathematical limitations of the model, 

since the dilation of cohesionless granular materials is usually small. 

 

The internal friction angle has been shown in Chapter 4 to influence the mixing rate and, hence, 

must be calibrated. Previous work has shown that the internal friction angle is not sensitive to 

particle size or consolidation stress for the same material [84–86]. Hence, 1-mm diameter glass 

beads, as opposed to the 12 mm beads used in the Sudah et al. experiments [81], were used in the 

current work to calibrate the internal friction angle. A Schulze Ring Shear Tester (Model RST-XS) 

was used to make these measurements, obtaining values similar to those reported in the literature 

[87,88]. Note that the cohesion was measured from the same ring shear test.  Normally one would 

consider 1 mm glass spheres to be cohesionless, but rather than set the cohesion to zero, the 

measured value was used instead.  A summary of all of the material parameters used in the FEM 
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simulation is given in Table 5.1. It is worth noting that these parameters are found from 

independent, standard material tests, rather than being back-fit to match experimental data with 

the multi-scale blending simulation results. Also, note that particle shape and size effects can be 

considered indirectly via the bulk material properties and diffusion coefficient used in the model. 

 

Table 5.1 Parameters used in the FEM simulation. 

Parameter Value 

Material density (kg/m3) 1500 

Young’s modulus (MPa) 3.65 

Poisson’s ratio (-) 0.065 

Internal friction angle (degree) 27.1 

Cohesion (Pa) 87 

Dilation angle (degree) 0.1 

Wall friction coefficient (-) 0.324 

 

5.3.2 Experimental calibration of the diffusion constant 

One significant parameter needed in the multi-scale model is the spanwise diffusion constant k1. 

To calibrate k1 for glass beads, a lab-scale rotating drum experiment was performed. A photograph 

of the experiment setup is shown in Figure 5.5. An acrylic circular drum of diameter Ddrum = 150 

mm and width Wdrum = 50 mm was used to contain the material, and two shafts were used to 

stabilize and rotate the drum. The driving torque was provided by a gear motor that rotated one of 

the shafts. Rubber bands covered the shafts to prevent slipping. Values for the experiment 

parameters are listed in Table 5.2. 



64 

 

 

Figure 5.5 The rotating drum experiment setup. 

 

Table 5.2 The rotating drum experiment parameters. 

Parameter Value 

Inner drum diameter (mm) 150 

Inner drum width (mm) 50 

Glass sphere diameter (mm) 1 

Filling level (% of max level depth) 32 

Drum rotation speed (rpm) 3.26 

 

As shown in Eq. (5.5), the influence of particle diameter on the diffusion coefficient has been 

included explicitly and thus diffusion constants k1 and k2 should be independent of particle 

diameters. Hence, the drum was filled side by side with 1 mm red and blue glass spheres. To 

facilitate filling of the drum, the front side of the drum was made removable and a separate barrier 

was used to help fill each side of the drum with equal volumes of red and blue glass beads. Friction 

tape was used to seal the drum and to allow the container to rotate smoothly. To analyze the degree 

of mixing, a high-speed camera was used to film the front of the drum. Once the drum was filled, 

the drive shift started to rotate and the mixing process was recorded. Several snapshots of the 
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system at different times are shown in Figure 5.6. Qualitatively, the mixing dynamics in the 

experiment followed the same trend as the simulations reported in Chapter 4. 

 

 

Figure 5.6 Snapshots showing the state of particle mixing for different numbers of drum 

revolutions in the rotating drum experiments. 

 

To compute the segregation intensity as a function of the number of drum revolutions, a MATLAB 

code was developed to analyze the video images and derive the spatial distribution of material 

concentrations. Details of the image processing algorithm are included in the Appendix. 

 

The experimental results were compared with predictions from the 2-D multi-scale model 

developed in Chapter 4. As shown in Chapter 4, a mesh dependency study was performed first to 

ensure convergence of the advection-diffusion solution and avoid the artificial diffusion intrinsic 

to the finite difference method itself. To justify a comparison, the system geometry and operating 

conditions, such as the drum diameter, drum width, particle diameter, filling level, and rotation 

speed, were consistent between the experiment and the multi-scale model. The material parameters 

used in the FEM simulation are shown in Table 5.1 for glass beads. 
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The segregation intensity I defined in Chapter 4 was computed to compare the experiment results 

with the 2-D multi-scale model predictions and calibrate the spanwise diffusion constant k1. Note 

that the scale of scrutiny does affect the calculation, with larger scales of scrutiny having smaller 

segregation intensities. Hence, the same grid size used to analyze the experiment results, as 

described in Appendix, was used in the 2-D multi-scale model. Computationally, the concentration 

values of all the nodes within one grid cell were averaged to compute the material concentration 

for the cell. A cell size of five particle diameters was used. 

 

Due to the fact that a continuum is assumed in the FEM simulations, the multi-scale model would 

predict an asymptotic segregation intensity of nearly zero, corresponding to a perfectly mixed state. 

However, a perfectly mixed state is generally not achievably in practice and instead a randomly 

mixed state is the expected asymptotic state. For a randomly mixed system, the segregation 

intensity is derived as, 
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  ,          (5.25) 

where Np is the number of particles in the cell used to calculate the concentration. The segregation 

intensity for a randomly mixed system in the current work is I = 0.04, which is shown in Figure 

5.7 as the dashed line. To save computation time, the simulation was stopped once the segregation 

intensity reached the randomly mixed state. 

 

Segregation intensity plotted as a function of the number of drum revolutions is plotted in Figure 

5.7 for different assumed values of the spanwise diffusion constant k1. Figure 5.8 shows the sum 

of the absolute differences between the segregation intensities measured from experiments and 

computed from the 2-D multi-scale model for different k1 values. It can be seen that the segregation 

intensities computed from the 2-D multi-scale model match best with the values measured from 

experiments when k1 = 0.01. Hence, a calibrated spanwise diffusion constant k1 for glass beads 

equal to 0.01 is adopted. Note that the asymptotic value of the experimental results is slightly larger 

than the value for the randomly mixed state. This difference is because the image correction 

algorithm described in Appendix introduces some error into the system and the perfectly random 

mixed state cannot be reached. 
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Figure 5.7 Segregation intensity with respect to the number of drum revolution for the 

experiment and the 2-D multi-scale model using different k1 values. 

 

 

Figure 5.8 Sum of the absolute differences between the segregation intensities measured from 

experiments and computed from the 2-D multi-scale model for different k1 values. 

 

5.4 Comparison of the experiments and multi-scale model results 

An FEM simulation was performed to predict the advective flow field information for the Sudah 

et al. Tote blender [81] using a rotation speed of 10 rpm and the material properties shown in Table 

5.1. A mesh-dependency study was performed to ensure that the changes in maximum velocity in 

all three directions were not a function of the mesh. The maximum relative error of any velocity 

component was less than 5% when using a mesh with 125,000 elements as compared to a mesh 

consisting of 512,000 elements.  Thus, the remainder of the FEM simulations were performed 
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using 125,000 elements.  Furthermore, since transient velocity field information was used in the 

current work, the velocity components in all three directions needed to be outputted at every time 

step, which generates considerable amounts of data. Although the velocity field is not constant 

within a Tote blender single revolution, the material reaches a periodic steady state condition after 

a few initial revolutions. Table 5.3 shows the averaged velocity differences between subsequent 

revolutions, defined as 
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where i is the direction of the velocity component, j is the revolution number, and Nn is the total 

number of nodes within the material domain. It is evident from Table 5.3 that the periodic steady 

state condition is reached after the first revolution. Therefore, to save computational effort without 

losing accuracy, the FEM simulation was only performed for two revolutions and the velocity 

fields within the second revolution were used in the multi-scale model subsequently. 

 

Table 5.3 The averaged velocity differences between subsequent revolutions. 

Revolution numbers (j, j+1) (1,2) (2,3) (3,4) 

ave
/x xv v  3.95% 0.56% 1.85% 

ave
/y yv v  2.30% 0.38% 3.03% 

ave
/z zv v  2.91% 1.18% 2.53% 

 

In the experiments reported by Sudah et al. [81], materials were initially loaded into the Tote 

blender in two different ways: top-bottom loading and left-right loading. Two filling levels were 

also studied – 40% fill and 60% fill. The same loading conditions and filling levels were modeled 

in the current work, as shown in Figure 5.9. The color scale in Figure 5.9 is the same as Figure 5.3 

and represents the field variable value from 0 (blue) to 1 (red). Figure 5.10 shows the evolution of 

the material domain within the first revolution for left-right loading and 40% fill. 
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Figure 5.9 The left-right (a) and top-bottom (b) initial loadings for 40% fill. 

 

 

Figure 5.10 Snapshots showing the change of the material domain in the (a) FEM simulation and 

(b) multi-scale model for left-right loading and 40% fill. The vertical color scale in (b) is the red 

particle concentration. 

 

The state of mixing predicted by the multi-scale model after different numbers of revolutions is 

shown in Figure 5.11. As expected, as time increases the degree of mixing increases, with both 

advection and diffusion contributing to the mixing process. Moreover, the top-bottom loaded 

materials mix much faster than the left-right loaded materials since the advective mixing is much 

stronger in the top-bottom loading case. 
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Figure 5.11 Snapshots showing the state of mixing at the end of each revolution for (a) left-right 

loading and (b) top-bottom loading and 40% fill. The vertical color scale is the red particle 

concentration for (a) and (b). 

 

In the experiments by Sudah et al. [81], mixing curves were constructed by plotting the relative 

standard deviation (RSD) as a function of mixing time. The relative standard deviation is calculated 

as, 

i

i

RSD
c


 ,            (5.27) 

 
22

,

1

1

1

M

i i i m

ms

c c
N




 

 .         (5.28) 

 

In the above equations, 
2 is the measured variance of component i’s concentration, ci is the mean 

concentration of component i, and Ns is the total number of samples used to calculate the mean 

and variance. The relative standard deviation varies from zero, corresponding to perfect mixing, 

to one, which is a fully segregated state. The RSD value was also computed using the multi-scale 

model to compare with the published experimental results. Note that in the multi-scale model, 

every node at which a concentration is calculated is used in the evaluation of the segregation 

intensity, while in the experiments nine core samples were used [81]. Although the scale of 

scrutiny plays a role in the calculated results, as shown in Chapter 4, the predicted values using 

different grid sizes are close to each other. 
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Figure 5.12 plots the RSD values with respect to the number of revolutions for top-bottom and left-

right initial loading patterns for the multiscale-model and experiments. Results for 40% and 60% 

fill levels were compared. In the current work, 1,000,000 cells were used to maintain accuracy and 

computational efficiency (i.e., 100 cells in each direction). A mesh dependency study was 

performed to ensure solution convergence and the error was found to be within 5% between 

1,000,000 cells (i.e., 100 cells in each direction) and 3,375,000 cells (i.e., 150 cells in each 

direction). As shown in Figure 5.12, there is good quantitative agreement between the multi-scale 

model predictions and experimental measurements, although it does appear that there is some 

offset for the case with 40% fill and top-bottom loading. There is no error information given for 

the experimental results so it is difficult to determine how significant this difference is.  The figure 

also indirectly shows the significance of the advective and diffusive components. For the side-side 

loading condition, the mixing is dominated by diffusive mixing while the top-bottom loading is 

dominated by advective mixing. Apparently, the influence of advective mixing is much stronger 

than the influence of diffusive mixing.  The total wall-clock time required to run a single case on 

10 cores, including the FEM simulation and MATLAB processing, was approximately 2.5 days. 

 

 

Figure 5.12 Mixing state comparison between published experimental results and the multi-scale 

model predictions. The random mixing state is represented by horizontal dashed lines and the 

spanwise diffusion constant is k1 = 0.01. 
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To better understand the effects of model parameters, a parametric study was performed. The 60% 

fill and side-side loading case was used in the parametric study. As shown in Figure 5.13, the 

diffusion constant k1 term is more significant than the k2 term, and a larger diffusion constant 

results in a faster mixing. This result is consistent with findings in Chapter 4. Figure 5.13(a) also 

shows the quantitative contributions of advective and diffusive mixing.  A value of k1 = 0 means 

there is only advective mixing while k1 = 0.01 means there is both advective and diffusive parts. 

For this loading condition, the influences of advective and diffusive mixing are both very important. 

However, it is expected that the relative contributions of advective and diffusive mixing will vary 

based on different loading and fill conditions. Simulations must be performed to quantitatively 

obtain the advective and diffusive contributions for a particular loading and fill condition. 

 

Figure 5.13 The relative standard deviation as a function of the number of revolutions for 60% 

fill and side-side loading for (a) different spanwise diffusion constants k1, and (b) different 

streamwise diffusion constants k2. 

 

Figure 5.14 shows the effects of wall friction angle and internal friction angle. Figure 5.14(a) 

indicates that the mixing process is almost unaffected by the wall friction coefficient, which is 

consistent with previous findings in Chapter 4. Figure 5.14(b) shows that a larger internal friction 

angle results in faster mixing, resulting from a strong advective mixing contribution, but the trend 

is not very significant. In general, the advective movement of materials in a three-dimensional 

blender is difficult to estimate without predictive simulations. 
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Figure 5.14 The relative standard deviation as a function of the number of revolutions for 60% 

fill and side-side loading for (a) different wall friction angle fw, and (b) different internal friction 

angles fi. 

 

5.5 Study of the initial loading condition and fill method 

As shown in Figure 5.12, the initial loading and fill conditions play an important role in the 

magnitude and rate of mixing within the Tote blender. Hence, studies have been performed to 

understand the effect of different loading conditions and fill methods. 

 

5.5.1 Effect of the initial loading condition 

According to the results shown in Section 5.4, one of the important factors affecting mixing rates 

in the Tote blender is the loading method. As shown in Figure 5.12, different loading methods lead 

to different mixing rates.  Figure 5.15 plots three different initial loading conditions for the Tote 

blender simulation. The fill level for all three conditions is 60 % with 50/50 assembly, and the 

material properties and operation conditions are identical to those used in Section 5.4. 
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Figure 5.15 Different initial loading conditions used in the Tote blender simulation. The length 

scale unit is meter and the vertical color scale is the red particle concentration. The dashed line is 

the rotating axis. 

 

Segregation intensity I, as defined in Chapter 4, is used to quantitatively compare the mixing rate 

of different loading conditions. As mentioned before, scale of scrutiny, i.e., the sample cell size, 

plays a minor rule with larger scales of scrutiny having smaller segregation intensities. Hence, for 

consistency, sample cubes with 25 mm edges were used in the current work. The segregation 

intensity as a function of the number of blender revolutions for the three different loading 

conditions is plotted in Figure 5.16. Clearly, the mixing rate is much faster for the top-bottom and 

front-back loading conditions than the side-side loading condition, indicating that the advective 

mixing is more dominant than the diffusive mixing. Moreover, it is shown that the mixing rates 

for top-bottom and front-back loading conditions are nearly the same, especially after 4 revolutions. 

In fact, both the top-bottom and front-back loading conditions belong to the same group where the 

normal axis of the surface that separates the particles of different color is perpendicular to the 

rotating axis of the blender. In these conditions, advective mixing is maximized. The side-side 

loading condition belongs to another group where the normal axis of the dividing surface is parallel 

to the rotating axis of the blender and hence, only diffusive mixing in applied. For practical purpose, 

to reach a faster mixing rate, the advective mixing should be always maximized and thus, top-

bottom and front-back loading conditions should be used. 
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Figure 5.16 The segregation intensity as a function of the number of blender revolutions for 

different initial loading conditions shown in Figure 5.15. 

 

5.5.2 Effect of the initial fill method 

It is shown in Figure 5.12 that the fill level of the blender has a noticeable effect on the mixing 

rate. Figure 5.12 also illustrates that increasing the fill level slightly decreases the mixing rate, 

since increasing the fill level decreases the relative amounts of material in the flowing layer (the 

flowing layer depth does not significantly change with variations in fill level). However, note that 

previously the initial fill was always a 50/50 assembly. Hence, to further understand the effect of 

the initial fill method, different assemblies with different mass fractions of red particles are studied. 

Figure 5.17 plots three different initial assemblies for the Tote blender simulation. Here C0 

represents the mass fraction of red particles. Top-bottom loading and 60% fill were used for all 

three conditions and the material properties and operation conditions are identical to those used in 

Section 5.4. 
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Figure 5.17 Different initial assemblies used in the Tote blender simulation. C0 represents the 

mass fraction of red particles. The length scale unit is meter and the vertical color scale is the red 

particle concentration. 

 

Since different initial assemblies were studied, mesh dependency tests have been performed to 

ensure the convergence of the results. Figure 5.18 plots the segregation intensity as a function of 

the number of blender revolutions for different numbers of cells. The mass fraction of red particles 

used here is a) 0.5 and b) 0.2. Log-linear scale is used in Figure 5.18 in order to better compare the 

results when segregation intensity approaches zero. Note that as mentioned in Chapter 4, the multi-

scale model would predict an asymptotic segregation intensity of nearly zero, corresponding to a 

perfectly mixed state. However, a perfectly mixed state is generally not achievable in practice and 

instead a randomly mixed state is the expected asymptotic state. For practical purpose, assuming 

pharmaceutical tableting with granules of 500 m diameter, and using the tablet size as the sample 

size, the segregation intensity corresponding to randomly mixed state is about 0.005, which is 

shown in Figure 5.18 as the dashed line. As mentioned in Chapter 4, the simulation is stopped after 

reaching the random mixed state. 
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Figure 5.18 The segregation intensity as a function of the number of blender revolutions for 

different numbers of cells. The mass fraction of red particles, C0, is a) 0.5 and b) 0.2. 

 

As shown in Figure 5.18(a), the computed segregation intensity remains the same using 1,000,000 

and 3,375,000 cells in the advection-diffusion calculation. However, Figure 5.18(b) shows that, 

when C0 = 0.2, the computed segregation intensity is different after 6 revolutions using 1,000,000 

and 3,375,000. This shows that when using 1,000,000 cells, the numerical diffusion starts to play 

a role and changes the mixing rate after 6 revolutions. In the contrast, the computed segregation 

intensity remains the same using 2,179,000 and 3,375,000 cells. Hence, to ensure the mesh 

convergence, a number of cells is chosen such that the numerical diffusion does not change the 

mixing rate until it reaches the randomly mixing state (i.e., I = 0.005 as mentioned before). 

According to the convergence result, 3,375,000 cells were used to run the simulation in the current 

study. 

 

The segregation intensity as a function of the number of blender revolutions for different initial 

assemblies is plotted in Figure 5.19. The same sample size used in the previous section was used 

here as well. Note that the segregation intensity for the simulation with C0 = 0.8 is slightly smaller 

than those for simulations with C0 = 0.2 and 0.5 during the first few revolutions. This is because 

the simulation with C0 = 0.8 has the largest dividing surface, as mentioned in the previous section 

and shown in Figure 5.17. Due to the linear interpolation method used to transfer data from Abaqus 

to Matlab, a larger dividing surface will introduce more initial mixing into the system. A finer 

FEM mesh can be used, if necessary, to reduce the initial mixing caused by the linear interpolation 

method. Overall, it is shown in Figure 5.19 that the mixing rate is not strongly affected by the mass 



78 

 

fraction of red particles studied in the current section. Future works should focus on studying the 

effect of initial assemblies with smaller mass fraction of red particles, such as C0 = 0.1 and 0.005. 

 

 

Figure 5.19 The segregation intensity as a function of the number of blender revolutions for 

different initial assemblies shown in Figure 5.17. 

 

5.6 Summary 

In this chapter, a three-dimensional transient multi-scale modeling approach is described for 

predicting blending in particulate systems. This model is extended from the two-dimensional 

steady model developed in Chapter 4. This three-dimensional model combines, within the 

advection-diffusion equation, finite element method generated transient macroscopic velocity 

fields with experimentally-obtained particle diffusion correlations at a local scale. The model is 

applied here to a three-dimensional Tote blender. Predictions of the mixing rate from the multi-

scale model compare well quantitatively to published experimental data. Parametric studies 

demonstrate that both advective and diffusive mixing contribute significantly to the overall 

blending performance, but the relative importance of each component will mostly depend on the 

loading condition. Also, wall friction and internal friction appear to play little role in mixing for 

the studied conditions 
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 TWO-DIMENSIONAL MULTI-SCALE SEGREGATION 

MODEL 

This chapter extends the model developed in Chapters 4 and 5 to include segregation. FEM 

simulations with a Mohr-Coulomb elasto-plastic material model are used to provide a prediction 

of the advective flow field.  This flow field is combined with particle-level diffusion and shear-

driven percolation segregation correlations to predict segregation in a rotating drum and hoppers 

of different geometries.  The predictions are compared to DEM [42] and experimental [89] results 

available in the literature. Section 6.1 introduces the FEM modeling approach and its numerical 

implementation. Section 6.2 describes the advection-diffusion-segregation equation used in the 

model. Section 6.3 presents comparisons of the model predictions to the DEM and experimental 

results. 

 

6.1 Finite element method model 

Three-dimensional, coupled Eulerian-Lagrangian, FEM models [80,90,91] are used here to predict 

the advective flow field in a rotating drum and conical hoppers. The following sub-sections 

describe the model geometries, boundary conditions, and initial conditions for three different 

systems. 

 

6.1.1 Simulation of a rotating drum 

The commercial FEM package Abaqus/Explicit V6.14 is used to perform the simulations. The 

geometry of the simulated rotating drum, shown in Figure 6.1, is based on previous DEM 

simulations performed by Schlick et al. [42] and it mimics a lab-scale rotating drum with a 

diameter of 150 mm. Since a 2-D flow pattern was assumed in [42], both the front and back sides 

of the Eulerian mesh are regarded as planes of symmetry in the model with a narrow width of 10 

mm used for computational efficiency. Gravity is included in the model with g = 9.8 m/s2 directed 

in the negative y-direction.  The rotational speed is 0.75 rad/s (7.2 rpm), corresponding to the 

previously published work [42]. The model setup is the same as the one in Chapter 4 and is shown 

in Figure 6.1 for convenience. 
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Figure 6.1 A schematic of the geometry modeled in the FEM simulations. 

 

A Mohr-Coulomb elasto-plastic (MCEP) model is used in the current chapter to describe the stress-

strain behavior of the particulate material. Details of this constitutive model are included in 

Chapters 3 and 4. Despite the simplicity of the MCEP model, it is shown to be sufficiently accurate 

at predicting velocity fields used in the quantitative prediction of segregation trends. 

 

The material properties needed in the MCEP model are bulk density, Young’s modulus, Poisson’s 

ratio, dilation angle, material internal friction angle, and wall friction angle. All of these material 

parameters can be obtained from independent, standard material tests. For example, a uniaxial 

compression test can be used to calibrate the bulk density, Young’s modulus, and Poisson’s ratio, 

while a shear cell test can be used to calibrate the material’s internal friction angle and wall friction 

angle. Detailed description of these experimental techniques is given in Chapter 4.  As a side note, 

the effort required to obtain model parameters should not be underestimated.  More complex 

material models can require many parameters, some of which may be difficult to obtain. In addition, 

many of the more complex material models are not implemented in commercial software, making 

their use for industrial practioners challenging. The MCEP provides a good balance between model 

accuracy, simplicity, and is already implemented in commercially available software and, thus, is 

worth consideration. 
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The Abaqus element mesh for the rotating drum is shown in Figure 6.1 and derived from the model 

described in Chapter 4. A Coupled Eulerian-Lagrangian (CEL) approach is used to handle the 

interactions between Eulerian and Lagrangian elements. The Eulerian Volume Fraction (EVF) 

value is used to determine the volume of material within each element. A value of EVF = 0 

indicates that no material is present in the element while EVF = 1 indicates that the element is 

completely filled with material. Gravity is increased gradually to fill the drum and allow material 

to settle before the drum rotates. Further details can be found in Chapter 4. 

 

6.1.2 Simulations of conical hoppers 

Figure 6.2 shows the geometries of the simulated conical hoppers, which correspond to the hoppers 

used by Ketterhagen et al. [89] in their experimental work. The FEM discretization of these three-

dimensional geometries is shown in Figure 6.3. A symmetry boundary condition is applied on the 

front side of the Eulerian mesh, as shown in Figure 6.3, and only half of the geometry is modelled 

to save computational time. Note that an axisymmetric boundary condition cannot be applied in 

the current model since it causes numerical errors along the axisymmetric axis (refer to Section 

6.2.2). Hopper walls are modeled as rigid shells and fixed in all degrees of freedom. Gravity is 

included in the model with g = 9.8 m/s2 directed in the negative y-direction. 

 

Figure 6.2 Schematics and dimensions of the experimental hoppers used by Ketterhagen et al. 

[89]. Length dimensions are in mm. 
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Figure 6.3 The discretization of the computational hopper domains. 

 

Details of the material model and Abaqus implementations are the same as those described in 

Section 6.1.1. The hopper outlet is initially closed and, after the material settles under gravity 

within the Eulerian elements, the outlet is opened and discharge commences. Specifically, the 

outlet is opened by assigning a free-flow Eulerian boundary condition to the bottom plane, as 

shown in Figure 6.3. 

 

It is worth noting that since a coupled Eulerian-Lagrangian (CEL) method is used, the Lagrangian 

mesh, i.e., the hopper wall, is placed inside the Eulerian mesh. A penalty method is then used to 

prevent material penetration and, thus, to ensure mass conservation. The algorithm calculates a 

repulsive contact force proportional to the penetration distance between the Lagrangian mesh and 

the material in the Eulerian mesh [92]. Naturally, a penalty method cannot strictly enforce the 

constraint and, hence, some penetration of Eulerian material into the Lagrangian boundary occurs. 

In most cases, this penetration is negligible; however, depending on the system geometry and 

material properties, severe penetration can occur in the simulation. There are a number of modeling 

procedures to overcome these severe cases, namely:  (1) use a refined mesh in the region where 

penetration happens; (2) reduce the time step size so that a smaller penetration distance is used for 

the contact force; and (3) round sharp corners of the Lagrangian mesh, as shown in Figure 6.3. 
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6.2 The multi-scale segregation model 

Since a quasi-2D rotating drum flow [42] and axisymmetric conical hopper flows [89] are studied 

in this work, a two-dimensional segregation model is developed as an extension of the two-

dimensional mixing model in Chapter 4. The following sub-sections present the main aspects of 

the segregation model. 

 

6.2.1 Advection-diffusion-segregation (ADS) equation 

The advection-diffusion-segregation (ADS) equation is used to model the diffusion and shear-

induced percolation segregation of a binary granular mixture and the resulting temporal and spatial 

concentration fields of the component materials. Specifically, the governing equation is, 

     i
i i p i

c
c c c

t


   


D v v ,       (6.1) 

where ci is the local concentration of material species i (either small, i = s, or large, i = l, particles). 

The parameter D is the diffusion coefficient tensor for that species, v is the local advective velocity 

vector of the bulk material, and vp is the percolation velocity vector. Since binary mixture is studied 

in the current work, D and vp represent the mixing and segregation parameters between the two 

species. Note that previous work has shown that the self-diffusion coefficient D is an anisotropic 

tensor quantity [66,80,90]. However, Fan et al. [31] showed that for segregation-dominated flows, 

a constant D, namely, the mean diffusion coefficient in the spanwise direction, can still lead to an 

accurate prediction. Hence, for simplicity, a constant diffusion coefficient D is used in the current 

model, which is assumed independent of particle size, shear rate, and local concentration, 

consistent with previous work [31]. 

 

The percolation velocity vp  derived by Fan et al. [31] is adopted in the current model. In their work, 

heap flows were studied and, thus, only the normal component of the percolation velocity relative 

to the mean normal flow was considered.  The streamwise component was neglected. Here, gravity 

acts in the negative y-direction and percolation is dominant in the direction of gravity [59,93]. 

Therefore, the x-component of the percolation velocity is neglected and only the y-component is 

considered. Moreover, according to Fan et al. [31], the percolation velocity can be approximated 

as a linear function of the shear rate and the concentration of the other species in a bi-disperse 

mixture, i.e., 
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, (1 )p s sv S c   , , (1 )p l lv S c  ,       (6.2) 

where S is the percolation length scale and   is the magnitude of the spanwise shear rate.  Note 

that, unlike the diffusion coefficient, the percolation speed does depend on the local particle 

concentration. 

 

Relationships for the percolation length scale S as a function of the particle diameter and small to 

large particle ratio have been proposed [31,42,59,60]. However, in this work, a percolation length 

either previously reported [42] or fitted to experimental data [89] is used. Finally, since the 

percolation in the y-direction is mainly caused by the shear rate in the x-direction, the y-component 

of the shear rate is neglected and the shear rate is approximated by, 

x
x

v

y
 


 


.          (6.3) 

Using the local mass conservation equation, adopting the relationship presented above (Eqs. (6.2) 

and (6.3)), and assuming an incompressible material, i.e., 

0 v ,           (6.4) 

Eq. (6.1) may be written in index notation form as, 
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,    (6.5) 

where the   sign is determined by the size of the particles, as indicated in Eq. (6.2). 

 

6.2.2 Numerical method 

The numerical method used to solve the ADS equation in the current chapter is the same one used 

in Chapters 4 and 5. A finite difference method based on a second-order Tylor Lax-Wendroff 

scheme is used to solve Eq. (6.5) due to the method’s simplicity and computational efficiency [70]. 

The second order scheme can be written as, 
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where the advection and diffusion terms are given in Section 4.2.2 as Eqs. (4.8)-(4.18), with the 

segregation terms to be, 
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The computational molecule for this scheme is shown in Figure 4.4. Note that since a finite 

difference method is used, the Von Neumann conditions must be checked to ensure the stability 

of the numerical computations. 

 

A MATLAB program is used to iterate the finite difference scheme. A C++ code was developed 

to read and process the large FEM output files (.obd files). The material boundaries computed 

within the FEM simulation from the Eulerian Volume Fraction (EVF) values are used directly by 

the MATLAB algorithm. To ensure mass conservation of each species, the segregation and 

diffusion fluxes are set to zero on the boundary and, thus, material cannot exit the domain by 

advection. A threshold is set to ensure the material concentration value remains between zero and 

one, and a small time step is carefully chosen to ensure the stability of the explicit scheme. The 

same as Chapter 4, a fitting approach is applied to ensure that the material concentration of the 

boundary node is equal to the value of the node that is one grid point inward, a scheme commonly 

employed in CFD computations ([71]). Note that this fitting approach restricts the use of an 

axisymmetric boundary condition since the material nodes along the axisymmetric axis would be 

treated as boundary nodes as well. 

 

Mesh dependency studies were performed to ensure the convergence of the numerical results for 

both the FEM and the ADS equation calculations. For the FEM simulations, comparisons of the 

averaged velocity differences in the system were compared to determine convergence, with the 

details shown in Table 6.1. The velocity differences were averaged between 10 different points 
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along the free surface of the rotating drum and the outlet of the hopper. For both systems, the FEM 

solutions were insensitive to the mesh sizes and, thus, 500,000 and 176,000 elements were used in 

the rotating drum simulation and hopper simulations, respectively. Detailed mesh convergence 

results for the ADS equation calculations are given in Sections 6.3. 

 

Table 6.1 Convergence study results for the FEM simulations. 

 Number of elements Averaged velocity differences 

Case 1 Case 2 

Rotating drum 500,000 1,280,000 2.74% 

15° hopper 176,000 411,000 3.27% 

 

Note that to achieve numerical convergence and stability, the number of nodes used in the second-

order Tylor Lax-Wendroff scheme must be much larger than the number of nodes in the FEM 

mesh. A linear interpolation algorithm, implemented in MATLAB, is used to transfer data from 

the FEM nodes to the ADS nodes. 

 

The initial conditions used in the simulations correspond to a perfect mixture since segregation is 

the main focus of this work.  Refer to Chapters 4 and 5 for examples of granular systems that are 

initially partially mixed or separated and are then blended. 

 

6.3 Results 

In this section, predictions from the FEM-ADS equation models are compared to previously 

published DEM and experimental results. Specifically, the segregation profile normal to the bed 

surface is examined for a rotating drum and the temporal variation in the fraction of fine particles 

at discharge is compared for two different hoppers.  In addition, qualitative examination of the 

particle concentration fields are discussed. 
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6.3.1 Rotating drum 

The rotating drum FEM-ADS model predictions are compared to bi-disperse particle segregation 

DEM results reported by Schlick et al. [42]. The parameters used in the FEM simulations are given 

in Table 6.2 and correspond to the properties derived from DEM simulations of 1 mm diameter, 

identical spherical particles with the material properties given in Chapter 4.  The FEM-ADS 

models described here are one-way coupled, which means that the bulk flow field determined from 

the FEM model is unaffected by the local particle species concentration. 

 

Table 6.2 Parameters used in the rotating drum FEM simulation. 

Parameter Value 

Material density (kg/m3) 1500 

Young’s modulus (MPa) 3.65 

Poisson’s ratio (-) 0.065 

Internal friction angle (degree) 23.6 

Cohesion (Pa) 0 

Dilation angle (degree) 0.1 

Wall friction coefficient (-) 0.324 

 

There are two differences between these previous DEM simulation parameters and those of the 

Schlick et al. work [42].  First, Schlick et al. used a particle-wall friction coefficient of 0.4 while 

Chapter 4 used a value of 0.3.  This difference is expected to have little impact since Chapter 4 

demonstrated that changing the particle-wall friction coefficient had little impact on the flow 

behavior. The reason is that the first avalanche always occurs at the same location and the free 

surface angle remains constant as long as the wall friction is sufficiently large to lift the material 

without sliding.  Second, the Schlick et al. work used a 50/50 bi-disperse assembly of 1 mm and 3 

mm spheres while the DEM simulations used in Chapter 4 to calibrate the FEM parameters used 

identical 1 mm particles. 
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The dilation of cohesionless granular materials is usually small and, thus, a dilation angle of 0.1° 

was adopted, which is the minimum value allowed in Abaqus for the MCEP model. The Poisson’s 

ratio is very small because the powder bed is loose, with a relative density around 0.3, and thus it 

is very compressible, as shown in Chapter 4. 

 

Schlick et al. used particles with 1 mm and 3 mm diameters in their DEM simulations [42]. As 

mentioned previously, the FEM material parameters were calibrated using 1 mm particles only. 

To verify that the FEM model predicted the flow field accurately, the surface velocity in the 

streamwise direction of the DEM simulation reported by Schlick et al. was compared with that of 

an FEM simulation using the material parameters in Table 6.2 when the rotation speed  is 0.75 

rad/s (7.2 RPM). Figure 6.4 shows that these two velocities are similar despite having different 

particle sizes. The maximum thickness of the flowing layer  was also compared, and the values 

predicted by the DEM and FEM simulations differ by, at most, 8% (14.8 mm for the former and 

13.6 mm for the latter). This close similarity indicates that the Mohr-Coulomb properties listed in 

Table 6.2 represent the granular system used in the DEM simulations with sufficient accuracy for 

the rotating drum studied. This similarity may not hold true for other geometries with large particle 

size differences since previous work has shown that the velocity field can be influenced by the 

particle size [42]. 

 

Figure 6.4 Surface velocity as a function of the streamwise position at  = 0.75 rad/s (7.2 RPM). 

The coordinate system used in the plot is identical to the one used by Schlick et al. [42] for 

consistency, where x is the streamwise direction in the flowing layer. 
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As mentioned before, it is necessary to know the diffusion coefficient D and the percolation length 

scale S in order to compare results from the FEM-ADS model with those from DEM simulations. 

These values were found in [42] for rotating drum DEM simulations of 1 mm and 3 mm diameter 

spheres with  = 0.75 rad/s (7.2 RPM) to be D = 16.1 mm2/s and S = 0.29 mm. 

 

Figure 6.5 shows the spatial evolution of the small particle concentration at different times 

predicted by the FEM-ADS model. The drum is half-filled with initially well-mixed particles, i.e., 

cs = cl = 0.5 at every material point in the domain. As expected for a bi-disperse granular system, 

as time increases the degree of segregation increases. It is evident from the figure that small 

particles segregate to the bottom of the flowing layer and gather in the center of the material 

domain inside the drum. The same trend was also captured in the previous DEM simulations of 

Schlick et al. [42]. Hence, qualitatively, the multi-scale model reproduces the segregation pattern 

observed in the DEM simulations. 

 

 

Figure 6.5 Snapshots showing the small particle concentration in the simulated rotating drum at 

different times.  The dashed line at 12 s is the path used to plot the small particle concentration 

quantitatively. 
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To provide a quantitative comparison of the two modelling approaches, the steady-state 

concentration of small particles is plotted in Figure 6.6 as function of the dimensionless distance 

/ R0 along the center of the bed starting from the free surface, i.e., along the dashed line shown 

in Figure 6.5. The distance is made dimensionless using the radius of the drum R0. The figure 

indicates that there is good quantitative agreement between the two models, although the FEM-

ADS model slightly overpredicts the small particle concentration near drum walls. The total wall-

clock time required to run the FEM (16 cores with the Intel Xeon CPU E5-2680 v3 processor) and 

ADS (MATLAB, single core with the same processor) simulations was approximately two days. 

Note that a mesh dependency study was performed to ensure the convergence of the ADS equation 

calculations. The small particle concentration along the center of the bed, as shown in Figure 6.6, 

was computed using 250,000 and 1,000,000 elements, respectively. The averaged error among all 

computed data points was 3.56% and, hence, 250,000 elements were used in the remainder of the 

rotating drum simulations. 

 

 

Figure 6.6 Steady-state concentration of small particles as a function of dimensionless distance 

from the free surface, / R0, along the centerline of the drum. The DEM model results are from 

previous work by Schlick et al. [42]. 

 

To better understand the effects of the model parameters, a parametric study was performed using 

the rotating drum simulation. The model is identical to the one described previously except for the 

values of the diffusion coefficient D and percolation length scale S. Figure 6.7(a) shows the results 
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for simulations where the percolation length scale remains the same while the diffusion coefficient 

changes and Figure 6.7(b) shows the results when the diffusion coefficient remains the same and 

the percolation length scale changes. Clearly, segregation is stronger as the diffusion coefficient 

decreases and percolation length increases. This same trend was predicted by Schlick et al. [42]. 

It is also shown that segregation is dominated more by the percolation than the diffusion, and the 

effect of percolation and diffusion decreases as the powder bed approaches a fully segregated state. 

Moreover, it is noticed in both Figs. 6.7(a) and (b) that the maximum small particle concentration 

occurs at the bottom of the active layer since small particles fall to the bottom of the flowing layer 

as they move downstream and gather in the center of the bed. Also, when the diffusion coefficient 

is large or the percolation length scale is small, there is a small “mixing band” at around / R0 = -

0.9. This behavior occurs as a result of the small velocity gradient caused by wall friction close to 

the drum wall. A large diffusion coefficient and small percolation length scale results in more 

mixing in this region. 

 

 

Figure 6.7 The steady state small particle concentration plotted as a function of dimensionless 

distance from the free surface, / R0, along the centerline of the drum for a) different diffusion 

coefficients D and b) different percolation lengths S. Other model parameters are the same as 

those used in Table 6.2. 

 

6.3.2 Conical hoppers 

Experimental work on bi-disperse particle segregation carried out by Ketterhagen et al. [89] was 

used to further validate the predictions of the FEM-ADS model. The experimental setup consists 

of bench scale hoppers (ASTM D 6940-03) and binary mixtures of glass beads, as shown in Figure 

6.2. The initial hopper fill height is 105 mm for the 55° hopper and 210 mm for the 15° hopper. 
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The Mohr-Coulomb properties used in the FEM simulations should, preferably, be calibrated from 

experimental characterization. Unfortunately, these values were not reported in the Ketterhagen et 

al. work [89] and, therefore, these material properties are determined here from the DEM particle 

properties used by Ketterhagen et al. [89], which showed good quantitative agreement with 

experimental results. Specifically, the internal friction angle and wall friction angle were calibrated 

using DEM simulations of an annular shear cell (see Chapter 4 for details of this calibration 

procedure). Note that in the experiments by Ketterhagen et al. [89], the mass fractions of small 

particles were relatively small (10%). Hence, the particle diameter used in the DEM calibration 

simulations is identical to the large particle diameter with d = 2.24 mm. Material density, elastic 

modulus, and Poisson’s ratio are known to have little influence on the granular flow behavior, and 

are assumed here to be the same as those obtained for hard spheres, as shown in Table 6.2. Dilation 

of cohesionless granular materials is assumed here for hard spheres as well. Finally, particle shape 

and size effects are lumped together with bulk and transport material properties used in the model. 

Tables 6.3 and 6.4 show the DEM and FEM material parameters, respectively. 

 

Table 6.3 Parameters used by Ketterhagen et al. [89] in DEM simulations. 

Parameter Value 

Particle density (kg/m3) 2520 

Particle-particle coefficient of restitution (-) 0.94 

Particle-wall coefficient of restitution (-) 0.90 

Particle-particle friction coefficient (-) 0.1 

Particle-wall friction coefficient (-) 0.5 

Rolling friction coefficient (-) 0.045 
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Table 6.4 Parameters used in FEM hopper discharge simulations. 

Parameter Value 

Material density (kg/m3) 1500 

Young’s modulus (MPa) 3.65 

Poisson’s ratio (-) 0.065 

Internal friction angle (degree) 18.4 

Cohesion (Pa) 0 

Dilation angle (degree) 0.1 

Wall friction coefficient (-) 0.31 

 

Since no velocity information was given in the previous work [89], the velocity profiles cannot be 

compared directly. However, there is extensive evidence that FEM models can accurately predict 

the velocity field of granular flows [56–58,80,90]. Therefore, the velocity profiles predicted by 

FEM simulations of the hopper geometries shown in Figure 6.2 are used to predict segregation 

during discharge. 

 

As mentioned before, a single diffusion coefficient D, as opposed to an anisotropic tensor, leads 

to accurate predictions in segregation-dominated flows [31]. Also, as shown in Figure 6.7, 

segregation is dominated more by the percolation than the diffusion. Therefore, the diffusion 

coefficient calibrated in Chapter 5 in the spanwise direction of the active layer is adopted and 

assumed homogeneous. The value is then determined by averaging the diffusion coefficient in the 

entire flowing layer in the hopper after the flow becomes steady. 

 

The percolation length scale S is calibrated to one set of experimental data and used to predict 

other experimental configurations. Specifically, the aim is to reproduce the experimentally-

observed normalized mass fraction of fines xi/xf, where xi is the mass fraction of fines collected at 

discharge in a given sample and xf is the initial mass fraction of fines. Figure 6.8 shows the 

normalized mass fraction of fines xi/xf as a function of the fractional mass discharged M/Mtotal, 

where M is the cumulative mass discharged and Mtotal is the initial total mass inside the hopper. 
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The experiment was performed in the 55° hopper with a well-mixed initial fill. The initial mass 

fraction of fines is 10% with the particle diameters for small and large particles equal to 1.16 mm 

and 2.24 mm, respectively. The multi-scale model predictions are also shown in Fig 6.8 with 

different assumed values of the percolation length scale S. Note that in the FEM simulations, due 

to the penalty contact algorithm used, as described in Section 6.1, the material tends to attach to 

the wall when almost fully discharged. Thus, the simulations are not a good description of the final 

stage of the discharge process. Regardless of this limitation, it is evident from the figure that the 

FEM-ADS model can predict the segregation pattern during hopper discharge with good 

qualitative accuracy. 

 

 

Figure 6.8 Experimental and FEM-ADS model predictions of the normalized mass fraction of 

fines with respect to the fractional mass discharged for different percolation length scale (S) 

values. The hopper angle is 55° and the initial fines mass fraction is 10%. Scatter bars denote the 

95% confidence interval of the experimental results. 

 

Figure 6.9 shows the calibration error for different values of S. The calibration error is defined as 

the averaged absolute differences in the normalized mass fraction of fines compared to the 

experimental results. The figure suggests that a value of S = 2 mm is optimal for the percolation 

length scale of the tested system. It is worth noting that this S value is about seven times larger 

than the one used in Section 6.3.1 for the material system in the rotating drum. The reason for the 

difference may be that a smaller particle-particle friction coefficient is used in the hopper discharge 
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simulation as compared to the rotating drum.  A smaller particle-particle friction coefficient would 

make it easier for small particles to percolate through the large particles and, thus, give a larger 

percolation length scale. 

 

 

Figure 6.9 Averaged absolute differences between experimental values and FEM-ADS model 

predictions of the normalized mass fraction of fines, for different S values. 

 

The FEM-ADS model calibrated with data from the 55° hopper (S = 2 mm) is now compared to 

the experimental data from the 15° hopper using a well-mixed initial fill and 10% initial mass 

fraction of fines. The diffusion coefficient D is equal to 0.6 mm2/s for the 15° hopper discharge 

simulation. As mentioned previously, this value is determined by averaging the diffusion 

coefficient in the entire flowing layer of the 15° hopper. This value is different from the diffusion 

coefficient calibrated for 55° hopper since the velocity field changes between these two hoppers. 

Figure 6.10 depicts the small particle concentration spatial and temporal evolution. It is evident 

from the figure that segregation mainly occurs near the free surface where large particles tend to 

roll down the incline towards the hopper centerline. Since velocities are the largest near the 

centerline, these large particles are discharged first. This trend is in agreement with the 

experimental observations reported by Ketterhagen et al. [89] indicating that the multi-scale model 

qualitatively predicts the segregation pattern during hopper discharge. 
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Figure 6.10 Simulation snapshots showing segregation evolution. The vertical color scale 

corresponds to the concentration of small particles. 

 

Figure 6.11 shows the normalized mass fraction of fines as a function of the fractional mass 

discharged for the 15° hopper discharge experiment. As indicated previously, the ending stage of 

the discharge process is not shown in the figure because the FEM-ADS model is not appropriate 

for describing this stage. The figure shows good quantitative agreement between the model 

predictions and experimental measurements, at least within the experimental scatter. Moreover, 

different segregation patterns are observed in Figs. 6.8 and 6.11 due to different flow modes. The 

55° hopper primarily discharges in funnel flow while the 15° hopper primarily discharges with 

mass flow behavior. The reasons for these two different segregation patterns were discussed by 

Ketterhagen et al. [89]. 
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Figure 6.11 Experimental and FEM-ADS model predictions of the normalized mass fraction of 

fines with respect to the fractional mass discharged. The hopper angle is 15° and the initial fines 

mass fraction is 10%. Scatter bars denote the 95% confidence interval of the experimental 

results. 

 

Note that to ensure the convergence of the ADS equation for the hopper simulations, a mesh 

dependency study was performed using the 15° hopper simulation.  The normalized fine mass 

fraction, as shown in Figure 6.11, was computed using 250,000 and 640,000 elements, respectively. 

The averaged error among all computed data points is 0.36% and, hence, 250,000 elements were 

used in the hopper simulation studies. 

 

Finally, the FEM-ADS model is further compared to experiments performed in the 55° hopper 

with a well-mixed initial fill, but different initial fines mass fractions, namely 20% and 50%. The 

same large and small particles are used in these experiments. The same diffusion coefficient (D = 

2.5 mm2/s for 55° hopper) and percolation length scale (S = 2 mm) as used previously are used in 

these new simulations. Figure 6.12 summarizes the good quantitative agreement between the 

experimental data and model predictions. The total wall-clock time required to run each of these 

simulations, including the FEM (32 cores with the Intel Xeon CPU E5-2680 v3 processor) and 

ADS (MATLAB, single core with the same processor) calculations, was two to three days. 
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Figure 6.12 Experimental and FEM-ADS model predictions of the normalized mass fraction of 

fines with respect to the fractional mass discharged. The hopper angle is 55° and the initial fines 

mass fraction is (a) 20%, and (b) 50%. 

 

6.4 Summary 

A two-dimensional transient multi-scale modeling approach for predicting binary segregation in 

particulate systems was presented in the current chapter. This model is an extension of previous 

mixing models developed in Chapters 4 and 5, which utilize a finite element method to determine 

the macroscopic granular velocity field and then combine them with microscopic diffusion 

correlations using the advection-diffusion equation. The current chapter extends the model by 

including the segregation correlation using the advection-diffusion-segregation equation. This 

utility of the multi-scale modelling approach was demonstrated predicting segregation patterns in 

a rotating drum and the discharge of conical hoppers with different geometries. The model exhibits 

remarkable quantitative accuracy in predicting DEM and experimental segregation values reported 

in the literature for cohesionless granular materials. 

  



99 

 

 TWO-WAY COUPLED MULTI-SCALE MIXING 

MODEL 

As mentioned in Chapters 4 to 6, the developed multi-scale model uses a one-way coupled method, 

which means material properties do not change with concentration. While this assumption is 

sufficient for previous studies, where the material properties do not change much across the 

mixture, it could raise problems when modeling mixing and segregation of materials with very 

different material properties. Hence, to further extend the usage of the one-way coupled multi-

scale model, a two-way coupled model is developed where the material properties change with 

concentration. As a result, the material flow field also changes with concentration.  

 

The multi-scale mixing model introduced in Chapter 4 is used in the current chapter to develop the 

two-way coupled model. Note that to derive the flow field based on material concentration, all the 

numerical calculations used to solve the advection-diffusion equation have to take place within the 

commercial software Abaqus/Explicit. Hence, an Abaqus user subroutine plugin is used to solve 

the equation within Abaqus for every time increment. 

 

7.1 Abaqus user subroutines 

As discussed in Chapter 4, to numerically solve the advection-diffusion equation, the velocity field 

and material concentration need be updated at every time increment. The Abaqus user subroutine 

VUSDFLD is used along with the user subroutine VUFIELD to obtain the required information. 

Details of these user subroutines can be found in Abaqus documentation [62] and are briefly 

introduce here. 

 

Note that to develop a more efficient and user-friendly plugin, other user subroutines and utility 

routines are also used. For example, VEXTERNALDB is used to read the user-defined inputs and 

initiate the program; VGETVRM is used to derive the Eulerian volume fraction (EVF) information, 

which is discussed in Chapter 4, to define boundary conditions; MUTEXLOCK is used to protect 

the common blocks from being updated by multiple threads at the same time to ensure that the 

plug-in is compatible with multi-thread simulations. 
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7.1.1 VUSDFLD 

The user subroutine VUSDFLD allows the redefinition of field variables at a material point as 

functions of time or any of the available material point quantities. Also, it can call the utility routine 

VGETVRM to access material point data, like the EVF value. Before the user subroutine 

VUSDFLD is called, the values of the field variables at the material point are calculated by 

interpolation from the values defined at the nodes and any changes to the field variables in the user 

subroutine are local to the material point. Thus, in the plugin, the user subroutine VUSDFLD is 

only used to derive the EVF values for material points. Common blocks are used to dynamically 

store the EVF values and transfer to other user subroutines. 

 

Moreover, the user subroutine VUSDFLD can introduce solution-dependent material properties 

since such properties can be easily defined as functions of field variables. Hence, this user 

subroutine allows the plugin to define concentration-dependent material properties, which extend 

the multi-scale model to a two-way coupled method. 

 

7.1.2 VUFIELD 

The user subroutine VUFIELD allows one to prescribe predefined field variables at the nodes of a 

model. Since in the plugin the material concentration is used as a nodal field variable, the main 

part of the computational work is finished within this user subroutine. Note that in the plugin the 

two-dimensional advection-diffusion equation is still used due to the computed geometry, which 

is explained in detail later. Details of the governing equations and numerical methods can be found 

in Section 4.2. 

 

As discussed previously, the EVF values for every material point are transferred through common 

blocks from the user subroutine VUSDFLD to VUFIELD. Next, the values derived at the material 

points are linearly interpolated into the values at the nodal points. These values are used to define 

the material domain at every time increment and to compute the boundary conditions. The nodal 

velocities are derived directly within this user subroutine and used to solve the advection-diffusion 

equation. The corresponding nodal material concentrations are then stored in a common block for 

use in the next time increment. 
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7.2 Mixing of materials with the same material properties 

To first validate the two-way coupled Abaqus plugin, a rotating drum simulation is used to study 

the mixing of materials with the same material properties, since the multi-scale model has been 

proved in Chapter 4 to be quantitatively accurate for the rotating drum simulation. The model 

geometry and setups are the same as those used in Chapter 4. Material properties listed in Table 

4.2 are used here in the FEM simulations, except that the internal friction angle is 35 degree. As 

shown in Figure 4.5, the drum is filled 50/50 by assigning particles with different colors (red & 

blue). The one-way coupled multi-scale mixing model, as developed in Chapter 4, is used in the 

current section to compare with the two-way coupled Abaqus plugin. Note that although the drum 

used in the FEM simulations is three-dimensional, the material flow within the drum is still two-

dimensional due to the symmetric boundary conditions shown in Figure 4.1. Hence, the two-

dimensional advection-diffusion equation, as introduced in Section 4.2, is still used in the Abaqus 

plugin. 

 

Figure 7.1 shows the time evolution of mixing derived from the Abaqus plugin. The colors in the 

FEM simulation correspond to the value of the field variable, which is the concentration of red 

particles, with red indicating a large concentration of red particles and blue indicating a small 

concentration. The results shown in Figure 7.1 are computed by the Abaqus plugin solving the 

advection-diffusion equation. It is shown that as time increases the degree of mixing increases, 

with both advection and diffusion contributing to the mixing process. The same trend was found 

in Chapter 4 as well. Hence, the Abaqus plugin can at least qualitatively predict the mixing process 

within the rotating drum. 
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Figure 7.1 Snapshots showing the time evolutions of mixing. The vertical color scale is the red 

particle concentration. The rotation speed is 6 rpm. 

 

To provide a more quantitative comparison, the segregation intensity I, as defined in Chapter 4, is 

used to assess the state of mixedness during the simulation. The segregation intensity is plotted in 

Figure 7.2 as a function of time for both the one-way coupled and two-way coupled multi-scale 

models using the Matlab program introduced in Chapter 4 and Abaqus plugin introduced in the 

current section, respectively. Note that for the one-way coupled multi-scale model, as mentioned 

in Section 4.2, the material concentration at 0.25 revolutions (2.5 s) was used as the initial material 

concentration. Hence, the segregation intensity for the one-way coupled multi-scale model was 

not computed for the first 2 seconds. In contrast, the two-way coupled simulation started at 0 

seconds, which is not shown in Figure 7.2. Figure 7.2 clearly shows that the two-way coupled 

Abaqus plugin is quantitatively accurate compared to the one-way coupled multi-scale model. As 

mentioned before, the slight difference is caused by the different initial states used in the one-way 

and two-way coupled model. Overall, the results indicate that the advection-diffusion equation can 

be solved accurately within the Abaqus plugin. Note that the total wall-clock time for the above 
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two-way coupled Abaqus simulation is about 6-7 days. Future work should focus on further 

improving the computational efficiency. 

 

 

Figure 7.2 The segregation intensity as a function of time for both the one-way and two-way 

coupled multi-scale model simulations. 

 

7.3 Mixing of materials with different material properties 

After validating the two-way coupled Abaqus plugin presented in the previous section, studies are 

performed to understand the mixing of materials with different material properties. The same 

rotating drum simulation mentioned in the previous section is used in the current section. The 

material properties are the same except for the internal friction angle, which is defined as a function 

of the material concentration. Table 7.1 lists the internal friction angle as a function of the material 

concentration used in the current two-way coupled simulation. Table 7.1 is derived based on a 

power law mixing relation used in previous work [94]. Red and blue particles have an internal 

friction angle of 25 degrees and 35 degrees, respectively. Note that the power law mixing relation 

[94] used here is for demonstration purposes. Other mixing laws can be applied as required. 
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Table 7.1 The internal friction angle as a function of the material concentration used in the two-

way coupled simulation. 

Red particle concentration Internal friction angle (degree) 

0.0 35.0 

0.2 32.7 

0.4 30.6 

0.6 28.6 

0.8 26.7 

1.0 25.0 

 

Figure 7.3 shows the time evolution of mixing derived from the Abaqus plugin using a) constant 

internal friction angle of 35 degree and b) varied internal friction angle as listed in Table 7.1. The 

colors in the FEM simulation correspond to the value of the field variable, which is the 

concentration of red particles. As mentioned in Chapter 4, the internal friction angle can affect the 

flow field of the material. Hence, as expected, the state of mixing shown in Figure 7.3(b) is 

different from the one shown in Figure 7.3(a), due to the difference in the flow field.  

 

Figure 7.3 Snapshots showing the time evolutions of mixing using (a) constant internal friction 

angle of 35 degree and (b) varied internal friction angle listed in Table 7.1. The vertical color 

scale is the red particle concentration. 
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To further investigate the difference, the segregation intensity is plotted in Figure 7.4 as a function 

of time for simulations with constant and varied internal friction angles, as used in Figure 7.3. It 

is shown in Figure 7.4 that the mixing rate is slightly different for simulations with constant and 

varied internal friction angles after a few seconds (The rotation speed is 6 rpm). Hence, Figs. 7.3 

and 7.4 illustrates that the two-way coupled Abaqus plugin is able to predict the mixing of 

materials with different material properties. Note that the results are only collected for the first few 

seconds, future work should focus on expanding the current work for a longer time to further 

illustrate the difference. Also, the change in material properties may have more of an impact in 

other systems. 

 

 

Figure 7.4 The segregation intensity as a function of time for simulations with constant and 

varied internal friction angles. 

 

7.4 Summary 

In the current chapter, a two-way coupled multi-scale modeling approach is described for 

predicting blending in particulate systems. This model is extended from the multi-scale mixing 

model developed in Chapters 4 and 5. This model combines, within the advection-diffusion 

equation, finite element method generated transient macroscopic velocity fields with particle 

diffusion correlations at a local scale. An Abaqus user subroutine plugin is developed to embed 

the advection-diffusion equation calculation within Abaqus and thus, allow material properties to 

change with material concentration. The model is applied here to a two-dimensional rotating drum. 



106 

 

Predictions of the mixing rate from the two-way coupled model are compared with the one-way 

coupled model. The results show that the mixing rate is different for simulations with constant and 

varied material properties and the two-way coupled Abaqus plugin is able to predict the mixing of 

materials with different material properties.  
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 CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

In this work, a new multi-scale approach to modeling particulate mixing and segregation processes 

is presented. This multi-scale modeling approach combines finite element method simulations to 

obtain macroscopic velocity fields with calculations from the advection-diffusion equation with 

computationally and experimentally obtained expressions for particle diffusion at a local scale. 

The potential of this approach is demonstrated with the studies of mixing in a two-dimensional 

rotating drum, mixing in a three-dimensional Tote blender, segregation in a two-dimensional 

rotating drum and segregation in conical hoppers. Predictions of concentration profiles and mixing 

and segregation rates from the multi-scale model compare well quantitatively to published DEM 

results and experiments, although the multi-scale model does predict smaller segregation 

intensities at large times. This inaccuracy is due to the fact that the multi-scale model assumes 

continuum material behavior and, thus, the asymptotic mixing state corresponds to a perfectly 

mixed system as opposed to the asymptotic randomly mixed state predicted for the finite sized 

particles used in DEM simulations or experiments. 

 

A significant advantage of the multi-scale mixing and segregation model over DEM is that the 

multi-scale model is much faster to calculate. For the case examined in Chapter 4, corresponding 

to approximately 54,000 particles in the DEM simulation, the multi-scale model required 

approximately four to five hours of computation while the DEM model required five to six days. 

The time differences are expected to increase for larger systems since the number of DEM particles 

increases with the cube of the ratio of the system size to particle size while the FEM nodes increase, 

at most, only linearly with system size. Furthermore, if particle size is reduced in the DEM 

simulations, then the integration time step also decreases, further increasing the time required to 

complete DEM simulations. Hence, the real power of the multi-scale modeling approach is its 

ability to model industrially-relevant system sizes. 

 

A second advantage of the multi-scale model over DEM is that all of the parameters used in the 

multi-scale model were measured from independent, standard tests or obtained from the literature. 
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No back-fitting of the data was used to achieve good modeling accuracy. DEM models require a 

more complex approach to obtaining particle-level properties, such as complicated individual 

particle measurements, particularly for particles smaller than 1 mm, or time-consuming calibration 

simulations. 

 

Parametric studies were performed using the multi-scale model to investigate the influence of 

various parameters on multi-scale model predictions. Chapter 4 shows that first, the domain mesh 

size must be increasingly refined as the diffusion constants k1 and k2 decrease in order to minimize 

the influence of numerical diffusion. Second, increasing the internal friction angle decreases the 

mixing rate due to the decrease in surface speed. Third, the wall friction angle has little influence 

as long as the material is in an avalanching mode and not slipping against the wall since the free 

surface remains at the internal friction angle. Fourth, increasing the drum-to-particle diameter ratio 

decreases the rate at which overall mixing occurs. Fifth, increasing the streamwise and spanwise 

diffusion constants increases the mixing rate; however, the spanwise diffusion constant dominates 

in a rotating drum due to the significant spanwise velocity gradient in the active zone. In addition, 

Chapter 5 shows that the initial loading condition largely affects the mixing rate and advective 

mixing should be maximized to reach a faster mixing process. Chapter 6 shows that segregation is 

stronger as the diffusion coefficient decreases and percolation length increases. 

 

Finally, a two-way coupled multi-scale model is introduced in Chapter 7. An Abaqus user 

subroutine plugin is developed to embed the advection-diffusion equation calculation within 

Abaqus and thus, allow material properties to change with material concentration. The model is 

applied to a two-dimensional rotating drum and the results show that the mixing rate is slightly 

different for the case with variable material properties, at least of the system studied here. There 

may be other systems where the difference is more significant. Hence, the two-way coupled 

Abaqus plugin is able to predict the mixing of materials with different material properties. 

 

8.2 Recommendations for future work 

Several improvements to the current work should be considered in future studies. First, as 

introduced in Chapter 6, the current multi-scale segregation model is developed for two-

dimensional geometries, since the segregation correlation used in the current work is two-
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dimensional. Future work should focus on developing a three-dimensional multi-scale segregation 

model by considering three-dimensional segregation correlations.  

 

Second, the current work only considers mixing and segregation of two particle species. Future 

work may expand the governing advection-diffusion-segregation equation to study mixing and 

segregation of multiple (more than two) particle species [95]. 

 

Third, as mentioned in Chapter 4, a second-order Tylor Lax-Wendroff scheme is used in the current 

work to solve the advection-diffusion-segregation equation due to its simplicity. However, this 

method may increase the computational cost, especially for the three-dimensional systems. Hence, 

other numerical methods, such as the matrix mapping method mentioned in Chapter 4, can be used 

to further improve the computational efficiency. 

 

Fourth, as mentioned in Chapter 7, the current two-way coupled Abaqus user-subroutine plugin is 

a prototype. Future work should focus on embedding the three-dimensional advection-diffusion-

segregation equation into the plugin and using a better numerical method to improve the 

computational efficiency. 

 

Fifth, the current work uses Mohr-Coulomb constitutive model for granular materials. As 

mentioned in Chapter 5, there are some simplifications within the Mohr-Coulomb model, such as 

the model is shear rate-independent, the model cannot predict the formation of shear bands without 

considering shear localization and the model does not take into account changes in material 

hardening or softening. Other constitutive models can be used in the future work based on the type 

of materials used. For example, the extended Mohr-Coulomb model can be used for situations 

where shear bands are important and the modified Drucker-Prager Cap (DPC) model can be used 

for systems in which the solid fraction changes significantly [74,75,82]. 

 

Also, the current work focuses on mixing and segregation of non-cohesive materials. However, 

most of the particles used in industry are cohesive. Hence, future work should extend the current 

model to consider cohesive materials. In fact, as shown in the current work, the Mohr-Coulomb 

model is able to handle cohesive materials. However, the diffusion and segregation rates are 
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expected to be smaller in a cohesive material and hence, the mixing and segregation would be 

dominated by active movement of the material. 

 

Finally, the diffusion constant k1 and percolation length scale S used in the current work were 

either derived from literature or back-fitted from experimental data. Future work should develop 

a simple, standard method to calibrate the diffusion constant and percolation length scale. For 

example, the unbounded heap flow experiment could be used as a method for calibrating the model 

parameters [29]. 
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APPENDIX 

A flowchart of the image processing algorithm used in Section 5.3 is shown in Figure A1. For each 

image, the material domains (red and blue glass beads) were extracted using the freeware program 

ImageJ [96], which was used to identify only the glass beads among a white background. This 

RGB image was further analyzed to extract only the red component of each image’s pixels, with a 

value ranging between 0 (no red) and 255 (all red).  A threshold value of 80 was selected to 

differentiate between the red and blue pixels. A value larger than 80 indicated that a pixel 

corresponded to a red particle while a value smaller than 80 indicated that it was a blue particle. 

This threshold value was chosen to ensure that at any point in time the fraction of red pixels in the 

entire system was 505% since the system consisted of 50% red beads. 

 

 

Figure A.1 The image analysis algorithm for a single image. The steps proceed from 1 to 5. 

 

After distinguishing red and blue pixels, a black and white binary image was generated, with black 

corresponding to the blue pixels and white corresponding to the red ones. Note that since spherical 

glass beads were used in the experiment, reflections and shadows were introduced due to the light 
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source. An image correction algorithm was developed in the MATLAB program in an attempt to 

account for these effects. 

 

The corrected binary image was used to compute the segregation intensity. A non-overlapping grid 

of square cells was used in the current analysis. The cell size varied from 3 to 10 particle diameters 

on a side. To avoid using samples containing data outside the cylinder boundary, boundary flags 

were used to make sure each sample contained at least 95% material. All of the qualified samples 

were then used to calculate the segregation intensity for the current time step. 
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