
FAST AND ROBUST UAV TO UAV DETECTION AND TRACKING ALGORITHM

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Jing Li

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2019

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Charles A. Bouman, Chair

School of Electrical and Computer Engineering

Dr. Juan P. Wachs, Co-Chair

School of Industrial Engineering

Dr. Jan P. Allebach

School of Electrical and Computer Engineering

Dr. Michael D. Zoltowski

School of Electrical and Computer Engineering

Approved by:

Dr. Pedro Irazoqui

Head of the School Graduate Program



iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Charles A. Bouman, who always gives me

support and advise. His enthusiasm and persistence toward research have always been a

great inspiration to me.

I would like to thank my co-advisor Prof. Juan P. Wachs and Prof. Jan P. Allebach

for always giving me guidance and support. Their wisdom, exceptional vision and great

personality have a great influence in me.

I also would like to thank my committee members, Prof. Dong Hye Ye and Prof.

Michael D. Zoltowski, for their time and input to my research.

I thank all my labmates in the Integrated Imaging Lab at Purdue University, especially

Dilshan Godaliyadda, Zeeshan Nadir, Yandong Guo, Venkatesh Sridhar, Soumendu Majee

and Hani Almansouri, for all the help given to me. All of us make a strong team.

I would like to thank my friends Jieqiong Zhao, Di Wang, Yufang Sun, Yunlan Zhang

for providing food when I forgot to eat and acting as family of mine in Purdue. I also thank

Qing Li, Xingchi Kong for providing all kinds of support.

Last but not the least, I want to thank my family, Mr. Zhaoping Li, Ms. Zhenrong

Wang, Mr. Yongjun Li and Ms. Lanying Li for their unwavering support, encouragement,

understanding and love.



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 MULTI-TARGET DETECTION AND TRACKING FROM A SINGLE CAM-
ERA IN UNMANNED AERIAL VEHICLES (UAVS) . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Multi-Target Detection and Tracking . . . . . . . . . . . . . . . . . . . . . 4

1.4 Background Motion Estimation . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Identify Salient Points . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2 Find Local Motion Fields on Salient Points . . . . . . . . . . . . . 6

1.4.3 Fit Local Motion Fields to a Global Transformation . . . . . . . . . 7

1.5 Moving Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 Compute Background Subtracted Image . . . . . . . . . . . . . . . 8

1.5.2 Find Salient Points on Moving Objects . . . . . . . . . . . . . . . 8

1.5.3 Prune Salient Points based on Motion Difference . . . . . . . . . . 9

1.5.4 Target Classification and Tracking . . . . . . . . . . . . . . . . . . 9

1.5.5 Classify Target Objects . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.6 Track Target Objects . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Towards Real Time: Odroid Board Implementation . . . . . . . . . . . . . 12

1.6.1 Parallelization for Lucas-Kanade Feature Tracking . . . . . . . . . 12

1.6.2 Mono-Directional Background Subtracted Image . . . . . . . . . . 12

1.6.3 Multi-resolution Investigation . . . . . . . . . . . . . . . . . . . . 13

1.7 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



v

Page

1.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7.2 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . 15

1.7.3 Odroid Board Results . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7.4 Visual Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 DEEP LEARNING FOR MOVING OBJECT DETECTION AND TRACKING . . 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Moving Object Detection and Tracking . . . . . . . . . . . . . . . . . . . 23

2.2.1 Background Motion Stabilization . . . . . . . . . . . . . . . . . . 24

2.2.2 Moving Object Detection . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Target Pruning and Tracking . . . . . . . . . . . . . . . . . . . . . 28

2.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.2 Parameter Exploration . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.3 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.4 Visual Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 FAST AND ROBUST UAV TO UAV DETECTION AND TRACKING FROM
VIDEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 UAV to UAV Detection and Tracking Algorithm (U2U-D&T) . . . . . . . . 40

3.2.1 Moving Target Proposer . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Hybrid Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.3 Target Tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 UAV to UAV Detection and Tracking Dataset (U2U-D&TD) . . . . . . . . 50

3.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Data Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 Annotation Refinement Using Detection . . . . . . . . . . . . . . . 50

3.4 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



vi

Page

3.4.2 Comparison with Existing Methods . . . . . . . . . . . . . . . . . 55

3.4.3 Classification & Tracking Robustness . . . . . . . . . . . . . . . . 57

3.4.4 Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



vii

LIST OF TABLES

Table Page

1.1 Detection Accuracy of Background Subtraction, Target Classificaton Only and
Our Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Detection Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Table of Motion Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Table of Parameterss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Precision, Recall and F-Score for Robustness Investigation . . . . . . . . . . . 55

3.4 Comparison of Precision, Recall and F-Score . . . . . . . . . . . . . . . . . . 55

3.5 Computation Time (ms) on GPU . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 GPU Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Odroid Computation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



viii

LIST OF FIGURES

Figure Page

1.1 Challenge in detecting other UAVs: [Left] Original Video, [Right] Video with
our detection and tracking; Other UAVs are very small and occluded by com-
plex backgrounds (i.e. cloud) and thus not even recognizable by human eyes.
Our proposed method detects and tracks multiple small UAVs successfully as
highlighted in red boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 An overview of our proposed method: We first estimate the background mo-
tion between two sequential frames. From resulting background-subtracted
image, we detect the moving objects by pruning spurious noise. Among de-
tected objects, we differentiate UAVs from false alarms using spatio-temporal
characteristics and track them for temporal consistency. . . . . . . . . . . . . . 4

1.3 Bi-directional verification for optical flow. We delete feature points when ||ut +
(ut)

−1||2 has large value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Use pyramid Lucas-Kanade optical flow in order to satisfy the assumption of
small local motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Use OpenMP to parallel Lucas-Kanade for corner points in each layer. . . . . . 13

1.6 Results of multi-target detection and tracking algorithms for four consecutive
frames: [Top-Row] Background subtraction method [10], [Middle-Row] Our
method with target classification only, [Bottom-Row] Our method with tar-
get classification and tracking; Green boxes represent the detected objects.
Background subtraction method (Top-Row) detects false alarms on the com-
plex background (i.e. building). By using the target classifier (Middle-Row),
we reject false alarms but miss the detection on target UAVs occluded by back-
ground. Target tracking (Bottom-Row) enforces temporal consistency of our
detection recovering intermittent miss-detection. Images are zoomed for better
display. See full images in supplementary files. . . . . . . . . . . . . . . . . . 14

1.7 Time accuracy trade off. Lines with different colors represent accuracy vs.
computational time of different methods respectively. Down-sampling the video
decreases the computational time with acceptable loss of accuracy. . . . . . . . 18



ix

Figure Page

1.8 Shi-Tomasi corner points detected from background subtracted images in two
videos: Red and green dots represent pruned and deleted points based on the
magnitude of motion difference vector, respectively. We preserve the points
around target UAV (red), while deleting the points located at corner of build-
ing structures (green). This indicates that the magnitude of difference vector
between estimated background and local motion is effective to separate the
points in the targets from complex backgrounds. Images are cropped for better
display. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 An overview of our proposed method: We first estimate the background motion
between two sequential frames via perspective transformation model. From
resulting background-subtracted image, we detect the moving objects by ap-
plying deep learning classifier on distinctive patches. Among detected moving
object candidates, we prune actual UAVs from spurious noise using the esti-
mated local motion and incorporate the temporal consistency through Kalman
filter tracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Example of training patches: [Left] True Moving Objects, [Right] False Alarms:
We note that true moving objects have different appearance in the background
subtracted images compared with false alarms. True moving objects tend to be
distinctly highlighted while false alarms contain blurred edges. . . . . . . . . . 26

2.3 Network architecture for deep learning: Given input patches, 3-layer convolu-
tional neural networks are trained to identify moving objects. Note that we use
batch normalizaton (BN) and rectified linear unit (ReLU) for efficient training
of deep neural networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Results of moving object detection and tracking algorithms for 3 testing videos:
[Top-Row] Ground-truth annotation (Green), [Middle-Row] Moving object de-
tection and tracking algorithm purely based on motion difference pruning [27]
(Blue), [Bottom-Row] Our deep learning based method toward moving object
detection and tracking (Red). Previous method using only motion difference
pruning fails to detect some moving objects with false alarms on the complex
background (e.g., horizon). By using deep learning based method, we pick
the missed detection and reject false alarm by taking advantage of the appear-
ance information. Images are zoomed for better display. See full images in
supplementary files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



x

Figure Page

2.5 Motion difference vectors (black) on detected salient points: Red and green
dots represent pruned and deleted points based on the magnitude of motion dif-
ference vector, respectively. We preserve the points around target UAV (red),
while deleting the points located at background (green). This indicates that the
magnitude of difference vector between estimated background and local mo-
tion is effective to separate the points in the targets from complex backgrounds.
Images are cropped for better display. . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Challenges in detecting other UAVs: In some cases distant UAVs may be very
small and occluded by similar or cluttered backgrounds. In this case, UAVs
may not be easily recognizable to human observers. . . . . . . . . . . . . . . . 38

3.2 An overview of U2U-D&T algorithms: We first get the moving UAVs propos-
als using traditional computer vision method by first estimating background
motion between two sequential frames via perspective transform model and
then identifying the proposals (red boxes in the upper right image) in the back-
ground subtracted image. Then we apply deep network based classifier for the
proposals (green box is the moving object candidate). Among detected mov-
ing object candidates, we extract salient points and use Optical Flow tracking to
track, and increase temporal consistency through Kalman Tracking (magenta
box is the final detection). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Hybird classifier uses AdaBoost [73] to combine appearance classifier and mo-
tion classifier to classifier the moving target proposals. Motion classifiers take
motion features as input and appearance classifier takes salient patches as input. 44

3.4 Network architecture for appearance classifier: The network take 6 channels
input, 3 channels for original image and 3 channels for the background sub-
tracted image. Given input patches, 3-layer convolutional neural networks and
one-layer of Dense layers are trained to identify moving objects. . . . . . . . . 45

3.5 Network architecture for motion classifier: The network take 7-D motion fea-
tures. Given input feature, 3-layer neural networks followed by fully connected
layer are trained to identify moving objects . In the end, softmax layer is uti-
lized to compute po

n(k). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Vatic Annotation interface: first initiate object to be annotated and give it la-
bel and index. Then it will track using optical flow, and annotator manually
corrected the detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Missed annotation in first round annotation. Left is original Groundtruth, Right
is U2U-D&T’s detection results (Green box is detection). U2U-D&T detects
UAVs missed by human eye. . . . . . . . . . . . . . . . . . . . . . . . . . . 51



xi

Figure Page

3.8 Example of training patches (Background subtracted image): [Left] True Mov-
ing Targets, [Right] False Alarms: We note that true moving targets have dif-
ferent appearance in the background subtracted images compared with false
alarms. True moving objects tend to be distinctly highlighted while false
alarms contain blurred edges. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Odroid board utilized in real UAV flying system. . . . . . . . . . . . . . . . . 53

3.10 UAV detection results of U2U-D&T and “EPFL”: [Top-Row] Ground-truth an-
notation (Green), [Middle-Row] “EPFL” (Red), [Bottom-Row] Our proposed
U2U-D&T (Red). Green boxes represent the groundtruth annotations, red box
denotes the detection results. ”EPFL” turns to detect a lot false alarms and
misses the true moving targets. . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.11 GroundTruth and detection results from U2U-D&T, w/o Motion, w/o Appear-
ance. [Top-Row] Ground-truth annotations in Green boxes, [Second-Row] U2U-
D&T detection results, [Third-Row] w/o Motion and [Bottom-Row] w/o Ap-
pearance. Three examples of detection results: when use appearance to clas-
sification, moving target with few pixels is challenging. For motion based
method, too many false alarms due to motion’s lack of robustness. By com-
bining motion and appearance, U2U-D&T successfully picked up most of the
moving targets. (Note: we cropped the image in order to show moving targets
which are too small if we use original frame.) . . . . . . . . . . . . . . . . . . 59

3.12 Results of moving object detection and tracking algorithms sequential frames
in a testing video: [Top-Row] Ground-truth annotation (Green), [Middle-Row]
U2U-D&T detection, [Bottom-Row] w/o Kalman results. Horizontal line de-
notes time. Without Kalman tracking, there is intermittent missed detection
while U2U-D&T recovers the missed detection. Kalman Tracking helps re-
cover intermittent missed detection. . . . . . . . . . . . . . . . . . . . . . . . 60

3.13 Results of using Hybird classifier during optical flow tracking. Blue boxes are
the ground truth annotation, green dots are the tracked salient point. First row
is the results having Hybrid classifier to prune the points and second is the
result using optical flow matching directly. . . . . . . . . . . . . . . . . . . . . 61

3.14 Trade-off between accuracy and computation time by downsampling the video. . 62



xii

ABSTRACT

Li, Jing Ph.D., Purdue University, May 2019. Fast and Robust UAV to UAV Detection and
Tracking Algorithm. Major Professors: Charles A. Bouman, Juan P. Wachs.

Unmanned Aerial Vehicle (UAV) technology is being increasingly used in a wide va-

riety of applications ranging from remote sensing, to delivery, to security. As the number

of UAVs increases, there is a growing need for UAV to UAV detection and tracking sys-

tems for both collision avoidance and coordination. Among possible solutions, autonamous

“see-and-avoid” systems based on low-cost high-resolution video cameras offer the impor-

tant advantages of light-weight and low power sensors. However, in order to be effective,

camera based “see-and-avoid” systems will require sensitive, robust, and computationally

efficient algorithms for UAV to UAV detect and tracking (U2U-D&T) from a moving cam-

era.

In this thesis, we propose a general architecture for a highly accurate and computa-

tionally efficient U2U-D&T algorithms for detecting UAVs from a camera mounted on a

moving UAV platform. The thesis contains three studies of U2U-D&T algorithms.

In the first study, we present a new approach to detect and track other UAVs from a

single camera in our own UAV. Given the sequence of video frames, we estimate the back-

ground motion via perspective transformation model and then identify distinctive points

in the background subtracted image to detect moving objects. We find spatio-temporal

characteristics of each moving object through optical flow matching and then classify our

targets which have very different motion compared with background. We also perform

tracking based on Kalman filter to enforce the temporal consistency on our detection. The

algorithm is tested on real videos from UAVs and results show that it is effective to detect

and track small UAVs with limited computing resources.
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In the second study, we present a new approach to detect and track UAVs from a sin-

gle camera mounted on a different UAV. Initially, we estimate background motions via

a perspective transformation model and then identify moving object candidates in the

background subtracted image through deep learning classifier trained on manually labeled

datasets. For each moving object candidates, we find spatio-temporal traits through opti-

cal flow matching and then prune them based on their motion patterns compared with the

background. Kalman filter is applied on pruned moving objects to improve temporal con-

sistency among the candidate detections. The algorithm was validated on video datasets

taken from a UAV. Results demonstrate that our algorithm can effectively detect and track

small UAVs with limited computing resources.

The system in the third study is based on a computationally efficient pipeline consisting

of moving object detection from a motion stabilized image, classification with a hybrid

neural network, followed by Kalmann tracking. The algorithm is validated using video

data collected from multiple fixed-wing UAVs that is manually ground-truthed and publicly

available. Results indicate that the proposed algorithm can be implemented on practical

hardware and robustly achieves highly accurate detection and tracking of even distant and

faint UAVs.
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1. MULTI-TARGET DETECTION AND TRACKING FROM A
SINGLE CAMERA IN UNMANNED AERIAL VEHICLES (UAVS)

1.1 Introduction

Thanks to recent development in commercial drone use, the sky will be packed with

unmanned aerial vehicles (UAVs) [1–3]. One of the most important issues facing UAV

use is then collision avoidance or sense-and-avoid capability [4]. Since the size and the

energy consumption of the UAV are limited, an inexpensive light sensor such as camera has

the great potential to provide cost and weight advantageous avoidance system against the

systems currently in use on larger aircraft, like traffic collision avoidance system (TCAS).

The camera based collision avoidance systems then require detection and tracking of

other UAVs (targets) from a video [5, 6]. Once other UAVs are detected and tracked, poli-

cies and maneuvers for collision avoidance can be adopted. These detection and tracking

operations must be computationally efficient to run on-board even if the connection be-

tween the aircraft and the control station is lost or some of the on-board sensors fail. A

large volume of work in the moving object detection and tracking methods has been devel-

oped in the computer vision community [7, 8]. For example, in Viola and Jones al. [9], the

authors extract the simple Haar features and apply cascading supervised classifiers to detect

and track face in a video real-time. In addition, many pedestrian and car detection algo-

rithms [10–12] are developed for surveillance monitoring and even used in the commercial

products.

However, it is not appropriate to extend these moving object detection and tracking

algorithms directly to UAV applications due to unique challenges. First, a video is recorded

by a moving camera for UAV, on the contrary to a static camera for many computer vision

applications. Therefore, for UAV applications, it is difficult to stabilize the rapidly changing

background which are non-planar and complex. Second, given the speed of UAVs, the
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Fig. 1.1.: Challenge in detecting other UAVs: [Left] Original Video, [Right] Video with our

detection and tracking; Other UAVs are very small and occluded by complex backgrounds

(i.e. cloud) and thus not even recognizable by human eyes. Our proposed method detects

and tracks multiple small UAVs successfully as highlighted in red boxes.

moving objects need to be detected in a far distance for collision avoidance. Then, our

targets appear very small in a video often occluded by complex backgrounds like clouds

and buildings (See Fig. 1.1 Left).

To tackle these challenges, we propose a new approach to detect and track other small

UAVs from a video filmed by a rapidly moving camera. Specifically, we parse the video

into a sequence of frames and estimate the background motion between frames. Our as-

sumption is that other UAVs and the background have very different motion model and thus

by compensating the motion of the background, the moving object can be extracted. We

estimate the background motion via perspective transform model [13] taking account into

globally smooth motion with camera projection. We highlight distinctive points of the mov-

ing objects from background subtracted image and then find the local motion of the moving

object by applying Lucas-Kanade optical flow algorithm [14]. Using the spatio-temporal

features from the estimated local motion of the moving object, we efficiently classify the

small target objects. We further apply Kalman filter tracking [15] on our detection to re-

duce the intermittent miss-detection and false alarms. We tested our proposed algorithm

on real videos from UAVs and successfully identify target objects that are not even visible

due to small size and background occlusion (See Fig. 1.1 Right).
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1.2 Related Work

There are a few attempts to detect and track moving objects using camera-based systems

in UAVs [16]. These approaches extract the features in each individual frames and use

machine learning techniques to learn the shape and appearance of the target objects in

the training dataset [17]. The trained classifiers including Convolutional Neural Networks

(CNN) [18] and Random Forests (RF) [19] showed powerful detection performance even

in challenging environments with lightning variations and background clutters. However,

in order to extract shape and appearance features, they assume sufficiently large and clearly

visible moving objects which are not the cases in our UAV applications.

Another class of methods uses motion information for moving object detection and

tracking. Since motions can be estimated in local regions between frames, motion-based

approaches are suitable for characterizing small moving objects. Motion-based approaches

can then be divided into two main categories: (1) Background Subtraction and (2) Optical

Flow. Background subtraction methods identify groups of pixels which are not changing

over time and then subtract those pixels from the image to detect moving objects [7, 12].

These background subtraction methods work best when background motion can be easily

compensated, which is not the case for fast moving camera. Optical flow methods find

the corresponding image regions between frames and depend on the local motion vectors

to detect moving objects [14, 20]. Then, the quality of local motion vector is critical for

accurate detection, which can be low for the blurred image.

We combine background subtraction and optical flow methods to have synergistic ef-

fects. Even though background motion estimation for a moving camera is approximate,

we can subtract most of homogeneous regions in the image. Then, our target objects are

sharper in the background subtracted image helping identifying good points for flow es-

timation. More importantly, by comparing background motion and flow vector, we can

extract spatio-temporal features which are useful for moving object detection and tracking.
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Fig. 1.2.: An overview of our proposed method: We first estimate the background motion

between two sequential frames. From resulting background-subtracted image, we detect

the moving objects by pruning spurious noise. Among detected objects, we differentiate

UAVs from false alarms using spatio-temporal characteristics and track them for temporal

consistency.

1.3 Multi-Target Detection and Tracking

As illustrated in Fig. 1.2, we propose an efficient multi-target detection and tracking al-

gorithm for UAVs. We start from the video taken from a moving UAV and aim to detect and

track other moving UAVs. In order to achieve that goal, we first estimate the background

motion between two sequential video frames and subtract the background to highlight the

regions where potential moving objects have occurred. Additional moving object detection

operations are performed to differentiate target objects from spurious noise. Finally, we

use spatio-temporal characteristics of each detected object to identify actual UAV and in-

corporate the temporal consistency of detected objects through tracking. In following, we

describe each component of our algorithm in details.

1.4 Background Motion Estimation

For background motion estimation, we assume that the background moves smoothly,

not allowing local warping. From a sequence of video frames,the background motion is

estimated. First we extract a set of points and estimate local motion fields on those selected

points. The local motion estimation procedure can be computationally expensive, so it is

only performed on a sparse set of selected points based on saliency with appropriately uni-
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form distribution. The computed local motion fields are then fit into a global transformation

which represents the background motion.

1.4.1 Identify Salient Points

First, we identify salient points in a video frame. Here, we use two different corner

detector: Harris corner detector [21] and Shi-Tomasi corner detector [22] . While many

other detectors exist, these two are selected based on their computational efficiency. Both

corner detectors are based on the assumption that corners are associated with the local

autocorrelation function.

Given an image X , we define the local autocorrelation function C at the pixel s as

following:

C(s) = ∑
W
[X(s+δ s)−X(s)]2 (1.1)

where δ s represents a shift and W is a window around s.

The shifted image X(s+δ s) is approximated by a first-order Taylor expansion and then

eq. (1.1) can be rewritten as following:

C(s) = ∑
W
[∇X(s) ·δ s]2

= δ sT
∑
W
[∇X(s)T

∇X(s)]δ s

= δ sT
Λδ s

(1.2)

where ∇X is the first order derivative of the image and Λ is the precision matrix.

In Harris corner detection, a saliency Q is defined according to determinate and trace

of Λ.

Q(s) = det(Λ)− k(trace(Λ))2 (1.3)

where det(Λ) and trace(Λ) are determinate and trace of Λ, k is Harris corner free parame-

ter.

In Shi-Tomasi corner detection, a saliency Q is computed according to eigenvalues of

Λ.

Q(s) = min{λ1,λ2} (1.4)
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where λ1 and λ2 are eigenvalues of Λ.

After thresholding on Q, we find a set of salient points. To ensure appropriately uniform

spatial distribution, we discard points for which there is a stronger corner points at a certain

distance.

1.4.2 Find Local Motion Fields on Salient Points

We now find the local motion fields from the previous frame Xt−1 to the current frame

Xt on identified salient points. We denote pt−1 as one of corner points in Xt−1. Then,

we compute the motion vector ut from the point pt−1 using Lucas-Kanade method [14]

assuming that our local motion is optical flow.

In Lucas-Kanade method, all neighbor points around the given pixel should have the

same motion. So, the local motion can be computed by solving the least square problem.

ut = argmin
u ∑

s∈N (pt−1)

|Xt(s+u)−Xt−1(s)|2 (1.5)

where N (pt−1) is the neighborhood around pt−1. It is worth noting that eq. 1.5 is easy to

solve with a closed-form solution.

Furthermore, as illustrated in Fig. 1.3, we use bi-directional verification to obtain accu-

rate motion vector such that ||ut +(ut)
−1||2 has small value.

Xt−1 Xt

pt−1 pt

ut

gt−1 (ut )
−1

Xt−1,Xt :Video frame at time t  and t -1
pt−1 :  Feature points in Xt−1

pt :  Tracked point in Xt  for pt−1

gt−1 :  Tracked point in Xt−1  for pt
ut :  Optical flow between pt−1  and pt

Fig. 1.3.: Bi-directional verification for optical flow. We delete feature points when ||ut +

(ut)
−1||2 has large value.
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1.4.3 Fit Local Motion Fields to a Global Transformation

After finding a set of local motion fields ut , we fit them into a global transformation.

We now denote pt = pt−1 + ut as the corresponding point in the current frame Xt through

optical-flow matching.

We then find the global transformation Ht which regularizes local motion fields to be

smooth in the entire image.

Ht = argmin
H ∑

pt∈Pt ,pt−1∈Pt−1

||pt−H ◦ pt−1||22 (1.6)

where Pt and Pt−1 represent a set of corresponding points in Xt and Xt−1, respectively, and

◦ is the warping operation.

Then, there are many widely-used global transformation models such as rigid or affine

transformation model. Here, we choose the perspective transformation model [13] reflect-

ing the fact that a UAV occupy a small portion of the field of view. The perspective trans-

formation model is efficient to compute because it requires only 9 parameters to describe

and it can take account into projection based on the distance from the camera. We assign

the resulting perspective transformation in eq. 1.6 as the background motion between two

consecutive frames. In consider of the robustness, RANSAC [23] is used for the global

transform estimation.

1.5 Moving Object Detection

Given the estimated background motion, we compute the background subtracted im-

age to highlight moving objects which have more complex motion. Then, we identify the

salient points in the background subtracted image and use appearance information to find

the local motion vector on those points. Then additional test is performed to prune spuri-

ous noise assuming that motion of target objects is largely different from the background

motion.
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1.5.1 Compute Background Subtracted Image

We can subtract the background by taking difference between original image and back-

ground motion compensated image. However, the estimated background motion may not

be accurate as single plane assumption on the perspective model can be violated in a video.

Therefore, we use the background motions estimated from multiple previous frames to

obtain more accurate background subtracted image.

We now denote Ht−1 as the perspective transform between two previous frames from

Xt−2 to Xt−1. Then, we compute the background subtracted image Et−1 for Xt−1 by taking

average of forward and backward tracing.

Et−1 =
1
2
|Xt−1−Ht−1 ◦Xt−2|+

1
2
|Xt−1− (Ht)

−1 ◦Xt | (1.7)

where (Ht)
−1 is the inverse transform of Ht . It is worth noting that we compute the back-

ground subtracted image for the previous frame Xt−1 for symmetry.

1.5.2 Find Salient Points on Moving Objects

The moving objects are highlighted in the background subtracted image Et−1. Then, we

need to find the corresponding regions in Xt to detect moving objects in the current frame.

Toward this, we first extract Shi-Tomasi corner points in Et−1 (refer Section 1.4.1) and

propagate them to appearance image Xt−1. For each propagated corner point from Xt−1, we

find the corresponding point in Xt by applying Lucas-Kanade method (refer Section 1.4.2).

We now denote qt−1 as the corner point in Xt−1 propagated from Et−1. Then, the local

motion field vt is computed as following:

vt = argmin
v ∑

s∈N (qt−1)

|Xt(s+ v)−Xt−1(s)|2 (1.8)

where N (qt−1) is the neighborhood around qt−1. It is worth noting that we do not use the

background subtracted image but the appearance image to estimate the local motion.
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1.5.3 Prune Salient Points based on Motion Difference

We now have the corresponding points in Xt from Et−1, which can be used to detect

moving objects. However, we may have points on spurious noise (i.e. edge of background)

due to incorrect background motion estimation.

Therefore, we prune the points according to the difference between the estimated back-

ground and local motion. This is based on the assumption that target object has very differ-

ent motion compared with background. We now define the motion difference dt between

the background and moving object as following:

dt = ht− vt (1.9)

where ht is interpolated motion vector from the perspective transform Ht at the point qt−1.

We then find the pruned point rt according to the magnitude of motion difference.

rt = qt−1 + vt if ||dt ||2 > T (1.10)

where T is the empirical threshold for pruning.

By applying connected component labeling [24] on the set of pruned points, we can

cluster them according to spatial proximity. We generate the bounding box for each cluster

of points which represents our detection for a single moving object.

1.5.4 Target Classification and Tracking

While we expect our moving object detection to be effective, we still encounter false

alarms among the detected objects. Therefore, we obtain a set of spatio-temporal features

for each detected object and determine whether the object is our target or not. In addition,

in order to prevent intermittent miss-detection and false alarm, we apply a tracking tech-

nique enforcing coherent temporal signatures of detection.
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1.5.5 Classify Target Objects

Given the detected objects, we perform classification to reject outliers from true targets.

We now denote R(n)
t as a cluster of points to represent the nth object in Xt . Then, we

compute the two features which encode spatio-temporal characteristics of the object.

The first feature characterizes the coherency of motion difference vectors in R(n)
t . Here,

we assume that the target is non-deformable object, and thus the motion vectors on the

target object are consistent. We now define the feature f (n)t as the angle variance of motion

difference vectors.

f (n)t =

∑
dt∈D(n)

t

|arctandt−µ
(n)
θ
|2

S(n)t

µ
(n)
θ

=

∑
dt∈D(n)

t

arctandt

S(n)t

,

(1.11)

where D(n)
t is the set of motion difference vectors for R(n)

t and S(n)t is the number of points

in R(n)
t .

The second feature characterizes the spatial distributions of points in the object. Here,

we assume that there are densely distributed salient points for the target object. The feature

g(n)t is then defined as the point density in R(n)
t .

g(n)t =
S(n)t

B(n)
t

(1.12)

where B(n)
t is the area of minimum bounding box that encloses all points in R(n)

t .

Given these features, we build a classifier to identify target objects. We denote y(n)t as a

classification label where the positive value indicates that nth object is the target. Then, the

target classifier is defined as following:

y(n)t =

 1, if f (n)t < T1 and g(n)t > T2

−1, otherwise
(1.13)

where T1 and T2 are the empirical thresholds for angle variance and point density in R(n)
t .
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1.5.6 Track Target Objects

Even though our target classifier reduces the false alarms, we also expect to have in-

termittent miss-detections and false alarms. These intermittent miss-detections and false

alarms can be corrected by observing the temporal characteristics of the detected objects.

Therefore, we apply tracking techniques to enforce coherent temporal signatures of de-

tected objects. Specifically, we use the Kalman filter [15] for object tracking.

Kalman filter predicts the current state bt from previously estimated states b̂t−1 with

transition model and updates the current measurement ct with the current state bt as below:

bt = Ab̂t−1 +ωt

ct = Mbt + εt

(1.14)

where A is state transition matrix, ωt controls the transition modeling error, M is mea-

surement matrix, and εt represents the measurement error. The estimated output b̂t is then

computed with Kalman gain K:

b̂t = Ab̂t−1 +K(ct−Mbt)

K =VωMT (MRωMT +Vε)
(1.15)

where Vω and Vε are the covariance of ωt and εt , separately.

In our application, we assign the size and location of bounding box for the detected

object as state variable bt and use the constant velocity model to set A and M. To initialize

the Kalman filter, we find the corresponding objects from optical flow matching in L pre-

vious frames and start track if the classification labels y(n)t−1, · · · ,y
(n)
t−L are consistent. Then,

we recover the miss-detection for the positive label track and delete the false alarm of the

negative label track based on the Kalman filter output at the current frame. We dismiss the

track if we do not have detected objects in the Kalman filter estimation for L frames.



12

Xt−1 Xt

Run Lucas-Kanade 

Upsample & Initial guess 

Run Lucas-Kanade 

…
 

Fig. 1.4.: Use pyramid Lucas-Kanade optical flow in order to satisfy the assumption of

small local motion.

1.6 Towards Real Time: Odroid Board Implementation

1.6.1 Parallelization for Lucas-Kanade Feature Tracking

Lucas-Kanade method has the assumption that all neighbor points around given pixel

should have same motion and it only works when local motion is relatively small. In our

case, the motion of feature point is not always small, so we make use of the pyramid Lucas-

Kanade optical flow [25] as illustrated in Fig. 1.4.

The computation of Lucas-Kanade at each layer for feature points can be parallelized.

In order to make our algorithm run near real-time on board, we use OpenMP library to

implement the parallelization as illustrated in Fig. 1.5.

1.6.2 Mono-Directional Background Subtracted Image

While bi-directional background subtracted image help to suppress noise, it involves

more computation then mono-directional background subtracted image. Considering the

computational capacity of Odroid board, here we introduce the method of computing mono-

directional background subtracted image.
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t−1
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L  and X
t

L

vt
(n) :  Optical flow between Pt−1

(n)  and Pt
(n)Pt−1

(1)
Pt
(1)

vt
(1)

…
	

…
	

Fig. 1.5.: Use OpenMP to parallel Lucas-Kanade for corner points in each layer.

We now denote Ht−1 as the perspective transform between two previous frames from

Xt−1 to Xt . Then, we compute the background subtracted image Et−1 for Xt−1 by subtract-

ing the backward motion compensated image.

Et−1 = |Xt−1− (Ht−1)
−1 ◦Xt | (1.16)

where (Ht)
−1 is the inverse transform of Ht . Here we only take the mono-directional back-

ground subtracted image for computational efficiency. Since applying transformation to

the entire image is time-consuming, we only compute Et−1 for a certain interval of frames.

1.6.3 Multi-resolution Investigation

The video taken from the UAV has a resolution of 720P or 1080p, both of which is high

resolution. Considering the computational capacity of Odroid board, here we down-sample

the video in to different resolution(i.e. factor of 2-4).

1.7 Experiment

We evaluate our multi-target detection and tracking algorithm for UAVs on a video

data set provided by Naval Postgraduate School. The videos are taken in outdoor environ-

ment including real-world challenges such as illumination variation, background clutter,

and small target objects.
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Time 

Fig. 1.6.: Results of multi-target detection and tracking algorithms for four consecutive

frames: [Top-Row] Background subtraction method [10], [Middle-Row] Our method with

target classification only, [Bottom-Row] Our method with target classification and tracking;

Green boxes represent the detected objects. Background subtraction method (Top-Row)

detects false alarms on the complex background (i.e. building). By using the target classi-

fier (Middle-Row), we reject false alarms but miss the detection on target UAVs occluded

by background. Target tracking (Bottom-Row) enforces temporal consistency of our detec-

tion recovering intermittent miss-detection. Images are zoomed for better display. See full

images in supplementary files.

1.7.1 Experimental Setup

Data Set

The data set comprises 5 video sequences of 1829 frames with 30 fps frame rate. They

are recorded by a GoPro 3 camera (HD resolution: 1920×1080 or 1280×960) mounted on

a custom delta-wing airframe. As a preprocessing, we mask out the pitot tube region which

is not moving in the videos. For each video, there are multiple target UAVs (up to 4) which

have various appearances and shapes. We manually annotate the targets in the videos by

using VATIC software [26] to generate ground-truth dataset for performance evaluation.
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Parameter Exploration

There are important parameters in our multi-target detection and tracking algorithm.

To begin with, we extract Shi-Tomasi corner points in original image Xt−1 (for background

motion estimation in 1.4.1) and background subtracted image Et−1 (for moving object de-

tection in 1.5.2), respectively. We set higher saliency threshold (QE = 0.15) for Et−1 than

that (QX = 0.001) for Xt−1 as we find the sparser set of points in the background subtracted

image where only moving objects should be identified. In addition, we use 15×15 block

size for Lucas-Kanade optical flow matching (Section 1.4.2 and 1.5.2). Next, we set the

threshold T = 1.8 to prune the points with large motion difference (Section 1.5.3) and the

thresholds T1 = 5 and T2 = 0.02 for target classifier with angle variance and point density

features (Section 1.5.5). Finally, we use L = 6 for Kalman filter where we start the track if

we detect the object in six previous frames (Section 1.5.6).

1.7.2 Quantitative Evaluation

The overall goal of this experiment is to measure the detection accuracy of identifying

targets in videos. We also analyze the computational time as our algorithm needs to be run

on board efficiently.

Table 1.1.: Detection Accuracy

F

Background Subtraction [10] 0.552

Target Classification Only (Ours) 0.777

Target Classification / Tracking (Ours) 0.866
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Detection Accuracy

To measure detection accuracy, we report F-score which is the harmonic mean of recall

and precision rates computed as following:

Recall =
Number of Detected Targets in all Frames

Number of Ground-Truth Targets in all Frames

Precision =
Number of Detected Targets in all Frames
Number of Detected Objects in all Frames

F =
2 ·Recall ·Precision
Recall + Precision

Here, we define the detected target if our detection has overlap with ground truth.

We compare our proposed method with the state-of-the art background subtraction

method [10] which was developed for pedestrian detection with a static camera. We also

report detection accuracy only with our target classification to highlight the importance of

tracking. Table 1.7.2 summarizes the accuracy scores. The background subtraction method

shows low F-score. This is because fast moving background in the video from UAV causes

many false alarms. Our method significantly improves F-score indicating that our target

classifier based on background and motion difference correctly identify target objects. By

using our target tracking, F-score was further improved due to reduced intermittent miss-

detections and false alarms.

Computational Time

We run our algorithm on a standard 3.5GHz clock rate Intel processor desktop with

8GB memory. We implement single-threaded Python codes with OpenCV library. The

average computational time for each frame is 112.06±23.36ms. The main computational

bottleneck is to compute the background subtracted image since applying a global trans-

formation to the large HD image (1920× 1080 or 1280× 960) is a heavy computational

burden. By down-sampling the video by factor of 2 and using multi-thread implementation,

our algorithm is efficient enough to run on board near real-time.
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1.7.3 Odroid Board Results

Since our ultimate goal is to have our algorithm run on board in real time, we inves-

tigate computational time versus detection accuracy with different strategies towards the

goal of real time implementation.

(1) We run our algorithm on ODROID XU4 board

(2) Use TBB to parallel the Lucas-Kanade optical flow

(3) We implement Lucas-Kanade optical flow with OpenMP library

(4) Use mono-directional background subtraction instead of bi-directional background sub-

traction

(5) Increase interval of background motion estimation from 3 to 10

Fig. 1.7 shows the trade off between accuracy and computational time for our algo-

rithm. We display how we move towards our ultimate goal of real time processing step by

step. The yellow line in Fig. 1.7 represents the accuracy and computational time curve of

single threaded implementation on Odroid board in different resolution. In order to achieve

our objective of near real time we need to down-sample the original video by factor of 4.

But the accuracy decreases since the moving objects are usually pretty small.

By taking advantage of multi-threads of the Odroid board, the computational time de-

creases as shown in the blue line in Fig. 1.7. And our implementation of Optial Flow using

OpenMP(black line) further decreases the computational time. Until now, the accuracy

keeps the same, since we only optimize our implementation without changing our algo-

rithm. But in order to make it run on the board near real time, we need still to push the line

much further.

So the next change is that we change the bi-directional background subtracted image

to mono-directional background subtracted image computation, aiming to save half of the

computation on background subtracted image computation which is one of the most time

consuming module in our algorithm. Results show that the computational time drops but

with a slight loss of accuracy(red line). We try to increase the interval of background
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Fig. 1.7.: Time accuracy trade off. Lines with different colors represent accuracy vs. com-

putational time of different methods respectively. Down-sampling the video decreases the

computational time with acceptable loss of accuracy.

motion estimation with further saving computational time and slightly decreasing in accu-

racy(magenta line).

By down-sampling the video by factor of 2 and using OpenMP implementation, our

algorithm run on the board near real-time(103ms). Further down-sampling the video can

achieve less computational time, but it leads to lose of accuracy since our moving objects

are normally small.
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1.7.4 Visual Inspection

We complement the quantitative evaluation above with qualitative visual inspection.

Fig. 1.6 shows exemplar results from our method with target classifier only and with track-

ing. For reference, we also illustrate the result with background subtraction method [10].

We notice that background subtraction method generates false alarms on complex back-

grounds such as buildings. Our method rejects most false alarms thanks to target classifier

based on motion difference but misses the detection on targets due to background clut-

ter. Our Kalman filter tracking significantly improves the detection on targets by enforcing

temporal consistency of the detection.

In Fig. 1.8, we display the Shi-Tomasi corner points detected from background sub-

tracted images. We use different colors for preserved (red) and deleted (green) points by

applying thresholding on the magnitude of motion difference. We observe that preserved

and deleted points are mostly located around the target UAV and building structures, re-

spectively. This reflects that we supplement the background subtraction by pruning the

points based on motion difference, improving the detection accuracy.
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Fig. 1.8.: Shi-Tomasi corner points detected from background subtracted images in two

videos: Red and green dots represent pruned and deleted points based on the magnitude

of motion difference vector, respectively. We preserve the points around target UAV (red),

while deleting the points located at corner of building structures (green). This indicates

that the magnitude of difference vector between estimated background and local motion

is effective to separate the points in the targets from complex backgrounds. Images are

cropped for better display.
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2. DEEP LEARNING FOR MOVING OBJECT DETECTION AND
TRACKING

2.1 Introduction

Thanks to recent development in drone technology, unmanned aerial vehicles (UAVs)

will be pervasive in the sky for commercial and individual needs [1–3]. One of the most

important issues facing UAV’s use is collision avoidance capability [4]. Since the size and

the energy consumption of the UAV are limited, a optical sensor based avoidance system

(e.g., Go-Pro color cameras) has the potential to provide cost and weight advantages against

the traffic collision avoidance system (TCAS) currently in use on larger aircraft equipped

with LIDAR sensors.

Optical sensor based collision avoidance systems then require the detection and tracking

of other UAVs from video feeds [5,6]. Once other UAVs are detected and tracked, strategies

involving a sequence of maneuvers for collision avoidance are followed. For example, the

spatio-temporal information extracted from other UAVs can be associated with friendly or

austere behavior. These moving object detection and tracking operations must be real-time

to run on-board even if the connection between the aircraft and the ground control station

is lost, or sensors fail.

In this context, real-time moving object detection and tracking has been investigated in

large by the computer vision community [7,8]. For example, in Viola and Jones al. [9], the

authors extract the simple Haar features and apply cascading supervised classifiers to detect

and track face in a video real-time. In addition, many pedestrian and car detection algo-

rithms [10–12] are developed for surveillance monitoring and even used in the commercial

products. However, it is not appropriate to extend these computer vision algorithms di-

rectly to UAV applications due to unique challenges. First, a video is recorded by a moving

camera for UAV, on the contrary to a static camera for many computer vision applications.
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Therefore, for UAV applications, it is difficult to stabilize the rapidly changing background

which are non-planar and complex. Second, given the speed of UAVs, the moving objects

need to be detected in a far distance for collision avoidance. Then, our targets appear very

small in a video often occluded by clutter (e.g. clouds, trees, and specular light).

There are a few attempts to detect and track moving objects using camera-based systems

in UAVs [16]. These approaches extract motion information for moving object detection

and tracking. Motion-based approaches can then be divided into two main categories: (1)

Background Subtraction and (2) Optical Flow. Background subtraction methods identify

groups of pixels which are not changing over time and then subtract those pixels from the

image to detect moving objects [7, 12]. These background subtraction methods work best

when background motion can be easily compensated, which is not the case for fast moving

camera. Optical flow methods find the corresponding image regions between frames and

depend on the local motion vectors to detect moving objects [14, 20]. However, it is com-

putationally expensive to extract local motion vectors of all pixels in the video frame for

real-time operation.

In our previous publication [27], we combine background subtraction and optical flow

methods to have synergistic effects. Even though background motion estimation for a mov-

ing camera is approximate, we can subtract most of homogeneous regions in the image to

isolate the target objects. Then, our target objects are salient in the background subtracted

image enabling to identify good points for optical flow matching. More importantly, by

comparing background motion and flow vector, we can extract spatio-temporal features

which are useful for moving object detection and tracking. Then, the quality of motion

vector is critical for accurate detection, which can be low for the blurred image. To tackle

these challenges, we use shape and appearance information to detect and track other small

UAVs from a video. These approaches extract the features in each individual frames and ap-

ply supervised learning techniques to classify the target objects in the training dataset [17].

The trained classifiers based on deep learning (e.g., Convolutional Neural Networks or

CNN) can improve detection performance even in challenging environments with illumi-

nation variations and background clutters. We further apply Kalman filter tracking [15]
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Fig. 2.1.: An overview of our proposed method: We first estimate the background mo-

tion between two sequential frames via perspective transformation model. From resulting

background-subtracted image, we detect the moving objects by applying deep learning

classifier on distinctive patches. Among detected moving object candidates, we prune ac-

tual UAVs from spurious noise using the estimated local motion and incorporate the tem-

poral consistency through Kalman filter tracking.

on our detection to reduce the intermittent miss-detection and false alarms. We tested our

proposed algorithm on real videos from UAVs and successfully identify target objects.

2.2 Moving Object Detection and Tracking

As illustrated in Fig. 2.1, we propose an efficient moving object detection and track-

ing algorithm for UAVs. We first parse the video into a sequence of frames and estimate

the background motion between frames. Our assumption is that other UAVs and the back-

ground have very different motion model and thus by compensating the motion of the

background, the moving object can be extracted. We estimate the background motion via

perspective transform model [13] taking account into globally smooth motion with camera

projection. Given background subtracted image, we highlight distinctive patches and then

detect the moving object candidates among them by applying deep learning classifier. For

each moving object candidates, we find the local motion by applying Lucas-Kanade op-

tical flow algorithm [14] and use spatio-temporal characteristics to identify actual UAVs.

We further apply Kalman filter tracking [15] on our detection to reduce the intermittent

miss-detection. In following, we describe each component of our algorithm in details.
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2.2.1 Background Motion Stabilization

The video is acquired from a moving camera on the UAV, and thus we need to stabilize

the rapidly changing background which is often non-planar geometry.

Estimate Background Motion

For background motion stabilization, we first estimate the background motion via a per-

spective transformation model [13]. Unlike other global transformation model such as rigid

or affine transformation models, the perspective transformation model can take account

into projection based on the distance from the camera, which is beneficial to compensate

the background motion in a far distance from a camera. To estimate the background motion

via a perspective model, we find the correspondence between two consecutive frames on a

small set of points and fit them into the perspective transformation model. This is mainly

because background motion estimation procedure can be computationally expensive if it

is optimized over all pixels in the field of view. We choose the small set of points for

correspondence matching based on saliency with appropriately uniform distribution.

We now define the selected point pt−1 ∈ R2 in the previous frame Xt−1. We then find

the corresponding points pt ∈R2 in the current frame Xt through simple and efficient block

matching [28]. We then estimate the perspective transformation Ht−1 ∈ R3×3 from Xt−1 to

Xt , which regularizes local correspondence matching to be smooth in the entire image.

Ht−1 = argmin
H ∑

pt∈Pt ,pt−1∈Pt−1

||pt−H ◦ pt−1||22, (2.1)

H =


h11 h12 h13

h21 h22 h23

h31 h32 1

 , (2.2)

where Pt and Pt−1 represent a set of corresponding points in Xt and Xt−1, respectively, and

◦ is the warping operation. It is worth noting the perspective transformation model is de-

scribed by only 8 parameters to be optimized very efficiently. Here, {h11,h12,h13,h21,h22,h23}
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represent affine transformation matrix (e.g., scale, rotation, sheer and translation). Addi-

tional parameters {h31,h32} allow a perspective projection to the vanishing point.

Compute Background Subtracted Image

We then subtract the background by using the estimated perspective transformation

Ht−1. Specifically, we take difference between current frame and background motion com-

pensated previous frame. We define the background subtracted image Et for Xt as follow-

ing.

Et = |Xt−Ht−1 ◦Xt−1|. (2.3)

It is worth noting that applying Ht−1 to the entire image may be time-consuming and there-

fore we only compute the background subtracted image for a certain interval of frames

(e.g., every 10 frames).

2.2.2 Moving Object Detection

Given the estimated background subtracted image, we detect the moving object candi-

dates. I first identify salient points in the background subtracted image and extract patch

appearance features on those points. We then feed the appearance features to deep neural

networks for supervised classification.

Identify Salient Points

We identify salient points in a background subtracted image Et using Shi-Tomasi corner

detector [22]. We choose Shi-Tomasi corner detector due to efficiency. Shi-Tomasi corner

detector finds corners associated with the high local autocorrelation.
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Fig. 2.2.: Example of training patches: [Left] True Moving Objects, [Right] False Alarms:

We note that true moving objects have different appearance in the background subtracted

images compared with false alarms. True moving objects tend to be distinctly highlighted

while false alarms contain blurred edges.

Given an image Et , we define the local autocorrelation Ct at the pixel s with a first-order

Taylor expansion as following:

Ct(s) = ∑
W
[Et(s+δ s)−Et(s)]2,

≈ δ sT
∑
W
[∇Et(s)T

∇Et(s)]δ s,

≈ δ sT
Λt(s)δ s,

(2.4)

where δ s represents a shift, W is a window around s, ∇ is the first order derivative, and Λt

is the precision matrix.

We then compute a saliency Qt for any point in Et according to eigenvalues of Λt .

Qt(s) = min{λ 1
t (s),λ

2
t (s)}, (2.5)

where λ 1
t and λ 2

t are two eigenvalues of Λt . After thresholding on Qt , we find a set of

salient points {q(1)t , · · · ,q(N)
t }. To ensure sparse distribution, we discard points for which

there is a stronger salient points in the neighborhood.
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Classify Moving Objects

Given the salient points on the background subtracted image, we perform classification

to reject outliers from true moving objects. Toward classification, we extract 40×40 patch

on each salient point q(n)t in the background subtracted image. Fig.2.2 shows the example

of extracted patches on manually labeled training dataset. It is worth noting that patches

of true moving objects look very different from those of false alarms. In the patches, true

moving objects tend to have high contrast V-shape while false alarms show the blurred

edge. Therefore, appearance information from background subtracted images is powerful

to differentiate moving objects from false alarms.

We then train the classifier which separates moving objects from false alarms through

deep learning. In deep learning algorithms, the weights of a neural network are trained

on large datasets, and then the trained neural network is applied to determine whether the

unseen testing object is moving target or not. The network architecture is described in

Fig.2.3. First, we apply 16 filters of 3×3 convolution kernel to generate feature maps and

then utilize rectified linear units (ReLU) [29] for neuron activation. The batch normaliza-

tion unit is added between convolution and ReLU to avoid internal covariate shift during

Fig. 2.3.: Network architecture for deep learning: Given input patches, 3-layer convo-

lutional neural networks are trained to identify moving objects. Note that we use batch

normalizaton (BN) and rectified linear unit (ReLU) for efficient training of deep neural

networks.
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mini-batch optimization [30]. Next, we apply max-pooling (spatial down-sampling) oper-

ation to reduce the size of feature map and increase the number of filters for the following

layer. Then, we repeat the convolution (plus batch normalization and neuron activation)

with max pooling operation for 2 layers with 32 filters of 3×3×16 kernel and 64 filters

of 3×3×32, respectively. Finally, we find the binary classification label by applying fully

connected neural network with soft-max function.

By feeding the appearance patches in the unseen testing video frame into the trained

neural network, we can find the salient points on the moving object candidates.

2.2.3 Target Pruning and Tracking

While we expect our moving object detection to be effective, we still encounter inter-

mittent miss-detections with false alarms. These false alarms and missed detections can be

corrected by observing the temporal characteristics of the detected moving objects. Toward

this, we estimate the local motion fields of the detected moving objects through optical-flow

matching. Then, we prune the moving objects based on the difference between background

and local motion. In addition, we apply Kalman filter to make detected objects correspond

to coherent temporal signatures as opposed to spurious intermittent noise.

Estimate Local Motion

Given the detected patch of the moving object at q(n)t in the background subtracted

image Et , we estimate the local motion via optical flow matching. Toward this, we first

extract M salient points {r(n,1)t , · · · ,r(n,M)
t } in corresponding regions of the original frame

Xt using Shi-Tomasi corner detector. For each salient point r(n,m)
t , we compute the optical

flow vector to the corresponding point in the next frame Xt+1 by applying Lucas-Kanade

method.
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In Lucas-Kanade method, we assume that all neighbor points around the given pixel

have the same motion. So, the local motion can be computed by solving the least square

problem.

u(n,m)
t = argmin

u ∑
s∈N (r(m,n)

t )

|Xt+1(s+u)−Xt(s)|2 , (2.6)

where N (r(m,n)
t ) is the neighborhood around r(m,n)

t . It is worth noting that local motion

estimation via Lucas-Kanade method is efficient because we have a closed-form solution

for eq. 2.6 and we compute the optical flow vector only for small number of salient points

in the detected moving object patches.

Prune Target Objects

We prune the detected moving object at q(n)t based on the difference between the esti-

mated background and local motion. This motion difference represents the actual speed of

the moving object relative to rapidly moving camera. So, we prune the target objects if the

actual speed of the moving object is too small (e.g., stand still) or too large (e.g., beyond

the reasonable speed).

We now define the motion difference d(n)
t for the moving object at q(n)t between the

background and moving object as following:

d(n)
t =

1
M

M

∑
m=1

(h(n,m)
t −u(n,m)

t ), (2.7)

where h(n,m) is interpolated motion vector from the perspective transform Ht between Xt

and Xt+1 at the point r(m,n)
t .

We denote y(n)t as a binary label where the positive value indicates that the moving

object at q(n)t is the target. We then find the pruned target object according to the magnitude

of motion difference.

y(n)t =

1, if TL < ||d(n)
t ||2 < TH

0, otherwise
(2.8)
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where TL and TH are the empirical low and high threshold for pruning. By applying con-

nected component labeling [24] on the set of salient points on the pruned target object, we

generate the bounding box which represents other UAV.

Track Target Objects

Even though our pruning based on motion difference reduces the false alarms, we also

need to deal with intermittent miss-detections. To improve the temporal consistency of our

target detection, we apply object tracking techniques based on Kalman filter [15].

Kalman filter predicts the current state bt from previously estimated states b̂t−1 with

transition model and updates the current measurement ct with the current state bt as below:

bt = Ab̂t−1 +ωt ,

ct = Mbt + εt ,
(2.9)

where A is state transition matrix, ωt controls the transition modeling error, M is mea-

surement matrix, and εt represents the measurement error. The estimated output b̂t is then

computed with Kalman gain K:

b̂t = Ab̂t−1 +K(ct−Mbt),

K =VωMT (MRωMT +Vε),
(2.10)

where Vω and Vε are the covariance of ωt and εt , separately.

Specifically, we assign the size and location of bounding box for the detected target

object as state variable bt and use the constant velocity model to set A and M.

A =


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

 , (2.11)

M =

1 0 0 0

0 1 0 0

 . (2.12)
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Fig. 2.4.: Results of moving object detection and tracking algorithms for 3 testing videos:

[Top-Row] Ground-truth annotation (Green), [Middle-Row] Moving object detection and

tracking algorithm purely based on motion difference pruning [27] (Blue), [Bottom-Row]

Our deep learning based method toward moving object detection and tracking (Red). Pre-

vious method using only motion difference pruning fails to detect some moving objects

with false alarms on the complex background (e.g., horizon). By using deep learning based

method, we pick the missed detection and reject false alarm by taking advantage of the

appearance information. Images are zoomed for better display. See full images in supple-

mentary files.

.

To initialize the Kalman filter, we find the corresponding objects from optical flow

matching in L previous frames and start track if the classification labels y(n)t−1, · · · ,y
(n)
t−L are

positive. Then, we recover the miss-detection for the positive label track based on the

Kalman filter output at the current frame. We dismiss the track if we do not have detected

objects in the Kalman filter estimation for L frames.
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2.3 Experiment

We evaluate our moving object detection and tracking method using deep learning on

a video data set 1 provided by Naval Postgraduate School. For reference, we also per-

form our previous moving object detection and tracking [27] which did not incorporate the

appearance information with deep learning.

2.3.1 Data Set

The videos are taken in outdoor environment including real-world challenges such as

illumination variation, background clutter, and small target objects. The data set comprises

45 video sequences with 30 fps frame rate. Each video is around one minute. They are

recorded by a GoPro 3 camera (HD resolution: 1920×1080 or 1280×960) mounted on a

custom delta-wing airframe. As a preprocessing, we mask out the pitot tube region which

is not moving in the videos. For each video, there are multiple target UAVs (up to 8) which

have various appearances and shapes. We manually annotate the targets in the videos by

using VATIC software [26] to generate ground-truth dataset for training and performance

evaluation. We fix 40 videos as a training set for deep learning and assign remaining 5

videos for testing.

2.3.2 Parameter Exploration

There are important parameters in our moving object detection and tracking algorithm.

To begin with, we extract Shi-Tomasi corner points in background subtracted image Et (for

moving object detection) and original image Xt (for local motion estimation), respectively.

We set higher saliency threshold (QE = 0.01) than (QX = 0.001) as we find the sparse

set of points in the regions of interest when only moving object should be identified. In

addition, we use 15× 15 block size for Lucas-Kanade optical flow matching. Next, we

set the threshold TL = 1.0 and TH = 10.0 to prune the moving object with small and large

1https://engineering.purdue.edu/˜bouman/UAV_Dataset/

https://engineering.purdue.edu/~bouman/UAV_Dataset/
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motion difference. Finally, we use L = 6 for Kalman filter where we start the track if we

detect the object in six previous frames.

2.3.3 Quantitative Evaluation

The overall goal of this experiment is to measure the detection accuracy of identifying

targets in videos. To measure detection accuracy, we report F-score which is the harmonic

mean of recall and precision rates computed as following:

Recall =
Number of Detected Targets in all Frames

Number of Ground-Truth Targets in all Frames
.

Precision =
Number of Detected Targets in all Frames
Number of Detected Objects in all Frames

.

F =
2 ·Recall ·Precision
Recall + Precision

.

Here, we define the detected target if our detection has overlap with ground truth.

Table 2.1 summarizes the accuracy scores. By using deep learning method, we achieve

higher precision, recall and F-score than purely motion based detection. This indicates

that appearance information can complement the miss-detection due to the error in motion

estimation. In addition, deep learning method can fully take advantage of manually labeled

training dataset with over 95% classification accuracy.

2.3.4 Visual Inspection

For qualitative evaluation, we perform visual inspection. Fig. 2.4 shows exemplar

results on 3 different testing videos. First row illustrates the manually labeled ground-truth.

Second and third row represent detection results from our previous method [27] only based

on motion and proposed deep learning method with appearance information, respectively.

We notice that our previous method generates false alarms on the complex backgrounds

such as edges. Furthermore, errors in the motion estimation lead to missed detection of

moving objects. Our deep learning based method not only removes false alarm by using
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Table 2.1.: Detection Accuracy

Only

Motion Differ-

ence

Deep Learning

with Appear-

ance

Precision 0.630±0.11 0.819±0.09

Recall 0.766±0.15 0.798±0.10

F-Score 0.684±0.10 0.806±0.08

Fig. 2.5.: Motion difference vectors (black) on detected salient points: Red and green dots

represent pruned and deleted points based on the magnitude of motion difference vector,

respectively. We preserve the points around target UAV (red), while deleting the points lo-

cated at background (green). This indicates that the magnitude of difference vector between

estimated background and local motion is effective to separate the points in the targets from

complex backgrounds. Images are cropped for better display.

the appearance patch in the background subtracted image but also preserves moving objects

which have relatively small motion difference.

In Fig. 2.5, we display the dense Shi-Tomasi corner points extracted from detected

moving objects and their motion difference vectors. We use different colors for preserved

(red) and deleted (green) points by applying thresholding on the magnitude of motion dif-

ference. We observe that preserved and deleted points are mostly located around the target

UAV and cloud/edges, respectively. This reflects that we supplement appearance based
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deep learning classifier by pruning the points based on motion difference, improving the

detection accuracy.
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3. FAST AND ROBUST UAV TO UAV DETECTION AND
TRACKING FROM VIDEO

3.1 Introduction

Unmanned Aerial Vehicle (UAV) technology is being increasingly used in a wide va-

riety of applications ranging from remote sensing, to delivery and security [31–34]. As

UAVs have become more popular, there is a growing need for UAV to UAV detection and

tracking systems for both collision avoidance and coordination of multiple UAVs [35, 36].

While active sensors such as Lidar or Radar can provide a relatively accurate 3D point

cloud, active sensors are typically not practical for small UAVs due to their high weight

and power requirements [37].

Alternatively, passive optical sensors such as high-definition digital cameras are light

weight and low power sensors that can be used to implement a more traditional “see-and-

avoid” system [6, 8, 38]. We will refer to such automated UAV to UAV see-and-avoid

systems as autonomous see and avoid. However, in order to be effective, autonomous see

and avoid systems will require sensitive, robust, and computationally efficient algorithms

for detection and tracking of UAVs from a camera mounted on a moving UAV platform.

We will refer to such systems as UAV to UAV detection and tracking (U2U-D&T).

Real-time moving object detection and tracking has been widely studied in the com-

puter vision community [39, 40]. While early object detection methods were based on

simple feature extraction [9,19,41–43], more recent algorithms such as deep convolutional

neural networks have been broadly accepted has having the best accuracy for the problem

of detecting general objects in cluttered scenes [44–48].

More recently, there has been particularly high interest in the detection of pedestrians

and cars for applications ranging from intelligent highways to the safety of autonomous

vehicles. Many pedestrian and car detection algorithms have been developed for surveil-
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lance monitoring and even used in commercial products, in which video is captured from

a camera on a fixed platform [10–12]. More recently, there has been a variety of research

on object detection algorithms for video taken from cameras mounted on a moving vehi-

cle [49–51].

The design of U2U-D&T systems presents many unique challenges that necessitate

specialized object detection and tracking solutions [6, 8, 38]. First, in U2U-D&T detec-

tion, both the camera platform and the object being detected are rapidly moving. This is

because both the UAV with the camera and the UAV to be detected are typically moving

independently.1 Consequently, object detection and tracking algorithms must be robust to

background motion that is non-planar and complex [52, 53]. Second, robust detection and

tracking requires that algorithms work reliably for both near and distant UAVs. This means

that in some cases distant targets may be very small and often obscured by the background.

For example, Fig. 3.1 illustrates how distant UAVs may only occupy a small number of

pixels, and can be occluded by the clouds or other background clutter. However, in other

cases, nearer targets may occupy a much larger field of view. Therefore, appearance by

itself may not be a reliable feature for robust detection [54]. Finally, training data for the

problem of U2U-D&T detection is scarce and its collection is difficult since it requires the

simultaneous coordination, flight, and video capture of multiple UAVs [55].

A number of researchers have studied the problem of detecting small ground objects

from wide angle aerial images taken from UAVs [56]. For example, in [8] Meier et. al

used computer vision methods to detect static markers on the ground to assist in UAV

localization. Other researchers have studied the problem of tracking and estimating the geo-

location of ground targets from moving UAVs using computer vision [57–59]. In particular,

Khanapuri et. al estimated the geo-localization of multiple ground targets with multiple

UAVs using neural network and extended Kalman filters [60]. In other research, Ammour

et. al proposed an algorithm for detecting and counting cars from UAV imagery [61],

and Teutsch et. al detected moving vehicles in videos taken from a UAV by using frame

1We note that fixed wing UAVs, which will be the primary focus of this research, must maintain a minimum
airspeed above their stall speed. So they also typically maintain a non-zero ground velocity.
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Fig. 3.1.: Challenges in detecting other UAVs: In some cases distant UAVs may be very

small and occluded by similar or cluttered backgrounds. In this case, UAVs may not be

easily recognizable to human observers.

differencing together with an appearance based classifier. Finally, in [61], LaLonda et. al

presented a spatio-temporal algorithm to detect small objects in videos taken from UAVs

flying high above targets. This method can detect both moving and stationary objects that

are on the ground by using a two-stage neural network in which the first stage detects a

region of interest, and the second stage detects the specific location. However, detection of

objects flying in the sky is more challenging since there can be greater variation in both the

motion and the appearance than typically occurs for objects on the ground.

There have been a number of papers that specifically treat the problem of detection and

tracking of moving objects using UAV mounted cameras [62,63]. Rozantsev et. al proposed

an algorithm for detecting other flying UAVs by first performing motion compensation

to center the moving object, and then using a deep neural network (DNN) to detect the

flying target [62, 63]. While this method was effective, it assumed that the UAVs were

relatively close so that the target UAV occupied a large number of pixels in the field-of-

view (FOV). This allowed the DNN to accurately detect the appearance of the target UAV.

Moreover, they used a sliding window to detect the moving target, so that the computation

required was large compared to what would likely be available on a small UAV for real-time

detection and tracking.
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Since many modern detection algorithms depend on training, high quality video train-

ing data is also crucial to successful U2U-D&T design. There are a number of datasets

taken from cameras mounted on UAVs looking down at ground-based objects. For exam-

ple, Campus [64] is a dataset taken from a UAV looking at a campus with objects such

as cars, pedestrains, bicycles and other objects on a university campus. CARPK [65] is a

similar dataset for parking lots containing static cars. DOTA [66] is a more general data set

containing videos of public areas in multiple cities. In the videos, there are objects, such

as cars, ships, and helicopters, all of which are static. UAVDT [67] is a data set primarily

consisting of ground-based moving objects taken from cameras mounted on flying UAVs.

UAV123 [68] and UAVDT [67] include some videos of other moving UAVs. However,

the number of UAVs in a image is typically small, and the UAVs videos are taken at close

distance.

In this chapter, we present a low complexity algorithm for U2U-D&T that is capable

of robustly detecting and tracking target UAVs from cameras mounted on a flying UAV

platform. This research builds on our previous publications of [27, 69]. Key innovations

in our approach are that we use a modular structure formed by a moving target proposer,

hybrid classifier, and target tracker in order to minimize computation while achieving high

accuracy. Moreover, by integrating our motion and appearance into the classification pro-

cess, we are able to increase detection probability while reducing false alarms. Finally, we

utilize tracking to increase accuracy of detecting faint, distant, and obscured UAVs with

intermittent single frame detection.

We also present a publicly available data set of UAV to UAV video suitable for training

of U2U-D&T algorithms 2. The data is unique in that it was taken with multiple UAVs

flying simultaneously [55] and is available with associated ground-truth. When tested with

this real video data, we find that our proposed U2U-D&T algorithm has a high probability

of detection and low false alarm rate even in complex and clustered environments and can

detect distant and faint UAVs even when they are difficult for humans to visually detect.

2https://engineering.purdue.edu/˜bouman/UAV_Dataset/

https://engineering.purdue.edu/~bouman/UAV_Dataset/
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3.2 UAV to UAV Detection and Tracking Algorithm (U2U-D&T)

The overall architecture of our algorithm for U2U-D&T is illustrated in Fig. 3.2. The

U2U-D&T system has three stages: Moving target proposer, hybrid classifier, and target

tracker. In the first stage, target proposals are generated by estimating the background

motion between two sequential video frames and highlighting regions where changes have

occurred. In the next stage, proposed targets are classified as either true or false by combin-

ing deep learning classifier outputs based on motion and appearance information. Finally,

we use optical flow together with Kalman tracking to recover accurate continuous tracks

even in the presence of missed detections. This structure greatly reduces computation since

computationally intensive classifiers need only be applied to regions of interest that are gen-

erated by the moving target proposer.

In the following sections, we describe each stage of our algorithm in detail.

3.2.1 Moving Target Proposer

The function of the first stage is to generate proposals corresponding to objects that are

moving in front of the background. To do this, we must distinguish between the background

motion and that of moving foreground objects. We first estimate the background motion

using a global motion model. We then use the global motion to align two sequential image

frames, and subtract them to remove background from the image. After removing the back-

ground, we generate moving target proposals by extracting patches from the background

subtracted image, and the patch locations are determined by identifying salient points.

We implement our moving target proposer in five steps: feature point selection, local

motion estimation, global motion estimation, background subtraction, salient patch extrac-

tion. In the following, we provide more details about each of these steps.

Feature point selection: In this step, we select a set of points used to estimate global

motion.

We first randomly select K points in the original image. For each point, we compute its

saliency using Shi-Tomasi corner detector’s criteria [22]. Then we discard points for which
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there is a more salient point at certain distance D0. Here pn,∗ = {pn,i}Kn
i=1 denotes the Kn

selected points in the frame Xn.

Local motion estimation: We now find the local motion for pn−1,∗ points selected in

previous step from the previous frame Xn−1 to the current frame Xn.

We compute the motion vectors un,i for each point pn−1,i using the Lucas-Kanade

method [14] assuming that our local motion is an optical flow. In Lucas-Kanade method,

the local motion is computed by solving the least square problem

un,i = argmin
u ∑

s∈N (pn−1,i)

|Xn(s+u)−Xn−1(s)|2 (3.1)

where N (pn−1,i) is a neighborhood around the point pn−1,i. Furthermore, bi-directional

verification is utilized. Toward this, we compute the reverse motion vn using Lucas-Kanade

method

vn,i = argmin
u ∑

s∈N (p̃n)

|Xn(s)−Xn−1(s−u)|2 (3.2)

where p̃n,i is the corresponding point in current frame computed as p̃n,i = pn−1,i + un,i.

Then we discard points when ||un,i− vn,i||2 > Md. Now the number of remaining points is

K
′
n.

Global Motion Estimation: Our next step is to fit the global background motion using

a perspective transform model. We use perspective transform because it is a non-liner

transformation which is perfect when the camera has a perfect perspective projection and

the world is planar [70].

The perspective transform y = T (H,x) parametrized by matrix H is computed as

y =


h11·x(1)+h12·x(2)+h13
h31·x(1)+h32·x(2)+h33

h21·x(1)+h22·x(2)+h23
h31·x(1)+h32·x(2)+h33

 , (3.3)

where hi j is the i-th row and j-th column of matrix H, x(k) is k-th component of x. H is a 8

parameter matrix with h33 always equals to 1.

Then Hn is computed by fitting {pn,i}
K
′
n

i=1 and {p̃n,i}
K
′
n

i=1 into global perspective tranform.

First we use RANSAC [71] to compute a good set of inliers. Here pn,∗
′ = {pn,i

′}K′′n
i=1 and



42

Fig. 3.2.: An overview of U2U-D&T algorithms: We first get the moving UAVs proposals

using traditional computer vision method by first estimating background motion between

two sequential frames via perspective transform model and then identifying the proposals

(red boxes in the upper right image) in the background subtracted image. Then we apply

deep network based classifier for the proposals (green box is the moving object candidate).

Among detected moving object candidates, we extract salient points and use Optical Flow

tracking to track, and increase temporal consistency through Kalman Tracking (magenta

box is the final detection).

p̃′n,∗ = { p̃′n,i}
K′′n
i=1 denotes the K′′n point pairs in the set of inliers. Then Hn is computed by

solving the least square problem,

Hn = argmin
H

K′′n

∑
i=1
||p̃′n,i−T (H, pn,i

′)||22, (3.4)

using iterative least squares method [72]. We assign the resulting perspective transforma-

tion in eq. 3.4 as the background motion between two consecutive frames.

Background subtraction: In this step, we subtract the background to highlight regions

where changes have occurred. We compute the background subtracted image because mo-

tion of moving targets is different from background motion.

In order to compute background subtracted image, we first estimate previous frame

using current frame

X̂n−1(s) = Xn(T (Hn,s)), (3.5)
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where X̂n−1 is the estimated previous frame and s denote point location. When components

of T (Hn,s) are not integer, we use bi-linear interpolation to get the estimated pixel value.

Then the background subtracted image En−1 for Xn−1 is computed as

En−1 = |Xn−1− X̂n−1|. (3.6)

We only compute En for every L0 frames.

Salient patch extraction: In this step, we identify salient point in the background sub-

tracted image and extract salient patches on original image and background subtracted

image located around the salient points. By subtracting estimated background, the moving

targets remain salient on background subtracted image. So we determine the location of

patches by identifying salient point in background subtracted image.

We use Shi-Tomasi corner detector [22] to obtain locations of moving target proposal’s

location. When we detect corner points, we have three parameters to control the quality

of corner points: more salient than quality level λ c, minimum distance between two points

is greater than dc, and maximum number of detected points are mc. Here qn,∗ = {qn,i}Qn
i=1

denotes the Qn selected points for moving target proposals. Then extract 40×40 patch on

each salient point qn,i in both the background subtracted image and original image. Each

moving object proposal contains two components: one from background subtracted image

and one from original image. For the following procedures, we only deal with the proposals

instead of the whole image domain.

3.2.2 Hybrid Classifier

In this stage, we use hybrid classifier to prune moving target proposals generated in

previous step. Due to camera distortion and the violation of planar assumption in real case,

the perspective transform model is not perfect to describe the global motion. In addition,

Lucas-Kanade optical flow is also not accurate to estimate the local motion of points. We

encounter false alarms in the moving object, so we propose hybrid classifiers to remove

spurious noise while keeping real moving targets.
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Fig. 3.3.: Hybird classifier uses AdaBoost [73] to combine appearance classifier and motion

classifier to classifier the moving target proposals. Motion classifiers take motion features

as input and appearance classifier takes salient patches as input.

As shown in Fig. 3.3 our classifier contains three parts: appearance classifier, motion

classifier and AdaBoost. We provide more details for each part.

Appearance classifier: We train an appearance classifier in Fig. 3.4 to separate moving

objects from false alarms through convolutional neural network. In the convolutional neural

network algorithms, the weights of a neural network are trained on large datasets, and then

the trained neural network is applied to determine whether the unseen testing object is

moving target or not. More details about training are provided in Section 3.4.

First, we apply 16 filters of 3×3 convolution kernel followed by ReLUto the input

moving target proposals. Then we apply 32 filters of 3×3 convolution kernel followed

by ReLU [74] and max pooling layer. Similarly we apply 64 filters of 3×3 convolution

kernel followed by ReLU and max pooling layer. In the end, we find probability pa
n,i that

the patch on each salient point qn,i belongs to moving object by applying fully connected

neural network with soft-max function.

When we do the training, we use dropout [75] to avoid over-fitting. We also use batch

normalization to save training time.

Motion classifier: We define the motion difference dn,i for the moving object at qn−1,i

between the perspective motion and local motion as following:

dn,i = T (Hn,qn−1,i)− q̃n,i, (3.7)
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Fig. 3.4.: Network architecture for appearance classifier: The network take 6 channels

input, 3 channels for original image and 3 channels for the background subtracted image.

Given input patches, 3-layer convolutional neural networks and one-layer of Dense layers

are trained to identify moving objects.

where q̃n,i is corresponding point in current frame using Lucas-Kanade optical flow match-

ing. vn,i is backward local motion which can be computed using eq.3.2. In addition, we

denote un,i = q̃n,i−qn−1,i and hn,i = T (Hn,qn−1,i)−qn−1,i.

Fig. 3.5.: Network architecture for motion classifier: The network take 7-D motion fea-

tures. Given input feature, 3-layer neural networks followed by fully connected layer are

trained to identify moving objects . In the end, softmax layer is utilized to compute po
n(k).

This motion difference represents the actual speed of the moving target relative to the

background motion.
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Table 3.1.: Table of Motion Features

Equation Description

1 ln,i = ||dn,i|| magnitude of motion difference

2 αn,i = arctandn,i angle of motion difference

3 εn,i = ||un,i− vn,i|| bi-directional verification distance

4 θn,i = arctanhn,i− arctanun,i perspective-local motion angle difference

5 δn,i = |||hn,i||− ||un,i||| perspective-local motion magnitude difference

Combined motion features in Tabel 3.1 with motion difference we use 7-D motion

features for motion based target objects classification. We train a classifier to separate

moving objects from false alarms through neural network.

The network architecture is described in Fig. 3.5. First, we apply 8 filters neural net-

work followed by 16 filters and then 32 neurons to generate features. In the end, we get

probability po
n,i that the patch on each salient point qn,i belongs to moving object by apply-

ing fully connected neural network with soft-max function.

Similarly with appearance classifier, during training, between each layer, dropout layer

[75] is used to avoid over-fitting.

AdaBoost: In this step, we use AdaBoost [73] algorithm to combine appearance and

motion classification results together to provide a more robust detection results. There is

case when moving target has low speed, which makes motion information not reliable in

detecting moving target. On the other hand, when moving target is so high that there is only

few pixel in the image, appearance information is not enough to identify the target. To solve

this challenge, we propose to use AdaBoost to merge appearance and motion information

together to make the final decision.

An AdaBoost classifier begins by fitting a classifier on the original dataset and then

fits additional copies of the classifier on the same dataset but adaptively adjust the weights

of incorrectly classified instances such that difficult cases are given more emphasize in

classification.
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Here we take pa
n,i and po

n,i as input for AdaBoost algorithm. For the week classifiers in

AdaBoost, we use decision tree [76] for simplicity, maximum depth of the decision tree is

2. We obtain optimal weight of each week classifier by training the training dataset using

AdaBoost-SAMME [77]. w∗ = {wi}M0
i=1 denotes weight for M0 weight classifiers.

βn,i =
M0

∑
m=1

wm ∗gm(po
n,i, pa

n,i), (3.8)

where gm is decision tree classifier, po
n,i and pa

n,i are probability computed from motion and

appearance separately .

We denote yn,i as a binary label computed as

yn,i =

1, if βn,i > 0.5

0, otherwise
, (3.9)

where 1 indicates that the moving object at qn,i is the target and 0 is noise. We only discard

proposals which are predicted as noise in AdaBoost classifier. We keep the positive patches

as our moving UAV candidates.

3.2.3 Target Tracker

In this stage, we use target tracker to obtain detections for frames between two de-

tection interval and to recover intermittent missed detection. Due to limited computation

power, we only add new detection for every L0 frame. To obtain detection for frames in be-

tween we use optical flow tracking. And we also use Kalman tracking to increase temporal

consistency.

Target tracker is implemented in three steps: Optical flow tracking, tracked points prun-

ing and Kalman tracking. We provide more details about each step in the following.

Optical flow matching: In this step, we obtain detection in next frame given detection

in current frame.

Toward this, we first extract Shi-Tomasi corners for positive patches located at qn,i on

En. Here parameters to control the quality of corner points: more salient than quality level
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λ t , minimum distance between two points is greater than dt , and maximum number of de-

tected points are mt . Here r∗n,i = {r
j
n,i}J

j=1 denotes J corner points extracted on patch located

at qn,i. We then track each point r j
n,i from Xn to obtain corresponding points r j

n+1,i in the

next frame using optical flow matching by applying Lucas-Kanade method (Section3.2.1).

Tracked point pruning: In this step, we prune the incorrectly matched tracked points.

Due to inaccuracy of Lucas-Kanade optical flow matching, points have miss match. We

use hybrid classifier here to discard mismatched points.

For each corner point r j
n,i, we extract 40×40 patch on Xn, and we compute the same 7-D

motion features as in Section 3.2.2. We train a new Hybrid classifier for tracked points using

the same structure as in Section 3.2.2, except for the appearance classifier, here we only

have original frame which is 3 channel input instead of 6. Then we use trained classifier

to discard tracked points which are classified as noise. Here r∗n,i
′ = {r j

n,i
′
}J′

j=1 denotes J′

remaining points extracted on patch located at qn,i. Final location of detection is computed

as average of J′ remaining points.

Kalman tracking: We use Kalman Tracking [15] here to make detected objects corre-

spond to coherent temporal signatures as opposed to spurious intermittent noise.

Kalman filter predicts the current state bn from previously estimated states b̂n−1 with

transition model and updates the current measurement cn with the current state bn as below:

bn = Anb̂n−1 +ωn,

cn = Mbn + εn,
(3.10)

where An is state transition matrix, ωt controls the transition modeling error, M is mea-

surement matrix, and εt represents the measurement error. The estimated output b̂n is then

computed with Kalman gain K:

b̂n = Anb̂n−1 +K(cn−Mbn),

K =VωMT (MRωMT +Vε),
(3.11)

where Vω and Vε are the covariance of ωt and εt , separately.

The motion of the moving object contains two parts, perspective transform and motion

difference compared to background motion. So here when we use Kalman tracking, we



49

also take perspective transform into consideration. However, perspective transform is not

linear, so we approximate it using Affine transform. Specifically, we assign the location of

bounding box and velocity for the detected target object as state variable, we augment the

state variable by setting the 3rd element of bn as 1.

bn =



bx

by

1

bvx

bvy


, (3.12)

where bx and by are x and y location of bounding box, bvx and bvy are horizontal and vertical

velocity. And we use the constant velocity model to set A and M.

An =



h11 h12 h13 1 0

h21 h22 h23 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, (3.13)

M =

1 0 0 0 0

0 1 0 0 0

 , (3.14)

where hi j is the i-th row and j-th column of matrix Hn which is the matrix we computed

from Section 3.2.1.

To initialize the Kalman filter, we find the corresponding objects from optical flow

matching in L previous frames and start track if the classification labels yn−L,i, · · · ,yn−1,i

are positive. Then, we recover the miss-detection for the positive label track based on the

Kalman filter output at the current frame. We dismiss the track if we do not have detected

objects in the Kalman filter estimation for L frames.
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3.3 UAV to UAV Detection and Tracking Dataset (U2U-D&TD)

U2U-D&TD contains 50 video sequences with up to 8 UAVs in one frame, chosen from

around 100 hours of videos taken from a camera mounted on a UAV with multiple UAVs

flying in the sky simultaneously.

3.3.1 Data Collection

Our data set is collected from fixed wing UAVs flying high in the sky by Naval Post

Graduate School. The videos are taken in outdoor environment including real-world chal-

lenges such as illumination variation, background clutter, and small target objects. The data

set comprises 50 video sequences with 30 fps frame rate. Each video is around one minute.

They are recorded by a GoPro 3 camera (HD resolution: 1920× 1080 or 1280× 960)

mounted on a custom delta-wing airframe. As a preprocessing, we mask out the pitot tube

region which is not moving in the videos. For each video, there are multiple target UAVs

(up to 8) which have various appearances and shapes.

3.3.2 Data Annotation

We manually annotate the targets in the videos by using VATIC software [78] (see

Fig.3.6) to generate ground-truth data set for training and performance evaluation.

3.3.3 Annotation Refinement Using Detection

There are very challenging cases which is very hard for human eye to annotate (see

Fig.3.7).

However our proposed algorithm detected. We then use the detection result to guide

annotator to refine the annotation (see Fig.3.7).
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Fig. 3.6.: Vatic Annotation interface: first initiate object to be annotated and give it label

and index. Then it will track using optical flow, and annotator manually corrected the

detection.

Fig. 3.7.: Missed annotation in first round annotation. Left is original Groundtruth, Right

is U2U-D&T’s detection results (Green box is detection). U2U-D&T detects UAVs missed

by human eye.

3.4 Experiment Results

In this section, we compare U2U-D&T with the results of current state of art method

EPFL [63]. In addition, we investigate robustness of our algorithm. The performance

comparisons are based primarily on Recall, Precision and F-scores. Computation times

were measured on two platforms: a GPU computer and and Odroid board based on an Arm
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Fig. 3.8.: Example of training patches (Background subtracted image): [Left] True Moving

Targets, [Right] False Alarms: We note that true moving targets have different appearance

in the background subtracted images compared with false alarms. True moving objects

tend to be distinctly highlighted while false alarms contain blurred edges.

processor shown in Fig.3.9. For GPU computer, it has Two Sky Lake CPUs (2.60GHz) with

three Tesla P100 GPUs and 96 GB of RAM. For Odroid board, it has Samsung Exynos5

Octa ARM Cortex-A15 Quad 2GHz, Cortex-A7 Quad 1.3GHz CPUs and 2 GB LPDDR3

RAM at 933MHz. We implemented our algorithm in Python, for neural network, we use

Keras and we also use OpenCV library. Our code is not optimized.

Fig. 3.9.: Odroid board utilized in real UAV flying system.
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The overall goal of this experiment is to measure the detection accuracy of identifying

targets in videos. To measure detection accuracy, we report the recall, precision and F-

score as defined below

Recall =
Number of Detected Targets in all Frames

Number of Ground-Truth Targets in all Frames
.

Precision =
Number of Detected Targets in all Frames
Number of Detected Objects in all Frames

.

F =
2 ·Recall ·Precision
Recall + Precision

.

Here, to determine whether the target is detected using Intersection over Union (IoU) which

is defined as

IoU =
Ao

Au
. (3.15)

where Ao is the area of intersection of detected bounding box and ground-truth, Ao is the

area of union of detected bounding box and ground-truth. We define the detection of target

if IoU is greater than 0.5.

For our algorithm, we list all parameters of U2U-D&T algorithm in Table 3.2.

3.4.1 Training

In all our experiments, we used the U2U-D&TD data set described in Section 3.3. All

experiments used 5 fold cross validation where we randomly divided the 50 videos into 5

subsets, trained on 4 subsets and tested on the remaining subset.

Fig. 3.8 shows an example of training patches on the background subtracted image. It

is worth noting that patches of true moving objects look very different from those of false

alarms. In the patches, true moving objects tend to have high contrast V-shape while false

alarms show the blurred edge. Therefore, appearance information is powerful to differenti-

ate moving objects from false alarms.

To obtain labels of extracted patches, we use IoU to determine whether the patch is

moving target or noise.

Here we provide details of training procedure of our classifiers.
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Table 3.2.: Table of Parameterss

Notaion Description Value

K number of points in feature point selection 600

D0 minimum distance in feature point selection 25

Md threshold for bidirectional check in local motion estimation 1

λ c quality level of salient patch 0.01

dc minimum distance between two salient patches 50

mc maximum number of salient patches 600

L0 detection interval 6

M0 number of classifier in AdaBoost 20

λ t quality level of tracked points 0.001

dt minimum distance between two tracked points 1

mt maximum number of tracked points 50

L maximum length of unseen frames for Kalman tracking 6

Appearance classifier: In the neural network, we use categorical cross-entropy as loss

function. We divided the training data into training set (9/10) and validation set (1/10).

During training we monitor validation loss. We use Adam optimizer. The learning rate is

0.001 for 150 epochs. The batch size was set to 256 for the training on three Tesla P100

GPUs. The training process took about 5 hours for 40 videos.

Motion classifier: In motion classifier, we also use categorical cross-entropy as loss

function. We divided the training data into training set (9/10) and validation set (1/10).

During training we monitor validation loss. We use Adam optimizer. The learning rate is

0.001 for 1500 epochs. The batch size was set to 1024 for the training on three Tesla P100

GPUs. The training process took about 2 hours for 40 videos.
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Table 3.3.: Precision, Recall and F-Score for Robustness Investigation

U2U-D&T w/o Kalman w/o Motion w/o Appear-

ance

Precision 0.888 0.871 0.829 0.263

Recall 0.890 0.830 0.723 0.674

F-Score 0.889 0.850 0.774 0.379

3.4.2 Comparison with Existing Methods

As a reference, we compare our proposed U2U-D&T algorithm with the state-of-art

UAV detection algorithm described in [63], which we will refer to as “EPFL”. We use the

optimized parameter setting provided in [63], and we randomly selected 5 videos from

our data set to compare two methods. Both algorithms ran on the GPU machine. The

“EPFL” was implemented with Matlab and used Caffe for the deep learning portion; and

our U2U-D&T algorithm was implemented in Python and utilized Keras for the deep learn-

ing classifier.

Table 3.4.: Comparison of Precision, Recall and F-Score

EPFL U2U-D&T

Precision 0.648 0.887

Recall 0.427 0.892

F-Score 0.515 0.890

Figure 3.10 shows the detection results, from which we can see that our algorithm

dramatically improve the detection accuracy. We have less false alarm while have a high
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Fig. 3.10.: UAV detection results of U2U-D&T and “EPFL”: [Top-Row] Ground-truth an-

notation (Green), [Middle-Row] “EPFL” (Red), [Bottom-Row] Our proposed U2U-D&T

(Red). Green boxes represent the groundtruth annotations, red box denotes the detection

results. ”EPFL” turns to detect a lot false alarms and misses the true moving targets.
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Table 3.5.: Computation Time (ms) on GPU

EPFL U2U-D&T

Total Time per Frame 167580.93 29.09

recall rate. This is due to that “EPFL” is not optimized for detecting real flying UAVs in real

cases. Table 3.4 and Table 3.5 lists out quantitative measures of accuracy and computation

speed. The results show that our algorithm can be run in real time on GPU machine.

3.4.3 Classification & Tracking Robustness

In our U2U-D&T algorithm, we identify the moving targets in the background sub-

tracted image. We use hybrid classifiers to combine appearance and motion information to

remove false alarms. To save computational time, we only add new detection for certain

frame intervals. For frames in between, we use optical flow tracking and Kalman obtain

detection.

So our claim is that we use hybrid classifier to increase accuracy and tracking to save

computational time while increasing temporal consistency. In order to investigate ro-

bustness of our U2U-D&T algorithm, we analyze the importance of motion, appearance,

tracked point pruning and the Kalman Tracking.

Towards this, we compare our based line method with the following:

• U2U-D&T without Kalman tracking (w/o Kalman): it removes Kalman tracking at

the end of U2U-D&T.

• U2U-D&T without motion classifier (w/o Motion): it uses Appearance based classi-

fier for the detection instead of using AdaBoost to combine Appearance and motion,

others are the same as U2U-D&T.
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• U2U-D&T without appearance classifier (w/o Appearance): it uses Motion based

classifier for the detection instead of using AdaBoost to combine Appearance and

motion.

• U2U-D&T without tracked point pruning (w/o Pruning): it removes tracked point

pruning in target tracker.

w/o Appearance: From the examples shown in bottom row on Fig. 3.11, we see that

motion based classifier detects a lot of false alarms, due to the inaccuracy of Lucas-Kanade

optical flow matching. With respect to the accuracy on the whole data set in Table. 3.3, the

precision is low while it still has the problem of detecting the real moving targets.

w/o Motion: As shown in third row on Fig. 3.11, appearance based classifier fails when

the moving target is far away and has only few pixels. With respect to the accuracy on the

whole data set in Table. 3.3, the performance increases compared to motion based classifier.

However, the recall rate is still a problem since in real case, moving target can be far away.

In collision avoidance application, we need to detect the potential moving target in a very

far distance.

w/o Pruning: The examples in Fig. 3.13 visualizes the tracked points for the target tracker

part. If we track the patch using optical flow tracking only, there is severe problem having

a lot residuals on the background (second row). To solve this, we add hybrid classifier to

prune the tracked points, then the tracking is more accurate by deleting spurious noise on

the background.

w/o Kalman: Even though we have more accurate optical flow tracking by pruning mis-

matched points. We encounter missed detection as shown in bottom row on Fig. 3.12. By

adding Kalman tracking, we recover the missed detections between two detection intervals

(see first row on Fig. 3.12).

Fig. 3.11, Fig. 3.12 and Fig. 3.13 show that our proposed system is most accurate vi-

sually. Quantitatively, accuracy is boosted by using AdaBoost to combine appearance and

motion information together. In addition, by adding Kalman tracking, both recall rate and

precision rate is further increased.
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Fig. 3.11.: GroundTruth and detection results from U2U-D&T, w/o Motion, w/o Appear-

ance. [Top-Row] Ground-truth annotations in Green boxes, [Second-Row] U2U-D&T de-

tection results, [Third-Row] w/o Motion and [Bottom-Row] w/o Appearance. Three exam-

ples of detection results: when use appearance to classification, moving target with few

pixels is challenging. For motion based method, too many false alarms due to motion’s

lack of robustness. By combining motion and appearance, U2U-D&T successfully picked

up most of the moving targets. (Note: we cropped the image in order to show moving

targets which are too small if we use original frame.)

3.4.4 Computation Time

To investigate the efficiency of our proposed algorithm, here we measure computation

time for each part of our algorithm. Moving target proposer is the most time consuming

part, which takes around 80% of the total computation time. To save computation time, we
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Fig. 3.12.: Results of moving object detection and tracking algorithms sequential frames in

a testing video: [Top-Row] Ground-truth annotation (Green), [Middle-Row] U2U-D&T de-

tection, [Bottom-Row] w/o Kalman results. Horizontal line denotes time. Without Kalman

tracking, there is intermittent missed detection while U2U-D&T recovers the missed de-

tection. Kalman Tracking helps recover intermittent missed detection.

add new detection every 6 frames, so for each step in “moving target proposer”, the update

rate is 6. And computation time per frame is divided by the update rate.

We then analyze computation time for each component which boosts accuracy in our

algorithm. Hybrid classifier takes about 10% of the total computation time. AdaBoost is

also very efficient since it only take a 2 dimensional input.

Target tracker only takes less than 2ms which is also very time efficient while it in-

creases accuracy.

Since our algorithm is designed to be run on the arm board, we measure its computa-

tion time on Odroid board. We also implemented the system on Odroid board, which does

not have GPU on it and have very limited computational power and memory. Also im-

plementing deep neural network is difficult since the packages are not available for ARM
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Table 3.6.: GPU Computation Time

Time Rate Time/Frame

Target Proposor

Background Motion Estimation 6.47ms 6 1.08ms

Background Subtraction 86.99ms 6 14.50ms

Patch Extraction 50.13ms 6 8.36ms

Hybrid Classifier

Appearance Classifier 2.28ms 1 2.28ms

Motion Classifier 1.02ms 1 1.02ms

AdaBoost 0.02ms 1 0.02ms

Target Tracker

Optical Flow Tracking 1.28ms 1 1.28ms

Tracked Point Pruning 0.40ms 1 0.40ms

Kalman Tracking 0.15ms 1 0.15ms

Total Time per Frame 29.09ms

Fig. 3.13.: Results of using Hybird classifier during optical flow tracking. Blue boxes are

the ground truth annotation, green dots are the tracked salient point. First row is the results

having Hybrid classifier to prune the points and second is the result using optical flow

matching directly.



62

Fig. 3.14.: Trade-off between accuracy and computation time by downsampling the video.

architecture on our OdroidXU4 board. Here, we tested the computational time without the

deep learning part.

Table 3.7.: Odroid Computation Time

Time Rate Time/Frame

Target Proposor

Background Motion Estimation 286ms 6 47.67ms

Background Subtraction 4627ms 6 771.17ms

Patch Extraction 1491ms 6 248.50ms

Hybrid Classifier

Appearance Classifier / / /

Motion Classifier / / /

AdaBoost / / /

Target Tracker

Optical Flow Tracking 84ms 1 84ms

Tracked Point Pruning 12ms 1 12ms

Kalman Tracking 4ms 1 4ms

Total Time per Frame 1173.34ms

In order to make it run on the board in real time, we downsampled the video to investi-

gate the relationship between accuracy and computation time.
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Fig.3.14 shows the tradeoff between accuracy and computation time. So by downsam-

pling the original video, U2U-D&T is efficient enough to be run on board in near real

time.
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4. CONCLUSION

In my thesis, we present a framework for constructing large scale data sets for moving

objects and deep learning based moving objects detection and tracking algorithm. Our

method first use traditional computer vision technique to generate moving object proposals.

We then classify the proposals using deep learning classifiers. By combining appearance

and motion information, we boost the performance. Afterwards, dense salient points are

extracted on the moving object candidates and both motion and appearance information is

utilized to prune noise on the background and in the end Kalman Filter is used to increase

time coherency. Experiment results on real UAVs data set showed that deep learning classi-

fier can improve detection accuracy. In my thesis, we construct a data set. As future work,

we plan to construct data sets with other moving object(cars, pedestrians) and applying our

algorithm to different kinds of data sets. We believe our algorithm can be generalized and

utilized in automotive driving scenario.
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